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RESUMO

Neste trabalho estudou-se as correlações quânticas de emaranhamento, não-localidade
de Bell, discórdia quântica e coerência, no modelo de Computação Quântica Deter-
minística com um Qubit (DQC1). Como sugerido em algumas literaturas, o emaran-
hamento não é o recurso quântico responsável pela vantagem sobre a Computação
Clássica para calcular o traço normalizado de qualquer matriz unitária. Para o caso
estudado, DQC1 com dois qubits (qubit de controle e um auxiliar), encontramos emaran-
hamento nulo, como esperado de estudos anteriores na literatura. Portanto, adicionamos
uma pós-seleção com um filtro específico ao final do circuito a fim de promover outras
correlações quânticas como emaranhamento e violação da desigualdade de Bell. Isso
nos permitiu realizar um processo de purificação no qubit auxiliar através de um pro-
grama de otimização do parâmetro do filtro η e pureza do qubit auxiliar. Fizemos duas
análises das correlações quânticas médias geradas: uma fixando o parâmetro do filtro
cumulativo e executando 400 vezes o circuito DQC1 com a pós-seleção; e a outra com
a otimização da pureza para que esta atingisse 0.99. Foi possível verificar o mesmo
padrão nos gráficos da média dos valores das correlações quânticas para o DQC1 com
104 matrizes unitárias aleatórias e qubit de controle aleatório. Conseguimos alcançar
violação da desigualdade de Bell e emaranhamento para uma pureza do qubit auxiliar
pouco acima de 0.53. Analisamos a densidade de estados gerados pelas correlações
quânticas e constatamos que conforme o parâmetro do filtro η aumenta acessamos
menos estados com outras correlações quânticas como emaranhamento e violação
da desigualdade de Bell. E verificamos, como esperado, que podemos ter violação da
desigualdade de Bell apenas para estados emaranhados.



RESUMO EXPANDIDO

Introdução

A Mecânica Quântica surge no século XX em resposta a teorias de escala não atômica

e busca explicar fenômenos antes sem uma teoria sólida. Essa teoria de caráter prob-

abilístico surgiu em conjunto com a Teoria da Informação e Computação Quântica e

apresentam fortes conexões principalmente no ramo da Mecânica Estatística com a

formulação da Entropia. Outra característica em comum é a presença do conceito de

correlação. Em informação quântica esta propriedade pode ser expressa em termos de

uma quantidade chamada informação mútua, que detecta a quantidade de informação

que pode ser obtida de uma variável aleatória ao analisarmos outra variável.

Em informação quântica a caracterização das correlações foi introduzida a partir de

1935 com o artigo de Einstein, Podolsky e Rosen (EINSTEIN; PODOLSKY; ROSEN,

1935) que propõem um experimento mental a fim de testar a completude da mecânica

quântica. Em resposta ao paradoxo EPR, como ficou conhecido, Schrödinger

(SCHRÖDINGER, 1935) estabeleceu o conceito de emaranhamento, que pode demon-

strar uma característica não local da mecânica quântica. Se dois estados estão emaran-

hados, uma medida em uma parte do sistema pode interferir na outra mesmo que estes

estejam separadas espacialmente.

Foi em 1964 que John Bell (BELL, 1964) inventou uma maneira de testar se existem

modelos de variáveis ocultas locais que completariam a mecânica quântica. Desen-

volveu uma teoria que foi quantificada através de um conjunto de condições, atual-

mente conhecidas como desigualdades de Bell, que são violadas apenas para sis-

temas emaranhados. Aspect (ASPECT; GRANGIER; ROGER, 1982) foi o primeiro

a verificar experimentalmente essas desigualdades e indicar aspectos não locais da

mecânica quântica.

Foi somente a partir de 1980 que o emaranhamento passou a ser considerado um re-

curso disponível na natureza. Estados emaranhados foram usados para executar com

eficiência tarefas que usavam anteriormente apenas recursos clássicos. O emaran-

hamento foi considerado a única manifestação de correlações quânticas em sistemas

compostos até o final do século XX. Ollivier & Zurek (OLLIVIER; ZUREK, 2001) e Vidal

& Werner (VIDAL; WERNER, 2002) mostraram que as correlações quânticas existem

mesmo quando os sistemas são separáveis (sistemas sem emaranhamento). Essa

classe de correlação foi chamada de discórdia quântica.

A correlação quântica chamada coerência só foi estudada em 2014 por Braumgratz

et.al. (BAUMGRATZ; CRAMER; PLENIO, 2014) e descreve o caráter da superposição

de estados em relação a uma determinada base de medida. A capacidade dos sis-

temas quânticos existirem em "estados de superposição" denota a incapacidade da

física clássica em explicar certos conceitos, sendo o emaranhamento um deles. Diz-se

que os estados em superposição possuem coerência quântica.



A computação quântica se desenvolveu bastante na última década. Com Feynman

(FEYNMAN, 1982), observou-se que nenhum sistema clássico poderia simular com

eficiência um sistema quântico. Existem alguns modelos computacionais universais

diferentes para executar a computação quântica, entre eles: Circuital - onde um con-

junto de qubits é inicializado em estados puros e uma sequência de operações lógicas

é executada e ao final os qubits são medidos; Computação Adiabática - no qual é

estabelecida uma evolução contínua do estado do sistema, os qubits de entrada são

descritos pelo estado fundamental de um hamiltoniano inicial e o resultado da com-

putação é expressa pelo estado fundamental do hamiltoniano final (FARHI et al., 2000);

Computação baseada em medidas - com operações representadas por medidas e op-

erações controladas (RAUSSENDORF; BROWNE; BRIEGEL, 2003), além de modelos

restritos tal como a Computação Quântica Determinística com um Qubit (DQC1) - em

que um conjunto de n qubits inicializado no estado maximamente misto e um qubit

semi-puro, realizam o cálculo do traço normalizado de uma matriz unitária através da

aplicação de uma porta unitária controlada pelo qubit semi-puro (KNILL; LAFLAMME,

1998).

Objetivos

Nesta dissertação discutiremos o modelo de Computação Quântica Determinística com

um Qubit, que calcula o traço normalizado de qualquer matriz unitária de maneira mais

eficiente que com a computação clássica (DATTA; SHAJI; CAVES, 2008). O objetivo é

promover correlações quânticas, como emaranhamento e não-localidade de Bell, para

esse modelo de computação restrito através de um processo de pós-seleção com a

aplicação de uma porta filtro ao final do circuito.

Metodologia

Usamos o modelo de computação chamado DQC1 com a restrição de n = 1 qubit aux-

iliar, portanto, dois qubits, um auxiliar e um de controle. Temos formas fechadas para

quantificadores de correlações com dois qubits. Usando uma rotina do MATLAB, ger-

amos aleatoriamente 106 matrizes unitárias e estados iniciais do qubit de controle para

calcular os valores de coerência, discórdia, emaranhamento e não-localidade de Bell,

sendo encontrado valor nulo de emaranhamento e a não violação da desigualdade de

Bell, como já explorado na literatura para este modelo. Com o objetivo de promover as

outras correlações não alcançadas pelo modelo com dois qubits, foi usado o processo

de pós-seleção com a aplicação de uma porta filtro com parâmetro η após o circuito

DQC1 com dois qubits. Duas abordagens foram feitas neste ponto, uma fixando 13

valores cumulativos possíveis deste parâmetro, plotando a média dos valores atingidos

pelas correlações geradas por 104 matrizes unitárias aleatórias (do filtro e da porta

controlada uniária) e executando o processo de otimização 400 vezes. Também foram

analisados os máximos da média de cada correlação para os diferentes η cumulativos.

A outra abordagem foi um processo de otimização para alta pureza do qubit auxiliar,



plotando o mesmo que da primeira abordagem.

Resultados e Discussões

Detectamos que mesmo antes da pós-seleção tínhamos a coerência e discórdia quân-

tica, sendo a primeira com valor máximo de 1 devido apenas ao qubit de controle e

a segunda com valor não nulo. Obtivemos valores não nulos de emaranhamento e

violação da desigualdade de Bell para as duas abordagens com pós-seleção. Notamos

que conforme o parâmetro do filtro vai crescendo o valor das correlações diminui até

recuperarmos os resultados com o modelo DQC1 sem a pós-seleção, ou seja fazendo

η = 1 (0 ≤ η ≤ 1) é o mesmo que não aplicarmos nenhum filtro no circuito DQC1. No-

tamos também que existe uma purificação mínima para que comece a ter emaran-

hamento e consequentemente violação da desigualdade de Bell. Analisamos ainda o

progresso da densidade de estados para cada correlação com relação à probabilidade

de sucesso. Temos muitos estados que apresentam coerência e discórdia quântica

mas que não possuam emaranhamento e nem atingem a violação da desigualdade

de Bell. Reparamos que conforme η aumenta, temos menos estados acessíveis com

outras correlações quânticas (emaranhamento e violação da desigualdade de Bell).

Considerações finais

Com a análise dos gráficos obtidos para o máximo das correlações para os diferentes

parâmetros do filtro, notamos que precisamos de uma pureza pouco acima de 0.5 para

que tenhamos emaranhamento e aspectos não-locais. Assim, o processo de adicionar

uma pós-seleção ao circuito DQC1 com dois qubits se mostrou eficiente quanto ao

nosso objetivo de promover correlações quânticas antes não alcançadas. Podemos

expandir ainda nossos estudos, executando o programa para uma quantidade maior

de matrizes unitárias aleatórias e para um número maior de qubits auxiliares com o

propósito de verificar se este comportamento se mantém, afim de implementar este

processo de pós-seleção em algoritmos quânticos, como a Fatoração de Shor.

Palavras-chave: Computação Quântica. Correlações Quânticas. Modelo DQC1. Emaran-

hamento. Não localidade de Bell. Coerência. Discórdia Quântica.



ABSTRACT

In this work we studied the quantum correlations of entanglement, nonlocality of Bell,
quantum discord, and coherence in the Deterministic Quantum Computation with One
Qubit (DQC1) model. As suggested by some authors in literature, entanglement is not
the quantum resource responsible for the advantage over Classical Computation to
the calculation of the normalized trace of any unitary matrix. For the studied case, the
DQC1 with two qubits (auxiliary and control), we find null entanglement, as expected
from previous studies in literature. Therefore, a post-selection with a specific filter was
added to the end of the circuit to promote other quantum correlations, such as entan-
glement and nonlocality of Bell. This allowed us realizing a purification process in the
auxiliary qubit through an optimization program for the filter parameter η and the purity
of the auxiliary qubit. We performed two analysis of the generated average quantum
correlations: one sets the cumulative filter parameter and runs the DQC1 circuit 400
times with post-selection; and the other one with the optimization of the filter parameter
so that the purity of the auxiliary qubit reaches 0.99. It was possible to verify the same
pattern in the plots of the mean values of the quantum correlations for DQC1 with 104

random unitary matrices and random control qubit. We managed to achieve non null
entanglement and the violation of Bell’s inequality for the purity of the auxiliary qubit
just over 0.53. We analyzed the density of states generated for these quantum correla-
tions and found that as the filter parameter (η) increase we can access less states with
others quantum correlations as entanglement, and violation of Bell’s inequality. Also, as
expected, we can have Bell’s inequality violation only for entangled states.

Keywords: Quantum Computation. Quantum Correlations. DQC1 model. Entangle-
ment. Bell’s Nonlocality. Coherence. Quantum Discord.
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1 INTRODUCTION

Quantum Mechanics (QM) emerges in the twentieth century in response to non-

atomic scale theories such as Newton’s laws of motion and to trying to explain previously

unsupported phenomena such as the blackbody radiation and photoelectric effect. In

conjunction with QM also emerged the theory of Quantum Information (QI), important

for the improvement of communication devices. These two theories have very strong

connections, especially in the field of Statistical Mechanics with the formulation of

entropy. Another common feature is the presence of the concept of correlations. In QI

this property can be expressed in terms of an amount called mutual information, which

detects the amount of information that can be obtained from a random variable when

analyzing another random variable.

In QM the characterization of correlations was introduced by Einstein, Podolsky, and

Rosen (EINSTEIN; PODOLSKY; ROSEN, 1935) in a mental experiment in order to test

the completeness of QM. The hypothesis of EPR (as it became known) assesses the

philosophical nature of QM, whether it would fully describe the reality of a system, i.e.,

if the act of measuring alters or not the physical quantities being analyzed.

In response to the EPR paradox, Schrödinger (SCHRÖDINGER, 1935) established

the concept of entanglement, which can demonstrate a non-local feature of QM. If a

measurement is made on one part of the system it can alter the quantum state of the

other part, even though they are spatially separated.

John Bell (BELL, 1964) developed a theory that satisfies the EPR criteria for com-

pleteness of QM by introducing additional variables (local hidden variables) and quanti-

fied it through a set of conditions, currently known as Bell’s inequalities, that is violated

only for entangled systems. Aspect (ASPECT; GRANGIER; ROGER, 1982) was the

first to experimentally verify these inequalities indicating non-local aspects of QM.

Only then from 1980 entanglement is regarded as a resource available in nature and

it was only with Werner in 1989 (WERNER, 1989) that nonlocality and entanglement be-

came distinguishable correlations. Entanglement was defined as the correlation that can

not be obtained with local operations and classical communication. Entangled states

were used to efficiently perform tasks that previously used only classical resources.

Entanglement was regarded as the only manifestation of quantum correlations (QC) in

composite systems until the end of the twentieth century (HORODECKI; HORODECKI;

HORODECKI; HORODECKI, 2009). However, Henderson & Vedral (HENDERSON; VE-

DRAL, 2001) and Ollivier & Zurek (OLLIVIER; ZUREK, 2001) have shown that QC exist

even when systems are separable (non-entangled systems), this class of correlation

has been called quantum discord. This correlation shows the signature of nonclassi-

cality in quantum systems (DAKIĆ; VEDRAL; BRUKNER, 2010), (MODI; BRODUTCH,

et al., 2012).
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Coherence has only been refined in 2014 by Braumgratz et al. (BAUMGRATZ;

CRAMER; PLENIO, 2014). This correlation describes the superposition character of

states in relation to a given measurement basis. It is said that states in superposition

possess quantum coherence. The capability of quantum systems to exist in “superposi-

tion states” denotes the incompleteness of Classical Physics to explain certain concepts

related to massive objects.

Quantum computing has also been developed greatly in the last decade. There are

tasks, as factoring integer numbers, that are solved efficiently with quantum computers

(SHOR, 1994). It is believed that such speed up comes from the quantum correlations,

as entanglement. However, this resource is not fully understood, and it has not yet been

shown which resource is responsible for this advantage over classical computing. With

Feynman (FEYNMAN, 1982) it was observed that no classical system could efficiently

simulate a quantum system, then he proposed that only one quantum system would

be able to simulate another of the same type. Subsequently, Deutsch (DEUTSCH, D.,

1985) creates a Universal Quantum Computation Model that implements an efficient

quantum algorithm (Deutsch’s two qubits problem) better than any classical algorithm,

also creating the quantum circuit language, very similar to the classical one (DEUTSCH,

D. E., 1989). We have some different computational models to perform quantum com-

puting that present solutions for some problems better than classical algorithms and do

not require much resources, among them are:

• Circuital — a set of qubits is initialized in a pure state and a sequence of logical op-

erations is performed. Bernstein-Vazirani algorithm (BERNSTEIN; BERNSTEIN,

1993), Shor algorithm (SHOR, 1994), and Simon algorithm (SIMON, D. R., 1997)

are some examples of this model;

• Adiabatic Computation — a continuous evolution of the system state is made,

the input qubits are described by the ground state of an initial hamiltonian and

the computing solution is expressed by the ground state of the final hamiltonian

(FARHI et al., 2000), (VAN DAM; MOSCA; VAZIRANI, 2001);

• Measurement-Based Computing — operations are represented by measures on

the qubit in the entangled state (RAUSSENDORF; BROWNE; BRIEGEL, 2003),

(BRIEGEL et al., 2009).

And we also have computational restricted model as

• Deterministic Quantum Computation with One Qubit (DQC1) — a set of n qubits

is initialized in the maximally mixed state and a semi-pure qubit. The computation

is performed by applying a unitary gate controlled by the semi-pure qubit (KNILL;

LAFLAMME, 1998).
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To have a speed up in relation to classical algorithms, quantum computing with pure

states requires entanglement (JOZSA; LINDEN, 2003). However, as we know, this last

restricted model (DQC1) requires little or no entanglement to performs a task (DATTA;

FLAMMIA; CAVES, 2005). In this dissertation we will discuss in more details this model,

which efficiently calculates the normalized trace of any unitary matrix (DATTA, 2008).

Laynon et al. suggest that discord could be a necessary resource responsible for the

quantum computational speed up in this model (LANYON et al., 2008). On the other

hand, the responsible resource for this advantage over classical computation was not

yet found. The goal of this work is to promote QC, for this restricted computing model,

as entanglement and non-locality, that could not be achieved without a post-selection

process.

The dissertation is divided as follows. In chapter two we approach the fundamental

concepts for the basic understanding of the quantum processes, exposing among them

the concept of density matrix and quantum circuits.

Quantum correlations may be responsible for the advantage of quantum comput-

ing over classical computing for this model. For this reason, in the third chapter we

approach some measures of quantum correlations, as coherence, quantum discord,

entanglement, and Bell’s nonlocality, and the quantifiers that are used for the DQC1

model.

In the fourth chapter it is explained the quantum computation model DQC1, after that

it is fixed in n = 1 the number of auxiliary qubits to study the QC that can be generated.

The study of the promotion of certain quantum correlations not previously present in

this model is still developed using the post-selection with a specific filter at the end of

the circuit. Also, we analyse the density of states that have been generated randomly

for each type of quantum correlation.

In the last chapter of this dissertation we overview of what can be expected from

this promotion of correlations, what kind of QC can be achieved in more states after the

post-selection, as well as the conclusion and perspectives.
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2 FUNDAMENTAL CONCEPTS

The Quantum Mechanics provides the mathematical structure to develop the physi-

cal theories through a set a postulates (NIELSEN; CHUANG, 2000). We represent the

fundamental element of Quantum Computation by a qubit or quantum bit. It is the quan-

tum analogous of the classical bit. The qubit is represented by a two-dimensional basis

(formed for two states). A Quantum Computer is based on the principles of Quantum

Physics and maybe it is able to solve problems that Classical Computers yet can not

solve.

Here we explore some basic concepts of QM and quantum circuits that are essen-

tial for understanding the DQC1 model. The content of this chapter is based on the

references (NIELSEN; CHUANG, 2000; BALLENTINE, 2014; DE WOLF, 2019).

2.1 SUPERPOSITION PRINCIPLE

The mathematical description of a physical system is made by the linear algebra.

The superposition is a fundamental principle of QM, which states that if we have two

states of a quantum system, then any superposition should also be an allowed state

of a quantum system, i.e, if a state can be in one of many system configurations, then,

the general state can be written as a linear superposition of those states with complex

coefficients. The idea of this principle is that all states are possible at the same time

until the measurement is performed, that collapses the state and destroys the initial

configuration.

2.2 THE QUANTUM BIT

A fundamental concept in Classical Information is the bit. It can assume two values:

0 or 1. We have an analog concept in Quantum Computation and QI, the qubit with two

possible states |0〉 and |1〉. The Dirac Notation with ‘ | 〉 ‘ (ket) and ‘〈 | ‘ (bra) summarized

in Table 1 is the standard notation of the QM and will be amply used in this work. As

described in the previous subsection, it is possible to form linear combinations of states

as

|ψ〉= a |0〉+b |1〉 ,

where the states |0〉 and |1〉 are known as computational basis states, that form the

orthonormal basis (two-dimensional Hilbert space), a and b are complex numbers

normalized by

|a|2 +|b|2 = 1.

After the measurement, have the probability |a|2 of the system being found in state

|0〉 and the probability |b|2 of being found in state |1〉. The computational basis can be
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writing as

|0〉=
[

1 0
]T

, |1〉=
[

0 1
]T

,

such that these states |0〉 and |1〉 also are eigenstates of the Pauli operator σz with

eigenvalues ±1, respectively. We define the Pauli Operators represented in the compu-

tational basis as

σx = X =

[

0 1

1 0

]

,σy = Y =

[

0 –i

i 0

]

,σz = Z =

[

1 0

0 –1

]

. (1)

These operators obey the following commutation and anti-commutation relations

[σi ,σj ] = 2i
3
∑

k=1

ǫijkσk ,

{σi ,σj } = 2δij I,

where ǫijk is the Levi-Civita symbol, δij is the Kronecker delta, and I is the identity

matrix.

We follow the geometric interpretation for a qubit in R
3, which one can be rewritten as

Notation Description
z* Complex conjugate of the number z
|ψ〉 Vector state. Also known as ket
〈ψ| Vector dual to |ψ〉. Also known as bra
〈ϕ
∣

∣ψ〉 Inner product between the vectors |ϕ〉 and |ψ〉
|ϕ〉⊗ |ψ〉 Tensor product of |ϕ〉 and |ψ〉
|ϕ〉 |ψ〉 Abbreviated notation for tensor product of |ϕ〉 and |ψ〉
A* Complex conjugate of the matrix A
AT Transpose of the matrix A
A† Hermitian conjugate or adjoint of the matrix A, A† = (AT )∗

〈ϕ|A |ψ〉 Inner product between |ϕ〉 and A |ψ〉.
Equivalently, inner product between A† |ϕ〉 and |ψ〉

Table 1 – Dirac Notation used in Quantum Mechanics.

|ψ〉= cos
θ

2
|0〉+eiφsin

θ

2
|1〉 ,

with θ, φ ∈ R. The states |0〉 and |1〉 are represented by a sphere of radius 1, the so-

called Bloch Sphere (see Figure 1), with θ ∈ [0,π] being the angle that the vector make

with the vertical axis (z) and φ ∈ [0,2π] being the angle that make the projection of

vector in plane x –y . Defining a point in the sphere, then a qubit is represented on a

sphere. The changes in this qubit are represented by rotations in this sphere.
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Figure 1 – The Bloch Sphere is a geometrical representation of the state space of a
single qubit.

2.3 DENSITY MATRIX

We are able to describe the quantum system using density operator representation,

the so-called density matrix, that provides an efficient description of quantum systems.

The state of the system can be fully described by

ρ =
∑

i

pi |ψi 〉〈ψi | , (2)

i.e, the state |ψi 〉 with probability pi .

A quantum system |ψ〉 that can be known in the exact way is called pure state. In

this case, the density operator can be writing as ρ = |ψ〉〈ψ|, that is when you know

exactly which state vector the state is in. In the other way, ρ is called mixed state or a

mixture of different pure states in the ensemble of ρ.

The operator ρ is a density operator associated with some ensemble {pi , |ψi 〉} if and

only if it meets the following conditions:

1. Trace condition — ρ has trace (the sum of diagonal elements) equal to one

tr (ρ) =
∑

i

pi tr (|ψi 〉〈ψi |) =
∑

i

pi = 1.

2. Positivity condition — ρ is a positive operator

〈Ω|ρ |Ω〉=
∑

i

pi 〈Ω
∣

∣ψi 〉〈ψi
∣

∣Ω〉=
∑

i

pi |〈Ω
∣

∣ψi 〉 |
2 ≥ 0.

For pure states the density matrix also satisfies the following properties:
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• ρ2 = ρ,

• tr (ρ2) = 1.

2.3.1 Reduced density operator

If ρ is the density operator that describes the AB composite system, then you can

assign a density operator that describes the state of system A, called the reduced

density operator, by ρA = trB(ρ). Similarly, you can define ρB, the reduced density

operator for system B. The trB operation is the partial trace on system B.

Bipartite system: let |iA〉 and |jB〉 be orthonormal basis for HA e HB (subsystems),

so a density operator can be written in this basis as

ρ =
∑

i ,i ′,j ,j ′
λi ,i ′,j ,j ′ |iA〉〈i

′
A|⊗ |jB〉〈j ′B |

so that,

trB(ρ)≡
∑

l

〈lB |ρ |lB〉

=
∑

l

〈lB |





∑

i ,i ′,j ,j ′
λi ,i ′,j ,j ′ |iA〉 |jB〉〈i ′A| 〈j

′
B |



 |lB〉

=
∑

l

∑

i ,i ′,j ,j ′
λi ,i ′,j ,j ′ |iA〉〈lB

∣

∣jB〉〈i ′A| 〈j
′
B
∣

∣lB〉 .

Remembering that 〈i
∣

∣j〉= δij , then

trB(ρ) =
∑

l

∑

i ,i ′
λi ,i ′,l |iA〉〈i

′
A| .

2.3.2 Purity

The purity of a density operator measures the degree of mixedness of an arbitrary

d-dimensional state and is described by

P(ρ) = tr (ρ2), (3)

which satisfies 1/d ≤P(ρ)≤ 1, with the 1/d and 1 corresponding, respectively, to a fully

mixed state and a pure state.

2.4 QUANTUM CIRCUITS

A quantum computer is a quantum machine set up to use QM to solve determined

problems that a classical computer can not realize with the laws of Classical Physics. As

discussed in the previous section, we have different computational models to perform
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quantum computation. Here, we use the quantum circuit language defined by Deutsch

(DEUTSCH, D., 1985; DEUTSCH, D. E., 1989).

In this section, we explore some quantum gates and measurement operations used

in quantum circuits. The quantum logic gates are represented by unitary matrices so

that a gate that acts in n qubits is represented by 2nx2n unitary matrix.

2.4.1 Single-qubit gates

The single qubit-gate performs a unitary operation U on an initial state |ψ〉 that

evolves to U |ψ〉. A square matrix U is unitary if U†U = UU† = I, where U† are the

transpose conjugate of U, and consequently |det(U)| = 1. We can write any arbitrary

2x2 unitary matrix as

U = eiαRn̂(θ), (4)

where α and θ are real numbers, n̂ = (x ,y ,z) is a real three-dimensional unitary vector,

and the rotation operator, is defined by

Rn̂(θ)≡ e–i θ2 n̂.~σ = cos
(

θ

2

)

I – i sin
(

θ

2

)

n̂ ·~σ

where ~σ= (σx ,σy ,σz ) denotes the three component vector of Pauli matrices.

Since the rotation operator can be decomposed according to the Euler’s angles, a

general 2x2 unitary matrix can be rewritten as

U = eiαRx (β)Ry (γ)Rz (δ)

= eiα

[

e–iβ/2 0

0 eiβ/2

][

cos γ
2 –sin γ

2
sin γ

2 cos γ
2

][

e–iδ/2 0

0 eiδ/2

]

. (5)

Below are shown some quantum single-gates and its circuit representation. The quan-

tum gates X (that corresponding to the classical gate NOT or bit-flip), Y , and Z (that is

a special case of a phase shift gate)

X

Y

Z

Their action is to perform a π rotation on the Bloch sphere around the x̂ , ŷ and ẑ axes,

respectively

X |0〉=

[

0 1

1 0

][

1

0

]

= |1〉 , X |1〉=

[

0 1

1 0

][

0

1

]

= |0〉 ,

Y |0〉=

[

0 –i

i 0

][

1

0

]

= i |1〉 , Y |1〉=

[

0 –i

i 0

][

0

1

]

= –i |0〉 ,

Z |0〉=

[

1 0

0 –1

][

1

0

]

= |0〉 , Z |1〉=

[

1 0

0 –1

][

0

1

]

= – |1〉 .
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The action of the Hadamard quantum gate H results in a superposition of states

and is represented by

H =
1
p

2

[

1 1

1 –1

]

.

It is just a rotation about the ŷ axis by π
2 , followed by a rotation about the x̂ axis by π,

H |0〉=
1
p

2
(|0〉+ |1〉) and H |1〉=

1
p

2
(|0〉– |1〉).

Others quantum single-gates are the identity and phase shift gates

I =

[

1 0

0 1

]

, Rϑ =

[

1 0

0 eiϑ

]

,

where ϑ is the phase shift.

2.4.2 Two-qubit gates

A basic two qubit gate is the controlled-not gate or CNOT , that can be represented

as

CNOT =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













,

with the first qubit being called control qubit and the second the target qubit. We can

interchange the control qubit, the first qubit as a target qubit and second as a control

qubit. The control bit does not change, while the target bit flips if and only if the control

bit is in state |1〉. The circuital representation of a controlled-gate is

•

More generally, if U is some single-qubit gate, then the 2-qubit controlled –U gate

corresponds to the following 4x4 unitary matrix












1 0 0 0

0 1 0 0

0 0 U11 U12

0 0 U21 U22













,

that is circuit represented by

•
U



Chapter 2. Fundamental concepts 27

2.4.3 Measurement

Measurement is not a unitary operation, because it takes a quantum state and

projects it into one of the measurement operator eigenstates, the state collapses to a

definitive single value. Its circuit representation is

2.5 ENTROPY

Entropy is a concept approached in Statistical Physics and can be obtained using

the information theory. Here we explore this tool to quantify the quantum correlations.

We cover in this chapter the classical (Shannon) and quantum (von Neumann) entropy.

2.5.1 Shannon Entropy

In the Classical Theory of Information, the Shannon entropy (SHANNON, 1948) can

be interpreted as the uncertainty associated to a random variable A with a probability

distribution {pa}. It is defined by

H(A) = –
∑

a∈A

pa log2 pa,

where pa is that probability that A assume the value a. The joint entropy associated to

two random variables A and B is described by

H(A,B) = –
∑

a∈A,b∈B

pa,b log2 pa,b,

with pa,b being the probability of A assume the value a and B assume the value b. The

joint entropy measure our total uncertainly about the pair of random variables. There is

also the conditional entropy, which is written as

H(A|B)≡H(A,B)–H(B), (6)

where we used
∑

a pa,b = pb and the Bayes’s rule pa|b = pa,b
pb

to derive this expression.

Then, the conditional entropy is a measure of the average uncertainty about the value of

A, given that we know the value of B. The total correlations between these two variables

A and B is measured by mutual information, given by

H(A : B)≡H(A)+H(B)–H(A,B), (7)

that measures how much information these variables have in common.
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2.5.2 Von Neumann Entropy

In the quantum scenario, the information of a physical system is stored in the quan-

tum states that are described by density operators, that are hermitian and positive

semidefinite. The eigenvalues of ρ compose a distribution of probability. So, the quan-

tum analog of Shannon entropy is described by the von Neumann entropy

S(ρ) = –Tr (ρ log2ρ). (8)

Von Neumann entropy is a quantifier of the number of orthonormal pure states acces-

sible from the system. For mixed states, this measure fails to distinguish classical and

quantum mechanical correlations (VEDRAL et al., 1997). For pure states S(ρ) = 0 (com-

plete information about the system, since the state is well-defined) and for statistical

mixtures S(ρ) 6= 0.

Here we use the reference (ROSSATTO et al., 2014). To make the analog of classical

mutual information (eq. 7) for a bipartite quantum system with density operator ρAB we

use the von Neumann entropy, leading to the expression

I(ρAB) = S(ρA)+S(ρB)–S(ρAB), (9)

where S(ρA) and S(ρB) are the entropy of subsystems A and B, respectively, calculated

using partial trace with respect to the other subsystem ρA = TrB(ρAB) and ρB = TrA(ρAB).

However, the quantum version of expression 2.6 is not easily obtained because the

Bayes rule is not always valid in the quantum case. Since the measurement process

can be done in different ways and it can disturb the system, we have that the conditional

entropy is given by

S(ρA|B) = minǫb

∑

b

pbS(ρA|B=b),

where ρA|B=b = TrB(IA⊗ǫbρ
AB)

Tr (IA⊗ǫbρAB) , with ǫb being a measurement set on the subsystem B.

Then, we can define the quantum analogue of eq. 6 as

J(ρAB) = S(ρA)–minǫb

∑

b

pbS(ρA|B=b). (10)
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3 QUANTUM CORRELATIONS

Correlation in a composite system is a fundamental concept in Quantum Information

Theory. The information that can be derived from nature is determined by how much

the system of interest can be correlated by physics interaction with the measurement

apparatus. Quantum Correlations are essential resources for Quantum Information

and Computation (ADESSO; BROMLEY; CIANCIARUSO, 2016), Communication (TU-

FARELLI et al., 2012), Cryptography (CURTY et al., 2005), and Quantum Metrology

(MODI; CABLE, et al., 2011).

The study of Quantum Correlations began with the development of Quantum Theory.

One of the most prominent articles was 1935 in which Einstein, Podolsky, and Rosen

(EINSTEIN; PODOLSKY; ROSEN, 1935) argued that a physical theory should satisfy

the following properties:

1. Realism — An element of reality is an amount that can be obtained with certainty

without disturbing the system;

2. Completeness — Each element of reality must be described by an object of the

theory;

3. Locality — Physical processes occurring in one place should not have an imme-

diate effect on reality elements elsewhere.

According to these properties, the Quantum Theory has been proven not to be complete

as it does not satisfy all properties at the same time. If realism and locality are introduced

in QM we get a contradiction.

We could ask if there are variables that completely describe QM. These variables

would be called hidden variables, since we do not have access to them. If these hidden

variables exist, they should be a local theory to prevent interactions and communication

at distance. A local hidden variable model must be able to reproduce all predictions of

QM satisfying all the properties at the same time.

3.1 BELL’S NONLOCALITY

John Bell in 1964 (BELL, 1964) showed that using the superposition principle ap-

plied to compound systems produces quantitative predictions which, if confirmed exper-

imentally, expose non-local aspects of QM. He propose that the conditions of realism,

completeness and locality impose that spatially separated statistical correlations must

satisfy some conditions known as Bell’s inequalities. Contrary to the expectations, these

inequalities are violated by some entangled states, this condition is known as Nonlocal-

ity. It was shown experimentally first by Aspect in 1982 that QM is not locally realistic
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(ASPECT; GRANGIER; ROGER, 1982) and only in 2015 we had an experiment without

loophole that demonstrates its non-local character (HENSEN et al., 2015).

Local Realism — It is hypothesized that physical objects have defined properties

that are independent of the observation process and that a measurement made by one

observer can not influence measurements made by another observer if they are so

separated that the exchange of information between them is impossible with Special

Relativity.

Bell’s theorem establishes that there is a conflict between the QM and the theory of

hidden variables. The Bell’s inequalities must be obeyed by any Local Realistic Theory.

QM is incompatible with any theory of local hidden variables.

The Bell’s inequalities can be used in quantum cryptography to test its security

(EKERT, 1991). Every pure entangled state violates some Bell’s inequality (GISIN,

1991). For mixed states, a necessary and sufficient condition for any two-qubit state

to violate these inequalities is given by Horodecki et al. (HORODECKI; HORODECKI;

HORODECKI, 1995).

Bell’s inequality via CHSH— For two qubits systems, the Clause-Horne-Shimony-

Holt (CHSH) inequality (CLAUSER et al., 1969) is the most known type of Bell’s in-

equality. There are different ways in literature to derive such inequality. Here we use

the reference (BALLENTINE, 2014) and (BRAUNSTEIN; CAVES, 1990). We assume

a system where Alice and Bob have experimental apparatus with orientations a and b,

respectively, capable of measuring the variables A and B that can assume the values

±1. According to local realism, the measurement made by Alice can not depend on

the orientation chosen by Bob and vice versa, so the possible results of the measures

depend only on the hidden variable λ and the orientation chosen by each one

A(a,λ) =±1,

B(b,λ) =±1.

We can define the correlation function given by

C(a,b) =
∫

A(a,λ)B(b,λ)ρ(λ)dλ

where ρ(λ) is the probability distribution of the hidden variable and must satisfy the

conditions

• ρ(λ)≥ 0,

•
∫

ρ(λ)dλ= 1.

Now, considering that Alice and Bob can randomly choose two orientations each a,

a′ and b, b′, respectively, we have four correlations functions that must satisfy the

inequality

B = |C(a,b)–C(a,b′)|+ (C(a′,b′)+C(a′,b))≤ 2.
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If a composite system violates the above inequality, we say that it does not satisfy Bell’s

locality hypothesis.

3.1.1 Bell’s nonlocality quantifier

Any two-qubit state can be parameterized via the Fano matrix (FANO, 1983) as

ρAB =
1
4



IA⊗ IB + IA⊗ (~σB ·~r )+ (~σA ·~s)⊗ IB +
3
∑

i ,j=1

cij ~σi
A⊗ ~σj

B



 , (11)

where ~σA = (σA
x ,σA

y ,σA
z ) and ~σB = (σB

x ,σB
y ,σB

z ) are the Pauli matrices,

~r = tr [ρ(IA⊗~σB)] and ~s = tr [ρ(~σA⊗ IB)]

are called polarization vectors, and cij = tr [ρ(~σi
A⊗ ~σj

B)] are the elements of the corre-

lation matrix C. We define the matrix T = C ·CT , with m1 and m2 being the two largest

eigenvalues of T . As demonstrated by Horodecki et al. (HORODECKI; HORODECKI;

HORODECKI, 1995), the quantity defined below

B(ρAB) = 2
√

m1 +m2, (12)

is B(ρAB)≤ 2 if the Bell’s inequality is not violated, otherwise, non-local effects appear.

The violation occurs only if (m1 +m2) > 1, i.e., if the quantum state produces B(ρ) > 2

we guarantee that this state violates inequality and has non-local characteristics. This

measure will be used to obtain the correlations for the studied model.

3.2 ENTANGLEMENT

Entanglement is a fundamental characteristic of QM that is used for processing

and transmission of QI and it is employed during the performing tasks as teleportation

protocol (VAIDMAN, 1994). This correlation is related to the superposition principle

(section 2.1). Werner (WERNER, 1989) showed that there are entangled mixed state

that do not violate Bell’s inequalities. Entanglement is considered a quantifier of purely

quantum correlations of a state.

Here we use the reference (PASSANTE, 2012),

• A pure state is entangled if and only if it is not a product state written in the form

|ψAB〉= |ψA〉⊗ |ψB〉 .

• Any state ρ is entangled if and only if it can not be expressed as a convex combi-

nation of product states of all subsystems that form the composite system

ρ 6=
∑

i

piρ
(1)
i ⊗ρ

(2)
i · · ·⊗ρ

(n)
i ,
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with
∑

i

pi = 1.

All non-entangled states are called separable. Entanglement is defined as the non-

separability of a quantum state. Classical states are states that can be generated

via Local Operations and Classical Communication (LOCC). Local Operations refer to

operations performed only on one part of the system. Classical Communication refers to

the transmission of information using classical devices. If a state can not be generated

through LOCC it is non-separable resulting in entangled.

3.2.1 Entanglement measure

For pure states, the von Neumann entropy is used to quantify the entanglement of

a quantum system. For this, we call the entanglement entropy which is described in

terms of the entropy of the reduced system density matrix

E(ρ) = S(ρA) = –
∑

i

λi log2λi ,

where λi are the eigenvalues of ρA,

• E(ρ) = 0 for separable states, and

• 0 < E(ρ)≤ log2 D for entangled states, where D is the dimension of subsystem. If

the state has E(ρ) = log2 D, it is said maximally entangled,

(BENGTSSON; ZYCZKOWSKI, 2006).

For an entanglement measure to be appropriate, it must meet the conditions shown

in reference (COSTA, 2012).

The Peres-Horodecki or PPT (positive partial transpose) criterion, that is based

on partial transposition of the density matrix, is a necessary and sufficient condition

to evaluate if a state is entangled. If we have a density matrix that can be written in

separable form (PERES, 1996; HORODECKI, 1997; SIMON, R., 2000),

ρAB =
∑

i

piρA,i ⊗ρB,i ,

the partial transposition modify only one of the subsystems A or B, leaving the other

unchanged. This criterion shows that if partial transposition of the density matrix results

in negative eigenvalues, then the systems partitions are entangled.

We have a family of norms parameterized by a real number p ≥ 1, called Schatten

p-norms, that are defined as

‖A‖(p) = {tr [(A†A)p/2]}1/p, (13)
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obtaining a singular value of a matrix A. In particular, we use the 1-norm, also called

trace norm, and the 2-norm, also called Hilbert-Schmidt norm (NAKANO; PIANI; ADESSO,

2013).

Vidal and Werner (VIDAL; WERNER, 2002) define the negativity of a bipartite

system as

N(ρ) =
‖ρTA‖1 –1

2
, (14)

which corresponds to the absolute value of the sum of negative values of the partial

transpose of the state ρ, in other words, we have the trace norm (see eq. 13) of ρTA,

that is a partial transposition in subsystem A (we can also define partial transposition for

subsystem B). The negativity can assume values between 0 and (d –1)/2, where d is

the minimum between the partition dimensions A and B. This expression for negativity

corresponds to how far the partial trace of the density matrix is from positive, and

consequently, the amount of entanglement between the subsystems. Eq. 14 will be

used to quantify entanglement in the DQC1 model.

3.3 QUANTUM DISCORD

With independent research Henderson & Vedral (HENDERSON; VEDRAL, 2001)

and Zurek & Ollivier (OLLIVIER; ZUREK, 2001) found that there are quantum corre-

lations that are not quantified only by entanglement or nonlocality. These correlations

became known as Quantum Discord, which is defined in terms of the generalization of

the concept of mutual information in quantum systems (see eq. 8 and eq. 9) (MAZIERO;

CELERI; SERRA, 2010), (MODI; BRODUTCH, et al., 2012),

D(ρAB)≡ I(ρAB)–J(ρAB)

= S(ρB)–S(ρAB)+minǫb(
∑

b

pbS(ρA|B=b)),

where the measurement is performed on the subsystem B. So, discord is a measure of

information that can not be extracted locally. This minimization process is designed so

that the quantum discord does not depend on the choice of the measurement projector

set.

For almost all separable states the quantum discord value found is nonzero, just as

almost all pure states possess entanglement (FERRARO et al., 2010), (CAVALCANTI

et al., 2011). For pure states, quantum discord is reduced to entanglement. Considering

all two-qubit states, the quantum discord satisfies

0≤D(ρAB)≤ 1.
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Dakic et al. (DAKIĆ; VEDRAL; BRUKNER, 2010) propose a geometric measure

of quantum discord, which is the distance from the analyzed state ρ to the nearest

Classical-Quantum state χ (or with zero discord)

D(ρ) = minχ∈Ω‖ρ–χ‖2,

where Ω is the zero-discord state set and ‖ρ –χ‖2 = Tr (ρ –χ)2 is the square of the

Hilbert-Schmidt norm (see eq. 13).

3.3.1 Quantum discord for two-qubit systems

Dakic et al. (DAKIĆ; VEDRAL; BRUKNER, 2010) provided a closed form for the

expression of the geometric discord of arbitrary two-qubit states

D(ρ) =
1
4

(

‖~s‖2
2 +‖C‖2

2 –λmax

)

, (15)

where C is calculated using the square of the Hilbert-Schmidt norm (see eq. 13), ~s

using the euclidean norm given by

||~s||2 =

( n
∑

i=1

|si |
2

)1/2

.

Using the parameterization described in eq. 11, with~s the polarization vector and the

correlation matrix C, λmax represents the largest eigenvalue of the matrix

Λ=~s ·~sT +C ·CT .

Any state of two qubits can be decomposed into the above form via local unitary opera-

tions (which by definition preserve entanglement and correlations in general). Expres-

sion 15 is valid for states with dimension 2xd (RAU et al., 2011).

3.4 COHERENCE

To investigate the physical meaning of the density matrix elements, we have to

explore concepts such as populations and coherence. Here we use the reference (AR-

RUDA, 2011). To explore concept of coherence, it is necessary to study the elements

outside the diagonal of the density matrix ρ. For mixed states, the density matrix can

be written as eq. 2, and assuming an orthogonal basis {|ζl 〉}, i.e. 〈ζk
∣

∣ζl 〉 = δk ,l , we can

write the elements outside the diagonal of the density matrix as

ρm,n = 〈ζm|ρ|ζn〉

=
∑

i

pi 〈ζm
∣

∣ψi 〉〈ψi
∣

∣ζn〉=
∑

i

pic
i
mci∗

n ,
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where ci
m are the |ψi 〉 components at the base |ζm〉, and ci∗

n are the |ψi 〉 components at

the base |ζn〉, they are express the effects of interference between |ζm〉 and |ζn〉 states.

If ρm,n = 0 means that the projections on |ζm〉 and |ζn〉 states have been canceled, and

if ρm,n 6= 0 there is a certain coherence between |ζm〉 and |ζn〉 states.

Coherence measures must satisfy some conditions, as shown in Braumgratz et

al. (BAUMGRATZ; CRAMER; PLENIO, 2014). We can have a measure of coherence

based on quantum relative entropy (ABERG, 2006), (BAUMGRATZ; CRAMER; PLENIO,

2014) described as

Crel .ent .(ρ) = S(ρdiag)–S(ρ),

where S is the von Neumann entropy and ρdiag denotes the state obtained from ρ by

deleting all off-diagonal elements. There is another measure of coherence based on l1
norm (HORN; JOHNSON, 2012)

Cl1(ρ) =
∑

i 6=j

|ρi ,j |,

that is the sum of the absolute values of all off-diagonal elements of the density matrix

ρ. For the one-qubit case Cl1(ρ) has the same form of the trace norm (SHAO et al.,

2015). Then we can use the trace norm as a measure coherence

C(ρ) = ‖ρ–ρdiag‖1, (16)

(YU et al., 2016).

Quantum coherence is a basis-dependent quantity, so even local unitary transforma-

tions can increase quantum coherence in two-part systems. It is not like entanglement

and quantum discord that are invariant about the product of local unitary transforma-

tions.

3.5 QUANTUM CORRELATIONS FOR THE WERNER STATE

To illustrate an example using the measurement of correlations, Figure 2 shows the

normalized measures of correlations

BN (ρ) = B(ρ)/2
p

2, CN (ρ) = C(ρ)/3.0,

DN (ρ) = D(ρ)/0.5, NN (ρ) = N(ρ)/0.5,

(17)

for a Werner’s state given by

ρW =
(1–q)

4
I +q |Φ+〉〈Φ+| , (18)

where |Φ+〉= 1p
2

(|00〉+ |11〉) is one of the Bell state. The figure shows that for q > 1/3 we

have entangled states, and for q ≤ 1/3 we have separable states. Then for q >
p

2/2 we

have Bell violation. For the state with q = 1, the Bell’s nonlocality, quantum discord, and

negativity normalized quantities reach the maximum value of 1.
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Figure 2 – Normalized quantum correlations for the Werner state.
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1. Apply the Hadamard gate on the initial state

H0ρiH
†

0 =
1

2n+1 [(|0〉〈0|+ |1〉〈1|)+α(|0〉〈1|+ |1〉〈0|)]⊗ I⊗n.

2. Apply a controlled unitary gate,

U = |0〉〈0|⊗ I⊗n + |1〉〈1|⊗Un,

between the control and auxiliary qubits, followed by the Hadamard gate, resulting

in the state

ρf = (H0⊗ I⊗n)UH0ρiH
†

0U†(H†

0⊗ I⊗n)

=
1

2n+1

[

In+1 αU†
n

αUn In+1

]

.

3. Finally, we measure σx and σy in the control qubit, obtaining

〈σx 〉= tr (ρfσx ) =
1

2n+1

[

tr (αU†
n) tr (In+1)

tr (In+1) tr (αUn)

]

=
R [tr (αUn)]

2n ,

and

〈σy 〉= tr (ρfσy ) =
1

2n+1

[

tr (iαU†
n) tr (–iIn+1)

tr (iIn+1) tr (–iαUn)

]

=
Im [tr (αUn)]

2n ,

where R and Im stands for the real and imaginary parts, respectively. To promote other

correlations in this computation model, we introduced a specific post-selection after the

circuit. This post-selection acts through a filter described by (KENT; LINDEN; MASSAR,

1999). Finding physical resources responsible for the advantage of quantum computing

over classical computing is an active research topic (PASSANTE et al., 2011), (DATTA;

SHAJI; CAVES, 2008), (DATTA; FLAMMIA; CAVES, 2005), (LANYON et al., 2008).

Following this line, it has been shown that the amount of entanglement present at

the end of the DQC1 computation process, i.e. the evaluation of the normalized trace

of a unitary matrix, is not enough to explain the resulting computational gain (DATTA;

VIDAL, 2007), (DATTA; FLAMMIA; CAVES, 2005), (DAKIĆ; VEDRAL; BRUKNER, 2010).

However, there are other QC beyond entanglement that encompass this correlation that

could account for this advantage, such as quantum discord (DATTA; SHAJI; CAVES,

2008). As presented in the previous chapter, the correlations of entanglement, Bell’s

nonlocality, quantum discord, and coherence present closed forms for the calculation

with two qubits, we will write our model with two qubits (control and auxiliary) to analyze

these correlations.
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4.1 TWO-QUBITS SYSTEM

Since we have measures of quantum correlations with closed form for two-qubits

introduced in section 3, we chose to analyze this scenario first. Then, for n = 1, a general

unitary matrix acting on states of one qubit described by eq. 5 can be written as

Un=1 = ei ϕ2

[

eiψ 0

0 e–iψ

][

cosθ sinθ

–sinθ cosθ

][

ei∆ 0

0 e–i∆

]

.

As we want to write the expressions for~s,~r , and C, we initialize the control qubit in an

arbitrary state ρ0 = I+~u·~σ
2 . The final density matrix is

ρfinal = (H0⊗ I)U (H0ρ0H0⊗ρn=1)U†(H0⊗ I), (19)

with ρn=1 = I
2 for the auxiliary qubit. Therefore,

ρfinal =
1
2
|0〉〈0|⊗

(

I
2

+
1
4

(uz + iuy )U†

n=1 +
1
4

(uz – iuy )Un=1

)

+
1
2
|0〉〈1|⊗

(

I
2

ux –
1
4

(uz + iuy )U†

n=1 +
1
4

(uz – iuy )Un=1

)

+
1
2
|1〉〈0|⊗

(

I
2

ux +
1
4

(uz + iuy )U†

n=1 –
1
4

(uz – iuy )Un=1

)

+
1
2
|1〉〈1|⊗

(

I
2

–
1
4

(uz + iuy )U†

n=1 –
1
4

(uz – iuy )Un=1

)

=
1
4













a11 a12 a13 a14

a∗
12 a22 a23 a24

a∗
13 a∗

23 a33 a34

a∗
14 a∗

24 a∗
34 a∗

44













,
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where the matrix elements are given by

a11 = 1+cosθ
[

uz cos(∆+
φ

2
+ψ)+uy sin(∆+

φ

2
+ψ)

]

;

a12 = –ie–i(∆–ψ) sinθ

[

uy cos
φ

2
+uz sin

φ

2

]

;

a13 = ux – i cosθ
[

uy cos(∆+
φ

2
+ψ)–uz sin(∆+

φ

2
+ψ)

]

;

a14 = –ie–i(∆–ψ) sinθ

[

uy cos
φ

2
+uz sin

φ

2

]

;

a22 = 1+cosθ
[

uz cos(∆–
φ

2
+ψ)–uy sin(∆–

φ

2
+ψ)

]

;

a23 = –ei(∆–ψ) sinθ

[

uz cos
φ

2
+uy sin

φ

2

]

;

a24 = ux – i cosθ
[

uy cos(∆–
φ

2
+ψ)+uz sin(∆–

φ

2
+ψ)

]

;

a33 = 1–cosθ
[

uz cos(∆+
φ

2
+ψ)+uy sin(∆+

φ

2
+ψ)

]

;

a34 = ie–i(∆–ψ) sinθ

[

uy cos
φ

2
+uz sin

φ

2

]

;

a34 = ie–i(∆–ψ) sinθ

[

uy cos
φ

2
+uz sin

φ

2

]

;

a44 = 1–cosθ
[

uz cos(∆–
φ

2
+ψ)–uy sin(∆–

φ

2
+ψ)

]

.

Using the Fano’s form, as eq. 11, to calculate the polarization vectors~r = tr [ρ(IA⊗~σB)],
~s = tr [ρ(~σA ⊗ IB)], and the elements of correlation matrix C, cij = tr [ρ(~σi

A ⊗ ~σj
B)], we

obtain

~r =







0

0

0






,

~s =









ux

cosθcos(∆+ψ)
(

uy cos φ
2 –uz sin φ

2

)

cosθcos(∆+ψ)
(

uz cos φ
2 +uy sin φ

2

)









,

and

C =







c11 c12 c13

c21 c22 c23

c31 c32 c33






,
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with

c11 = c12 = c13 = 0;

c21 = –sin(ψ–∆)sinθ

(

uz cos
φ

2
+uy sin

φ

2

)

;

c22 = –i sin(ψ–∆)sinθ

(

uz cos
φ

2
+uy sin

φ

2

)

;

c23 = –sin(ψ+∆)cosθ
(

uz cos
φ

2
+uy sin

φ

2

)

;

c31 = sin(ψ–∆)sinθ

(

uy cos
φ

2
+uz sin

φ

2

)

;

c32 = cos(ψ–∆)sinθ

(

uy cos
φ

2
+uz sin

φ

2

)

;

c33 = sin(ψ+∆)cosθ
(

uy cos
φ

2
–uz sin

φ

2

)

.

Figure 4 – C(ρ) versus B(ρ) for the DQC1 model with two qubits. Each dot represents
the value of these correlations calculated for 106 random states. The red
dotted line represents the limit value of B(ρ) in which there is no Bell’s
nonlocality.

As expected for this model, there is no entanglement (DATTA; FLAMMIA; CAVES,

2005) between the control and the auxiliary qubits, as calculated by eq. 14 and con-

sequently no Bell-violation, as calculated by eq. 12. Quantum Correlations plots for

the DQC1 model with two qubits using 106 random unitary matrices drawn from Haar

measure (ZYCZKOWSKI; KUS, 1994), (OZOLS, 2009) with a function called RandomU-

nitary in the QETLAB (can be obtained in http://www.qetlab.com/, that is a MATLAB

toolbox for quantum entanglement), and random control qubit drawn from the Hilbert-

Schmidt measure (ŻYCZKOWSKI et al., 2011) with a function called RandomStateVec-

tor, are shown in Figures 4, 5, and 6. Each dot in these plots represents a final density



Chapter 4. Deterministic Quantum Computation with One Qubit 42

Figure 5 – D(ρ) versus B(ρ) for the DQC1 model with two qubits. Each dot represents
the value of these correlations calculated for 106 random states. The red
dotted line represents the limit value of B(ρ) in which there is no Bell’s
nonlocality.

Figure 6 – D(ρ) versus C(ρ) for the DQC1 model with two qubits. Each dot represents
the value of these correlations calculated for 106 random states.

matrix after running the DQC1 circuit. The maximum value achieved for coherence cal-

culate by eq. 16 is 1, due to control qubit. The red dotted line represents the maximum

value for eq. 12 when the density matrix do not show non-local aspects. Notice that this

two-qubit model has only coherence and quantum discord (calculated by eq. 15). Since

for achieving violation of Bell’s inequality is necessary entanglement, Figure 4 shows

that we have access to states with Coherence C(ρ) 6= 0 but without Bell-violation. Figure
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5 shows that this model with two qubits accesses states with D(ρ) 6= 0 while there is

not violation of Bell’s inequality. The quantum discord increases "quadraticaly" as B(ρ)

increases until the maximum value 0.1244, then decreases almost linearly. Figure 6

shows that there are many states with small valves of D(ρ) but they present coherence,

the fundamental ingredient for existing quantum discord. The number of states in this

plot can be distorted because we used different norms, trace norm for coherence and

Hilbert-Schmidt norm for quantum discord. As quantum discord is a broader type of

correlation than entanglement, it has recently been proposed a quantitative connection

between quantum discord and coherence (FERRARO et al., 2010).

The maximum values for the correlations are shown in Table 2. As noticed below, the

Quantum
Correla-
tions

Maximum value
for Hilbert space

Maximum value for
DQC1 model

B(ρ) 2
p

2 1.9974
D(ρ) 0.5 0.1244
N(ρ) 0.5 0
C(ρ) 3.0 0.9992

Table 2 – The maximum values of QC between two qubits for the entire Hilbert space
and DQC1 model.

DQC1 model of quantum computing is unable to generate strong correlations, as the

violation of Bell’s inequality, between the control and the auxiliary qubits. At follows we

introduce a way to create more powerful correlations to be achieved in DQC1 model.

4.2 DQC1 WITH POST-SELECTION

Here, the goal is to promote the other QC, such as entanglement and Bell-violation

in the DQC1 model with two qubits. We base ourselves in (PARKER; PLENIO, 2000) to

add the post-selection in this model, in which the authors realize the Shor Factorization

algorithm. To promote other correlations in this computation model, we introduced a spe-

cific post-selection process after the circuit, which one acts through a filter, described

by (KENT; LINDEN; MASSAR, 1999)

F = Ua

[

1 0

0 η

]

U†
a, (20)

with η ∈ [0,1] and Ua is a random unitary operation. This η represents the probability of

success of acting this filter.The post-selection with this specific filter makes us trace out

a part of the final density matrix. It is allowed erring 1–η, so for η= 1 it is the same as

applying an identity gate on the circuit. Then the circuit operates to purify the auxiliary

qubit in the state I
2 with a certain η. The circuit with two qubits and the post-selection is
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Figure 7 – DQC1 model for two qubits (control ρo and auxiliary ρn=1 = I
2) with post-

selection through a specific filter F that operates in the system. Trace out
the control qubit in ρ∗f we have the auxiliary qubit more purified than before,
so that the auxiliary qubit has a degree of purity P(ρ) > 0.5. The purification
process can be repeated by reinserting the final state of the auxiliary qubit
in the circuit again.

shown in Figure 7, where the filter acts like another quantum gate at the circuit. For the

study of the promotion of correlations, the control qubit used is a pure random state in

the circuit shown in the Figure 3.

Below is the step by step of the circuit

1. A pure random qubit (ρ0) and the random unitary matrices for the filter and con-

trolled unitary gate are generated through the functions in GETLAB.

2. Purification process: an optimization program described by

ρ∗f = argηmin{P(ρ) : ρfinal ,F }

runs on the random unitary matrices Ua, where

ρfinal = (F0⊗ I)(H0⊗ I)U
(

H0ρ0H0⊗
I
2

)

U†(H0⊗ I)(F †

0 ⊗ I).

Thus, the auxiliary qubit has its final purity P(ρn=1) > 0.5 (purity of ρn=1 = I
2 ).

3. The step 2 was performed m times, thus obtaining a set of N purified

ρn=1 = trcontrolρ
∗
final

this is the process of finding the purest possible with P(ρn=1) = 0.99 while respect-

ing the cumulative η set at the beginning (see Appendix A).

Figure 8 shows the result of the optimization process made on MATLAB. We found that

the chance of totally purifying the auxiliary qubit is zero. That is, the higher the chance

of success η of the filter allowed in the purification process, the lower the purity achieved

by the control qubit. We will show in section 4.2.2 the plots of QC (NN (ρ), DN (ρ), CN (ρ),

BN (ρ)) versus P(ρ). We see the reason for using the purity in the optimization process,

because the QC increase with the increase of P(ρ) of the auxiliary qubit.
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Figure 8 – Purity versus probability of success of the purification process η.

4.2.1 The role of η

In order to investigate the role played by η on the purification process we fixed η and

analyzed the minimum value of the purity to entangle and violate the Bell’s inequality.

Here we evaluate how QC develops along the auxiliary qubit purification process by

applying a specific filter, it has the task of purifying the auxiliary qubit. We can describe

this process by the black box that purify the auxiliary qubit (see Figure 9). We set a

Figure 9 – Optimization process through the black box that purifies the auxiliary qubit.

specific cumulative η as one of these values
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and we perform the purification steps describes in section 4.2. In order to increase data

confidence, we execute m = 400 times the circuit (Figure 7) for each η with N = 104

random unitary matrices Un=1 and Ua. Then we have a set of N purified ρn=1 which are

used to calculate the N values of the correlations. We choose some values of cumulative

η to analyze the behavior of QC. All plots of mean values of QC are normalized to one,

where we used for this the maximum value that each correlation can reach (see Table

2). Each point in these plots is an average value of m random states used to calculate
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the QC for a purification process of N random states. Due to the optimization process,

these plots present a finite sample of states, and presents surfaces with smaller widths,

making it evident that the optimization process retains states that have low performance

in both correlations. With the increase in the purity of the control qubit we have access

to states with more QC.

Figure 10 shows the relation between the B(ρ) and quantum discord, the red dotted

line limits the maximum value that B(ρ) can reach without violation. We note that with

the decrease of η the value of B(ρ) comes closer to the maximum Bell-violation, i.e.,

the value of this QC increases, for η smaller we have more Bell-violation. We already

expected this behavior because of Figure 5, that without applying the filter we did not

reach Bell-violation. We also observe that the B(ρ) always starts from a nonzero value.

As well, we note the relation with Figure 8, that for η∼ 1 is same that do not apply any

filter in the circuit and the auxiliary qubit keeps your initial purity. Figures 10 (a) and 10

(b) contain few states with Bell-violation and non-null quantum discord, while Figure 10

(c) shows that we can have Bell-violation with small D(ρ).

Figure 11 shows the relation between the B(ρ) and negativity. It is observed that with

the decrease of η we have access to states that present higher values of entanglement

and that reach Bell-violation. The number of states with the null negativity decrease as

η decrease as expected for the DQC1 circuit without post-selection, where we do not

have entanglement. We can not have Bell-violation without entanglement. As well, we

also note the relation with Figure 8, that for η∼ 1 we do not have states with violation of

Bell’s inequality or entanglement.

Figure 12 shows the relationship between the B(ρ) and coherence. It is evident

that in all plots we do not have states with zero coherence, showing that coherence is

not important to achieve Bell-violation. The maximum coherence that the states can

achieve is 0.35 for this two qubits computing model. As η increases we approach the

behavior of Figure 4, in which all states with only QC of coherence type do not violate

Bell’s inequality.

Figure 13 shows the relation between coherence and quantum discord. The number

of states with null quantum discord increase with the increase of η. As we observed

previously, the coherence never reaches zero value. As expected, with the increase

of η we approach the result of the Figure 6. The maximum value of quantum discord

decrease with the increase of η.

Figure 14 shows the relation between the negativity and coherence. We do not

have states with null coherence, showing that coherence is not important to achieve

non-null entanglement. As η increases, we have smaller chance of finding states with

N(ρ) > 0, i.e., the maximum value of negativity that states can achieve decreases with

the increase of η, as expect of section 4.2.

Figure 15 shows the relation between the negativity and quantum discord. It is
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Figure 10 – Plots of the normalized quantum discord DN (ρ) versus normalized BN (ρ)
for different values of η, (a) η= 9/10, (b) η= 2/3, and (c) η= 3/5. Each point in
the sample of N = 104 points (different final density matrices) were obtained
by averaging over m = 400 random purification processes in which Ua could
vary. The red dotted line indicates the lower bound of the violation of the
normalized Bell’s inequality 1/

p
2.

shown that we have many states with the value of NN (ρ) > 0.15 and a small value of

quantum discord. This behavior changes for greater values of η. We can obtain states

with null quantum discord and low entanglement. These QC grow linearly until they

reach a maximum value 0.24 and from there we have many states with greater values

of negativity.

In all plots, we recovered the behavior presented in the DQC1 model without post-

selection. As commented in the previous subsection, a consequence of optimize the

purity implies that we have access a number of states with others correlations greater

than that present in the DQC1 model without post-selection.

The maximum mean values of normalized QC for specific cumulative η are shown

in Figures 16, 17, 18, and 19. Analyzing the pattern for η∼ 1 in these plots, we recover

the behavior of all QC without post-selection, as shown in Figures 4, 5, and 6. Figure 16
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Figure 11 – Plots of the normalized negativity NN (ρ) versus normalized BN (ρ) for differ-
ent values of η, (a) η = 9/10, (b) η = 2/3, and (c) η = 3/5. Each point in the
sample of N = 104 points (different final density matrices) were obtained by
averaging over m = 400 random purification processes in which Ua could
vary. The red dotted line indicates the lower bound of the violation of the
normalized Bell’s inequality 1/

p
2.

shows normalized B(ρ) versus η. As η approaches to one we get the lower Bell-violation

value. This means that with an optimization that slightly purifies the auxiliary qubit, we

already achieve the violation of Bell’s inequality. Figure 17 shows normalized C(ρ) as

a function of the purification parameter η. The coherence reaches its maximum value

of ∼ 0.35. Figure 18 shows normalized D(ρ) as a function of the purification parameter

η. The minimum of quantum discord reached is near to D(ρ) ∼ 0.24. Even for η ∼ 1

the quantum discord does not achieve zero. Figure 19 shows normalized N(ρ) as a

function of the purification parameter η. The value of negativity decreases linearly with

the increasing of η until it reaches the null value.

According to the analysis of this section, we can conclude that even a filter with η< 1

is sufficient to promote QC in DQC1 model with two qubits, so that the entanglement

and violation of Bell’s inequality arise in this system
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Figure 12 – Plots of the normalized coherence CN (ρ) versus normalized BN (ρ) for dif-
ferent values of η, (a) η= 9/10, (b) η= 2/3, and (c) η= 3/5. Each point in the
sample of N = 104 points (different final density matrices) were obtained by
averaging over m = 400 random purification processes in which Ua could
vary. The red dotted line indicates the lower bound of the violation of the
normalized Bell’s inequality 1/

p
2.

4.2.2 The purity of the auxiliary qubit

In this section we will explore the role of purity of the auxiliary qubit in DQC1 model

with two qubits. What is the minimum purity necessary for entanglement-like correlation

to appear in this system. We observe that even without a significant purification of the

auxiliary qubit we already achieve non-null entanglement and Bell-violation. Figure 20

shows the relation between purity and the filter parameter η, it is a complement for

Figure 8. We observe that the maximum mean value of the purity is P(ρ) = 0.6167.

Figures 21, 22, 23, and 24 show the behavior each normalized quantum correlation

as function of the purity of the auxiliary qubit. We note that the maximum mean value

of the purity achieve is 0.62. Figure 21 shows that even with the auxiliary qubit in the

maximally mixed state, we already have a nonzero coherence value and as the purity

of the auxiliary qubit increases, the coherence also increases approximately linearly.
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Figure 13 – Plots of the normalized quantum discord DN (ρ) versus normalized coher-
ence CN (ρ) for different values of η, (a) η= 9/10, (b) η= 2/3, and (c) η= 3/5.
Each point in the sample of N = 104 points (different final density matrices)
were obtained by averaging over m = 400 random purification processes in
which Ua vary.

Figure 22 shows that negativity increases with the increase of purity, starting from zero

negativity until reaching a maximum of 0.5 for a purity of the control qubit of P(ρ)∼ 0.62.

Figure 23 shows that quantum discord starts from a non-null value and not increase

so much with the increase of purity. Figure 24 shows that the B(ρ) increases with the

purity, however, without reaching the maximum violation. Also with a small purification

of auxiliary qubit, we already achieve the Bell-violation.

The behavior of the plots shows that we need little purification of the control qubit

in order to have non-null entanglement and violation of Bell’s inequality. In this way,

we can execute the optimization program to purify the auxiliary qubit just a few steps

and have entanglement and violation of Bell’s inequality. Figure 25 shows the relation

between normalized QC, η, and purity of the auxiliary qubit. It is a summary of the last

two subsections.
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Figure 14 – Plots of the normalized coherence CN (ρ) versus normalized negativity
NN (ρ) for different values of η, (a) η = 9/10, (b) η = 2/3, and (c) η = 3/5.
Each point in the sample of N = 104 points (different final density matrices)
were obtained by averaging over m = 400 random purification processes in
which Ua vary.

4.2.3 Purification optimization

We can analyze the QC for different purities of the auxiliary qubit without set the

cumulative η. Thus, it is also a parameter for optimizing in MATLAB until reaching

P(ρ) = 0.99. We execute the program many times and it was necessary on average 12

interactions with the optimization program to achieve the maximum value of purity. In

other words, on average, twelve applied differents filters in DQC1 circuit with two-qubit

were required to reach the maximum purity.

The relation between the QC with steps of purification are shown in Figure 26, 27, 28,

29, 30, and 31. Each surface with different color shows the mean value of 104 random

unitary matrices used to compute the QC for each purification step of the auxiliary qubit.

The intermediate steps are similar, and for this reason, we have plotted only 5 of 12

steps, i.e., the first, second, third, fourth, and twelfth ones. The blue surface represents

the mean value of QC after the first step of purification, while the green one after the
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Figure 15 – Plots of the normalized quantum discord DN (ρ) versus normalized negativ-
ity NN (ρ) for different values of η, (a) η = 9/10, (b) η = 2/3, and (c) η = 3/5.
Each point in the sample of N = 104 points (different final density matrices)
were obtained by averaging over m = 400 random purification processes in
which Ua vary.

last step of purification, in which the auxiliary qubit achieves P(ρ) 0.99.

Figure 26 shows that according to the increase of the purity of the auxiliary qubit,

the number of states that violates the Bell’s inequality also increases near the maximum

violation, while states with greater discord also increase. For the purity of 0.99, practi-

cally all states violate the Bell’s inequality. Figure 27 shows that we need more steps of

purification to reach states with maximum negativity. We note that little entanglement

is possible to violate Bell’s inequality. Figure 28 shows that in all steps of purification

of the auxiliary qubit, the states have non-null coherence, until achieving the maximum

value of 1.5. Figure 29 shows that we can have states with null discord and non-null

coherence. For the last step of purification, almost all states have C(ρ) > 1. Figure 30

shows that for the maximum purification, all states have C(ρ) > 1 and almost states with

N(ρ) > 0.15. Also, we can have coherence even without entanglement, as expect from

section 4.1. Figure 31 shows that with the increase of purity of the auxiliary qubit, we
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Figure 16 – Normalized BN (ρ) versus η. Each dot represents the maximum value for
this correlation with a specific η.

have access to more states with the non-null negativity and non-null quantum discord.

We can note that upon reaching the maximum purity (0.99) the correlations also

reach their maximum accessible values. The B(ρ) almost achieves the maximum value

of 2
p

2 for the most purified auxiliary qubit. Negativity also reaches its maximum value

0.5. Comparing with Figures 10, 11, 12, 13, 14, and 15 of the subsection 4.2.1, we can

notice the same pattern for a determined purity. We achieve states with more QC, as

entanglement and Bell’s nonlocality, than previously without the post-selection .

4.2.4 Density of states with quantum correlations in DQC1 circuit with post-

selection

Density of states is defined as the ratio between the number of states with a cor-

relation value greater than that achieved by the states in the DQC1 model with two

qubits without post-selection (see Table 2) and the amount of total states (104). Figures

32, 33, and 34 present density of states of between coherence, quantum discord, and

Bell’s nonlocality for the different values of η. The values of η are the same used before

in subsection 4.2.1. From plots for different η in subsection 4.2.1 we can infer that we

have few states that violate the Bell’s inequality if compared to other QC. We observe

that the higher the η the lower the density of states that overcome the value of these

correlations for DQC1 model without post-selection. This result recovers the behavior

shown in Figures 4, 5, and 6. Figure 32 shows the relation between the density of states

with quantum discord greater 0.1244 for some values of the filter parameter η. We can
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Figure 17 – Normalized coherence CN (ρ) versus η. Each dot represents the maximum
value for this correlation with a specific η.

observe that the density of states are greater for small η. Figure 33 shows the relation

between the density of states with coherence greater than 0.9992 for some values of

the filter parameter η. And Figure 34 shows the relation between the density of states

with Bell’s quantifier greater than 1.9974 for some values of the filter parameter η. As

in other plots we can also observe that the density of states are greater for small η.

These plots complement the information obtained with the previous plots for η∼ 1 that

recovered the results of the correlations for the DQC1 model with two qubits.
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Figure 18 – Normalized quantum discord DN (ρ) versus η. Each dot represents the
maximum value for this correlation with a specific η.

Figure 19 – Normalized negativity NN (ρ) versus η. Each dot represents the maximum
value for this correlation with a specific η.
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Figure 20 – Purity as function of the probability of success η for DQC1 model with two
qubits with the post-selection. Each dot represents the maximum mean
value of the achieved purity for the auxiliary qubit with a specific η.

Figure 21 – Normalized coherence CN (ρ) versus P(ρ). Each dot represents the maxi-
mum mean value for this correlation with a specific purity.
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Figure 22 – Normalized negativity NN (ρ) versus P(ρ). Each dot represents the maxi-
mum mean value for this correlation with a specific purity.

Figure 23 – Normalized quantum discord DN (ρ) calculate from eq. 15 as function of
the purity P(ρ). Each dot represents the maximum mean value for this
correlation with a specific purity.
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Figure 24 – Normalized BN (ρ) versus P(ρ). Each dot represents the maximum mean
value for this correlation with a specific purity.

Figure 25 – Relation between η, the maximum mean value of purity and the normalized
QC for the DQC1 model with post-selection.
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Figure 26 – D(ρ) versus B(ρ). Each surface with different color shows the mean value of
104 random unitary matrices used to compute the QC for each purification
step of the auxiliary qubit. As the behavior of the quantum correlations is
similar for the intermediate steps of the purification, such surfaces have not
been plotted.
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Figure 27 – N(ρ) versus B(ρ). Each surface with different color shows the mean value of
104 random unitary matrices used to compute the QC for each purification
step of the auxiliary qubit. As the behavior of the quantum correlations is
similar for the intermediate steps of the purification, such surfaces have not
been plotted.
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Figure 28 – C(ρ) versus B(ρ). Each surface with different color shows the mean value of
104 random unitary matrices used to compute the QC for each purification
step of the auxiliary qubit. As the behavior of the quantum correlations is
similar for the intermediate steps of the purification, such surfaces have not
been plotted.
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Figure 29 – D(ρ) versus C(ρ).Each surface with different color shows the mean value of
104 random unitary matrices used to compute the QC for each purification
step of the auxiliary qubit. As the behavior of the quantum correlations is
similar for the intermediate steps of the purification, such surfaces have not
been plotted.
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Figure 30 – C(ρ) versus N(ρ). Each surface with different color shows the mean value of
104 random unitary matrices used to compute the QC for each purification
step of the auxiliary qubit. As the behavior of the quantum correlations is
similar for the intermediate steps of the purification, such surfaces have not
been plotted.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 N( )

0

0.1

0.2

0.3

0.4

0.5

 D
(

)

Step 1

Step 2

Step 3

Step 4

Step 12

Figure 31 – D(ρ) versus N(ρ). Each surface with different color shows the mean value of
104 random unitary matrices used to compute the QC for each purification
step of the auxiliary qubit. As the behavior of the quantum correlations is
similar for the intermediate steps of the purification, such surfaces have not
been plotted.
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Figure 32 – Density of states with values of quantum discord above the values achieved
by the states in the usual DQC1 model, i.e., without post-selection, versus
the probability of success η of the purification protocol. The total number of
states is 104.

Figure 33 – Density of states with values of coherence above the values achieved by
the states in the usual DQC1 model, i.e., without post-selection, versus the
probability of success η of the purification protocol. The total number of
states is 104.
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Figure 34 – Density of states with values of B(ρ) above the values achieved by the
states in the usual DQC1 model, i.e., without post-selection, versus the
probability of success η of the purification protocol. The total number of
states is 104.
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5 CONCLUSION

In this work, quantum correlations in the DQC1 model with two qubits were studied.

As described in the literature, this model has no entanglement, thus, this resource is

not responsible for the advantage over classical computing for the evaluation of the

normalized trace of unitary operations. As this model with two qubits does not have en-

tanglement, neither Bell-violation, because we cannot have a violation of Bell inequality

without entanglement between qubits. To find the other QC not previously present in

this model with two qubits, a post-selection with a specific filter with a parameter η was

added into the circuit. This allowed us to perform an auxiliary qubit purification process

through optimization programs of the purity, the random unitary matrices of the filter,

and controlled unitary gate. Setting the maximum purity achieved in this optimization

process to 0.99, we realize that the filter parameter must be close to 1, that which is the

same as applying an identity gate. For specific cumulative η we recalculate the plots of

QC for the DQC1 model with two qubits, and we detect that the lower the η, the higher

the correlation values will be achieved. We also analyze the role of purity of the auxiliary

qubit in relation to the QC and we found that for a small purity entanglement and Bell

violation already begin to appear. To be more precise, we need a purity of 0.62 to have

these correlations. A study of the average number of purification steps that are needed

to achieve maximum purity of 0.99 was also done, on average 12 purification steps are

required and we find the maximum Bell-violation and maximum entanglement for the

maximally pure auxiliary qubit.

It was demonstrated in (PARKER; PLENIO, 2000) that a single pure qubit, together

with an initial supply of log2N qubits in an arbitrarily mixed state with the post-selection,

is sufficient to implement Shor’s algorithm for the factorization of the number N efficiently.

Our result goes in the direction that in order to use the DQC1 model to solve the

factoring problem as done by (PARKER; PLENIO, 2000), the purification process was

necessary because just as we show several correlations are generated in the system.

We can further expand our studies, executing the program for a larger number of

random unitary matrices and for a greater number of auxiliary qubits in order to verify

whether this behavior is maintained for the access to others quantum correlations.
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ŻYCZKOWSKI, Karol et al. Generating random density matrices. Journal of
Mathematical Physics, American Institute of Physics, v. 52, n. 6, p. 062201, 2011.



71

APPENDIX A – CUMULATIVE η

A program was built in MATLAB that returns us a purified auxiliary qubit, with purity

P(ρ) > 0.5, which is the initial purity of the auxiliary qubit, whose initial state is I
2 . This

program draws a random η between a defined value among 13 predefined values (sec-

tion 4.2.1) and 1. After this draw, we run the filter optimization program until obtaining a

defined cumulative value (one of the 13 possible values). So, at the end we have a filter

parameter value that generates a more purified auxiliary qubit. In summary, the idea of

this program is that the first η used in the purification of the auxiliary qubit is a number

between a value define and 1, the next between this previous value and 1 (decreasing

the distance), until reaching the cumulative chosen value. With this final cumulative η

we analyze what purity the qubit auxilir reached.
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