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RESUMO

Dada uma ação livre de um grupo discreto sobre um grafo dirigido existe uma relação entre
o grafo e o grafo produto skew através do teorema de Gross-Tucker e, além disso, há certos
teoremas de dualidade envolvendo suas respectivas C*-álgebras. Neste trabalho mostramos
que é posśıvel estender alguns destes resultados para uma classe mais geral: as C*-álgebras
de grafos separados. Através de uma abordagem diferente da usual definimos a C*-algebra
reduzida de um grafo separado e, dessa forma, estendemos alguns dos teoremas de dualidade
vistos até então para esta classe. Finalmente, como aplicação obtemos resultados similares
para as C*-álgebras“mansas”de grafos separados.

Palavras-chave: Grafo produto skew. Teorema de Gross-Tucker. Fibrados de Fell. Coações
de grupos discretos. C*-algebra de grafos separados. C*-álgebra reduzida de grafos separados.
C*-álgebra“mansa”de grafos separados.



RESUMO EXPANDIDO

Introdução

As C*-álgebras de grafos tem sido instrumento de estudo em diversas áreas da matemática,

particularmente em K-teoria. Nos últimos anos C*-álgebras de grafos mais gerais, como o

caso de C*-álgebras de grafos separados, tem fornecido exemplos e contra-exemplos para

muitos campos de pesquisa. O interessante nessa classe espećıfica é que, diferentemente das

C*-álgebras de grafos não separados, há ideais“exóticos”não triviais, o que resulta em estudar

C*-álgebras mais exóticas, especialmente C*-álgebras cheias e reduzidas. Várias perguntas

surgem em relação a propriedades e teoremas que C*-álgebras de grafos não separados possuem

que possam ser válidas para estas classes mais gerais. Algumas dessas perguntas envolvendo

nuclearidade, exatidão, simplicidade, entre outras estão sendo respondidas e algumas podem

ser vistas no trabalhos de P. Ara e K.R Goodearl em [4], [5] e [2] e, recentemente, de M. Lolk

em [44]. Porém alguns teoremas de dualidade envolvendo grafos separados são questões ainda

em aberto.

Para contextualizar, podemos observar para a classe de grafos não separados é que dada uma

ação livre θ de um grupo discreto G em um grafo dirigido E através do teorema de Gross-

Tucker é posśıvel mostrar que todo grafo E pode ser visto como um grafo produto skew da

forma E/G×cG através de uma função c das arestas de E/G para o grupo G, conhecida como

função rótulo. Nesse sentido, existem isomorfismos como C∗(E)⋊θG ∼= C∗(E/G)⊗K(l2(G))

que já são conhecidos neste contexto. Há outros isomorfismos relacionados que possuem

uma forte correlação com maximalidade e normalidade de coações de grupos discretos. Estes

isomorfismos são conhecidos como teoremas de dualidade, dentre eles os mais conhecidos são

os teoremas de dualidade de Imai-Takai e Katayama vistos mais geralmente em [48].

No entanto, para uma classe mais geral, como é o caso de grafos separados, estes teoremas

ainda não tinham sido explorados e nosso objetivo é dar uma resposta afirmativa a essas

questões.

Objetivos

Nosso propósito então era simplesmente responder a seguinte pergunta: Será que é posśıvel

obter o teorema de Gross-Tucker para grafos separados e estender alguns teoremas de dualidade

envolvendo esta classe de C*-algebras?

Inicialmente este era o nosso objetivo porém, ao longo do processo de pesquisa, nos inter-

essamos em estudar as C*-algebras reduzida de grafos separados e nesse sentido surgiram

algumas perguntas similares ao objetivo inicial, como por exemplo: Podemos estender estes

mesmos teoremas de dualidade para C*-álgebras reduzida de grafos separados e obter resul-

tados similares aos que foram apresentados anteriormente? Será que estes mesmos resultados

podem ser vistos para outras classes de C*-álgebras relacionadas a grafos separados, como

por exemplo as C*-algebras “mansas”de grafos separados conhecidas na literatura como C*-



algebras“tame”de grafos separados? Responder estas novas perguntas tornaram-se projeto de

pesquisa complementar.

Metodologia

Analisando os trabalhos de S. Echterhoff, J. Quigg e S. Kaliszewski em [21] e [20] percebemos

que a versão dos teoremas de dualidade para grupos discretos arbitrários necessitava da teoria

de coações de grupos e suas relações com fibrados de Fell o que se tornou fundamental. Os

estudos de maximalização e normalização de coações nos possibilitaram fazer uma espécie de

classificação dessas C*-algebras.

Quando partimos para o estudo das C*-álgebras reduzida de grafos separados através de

produtos amalgamados reduzidos reparamos que os resultados estavam muito complicados de

serem verificados. Nesse momento surgiu a ideia de desenvolver C*-álgebras reduzidas através

de esperanças condicionais e assim os resultados flúıram de forma mais clara e organizada.

Esta teoria pode ser vista nos trabalhos de B.K. Kwasniewski e R. Meyer em [39] e parece ser

bastante promissora para obter resultados mais gerais pois foi desenvolvida e aplicada para o

caso estudado. Para complementar, percebemos que podemos olhar de forma alternativa as

C*-álgebras reduzida de grafos separados como a C*-álgebra de um fibrado de Fell quociente

o qual foi desenvolvida neste trabalho.

Resultados e Discussão

Ao utilizarmos a teoria de maximalização e normalização de coações de grupos discretos e

focarmos nas C*-álgebras reduzidas através de esperanças condicionais foi posśıvel responder as

perguntas propostas inicialmente. Portanto nossas suspeitas de que os teoremas de dualidade

para C*-algebras de grafos separados foram confirmadas tanto para a C*-álgebra cheia quanto

para reduzida. No entanto, a amenabilidade da ação livre, o qual é válida no caso de grafos

não separados, não foi confirmada para grafos separados.

Considerações Finais

Conseguimos responder as perguntas iniciais feitas e através do desenvolvimento da teoria

podemos nos questionar sobre outras C*-álgebras associadas a grafos separados. Um exemplo

explorado no final deste trabalho foram as C*-algebras“mansas”de grafos separados sobre o

qual obtemos resultados similares aos apresentados até então. Esperamos que este trabalho

contribua de forma significativa no desenvolvimento da teoria e motive o leitor a explorar e

responder muitas outras questões que foram debatidas e propostas na conclusão deste projeto.

Palavras-chave: Grafo produto skew. Teorema de Gross-Tucker. Fibrados de Fell. Coações

de grupos discretos. C*-álgebra de grafo separados. C*-álgebra reduzida de grafo separados.

C*-algebra“mansa”de grafos separados.



ABSTRACT

Given a free action of a discrete group on a directed graph, there is a relationship between
the graph and the skew product graph through the Gross-Tucker theorem and, besides that,
there are some duality theorems involving their associated C*-algebras. In this work, we show
that it is possible to extend some of these results to a more general class: the separated graph
C*-algebras. Through a different approach from the usual one, we define the reduced separated
graph C*-algebra and, in this way, we extend some duality theorems for this class. Finally, as
an application, we obtain similar results for tame separated graph C*-algebras.

Keywords: Skew product graph. Gross-Tucker theorem. Fell bundles. Coactions of discrete
groups. Separated graph C*-algebras. Reduced separated graph C*-algebras. Tame separated
graph C*-algebras.
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1 INTRODUCTION

Graph C*-algebras provide an important class of C*-algebras that have been used both

as a tool to study large classes of C*-algebras supplying models for the classification theory and

as a source of an inexhaustible supply of examples and counterexamples for many other areas

of mathematics. The first appearance of this type of algebra was developed by Leavitt in [43],

who gives us a construction of a class of algebras denoted by LK(m,n) over an arbitrary field

K for every integer 1 ≤ m ≤ n. In 1979, Cuntz independently gives us a construction of the

Cuntz algebra On initially present in his paper [15] which is the universal C*-algebra generated

by n isometries S1, . . . , Sn such that S∗
i Sj = δi,j and

∑n
i=1 SiS

∗
i = 1. It is the most basic

example of a graph C*-algebra and it is the subject of many studies in several areas. Some

years later, Cuntz and Krieger generalized the Cuntz algebras to the Cuntz-Krieger algebras

associated to finite square matrices with entries in {0, 1} in [16]. Subsequently, the C*-algebra

associated with a directed graph E was defined, called the graph C*-algebra and denoted by

C∗(E), and was realized that these C*-algebras are direct generalizations of the Cuntz algebras

and Cuntz-Krieger algebras initially studied deeply in [38].

Years later a generalization of graph C*-algebras was presented by P. Ara and K.R.

Goodearl (see [4] and [5]) called separated graph C*-algebras and denoted by C∗(E,C), which

is based on the concept of separated graphs (E,C) which consists of a directed graph E

together with a family C that gives partitions of the set of edges departing from each vertex of

E. For a particular choice of C, the C*-algebra C∗(E,C) coincides with C∗(E) as expected.

This concept of separated graph C*-algebras is also related to C*-algebras of edge-colored

graphs introduced by Duncan in [19].

The great motivation to study these general classes of C*-algebras is that they allow

for a more complicated ideal structure than in C∗(E). In this sense, we can study more“exotic”

C*-algebras like the reduced separated graph C*-algebra denoted by C∗
r (E,C), for example.

This fact makes the situation very interesting. Not only that, there are a lot of open problems

related to these C*-algebras, especially in the K-theory (as can be seen in section 7 on [4]) but

many questions that arise extending results in the non-separated case, for example, nuclearity,

simplicity, exactness, and many others. Some of these questions have already been answered.

In this work, the goal is to understand more about the relationship between C∗(E,C) and

C∗(E ×c G,C ×c G), the C*-algebra of skew product graph for a separated case. We are

particularly interested in certain duality theorems connecting these algebras and our results

will generalize previous results obtained for a non-separated graph seen in [37], [21] and [33].

This work is structured in four main parts as follows: Chapter 2 is dedicated entirely

to introducing a compilation of the theory and results for non-separated graphs inspired by

the papers [37] and [33]. First, we introduce the notion of skew product graphs denoted by

E ×c G focusing on the Gross-Tucker theorem and explore the basic theory of graph C*-

algebras. Besides, we introduce our main object of study, the crossed product by coactions, and
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explore the connection between the coactions of discrete groups and Fell bundles. At the end,

we explore the theory developed so far applying to graph C*-algebras and study the duality

theorems involved. All of these results are already known and will be referenced in the course

of the work.

In chapter 3 we focus to extend part of the results seen in the previous chapter to

separated graph C*-algebras showing the generalization of the Gross-Tucker theorem and

proving that the crossed product C∗(E,C)×θ G is isomorphic to C∗(E/G,C/G)⊗K(l2(G))

for every free action θ of G on a separated graph (E,C). Many other isomorphisms were

explored to achieve this result and complement the theory.

In chapter 4, we introduce the notion of reduced separated graph C*-algebra for finitely

separated graphs defined through the reduced amalgamated products seen in [4] and [58].

Although this definition is concrete, it is not very easy to use it. We propose to look at the

reduced separated graph C*-algebra from another point of view. We will define the reduced

C*-algebra associated with a conditional expectation P : A → C0(X) from a C*-algebra

A containing a commutative C*-subalgebra C0(X) which we denote by AP,r. From this

point of view, we are able to show that the reduced C*-algebra C∗
r (E,C) can be viewed

as C∗(E,C)P,r and hence the reduced crossed product C∗
r (E,C) ⋊θ,r G is isomorphic to

C∗
r (E/G,C/G) ⊗ K(l2(G)) for every free action θ of G on (E,C) through the canonical

conditional expectation that exists in C∗(E,C). Unfortunately, differently from non-separated

case, we will see that the action θ is not amenable in the sense that C∗(E,C)⋊θG is isomorphic

with C∗(E,C)⋊θ,r G.

In chapter 5 we will present the tame C*-algebra of a separated graph and show that

part of the duality theorems can be obtained for this particular class of C*-algebras.

Lastly, we complete this work with two appendices, not only to remember some concepts

used, but also to establish a relationship with what was seen during the work.
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2 PRELIMINARY BACKGROUND

In this chapter, besides fixing some notations, we explore some aspects about graph

theory, in particular graph C*-algebras, some duality theorems of our interest involving actions

and coactions of discrete groups and the relationship between coactions of discrete groups

and Fell bundles which will be of great importance for the next chapters. Also, we discuss the

maximalization and normalization of coactions which complements the whole theory and will

allow us to better understand the duality theorems in the context of graph C*-algebras.

We have developed some sections to organize ideas and further explore the theory. Our

main references in this chapter are [37], [21], [33], [30], and many other references will be cited

in each section. We refer to [47] and [12] for the basic theory of C*-algebras.

Throughout this work, C will denote the field of complex numbers and G will be a

discrete group with a neutral element denoted by 1. Notice that sometimes 1 might also denote

other things, like units of algebras or the integer number 1, but its use will be clear from the

context. Before we explore the sections, let us review some definitions of graphs in general.

Definition 2.0.1. A directed graph E is a quadruple of the form E = (E0, E1, s, r) consisting

of two sets E0,E1 and two maps s, r : E1 → E0. The elements of E0 and E1 are called

vertices and edges and the maps s, r are called the source and range maps, respectively.

Remark 2.0.2. Most of the time we will mention a directed graph simply by a graph and denote

it just by E to simplify notation. The source and range maps are nothing but the start and

end of an edge.

Remark 2.0.3. Throughout this work, we do not make any assumptions of the cardinality of

our graphs, and in particular, we do not require the set E0 or E1 of our graphs to be finite or

countable. In the literature, the countability of the graph ensures that the associated C*-algebra

is separable, which is a common hypothesis imposed in the C*-algebra theory, especially in

K-theory classification. However, in this work all results that will be seen the countability

hypothesis is unnecessary and the same proofs go through for uncountable graphs.

The graph is called row-finite if every vertex emits only finitely many edges, that is,

s−1(v) is finite for every v ∈ E0. We say that v is a sink if it emits no edges, in other words,

if v /∈ s(E1). A vertex v ∈ E0 is called an infinite emitter if |s−1(v)| =∞. We call v ∈ E0 a

singular vertex if v is either a sink or an infinite emitter. If v is not a singular vertex, we call it

a regular vertex.

A finite path in E is a sequence of edges of the form µ := e1 . . . en with r(ei) = s(ei+1)

for all i ∈ {1, . . . , n − 1} and n is the length of µ which we will denote by |µ| := n. Paths

with length 0 are identified with the vertices of E and we set s(v) = r(v) = v. We denote

by En the set of all finite paths with length n and Path(E) :=
∞⋃

n=0

En denote the set of all

paths of E. We can extend the source and range maps to Path(E) in the obvious way: if
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µ = e1 . . . en ∈ Path(E), then s(µ) = s(e1) and r(µ) = r(en). Given two paths µ, ν ∈ Path(E)

with r(µ) = s(ν), one obtains a new path µν by concatenation with |µν| = |µ|+ |ν|.

We also denote by (E1)∗ the set of ghost edges {e∗ | e ∈ E1} and for each finite path

µ = e1 . . . en we define a ghost finite path µ∗ = e∗n . . . e
∗
1 with source and range maps defined

by s(e∗) = r(e) and r(e∗) = s(e) for all e ∈ E1. Also, we define v∗ = v for all v ∈ E0.

Definition 2.0.4. Let E and F be two graphs. We say that F is a subgraph of E if F 0 ⊆ E0,

F 1 ⊆ E1, and sF and rF of F are restrictions of the source and range maps sE and rE of E,

respectively.

Definition 2.0.5. Let E and F be two graphs. A graph morphism f : E → F is a pair of

maps (f 0, f 1) where f 0 : E0 → F 0 and f 1 : E1 → F 1 which commutes with source and range

maps, that is, satisfy

f 0(r(e)) = r(f 1(e)) and f 0(s(e)) = s(f 1(e))

for all e ∈ E1. If f 0 and f 1 are bijective maps then f is called a graph isomorphism.

Remark 2.0.6. Many times we will omit the index of f 0 and f 1 to make writing easier.

Definition 2.0.7. A graph morphism f : E → F is said to have the unique path lifting

property if given v ∈ E0 and e′ ∈ F 1 with s(e′) = f 0(v), then there is a unique e ∈ E1 such

that e′ = f 1(e) with s(e) = v.

Remark 2.0.8. There is a natural notion of automorphism of graphs and the collection of all au-

tomorphisms of a graph E forms a group under composition, denoted by Aut(E). Consequently,

there is a notion of actions of graphs by a group G.

Definition 2.0.9. Let E be a graph and G be a group. An action of G on E is a group

homomorphism α : G→ Aut(E). The action α is called free if it acts freely on the vertices,

in other words, αg(v) = v for some v ∈ E0 implies g = 1. If G acts freely on the vertices then

it also acts freely on the edges. So, freeness on the edges is automatically.

Definition 2.0.10. Let E, F be two graphs endowed with actions α and β of G, respectively

and f : E → F be a graph morphism. We say that f is G-equivariant if

f(α0
g(v)) = β0

g (f(v)) and f(α1
g(e)) = β1

g (f(e))

for all v ∈ E0 and e ∈ E1.

2.1 SKEW PRODUCT GRAPHS AND THE GROSS-TUCKER THEOREM

Our goal in this section is to present a definition of skew product graph, some examples

to fix ideas, and to bring up the Gross-Tucker theorem. Our proof of the Gross-Tucker theorem

presented in this work is slightly different from the original seen in [30], but it follows the same
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idea. The main motivation to study this particular aspect of graph theory was the article [37].

Other related paper is [29].

From now on, E is an arbitrary graph, G is a discrete group and c : E1 → G

is a function.

Definition 2.1.1. With notations as above, we define the skew product graph

E ×c G := (E0 ×G,E1 ×G, s, r)

in which the sets of vertices and edges are the Cartesian product of E0 and E1 with G,

respectively, and the source and range maps are defined by

s(e, g) = (s(e), g) and r(e, g) = (r(e), gc(e))

for all e ∈ E1 and g ∈ G.

If E is row-finite it follows that E×cG is also row-finite since s−1(v, g) = s−1(v)×{g}

by definition. In the literature (see [30]) E ×c G is referred to as the derived graph or voltage

graph and the function c : E1 → G is called the labeling function. Skew product graphs have

many applications, for instance, they are used in the theory of branched covering of surfaces (see

[29]). Our definition of skew product graph E×cG is not the same as versions E(c) in [37] where

E(c) := (G×E0, G×E1, s, r) with s(g, e) = (g, s(e)) and r(g, e) = (gc(e), r(e)) and Ec in

[33] where Ec := (E0 × G,E1 × G, s, r) with s(e, g) = (s(e), c(e)g) and r(e, g) = (r(e), g)

but all these definitions are equivalent by the isomorphisms below:

E(c)→ E ×c G Ec → E ×c G

(g, v)→ (v, g) (v, g)→ (v, g−1)

(g, e)→ (e, g) (e, g)→ (e, (c(e)g)−1)

for all v ∈ E0, e ∈ E1 and g ∈ G. Our convention is chosen to make the results of our main

theorems later more natural.

To fix ideas, let see some examples in this context:

Example 2.1.2. Let E be the graph with E0 = {v} and E1 = {e} as below:

v
e
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Define c : E1 → Z as c(e) = 1. Then we have the skew product graph E ×c Z as below:

v1 v2 v3 v4
e1 e2 e3

where here we are denoting the vertices and edges in E ×c Z as vk := (v, k) and ek := (e, k)

for every k ∈ Z. We are going to use this same notation for the next examples for simplicity.

Example 2.1.3. Let E be the graph with E0 = {v} and E1 = {e, f} as below:

v
fe

Define c : E1 → Z as c(e) = 0 and c(f) = 1. Then we have the skew product graph E ×c Z

as below:

v1 v2 v3 v4
f 1 f 2 f 3

e1 e2 e3 e4

Example 2.1.4. If we change the labeling function in Example 2.1.3 and define c(e) = c(f) = 1

we have a different skew product graph E ×c Z as below:

v1 v2 v3 v4f 1

e1

f 2

e2

f 3

e3

Note that, in both previous examples, if we change c we will notice that when c sends edges

to 1 we have edges liking vertices and when c sends edges to 0 we have loops, that is, edges

such that source and range are equal.



Chapter 2. Preliminary background 17

Example 2.1.5. Another example in this context is the following: Let E be the graph with

E0 = {v, w} and E1 = {e1, e2, e3, e4} as below:

v w
e4

e2

e1 e3

Define c(ei) = 1 for all i = 1, 2, 3, 4. Then the skew product graph E ×c Z is as picture below:

v1 v2 v3 v4 v5
e11 e21 e31 e41

w2 w3 w4 w5w1
e13 e23 e33 e43

Observe that the edges ek1 := (e1, k) ∈ E
1×Z are in the top line connecting the vertices vk−1

with vk for every k ∈ Z. In the same way edges ek3 for every k ∈ Z are on the bottom line.

But the edges that connect the vertices diagonally from the top to bottom and from bottom

to top are ek2 and ek4 for every k ∈ Z, respectively.

Example 2.1.6. If we consider the graph E in the Example 2.1.3 and use the same labeling

function but over Z2 meaning c : E1 → Z2 such that c(e) = 0 and c(f) = 1 it is not difficult

to see that the resulting skew product graph over Z2 is isomorphic to the graph E in the

Example 2.1.5 identifying v0 → v, v1 → w, e0 → e1, e
1 → e3, f

0 → e2 and f 1 → e4.

But, taking the same graph E in Example 2.1.3 and changing the labeling function c over Z3

defining c : E1 → Z3 as c(e) = 2 and c(f) = 1 we have the skew product graph E ×c Z3 is

as picture below:
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v0

v1 v2

f 0
e1 e0

f 2

e2

f 1

We may extend the labeling function c to the set Path(E) by defining c(v) := 1 for

every v ∈ E0 and c(µ) := c(e1) . . . c(en) for every µ = e1 . . . en ∈ Path(E). Also, we may

define c(µ∗) := c(µ)−1 for all µ ∈ Path(E) and for every µ, ν ∈ Path(E) with r(µ) = s(ν)

we have c(µν) = c(µ)c(ν).

Moreover, for each path in E we can define a path in E ×c G in the following way:

for each µ ∈ Path(E) of the form µ = e1 . . . en with r(ei) = s(ei+1) for i ∈ {1, . . . , n} and

g ∈ G a path in the skew product graph is of the form:

(µ, g) := (e1, g)(e2, gc(e1)) . . . (en, gc(e1 . . . en−1)). (2.1.7)

The reason for having paths of this form is due to the definition of range and source maps in

skew product graph. For example, if e, f ∈ E1 and g, h ∈ G, the short path (e, g)(f, h) makes

sense if r(e, g) = s(f, h). But, by definition, r(e, g) = (r(e), gc(e)) and s(f, h) = (s(f), h).

So, to make sense it is necessary that r(e) = s(f) (that is, ef is a short path in E) and

h = gc(e). The notation (µ, g) will be used exclusively for the paths in E ×c G defined as in

2.1.7. One should not to confuse it with (µ, g) = (e1 . . . en, g) which is not a path on E ×c G.

Example 2.1.8. Let G be a group with generators g1, . . . , gn. The Cayley graph of G with

respect to generators g1, . . . , gn is the graph

EG := (E0
G, E

1
G, s, r)

where E0
G = G, E1

G = G × {g1, . . . , gn} and the source and range maps are defined by

s(h, gi) = h and r(h, gi) = hgi for all i ∈ {1, . . . , n}.

Cayley graphs are very interesting examples because they carry a natural action of

G by the left multiplication, that is, there is β : G → Aut(EG) such that β0
g (h) = gh and

β1
g (h, gi) = (gh, gi) for all h ∈ G and i ∈ {1, . . . , n}. In fact these actions defined in this away

are always free.

Note that the graph E in Example 2.1.5 is the Cayley graph for Z2 with respect to

the generating set {0, 1}. Moreover, the skew product graph in Example 2.1.2 is the Cayley

graph of Z with respect to the generator 1 and the skew product graph in Example 2.1.3 is

the Cayley graph of Z with respect to the generating set {0, 1}.
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These examples show us that Cayley graphs are interesting not only for the existence

of a free action but because they are strongly related to skew product graphs as we will see in

the next example.

Example 2.1.9. Let EG be the Cayley graph as in Example 2.1.8. Consider the graph An

that has only one vertex v and n edges a1, . . . , an with s(ai) = r(ai) = v, that is, has n loops.

This graph is called the Cuntz graph and later we will see more clearly the reason for this

nomenclature. An interesting fact is that if we define c : A1
n → G such that c(ai) = gi for all

i ∈ {1, . . . , n} we have an isomorphism of graphs

EG ∼= An ×c G.

To see this isomorphism we just need to identify the sets of vertices and edges in the following

way: Define ψ0 : {v}×G→ G by ψ0(v, g) = g and ψ1 : {ai, . . . , an}×G→ G×{g1, . . . , gn}

by ψ1(ai, g) = (g, c(ai)) for every g ∈ G. These maps are bijective and well defined with the

inverse defined in the obvious way. We just need to show that ψ : An ×c G→ EG is a graph

morphism. For each ai ∈ A
1
n and g ∈ G, notice that:

ψ0(s(ai, g)) = ψ0(s(ai), g) = ψ0(v, g) = g

= s(g, gi) = s(g, c(ai)) = s(ψ1(ai, g))

and

ψ0(r(ai, g)) = ψ0(r(ai), gc(ai)) = ψ0(v, ggi) = ggi

= r(g, gi) = r(g, c(ai)) = r(ψ1(ai, g)).

Example 2.1.10. Consider the group by the presentation G = 〈a, b | a3 = b2 = (ab)2 = 1〉,

known as dihedral group D3. The Cayley graph EG can be draw as in the picture below:

a2

1 a

ba
b ab

where we represent in red the edges which correspond to generator b and in blue the edges

which correspond to generator a. For example, the edge that connects a2 to 1 is (a2, a) since
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s(a2, a) = a2 and r(a2, a) = a2a = a3 = 1. Since abab = 1 imply a2 = bab then the edge that

connects a2 to ba is (a2, b) because s(a2, b) = a2 and r(a2, b) = a2b = babb = bab2 = ba.

Through the isomorphism seen in Example 2.1.9 we can see that EG is in fact the skew

product graph A6 ×c G where A6 is the graph with one vertex and six loops.

Note that, by Example 2.1.9, every Cayley graph is a skew product graph with some

labeling function. After all the examples a pertinent question is: For a group G, how do we

identify that a certain graph F is a skew product graph of the form E ×c G?

To answer this question, we need some definitions and results first.

Definition 2.1.11. Let G act on a graph E. We define the quotient graph

E/G := ((E/G)0, (E/G)1, sG, rG)

where (E/G)0 = E0/G and (E/G)1 = E1/G are the equivalence classes of vertices and

edges respectively under the action of G and the source and range maps are defined to be

sG([e]) = [s(e)] and rG([e]) = [r(e)].

Remark 2.1.12. It is easy to check that the source and range maps are well defined because the

action commutes with both maps. Moreover, the quotient map q : E → E/G is a surjective

graph morphism.

Definition 2.1.13. Let α : G → Aut(E) be an action and let x ∈ (E/G)0. Then a vertex

vx ∈ E
0 is said to be a base vertex of x if q(vx) = x, and similarly, for each y ∈ (E/G)1 we

define a base edge ey ∈ E
1 of y if q(ey) = y.

Remark 2.1.14. Of course base vertices always exist but they are usually not unique since for

each x ∈ E0/G with base vertex vx of x, αg(vx) is also a base vertex of x for any g ∈ G. A

similar statement holds for edges.

Next we show that free actions are important in this context.

Proposition 2.1.15. Let E be a graph and α : G → Aut(E) be a free action. Then the

quotient map q : E → E/G has the unique path lifting property.

Proof. Suppose there is y ∈ E1/G such that s(y) = x for some x ∈ E0/G. There is a base

edge ey ∈ E
1 of y such that s(ey) = vx for some base vertex vx associated with x. So for each

w ∈ E0 with q(w) = x there is g ∈ G such that w = αg(vx). We claim that αg(ey) ∈ E
1 is

the unique edge such that q(αg(ey)) = y and s(αg(ey)) = w.

It is obvious that q(αg(ey)) = y because they live in the same orbit and note that

s(αg(ey)) = αg(s(ey)) = αg(vx) = w. So, αg(ey) is the edge that we were looking for. We

just need to show the uniqueness. For this, suppose that we have f ∈ E1 such that q(f) = y

and s(f) = w. So, there is h ∈ G such that f = αh(ey) because ey is a base edge. Then, on

the one hand, we have

w = s(f) = s(αh(ey)) = αh(s(ey)).
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But, on the other hand, we have

w = s(αg(ey)) = αg(s(ey)).

Therefore, by the freeness of the action, we have αg(s(ey)) = αh(s(ey)) implies g = h. Then

f = αg(ey) as we desired.

Proposition 2.1.16. Let E be a graph and c : E1 → G be a labeling function. Then there is

an free action of G on E ×c G such that

(E ×c G)/G ∼= E.

Proof. Define γ : G→ Aut(E ×c G) by the left multiplication, that is,

γg(v, h) := (v, gh) and γg(e, h) := (e, gh)

for all v ∈ E0, e ∈ E1 and g ∈ G. It is straightforward to check that this defines an action

of G on E ×c G which is free because for every v ∈ E0 we have γg(v, h) = (v, h) if and only

if gh = h if and only if g = 1. This action is designated as the canonical free action on skew

product graph.

Now, define ψ : E → (E ×c G)/G such that ψ(v) = [(v, 1)] and ψ(e) = [(e, 1)]. Note

that the classes [(v, 1)] = [(v, g)] for every g ∈ G because (v, g) = γg(v, 1) and the same

happens on edges. To see that ψ is a graph morphism, for every e ∈ E1 it is enough to compute

ψ(s(e)) = [(s(e), 1)] = sG([(e, 1)]) = sG(ψ(e))

and

ψ(r(e)) = [(r(e), 1)] = [(r(e), c(e))] = rG([(e, 1)]) = rG(ψ(e)).

So, ψ commutes with source and range maps and consequently it is in fact a graph morphism.

The inverse is defined in the obvious way, that is, ψ−1([(v, g)]) = v and ψ−1([(e, g)]) = e for

all v ∈ E0, e ∈ E1 and g ∈ G.

By the last result, if we have some labeling function then the quotient over a skew

product graph by the action γ recovers E. Is the converse true? The following result (originally

proved by Gross-Tucker in [[30], Theorem 2.2.2]) answer this question.

Theorem 2.1.17 (Gross-Tucker theorem). Let E be a graph endowed with a free action α

of G. Then there is a labeling function c : E1/G → G and a G-equivariant isomorphism of

graphs

E ∼= (E/G)×c G.
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Proof. To begin with, for each x ∈ (E/G)0 fix a base vertex vx in E1 associated to x. Since

the quotient map q : E → E/G has the unique path lifting property, for each y ∈ (E/G)1

with s(y) = q(vx) = x there is a unique edge ey ∈ E
1 such that q(ey) = y with s(ey) = vx.

Note that, for each w ∈ E0 with q(w) = x there is z ∈ G such that w = αz(vx). In particular,

there is z ∈ G such that r(ey) = αz(vr(y)) and it is unique because the action is free. So we

can define c : E1/G→ G such that c(y) := z. Hence we can define the maps:

φ0 : (E0/G)×cG→ E0 φ1 : (E1/G)×cG→ E1

(x, g)→ αg(vx) (y, g)→ αg(ey)

It is obvious that the both maps are well-defined. We compute:

φ0(s(y, g)) = φ0(s(y), g) = αg(vs(y)) = αg(s(ey))

= s(αg(ey)) = s(φ1(y, g))

and

φ0(r(y, g)) = φ0(r(y), gc(y)) = φ0(r(y), gz) = αgz(vr(y))

= αg(αz(vr(y))) = αg(r(ey)) = r(αg(ey))

= r(φ1(y, g))

for every y ∈ E1/G and g ∈ G. Thus φ is morphism graph. To prove the injectivity, note

that φ0(x, g) = φ0(x′, g′) if and only if αg(vx) = αg′(vx′) if and only if vx = αg−1g′(vx′). Then

it is clear that x = x′ because they live in the same orbit and since α is free, we see that

g−1g′ = 1, and therefore g = g′. Finally the surjectivity, note that for any v ∈ E0, we can put

x = q(v). Now, consider vx a base vertex to x and note there exists g ∈ G with v = αg(vx).

That is, v = αg(vx) = φ0(x, g). The same ideas work to show injectivity and surjectivity for

φ1. Therefore we have an isomorphism of graphs E ∼= (E/G)×c G.

Finally, to see that the isomorphism is G-equivariant remember that skew product

graphs are always endowed with the canonical free action γ defined as in Proposition 2.1.16.

So, we just compute:

αh(φ
0(x, g)) = αhαg(vx)

= αhg(vx)

= φ0(x, hg)

= φ0(γh(x, g))

and

αh(φ
1(y, g)) = αhαg(ey)

= αhg(ey)

= φ1(e, hg)

= φ1(γh(e, g))
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for all x ∈ (E/G)0, y ∈ (E/G)1 and g, h ∈ G.

Remark 2.1.18. If, in the proof of Theorem 2.1.17, we choose a different set of base vertices

then we obtain a new function d : E1/G→ G but the results similarly follows.

Example 2.1.19. The Cayley graph has a natural free action and by the Gross-Tucker theorem

we recover the same result EG ∼= An ⋊c G in Example 2.1.9.

2.2 GRAPH C*-ALGEBRAS

This section contains some basic facts on Graph C*-algebras. We mainly follow [37],

[9], [36], [38], [31],[8] and [1].

Definition 2.2.1. The Leavitt path algebra of E with coefficients in the complex field is the

complex *-algebra L(E) with generators {Pv}v∈E0 and {Se}e∈E1 subject to following relations:

1. PvPw = δv,wPv and P
∗
v = Pv for all v ∈ E

0.

2. Ps(e)Se = SePr(e) = Se for all e ∈ E
1.

3. S∗
eSf = δe,fPr(e) for all e, f ∈ E

1.

4. Pv =
∑

e∈E1

s(e)=v

SeS
∗
e for every regular vertex v ∈ E0.

Remark 2.2.2. The condition 1 tell us that the generators {Pv}v∈E0 are orthogonal projections

and conditions 2 and 3 tell us that the generators {Se}e∈E1 are partial isometries.

Definition 2.2.3. The graph C*-algebra C∗(E) is the universal C*-algebra generated by the

collections {Pv | v ∈ E
0} and {Se | e ∈ E

1} satisfying the relations 1-4. In other words, the

graph C*-algebra C∗(E) is the enveloping C*-algebra of L(E).

Remark 2.2.4. This C*-algebra exists because the generating set consists of partial isometries

and orthogonal projections. In the literature, the collection of {Pv, Se | v ∈ E
0, e ∈ E1} is

called a Cuntz-Krieger E-family.

Remark 2.2.5. The graph C*-algebra C∗(E) has a universal property in the sense that for

every C*-algebra B generated by a Cuntz-Krieger E-family {Qv, Te | v ∈ E
0, e ∈ E1} subject

to relations 1-4 as above there is a (unique) surjective *-homomorphism Φ : C∗(E)→ B such

that Φ(Pv) = Qv and Φ(Se) = Te for all v ∈ E
0 and e ∈ E1.

Lemma 2.2.6. Let E be a graph. Then

C∗(E) = span{SµS
∗
ν | µ, ν ∈ Path(E) such that r(µ) = r(ν)}.
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Proof. It is enough to observe using the relations 1-4 in Definition 2.2.1 that

(SµS
∗
ν)(SηS

∗
ζ ) =





Sµη′S
∗
ζ , if η = νη′ for some path η′

SµS
∗
ν′ζ , if ν = ην ′ for some path ν ′

0, otherwise

.

By linearity and continuity, the result follows.

For each z ∈ T, the circle group in the complex field, there is an automorphism

αz : C
∗(E) → C∗(E) such that αz(Pv) = Pv and αz(Se) = zSe for all v ∈ E

0 and e ∈ E1.

Notice that for each pair µ, ν ∈ Path(E) the map z → αz(SµS
∗
ν) is continuous and it follows

from a routine argument that α is a continuous action of T on C∗(E). This action is called

the gauge action and the existence of this action characterizes the graph C*-algebra C∗(E)

through the Gauge-invariant uniqueness theorem as shown in different papers: [9], [31] and [8].

Formal statements of this uniqueness theorem is as follows:

Proposition 2.2.7 ([9], Theorem 2.1). Let E be a graph and suppose B is a C*-algebra

generated by a Cuntz-Krieger E-family {Qv, Te | v ∈ E
0, e ∈ E1}. If each Qv is non-zero, and

there is an action β of T on B such that βz ◦Φ = Φ ◦αz then the canonical *-homomorphism

Φ : C∗(E)→ B is an isomorphism.

The uniqueness theorems are fundamental results in the study of graph C*-algebras

because they provide sufficient conditions for a *-homomorphism from C∗(E) into a C*-algebra

to be injective and consequently a huge capacity for examples.

As a next step, we are going to present some basic examples of graphs and their C*-

algebras omitting proofs as they can be easily obtained from the universal properties and the

above proposition. We refer [36] for further details.

Example 2.2.8. Here are some standard examples of graph C*-algebras:

1. Let E be the graph that has only one vertex v and no edges. Then C∗(E) is isomorphic

to C.

2. Let E be the graph with E0 = {v} and E1 = {e}:

v
e
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Then C∗(E) is isomorphic to C(T), the space of continuous functions on unit circle T.

3. Let E be the graph with E0 = {v1, . . . , vn} and E
1 = {e1, . . . , en−1}:

v1 v2 vn−1 vn
e1 e2 en−2 en−1

Then C∗(E) is isomorphic to Mn(C).

4. Let E be the graph with E0 = {v1, . . . , vn} and E
1 = {e1, . . . , en}:

v1 v2 vn−1 vn
e1 e2 en−2 en−1

en

Then C∗(E) is isomorphic to Mn(C(T)).

5. Let E be the graph with E0 = {vi | i ∈ N} and E1 = {ei | i ∈ N}:

v1 v2 v3 v4 . . .e1 e2 e3

Then C∗(E) is isomorphic to K(H), the compact operators on some separable infinite-

dimensional Hilbert space.

6. Let E be the graph with E0 = {v, w} e E1 = {e, f}:

v w
ef

Then C∗(E) is isomorphic to T , the Toeplitz algebra.
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7. Consider the Cuntz graph An seen in Example 2.1.9 as picture below:

v

a1
a2

a3

a4

an

Then C∗(E) is isomorphic to On, the Cuntz algebra generated by n isometries. This is

the reason why we called this graph the Cuntz graph. In the case when n = ∞ then

C∗(E) is isomorphic to O∞, the Cuntz algebra generated by countably infinite numbers

of isometries.

Proposition 2.2.9. Let α be an action of G on E. Then there is an induced action α̃ of G

on C∗(E) such that α̃g(Pv) = Pαg(v) and α̃g(Se) = Sαg(e) for all v ∈ E
0 and e ∈ E1.

Proof. Fix g ∈ G. We claim that {Pαg(v), Sαg(e)} is a Cuntz-Krieger E-family for C∗(E). It is

clear that {Pαg(v)}v∈E0 are mutually orthogonal projections because αg(v) = αg(w) if and only

if v = w. Similarly {Sαg(e)}e∈E1 are partial isometries that ”commute”with the projections. So,

they satisfy 1 and 2 in Definition 2.2.1. The condition 4 is automatic since s(αg(e)) = αg(s(e))

for every e ∈ E1. Only condition 3 remained to check. But it is not difficult because for

e, f ∈ E1 we have

S∗
αg(e)Sαg(f) = δαg(e),αg(f)Pr(αg(e))

= δe,fPαg(r(e)).

Then, by the universal property we get a *-homomorphism α̃g : C
∗(E) → C∗(E) such that

α̃g(Se) = Sαg(e) e α̃g(Pv) = Pαg(v) for all e ∈ E
1 and v ∈ E0. The same arguments show that

the inverse α̃g
−1 is in fact α̃g−1 and since α is an action shows that α̃ is also an action.

Remark 2.2.10. For now on, to simplify the notation we shall use the same symbol α for the

action on E and its induced action on C∗(E). Eventually, we shall also use the symbol · for

the action on E when necessary.
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2.3 FELL BUNDLES

This section introduces one of our main tools to study C*-algebras associated with

coactions. We begin with the definition of Fell bundles over discrete groups and the construc-

tions of their full and reduced cross-sectional C*-algebras. Eventually, we will be using some of

the inter-relationship with dynamic systems which can be seen in Appendix A of this work, that

is, for a C*-algebra A, a discrete group G and an action α of G on A we denote dynamical

system as (A,G, α).

Also, we will assume that all representations here are nondegenerate, and so each

extends uniquely to a unital representation ofM(A), the multiplier algebra of A. All tensor

products ⊗ are minimal, and all identity maps are denoted by id with index when necessary.

We assume that the reader is familiar with these notions of multiplier algebras and tensor

products, especially minimal tensor products which will be widely used.

Our main reference for this section is essentially [25].

Definition 2.3.1. A Fell bundle (also known as a C*-algebraic bundle) over a discrete group

G is a family A = {Ag}g∈G of Banach spaces Ag (each of which is called a fiber) endowed

with multiplication maps · : Ag × Ah → Agh and involution maps ∗ : Ag → Ag−1 satisfying

the following properties for all g, h, k ∈ G, ag ∈ Ag and ah ∈ Ah:

(i) The multiplication maps are bilinear and associative, in the sense that the following

diagram commutes:

Ag ×Ah ×Ak Ag ×Ahk

Agh ×Ak A(gh)k = Ag(hk)

(ii) The involution maps are conjugate-linear and isometric.

(iii) a∗∗g = ag.

(iv) (agah)
∗ = a∗ha

∗
g.

(v) ‖a∗g‖ = ‖ag‖.

(vi) ‖agah‖Agh
6 ‖ag‖Ag‖ah‖Ah

.

(vii) ‖ag‖
2
Ag

= ‖a∗gag‖A1 .

(viii) a∗a ≥ 0 in A1.

Remark 2.3.2. The properties (i)-(vii) imply that A1 is a C*-algebra with the restricted

operations. We call A1 the unit fiber algebra. To simplify notation we write AgAh to mean

the closed linear span of {agah | ag ∈ Ag and ah ∈ Ah}. In particular, AgAg−1 is a closed

two-sided ideal in A1 for all g ∈ G.
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Example 2.3.3. A classical example is given when G is an arbitrary discrete group and we

associate a Fell bundle over G, called the group bundle and denoted by C×G, in the canonical

way: We define the fibers Ag := C× {g} with the structure of Banach space inherited from

C, that is, Ag is a copy of C for each g ∈ G. The multiplication and involution operations

come from C. This results into a Fell bundle C×G = {Ag}g∈G over G.

Example 2.3.4. More generally, given a dynamical system (A,G, α) we can define a Fell

bundle over G associated to (A,G, α), called the semi-direct product bundle relative to α and

denoted by Aα with the fibers Ag := A× {g}, that is, Ag is a copy of A as a Banach space

for each g ∈ G. We write aug for (a, g) so that Ag = Aug. The multiplication is defined by

(aug)(buh) = aαh(b)ugh

and the involution is defined by

(aug)
∗ = αg−1(a∗)ug−1

for all a, b ∈ A and g, h ∈ G. These operations turn Aα = {Ag}g∈G into a Fell bundle over G.

Example 2.3.5. One more general example is when we consider a partial dynamical system

(A,G, θ), that is, θ = ({Dg}g∈G, {θg}g∈G) is a partial action of G on C*-algebra A such that

Dg are closed two-sided ideals of A and θg : Dg−1 → Dg are *-isomorphisms. Also in this

case we can define a Fell bundle over G associated to (A,G, θ), also called the semi-direct

product bundle relative to θ and denoted by Aθ = {Ag}g∈G in the following way: The fibers

Ag := Dgug where Ag is a copy of Dg as Banach space for each g ∈ G while the multiplication

and involution maps are given by:

(aug)(buh) = θg(θg−1(a)b)ugh and (aug)
∗ = θg−1(a∗)ug−1

for every a ∈ Dg, b ∈ Dh and g, h ∈ G. More details about partial dynamical systems can also

be found in [25].

Example 2.3.6. Another interesting example is given when A is a C*-algebra and we suppose

there are closed subspaces Ag ⊆ A such that AgAh ⊆ Agh and A∗
g ⊆ Ag−1 , for every g, h ∈ G.

In this case A = {Ag}g∈G is a Fell bundle over G with multiplication and involution induced

from A.

From now on, we fix a Fell bundle A = {Ag}g∈G over a discrete group G.

Definition 2.3.7. Consider the algebraic direct sum

⊕

g∈G

Ag :=

{
finite∑

g∈G

agug | ag ∈ Ag

}

with multiplication and involution given by (linearly extending the following)

(aug)(buh) := abugh and (aug)
∗ := a∗ug−1
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for all a ∈ Ag, b ∈ Ah and g, h ∈ G. For each g ∈ G and a ∈ Ag we denote by aug the

element of the algebraic sum whose coordinates are equal to zero, expect for the coordinate

corresponding to g, which is equal to a. Then it is clearly that any element a ∈
⊕

g∈G

Ag can be

written uniquely as a finite sum in the form a =
∑

g∈G agug. In this way the algebraic direct

sum becomes a *-algebra.

Moreover, we can identify
⊕

g∈G

Ag with Cc(A), the collection of all compact supported

sections ξ from G to A such that ξg ∈ Ag for every g ∈ G. From this point of view the

multiplication, known as convolution product, and the involution are given by

(ξ ∗ η)g :=
∑

h∈G

ξhηh−1g and ξ∗g := ξ∗g−1

for all ξ, η ∈ Cc(A) and g ∈ G. With the above operations Cc(A) is therefore a *-algebra.

Remark 2.3.8. With respect to the convolution product note that ξhηh−1g ∈ AhAh−1g ⊆ Ag

for every h ∈ G. So all of the summands lie in the same vector space Ag, hence the sum is

well defined. The involution map is also well defined since ξ∗g−1 ∈ A
∗
g−1 ⊆ Ag for every g ∈ G.

Lemma 2.3.9. Let B be a C*-algebra and π : Cc(A)→ B be any *-homomorphism. Then

‖π(a)‖ 6 ‖a‖1 :=
∑

g∈G

‖ag‖.

Proof. Let a =
∑

g∈G agug ∈ Cc(A), ag ∈ Ag. Since π is linear then π(a) =
∑

g∈G π(agug).

Note that the map A1 →֒ Cc(A) which sends x 7→ xu1 is a *-homomorphism for every x ∈ A1.

Then via the composition with π we get the *-homomorphism A1 → B sending x 7→ π(xu1).

Therefore, ‖π(xu1)‖ 6 ‖x‖A1 . Now, for each ag ∈ Ag we compute:

‖π(agug)‖
2 = ‖π(agug)

∗π(agug)‖

= ‖π(a∗gug−1)π(agug)‖

= ‖π(a∗gagu1)‖

6 ‖a∗gag‖A1

= ‖ag‖
2
Ag
,

that is, ‖π(agug)‖ 6 ‖ag‖Ag . We conclude that

‖π(a)‖ = ‖
∑

g∈G

π(agug)‖ 6
∑

g∈G

‖π(agug)‖ 6
∑

g∈G

‖ag‖ = ‖a‖1

as desired.

Therefore, given a ∈ Cc(A), we can define

‖a‖u : = sup{‖π(a)‖ | π : Cc(A)→ B is a *-homomorphism }

= sup{p(a) | p is a C*-seminorm on Cc(A)}
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where B is a C*-algebra. By the above result ‖.‖u is a well-defined C*-seminorm. Moreover,

defining the closed two-sided ideal N = {a ∈ Cc(A) | ‖a‖u = 0} of Cc(A), this gives rise to

the next definition.

Definition 2.3.10. The (full) C*-algebra of a Fell bundle A, denote by C∗(A), is the C*-

algebra obtained by taking the quotient of Cc(A) by the ideal N and completing it with respect

to ‖‖u, that is,

C∗(A) := Cc(A)/N
‖.‖u

.

Remark 2.3.11. In literature, C∗(A) is also called the (full) cross-sectional C*-algebra of A.

Remark 2.3.12. In other words, C∗(A) is the enveloping C*-algebra of l1(A) := Cc(A)
‖.‖1

,

that is, l1(A) is the Banach *-algebra consisting of all sections ξ from G to A such that

‖ξ‖1 <∞.

Definition 2.3.13. A representation of a Fell bundle A in a C*-algebra B is a collection

π := {πg}g∈G of linear maps πg : Ag → B such that:

(i) πg(a)πh(b) = πgh(ab);

(ii) πg(a)
∗ = πg−1(a∗)

for all a ∈ Ag, b ∈ Ah and g, h ∈ G.

Now, we will present a canonical representation of a Fell bundle A into C∗(A). For

this, for each g ∈ G we denote by ιg the natural inclusion maps of Ag into Cc(A), that is,

ιg(a) := aug for all a ∈ Ag. From the point of view of sections, ιg is defined by

ιg(a)h :=




a, if h = g

0, otherwise
.

Moreover, we call just by k : Cc(A)→ C∗(A) the canonical map arising from the completion

process. Since k is a *-homomorphism, it is straightforward to see that the composition maps

jg := k ◦ ιg form a representation j = {jg}g∈G of a Fell Bundle A into C∗(A), henceforth

called the universal representation of A.

Remark 2.3.14. We have already seen that A1 is always a C*-algebra and it is not difficult to

see that j1 is a nondegenerate *-homomorphism.

Proposition 2.3.15. Let π = {πg}g∈G be a representation of a Fell Bundle A in a C*-algebra

B. Then there is a unique *-homomorphism π : C∗(A)→ B such that π(jg(a)) = πg(a) for

all a ∈ Ag and g ∈ G. We will say that π is the integrated form of π.

Proof. A representation π of A in B produces a representation π̃ of Cc(A) in B given by

π̃(a) =
∑

g∈G

πg(ag) for every a =
∑

g∈G

agug ∈ Cc(A).
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This extends uniquely to a *-homomorphism π : C∗(A)→ B by the universal property and by

construction it satisfies π ◦ jg = πg for every g ∈ G as we asserted.

Corollary 2.3.16. Let B be a C*-algebra. There are canonical bijections

Rep(A, B) ∼= Rep(Cc(A), B) ∼= Rep(C∗(A), B).1

Proof. By Proposition 2.3.15, every representation π of A to B can be extended to Cc(A)

and by the universal property extended to C∗(A). In another direction, if ρ : Cc(A) → B is

a *-homomorphism then we can define π = {πg}g∈G from A to B such that πg(a) := ρ(aug)

for every a ∈ Ag and g ∈ G. In fact π is a representation since for every a ∈ Ag, b ∈ Ah and

g, h ∈ G we have

πg(a)πh(b) = ρ(aug)ρ(buh) = ρ(abugh) = πgh(ab)

and

πg(a)
∗ = ρ(aug)

∗ = ρ(a∗ug−1) = πg−1(a∗).

Besides that, π̃ = ρ since for every ξ =
∑

g∈G agug we have

π̃(ξ) =
∑

g∈G

πg(ag) =
∑

g∈G

ρ(agδg) = ρ

(∑

g∈G

agδg

)
= ρ(ξ).

The same idea works from C∗(A) since it is the universal completion of Cc(A). Thus

Rep(A, B) ∼= Rep(Cc(A), B) ∼= Rep(C∗(A), B)

π −→ π̃ −→ π

Example 2.3.17. If G is a discrete group then the C*-algebra of the group bundle seen in

Example 2.3.3 is the group C*-algebra C∗(G) since Cc(C×G) ∼= C[G], the *-algebra of the

group G. Most of the time we use the same notation ug to denote the unitary elements of

C∗(G). In fact, C∗(G) is the universal C*-algebra generated by these unitary elements ug with

the same definition of multiplication and involution maps.

Example 2.3.18. More generally, given a dynamical system (A,G, α) the C*-algebra of the

semi-direct product bundle Aα defined in Example 2.3.4 is canonically isomorphic to the crossed

product A ⋊α G since Cc(A
α) is isomorphic to Cc(G,A) as *-algebras. Even more general

given a partial dynamical system (A,G, θ), the C*-algebra C∗(Aθ) is isomorphic to crossed

product A×θ G where Aθ is the Fell bundle defined in Example 2.3.5.

1Rep(A, B) denotes the set of representations from the Fell bundle A to B, the sense of Definition 2.3.13,
and representations of Rep(Cc(A), B) and Rep(C∗(A), B) are just *-homomorphisms.
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Example 2.3.19. Let G be an arbitrary group and A be a C*-algebra. If we define

Ag =




A, if g = 1

{0}, otherwise

this results into a trivial Fell bundle A = {Ag}g∈G and it is not difficult to see that C∗(A) ∼= A

identifying au1 to a for all a ∈ A.

Now, the goal is to find a“standard”representation of a Fell bundle A. Until now, j1 is a

*-homomorphism through which we may viewA1 as a *-subalgebra of Cc(A). This makes Cc(A)

into a right A1-module in a standard way: the right action is defined by (ξ · a)g := ξga ∈ Ag

for every ξ ∈ Cc(A) and a ∈ A1, and we are going to introduce a A1-valued inner-product on

Cc(A) as follows:

〈ξ, η〉A1 :=
∑

g∈G

ξ∗gηg ∀ξ, η ∈ Cc(A).

It is not difficult to verify that this is indeed an inner-product. Once this is done Cc(A) becomes

a right pre-Hilbert A1-module.

So, we denote by l2(A) the right Hilbert A1-module obtained by completing Cc(A)

under the norm ‖.‖2 arising from the inner-product defined above. We can see Cc(A) as a

dense subspace of l2(A) and note that ιg viewed as a map from Ag to l
2(A) is an isometry

because for every a ∈ Ag we have

‖ιg(a)‖
2
2 = ‖〈ιg(a), ιg(a)〉‖A1 = ‖a

∗a‖A1 = ‖a‖
2
Ag
.

We will construct a representation of A in L(l2(A)), the C*-algebra of adjointable

operators on l2(A). More details about Hilbert modules and adjointable operators can be

found in Appendix B. Before that, we need the next lemma.

Lemma 2.3.20. ([25], Lemma 17.2) Given g, h ∈ G, a ∈ Ag and b ∈ Ah, we have

b∗a∗ab 6 ‖a‖2Ag
b∗b.

Now, for each g ∈ G and a ∈ Ag consider λg(a) : Cc(A) → Cc(A) to be the linear

operator defined by

λg(a)(ξ)h := aξg−1h

for all ξ ∈ Cc(A) and h ∈ G. This gives us a representation of A as we will see in the next

proposition.

Proposition 2.3.21. With notations as above, λ := {λg}g∈G is a representation of A in

L(l2(A)). This representation is called the regular representation of Fell bundle A.
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Proof. Notice that λg(a) is well defined because AgAg−1h ⊆ Ah and it satisfies

‖λg(a)(ξ)‖
2
2 = 〈λg(a)(ξ), λg(a)(ξ)〉A1

=
∑

h∈G

(aξg−1h)
∗aξg−1h

=
∑

h∈G

ξ∗g−1ha
∗aξg−1h

≤ ‖a‖2
∑

h∈G

ξ∗g−1hξg−1h (by Lemma 2.3.20)

= ‖a‖2
∑

k∈G

ξ∗kξk with k = g−1h

= ‖a‖2〈ξ, ξ〉A1

= ‖a‖2‖ξ‖22.

This implies that ‖λg(a)(ξ)‖2 6 ‖a‖‖ξ‖2 proving that λg(a) is bounded with ‖λg(a)‖2 6 ‖a‖.

Therefore λg(a) extends to a continuous operator on l2(A) satisfying λg(a)(ιh(b)) = ιgh(ab)

for all b ∈ Ah since for each k ∈ G we have

λg(a)(ιh(b))k = aιh(b)g−1k = δh,g−1kab = δgh,kab = ιgh(ab)k.

In fact, we can prove that ‖λg(a)‖2 = ‖a‖. To do that, take ιg−1(a∗) an element of l2(A) via

ιg−1 . Since ιg−1 is isometric then we have ‖ιg−1(a∗)‖2 = ‖a‖. Therefore,

λg(a)(ιg−1(a∗)) = ι1(aa
∗).

So, we see that

‖a‖2 = ‖aa∗‖ = ‖ι1(aa
∗)‖2 = ‖λg(a)(ιg−1(a∗))‖2 6 ‖λg(a)‖‖ιg−1(a∗)‖2 = ‖λg(a)‖‖a‖

⇒ ‖λg(a)‖ ≥ ‖a‖

That is, ‖λg(a)‖2 = ‖a‖. In addition, λg(a) is adjointable operator with adjoint given by

λg(a)
∗ := λg−1(a∗). The reason is because

〈λg(a)(ξ), η〉A1 =
∑

h∈G

(aξg−1h)
∗ηh =

∑

h∈G

ξ∗g−1ha
∗ηh =

∑

k∈G

ξ∗ka
∗ηgk = 〈ξ, λg−1(a∗)(η)〉A1

for all ξ, η ∈ Cc(A). Since Cc(A) is dense in l2(A) we conclude from the above that

〈λg(a)(ξ), η〉A1 = 〈ξ, λg−1(a∗)(η)〉A1

for all ξ, η ∈ l2(A). Therefore, λg : Ag → L(l
2(A)) is a well defined linear map and isometric.

Moreover, for all a ∈ Ag, b ∈ Ah, ξ ∈ Cc(A) and g, h, k ∈ G we compute

λg(a)(λh(b)(ξ))k = aλh(b)(ξ)g−1k = abξh−1g−1k = abξ(gh)−1k = λgh(ab)(ξ)k.

Since Cc(A) is dense in l
2(A) we conclude that λgh(ab) = λg(a)◦λh(b) for all a ∈ Ag, b ∈ Ah

and g, h ∈ G. After all these conclusions, λ = {λg}g∈G is in fact a representation of A into

L(l2(A)) as desired.
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By the universal property of C∗(A) seen in Proposition 2.3.15 we get a unique *-

homomorphism Λ : C∗(A) → L(l2(A)) such that Λ ◦ jg = λg for every g ∈ G. Indeed Λ

satisfies Λ(ξ)(η) = ξ ∗ η for all ξ, η ∈ Cc(A).

Proposition 2.3.22. The *-homomorphism Λ : C∗(A) → L(l2(A)) is injective on Cc(A).

Moreover, Cc(A) admits a C*-norm namely ‖ξ‖r := ‖Λ(ξ)‖ for every ξ ∈ Cc(A).

Proof. Let ξ ∈ Cc(A) and suppose that Λ(ξ) = 0. Thus, Λ(ξ)(η) = 0 for all η ∈ Cc(A). In

particular, taking η = ι1(a) for all a ∈ A1 we have

0 = Λ(ξ)(ι1(a))g = (ξ ∗ ι1(a))g =
∑

h∈G

ξhι1(a)h−1g = ξga

for all g ∈ G. Thus ξga = 0 for all a ∈ A1. Taking a as an approximate identity2 for A1

implies that ξg = 0 for all g ∈ G. Therefore, ξ = 0. Because of this, it is straightforward that

‖ξ‖r := ‖Λ(ξ)‖ is a C*-norm for Cc(A).

Definition 2.3.23. The *-homomorphism Λ defined above is called the regular representation

of C∗(A) and we define the reduced C*-algebra of a Fell bundle A, denoted by C∗
r (A), as the

C*-subalgebra of L(l2(A)) generated by the image of the regular representation of A, that is,

C∗
r (A) := Λ(C∗(A)) ⊆ L(l2(A)).

Remark 2.3.24. Observe that C∗
r (A) is isomorphic to the quotient of C∗(A) by the kernel

of Λ and some times we will see the regular representation as Λ : C∗(A) ։ C∗
r (A). In the

literature C∗
r (A) is also called the reduced cross-sectional C*-algebra of A.

Remark 2.3.25. In general, Λ is not injective on C∗(A). It is therefore crucial to understand

the kernel of Λ and, in particular, to determine conditions under which Λ is injective. We

say that the Fell bundle A is amenable if the regular representation Λ : C∗(A) ։ C∗
r (A) is

injective.

Example 2.3.26. In the special case of the group bundle seen in Example 2.3.3 the reduced

C*-algebra of the group bundle is precisely C∗
r (G), the reduced C*-algebra of a group. Recall

that C∗
r (G) is the image of C∗(G) under the left regular representation λG of G on B(l2(G)),

that is, λGg (ξ)(h) = ξ(g−1h) for every ξ ∈ l2(G) and g, h ∈ G. In this case it is well known

that the injectivity of Λ is equivalent to the amenability of G by [[22], Theorem 7.3.9]. We

will denote by ΛG : C∗(G) ։ C∗
r (G) ⊆ B(l2(G)) the regular representation of G.

Example 2.3.27. The reduced cross-sectional C*-algebra of the semi-direct product bundle

relative to an action α of G on C*-algebra A seen in Example 2.3.4 is naturally isomorphic

2An approximate identity for a C*-algebra A is a net (ei)i∈I of positive elements of A, with ‖ei‖ 6 1, such
that a = limi→∞ aei = limi→∞ eia, for every a ∈ A. Every C*-algebra is known to admit an approximate
identity [[47], Theorem 3.1.1].
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to the reduced crossed product A⋊α,r G and we denote by ΛA⋊G : A⋊α G։ A⋊α,r G the

regular representation. In this case we know that if G is amenable then ΛA⋊G is injective by

[[60], Theorem 7.13]. However the converse is not true in general. For example, if G acts on

C0(G) by left translation we have C0(G)⋊τ G ∼= C0(G)⋊τ,r G ∼= K(l
2(G)) for every group

G (see in Appendix A).

Even more generally, the reduced C*-algebra of the semi-direct product bundle relative

to a partial action θ seen in Example 2.3.5 is naturally isomorphic to the reduced crossed

product algebra A⋊θ,r G.

Remark 2.3.28. Our slightly unusual choice of notation ΛG and ΛA⋊G, as opposed to Λ, is due

to a potential conflict between this and our previous notation for the regular representation

introduced before.

Remark 2.3.29. In this context, the universal representation jg : Ag → C∗(A) is also isometric.

The reason is because on the one hand, since k is *-homomorphism and ιg is isometric, we

have

‖jg(a)‖ = ‖k(ιg(a))‖ 6 ‖ιg(a)‖ = ‖a‖.

But one the other hand, since Λ is *-homomorphism and λg is isometric, we have

‖jg(a)‖ ≥ ‖Λ(jg(a))‖ = ‖λg(a)‖ = ‖a‖

for every a ∈ Ag, g ∈ G.

For both full and reduced C*-algebras C∗(A) and C∗
r (A) there are canonical conditional

expectations onto the unit fiber A1 that will be of great importance for the next chapters. We

begin by recalling the concept of a conditional expectation onto a subalgebra.

Definition 2.3.30. Let A be a C*-algebra and let B ⊆ A be a C*-subalgebra. Then we call a

linear mapping P : A→ B a conditional expectation of A onto B if it is positive, idempotent,

contractive and B-bimodule map. Moreover, P is faithful if P (a∗a) = 0 implies that a = 0.

Lemma 2.3.31 ([25], Lemma 17.8). For each g ∈ G, there is a unique contractive linear map

Eg : C
∗
r (A) → Ag such that Eg(λh(a)) = δg,ha for every a ∈ Ah. In the literature, for each

z ∈ C∗
r (A), Eg(z) is called as the gth Fourier coefficient of z.

Proposition 2.3.32. With definitions as above, E1 : C∗
r (A) → A1 is a faithful conditional

expectation. Moreover, Ẽ1 : C
∗(A)→ A1 defined by Ẽ1 := E1 ◦Λ is a conditional expectation

and it is faithful if and only if Λ : C∗(A) ։ C∗
r (A) is an isomorphism. Indeed,

Ker(Λ) = {x ∈ C∗(A) | Ẽ1(x
∗x) = 0}.

Proof. It is straightforward to check that E1 is a contractive, idempotent and A1-bimodule

map by definition. To become a conditional expectation we need to check that E1 is a positive

map. For this we claim that a∗Egh−1(x)b = 〈ιg(a), xιh(b)〉A1 for every x ∈ C∗
r (A), a ∈ Ag
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and b ∈ Ah. To see that it is enough to check this for x = λk(c), c ∈ Ak since the closed

linear span of the set of all λk(c), for c ∈ Ak, is dense in C∗
r (A). So,

a∗Egh−1(λk(c))b = a∗(cδgh−1,k)b = a∗(cb)δg,kh = 〈ιg(a), ιkh(cb)〉A1 = 〈ιg(a), λk(c)ιh(b)〉A1 .

By linearity and continuity, the claim follows. Consequently, for every a ∈ A1 we have

a∗E1(x
∗x)a = 〈ι1(a), x

∗xι1(a)〉A1 = 〈xι1(a), xι1(a)〉A1 ≥ 0

which implies that a∗E1(x
∗x)a ≥ 0. In particular, taking a as an approximate identity in A1

we conclude that E1(x
∗x) ≥ 0. Now, for faithfulness, suppose that E1(x

∗x) = 0. Using the

formula above we have 0 = b∗E1(x
∗x)b = 〈xιg(b), xιg(b)〉A1 for every b ∈ Ag. This is implies

that xιg(b) = 0 for all b ∈ Ag. Since Cc(A) is dense subspace of l
2(A) we conclude that x = 0

proving that E1 is faithful conditional expectation.

Moreover, by the definition of Ẽ1 we have Ẽ1(x
∗x) = 0 if and only if E1(Λ(x

∗x)) = 0 if

and only if E1(Λ(x)
∗Λ(x))) = 0. Since E1 is faithful then Ẽ1(x

∗x) = 0 if and only if Λ(x) = 0.

Definition 2.3.33. Let A = {Ag}g∈G and B = {Bg}g∈G be a Fell Bundles. We define a Fell

bundle morphism π : A → B as a family π = {πg}g∈G of linear maps πg : Ag → Bg such that:

1. πg(a)πh(b) = πgh(ab);

2. πg(a)
∗ = πg−1(a∗)

for all a ∈ Ag, b ∈ Ah and g, h ∈ G.

Remark 2.3.34. For every g ∈ G, if πg is bijective then we say that π is an isomorphism with

inverse defined naturally, that is, π−1 := {π−1
g }g∈G. Then A is isomorphic to B if there is an

isomorphism π as above.

Proposition 2.3.35. The constructions A 7→ C∗(A) and A 7→ C∗
r (A) are functorial: if

π : A → B is a morphism of Fell bundles over G, then there are (unique) *-homomorphisms

π̄ : C∗(A) → C∗(B) and π̄r : C∗
r (A) → C∗

r (B) “extending”π in the sense that π̄(jAg (a)) =

jBg (πg(a)) and π̄
r(λAg (a)) = λBg (πg(a)) for all a ∈ Ag, where j

A
g , λ

A
g and jBg , λ

B
g denote the

canonical representations of A and B, respectively. Moreover, if π1 is injective then π̄r is also

injective.

Proof. For the first part, it is straightforward to check that jBg (πg(a)) : Ag → C∗(B) gives

us a representation of A in C∗(B). By the universal property seen in Proposition 2.3.15 there

is a (unique) *-homomorphim π̄ : C∗(A) → C∗(B) such that π̄(jAg (a)) = jBg (πg(a)) for all

a ∈ Ag.

For the second part, let ΛA and ΛB be the regular representations and ẼA
1 and ẼB

1 the

conditional expectations of C∗(A) and C∗(B), respectively. So, we define π̄r : C∗
r (A)→ C∗

r (B)
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such that π̄r(ΛA(x)) = ΛB(πg(x)) for all x ∈ C
∗(A). To see that π̄r is a well-defined map we

need to check that the null space of ΛA is contained into the null space of ΛB ◦ π. Recall from

Proposition 2.3.32 that the null space of ΛA is the same as {x ∈ C∗(A) | ẼA
1 (x

∗x) = 0}. The

same happens for ΛB. We claim that

ẼB
1 ◦ πg(x) = π1 ◦ ẼA

1 (x) (2.3.36)

for all x ∈ C∗(A). To see that it is enough to check it for x = jAg (a), a ∈ Ag since the closed

linear span of the set of all jAg (a), for a ∈ Ag, is dense in C∗(A). We have

ẼB
1 ◦ πg(j

A
g (a)) = EB

1 ◦ ΛB ◦ πg(j
A
g (a))

= EB
1 ◦ ΛB ◦ j

B
g (πg(a))

= EB
1 ◦ λ

B
g (πg(a))

= δg,1πg(a)

= π1(δg,1a)

= π1 ◦ E
A
1 ◦ λ

A
g (a)

= π1 ◦ E
A
1 ◦ ΛA ◦ j

A
g (a)

= π1 ◦ ẼA
1 (j

A
g (a))

So, the claim is verified. Now, suppose that ΛA(x) = 0. Then ΛA(x
∗x) = 0 and this implies

that π1◦ẼA
1 (x

∗x) = π1◦E
A
1 ◦ΛA(x

∗x) = 0. By 2.3.36, ẼB
1 ◦πg(x

∗x) = EB
1 ◦ΛB◦πg(x

∗x) = 0.

Since EB
1 is faithful then ΛB ◦ πg(x

∗x) = 0 which implies that ΛB ◦ πg(x) = 0 as we desired.

We conclude that π̄r is well-defined *-homomorphism. Moreover, note that for every x = jAg (a)

with a ∈ Ag we have π̄r(λAg (a)) = π̄r(ΛA(x)) = ΛB(πg(x)) = λBg (πg(a)).

Finally, if π1 is faithful then actually the null spaces of ΛA and ΛB ◦ π are equal.

To see that, we use the previous formula 2.3.36. Suppose that ΛB(πg(x)) = 0 and hence

ΛB(πg(x
∗x)) = 0 which is equivalent to ẼB

1 ◦ πg(x
∗x) = 0. By 2.3.36, π1 ◦ ẼA

1 (x
∗x) = 0.

Since π1 is faithful then ẼA
1 (x

∗x) = 0 which is equivalent to ΛA(x) = 0 and this completes

the proof.

Definition 2.3.37. Let A be a Fell bundle. We say that B is a Fell sub-bundle of A if Bg are

closed subspaces of Ag such that BgBh ⊆ Bgh and B∗
g ⊆ Bg−1 for all g, h ∈ G.

Remark 2.3.38. It is clear that a Fell sub-bundle is itself a Fell bundle with the restricted

operations and the inclusion map from B to A is a morphism.

Definition 2.3.39. Let A be a Fell Bundle and I = {Ig}g∈G a Fell sub-bundle of A. We say

that I is an ideal of A if AgIh ⊆ Igh and IgAh ⊆ Igh for all g, h ∈ G.

Given an ideal I of a Fell bundle A we can consider the quotient Fell bundle of A by I.

For each g ∈ G, consider the quotient spaces Ag/Ig which the multiplication and involution
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operations included from A to the quotient, that is, the multiplication and involution are given

by

· : Ag/Ig ×Ah/Ih → Agh/Igh and ∗ : Ag/Ig → Ag−1/Ig−1

for every g, h ∈ G. The result is a Fell bundle A/I := {Ag/Ig}g∈G over G called quotient

Fell bundle.

Also, the canonical quotient maps qg : Ag → Ag/Ig gives us a morphism qA from

A to A/I in the obvious way. According to the Proposition 2.3.35 we get surjective *-

homomoprhisms q̄A : C∗(A) → C∗(A/I) and (q̄r)A : C∗
r (A) → C∗

r (A/I) that make the

diagram below commute:

C∗(A) C∗(A/I)

C∗
r (A) C∗

r (A/I)

ΛA

q̄A

ΛA/I

(q̄r)A

Moreover, by [[25], Proposition 21.15] C∗(I) is an ideal of C∗(A) and thus gives an exact

short sequence of C*-algebras3

0→ C∗(I)→ C∗(A)→ C∗(A/I)→ 0.

Also, according to [25] the C*-algebra C∗
r (I) is an ideal of C∗

r (A) and we still have well-defined

*-homomorphisms C∗
r (I)→ C∗

r (A) and C
∗
r (A)→ C∗

r (A/I), however the short sequence for

reduced C*-algebras it is not always exact. If G is exact group then it is exact sequence (see

[[25], Theorem 21.18]). However, our interest is the diagram above but it can seen in [25]

and [22] many other results involving exact sequences, exact groups and induced ideals in this

context.

2.4 TOPOLOGICALLY GRADED C*-ALGEBRAS

A concept which is closely related to Fell bundles is the notion of G-graded C*-algebras.

In this section, besides defining G-grading C*-algebras, we are going to define a topologically

G-graded C*-algebra which arises naturally from discrete group coactions. Again, we mainly

follow [25].

Definition 2.4.1. Let B be a C*-algebra and let G be a group. We say that a linearly

independent collection {Bg}g∈G of closed subspaces of B is a grading if ⊕g∈GBg is dense in

B, and for every g, h ∈ G one has BgBh ⊆ Bgh and B∗
g ⊆ Bg−1 . In this case we say that B is

a G-graded C*-algebra and each Bg is called a grading subspace.

Remark 2.4.2. Given a G-graded C*-algebra B, the collection of all grading subspaces {Bg}g∈G

forms a Fell bundle over G with the norm, multiplication and involution operations inherited

3Let A,B,C be C*-algebras. We say a short sequence 0 → A
ι
−→ B

q
−→ C → 0 is exact if ι and q are

injective and surjective *-homomorphims, respectively and Ker(q) = Im(ι).
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from B. A question is pertinent: Is the converse true? In other words, may every Fell bundle be

obtained from a G-graded C*-algebra? The answer is yes but there might be many G-graded

C*-algebras with the same (isomorphic) Fell bundle. For example, we will see in Corollary 2.4.7

that the full and reduced C*-algebras C∗(A) and C∗
r (A) are G-graded, and consequently, the

Fell bundle obtained by these two C*-algebras are isomorphic to the original Fell bundle A by

Remark 2.3.29. But there are many situations where C∗(A) and C∗
r (A) are not isomorphic

(For example, the full and reduced C*-algebra of a non-amenable group). Despite the great

similarity between Fell bundles over G and G-graded C*-algebra there are important conceptual

differences.

Example 2.4.3. The most common example of a graded C*-algebra comes from a graph

C*-algebra. For a graph E we have C∗(E) =
⊕

n∈Z

C∗(E)n with Z-grading given by

C∗(E)n = span{SµS
∗
ν | µ, ν ∈ Path(E) with r(µ) = r(ν) and |µ| − |ν| = n}.

Moreover, C∗(E)n = L(E)n where L(E)n is defined by the same span above without closure.

Example 2.4.4. Let On be the Cuntz algebra generated by n isometries S1, . . . , Sn and let

β : T → Aut(On) be the gauge action, that is, βz(Si) = zSi for every i ∈ {1, . . . , n}. If we

define

Bm := {x ∈ On | βz(x) = zmx}

then this gives us a grading {Bm}m∈Z and consequently a Fell bundle B = {Bm}m∈Z. In fact,

we can show that Bm = span{SµS
∗
ν | µ, ν words with |µ| − |ν| = m}.

This is a particular example from the previous one as the Cuntz algebra On can be

realized as the graph C*-algebra seen in item 7, Example 2.2.8.

Example 2.4.5. More generally, if α is an action of T on a C*-algebra A for each n ∈ Z we

can define a grading

An := {a ∈ A | αz(a) = zna}.

Then A is in fact a Z-graded C*-algebra. The previous examples are particular cases considering

the gauge action.

In the previous example there is always a faithful conditional expectation of A onto

A0 = Aα, the fixed-point algebra concerning the action α. However, not every graded C*-

algebra has this property, that is, admits a conditional expectation of A onto unit fiber A1. As

we can see in [25], Exel shows an example of this. So, we consider a stronger condition called

topological grading.

Definition 2.4.6. Let A be a G-graded C*-algebra with grading subspaces {Ag}g∈G. We

say that A is a topological G-graded C*-algebra if there is a (necessarily unique) conditional

expectation of A onto A1 vanishing on Ag for g 6= 1.
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Corollary 2.4.7. If A is a Fell Bundle over G then both C∗(A) and C∗
r (A) are topological

G-graded C*-algebras.

Proof. Notice that the conditional expectations E1 : C∗
r (A) → A1 and Ẽ1 : C∗(A) → A1

given by Proposition 2.3.32 clearly satisfy the required conditions by definition. Moreover, by

Remark 2.3.29, the full and reduced C*-algebra of a Fell bundle A are G-graded C*-algebras

with grading subspaces jg(Ag) and λg(Ag), respectively.

Example 2.4.8. A particular example in this context is the conditional expectation for the

group C*-algebra. There is a unique continuous linear functional τ : C∗
r (G) → C defined by

τ(u1) = 1 and τ(ug) = 0 for all g ∈ G. Moreover, τ is a faithful tracial state. Also, the

tracial state τ̃ : C∗(G) → C defined by τ̃ = τ ◦ ΛG is faithful if and only if G is amenable

where ΛG : C∗(G) ։ C∗
r (G) is the regular representation [[12], Theorem 2.6.8]. Indeed,

Ker(ΛG) = {x ∈ C∗(G) | τ̃(x∗x) = 0}. A point to note here is that if we consider the group

bundle C×G then the conditional expectation E1 coincides with τ .

Example 2.4.9. Another example is related to the conditional expectation on a crossed

product by a dynamical system (A,G, α). There is a unique continuous linear functional

Fg : A⋊α,r G→ A defined by

Fg

(∑

h∈G

ahuh

)
= ag

for every g ∈ G. In particular, F1 is a faithful conditional expectation. Also, the conditional

expectation F̃1 : A ⋊α G → A defined by F̃1 = F1 ◦ Λ
A⋊αG is faithful if G is amenable

[[60], Theorem 7.13] where ΛA⋊αG : A⋊α G։ A⋊α,r G is the regular representation. Again,

Ker(ΛA⋊αG) = {x ∈ A⋊α G | F̃1(x
∗x) = 0}. If we consider the semi-direct bundle Aα then

the conditional expectation E1 coincides with F1.

From now on, fix a topologically G-graded C*-algebra A with associated Fell

bundle A = {Ag}g∈G defined from the grading subspaces.

Theorem 2.4.10. ([25], Theorem 19.1) With notations as above, there is a unique surjective

*-homomorphism ψ : A→ C∗
r (A) such that ψ(a) = λg(a) for all a ∈ Ag and g ∈ G.

Proposition 2.4.11. If A is a topologically G-graded C*-algebra with associated Fell bundle

A = {Ag}g∈G, then there is a commutative diagram of surjective *-homomorphisms

C∗(A) C∗
r (A)

A

Λ

σ

ψ

Proof. The inclusion maps σg : Ag →֒ A define a representation σ of A on A and its integrated

form yields a *-homomorphism σ : C∗(A) → A such that σ(jg(a)) = σg(a) for all a ∈ Ag.
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The surjectivity is clear because ⊕g∈GAg is dense in A. The existence of ψ follows immediately

by Theorem 2.4.10. It is enough to show that ψ ◦ σ = Λ. For this, note for all a ∈ Ag we have

ψ(σ(jg(a))) = ψ(σg(a)) = λg(σg(a)) = Λ(jg(a)).

By linearity and continuity the desired result follows.

Proposition 2.4.12. Let A be a topologically G-graded C*-algebra with grading {Ag}g∈G.

Then there is a contractive linear map Fg : A → Ag with vanishes on Ah for all h 6= g. In

particular, F1 is a conditional expectation which vanishes on Ag for all g 6= 1.

Proof. For the existence it is enough to define Fg := Eg ◦ ψ where Eg is as in Lemma 2.3.31

and ψ is as in Theorem 2.4.10. In particular, F1 is a conditional expectation that satisfies the

desired conditions by Proposition 2.3.32.

Proposition 2.4.13. Given a topologically G-graded C*-algebra A with conditional expec-

tation F1 as in Proposition 2.4.12 and the *-homomorphism ψ as in Theorem 2.4.10, we

have:

Ker(ψ) = {a ∈ A | F1(a
∗a) = 0}.

Moreover, if F1 is faithful then A is canonically isomorphic to C∗
r (A).

Proof. It is enough to note by definition that F1(a
∗a) = E1(ψ(a)

∗ψ(a)). So, F1(a
∗a) = 0

if and only if ψ(a) = 0. If F1 is faithful then the representation ψ : A → C∗
r (A) will be an

isomorphism.

Remark 2.4.14. Proposition 2.4.13 tells us that the reduced C*-algebra of a Fell bundle A

associated with the grading subspaces is (up to isomorphism) the unique topologically G-graded

C*-algebra having A as the associated Fell bundle.

2.4.1 FELL’S ABSORPTION PRINCIPLE

In this subsection, we are interested in constructing certain representations of a Fell

bundle A induced by a given representation.

Suppose that π is a representation of a Fell bundle A into a C*-algebra B and let λG

be the regular representation of G on C∗
r (G) ⊆ B(l2(G)), that is, λGg (ξ)(h) = ξ(g−1h) for

every ξ ∈ l2(G) and g, h ∈ G. Let us consider another representation of A in B ⊗ C∗
r (G) by

putting

(π ⊗ λG)g(a) := πg(a)⊗ λ
G
g

for all a ∈ Ag and g ∈ G. Since

(π ⊗ λG)g(a)(π ⊗ λ
G)h(b) = πg(a)πh(b)⊗ λ

G
g λ

G
h = πgh(ab)⊗ λ

G
gh = (π ⊗ λG)gh(ab)
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and

(π ⊗ λG)g(a)
∗ = πg(a)

∗ ⊗ (λGg )
∗ = πg−1(a∗)⊗ λGg−1 = (π ⊗ λG)g−1(a∗)

for all a ∈ Ag, b ∈ Ah and g, h ∈ G, it follows that π ⊗ λG = {(π ⊗ λG)g}g∈G is indeed

a representation of A into B ⊗ C∗
r (G). The integrated form of π ⊗ λG is the representation

π ⊗ λG : C∗(A) → B ⊗ C∗
r (G) such that π ⊗ λG(jg(a)) = πg(a) ⊗ λ

G
g for all a ∈ Ag and

g ∈ G. This leads to the next theorem:

Theorem 2.4.15. (Fell’s absorption principle for Fell Bundles) Let π be a representation of the

Fell bundle A in a C*-algebra B and let π ⊗ λG be the integrated form of the representation

π ⊗ λG described above. Then π ⊗ λG factors through C∗
r (A) providing a representation

(π ⊗ λG)r of the latter, such that the diagram below commutes:

C∗(A) B ⊗ C∗
r (G)

C∗
r (A)

π⊗λG

Λ (π⊗λG)r

Moreover, if π1 is faithful then (π ⊗ λG)r is also faithful.

Proof. Consider τ : C∗
r (G)→ C the canonical faithful tracial state. This induces a bounded

linear positive map idB ⊗ τ : B ⊗ C∗
r (G)→ B such that (idB ⊗ τ)(

∑
g∈G b⊗ ug) = b. This

map is the first appearance of a slice map4. Moreover, idB ⊗ τ is faithful because τ is. We

claim that (idB ⊗ τ)(π ⊗ λG)(x) = π1(Ẽ1(x)) for all x ∈ C
∗(A). To check that it is enough

to apply both on x = jg(a), a ∈ Ag. But

(idB ⊗ τ)(π ⊗ λG)(jg(a)) = (idB ⊗ τ)(πg(a)⊗ λ
G
g )

= π1(a)

= π1(aδ1,g)

= π1(E1(λg(a)))

= π1(E1(Λ(jg(a)))

= π1(Ẽ1(jg(a)))

Since the closed linear span of the set of all jg(a), a ∈ Ag, is a dense subspace of C∗(A) the

result follows. Now, we will show that Ker(Λ) ⊆ Ker(π ⊗ λG) remembering that Ker(Λ) =

{x ∈ C∗(A) | Ẽ1(x
∗x) = 0}. If x ∈ Ker(Λ) then we have 0 = π1(Ẽ1(x

∗x)) = (idB ⊗

τ)(π ⊗ λG)(x∗x). Since idB ⊗ τ is faithful this implies that π ⊗ λG(x∗x) = 0 concluding that

x ∈ Ker(π ⊗ λG). Therefore π ⊗ λG vanishes on the kernel of the regular representation Λ and

4Given C*-algebras A and B and a linear functional ϕ ∈ B∗, the map idA ⊗ ϕ : A⊗alg B → A⊗ C ∼= A

defined by (idA⊗ϕ)(a⊗ b) = aϕ(b) extends to a bounded linear map of A⊗B into A of norm ‖ϕ‖. Moreover,
if ϕ is faithful then idA⊗ϕ is also faithful essentially because we are using minimal tensor product. Such maps
are called slices maps. The existence is obtained by view A and B represented on Hilbert spaces H1 and H2

and ϕ becomes a functional in B(H2). More details can be found in [57] and [40].
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then factors through a representation (π ⊗ λG)r on C∗
r (A) as desired. Finally, if π1 is faithful

then we have the equality Ker(Λ) = Ker(π ⊗ λG). To see that let x ∈ Ker(π ⊗ λG). Then

π ⊗ λG(x∗x) = 0 and applying idB ⊗ τ on both sides we get π1(Ẽ1(x
∗x)) = 0. Since π1 is

faithful then Ẽ1(x
∗x) = 0, that is, x ∈ Ker(Λ). Therefore (π ⊗ λG)r is faithful, completing

the proof.

Remark 2.4.16. If we represent B ⊆ B(H) for some Hilbert space H then the proof is similar

to [[25], Proposition 18.4] but we adapted to facilitate the understanding for the next sections.

In general we can consider π as a representation of A inM(B) for some C*-algebra B and

it gives us a *-homomorphism π ⊗ λG : C∗(A) → M(B ⊗ K(l2(G))) as long as we use

the canonical isomorphism B(l2(G)) ∼=M(K(l2(G))). With certain adaptations the proof is

similar to that presented above.

Proposition 2.4.17. Let A be a Fell bundle. Then there is an injective *-homomorphism

ϕ : C∗
r (A)→ C∗

r (A)⊗ C
∗
r (G) such that ϕ(λg(a)) = λg(a)⊗ λ

G
g , for all a ∈ Ag and g ∈ G.

Proof. Consider the regular representation λ of A in C∗
r (A). Then by construction we get

another representation of A in C∗
r (A)⊗C

∗
r (G) by (λ⊗λ

G)g : Ag → C∗
r (A)⊗C

∗
r (G) such that

(λ⊗λG)g(a) = λg(a)⊗λ
G
g for every a ∈ Ag. By Fell’s absorption principle 2.4.15 the integrated

form λ⊗ λG : C∗(A) → C∗
r (A) ⊗ C∗

r (G) factors through an injective *-homomorphism ϕ

from C∗
r (A) as we required.

Remark 2.4.18. Also there is a canonical representation Ag → C∗
r (A) ⊗ C∗(G) sending

a to λg(a) ⊗ ug for every a ∈ Ag. The integrated form of this representation gives us a

*-homomorphism δrA : C∗
r (A)→ C∗

r (A)⊗ C
∗(G) such that the following diagram commute:

C∗
r (A) C∗

r (A)⊗ C
∗(G) C∗

r (A)⊗ C
∗
r (G)

δr
A

ϕ

id⊗ΛG

Since ϕ is injective then δrA is also injective.

Example 2.4.19. Similarly, there is a canonical representation Ag → C∗(A) ⊗ C∗(G) by

sending a to jg(a)⊗ ug for every a ∈ Ag. The integrated form of this representation gives us

an injective *-homomorphism δA : C∗(A)→ C∗(A)⊗C∗(G) such that δA(jg(a)) = jg(a)⊗ug.

But note that id⊗ ΛG ◦ δA : C∗(A)→ C∗(A)⊗ C∗
r (G) is not injective in general because as

we can see from proof of Theorem 2.4.15 we have Ker(id⊗ ΛG ◦ δA) = Ker(Λ).

Remark 2.4.20. As we can see in the previous remark and example, in general, there are always

an injective *-homomorphisms from C∗
r (A) as below
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C∗(A)⊗ C∗
r (G)

C∗
r (A) C∗

r (A)⊗ C
∗
r (G)

C∗
r (A)⊗ C

∗(G)

but from C∗(A) the situation change

C∗(A) C∗(A)⊗ C∗(G)

C∗(A)⊗ C∗
r (G)

/

These canonical injective *-homomorphisms δA and δrA presented in the examples above

are a form of “coaction” of G on C∗(A) and C∗
r (A), respectively. We will study them more

deeply in the subsequent section.

2.5 COACTIONS AND THEIR CROSSED PRODUCTS

In this section, we will study part of the theory of coactions and their crossed products

over a discrete group. Although we only need this case, we remark that this also generalizes

to locally compact groups, see [52]. Again, we will assume that all representations here are

nondegenerate and all tensor products ⊗ are minimal with identity maps denoted by id with

index when necessary. We mainly follow [21], [41], [20], [52], [49], [35], [42], [33] and [48].

To introduce the definition, let us first note that the group C*-algebra C∗(G) carries

a natural comultiplication δG : C∗(G) → C∗(G) ⊗ C∗(G) such that δG(g) = g ⊗ g (For

now on, g means actually ug in C∗(G)). If follows directly that δG satisfies the identity

(δG ⊗ idG) ◦ δG = (idG ⊗ δG) ◦ δG.

Definition 2.5.1. A coaction of a discrete group G on a C*-algebra A is a *-homomorphism

δ : A→ A⊗ C∗(G) that makes the following diagram, called coaction identity, commute:

A A⊗ C∗(G)

A⊗ C∗(G) A⊗ C∗(G)⊗ C∗(G)

δ

δ idA⊗δG

δ⊗idG

and such that it is nondegenerate in the sense that

δ(A)(1⊗ C∗(G)) = A⊗ C∗(G).
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Remark 2.5.2. In fact nondegeneracy for coactions is an apparently stronger condition than

nondegeneracy for *-homomorphisms which means δ(A)(A⊗ C∗(G)) = A⊗C∗(G). An open

question is whether every coaction is automatically nondegenerate. The affirmative answer

to this question is known to be true for amenable groups, see [35] and [41]. In the case of

discrete groups, it was believed that it is also true but the proofs for automatic nondegeneracy

of discrete groups are unfortunately incorrect, see [34]. So this is still an open question.

Definition 2.5.3. A dynamical co-system is a triple (A,G, δ) where A is C*-algebra, G is a

discrete group and δ is a coaction of G on A.

Example 2.5.4. It is important to emphasize that the comultiplication δG is an example of a

coaction of G on C∗(G).

One important case is when G is an abelian group. In this case consider the dual group

of G, called Pontryagin dual and denoted by Ĝ, which is the set of all homomorphisms from G

into the circle group T in C with pointwise multiplication. Notice that Ĝ is a compact group

with respect to the topology of pointwise convergence.

Proposition 2.5.5. If G is an abelian group then there is a one-to-one correspondence between

coactions of G and (continuous) actions of the dual group Ĝ.

Proof. First let us identify C∗(G) ∼= C(Ĝ) via the Fourier transformation F : C∗(G)→ C(Ĝ)

given by F(g)(χ) = χ(g), for all χ ∈ Ĝ. Also, we can identify A ⊗ C(Ĝ) ∼= C(Ĝ, A) via

a⊗ f ↔ a · f where a · f ∈ C(Ĝ, A) is function defined by (a · f)(χ) = af(χ) for all χ ∈ Ĝ.

Moreover, C(Ĝ, A) is the closed liner span of the functions a · f for f ∈ C(Ĝ) and a ∈ A.

Identifying in the usual way C(Ĝ)⊗C(Ĝ) ∼= C(Ĝ×Ĝ) with f⊗g is identified with f ·g

where f ·g(χ, ς) = f(χ)g(ς), we can translate the comultiplication δG to the *-homomorphism

δ̃G : C(Ĝ) → C(Ĝ × Ĝ) given by δ̃G(f)(χ, ς) = f(χς). This is because δG(g) = g ⊗ g

for all g ∈ G. Using Fourier transformation we have δ̃G(F(g))(χ, ς) = (F(g).F(g))(χ, ς) =

F(g)(χ)F(g)(ς) = χ(g)ς(g) = (χς)(g) = F(g)(χς). Since F(g) for g ∈ G generates C(Ĝ)

the result follows.

After all the identifications, if α is an action of Ĝ on C*-algebra A, then we can define

a coaction δα : A → C(Ĝ, A) by δα(a)(χ) := αχ(a). We are going to check the coaction

identity, that is, the diagram below commute:

A A⊗ C(Ĝ) ∼= C(Ĝ, A)

A⊗ C(Ĝ) ∼= C(Ĝ, A) A⊗ C(Ĝ)⊗ C(Ĝ) ∼= A⊗ C(Ĝ× Ĝ) ∼= C(Ĝ× Ĝ, A)

δα

δα idA⊗δG

δα⊗idG
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To see this we claim that (δα ⊗ idG)(f)(χ, ς) = αχ(f(ς)) for all f ∈ C(Ĝ, A). For the

elementary tensors we have

(δα ⊗ idG)(a⊗ ϕ)(χ, ς) = (δα(a)⊗ ϕ)(χ, ς)

= δα(a)(χ)ϕ(ς)

= αχ(a)ϕ(ς)

= αχ(ϕ(ς)a)

Since C(Ĝ, A) is the closed linear span of the set of all functions a · ϕ with a ∈ A and

ϕ ∈ C(Ĝ), the statement follows.

Similarly we can see that (idA ⊗ δG)(f)(χ, ς) = f(χς) for all f ∈ C(Ĝ, A). Now, we

compute:

((idA ⊗ δG) ◦ δ
α)(a)(χ, ς) = (idA ⊗ δG)(δ

α(a))(χ, ς)

= δα(a)(χς)

= αχς(a)

On the other hand we compute:

((δα ⊗ idG) ◦ δ
α)(a)(χ, ς) = (δα ⊗ idG)(δ

α(a))(χ, ς)

= αχ(δ
α(a)(ς))

= αχ(ας(a))

This tell us that the coaction identity is directly related to the multiplicativity of the

action, that is, (idA ⊗ δG) ◦ δ
α = (δα ⊗ idG) ◦ δ

α if and only if αχς = αχ ◦ ας . For the

nondegeneracy of δα, note that for all a ∈ A and χ ∈ Ĝ, δα(αχ−1(a)) is an element of

δα(A) such that δα(αχ−1(a))(χ) = αχ(αχ−1(a)) = a. Moreover, δα(A) is a C*-subalgebra of

C(Ĝ, A). Hence, we conclude that δα(A) ·C(Ĝ) = span{f.g | f ∈ δα(A), g ∈ C(Ĝ)} is dense

in C(Ĝ, A) by [[10], Lemma 3.2.11]. So, identifying C(Ĝ) ∼= 1⊗C(Ĝ) ⊆ A⊗C(Ĝ) we have

that δα(A)(1⊗ C(Ĝ)) is dense in A⊗ C(Ĝ) and δα is indeed a coaction of G on A.

Conversely, if δ : A → C(Ĝ, A) is a coaction then we obtain an action of Ĝ on A

defining αχ : A → A given by αχ(a) = δ(a)(χ). Note that αχς = αχ ◦ ας follows from the

same argument used above and α1 = idA follows from (idA⊗ 1G) ◦ δ
α = idA . This completes

the proof.

Coactions of discrete groups are strongly related to Fell bundles. IfA is a Fell bundle over

G, there are canonical coactions on C∗(A) and C∗
r (A): Consider δA : C∗(A)→ C∗(A)⊗C∗(G)

given by δA(jg(ag)) = jg(ag)⊗ g and δrA : C∗
r (A)→ C∗

r (A)⊗ C
∗(G) given by δrA(λg(ag)) =

λg(ag)⊗ g for all ag ∈ Ag and g ∈ G the injective *-homomorphisms as we have seen in the
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previous subsection. It is straightforward to check the coaction identity. Moreover, observe that

for each a ∈ Ag and h ∈ G we have

jg(a)⊗ h = (jg(a)⊗ g)(1⊗ g
−1h) = δA(jg(a))(1⊗ g

−1h)

and since the closed linear span of the set of all jg(a), with a ∈ Ag and g ∈ G, is dense in

C∗(A) it follows that δA is nondegenerate in our sense and hence δA is in fact a coaction

of G on C∗(A). The same happens for δrA. Eventually we will use the simpler notation ag to

designate jg(ag) in C
∗(A).

Interestingly, a sort of converse holds: If δ is a coaction of G on a C*-algebra A we can

consider the spectral subspaces

Ag := {a ∈ A | δ(a) = a⊗ g}.

This gives us a grading for G as we will see in the next proposition and consequently form a

Fell bundle A = {Ag}g∈G over G with operations induced from A.

Before we get there, if D is a C*-algebra and ρ : D → B(H) is a nondegenerate

representation of D, then x 7→ 〈ξ, ρ(x)η〉 is a continuous linear functional on D for each

ξ, η ∈ H, called a matrix coefficient of ρ. Every element of the dual C*-algebra B∗ can be

written in this way. We denote by B∗
ρ the matrix coefficients of ρ. In particular, for D = C∗(G)

then C∗(G)∗ can be identified with the Fourier-Stieltjes algebra B(G) of G, the algebra

consisting of all bounded functions on G which can be expressed as matrix coefficients of

unitary representations of G. The Fourier algebra A(G) is the (closed) *-subalgebra of B(G)

consisting of all matrix coefficients of the left regular representation λG on l2(G), that is,

A(G) = C∗(G)∗λG . So, every element f ∈ A(G) is of the form f(x) = 〈ξ, λG(x)η〉 where ξ, η ∈

l2(G). The characteristic function χg of {g} belongs to A(G) because χg = 〈ςg, λ
G(.)ς1〉l2(G),

where ςg is the standard basis vector corresponding to g. Then λ
G is determined by λGg (ςh) = ςgh

for all g, h ∈ G. In particular, A(G) is dense in C0(G) with respect of the supremum-norm.

Moreover, it is not difficult to see that χ1 is in fact the canonical conditional expectation τ̃

on C∗(G) since τ(a) = 〈ς1, aς1〉l2(G) for all a ∈ C
∗
r (G) and χg = (χ1).g

−1 since (χ1).g
−1 =

〈ς1, ςh〉l2(G).g
−1 = 〈ς1, ςhg−1〉l2(G) = 〈ςg, ςh〉l2(G) = χg. More details about the Fourier algebra

can be found in [27].

After this short introduction, consider the map Eg := (idA ⊗ χg) ◦ δ : A→ A for each

g ∈ G where χg is the characteristic function of {g} regarded as an element of the Fourier

algebra A(G). In fact, we can see idA ⊗ χg as a slice map of A⊗ C∗(G) to A which“reads”

the variable g. It is not difficult to see that Eg is a projection of norm one from A onto Ag

with kernel containing Ah for all h 6= g.

Proposition 2.5.6. If (A,G, δ) is a dynamical co-system then A is topologically G-graded

C*-algebra with grading given by the spectral subspaces Ag defined above.

Proof. It is not difficult to see that Ag are closed subspaces of A such that AgAh ⊆ Agh and

A∗
g = Ag−1 for every g, h ∈ G since δ is a *-homomorphism. For the linear independence of
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the collection {Ag}g∈G suppose a finite sum
∑n

i=1 agi = 0 with agi ∈ Agi such that gi 6= gj if

i 6= j. Then we have

0 = δ

(
n∑

i=1

agi

)
=

n∑

i=1

δ(agi) =
n∑

i=1

agi ⊗ gi.

For g ∈ G, we have

0 = Eg

(
n∑

i=1

agi

)
= (idA ⊗ χg) ◦ δ

(
n∑

i=1

agi

)
= (idA ⊗ χg)

(
n∑

i=1

agi ⊗ gi

)
= ag ⊗ g.

We conclude that ag = 0, and therefore, we have the desired. We claim that ⊕g∈GAg is dense

in A. Since δ is nondegenerate, span{δ(a)(1 ⊗ g) | a ∈ A, g ∈ C∗(G)} = A ⊗ C∗(G). In

particular, a⊗ 1 can be approximated by
∑n

i=1 δ(ai)(1⊗ gi). Then we have

a = (idA ⊗ χ1)(a⊗ 1)

≈ (idA ⊗ χ1)

(
n∑

i=1

δ(ai)(1⊗ gi)

)

=
n∑

i=1

(idA ⊗ χ1)(δ(ai)(1⊗ gi))

=
n∑

i=1

(idA ⊗ χg−1
i
)(δ(ai))

=
n∑

i=1

Eg−1
i
(ai) ∈

⊕

g∈G

Ag

Finally, we have already seen that Eg : A→ Ag is a norm one projection that vanishes on Ah

for all h 6= g. In particular, E1 is norm one projection that vanishes on Ag for all g 6= 1. Now,

if x =
∑

g∈G ag is a finite sum with ag ∈ Ag then

x∗x =
∑

g,h∈G

a∗gah =
∑

k∈G

∑

g∈G

a∗gagk.

Note that a∗gagk ∈ Ag−1Agk ⊆ Ak and E1(x
∗x) =

∑
g∈G a

∗
gag which is positive. Given a ∈ A1

it is straightforward to check that E1(ax) = aE1(x) and E1(xa) = E1(x)a for every x ∈ A

by checking first on finite sums as above. Therefore, E1 : A→ A1 is a conditional expectation

that vanishes on Ag for all g 6= 1. That is, {Ag}g∈G is a topological grading for A.

Remark 2.5.7. According to Proposition 2.5.6 we get an associated Fell bundle A = {Ag}g∈G.

Observe that the conditional expectation E1 defined above is essentially“the same”conditional

expectation F1 in the context of Fell bundles found in Proposition 2.4.12 since for every a ∈ Ag

F1(a) = E1(ψ(a)) = E1(λg(a)) = aδ1,g = (idA ⊗ χ1)(a⊗ g) = (idA ⊗ χ1)(δ(a))

where ψ is the *-homomorphism seen in Theorem 2.4.10.
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Remark 2.5.8. If δ : A→ A⊗C∗(G) is *-homomorphism satisfying the coaction identity then

δ is injective if and only if (idA⊗ 1G) ◦ δ = idA, where 1G denotes the trivial representation of

G integrated to a representation of C∗(G) and idA ⊗ 1G : A⊗ C∗(G) → A is a “slice map”.

To see it observe that (idG ⊗ 1G) ◦ δG(g) = (idG ⊗ 1G)(g ⊗ g) = g for all g ∈ G, that is,

(idG ⊗ 1G) ◦ δG = idG . Now for a ∈ A, we compute:

δ(a) = (idA ⊗ idG)δ(a)

= (idA ⊗ ((idG ⊗ 1G) ◦ δG))δ(a)

= (idA ⊗ idG ⊗ 1G)(idA ⊗ δG)δ(a)

= (idA ⊗ idG ⊗ 1G)(δ ⊗ idG)δ(a)

= δ ◦ (idA ⊗ 1G) ◦ δ(a)

Therefore, δ = δ ◦ (idA ⊗ 1G) ◦ δ and this completes the prove of the statement above.

Remark 2.5.9. In the literature the injectivity of coactions is usually required but nondegeneracy

implies injectivity. To see this, in our discrete case, observe that if δ : A → A ⊗ C∗(G) is a

coaction then by Proposition 2.4.12 A is a topologically G-graded C*-algebra with spectral

subspaces {Ag}g∈G. Consequently, for each a ∈ Ag we have

(idA ⊗ 1G) ◦ δ(a) = (idA ⊗ 1G)(a⊗ g) = a.

By linearity and continuity we have (idA ⊗ 1G) ◦ δ = idA implying that δ is injective.

Example 2.5.10. Let H and G be a discrete groups, let ϕ : H → G be a homomorphism and

ϕ : C∗(H)→ C∗(G) denote the integrated form of u◦ϕ : H → C∗(G) where u : G→ C∗(G)

is the canonical representation. If (A,H, ǫ) is any dynamical co-system we can define the

inflated co-system (A,G, Inf(ǫ)) where Inf(ǫ) := (idA ⊗ ϕ) ◦ ǫ : A→ A⊗ C∗(G).

It is straightforward that Inf(ǫ) is a *-homomorphism and it is satisfy the coaction

identity since (ϕ⊗ϕ) ◦ δH = δG ◦ϕ combined with the coaction identity of ǫ, that is, we have:

(idA ⊗ δG) ◦ Inf(ǫ) = (idA ⊗ δG) ◦ (idA ⊗ ϕ) ◦ ǫ

= (idA ⊗ δG ◦ ϕ)⊗ ǫ

= (idA ⊗ (ϕ⊗ ϕ ◦ δH)) ◦ ǫ

= (idA ⊗ ϕ⊗ ϕ) ◦ (idA ⊗ δH) ◦ ǫ

= (idA ⊗ ϕ⊗ ϕ) ◦ (ǫ⊗ idH) ◦ ǫ

= (idA ⊗ idG ⊗ idG) ◦ (idA ⊗ ϕ⊗ ϕ) ◦ (ǫ⊗ idH) ◦ ǫ

= (idA ⊗ ϕ⊗ idG) ◦ (idA ⊗ idH ⊗ ϕ) ◦ (ǫ⊗ idH) ◦ ǫ

= (idA ⊗ ϕ⊗ idG) ◦ (ǫ⊗ idG) ◦ (idA ⊗ ϕ) ◦ ǫ

= ((idA ⊗ ϕ ◦ ǫ)⊗ idG) ◦ (idA ⊗ ϕ) ◦ ǫ

= (Inf(ǫ)⊗ idG) ◦ Inf(ǫ)
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Finally for the nondegeneracy since ϕ(C∗(H))C∗(G) = C∗(G) we have

Inf(ǫ)(A)(1⊗ C∗(G)) = (idA ⊗ ϕ) ◦ ǫ(A)(1⊗ C
∗(G))

= (idA ⊗ ϕ) ◦ ǫ(A)(1⊗ ϕ(C∗(H))C∗(G))

= (idA ⊗ ϕ) ◦ [ǫ(A)(1⊗ C∗(H))](1⊗ C∗(G))

= (idA ⊗ ϕ) ◦ [A⊗ C∗(H)](1⊗ C∗(G))

= (A⊗ ϕ(C∗(H)))(1⊗ C∗(G))

= A⊗ ϕ(C∗(H))C∗(G)

= A⊗ C∗(G)

From now on, given a coaction δ : A → A ⊗ C∗(G) we will consider the Fell

bundle A = {Ag}g∈G associated with the spectral subspaces.

Remark 2.5.11. We have seen that every C*-algebra with a coaction over G is a topologically

G-graded C*-algebra with grading given by the spectral subspaces Ag. But the converse is not

always true, see [[21], Remark 2.2] for an example of a topologically graded C*-algebra A that

does not carry a coaction δ satisfying δ(ag) = ag ⊗ g for every g ∈ G.

Now, we can introduce covariant representations and define crossed products associated

with coactions.

Definition 2.5.12. Let (A,G, δ) be a dynamical co-system and B a C*-algebra. A covariant

representation of (A,G, δ) in a multiplier algebraM(B) is a pair (π, µ) where π : A→M(B)

and µ : C0(G)→M(B) are nondegenerate *-homomorphisms such that

π(a)µ(χh) = µ(χgh)π(a) for all a ∈ Ag, g, h ∈ G.

Remark 2.5.13. There is a more general equivalent definition that applies to a locally compact

group (see [[18], Lemma 3.1] for the equivalence with the discrete case). The definition above

is special for discrete groups and makes many computations easier.

Proposition 2.5.14. Let (π, µ) be a covariant representation of (A,G, δ) into aM(B). Then

C∗(π, µ) := π(A)µ(C0(G))

is a C*-algebra.

Proof. It follows from Proposition 2.5.6 and the fact that (π, µ) is covariant representation.

The following proposition shows the existence of covariant representations.

Proposition 2.5.15. If π is a nondegenerate *-homomorphism of A toM(B) then the pair

((π ⊗ ΛG) ◦ δ, 1⊗M) is a covariant representation of (A,G, δ) intoM(B ⊗K(l2(G))). We

say that ((π ⊗ ΛG) ◦ δ, 1⊗M) is the covariant representation induced by π.
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Proof. Fist of all, observe that (π ⊗ ΛG) ◦ δ(a) = π(a) ⊗ λGg and (1 ⊗M)(χh) = 1 ⊗Mχh

for all a ∈ Ag, g, h ∈ G. Moreover, using the fact that (M,λG) is a covariant representation

for the left translation action τ : G→ Aut(C0(G)) of dynamical system (C0(G), G, τ) which

can be seen in Example A.0.8, for each a ∈ Ag and g, h ∈ G we compute:

(π ⊗ ΛG) ◦ δ(a)(1⊗M)(χh) = (π(a)⊗ λGg )(1⊗Mχh
)

= π(a)⊗ (λGgMχh
)

= π(a)⊗ (Mχgh
λGg )

= (1⊗Mχgh
))(π(a)⊗ λGg )

= (1⊗M)(χgh)(π ⊗ ΛG) ◦ δ(a)

which completes the proof.

Now we are going to define the crossed product by a coaction as the C*-algebra

generated by a certain regular representation. For this let (jA, jG) be a regular covariant pair

induced by idA : A→ A.

Definition 2.5.16. Given a dynamical co-system (A,G, δ) and (jA, jG) the regular covariant

representation, we define the crossed product by the coaction as the C*-algebra

A⋊δ G := C∗(jA, jG).

Remark 2.5.17. By definition, the crossed product A⋊δ G can be seen as a C*-subalgebra of

M(A⊗K(l2(G))).

Remark 2.5.18. Unlike for actions, this time there is no convenient choice of a dense *-

subalgebra like Cc(G,A). Also here there is no difference between full and reduced crossed

products. The crossed product by a coaction enjoys a universal property as can be seen in the

next theorem.

Theorem 2.5.19 ([55], Theorem 4.1(b)). Let (π, µ) be another covariant representation of

(A,G, δ). Then there is a unique nondegenerate *-homomorphism π × µ : A⋊δ G→M(B)

such that π × µ ◦ jA = π and π × µ ◦ jG = µ. The *-homomorphism π × µ is called the

integrated form of the covariant representation (π, µ) of (A,G, δ).

Remark 2.5.20. It is not hard to check that there is a one-to-one correspondence between

the covariant representations of (A,G, δ) and the *-homomorphisms of A ⋊δ G: if we have

ρ : A ⋊δ G → M(B) a *-homomorphism of A ⋊δ G then (ρ ◦ jA, ρ ◦ jG) is a covariant

representation of (A,G, δ) such that ρ = (ρ ◦ jA)× (ρ ◦ jG).

Remark 2.5.21. We could alternatively define the crossed product by coactions via universal

properties as follows: Let (A,G, δ) be a dynamical co-system and B a C*-algebra. If we have

a triple (D, kA, kG) satisfying:
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1. (kA, kG) is a covariant representation of (A,G, δ).

2. D = span{kA(a)kG(f) | a ∈ A, f ∈ C0(G)}.

3. For every covariant representation (π, µ) of (A,G, δ) into M(B) there is a unique

nondegenerate *-homomorphism π × µ : D → M(B) such that π × µ ◦ kA = π and

π × µ ◦ kG = µ.

Then the C*-algebra D is canonically isomorphic to A⋊δ G via the integrated form kA × kG :

A⋊δ G→ D which has the inverse jA × jG : D → A⋊δ G.

Remark 2.5.22. If ((π⊗ΛG)◦δ, 1⊗M) is a covariant representation of (A,G, δ) induced by the

faithful representation π : A→M(B) then the integrated form is a faithful *-homomorphism

of A⋊δ G. The reason is because

((π ⊗ ΛG) ◦ δ)× (1⊗M) = (π ⊗ idK) ◦ (jA × jG)

which is faithful since π ⊗ idK is faithful (The reason for π ⊗ idK being faithful is because of

the minimal tensor product that is being used here).

Example 2.5.23. If we consider the comultiplication δG as a group coaction of G on C∗(G)

we can see C∗(G) ⋊δG G
∼= K(l2(G)). We claim that (ΛG,M) is a covariant representation

for the coaction δG where ΛG and M are the canonical representations of C∗(G) and C0(G)

into B(l2(G)), respectively. To see that, we are going to use that (M,λG) is a covariant

representation of (C0(G), G, τ) as seen in Example A.0.8. Since for each a ∈ Ag and h ∈ G

we have

ΛG(a)Mχh
= λGgMχh

=Mτg(χh))λ
G
g =Mχgh

ΛG(a)

then (ΛG,M) is a covariant representation and by the universal property for coactions we

get a *-homomorphism ΛG ×M : C∗(G)⋊δG G→ B(l2(G)). The injectivity and surjectivity

follows from the same reason of Example A.0.8 since span{λgMf | f ∈ C0(G), g ∈ G} is

equal to K(l2(G)), and we have the desired isomorphism. Observe that this result is in fact a

dual version of Example A.0.8.

Definition 2.5.24. Let (A,G, δ) and (B,G, ǫ) be two dynamical co-systems. We say that a

*-homomorphism ϕ : A→ B is G-equivariant if

(ϕ⊗ idG) ◦ δ = ǫ ◦ ϕ.

We say those two co-systems are isomorphic if there is a G-equivariant isomorphism ϕ.

Remark 2.5.25. Note that the G-equivariance for ϕ : A → B defined above is equivalent to

ask that ϕ is a graded map5 of topologically G-graded C*-algebras since for each a ∈ Ag we

have

ǫ(ϕ(a)) = (ϕ⊗ idG) ◦ δ(a) = ϕ⊗ idG(a⊗ g) = ϕ(a)⊗ g

5A map ϕ : A → B between to G-graded C*-algebras with grading subspaces {Ag}g∈G and {Bg}g∈G,
respectively is said to be graded if ϕ(Ag) ⊆ Bg for all g ∈ G.
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for each g ∈ G. Conversely, if ϕ(Ag) ⊆ Bg then for every a ∈ Ag we have

(ϕ⊗ idG) ◦ δ(a) = (ϕ⊗ idG)(a⊗ g) = ϕ(a)⊗ g = ǫ(ϕ(a)).

Proposition 2.5.26. Let (A,G, δ) and (B,G, ǫ) be two dynamical co-systems and ϕ : A→ B

a G-equivariant *-homomorphism. Then there is a unique induced *-homomorphism ϕ⋊G :

A ⋊δ G → B ⋊ǫ G such that ϕ ⋊ G(jA(a)j
A
G(f)) = (jB ◦ ϕ)(a)j

B
G(f) for every a ∈ A and

f ∈ C0(G). Moreover, ϕ⋊G is an isomorphism if ϕ is so.

Proof. If ϕ is G-equivariant then (jB ◦ ϕ, j
B
G) is a covariant representation of (B,G, ǫ) in

M(B ⋊ǫ G). So, ϕ ⋊ G := (jB ◦ ϕ) × jBG is a well-defined *-homomorphism such that

ϕ⋊G(jA(a)j
A
G(f)) = (jB ◦ ϕ)(a)j

B
G(f) for every a ∈ A and f ∈ C0(G). If ϕ is surjective it

is straightforward to see that ϕ⋊G is also surjective. Finally, if ϕ is faithful then by Remark

2.5.22 it follows that ϕ⋊G is faithful as well since

(ϕ⊗ idK)(jA(a)jG(f)) = ϕ⊗ idK(((idA ⊗ ΛG) ◦ δ(a))(1⊗Mf ))

= ((idB ⊗ ΛG) ◦ (ϕ⊗ idK) ◦ δ(a))(1⊗Mf )

= ((idB ⊗ ΛG) ◦ ǫ(ϕ(a)))(1⊗Mf )

= jB(ϕ(a))jG(f)

= ϕ⋊G(jA(a)jG(f))

that is, ϕ⋊G = (ϕ⊗ idK) ◦ (jA × jG).

Proposition 2.5.27. The maps Λ, σ and ψ defined in Proposition 2.4.11 are G-equivariant

with respect to the coactions δA, δ e δrA and induce a commutative diagram of surjective

*-homomorphisms:

C∗(A)⋊δA G C∗
r (A)⋊δn

A
G

A⋊δ G

Λ⋊G

σ⋊G

ψ⋊G

Proof. It is straightforward to check that Λ, σ and ψ are G-equivariant with respect to the

coactions δA, δ e δrA since it is enough to see it in elementary elements and extend by linearity

and continuity. It follows directly from the equivariance and surjectivity that the maps Λ⋊G,

σ ⋊G and ψ ⋊G are well-defined surjective maps. Since Λ = ψ ◦ σ by Proposition 2.4.11 we

also have Λ⋊G = ψ ⋊G ◦ σ ⋊G as desired.

2.6 MAXIMAL AND NORMAL COACTIONS

In this section, we are going to introduce the concept of maximal and normal coactions

that will play a fundamental role in this work and will complement the theory seen in the
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previous section. We mainly follow [25], [20] and [52] and many dual relationships will be

presented using the Appendix A.

We start the discussion by looking more closely at A⋊δ G as the crossed product of

a dynamical co-system (A,G, δ). In Proposition A.0.16 it was seen that for any dynamical

system (A,G, α) there is a coaction α̂ of G on A ⋊α G and many duality theorems hold in

this context. When we look at dynamical co-systems one of the things that we have to observe

is that there is a dual action of G on A⋊δ G by right translation on C0(G), that is, there is a

*-homomorphism δ̂ : G→ Aut(A⋊δ G) defined by

δ̂g(jA(a)jG(χh)) = jA(a)jG(χhg−1)

for all a ∈ A and h ∈ G. Since the right translation on C0(G) is continuous it follows that

g 7→ δ̂g(jA(a)jG(χh)) is continuous.

Now, let λG and ρG be the left and right regular representations of G on B(l2(G)),

respectively. That is, λGg (ξ)(h) = ξ(g−1h) and ρGg (ξ)(h) = ξ(hg) for all ξ ∈ l2(G) and

g, h ∈ G. Consider the canonical *-homomorphism Π := jA×j
A
G of A⋊δG inM(A⊗K(l2(G)))

induced by the universal property. Note that jA(a) = (idA ⊗ ΛG) ◦ δ(a) ∈ A ⊗ C∗
r (G) ⊆

M(A⊗K(l2(G))). So, (idA⊗Λ
G)◦δ(a)(1⊗k) ∈ A⊗K(l2(G)) for every k compact operator

on l2(G). Therefore, jA × j
A
G(jA(a)j

A
G(f)) = (idA ⊗ ΛG) ◦ δ(a)(1⊗Mf ). Since G is discrete,

Mf ∈ K(l2(G)) and consequently jA×j
A
G(jA(a)j

A
G(f)) ∈ A⊗K(l2(G)) ⊆M(A⊗K(l2(G))).

Also, we consider U := idA⊗ρ
G : G→ A⊗K(l2(G)) defined by Ug := IdA⊗ρ

G
g for all g ∈ G.

We claim that (Π, U) is a covariant representation of the dynamical system (A ⋊δ G,G, δ̂).

Since (M, ρG) is a covariant representation of (C0(G), G, τ) (see Example A.0.9) and λG and

ρG commute, we are able to compute for all a ∈ At and g, s ∈ G:

Π(δ̂g(jA(a)jG(χs)))Ug = Π((jA(a))jG(χsg−1))Ug = jA(a)jG(χsg−1)Ug

= (a⊗ λt)(1⊗M(χsg−1))(1⊗ ρg) = a⊗ (λtM(χsg−1)ρg)

= a⊗ (λtρgM(χs)) = a⊗ (ρgλtM(χs))

= (1⊗ ρg)(a⊗ λt)(1⊗M(χs)) = UgjA(a)jG(χs)

= UgΠ((jA(a)jG(χs)))

By the universal property of crossed products by actions we get a surjective *-homomorphism

Π× U : A⋊δ G⋊δ̂ G։ A⊗K(l2(G)). (2.6.1)

This is surjective because span{Mfρg | f ∈ C0(G), g ∈ G} is equal to K(l
2(G)) and the fact

that δ is nondegenerate. The interesting fact is that this map is not always injective.

Definition 2.6.2. With notations as above, we say that the coaction δ : A→ A⊗ C∗(G) is

maximal if Π× U is an isomorphism.

Definition 2.6.3. Let (A,G, δ) and (B,G, ǫ) be two dynamical co-systems. A maximal coac-

tion ǫ is a maximalization of δ if there is a surjective G-equivariant map ϕ : B → A such that

ϕ⋊G : B ⋊ǫ G→ A⋊δ G is an isomorphism.



Chapter 2. Preliminary background 55

Proposition 2.6.4 ([20], Theorem 3.3). Every coaction admits a maximalization and it is

unique up to isomorphism.

Example 2.6.5. If we consider the dynamical co-system (C∗(G), G, δG) we note that the

comultiplication δG seen as a coaction is always maximal because δG is the dual coaction on

C∗(G) ∼= C⋊tr G (see Proposition A.0.17).

Example 2.6.6. More generally, for a Fell bundle A over G if we consider the dynamical

co-system (C∗(A), G, δA) the coaction δA is always maximal (see [[20], Proposition 4.2]).

Proposition 2.6.7 ([20], Proposition 4.2). Let (A,G, δ) be a dynamical co-system. Then

δ : A→ A⊗ C∗(G) is a maximal coaction if and only if the canonical map σ : C∗(A) ։ A

seen in Proposition 2.4.11 is an isomorphism.

Another important concept here is that of normal coactions. To contextualize, if we

consider a dynamical system (A,G, α) we see from [60] that the canonical embedding ιA of

A intoM(A⋊α G) is faithful. For coactions, the situation is different because faithfulness of

π is not enough to ensure the faithfulness of (π ⊗ ΛG) ◦ δ. Therefore, in general, we can not

assume that jA of A intoM(A⋊δ G) is faithful. We start with the following definition:

Definition 2.6.8. With notation as above, we say that the coaction δ : A→ A⊗ C∗(G) is

normal if jA : A→M(A⋊δ G) is an injective map.

Remark 2.6.9. Most of the time jA will be seen as jA = (idA ⊗ ΛG) ◦ δ : A→ A⊗ C∗
r (G) ⊆

M(A⊗K(l2(G))).

Remark 2.6.10. Note that for every covariant representation (π, µ) of (A,G, δ) the *-

homomorphism π factors through jA, that is, π × µ ◦ jA = π. Thus δ is a normal coaction if

and only if it admits a covariant representation (π, µ) with π faithful.

Definition 2.6.11. Let (A,G, δ) and (B,G, ǫ) be two dynamical co-systems. A normal coac-

tion ǫ is a normalization of δ if there is a surjective G-equivariant map ϕ : A→ B such that

ϕ⋊G : A⋊δ G→ B ⋊ǫ G is an isomorphism.

Theorem 2.6.12 (Katayama Duality, [20], Proposition 2.2). A coaction δ : A→ A⊗ C∗(G)

is normal if and only if the *-homomorphism Π×U from 2.6.1 factors through an isomorphism

over reduced crossed product:

(Π× U)r : A⋊δ G⋊δ̂,r G։ A⊗K(l2(G))

2.6.1 INVARIANT IDEALS AND CANONICAL NORMALIZATION

In this subsection, we discuss invariant ideals and the connection with normalization

for coactions. Also, we present an equivalent criteria for maximal and normal coactions.
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Definition 2.6.13. Let (A,G, δ) be a dynamical co-system. An ideal I in A is strongly

δ-invariant if

δ(I)(1⊗ C∗(G)) = I ⊗ C∗(G).

Remark 2.6.14. We will normally just write invariant to mean strongly invariant. The word

“strongly” is emphasized to make a counterpoint with the notion of “weakly” δ-invariant that

we will see later.

Remark 2.6.15. Let (A,G, δ) be a dynamical co-system and I be a δ-invariant ideal in A. It

is straightforward to check that the map δI : I → I ⊗ C∗(G) defined as restriction of δ to

I is a coaction. Moreover, the canonical embedding I →֒ A is a δI − δ equivariant map by

definition. In fact, δI being a coaction is equivalent to say that I is δ-invariant ideal as defined

above since δI(I)(1⊗ C∗(G)) = δ(I)(1⊗ C∗(G)) = I ⊗ C∗(G).

Maybe the most natural way to say that an ideal is “δ-invariant”would be to ask that

it satisfies only δ(I) ⊆ I ⊗ C∗(G) which is equivalent of δ(I)(1⊗ C∗(G)) ⊆ I ⊗ C∗(G). But

it is not clear whether this implies the nondegeneracy of δI . However, this weaker condition is

enough for the existence of a quotient coaction δI as we will see in the next proposition.

Proposition 2.6.16. Let (A,G, δ) be a dynamical co-system and I a δ-invariant ideal in A.

Then the map δI : A/I → A/I ⊗C∗(G) defined by δI(q(a)) = (q⊗ idG) ◦ δ(a) for all a ∈ A

is a coaction of G on A/I. Moreover, the quotient *-homomorphism q : A→ A/I is a δ − δI

equivariant map.

Proof. First of all, note that I = Ker(q). To check that δI is a well-defined *-homomorphism

it is enough to show that I ⊆ Ker((q ⊗ idG) ◦ δ). But this follows from the fact that I is an

invariant ideal in A since δ(Ker(q)) ⊆ Ker(q) ⊗ C∗(G) ⊆ Ker(q ⊗ idG). Moreover, δI takes

values in A/I ⊗ C∗(G) by definition. The coaction identity for δI follows from the coaction

identity of δ in this way:

(δI ⊗ idG) ◦ (δ
I ◦ q) = (δI ⊗ idG) ◦ (q ⊗ idG) ◦ δ

= ((δI ◦ q)⊗ idG) ◦ δ

= ((q ⊗ idG) ◦ δ ⊗ idG) ◦ δ

= ((q ⊗ idG ⊗ idG) ◦ (δ ⊗ idG) ◦ δ

= ((q ⊗ idG ⊗ idG) ◦ (idA ⊗ δG) ◦ δ

= (idA/I)⊗ δG) ◦ (q ⊗ idG) ◦ δ

= (idA/I ⊗ δG) ◦ δ
I ◦ q
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Finally, we must to show that δI is nondegenerate but since δ it is nondegenerate we see that

A/I ⊗ C∗(G) = (q ⊗ idG)(A⊗ C
∗(G)) = (q ⊗ idG)(δ(A)(1⊗ C∗(G)))

= (q ⊗ idG) ◦ δ(A)(1⊗ C∗(G))

= δI(q(A))(1⊗ C∗(G))

= δI(A/I)(1⊗ C∗(G))

as desired.

Remark 2.6.17. The requirement that I is δ-invariant is stronger than we need to obtain a

coaction on the quotient. In Proposition 2.6.16 if we suppose that I satisfies δ(I) ⊆ I⊗C∗(G),

the result follows in the same way because this was all we needed. This leads to a weaker

notation of invariant ideals for coactions:

Definition 2.6.18. Let (A,G, δ) be a dynamical co-system. We say that I is a weakly δ-

invariant ideal if I = Ker(q ⊗ id) ◦ δ where q : A→ A/I is the quotient map.

Remark 2.6.19. Notice that q becomes a δ− δI equivariant map for the unique coaction δI of

G on A/I. In fact, δI being a coaction is equivalent to ask that I is a weakly δ-invariant ideal.

Proposition 2.6.20. Let (π, µ) be a covariant representation of (A,G, δ) into aM(B). Then

the map δπ : π(A)→ π(A)⊗C∗(G) defined by δπ(π(a)) := (π ⊗ idG) ◦ δ(a) for all a ∈ A is

a normal coaction of G on π(A). Moreover, π : A→ π(A) is δ − δπ equivariant map.

Proof. First of all, we need to check that δπ is a well-defined *-homomorphism. To do that,

let denote wG the function u : G→ C∗(G) viewed as an unitary element of Cb(G,C
∗(G)) ⊆

M(C0(G)⊗ C
∗(G)). So, W := (µ⊗ idG)(wG) is a unitary element ofM(B ⊗ C∗(G)). We

claim that (π⊗ idG) ◦ δ(a) = W (π(a)⊗ 1)W ∗, that is, (π⊗ idG) ◦ δ is unitarily equivalent to

π ⊗ 1. To see this it is enough to show the equation for each a ∈ Ag since ⊕g∈GAg is dense

in A, that is, (π(a) ⊗ ug)W = W (π(a) ⊗ 1). Since µ is nondegenerate it suffices to prove

(π(a)⊗ug)(µ⊗ idG)(wG)(µ(χh)⊗1) = (µ⊗ idG)(wG)(π(a)⊗1)(µ(χh)⊗1) for every h ∈ G.

But, using the covariant property we have

(µ⊗ idG)(wG)(π(a)⊗ 1)(µ(χh)⊗ 1) = (µ⊗ idG)(wG)((π(a)µ(χh))⊗ 1)

= (µ⊗ idG)(wG)((µ(χgh)π(a))⊗ 1)

= (µ⊗ idG)(wG)(µ(χgh)⊗ 1)(π(a)⊗ 1)

= (µ(χgh)⊗ ugh)(π(a)⊗ 1)

= µ(χgh)π(a)⊗ uguh

= π(a)µ(χh)⊗ uguh

= (π(a)⊗ ug)(µ(χh)⊗ uh)

= (π(a)⊗ ug)(µ⊗ idG)(wG)(µ(χh)⊗ 1)



Chapter 2. Preliminary background 58

and the claim follows. Now, it is straightforward to see that δπ is well defined *-homomorphism.

For nondegeneracy, since δ is nondegenerate then we have

δπ(π(A))(1⊗ C∗(G)) = (π⊗idG)(δ(A)(1⊗ C
∗(G))) = (π⊗idG)(A⊗C

∗(G)) = π(A)⊗C∗(G).

The coaction identity for δπ follows from δ in this way:

(δπ ⊗ idG) ◦ (δ
π ◦ π) = (δπ ⊗ idG) ◦ (π ⊗ idG) ◦ δ

= ((δπ ◦ π)⊗ idG) ◦ δ

= ((π ⊗ idG) ◦ δ ⊗ idG) ◦ δ

= ((π ⊗ idG ⊗ idG) ◦ (δ ⊗ idG) ◦ δ

= ((π ⊗ idG ⊗ idG) ◦ (idA ⊗ δG) ◦ δ

= (idπ(A))⊗ δG) ◦ (π ⊗ idG) ◦ δ

= (idπ(A) ⊗ δG) ◦ δ
π ◦ π

Finally, observe that (idπ(A), µ) is a covariant representation for δπ because of the definition

δπ and the fact that (π, µ) is a covariant representation for δ. By Remark 2.6.10 the coaction

δπ is a normal. Also, π : A→ π(A) is δ − δπ equivariant by definition of δπ.

Remark 2.6.21. From previous result observe that Ker(π) is a weakly δ-invariant ideal since

there is a coaction δπ of G on π(A) ∼= A/Ker(π). In particular, Ker(jA) is a weakly δ-invariant

ideal since it forms a covariant pair with jG.

Corollary 2.6.22. Let (A,G, δ) be a dynamical system and let An := jA(A) ∼= A/Ker(jA).

Then the map δn : An → An⊗C
∗(G) defined by δn(jA(a)) = (jA⊗ idG) ◦ δ(a) for all a ∈ A

is a normal coaction of G on An. Moreover, jA : A→ An is a δ − δn equivariant map.

Proof. It follows directly from Proposition 2.6.20.

Remark 2.6.23. An important point here is that not every invariant ideals in the weak sense is

invariant in the strong sense. As we can see in [49], Nilsen observes that if I is a strongly δ-

invariant ideal then I * Ker(jA) and hence Ker(jA) is not strongly invariant unless δ is normal.

But notice that Ker(jA) is a weakly δ-invariant ideal by the previous corollary. Moreover, we

do not know whenever the condition δ(I) ⊆ I ⊗ C∗(G) is equivalent to I be invariant in the

weak sense. In fact, if I = Ker(q) then δ(I) ⊆ I ⊗ C∗(G) ⊆ Ker(q ⊗ id) which means that

I is a weakly δ-invariant ideal but the converse is not clear. A sufficient condition would be

if Ker(q ⊗ id) = Ker(q)⊗ C∗(G) but this not always equal. For example, this last equality is

equivalent to the exactness of the short sequence

0→ I ⊗ C∗(G)→ A⊗ C∗(G)→ A/I ⊗ C∗(G)→ 0.
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But this is not always exact, if C∗(G) is not exact, which is the case if G is not exact.

This discussion shows that if I is strongly δ-invariant then it also satisfies the condition

δ(I) ⊆ I ⊗ C∗(G), which in turn implies that I is weakly δ-invariant. But the converse is not

always true. Well, at least if G is amenable, then all these conditions are equivalent, see [42].

What we need in the course of this section is the existence of coactions on the quotient,

that is, we only will need weakly δ-invariant ideals.

Corollary 2.6.24. Let (A,G, δ) be a dynamical co-system. Then the coaction δn of G on

A/Ker(jA) is the normalization of δ, that is, every coaction admits a normalization.

Proof. Let An := jA(A) ∼= A/Ker(jA) and consider jA as a map jA : A → An. Follows

from Corollary 2.6.22 that δn : An → An ⊗ C∗(G) is a normal coaction and consequently

jA : A→ An is a δ − δn equivariant map by definition.

Finally we will see that δn is a normalization of δ. By Proposition 2.5.26, jA ⋊ G :

A ⋊δ G → An ⋊δn G is a surjective *-homomorphism. We must to show that jA ⋊ G is in

fact an isomorphism. Let (jA, jG) and (jAn , jG) be the canonical covariant representations of

(A,G, δ) and (An, G, δn), respectively, and let ρ be a faithful representation of A ⋊δ G on

M(C) for some C*-algebra C. We know that ρ factors through to representations π = ρ ◦ jA

and µ = ρ ◦ jG. Since Ker(π) = Ker(jA) there is π̃ : An →M(C) such that π̃ ◦ jA = π. Then

(π̃, µ) is a covariant representation of (An, G, δn) since (π, µ) is a covariant representation of

(A,G, δ). Consider the integrated form π̃×µ of (π̃, µ). We claim that (π̃×µ) ◦ (jA⋊G) = ρ.

To see that observe

π̃ × µ ◦ jA ⋊G(jA(a)jG(f)) = π̃ × µ(jAn ◦ jA(a)jG(f)) = π̃ ◦ jA(a)µ(f)

= π(a)µ(f) = ρ(jA(a)jG(f))

Since ρ is a faithful representation it follows that jA ⋊G is also faithful, as desired.

Proposition 2.6.25 ([20], Lemma 2.1). The normalization of a coaction is unique up to

isomorphism.

Remark 2.6.26. A different approach using the reduced C*-algebra of the group is also estab-

lished in the literature as can be seen in [41] and [35]. These are also called reduced coactions.

Basically, the difference is the use of the reduced C*-algebra C∗
r (G) with canonical comultipli-

cation δrG : C∗
r (G)→ C∗

r (G)⊗C
∗
r (G) such that δrG(λ

G
g ) = λGg ⊗λ

G
g . In this case, the definition

of covariant representations of reduced coactions is completely analogous to the definition that

we use here. In particular, jA is always faithful for reduced co-systems, so there is no need for a

concept of normal reduced co-systems. Normal coactions and reduced coactions are essentially

equivalent concepts and because of this the theory of coactions we use here is potentially more

richer than the theory of reduced coactions. In this context, Baaj and Skandalis proved in [6]

that reduced coactions are automatically nondegenerate for discrete groups.
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Example 2.6.27. The normalization of δG is the canonical coaction δrG of G on C∗
r (G). So, δG

is a normal coaction if and only if G is amenable. The same way δrG is a maximal coaction if and

only if G is amenable. More generally, given a dynamical system (A,G, α) the normalization

of dual coaction α̂ on A⋊α G is the coaction α̂r on A⋊α,r G (see Proposition A.0.19). Both

these results are a special case of the following result.

Proposition 2.6.28. Let (A,G, δ) be a dynamical co-system and consider the associated Fell

bundle A = {Ag}g∈G given by the spectral subspaces of the coaction. Then the canonical

coaction δrA of G on C∗
r (A) is the normalization of δA, that is, δ

r
A = δnA.

Proof. By Remark 2.4.18 we know that δrA is normal coaction. We just need to prove that

the *-homomorphism Λ ⋊ G : C∗(A) ⋊δA G → C∗
r (A) ⋊δn

A
G is injective. To start we write

B = C∗(A) and Br = C∗
r (A) and let ρ be a faithful representation of C∗(A)⋊δA G onM(C)

for some C*-algebra C. We know that ρ factors through π = ρ ◦ jB and µ = ρ ◦ jG.

Note that for all a ∈ Ag we have jB(a) = (idA ⊗ ΛG) ◦ (δA(a)) = a ⊗ λGg . Thus by

Fell’s absorption principle 2.4.15 there is j̃B : C∗
r (A) → M(C∗(A) ⊗ K(l2(G))) such that

jB = j̃B ◦ Λ. In fact, observe that j̃B is exactly jBr because both act in the same way, that is,

jBr(Λ(a)) = (idA ⊗ ΛG)(δrA(λg(a))) = λg(a)⊗ λ
G
g = j̃B(λg(a)) = j̃B(Λ(a))

We have π = ρ ◦ jA = ρ ◦ jB ◦ Λ. Writing π̃ := ρ ◦ jB we see that π factors through

C∗
r (A). We claim that (π̃, µ) is a covariant representation of (C∗

r (A), G, δ
r
A). Indeed this is

clear because (π, µ) is a covariant representation of (C∗(A), G, δrA) and satisfies π = π̃ ◦ Λ.

Consider ρ̃ := π̃⋊µ as a representation of C∗
r (A)⋊δr

A
G such that ρ̃◦jBr = π̃ and ρ̃◦jBr

G = µ.

We just need to observe that

ρ̃◦Λ⋊G(jB(a)j
B
G(f)) = ρ̃((jBr◦Λ)(a)j

Br
G (f)) = (π̃◦Λ)(a)µ(f) = π(a)µ(f) = ρ(jB(a)j

B
G(f))

This implies ρ̃ ◦ Λ⋊G = ρ. Since ρ is a faithful representation it follows that Λ⋊G is also

faithful, as desired.

Corollary 2.6.29. The following diagram (as in Proposition 2.5.27)

C∗(A)⋊δA G C∗
r (A)⋊δn

A
G

A⋊δ G

Λ⋊G

σ⋊G

ψ⋊G

is a diagram of isomorphisms.

Proof. It follows from Proposition 2.6.28 that Λ ⋊ G is an isomorphism, which implies that

ϕ⋊G and ψ ⋊G are also isomorphisms. In particular, Ker(jA) = Ker(jC∗
r (A) ◦ ψ) = Ker(ψ).
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Thus we can say that any coaction δ : A → A ⊗ C∗(G) “lies between” the maximal

coaction δA on C∗(A) and the normal coaction δrA on C∗
r (A). There is a discussion in [54]

about coactions which are neither maximal nor normal.

Lemma 2.6.30. Let δ : A→ A⊗ C∗(G) be a coaction. Then δ is normal if and only if the

conditional expectation E1 : A→ A1 defined in Proposition 2.5.6 is faithful.

Proof. Consider τ : C∗
r (G)→ C the canonical faithful condition expectation and jA seen as

jA := (id⊗ ΛG) ◦ δ. We claim that (id⊗ τ) ◦ jA = E1. To see that it is enough to check the

equality on the elements a ∈ Ag since ⊕g∈GAg is dense in A. So,

(idA ⊗ τ) ◦ (idA ⊗ ΛG) ◦ δ(a) = (idA ⊗ τ)(a⊗ λ
G
g ) = aδg,1 = (id⊗ χ1)(a⊗ g) = E1(a).

So, if E1 is faithful by the equality above Ker(jA) = 0 which implies that δ is normal. Conversely,

if δ is normal then jA = (id⊗ΛG)◦ δ is faithful. Since (id⊗ τ)◦ jA = E1 we conclude that E1

is faithful because (id⊗ τ) is faithful on A⊗C∗
r (G) (The reason (id⊗ τ) is faithful is because

we are considering the minimal tensor product and because τ is faithful). This completes the

proof.

Proposition 2.6.31. With notations as above, δ : A → A ⊗ C∗(G) is a normal coaction if

and only if ψ : A։ C∗
r (A) seen in Proposition 2.4.11 is an equivariant isomorphism.

Proof. It is enough to observe that we have a faithful conditional expectation E1 from A to

A1 seen in Lemma 2.6.30. By Proposition 2.4.13 the result follows.

So, to organize the ideas we make a compilation of the results seen so far in the next

corollaries:

Corollary 2.6.32. Let (A,G, δ) be a dynamical co-system. Then the following statements are

equivalent:

1. δ : A→ A⊗ C∗(G) is maximal coaction.

2. The canonical *-homomorphism Π×U : A⋊δG⋊δ̂G։ A⊗K(l2(G)) is an isomorphism.

3. The canonical *-homomorphism σ : C∗(A) ։ A is an equivariant isomorphism.

Proof. It follows from Definition 2.6.2 and Proposition 2.6.7.

Corollary 2.6.33. Let (A,G, δ) be a dynamical co-system. Then the following statements are

equivalent:

1. δ : A→ A⊗ C∗(G) is normal coaction.



Chapter 2. Preliminary background 62

2. jA = (id⊗ λ) ◦ δ is faithful.

3. The canonical *-homomorphism ψ : A։ C∗
r (A) is an equivariant isomorphism.

4. The canonical *-homomorphism (Π × U)r : A ⋊δ G ⋊δ̂,r G ։ A ⊗ K(l2(G)) is an

isomorphism.

5. The canonical conditional expectation E1 := (idA ⊗ χ1) ◦ δ : A→ A1 is faithful.

Proof. It follows from Definition 2.6.8, Katayama Duality in Theorem 2.6.12, Lemma 2.6.30

and Proposition 2.6.31.

We finish this section with some results on maximality and normality of inflated coac-

tions.

Proposition 2.6.34. Let H and G be a discrete groups, ϕ : H → G be a homomorphism

and let (A,H, ǫ) be a dynamical co-system. If ǫ is a maximal coaction then so is the inflated

coaction Inf(ǫ).

Proof. Let A = {Ah}h∈H and Ã = {Ãg}g∈G be the Fell bundles associated with the spectral

subspaces of ǫ and Inf(ǫ), respectively. To see this result we are going to prove that the

cross-sectional C*-algebra of both Fell bundles are isomorphic. We claim that Ãg =
⊕

h∈H
ϕ(h)=g

Ah.

On the one hand, if we take a =
∑n

i=1 ahi where ahi ∈ Ahi with ϕ(hi) = g then a

belongs to Ãg by definition since

Inf(ǫ)

(
n∑

i=1

ahi

)
=

n∑

i=1

(idA ⊗ ϕ)(ahi ⊗ hi) =

(
n∑

i=1

ahi ⊗ ϕ(hi)

)
=

(
n∑

i=1

ahi

)
⊗ g.

By continuity we have
⊕

h∈H
ϕ(h)=g

Ah ⊆ Ãg.

On the other hand, let a ∈ Ãg. So, a can be approximated by a finite sum
∑n

i=1 ahi
with ahi ∈ Ahi . Applying the projection Eg : A→ Ãg we have

a = Eg(a) ≈ Eg

(
n∑

i=1

ahi

)
=

n∑

i=1

Eg(ahi).

Observe that Eg(ahi) = (idA ⊗ χg) ◦ (idA ⊗ ϕ) ◦ ǫ(ahi) = ahi ⊗ χg(ϕ(hi)). So, if g 6= ϕ(h)

then Eg(ahi) = 0. So, the claim was proved.

Now, ϕ give us a representation π of the Fell bundle A into C∗(Ã), that is, we consider

π := jÃ ◦ πh where πh : Ah →֒ Ãϕ(h) are the inclusions maps and jÃ is the universal

representation of Ã into C∗(Ã). By the universal property, we get *-homomorphism π :

C∗(A)→ C∗(Ã) such that π(jAh (a)) = jÃϕ(h)(πh(a)). From the claim seen above we see that
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π is surjective. To see the injectivity we are going to construct the inverse. For this, again by the

claim above we can view Ãg in C
∗(A) through jAg and this gives us a representation of the Fell

bundle Ã into C∗(A). By the universal property, we get *-homomorphism ψ : C∗(Ã)→ C∗(A)

such that ψ(jÃg (a)) =
∑

h∈H
ϕ(h)=g

jAh (ah) for all a ∈ Ãg. By construction we have ψ ◦ π = id since

for every jh(a) with a ∈ Ah, h ∈ H we have

ψ ◦ π(jAh (a)) = ψ(jÃϕ(h)(πh(a)))

= ψ(jÃϕ(h)(a))

= jAh (a)

Since the closed linear span of the set of all jh(a), a ∈ Ah, is dense in C∗(A) we get

C∗(A) ∼= C∗(Ã) as we desired.

Finally, if ǫ is maximal coaction then A ∼= C∗(A) and hence A ∼= C∗(Ã) from the

isomorphism seen before which it follows that Inf(ǫ) is maximal coaction.

Proposition 2.6.35. Let H and G be a discrete groups, ϕ : H → G be a homomorphism

and let (A,H, ǫ) be a dynamical co-system. If ǫ is normal coaction then Inf(ǫ) is also normal

coaction.

Proof. As in previous proposition, let A = {Ah}h∈H and Ã = {Ãg}g∈G be the Fell bundles

associated with the spectral subspaces of ǫ and Inf(ǫ) and EH
1 and EG

1 the conditional expec-

tations of A in A1 and Ã1, respectively. Notice that A1 ⊆ Ã1 =
⊕

h∈H
c(h)=1

Ah. Let Q := EH
1 |Ã1

then Q ◦ EG
1 = EH

1 . The reason is because every a ∈ A can be approximated by a finite sum∑
h∈H ah an note that EG

1 (ah) = δ1,ϕ(h)ah. So,

Q ◦ EG
1

(∑

h∈H

ah

)
= Q



∑

h∈H
c(h)=1

ah


 = a1 = EH

1

(∑

h∈H

ah

)
.

By continuity the results follows.

Then if ǫ is normal coaction by Proposition 2.6.31 we have that EH
1 is faithful and hence

EG
1 is faithful which implies again by Proposition 2.6.31 then Inf(ǫ) is also normal coaction.

2.7 GRAPH C*-ALGEBRA CASE

One of the goals of this work is to study the relationship between C∗(E ×c G) and

C∗(E). What kind of relationship do we have here? We are going to investigate some duality
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theorems in this context using the theory explored in the previous sections. We assume that

the reader is familiar with the notion of crossed products by actions. Again, we have an

appendix where we review some important definitions and results about actions and their

crossed products.

Our main references for this section are [37] and [33]. In this section, we do not make

any assumptions of row-finiteness in our graphs. Despite the references cited here use this

hypothesis, in all results that will be seen the row-finite hypothesis is unnecessary and the same

proofs go through for general graphs.

Throughout this section let E be an arbitrary graph, G be a discrete group

and c : E1 → G be a labeling function as in Section 2.1.

Theorem 2.7.1. [[37], Corollary 3.9] Let E be a graph and let c : E1 → G be a labeling

function. Then

C∗(E ×c G)⋊γ G ∼= C∗(E)⊗K(l2(G))

where γ denotes the action of G on C∗(E ×c G) induced by the canonical action of G on

E ×c G.

Corollary 2.7.2. [[37], Corollary 3.10] Let E be a graph and let θ be a free action of G on

E. Then

C∗(E)⋊θ G ∼= C∗(E/G)⊗K(l2(G))

Proof. Follows from Theorem 2.7.1 and the Gross-Tucker Theorem 2.1.17.

Making a parallel with the abelian case we see that given a labeling function c : E1 → G,

there is an action of Ĝ on C∗(E) of the form βχ(Pv) = Pv and βχ(Se) = χ(c(e))Se for all

v ∈ E0, e ∈ E1 and χ ∈ Ĝ. In this case we can identify naturally
ˆ̂
G with G and with this

action we are able to show the next result.

Theorem 2.7.3. Let E be graph and let c : E1 → G be a labeling function. Then

C∗(E ×c G) ∼= C∗(E)⋊β Ĝ

where γ, the action of G on C∗(E ×c G), is G-equivariant with the dual action β̂ of G on

C∗(E)⋊γ Ĝ.

Proof. This result follows from a more general result, that is, a combination of Proposition

2.5.5 and the Theorem 2.7.7 which will see later.

These results can be found in [37] and are proved through the approach of C*-algebras

of groupoids associated to directed graphs. In [33] a more direct proof is given through the

universal proprieties.
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Remark 2.7.4. So far, compiling the results above we have the following diagram of isomor-

phisms:

C∗(E ×c G)⋊γ G C∗(E)⋊β Ĝ⋊β̂ G

C∗(E)⊗K(l2(G))

2.7.1

2.7.3

The right isomorphism which is a combination of two results seen so far is a consequence of

Takai-Takesaki duality (see Corollary A.0.18) for Graph C*-algebras.

Example 2.7.5. Let E be an arbitrary graph and consider the labeling function c : E1 → Z

such that c(e) = 1 for every e ∈ E1. Identifying Ẑ ∼= T, by Theorem 2.7.3 we have

C∗(E ×c Z) ∼= C∗(E)⋊α T

where α is the gauge action of T on C∗(E). Note that the skew product graph E ×c Z has no

loops since for every edge (e, k) ∈ E1×Z we have s(e, k) = (s(e), k) 6= (r(e), k+1) = r(e, k).

By [[38], Theorem 2.4], C∗(E×cZ) is an AF-algebra which implies that it is nuclear C*-algebra

by [[47], 6.3.11]. Identifying
̂̂Z ∼= Z it follows that C∗(E)⋊α T ⋊α̂ Z is also nuclear by [[12],

Theorem 4.2.6]. Since C∗(E) ⋊α T ⋊α̂ Z ∼= C∗(E) ⊗ K(l2(G)) we conclude that C∗(E) is

strongly Morita equivalent to a nuclear C*-algebra which implies it is also nuclear. This can

be considered as an alternative proof for nuclearity of graph C*-algebras using the duality

theorems seen above.

However, what happens if G is not abelian? In this case, we need to replace actions of

Ĝ by coactions of G and hence we are going to use the relationship between coactions of G

and Fell bundles in the context of graph C*-algebras. But what kind of coaction do we find

here? Now, we will explore this.

Theorem 2.7.6 ([33], Lemma 2.3). Given a labeling function c : E1 → G on a graph E, there

is a coaction δc : C
∗(E)→ C∗(E)⊗ C∗(G) satisfying

δc(Pv) = Pv ⊗ 1 and δc(Se) = Se ⊗ c(e)

for all v ∈ E0 and e ∈ E1, where {Pv, Se} is the universal Cuntz-Krieger E-family in C∗(E).

Theorem 2.7.7. [[33], Theorem 2.4] Let E be a graph and let c : E1 → G be a labeling

function. Then

C∗(E ×c G) ∼= C∗(E)⋊δc G.

Moreover, the canonical action γ of G on C∗(E ×c G) is G-equivariant with dual action δ̂c of

G on C∗(E)⋊δc G.
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Remark 2.7.8. Proposition 2.7.3 now also follows from Theorem 2.7.7 and Proposition 2.5.5.

Example 2.7.9. Let An be the Cuntz graph, that is, A0
n = {v} and A1

n = {e1, . . . , en}. Let

Fn be the free group on n generators g1, g2, . . . , gn and consider the labeling c : A1
n → Fn

defined by c(ei) = gi. This gives a coaction δc of Fn on the Cuntz algebra On ∼= C∗(An)

satisfying δc(Si) = Si⊗gi. This is the usual coaction on On associated to the grading structure

on On (that is, a Fell bundle) over Fn (see [23] and [53]). Of course, the above procedure can

be generalized: given any group G and n generators g1, . . . , gn ∈ G, define c : A
1
n → G by

c(ei) = gi. This map induces a coaction δc of G on On ∼= C∗(An) the same way as before.

A particularly interesting case is when G is abelian, so that the coaction δc corresponds

to an action α of the compact group Ĝ on On. This action sends the generator Si ∈ On to

αχ(Si) = χgiSi. These types of actions on On are called quasi-free actions and have been

studied for a long time, see [28]. In particular, we conclude that

C∗(An ×c G) ∼= C∗(EG) ∼= On ⋊δc Fn

where EG is the Cayley graph discussed in Example 2.1.8.

Remark 2.7.10. So far, compiling the results, we have the following generalized diagram of

isomorphisms:

C∗(E ×c G)⋊γ G C∗(E)⋊δc G⋊δ̂c
G

C∗(E)⊗K(l2(G))

2.7.1

2.7.7

Corollary 2.7.11. With notations as above, δc is maximal coaction.

Proof. Using the previous remark, this follows from Theorem 2.7.1 and Theorem 2.7.7.

Theorem 2.7.12. With notations as above, δc is a normal coaction.

Proof. It is enough to show that there is a covariant representation (π, µ) such that π is

faithful.

Let α be the gauge action of T on C∗(E) and (π, µ) a covariant representation of

(C∗(E), G, α) such that π is faithful. So, (π⊗ΛG ◦ δc, 1⊗M) is a covariant representation of

(C∗(E), G, δc) induced by π. Note that {π⊗ΛG ◦ δc(Pv), π⊗ΛG ◦ δc(Se)} is a Cuntz-Krieger

E-family in which each projection π ⊗ ΛG ◦ δc(Pv) = π(Pv)⊗ λ
G
1 is nonzero.
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For each z ∈ T, the representation µz ⊗ 1 : C∗(E) ⊗ C∗(G) → C∗(E) ⊗ C∗(G)

implements the gauge action in the sense that:

(µz ⊗ 1)(π ⊗ ΛG ◦ δc(Se))(µz ⊗ 1)∗ = (µz ⊗ 1)(π(Se)⊗ λ
G
c(e))(µ

∗
z ⊗ 1)

= µzπ(Se)µ
∗
z ⊗ λ

G
c(e)

= π(αz(Se))⊗ λ
G
c(e)

= π ⊗ ΛG ◦ δc(αz(Se))

So, by Proposition 2.2.7 we have (π ⊗ ΛG) ◦ δc is injective, as desired.

Remark 2.7.13. The fact that the coaction δc is maximal and normal is not a surprise in this

context because C∗(E) is nuclear. Indeed, if δ is a coaction of G over a nuclear C*-algebra A

then δ is always maximal and normal. The reason is because if we consider the Fell bundle A

associated with the spectral subspaces relative of δ we have a surjective *-homomorphism of

A to C∗
r (A) and hence C∗

r (A) is nuclear (because it is a quotient of A under Ker(ψ)) and by

[[25], Theorem 25.11] A is amenable which means that C∗(A) ∼= C∗
r (A).

Remark 2.7.14. Compiling all results that have been seen so far we have the following diagram

of isomorphisms:

C∗(E ×c G)⋊γ G C∗(E)⋊δc G⋊δ̂c
G

C∗(E)⊗K(l2(G)

C∗(E ×c G)⋊γ,r G C∗(E)⋊δc G⋊δ̂c,r
G

2.7.1

2.7.7

re
gu
la
r
re
pr
es
en
ta
ti
on

re
gu
la
r
re
pr
es
en
ta
ti
on

2.7.7

2.7.12

Now, the question is: can we get a similar diagram above to a more general class of

graph C*-algebras? This is the proposal for the next chapters.
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3 SEPARATED GRAPH C*-ALGEBRA CASE

In this chapter, our proposal is to extend the duality theorems seen in Chapter 2,

specifically in Section 2.7, to a more general class of C*-algebras, the C*-algebras of separated

graphs. We introduce the definition of separated graphs based on [4] and [5]. Then we get a

Gross-Tucker theorem for separated graphs and some duality theorems involving this class of

C*-algebras.

We shall produce results involving group actions and coactions on separated graphs.

However, there have been many generalizations of the results in different directions: in [17]

the authors work with actions of topological groups on topological graphs. Moreover, in [7]

the results have been generalized to labeled graphs, and in [45] part of the results have been

generalized to semigroup actions on higher-rank graphs.

We mainly follow [4] and many other references will be cited in each section.

3.1 GROSS-TUCKER THEOREM FOR SEPARATED GRAPHS

In this section we will formally introduce separated graphs based on [4] and [5] and the

goal is to extend the Gross-Tucker theorem.

Definition 3.1.1. A separated graph is a pair (E,C) where E is a graph and C =
⋃

v∈E0

Cv

in which Cv is a partition of s−1(v) into pairwise disjoint nonempty subsets for each vertex

v. If all the sets in C are finite then we say that (E,C) is a finitely separated graph. This is

automatically true when E is row-finite.

The set C is the trivial separation of E if Cv = {s
−1(v)} for all v ∈ E0 (in case v is

a sink then s−1(v) = ∅ and therefore we take Cv to be a empty family of subsets). In this

case, (E,C) is called a trivially separated graph or a non-separated graph. Any graph E may

be paired with the trivial separation and may thus be viewed as a trivially separated graph.

Definition 3.1.2. Let (E,C) and (F,D) be two separated graphs and f : E → F a graph

morphism. We say that (E,C) is isomorphic to (F,D) if f is a isomorphism and f permutes

the separations in the sense that for each v ∈ E0 and X ∈ Cv we have f 1(X) ∈ Df0(v).

Definition 3.1.3. Let (E,C) be a separated graph and G be a group. An action α of G on

(E,C) is an action of G on the graph E which permutes the elements of the separation C

meaning that αg(X) ∈ Cα0
g(v)

whenever g ∈ G and X ∈ Cv, v ∈ E
0.

Remark 3.1.4. Just as we have seen for graphs in Remark 2.0.8 there is also a natural notion

of automorphisms of separated graphs and the collection of all automorphisms of (E,C) forms

a group under composition, denoted by Aut(E,C). An action of G on (E,C) is then just a

group homomorphism α : G→ Aut(E,C) and it is said to be free if the underlying action of

G on E0 (and hence also on E1) is free.
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Example 3.1.5. Consider the Cuntz graph An seen in Example 2.1.9 and define a separation

as D = Dv := {X1, . . . , Xn} where Xi = {ai} are a singleton sets for all i ∈ {1, . . . , n}.

Thus (An, D) is the separated graph, called Cuntz separated graph, that we can see in picture

below:

v

a1
a2

a3

a4

an

The next example is a classical example of separated graphs.

Example 3.1.6. For all integers 1 ≤ m ≤ n, define the separated graph (E(m,n), C(m,n))

as follows:

1. E(m,n)0 := {v, w} with v 6= w.

2. E(m,n)1 := {e1, . . . , en, f1, . . . , fm} (n+m distinct edges).

3. s(ei) = s(fj) = v and r(ei) = r(fj) = w for all i, j.

4. C(m,n) = C(m,n)v := {X, Y }, where X = {e1, . . . , en} and Y = {f1, . . . , fm}.

v w

ei

fi

This graph admits no free actions of G unless G is the trivial group. The reason is because if

g 6= 1 then we must have αg(v) = w. Then we have s(αg(ei)) = v 6= w = αg(s(ei)) regardless

how the action acts on edges. We will return to this example later.
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Now, preparing for the Gross-Tucker theorem for separated graphs we need to define

the quotient and skew product graphs for separated graphs.

An action of G on a separated graph (E,C) yields a quotient separated graph as

follows: Keep the usual quotient graph E/G = (E0/G,E1/G, sG, rG). We are going to define

a separation over this graph. For each X ∈ Cv, define XG = {[e] : e ∈ X} ⊆ s−1
G ([v]), that

is, the equivalence class of edges which belong to the respective set X. The union of XG is

equal to s−1
G ([v]) since these X form a partition of s−1(v). Note that XG = YG if and only if

[X] = [Y ]. So, these subsets XG determine a separation

C/G :=
⋃

[v]∈E0/G

(C/G)[v]

for E/G, where (C/G)[v] := {XG : X ∈ Cv}. Then (E/G,C/G) is called the quotient

separated graph.

Now, let (E,C) to be a separated graph, c : E1 → G be a labeling function and keep

the usual skew product graph E ×c G. For each X ∈ Cv and g ∈ G define Xg := X × {g} =

{(e, g) | e ∈ X} which is a partition of s−1(v, g). The subsets Xg determine a separation

C ×c G :=
⋃

(v,g)∈E0×G

C ×c G(v,g)

with C ×c G(v,g) := {Xg | X ∈ Cv}. Then (E ×c G,C ×c G) is called the skew product

separated graph.

Proposition 3.1.7 (Gross-Tucker theorem for separated graphs). Suppose a group G acts

freely on a separated graph (E,C) by α. Then there is a function c : E1/G → G and a

G-equivariant isomorphism of separated graphs:

(E,C) ∼= (E/G×c G,C/G×c G).

Proof. From the Gross-Tucker Theorem 2.1.17 for non-separated graphs, we already have a

labeling function c : E1/G → G and a G-equivariant isomorphism φ : E/G ×c G → E. We

only need to show this isomorphism permutes the separations.

First of all, consider x ∈ E0/G and vx a base vertex of E0. We just need to prove

that for each (x, g) ∈ E0/G ×c G and Y ∈ (C/G ×c G)(x,g) we have φ(Y ) ∈ Cαg(vx). Now,

by definition of the separations we have (C/G ×c G)(x,g) = (C/G)x × {g} and (C/G)x is a

set of all y ∈ E1/G such that ey ∈ X with X ∈ Cvx (ey is base edge of y). Therefore, for all

(y, g) ∈ Y we have φ(y, g) = αg(ey). Note that if ey ∈ X with X ∈ Cvx then αg(ey) ∈ Cαg(vx)

as required. So, we have an isomorphism of separated graphs as desired.

The above result extends the original Gross-Tucker theorem 2.1.17 for ordinary graphs

and, as already mentioned, it is strongly related to a similar result obtained for labeled graphs

in [7].
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Example 3.1.8. Consider the Cayley graph EG seen in Example 2.1.8 and define a separation

CG as follows: CG =
⋃

g∈G

(CG)g where (CG)g := {X
g
1 , . . . , X

g
n} in which each Xg

i := {g}×{gi}

for every i ∈ {1, . . . , n}. This yields a separated graph (EG, CG), called the Cayley separated

graph.

As can be seen in Example 2.1.9 we know that EG carries a free action β and con-

sequently EG is isomorphic to the skew product graph An ×c G in which c : A1
n → G is

defined as c(ai) = gi. Note that this action in fact permutes the separations since for every

Xg
i ∈ (CG)g we have βh(g, gi) = (gh, gi) ∈ (CG)gh = (CG)βh(g), that is, βh(Xi) ∈ (CG)βh(g)

whenever h ∈ G. By Proposition 3.1.7 we have (EG, CG) is isomorphic to (An ×c G,D ×c G)

where D ×c G is the skew separation of D seen in Example 3.1.5.

3.2 C*-ALGEBRAS OF SEPARATED GRAPHS AND DUALITY THEOREMS

In this section, we are going to formally define the separated graph C*-algebras based

on [4] and [5], and extend some duality theorems seen in Section 2.7, Chapter 2. As already

mentioned, we do not make any assumptions of row-finiteness in our graphs.

Definition 3.2.1. For a separated graph (E,C), the Leavitt path algebra of separated graph

(E,C) is the complex *-algebra L(E,C) with generators {Pv}v∈E0 of mutually orthogonal

projections and {Se}e∈E1 of partial isometries subject to following relations:

1. Ps(e)Se = SePr(e) = Se for all e ∈ E
1.

2. S∗
eSf = δe,fPr(e) for all e, f ∈ X, X ∈ C.

3. Pv =
∑

e∈X

SeS
∗
e for every finite subset X ∈ Cv.

Definition 3.2.2. The graph C*-algebra of a separated graph (E,C) is the universal C*-

algebra C∗(E,C) with generators {Pv, Se | v ∈ E
0, e ∈ E1} subject to the relations 1-3 of

Definition 3.2.1. The collection {Pv, Se | v ∈ E
0, e ∈ E1} is called a Cuntz-Krieger (E,C)-

family. In other words, C∗(E,C) is the enveloping C*-algebra of L(E,C).

Remark 3.2.3. The C*-algebra C∗(E,C) exists because the generating set consists of projec-

tions and partial isometries.

Definition 3.2.4. For two paths µ, ν ∈ Path(E) with s(µ) = s(ν) = v we say that µ and ν

are C-separated if the initial edges of µ and ν belong to different sets X, Y ∈ Cv.

Definition 3.2.5. For each finite X ∈ C, we select an edge eX ∈ X. Let µ, ν ∈ Path(E) be

two paths such that r(µ) = r(ν) and let e and f be the terminal edges of µ and ν, respectively.

Then the path µν∗ is said to be reduced in case we have (e, f) 6= (eX , eX) for every finite

X ∈ C. In case either µ or ν has length zero then µν∗ is automatically reduced.
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Remark 3.2.6. Every time we use the notion of reduced path the choice above is applied.

Lemma 3.2.7. Let (E,C) be a separated graph and let µ, ν, η and ζ be paths in E with

r(µ) = r(ν) and r(η) = r(ζ) such that ν and η are C-separated paths and µν∗, ηζ∗ are

reduced paths. Then we have

(SµS
∗
ν)(SηS

∗
ζ ) =





SµS
∗
ν′Sη′S

∗
ζ , if ν = τν ′ and η = τη′ with ν ′, η′ being C-separated

SµSη′S
∗
ζ , if η = νη′ for some path η′

SµS
∗
ν′S

∗
ζ , if ν = ην ′ for some path ν ′

0, otherwise

Proof. First of all, if ν = τν ′ and η = τη′ for some τ ∈ Path(E) with ν ′, η′ being C-separated

paths then we have

(SµS
∗
ν)(SηS

∗
ζ ) = Sµ(SτSν′)

∗SτSη′S
∗
ζ

= SµS
∗
ν′S

∗
τSτSη′S

∗
ζ

= SµS
∗
ν′Pr(τ)Sη′S

∗
ζ

= SµS
∗
ν′Sη′S

∗
ζ

because Pr(τ)Sη′ = Ps(η′)Sη′ = Sη′ . In the same way, if η = νη′ for some η′ ∈ Path(E) we

have

(SµS
∗
ν)(SηS

∗
ζ ) = SµS

∗
νSνSη′S

∗
ζ

= SµP(r(ν))Sη′S
∗
ζ

= SµSη′S
∗
ζ

because Pr(ν)Sη′ = Ps(η′)Sη′ = Sη′ . The argument is analogous for the case ν = ην ′.

Remark 3.2.8. Note that if µν∗ is not reduced, we can replace it by a linear combination of

reduced ones as follows: for each finite X ∈ Cv choose eX ∈ X and define X ′ = X \ {eX}.

Suppose that µ = µ1 . . . µneX and ν = ν1 . . . νmeX with µi, νi ∈ X. Then we have

SµS
∗
ν = Sµ1 . . . SµnSeXS

∗
eX
S∗
νm . . . S

∗
ν1

= Sµ1 . . . Sµn

(
Ps(e) −

∑

e∈X′

SeS
∗
e

)
S∗
νm . . . S

∗
ν1

= Sµ1 . . . Sµn

(
Ps(e)S

∗
νm . . . S

∗
ν1
−
∑

e∈X′

SeS
∗
eS

∗
νm . . . S

∗
ν1

)

= Sµ1 . . . SµnS
∗
νm . . . S

∗
ν1
−
∑

e∈X′

Sµ1 . . . SµnSeS
∗
eS

∗
νm . . . S

∗
ν1
.

It could happen that (µn, νm) = (fY , fY ) for some fY ∈ Y . In this case we just repeat

the same argument.
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Proposition 3.2.9. Let (E,C) be a separated graph. Then the set of those elements of the

form

Sµ1S
∗
ν1
Sµ2S

∗
ν2
. . . SµnS

∗
νn , µi, νi ∈ Path(E)

such that νi and µi+1 are C-separated paths for all i ∈ {1, . . . , n− 1} and µiν
∗
i is reduced for

all i ∈ {1, . . . , n} form a linear basis of L(E,C). We call µ1ν
∗
1 . . . µnν

∗
n a C-separated reduced

path.

Proof. Follows immediately from Lemma 3.2.7 and Remark 3.2.8.

Example 3.2.10. Consider the separated graph (E(m,n), C(m,n)) seen in Example 3.1.6 as

in the picture below:

v w

ei

fi

In this example we can see more clearly that an element of the form S∗
ei
Sfj is not zero

because ei and fj are in different sets for every i, j. In the context of non-separated graphs,

all these elements are required to be zero.

Besides that, from [4] we have

C∗(E(m,n), C(m,n)) ∼= Mn+1(Um,n) ∼= Mm+1(Um,n)

where Um,n is the universal C*-algebra generated by the entries of a unitary m × n matrix,

originally studied by Brown in [11] and more generally by McClanahan in [46].

An interesting case is when m = n = 1. Then it is straightforward to see that

U1,1
∼= C(T) and consequently we have C∗(E(1, 1), C(1, 1)) ∼= M2(C(T)).

Another interesting case is when m = 1 and n ≥ 1. Then it is not difficult to see that

U1,n
∼= On and consequently we have C∗(E(1, n), C(1, n)) ∼= M2(On).

Example 3.2.11. Another important canonical example is when we consider the Cuntz sepa-

rated graph (An, D) seen in Example 3.1.5 draw as picture below:
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v

a1
a2

a3

a4

an

On can show that C∗(An, D) ∼= C∗(Fn) sending Sai 7→ uai , where Fn is the free group

generated by the edges ai.

Lemma 3.2.12. If G acts on a separated graph (E,C), then there is an induced action

α : G→ Aut(C∗(E,C)) such that αg(Se) = Sg·e e αg(Pv) = Pg·v for all e ∈ E
1 and v ∈ E0.

Proof. Fix g ∈ G and define P ′
v := Pg·v and S ′

e := Sg·e for all v ∈ E0 and e ∈ E1, where

here we use the notation g · v and g · e for the action of G on the separated graph (E,C) to

make calculations easier. We claim that {P ′
v, S

′
e} is a Cuntz-Krieger (E,C)-family in C∗(E,C).

Note that for all v, w ∈ E0 we have g · v = g ·w if and only if v = w. Similarly for edges. It is

clear that {P ′
v} is a family of mutually orthogonal projections satisfying 1 in Definition 3.2.1.

To see the condition 2, note that for e, f ∈ X, X ∈ Cv we have

S ′∗
e S

′
f = S∗

g·eSg·f

= δg·e,g·fPr(g·e)

= δe,fPgr(e)

= δe,fP
′
r(e).

To see condition 3 note that for all finite X ∈ Cv we have g · e ∈ Cg·v for all e ∈ X. Then we

have ∑

e∈X

S ′
eS

′∗
e =

∑

e∈X

Sg.eS
∗
g.e = Pg.v = P ′

v.

The universal property of C∗(E,C) yields a *-homomorphism αg : C∗(E,C) → C∗(E,C)

such that αg(Se) = Sg·e e αg(Pv) = Pg·v for all e ∈ E1 and v ∈ E0. It is straightforward to

check that α−1
g = αg−1 . Checking on generators it also follows that αg ◦ αh = αgh for every

g, h ∈ G. Since α1 = id it follows that α is an action, as desired.

From now on, we are ready to extend the results seen in Section 2.7, Chapter 2 for the

class of separated graph C*-algebras.
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Theorem 3.2.13. Given a labeling c : E1 → G on a separated graph (E,C), there is a

coaction δc : C
∗(E,C)→ C∗(E,C)⊗ C∗(G) satisfying

δc(Pv) = Pv ⊗ 1 and δc(Se) = Se ⊗ c(e)

for all v ∈ E0 and e ∈ E1 where {Se, Pv} is the universal Cuntz-Krieger (E,C)-family in

C∗(E,C).

Proof. To begin with we prove that the family {Pv ⊗ 1, Se ⊗ c(e)} satisfies the conditions

1-3 of Definition 3.2.1. It is straightforward to check that {Pv ⊗ 1} are mutually orthogonal

projections satisfying condition 1. To see condition 2, note that for e, f ∈ X, X ∈ Cv, v ∈ E
0

we have

(Se ⊗ c(e))
∗(Sf ⊗ c(f)) = (S∗

e ⊗ c(e)
−1)(Sf ⊗ c(f))

= S∗
eSf ⊗ c(e)

−1c(f)

= δe,fPr(e) ⊗ 1

For the last condition, note that for all finite X ∈ Cv we have

∑

e∈X

(Se ⊗ c(e))(Se ⊗ c(e))
∗ =

∑

e∈X

(Se ⊗ c(e))(S
∗
e ⊗ c(e)

−1)

=
∑

e∈X

SeS
∗
e ⊗ c(e)c(e)

−1

= (
∑

e∈X

SeS
∗
e )⊗ 1

= Pv ⊗ 1

So, the universal property yields a *-homomorphism δc : C∗(E,C) → C∗(E,C) ⊗ C∗(G)

satisfying the properties of the statement. To check the coaction identity just note that on the

generators Pv, Se we have

(δc ⊗ idG) ◦ δc(Pv) = δc ⊗ idG(Pv ⊗ 1)

= δc(Pv)⊗ 1

= (Pv ⊗ 1)⊗ 1

= Pv ⊗ (1⊗ 1)

= Pv ⊗ δG(1)

= id⊗ δG(Pv ⊗ 1)

= (id⊗ δG) ◦ δc(Pv)
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and

(δc ⊗ idG) ◦ δc(Se) = δc ⊗ idG(Se ⊗ c(e))

= δc(Se)⊗ c(e)

= (Se ⊗ c(e))⊗ c(e)

= Se ⊗ (c(e)⊗ c(e))

= Se ⊗ δG(c(e))

= id⊗ δG(Se ⊗ c(e))

= (id⊗ δG) ◦ δc(Se)

So, the coaction identity holds on generators and extends by linearity and continuity to all of

C∗(E,C).

Finally, for nondegeneracy, we have to see that δc(C
∗(E,C))(1⊗ C∗(G)) is dense in

C∗(E,C)⊗C∗(G). But note that the elements of the form Sµ1S
∗
ν1
. . . SµnS

∗
νn⊗g generate the

C*-algebra C∗(E,C)⊗ C∗(G) where νi, µi+1 ∈ Path(E) are C-separated paths and µiν
∗
i are

reduced paths like in Proposition 3.2.9. Let us denote by h := c(µ1)c(ν1)
−1 . . . c(µn)c(νn)

−1

and observe that

Sµ1S
∗
ν1
. . . SµnS

∗
νn ⊗ g = (Sµ1S

∗
ν1
. . . SµnS

∗
νn ⊗ h)(1⊗ h

−1g)

= δc(Sµ1S
∗
ν1
. . . SµnS

∗
νn)(1⊗ h

−1g)

That is, δc(C
∗(E,C))(1⊗ C∗(G)) contains all elements of these form Sµ1S

∗
ν1
. . . SµnS

∗
νn ⊗ g

and since these elements generate the C*-algebra C∗(E,C)⊗ C∗(G) we are done.

Let (E,C) be a separated graph and for each labeling function c : E1 → G define

L(E,C)g := span{Sµ1S
∗
ν1
. . . SµnS

∗
νn | ς = µ1ν

∗
1 . . . µnν

∗
n is a C-separated reduced path

with c(ς) = g}

It is straightforward to observe that this gives L(E,C) a natural algebraic G-grading structure

meaning that we have a direct sum decomposition L(E,C) = ⊕alg
g∈GL(E,C)g with grading

property: L(E,C)g · L(E,C)h ⊆ L(E,C)gh and L(E,C)∗g = L(E,C)g−1 for all g, h ∈ G.

Essentially this follows from Proposition 3.2.9. With this, we get a description of the spectral

subspaces of C∗(E,C):

Proposition 3.2.14. Given a labeling function c : E1 → G on a separated graph (E,C) then

C∗(E,C)g = L(E,C)g

where C∗(E,C)g is the spectral subspace associated with the coaction δc.
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Proof. It is immediate that L(E,C)g is contained in C∗(E,C)g since

δc(Sµ1S
∗
ν1
. . . SµnS

∗
νn) = Sµ1S

∗
ν1
. . . SµnS

∗
νn ⊗ c(ς) = Sµ1S

∗
ν1
. . . SµnS

∗
νn ⊗ g

where ς = µ1ν
∗
1 . . . µnν

∗
n is a C-separated reduced path with c(ς) = g. By continuity we have

L(E,C)g ⊆ C∗(E,C)g. Conversely, suppose that x ∈ C∗(E,C) such that δc(x) = x ⊗ g.

So, x can be approximated by an element x̃ ∈ L(E,C) since L(E,C) is dense in C∗(E,C).

Consider the projection of norm one Eg : C
∗(E,C) → C∗(E,C)g seen in Proposition 2.5.6,

that is, Eg = (id⊗ χg) ◦ δc. Since Eg(x) = x we have

‖x− Eg(x̃)‖ = ‖Eg(x)− Eg(x̃)‖ ≤ ‖x− x̃‖.

By Proposition 3.2.9 we can consider x̃ as a sum of basis elements of the form Sµ1S
∗
ν1
. . . SµnS

∗
νn

with ς = µ1ν
∗
1 . . . µnν

∗
n is a C-separated reduced path. For each sum factor observe that

Eg(Sµ1S
∗
ν1
. . . SµnS

∗
νn) = (id⊗ χg) ◦ δc(Sµ1S

∗
ν1
. . . SµnS

∗
νn)

= (id⊗ χg)(Sµ1S
∗
ν1
. . . SµnS

∗
νn ⊗ c(ς))

= Sµ1S
∗
ν1
. . . SµnS

∗
νn ⊗ g

By linearity we have Eg(x̃) ∈ L(E,C)g. Therefore, every element x of C∗(E,C)g can be

approximated by Eg(x̃) ∈ L(E,C)g as desired. This completes the proof.

Theorem 3.2.15. Given a labeling function c : E1 → G on a separated graph (E,C), the

coaction δc of G on C∗(E,C) is maximal, that is, there is a canonical isomorphism

C∗(E,C)⋊δc G⋊δ̂c
G ∼= C∗(E,C)⊗K(l2(G)).

Proof. Let A := C∗(E,C) and Ag := C∗(E,C)g be the spectral subspaces. As observed in

Proposition 2.6.7 it is enough to show that the canonical surjective map σ : C∗(A) ։ A is an

isomorphism. To prove this, we are going to construct the inverse of σ by using the universal

property of C∗(E,C).

In fact, consider the inclusion maps κg : L(E,C)g →֒ Ag arising from the completion

process as seen in Proposition 3.2.14. Since L(E,C)g and Ag are G-grading subspaces for

L(E,C) and A, respectively (for L(E,C) is a algebraic G-grading structure) it is direct

to observe that κ := {κg}g∈G is a *-morphism of G-graded *-algebras in the sense that

κg(x)κh(y) = κgh(xy) and κg(x
∗) = κg−1(x)∗ for all x ∈ L(E,C)g, y ∈ L(E,C)h and

g, h ∈ G. Therefore we can extend it to a *-homomorphism of *-algebras

κ : L(E,C) = ⊕g∈GL(E,C)g → ⊕g∈GAg = Cc(A).

Since A and C∗(A) are the enveloping C*-algebras of L(E,C) and Cc(A), this *-

homomorphism further extends to K : A → C∗(A), which is the identity on the fibers Ag.
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Finally to see that this map is the inverse of σ it is enough to compute the composition K ◦ σ

on jg(a), a ∈ Ag since the closed linear span of these elements is dense in C∗(A). But for

each a ∈ Ag, K ◦ σ(jg(a)) = K(σg(a)) = a by construction, as desired.

Before we go to the next result, we need the following lemma:

Lemma 3.2.16. Let (E,C) be a separated graph and let B be a C*-algebra generated by

a Cuntz-Krieger (E,C)-family {Qv, Te | v ∈ E
0, e ∈ E1}, and let {xj}j be a bounded net

in B. If xjTµ1T
∗
ν1
. . . TµnT

∗
νn converges for every µi, νi ∈ Path(E) such that νi and µi+1 are

C-separated paths for all i ∈ {1, . . . , n− 1} and µiν
∗
i is reduced for all i ∈ {1, . . . , n}, then

{xj}j converges strictly to an element x ∈M(B).

Proof. By the universal property of C∗(E,C) there is a unique surjective *-homomorphism

Φ : C∗(E,C) → B, and hence, we can approximate any b ∈ B by a linear combination of

Tµ1T
∗
ν1
. . . TµnT

∗
νn , and by ǫ/3-argument shows that {xjb}j is a Cauchy for every b ∈ B. We

define x : B → B by x(b) = limj→∞ xjb. It is straightforward to check that x defines (by left

multiplication) a multiplier x of B. Taking ajdoints shows that {bxj}j converge to bx for every

b ∈ B, so xj → x strictly as we desired.

Theorem 3.2.17. With notations as above, there is a canonical isomorphism

C∗(E ×c G,C ×c G) ∼= C∗(E,C)⋊δc G.

Under this isomorphism, the action γ on C∗(E×cG,C×cG) induced by the translation action

on (E ×c G,C ×c G) corresponds to the dual action δ̂c on C
∗(E,C)⋊δc G.

Proof. Let B := C∗(E,C) and D := C∗(E ×c G,C ×c G), (jB, j
B
G) and (jD, j

D
G ) be the

canonical covariant representations of (B,C0(G)) inM(B⋊δcG) and (D,C0(G)) inM(D⋊δc

G), respectively and also {Pv, Se} and {P(v,g), S(e,g)} be the Cuntz-Krieger E-families for B

and D, respectively. To define a *-homomorphism from the C*-algebra of the separated skew

product graph to the crossed product as above let us define

p(v,g) := jB(Pv)jG(χg−1) and s(e,g) := jB(Se)jG(χ(gc(e))−1)

for all v ∈ E0, e ∈ E1 and g ∈ G. We claim that {p(v,g), s(e,g)} is a Cuntz-Krieger family for

C∗(E ×c G,C ×c G).

Before we continue, note that by the covariance condition in Definition 2.5.12 and the

fact that each Pv ∈ B1 and Se ∈ Bc(e) we have

jB(Pv)jG(χg−1) = jG(χg−1)jB(Pv) and jB(Se)jG(χ(gc(e))−1) = jG(χg−1)jB(Se) (3.2.18)
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Now, to check the conditions in Definition 3.2.1 we use the covariance condition and the

formula 3.2.18. Note that

p(v,g)p(w,h) = jB(Pv)j
B
G(χg−1)jB(Pw)j

B
G(χh−1)

= jB(Pv)jB(Pw)j
B
G(χg−1)jBG(χh−1) by 3.2.18

= jB(PvPw)j
B
G(χg−1χh−1)

= jB(Pv)j
B
G(χg−1) if v = w and g = h

= p(v,g).

Then p(v,g) is a family of mutually orthogonal projections. Now, for the first condition we have

ps(e,g)s(e,g) = jB(Ps(e))j
B
G(χg−1)jB(Se)j

B
G(χ(gc(e))−1)

= jB(Ps(e))jB(Se)j
B
G(χ(gc(e))−1)jBG(χ(gc(e))−1) by 3.2.18

= jB(Ps(e)Se)j
B
G(χ(gc(e))−1)

= jB(Se)j
B
G(χ(gc(e))−1)

= s(e,g).

For the second condition for each (e, g), (f, h) ∈ Y , Y ∈ C ×c G we have

s∗(f,h)s(e,g) = (jB(Sf )j
B
G(χ(hc(f))−1))∗jB(Se)j

B
G(χ(gc(e))−1)

= jBG(χ(hc(f))−1)jB(S
∗
f )jB(Se)j

B
G(χ(gc(e))−1)

= jB(S
∗
f )j

B
G(χh−1)jB(Se)j

B
G(χ(gc(e))−1) by 3.2.18

= jB(S
∗
f )jB(Se)j

B
G(χ(hc(e))−1)jBG(χ(gc(e))−1) by 3.2.18

= jB(S
∗
fSe)j

B
G(χ(hc(e))−1χ(gc(e))−1) if f = e and g = h

= jB(Pr(e))j
B
G(χ(gc(e))−1)

= p(r(e),gc(e))

= pr(e,g)

For the third and last condition for each finite X ∈ Cv, v ∈ E
0 the subset Xg ∈ C ×c G(v,g)
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is finite too and we have
∑

(e,g)∈Xg

s(e,g)s
∗
(e,g) =

∑

(e,g)∈Xg

jB(Se)j
B
G(χ(gc(e))−1)(jB(Se)j

B
G(χ(gc(e))−1))∗

=
∑

(e,g)∈Xg

jB(Se)j
B
G(χ(gc(e))−1)jBG(χ(gc(e))−1)jB(S

∗
e )

=
∑

(e,g)∈Xg

jB(Se)j
B
G(χ(gc(e))−1)jB(S

∗
e ) by 3.2.18

=
∑

(e,g)∈Xg

jB(Se)jB(S
∗
e )j

B
G(χg−1)

= jB

(∑

e∈X

SeS
∗
e

)
jBG(χg−1)

= jB(Pv)j
B
G(χg−1)

= p(v,g)

By the universal property there is a *-homomorphism

φ : C∗(E ×c G,C ×c G)→ C∗(E,C)⋊δc G

satisfying φ(P(v,g)) = p(v,g) and φ(S(e,g)) = s(e,g).

To see the surjectivity, first of all note that for every path µ ∈ Path(E) and g ∈ G

we have a unique path (µ, g) in E ×c G such that φ(S(µ,g)) = s(µ,g) = jBG(χg−1)jB(Sµ). By

Proposition 3.2.9 we have basis elements in L(E ×c G,C ×c G) of the form:

S(µ1,g)S
∗
(ν1,z1)

S(µ2,z1)S
∗
(ν1,z2)

. . . S(µn,gn)S
∗
(νn,zn)

where νi and µi+1 are C-separated for every i ∈ {1, . . . , n− 1} and µiν
∗
i is reduced for every

i ∈ {1, . . . , n}. Note that z1 = gc(µ1)c(ν1)
−1 and zi = zi−1c(µi)c(νi)

−1 for all i ∈ {2, . . . , n}

because we must have r(µi, g) = r(νi, zi).

Now, we are going to compute φ on the basis elements of the form S(µ,g)S
∗
(ν,z)S(µ′,z)S

∗
(ν′,z′)

with z = gc(µ)c(ν)−1 and z′ = gc(µ)c(ν)−1c(µ′)c(ν ′)−1 to see what we get. Basically using

the formula 3.2.18 we have:

φ(S(µ,g)S
∗
(ν,z)S(µ′,z)S

∗
(ν,z′)) = s(µ,g)s

∗
(ν,z)s(µ′,z)s

∗
(ν′,z′)

= jB(Sµ)j
D
G (χ(gc(µ))−1)(jB(Sν)j

D
G (χ(zc(ν))−1))∗jB(Sµ′)j

D
G (χ(zc(µ′))−1)(jB(Sν′)j

D
G (χ(z′c(ν′))−1))∗

= jB(Sµ)j
D
G (χ(gc(µ))−1)jDG (χ(zc(ν))−1)jB(S

∗
ν)

←−−−−−−−−−−−−→
jB(Sµ′)j

D
G (χ(zc(µ′))−1)jDG (χ(z′c(ν′))−1)jB(S

∗
ν′)

←−−−−−−−−−−−−−→

= jB(Sµ)j
D
G (χ(gc(µ))−1)jB(S

∗
ν)

←−−−−−−−−−−−−→
jDG (χz−1)jB(Sµ′)j

D
G (χ(zc(µ′))−1)jB(S

∗
ν′)

←−−−−−−−−−−−−−→
jDG (χ(z′)−1)

= jB(Sµ)jB(S
∗
ν)j

D
G (χc(ν)(gc(µ))−1)jDG (χz−1)jB(Sµ′)jB(S

∗
ν′)j

D
G (χc(ν′)(zc(µ′))−1)jDG (χ(z′)−1)

= jB(SµS
∗
ν)j

D
G (χz−1)jB(Sµ′S

∗
ν′)

←−−−−−−−−−−−−→
jDG (χ(z′)−1)

= jB(SµS
∗
ν)jB(Sµ′S

∗
ν′)j

D
G (χc(ν′)c(µ′)−1z−1)jDG (χ(z′)−1)

= jB(SµS
∗
νSµ′S

∗
ν′)j

D
G (χ(z′)−1)

= jDG (χg−1)jB(SµS
∗
νSµ′S

∗
ν′)
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If we extend linearly to L(E×cG,C×cG) it follows from the calculation above that the image

of φ contains all elements of the form jBG(χ)jB(b) with χ ∈ C0(G) and b ∈ B. Since the span

of these elements is a dense subspace of the crossed product B ⋊δc G this shows that φ is

surjective.

To prove that φ is injective and hence an isomorphism we cannot follow the same idea

that we used for non-separated graphs because here we do not have an injectivity theorem as

we used for graphs. So the way to show this is to construct the inverse.

For this, we are going to define a covariant representation (π, σ) of (C∗(E,C), G, δc)

intoM(C∗(E ×c G,C ×c G)) which will be given by:

π(Pv) =
∑

g∈G

P(v,g), π(Se) =
∑

g∈G

S(e,g) and σ(χg) =
∑

v∈E0

P(v,g−1) (3.2.19)

for all v ∈ E0, e ∈ E1 and g ∈ G.

First of all, we need to make sure that all *-homomorphisms defined above in fact exist.

Fixed v ∈ E0, we claim that the sum
∑

g∈G

P(v,g) belongs toM(C∗(E ×c G,C ×c G)). Since

the net of all finite sums of projections have norm uniformly bounded by 1, then by Lemma

3.2.16 it is enough to check that (
∑

g P(v,g))S(µ,h)S
∗
(ν,hc(µ)) converges for each pair of paths

(µ, h), (ν, hc(µ)) in E1 ×G with µ, ν ∈ Path(E). But, the sums reduce to a single term, that

is, (∑

g∈G

P(v,g)

)
S(µ,h)S

∗
(ν,hc(µ)) =




S(µ,g)S

∗
(ν,gc(µ)), if g = h and v = s(µ)

0, otherwise
.

So, we have a well-defined element π(Pv) ∈ M(C∗(E ×c G,C ×c G)) which is the limit of

the net considered above. A similar argument shows that, for each e ∈ E1, π(Se) belongs

to M(C∗(E ×c G,C ×c G)). It is straightforward to check that {π(Pv), π(Se)} is a Cuntz-

Krieger family for (E×cG,C×cG). By the universal property there exists a π with the desired

properties 3.2.19.

Moreover, the formula for σ seen in 3.2.19 really determines a *-homomorphism σ :

C0(G) → M(C∗(E ×c G,C ×c G)) since for each g ∈ G the sum
∑

v∈E0

P(v,g) belongs to

M(C∗(E ×c G,C ×c G)) using the same argument seen before. In particular,
∑

v∈E0 P(v,g−1)

is a well-defined element ofM(C∗(E ×c G,C ×c G)) and it is important to define it in this way

to make later calculations work. Alternatively we can see that σ determines a *-homomorphism

as follows: we have the canonical *-homomorphism C0(E
0 ×G)→M(C∗(E ×c G,C ×c G)).

Extending to the multiplier algebra yields a *-homomorphismM(C0(E
0×G))→M(C∗(E×c

G,C×cG)). Composed with the canonical *-homomorphism C0(G)→M(C0(E
0)⊗C0(G)) ∼=

M(C0(E
0 × G)), this gives a *-homomorphism C0(G) → M(C∗(E ×c G,C ×c G)) which

sends χg to
∑

v∈E0

P(v,g) instead of
∑

v∈E0

P(v,g−1). But it is enough to composed with the map

C0(G)→ C0(G) which send χg to χg−1 to make it equal to σ.
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Now, we are going to check that (π, σ) is a covariant representation, that is, we prove

the relation in Definition 2.5.12. To see this, fix µ ∈ Path(E) and g ∈ G. Since Sµ ∈ Bc(µ),

on the one hand we have

π(Sµ)σ(χg) =

(∑

h∈G

S(µ,h)

)(∑

v∈E0

P(v,g−1)

)

=
∑

h∈G,v∈E0

S(µ,h)P(v,g−1)

= S(µ,(c(µ)g)−1)

where in the last step we have used that the summand S(µ,h)P(v,g−1) is non-zero if and only if

(v, g−1) = r(µ, h) = (r(µ), hc(µ)), that is, v = r(µ) and h = (c(µ)g)−1. On the other hand,

σ(χc(µ)g)π(Sµ) =

(∑

v∈E0

P(v,(c(µ)g)−1)

)(∑

h∈G

S(µ,h)

)

=
∑

h∈G,v∈E0

P(v,(c(µ)g)−1)S(µ,h)

= S(µ,(c(µ)g)−1)

where again we used that the only non-zero summand is for (v, g−1) = s(µ, h) = (s(µ), h),

that is, v = s(µ) and h = (c(µ)g)−1. So, this verifies the covariant relation in Definition 2.5.12

for special elements in Bc(µ). Analogous computations also show for elements in Bc(µ)−1 of the

form S∗
µ and more generally elements in Bg of the form SµS

∗
ν which are products of generators

Sµ and S∗
ν with c(µ)c(ν)−1 = g. By linearity this proves the covariance relation for the pair

(π, σ) and therefore by the universal property we get a nondegenerate *-homomorphism

ψ := π × σ : C∗(E,C)⋊δc G→M(C∗(E ×c G,C ×c G))

such that ψ ◦ jB = π and ψ ◦ jBG = σ. Now, we compute:

ψ ◦ φ(P(w,g)) = ψ(p(w,g))

= ψ(jB(Pw)j
B
G(χg−1))

= π(Pw)σ(χg−1)

=

(∑

h∈G

P(w,h)

)(∑

v∈E0

P(v,g)

)

=
∑

h∈G,v∈E0

P(w,h)P(v,g)

= P(w,g)
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and

ψ ◦ φ(S(µ,g)) = ψ(s(µ,g))

= ψ(jB(Sµ)j
B
G(χ(gc(µ))−1))

= π(Sµ)σ(χ(gc(µ))−1)

=

(∑

h∈G

S(µ,h)

)(∑

v∈E0

P(v,gc(µ))

)

=
∑

h∈G,v∈E0

S(µ,h)P(v,gc(µ))

= S(µ,g)

Since the elements P(v,g) and S(µ,g) generate the C*-algebra C∗(E ×c G,C ×c G), it follows

that ψ ◦ φ = id and hence φ is injective, therefore an isomorphism. In particular, the image of

ψ is inside of C∗(E ×c G,C ×c G). Finally, we are going to check the G-equivariance of the

actions. Note that

φ(γz(P(v,g))) = φ(Pv,zg))

= p(v,zg)

= jB(Pv)j
B
G(χzg)

= (δ̂c)z(jB(Pv)j
B
G(χg))

= (δ̂c)z(φ(P(v,g)))

and

φ(αz(S(µ,g))) = φ(S(µ,zg))

= s(µ,zg)

= jB(Sµ)j
B
G(χzg)

= (δ̂c)z(jB(Sµ)j
B
G(χg))

= (δ̂c)z(φ(S(µ,g)))

Corollary 3.2.20. For separated graph (E,C) and labeling c : E → G, there is a canonical

isomorphism

C∗(E ×c G,C ×c G)⋊γ G ∼= C∗(E,C)⊗K(l2(G))

where γ is the action of G on C∗(E ×c G,C ×c G) induced by the translation action on

(E ×c G,C ×c G).

Proof. Follows from the Theorems 3.2.17 and 3.2.15.
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Corollary 3.2.21. For a free action θ of a group on a separated graph (E,C), there is a

canonical isomorphism

C∗(E,C)⋊θ G ∼= C∗(E/G,C/G)⊗K(l2(G)).

Proof. Follows from Corollary 3.2.20 and Gross-Tucker Theorem for separated graphs 3.1.7.

Remark 3.2.22. Compiling all results that we have seen so far we obtain the following commu-

tative diagram of isomorphisms:

C∗(E ×c G,C ×c G)⋊γ G C∗(E,C)⋊δc G⋊δ̂c
G

C∗(E,C)⊗K(l2(G))

3.2.20

3.2.17

3.2.15

Example 3.2.23. If we consider the Cayley separated graph (EG, CG) seen in Example 3.1.8

we know that (EG, CG) carries a free action β of G and hence by Corollary 3.2.21 we can see

that

C∗(EG, CG)×β G ∼= C∗(An, D)⊗K(l2(G)) ∼= C∗(Fn)⊗K(l
2(G))

recalling that Fn is the free group generated by the n edges.

Remark 3.2.24. The coaction δc is not always a normal coaction on C∗(E,C). Indeed, for

example, consider the Example 3.2.11 draw as

v

a1
a2

a3

a4

an

We have C∗(An, D) ∼= C∗(Fn) and δc coincides with the canonical coaction δFn . We know

that δFn is always maximal but it is not a normal coaction since Fn is not amenable.

Remark 3.2.25. Also the normalization of δFn is the canonical coaction on C∗
r (Fn) which is

isomorphic to C∗
r (An, D), the reduced C*-algebra of separated graph to be defined in the next
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chapter. This suggests the following question: Is the normalization of δc always a coaction on

C∗
r (E,C)? Unfortunately not always: consider (E,C) a separated graph, G a discrete group

and the labeling function being c(e) = 1 for all e ∈ E1. Then the spectral subspaces related

to δc are given by

Ag =




C∗(E,C) if g = 1

0 if g 6= 1

Then C∗(A) ∼= C∗(E,C) ∼= C∗
r (A). So, the coaction δc is maximal and normal, indeed, δc is

the trivial coaction in this case.

This issue will be more clear in the next chapter.
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4 REDUCED SEPARATED GRAPH C*-ALGEBRA CASE

In this chapter, our proposal is to get the same results as seen in the previous chapter for

the reduced C*-algebra of separated graphs. For this, we need to restrict our attention to finitely

separated graphs. The original definition of reduced C*-algebras uses reduced amalgamated

free products as can be seen in [58] and [4]. Our strategy here is to give an alternative defini-

tion for reduced C*-algebras of separated graphs using the canonical conditional expectation

C∗
r (E,C) → C0(E

0) that we will see later. For this, it is important to provide a characteri-

zation of C∗(E,C) as an amalgamated free coproduct. This will then give us a conditional

expectation and enable us to define the reduced C*-algebra C∗
r (E,C).

4.1 REDUCED AMALGAMATED FREE PRODUCTS

Definition 4.1.1. Let (Ai)i∈I be a family of C*-algebras and let A0 be a common C*-

subalgebra of all Ai via embeddings fi : A0 →֒ Ai. Then the amalgamated free coproduct

of (Ai)i∈I over A0 is a pair (∗A0Ai, gi) where ∗A0Ai is C*-algebra together with a family of

*-homomorphisms gi : Ai → ∗A0Ai such that gi ◦ fi = gi′ ◦ fi′ for all i, i
′ ∈ I. This is required

to satisfy the following universal property: Given another pair (D, hi) where D is a C*-algebra

together with a family of *-homomorphisms hi : Ai → D with hi ◦ fi = hi′ ◦ fi′ for all i, i
′ ∈ I,

there is a unique h : ∗A0Ai → D such that hi = g ◦ gi for all i ∈ I.

Remark 4.1.2. More details about the existence and representations of amalgamated free

coproduct can be seen in [59].

We need the notion of subgraphs in the separated case, called complete subgraphs.

Definition 4.1.3. Let (E,C) and (F,D) be two finitely separated graphs. A morphism from

(E,C) to (F,D) is a graph morphism f : E → F such that

1. φ0 : E0 → F 0 is injective;

2. For each v ∈ E0 and each X ∈ Cv there is Y ∈ Dφ0(v) such that φ1 induces a bijection

from X to Y .

Remark 4.1.4. Condition 2 does not imply that φ1 is injective since we can map two elements

in different sets on Cv to the same set of Dφ0(v).

Definition 4.1.5. A complete subgraph of (F,D) is a finitely separated graph (E,C) such

that E is a subgraph of F and Cv = {Y ∈ Dv | Y ∩E
1 6= ∅} for each v ∈ E0, that is, C is a

subset of D.

Remark 4.1.6. If (E,C) is a complete subgraph of (F,D) then the inclusion map E →֒ F

implies a morphism from (E,C) to (F,D).
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Remark 4.1.7. Any morphism f : (E,C)→ (F,D) induces a unique *-homomorphism from

C∗(E,C) → C∗(F,D) sending Pv 7→ Pf0(v) and Se 7→ Sf1(e) for every v ∈ E
0 and e ∈ E1

since {Pf0(v), Sf1(e)} give us a Cuntz-Krieger (F,D)-family in natural way.

For each X ∈ C, define the subgraph EX of E with (EX)
0 := E0 and (EX)

1 := X

and the source and range maps are the restricted ones. Then set A0 = C0(E
0) = C∗(E0, ∅)

and AX = C∗(EX). Also, we have the induced maps A0 →֒ AX →֒ C∗(E,C) via the canonical

inclusions (E0, ∅) →֒ (EX , X) →֒ (E,C). Denote by fX : AX →֒ C∗(E,C).

Proposition 4.1.8 ([4], Proposition 3.1). Let (E,C) be a separated graph and consider

A0 = C0(E
0) and AX = C∗(EX) as above. Then C∗(E,C) together with the inclusions

fX : AX →֒ C∗(E,C) is the amalgamated free coproduct of the family (AX)X∈C over A0.

This proposition provides some examples of C*-algebras of separated graphs.

Example 4.1.9. Let (E,C) be a separated graph with E0 = {v}, E1 = {e1, . . . , en, f1, . . . , fm}

and C = Cv := {X, Y } with X = {e1, . . . , en} and Y = {f1, . . . , fm} as in the picture

below:

v

ei

fj

Consider G a group with generators g1, . . . , gn, h1, . . . , hm and c : E1 → G a labeling

function defined by c(ei) := gi and c(fj) := hj for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. In

this way we get the skew product separated graph (E ×cG,C ×cG). By Proposition 4.1.8 we

have C∗(E,C) ∼= C∗(EX) ∗C C
∗(EY ) ∼= On ∗C Om, and consequently

C∗(E ×c G,C ×c G) ∼= C∗(E,C)⋊δc G
∼= (On ∗C Om)⋊δc G

where δc(si) = si ⊗ gi and δc(tj) = tj ⊗ hj for every i, j.

Definition 4.1.10. Let (Ai)i∈I be a family of unital C*-algebras containing a unital C*-

subalgebra A0 with conditional expectations φi : Ai → A0. Then the reduced amalgamated

free product of (Ai)i∈I over A0 is the pair (A, φ) uniquely determinated by the following

conditions:
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1. A is a unital C*-algebra and there are unital *-homomorphisms σi : Ai → A such that

σi |A0= σi′ |A0 for all i, i′ ∈ I. Moreover, σi |A0 is injective and we can identify A0 with

its image in A through this map.

2. A is generated by
⋃

i∈I

σi(Ai).

3. Φ : A→ A0 is conditional expectation such that Φ ◦ σi = φi for all i ∈ I.

4. For (i1, . . . , in) ∈ Λ(I) and aj ∈ Ker(φij) we have

φ(σi1(a1) . . . σin(an)) = 0

where here, Λ(I) denotes the set of all finite tuples (i1, . . . , in) ∈
∞⋃

n=1

In such that

i1 6= i2 6= . . . 6= in.

5. If c ∈ A is such that Φ((ca)∗ca) = 0 for all a ∈ A, then c = 0.

Now, we are going to define the reduced C*-algebra C∗
r (E,C) of a finitely separated

graph (E,C). In the above definition the reduced amalgamated free product is defined only for

unital C*-algebras but considering unitalizations this can also be carried over to the non-unital

case. More precisely, denote by Ã the smallest unital C*-algebra containing A which is the

C*-subalgebra of the multiplier algebraM(A) generated by A and 1M(A). Using the previous

notations we set B0 = Ã0 and BX = ÃX for each X ∈ C.

The following result is essential in this context and it is proved in [4]:

Proposition 4.1.11 ([4], Theorem 2.1). If E is a row-finite graph then there is a unique

faithful conditional expectation

φE : C∗(E)→ C0(E
0)

such that, for all paths µ, ν ∈ E∗ we have

φE(SµS
∗
ν) =




nµPs(µ) if µ = ν

0 if µ 6= ν

The exact value of nµ is nµ := (
∏n

i=1 |s
−1s(µi)|)

−1
if µ = µ1 . . . µn ∈ Path(E). Also,

if the length of µ is zero, then we set nµ = 1. This number will be not very relevant for our

purposes but it is important to be described.

For each X ∈ C, the canonical conditional expectation φX := φEX
: AX → A0 above

can be extended to a conditional expectation φX : BX → B0 by [[12], Proposition 2.2.1] and

since φX is faithful it straightforward to see that the extension to BX is also faithful. Now,

consider the reduced amalgamated free product (B,Φ) of the family (BX , φX)X∈C . In general,

the condition 5 in Definition 4.1.10 tell us that Φ is almost faithful (see Definition 4.2.3) but
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since all φX are faithful conditional expectations by Proposition 4.1.11, it follows from [[32],

Theorem 2.1] that the canonical conditional expectation Φ : B → B0 is also faithful.

Definition 4.1.12. Let (E,C) be a finitely separated graph and let A0, B0, AX , BX be as

defined above, for each X ∈ C. Consider the reduced amalgamated free product (B, φ) of the

family (BX , φX)X∈C . Then we define the reduced C*-algebra of the separated graph C∗
r (E,C)

as the C*-subalgebra of B generated by
⋃

X∈C

AX in B.

Observe that each AX can be identified with its image in B. Observe that there is

a faithful conditional expectation Φ : C∗
r (E,C) → C0(E0) such that Φ |AX

= φX for every

X ∈ C.

We are going to use the same notations for projections and partial isometries as in

C∗(E,C) for their canonical images in C∗
r (E,C). Note that these natural images in C∗

r (E,C)

satisfy the relations of L(E,C), and hence there is a unique *-homomorphism L(E,C) →

C∗
r (E,C) sending all projections and partial isometries to their canonical images. By the

universal property there is a unique *-homomorphism Λ : C∗(E,C) → C∗
r (E,C) and by

condition 2 of Definition 4.1.10 this map is surjective. So, we get a canonical map C∗(E,C) ։

C∗
r (E,C) and the canonical map L(E,C) → C∗

r (E,C) is the composition of L(E,C) →

C∗(E,C) and C∗(E,C) ։ C∗
r (E,C).

Moreover, in [[4], Theorem 3.8] it is shown that the canonical map L(E,C)→ C∗
r (E,C)

is injective and for E non-separated graph, we have C∗(E) ∼= C∗
r (E) from this point of view.

With notations as above, we want to understand how the conditional expectation

Φ : C∗
r (E,C) → C0(E

0) acts on elements of the canonical basis in L(E,C), especially in

the products of these elements. To clarify the ideas, let us begin with an short element of

the form SµS
∗
ν in L(E,C) such that µν∗ is reduced path and µ, ν are not necessary in the

same partition. In the case where µ, ν ∈ X for some X ∈ Cv, v ∈ E0, it is clear that

Φ(SµS
∗
ν) = φX(SµS

∗
ν) = δµ,ν(nµPs(µ)). Now, if µ ∈ X and ν ∈ Y for X, Y ∈ C, by the

condition 4 in Definition 4.1.10 we observe that Φ(SµS
∗
ν) = 0 since Sµ ∈ Ker(φX) and

S∗
ν ∈ Ker(φY ).

More generally, let Sµ1S
∗
ν1
Sµ2S

∗
ν2

be an element of a basis in L(E,C) which means

that ν1 and µ2 are C-separated paths, lets say ν1 ∈ X1 and µ2 ∈ X2 with X1, X2 ∈ Cv, and

µ1ν
∗
1 and µ2ν

∗
2 are reduced paths.

Note that, if all µi and νi “live” in different sets, then by condition 4 in Definition

4.1.10 we have Φ(Sµ1S
∗
ν1
Sµ2S

∗
ν2
) = 0 since each isometry belongs to the kernel of conditional

expectation relative to the set it belongs to.

Now, if µ1 ∈ X1 with µ1 6= ν1 we have Sµ1S
∗
ν1
∈ Ker(φX1) and hence, by the condition

4 in Definition 4.1.10, we still have Φ(Sµ1S
∗
ν1
Sµ2S

∗
ν2
) = 0. Analogously for ν2 ∈ X2 with

µ2 6= ν2. Now, the interesting case is when we have µ1 ∈ X1, ν2 ∈ X2, and µ1 = ν1 = µ and

µ2 6= ν2. Then we can write SµS
∗
µ = nµPs(µ) + (SµS

∗
µ − nµPs(µ))︸ ︷︷ ︸

xµ

where xµ ∈ Ker(φX1). Note
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that we still have Sµ2S
∗
ν2
∈ Ker(φX2) because µ2 6= ν2. Since s(µ) = s(µ2), therefore, again

by the condition 4 in Definition 4.1.10, we have

Φ(SµS
∗
µSµ2S

∗
ν2
) = Φ((nµPs(µ) + xµ)Sµ2S

∗
ν2
)

= Φ(nµPs(µ)Sµ2S
∗
ν2
) + Φ(xµSµ2S

∗
ν2
)

= nµφX2(Sµ2S
∗
ν2
) + Φ(xµSµ2S

∗
ν2
)

= 0.

Analogously for µ1 ∈ X1, ν2 ∈ X2, and µ1 6= ν1 and µ2 = ν2. Finally, in the case when

µ1 ∈ X1, ν2 ∈ X2 and µi = νi for all i = 1, 2, then by the same arguments above we can

write Sµ1S
∗
µ1

= nµ1Ps(µ1) + xµ1 and Sµ2S
∗
µ2

= nµ2Ps(µ2) + xµ2 where xµ1 ∈ Ker(φX1) and

xµ2 ∈ Ker(φX2). Since s(µ1) = s(µ2), therefore, by the condition 4 in Definition 4.1.10, we

have

Φ(Sµ1S
∗
µ1
Sµ2S

∗
µ2
) = Φ((nµ1Ps(µ1) + xµ1)(nµ2Ps(µ2) + xµ2))

= Φ(nµ1nµ2Ps(µ1)Ps(µ2)) + Φ(nµ1Ps(µ1)xµ2) + Φ(xµ1nµ2Ps(µ2)) + Φ(xµ1xµ2)

= nµ1nµ2φX1(Ps(µ1)) + nµ1φX2(xµ2) + nµ2φX1(xµ1) + Φ(xµ1xµ2)

= nµ1nµ2Ps(µ1).

After all this calculations we can conclude that for any basic element of L(E,C) the

conditional expectation Φ behave as follows:

Φ(Sµ1S
∗
ν1
. . . SµnS

∗
νn) =




NµPs(µ), if µi = νi for all i ∈ {1 . . . n}

0, otherwise

where µ := µ1ν
∗
1 . . . µnν

∗
n is a C-separated reduced path and Nµ :=

∏n
i=1 nµi .

Now we are able to define the conditional expectation P : C∗(E,C) → C0(E
0) as

P := Λ ◦ Φ where Λ : C∗(E,C) ։ C∗
r (E,C).

As we have seen earlier, the original definition of the reduced C*-algebras uses re-

duced amalgamated free products. Now, let us look at the reduced C*-algebra from another

perspective using the canonical expectation P : C∗(E,C)→ C0(E
0) defined above.

4.2 REDUCED C*-ALGEBRA ASSOCIATED WITH A CONDITIONAL EXPECTATION

In this section, suppose we have a general C*-algebra A, a commutative C*-subalgebra

C0(X) ⊆ A where X is a locally compact Hausdorff space and a conditional expectation

P : A→ C0(X). The dual map P ∗ : C0(X)∗ → A∗ induces a map between the states spaces

of C0(X) and A. Identifying X with pure states of C0(X) where each x ∈ X identifies with the

pure state ωx(f) := f(x), we get a map X → S(A) sending x 7−→ ϕx with ϕx := ωx ◦P . So,

for each pure state ϕx ∈ S(A), we may assign its GNS-representation Λx : A→ B(Hx). From

this we get a representation Λ := ⊕xΛx on H = ⊕xHx, the direct sum of all representations

Λx.



Chapter 4. Reduced Separated Graph C*-algebra Case 91

Definition 4.2.1. With notations as above, we define AP,r := Λ(A) to be a reduced C*-algebra

associated to (A,P ). The *-homomorphism Λ : A։ AP,r is called the regular representation.

Notice that AP,r contains a copy of C0(X) as a C*-subalgebra. More precisely, Λ

restricts to an injective *-homomorphism C0(X) →֒ AP,r. In fact, if f ∈ C0(X) and Λ(f) = 0,

then Λx(f) = 0 for all x ∈ X and, in particular, ϕx(f) = wx(P (f)) = f(x) = 0 for all x ∈ X.

As can be seen in [39] we have to be careful with faithfulness here. Generally, let

P : A → B be a conditional expectation onto a C*-subalgebra B ⊆ A and let NP be the

closed linear span of all ideals I in A with I ⊆ Ker(P ). This is the largest two-sided ideal

in A that is contained in Ker(P ). Moreover, LP = {a ∈ A | P (a∗a) = 0} and RP = {a ∈

A | P (aa∗) = 0} are the largest left and right ideals in A contained in Ker(P ), respectively. The

reason that LP is the largest left ideal, for example, is essentially due to the Schwartz inequality.

In other words, if a ∈ LP and b ∈ A we have P ((ba)∗ba) ≤ ‖b‖2P (a∗a). Then ba ∈ LP and

is in fact a left ideal. Also, by the Schwartz inequality we have 0 6 P (a)∗P (a) 6 P (a∗a). So,

if P (a∗a) = 0 then P (a) = 0. So, LP ⊆ Ker(P ). Finally LP is the largest left ideal because if

we have a left ideal I ⊆ Ker(P ) and x ∈ I then x∗x ∈ I which implies that P (x∗x) = 0, that

is, I ⊆ LP . A similar fact holds for RP . Also, it is not difficult to see that NP ⊆ LP ∩ RP

and (LP )
∗ = RP . So, we have the following proposition:

Proposition 4.2.2. Let P : A→ B be a conditional expectation. Then

NP = {a ∈ A | P ((ab)∗(ab)) = 0 for all b ∈ A}.

Proof. If a ∈ NP then ab ∈ NP ⊆ LP for all b ∈ A. Thus P ((ab)∗(ab)) = 0 for all b ∈ B.

Conversely, if P ((ab)∗(ab)) = 0 for all b ∈ A, then aA ⊆ LP where aA = span{ab | b ∈ A}.

So, AaA ⊆ LP because LP is a left ideal. Since AaA is a two-sided ideal that contains a we

have a ∈ NP .

Definition 4.2.3. Let P : A→ B be a conditional expectation. We say that:

1. P is faithful if P (a∗a) = 0 for some a ∈ A implies a = 0.

2. P is almost faithful if P ((ab)∗ab) = 0 for all b ∈ A and some a ∈ A implies a = 0.

3. P is symmetric if P (a∗a) = 0 for some a ∈ A implies P (aa∗) = 0.

Corollary 4.2.4. Let P : A→ B be a conditional expectation. Then:

1. P is symmetric if and only if LP = RP = NP .

2. P is faithful if and only if LP = RP = NP = 0.

3. P is almost faithful if and only if NP = 0.

4. P is faithful if and only if P is almost faithful and symmetric.
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Proof. This follows from Proposition 4.2.2.

Example 4.2.5. Not every almost faithful conditional expectation is faithful. Consider the sub-

algebra B =

{[
a 0

0 a

]
| a ∈ C

}
⊆M2(C) and P :M2(C)→ B such that P

([
a b

c d

])
=

[
a 0

0 a

]
. It is straightforward to check that P is a well-defined conditional expectation. More-

over, P is almost faithful. To see that consider X =

[
x 0

0 0

]
and Y =

[
y 0

0 0

]
inM2(C) with

x, y 6= 0. Making the simple calculations we have that 0 6= |xy|2 = P (B∗X∗XB). But P is

not faithful because if we take X =

[
0 x

0 0

]
for any x ∈ C, x 6= 0 we have P (X∗X) = 0.

In fact, observe for the same X that P (XX∗) 6= 0, so P is not faithful because it is not

symmetric.

Now, back to the conditional expectation P : A→ C0(X) we have the next lemma:

Lemma 4.2.6. With notations as above, for all a ∈ A, we have

Λ(a) = 0⇔ P ((ab)∗ab) = 0, ∀b ∈ A.

Proof. For each a ∈ A, notice that Λ(a) = 0 if and only if Λx(a) = 0 for all x ∈ X if and

only if Λx(a
∗a) = 0 for all x ∈ X because ‖Λx(a)‖

2 = ‖Λx(a
∗a)‖. Let ξx be the cyclic vector

associated to the GNS-representation Λx, that is, ϕx(a) = 〈ξx,Λx(a)ξx〉 where ϕx = ωx ◦ P .

Note that for all b ∈ A we have

ϕx((ab)
∗ab) = 〈ξx,Λx((ab)

∗ab)ξx〉 = 〈Λx(b)ξx,Λx(a
∗a)Λx(b)ξx〉

SinceHx is the closed linear span of Λx(A)ξx we have Λx(a
∗a) = 0 if and only if ϕx((ab)

∗ab) =

0 for all b ∈ A. Therefore we conclude that

Λ(a) = 0⇔ Λx(a
∗a) = 0 for all x ∈ X

⇔ ϕx((ab)
∗ab) = 0 for all x ∈ X and b ∈ A

⇔ ωx ◦ P ((ab)
∗ab) = 0 for all x ∈ X and b ∈ A

⇔ P ((ab)∗ab) = 0 for all b ∈ A

Theorem 4.2.7. The conditional expectation P : A → C0(X) factors through an almost

faithful conditional expectation Pr : AP,r → C0(X). Moreover, Pr is faithful if and only if P

is symmetric.

Proof. We define Pr(Λ(a)) := P (a) for all a ∈ A. Therefore, Pr is a well-defined almost

faithful conditional expectation by Lemma 4.2.6 and because P is also a conditional expectation.

Moreover, Pr is a faithful if and only if P is symmetric by the item 4 of Corollary 4.2.4.
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Theorem 4.2.8. The C*-algebra AP,r is the unique C*-algebra containing C0(X) which factors

the conditional expectation P to an almost faithful conditional expectation. In other words, if

we have another C*-algebra D containing C0(X), a surjective *-homomorphism π : A ։ D

and an almost faithful conditional expectation Q : D → C0(X) which factors P , that is, the

diagram below commutes

A D

C0(X)

π

P
Q

Then, D ∼= AP,r

Proof. To begin with, define ψ : AP,r → D such that ψ(Λ(a)) = π(a) for all a ∈ A. It is not

difficult to show that ψ is a surjective *-homomorphism once we prove that it is well defined. We

claim that Ker(π) = Ker(Λ). By Lemma 4.2.6, a ∈ Ker(Λ) if and only if P ((ab)∗ab) = 0 for all

b ∈ A. Since the diagram commutes we have P ((ab)∗ab) = 0 if and only if Q(π((ab)∗ab)) = 0

if and only if Q((π(a)π(b))∗π(a)π(b)) = 0 for all b ∈ A. Since Q is almost faithful we conclude

that π(a) = 0. Conversely, if π(a) = 0 then Q((π(a)x)∗π(a)x) = 0 for all x ∈ D. Since π is

surjective for each x ∈ D there is b ∈ A such that x = π(b). ThenQ((π(a)π(b))∗π(a)π(b)) = 0

implies P ((ab)∗ab) = 0 and, consequently, a ∈ Ker(Λ). Therefore ψ is an isomorphism, as

required.

Example 4.2.9. Consider the canonical tracial states τ : C∗
r (G) → C and τ̃ : C∗(G) → C

with τ̃ = τ ◦ ΛG where ΛG : C∗(G) ։ C∗
r (G) is the regular representation. It is clear that

C∗
r (G)

∼= C∗(G)τ̃ ,r.

Example 4.2.10. Let (A,G, α) be a dynamical system where A = C0(X) and consider the

canonical conditional expectation F1 : A ⋊α,r G → A such that P (
∑

g∈G agug) = a1 and

F̃1 : A ⋊α G → A as F̃1 = F1 ◦ Λ
A⋊G where ΛA⋊G : A ⋊α G → A ⋊α,r G is the regular

representation. Then A⋊α,r G ∼= (A⋊α G)F̃1,r
because A⋊α G contains A as C*-subalgebra

and F1 is a faithful conditional expectation which factors F̃1 in canonical way.

More general, if (A,G, α) is a dynamical system which A containing C0(X) and carries

a faithful conditional expectation P : A→ C0(X) then we have A⋊α,r G ∼= (A⋊α G)P◦F̃1,r
.

Lemma 4.2.11. Let A and B be C*-algebras with conditional expectations P : A→ C0(X)

and Q : B → C0(Y ) and suppose that π : A → B is a *-homomorphism commuting with

these conditional expectations, that is, the diagram below commute:

A B

C0(X) C0(Y )

π

P Q

π|

Then π factors through a *-homomorphism πr : AP,r → BQ,r. Moreover, πr is an isomorphism

if π is so.
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Proof. Let ΛA : A → AP,r and ΛB : B → BQ,r denote the regular representations of A and

B, respectively. Define πr : AP,r → BQ,r such that πr(ΛA(a)) = ΛB(π(a)) for all a ∈ A. For

the well-definedness we must show that ΛA(a) = 0 implies ΛB(π(a)) = 0. But this follows

from Lemma 4.2.6 since ΛA(a) = 0 if and only if P (c∗a∗ac) = 0 for all c ∈ A and this implies

that 0 = π(P (c∗a∗ac)) = Q(π(c∗a∗ac)) = Q(π(c)∗π(a)∗π(a)π(c)) which is equivalent (again

by Lemma 4.2.6) to ΛB(π(a)) = 0. So, this shows that πr exists. If π is surjective then so is πr.

Now, suppose that π is faithful and ΛB(π(a)) = 0. We must show that ΛA(a) = 0. But again

by Lemma 4.2.6 it is enough to show that P (c∗a∗ac) = 0 for all c ∈ A. Note that ΛB(π(a)) = 0

if and only if Q(π(c∗a∗ac)) = 0 for all c ∈ A. But 0 = Q(π(c∗a∗ac)) = π(P (c∗a∗ac)) which

implies that P (c∗a∗ac) = 0, as desired.

Remark 4.2.12. Actually in above Lemma for πr to be injective it is enough that π is injective

on C0(X).

For this final part we assume that P : A → C0(X) is an almost faithful and

symmetric conditional expectation, that is, it is faithful.

Lemma 4.2.13. Let A and B be C*-algebras with conditional expectations P : A→ C0(X)

and Q : B → C0(Y ), respectively. Then

(A⊗ B)P⊗Q,r
∼= AP,r ⊗ BQ,r.

Proof. First of all, it is not difficult to see that P⊗Q : A⊗B → C0(X)⊗C0(Y ) is a well-defined

conditional expectation defined by (P ⊗Q)(a⊗ b) = P (a)⊗Q(b) with ‖P ⊗Q‖ = ‖P‖‖Q‖.

By Theorem 4.2.8 it is enough to check that AP,r⊗BQ,r has a faithful conditional expectation

which factors P ⊗Q. But the conditional expectation Pr⊗Qr : AP,r⊗BQ,r → C0(X)⊗C0(Y )

is the perfect candidate because by definition Pr ⊗Qr(ΛA ⊗ ΛB) = P ⊗Q. Since Pr and Qr

are faithful then so is Pr ⊗Qr, as required.

Proposition 4.2.14. Let (A,G, δ) be a dynamical co-system and P : A→ B a G-equivariant

conditional expectation 1. Then there is a conditional expectation P ⋊G : A⋊δ G→ B ⋊δ G

such that P ⋊G(jA(a)j
A
G(f)) = (jB ◦P )(a)j

B
G(f) for every a ∈ A and f ∈ C0(G). Moreover,

if P is faithful then so is P ⋊G.

Proof. To begin with, observe that B ⋊δ G is a C*-subalgebra of A ⋊δ G because B ⊗

K(l2(G)) ⊆ A ⊗ K(l2(G)) and hence also M(B ⊗ K(l2(G))) ⊆ M(A ⊗ K(l2(G))). Since

B⋊δG ⊆M(B⊗K(l2(G))) via the regular representation jB× j
B
G we get B⋊δG ⊆ A⋊δG.

Now, P ⋊ G is a conditional expectation because P is so. Actually P ⋊ G coincides

with P ⊗ idK, if we identify B ⋊δ G ⊆ A ⋊δ G ⊆ M(A ⊗ K(l2(G))). Thus, if P is faithful

then P ⊗ idK is faithful too.
1A condition expectation P : A→ B is G-equivariant with respect a coaction δ in the sense of Definition

2.5.24, that is, if (P ⊗ idG) ◦ δ = δ ◦ P where δ on the right side of equality means a restrict δ on B.
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Lemma 4.2.15. Let (A,G, δ) be a dynamical co-system and let P : A → C0(X) be a

conditional expectation. Then

(A⋊δ G)P⋊G,r
∼= AP,r ⋊δ G.

Proof. Let Pr : AP,r → C0(X) be the faithful conditional expectation that factors P . So, by

Proposition 4.2.14 we have conditional expectations P ⋊ G : A ⋊δ G → C0(X) ⋊δ G and

Pr ⋊ G : AP,r ⋊δ G → C0(X) ⋊δ G over A ⋊δ G and AP,r ⋊δ G, respectively. Since Pr is

faithful then so is Pr ⋊G and the following diagram commutes:

A⋊δ G AP,r ⋊δ G

C0(X)⋊δ G

Λ⋊G

P⋊G
Pr⋊G

To see this note that

Pr ⋊G ◦ Λ⋊G(jA(a)j
A
G(f)) = Pr ⋊G((jB ◦ Λ)(a)j

B
G(f))

= (jB ◦ Pr ◦ Λ)(a)j
B
G(f)

= (jB ◦ P )(a)j
B
G(f)

= P ⋊G(jA(a)j
A
G(f))

4.3 REDUCED SEPARATED GRAPH C*-ALGEBRAS AND EXTEND RESULTS

An immediate consequence of these results is the next corollary that can be used as an

alternative definition for the reduced C*-algebra of a finitely separated graph. In this section,

through this alternative, we are able to show the duality theorems for the reduced C*-algebra

C∗
r (E,C).

Corollary 4.3.1. Let (E,C) be a finitely separated graph and P : C∗(E,C) → C0(E
0) be

the canonical conditional expectation. Then

C∗(E,C)P,r ∼= C∗
r (E,C).

Proof. According to the definition of the conditional expectation P : C∗(E,C)→ C0(E
0), it

factors through a faithful conditional expectation Φ : C∗
r (E,C)→ C0(E

0). By Theorem 4.2.8

the result follows trivially.

Remark 4.3.2. In our case, the conditional expectation Φ : C∗
r (E,C) → C0(E

0) is faithful,

that is, it is symmetric.
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Example 4.3.3. A canonical example is when we consider the Cuntz separated graph (An, D)

seen in Example 3.1.5 draw as the picture below:

v

a1
a2

a3

a4

an

Since by Example 4.2.9 C∗(Fn)τ̃ ,r ∼= Cr(Fn) we have C∗
r (An, D) ∼= C∗

r (Fn) for the

uniqueness, where Fn is the free group generated by the edges.

Example 4.3.4. If we consider the separated graph (E(1, 1), C(1, 1)) seen in Example 3.2.10

as in the picture below:

v w

e

f

We know that C∗(E(1, 1), C(1, 1)) ∼= M2(C(T)) which can be viewed isomorphically as

M2(C)⊗ C(T). Identifying C0(E
0) = Cv ⊕ Cw as a

[
C 0

0 C

]
∈M2(C(T)) there is a faithful

conditional expectation

φ1 ⊗ φ2 :M2(C)⊗ C(T)→

[
C 0

0 C

]
,

where φ1 is a faithful conditional expectation such that φ1

([
a b

c d

])
=

[
a 0

0 d

]
and φ2

is the canonical faithful trace on C(T). Since φ1 ⊗ φ2 is faithful consequently we have

C∗
r (E(1, 1), C(1, 1)) = C∗(E(1, 1), C(1, 1)).

Example 4.3.5. Another example which is related to the previous example is the separated

graph (E(1, n), C(1, n)) seen in Example 3.2.10 as in the picture below:
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v w

ei

f

We know that C∗(E(1, n), C(1, n)) ∼= M2(On) ∼= M2(C) ⊗ On. As in the previous example

using the correct identifications there is also a faithful conditional expectation

φ1 ⊗ φ2 :M2(C)⊗On →

[
C 0

0 C

]
,

where φ1 is the same faithful conditional expectation in M2(C) and φ2 is the canonical

conditional expectation on On (just consider On as a graph C*-algebra). As a consequence we

have C∗
r (E(1, n), C(1, n))

∼= C∗(E(1, n), C(1, n)).

Let (E,C) be a finitely separated graph and let c : E1 → G be a labeling function.

We have a coaction δc : C
∗(E,C)→ C∗(E,C)⊗ C∗(G) defined before and we would like to

prove that this coaction factors through the reduced C*-algebra C∗
r (E,C) using this context.

The next proposition give us exactly that:

Proposition 4.3.6. Let (E,C) be a finitely separated graph and c : E1 → G be a labeling

function. Then the coaction δc : C
∗(E,C)→ C∗(E,C)⊗C∗(G) factors through the reduced

C*-algebra C∗
r (E,C), that is, there is a coaction δrc : C∗

r (E,C) → C∗
r (E,C) ⊗ C∗(G).

Moreover, δrc is normal coaction.

Proof. For the existence, it is enough to check that the coaction δc commutes with respect to

the conditional expectations. In other words, we are going to prove that the following diagram

commutes:

C∗(E,C) C∗(E,C)⊗ C∗(G)

C0(E
0) C0(E

0)⊗ C

δc

P P⊗τ̃

id⊗1

where τ̃ is the tracial state of C∗(G) defined in Example 4.2.9. Let Sµ1S
∗
ν1
. . . SµnS

∗
νn ∈ L(E,C)

be an elementary element. Then we have

(P ⊗ τ̃) ◦ δc(Sµ1S
∗
ν1
. . . SµnS

∗
νn) = (P ⊗ τ̃)(Sµ1S

∗
ν1
. . . SµnS

∗
νn ⊗ c(µ1)c(ν1)

−1 . . . c(µn)c(νn)
−1)

= P (Sµ1S
∗
ν1
. . . SµnS

∗
νn)⊗ τ̃(c(µ1)c(ν1)

−1 . . . c(µn)c(νn)
−1)

= NµPs(µ) ⊗ 1

where in the last step we used that P (Sµ1S
∗
ν1
. . . SµnS

∗
νn) is non-zero if µi = νi for all i and

as a consequence c(µ1)c(ν1)
−1 . . . c(µn)c(νn)

−1 = 1. On the other hand, we have

(id⊗ 1) ◦ P (Sµ1S
∗
ν1
. . . SµnS

∗
νn) = (id⊗ 1)(NµPs(µ)) = NµPs(µ) ⊗ 1
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where again we used that P (Sµ1S
∗
ν1
. . . SµnS

∗
νn) is non-zero if µi = νi for all i. Since L(E,C)

is dense in C∗(E,C), by linearity and continuity the diagram above commute. It follows from

Lemma 4.2.11 that δc factors through

(δrc)
′ : C∗(E,C)P,r → (C∗(E,C)⊗ C∗(G))P⊗τ̃ ,r

such that (δrc)
′(Λ(a)) = ΛP⊗τ̃ ◦ δc(a) for all a ∈ C

∗(E,C). Since C∗(E,C)P,r
∼= C∗

r (E,C)

by Corollary 4.3.1 and (C∗(E,C)⊗C∗(G))P⊗τ,r
∼= C∗

r (E,C)⊗C
∗
r (G) by Lemma 4.2.13 this

can be translated to a *-homomorphism (δrc)
′ : C∗

r (E,C) → C∗
r (E,C) ⊗ C

∗
r (G) such that

(δrc)
′(Λ(a)) = (Λ ⊗ ΛG) ◦ δc(a) for all a ∈ C∗(E,C). Observe that if we replace τ̃ by idG

viewed as a trivial conditional expectation the same computation as above also works and

we get a well-defined *-homomorphism δrc : C∗
r (E,C) → C∗

r (E,C) ⊗ C
∗(G) such that the

diagram below commutes:

C∗
r (E,C) C∗

r (E,C)⊗ C
∗(G) C∗

r (E,C)⊗ C
∗
r (G)

δrc

(δrc )
′

id⊗ΛG

That is, (δrc)
′(Λ(a)) = ΛP⊗τ̃ (δc(a)) = (Λ ⊗ ΛG) ◦ δc(a) = (id ⊗ ΛG) ◦ (Λ ⊗ idG) ◦ δc(a) =

(id⊗ ΛG) ◦ δrc(a) for all a ∈ C
∗(E,C).

We claim that δrc : C
∗
r (E,C)→ C∗

r (E,C)⊗C
∗(G) is in fact a coaction. The coaction

identity and nondegeneracy is provided from δc since δ
r
c(Λ(a)) = (Λ⊗ idG) ◦ δc and

C∗
r (E,C)⊗ C

∗(G) = (Λ⊗ idG)(C
∗(E,C)⊗ C∗(G))

= (Λ⊗ idG)(δc(C
∗(E,C))(1⊗ C∗(G)))

= (Λ⊗ idG) ◦ δc(C
∗(E,C))(1⊗ C∗(G))

= δrc(Λ(C
∗(E,C)))(1⊗ C∗(G))

= δrc(C
∗
r (E,C))(1⊗ C

∗(G))

Similarly, it can be seen that (δrc)
′ is nondegenerate too. Consequently, (δrc)

′ is faithful

which means that δrc is a normal coaction.

As a consequence we are able to prove the following corollary:

Corollary 4.3.7. Let (E,C) be a finitely separated graph and c : E1 → G be a labeling

function. Then

C∗
r (E,C)⋊δrc G⋊δ̃rc ,r

G ∼= C∗
r (E,C)⊗K(l

2(G)).

Proof. It follows from the fact that δrc is a normal coaction.
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Lemma 4.3.8. For a free action α of a group G on a finitely separated graph (E,C), the

induced action α of G on C∗(E,C) factors through an action α̃ of G on the reduced C*-algebra

C∗
r (E,C) such that Φ(α̃g(x)) = αg(Φ(x)) for all x ∈ C

∗
r (E,C).

Proof. In order to facilitate the notation we are using g · v and g · e for the action of G

on the separated graph (E,C) and the induced action α is given by αg(Pv) = Pg·v and

αg(Se) = Sg·e for every v ∈ E
0, e ∈ E1 and g ∈ G. For each g ∈ G, it is enough to show that

the *-homomorphism αg : C
∗(E,C)→ C∗(E,C) commutes with respect to the conditional

expectations, that is, the following diagram commutes:

C∗(E,C) C∗(E,C)

C0(E
0) C0(E

0)

P

αg

P

αg |C0(E
0)

It is enough to check the commutativity on basic elements of the form Sµ1S
∗
ν1
. . . SµnS

∗
νn ∈

L(E,C) since L(E,C) is dense of C(E,C) and αg is linear and continuous map. So, we have

P (αg(Sµ1S
∗
ν1
. . . SµnS

∗
νn)) = P (Sg·µ1S

∗
g·ν1

. . . Sg·µnS
∗
g·νn)

= NµPg·s(µ)

= αg(NµPs(µ))

= αg(P (Sµ1S
∗
ν1
. . . SµnS

∗
νn))

where here we used that P (Sµ1S
∗
ν1
. . . SµnS

∗
νn) is non-zero whenever µi = νi for all i in which is

equivalent to g ·µi = g · νi for all i. So, we conclude that the diagram above in fact commutes.

According to Lemma 4.2.11, αg factors through an action α̃g : C
∗
r (E,C) → C∗

r (E,C) such

that α̃g(Λ(x)) = Λ(αg(x)) for all x ∈ C
∗(E,C). Finally observe that

Φ(α̃g(Λ(x))) = Φ(Λ(αg(x)))

= P (αg(x))

= αg(P (x))

= αg(Φ(Λ(x))).

This implies that Φ ◦ α̃g = αg ◦ Φ, as desired.

Theorem 4.3.9. With notations as above, there is a canonical isomorphism

C∗
r (E ×c G,C ×c G)

∼= C∗
r (E,C)⋊δrc G.

Under this isomorphism, the action γ̃ on C∗
r (E×cG,C×cG) induced by the translation action

γ on C∗(E ×c G,C ×c G) corresponds to the dual action δ̂rc on C∗
r (E,C)⋊δrc G.
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Proof. It is enough to show that the isomorphism φ : C∗(E ×c G,C ×c G)→ C∗(E,C)⋊δcG

seen in Theorem 3.2.17 commutes with the respective conditional expectations, that is, the

following diagram commutes:

C∗(E ×c G,C ×c G) C∗(E,C)⋊δc G

C0(E
0 ×G) C0(E

0)⋊δc G

P

φ

P⋊G

φ|C0(E×G)

To make things simpler we will show that the diagram commutes on basic elements of the

form S(µ,g)S
∗
(ν,z)S(µ′,z)S

∗
(ν′,z′) with z = gc(µ)c(ν)−1 and z′ = gc(µ)c(ν)−1c(µ′)c(ν ′)−1 where

ν,µ′ are C-separated paths and µν∗ and µ′ν ′∗ are reduced paths. We already calculated φ

on these elements, that is, φ(S(µ,g)S
∗
(ν,z)S(µ′,z)S

∗
(ν,z′)) = jG(χg−1)jB(SµS

∗
νSµ′S

∗
ν′) (see proof of

Theorem 3.2.17). So, we compute:

P ⋊G(φ(S(µ,g)S
∗
(ν,h))) = P ⋊G(jG(χg−1)jB(SµS

∗
νSµ′S

∗
ν′))

= jG(χg−1)(jB ◦ P )(SµS
∗
νSµ′S

∗
ν′)

= jG(χg−1)jB(NµPs(µ))

= φ|C0(E×G)(NµP(s(µ),g))

= φ(P (S(µ,g)S
∗
(ν,z)S(µ′,z)S

∗
(ν′,z′)))

Note that here we used that P (SµS
∗
νSµ′S

∗
ν′) is non-zero if µ = ν and µ′ = ν ′ and this implies

(µ, g) = (ν, z) and (µ′, z) = (ν ′, z′). Since L(E×cG,C×cG) is dense in C
∗(E ×c G,C ×c G)

by linearity and continuity we conclude that the diagram commutes.

With the correct identifications, C∗(E ×c G,C ×c G)P,r
∼= C∗

r (E ×c G,C ×c G) by

Corollary 4.3.1 and (C∗(E,C)⋊δc G)P⋊G,r
∼= C∗

r (E,C)⋊δrc G by Lemma 4.2.15, we conclude

that φ factors through

φr : C∗
r (E ×c G,C ×c G)→ C∗

r (E,C)⋊δrc G

such that φr(ΛA(x)) = (ΛB ⋊ G) ◦ (φ(x)) for all x ∈ C∗(E ×c G,C ×c G) where ΛA :

C∗(E ×c G,C ×c G) ։ C∗
r (E ×c G,C ×c G) and ΛB : C∗(E,C) ։ C∗

r (E,C). Since φ is

an isomorphism so is φr.

To finish we need to check the G-equivariance. To do that observe that for all x ∈

C∗(E ×c G,C ×c G) we have:

φr ◦ γ̃g ◦ ΛA(x) = φr ◦ ΛA ◦ γg(x)

= (ΛB ⋊G) ◦ φ ◦ γg(x)

= (ΛB ⋊G) ◦ (δ̂c)g ◦ φ(x)

= (δ̂rc)g ◦ (ΛB ⋊G) ◦ φ(x)

= (δ̂rc)g ◦ φ
r ◦ ΛA(x)

This completes the proof.
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Corollary 4.3.10. Let (E,C) be a finitely separated graph and c : E1 → G be a labeling

function. Then

C∗
r (E ×c G,C ×c G)⋊γ̃,r G ∼= C∗

r (E,C)⊗K(l
2(G)).

Proof. This follows from Corollary 4.3.7 and Theorem 4.3.9.

Corollary 4.3.11. For a free action θ of a group G on a finitely separated graph (E,C), there

is a canonical isomorphism

C∗
r (E,C)⋊θ̃,r G

∼= C∗
r (E/G,C/G)⊗K(l

2(G)).

Proof. Follows from Corollary 4.3.10 and Gross-Tucker Theorem for separated graphs seen in

Theorem 3.1.7.

Remark 4.3.12. Compiling all results that we have seen so far in this section we get the

following diagram of isomorphisms:

C∗
r (E ×c G,C ×c G)⋊γ,r G C∗

r (E,C)⋊δrc G⋊δ̂rc ,r
G

C∗
r (E,C)⊗K(l

2(G))

4.3.10

4.3.9

4.3.7

Remark 4.3.13. Unlike what happens with non-separated graphs, in the separated case neither

γ nor γ̃ are amenable in general, in the sense that C∗(E,C) ⋊γ G ∼= C∗(E,C) ⋊γ,r G or

C∗
r (E,C)⋊γ̃ G ∼= C∗

r (E,C)⋊γ,r G. Fortunately, we have the following diagrams:

C∗(E ×c G,C ×c G)⋊γ G C∗(E,C)⋊δc G⋊δ̂c
G

C∗(E,C)⊗K(l2(G))

C∗
r (E,C)⊗K(l

2(G))

C∗
r (E ×c G,C ×c G)⋊γ,r G C∗

r (E,C)⋊δrc G⋊δ̂rc ,r
G

3.2.20

3.2.17

3.2.15

4.3.10

4.3.9

4.3.7

4.4 ALTERNATIVE APPROACH TO C∗
r (E,C)

In this section, we will present an alternative approach to the definition of reduced

separated graphs via Fell bundles. From this point a view, the C*-algebra structure involved
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is more clear. With certain conditions, we are going to prove that the reduced C*-algebra

C∗(A)P,r is isomorphic to a reduced C*-algebra of some quotient Fell bundle and use that to

get the desired definition.

Definition 4.4.1. Let A a Fell bundle over a group G and I be an ideal of A1. We say that I

is an A-invariant ideal if it is invariant for every Hilbert bimodule Ag, that is, I · Ag = Ag · I

for all g ∈ G.

Lemma 4.4.2. Let A be a Fell bundle over a group G . Then I is A-invariant ideal if and

only if Ag · I · Ag−1 ⊆ I for all g ∈ G.

Proof. If I is A-invariant it is immediate that Ag · I · Ag−1 ⊆ I for all g ∈ G. Now, if

Ag ·I ·Ag−1 ⊆ I for all g ∈ G then multiplying both sides by Ag we get Ag ·I ·Ag−1Ag ⊆ IAg.

Since Ag−1Ag is an ideal in A1 then I commutes with Ag−1Ag and we know that AgAg−1Ag =

Ag for all g ∈ G. Then

Ag · Ag−1 · Ag · I = Ag · I ⊆ I · Ag

for all g ∈ G. The other containment is analogous.

Now, let A be a Fell bundle over a group G and consider I an ideal of C∗(A). It is

straightforward to see that I ∩ A1 is an ideal of A1. Set J := I ∩ A1.

Lemma 4.4.3. With notations as above, J is always an A-invariant ideal.

Proof. For each g ∈ G, Ag · A1 · Ag−1 ⊆ Ag · Ag−1 ⊆ A1. Since I is an ideal of C∗(A) then

Ag · I ⊆ I and I · Ag−1 ⊆ I. Therefore, Ag · J · Ag−1 ⊆ J and by the lemma above J is

A-invariant.

Since J is an A-invariant ideal by the lemma above we may restrict the Fell bundle

structure on A to one on Jg := J · Ag = Ag · J and it induces a Fell bundle structure on the

quotient A/J := {Ag/Jg}g∈G.

Corollary 4.4.4. With notations as above, Jg = I ∩ Ag for every g ∈ G.

Proof. Since I is an ideal of C∗(A) we have IAg ⊆ I and obvious A1Ag ⊆ Ag which this

imply directly that Jg ⊆ I ∩ Ag. On the other hand it follows from the fact that every

x ∈ I ∩ Ag can be viewed as x = limi→∞ eix = limi→∞ xei where (ei)i is an approximate

identity for J since I ∩ Ag is naturally a J-bimodule and this completes the proof.

Now, let A be a Fell bundle, C0(X) be a C*-subalgebra of A1 and P : C∗(A)→ C0(X)

be a conditional expectation which we assume to be symmetric, that is, LP = RP = NP

and, vanishes on Ag for g 6= 1. Let us denote by P1 := P |A1 restriction of the conditional

expectation P to A1 and LP = {x ∈ C∗(A) | P (x∗x) = 0} the ideal of C∗(A) as in the
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discussion after Definition 4.2.1. So, J := LP ∩ A1 is an ideal of A1. In fact, the ideal J

coincides to LP1 . Since J is an A-invariant ideal by the lemma above we may restrict the Fell

bundle structure on A to one on Jg := J · Ag = Ag · J and it induces a Fell bundle structure

on the quotient A/J := {Ag/Jg}g∈G. Moreover, Jg = LP ∩Ag. So, we have the next result:

Theorem 4.4.5. With notations as above, we have

C∗
r (A/J )

∼= C∗(A)P,r.

Proof. First of all, note that P̃1 : A1/J1 → C0(X) defined by P̃1(q1(a)) = P (a) for every

a ∈ A1 is a faithful conditional expectation. Notice the C∗
r (A/J ) carries a faithful conditional

expectation onto C0(X) and the diagram below commutes:

C∗
r (A/J )

C∗
r (A) C∗(A)

A1 C0(X)

A1/J1

E
A/J
1

EA
1

qr

ΛA

qr◦ΛA=ΛA/J ◦q

P

P1

q1
P̃1

Indeed, if a ∈ Ag we have:

P̃1 ◦ E
A/J
1 ◦ qr ◦ Λ

A(jg(a)) = P̃1 ◦ E
A/J
1 ◦ ΛA/J ◦ q(jg(a))

= P̃1 ◦ q1 ◦ E
A
1 ◦ Λ

A(jg(a))

= P1 ◦ E
A
1 ◦ Λ

A(jg(a)).

= P (jg(a))

where q is the induced *-homomorphism from C∗(A) to C∗(A/J ) and here we use that P

vanishes on Ag for every g 6= 1. Since the closed linear span of the set of all jg(a), with

a ∈ Ag and g ∈ G, is dense in C
∗(A), the result follows. So, P̃1 ◦E

A/J
1 is a faithful conditional

expectation on C∗
r (A/J ) onto C0(X) such that factors P through qr ◦Λ

A. Then by Theorem

4.2.8 we are done.

Theorem 4.4.6. Let (E,C) be a finitely separated graph and c : E1 → G be a labeling

function. Then

C∗
r (E,C)

∼= C∗
r (A/J ).

Moreover, the induced coaction on C∗
r (E,C) correspond to the coaction on C∗

r (A/J ).
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Proof. Consider P : C∗(E,C) → C0(E
0) the canonical conditional expectation and the

ideal LP = {x ∈ C∗(E,C) | P (x∗x) = 0} of C∗(E,C). With the construction above,

J = {Jg}g∈G is the ideal of the Fell bundle A associated to spectral subspaces. Remember

that P is symmetric and vanishes on Ag for g 6= 1 and since δc is a maximal coaction we have

C∗(A) ∼= C∗(E,C). Therefore

C∗
r (E,C)

∼= C∗(E,C)P,r ∼= C∗(A)P,r ∼= C∗
r (A/J )

as desired.

Example 4.4.7. As we can see in Remark 3.2.24, for the separated graph (An, D) we have

C∗(An, D) ∼= C∗(Fn) where Fn is the free group generated by the n edges. Remember that

τ̃ : C∗(Fn)→ C denotes the canonical trace that we here view as a conditional expectation.

In this context, Lτ̃ = Ker(ΛG) 6= 0 since Fn is not amenable but Lτ̃ ∩ A1 = 0 because A1

coincides with C. Then the reduced C*-algebra C∗
r (A/J ) constructed above coincides with

C∗
r (A)

∼= C∗
r (Fn) since in this case J = 0.

Remark 4.4.8. Note that J = LP∩A1 depends on the choices of the labeling function c and the

group as well. Here is an example where J 6= 0. Consider the separated graph (E(n, n), C(n, n))

as we can seen in Example 3.1.6, consider Fn the free group generated by the n edges and

c : E1 → Fn as c(ei) = gi = c(fi) for all i ∈ {1, . . . , n}. In this situation elements of the

form SeiS
∗
fi
SejS

∗
fj
∈ J . The reason is because on the one hand SeiS

∗
fi
SejS

∗
fj
∈ A1 since

c(ei)c(fi)
−1c(ej)c(fj)

−1 = gig
−1
i gjg

−1
j = 1. On the other hand, set x = SeiS

∗
fi
SejS

∗
fj

and

note that

P (x∗x) = P (SfjS
∗
ej
SfiS

∗
ei
SeiS

∗
fi
SejS

∗
fj
) = P (SfjS

∗
ej
SfiS

∗
fi
SejS

∗
fj
) = 0

since ei 6= fj for every i, j. So, x ∈ LP and hence J is non-zero ideal.

Remark 4.4.9. Note that the normalization of δc is in fact something between the full and

reduced separated graph C*-algebras since C∗
r (A) is the normalization of C∗(A) as we can

see below:

C∗(A) C∗
r (A) C∗

r (A/J )

C∗(E,C) C∗
? (E,C) C∗

r (E,C)

∼=

normalization

∼=

normalization
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The same happens for δrc where the maximization of this normal coaction is in fact

C∗(A/J ):

C∗(A) C∗(A/J ) C∗
r (A/J )

C∗(E,C) C∗
? (E,C) C∗

r (E,C)

∼=

maximalization

∼=

maximalization
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5 TAME C*-ALGEBRAS OF SEPARATED GRAPHS

In this chapter, we present another C*-algebra associated with a separated graph called

the tame separated graph C*-algebra. The motivation to study this particular C*-algebra is

because the C*-algebra C∗(E,C) seen before is quite different compared to the usual graph

C*-algebras for non-separated graphs. One of the reasons is that the final projections of partial

isometries coming from different sets of the partitions of Cv do not need to commute. In order

to remedy this problem, a different C*-algebra was considered in [3], denoted by O(E,C).

The goal of this chapter is to extend some results seen in Chapter 3 to the tame C*-algebra

O(E,C).

Definition 5.0.1. A set S of partial isometries in a *-algebra A is said to be tame if every

element of U = 〈S ∪ S∗〉, the multiplicative semigroup generated by S ∪ S∗, is a partial

isometry.

Remark 5.0.2. As can be seen from [[26], Lemma 5.3], the product uv is a partial isometry

if and only if u∗u and vv∗ commute for u, v partial isometries. In fact, by [[26], Proposition

5.4], u ∈ U is a partial isometry if and only if for all u, u′ ∈ U the elements uu∗ and u′u′∗

commute.

Now, let (E,C) be a separated graph, S = {Se}e∈E1 be the generating family of partial

isometries of C∗(E,C) and let U be the multiplicative semigroup of C∗(E,C) generated by

S ∪ S∗. For u ∈ U we write e(u) := uu∗.

Definition 5.0.3. With notations as above, the tame graph C*-algebra of (E,C) is defined

as the C*-algebra

O(E,C) := C∗(E,C)/J

where J is the closed two-sided ideal of C∗(E,C) generated by all the commutators [e(u), e(u′)]

for u, u′ ∈ U .1

Remark 5.0.4. By Remark 5.0.2, the ideal J = 〈[e(u), e(u′)] | u, u′ ∈ U〉 = 〈e(u)u−u | u ∈ U〉

where the last one is the closed two sided ideal generated by e(u)u− u for every u ∈ U .

Also, considering Jab as the algebraic (two-sized) ideal of L(E,C) generated by all

commutators [e(u), e(u′)] for u, u′ ∈ U we define:

Lab(E,C) := L(E,C)/Jab.

In this way we can consider the C*-algebra O(E,C) as the enveloping C*-algebra of Lab(E,C).

Observe that J precisely forces the set S to be tame in these quotients. To understand

better let us compare with the case of non-separated graphs. In this case every element of the

multiplicative semigroup U is a partial isometry, that is, the ideal J is equal to zero. In fact,

1Remember that [e(u), e(u′)] := e(u)e(u′)− e(u′)e(u).
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U = {SµS
∗
ν | µ, ν ∈ Path(E) with r(µ) = r(ν)} essentially by Lemma 2.2.6. More precisely,

if we take u = SµS
∗
ν and u′ = Sµ′S

∗
ν′ with r(µ) = r(ν) and r(µ′) = r(ν ′), we have

e(u) = uu∗ = SµS
∗
νSνS

∗
µ

= SµPr(ν)S
∗
µ

= SµS
∗
µ

Similarly, e(u′) = u′u′∗ = Sµ′S
∗
µ′ . By Lemma 2.2.6 the commutator is zero. For example, for

the case where µ′ = µη for some η ∈ Path(E) we have

e(u)e(u′) = uu∗u′u′∗ = SµS
∗
µSµ′S

∗
µ′

= SµS
∗
µSµSηS

∗
ηS

∗
µ

= SµSηS
∗
ηS

∗
µ

= SµSηS
∗
ηS

∗
µSµS

∗
µ

= Sµ′S
∗
µ′SµS

∗
µ

= uu∗uu′∗ = e(u′)e(u)

Others cases are analogous. However, in the case of separated graphs, the situation changes.

We can see that not every element of U is a partial isometry because, for example, if e, f ∈ E1

with e ∈ X and f ∈ Y for X, Y ∈ Cv, then S
∗
eSf is not always a partial isometry because

SeS
∗
e does not need to commute with SfS

∗
f .

Now, let c : E1 → G be a labeling function and consider the associated coaction δc

of G on C∗(E,C). The natural question for us is: Can we factor the coaction δc of C
∗(E,C)

through O(E,C)?

The following will give an answer to this question.

Proposition 5.0.5. With definitions as above, J is a strongly δc-invariant ideal. Moreover,

the generating commutators of J are fixed by δc, that is, δc(x) = x⊗ 1 for all commutators

x = [e(u), e(u′)] with u, u′ ∈ U .

Proof. It is straightforward to check that for every u ∈ U we have δc(u) = u⊗c(u) by definition.

There is a slight abuse of notation here when we write c(u). For example, if u = SµS
∗
ν then

c(u) := c(µ)c(ν)−1. We continue to use this notation for simplicity. Observe that for all u ∈ U

we have δc(e(u)) = δc(uu
∗) = δc(u)δc(u)

∗ = e(δc(u)) since δc is a *-homomorphism. We claim

that all commutators are fixed by the coaction δc, that is, δc([e(u), e(u
′)]) = [e(u), e(u′)]⊗ 1
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for all u, u′ ∈ U . We compute:

δc([e(u), e(u
′)]) = δc(e(u)e(u

′)− e(u′)e(u))

= δc(e(u))δc(e(u
′))− δc(e(u

′))δc(e(u))

= e(δc(u))e(δc(u
′))− e(δc(u

′))e(δc(u))

= δc(u)δc(u)
∗δc(u

′)δc(u
′)∗ − δc(u

′)δc(u
′)∗δc(u)δc(u)

∗

= uu∗u′u′∗ ⊗ c(u)c(u)−1c(u′)c(u′)−1

︸ ︷︷ ︸
1

−u′u′∗uu∗ ⊗ c(u′)c(u′)−1c(u)c(u)−1

︸ ︷︷ ︸
1

= (uu∗u′u′∗ − u′u′∗uu∗)⊗ 1

= [e(u), e(u′)]⊗ 1

Therefore, δc(x) = x ⊗ 1 for all commutators x in J . Now, to see that J is a strongly δc-

invariant ideal we are going to use the nondegeneracy of δc. Set A := C∗(E,C), consider X

the set of all commutators and thus we have J = AXA, meaning the closed linear span of

elements axb for a, b ∈ A and x ∈ X. First of all, note that

δc(axb) = δc(a)(x⊗ 1)δc(b) ∈ (A⊗ C∗(G))(X ⊗ 1)(A⊗ C∗(G)) ⊆ AXA⊗ C∗(G).

By linearity and continuity we have δc(J)(1⊗ C
∗(G)) ⊆ J ⊗ C∗(G). On the other hand, for

every y ∈ J , y can be approximately by an element of the form
∑

i aixibi where ai, bi ∈ A

and xi ∈ X. Then,

∑

i

aixibi ⊗ g =
∑

i

(aixi ⊗ g)(bi ⊗ 1) =
∑

i

∑

j

(aixi ⊗ g)δc(b
j
i )(1⊗ gj)

=
∑

i

∑

j

(ai ⊗ g)(xi ⊗ 1)δc(b
j
i )(1⊗ gj)

=
∑

i

∑

j

(ai ⊗ g)δc(xi)δc(b
j
i )(1⊗ gj)

=
∑

i

∑

j

(ai ⊗ g)δc(xib
j
i )(1⊗ gj)

=
∑

i

∑

j

∑

k

(1⊗ gk)δc(a
k
i )δc(xib

j
i )(1⊗ gj)

=
∑

i

∑

j

∑

k

δc(a
k
i xib

j
i )(1⊗ gkgj)

where here for each i we used that bi⊗1 can be approximated by
∑

j δc(b
j
i )(1⊗gj) and ai⊗g by∑

k(1⊗ gj)δc(a
k
i ) since δc is nondegenerate. With this, we conclude that δc(J)(1⊗ C

∗(G)) =

J ⊗ C∗(G) as desired.

It follows from Proposition 2.6.16 that δc factors through a coaction δJc on the quotient

O(E,C). Therefore we can consider the crossed product O(E,C) ⋊δJc
G. Moreover, the

quotient map q : C∗(E,C) ։ O(E,C) is δc − δJc equivariant and, consequently, we get
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a surjective *-homomorphism q ⋊ G : C∗(E,C) ⋊δc G ։ O(E,C) ⋊δJc
G such that q ⋊

G(jB(a)j
B
G(f)) = jB ◦ q(a)jG(f) for all a ∈ C

∗(E,C) and f ∈ C0(G).

Theorem 5.0.6. Let (E,C) be a separated graph and let c : E1 → G be a labeling function.

Then

O(E ×c G,C ×c G) ∼= O(E,C)⋊δJc
G.

Under this isomorphism, the action γ on C∗(E×cG,C×cG) induced by the translation action

on (E ×cG,C ×cG) factors through O(E ×c G,C ×c G) and corresponds to the dual action

δ̂Jc on O(E,C)⋊δJc
G.

Proof. Consider (q ⋊ G) ◦ φ : C∗(E ×c G,C ×c G) ։ O(E,C) ⋊δJc
G where φ is the iso-

morphism seen in Theorem 3.2.17 and denote by Q := q ⋊ G ◦ φ. Also, denote it by J ′

the (closed two-sided) ideal of C∗(E ×c G,C ×c G) generated by all commutators to not

cause confusion with J . To start with, we need to check that J ′ ⊆ Ker(Q) and for this it is

enough to show that for every commutator [e(u), e(u′)] ∈ J ′ we have Q([e(u), e(u′)]) = 0.

For simplicity, let us assume that u = S(µ,g)S
∗
(ν,z) and u

′ = S(µ′,g′)S
∗
(ν′,z′) with r(µ) = r(ν),

r(µ′) = r(ν ′), µ, ν, µ′, ν ′ ∈ Path(E) possibly in different subsets of C and z = gc(µ)c(ν)−1,

z′ = gc(µ′)c(ν ′)−1. The proof for u = S∗
(µ,g)S(ν,g) with s(µ) = s(ν) and µ, ν possibly in

different sets of Cv is more extensive but follows the same ideas. Then

e(u) = uu∗ = S(µ,g)S
∗
(ν,z)S(ν,z)S

∗
(µ,g) = S(µ,g)Pr(ν,z)S

∗
(µ,g) = S(µ,g)S

∗
(µ,g)

since r(ν, z) = (r(ν), zc(ν)) = (r(µ), gc(µ)) = r(µ, g). Similarly we get e(u′) = u′u′∗ =

S(µ′,g′)S
∗
(µ′,g′). Note that:

φ(e(u)) = φ(S(µ,g)S
∗
(µ,g))

= s(µ,g)s
∗
(µ,g)

= jB(SµS
∗
µ)j

B
G(χg−1).

Hence, using the same conditions 3.2.18 seen in the proof of Theorem 3.2.17 we get

φ([e(u), e(u′)]) = φ(uu∗u′u′∗ − u′u′∗uu∗)

= φ(uu∗)φ(u′u′∗)− φ(u′u′∗)φ(uu∗)

= jB(SµS
∗
µ)j

B
G(χg−1)jB(Sµ′S

∗
µ′)j

B
G(χg′−1)− jB(Sµ′S

∗
µ′)j

B
G(χg′−1)jB(SµS

∗
µ)j

B
G(χg−1)

= jB(SµS
∗
µSµ′S

∗
µ′)j

B
G(χg−1)jBG(χg′−1)− jB(Sµ′S

∗
µ′SµS

∗
µ)j

B
G(χg′−1)jBG(χg−1)

= jB(SµS
∗
µSµ′S

∗
µ′ − Sµ′S

∗
µ′SµS

∗
µ)j

B
G(χg−1)

= jB([e(w), e(w
′)])jBG(χg−1)

(5.0.7)
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where we used here that χg−1 · χg′−1 is non-zero if and only if g = g′ and [e(w), e(w′)] ∈ J

since we can write w = SµS
∗
ν and w′ = Sµ′S

∗
ν′ . Therefore

Q([e(u), e(u′)]) = q ⋊G ◦ φ([e(u), e(u′)])

= q ⋊G(jB([e(w), e(w
′)])jBG(χg−1))

= jB(q([e(w), e(w
′)]))jBG(χg−1)

= 0

This shows that φ factors through a surjective *-homomorphism

φ̃ : O(E ×c G,C ×c G) ։ O(E,C)⋊δJc
G

such that φ̃(P(v,g)) = p(v,g) and φ̃(S(e,g)) = s(e,g) for all v ∈ E
0, e ∈ E1 and g ∈ G.

To see that φ̃ is injective, we are going to use the same idea as in Theo-

rem 3.2.17, that is, we need to get a covariant representation of (O(E,C), C0(G))

to M(O(E ×c G,C ×c G)). For this, consider the covariant representation (π, σ) of

(C∗(E,C), C0(G)) to M(C∗(E ×c G,C ×c G)) defined in Theorem 3.2.17 and com-

posed with the canonical map M(C∗(E ×c G,C ×c G)) → M(O(E ×c G,C ×c G)).

We need to prove that the covariant representation (π, σ) of (C∗(E,C), C0(G)) to

M(O(E ×c G,C ×c G)) factors through on O(E,C). Again, for simplicity let us assume that

u = SµS
∗
ν and u′ = Sµ′S

∗
ν′ with r(µ) = r(ν), r(µ′) = r(ν ′) and µ, µ′ eventually in different

sets of C. The general case is analogous. Then

e(u) = uu∗ = SµS
∗
νSνS

∗
µ = SµPr(ν)S

∗
µ = SµS

∗
µ.

Similarly we get e(u′) = u′u′∗ = Sµ′S
∗
µ′ . Hence we have

π(e(u)) = π(SµS
∗
µ)

=

(∑

g∈G

S(µ,g)

)(∑

h∈G

S∗
(µ,h)

)

=
∑

g∈G

S(µ,g)S
∗
(µ,g)

where here we used that the last summand is non-zero if and only if g = h . Therefore

π([e(u), e(u′)]) = π(uu∗u′u′∗ − u′u′∗uu∗)

= π(uu∗)π(u′u′∗)− π(u′u′∗)π(uu∗)

=

(∑

g∈G

S(µ,g)S
∗
(µ,g)

)(∑

h∈G

S(µ′,h)S
∗
(µ′,h)

)
−

(∑

h∈G

S(µ′,h)S
∗
(µ′,h)

)(∑

g∈G

S(µ,g)S
∗
(µ,g)

)

=

(∑

g∈G

S(µ,g)S
∗
(µ,g)S(µ′,g)S

∗
(µ′,g) − S(µ′,g)S

∗
(µ′,g)S(µ,g)S

∗
(µ,g)

)

= [e(w), e(w′)]
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where the products of summands above are non-zero if h = g and µ, µ′ possibly belongs

to different sets in the same Cv, v ∈ E0. So, [e(v), e(v′)] is in fact a commutator when

we consider w =
∑

g∈G S(µ,g)S(ν,z) and w
′ =

∑
h∈G S(µ′,h)S(ν′,z′) with z = gc(µ)c(ν)−1 and

z′ = hc(µ′)c(ν ′)−1. Therefore, since [e(v), e(v′)] ∈ J ′ we conclude that J ⊆ Ker(π) and in this

way π factors through a *-homomorphism π′ : O(E,C)→M(O(E ×c G,C ×c G)) satisfying

π′(Pv) =
∑

g∈G

P(v,g) and π′(Se) =
∑

g∈G

S(e,g)

for all v ∈ E0, e ∈ E1 and g ∈ G. For the representation of C0(G) we consider the same σ

as in Theorem 3.2.17 by looking intoM(O(E ×c G,C ×c G)), that is, define σ
′ : C0(G)→

M(O(E ×c G,C ×c G)) such that

σ′(χg) =
∑

v∈E0

P(v,g−1)

for all g ∈ G. Similarly as in Theorem 3.2.17 it is straightforward to check that (π′, σ′) is a

covariant representation for (O(E,C), G, δJc ) intoM(O(E ×c G,C ×c G)). Therefore by the

universal property there is a *-homomorphism

ψ′ := π′ × σ′ : O(E,C)⋊δJc
G→M(O(E ×c G,C ×c G))

such that π′× σ′ ◦ jB = π′ and π′× σ′ ◦ jBG = σ′. The same argument seen in Theorem 3.2.17

shows that ψ′ ◦ φ′ = id as desired.

Finally, to see the action γ factors through O(E ×c G,C ×c G) it is enough to

show that J is γ-invariant ideal. But, it is clear that γg(J) = J since γg([e(u), e(u
′)]) =

[e(γg(u)), e(γg(u
′))] because γg is *-homomorphism and the action is given by the left multi-

plication.

The proof of G-equivariance of the actions is the same as in Theorem 3.2.17 since on

generators the covariant representation does not change.

Remark 5.0.8. In [49] Nilsen shows that for any dynamical co-system (A,G, δ) and I a strongly

δ-invariant ideal, I ⋊δI G is an ideal of A⋊δ G and there is a short exact sequence

0→ I ⋊δI G→ A⋊δ G→ A/I ⋊δI G→ 0.

Since J is a strongly δc-invariant ideal of C
∗(E,C) then using Nilsen’s results it follows that

J ⋊(δc)J
G is an ideal of C∗(E,C)⋊δc G and we get

O(E,C)⋊δJc
G ∼= (C∗(E,C)⋊δc G)/(J ⋊(δc)J

G).

The calculation 5.0.7 seen in proof of the theorem above tell us that φ(J ′) is in fact the ideal

J ⋊δJ G. So, we could give an alternative proof of the theorem by observing that the diagram
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below commutes:

C∗(E ×c G,C ×c G) C∗(E,C)⋊δc G

O(E ×c G,C ×c G) O(E,C)⋊δJc
G

q

φ

q⋊G

φ̃

Since φ is an isomorphism and φ(J ′) is equal to J ⋊δJ G it follows that φ̃ is an isomorphism,

as desired.

Now, the ideal J of C∗(E,C) is a special ideal in this context. In Proposition 5.0.5 we

observe that all commutators that generate J are contained on the unit fiber A1 = C∗(E,C)1

since δc(x) = x ⊗ 1 for all x ∈ X. Now we are going to use the same idea seen in Section

4.4. Consider the ideal of A1 as the intersection of J with the unit fiber A1 and denote it

by I. Because of this, I is an A-invariant ideal and we consider Ig = Ag · I = I · Ag for

every g ∈ G. Moreover, Ig = J ∩ Ag for every g ∈ G. Thus we get the quotient Fell bundle

A/I = {Ag/Ig}g∈G.

Lemma 5.0.9. With notations as above, we have

O(E,C) ∼= C∗(A/I).

Moreover, J is isomorphic to C∗(I) and the coaction δJc of G on O(E,C) coincides with the

canonical coaction δA/I of G on C∗(A/I).

Proof. To begin with, consider the canonical morphism qJ = {qJg }g∈G from A to A/I where

qJg : Ag → Ag/Ig and the induced map qJ : C∗(A)→ C∗(A/I) such that qJ ◦jAg = j
A/I
g ◦qJg

for all g ∈ G. Since K acts trivially on the fibers by construction, to define K ′ such that the

diagram below commutes

C∗(E,C) C∗(A)

O(E,C) C∗(A/I)

K

q qJ

K′

it is enough to show that J ⊆ Ker(qJ ◦K). For this, consider a generating commutator x ∈ J

and note that x ∈ A1. So, qJ ◦K(x) = qJ(jA1 (x)) = j
A/I
1 ◦ q1(x) = 0. Then by linearity and

continuity we have J ⊆ Ker(qJ ◦K) and K ′ is a well-defined map. The surjectivity is directly.

Now, to complete the proof we need to show that there is a well-defined inverse left to

K ′. To do that, recall that we have the canonical representation σ of A in C∗(E,C) given by

the inclusions σg : Ag →֒ C∗(E,C) and therefore consider q ◦ σg : Ag → O(E,C) as a new

representation of A on O(E,C). In fact, these morphisms factors through to a representation

Ag/Ig → O(E,C) and denote by lg, that is, lg ◦ qg = q ◦ σg for every g ∈ G by construction.

Indeed, q◦σg factors because q cancel any element of J which consequently cancel any element
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of Ig. Now, we can consider the induced map l : C∗(A/I)→ O(E,C) such that l ◦ jA/Ig = lg

for every g ∈ G. We claim that l in the inverse of K ′. To see that it is enough to show that

l ◦K ′(x) = x for every x = q(y) for some y ∈ L(E,C)g. But observe that

l ◦K ′(q(y)) = l ◦ qJ ◦K(y)

= l ◦ qJ ◦ jAg (y)

= l ◦ jA/Ig ◦ qg(y)

= lg ◦ qg(y)

= q ◦ σg(y)

= q(y)

Therefore, K ′ is an isomorphism as desired.

Since by [[25], Proposition 21.15] we have the exact short sequence of C*-algebras

0→ C∗(J )→ C∗(A)→ C∗(A/J )→ 0, by the isomorphism below we have J ∼= C∗(I).

Finally, for the coincidence of coactions we just need to show that the isomorphism is G-

equivariant with respect to δJc and δA/I . In other words, we need to show (l⊗idG)◦δA/I = δJc ◦l.

To see that it enough to show for j
A/I
g (a), g ∈ G since the closed linear span of these elements

is dense in C∗(A/I). Observe that

(l ⊗ idG) ◦ δA/I(j
A/I
g (a)) = (l ⊗ idG)(j

A/I
g (a)⊗ g)

= (l ◦ jA/Ig (a))⊗ g

= lg(a)⊗ g

= q ◦ σg(a)⊗ g

= (q ⊗ idG)(σg(a)⊗ g)

= (q ⊗ idG) ◦ δc(σg(a))

= δJc (q ◦ σg(a))

= δJc (lg(a))

= δJc (l ◦ j
A/I
g (a))

This completes the proof.

Remark 5.0.10. An immediate consequence of the lemma above is that the fibers O(E,C)g is

isomorphic to Ag/Ig.

Remark 5.0.11. Since J ∼= C∗(I) this shows us that ⊕g∈GIg is dense in J which means that

J is an induce ideal in the Exel’s sense seen in [25].

Corollary 5.0.12. With notations as above, δJc is a maximal coaction, that is,

O(E,C)⋊δJc
G⋊

δ̂Jc
G ∼= O(E,C)⊗K(l2(G)).
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Proof. This follows from the previous lemma.

Corollary 5.0.13. For any separated graph (E,C) and any labeling c : E → G, there is a

canonical isomorphism

O(E ×c G,C ×c G)⋊γ G ∼= O(E,C)⊗K(l
2(G))

where γ is the action of G on C∗(E ×c G,C ×c G) induced by the translation action on

(E ×c G,C ×c G).

Proof. Follows from the Theorem 5.0.6 and Corollary 5.0.12.

Corollary 5.0.14. For a free action θ of a group G on a separated graph (E,C), there is a

canonical isomorphism

O(E,C)⋊θ G ∼= O(E/G,C/G)⊗K(l
2(G)).

Proof. Follows from Corollary 5.0.13 and the Gross-Tucker theorem for separated graphs 3.1.7.

Remark 5.0.15. Compiling all results that we have seen so far we get have the following diagram

of isomorphisms:

O(E ×c G,C ×c G)⋊γ G O(E,C)⋊δrc G⋊δ̂rc ,r
G

O(E,C)⊗K(l2(G))

5.0.6

5.0.12

Example 5.0.16. Consider the separated graph (E(1, 1), C(1, 1)) seen in Example 3.1.6 as

in the picture below:

v w

e

f

According to [[5], Proposition 2.12], we have an isomorphism

C∗(E(1, 1), C(1, 1)) ∼= M2(U1,1) ∼= M2(C(T)).

In this case it not difficult to see that O(E(1, 1), C(1, 1)) = C∗(E(1, 1), C(1, 1)), that is,

J = 0. The reason is because every “complicated” product of the form S∗
eSf commutes
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because SeS
∗
eSfS

∗
f = PwPw = SfS

∗
fSeS

∗
e . But if we change the graph a little bit, considering

(E(2, 2), C(2, 2)) as in the picture below:

v w

e1
e2

f1
f2

Then C∗(E(2, 2), C(2, 2)) ∼= M2(U2,2) and in this case it is clear that the elements S∗
eSf do

not commute. The ideal J is non zero but it is not trivial to describe.

Example 5.0.17. Another example is the Cuntz separated graph seen in Example 3.2.11. We

have already seen that C∗(An, C) ∼= C∗(Fn), where Fn is the free group generated by the

edges. In this case J = 0 and O(An, C) ∼= C∗(An, C) ∼= C∗(Fn).

Example 5.0.18. Consider the separated graph seen in Example 4.1.9 as in picture below:

v

ei

fj

Here we have C∗(E,C) ∼= C∗(EX) ∗C C
∗(EY ) ∼= On ∗C Om. We know that On is simple but

we can observe that the free product is not simple since the ideal J 6= 0.

Example 5.0.19. Another non-trivial example of a separated graph where there is a huge

difference between C∗(E,C) and O(E,C) is the following separated graph (E,C) draw as in

picture below:
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v

w1

w2

w3

w4

e1

e1

f1

f2

By [[3], Example 9.4] the corner vC∗(E,C)v is isomorphic to the free product C2 ∗C C2 but

the corner vO(E,C)v is isomorphic to C4. Here we can see the impressive reduction from

C∗(E,C) to O(E,C).

5.1 ALTERNATIVE APPROACH TO O(E,C)

Described as crossed products, the tame C*-algebras were developed by Ara and Exel in

[3] for finite bipartite separated graphs and more generally by Lolk in [44] for finitely separated

graphs as the following result:

Theorem 5.1.1 ([44], Theorem 2.10). For any finitely separated graph (E,C), there is

canonical isomorphism

O(E,C) ∼= C0(Ω(E,C))⋊θ Fn

where Ω(E,C) is a zero-dimensional locally compact Hausdorff space, θ is a topological partial

action of Fn over Ω(E,C) and C0(Ω(E,C))⋊θ Fn denotes the full crossed product.

Using this result we can give the following definition:

Definition 5.1.2. If (E,C) is a finitely separated graph, then the reduced tame C*-algebra

is the reduced crossed product

Or(E,C) := C0(Ω(E,C))⋊θ,r Fn.

Following this alternative point of view in [3], [2] and [44] one can find many examples

of tame separated graph C*-algebras described as crossed products and this facilitates the

understanding of these C*-algebras. In this section, we focus to show that there is a maximal

and normal coaction on O(E,C) and Or(E,C), respectively. Fist of all, let (E,C) be a finitely

separated graph and let c : E1 → G be a labeling function. It is straightforward to see that c

extends to Fn in the obvious way: c(w) := c(w1) . . . c(wn) and c(w
∗) := c(w)−1 for any reduce

word µ = w1 . . . wn ∈ Fn. We use the abuse notation and denote also by c : C∗(Fn)→ C∗(G)

its integrated form.
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Proposition 5.1.3. Let (E,C) be a finitely separated graph and c : E1 → G be a labeling

function. Then there is a maximal coaction ǫ on O(E,C) such that ǫ(Pv) = Pv ⊗ 1 and

ǫ(Se) = Se ⊗ c(e) for every v ∈ E
0 and e ∈ E1.

Proof. Consider C0(Ω(E,C)) ⋊θ Fn as a C*-algebra C∗(Aθ) where Aθ is the semi-direct

product bundle relative to the partial action θ as seen in Example 2.3.5. Set B := Aθ to make

notation easier. We know that δB : C∗(B) → C∗(B) ⊗ C∗(F) is always a maximal coaction

and the inflated coaction Inf(δB) : C
∗(B)→ C∗(B)⊗ C∗(G) is also maximal by Proposition

2.6.34. So, the candidate for ǫ is the maximal coaction Inf(δB) over O(E,C) provided from

the isomorphisms above.

In fact, δB : C∗(B)→ C∗(B)⊗ C∗(F) acts on generators as δB(aw) = aw ⊗ w where

aw ∈ Dw, w ∈ Fn for any reduced word and the inflated coaction Inf(δB) just applies id⊗ c,

that is, Inf(δB)(aw) = aw ⊗ c(w) for every w ∈ Fn. When we are looking at C∗(Aθ) as the

crossed product C0(Ω(E,C))⋊θ Fn we identify aw with 1wuw where 1w denotes the indicator

function on Ωw(E,C). In this way the coaction has the same behavior on generators, that is,

Inf(δB)(1wuw) = 1wuw ⊗ c(w).

Now, we can see from the proof of [[44], Theorem 2.10] that the isomorphism

O(E,C) ∼= C0(Ω(E,C)) ⋊θ Fn identifies Pv with 1vu1 and Sµ with 1µuµ where again here

1v, 1µ denote the indicators functions on Ωv(E,C) and Ωµ(E,C) for every reduced word

µ ∈ Fn. So, Inf(δB)(1vu1) = 1vu1 ⊗ 1 and Inf(δB)(1µuµ) = 1µuµ ⊗ c(µ) and this coaction

behaves in the same way as we desired.

Proposition 5.1.4. Let (E,C) be a finitely separated graph, c : E1 → G be a labeling

function and ǫ the coaction of G on O(E,C) seen in Proposition 5.1.3. Then ǫ factors through

a coaction ǫr over Or(E,C). Moreover, ǫr is the normalization of ǫ.

Proof. Consider Or(E,C) ∼= C0(Ω(E,C))⋊θ,r Fn as the C*-algebra C∗
r (B) where B = Aθ is

the same semi-direct product bundle relative to partial action θ seen in previous proposition.

So, δrB : C∗
r (B) → C∗

r (B) ⊗ C
∗(F) is a normal coaction and the inflated coaction Inf(δrB) :

C∗
r (B) → C∗

r (B) ⊗ C∗(G) is also normal by Proposition 2.6.35. By the way, Inf(δrB) is a

normalization of Inf(δB). Therefore it is enough to consider ǫr as the normal coaction Inf(δrB)

over Or(E,C) provided from the isomorphisms above and this finishes the proof.
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6 CONCLUSION

The main tasks that inspired this project were (1) to obtain a version of the Gross-

Tucker theorem allowing us to characterize exactly the separated graphs that carry a free group

action and (2) prove some duality results involving separated graph C*-algebras, generalizing

previous works on ordinary graph C*-algebras by A. Kumjian and D. Pask in [37] and also by

S. Kaliszewski, J. Quigg, and I. Raeburn in [21] and [33].

The Gross-Tucker theorem says that every separated graph carrying a free group action

is (isomorphic to) a skew product of another graph by the underlying group via a labeling

function. On the other hand, a labeling function yields a coaction on the universal C*-algebra

C∗(E,C) of a separated graph (E,C). It became then more and more clear that the key

to understanding this whole process was to realize the structure of C*-algebras of separated

graphs and to study the correlation between coactions and the associated Fell bundles. One

of our main results show that the coaction associated to a labeling function on the universal

C*-algebra of a separated graph is always a maximal coaction. This is proved by using the

universal properties of these C*-algebras and the associated Fell bundle C*-algebras.

After finishing the work on the universal separated graph C*-algebras C∗(E,C), the

second main task was to study similar problems and duality theorems for the corresponding

reduced C*-algebras C∗
r (E,C) of separated graphs. The original definition of these reduced

C*-algebras is via amalgamated free products, but it soon became clear that this definition

would make our work very hard since it is usually difficult to deal with free products. However,

these products usually carry certain faithful conditional expectations and we then had the idea

to realize reduced separated graph C*algebra as a certain reduced quotient of a C*-algebra

associated with a canonical conditional expectation. Using this tool it was then easier to prove

that our duality results on universal graph C*-algebra also factor through the reduced ones.

More than that, we were also able to describe the Fell bundles associated with a given label

on the level of the reduced C*-algebra as some quotient of the Fell bundle on the universal

C*-algebra. This description also makes it clear that the coaction on C∗
r (E,C), although

always normal, is usually not the normalization of the maximal coaction on C∗(E,C) and

vice-versa. Indeed, this picture makes it clear that the normalization of C∗(E,C) and the

maximalization of C∗
r (E,C) are certain“exotic”C*-algebras“living between them”. Moreover,

following similar ideas, it was also possible to show some of these results for the tame separated

graph C*-algebras which are special quotients of C∗(E,C).

The whole process during the development of the results of this work made it clear that

C*-algebras associated with separated graphs form a very interesting class of C*-algebras and

techniques to work with them usually involve theories from different fields of mathematics.

This work opens many new questions and stimulates new projects, some of which we

present in the following.

1. Is there an algebraic version analogues of our Theorem 3.2.17?
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2. What is the relationship of our results with the theory of generalized fixed-point algebras

seen in [13]?

3. We show that the C*-algebras C∗(E,C) and C∗
r (E,C) can be viewed as cross-sectional

C*-algebras for some Fell bundle once a labeling function c : E1 → G on the graph is

fixed. The resulting Fell bundle depends strongly on the group G and the label. This gives

rise to the question of whether these C*-algebras can also be intrinsically described as Fell

bundles even in the absence of a labeling function? Or maybe one could describe these

C*-algebras intrinsically as section C*-algebras of Fell bundles over (inverse) semigroups?

4. Can one generalize the duality results proved in this work to locally compact groups?

Regarding the first question, there is a well-established concept of smash products

associated with a G-graded algebra (see [14]) and this should play the algebraic role of the

crossed product by a coaction. At least if the group G is finite, the idea should work. But

for infinite groups, some technical issues might appear if we want to use the same analytic

techniques that we have developed in this work since we have used many infinite sums and

certain special convergent nets concerning the strict topology of a multiplier C*-algebra. For

the second question, at least in the case of ordinary graph C*-algebras, there is already

a relationship between the theory of free actions on graphs and the generalized fixed point

algebras. More precisely, if G acts freely on E by α, the generalized fixed-point algebra C∗(E)α

is isomorphic to C∗(E/G), see [50]. Moreover, the reduced crossed product C∗(E)⋊α,r G is

Morita equivalent to C∗(E)α. Does this remain valid for separated graphs?

Regarding the third question, we suspect that the C*-algebras of separated graphs can

be probably described as section C*-algebras of Fell bundles over inverse semigroups. Maybe

the theory of noncommutative Cartan pairs [see [24]] is useful for this proposal. This seems to

be a very interesting project. Finally, regarding the fourth question, there is a well-established

theory of coactions of locally compact groups, but it seems that the theory of separated graph

C*-algebra does not trivially relate to the topological setting, maybe a theory of“topological

separated graphs”needs to be developed for this.

I hope that this work will contribute significantly to the development of graph C*-

algebras, especially the separated graph C*-algebras, and will make it possible to explore and

answer many other related questions that were discussed and proposed above.
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APPENDIX A – DYNAMICAL SYSTEMS

In this appendix, we will introduce some basic framework for the study of crossed

products by actions to complement the similarities and differences between dynamical systems

and dynamical co-systems. We decided to emphasize the discreteness of G throughout this

appendix to remove any possible doubt regarding this fact. We have omitted some proofs

which are widely known and the reader can find all these facts in [60] and [51].

From now one, fix an action α of a discrete group G on a C*-algebra A.

Definition A.0.1. A dynamical system (A,G, α) consists of a discrete group G, a C*-algebra

A and an action α of G on A, that is, a homomorphism α : G→ Aut(A).

For a dynamical system (A,G, α), let Cc(G,A) be the linear span of finitely supported

functions on G with values in A, that is,

Cc(G,A) =

{∑

g∈G

agug | ag ∈ A where only finitely many a′gs are non-zero

}

where aug : G → A is defined by aug(h) = δg,ha. One equips Cc(G,A) with a product and

involution defined by

(aug)(buh) = aαg(b)ugh and (aug)
∗ = αg−1(a∗)ug−1

for all a, b ∈ A and g, h ∈ G. Linearly extending these operations Cc(G,A) becomes a

*-algebra.

Definition A.0.2. Let B a C*-algebra. A covariant representation (π, µ) of (A,G, α) consists

of a representation π : A→M(B) and a unitary representation µ : G→M(B) such that

π(αg(a)) = µgπ(a)µ
∗
g

for every a ∈ A and g ∈ G.

Proposition A.0.3. Given a C*-algebra B, for every covariant representation (π, µ) of

(A,G, α) there is a *-homomorphism π × µ : Cc(G,A) → M(B), called the integrated

form of (π, µ), such that

π × µ

(∑

g∈G

agug

)
=
∑

g∈G

π(ag)µg.

It is not hard to see that π × µ is well defined and satisfies ‖(π × µ)(x)‖ 6 ‖x‖1 for

all x ∈ Cc(G,A). The full C*-algebra norm on Cc(G,A) is defined by

‖.‖ := sup ‖(π × µ)(.)‖

where the supremum is taken over all covariant representations (π, µ) of (A,G, α).
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Definition A.0.4. The full crossed product, denoted A⋊α G, is the completion of Cc(G,A)

with respect to the full C*-algebra norm.

Example A.0.5. A especial case is when A = C and α is the trivial action of G on C, that

is, αg(z) = z, for all z ∈ C and g ∈ G. We denote this action by“tr”. Then it easy to see that

C∗(G) ∼= C⋊tr G.

Example A.0.6. More generally, if we have a trivial action of G on A then A ⋊tr G is

isomorphic to A⊗max C
∗(G).

Example A.0.7. Let θ ∈ R and Z act on T by rotation through θ. This induces an action of Z

on C(T), that is, Rθ : Z→ Aut(C(T)) such that (Rθ)n(f)(z) = f(e−2πinθz) for every n ∈ Z,

f ∈ C(T) and z ∈ T. Therefore (C(T,Z, Rθ)) is a dynamical system and the resulting crossed

product C0(T)⋊Rθ
Z is isomorphic to Aθ, the universal C*-algebra generated by unitaries u

and v satisfying uv = e2πiθvu.

Example A.0.8. One of the most interesting example is the dynamical system (C0(G), G, τ).

Define an action τ : G→ Aut(C0(G)) given by the left translation, that is,

τg(f)(h) = f(g−1h)

for all f ∈ C0(G) and g, h ∈ G. We claim that the crossed product C0(G)⋊τ G is isomorphic

to K(l2(G)). For this, let M : C0(G) → B(l2(G)) be the regular representation of C0(G)

as multiplication operators on l2(G) and let λG : G → B(l2(G)) denote the left regular

representation, that is, Mf (ξ)(g) = f(g)ξ(g) and λGg (ξ)(h) = ξ(g−1h) for all f, ξ ∈ C0(G)

and g, h ∈ G. Thus (M,λG) is a covariant representation of (C0(G), G, τ) since for all

f ∈ C0(G), ξ ∈ Cc(G) and g, h ∈ G we have:

(Mτg(f)λ
G
g )(ξ)(h) =Mτg(f)(λ

G
g (ξ))(h)

= τg(f)(h)λ
G
g (ξ)(h)

= f(g−1h)ξ(g−1h)

= (f.ξ)(g−1h)

= λGg (f.ξ)(h)

= λGg (Mf (ξ))(h)

= (λGgMf )(ξ)(h).

By universal property there is a *-homomorphism M × λG : C0(G) ⋊τ G → B(l2(G)) such

that

(M × λG)

(∑

g∈G

fug

)
=
∑

g∈G

Mfλ
G
g

The fact that M × λG is faithful is not a trivial result but can be seen as a special case of

[[12], Proposition 4.1.7].
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Now, it is enough to show that Im(M × λG) := span{Mfλ
G
g | f ∈ C0(G), g ∈ G} is

equal to K(l2(G))1. To see this, observe that

Mχg(ξ)(h) = δg,hξ(h) = χg〈χg, ξ〉(h) = |χg〉〈χg|(ξ)(h)

for all ξ ∈ C0(G) and g, h ∈ G. By linearity and continuity we have Mf is a compact operator

for all f ∈ C0(G). Since K(l
2(G)) is an ideal of B(l2(G)) we conclude that Im(M × λG) ⊆

K(l2(G)). To prove the otherwise it is enough to observe that for all ξ ∈ l2(G) and g, h, k ∈ G

we have

|χg〉〈χh|(ξ)(k) = χg〈χh, ξ〉(k)

= δg,kξ(h)

= δg,kξ(hg
−1k)

=Mχgλ
G
gh−1(ξ)(k).

Again by linearity and continuity we conclude K(l2(G)) ⊆ Im(M × λG), as desired.

Example A.0.9. If we consider the action τ : G → Aut(C0(G)) by the right translations

then the result of Example A.0.8 is the same since the proof is similar considering ρG the

right regular representation of G. Alternatively one can consider the automorphism f 7→ f̃ ,

where f̃(g) = f(g−1) of C0(G) and check that this commutes the left and right regular

representation, so that both dynamical systems are isomorphic.

Now, we will present a definition of reduced crossed products by actions. For this,

let π : A → B(H) be a faithful representation. Consider the Hilbert space l2(G,H) as a

completion of Cc(G,H) via the inner-product defined by 〈ξ, η〉 :=
∑

g∈G〈ξg, ηg〉H . Using the

canonical isomorphism l2(G,H) ∼= H ⊗ l2(G) we are able to define ψ : A → B(l2(G,H))

such that ψ(a)(ξ)g = π(αg−1(a))(ξg) for all a ∈ A, ξ ∈ Cc(G,H) and g ∈ G. Note that ψ is

a bounded *-homomorphism with ‖ψ(a)(ξ)‖ 6 ‖a‖‖ξ‖. Also, define U : G → B(l2(G,H))

as Ug(ξ)h = ξg−1h. Actually Ug ∈ U(l
2(G,H)) so that U is a unitary representation of G. We

claim that (ψ,U) is a covariant representation. In fact note that

(ψ(αg(a))Ug)(ξ)h = (ψ(αg(a))(Ug(ξ))h

= π(αh−1(αg(a)))(Ug(ξ)h)

= π(αh−1g(a))ξg−1h

= ψ(a)(ξ)g−1h

= Ug(ψ(a)(ξ))h

Therefore, define ΛA⋊αG := ψ ⋊ U as a integrated form for (ψ,U) in B(l2(G,H)) and call

this the regular representation associated to π. Note that ΛA⋊αG is faithful on Cc(G,A).

1K(l2(G)) can be seen as span{|ξ〉〈η| | ξ, η ∈ l2(G)} where |ξ〉〈η| is defined by |ξ〉〈η|(ς) = ξ〈η, ς〉 for all
ξ, η, ς ∈ l2(G).
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Definition A.0.10. The reduced crossed product, denoted by A ⋊α,r G, is a completion of

Cc(G,A) with respect to reduced norm defined by ‖f‖r := ‖Λ
A⋊αG‖.

Remark A.0.11. One can show that ‖.‖r does not depend on the representation π.

Example A.0.12. If we consider the trivial action of G on A we have that C⋊tr,rG = C∗
r (G).

Example A.0.13. In the special case of Example A.0.8 C0(G)⋊τ G = K(l2(G)) is simple so

that C0(G)⋊τ,r G ∼= C0(G)⋊τ G ∼= K(l
2(G)) even“G is not amenable”.

Example A.0.14. If we have a trivial action of G on A then A⋊tr,r G ∼= A⊗ C∗
r (G).

The following gives us a universal property for dynamical systems.

Theorem A.0.15. Let (A,G, α) be a dynamical system and B a C*-algebra. Then there is

a universal covariant representation (ιA, ιG) of (A,G) inM(A ⋊α G) and for any covariant

representation (π, µ) of (A,G) inM(B) there is a representation π × µ : A⋊α G→M(B)

such that π × µ ◦ ιA = π and π × µ ◦ ιG = µ. Moreover, A ⋊α G = span{ιA(a)ιG(f) | a ∈

A and f ∈ Cc(G)}.

Conversely, if ρ : A ⋊α G → M(B) be a *-homomorphism then π := ρ ◦ ιA and

µ := ρ ◦ ιG define a covariant representation of (A,G, α) intoM(B).

Proposition A.0.16. Let (A,G, α) be a dynamical system, (ιA, ιG) be the universal covariant

representation of (A,G) intoM(A⋊αG) and u denote the canonical map from G into C∗(G).

Then there is a coaction of G on A⋊α G defined as the integrated form:

α̂ := (ιA ⊗ 1)× (ιG ⊗ u) : A⋊α G→ (A⋊α G)⊗ C
∗(G).

Proof. To begin with, let ιA : A → M(A ⋊α G) and ιG : G → M(A ⋊α G) the universal

covariant representation. Define ιA ⊗ 1 : A→M(A⋊α G⊗C
∗(G)) such that (ιA ⊗ 1)(a) =

ι(a)⊗ 1 and ιG⊗u : G→M(A⋊αG⊗C
∗(G)) such that (ιG⊗u)g = ιG(g)⊗ug. We claim

that (ιA ⊗ 1, ιG ⊗ u) is a covariant representation of (A,G, α). Since (ιA, ιG) is the universal

covariant representation of (A,G, α) we have

(ιA ⊗ 1)(αg(a))(ιG ⊗ u)g = (ιA(αg(a))⊗ 1)(ιG(g)⊗ ug)

= ιA(αg(a))ιG(g)⊗ ug

= ιG(g)ιA(a)⊗ ug

= (ιG(g)⊗ ug)(ιA(a)⊗ 1)

= (ιG ⊗ u)g(ιA ⊗ 1)(a)

for all a ∈ A and g ∈ G. Therefore, by the universal property of (A,G, α) we get a *-

homomorphism α̂ := (ιA ⊗ 1) × (ιG ⊗ u) : A ⋊α G → M((A ⋊α G) ⊗ C
∗(G)) such that

α̂◦ιA = ιA⊗1 and α̂◦ιG = ιG⊗u. This is the integrated form of (ιA⊗1, ιG⊗u). In fact, α̂ take
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values in (A⋊αG)⊗C
∗(G) since α̂(ιA(a)ιG(g)) = (ιA(a)⊗1)(ιG(g)⊗ug) = ιA(a)ιG(g)⊗ug.

To see the coaction identity we have to note that

(α̂⊗ idG) ◦ α̂(iA(a)) = (α̂⊗ idG)(ιA(a)⊗ 1))

= iA(a)⊗ 1⊗ 1

= (id⊗ δG)(ιA(a)⊗ 1)

= (id⊗ δG) ◦ α̂(iA(a))

and

(α̂⊗ idG) ◦ α̂(iG(g)) = (α̂⊗ idG)(ιG(g)⊗ ug))

= iG(g)⊗ ug ⊗ ug

= (id⊗ δG)(ιG(g)⊗ ug)

= (id⊗ δG) ◦ α̂(iG(g))

So, by linearity and continuity we get the coaction identity. Finally, for nondegeneracy, observe

that for each a ∈ A and g, k ∈ G we have

ιA(a)ιG(g)⊗ k = (ιA(a)ιG(g)⊗ g)(1⊗ g
−1k)

= ((ιA ⊗ 1)(a)(ιG ⊗ u)(g))(1⊗ g
−1k)

= α̂(ιA(a)ιG(g))(1⊗ g
−1k)

and since the closed linear span of ιA(a)ιG(g) is dense in A⋊α G it follows that α̂ is nonde-

generate as desired.

Proposition A.0.17 (Imai-Takai duality, [48], Corollary 2.12). Let α : G → Aut(A) be an

action. Then the coaction α̂ is always maximal, that is,

(A⋊α G)⋊α̂ G ∼= A⊗K(l2(G)).

Remark A.0.18. In the caseG is abelian it is straightforward to check that the coaction α̂ defined

above corresponds to the action α̂ of Ĝ on A⋊αG given by α̂χ(ιA(a)ιG(g)) = ιA(a)ιG(g)χ(g)

and consequently we have

(A⋊α G)⋊α̂ Ĝ ∼= A⊗K(l2(G)).

In the literature this result is known as the Takai-Takesaki duality.

Proposition A.0.19. The dual coaction α̂ can be factored through a coaction α̂r on A⋊α,rG.

Indeed, α̂r is the normalization of α̂.



131

APPENDIX B – HILBERT MODULES

This appendix contains some basic facts on Hilbert modules and adjointable operators.

We omit any demonstration but the reader can find all these facts in [40], [12] and [56].

Definition B.0.1. Let B be a C*-algebra. A (right) pre-Hilbert B-module is a complex vector

space E which is a right B-module equipped with a B-inner product 〈·, ·〉B : E × E → B,

that is, a linear map in the second variable and conjugate-linear in the first satisfying for all

ξ, η ∈ E and b ∈ B,

1. 〈ξ, ηb〉B = 〈ξ, η〉Bb;

2. 〈ξ, η〉∗B = 〈η, ξ〉B;

3. 〈ξ, ξ〉B ≥ 0 in B;

4. 〈ξ, ξ〉B = 0 implies ξ = 0.

A (left) pre-Hilbert B-module is defined in a similar way but in this case, we require the inner

product, usually denoted by B〈·, ·〉, to be B-linear in the first variable and thus conjugate-linear

in the second.

Remark B.0.2. The axioms (1) and (3) imply that 〈ξb, η〉B = b∗〈ξ, η〉B. Consequently, we

have 〈E , E〉B := span{〈ξ, η〉B | ξ, η ∈ E} is a closed ideal in B.

Lemma B.0.3. Let E be a pre-Hilbert B-module and ξ, η ∈ E . Then

〈ξ, η〉∗B〈ξ, η〉B ≤ ‖〈ξ, ξ〉B‖〈η, η〉B.

Corollary B.0.4. Let E be a pre-Hilbert B-module. Then ‖ξ‖ := 〈ξ, ξ〉1/2B is a norm on E .

Definition B.0.5. A (right) Hilbert B-module is a pre-Hilbert B-module E that is complete

in the norm coming from the B-inner product defined above. We say that E is full if 〈E , E〉B

is dense in B.

Example B.0.6. Every complex Hilbert space H is a Hilbert C-module in the canonical way

using the convention that inner products on Hilbert spaces are linear in the second variable.

Example B.0.7. A C*-algebra B can be viewed as a right Hilbert B-module with right module

action given by the multiplication and B-inner product defined by 〈a, b〉B := a∗b for every

a, b ∈ B. Similarly, if we define B〈a, b〉 := ab∗ as an inner product, B becomes a left Hilbert

B-module. Consequently, a closed ideal I in B can be viewed as a left and right Hilbert

B-module. In fact an ideal I in B is a Hilbert B-module if only if I is closed in B.
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Example B.0.8. Let be a family of Hilbert B-modules (Ei)i∈I , then the algebraic direct sum

⊕i∈IEi is a pre-Hilbert B-module with the module action defined coordinate-wise and B-inner

product defined as 〈ξ, η〉 :=
∑ finite

i∈I 〈ξi, ηi〉Ei where ξ = (ξi)i∈I and η = (ηi)i∈I . Its completion

is a Hilbert B-module.

Definition B.0.9. Given Hilbert B-modules E ,F , we say that a map T : E → F is adjointable

if there exists a (necessarily unique) map T ∗ : F → E satisfying

〈T (ξ), η〉B = 〈ξ, T ∗(η)〉B

We say that T ∗ is the adjoint of T and we denote by L(E ,F) the set of adjointable maps.

Proposition B.0.10. Let E ,F be Hilbert B-modules. Then adjointable maps are automatically

B-linear and bounded, and L(E ,F) is a Banach space with the operator norm. Moreover,

L(E) := L(E , E) is a C*-algebra.

Remark B.0.11. Not every B-linear bounded map between Hilbert B-modules is adjointable.

Example B.0.12. Let E and F be Hilbert B-modules. For each ξ ∈ E and η ∈ F there is an

adjointable operator |ξ〉〈η| : E → F defined by |ξ〉〈η|(ζ) = ξ〈η, ζ〉B for every ζ ∈ E which its

adjoint is |η〉〈ξ|. The closed linear span of operators of this form is denoted by K(E ,F).

The K(E ,F) is also a Banach space with the operator norm, and K(E) is a closed

ideal of L(E). We recall that L(E) has a natural structure of Hilbert L(E)-module given by

composition.

Proposition B.0.13. If E is a Hilbert B-module thenM(K(E)) is isomorphic to L(E).

Definition B.0.14. Let A and B be C*-algebras. An imprimitivity A,B-bimodule is an A,B-

bimodule E such that

1. E is a left full Hilbert A-module and a full right Hilbert B-module;

2. A〈ξ, η〉ζ = ξ〈η, ζ〉B for every ξ, η, ζ ∈ E .

Example B.0.15. A C*-algebra B has a canonical structure of imprimitivity B,B-bimodule

with left inner product B〈a, b〉 = ab∗ and right inner product 〈a, b〉B = a∗b.

Example B.0.16. A full Hilbert B-bimodule is an imprimitivity K(E), B-bimodule.

Definition B.0.17. Given C*-algebras A and B, we say that A is a strongly Morita equivalent

or Morita-Rieffel-equivalent to B if there exists an imprimitivity A,B-bimodule.
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