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RESUMO

Esta tese de doutorado avança o estado da arte do gerenciamento de suprimento
de óleo cru propondo modelos de programação matemática e algoritmos que tratam
deste problema de forma integrada no nível de decisão operacional. Como resultado
obtém-se o Gerenciamento Operacional do Suprimento de Petróleo (OMCOS). OM-
COS considera ambos segmentos upstream (i.e., plataformas, navios e o terminal
de petróleo cru) e midstream (i.e., CDUs nas refinarias). Em relação à literatura téc-
nica, OMCOS combina Maritime Inventory Routing (MIR) com Crude Oil Scheduling

(COS), considerando elementos do nível operacional (i.e., escalonamento e misturas
de óleo cru) e do nível tático (i.e., controle de inventário e alocação de recursos). Esta
integração gera modelos MINLP não convexos que são abordados nesta tese. O capí-
tulo 2 propõe um algoritmo iterativo baseado em decomposição MILP-NLP, que aplica
em cada iteração uma estratégia de redução de domínio para lidar com os termos
bilineares encontrados no escalonamento de operações com óleo cru (COS). Um mod-
elo MINLP não convexo para o OMCOS que agrega ao problema de suprimento de
petróleo elementos do nível operacional encontrados em Maritime Inventory Routing

e Crude Oil Scheduling é proposto no capítulo 3. Além disto, é apresentado um al-
goritmo baseado em decomposição MILP-NLP que utiliza envelopes de McCormick
(para gerar uma relaxação MILP), redução de domínio (para reduzir a complexidade),
e um solver NLP (para a obtenção de soluções factíveis). O capítulo 4 propõe um
modelo de programação inteira mista (MILP) para clusterizar o OMCOS que possui
os seguintes benefícios: (a) redução do número de rotas dos navios; (b) simplificação
de operações de offloading e unloading; (c) imposição de regras para a mistura de
diferentes tipos de petróleo em storage tanks de forma a minimizar a variação das
propriedades; e (d) produção de limites em relação às propriedade dos petróleos nos
storage tanks e charging tanks que são usados para linearizar os termos bilineares.
Através da combinação de clusters e de uma decomposição MILP-NLP, boas soluções
com custo computacional reduzido foram obtidas para um conjunto de instâncias do
OMCOS.

Palavras-chave: MILP. MINLP. Crude Oil Scheduling. Maritime Inventory Routing. Supri-
mento de Petróleo. Terminal de Petróleo. Misturas. Termos Bilineares. Clustering.



RESUMO EXPANDIDO

Introdução
O suprimento de petróleo de plataformas offshore até refinarias é um dos principais
problemas enfrentados por empresas verticalmente integradas que controlam a pro-
dução, transporte, armazenamento e refino. Em campos offshore de águas profundas,
unidades Flutuantes de Produção, Armazenamento e Descarregamento (FPSOs) pro-
duzem e armazenam óleo cru. Este petróleo é transferido para terminais de petróleo
onshore por frotas de navios. Quando estes navios chegam ao terminal, eles utilizam
oleodutos para descarregarem sua carga de petróleo em storage tanks. O óleo é então
bombeado para charging tanks e em seguida enviado para as colunas de destilação
das refinarias. (CDUs).

Objetivos
O principal objetivo desta tese é desenvolver modelos de programação matemática
para o gerenciamento operacional do suprimento de petróleo e estratégias de solução
para lidarem com a complexidade dos modelos obtidos. Além disto, os objetivos especí-
ficos são os seguintes: (a) avaliar a contribuição acadêmica e industrial da solução do
problema de gerenciamento operacional do suprimento de petróleo de forma integrada;
entender e analisar o estado da arte no uso de programação matemática no contexto
do gerenciamento operacional do suprimento de petróleo; desenvolver e avaliar mod-
elos que integram o gerenciamento operacional do suprimento de petróleo; propor
e avaliar a performance de estratégias de decomposição usadas para a solução do
problema; desenvolver estratégias de clusterização e avaliar a sua eficácia na solução
do problema de gerenciamento operacional do suprimento de petróleo; identificar lim-
itações dos modelos e estratégias de solução, e apontar direções para pesquisas
futuras.

Metodologia
Durante o processo de formulação dos modelos propostos nesta tese, o principal obje-
tivo era representar as operações presentes no suprimento de petróleo o mais próximo
possível da realidade. De forma geral, o gerenciamento operacional do suprimento de
petróleo e seus subproblemas levam em consideração: (a) plataformas de petróleo e
seus parâmetros relacionados a produção e armazenamento de petróleo; (b) navios
aliviadores e seus parâmetros relacionados ao armazenamento de petróleo e tempos
de viagem; (c) tanques de armazenamento em terminais de petróleo e seus parâmetros
relacionados ao armazenamento e transferência de petróleo; (d) colunas de destilação
e seus parâmetros relacionados a demanda e qualidade de petróleo. Como esperado,
as formulações resultantes são não-lineares e apresentam um elevado número de
variáveis e restrições que não podem ser resolvidas com solvers tradicionais. Desta
forma, esta pesquisa pretende propor modelos e identificar estruturas que possam ser
exploradas de forma a decompor o problema e reduzir o esforço computacional. Ape-
sar de não existir um banco de dados de instâncias relativas a este problema, dados
disponíveis em trabalhos da literatura foram utilizados para a geração das instâncias
propostas nesta tese.

Resultados e Discussão



Esta tese de doutorado avança o estado da arte do gerenciamento de suprimento
de óleo cru propondo modelos de programação matemática e algoritmos que tratam
deste problema de forma integrada no nível de decisão operacional. Como resultado
obtém-se o Gerenciamento Operacional do Suprimento de Petróleo (OMCOS). OM-
COS considera ambos segmentos upstream (i.e., plataformas, navios e o terminal
de petróleo cru) e midstream (i.e., CDUs nas refinarias). Em relação à literatura téc-
nica, OMCOS combina Maritime Inventory Routing (MIR) com Crude Oil Scheduling

(COS), considerando elementos do nível operacional (i.e., escalonamento e misturas
de óleo cru) e do nível tático (i.e., controle de inventário e alocação de recursos). Esta
integração gera modelos MINLP não convexos que são abordados nesta tese. O capí-
tulo 2 propõe um algoritmo iterativo baseado em decomposição MILP-NLP, que aplica
em cada iteração uma estratégia de redução de domínio para lidar com os termos
bilineares encontrados no escalonamento de operações com óleo cru (COS). Um mod-
elo MINLP não convexo para o OMCOS que agrega ao problema de suprimento de
petróleo elementos do nível operacional encontrados em Maritime Inventory Routing

e Crude Oil Scheduling é proposto no capítulo 3. Além disto, é apresentado um al-
goritmo baseado em decomposição MILP-NLP que utiliza envelopes de McCormick
(para gerar uma relaxação MILP), redução de domínio (para reduzir a complexidade),
e um solver NLP (para a obtenção de soluções factíveis). O capítulo 4 propõe um
modelo de programação inteira mista (MILP) para clusterizar o OMCOS que possui
os seguintes benefícios: (a) redução do número de rotas dos navios; (b) simplificação
de operações de offloading e unloading; (c) imposição de regras para a mistura de
diferentes tipos de petróleo em storage tanks de forma a minimizar a variação das
propriedades; e (d) produção de limites em relação às propriedade dos petróleos nos
storage tanks e charging tanks que são usados para linearizar os termos bilineares.
Através da combinação de clusters e de uma decomposição MILP-NLP, boas soluções
com custo computacional reduzido foram obtidas para um conjunto de instâncias do
OMCOS.

Considerações Finais
O gerenciamento operacional do suprimento de petróleo consiste em coordenar o
fluxo de petróleo de plataformas até refinarias. Com o objetivo de avançar o estado
da arte, esta tese propõe modelos de programação matemática e algoritmos para a
solução integrada do problema. Os capítulos apresentam uma série de contribuições
na área de modelagem, estratégias de decomposição e de clusterização. Além disto,
a tese propõe um conjunto de instâncias do problema que poderão ser utilizadas em
pesquisas futuras. Os trabalhos futuros vão no sentido de: (a) melhorar as formulações
do problema de forma a se obter relaxações MILP mais apertadas; (b) implementar
estratégias de quebra de simetria; (c) propor novas estratégias de decomposição do
problema; (d) aprimorar a estratégia de clusterização para diminuir ou eliminar pos-
síveis soluções infactíveis.

Palavras-chave: MILP. MINLP. Crude Oil Scheduling. Maritime Inventory Routing. Supri-
mento de Petróleo. Terminal de Petróleo. Misturas. Termos Bilineares. Clustering.



ABSTRACT

This thesis advances the state of the art on the management of crude oil supply by
proposing models and algorithms to consider elements of the operational decision
level in an integrated fashion, which leads to the Operational Management of Crude
Oil Supply (OMCOS). OMCOS comprises both the upstream (i.e., platforms, vessels
and terminal) and the midstream (i.e., CDUs at the refinery) segments. In relation to
the technical literature, OMCOS combines elements of Maritime Inventory Routing
(MIR) with Crude Oil Scheduling (COS) by considering decisions at the operational
level (i.e., scheduling and crude oil blending) and tactical level (i.e., inventory control
and resource allocation). Such an integration leads to non-convex Mixed Integer Non-
Linear Programming (MINLP) models that are addressed in this thesis. Chapter 2
proposes an iterative two-step MILP-NLP decomposition algorithm, which implements
a domain-reduction strategy for handling bilinear terms in the scheduling of crude oil
operations (COS). A non-convex MINLP model for OMCOS that brings elements of
the operational level into the management of crude oil supply, thereby incorporating
elements of maritime inventory routing and crude oil scheduling is proposed in Chapter
3. Further, an iterative MILP-NLP decomposition is presented to tackle the MINLP
problem that relies on bivariate piecewise McCormick envelopes (to yield an MILP
relaxation), domain reduction (to reduce complexity), and an NLP solver (to reach
feasible solutions). Chapter 4 proposes an Mixed Integer Linear Programming (MILP)
clustering formulation for OMCOS that offers the following benefits: (a) reduces the
number of routes for the vessels; (b) simplifies offloading and unloading operations; (c)
imposes rules for crude mixtures in clusters of storage tanks that minimize property
variations; and (d) produces bounds on crude properties inside storage and charging
tanks that are used to linearize the bilinear terms in blending constraints. Through the
combination of clusters and an MILP-NLP decomposition, good solutions were obtained
for a set of representative instances of OMCOS at a reduced computational cost.

Keywords: MILP. MINLP. Crude Oil Scheduling. Maritime Inventory Routing. Crude Oil
Supply. Crude Oil Terminal. Blending. Bilinear Terms. Clustering.
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energy in the world.

The numbers show that although renewables had the largest increase on their

share in global energy consumption, oil still plays a relevant role in the global energy

market. Therefore, there is still the need of developing decision supporting tools for

the oil industry to assist decision making in problems related with: (a) oil exploration

and production, (b) oil transportation, storage and supply to refineries, (c) refining, and

(d) supply to final costumers. The next section introduces the basics elements and

problems of the Petroleum Supply Chain, which is the main focus of this thesis.

1.2 PETROLEUM SUPPLY CHAIN

The petroleum industry is faced with a complex and economically relevant supply

chain, which is composed by several sub-problems. The complexity is assured by the

fact that the oil industry has a global marketplace, with oil production, refining and

transportation spread all over the world.

As defined in Simchi-Levi et al. (2008), supply chain management consists of

planning, managing, coordinating and integrating entities and activities of the chain in

order to satisfy costumer demands, both in terms of quantity and time, while minimizing

the overall cost. When it comes to oil companies, Sahebi et al. (2014) point out that

in today’s business world, these companies should take into account supply chain

management concepts and tools in order to stay productive and competitive. In other

words, it is highly important for enterprises to adopt supply chain management practices

and decision supporting tools based on mathematical optimization to decrease costs

and achieve operational efficiency, while maintaining quality.

Activities from the petroleum supply chain such as: (a) onshore and offshore oil

exploration and production, (b) crude oil transportation and supply, (c) crude oil storage

and refining, as well as (d) product storage and distribution to final costumers, involve

a set of different operations with high revenues and costs (LIMA et al., 2016). The

management of such activities is highly complex and it increases depending on the

number of entities (see Table 1), decision levels (see Table 2), materials, and information

involved, as well as the level of integration between them (BARBOSA-PÓVOA, 2014;

BARBOSA-PÓVOA; PINTO, José Mauricio, 2020). To manage these activities in the

best way, there is a need for developing decision making supporting tools based on

mathematical optimization with the goal of providing an integrated and adaptive supply

chain, as well as assessing risk and uncertainties (CAPGEMINI, 2008; MARQUES

et al., 2020).

According to Sahebi et al. (2014), the petroleum supply chain can be divided

into upstream, midstream and downstream segments. Decisions regarding oil field

infrastructure, production and transportation of crude oil to the refineries belong to

the upstream segment. Wellhead, well platform, production platforms, transportation
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vessels and crude oil terminals are the main entities of this segment. The midstream

portion is concerned with the conversion of the crude oil into refined products at re-

fineries and petrochemical plants. Finally, the downstream segment includes storage,

primary and secondary distribution, and wholesale & retail market of refined products.

Table 1 summarizes the entities of each segment of the petroleum supply chain.

Upstream Midstream Downstream

Well Well Production Crude Oil Refinery Petrochemical Distribution Market/Customer
Head Platform Platform Terminal (RF) Plant Center/Depot (M/C)
(WH) (WP) (PP) (CT) (PC) (DC)

Table 1 – List of entities of each segment of the petroleum supply chain.

As highlighted by Lazaros G. Papageorgiou (2009), the four main activities of the

supply chain management are: supply chain design (strategic); supply chain planning

(tactical) and scheduling (operational); and supply chain control (real-time manage-

ment). All strategic, tactical and operational decision levels are present in the segments

of the petroleum supply chain (BARBOSA-PÓVOA, 2014; GHIANI et al., 2004).

The strategic planning is at the highest level, where investment decisions are

made considering the long-term (years). These decisions deal with network design

problems such as: platform, refinery and warehouse location and capacity; fleet sizing;

pipeline network design. Tactical planning decisions are taken for the medium-term

(months) and are limited by the strategic planning. This level deals with the flow of

materials across the chain: production and distribution planning, inventory manage-

ment, and inventory allocation (SAHEBI et al., 2014; BARBOSA-PÓVOA, 2014). At

the lowest level, operational decisions are taken in the short-term (days or weeks) in

order to guarantee the tactical planning. These decisions define the day to day activi-

ties of the supply chain and include vessel scheduling (ASSIS, Leonardo Salsano de;

CAMPONOGARA, 2016), scheduling of crude oil operations (ZIMBERG et al., 2015),

refinery scheduling (PINTO, J. et al., 2000), pipeline scheduling (REJOWSKI; PINTO,

J., 2004) and downstream vehicle routing (LIMA et al., 2016). Table 2 summarizes the

main activities of each supply chain decision level.

Strategic Level Tactical Level Operational Level

Investment (project selection) Project planning Scheduling activities
Facility location (capacity determination) Oilfield and refinery production planning Routing activities
Facility relocation (capacity expansion) Inventory management
Facility allocation Inventory allocation
Technology selection, upgrading, downgrading Distribution planning
Outsourcing

Table 2 – Main activities of each supply chain decision level.
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1.3 MANAGEMENT OF CRUDE OIL SUPPLY

An important problem faced by oil companies is the supply of crude oil from

offshore platforms to refineries, namely the crude oil supply planning problem (ROCHA

et al., 2009). This problem is usually found in vertically integrated oil companies, which

control production, transportation, storage and refining. Figure 2 illustrates the main

aspects of the problem.

Since oil pipelines are not available in deep-water offshore oilfields, the oil com-

pany relies on Floating, Production, Storage and Offloading units (FPSOs), or simply

platforms, to produce and store crude oil (CAMPONOGARA; PLUCENIO, 2014). From

time to time shuttle tankers travel to FPSOs to collected the crude oil being stored by

them. For a large number of platforms, a fleet of shuttle tankers is needed due to the

high volume of oil that must be transferred from the platforms to crude oil terminals. It

is important to highlight that the vessels’ trips to offload FPSOs need to be such that

there is always enough storage capacity to allow production at full capacity. For plat-

forms closer to the coast, the production is transferred to onshore crude oil terminals

by sub-sea pipelines (ASSIS, Leonardo Salsano de; CAMPONOGARA, 2016).

After arriving at the terminal, shuttle tankers unload crude oil through a pipeline

to the tank farm, which can be composed by several Storage Tanks (STs) (ZIMBERG

et al., 2015). Crude oil can be pumped between storage tanks and to the main pipeline

that connects the crude oil terminal to the refinery. At the refinery, the crude oil arriv-

ing from the pipeline is stored in Charging Tanks (CTs) and subsequently sent to the

Crude Distillation units (CDUs). The set of CDUs will produce oil products such as as-

phalt, diesel, gasoline, and fuel gas, among others, which will be delivered to chemical,

pharmaceutical and energy industries, and end consumers.

Rocha et al. (2009) presented the decisions made in each decision level of the

crude oil supply planning problem. The strategic level is responsible for defining the

demands (i.e., total volume and type of crude oil) of the refinery for the long-term,

as well as crude oil import/export decisions. The tactical level includes more detailed

constraints and is concerned with the medium-term resource allocation. This level

decides which platforms will feed each crude oil terminal; which terminal will supply

each refinery; and the vessel fleet composition. Also, decisions involving material flow

such as the shipments of crude oil between platforms and the crude oil terminal, as

well as between the crude oil terminal and the refinery are carried out for each period

of the planning horizon. The operational level is fed with upper level decisions and is

concerned with routing and scheduling of operations. Maritime Inventory Routing (MIR)

(ASSIS, Leonardo Salsano de; CAMPONOGARA, 2016) and Crude Oil Scheduling

(COS) (MOURET et al., 2009) are the main sub-problems of this decision level.
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(PINTO, J. et al., 2000), pipeline scheduling (REJOWSKI; PINTO, J., 2004), and vehicle

routing (LIMA et al., 2016). This can be explained by the fact that these problems may

involve dozens of thousands of binary and continuous variables, linear and non-linear

constraints, which required specialized solution techniques.

In that sense, one might ask if it is possible or even worth to develop mathemati-

cal programming models and solution strategies, which take into account elements of

both tactical and operational decision levels, for integrating the crude oil supply at the

operational level. This research is then justified by its potential to advance science and

engineering, by developing new models and optimization strategies for the OMCOS.

Further, Barbosa-Póvoa (2014), Barbosa-Póvoa and José Mauricio Pinto (2020) and

Lazaros G. Papageorgiou (2009) pointed out the importance of integrating, if possible,

tactical and operational level decisions, which can enhance supply chain performance.

In the process of formulating the models presented in this thesis, the main goal

is to represent the operations as closely as possible in order to produce realistic models

that can assist engineers plan crude oil supply. In general, the OMCOS and its sub-

problems take into account:

• FPSOs. These resources are located in offshore oilfields producing different types

of crude oil. The resources have a daily production rate, limited storage capacity

and flow rate when offloading their volume into shuttle tankers. Also, each Floating,

Production, Storage and Offloading unit (FPSO) produces only one type of crude

which is characterized by certain properties (i.e., sulfur content, etc).

• Shuttle Tankers or Vessels. Similarly to FPSOs, vessels also have a storage

capacity and flow rate limit when unloading crude oil into storage tanks at the

terminal. Moreover, constraints are used for coordinating offloading operations in

FPSOs and unloading of crudes into STs.

• STs at the Crude Oil Terminal. The storage tanks have the function of receiving

crude oil from vessels and feeding charging tanks. Since mixtures of crudes are

allowed inside a Storage Tank (ST), the individual inventory of each crude must

be tracked. Also, when feeding a Charging Tank (CT), the proportion among

crudes inside the storage tank must be equal to the proportion of crudes leaving

the storage tank. Non-convex constraints are needed to enforce this blending

rule. Depending on the nature of the problem, these constraints can lead to Non-

Linear Programming (NLP) or MINLP formulations. Finally, other rules can also

be considered for a storage tank: a vessels cannot feed more than one ST at a

time; a ST cannot feed more than one CT at time; inlet and outlet operations in a

ST cannot occur in the same time period; and maximum capacities and flow rate

limits must be respected.
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• CTs at the Crude Oil Terminal. Multiple CTs located near the refinery can re-

ceive crude oil from STs to feed the CDUs. Similar rules to the ones defined for

STs can be applied to control the flow of crudes to and from CTs. Lower and

upper bounds on the property specification of the crude blends are defined for

each CTs. This means that the STs need to feed a CT such that the resulting

crude blend inside the CT is within the specification. Consequently, the individual

inventory of each crude must be tracked, which leads to non-convex constraints

to guarantee the proportion of crudes in a feed operation to a Crude Distillation

unit (CDU).

• CDUs. CDUs are the end point of OMCOS. Each CDU is connected to a subset

of CTs and cannot be fed by more than one CT at a time. Further, a CDU has a

total demand that needs to be satisfied both in terms of total amount and crude

specification. Finally, each CDU must receive a minimum volume of crude each

period of time.

As expected, the resulting Mixed Integer Programming (MIP) formulations will

be composed by an expressive number of variables and constraints, which possibly will

not be solved by off-the-shelf solvers such as SCIP (ACHTERBERG, 2009), BARON

(SAHINIDIS, 2014), CPLEX (IBM, 2013), GUROBI (GUROBI OPTIMIZATION, 2016),

and CONOPT (DRUD, 1985), among others. As highlighted by Floudas and Lin (2004)

and Castro et al. (2018), scheduling problems with discrete decisions have a combinato-

rial nature, which when combined with non-linear constraints become challenging from

the computational point of view. Therefore, this research intends to propose models

and identify problem structure that can be exploited in order to decompose the problem

and decrease the computation burden.

1.5 THESIS OBJECTIVES

The main objective of this thesis is to develop mathematical programming models

for the operational management of crude oil supply and solution strategies to tackle the

complexity of the resulting models. Other than that, the specific goals are the following:

• Assess the scientific and industrial value of tackling the operational management

of crude oil supply in an integrated way.

• Understand and analyze the state of the art on the use of mathematical program-

ming in the context of the operational management of crude oil supply.

• Develop and evaluate models that integrate the operational management of crude

oil supply.
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• Propose and assess the performance of decomposition schemes to tackle the

problem of concern.

• Develop clustering strategies and evaluate their effectiveness in solving the oper-

ational management of crude oil supply.

• Identify limitations of the proposed models and solution strategies, and point out

directions for future research.

1.6 CONTRIBUTIONS OF THE THESIS

The main contributions of this thesis are the following:

• Chapter 2. An iterative two-step MILP-NLP decomposition algorithm, which imple-

ments a domain-reduction strategy for handling bilinear terms in the scheduling

of crude oil operations (COS).

• Chapter 3. A non-convex MINLP model for OMCOS that brings elements of the

operational level into the management of crude oil supply, thereby incorporating

elements of maritime inventory routing and crude oil scheduling. Further, an it-

erative MILP-NLP decomposition is presented to tackle the MINLP problem that

relies on bivariate piecewise McCormick envelopes (to yield an MILP relaxation),

domain reduction (to reduce complexity), and an NLP solver (to reach feasible

solutions).

• Chapter 4. A Mixed Integer Linear Programming (MILP) clustering formulation for

OMCOS that offers the following benefits: (a) reduces the number of routes for

the vessels; (b) simplifies offloading and unloading operations; (c) imposes rules

for crude mixtures in clusters of storage tanks that minimize property variations;

and (d) produces bounds on crude properties inside storage and charging tanks

that are used to linearize the bilinear terms in blending constraints. Through

the combination of clusters and an MILP-NLP decomposition, good solutions

were obtained for a set of representative instances of OMCOS at a reduced

computational cost.

The main publications obtained during the development of this thesis are the

following.

1. de Assis, L. S., Camponogara, E. A MILP model for planning the trips of dy-

namic positioned tankers with variable travel time. Transportation Research Part

E: Logistics and Transportation Review, v. 93, p. 372-388, 2016.
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2. Assis, L.S., Camponogara, E., Zimberg, B., Ferreira, F., Grossmann, I. E. A piece-

wise McCormick relaxation-based strategy for scheduling operations in a crude

oil terminal. Computers & Chemical Engineering, v. 106, p. 309-321, 2017.

3. Camponogara, E., Guardini, L. A., Assis, L.S. Scheduling pumpoff operations in

onshore oilfields with electric-power constraints and variable cycle time. Comput-

ers & Operations Research, v. 91, p. 247-257, 2018.

4. Assis, L.S., Camponogara, E., Menezes, B. C., Grossmann, I. E. A MINLP formu-

lation for integrating the operational management of crude oil supply. Computers

& Chemical Engineering, v. 123, p. 110-125, 2019.

5. Assis, L.S., Camponogara, E., Grossmann, I. E. A MILP-based clustering strat-

egy for integrating the operational management of crude oil supply. Submited to

Computers & Chemical Engineering, 2020.

1.7 THESIS ORGANIZATION

This thesis consists of a collection of technical papers published (or submitted for

publication) during the development of the doctoral studies, namely: (ASSIS, Leonardo

Salsano de; CAMPONOGARA, 2016), (ASSIS, Leonardo Salsano de et al., 2017),

(ASSIS, Leonardo S. et al., 2019) and the paper submitted concerning Chapter 4.

Chapter 2 is concerned with the scheduling of crude oil operations in terminal.

The discrete time MINLP formulation was first introduced by Zimberg et al. (2015) and

applied to the crude oil terminal of the national refinery of Uruguay. The development

of Chapter 2 is more focused on presenting the iterative two-step MILP-NLP decom-

position algorithm to tackle the problem instances. The solution strategy is based on

applying McCormick envelopes to relax the bilinear terms of the blending constraints,

leading to a MILP relaxation of the original MINLP formulation. The relaxation is then

solved and binary variables are fixed into the MINLP, yielding in an NLP problem. The it-

erative process is conducted by taking into account in each iteration a domain-reduction

strategy, which makes the following iteration easier to be solved.

Although COS formulations also deal with the supply of crude oil to the CDUs,

consider vessels arriving at a crude oil terminal and the unloading of crudes into STs,

the arrival of vessels and the STs to unload their shipments are known usually in

advance. Therefore, rises the need to complete the offshore portion of OMCOS by

introducing the elements of MIR into the formulation. These elements were based on

the main ideas proposed in the first paper published at the begging of the doctoral

studies (ASSIS, Leonardo Salsano de; CAMPONOGARA, 2016).

Chapter 3 proposes an integrated non-convex MINLP model for OMCOS that

takes into account elements of both MIR and COS. Also, a new iterative two-step
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MILP-NLP solution strategy for tackling instances of the problem is proposed. This is

necessary since off-the-shelf solvers are not able to tackle these instances. To the best

of our knowledge, there does not exist an open data base of instances concerning the

problem described in Chapter 3. Nevertheless, available data to generate adequate

instances can be found in the works of Sérgio M.S. Neiro and José M. Pinto (2004),

Rocha et al. (2009), Cerdá et al. (2015), Mouret et al. (2009), Zimberg et al. (2015), Jin-

Hwa Song and Furman (2013), Nakano et al. (2009), Fraga et al. (2009), and Oliveira

et al. (2016).

The final technical part of this thesis (Chapter 4) proposes a MILP clustering

formulation to recommend how crudes should be mixed in STs located at the crude oil

terminal. The model solution proposes which groups of FPSOs should feed which group

of STs. This is done with the goal of minimizing the differences on chemical properties

of the crudes assigned to the same cluster of STs. The cluster recommendation is then

applied to OMCOS problem instances and solved using a MILP-NLP solution strategy.

Nevertheless, the MILP is not a relaxation of the original MINLP as in Chapters 2 and

3. Now, the blending constraints are linearized based on bounds on crude properties

obtained after solving the clustering problem. Results show that the use of clusters pro-

duce good quality solutions while, at the same time, decreasing the Central Processing

Unit (CPU) time dramatically.

Finally, Chapter 5 provides the final remarks of the thesis and recommends

topics for future research.
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2 A PIECEWISE MCCORMICK RELAXATION-BASED STRATEGY FOR

SCHEDULING OPERATIONS IN A CRUDE OIL TERMINAL

2.1 INTRODUCTION

As mentioned in the introduction, the petroleum supply chain can be divided

into three segments: upstream, midstream and downstream. This work studies the

scheduling of operations in a crude oil terminal within the midstream segment. The

first challenge consists in deciding how the crude oil that arrives in vessels should be

uploaded to the storage tanks. At the same time, the operations engineer must decide

which storage tanks will feed the pipeline connected to the refinery in order to satisfy its

demand. This work concerns the crude oil terminal of the national refinery of Uruguay.

To schedule terminal operations, this work proposes an iterative two-step MILP-NLP

algorithm based on piecewise McCormick relaxation and a domain-reduction strategy

for handling bilinear terms. For small instances for which an optimal solution is known,

the proposed strategy consistently finds optimal or near-optimal solutions. It also solves

larger instances which are, in some cases, intractable by a global optimization solver.

The supply chain of the petroleum industry is arguably one of the most com-

plex and economically relevant of today’s society. According to Sahebi et al. (2014),

the oil supply chain can be divided into upstream, midstream and downstream seg-

ments. Functions such as petroleum exploration, production (SILVA; CAMPONOGARA,

2014) and transportation (ASSIS, Leonardo Salsano de; CAMPONOGARA, 2016) of

crude oil to the refineries belong to the upstream segment. Major components of the

infrastructure are production platforms, transportation vessels and crude oil terminals.

The midstream portion is concerned with the reception of commercial crude oil grades

in terminals and conversion of the petroleum into refined products at refineries and

petrochemical plants. Finally, the downstream segment includes storage, primary and

secondary distribution, and wholesale and retail market of refined products.

One of the main challenges of the midstream segment concerns the schedule of

operations at crude oil terminals. In general, the problem can be described as follows.

After reaching the mooring buoy, a vessel unloads crude oil through a pipeline to the

tank farm, which is composed by storage tanks. Crude oil can be pumped between

tanks and to the main pipeline that connects the crude oil terminal to the refinery.

Although mixtures of crudes with similar properties (e.g., specific gravity and sulfur

concentration) are allowed in the storage tanks, they are not recommended in order to

provide more flexibility to satisfy the demands of the refinery.

The main decisions of the scheduling problem are: a) determine the volume

and quality of crude oil to be transferred from a vessel to each storage tank; and b)

the volume and blend of crudes to be sent to the main pipeline in order to satisfy the

refinery demands.
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Blending equations are one of the most common constraints that appear in crude

oil scheduling. These equations involve bilinear terms, which are non-convex functions,

thereby, potentially giving rise to multiple local solutions. Algorithms can make use of

the fact that, in a MINLP minimization problem, an MILP relaxation provides a lower

bound on the original problem, while any feasible solution provides an upper bound

(CASTRO, 2015). If these bounds are within a given tolerance, the global solution is

achieved.

Standard McCormick envelopes (MCCORMICK, 1976) provide the tightest possi-

ble linear relaxation for bilinear terms. In this approach, the bilinear term xixj is replaced

with a new continuous variable wij and four sets of linear constraints are added to the

formulation. In order to strengthen the relaxation, one can partition the domain of one

variable (xj ) involved in the bilinear terms into n disjoint regions. Then McCormick en-

velopes are constructed in each disjoint region and new binary variables are added to

the formulation to select the best partition of xj . This approach, known as piecewise

McCormick (with univariate partitioning), was first proposed in the work of Bergamini

et al. (2005), presenting uniform partitions and a linear increase of the binary variables

with the number of partitions. Gounaris et al. (2009) present a comprehensive study on

piecewise under- and over estimators for bilinear terms.

To our knowledge, Wicaksono and IA Karimi (2008) and Hasan and I.A. Karimi

(2010) were the first to apply bivariate partitioning, which means partitioning the domain

of both variables xi and xj . In the latter work, bivariate partitioning is applied to a bench-

mark process network synthesis problem, obtaining stronger relaxations than univariate

partitioning. The former one achieved better relaxation using bivariate partitioning than

univariate in moderate-size problems such as column sequencing for nonsharp distil-

lation, integrated water use and treatment systems, generalized pooling problems on

wastewater treatment networks, and synthesis of heat exchanger networks.

The technical paper (ASSIS, Leonardo Salsano de et al., 2017) is used as

basis for the development of this chapter. The remainder of this chapter is organized

as follows. A review of the literature on crude oil scheduling is presented in Section

2. The problem statement is given in Section 3. Section 4 introduces the proposed

mathematical model. The solution algorithm based on piecewise McCormick envelopes

is discussed in Section 5. The computational results and analysis are reported in

Section 6. Finally, Section 7 presents conclusions and suggests directions for future

research.

2.2 LITERATURE REVIEW

Scheduling problems are challenging optimization problems, both in terms of

modeling and algorithmic solutions (MOURET et al., 2009). Of concern in this work,

crude oil scheduling is a crucial part of the petroleum supply chain. To satisfy the de-
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mand for crudes in refineries, optimal or near-optimal decisions regarding the schedul-

ing of crude oil operations can represent significant economic gains for companies.

However, the problem of scheduling crude oil operations leads to a large non-convex

mixed-integer non-linear programming (MINLP) model (CERDÁ et al., 2015), which is

hard to solve with commercial solvers, usually requiring tailored algorithms. Thus, this

problem has received significant attention in the literature.

2.2.1 Discrete and Continuous Time Models

Discrete- and continuous-time models are the two major approaches for model-

ing crude oil scheduling problems. Discrete-time models (SHAH, 1996; LEE, H. et al.,

1996; REDDY, P. C. P. et al., 2004; HAMISU et al., 2013; CHEN, X. et al., 2014) are

based on fixed duration of time intervals. The main advantage is the simplified modeling

of material balance and flow constraints. The drawback is the large number of time inter-

vals to correctly represent the problem, resulting sometimes in intractable problems. On

the other hand, in continuous-time models (REDDY, P. P. et al., 2004; KARUPPIAH et al.,

2008; MOURET et al., 2009; CASTRO; GROSSMANN, 2014; CERDÁ et al., 2015), the

duration of time intervals is treated as continuous variables in the optimization model.

Major advantages lie on the smaller size of the problem, the complete use of the time

domain (KARUPPIAH et al., 2008), and usually tighter formulations when compared

to discrete ones. However, for this time representation it is more difficult to keep track

of material balances. In addition, it is not obvious how to define a-priori the number

of time events that are needed. Floudas and Lin (2004), Xuan Chen et al. (2012) and

Mouret et al. (2011a) present formulations and comparisons between continuous- and

discrete-time models.

2.2.2 Physical Arrangements

Two types of topology for physically describing the system appear in the literature.

The first one considers two sets of tanks: storage and charging tanks. In that case,

storage tanks receive crude oil from vessels and charging tanks receive crudes from

several storage tanks to produce the mixture demanded by the refinery. Finally, each

distillation unit (CDU) is fed by only one charging tank at a time. This approach is used

in the works of Heeman Lee et al. (1996), Mouret et al. (2009), Karuppiah et al. (2008),

Hamisu et al. (2013), Castro and Grossmann (2014) and Xuan Chen et al. (2014).

When no charging tanks are used (REDDY, P. C. P. et al., 2004, 2004; LI et al., 2012;

CERDÁ et al., 2015), multiples storage tanks can feed a particular CDU at the same

time. A different approach is presented by Zimberg et al. (2015), which considers the

operations in a crude oil terminal, excluding charging tanks and CDUs.



Chapter 2. A piecewise McCormick relaxation-based strategy for scheduling operations in a crude oil

terminal 31

2.2.3 Solution Approaches

Several solutions approaches have been studied for crude oil scheduling prob-

lems. The work of Shah (1996) is one of the first to use mathematical programming for

solving the problem of scheduling the crude oil supply to a refinery. To tackle the high

dimensionality of the model, the problem is decomposed into smaller ones (i.e., the

downstream and upstream problems), which are solved sequentially. The latter (down-

stream) defines how the refinery operates and how it will be supplied by the pipeline,

while the former (upstream) determines how the crude oil tanks feed the pipeline.

Heeman Lee et al. (1996) propose a discrete-time mixed-integer linear program

for short-term crude oil scheduling. Bilinear terms in mixing equations are avoided by

a linear approximation, which replaces the non-linear terms with individual component

flows. P. Chandra Prakash Reddy et al. (2004) identify the periods of the planning hori-

zon over which the composition in each tank does not change (before receiving crudes

from a vessel or another tank), which results in an MILP without composition discrep-

ancy. For the remaining periods, mixing constraints are dropped. This strategy proved

to be attractive by producing near-optimal solutions in reasonable time. An extension of

this strategy to deal with a continuous-time model is presented by P.Chandra Prakash

Reddy et al. (2004). A discrete-time MILP is proposed by Zimberg et al. (2015), where

discrete values of crude proportion are chosen from a discrete set by the optimization

solver, transforming the non-linear mixing equations into linear terms.

The work of Karuppiah et al. (2008) present an outer-approximation algorithm for

solving a continuous-time non-convex MINLP. First, the original MINLP is relaxed using

McCormick envelopes, which results into an MILP capable of producing a lower bound

on the original problem. The solution of this relaxation is used to obtain an upper bound

for the MINLP. At each iteration, cutting planes derived from Lagrangean decomposition

are added to the MILP. The process continues until the difference between the lower

and upper bounds is within a given tolerance.

Mouret et al. (2009) propose a new continuous-time formulation for crude oil

scheduling, denoted as single operation sequencing. For this approach, the solution

schedule is represented as a single sequence of operations, which reduces the number

of time slots required. Symmetry-breaking constraints are added to the model in order to

avoid searching multiple equivalent solutions. In addition, a simple two-step MILP-NLP

procedure is used for solving the original MINLP.

A different approach is proposed by Yüzgeç et al. (2010), which make use of

Model Predictive Control (MPC) to tackle the scheduling of crude oil operations. One

of the main advantages is that in case of disturbances or demand changes at any time

over scheduling horizon, this framework can quickly updates the decisions.

Li et al. (2012) develop a robust continuous-time MINLP formulation under de-

mand uncertainty. The authors propose a branch-and-bound global optimization algo-
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rithm to solve the deterministic robust counterpart optimization model.

A resource-task network is used in the work of Castro and Grossmann (2014)

for modeling a continuous-time crude oil scheduling problem. The solution strategy is

based on a two-step MILP-NLP algorithm, whereby the MILP relaxation is obtained via

multiparametric disaggregation.

Cerdá et al. (2015) present a continuous-time MINLP model based on global-

precedence sequencing variables for loading and unloading operations in tanks, and

synchronized time slots for modeling the sequence of feedstock for each CDU. A two-

step MILP-NLP, which reduces non-linear constraints with bounding constraints and

valid cuts, is proposed as the solution algorithm. For handling large instances, a rolling-

horizon scheme for continuous-time is presented.

Making use of clusters, Cerdá et al. (2018) proposed a sequential approach,

which consists of defining (a) the clusters of charging tanks and their assignment to

feed CDUs and (b) the solution of the resulting MINLP subproblems, one for each

cluster-CDU pair.

Sergio Mauro da Silva Neiro et al. (2019) propose a continuous time MINLP

model based on Multi-Operation Sequencing (MOS). The formulation, which focus on

the operational features of a real-world existing refinery, presents constraints to tackle

multiple tank outputs. Two algorithms to solve the problem were tested: a two-step

MILP-NLP decomposition scheme and a Rolling-Horizon Strategy (RHS).

More recently, Yang et al. (2020) proposed an MINLP formulation for integrating

short-term Crude Oil Scheduling with mid-term Refinery Planning (RF). The problem

is solved by a Lagrangean Decomposition (LD) algorithm based on the fact that these

problems are physically linked by CDUs and the use of their economic net values as

their objectives.

2.2.4 Work Contribution

The key contribution of this work is an iterative two-step MILP-NLP decompo-

sition algorithm, which implements a domain-reduction strategy for handling bilinear

terms in the scheduling of crude oil operations. An MILP relaxation is obtained for the

underlying MINLP problem by replacing the bilinear terms with piecewise McCormick

envelopes. The relaxation is sufficiently general to be applied in domain partitions of

one variable, which is commonly found in the literature, and of both variables of the

bilinear term. The advantage of partitioning both variables is that it usually produces

tighter relaxations, yielding stronger lower bounds. The solution of the MILP produces

a lower bound and an initial solution for a NLP algorithm, which in turn, yields an upper

bound when a feasible solution is found. Because the number of partitions tends to

be large for an accurate modeling of the bilinear terms, a domain-reduction strategy

is applied iteratively until convergence is achieved. The combination of the relaxation
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scheme and the domain-reduction strategy proved to be effective, generating better

results than a global optimization solver and the strategy proposed in Zimberg et al.

(2015).

Further, the model presented in this work advances the one of Zimberg et al.

(2015) by including constraints that approximate more closely the mathematical model

to the real operation:

• rules out inlet and outlet operations from taking place simultaneously, during the

same period.

• ensures that outlet operations wait at least one period of time after uploading

crude oil in a tank, in order to allow different types of crude to be fully mixed in a

tank.

2.3 PROBLEM STATEMENT

This work is aimed at optimizing the operations at the crude oil terminal of

ANCAP, the national refinery of Uruguay, which was initially addressed by Zimberg

et al. (2015). This terminal, as illustrated in Fig. 3, consists of eight main tanks and

one auxiliary tank that receive crude oil cargoes from marine vessels. The following

operations are allowed: crude oil unloading from vessels to storage tanks and transfers

from storage tanks to the pipeline that connects the terminal to the refinery. The strategic

level is responsible for defining the refinery’s demand and the type of crudes to arrive in

vessels over the planning horizon. In addition, storage tanks may undergo maintenance

services during certain periods.

Mixtures of crudes with similar properties (e.g., specific gravity and sulfur con-

centration) are allowed in the tanks. The objective seeks to minimize mixtures to provide

more flexibility in order to satisfy the demands of the refinery.

The problem must account for critical constraints such as storage capacity, blend-

ing restrictions and maintenance requirements. Bilinear terms are needed to track the

concentration of the different crudes in transfer operations between storage tanks and

the main pipeline. Also, limits on the maximum number of storage tanks and volume

of crude oil that can feed the main pipeline play a major role. The objective function

aims to minimize the shortfall of crude supply at the refinery, minimize the mixtures of

crudes in tanks, and meet the schedule for tank maintenance. The overall decisions of

the scheduling problem consist in determining for the given planning horizon consisting

of discrete time periods:

• The volume and quality of crude oil to be transferred from a vessel to each storage

tank.
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7. To guarantee the quality of crude oil, rules on how crude oil can be blended are

considered in the formulation.

2.4 MATHEMATICAL MODEL

2.4.1 Sets, Parameters and Variables

Before presenting the MINLP formulation, the sets, parameters, variables, con-

straints and the objective function are defined below.

2.4.1.1 Sets

The sets required for the problem definition are:

• N = {1, . . . , N} is the set of tanks (index i).

• J = {1, . . . , J} is the set of crude oil qualities (index j).

• T = {1, . . . , T } is the set of time periods defining a discrete-time horizon of length

T , over which operations are to be carried out. The periods of the horizon corre-

spond to days (index t).

2.4.1.2 Parameters

The following parameters will be used in the model.

1. Demand Requirements

• ∆Rpt is the total volume of crude oil demanded by the pipeline in period t .

• ΓRpqt
j

is the percentage of crude j demanded by the pipeline in period t .

• ∆Rpqt
j
, where ∆Rpqt

j
=

ΓRpqt
j ∗∆Rpt

100 is the volume of crude j demanded by

the pipeline in period t .

2. Inventory

• Vcqt
j

is the volume of crude j in a vessel that is scheduled to arrive at the

crude oil terminal in period t .

• Vct is the total volume of crude oil in a vessel that is scheduled to arrive at

the crude oil terminal in period t . Notice that Vct =
∑

j∈J Vcqt
j
.

• ∆Vcnq0
i ,j is the initial volume of crude j unloaded from a vessel to tank i .

• Vnq0
i ,j is the initial volume of crude j in tank i .

• ∆Vpnq0
i ,j is the initial volume of crude j pumped from tank i to the pipeline.
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• Vni is the maximum capacity of tank i .

3. Transfer Requirements

• Zcn0
i
∈ {0, 1} is 1 if crude oil is unloaded from a vessel to tank i in period 0;

0 otherwise.

• Dcn is the minimum volume to be unloaded from a vessel into a tank.

• Dvp is the maximum volume of crude oil that can be pumped into the pipeline

at the same time.

• Pn limits the number of tanks that can transfer crude oil to the pipeline at the

same time.

4. Maintenance Requirements

• Zpt
i
∈ {0, 1} is 1 if tank i can not transfer crude oil to the pipeline in period t ;

0 otherwise. This parameter is used to express the need of having tank i out

of service in period t , possibly due to maintenance in the pipeline or valves

that connect the tank to the manifold.

• Xnmax t
i
∈ {0, 1} is 1 if tank i is set to be at its maximum capacity in period t ;

0 otherwise. This parameter is employed to induce tank i to be full in period

t , mainly due to maintenance work on the tank roof.

• Xnmint
i
∈ {0, 1} is 1 if tank i is set to be empty in period t ; 0 otherwise. This

parameter is necessary to force tank i to be empty in period t in order to

perform maintenance inside the tank (e.g., removal of solid deposits).

5. Blending Requirements

• Nq is the maximum number of different crude qualities allowed in a tank.

• Xqqj ,l ∈ {0, 1} is 1 if crude j can be mixed with crude l ; 0 otherwise.

2.4.1.3 Variables

Binary and continuous variables are needed. All variables are non-negative real

variables, unless stated otherwise.

1. Oil Transfer

• ∆vcnt
i

is the volume of crude oil unloaded from a vessel to tank i in period t .

• ∆vcnqt
i ,j is the volume of crude j unloaded from a vessel to tank i in period t .

• ∆vpnt
i

is the volume of crude oil delivered from tank i to the pipeline in period

t .
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• ∆vpnqt
i ,j is the volume of crude j delivered from tank i to the pipeline in period

t .

• ∆vpt is the volume of crude oil delivered from the tanks to the pipeline in

period t .

• ∆vpqt
j

is the volume of crude j delivered from the tanks to the pipeline in

period t .

2. Inventory Control

• vnt
i

is the total volume of crude oil in tank i in period t .

• vnqt
i ,j is the volume of crude j in tank i in period t .

3. Demand Control

• dqual t
j

is the difference between the volume of crude j sent to the pipeline in

period t and the required demand.

• dvol t is the difference between the volume of crude oil sent to the pipeline in

period t and the required demand.

4. Logistic

• xnmax t
i
∈ {0, 1} is 1 if tank i is full in period t ; 0 otherwise.

• zcnt
i
∈ {0, 1} is 1 if a vessel uploads crude oil into tank i in period t ; 0

otherwise.

• z t
i
∈ {0, 1} is 1 if tank i is full after a vessel uploads crude oil into the tank in

period t ; 0 otherwise.

• xnqt
i ,j ∈ {0, 1} is 1 if crude j is present in tank i in period t ; 0 otherwise.

• zpnt
i
∈ {0, 1} is 1 if crude oil is pumped from tank i to the pipeline in period t ;

0 otherwise.

2.4.2 Constraints

2.4.2.1 Inventory Balance in Tanks

Eq. (1) defines the initial inventory of crude j in tank i , while Eq. (2) tracks the

inventory of crude j in tank i for the remaining periods of the planning horizon. The total

volume of crude oil in tank i is the sum of the volume of every crude j at the tank, which

is tracked by Eq. (3). Lower and upper bounds on the storage capacity of each tank i
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are determined by Eqs. (4) and (5).

vnq1
i ,j = Vnq0

i ,j + ∆Vcnq0
i ,j – ∆Vpnq0

i ,j , ∀ j ∈ J , i ∈ N , (1)

vnqt
i ,j = vnqt–1

i ,j + ∆vcnqt–1
i ,j – ∆vpnqt–1

i ,j , ∀ j ∈ J , i ∈ N , t ∈ T \{1}, (2)

vnt
i =
∑

j∈J

vnqt
i ,j , ∀ i ∈ N , t ∈ T , (3)

0 ≤ vnt
i ≤ Vni , ∀ i ∈ N , t ∈ T , (4)

vnt
i ≥ Vni xnmax t

i , ∀ i ∈ N , t ∈ T . (5)

2.4.2.2 Crude Oil Mixture in Tanks

Although mixtures of different crude qualities are allowed, the operations in a

crude oil terminal aim to minimize these mixtures in order to provide more flexibility to

satisfy the demands of the refinery. Hence, constraints limiting the maximum number of

crude qualities in the same tank and rules on how they can be mixed are needed. Eq.

(6) enforces that the maximum number of different crude qualities in tank i is limited

by parameter Nq. Parameter Xqqj ,l defines which crude qualities j and l can be mixed.

Since not all crude qualities j and l can be mixed in tank i , Eq. (7) specifies which ones

can be in the same tank. Further, if crude j is in tank i (i.e., xnqt
i ,j = 1), its volume can

be at most the total of tank i , which is guaranteed by Eq. (8).

∑

j∈J

xnqt
i ,j ≤ Nq, ∀ i ∈ N , t ∈ T , (6)

Xqqj ,l ≥ xnqt
i ,j + xnqt

i ,l – 1, ∀ i ∈ N , j , l ∈ J , t ∈ T . (7)

vnqt
i ,j ≤ Vni xnqt

i ,j , ∀ i ∈ N , j ∈ J , t ∈ T , (8)

2.4.2.3 Tank Completion

In practice, after emptying a tank by delivering oil to the refinery through the

pipeline, small quantities of liquid or solid residues of hydrocarbons still remain at the

bottom of the tank. It is desirable to dilute them by filling the tank when a vessel-storage

tank uploading operation is performed. Variable z t
i

tracks if tank i is full after a vessel

unloads crude oil. Eq. (9) defines the values of variable z t
i
, which takes a value of 1 if a

vessel uploads crude oil into tank i in period t – 1 (i.e., zcnt–1
i

= 1), and the tank is full

in period t (i.e., xnmax t
i

= 1).

z t
i = xnmax t

i zcnt–1
i , ∀ i ∈ N , t ∈ T . (9)

Notice that Eq. (9) is non-linear. Using standard linearization techniques, this

equation can be recast as an equivalent system of integer linear equations given by

Eqs. (10)-(14). Eqs. (10) and (11) treat unloading operations that have been performed
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before the considered planning horizon (parameter Zcn0
1 = 1).

z1
i ≥ xnmax1

i + Zcn0
i – 1, ∀ i ∈ N , (10)

z1
i ≤ Zcn0

i , ∀ i ∈ N , (11)

z t
i ≤ xnmax t

i , ∀ i ∈ N , t ∈ T , (12)

z t
i ≥ xnmax t

i + zcnt–1
i – 1, ∀ i ∈ N , t ∈ (T \{1}), (13)

z t
i ≤ zcnt–1

i , ∀ i ∈ N , t ∈ (T \{1}). (14)

2.4.2.4 Vessel-Tank Operation

The volume of crude oil in each vessel that arrives at the terminal is composed

by a unique type of crude j . This load, which arrives in period t , is known in advance

and determined by parameter Vcqt
j
. Further, the total volume of crude j is unloaded

from the vessel into a tank (or tanks) in one period of time t , which is regulated by Eq.

(15), while, the total volume of crude oil sent to tank i is determined by Eq. (16). Eq.

(17) bounds the transfer of oil between a vessel and tank i .

Vcqt
j =

∑

i∈N

∆vcnqt
i ,j , ∀ j ∈ J , t ∈ T , (15)

∆vcnt
i =
∑

j∈J

∆vcnqt
i ,j , ∀ i ∈ N , t ∈ T , (16)

zcnt
i Dcn ≤ ∆vcnt

i ≤ Vct zcnt
i , ∀ j ∈ J , t ∈ T . (17)

2.4.2.5 Tank-Pipeline Operation

Storage tanks must dispatch crude oil through the pipeline to satisfy the demands

of the refinery in terms of total volume and crude quality. Eq. (18) tracks the total volume

of oil sent from tank i to the pipeline in period t . The total amount of crude j sent from

all tanks to the pipeline is represented in Eq. (19), while Eq. (20) determines the total

volume of oil sent to the pipeline.

Several bounds are imposed to the operation. First, a limit on the maximum

number of tanks that can feed the pipeline at the same time t is set by Eq. (21). Likewise,

Eq. (22) limits the maximum volume of crude oil that can be sent from tank i . Moreover,

the total volume of crude oil that can be sent to the pipeline in period t is limited by Eq.

(23). Finally, a crude oil can be sent from tank i to the pipeline only if the tank is not
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under maintenance, as imposed by Eq. (24).

∆vpnt
i =
∑

j∈J

∆vpnqt
i ,j , ∀ i ∈ N , t ∈ T , (18)

∆vpqt
j =

∑

i∈N

∆vpnqt
i ,j , ∀ j ∈ J , t ∈ T , (19)

∆vpt =
∑

i∈N

∆vpnt
i , ∀ t ∈ T , (20)

∑

i∈N

zpnt
i ≤ Pn, ∀ t ∈ T , (21)

∆vpnt
i ≤ Vni zpnt

i , ∀ i ∈ N , t ∈ T , (22)

∆vpt ≤ Dvp, ∀ t ∈ T . (23)

zpnt
i ≤ (1 – Zpt

i ), ∀ i ∈ N , t ∈ T . (24)

2.4.2.6 Tank Inlet and Outlet Operations

Equation (25) establishes that inlet and outlet operations in tank i cannot be

performed at the same time. In addition, after unloading crude oil from a vessel to

storage tank i , outlet operations in tank i must wait at least one period of time for the

crudes to be fully mixed. This is guaranteed by Equation (26).

zcnt
i + zpnt

i ≤ 1, ∀ i ∈ N , t ∈ T , (25)

zcnt
i + zpnt+1

i ≤ 1, ∀ i ∈ N , t ∈ T \ {T }. (26)

2.4.2.7 Blending Constraints

A principle that must be respected during a transfer operation between tank i

and the pipeline, is that the concentration of crudes sent to the pipeline is the same

as the one inside the tank. Equation (27) assures that the concentration of crude j in

a batch going from tank i to the pipeline is equal to the concentration inside the tank.

Notice that this equation yields two bilinear terms, which are non-convex.

∆vpnqt
i ,j

∆vpnt
i

=
vnqt

i ,j

vnt
i

=⇒ ∆vpnqt
i ,j vnt

i = ∆vpnt
i vnqt

i ,j , ∀ i ∈ N , j ∈ J , t ∈ T . (27)

2.4.2.8 Discrete-Time Non-Convex MINLP Model

The objective penalizes for not satisfying refinery’s demand, both in terms of

total volume and crude quality; the non-filling of a tank after a vessel-tank uploading

operation; not mixing qualities in a tank; and not satisfying maintenance requirements.

Notice that the objective is linear, which means that the only non-linear terms of the
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model appear in Eq. (27).

P : min f =
∑

t∈T

Cpv dvol t +
∑

j∈J

∑

t∈T

C
pq
j

dqual tj

+
∑

i∈N

∑

t∈T
t 6=1

Cz (zcnt–1
i – z t

i ) +
∑

i∈N

Cz (Zcn0
i – zcn1

i )

+
∑

i∈N

∑

j∈J

∑

t∈T

Cxnq xnqt
i ,j

+
∑

i∈N

∑

j∈J

∑

t∈T

Cxn Xnmint
i xnqt

i ,j

+
∑

i∈N

∑

t∈T

Cxn Xnmax t
i (1 – xnmax t

i ) (28a)

s.t. : (1)-(8); (10)-(27), (28b)

∆vpt – ∆Rpt ≤ dvol t , ∀ t ∈ T , (28c)

– ∆vpt + ∆Rpt ≤ dvol t , ∀ t ∈ T , (28d)

∆vpqt
j – ∆Rpqt

j ≤ dqual tj , ∀ t ∈ T , j ∈ J , (28e)

– ∆vpqt
j + ∆Rpqt

j ≤ dqual tj , ∀ t ∈ T , j ∈ J , (28f)

Cpv, C
pq
j

, Cz, Cxnq, Cxn ∈ R+, ∀ j ∈ J , (28g)

vnqt
i ,j , vcnqt

i ,j , vpnqt
i ,j ∈ R+, ∀ i ∈ N , t ∈ T , j ∈ J , (28h)

vnt
i , vcnt

i , vpnt
i ∈ R+, ∀ i ∈ N , t ∈ T , (28i)

z t
i , zcnt

i , zpnt
i , xnmax t

i ∈ {0, 1}, ∀ i ∈ N , t ∈ T , (28j)

∆vpqt
j , dqual tj ∈ R+, ∀ t ∈ T , j ∈ J , (28k)

∆vpt , dvol t ∈ R+, ∀ t ∈ T . (28l)

The cost parameters are described as follows:

• C
pq
j

is the cost of the difference between the crude oil j sent to the pipeline and

the required demand.

• Cpv is the cost of the difference between the total volume sent to the pipeline and

the required demand.

• Cxn is the cost for not respecting maintenance requirements in a tank.

• Cxqn is the cost of mixing qualities in a tank.

• Cz is the cost for not filling a tank after a vessel-tank uploading operation.
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2.5 SOLUTION STRATEGY

The proposed solution approach consists of an iterative two-step MILP-NLP

algorithm based on piecewise McCormick envelopes. In general terms (see Fig. 4),

each iteration of the strategy has the following steps:

• First, an MILP relaxation is constructed by applying piecewise McCormick en-

velopes for relaxing the bilinear terms, providing a lower bound on the MINLP.

• Following, the solution of the MILP is used as an initial point and its logistics

decisions (binary variables) are fixed into the MINLP, resulting in a non-linear

programming (NLP) problem.

• Finally, after solving the NLP and obtaining an upper bound, the domain of each

variable involved in the bilinear terms is tightened for the next iteration.

• The algorithm stops when the difference between the upper and lower bounds is

within the tolerance or a maximum solution time is achieved.

Figure 4 – Solution strategy diagram.

A more detailed explanation of the algorithm is presented below.
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and i ∈ I.

O∨

o=1

P∨

p=1




yRHS
t ,i ,j ,o,p

ηRHS
i ,j ,t ≥ VNQi ,j ,t ,p∆vpnt

i
+ DVPN i ,t ,ovnqt

i ,j – VNQi ,j ,t ,pDVPN i ,t ,o

ηRHS
i ,j ,t ≥ VNQi ,j ,t ,p∆vpnt

i
+ DVPN i ,t ,ovnqt

i ,j – VNQi ,j ,t ,pDVPN i ,t ,o

ηRHS
i ,j ,t ≤ VNQi ,j ,t ,p∆vpnt

i
+ DVPN i ,t ,ovnqt

i ,j – VNQi ,j ,t ,pDVPN i ,t ,o

ηRHS
i ,j ,t ≤ VNQi ,j ,t ,p∆vpnt

i
+ DVPN i ,t ,ovnqt

i ,j – VNQi ,j ,t ,pDVPN i ,t ,o

DVPN i ,t ,o ≤ ∆vpnt
i
≤ DVPN i ,t ,o

VNQi ,j ,t ,p ≤ vnqt
i ,j ≤ VNQi ,j ,t ,p




, (29)

yRHS
t ,i ,j ,o,p ∈ {True, False}, ∀ o ∈ O, p ∈ P, (30)




DVPN i ,t ,o = DVPN i ,t +
(DVPN i ,t–DVPN i ,t )(o–1)

O

DVPN i ,t ,o = DVPN i ,t +
(DVPN i ,t–DVPN i ,t )o

O

VNQi ,j ,t ,p = VNQi ,j ,t +
(VNQ i ,j ,t–VNQ i ,j ,t )(p–1)

P

VNQi ,j ,t ,p = VNQi ,j ,t +
(VNQ i ,j ,t–VNQ i ,j ,t )p

P

∀ o ∈ O, p ∈ P. (31)

Big-M and convex hull reformulations (BALAS, 1985; GROSSMANN; TRES-
PALACIOS, 2013) are common methodologies for transforming a GDP into an MILP.
Along the lines of Hasan and I.A. Karimi (2010) and Castro (2015), the convex hull
approach is chosen to reformulate the GDP into an MILP, since big-M usually presents
poor relaxation quality (WICAKSONO; KARIMI, IA, 2008). The reformulation is pre-
sented as follows and are valid for all t ∈ T , j ∈ J and i ∈ I.

ηRHS
i ,j ,t ≥

∑

o∈O

∑

p∈P

(VNQ i ,j ,t ,p∆vpnt ,i ,j ,o,p + DVPN i ,t ,ovnqt ,i ,j ,o,p – VNQ i ,j ,t ,pDVPN i ,t ,oyRHS
t ,i ,j ,o,p), (32)

ηRHS
i ,j ,t ≥

∑

o∈O

∑

p∈P

(VNQ i ,j ,t ,p∆vpnt ,i ,j ,o,p + DVPN i ,t ,ovnqt ,i ,j ,o,p – VNQ i ,j ,t ,pDVPN i ,t ,oyRHS
t ,i ,j ,o,p), (33)

ηRHS
i ,j ,t ≤

∑

o∈O

∑

p∈P

(VNQ i ,j ,t ,p∆vpnt ,i ,j ,o,p + DVPN i ,t ,ovnqt ,i ,j ,o,p – VNQ i ,j ,t ,pDVPN i ,t ,oyRHS
t ,i ,j ,o,p), (34)

ηRHS
i ,j ,t ≤

∑

o∈O

∑

p∈P

(VNQ i ,j ,t ,p∆vpnt ,i ,j ,o,p + DVPN i ,t ,ovnqt ,i ,j ,o,p – VNQ i ,j ,t ,pDVPN i ,t ,oyRHS
t ,i ,j ,o,p), (35)

{
∆vpnt

i
=
∑

o∈O
∑

p∈P ∆vpnt ,i ,j ,o,p

vnqt
i ,j =

∑
o∈O

∑
p∈P vnqt ,i ,j ,o,p

(36)

{
yRHS

t ,i ,j ,o,pDVPN i ,t ,o ≤ ∆vpnt ,i ,j ,o,p ≤ DVPN i ,t ,oyRHS
t ,i ,j ,o,p

yRHS
t ,i ,j ,o,pVNQi ,j ,t ,p ≤ vnqt ,i ,j ,o,p ≤ VNQi ,j ,t ,pyRHS

t ,i ,j ,o,p

∀ o ∈ O, p ∈ P, (37)

∑

o∈O

∑

p∈P

yRHS
t ,i ,j ,o,p = 1, (38)

yRHS
t ,i ,j ,o,p ∈ {0, 1}, ∀ o ∈ O, p ∈ P, (39)

Eq.(31). (40)
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Finally, Eq. (41) is required to enforce Eq. (27).

ηLHS
i ,j ,t = ηRHS

i ,j ,t , ∀ t ∈ T , j ∈ J , i ∈ I. (41)

Therefore, the MILP relaxation model consists of:

• Problem P, without the blending equation (Eq. (27));

• Set of constraints given by Eqs. (32)-(40);

• Set of constraints regarding the relaxation of the left-hand side bilinear term

ηLHS
i ,j ,t = ∆vpnqt

i ,jvnt
i
;

• Eq. (41).

As seen in this section, McCormick envelopes produce linear inequalities that

enclose the bilinear functions, and as such, induce relaxation problems that can provide

lower (upper) bounds for minimization (maximization) problems. Piecewise McCormick

envelopes allow the refinement of the envelopes within regions of the domain partition

that lead to tighter MILP relaxations, which can be combined with a primal algorithm

to produce a feasible solution with a quality certificate. Nevertheless, this strategy may

require a large number of partitions that make the computational solution of the resulting

MILP too costly. This motivates the development of the domain-reduction procedure

presented below.

2.5.2 NLP

Solving the MILP model provides a lower bound on the MINLP model. After

finding the MILP solution, the logistics (binary) variables are fixed into the MINLP,

resulting in an NLP problem. The NLP can be solved with a local solver, and its solution

provides an upper bound.

2.5.3 Tightening the Domain of Bilinear Terms

The domain-reduction procedure for the right-hand side bilinear term ηRHS
i ,j ,t =

∆vpnt
i
vnqt

i ,j is shown in Fig. 7. Assuming |O| and |P | to be the cardinality of sets O

and P, Figure 7(a) illustrates the |O||P | domain partitions of the bilinear term ηRHS
i ,j ,t .

Consider that at iteration n, the MILP solution lies in partition [o, p] (see Fig. 7(a)). After

fixing the logistics (binary) variables into the MINLP, the resulting NLP is solved. The

proposed strategy identifies the position where the NLP solution lies considering the

partitions of the MILP problem. Having found the partitions of the MILP ([o, p]) and NLP

([o′, p′]) solutions, a new domain for the bilinear term ηRHS
i ,j ,t is obtained by enclosing the

extremes of both solutions (green shaded area indicated in Fig. 7(b)). The new domain
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2.6 ANALYSIS

The proposed mathematical programming models are implemented in AMPL;

MINLPs are solved using SCIP (ACHTERBERG, 2009); CPLEX is used for solving

MILPs; and NLPs are solved by local solver CONOPT. The mathematical programming

models and solution strategy were solved in a computer with two Intel Core Xeon E5-

2630 v4 Processor (2.20 GHz), totaling 20 cores of 2 threads, 64 GB of RAM and a

Ubuntu environment.

2.6.1 Problem Description

The crude oil terminal consists of 8 tanks, each one with a storage capacity of

64 000 m3. As an operational rule, one of them is always on maintenance and 7 are

operational (ZIMBERG et al., 2015). Initially, each storage tank has an initial volume

and a single type of crude quality. In addition, 5 types of crude oil ({A, B, C, D, E}) are

considered. Operation rules on how different types of crudes can be mixed are shown

in Table 5. Cost parameters are detailed in Table 6.

Table 3 details an instance of the scheduling problem for a planning horizon of

30 days. Required demands are given in terms of total volume (in [103m3]). Also, the

proportion of each crude demanded by the refinery is presented. A total of 6 vessels

are scheduled to arrive, each one carrying a unique type of crude oil. Storage tank 3 is

scheduled to be in maintenance between days 14 and 20.

2.6.2 Performance Analysis

The analysis consists in solving the scheduling problem for several instances,

which are characterized by their cost and planning horizon. For example, instance

LC-18Days considers the first 18 days of the planning horizon (Table 3) and low cost

parameters (Table 6). A total of eight instances are considered for the analysis: LC-

18Days, LC-22Days, LC-26Days and LC-30Days; HC-18Days, HC-22Days, HC-26Days

and HC-30Days, in which LC stands for low cost and HC for high cost. Each instance

is solved by the following strategies:

1. GO solver SCIP, refereed to as GO strategy.

2. LM proposed by Zimberg et al. (2015), refereed to as LM.

3. PCM (see Sec. 2.5), refereed to as PCM.

After an individual analysis of the performance of each strategy, an overall dis-

cussion comparing these strategies is presented.

A maximum CPU time of 1 hour (3 600 seconds) is set for the solution of each

instance. All the statistics are obtained from the solver after it provides the solution.
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For instances which the GO strategy finds a global solution within the 1 hour limit, the

comparison with the LM and PCM strategies is concerned with their ability to obtain a

global solution. However, if the GO strategy fails to find a global solution, but provides a

feasible one, the comparison assesses whether the LM and PCM strategies can yield

a better solution.

2.6.2.1 GO Strategy Performance

The GO strategy consists in solving the MINLP formulation P with SCIP. Table

7 presents the solutions (GO Solution), dual bounds and GAPs1 provided by SCIP

along with problem statistics, such as CPU time (in seconds), total number of variables

and constraints, number of binary variables and non-linear constraints for the cases

of low and high costs. Notice that SCIP is capable of finding, relatively fast, the global

solution for instances LC-18Days and HC-18Days (highlighted in bold italic). For all

other instances, SCIP reaches the CPU limit and halts with a GAP between lower and

upper bounds that can be, in the worst case, up to 622% for instance LC-30Days and

over 5 000% for instance HC-30Days.

2.6.2.2 LM Strategy Performance

Zimberg et al. (2015) proposed a linearization strategy to approximate the bi-

linear terms found in blending constraints. The strategy consists in defining a set of

discrete values of predefined crude oil proportions which can be chosen by the opti-

mization solver. It incorporates corrective terms for composition discrepancies, which

are penalized in the objective function. A rolling-horizon approach was applied to the

linearized model and optimized by CPLEX, producing more competitive solutions than

SCIP when solving the non-linear model.

In order to make a fair comparison with the GO and PCM strategies, we applied

the linearization approach of Zimberg et al. (2015) to model P, but without implementing

the rolling horizon, which is then solved with CPLEX. Next, logistics decisions (binary

variables) are fixed into the MINLP and the resulting NLP is solved.

Table 8 presents the solution (LM Solution) and CPU time (in seconds). While the

GO strategy found global solutions for instances LC-18Days and HC-18Days, the results

from Table 8 indicate that the LM strategy reaches global optimality only for scenario HC-

18Days (highlighted in bold italic). On the other hand, the LM strategy provides better

solutions for instances HC-22Days and HC-26Days than the GO strategy. Column

LM Gain2 of Table 8 gives the percent improvement. For all other instances, the LM

strategy fails to provide improvements, not being able to even find a feasible solution

for instances LC-30Days and HC-30Days.
1 GAP between the GO Solution and its dual bound.
2 LM Gain = GO Solution - LM Solution

LM Solution 100.
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2.6.2.3 PCM Strategy Performance

Tables 9 to 12 show the solution (PCM Solution), CPU time (in seconds) and

number of iterations. For each instance, different numbers of domain partitions for

the variables involved in the bilinear terms are tested. Each experiment runs until the

algorithm reaches a CPU limit of 3 600 seconds or the gap between upper and lower

bounds is less or equal to 10–2%.

Besides the GO strategy, the PCM strategy also achieved the global optimum

for instances LC-18Days and HC-18Days which is described in columns PCM Gain3 of

Table 9. For instance LC-18Days, global optimum is reached for almost all partitioning

schemes, taking in some cases less than 10 seconds, while the GO strategy takes 50

seconds.

Significant improvements on the solutions found by the GO strategy are provided

by the PCM strategy for low cost instances LC-22Days, LC-26Days and LC-30Days. As

an example, partitioning [2, 2, 2, 2] (i.e., partitions related respectively to the domain of

variables ∆vpnqt
i ,j , vnt

i
, ∆vpnt

i
and vnqt

i ,j ) of instance LC-30Days (Table 12) can reach

an improvement of 365% in relation to the solution provided by the GO strategy in not

more than 42 minutes.

The PCM strategy also reports satisfactory performance for high cost instances.

Instance HC-22Days is the only one that shows an advantage in favor of the LM strat-

egy, reaching an improvement of 93% in almost 20 minutes, while the PCM strategy

takes nearly 12 minutes to improve in 72% the solution provided by the GO strategy.

Finally, impressive improvements are obtained for instances HC-26Days (1 995% with

partitioning [2, 2, 3, 3]) and HC-30Days (4 274% with partitioning [3, 2, 3, 2]).

Figures 8 and 9 illustrate, respectively, the performance of the PCM strategy in re-

lation to the GO strategy for instances LC-30Days and HC-30Days (hardest instances).

Each figure presents the GO strategy solution (black horizontal line) and the four best

results of the PCM strategy, with dashed lines representing univariate partitioning, while

continuous ones represent bivariate. Iterations are marked by the symbol *. The LM

strategy was not able to provide a feasible solution for these instances. Hence, they are

not presented in the figures. Notice that bivariate partitioning provides better results in

fewer iterations (see Figure 9 zooming). However, these iterations are usually longer.

2.6.3 Discussion

An overall analysis suggests three major remarks regarding the results obtained

by the PCM strategy:

1. Solution Quality and CPU Time. The results demonstrate that the proposed

MILP relaxation is a good starting point for the NLP model to be sequentially

3 PCM Gain = GO Solution - PCM Solution
PCM Solution 100.
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Table 3 – Requirements at the crude oil terminal.

Periods 1 2 3 4 5 6 7 8 9 10

Demand [103m3] 4.0 4.5 4.0 3.0 8.0 6.0 7.0 5.0 6.0 6.0
Demand 1 C 1 C 1 C 1 C 0.2 D 0.2 D 0.2 D 0.2 D 0.2 D 0.2 D
Proportion - - - - 0.8 B 0.8 B 0.8 B 0.8 B 0.8 B 0.8 B
Vessel Cargo / - - 60 - - - - - - -
Quality [103m3] - - B - - - - - - -
Maintenance - - - - - - - - - -

Periods 11 12 13 14 15 16 17 18 19 20

Demand [103m3] 7.0 7.0 6.5 5.0 6.0 6.0 7.0 6.0 6.0 6.0
Demand 0.2 D 0.2 D 0.2 D 0.2 D 0.2 D 0.2 D 0.2 D 0.3 E 0.3 E 0.3 E
Proportion 0.8 B 0.8 B 0.8 B 0.8 B 0.8 B 0.8 B 0.8 B 0.7 A 0.7 A 0.7 A
Vessel Cargo / 60 - - - - - 60 - - -
Quality [103m3] B - - - - - A - - -
Maintenance - - - T3 T3 T3 T3 T3 T3 T3

Periods 21 22 23 24 25 26 27 28 29 30

Demand [103m3] 6.0 6.0 6.0 8.0 8.0 7.0 7.0 7.0 7.0 7.0
Demand 0.3 E 0.3 E 0.3 E 0.3 E 0.3 E 0.3 E 0.3 E 0.3 E 0.3 E 0.3 E
Proportion 0.7 A 0.7 A 0.7 A 0.7 A 0.7 A 0.7 A 0.7 A 0.7 A 0.7 A 0.7 A
Vessel Cargo / - 40 - - - 70 - - 30 -
Quality [103m3] - D - - - A - - C -
Maintenance - - - - - - - - - -

Table 4 – Initial conditions.

Tanks 1 2 3 4 5 6 7
Crude Quality C E A B D B A
Volume [103m3] 47 54 4 10 25 14 8

Table 5 – Mixing rules (allow = 1, not allow = 0).

Crude Type E D C B A
E 1 0 0 1 1
D 0 1 0 1 1
C 0 0 1 0 0
B 1 1 0 1 1
A 1 1 0 1 1

Table 6 – Cost parameters.

C
pq
j Cpv Cxn Cxqn Cz

Low Cost 5 5 20 0.001 5
High Cost 50 50 20 0.001 5
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Table 7 – Solutions obtained with the GO strategy.

Model Statistics Low Cost High Cost
Total Total Binary Non-Linear GO Dual CPU GO Dual CPU

Planning Horizon Var. Cons. Var. Cons. Solution Bound GAP Time [s] Solution Bound GAP Time [s]

18 Days 3 618 10 397 828 220 140.125 40.125 - 50 1105.126 105.126 - 11
22 Days 4 422 12 709 1 031 288 60.185 45.239 33% 3 600 251.802 105.179 139% 3 600
26 Days 5 226 15 021 1 241 380 107.184 41.453 158% 3 600 3 875.175 100.454 3 757% 3 600
30 Days 6 030 17 333 1 458 478 290.172 40.175 622% 3 600 5 915.184 105.196 5 523% 3 600

1 Optimal solution.

Table 8 – Solutions obtained with the LM strategy.

Low Cost High Cost
Planning Horizon LM Solution CPU Time [s] LM Gain LM Solution CPU Time [s] LM Gain

18 Days 355.129 1 568 - 1105.126 78 Optimal
22 Days 4110.135 3 600 - 2130.155 1 106 93%
26 Days 4115.159 3 600 - 2560.156 3 600 591%
30 Days 5- 3 600 - 5- 3 600 -

1 Optimal solution.
2 Improvement in relation to the GO strategy solution.
3 Fails to reach optimality.
4 Fails to provide improvement in relation to the GO strategy solution.
5 No feasible solution within the time limit of 3 600 seconds.
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Table 9 – Solutions obtained with the PCM strategy - LC-18Days and HC-18Days.

Low Cost High Cost
Number of Domain Partitions PCM CPU PCM CPU

∆vpnqt
i ,j vnt

i
∆vpnt

i
vnqt

i ,j Solution Time [s] Iterations PCM Gain Solution Time [s] Iterations PCM Gain

U
ni

va
ria

te

1 2 1 2 40.125 10 2 Optimal 1- - - -
1 2 2 1 40.125 14 2 Optimal 1- - - -
2 1 2 1 40.125 8 2 Optimal 105.126 9 3 Optimal
2 1 1 2 40.125 9 1 Optimal 105.126 3 3 Optimal
1 3 1 3 40.125 27 1 Optimal 3105.137 24 1 Near Optimal
1 3 3 1 40.125 131 1 Optimal 105.126 44 2 Optimal
3 1 3 1 40.125 21 3 Optimal 1- - - -
3 1 1 3 40.125 15 1 Optimal 2349.914 22 12 -

B
iv

ar
ia

te

2 3 2 3 40.125 125 1 Optimal 2154.555 165 16 -
2 3 3 2 340.135 224 1 Near Optimal 3105.139 65 1 Near Optimal
3 2 3 2 40.125 62 1 Optimal 2128.266 49 6 -
3 2 2 3 340.126 125 1 Near Optimal 2129.445 119 13 -
2 2 2 2 40.125 17 1 Optimal 2125.144 26 5 -
2 2 3 3 40.125 66 1 Optimal 105.126 27 1 Optimal
3 3 2 2 40.125 51 1 Optimal 1- - - -
3 3 3 3 40.125 231 1 Optimal 2128.266 104 5 -

1 Infeasible.
2 Fails to reach optimality.
3 Near Optimal: solution gap in relation to the GO strategy solution is less or equal to 1%.
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Table 10 – Solutions obtained with the PCM strategy - LC-22Days and HC-22Days.

Low Cost High Cost
Number of Domain Partitions PCM CPU PCM CPU

∆vpnqt
i ,j vnt

i
∆vpnt

i
vnqt

i ,j Solution Time [s] Iterations PCM Gain Solution Time [s] Iterations PCM Gain

U
ni

va
ria

te

1 2 1 2 2174.821 137 17 - 21 178.740 156 15 -
1 2 2 1 268.661 119 16 - 163.096 132 14 54%
2 1 2 1 52.070 140 20 15% 2590.013 116 9 -
2 1 1 2 1- - - - 2691.084 31 20 -
1 3 1 3 2165.994 322 8 - 2809.247 445 14 -
1 3 3 1 263.117 423 11 - 221.356 531 13 13%
3 1 3 1 50.726 186 11 18% 244.980 201 14 2%
3 1 1 3 2143.153 151 10 - 2895.226 257 12 -

B
iv

ar
ia

te

2 3 2 3 50.667 813 13 18% 234.336 578 16 7%
2 3 3 2 50.848 822 10 18% 223.236 1 197 15 12%
3 2 3 2 1- - - - 2269.368 469 12 -
3 2 2 3 267.379 733 12 - 179.835 327 14 40%
2 2 2 2 50.896 249 19 18% 173.085 197 21 45%
2 2 3 3 263.271 1 268 12 - 146.266 722 11 72%
3 3 2 2 50.668 1 476 11 18% 1- - - -
3 3 3 3 50.668 1 645 12 18% 1- - - -

1 Infeasible.
2 Fails to provide improvement in relation to the GO strategy solution.
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Table 11 – Solutions obtained with the PCM strategy - LC-26Days and HC-26Days.

Low Cost High Cost
Number of Domain Partitions PCM CPU PCM CPU

∆vpnqt
i ,j vnt

i
∆vpnt

i
vnqt

i ,j Solution Time [s] Iterations PCM Gain Solution Time [s] Iterations PCM Gain

U
ni

va
ria

te

1 2 1 2 2147.203 258 13 - 992.751 350 17 290%
1 2 2 1 69.585 468 16 54% 279.314 376 15 1 287%
2 1 2 1 73.600 351 25 45% 238.579 177 15 1 524%
2 1 1 2 66.765 74 18 60% 547.717 80 19 607%
1 3 1 3 79.593 1 052 14 34% 794.595 1 805 12 387%
1 3 3 1 58.077 2 113 13 84% 540.492 1 727 9 616%
3 1 3 1 72.359 492 11 48% 485.544 483 15 698%
3 1 1 3 2144.815 604 13 - 573.512 122 10 575%

B
iv

ar
ia

te

2 3 2 3 83.720 3 600 1 28% 272.112 2 957 2 1 324%
2 3 3 2 96.353 3 600 1 11% 212.706 3 600 1 1 721%
3 2 3 2 67.513 2 518 9 58% -1 - - -
3 2 2 3 63.102 2 629 11 69% -1 - - -
2 2 2 2 60.496 993 19 77% 323.088 559 10 1 099%
2 2 3 3 53.701 2 777 11 99% 184.915 3 005 8 1 995%
3 3 2 2 95.561 3 600 1 12% 273.211 2 797 1 1 318%
3 3 3 3 2141.799 3 600 1 - 1 944.315 3 600 1 99%

1 Infeasible.
2 Fails to provide improvement in relation to the GO strategy solution.
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Table 12 – Solutions obtained with the PCM strategy - LC-30Days and HC-30Days.

Low Cost High Cost
Number of Domain Partitions PCM CPU PCM CPU

∆vpnqt
i ,j vnt

i
∆vpnt

i
vnqt

i ,j Solution Time [s] Iterations PCM Gain Solution Time [s] Iterations PCM Gain

U
ni

va
ria

te

1 2 1 2 137.695 813 17 111% 1 551.652 3 600 5 281%
1 2 2 1 74.716 1 371 16 288% 467.315 742 14 1 165%
2 1 2 1 137.347 1 072 22 111% 274.568 637 20 2 054%
2 1 1 2 164.022 372 18 77% 616.226 179 22 859%
1 3 1 3 163.837 3 600 3 77% 1 140.261 3 600 2 418%
1 3 3 1 130.193 3 600 1 122% 536.440 3 600 2 1 002%
3 1 3 1 91.306 1 960 10 217% 324.075 1 758 11 1 725%
3 1 1 3 162.052 1 421.24 12 79% 657.649 321 11 799%

B
iv

ar
ia

te

2 3 2 3 227.742 3 600 1 27% 1 312.125 3 600 1 350%
2 3 3 2 263.304 3 600 1 10% 651.706 3 600 1 807%
3 2 3 2 182.343 3 600 1 59% 135.223 3 600 1 4 274%
3 2 2 3 74.814 3 600 2 287% 376.705 3 600 1 1 470%
2 2 2 2 62.326 1 839 8 365% 685.257 3 600 17 763%
2 2 3 3 133.779 3 600 1 116% 660.551 3 600 1 795%
3 3 2 2 197.312 3 600 1 47% 675.560 3 600 1 775%
3 3 3 3 177.563 3 600 1 63% 504.030 3 600 1 1 073%
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2.7 CONCLUSION

This work has proposed an extended model for the scheduling of operations at

the crude oil terminal of ANCAP, the national refinery of Uruguay. First presented by

Zimberg et al. (2015), the new model advances the previous one by considering more

operational constraints.

The key contribution of this work is an iterative two-step MILP-NLP decomposi-

tion algorithm based on a piecewise McCormick relaxation, which implements a domain-

reduction strategy for handling bilinear terms in the scheduling of crude oil operations.

On small instances for which an optimal solution is known, the proposed strategy con-

sistently finds optimal or near-optimal solutions. It also solves larger instances which

are, in some cases, intractable by a global optimization solver and the MILP lineariza-

tion strategy proposed by Zimberg et al. (2015). By solving several instances of the

scheduling problem, it has been shown that the bivariate partitioning scheme usually

provides a stronger relaxation than univariate, leading to better results in fewer itera-

tions. On the other hand, the CPU time is usually higher. Another conclusion is that

domain partitioning decisions should prioritize to have more, or at least equal, domain

partitions for variables ∆vpnqt
i ,j (total volume of crude j sent from tank i to the pipeline

in t) and ∆vpnt
i

(total volume sent from tank i to the pipeline in t) when compared to the

number of domain partitions for the variables vnt
i

and vnqt
i ,j .

As seen in this chapter, COS formulations usually consider the arrival period

of vessels at the crude oil terminal and their cargo as a known parameter, and the

details of the offshore operations are not taken into account. Therefore, if one wants to

consider the OMCOS, there is the need to complete the offshore portion of the OMCOS

by introducing the elements of MIR (ASSIS, Leonardo Salsano de; CAMPONOGARA,

2016) into the formulation. Chapter 3 proposes an integrated non-convex MINLP model

and a solution strategy for the OMCOS that takes into account elements of both MIR

and COS.
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3 AN MINLP FORMULATION FOR INTEGRATING THE OPERATIONAL MANAGE-

MENT OF CRUDE OIL SUPPLY

3.1 INTRODUCTION

As addressed in Chapter 2, COS formulations deal with the supply of crude oil

from the arrival of vessels at crude oil terminals to the feed of crudes to the CDUs.

Nevertheless, in order to consider the extended chain of crude oil supply, there is the

need to take into account the offshore elements that are associated to vessel’s trips

and FPSOs. Therefore, this chapter proposes an MINLP model for OMCOS (i.e., from

FPSOs to CDUs), considering the scheduling of vessels and operations in a terminal,

which means that it incorporates elements of two known problems in the literature: MIR

and COS. To tackle this problem, an iterative MILP-NLP decomposition scheme with

domain reduction is applied.

Chapter 1 states that the supply of crude oil from offshore oil fields to refineries is

one of the major problems faced by vertically integrated oil companies (i.e., companies

that control production, transportation, storage and refining). For offshore oil production,

such as in the Brazilian Pre-Salt layer (FRAGA et al., 2009), the oil company relies

on floating production, storage and offloading units (FPSOs), or simply platforms, to

produce and store crude oil. After production, the crude oil is then transferred to onshore

terminals by sub-sea pipelines or vessels. Since oil pipelines are not available in deep-

water offshore oilfields, a fleet of vessels is deployed to transfer crude oil to the terminals

(ASSIS, Leonardo Salsano de; CAMPONOGARA, 2016).

After arriving in a terminal, oil vessels unload crude oil through a pipeline to

the tank farm, which is composed by storage tanks (STs) (ASSIS, Leonardo Salsano

de et al., 2017). At this point mixtures cannot be avoided due to the large number of

different types of crude oil in the market and the limited storage capacity of a terminal.

At the refinery, the crude oil arriving from the storage tanks through a pipeline network

is stored in charging tanks (CTs), which subsequently feed the crude distillation units

(CDUs).

In the work of Rocha et al. (2009), the authors describe the main decisions at

each level of the crude oil supply management problem. The decisions associated to

the strategic level are concerned with defining for the long term the demands (i.e., both

in terms of quantity and quality) of the refinery, as well as either to import or not crude

oil. Meanwhile, medium term resource allocation and material flow are related to the

tactical level. For example, one must decide which platforms will feed each crude oil

terminal; which terminal will supply each refinery; the volumes of crude to be transferred

between resources; and the vessel fleet composition. Finally, short term decisions such

as routing and scheduling of vessels, and scheduling of operations in terminals are

associated to the operational level.
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Table 13 – List of items of each segment of the petroleum supply chain (SAHEBI et al.,
2014).

Upstream Midstream Downstream

Well Well Production Crude Oil Refinery Petrochemical Distribution Market/Customer
Head Platform Platform Terminal (RF) Plant Center/Depot (M/C)
(WH) (WP) (PP) (CT) (PC) (DC)

The main items of each upstream, midstream and downstream segment of the

petroleum supply chain are presented in Table 13. According to this classification, the

management of crude oil supply integrates items of both upstream and midstream

segments, involving production platforms in offshore oil fields, transportation, storage

in crude oil terminals, and finally the feed of CDUs in refineries. The works of Aires

et al. (2004), Rocha et al. (2009), Rocha et al. (2013) and Rocha et al. (2017) tackle the

management of crude oil supply in its whole extension, dealing with strategic/tactical

level decisions. This means that operational issues such as scheduling of vessels,

blending and scheduling of operations in a terminal are not considered.

At the operational level, the management of crude oil supply has elements of

maritime inventory routing (MIR) and crude oil scheduling (COS) problems, as stated

by Aires et al. (2004). However, the independent solution of the MIR and COS problems

for an integrated supply chain, such as the one that arises in a vertically integrated oil

company, can lead to loss of information along the chain. Motivated by this lack of infor-

mation sharing, this work develops a model for the operational management of crude

oil supply. The proposed model integrates elements of MIR and COS problems, such

as the scheduling of vessels, the scheduling of operations in the terminal and blending

of crudes. Such an integration is advocated by Barbosa-Póvoa (2014) and Lazaros G.

Papageorgiou (2009), who pointed out the importance of integrating, if possible, tactical

and operational level decisions, to enhance the supply chain performance.

The independent solution of maritime inventory routing and crude oil scheduling

may fail to coordinate the access to shared resources, such as storage tanks, which

define the boundary between MIR and COS problems. For instance, the MIR problem

usually considers that storage tanks are available for receiving crudes from vessels

that arrive from time to time at the terminal. However, the dynamics of storage tanks

are also affected by outlet operations that are managed by the COS problem, leading

to a potential mismatch between the level and composition of crudes in those tanks.

Further, operational constraints, such as the rule that prevents simultaneous inlet and

outlet operations in storage tanks, may not be fulfilled in a solution obtained by solving

the MIR and COS problems independently. Such limitations motivate the integration of

the operational management of crude oil supply, taking into account elements of the

MIR and COS problems.

The technical paper (ASSIS, Leonardo S. et al., 2019) is used as basis for the
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development of this chapter. The remainder of this work is organized as follows. A review

of the literature is presented in Section 3.2. The problem definition is given in Section

3.3. The mathematical formulation is described in Section 3.4, while the proposed

solution strategy is presented in Section 3.5. Problem instances and computational

results are shown in Section 3.6. Finally, the conclusion and directions for future work

are described in Section 3.7.

3.2 LITERATURE REVIEW

This section is divided into four parts. First, we present an overview of maritime

inventory routing (MIR) and crude oil scheduling (COS), since the problem of concern

has elements of both domains. The second part discusses works that attempt to inte-

grate segments of the petroleum supply chain. Since we apply McCormick envelopes to

obtain a linear relaxation of the model, the third part presents works from the literature

that apply these envelopes in their solution strategies. Finally, the section ends with a

discussion that positions the current work with respect to the technical literature and

further states the contributions.

3.2.1 Overview on Maritime Inventory Routing and Crude Oil Scheduling

Maritime inventory routing consists of scheduling the trips of a set of vessels

between ports in order to satisfy certain demands for products, while respecting lower

and upper limits of inventory at production and consumption ports. The work of David

Ronen (1983) is the first review on ship scheduling problems. Further models started

to incorporate inventory control in ports such as in D. Ronen (2002) and Camponogara

and Plucenio (2014). The latter derived valid inequalities and proposed a Lagrangean

based strategy to solve the MILP model. An extensive review on MIR problems is

provided by Christiansen et al. (2013).

The works of Dimitri J. Papageorgiou et al. (2018) and Agra et al. (2017) have

addressed strategies to deal with deep sea (i.e., where ports are spread in different

continents) and short sea (i.e., where ports are near each other) MIR problems, respec-

tively. The former analyzes the use of several matheuristics like rolling horizon heuristics,

K-opt heuristics, and local branching, while the latter proposes discrete and continu-

ous time formulations, extended formulations and valid inequalities that strengthen the

formulations.

Recently, several techniques to handle uncertainties in vessels’ travel time are

addressed by Rodrigues et al. (2019), namely robust optimization, stochastic program-

ming, deterministic model with inventory buffers and models that incorporate conditional

value-at-risk measures.

In crude oil scheduling problems, the main objective is to satisfy the demands of



Chapter 3. An MINLP formulation for integrating the operational management of crude oil supply 63

CDUs (i.e., both in terms of total volume and quality of crude oil). To achieve that, one

must schedule a set of operations including the unloading of crude oil into storage tanks,

the transfers between storage and charging tanks, and the feed of CDUs performed by

charging tanks.

Heeman Lee et al. (1996) were the first to address the crude oil scheduling

problem. The authors proposed and solved a discrete time MILP model where blending

constraints were not considered and replaced by a linear approximation. On the other

hand, a continuous time MINLP formulation coined as single operation sequencing

was proposed by Mouret et al. (2009), whose main advantage is that the number of

time slots is significantly smaller than traditional formulations. Further, a combination

of symmetry-breaking constraints and two-step MILP-NLP decomposition is applied to

solve the problem.

The work of Leonardo Salsano de Assis et al. (2017) considers the operations

in ANCAP’s crude oil terminal (i.e., national refinery of Uruguay), excluding charging

tanks and CDUs. To tackle the problem, the authors proposed a piecewise McCormick

based MILP-NLP decomposition with domain reduction.

Similar to short-term crude oil scheduling, the scheduling and feed of concen-

trates is a common problem in the metal refining industry (SONG, Y. et al., 2018). This

problem, which consists of a MINLP formulation, has the goal of defining the blend of

concentrates and the sequence in which each blend is fed to the smelter in order to

satisfy its demand both in terms of quantity and specification.

3.2.2 Management of Integrated Crude Oil Supply

Despite not considering the integrated problem of supplying crude oil from FP-

SOs to CDUs, other works have also tackled problems involving multiple segments of

the crude oil supply chain. For instance, Escudero et al. (1999) proposed a linear pro-

gramming (LP) model for defining optimal material flows of an oil company. Known as

multi-period the Supply, Transformation and Distribution (STD) problem, it consists of a

network with storage tanks, transformation sites, transshipment nodes, and destination

depots. Uncertainties such as spot selling price, spot supply cost, and product demand

are also taken into account. Dempster et al. (2000) also considered the multi-period

STD with uncertainties in product demands and spot supply costs. The authors sug-

gest a stochastic LP model to produce, supply, and distribute crude oil products from a

consortium of oil companies.

On the refinery side, Sérgio M.S. Neiro and José M. Pinto (2004) and Sérgio

M. S. Neiro and José M. Pinto (2005) tackled a network made up by a set of crude

oil terminals, pipelines, refineries, and distribution centers. The authors proposed a

large-scale MINLP model, which considered connections between refineries and the

non-linearities associated to product blending. Main decisions consist of defining stream
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flow rates, operational variables, inventory management, and facility assignment. Al-

Othman et al. (2008) extended the work of Sérgio M.S. Neiro and José M. Pinto (2004)

and Sérgio M. S. Neiro and José M. Pinto (2005) by integrating a petrochemical plant

into the network. Moreover, the model considered penalties on missed demands and

backlogs in the objective function, while dealing with uncertainties in market demands

and prices. Guyonnet et al. (2009) proposed an extension to the work of Sérgio M.S.

Neiro and José M. Pinto (2004) by adding the scheduling of operations in the crude oil

terminal and the distribution of final products.

To the best of our knowledge, Aires et al. (2004) were the first to tackle the

integrated problem of supplying crude oil (i.e., from FPSOs to CDUs). Dealing with

strategic/tactical level decisions, they propose an MILP formulation for allocating crude

oil produced by a set of platforms to a set of terminals in order to satisfy the demands

of a set of refineries (i.e., both in terms total volume and quality of crude oil). In ad-

dition, crude oil import, inventory management and vessel fleet sizing decisions are

also considered. Rocha et al. (2009) combined a heuristic method to find a feasible

solution with a local search procedure to improve it. Tighter reformulations of mate-

rial balance constraints based on knapsack inequalities are presented by Rocha et al.

(2013), providing substantial gains on solution time for the tested instances. Recently,

Rocha et al. (2017) proposed an efficient decomposition algorithm and made use of

material balance constraints reformulation, valid inequalities and an extended formula-

tion related to the offload of platforms for solving the problem. The limited number of

vessels, scheduling of vessels, scheduling of operations in terminals and non-linearities

due to blending were not addressed.

3.2.3 Overview on McCormick Envelopes Based Strategies

McCormick envelopes provide the tightest possible linear relaxation for bilinear

terms (MCCORMICK, 1976). In this approach, the bilinear term xixj is replaced with a

new continuous variable wij and four sets of linear constraints are considered for the

formulation.

The standard McCormick envelopes can be strengthened by partitioning the

domain of one of the variables, say xj , into n disjoint regions and then approximating the

bilinear term within each partition, a process that requires binary variables to select the

best partition for xj . First proposed by Bergamini et al. (2005), this partitioning approach

is known as univariate piecewise McCormick as a means to tighten the approximation.

To the best our knowledge, Wicaksono and IA Karimi (2008) were the first to

propose the domain partitioning of both variables, xi and xj , a strategy that came to be

known as bivariate piecewise McCormick. In this work, bivariate partitioning yielded a

stronger relaxation than univariate partitioning in moderate-size problems, such as col-

umn sequencing for nonsharp distillation, integrated water use and treatment systems,
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generalized pooling problems on wastewater treatment networks, and synthesis of heat

exchanger networks. Later, Hasan and I.A. Karimi (2010) applied bivariate partitioning

to a benchmark process network synthesis problem, obtaining stronger relaxations than

univariate partitioning. A comprehensive study on piecewise under- and over-estimators

for bilinear terms was presented by Gounaris et al. (2009).

A number of works on Piecewise McCormick envelopes have appeared in the

recent literature. Castro (2015) proposed an iterative algorithm based on univariate

piecewise McCormick with bound contraction, which was applied for the design of wa-

ter system networks. In the work Leonardo Salsano de Assis et al. (2017), the authors

developed an MINLP model for the optimization of operations in a crude oil terminal,

for which univariate and bivariate piecewise McCormick envelopes were applied as

part of a MILP-NLP decomposition. Castillo Castillo et al. (2017) presented an iterative

strategy based on approximation of bilinear terms to solve a class of MINLP that arise

from oil refinery planning. Their strategy produces tight MILP relaxation by dynami-

cally discretizing the bilinear terms using either piecewise McCormick or normalized

multiparametric disaggregation.

3.2.4 Work Contribution

In summary, a few works address the integrated management of crude oil supply

(i.e., from FPSOs to CDUs) at the strategic/tactical decision levels, but without taking

into account operational issues such as scheduling of vessels, blending and scheduling

of operations in a terminal. To this end, the present work contributes to the literature

by developing a model for the management of crude oil supply at the operational level,

incorporating elements of maritime inventory routing and crude oil scheduling (AIRES

et al., 2004).

To the best of our knowledge, this is the first work to integrate the management

of crude oil supply at the operational level by taking into account the scheduling of

vessels, the scheduling of operations in the terminal and the non-convex non-linearities

associated to the blending of crudes. To tackle this problem, we propose a discrete

time MINLP formulation to be solved by an iterative MILP-NLP decomposition, which

relies on domain reduction, bivariate piecewise McCormick envelopes to yield the MILP

relaxation, and a NLP solver to reach feasible solutions.

3.3 PROBLEM STATEMENT

Figure 10 depicts an instance of the operational management of crude oil supply,

which is composed by the following set of resources: FPSOs (FPSO1 and FPSO2),

vessels (Vessel1 and Vessel2), storage tanks (ST1 and ST2), charging tanks (CT1 and

CT2) and crude oil distillation units (CDU1). Moreover, the arrows illustrate all possible
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are mixed.

Charging tanks CT1 and CT2 will feed CDU1 through operations v19 and v20,

respectively. Because different types of crude oil can also be mixed in the charging

tanks, transfer operations from charging tanks (v19 and v20) are also submitted to

blending constraints.

The feed of crude oil to CDUs must satisfy two types of demands, namely the

total volume delivered over the planning horizon and its composition must be within

given ranges. For this reason, the blends of crudes in the charging tanks should be

within the composition ranges imposed by the CDUs which, in turn, means that the

storage tanks must feed the charging tanks in order to yield the required compositions.

The main operational rules are:

(a) a vessel must be empty before traveling to offload an FPSO;

(b) a vessel must offload an FPSO to fully fill its storage tanks, until no residual

capacity is left;

(c) an FPSO can load at most one vessel at a time;

(d) a vessel must unload all its volume into the storage tanks at the terminal, but not

necessarily in the same tank;

(e) at most one vessel at a time can unload into the storage tanks (i.e., only one

single buoy mooring (SBM) is available);

(f) at most one (inlet or outlet) operation can be performed during the same time

period at a storage or charging tank;

(g) at least one distillation operation must be carried out in a time period.

The optimization problem consists in determining, for the planning horizon, the

optimal schedule of operations associated to all resources in order to satisfy the de-

mands of CDUs (i.e., both in terms of quality and quantity), while maximizing the gross

margin. To this end, we propose a discrete time MINLP model, whose main decisions

consist in selecting what operations take place at each time, the level of crudes in each

resource, and the volume of crude oil transferred between resources.

3.4 MATHEMATICAL MODEL

Before proposing the discrete time MINLP model for the problem of concern, sets,

parameters, variables, constraints, and the objective function are presented below.
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3.4.1 Sets, Parameters and Variables

1. Sets

The following sets are required for the problem formulation:

• T = {1, . . . , PH}: set of discrete time periods which define the planning hori-

zon PH.

• RF , RV, RS, RC and RD: respectively the set of FPSOs, vessels, storage

tanks, charging tanks, and CDUs.

• R = RF ∪RV ∪RS ∪RC ∪RD: set of all resources.

• WL, WU , WW, WT , WF and WD: respectively, the set of offloading oper-

ations, unloading operations, wait operations, travel operations, tank-to-tank

feed operations and distillation operations.

• W = WL∪WU ∪WW ∪WT ∪WF ∪WD: set of all operations.

• Ir ⊂ W: set of inlet operations on each resource r ∈ R.

• Or ⊂ W: set of outlet operations on each resource r ∈ R.

• Dr ⊂ W: set of wait operations of each vessel r ∈ RV.

• T Rr ⊂ W: set of travel operations of each vessel r ∈ RV.

• Gr = (Nr , Er ) is a graph representing the flow between operations associated

to each vessel r ∈ RV, where Nr = Ir ∪ Or ∪ Dr ∪ T Rr is the set of nodes

and Er = Nr × Nr is the set of arcs. The nodes Nr are the operations

regarding vessel r , while the edges (v , u) ∈ Er indicate the possibility to flow

from operation v to u (v , u ∈ Nr ). Since not every flow between operations

is allowed, set VDr ⊂ Er contains the possible flows between operations

related to vessel r . For example, if vessel r is performing an unloading or

a waiting operation, it must execute a travel operation before offloading an

FPSO.

• IOPr ⊂ (Ir ∪ Or ∪ Dr ∪ T Rr ): set with the initial operation to be performed

by vessel r ∈ RV.

• C: set of crude oils.

• K: set of crude oil properties.

• CL: set of cliques of conflicting operations. Let Gc = (Vc , Ec) be a graph

whose vertice set Vc = W consists of all operations, and whose edge set

Ec ⊆ Vc × Vc corresponds to the conflicting operations. This means that two

operations u and v cannot take place simultaneously if and only if (u, v ) ∈ Ec .

Rather than expressing a constraint for each pair (u, v ) ∈ Ec , CL can be

defined as the set of all maximal cliques which ensures a coverage of all

conflicting constraints.
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• WCLcl : set of operations in a clique cl . WCLcl ∈ W is the set of conflicting

operations in a clique cl ∈ CL.

2. Parameters

The following parameters should be considered:

• Gc : gross margin of crude oil c ∈ C, in dollars per thousand barrels [$/103bbl ].

• PRODr ,c : production rate of crude oil c ∈ C in FPSO r ∈ RF , in 103 barrels

per day [103 bbl/day]. An FPSO r is capable of producing crude oil c only if

PRODr ,c > 0.

• VTTr ,v : number of periods taken for executing travel operation v ∈ T Rr

associated to vessel r ∈ RV.

• [FRv , FRv ]: flowrate lower and upper bounds for operation v ∈ W \ (WW ∪

WT ), in 103 barrels per day [103 bbl/day]. Bounds on the flowrate of crude oil

are imposed when offloading an FPSO, unloading a vessel, in transfers be-

tween storage and charging tanks, and between charging tanks and CDUs.

• [CAPr , CAPr ]: capacity lower and upper bounds of resource r ∈ R \ RD, in

103 barrels [103 bbl].

• TILr : initial level of crude oil in resource r ∈ R \ RD, in 103 barrels [103 bbl].

• CILr ,c : initial level of crude oil c in resource r ∈ R \ RD, in 103 barrels [103

bbl].

• PRk ,c is the weight fraction of property k ∈ K in crude oil c ∈ C.

• [DEMCv ,k , DEMCv ,k ]: lower and upper bounds on the weight fraction of

property k of the blend of crudes transferred during operation v ∈ WD from

charging tanks to the CDUs. In other words, the weight fraction of property k

in the blend of crudes flowing in operation v , from a charging tank to a CDU,

must be within the bounds DEMCv ,k and DEMCv ,k .

• [DEMr , DEMr ]: lower and upper bounds on the total volume of crude oil

demanded by CDU r ∈ RD over the planning horizon, in 103 barrels [103

bbl].

3. Decision Variables

Binary assignment and continuous operation-state variables are needed.

a) Logistic Variables.

• zi ,v ∈ {0, 1}, i ∈ T and v ∈ W. Operation variable zi ,v = 1 if operation v

is assigned to be executed in period i . Otherwise, zi ,v = 0.
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• si ,r ,v ,u ∈ {0, 1}, i ∈ (T \ {PH}), r ∈ RV and (v , u) ∈ VDr . Flow variable

si ,r ,v ,u = 1 if vessel r flows from executing operation v in period i to

executing operation u in period i + 1. Otherwise, si ,r ,v ,u = 0.

b) Level and Flow Variables.

• vti ,v ≥ 0, i ∈ T and v ∈ W \ (WW ∪ WT ). Variable vti ,v is the total

volume of crude oil transferred in period i by operation v .

• vcti ,v ,c ≥ 0, i ∈ T , v ∈ W \ (WW ∪WT ) and c ∈ C. Variable vcti ,v ,c is

the volume of crude oil c transferred in period i by operation v .

• lri ,r ≥ 0, i ∈ T and r ∈ R \ RD. Variable lri ,r is the total level of crude oil

in resource r at the end of period i .

• lcri ,r ,c ≥ 0, i ∈ T , r ∈ R \ RD and c ∈ C. Variable lcri ,r ,c is the level of

crude oil c in resource r at the end of period i .

3.4.2 Constraints

3.4.2.1 Material Balance and Resource Capacity

The set of equations from (44) to (51) track the total level of crude oil (lri ,r )

and the specific level of each crude oil c ∈ C (lcri ,r ,c) in all resources r ∈ R \ RD

(except from CDUs). These levels directly depend on the flow of crudes (i.e., defined by

variables vcti ,v ,c and vti ,v ) associated to inlet and outlet operations on each resource

(i.e., operations defined in sets Ir and Or ). There is no need to track the inventory of

CDUs, since it is assumed that the daily flow of crude oil to the distillation units are

according to its processing capacity.

Eqs. (44) to (47) are related to the inventory control of FPSOs, where parameter

PRODr ,c is the fixed daily production rate of crude oil c at FPSO r . Note that PRODr ,c =

0 if FPSO r cannot produce crude oil c ∈ C. Parameters CILr ,c and TILr in Eqs. (44)

and (46) correspond, respectively, to the initial volume of crude oil c and the total initial

volume of crude oil in resource r .

lcri ,r ,c = CILr ,c + PRODr ,c –
∑

v∈Or

vcti ,v ,c , ∀ r ∈ RF , i ∈ T , c ∈ C, i = 1, (44)

lcri ,r ,c = lcri–1,r ,c + PRODr ,c –
∑

v∈Or

vcti ,v ,c , ∀ r ∈ RF , i ∈ T , c ∈ C, i 6= 1, (45)

lri ,r = TILr +
∑

c∈C

PRODr ,c –
∑

v∈Or

vti ,v , ∀ r ∈ RF , i ∈ T , i = 1, (46)

lri ,r = lri–1,r +
∑

c∈C

PRODr ,c –
∑

v∈Or

vti ,v , ∀ r ∈ RF , i ∈ T , c ∈ C, i 6= 1. (47)

Likewise, Eqs. (48) to (51) track the volume of crude oil at storage and charging

tanks. The main difference from Eqs. (44) to (47) is that the volume of crude c associ-

ated to inlet operations v ∈ Ir in these resources are variables (i.e., vcti ,v ,c and vti ,v ),
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while at the FPSOs they correspond to the daily production parameter PRODr ,c .

lcri ,r ,c = CILr ,c +
∑

v∈Ir

vcti ,v ,c –
∑

v∈Or

vcti ,v ,c , ∀ r ∈ RS ∪RC, i ∈ T , c ∈ C, i = 1, (48)

lcri ,r ,c = lcri–1,r ,c +
∑

v∈Ir

vcti ,v ,c –
∑

v∈Or

vcti ,v ,c , ∀ r ∈ RS ∪RC, i ∈ T , c ∈ C, i 6= 1,

(49)

lri ,r = TILr +
∑

v∈Ir

vti ,v –
∑

v∈Or

vti ,v , ∀ r ∈ RS ∪RC, i ∈ T , i = 1, (50)

lri ,r = lri–1,r +
∑

v∈Ir

vti ,v –
∑

v∈Or

vti ,v , ∀ r ∈ RS ∪RC, i ∈ T , i 6= 1. (51)

Eq. (52) states that the total level of crude oil in a resource r is the sum of the

levels of each crude oil c in that resource. Moreover, each resource r is bounded by

limits on its capacity (i.e., CAPr and CAPr ), which are imposed by Eq. (53).

lri ,r =
∑

c∈C

lcri ,r ,c , ∀ i ∈ T , r ∈ R \ RD, (52)

CAPr ≤ lri ,r ≤ CAPr , ∀ i ∈ T , r ∈ R \ RD. (53)

3.4.2.2 Vessel Operations Scheduling

Consider a graph Gr = (Nr , Er ) of flow between operations associated to vessel

r ∈ RV . The set of nodes Nr = Ir ∪Or ∪Dr ∪T Rr represents all operations allowed for

a vessel: waiting (Dr ), traveling (T Rr ), unloading (Or ), and offloading (Ir ). Meanwhile,

edges (v , u) ∈ VDr ⊂ Er = Nr ×Nr indicate the precedence or allowed flow between

operations.

Figure 11 illustrates the graphs for Vessel1 and Vessel2 for the instance in Fig.

10. Take Vessel1 for example. If at time i the vessel is unloading crude oil into storage

tank ST1 (i.e., operation v11), then in i+1 the vessel can: travel to FPSO1 (i.e., operation

v5); travel to FPSO2 (i.e., operation v7); continue to unload into ST1; unload into ST2

(i.e., operation v13); or wait at the terminal (i.e., operation v9). Note that Vessel1 can

only offload FPSO1 (i.e., operation v1) or FPSO2 (i.e., operation v3) after traveling to

them.

Eq. (54) defines the initial flow between operations v and u, where the initial

operation v to be executed by vessel r at period i = 1 is defined in the set IOPr . For

the first period of time, all other possible flows are set to zero, which are defined by Eq.

(55).

∑

(v ,u)∈VDr

s1,r ,v ,u = 1, ∀ r ∈ RV, v ∈ IOPr , (54)

s1,r ,v ,u = 0, ∀ r ∈ RV, v ∈ Nr \ IOPr , (v , u) ∈ VDr . (55)
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FPSO, in order to start the offloading of crude oil (i.e., performing operation z ∈ Ir ).

∑

(v ,u)∈VDr :
v∈(Or∪Dr )

si ,r ,v ,u ≤
∑

(u,z)∈VDr :
z∈Ir

si+VTTr ,u,r ,u,z , ∀ i ∈ T , r ∈ RV,

u ∈ T Rr , i ≤ PH – VTTr ,u. (58)

After performing an offloading operation v ∈ Ir from an FPSO at period i , sup-

pose that vessel r starts a travel operation u ∈ T Rr at time (i + 1), as flagged by

si ,r ,v ,u = 1. Then, the vessel must arrive VTTr ,u periods later at the terminal to begin

an unloading or waiting operation z ∈ Or ∪ Dr at period (VTTr ,u + 1), which is defined

by Eq. (59).

∑

(v ,u)∈VDr :
v∈Ir

si ,r ,v ,u ≤
∑

(u,z)∈VDr :
z∈(Or∪Dr )

si+VTTr ,u,r ,u,z , ∀ i ∈ T , r ∈ RV,

u ∈ T Rr , i ≤ PH – VTTr ,u. (59)

3.4.2.4 Vessel Offloading and Unloading Rules

Eq. (60) states that once a vessel starts offloading from an FPSO, it will continue

offloading until utilizing its total storage capacity. Suppose that vessel r executes a

travel operation v ∈ T Rr at time i , and starts offloading an FPSO through operation

u ∈ Ir at time (i + 1), which is indicated by si ,r ,v ,u = 1. If one such action takes

place, then the right-hand side of Eq. (60) will be CAPr , forcing vessel r to fill its

storage capacity by offloading from the FPSO at a rate FRu, from time (i + 1) until time

dCAPr /FRue. Otherwise, if si ,r ,v ,u = 0 for all pairs of operations (v , u) then Eq. (60)

becomes innocuous.

∑

c∈C

i+dCAPr
FRu

e∑

t=(i+1)

vctt ,u,c ≥ CAPr – CAPr (1 –
∑

(v ,u)∈VDr
v∈T Rr

si ,r ,v ,u),

∀ i ∈ T , r ∈ RV, u ∈ Ir , i ≤ PH –

⌈
CAPr

FRu

⌉
. (60)

Moreover, after dCAPr

FRu
e periods of offloading, vessel r must start the return trip

to the terminal, which is established by Eq. (61). If vessel r arrives at an FPSO at

time i and starts offloading at time (i + 1), which is indicated by si ,r ,v ,u = 1, then the

offloading must be completed at time (i + dCAPr /FRue), and the vessel must start a
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travel operation z at the following period of time.

∑

(v ,u)∈VDr :
v∈T Rr

si ,r ,v ,u ≤
∑

(u,z)∈VDr :
z∈T Rr

s
i+dCAPr

FRu
e,r ,u,z

, ∀ i ∈ T , r ∈ RV,

u ∈ Ir , i ≤ PH –

⌈
CAPr

FRu

⌉
. (61)

Eq. (62) states that if a vessel r starts to unload (v ∈ Or ) crude oil into a storage

tank in period i , it can only start a waiting operation u ∈ Dr in period i + 1 if the vessel

is empty.

∑

(v ,u)∈VDr :
v∈Or

si ,r ,v ,u ≤
CAPr – lri ,r

CAPr
, ∀ i ∈ T , r ∈ RV, u ∈ Dr . (62)

In the case that a vessel starts unloading crude oil in the terminal, waiting and

travel operations from the terminal are allowed only after the vessel becomes empty,

as enforced by Eq. (63). Assume that at period i a vessel r is unloading crude oil in a

storage tank or waiting at the terminal, respectively, operations v ∈ Or ∪ Dr . Then, at

period (i + 1), the vessel can initiate a travel operation u ∈ T Rr to offload an FPSO only

with an empty tank. In this case, the total level of crude oil in the vessel is lri ,r = 0 at

time i , and therefore the right-hand side of Eq. (63) becomes CAPr /CAPr = 1, which

allows si ,r ,v ,u to assume value 1 for a travel operation u at time (i + 1). Otherwise, if

there is crude oil remaining in the vessel (i.e., lri ,r > 0), then the right-hand side will be

smaller than 1, forcing si ,r ,v ,u = 0 for all variables on the left-hand side.

∑

(v ,u)∈VDr :
v∈(Or∪Dr )

si ,r ,v ,u ≤
CAPr – lri ,r

CAPr
, ∀ i ∈ T , r ∈ RV, u ∈ T Rr . (63)

3.4.2.5 Transfer Constraints

Eq. (64) determines that if a transfer operation v ∈ W \ (WW ∪WT ) is per-

formed in period i , meaning zi ,v = 1, then the flow of crude oil between resources is

bounded by the lower (FRv ) and upper (FRv ) bounds on the flowrate of each operation

v . This constraint is valid for all operations, except waiting and traveling operations per-

formed by vessels (i.e., WW and WT ), which do not involve transfer of crudes between

resources. Eq. (65) states that the total volume of crude oil vti ,v transferred in operation

v is the sum of the volumes vcti ,v ,c of all crudes c transferred in the same operation.

zi ,v FRv ≤ vti ,v ≤ FRv zi ,v , ∀ i ∈ T , v ∈ W \ (WW ∪WT ), (64)

vti ,v =
∑

c∈C

vcti ,v ,c , ∀ i ∈ T , v ∈ W \ (WW ∪WT ). (65)
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As discussed in Section 3.3, blending of different types of crudes takes place in

storage and charging tanks. This means that a total level lri ,r of crude oil, and a specific

level lcri ,r ,c of each crude type c, is associated with these resources r ∈ RS ∪RC.

Likewise, a total volume vti ,v of crude oil and a specific volume vcti ,v ,c of each crude

type c must be accounted, for every transfer operation v ∈ Or outleting a storage or

charging tank r . Note that the proportion lcri ,r ,c /lri ,r inside each resource r and the

proportion vcti ,v ,c /vti ,v in each transfer operation v must be the same for composition

consistency. This condition enforces that crude oil compositions inside storage, and

charging tanks, remain the same when batches of crude oil are transferred between

storage and charging tanks, and between charging tanks and CDUs. The blending

condition is imposed by Eq. (66), which is the only constraint in the model that involves

non-linear non-convex terms.

vcti ,v ,c
vti ,v

=
lcri ,r ,c

lri ,r
⇒ vcti ,v ,c lri ,r = vti ,v lcri ,r ,c , ∀ i ∈ T , r ∈ RS ∪RC, v ∈ Or , c ∈ C.

(66)

3.4.2.6 CDUs

CDUs are set up to work over determined operating ranges of crude oil com-

position, which translates into a feasible range for each property k of the crude oil

transferred to the CDU. Put another way, the flow of an operation v ∈ WD from a charg-

ing tank r to the CDU must have its property k within the range [DEMCv ,k , DEMCv ,k ],

a condition enforced by Eq. (67). Given that an operation v defines the transfer of crude

from a charging tank to a CDU, the bounds DEMCv ,k and DEMCv ,k are defined accord-

ing with the CDU. Parameter PRk ,c defines the weight fraction of property k associated

to crude c.

DEMCv ,kvti ,v ≤
∑

c∈C

vcti ,v ,cPRk ,c ≤ DEMCv ,kvti ,v , ∀ i ∈ T , v ∈ WD, k ∈ K. (67)

Besides restrictions on composition of crudes, Eq. (68) states that over the

planning horizon the total volume of crude oil demanded from each charging tank r by

the CDUs is bounded by [DEMr , DEMr ].

DEMr ≤
∑

i∈T

∑

v∈Or

vti ,v ≤ DEMr , ∀ r ∈ RC. (68)

Finally, the CDUs must receive crude oil from charging tanks in all periods over

the planning horizon.

∑

v∈Ir

zi ,v = 1, ∀ i ∈ T , r ∈ RD. (69)
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3.4.2.7 Operational Rules

Certain sets of operations cannot be performed during the same period of time

due to logistic rules inherent to the problem. In Fig. 10 for instance:

• Vessel1 and Vessel2 can offload FPSO1 performing operations v1 and v2, re-

spectively. Let set FPSO-OFFLOAD = {v1, v2}.

• CDU1 can receive loads of crude oil from charging tanks CT1 and CT2 through

operations v19 and v20, respectively. Let set CDU1-INPUT = {v19, v20}.

In both sets FPSO-OFFLOAD and CDU1-INPUT the operations cannot be performed

in the same time period. In other words, FPSO1 has only one pump to transfer crude oil

into the vessels and CDU1 can only receive streams of oil from one charging tank at a

time. For this example, let the set of cliques be CL = {FPSO-OFFLOAD, CDU1-INPUT}

and let set WCLcl contain the operations of each clique cl ∈ CL. Eq. (70) guarantees

that at most one operation v ∈ WCLcl will be performed in a time period.

∑

v∈WCLcl

zi ,v ≤ 1, ∀ i ∈ T , cl ∈ CL. (70)

3.4.3 Nonconvex Discrete Time MINLP Formulation

Having introduced the notation and constraints, the operational management of

crude oil supply is cast as:

P : max f =
∑

i∈T

∑

r∈RD

∑

v∈Ir

∑

c∈C

Gcvcti ,v ,c (71a)

s.t. : (44)-(70), (71b)

zi ,v ∈ {0, 1}, ∀ i ∈ T , v ∈ W, (71c)

si ,r ,v ,u ∈ {0, 1}, ∀ i ∈ (T \ {PH}), r ∈ RV, (v , u) ∈ VDr , (71d)

vti ,v ≥ 0, ∀ i ∈ T , v ∈ W \ (WW ∪WT ) (71e)

vcti ,v ,c ≥ 0, ∀ i ∈ T , v ∈ W \ (WW ∪WT ), c ∈ C, (71f)

lri ,r ≥ 0, ∀ i ∈ T , r ∈ R \ RD, (71g)

lcri ,r ,c ≥ 0, ∀ i ∈ T , r ∈ R \ RD, c ∈ C. (71h)

The problem of concern is a discrete-time mixed-integer nonlinear program (MINLP).

All the constraints in model (71) are linear except the compositional Eq. (66), which

involves bilinear terms.
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3.5 SOLUTION STRATEGY

This section details the proposed solution strategy (see Fig. 12), which consists

of an iterative MILP-NLP decomposition with domain contraction:

• First, the approach solves the MILP relaxation of formulation (71), in which Eq.

(66) is dropped and replaced by McCormick envelopes, providing an upper bound

to the MINLP problem. Since the problem addressed in this work involves ele-

ments of two known complex scheduling problems (i.e., maritime inventory rout-

ing and crude oil scheduling), depending on the instance, the solution time may

increase exponentially. We make use of two options available in solvers to over-

come this issue while solving the relaxation: TIMELIMIT1 and Relative MIP Gap

Tolerance (MIPGAP)2.

• We then fix the logistics decisions (i.e., binary variables) from the MILP into the

MINLP, yielding into a continuous non-linear program (NLP). Its solution yields a

lower bound to the MINLP problem.

• After finding MILP and NLP solutions, the domain of variables associated to

bilinear terms is contracted for the next iteration.

• Finally, the iterative process ends in the following cases: (a) if there is no im-

provement on the NLP bound between successive iterations; (b) if at any part

of the process the MILP or NLP solutions are infeasible (e.g., NLP is infeasible

after fixing binaries from the MILP); (c) if the maximum number of iterations is

achieved.

Next, the MILP relaxation and the domain contraction are explained.

3.5.1 MILP Relaxation

It is known in the literature that the tightest possible linear relaxation of the

bilinear term xixj is given by the McCormick envelopes (MCCORMICK, 1976). The

relaxation consists of linear envelopes, built over the domain of the variables xi and

xj , which encloses the non-convex function xixj . This can be done by replacing xixj by

continuous variable wi ,j and considering four sets of linear inequalities to the formulation.

These inequalities relate variable wi ,j with xi and xj , and their lower and upper bounds.

A tighter relaxation can be obtained by partitioning the domain of one variable

(CASTRO, 2015) or both (WICAKSONO; KARIMI, IA, 2008) into intervals. Envelopes

are constructed in each interval and additional binary variables are included in the
1 Maximum CPU time allowed for solving the MILP relaxation.
2 Relative tolerance between the best integer solution and the best bound for optimizing the MILP

relaxation.
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Figure 12 – Solution strategy diagram.

model in order to select the partition that provides the best relaxation. The improved

relaxation is referred to as piecewise McCormick with univariate partitioning (i.e., parti-

tion the domain of just one variable) or bivariate partitioning (i.e, partition the domain of

both variables). More details on estimators for bilinear terms can be found in the work

of Gounaris et al. (2009).

Reefer to Sec. 2.5 and Figs. 5 and 6, which illustrate in more details how the

relaxation of the bilinear terms is constructed.

Table 14 – Sets, variables, and parameters for the disjunctive formulation.

Sets, Variables, and Parameters

[LCR i ,r ,c , LCR i ,r ,c ] LCR i ,r ,c = 0 and LCR i ,r ,c = CAP r are the bounds for variable lcri ,r ,c .
[VT i ,v , VT i ,v ] VT i ,v = 0 and VT i ,v = FRv are the bounds for variable vti ,v .
P = {1, . . . , n} Set of domain partitions for variable lcri ,r ,c (index p).
Q = {1, . . . , m} Set of domain partitions for variable vti ,v (index q).
[LCR i ,r ,c,p, LCR i ,r ,c,p] Bounds of each partition p of variable lcri ,r ,c .
[VT i ,v ,q , VT i ,v ,q ] Bounds of each partition q of variable vti ,v .
yRHS

i ,r ,v ,c,q,p yRHS
i ,r ,v ,c,q,p ∈ {True, False} indicates the selected partition [q, p].

One can make use of Generalized Disjunctive Programming (GDP) (TRESPALA-

CIOS; GROSSMANN, 2014) for modeling the relaxation of bilinear terms through piece-
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wise McCormick envelopes. In order to limit the size of this section, the description of

the formulation is only presented for the right-hand bilinear term of Eq. (66), namely

ηRHS
i ,r ,v ,c = vti ,v lcri ,r ,c . Table 14 describes all required sets, variables and parameters

to build the relaxation in terms of disjunctions. As seen in Eq. (72) envelopes are

constructed in each partition [q, p]. Eq. (73) imposes that only partition [q, p] will be

chosen. Lower and upper bounds of each partition are defined by Eqs. (74) and (75).

The following equations are defined for all i ∈ T , r ∈ RS ∪RC, v ∈ Or , c ∈ C.

Q∨

q=1

P∨

p=1




yRHS
i ,r ,v ,c,q,p

ηRHS
i ,r ,v ,c ≥ VT i ,v ,q lcri ,r ,c + LCRi ,r ,c,pvti ,v – VT i ,v ,qLCRi ,r ,c,p

ηRHS
i ,r ,v ,c ≥ VT i ,v ,q lcri ,r ,c + LCRi ,r ,c,pvti ,v – VT i ,v ,qLCRi ,r ,c,p

ηRHS
i ,r ,v ,c ≤ VT i ,v ,q lcri ,r ,c + LCRi ,r ,c,pvti ,v – VT i ,v ,qLCRi ,r ,c,p

ηRHS
i ,r ,v ,c ≤ VT i ,v ,q lcri ,r ,c + LCRi ,r ,c,pvti ,v – VT i ,v ,qLCRi ,r ,c,p

LCRi ,r ,c,p ≤ lcri ,r ,c ≤ LCRi ,r ,c,p

VT i ,v ,q ≤ vti ,v ≤ VT i ,v ,q




, (72)

Q
∨

q=1

P
∨

p=1
yRHS

i ,r ,v ,c,q,p, (73)





LCRi ,r ,c,p = LCRi ,r ,c +
(LCR i ,r ,c–LCR i ,r ,c)(p–1)

|P |

LCRi ,r ,c,p = LCRi ,r ,c +
(LCR i ,r ,c–LCR i ,r ,c)p

|P |

∀ p ∈ P, (74)





VT i ,v ,q = VT i ,v +
(VT i ,v –VT i ,v )(q–1)

|Q|

VT i ,v ,q = VT i ,v +
(VT i ,v –VT i ,v )q

|Q|

∀ q ∈ Q, (75)

yRHS
i ,r ,v ,c,q,p ∈ {True, False}, ∀ q ∈ Q, p ∈ P. (76)

There are two common methods for transforming a GDP into an MILP, namely

big-M and convex hull reformulations (BALAS, 1985; GROSSMANN; TRESPALACIOS,

2013). Wicaksono and IA Karimi (2008) stressed out the poor quality of solutions pro-

vided by big-M. Therefore, the convex hull reformulation is chosen as in Castro (2015)

and Leonardo Salsano de Assis et al. (2017). Please refer to Appendix A, which de-

scribes in details the resulting set of equations for the bilinear term ηRHS
i ,r ,v ,c = vti ,v lcri ,r ,c .

Similar equations are needed for the bilinear term ηLHS
i ,r ,v ,c = vcti ,v ,c lri ,r .

The MILP relaxation is constructed as follows: problem P, without the blending

equation (66); with the additional MILP constraints originated from the disjunctive re-

formulation for both bilinear terms vti ,v lcri ,r ,c (see Appendix A) and vcti ,v ,c lri ,r ; and Eq.

(77), which enforces Eq. (66).

ηLHS
i ,r ,v ,c = ηRHS

i ,r ,v ,c , ∀ i ∈ T , r ∈ RS ∪RC, v ∈ Or , c ∈ C. (77)
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The choice on the type of relaxation (see Table 15) depends on how the sets

P and Q (and sets for the left-hand side bilinear term) are handled. For instance, the

relaxation scheme SME means having sets with cardinality |P | = 1 and |Q| = 1. On the

other hand, PWLn would have sets with cardinality |P | = n and |Q| = 1 (i.e., univariate

partitioning). Bivariate partitioning (i.e., PWBn,m) would have sets with cardinality |P | =

n and |Q| = m. An iterative approach, such as IPWLn, would increase the size of set P

as iterations proceed, starting with |P | = n.

Table 15 – Relaxation schemes for bilinear terms vcti ,v ,c lri ,r and vti ,v lcri ,r ,c .

Relax. Sche. Reference

SME Standard McCormick envelopes.
PWLn Piecewise McCormick envelopes on level variables (i.e., lri ,r and lcri ,r ,c).
PWTn Piecewise McCormick envelopes on transfer variables (i.e., vti ,v and vcti ,v ,c).
PWBn,m Piecewise McCormick envelopes on all variables.
IPWLn Increases the number of envelopes on level variables at each iteration.
IPWTn Increases the number of envelopes on transfer variables at each iteration.
IPWBn,m Increases the number of envelopes on all variables at each iteration.

3.5.2 Domain Contraction

The contraction of domains at iteration it consists of the following steps:

(a) divide the domain of each bilinear term into ngrid × mgrid grids (see Fig. 13(a)).

The number of grids should be larger than the number of partitions for bilinear

terms in order to have a finer discretization of the variable domains (i.e., ngrid > n

and mgrid > m).

(b) Identify the position of the variables [vti ,v , lcri ,r ,c ](it)MILP defined by the MILP solu-

tion, and the position of [vti ,v , lcri ,r ,c ](it)NLP defined by the NLP solution, inside the

grid (see Fig. 13(a));

(c) obtain the contracted domain for the partition of the bilinear terms for iteration

(it+1) as the smallest region that encloses both solutions (the region indicated with

the color gray in Fig. 13(b)). For instance, update the bounds VT
(it+1)
i ,v , VT

(it+1)
i ,v ,

LCR
(it+1)
i ,r ,c , and LCR

(it+1)
i ,r ,c for the variables associated with the bilinear terms ηRHS

i ,r ,v ,c ,

yielding a contracted domain at the next iteration (see Fig. 13(c));

The same procedure must be applied to the bilinear term ηLHS
i ,r ,v ,c = vcti ,v ,c lri ,r .

Section 3.6 discusses the influence of the number of grids on problem solution.

3.5.3 Formalization of the Solution Strategy

Herein, all the elements of the solution strategy are brought together in a more

structured form. Algorithm 1 formalizes the steps of the solution strategy that were
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Algorithm 1: Iterative MILP-NLP Decomposition
Input: Initial conditions of resources, data defining problem instance (i.e., Tables 17 and

18), sets IOP r of initial vessel operations, and MaxIter .
Output: The best decision variables θNLP = (zi ,v , si ,r ,v ,u, vti ,v , vcti ,v ,c , lri ,r , lcri ,r ,c) yielded by

the NLP problem and its objective value fNLP.
• it := 0;
• θ(0) := ∅, f (0) := 0; /* Initial values for primal solution. */

• Define initial bounds VT
(0)
i ,v := 0, VT

(0)
i ,v := FRv , LCR

(0)
i ,r ,c := 0, LCR

(0)
i ,r ,c := CAPr /* The

bounds for the left-hand side of the bilinear terms ηLHS
i ,r ,v ,c = vcti ,v ,c lri ,r are

defined likewise. */

• Choose the relaxation scheme as in Table 15 and the number of partitions n and m;
• Choose the number of partitions ngrid and mgrid for domain reduction;

repeat

• Define the bounds VT
(it)
i ,v ,q , VT

(it)
i ,v ,q , LCR

(it)
i ,r ,c,p, LCR

(it)
i ,r ,c,p of each partition [q, p] of

bilinear terms ηRHS
i ,r ,v ,c as in Eqs. (74) and (75); /* Likewise, define the bounds for

the bilinear terms ηLHS
i ,r ,v ,c. */

• Solve the MILP relaxation;
• Fix the logistics decisions zi ,v and si ,r ,v ,u to obtain an NLP problem;
• Solve the NLP problem to obtain a primal solution θ(it) for problem P given in (71);
• If it ≥ 1 and f (it) < f (it–1) then break;
• Divide the domain of bilinear terms ηRHS

i ,r ,v ,c into grids as in Figure 13(a);

• Identify the position of the variables [vti ,v , lcri ,r ,c ](it)MILP in the MILP solution, and the
position of [vti ,v , lcri ,r ,c ](it)NLP in the NLP solution, inside the grid (see Fig. 13(a));

• Contract the variable domain to the smallest region that encloses both solutions
(Figure 13 (b)), for all bilinear terms ηRHS

i ,r ,v ,c and ηLHS
i ,r ,v ,c ;

• Update the bounds VT
(it+1)
i ,v , VT

(it+1)
i ,v , LCR

(it+1)
i ,r ,c , LCR

(it+1)
i ,r ,c at the next iteration (it + 1) for

the variables vti ,v and lcri ,r ,c of ηRHS
i ,r ,v ,c (see Fig. 13(c));

• Perform the same domain contraction for the variables vcti ,v ,c and lri ,r of ηLHS
i ,r ,v ,c ;

• it := it + 1;

until iter > MaxIter ;
• return (θNLP := θ(it–1), fNLP := f (it–1));

Table 16 – Instances statistics.

Instances Total Vars. Total Cons. Binary Vars. Non-Linear Cons.
2F-2V-2ST-2CT-1CDU-2C-1P-15D 2 160 2 483 1 170 180
2F-2V-2ST-2CT-1CDU-2C-1P-15D 17 490 11 593 8 310 1 920
4F-4V-10ST-6CT-5CDU-8C-1P-15D 29 175 15 954 15 000 2 880

to the CDU. Notice that above each CT there are the bounds on property S that the

blend of crudes inside the tank must be in order to satisfy the CDU’s request. Finally,

the planning horizon is 15 days.

The data associated to instances 4F-4V-6ST-4CT-3CDU-8C-1P-15D and 4F-4V-

10ST-6CT-5CDU-8C-1P-15D can be found in Tables 17 and 18, respectively. Also, these

instances are illustrated in Figs. 23 and 24.
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Table 17 – Data for instance 4F-4V-6ST-4CT-3CDU-8C-1P-15D.

Sulfur Conc. Gross Margin Init. Level Init.
Crudes [Weight Frac.] [$/103bbl ] STs [103bbl ] Crude
Crude A 0.010 10 000 ST1 350 Crude A
Crude B 0.030 8 000 ST2 0 -
Crude C 0.045 6 500 ST3 350 Crude C
Crude D 0.060 5 000 ST4 0 -
Crude E 0.012 9 500 ST5 350 Crude D
Crude F 0.026 8 500 ST6 0 -
Crude G 0.041 7 000 Init. Level Init.
Crude H 0.056 5 500 Vessels [103bbl ] Crude

Bounds Vessel1 300 Crude A
Flow Rates [103bbl /day ] Vessel2 500 Crude B

FPSO-Vessel [0, 500] Vessel3 0 -
Vessel-ST [0, 500] Vessel4 0 -

ST-CT [0, 500] Plan. Horizon Discret.
CT-CDU [50, 500] 15 days 1 day

Init. Level Init. Bounds Demand
CTs [103bbl ] Crude Sulfur Conc. [103bbl ]
CT1 500 Crude E [0.005, 0.015] [800, 1200]
CT2 500 Crude F [0.020, 0.030] [800, 1200]
CT3 500 Crude G [0.035, 0.045] [800, 1200]
CT4 500 Crude H [0.050, 0.060] [800, 1200]

Init. Level Produced Prod. Rate Travel Time
FPSOs [103bbl ] Crude [103bbl /day ] [day ]
FPSO1 500 Crude A 130 1
FPSO2 500 Crude B 110 2
FPSO3 1000 Crude C 100 1
FPSO4 1000 Crude D 110 1

Resource FPSOs Vessels STs CTs
Capacity Bounds [103bbl ] [103bbl ] [103bbl ] [103bbl ]

[200, 1500] [0, 1000] [0, 1000] [0, 1000]
Vessels Initial Vessel1 Vessel2 Vessel3 Vessel4

Operation Unload-ST1 Wait-Terminal Wait-Terminal Wait-Terminal

3.6.2 Computational Results

The first strategy to tackle the problem instances is the use of global solvers. We

made use of solvers BARON, SCIP and COUENNE, and defined a maximum solving

time of 10 hours. For instance 2F-2V-2ST-2CT-1CDU-2C-1P-15D, BARON presented

the best performance, finding the optimal solution with an objective of $22 800 103 in

2.15 hours. SCIP also found the optimal solution, however in 2.48 hours. COUENNE,

on the other hand, found a feasible solution with an objective of $22 679 103 in 10 hours.

For instances 4F-4V-6ST-4CT-3CDU-8C-1P-15D and 4F-4V-10ST-6CT-5CDU-8C-1P-

15D, and a maximum time of 10 hours, the solvers did not find a feasible solution.

Table 19 presents the computational results of the instances in Table 16. The

first column indicates the instance of concern, while the next three columns define

the MIPGAP, the number of grids for each variable [vcti ,v ,c , lri ,r , vti ,v , lcri ,r ,c ] and the

relaxation scheme (see Table 15 for details). Next, the best value for the MILP relaxation

and the problem solution after convergence (i.e., NLP solution) are presented. Finally,

we display the gap in % between MILP and NLP solutions, the number of iterations and

total CPU time in seconds of the iterative process. For each iteration, a maximum time

of 10 hours is defined.
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Table 18 – Data for instance 4F-4V-10ST-6CT-5CDU-8C-1P-15D.

Sulfur Conc. Gross Margin Init. Level Init.
Crudes [Weight Frac.] [$/103bbl ] STs [103bbl ] Crude
Crude A 0.010 10 000 ST1 100 Crude A
Crude B 0.030 8 000 ST2 100 Crude A
Crude C 0.045 6 500 ST3 100 Crude A
Crude D 0.060 5 000 ST4 100 Crude B
Crude E 0.012 9 500 ST5 100 Crude B
Crude F 0.026 8 500 ST6 100 Crude C
Crude G 0.041 7 000 ST7 100 Crude C
Crude H 0.056 5 500 ST8 100 Crude D

Bounds ST9 100 Crude D
Flow Rates [103bbl /day ] ST10 100 Crude D

FPSO-Vessel [0, 500] Init. Level Init.
Vessel-ST [0, 500] Vessels [103bbl ] Crude

ST-CT [0, 500] Vessel1 300 Crude A
CT-CDU [50, 500] Vessel2 500 Crude B

Plan. Horizon Discret. Vessel3 0 -
15 days 1 day Vessel4 0 -

Init. Level Init. Bounds Demand
CTs [103bbl ] Crude Sulfur Conc. [103bbl ]
CT1 500 Crude E [0.005, 0.015] [800, 1200]
CT2 500 Crude E [0.005, 0.015] [800, 1200]
CT3 500 Crude F [0.020, 0.030] [800, 1200]
CT4 500 Crude G [0.035, 0.045] [800, 1200]
CT5 500 Crude H [0.050, 0.060] [800, 1200]
CT6 500 Crude H [0.050, 0.060] [800, 1200]

Init. Level Produced Prod. Rate Travel Time
FPSOs [103bbl ] Crude [103bbl /day ] [day ]
FPSO1 500 Crude A 130 1
FPSO2 500 Crude B 110 2
FPSO3 1000 Crude C 100 1
FPSO4 1000 Crude D 110 1

Resource FPSOs Vessels STs CTs
Capacity Bounds [103bbl ] [103bbl ] [103bbl ] [103bbl ]

[200, 1500] [0, 1000] [0, 1000] [0, 1000]
Vessels Initial Vessel1 Vessel2 Vessel3 Vessel4

Operation Unload-ST1 Wait-Terminal Wait-Terminal Wait-Terminal

The results show that small instances (i.e., 2F-2V-2ST-2CT-1CDU-4C-1P-15D)

do not need the use of MIPGAP other than 0% since the MILP-NLP decomposition

strategy is able to solve the problem almost to optimality in less than 3 minutes, while

BARON and SCIP take more than 2 hours. The solutions of all relaxation schemes

are consistent and provide good initial points for the NLP problems, which find feasible

solutions with small gaps. Nevertheless, bivariate schemes (i.e., partitioning the domain

of all variable vcti ,v ,c , lri ,r , vti ,v , and lcri ,r ,c) usually take much longer since a number

of new variables and constraints are added to the MILP problem.

Looking at instance 4F-4V-6ST-4CT-3CDU-8C-1P-15D, it is possible to observe

how much difference there is on the CPU time when using MIPGAP=0% and MIPGAP =

1.5%. Figs. 14 and 15 illustrate that difference by reporting CPU time and solutions of

several relaxation schemes compared to the best bound found for the instance (i.e.,

black horizontal line with value of $38 857.9 thousand). One can see that the solution

quality is not affected that much, with an average gap for MIPGAP = 0% about 1.5%

and about 2% for MIPGAP = 1.5%. Notice that an outlier result of 0.75% gap is found,
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Table 19 – Solutions for set of instances.

Relax. MILP Sol. NLP Sol. GAP CPU
Instances MIPGAP Grids Scheme [103$] [103$] [%] Iter. Time [s]

0% [4,4,4,4] SME 22 800 22 756.6 0.19 2 1
0% [4,4,4,4] IPWL1 22 800 22 756.6 0.19 2 2
0% [4,4,4,4] PWL2 22 800 22 800 0 2 8

2F-2V-2ST-2CT 0% [4,4,4,4] IPWT1 22 800 22 756.6 0.19 2 2
1CDU-4C-1P-15D 0% [4,4,4,4] PWT2 22 800 22 768.7 0.13 3 6

0% [4,4,4,4] PWB2,2 22 800 22 789.5 0.04 3 21
0% [4,4,4,4] PWB2,3 22 800 22 789.4 0.04 3 155
0% [4,4,4,4] PWB3,2 22 800 22 798.9 0.004 3 30
0% [4,4,4,4] PWB3,3 22 800 22 712.5 0.38 2 96
0% [2,2,2,2] SME 38 885 38 065.7 2.10 2 863
0% [4,4,4,4] SME 38 885 38 277.6 1.56 4 476
0% [7,7,7,7] SME 38 885 38 096.7 2.02 5 496
0% [2,2,2,2] IPWL1 38 885 38 065.7 2.10 2 3 403
0% [4,4,4,4] IPWL1 38 885 38 162.7 1.85 4 8 114
0% [7,7,7,7] IPWL1 38 885 38 116.6 1.97 4 2 641
0% [2,2,2,2] PWL2 38 857.9 38 253.7 1.55 3 5 488
0% [4,4,4,4] PWL2 38 857.9 37 773.9 2.78 4 4 339
0% [7,7,7,7] PWL2 38 857.9 37 655.1 3.09 4 4 066
0% [2,2,2,2] IPWT1 38 885 38 065.7 2.10 2 1 338
0% [4,4,4,4] IPWT1 38 885 38 280.1 1.55 4 2 762
0% [7,7,7,7] IPWT1 38 885 38 124.9 1.95 5 4 932
0% [2,2,2,2] PWT2 38 885 38 453.8 1.10 2 2 054
0% [4,4,4,4] PWT2 38 885 38 460.5 1.09 3 2 018
0% [7,7,7,7] PWT2 38 885 38 453.8 1.10 2 1 974

4F-4V-6ST-4CT 1.5% [2,2,2,2] SME 38 523.2 37 910.2 1.59 2 195
3CDU-8C-1P-15D 1.5% [4,4,4,4] SME 38 523.2 37 910.2 1.59 2 195

1.5% [7,7,7,7] SME 38 523.2 37 910.2 1.59 2 191
1.5% [2,2,2,2] IPWL1 38 523.2 37 910.2 1.59 2 1 144
1.5% [4,4,4,4] IPWL1 38 523.2 38 060.9 1.20 3 551
1.5% [7,7,7,7] IPWL1 38 523.2 37 910.2 1.59 2 393
1.5% [2,2,2,2] PWL2 38 603.6 37 698 2.34 3 471
1.5% [4,4,4,4] PWL2 38 603.6 38 042.2 1.45 3 361
1.5% [7,7,7,7] PWL2 38 603.6 38 018.2 1.51 4 431
1.5% [2,2,2,2] IPWT1 38 523.2 38 047.2 1.23 3 342
1.5% [4,4,4,4] IPWT1 38 523.2 38 014.4 1.32 3 269
1.5% [7,7,7,7] IPWT1 38 523.2 37 910.2 1.59 2 207
1.5% [2,2,2,2] PWT2 38 536.8 38 563.6 0.06 2 509
1.5% [4,4,4,4] PWT2 38 536.8 38 563.6 0.06 2 446
1.5% [7,7,7,7] PWT2 38 536.8 38 563.6 0.06 2 458
3% [4,4,4,4] SME 56 412.2 56 149.8 0.46 2 1 347
3% [4,4,4,4] IPWL1 56 412.2 56 149.8 0.46 2 1 349

4F-4V-10ST-6CT 3% [4,4,4,4] PWL2 55 650 54 440.1 2.17 2 36 054
5CDU-8C-1P-15D 3% [4,4,4,4] IPWT1 56 412.2 56 149.8 0.46 2 1 373

3% [4,4,4,4] PWT2 56 380 56 167.9 0.37 2 8 843

when using PWT2, but it can not be taken as a rule since the MILP is not solved to

optimality (i.e., MIPGAP = 1.5%).

The use of a small MIPGAP in large instances can make the solution time pro-

hibitive. For the largest instances (i.e., 4F-4V-10ST-6CT-5CDU-8C-1P-15D), results in

Table 19 show that, for MIPGAP = 3%, the strategy finds feasible solutions in reason-

able CPU time, except when using PWL2.

It is not straightforward to define the number of grids for each variable vcti ,v ,c ,

lri ,r , vti ,v and lcri ,r ,c . Nevertheless, experiments on instance 4F-4V-6ST-4CT-3CDU-

8C-1P-15D indicate that one should choose a number of grids such that the resulting

contracted domain would not remain the same of previous iteration or be contracted

in excess. In the latter case, the search space would decrease too much, potentially
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compromising the solution quality.

Although a wide set of relaxation schemes is tested, on average, relaxations that

favor domain partitioning on flow variables (i.e., vcti ,v ,c and vti ,v ) produce improved

NLP bounds, which is illustrated in Figs. 14 and 15 (i.e., respectively PWT2 in blue and

in dashed blue). This point was observed by Leonardo Salsano de Assis et al. (2017)

and can be explained by the fact that the flow variables have tighter bounds.

In summary, the solution strategy based on a MILP-NLP decomposition, with the

use of MIPGAP and domain contraction, is able to find small gap solutions on small

and medium size instances (i.e., 2F-2V-2ST-2CT-1CDU-2C-1P-15D and 4F-4V-6ST-

4CT-3CDU-8C-1P-15D), and find good feasible solutions for the larger instance (i.e.,

4F-4V-10ST-6CT-5CDU-8C-1P-15D) within a reasonable CPU time.

3.6.3 Illustration of Operations and Inventories

For problem instance 2F-2V-2ST-2CT-1CDU-2C-1P-15D, whose operations are

depicted in Figure 10, this subsection illustrates the schedule of operations and the level

of the resources according with the solution found by the proposed solution strategy.

Figure 16 displays the Gantt diagram of the operations. Notice that CDU1 op-

erates continuously receiving crude oil from both charging tanks through operations

v19 and v20, which do not overlap in time, conditions that meet the requirements from

the problem statement. The operations that transfer crude from the storage tanks to

a charging tank (i.e., the outlet operations v15 and v17 from ST1), and the one that

feeds the CDU from this charging tank (respectively, v19), cannot be performed concur-

rently as seen in the Gantt diagram. With respect to Vessel2, the schedule shows that

the vessel waits at the terminal (operation v10) while Vessel1 unloads crude into ST1

and ST2 (operations v11 and v13). Upon completing the unloading, Vessel1 travels to

offload FPSO1 (operations v5 and v1), while Vessel2 unloads into ST1 (operation v12).

After finalizing the unloading, Vessel2 travels to offload FPSO2 according to operations

v8 and v4, respectively. The diagram shows that the proposed model yields a schedule

that effectively integrates the operations related to maritime inventory routing and crude

oil scheduling.

Figure 17 shows the level of the resources over the planning horizon, namely

the level for the FPSOs, vessels, storage and charging tanks. Note that the level of the

FPSOs increases over time at the given production rates until a vessel offloads crude,

for instance Vessel1 offloads 106 bbl from FPSO1 during periods 5 and 6 (operation

v1). At the terminal, storage tank ST1 initially receives crude oil from Vessel1 (until time

period 2) as dictated by operation v11, and then starts transfer crude oil to charging

tanks as dictated by operations v16 and v15. It can be noticed that the capacities of the

resources are not violated, and vessels travel to FPSOs with empty tanks and return to

the terminal with full tanks, as required by the problem statement.
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3.7 CONCLUSION

The management of crude oil supply is a problem faced by vertically integrated oil

companies, which control production, transportation, storage and refining. It consists of

supplying crude oil from FPSOs to CDUs at refineries in order to satisfy their demands,

both in terms of crude quantity and quality. The resulting problem incorporates elements

of known problems in the literature, namely maritime inventory routing and crude oil

scheduling.

To the best of our knowledge, this is the first work to integrate the management

of crude oil supply at the operational level by taking into account scheduling of vessels,

scheduling of operations in the terminal, and the non-convex non-linearities associated

to the blend of crudes.

To tackle this problem, we proposed an MINLP formulation, which is solved

by an iterative MILP-NLP decomposition scheme with domain reduction. The solution

strategy was able to find small gap solutions on small and medium size instances (i.e.,

2F-2V-2ST-2CT-1CDU-2C-1P-15D and 4F-4V-6ST-4CT-3CDU-8C-1P-15D), and found

good feasible solutions for the larger instance (i.e., 4F-4V-10ST-6CT-5CDU-8C-1P-15D)

within a reasonable CPU time.

The next chapter tackles the difficulty of solving large instances of the non-convex

MINLP model developed for the OMCOS. The proposed strategy consists in organizing

groups of platforms and storage tanks in clusters, so that crudes are transferred from

platforms to storage tanks that belong to the same cluster. Besides reducing the number

of routes for vessels, clustering can be done in such a way to minimize the mixing of

crudes in storage tanks. In other words, crudes with similar properties would stay in the

same cluster, avoiding, for instance, crudes with high content of sulfur being together

with crudes with low content of sulfur.

This strategy can also play a part in the optimization. For each cluster, lower

and upper bounds can be inferred for the compositions in the storage and charging

tanks, allowing the bilinear terms to be approximated with these bounds, rather than

using McCormick envelopes. Subsequently, an MILP model would be solved with the

implementation of the clusters and approximation of the bilinear terms. The final step

would be solving an NLP problem to obtain a primal solution.
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4 AN MILP FORMULATION FOR CLUSTERING CRUDES AND ITS EFFECTS ON

THE SOLUTION OF THE OPERATIONAL MANAGEMENT OF CRUDE OIL SUP-

PLY

4.1 INTRODUCTION

The main goal of OMCOS defined in Chapter 3 (Problem (71)) is to define the

schedule of vessels’ trips and crude oil operations in the terminal in order to deliver

to the CDUs the required feed of crudes within the specification. Apart from the rules

and constraints defined in Sections 3.3 and 3.4, there are no specific rules on how to

perform vessel trips between FPSOs and storage tanks, or how the unloading of crude

oil into storage tanks should be performed. This means that vessels are free to travel

to and from all FPSOs and unload their cargo in all storage tanks, leading to a broad

range of possible blends in these tanks. As shown in the work of Leonardo S. Assis

et al. (2019), this creates a highly combinatorial problem, which can be hard to tackle

depending on the size of the instance. Additionally, by allowing random mixtures in

the storage tanks, crudes with distinct property values may be mixed (e.g., a mixture

between crude c1 with a sulfur content of 0.060 and crude c2 with 0.010), decreasing

the flexibility of operations at the terminal to produce the required blends in the charging

tanks.

Ideally, each crude oil arriving at the terminal would have a dedicated storage

tank to be unloaded. If this is the case, crudes would only be mixed at the charging tanks

in order to produce blends within the specifications required by the CDUs. Nevertheless,

when the number of crudes is higher than the number of storage tanks, the pigeonhole

principle (KELLY et al., 2017b) suggests that eventually two or more crudes will be

mixed in a storage tank. Mixtures may also happen when a vessel needs to unload its

cargo in two or more tanks due to the lack of storage capacity in a single one. Finally, a

storage tank may be unavailable to receive crudes (i.e., the tank is under maintenance

or in operation feeding a charging tank), which forces the vessel to unload in another

tank, thereby leading to mixtures.

Since mixtures in the storage tanks seem inevitable, a mathematical formulation

is proposed to define clusters (or groups) of crudes and storage tanks, such that the

difference among the property values of the crudes assigned to a cluster of storage

tanks is as low as possible. From the solution of the clustering problem, bounds on the

crude property can be defined for the storage tanks. These bounds are used to build the

relaxation of blending constraints in Problem (71), resulting in a relaxed MILP formula-

tion, which is then used in a MILP-NLP decomposition scheme. Further, by knowing the

crudes that can be grouped or clustered, their origin platforms and the storage tanks

they are assigned to, the number of arcs concerning the traveling operations of vessels

(see Fig. 11) can be limited, which decreases the number of logistic decisions (binary
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variables) and consequently the complexity of the MILP problem.

4.2 LITERATURE REVIEW

This section presents a review on the use of clustering strategies in combina-

tion with mathematical programming models for the Inventory Routing Problem (IRP),

Vehicle Routing Problem (VRP), COS and others. Regarding IRP and VRP, clusters

are typically designed to reduce the complexity of solution strategies for the routing

problems. On the other hand, clusters are employed in COS to impose rules on crude

mixtures and define groups of tanks to feed CDUs. Nevertheless, few works from the

literature consider clusterization for problems that involve COS.

In the VRP literature, Gillett and Miller (1974) were among the first to propose

the use of the cluster-first and route-second strategy. In their work, the solution strategy

consists in two sequential steps: (a) define groups of customers according to their

polar coordinates and assign vehicles according to capacities; and (b) solve a Traveling

Salesman Problem (TSP) for each group.

Mathematical programming techniques are also used by Mulvey and Beck (1984)

to model the Capacited Clustering Problem (CCP), which has applications in salesforce

allocation and VRP. The problem consists in constructing clusters that are as homo-

geneous as possible (i.e., minimize the sum of distances between each element in a

cluster) without violating the capacity of each cluster.

Liu (1999) make use of clusters to tackle the stock location and order-picking

problems in a distribution center. In this problem, the goal is to cluster items in the slots

of racks and to sequence the picking lists by customers in order to minimize the total

travel distance of a picker in the distribution center.

An extension of the CCP is the Capacitated Centred Clustering Problem (CCCP)

(NEGREIROS; PALHANO, 2006), which does not consider necessarily as center value

of a cluster one of the elements’ attributes in that cluster. Instead, the center value is

defined with respect to all elements of the cluster, which introduces non-linearities into

the formulation.

Dondo and Cerdá (2007) tackle a multi-depot VRP with a heterogeneous fleet

and time windows. The cluster-based solution strategy is a combination of three sequen-

tial steps: (a) identify the set of feasible clusters of customers that are cost-effective;

(b) assign clusters to vehicles and sequence them on each tour; and (c) define within

a cluster the order of nodes and the schedule of vehicles arrival times at customer

locations for each tour.

Ganesh and Narendran (2007) address the VRP with delivery and pick-up nodes.

The authors proposed a solution strategy where nodes are first clustered based on

proximity, then routes are defined for each cluster of nodes, and finally vehicles are

allocated to the routes. Qi et al. (2012) tackle a large-scale VRP with time windows. In
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this work, clusters of customers are defined based on both their spatial location and

temporal information. The authors manage to represent time and space in the same

coordinate system, and therefore measure the space-temporal distance between two

customers.

Nambirajan et al. (2016) extend the classic IRP formulation by considering re-

plenishment tasks at a central depot and different warehouses in a three echelon supply

chain. First, the replenishment schedules from suppliers to a single depot is defined

using Dynamic Programming (DP). Then, the routing of vehicles from the central depot

to multiple warehouses is planned using an extension of a three-stage heuristic based

on clustering, allocation, and routing (RAMKUMAR, 2011).

Kelly et al. (2017b) propose an MILP model for defining the assignment of crudes,

considering different properties, from external sources to storage tanks in a crude

oil terminal. The assignment is done such that the deviation of properties of crudes

assigned to a cluster is minimized. Despite considering a large number of crudes and

properties, the clustering model does not take into account availability of crudes, flow

rate limits, timing, number of storage tanks and storage capacity limits for defining the

clusters. Further, Kelly et al. (2017a) discuss how to use their clustering formulation

(KELLY et al., 2017b) as part of a pre-scheduling step to reduce the original search

space and tackle large scale instances of COS problems.

Cerdá et al. (2018) also make use of a clustering strategy for tackling a COS

problem which considers charging tanks, pipelines and CDUs. They proposed a decom-

position strategy based on two decision levels. First, an MINLP model is solved to (a)

grouping charging tanks into as many clusters as the number of CDUs and (b) assign

each cluster of charging tanks to feed a unique CDU. Then, an MINLP model for each

cluster-CDU pair is solved to defined the scheduling of crude oil operations. The results

show for the tested instances a reduced degradation in solution quality and a strong

reduction of the computational burden.

When it comes to food grains procurement and their transportation, the use of

clusters can play a major role in order to decrease the complexity of resulting opti-

mizations models. Mogale et al. (2019) propose an MILP formulation to determine the

number and location of procurement centers while minimizing the total supply chain net-

work costs. The first step of the solution strategy consists of using genetic algorithms to

group grain suppliers to clusters and then allocate each cluster to a candidate location

of procurement center. Then, the MILP is solved.

More recently, an extension of the storage assignment and warehouse order-

picking problems is proposed by In Gyu Lee et al. (2020). The solution strategy consists

of two steps: clustering and assignment. In the clustering stage, an optimization model

to group items balances both travel time and picking delays caused by traffic congestion

and it is solved by evolutionary algorithms. The latter step (assignment) consists of
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distributing items in each cluster to empty storage locations.

4.2.1 Work Contribution

Usually, clustering formulations are tailor-made for problems like IRP, VRP or

COS, and cannot be fully applied to an integrated approach as the operational manage-

ment of crude oil supply (OMCOS).

Therefore, this chapter proposes an MILP clustering formulation for OMCOS that

has the following benefits: (a) decreasing the number of routes available for the vessels;

(b) decreasing offloading and unloading operations; and (c) defining rules for crude mix-

tures in clusters of storage tanks such that the property deviation is minimized. Further,

in order to define the clusters, the proposed MILP formulation takes into account the

availability of crudes, flow rate limits, timing, availability of resources (i.e., FPSOs, STs,

CTs and CDUs), storage capacity limits and demand satisfaction.

The use of clusters also plays a part in the optimization. After defining clusters,

bounds on crude properties inside storage and charging tanks can be defined. These

bounds are used to linearize the bilinear terms in blending constraints, which yields

to an MILP linearization of the OMCOS MINLP formulation. Through the combination

of clusters and an MILP-NLP decomposition strategy, OMCOS is solved for a set of

instances, presenting good solution quality and reduced computational complexity.

4.3 PROBLEM STATEMENT

Figure 18 (a) illustrates a problem instance with 7 platforms (FPSO1 to FPSO7),

7 crudes (C1 to C7), 5 storage tanks (ST 1 to ST 5), 3 charging tanks (CT 1 to CT 3) and

2 CDUs (CDU1 to CDU2). For the sake of simplicity, the operations between resources

are not shown (i.e., arrows in Fig. 10).

Fig. 18 (b) illustrates the network to be considered for the clustering formulation.

Notice that platform-cluster 1 is linked to st-cluster 1, platform-cluster 2 is linked to

st-cluster 2, and so forth. Further, all st-clusters are connected to the CT Group (i.e.,

aggregate of all charging tanks), which is linked to the CDU Group.

For the sake of exemplification, assume that one wants to cluster the set of

platforms FPSO1 to FPSO7, and consequently the set of crudes C1 to C7, in two

groups (i.e., platform-cluster 1 and platform-cluster 2). Similarly, the set of storage

tanks ST1 to ST5 will be clustered in two groups (i.e., st-cluster 1 and st-Cluster 2),

and therefore, it is possible to define which group of platforms are allowed to feed each

group of storage tanks. Each platform-cluster will have a combined production rate,

storage and flow rate capacity that corresponds to the sum of the rates and capacities

of the platforms assigned to the cluster. The same holds for the clusters of storage

tanks. Each st-cluster will have a combined capacity and flow rate. As indicated in Fig.
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18 (b), all charging tanks are grouped into a single CT Group and, in the same manner,

the CDUs are integrated in a single CDU Group. The crude oil demand of the CDU

Group is the sum of the individual demands of all CDUs. Likewise, the storage and flow

rate capacities of the CT Group depend on characteristics of the charging tanks.

The solution of the clustering problem can be seen in Fig. 18 (c). The objectives

of satisfying the demand of the CDU Group while minimizing the deviation among the

crude property values in a cluster drives a solution where platforms FPSO1, FPSO4,

FPSO6 and FPSO7 are clustered and assigned to the group of storage tanks ST 1, ST 2

and ST3. Meanwhile, the group of platforms FPSO2, FPSO3 and FPSO5 is assigned

to storage tanks ST4 and ST5.

Note that for the instance presented in Fig. 18 (a), if the number of clusters is

defined as 1 (one), all storage tanks would be assigned to this cluster, and all platforms

would be allowed to feed all storage tanks, leading to the original problem defined in

Sections 3.3 and 3.4 of the previous chapter. On the other extreme, if the number of

clusters is defined as 5 (five), each cluster would have only one storage tank. Thus the

baseline operational management problem of crude oil supply can be reduced to its

cluster-based version, meaning that the latter is more general than the former.

Main operational rules can be defined:

(a) a platform must be assigned to a unique platform-cluster. Likewise, a storage tank

must be assigned to a unique st-cluster;

(b) a platform-cluster must contain at least one platform. The same holds for the

st-cluster. At least one storage tank must belong to a st-cluster;

(c) a st-cluster can perform at most one (i.e., receiving crudes from a platform-cluster

or sending crudes to the CT Group) operation during the same time period;

(d) at most one st-cluster can feed the CT Group during the same time period;

(e) a distillation operation (i.e., sending crudes from the CT Group the CDU Group)

must be carried out in all time periods.

The optimization problem consists in determining, for the planning horizon, the

optimal cluster of platforms, storage tanks and consequently crude oils, while maximiz-

ing the flow of crudes to the CDU Group and minimizing the deviation of crude property

values in a st-cluster. To this end, we propose a discrete time MILP model, whose

main decisions consist in selecting the assignments of storage tanks and platforms to

clusters, what operations take place at each time, the level of crudes in each cluster

and group of resources, and the volume transferred between clusters and group of

resources.
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• T . Set of periods. Index i .

• RF , RS, RC, RD. Set of platforms, storage tanks, charging tanks and CDUs.

Index r .

• R = RF ∪RS ∪RC ∪RD. Set of all resources. Index r .

• RFCS = {1, ..., NCS}. Set of platform-clusters. Cardinality |RFCS| = NCS,

where NCS is the number of clusters. Index rr and rrr .

• ST CS = {1, ..., NCS}. Set of st-clusters. Cardinality |STCS| = NCS, where

NCS is the number of clusters. Index rr and rrr .

• NRC. Single-element set representing all charging tanks (namely, CT Group).

Index rr and rrr .

• NRD. Single-element set representing all CDUs (namely, CDU Group). In-

dex rr and rrr .

• NR = RFCS ∪ST CS ∪NRC ∪NRD. Set of all new resources. Index rr and

rrr .

• N ⊂ NR × NR. Links between aggregated resources to represent the

network illustrated in Fig. 18 (b).

• C. Set of crudes. Index c.

• K. Set of properties. Index k .

2. Parameters.

• RATEr . Production rate of platform r ∈ RF in 103 bbl/day.

• PRk ,c . Value of property k associated to crude c.

• CFPSOc,r ∈ {0, 1}. Indicates if crude c is produced in platform r ∈ RF .

• [CAPr , CAPr ]. Lower and upper bounds on the capacity of each resource

r ∈ R.

• [DEMr , DEMr ]. Lower and upper bounds on the total volume of crude oil

demanded from each charging tank r ∈ RC by the CDUs.

• TILr . Initial level of crude oil in resource r ∈ R \ RD.

• [C̃APrr , C̃APrr ]. Lower and upper bounds on the capacity of new resource

rr ∈ NR.

• [D̃EMrr , D̃EMrr ]. Lower and upper bounds on the total demand of the CDU

Group rr ∈ NRD over the planning horizon. Notice that D̃EMrr =
∑

r∈RC DEMr

and D̃EMrr =
∑

r∈RC DEMr .

• [F̃Rr , F̃Rr ]. Lower and upper bounds on the outlet flow rate of resource

r ∈ R \ RD.
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• [PRk , PRk ]. Lower and upper bounds on property k among all crudes c.

• [PRST k ,r , PRST r ,k ]. Lower and upper bounds of property k in each storage

tank r ∈ RS. These bounds are defined after finalizing the cluster optimiza-

tion, as calculated by Eqs. (124) and (125) which will be introduced later, and

then used to linearize the blending constraint define by Eq. (66).

3. Variables.

• assignSTCSr ,rr ∈ {0, 1}. Is 1 if storage tank r ∈ RS is assigned to st-cluster

rr ∈ ST CS.

• assignRFCSr ,rr ∈ {0, 1}. Is 1 if platform r ∈ RF is assigned to platform-

cluster rr ∈ RFCS.

• assigni ,rr ,rrr ∈ {0, 1}. Is 1 if there is flow of crude oil between resources

rr , rrr ∈ NR in period i .

• crudeSTCSc,rr ∈ {0, 1}. Is 1 if crude c is assigned to st-cluster rr .

• l̃r i ,rr ≥ 0. Total level of crude oil in the cluster resource rr ∈ NR in period i .

• ṽt i ,rr ,rrr ≥ 0. Flow of crude between cluster resources (rr , rrr ) ∈ N in period

i .

• ĩl i ,rr ≥ 0. Initial level of crude oil in cluster resource rr ∈ NR \ NRD.

• tgk ,rr ≥ 0. Value associated to property k in st-cluster rr ∈ ST CS such that

the difference between tgk ,rr and the property of crudes assigned to rr is

minimized.

• epri ,r ,k ≥ 0. Is the value of property k in storage or charging tank r in period

i .

Having introduced the notation, we are in a position to present the constraints

that define the formulation for clustering platforms and storage tanks.

4.4.1 Clustering Rules

Eq. (78) states that at least one platform r ∈ RF must be assigned to a platform-

cluster rr ∈ RFCS.

∑

r∈RF

assignRFCSr ,rr ≥ 1, ∀ rr ∈ RFCS. (78)

Also, Eq. (79) defines that a platform r is assigned to one platform-cluster rr .

∑

rr∈RFCS

assignRFCSr ,rr = 1, ∀ r ∈ RF . (79)
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Similar rules can be defined for the storage tank clusters. At least one storage

tank r ∈ RS must be assigned to a storage-tank cluster rr ∈ ST CS.

∑

r∈RS

assignSTCSr ,rr ≥ 1, ∀ rr ∈ ST CS. (80)

Further, a storage tank r can only be assigned to one storage-tank cluster rr .

∑

rr∈ST CS

assignSTCSr ,rr = 1, ∀ r ∈ RS. (81)

Eqs. (82)-(83) track which crude c is assigned to each storage-tank cluster rrr . If

platform r , which produces crude c, is assigned to platform cluster rr and the connection

from the platform cluster rr to storage-tank cluster rrr is defined in the network N , then

crude c will be delivered to storage-tank cluster rrr . Put another way, this constraint

states that crudeSTCSc,rrr = 1 when: platform r produces crude c, CFPSOc, r = 1; the

platform is assigned to platform cluster rr , assignRFCSr ,rr = 1; and the platform cluster

rr feeds storage-tank cluster rrr , a condition established by the link (rr , rrr ) ∈ N .

crudeSTCSc,rrr ≥ assignRFCSr ,rr ,

∀ c ∈ C, r ∈ RF , rrr ∈ ST CS, (rr , rrr ) ∈ N : CFPSOc,r = 1, (82)

crudeSTCSc,rrr ≤
∑

r∈RF :
CFPSOc,r =1

assignRFCSr ,rr ,

∀ c ∈ C, rrr ∈ ST CS, (rr , rrr ) ∈ N . (83)

4.4.2 Inventory Control

Eq. (84) defines the initial volume ilrr of crude, in each platform cluster rr ∈

RFCS, as the sum of initial volume TILr in each platform r ∈ RF assigned to rr (i.e.,

assignRFCSr ,rr = 1). Similarly, Eq. (85) defines the initial volume in each storage-

tank cluster rr ∈ ST CS. The proposed cluster framework considers a unique group

rr ∈ NRC of charging tanks (see Fig. 18 (b)). Therefore, Eq. (86) defines the initial

volume ilrr of the CT Group as the sum of the initial volume TILr in each charging tank

r ∈ RC.

ilrr =
∑

r∈RF

TILr assignRFCSr ,rr , ∀ rr ∈ RFCS, (84)

ilrr =
∑

r∈RS

TILr assignSTCSr ,rr , ∀ rr ∈ ST CS, (85)

ilrr =
∑

r∈RC

TILr , ∀ rr ∈ NRC. (86)
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The inventory l̃r i ,rr of crude of platform cluster rr in period i , as described by

Eqs. (87) and (88), is defined as the previous inventory l̃r i–1,rr (or ilrr for i = 1) added

to the production rate RATEr of all platforms r assigned to platform cluster rr (i.e.,

assignRFCSr ,rr = 1) and subtracted the flow ṽt i ,rr ,rrr of crude oil entering the storage-

tank cluster rrr .

l̃r i ,rr = ilrr +
∑

r∈RF

RATEr assignRFCSr ,rr – ṽt i ,rr ,rrr ,

∀ rr ∈ RFCS, (rr , rrr ) ∈ N , i = 1, (87)

l̃r i ,rr = l̃r i–1,rr +
∑

r∈RF

RATEr assignRFCSr ,rr – ṽt i ,rr ,rrr

∀ rr ∈ RFCS, (rr , rrr ) ∈ N , i ∈ T \ {1}. (88)

Likewise, Eqs. (89) and (90) enforce the inventory control in each storage-tank

cluster and in the CT Group for the initial period i = 1 and the remaining planning

horizon, respectively. For each storage-tank cluster rr ∈ ST CS, the level of crude l̃r i ,rr

in period i is defined as its previous level l̃r i–1,rr (or ilrr for i = 1) plus the inlet flow from

platform cluster rrr ∈ RFCS : (rrr , rr ) ∈ N , subtracted the outlet flow to the CT Group

rrr ∈ NRC : (rr , rrr ) ∈ N .

l̃r i ,rr = ilrr +
∑

(rrr ,rr )∈N

ṽt i ,rrr ,rr –
∑

(rr ,rrr )∈N

ṽt i ,rr ,rrr ,

∀ rr ∈ (ST CS ∪ NRC), i = 1, (89)

l̃r i ,rr = l̃r i–1,rr +
∑

(rrr ,rr )∈N

ṽt i ,rrr ,rr –
∑

(rr ,rrr )∈N

ṽt i ,rr ,rrr ,

∀ rr ∈ (ST CS ∪ NRC), i ∈ T \ {1}. (90)

In the case of rr being CT Group, the level l̃r i ,rr of crude in period i is defined as its

previous level l̃r i–1,rr (or ilrr for i = 1) plus the inlet flow from storage-tank cluster rrr ∈

ST CS : (rrr , rr ) ∈ N , minus the outlet flow to the CDU Group rrr ∈ NRD : (rr , rrr ) ∈ N .

4.4.3 Resource Capacity

The capacity bounds on each platform cluster, storage-tank cluster and the

charging-tank group are imposed by Eqs. (91)-(93).

l̃r i ,rr ≤
∑

r∈RF

CAPr assignRFCSr ,rr , ∀ i ∈ T , rr ∈ RFCS, (91)

l̃r i ,rr ≤
∑

r∈RS

CAPr assignSTCSr ,rr , ∀ i ∈ T , rr ∈ ST CS, (92)

l̃r i ,rr ≤
∑

r∈RC

CAPr , i ∈ T , ∀ rr ∈ NRC. (93)
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4.4.4 Flow Rate Limits

Eq. (94) defines that when there is flow of crude oil out of platform-cluster rr

to st-cluster rrr in period i (i.e., assigni ,rr ,rrr = 1), it is limited by the sum of maximum

flow rate F̃Rr allowed out of each platform r that is assigned to platform-cluster rr (i.e.,

assignRFCSr ,rr = 1).

ṽt i ,rr ,rrr ≤


 ∑

r∈RF

F̃Rr assignRFCSr ,rr


assigni ,rr ,rrr ,

∀ i ∈ T , rr ∈ RFCS, (rr , rrr ) ∈ N , (94)

Notice that this equation is non-linear and can be linearized by set of Eqs. (95).




ṽt i ,rr ,rrr ≥ 0,

ṽt i ,rr ,rrr ≤
∑

r∈RF
F̃Rr assignRFCSr ,rr ,

ṽt i ,rr ,rrr ≤

(
∑

r∈RF
F̃Rr

)
assigni ,rr ,rrr .

∀ i ∈ T , rr ∈ RFCS, (rr , rrr ) ∈ N . (95)

A similar constraint can be defined to limit the flow of crudes out of a st-cluster

rr as stated in Eq. (96). Like Eq. (94), the flow out of a st-cluster is limited by the sum

of maximum flow rate F̃Rr allowed out of each storage tank r assigned to the cluster rr

(i.e., assignSTCSr ,rr = 1).

ṽt i ,rr ,rrr ≤


 ∑

r∈RS

F̃Rr assignSTCSr ,rr


assigni ,rr ,rrr ,

∀ i ∈ T , rr ∈ ST CS, (rr , rrr ) ∈ N , (96)

Likewise, this equation can be linearized by the set of Eqs. (97).




ṽt i ,rr ,rrr ≥ 0,

ṽt i ,rr ,rrr ≤
∑

r∈RS
F̃Rr assignSTCSr ,rr ,

ṽt i ,rr ,rrr ≤

(
∑

r∈RS
F̃Rr

)
assigni ,rr ,rrr .

∀ i ∈ T , rr ∈ ST CS, (rr , rrr ) ∈ N . (97)

Finally, the total flow of crude oil from the CT Group into the CDU Group is limited

by Eq. (98). Notice that this constraint is linear since there is only one CT Group which

contains all charging tanks.

ṽt i ,rrr ,rr ≤


∑

r∈RC

F̃Rr


assigni ,rr ,rrr , ∀ i ∈ T , rr ∈ NRC, (rr , rrr ) ∈ N . (98)
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4.4.5 Demand Satisfaction

Eqs. (99) and (100) define respectively the lower and upper bounds on crude oil

demand for the group of CDUs. For instance, the lower demand D̃EMrrr of the group

of CDUs rrr ∈ NRD (Eq. (99)) is defined as the sum of minimum supply of crude oil

DEMr that each charging tank r needs to provide to the CDUs. A similar definition is

also valid for the upper bound in Eq. (100).

Eq. (101) ensures that the total flow ṽt i ,rr ,rrr from the CT Group rr ∈ NRC to the

CDU Group rrr ∈ NRD, over the planning horizon, must be within the lower and upper

bounds [D̃EMrrr , D̃EMrrr ] on the overall crude demand requested by the CDUs.

D̃EMrrr =
∑

r∈RC

DEMr , ∀ rrr ∈ NRD, (99)

D̃EMrrr =
∑

r∈RC

DEMr , ∀ rrr ∈ NRD. (100)

D̃EMrrr ≤
∑

i∈T

∑

(rr ,rrr )∈N

ṽt i ,rr ,rrr ≤ D̃EMrrr , ∀ rrr ∈ NRD. (101)

4.4.6 Operation Rules

Rules on inlet and outlet operations, similar to the ones defined in Section 3.3,

can be applied for the cluster network in Fig 18 (b). Eq. (102) ensures that at most one

st-cluster rr can feed the CT Group rrr in period i .

∑

rr∈STCS:
(rr ,rrr )∈N

assigni ,rr ,rrr ≤ 1, ∀ i ∈ T , rrr ∈ NRC. (102)

Eq. (103) states that, in period i , an inlet operation from platform-cluster rr into a st-

cluster rrr can not be performed at the same time as an outlet operation from the same

st-cluster rrr .

assigni ,rr ,rrr + assigni ,rrr ,rrrr ≤ 1,

∀ i ∈ T , rrr ∈ ST CS, (rr , rrr ) ∈ N , (rrr , rrrr ) ∈ N . (103)

Further, as stated in Sec. 3.3, Eq. (104) defines the continuous distillation condition,

which means that in all periods of time i ∈ T the CT Group rr ∈ NRC must be assigned

to supply crude to the CDU Group rrr ∈ NRD.

assigni ,rr ,rrr = 1, ∀ i ∈ T , rrr ∈ NRD, (rr , rrr ) ∈ N . (104)
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4.4.7 Objective

The objective (105) of the clustering problem is threefold:

C : max f =



∑

i∈T

∑

(rr ,rrr )∈N :
rr∈NRC

ṽt i ,rr ,rrr


 /D̃EMCDUGroup

– blendWeight
∑

k∈K

∑

c∈C

∑

rr∈ST CS

|PRk ,c – tgk ,rr |

PRk – PRk

crudeSTCSc,rr

–
∑

(rr ,rrr )∈N :
rr∈RFCS

∑

(rrrr ,rrrrr )∈N :
rrrr∈RFCS

∣∣∣∣∣∣∣

∑
r∈RS

assignSTCSr ,rrr

∑
r∈RF

assignRFCSr ,rr
–

∑
r∈RS

assignSTCSr ,rrrrr

∑
r∈RF

assignRFCSr ,rrrr

∣∣∣∣∣∣∣
(105)

• In the first term, similar to the baseline operational management problem defined

in Eq. (71), the clustering problem aims to maximize the flow of crude supplied

to the CDU Group. Since this term has as denominator the maximum demand of

the CDU Group, it will assume a maximum value of 1. This is done to bring this

term to an order that can be comparable with the other terms in the objective.

• In the second term, it aims to define a single target value for each property k for

all crudes to be stored in a given storage-tank cluster rr , namely the value tgk ,rr .

Then, the objective seeks to minimize the deviation of the property k of each

crude c, PRk ,c , that can be delivered to the ST cluster rr from the target value

tgk ,rr . As the property k may vary depending on the type of crude c, this objective

seeks to group FPSOs with similar crudes to feed the same st-cluster.

This term, which is the L1 distance metric, is typically found in K -medoids MILP

formulations for building clusters (PAPAGEORGIOU, Dimitri J; TRESPALACIOS,

2018; NEMHAUSER; WOLSEY, 1988; KAUFMAN; ROUSSEEUW, 1987). The

choice of the L1 distance metric is also endorsed by Kelly et al. (2017b), which

propose a clustering MILP model for assigning crudes from external sources to

storage tanks in a crude oil terminal.

• Finally, the last term of the objective balances the proportion between the number

of storage tanks and platforms in a (platform-cluster, st-cluster) pair with the

proportion of these resources in the remaining pairs.

In Eq. (105), the deviations from target values for each property k are expressed

in terms of absolutes values, and normalized by the range of maximum and minimum

values of the corresponding crude property. By definition, the value PRk ,c will assume

values within the interval [PRk , PRk ]. Thus, the minimization of the second term of

Eq. (105) ensures that, at optimality, the target value tgk ,rr will also be within the same

bounds. For instance, if tgk ,rr < PRk then the values PRk ,c – tgk ,rr > PRk ,c – PRk for
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all c and therefore the objective would be reduced by setting tgk ,rr = PRk . Similarly

reasoning lead us to conclude that tgk ,rr ≤ PRk and that the term |PRk ,c–tgk ,rr |
PRk –PRk

∈ [0, 1].

In order to linearize Eq. (105), the auxiliary variable deviationk ,c,rr ∈ R ≥ 0,

k ∈ K, c ∈ C, and rr ∈ ST CS, is introduced as an upper bound on the value of term
|PRk ,c–tgk ,rr |

PRk –PRk

. Eqs. (106) and (107) ensure the consistency of the upper bound induced

by deviationk ,c,rr .

PRk ,c – tgk ,rr

PRk – PRk

≤ deviationk ,c,rr , ∀ k ∈ K, c ∈ C, rr ∈ ST CS, (106)

–
(PRk ,c – tgk ,rr )

PRk – PRk

≤ deviationk ,c,rr , ∀ k ∈ K, c ∈ C, rr ∈ ST CS. (107)

This leads the second term to be replaced by Eq. (108), which remains non-linear

though.

∑

k∈K

∑

c∈C

∑

rr∈ST CS

deviationk ,c,rr crudeSTCSc,rr . (108)

Because the target value tgk ,rr ∈ [PRk , PRk ] and deviationk ,c,rr is an upper bound for

|PRk ,c – tgk ,rr |/(PRk – PRk ), the minimization of the deviations in Eq. (108) ensure that

deviationk ,c,rr ∈ [0, 1].

Notice that the variables deviationk ,c,rr are defined only, and only if, crude c

is delivered to the st-cluster rr , a condition flagged by crudeSTCSc,rr = 1. To take

advantage of this conditions, another auxiliary variable ̂deviationk ,c,rr ∈ R ≥ 0 is

introduced to assume the value deviationk ,c,rr when crude c is received by st-cluster rr .

This is implemented for all k ∈ K, c ∈ C, and rr ∈ ST CS as follows:




̂deviationk ,c,rr ≥ 0,
̂deviationk ,c,rr ≤ deviationk ,c,rr ,
̂deviationk ,c,rr ≤ crudeSTCSc,rr ,
̂deviationk ,c,rr ≥ deviationk ,c,rr – (1 – crudeSTCSc,rr ).

(109)

The set of Eqs. (109) define that if crude c is not assigned to storage tank-cluster

rr (crudeSTCSc,rr = 0), variable ̂deviationk ,c,rr is set to zero. Likewise, if crude c is

assigned to cluster rr , variable ̂deviationk ,c,rr is set to deviationk ,c,rr . Finally, variable
̂deviationk ,c,rr replaces the bilinear term deviationk ,c,rr crudeSTCSc,rr in Eq. (108)

The third term of the objective has the goal to maintain the relation between

the number of storage tanks and platforms in a (platform-cluster, st-cluster) pair. For

instance, consider 2 (platform-cluster, st-cluster) pairs, 4 platforms and 8 storage tanks.

If the first platform-cluster has 1 platform and the second 3 platforms, then the first

st-cluster would contain 2 storage tanks and the second 6 storage tanks. Notice that

the third term needs to be linearized since it has non-linear fractions and the modulus

operator.
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Consider a (platform-cluster, st-cluster) pair, with platform-cluster rr ∈ RFCS

and st-cluster rrr ∈ ST CS. This means that pair (rr , rrr ) ∈ N . Also, variable rfClusterrr

is the number of platforms assigned to platform-cluster rr and stClusterrrr is the number

of storage tanks assigned to st-cluster rrr . Notice that at least one platform must be

assigned to a platform-cluster and at least one storage tank must be assigned to a

st-cluster, which means rfClusterrr ≥ 1 and stClusterrrr ≥ 1. Moreover, these variables

can only assume integer values, which implies that both rfClusterrr , stClusterrrr ∈ N∗
+.

These variables are defined by Eqs. (110) and (111).

rfClusterrr =
∑

r∈RF

assignRFCSr ,rr , ∀ rr ∈ RFCS. (110)

stClusterrrr =
∑

r∈RS

assignSTCSr ,rrr , ∀ rrr ∈ ST CS. (111)

Then, as defined by Eq. (112), variable proportionrr ,rrr assumes the value of the

ratio between the number of storage tanks and platforms in (platform-cluster, st-cluster)

pair (rr , rrr ) ∈ N . This variable is defined as proportionrr ,rrr ∈ R ≥ 0.

proportionrr ,rrr =

∑
r∈RS

assignSTCSr ,rrr

∑
r∈RF

assignRFCSr ,rr
=

stClusterrrr

rfClusterrr
, ∀ (rr , rrr ) ∈ N : rr ∈ RFCS.

(112)

By introducing the supporting variable proportionrr ,rrr , the third term of the ob-

jective can be cast as:
∑

(rr ,rrr )∈N :
rr∈RFCS

∑

(rrrr ,rrrrr )∈N :
rrrr∈RFCS

∣∣proportionrr ,rrr – proportionrrrr ,rrrrr
∣∣ . (113)

In order to linearize Eq. (113), the auxiliary variable proportionDiff rrrr ,rrrrr
rr ,rrr ∈ R ≥

0, rr , rrrr ∈ RFCS, rrr , rrrrr ∈ ST CS, and (rr , rrr ), (rrrr , rrrrr ) ∈ N , is introduced as an

upper bound on the value of term
∣∣proportionrr ,rrr – proportionrrrr ,rrrrr

∣∣. Eqs. (114) and

(115) ensure the consistency of the upper bound induced by proportionDiff rrrr ,rrrrr
rr ,rrr and

the third term of the objective can be replaced by Eq. (116).

proportionrr ,rrr – proportionrrrr ,rrrrr ≤ proportionDiff rrrr ,rrrrr
rr ,rrr ,

∀ (rr , rrr ) ∈ N , (rrrr , rrrrr ) ∈ N : rr ∈ RFCS, rrrr ∈ RFCS. (114)

– proportionrr ,rrr + proportionrrrr ,rrrrr ≤ proportionDiff rrrr ,rrrrr
rr ,rrr ,

∀ (rr , rrr ) ∈ N , (rrrr , rrrrr ) ∈ N : rr ∈ RFCS, rrrr ∈ RFCS. (115)

∑

(rr ,rrr )∈N :
rr∈RFCS

∑

(rrrr ,rrrrr )∈N :
rrrr∈RFCS

proportionDiff rrrr ,rrrrr
rr ,rrr . (116)
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Notice that Eq. (112) is non-linear and can be reformulated as Eq. (117), which

has the bilinear term proportionrr ,rrr rfClusterrr .

proportionrr ,rrr rfClusterrr = stClusterrrr , ∀ (rr , rrr ) ∈ N : rr ∈ RFCS. (117)

In order to linearize the bilinear term proportionrr ,rrr rfClusterrr , consider the following

elements:

• From previous definitions, proportionrr ,rrr ∈ R ≥ 0. Also, the total number of

platforms assigned to platform-cluster rr (rfClusterrr ) and the total number of

storage tanks assigned to st-cluster rrr (stClusterrrr ) both a natural numbers (i.e.,

rfClusterrr , stClusterrrr ∈ N).

• Set J = {1, ..., (|RF | – |RFCS| + 1)}. Cardinality |J | is equal to the maximum

number of platforms that can be assigned to a platform cluster. For instance, if

there are six platforms (i.e., |RF | = 6) and two platform-clusters (i.e., |RFCS| = 2),

at least one platform must be assigned to each platform-cluster, and a maximum

of five platforms (i.e., |RF | – |RFCS|+1 = 5) can be assigned to a platform-cluster.

• Binary variable zj ,rr ∈ B, j ∈ J , rr ∈ RFCS is 1 if integer value j in set J , that

represents the number of platforms rfClusterrr assigned to platform-cluster rr , is

selected. As stated by Eq. (118), for each platform-cluster rr , only one integer

value j in J can be selected. Then, as defined in Eq. (119), the integer variable

rfClusterrr can be stated as a sum of binary variables multiplied by the integer

value j .

∑

j∈J

zj ,rr = 1, ∀ rr ∈ RFCS. (118)

rfClusterrr =
∑

j∈J

jzj ,rr , ∀ rr ∈ RFCS. (119)

Variable rfClusterrr can be replaced in Eq. (117) leading to Eq. (120). Notice that

in Eq. (120), the bilinear term zj ,rr proportionrr ,rrr has a binary and a real variable,

which can be easily linearized.

(
∑

j∈J

jzj ,rr )proportionrr ,rrr = stClusterrrr , ∀ (rr , rrr ) ∈ N : rr ∈ RFCS. (120)

• Auxiliary variable θj ,rr ,rrr ∈ R ≥ 0, j ∈ J , (rr , rrr ) ∈ N : rr ∈ RFCS can

be defined such that the bilinear term zj ,rr proportionrr ,rrr = θj ,rr ,rrr . Eq. (121)

addresses the linearization of bilinear term θj ,rr ,rrr , valid for all j ∈ J and (rr , rrr ) ∈
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N : rr ∈ RFCS. 



θj ,rr ,rrr ≥ 0,

θj ,rr ,rrr ≤ proportionrr ,rrr ,

θj ,rr ,rrr ≤ zj ,rr |RS|,

θj ,rr ,rrr ≥ proportionrr ,rrr – |RS|(1 – zj ,rr ).

(121)

Variable zj ,rr = 0 drives θj ,rr ,rrr = 0. However, if zj ,rr = 1, θj ,rr ,rrr gets bounded

by the cardinality of the set of storage tanks |RS| and assumes the value of

proportionrr ,rrr .

After replacing θj ,rr ,rrr in Eq. (120), it can be then reformulated as Eq. (122).
∑

j∈J

jθj ,rr ,rrr = stClusterrrr , ∀ (rr , rrr ) ∈ N : rr ∈ RFCS. (122)

Consequently, the objective can be reformulated as the linear function given by

Eq. (123), with parameter blendWeight being a weighting factor for the second term of

the objective.

C : max f =



∑

i∈T

∑

(rr ,rrr )∈N :
rr∈NRC

ṽt i ,rr ,rrr


 /D̃EMCDUGroup

– blendWeight
∑

k∈K

∑

c∈C

∑

rr∈ST CS

̂deviationk ,c,rr

–
∑

(rr ,rrr )∈N :
rr∈RFCS

∑

(rrrr ,rrrrr )∈N :
rrrr∈RFCS

proportionDiff rrrr ,rrrrr
rr ,rrr (123)

Having introduced the definitions above, the MILP formulation for the cluster-

ing problem consists in minimizing the objective (123) subject to the constraints (78)-

(93), Eqs. (95), (97)-(104), (106)-(107), (109), (110)-(111), (114)-(115), (118)-(119),

and (121)-(122).

4.4.8 Remarks

There are two main consequences of clustering crudes.

• First, by restricting the crudes allowed in each st-cluster rr , lower and upper

bounds [PRST r ,k , PRST r ,k ] can be induced on the value of property k for the

storage tank r assigned to st-cluster rr .

PRST k ,r = min{PRk ,c : crudeSTCSc,rr assignRFCSr ,rr = 1, ∀ c ∈ C, rr ∈ ST CS},

k ∈ K, r ∈ RS. (124)

PRST k ,r = max{PRk ,c : crudeSTCSc,rr assignRFCSr ,rr = 1, ∀ c ∈ C, rr ∈ ST CS},

k ∈ K, r ∈ RS. (125)
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• And second, the assignment of a platform cluster to feed a given st-cluster restricts

a vessel to unload in specific storage tanks, and travel only between platforms

and storage tanks within these clusters. The full development of these bounds

and their use on the operational management of crude oil supply will be the focus

of Section 4.5. The computational gains arising for this new solution methodology

will be analyzed in Section 4.7.

4.5 LINEAR APPROXIMATION OF BILINEAR TERMS

The solution of the OMCOS MINLP formulation shown in Section 3.5 consists of

a MILP-NLP decomposition scheme. The MILP is a relaxation of the MINLP, in which

the blending constraints are relaxed by McCormick envelopes (MCCORMICK, 1976;

CASTRO, 2015). Further, the logistics decisions (i.e., binary variables) obtained by

solving the MILP are fixed into the MINLP, yielding a NLP which is then solved to obtain

a primal solution. Despite generating tight relaxations, the use of McCormick envelopes

(e.g., univariate or bivariate partitioning) increase the number of binary variables that

lead to a significant impact on the solution time of the MILP. This section presents an

alternative way to handle blending constraints, which takes advantage of the structure

imposed by solving the clustering formulation.

When a blend of crudes is present in a storage or charging tank r ∈ RS ∪RC,

the total level of crude lri ,r in tank r in period i can also be seen as the sum of volumes

of each crude c (i.e., lri ,r =
∑

c∈C lcri ,r ,c). Variable epri ,r ,k , which denotes the value of

property k ∈ K of the blend of crudes in a storage or charging tank r in period i , can be

defined by the following non-linear equation:

epri ,r ,k =
∑

c∈C

PRk ,c
lcri ,r ,c

lri ,r
, ∀ i ∈ T , r ∈ RS ∪RC, k ∈ K, (126)

where parameter PRk ,c is the value of property k in crude oil c, and non-linear term
lcri ,r ,c
lri ,r

is the volume fraction of crude c in a storage or charging tank r in time i .

As in the model presented in Section 3.4, variables analogous to the total and

individual level of crudes in a tank r in period i (i.e., lcri ,r ,c and lri ,r ) can be introduced

to track the flow of crudes between resources. While vti ,v is the total volume of crude

oil transferred in period i by operation v , vcti ,v ,c is the volume of crude c transferred

in period i by operation v (i.e., vti ,v =
∑

c∈C vcti ,v ,c). The blending constraint defined

in Eq. (66) states that the proportion of crude c inside a storage or charging tank r ,

defined by lcri ,r ,c
lri ,r

, must hold whenever there is a flow operation v out of resource r (i.e.,

operation v ∈ Or ). This means that vcti ,v ,c
vti ,v

= lcri ,r ,c
lri ,r

, which can be rewritten as:

vcti ,v ,c = vti ,v
lcri ,r ,c

lri ,r
, ∀ i ∈ T , r ∈ RS ∪RC, v ∈ Or , c ∈ C. (127)
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Equation (127) can be incorporated in Eq. (126) by multiplying both sides by vti ,v

to obtain Eq. (128) and replacing lcri ,r ,c
lri ,r

vti ,v by vcti ,v ,c to obtain Eq. (129). Notice that

the right-hand side of Eq. (129) is linear, while the left-hand side is non-linear.

epri ,r ,kvti ,v =
∑

c∈C

PRk ,c
lcri ,r ,c

lri ,r
vti ,v , (128)

epri ,r ,kvti ,v =
∑

c∈C

PRk ,cvcti ,v ,c , ∀ i ∈ T , r ∈ RS ∪RC, v ∈ Or , k ∈ K. (129)

This is valid for all periods of time i ∈ T , storage and charging tanks r ∈ RS ∪ RC,

crude properties k ∈ K and transfer operations v ∈ Or leaving resource r . Equation

(129) balances, for every period i , the total (vti ,v ) and individual (vcti ,v ,c) volumes of

crude flowing out from storage or charging tanks with the overall value of property k in

tank r (epri ,r ,k ) and the individual property k of each crude c (PRk ,c).

Every feeding operation v ∈ WD between charging tanks and CDUs is bounded

by lower and upper bounds [DEMCv ,k , DEMCv ,k ] on the value of property k . This

means that variable epri ,r ,k , which is the value of property k in charging tank r in period

i , must be between these bounds when there is a transfer of crudes to a CDU. Eq.

(130) takes advantage of lower and upper bounds [DEMCv ,k , DEMCv ,k ] to define a

linearization for Eq. (129).

DEMCv ,kvti ,v ≤
∑

c∈C

PRk ,cvcti ,v ,c ≤ DEMCv ,kvti ,v , ∀ i ∈ T , r ∈ RC, v ∈ Or , k ∈ K.

(130)

For storage tanks, vessels may unload different types of crudes during the plan-

ning horizon, making it difficult to derive bounds on properties and consequently lin-

earizations such as Eq. (130). Nevertheless, as stated at the end of Section 4.4, the

solution of the clustering problem restricts the crudes present in each st-cluster rr , and

consequently in the storage tanks assigned to cluster rr . As a consequence, Eqs. (124)

and (125) define lower and upper bounds [PRST k ,r , PRST k ,r ] on the crude property k

for storage tank r . Similarly as in Eq. (130), one can make advantage of these bounds

to linearize Eq. (129) for the case of storage tanks, as indicated by Eq. (131).

PRST k ,r vti ,v ≤
∑

c∈C

PRk ,cvcti ,v ,c ≤ PRST k ,r vti ,v , ∀ i ∈ T , r ∈ RS, v ∈ Or , k ∈ K.

(131)

4.6 SOLUTION STRATEGY

In general terms, the combination of the clustering recommendation with the

two-step MILP-NLP solution strategy (see Fig. 19) consists of the following steps:
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• First, the clustering formulation (123) of a problem instance is solved. Then, the

original problem instance is restricted according to the solution of the clustering

problem (123). This means: (a) constrain the domain of the vessel’s trips variable1

si ,r ,v ,u to consider travels only among the platforms and storage tanks that belong

to the same (platform-cluster, st-cluster) pair, and (b) constrain the domain of

logistics decisions variable2 zi ,v for vessels to only consider offloading crudes

from platforms and unloading them into storage tanks that belong to the same

(platform-cluster, st-cluster) pair.

• Following, an MILP linearization of problem (71) is constructed considering all of

its equations except for the blending constraint (66), which is linearized by Eqs.

(130) and (131).

• Finally, the solution of the MILP is used as an initial point and its logistics decisions

zi ,v and si ,r ,v ,u (binary variables) are fixed into the MINLP, resulting in a non-linear

programming (NLP) problem, which is solved to obtain the final solution.

Figure 19 – Solution strategy diagram.

1 Binary variable si ,r ,v ,u takes on value 1 if, after performing an operation v in period i , vessel r performs
an operation u in period i + 1.

2 Logistic variable zi ,v assumes value 1 if operation v is executed in period i .
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4.7 ANALYSIS

The goal of this section is to (a) analyze the results given by the clustering

formulation proposed in Section 4.4; (b) understand how the clustering of resources,

and consequently crudes, affects the solution of the three instances considered for

OMCOS; and (c) propose and solve new instances. These instances have already

been defined in Section 3.6, which are illustrated by Figures 22, 23 and 24 in Appendix

B.

First, the clustering formulation defined in Section 4.4 is run to obtain different

clustering schemes for the instances 2F-2V-2ST-2CT-1CDU-2C-1P-15D, 4F-4V-6ST-

4CT-3CDU-8C-1P-15D and 4F-4V-10ST-6CT-5CDU-8C-1P-15D. For example, instance

2F-2V-2ST-2CT-1CDU-2C-1P-15D means: 2 FPSOS, 2 vessels, 2 storage tanks, 2

charging tanks, 1 distillation column, 2 crude oils, 1 crude property, and 15 days for

planning. Next, the clustering schemes are applied to the original instances, resulting

into clustered instances which are solved according to the MILP-NLP solution strategy

proposed in Section 4.6. Finally, larger instances are proposed and solved using the

same MILP-NLP strategy.

The mathematical programming models and solution strategy were implemented

in AMPL and solved in a computer with two Intel Core Xeon E5-2630 v4 Processor (2.20

GHz), totaling 20 cores of 2 threads, 64 GB of RAM and a Ubuntu environment. The

MILP model is solved with CPLEX (IBM, 2013) and the NLP formulation with CONOPT

(DRUD, 1985).

4.7.1 Clusterization of Instances

Figure 20 illustrates the clustering scheme obtained for instance 4F-4V-6ST-

4CT-3CDU-8C-1P-15D considering 2 clusters. In this case, the (platform-cluster1, st-

cluster1) pair is assigned to platform FPSO1, which produces crude cA with sulfur

content of 0.01, and storage tank ST1. This means that the only platform allowed to

supply tank ST1 is FPSO1, which implies that ST1 will only store crude cA. Further,

vessels allocated to this cluster can only travel between the terminal and platform

FPSO1, and unload crude cA into ST 1.

Similarly, platforms FPSO2, FPSO3 and FPSO4 are assigned to supply storage

tanks ST2 to ST6. These platforms produce respectively crudes cB, cC, and cD, with

sulfur content of 0.03, 0.045 and 0.06. Vessels assigned to cover the routes in the

(platform-cluster2, st-cluster2) pair will only travel between the terminal and platforms

FPSO2 to FPSO4, and unload crudes cB, cC and cD into tanks ST2 to ST 6.

After defining which resources are assigned to the (platform-cluster1, st-cluster1)

and (platform-cluster2, st-cluster2) pairs, bounds can be derived on the crude property

for each st-cluster and consequently for each of its storage tank. For instance, st-
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cluster. Notice that for all instances, target variable tgk ,rr assumes the value of property

k of one of the crudes supplied to st-cluster rr . If a st-cluster receives only one type

of crude oil (e.g., instance 2F-2V-2ST-2CT-1CDU-2C-1P-15D in Table 20), the variable

tgk ,rr will assume the value of property k of this unique crude and the deviation in that

st-cluster will be 0. On the other hand, as shown in Table 21, the deviation considering

3 clusters is 0.3 in st-cluster 2, which is selected to receive crudes cB (PRS,cB = 0.03)

and cC (PRS,cB = 0.045). From the objective function, this deviation is computed as
|PRk ,c–tgk ,rr |

PRk –PRk

= |0.03–0.045|
(0.06–0.01) = 0.3.

Table 20 – Cluster schemes for instance 2F-2V-2ST-2CT-1CDU-2C-1P-15D.

Number Crudes Target tgk ,rr Deviat.
Clusters (platform-cluster, st-cluster) pair st-cluster st-cluster st-cluster

2 pair1 = ({fpso1}, {st1}) st-cluster1 = {cA} 0.01 0
pair2 = ({fpso2}, {st2}) st-cluster2 = {cB} 0.03 0

Table 21 – Cluster schemes for instance 4F-4V-6ST-4CT-3CDU-8C-1P-15D.

Number Crudes Target tgk ,rr Deviat.
Clusters (platform-cluster, st-cluster) pair st-cluster st-cluster st-cluster

2 pair1 = ({fpso1}, {st1}) st-cluster1 = {cA} 0.01 0
pair2 = ({fpso2, fpso3, fpso4}, {st2, st3, st4, st5, st6}) st-cluster2 = {cB, cC, cD} 0.045 0.6

3 pair1 = ({fpso1}, {st1, st2}) st-cluster1 = {cA} 0.01 0
pair2 = ({fpso2, fpso3}, {st3, st4, st5}) st-cluster2 = {cB, cC} 0.045 0.3

pair3 = ({fpso4}, {st6}) st-cluster3 = {cD} 0.06 0
4 pair1 = ({fpso1}, {st1, st2}) st-cluster1 = {cA} 0.01 0

pair2 = ({fpso2}, {st3, st4}) st-cluster2 = {cB} 0.03 0
pair3 = ({fpso3}, {st5}) st-cluster3 = {cC} 0.045 0
pair4 = ({fpso4}, {st6}) st-cluster4 = {cD} 0.06 0

Table 22 – Cluster schemes for instance 4F-4V-10ST-6CT-5CDU-8C-1P-15D.

Number Crudes Target tgk ,rr Deviat.
Clusters (platform-cluster, st-cluster) pair st-cluster st-cluster st-cluster

2 pair1 = ({fpso1}, {st1, st2}) st-cluster1 = {cA} 0.01 0
pair2 = ({fpso2, fpso3, fpso4}, st-cluster1 = {cB, cC, cD} 0.045 0.6

{st3, st4, st5, st6, st7, st8, st9, st10})
3 pair1 = ({fpso1}, {st1, st2}) st-cluster1 = {cA} 0.01 0

pair2 = ({fpso2}, {st3, st4, st5}) st-cluster2 = {cB} 0.03 0
pair3 = ({fpso3, fpso4}, {st6, st7, st8, st9, st10}) st-cluster3 = {cC, cD} 0.045 0.3

4 pair1 = ({fpso1}, {st1, st2}) st-cluster1 = {cA} 0.01 0
pair2 = ({fpso2}, {st3, st4}) st-cluster2 = {cB} 0.03 0

pair3 = ({fpso3}, {st5, st6, st7}) st-cluster3 = {cC} 0.045 0
pair4 = ({fpso4}, {st8, st9, st10}) st-cluster4 = {cD} 0.06 0

4.7.2 Solution of Clustered Instances

Here, an analysis is conducted based on the statistics and solution of the in-

stances 2F-2V-2ST-2CT-1CDU-2C-1P-15D, 4F-4V-10ST-6CT-5CDU-8C-1P-15D and

4F-4V-10ST-6CT-5CDU-8C-1P-15D that were re-defined according with the clusters

defined in Section 4.7.1. As advocated above, the use of a clustering scheme for the

original instance will produce a new instance with a more restricted set of possible

operations on the offshore side.
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Figure 21 illustrates the comparison between the set of all possible operations

and clustered operations in the offshore side of instance 2F-2V-2ST-2CT-1CDU-2C-1P-

15D. In the original instance (Figure 21 (a)), the 2 vessels are allowed to travel between

the terminal and the 2 FPSOs, and unload crudes cA and cB in any of storage tanks

ST1 and ST2. By applying the clustering scheme with 2 clusters (see Figure 25) in

the original instance (see Figure 22), a restricted set of offshore operations is derived

(Figure 21 (b)). In this case, Vessel1 can travel only between FPSO1 and the terminal,

and unload crude oil from FPSO1 only into storage tank ST1. The same holds for the

second vessel regarding FPSO2 and ST2.

For the example in Figure 21 (b), crudes from FPSO1 and FPSO2 will never get

mixed in the storage tanks ST 1 and ST 2. Nevertheless, since the connections between

storage and charging tanks remain the same, crudes can be normally mixed in the

charging tanks to reach the demanded crude specification. Notice that one of the main

consequences of using clusters will be the decrease on the number of variables and

constraints.

Table 23 presents the number of clusters, the MILP MIPGAP used in the MILP-

NLP solution strategy, the number of variables and constraints, the best known solution

(taken from Section 3.6), the solution of the clustered instance, the GAP from the best

known solution, and CPU time.

Table 23 – Statistics and solution for clustered instances.

MILP Stat. NLP Stat. Best MILP-NLP Solution
Num. MILP Total Total Binary Non-Linear Solution Sol. CPU

Instances Clus. MIPGAP Vars. Cons. Vars. Cons. [103, s] [103] 1GAP Time [s]

2F-2V-2ST 2 0% 1 380 1 875 531 180 22 800, 8s 22 711 0.4% 0.25
2CT-1CDU
2C-1P-15D

4F-4V-6ST 2 0% 12 900 8 311 4 351 1 920 inf - -
4CT-3CDU 3 0% 8 895 6 815 2 098 1 920 38 563, 446s 38 500 0.16% 17
8C-1P-15D 4 0% 7 380 6 087 1 346 1 920 37 589 2.5% 11

4F-4V-10ST 2 0.5% 19 650 11 444 7 272 2 880 55 181 1.75% 300
6CT-5CDU 3 0.5% 13 335 9 534 3 301 2 880 56 167, 8 843s 54 681 2.64% 181
8C-1P-15D 4 0.5% 10 920 8 558 1 987 2 880 54 285 3.35% 17

1 GAP = BestSol .–Sol .
BestSol . 100.

In addition, Table 24 depicts the best results found for the considered instances

making use of the solution strategy proposed in Section 3.5. Also, the table presents

the number of variables and constraints, the considered MILP MIPGAP used in the

MILP-NLP solution strategy and the CPU time. Notice that for instance 4F-4V-6ST-4CT-

3CDU-8C-1P-15D, experiments were conducted considering both MILP MILPGAPs of

0% and 1.5%, while for instances 2F-2V-2ST-2CT-1CDU-2C-1P-15D and 4F-4V-10ST-

6CT-5CDU-8C-1P-15D it was considered a MILP MILPGAP = 0% and MIPGAP = 3%

respectively.

The results on Table 23 suggest the following remarks:
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the vessels assigned to handle the flow of crudes in a (platform-cluster, st-cluster)

pair. Further, by clustering the instance, there is a limitation of the offloading and

unloading operations.

The restrictions on vessels’ trips, offloading and unloading operations have an

impact on the number of variables and constraints when solving the clustered

instances.

By comparing results in Tables 24 and 23 it is possible to see in numbers the

decrease on problem size. For example, the original instance 4F-4V-10ST-6CT-

5CDU-8C-1P-15D goes from 29 175 to 10 920 variables in the version considering

4 clusters. From this total number of variables, the number of binaries drops from

15 000 to 1 987, which is a decrease of more than 7.5 times. Likewise, the overall

number of constraints decreases from 15 954 to 8 558. The number of non-linear

constraints remain the same since the STs-CTs and CTs-CDUs connections do

not change.

CPU time follows the same trend as the number of constraints and variables. For

a lower number of clusters, the clustered instance gets closer to the original one,

and therefore solution time is higher. As the number of clusters increases, the

number of variables and constraints decrease and so the solution time. The high-

est drop happens for instance 4F-4V-10ST-6CT-5CDU-8C-1P-15D, with solution

time going from more than 8 000 seconds for the original instance to less than 20

seconds when considering 4 clusters.

2. Number of Clusters and MILP-NLP Solution.

Table 23 shows the GAP between the clustered solution and the best known

solution found for the original instance.

Results show that the use of clusters affects the solution, besides a computational

gain with the reduction of variables, constraints and CPU time. In addition, the

GAP tends to increase with the number the clusters, reaching maximum values

close to 3% in the worst case scenarios (i.e., instance 4F-4V-10ST-6CT-5CDU-

8C-1P-15D with 4 clusters) and lower than 1% in the best ones (i.e., 4F-4V-6ST-

4CT-3CDU-8C-1P-15D with 3 clusters).

The effect on results can be explained by the fact that (a) the linear approximation

for the blending constraints, proposed in Section 4.5 is not as strong as the use of

McCormick envelopes (MCCORMICK, 1976) to relax the same constraints; (b) the

use of clusters restricts the problem and potentially excludes feasible solutions.
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4.7.3 Solution of New Instances

As mentioned in the previous section, one can take advantage of the computa-

tional gains of using clusterization for solving larger instances.

Table 25 presents the number of variables and constraints for new instances

4F-4V-10ST-6CT-5CDU-8C-4P-15D and 8F-8V-10ST-6CT-5CDU-8C-4P-15D. Instance

4F-4V-10ST-6CT-5CDU-8C-4P-15D (see Figure 32) considers 8 crude and 4 crude

properties (i.e., S, T, U and V with values described in Figure 32) and all possible

connections between storage and charging tanks. On the other hand, instance 8F-8V-

10ST-6CT-5CDU-8C-4P-15D (see Figure 36), takes into account the same 4 crude

properties and connections between tanks, but also extends the number of platforms,

vessels, the demand of the CDUs and the storage capacity of the FPSOs.

Table 26 presents the statistics and solution of instances 4F-4V-10ST-6CT-5CDU-

8C-4P-15D and 8F-8V-10ST-6CT-5CDU-8C-4P-15D for different clustering schemes.

For instance 4F-4V-10ST-6CT-5CDU-8C-4P-15D, the clustering schemes for 2, 3, and

4 clusters are illustrated by Figures 33-35. Likewise, Figures 37 and 38 illustrate for

instance 8F-8V-10ST-6CT-5CDU-8C-4P-15D the clustering schemes considering 4 and

6 clusters.

Table 25 – Statistics for new instances.

Instances Total Vars. Total Cons. Binary Vars. Non-Linear Cons.
4F-4V-10ST-6CT-5CDU-8C-4P-15D 33 075 23 544 15 390 8 400
8F-8V-10ST-6CT-5CDU-8C-4P-15D 68 040 39 814 31 590 8 400

Tables 25 and 26 show a significant decrease on the number of variables and

constraints when comparing the original instances and their clustered versions. This de-

crease has a direct effect on the CPU time. As mentioned in Section 3.6.2, for instances

4F-4V-6ST-4CT-3CDU-8C-1P-15D (see Figure 23) and 4F-4V-10ST-6CT-5CDU-8C-1P-

15D (see Figure 24), off-the-shelf solvers were not able to find a feasible solution within

a maximum CPU time of 10 hours. The same happens with new instances 4F-4V-10ST-

6CT-5CDU-8C-4P-15D and 8F-8V-10ST-6CT-5CDU-8C-4P-15D.

Table 26 – Statistics and solution for new instances with clusterization.

MILP Stat. NLP Stat. MILP-NLP Solution
Num. MILP Total Total Binary Non-Linear MILP Sol. NLP Sol. CPU

Instances Clus. MIPGAP Var. Cons. Vars. Cons. [103] [103] Time [h]

4F-4V-10ST-6CT 2 1% 25 050 20 793 7 107 8 400 56 564 53 758 0.24
5CDU-8C-4P-15D 3 1% 19 785 19 059 3 946 8 400 56 452 55 661 0.14

4 1% 17 370 18 083 2 640 8 400 56 407 53 085 0.05

8F-8V-10ST-6CT 4 3% 28 530 24 261 7 811 8 400 59 589 59 230 2.28
5CDU-8C-4P-15D 6 3% 22 440 21 739 4 527 8 400 58 250 56 590 0.90

Depending on the clustering scheme, instance 8F-8V-10ST-6CT-5CDU-8C-4P-

15D presents a decrease on the number of binary variables from 31 590 to 4 527, mainly

resulting from the restriction on vessel trips, and offloading and unloading operations
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when using clusterization. When comparing the statistics of instance 8F-8V-10ST-6CT-

5CDU-8C-4P-15D (see Table 26) for clustering schemes with 4 and 6 clusters, the

number of binary variables decreases to almost half, which is reflected in the CPU time

that drops from 2.28 hours to 0.9 hour. Although not providing the same solution quality

(i.e., from 59 230 to 56 590), there are clear computational gains on using clusters.

4.8 CONCLUSION

As highlighted in the introduction, the main goal of OMCOS is to coordinate the

activities of vessels’ trips and crude oil operations in the terminal in order to supply

crudes to the CDUs. Nevertheless, without clear rules or constraints, all mixtures of

crudes are allowed in storage tanks. This may lead to mixtures of crudes with opposite

properties, which might be non-desirable.

With the goal of coordinating how crudes can be mixed inside storage tanks,

this chapter proposed a MILP formulation to define the optimal cluster of crudes and

resources, such that the difference among their properties is as low as possible. The

use of clusters offers the following benefits: (a) reduces the number of routes for the

vessels; (b) simplifies offloading and unloading operations; and (c) imposes rules for

crude mixtures in clusters of storage tanks that minimize property variations.

The solution of the clustering formulation produces: (a) more restricted problem

instances and (b) lower and upper bounds on crude properties inside each ST. These

bounds are used to linearize the blending constraints and derive an MILP linearization

of the original MINLP, which is used in the MILP-NLP solution strategy.

Although possibly eliminating feasible solutions, the use of clusters allows to

reach solutions with a compatible quality, but with far fewer variables and constraints,

and at much less computational cost.
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5 CONCLUDING REMARKS AND FUTURE WORK

The Management of Crude Oil Supply consists in coordinating the supply of

crude oil from offshore platforms to CDUs in refineries. As highlighted in Chapter 1,

this problem is faced by vertically integrated oil companies which control production,

transportation, storage and refining.

To the best of our knowledge, Aires et al. (2004), and then Rocha et al. (2009)

were the first ones to address the problem of managing crude oil supply in an integrated

fashion (i.e., from FPSOs to CDUs). They focused on strategic/tactical decision levels

and proposed an MILP formulation to allocate the crude oil produced by platforms

to onshore terminals and subsequently to refineries in order to satisfy their demands

(i.e., both in terms total volume and quality of crude oil). In addition, their formulation

considered crude oil import, inventory control over the planning horizon and vessel

fleet sizing decisions. Nevertheless, operational level decisions such as: the limited

number of vessels, scheduling of vessels, scheduling of operations in terminals and

non-linearities due to blending were not addressed.

With the goal of advancing the state of the art on the management of crude oil

supply, this thesis proposes mathematical programming models and solution strategies

for the Operational Management of Crude Oil Supply (OMCOS), which considers el-

ements of the operational decision level in an integrated fashion. OMCOS comprises

both the upstream (i.e., platforms, vessels and terminal) and the midstream (i.e., CDUs

at the refinery) segments. In relation to the technical literature, OMCOS combines

elements of Maritime Inventory Routing (MIR) with Crude Oil Scheduling (COS) by

considering decisions at the operational level (i.e., scheduling and crude oil blending)

and tactical level (i.e., inventory control and resource allocation).

Such an integration leads to a non-convex Mixed Integer Non-Linear Program-

ming (MINLP) model composed by an expressive number of variables and constraints.

As highlighted by Floudas and Lin (2004) and Castro et al. (2018), scheduling problems

with discrete decisions have a combinatorial nature, which when combined with non-

linear constraints become challenging from the computational point of view. Therefore,

this thesis also proposes solution strategies that exploited problem structure in order

to decompose the problem and decrease the computation burden while maintaining

solution quality.

The main contributions and remarks are the following:

• Chapter 2. An iterative two-step MILP-NLP decomposition algorithm, which imple-

ments a domain-reduction strategy for handling bilinear terms in the scheduling

of crude oil operations (COS).

It was shown that on small instances for which an optimal solution is known, the

proposed strategy consistently finds optimal or near-optimal solutions. The strat-
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egy also solves larger instances which are, in some cases, intractable by a global

optimization solver and the MILP linearization solution proposed by Zimberg et al.

(2015).

By solving several instances of the scheduling problem, it has been shown that

the bivariate partitioning scheme usually provides a stronger relaxation than uni-

variate, leading to better results in fewer iterations. On the other hand, the CPU

time is usually higher, which can be explained by the increase on the number of

binary variables.

Finally, it is possible to observe that domain partitioning decisions should priori-

tize to have more, or at least equal, domain partitions for variables that track the

amount of crude oil that flows between resources when compared to the num-

ber of domain partitions for variables that track the inventory of crude oil inside

resources.

• Chapter 3. A non-convex MINLP model for OMCOS that brings elements of the

operational level into the management of crude oil supply, thereby incorporating

elements of maritime inventory routing and crude oil scheduling. Further, an it-

erative MILP-NLP decomposition is presented to tackle the MINLP problem that

relies on bivariate piecewise McCormick envelopes (to yield an MILP relaxation),

domain reduction (to reduce complexity), and a NLP solver (to reach feasible

solutions).

The results showed that the new solution strategy is able to solve the small in-

stances almost to optimality in few minutes, while solvers like BARON and SCIP

take more than 2 hours.

Similarly to Chapter 2, bivariate partitioning schemes usually requires more CPU

time since a number of new variables and constraints are added to the MILP

problem.

For larger instances, off-the-shelf solver like BARON and SCIP were not able to

find a feasible solution in less than 10 hours. On the other hand, the proposed

solution strategy is able to find solutions that can vary their quality according to

the chosen relaxation scheme.

Although a wide set of relaxation schemes is tested, on average, relaxations that

favor domain partitioning on flow variables produce improved NLP bounds. This

point was also observed in the previous chapter and can be explained by the fact

that the flow variables have tighter bounds.

• Chapter 4. A Mixed Integer Linear Programming (MILP) clustering formulation for

OMCOS that offers the following benefits: (a) reduces the number of routes for

the vessels; (b) simplifies offloading and unloading operations; (c) imposes rules
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for crude mixtures in clusters of storage tanks that minimize property variations;

and (d) produces bounds on crude properties inside storage and charging tanks

that are used to linearize the bilinear terms in blending constraints.

Although possibly eliminating feasible solutions, through the combination of clus-

ters and a MILP-NLP decomposition, good solutions were obtained for a set of

representative instances of OMCOS at a reduced computational cost.

The work developed in this thesis also motivates future research in the following

areas:

• According to the results presented in this thesis, most of the computational cost

can be attributed to solving the MILP relaxation (or approximation in Chapter 4)

in MILP-NLP decomposition strategies.

Future research could pursue methods to find symmetry-breaking constraints in

order to exclude symmetric solutions (MOURET et al., 2009; MARGOT, 2010),

which are commonly found in scheduling problems and potentially increase com-

putation time.

An alternative can be in the use of temporal decomposition strategies such as

rolling-horizon and relax-and-fix (ASSIS, Leonardo Salsano de; CAMPONOG-

ARA, 2016) to solve the MILP problem.

Also, continuous-time models (MOURET et al., 2011b) could be conceived and

its performance evaluated in relation to the discrete-time approach presented in

this work.

Better formulations of inventory constraints can also be perused as in Rocha et al.

(2013), Aizemberg et al. (2014) and Yifu Chen and Maravelias (2020). These

works show that tighter formulations can improve the relaxation of MIP models.

One can take advantage of improving the MILP relaxation of the MINLP formula-

tion and consequently increase the performance of the MILP-NLP decomposition

strategies described in this thesis.

• The operational management problem for crude oil supply can be structured in

layers, which consist of the layer of platforms, storage tanks, charging tanks,

and CDUs. This structure suggests a Lagrangean decomposition (KARUPPIAH

et al., 2008) obtained by duplicating variables on the interface of neighboring

layers (e.g., flow variables vti ,v , vcti ,v ,c , vt ′i ,v and vct ′i ,v ,c) and introducing equality

constraints to ensure their consistency (e.g., vti ,v = vt ′i ,v and vcti ,v ,c = vct ′i ,v ,c).

The dualization of these equality constraints with Lagrange multipliers renders a

dual problem that, besides producing upper bounds, can yield good starting points

for the search of primal solutions with an NLP solver. A feature of the Lagrange



Chapter 5. Concluding Remarks and Future Work 121

decomposition is that the dual function is decomposed in subproblems, one for

each layer, which can be solved in parallel.

• As highlighted in Chapter 4, some cluster schemes may lead to infeasible so-

lutions. Therefore, improvements in the clustering MILP formulation can be in

the sense of considering in more details how resources are connected (i.e., in-

stead of considering a CT Group and a CDU Group) and taking into account the

specification for crude blends defined for the charging tanks.

Also, as discussed in Kelly et al. (2017a), one might define two layers of clusters.

The first layer would be more restricted and the second one would allow a less

restrictive clustering scheme in case the first one produces an infeasible solution.

Finally, in relation to the MILP-NLP solution strategy, one may propose an iterative

approach where at the end of each iteration i the linear approximation of the

blending constraints is refined using the information obtained in the NLP solution,

and thereby improving the MILP linearization of the OMCOS MINLP model to be

used in iteration i + 1.



122

REFERENCES

ACHTERBERG, Tobias. SCIP: solving constraint integer programs. Mathematical

Programming Computation, v. 1, n. 1, p. 1–41, 2009. ISSN 1867-2957. DOI:

10.1007/s12532-008-0001-1.

AGRA, Agostinho; CHRISTIANSEN, Marielle; DELGADO, Alexandrino. Discrete time

and continuous time formulations for a short sea inventory routing problem.

Optimization and Engineering, v. 18, n. 1, p. 269–297, 2017. ISSN 1573-2924. DOI:

10.1007/s11081-016-9319-0.

AIRES, Mariza; LUCENA, Abílio; ROCHA, Roger; SANTIAGO, Cláudio;

SIMONETTI, Luidi. Optimizing the petroleum supply chain at Petrobras. In:

COMPUTER Aided Chemical Engineering. [S.l.]: Elsevier, 2004. v. 18. P. 871–876.

AIZEMBERG, Luiz; KRAMER, Hugo Harry; PESSOA, Artur Alves; UCHOA, Eduardo.

Formulations for a problem of petroleum transportation. European Journal of

Operational Research, v. 237, n. 1, p. 82–90, 2014.

ASSIS, Leonardo S.; CAMPONOGARA, Eduardo; MENEZES, Brenno C.;

GROSSMANN, Ignacio E. An MINLP formulation for integrating the operational

management of crude oil supply. Computers & Chemical Engineering, v. 123,

p. 110–125, 2019. ISSN 0098-1354.

ASSIS, Leonardo Salsano de; CAMPONOGARA, Eduardo. A MILP model for planning

the trips of dynamic positioned tankers with variable travel time. Transportation

Research Part E: Logistics and Transportation Review, v. 93, p. 372–388, 2016.

ISSN 1366-5545. DOI: http://dx.doi.org/10.1016/j.tre.2016.06.009.

ASSIS, Leonardo Salsano de; CAMPONOGARA, Eduardo; ZIMBERG, Bernardo;

FERREIRA, Enrique; GROSSMANN, Ignacio E. A piecewise McCormick

relaxation-based strategy for scheduling operations in a crude oil terminal. Computers

& Chemical Engineering, v. 106, p. 309–321, 2017. ISSN 0098-1354. DOI:

https://doi.org/10.1016/j.compchemeng.2017.06.012.

BALAS, Egon. Disjunctive Programming and a Hierarchy of Relaxations for Discrete

Optimization Problems. SIAM Journal on Algebraic Discrete Methods, v. 6, n. 3,

p. 466–486, 1985. DOI: 10.1137/0606047.



References 123

BARBOSA-PÓVOA, Ana Paula. Process Supply Chains Management-Where are We?

Where to Go Next? Frontiers in Energy Research, v. 2, p. 23, 2014. ISSN

2296-598X. DOI: 10.3389/fenrg.2014.00023.

BARBOSA-PÓVOA, Ana Paula; PINTO, José Mauricio. Process supply chains:

Perspectives from academia and industry. Computers & Chemical Engineering,

v. 132, p. 106606, 2020. ISSN 0098-1354. DOI:

https://doi.org/10.1016/j.compchemeng.2019.106606. Available from:

http://www.sciencedirect.com/science/article/pii/S0098135419301899.

BERGAMINI, Maria Lorena; AGUIRRE, Pio; GROSSMANN, Ignacio. Logic-based

outer approximation for globally optimal synthesis of process networks. Computers &

Chemical Engineering, v. 29, n. 9, p. 1914–1933, 2005. ISSN 0098-1354. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2005.04.003.

BP. BP Statistical Review of World Energy. [S.l.: s.n.], 2019. Available from:

http://www.bp.com/statiscalreview.

CAMPONOGARA, Eduardo; PLUCENIO, Agustinho. Scheduling dynamically

positioned tankers for offshore oil offloading. International Journal of Production

Research, v. 52, n. 24, p. 7251–7261, 2014. DOI: 10.1080/00207543.2014.916828.

CAPGEMINI. Creating the Integrated Value Chain for Downstream Oil. [S.l.: s.n.],

2008.

CASTILLO CASTILLO, Pedro; CASTRO, Pedro M.; MAHALEC, Vladimir. Global

Optimization Algorithm for Large-Scale Refinery Planning Models with Bilinear Terms.

Industrial & Engineering Chemistry Research, v. 56, n. 2, p. 530–548, 2017. DOI:

10.1021/acs.iecr.6b01350.

CASTRO, Pedro M. Tightening piecewise McCormick relaxations for bilinear problems.

Computers & Chemical Engineering, v. 72, p. 300–311, 2015. ISSN 0098-1354.

DOI: http://dx.doi.org/10.1016/j.compchemeng.2014.03.025.

CASTRO, Pedro M.; GROSSMANN, Ignacio E. Global Optimal Scheduling of Crude

Oil Blending Operations with RTN Continuous-time and Multiparametric

Disaggregation. Industrial & Engineering Chemistry Research, v. 53, n. 39,

p. 15127–15145, 2014. DOI: 10.1021/ie503002k.



References 124

CASTRO, Pedro M.; GROSSMANN, Ignacio E.; ZHANG, Qi. Expanding scope and

computational challenges in process scheduling. Computers & Chemical

Engineering, v. 114, p. 14–42, 2018. FOCAPO/CPC 2017. ISSN 0098-1354. DOI:

https://doi.org/10.1016/j.compchemeng.2018.01.020.

CERDÁ, Jaime; PAUTASSO, Pedro C.; CAFARO, Diego C. Efficient Approach for

Scheduling Crude Oil Operations in Marine-Access Refineries. Industrial &

Engineering Chemistry Research, v. 54, n. 33, p. 8219–8238, 2015. DOI:

10.1021/acs.iecr.5b01461.

CERDÁ, Jaime; PAUTASSO, Pedro C.; CAFARO, Diego C. Optimization Approaches

for Efficient Crude Blending in Large Oil Refineries. Industrial & Engineering

Chemistry Research, v. 57, n. 25, p. 8484–8501, 2018. DOI:

10.1021/acs.iecr.8b01008.

CHEN, Xuan; GROSSMANN, Ignacio; ZHENG, Li. A comparative study of

continuous-time models for scheduling of crude oil operations in inland refineries.

Computers & Chemical Engineering, v. 44, p. 141–167, 2012. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2012.05.009.

CHEN, Xuan; HUANG, Simin; CHEN, Dejing; ZHANG, Zhihai; ZHENG, Li;

GROSSMANN, Ignacio; CHEN, Shihui. Hierarchical Decomposition Approach for

Crude Oil Scheduling: A SINOPEC Case. Interfaces, v. 44, n. 3, p. 269–285, 2014.

DOI: 10.1287/inte.2014.0744.

CHEN, Yifu; MARAVELIAS, Christos T. Preprocessing algorithm and tightening

constraints for multiperiod blend scheduling: cost minimization. Journal of Global

Optimization, Springer, p. 1–23, 2020. DOI:

https://doi.org/10.1007/s10898-020-00882-3.

CHRISTIANSEN, Marielle; FAGERHOLT, Kjetil; NYGREEN, BjÃžrn; RONEN, David.

Ship routing and scheduling in the new millennium. European Journal of

Operational Research, v. 228, n. 3, p. 467–483, 2013.

DEMPSTER, M A H; HICKS PEDRÓN, N.; MEDOVA, E A; SCOTT, J E; SEMBOS, A.

Planning logistics operations in the oil industry. Journal of the Operational Research

Society, v. 51, n. 11, p. 1271–1288, 2000. ISSN 1476-9360. DOI:

10.1057/palgrave.jors.2601043.



References 125

DONDO, Rodolfo; CERDÁ, Jaime. A cluster-based optimization approach for the

multi-depot heterogeneous fleet vehicle routing problem with time windows. European

Journal of Operational Research, v. 176, n. 3, p. 1478–1507, 2007. ISSN 0377-2217.

DOI: https://doi.org/10.1016/j.ejor.2004.07.077.

DRUD, Arne. CONOPT: A GRG code for large sparse dynamic nonlinear optimization

problems. Mathematical Programming, Springer, v. 31, n. 2, p. 153–191, 1985.

ESCUDERO, Laureano F.; QUINTANA, Francisco J.; SALMERÓN, Javier. CORO, a

modeling and an algorithmic framework for oil supply, transformation and distribution

optimization under uncertainty. European Journal of Operational Research, v. 114,

n. 3, p. 638–656, 1999. ISSN 0377-2217. DOI:

http://dx.doi.org/10.1016/S0377-2217(98)00261-6.

FLOUDAS, Christodoulos A.; LIN, Xiaoxia. Continuous-time versus discrete-time

approaches for scheduling of chemical processes: a review. Computers & Chemical

Engineering, v. 28, n. 11, p. 2109–2129, 2004. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2004.05.002.

FOURER, R.; GAY, D.M.; KERNIGHAN, B.W. AMPL: a modeling language for

mathematical programming. [S.l.]: Thomson/Brooks/Cole, 2003.

FRAGA, C. T. C.; CAPELEIRO PINTO, A. C.; BRANCO, C. C. M.; PIZARRO, J. O. S.;

PAULO, C. A. S. Brazilian Pre-Salt: An Impressive Journey from Plans and Challenges

to Concrete Results. In: PROCEEDINGS of the Offshore Technology Conference.

[S.l.: s.n.], 2009.

GANESH, K.; NARENDRAN, T.T. CLOVES: A cluster-and-search heuristic to solve the

vehicle routing problem with delivery and pick-up. European Journal of Operational

Research, v. 178, n. 3, p. 699–717, 2007. ISSN 0377-2217. DOI:

https://doi.org/10.1016/j.ejor.2006.01.037.

GHIANI, G.; LAPORTE, G.; MUSMANNO, R. Introduction to Logistics Systems

Planning and Control. [S.l.]: Wiley, 2004. (Wiley Interscience Series in Systems and

Optimization).

GILLETT, Billy E.; MILLER, Leland R. A Heuristic Algorithm for the Vehicle-Dispatch

Problem. Operations Research, v. 22, n. 2, p. 340–349, 1974. DOI:

10.1287/opre.22.2.340.



References 126

GOUNARIS, Chrysanthos E.; MISENER, Ruth; FLOUDAS, Christodoulos A.

Computational Comparison of Piecewise-Linear Relaxations for Pooling Problems.

Industrial & Engineering Chemistry Research, v. 48, n. 12, p. 5742–5766, 2009.

DOI: 10.1021/ie8016048.

GROSSMANN, Ignacio E.; TRESPALACIOS, Francisco. Systematic modeling of

discrete-continuous optimization models through generalized disjunctive programming.

AIChE Journal, v. 59, n. 9, p. 3276–3295, 2013. ISSN 1547-5905. DOI:

10.1002/aic.14088.

GUROBI OPTIMIZATION, Inc. Gurobi Optimizer Reference Manual. [S.l.: s.n.], 2016.

Available from: http://www.gurobi.com.

GUYONNET, Pierre; GRANT, F. Hank; BAGAJEWICZ, Miguel J. Integrated Model for

Refinery Planning, Oil Procuring, and Product Distribution. Industrial & Engineering

Chemistry Research, v. 48, n. 1, p. 463–482, 2009. DOI: 10.1021/ie701712z.

HAMISU, Aminu A.; KABANTIOK, Stephen; WANG, Meihong. Refinery scheduling of

crude oil unloading with tank inventory management. Computers & Chemical

Engineering, v. 55, p. 134–147, 2013. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2013.04.003.

HASAN, M. M. Faruque; KARIMI, I.A. Piecewise linear relaxation of bilinear programs

using bivariate partitioning. AIChE Journal, v. 56, n. 7, p. 1880–1893, 2010. DOI:

10.1002/aic.12109.

IBM. IBM ILOG CPLEX Optimization Studio. [S.l.: s.n.], 2013. Available from:

http://www.cplex.com.

KARUPPIAH, Ramkumar; FURMAN, Kevin C.; GROSSMANN, Ignacio E. Global

optimization for scheduling refinery crude oil operations. Computers & Chemical

Engineering, v. 32, n. 11, p. 2745–2766, 2008. ISSN 0098-1354. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2007.11.008.

KAUFMAN, L.; ROUSSEEUW, P.J. Statistical Data Analysis Based on the L1-Norm

and Related Methods. In: [s.l.]: North-Holland, 1987. Clustering by means of Medoids,

p. 405–416.



References 127

KELLY, Jeffrey D; MENEZES, Brenno C; ENGINEER, Faramroze;

GROSSMANN, Ignacio E. Crude-oil blend scheduling optimization of an

industrial-sized refinery: a discrete-time benchmark. Foundations of Computer

Aided Process Operations, 2017a.

KELLY, Jeffrey D; MENEZES, Brenno C; GROSSMANN, Ignacio E;

ENGINEER, Faramroze. Feedstock storage assignment in process industry quality

problems. Foundations of Computer Aided Process Operations, 2017b.

LEE, Heeman; PINTO, Jose M.; GROSSMANN, Ignacio E.; PARK, Sunwon.

Mixed-Integer Linear Programming Model for Refinery Short-Term Scheduling of

Crude Oil Unloading with Inventory Management. Industrial & Engineering

Chemistry Research, v. 35, n. 5, p. 1630–1641, 1996. DOI: 10.1021/ie950519h.

LEE, In Gyu; CHUNG, Sung Hoon; YOON, Sang Won. Two-stage storage assignment

to minimize travel time and congestion for warehouse order picking operations.

Computers & Industrial Engineering, v. 139, p. 106129, 2020. ISSN 0360-8352.

DOI: https://doi.org/10.1016/j.cie.2019.106129.

LI, Jie; MISENER, Ruth; FLOUDAS, Christodoulos A. Scheduling of crude oil

operations under demand uncertainty: A robust optimization framework coupled with

global optimization. AIChE Journal, v. 58, n. 8, p. 2373–2396, 2012. DOI:

10.1002/aic.12772.

LIMA, Camilo; RELVAS, Susana; BARBOSA-PÓVOA, Ana Paula F.D. Downstream oil

supply chain management: A critical review and future directions. Computers &

Chemical Engineering, v. 92, p. 78–92, 2016. ISSN 0098-1354. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2016.05.002.

LIU, Chiun-Ming. Clustering techniques for stock location and order-picking in a

distribution center. Computers & Operations Research, v. 26, n. 10, p. 989–1002,

1999. ISSN 0305-0548. DOI: https://doi.org/10.1016/S0305-0548(99)00026-X.

MARGOT, François. Symmetry in integer linear programming. In: 50 Years of Integer

Programming 1958-2008. [S.l.]: Springer, 2010. P. 647–686.

MARQUES, Catarina M.; MONIZ, Samuel; SOUSA], Jorge Pinho [de;

BARBOSA-PÓVOA, Ana Paula; REKLAITIS, Gintaras. Decision-support challenges in

the chemical-pharmaceutical industry: Findings and future research directions.



References 128

Computers & Chemical Engineering, v. 134, p. 106672, 2020. ISSN 0098-1354.

DOI: https://doi.org/10.1016/j.compchemeng.2019.106672.

MCCORMICK, Garth P. Computability of global solutions to factorable nonconvex

programs: Part I — Convex underestimating problems. Mathematical Programming,

v. 10, n. 1, p. 147–175, 1976. DOI: 10.1007/BF01580665.

MIRÓ, Anton; POZO, Carlos; GUILLÉN-GOSÁLBEZ, Gonzalo; EGEA, Jose A;

JIMÉNEZ, Laureano. Deterministic global optimization algorithm based on outer

approximation for the parameter estimation of nonlinear dynamic biological systems.

BMC bioinformatics, Springer, v. 13, n. 1, p. 90, 2012.

MOGALE, D. G.; GHADGE, Abhijeet; KUMAR, Sri Krishna; TIWARI, Manoj Kumar.

Modelling supply chain network for procurement of food grains in India. International

Journal of Production Research, Taylor & Francis, v. 0, n. 0, p. 1–20, 2019. DOI:

10.1080/00207543.2019.1682707.

MOURET, Sylvain; GROSSMANN, Ignacio E.; PESTIAUX, Pierre. A new Lagrangian

decomposition approach applied to the integration of refinery planning and crude-oil

scheduling. Computers & Chemical Engineering, v. 35, n. 12, p. 2750–2766, 2011a.

ISSN 0098-1354. DOI: http://dx.doi.org/10.1016/j.compchemeng.2011.03.026.

MOURET, Sylvain; GROSSMANN, Ignacio E.; PESTIAUX, Pierre. A Novel Priority-Slot

Based Continuous-Time Formulation for Crude-Oil Scheduling Problems. Industrial &

Engineering Chemistry Research, v. 48, n. 18, p. 8515–8528, 2009. DOI:

10.1021/ie8019592.

MOURET, Sylvain; GROSSMANN, Ignacio E.; PESTIAUX, Pierre. Time

representations and mathematical models for process scheduling problems.

Computers & Chemical Engineering, v. 35, n. 6, p. 1038–1063, 2011b. ISSN

0098-1354. DOI: http://dx.doi.org/10.1016/j.compchemeng.2010.07.007.

MULVEY, John M.; BECK, Michael P. Solving capacitated clustering problems.

European Journal of Operational Research, v. 18, n. 3, p. 339–348, 1984. ISSN

0377-2217. DOI: https://doi.org/10.1016/0377-2217(84)90155-3.

NAKANO, C. M. F.; CAPELEIRO PINTO, A. C.; MARCUSSO, J. L.; MINAMI, K.

Pre-Salt Santos Basin - Extended Well Test and Production Pilot in the Tupi Area - The



References 129

Planning Phase. In: OFFSHORE TECHNOLOGY CONFERENCE. PROCEEDINGS of

the Offshore Technology Conference. [S.l.: s.n.], 2009.

NAMBIRAJAN, Ramkumar; MENDOZA, Abraham; PAZHANI, Subramanian;

NARENDRAN, T.T.; GANESH, K. CARE: Heuristics for two-stage multi-product

inventory routing problems with replenishments. Computers & Industrial

Engineering, v. 97, p. 41–57, 2016. ISSN 0360-8352. DOI:

https://doi.org/10.1016/j.cie.2016.04.004. Available from:

http://www.sciencedirect.com/science/article/pii/S0360835216301073.

NEGREIROS, Marcos; PALHANO, Augusto. The capacitated centred clustering

problem. Computers & Operations Research, v. 33, n. 6, p. 1639–1663, 2006. ISSN

0305-0548. DOI: https://doi.org/10.1016/j.cor.2004.11.011.

NEIRO, Sérgio M. S.; PINTO, José M. Multiperiod Optimization for Production Planning

of Petroleum Refineries. Chemical Engineering Communications, v. 192, n. 1,

p. 62–88, 2005. DOI: 10.1080/00986440590473155.

NEIRO, Sérgio M.S.; PINTO, José M. A general modeling framework for the

operational planning of petroleum supply chains. Computers & Chemical

Engineering, v. 28, 67, p. 871–896, 2004. ISSN 0098-1354. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2003.09.018.

NEIRO, Sergio Mauro da Silva; MURATA, Valéria Viana; JAHN, Bárbara;

ROLAND SEIXAS, Raiana; HORN HOLLMANN, Estefane;

SALGADO PEREIRA, Cristiane. Dealing with Multiple Tank Outflows and In-Line

Blending in Continuous-Time Crude Oil Scheduling Problems. Industrial &

Engineering Chemistry Research, v. 58, n. 11, p. 4495–4510, 2019. DOI:

10.1021/acs.iecr.8b03749.

NEMHAUSER, GL; WOLSEY, LA. Integer and Combinatorial Optimization John

Wiley & Sons, Inc. [S.l.]: Hoboken, New Jersey, 1988.

OLIVEIRA, F.; NUNES, P.M.; BLAJBERG, R.; HAMACHER, S. A framework for crude

oil scheduling in an integrated terminal-refinery system under supply uncertainty.

European Journal of Operational Research, v. 252, n. 2, p. 635–645, 2016. ISSN

0377-2217. DOI: http://dx.doi.org/10.1016/j.ejor.2016.01.034.



References 130

AL-OTHMAN, Wafa B.E.; LABABIDI, Haitham M.S.; ALATIQI, Imad M.;

AL-SHAYJI, Khawla. Supply chain optimization of petroleum organization under

uncertainty in market demands and prices. European Journal of Operational

Research, v. 189, n. 3, p. 822–840, 2008. ISSN 0377-2217. DOI:

http://dx.doi.org/10.1016/j.ejor.2006.06.081.

PAPAGEORGIOU, Dimitri J; TRESPALACIOS, Francisco. Pseudo basic steps: bound

improvement guarantees from Lagrangian decomposition in convex disjunctive

programming. EURO Journal on Computational Optimization, Springer, v. 6, n. 1,

p. 55–83, 2018.

PAPAGEORGIOU, Dimitri J.; CHEON, Myun-Seok; HARWOOD, Stuart;

TRESPALACIOS, Francisco; NEMHAUSER, George L. Recent Progress Using

Matheuristics for Strategic Maritime Inventory Routing. In: Modeling, Computing and

Data Handling Methodologies for Maritime Transportation. Ed. by

Charalampos Konstantopoulos and Grammati Pantziou. [S.l.]: Springer International

Publishing, 2018. P. 59–94. ISBN 978-3-319-61801-2. DOI:

10.1007/978-3-319-61801-2_3.

PAPAGEORGIOU, Lazaros G. Supply chain optimisation for the process industries:

Advances and opportunities. Computers & Chemical Engineering, v. 33, n. 12,

p. 1931–1938, 2009. ISSN 0098-1354. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2009.06.014.

PINTO, J.M.; JOLY, M.; MORO, L.F.L. Planning and scheduling models for refinery

operations. Computers & Chemical Engineering, v. 24, 90, p. 2259–2276, 2000.

ISSN 0098-1354. DOI: http://dx.doi.org/10.1016/S0098-1354(00)00571-8.

QI, Mingyao; LIN, Wei-Hua; LI, Nan; MIAO, Lixin. A spatiotemporal partitioning

approach for large-scale vehicle routing problems with time windows. Transportation

Research Part E: Logistics and Transportation Review, v. 48, n. 1, p. 248–257,

2012. Select Papers from the 19th International Symposium on Transportation and

Traffic Theory. ISSN 1366-5545. DOI:

https://doi.org/10.1016/j.tre.2011.07.001.

RAMKUMAR, N. Mathematical models and heuristics for a class of inventory routing

problems. Master’s thesis. Department of Management Studies, Indian Institute

of Technology Madras, 2011.



References 131

REDDY, P. Chandra Prakash; KARIMI, I. A.; SRINIVASAN, R. Novel solution approach

for optimizing crude oil operations. AIChE Journal, v. 50, n. 6, p. 1177–1197, 2004.

ISSN 1547-5905. DOI: 10.1002/aic.10112.

REDDY, P.Chandra Prakash; KARIMI, I.A.; SRINIVASAN, R. A new continuous-time

formulation for scheduling crude oil operations. Chemical Engineering Science,

v. 59, n. 6, p. 1325–1341, 2004. ISSN 0009-2509. DOI:

http://dx.doi.org/10.1016/j.ces.2004.01.009.

REJOWSKI, R.; PINTO, J.M. Efficient MILP formulations and valid cuts for multiproduct

pipeline scheduling. Computers & Chemical Engineering, v. 28, n. 8, p. 1511–1528,

2004. ISSN 0098-1354. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2003.12.001.

ROCHA, Roger; GROSSMANN, Ignacio E; POGGI DE ARAGÃO, Marcus VS.

Petroleum allocation at PETROBRAS: Mathematical model and a solution algorithm.

Computers & Chemical Engineering, v. 33, n. 12, p. 2123–2133, 2009.

ROCHA, Roger; GROSSMANN, Ignacio E.; ARAGÃO, Marcus V. S. Poggi de.

Petroleum supply planning: reformulations and a novel decomposition algorithm.

Optimization and Engineering, v. 18, n. 1, p. 215–240, 2017. ISSN 1573-2924. DOI:

10.1007/s11081-017-9349-2.

ROCHA, Roger; GROSSMANN, Ignacio E.; POGGI DE ARAGÃO, Marcus V. S.

Cascading Knapsack Inequalities: reformulation of a crude oil distribution problem.

Annals of Operations Research, v. 203, n. 1, p. 217–234, 2013. ISSN 1572-9338.

DOI: 10.1007/s10479-011-0857-8.

RODRIGUES, Filipe; AGRA, Agostinho; CHRISTIANSEN, Marielle;

HVATTUM, Lars Magnus; REQUEJO, Cristina. Comparing techniques for modeling

uncertainty in a maritime inventory routing problem. European Journal of

Operational Research, v. 277, n. 3, p. 831–845, 2019. ISSN 0377-2217. DOI:

https://doi.org/10.1016/j.ejor.2019.03.015.

RONEN, D. Marine inventory routing: shipments planning. Journal of the Operational

Research Society, v. 53, n. 1, p. 108–114, 2002. ISSN 1476-9360. DOI:

10.1057/palgrave.jors.2601264.



References 132

RONEN, David. Cargo ships routing and scheduling: Survey of models and problems.

European Journal of Operational Research, v. 12, n. 2, p. 119–126, 1983.

SAHEBI, Hadi; NICKEL, Stefan; ASHAYERI, Jalal. Strategic and tactical mathematical

programming models within the crude oil supply chain context - A review. Computers

& Chemical Engineering, v. 68, p. 56–77, 2014. ISSN 0098-1354. DOI:

http://dx.doi.org/10.1016/j.compchemeng.2014.05.008.

SAHINIDIS, N. V. BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear

Programs, User’s Manual. [S.l.], 2014.

SHAH, N. Mathematical programming techniques for crude oil scheduling. Computers

& Chemical Engineering, v. 20, s1227–s1232, 1996. ISSN 0098-1354. DOI:

https://doi.org/10.1016/0098-1354(96)00212-8.

SILVA, Thiago Lima; CAMPONOGARA, Eduardo. A computational analysis of

multidimensional piecewise-linear models with applications to oil production

optimization. European Journal of Operational Research, v. 232, n. 3, p. 630–642,

2014. ISSN 0377-2217. DOI: http://dx.doi.org/10.1016/j.ejor.2013.07.040.

SIMCHI-LEVI, D.; KAMINSKY, P.; SIMCHI-LEVI, E. Designing and Managing the

Supply Chain: Concepts, Strategies, and Case Studies. [S.l.]: McGraw-Hill/Irwin,

2008.

SONG, Jin-Hwa; FURMAN, Kevin C. A maritime inventory routing problem: Practical

approach. Computers & Operations Research, v. 40, n. 3, p. 657–665, 2013. ISSN

0305-0548. DOI: http://dx.doi.org/10.1016/j.cor.2010.10.031.

SONG, Yingkai; MENEZES, Brenno C.; GARCIA-HERREROS, Pablo;

GROSSMANN, Ignacio E. Scheduling and Feed Quality Optimization of Concentrate

Raw Materials in the Copper Refining Industry. Industrial & Engineering Chemistry

Research, v. 57, n. 34, p. 11686–11701, 2018. DOI: 10.1021/acs.iecr.8b01512.

TRESPALACIOS, Francisco; GROSSMANN, Ignacio E. Review of Mixed-Integer

Nonlinear and Generalized Disjunctive Programming Methods. Chemie Ingenieur

Technik, v. 86, n. 7, p. 991–1012, 2014. ISSN 1522-2640. DOI:

10.1002/cite.201400037.



References 133

WICAKSONO, Danan Suryo; KARIMI, IA. Modeling piecewise under- and

overestimators for bilinear process network synthesis via mixed-integer linear

programming. In: 18TH European Symposium on Computer-Aided Process

Engineering-ESCAPE18, Lyon, France. [S.l.: s.n.], 2008.

YANG, Haokun; BERNAL, David E.; FRANZOI, Robert E.; ENGINEER, Faramroze G.;

KWON, Kysang; LEE, Sechan; GROSSMANN, Ignacio E. Integration of crude-oil

scheduling and refinery planning by Lagrangean Decomposition. Computers &

Chemical Engineering, v. 138, p. 106812, 2020. ISSN 0098-1354. DOI:

https://doi.org/10.1016/j.compchemeng.2020.106812.
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APPENDIX A – PIECEWISE MCCORMICK ENVELOPES REFORMULATION

This appendix describes the MILP reformulation of the disjunctive set of equa-
tions given by Eqs. (72)-(76), which approximate the bilinear terms using bivariate piece-
wise McCormick envelopes. Before discussing each equation, the complete MILP formu-
lation is given, which consists of the following equations for all i ∈ T , r ∈ RS ∪RC, v ∈
Or , c ∈ C:

ηRHS
i ,r ,v ,c ≥

∑

q∈Q

∑

p∈P

(VT i ,v ,q lcri ,r ,v ,c,q,p + LCR i ,r ,c,pvti ,r ,v ,c,q,p – VT i ,v ,qLCR i ,r ,c,pyRHS
i ,r ,v ,c,q,p), (132)

ηRHS
i ,r ,v ,c ≥

∑

q∈Q

∑

p∈P

(VT i ,v ,q lcri ,r ,v ,c,q,p + LCR i ,r ,c,pvti ,r ,v ,c,q,p – VT i ,v ,qLCR i ,r ,c,pyRHS
i ,r ,v ,c,q,p), (133)

ηRHS
i ,r ,v ,c ≤

∑

q∈Q

∑

p∈P

(VT i ,v ,q lcri ,r ,v ,c,q,p + LCR i ,r ,c,pvti ,r ,v ,c,q,p – VT i ,v ,qLCR i ,r ,c,pyRHS
i ,r ,v ,c,q,p), (134)

ηRHS
i ,r ,v ,c ≤

∑

q∈Q

∑

p∈P

(VT i ,v ,q lcri ,r ,v ,c,q,p + LCR i ,r ,c,pvti ,r ,v ,c,q,p – VT i ,v ,qLCR i ,r ,c,pyRHS
i ,r ,v ,c,q,p), (135)





lcri ,r ,c =
∑

q∈Q

∑
p∈P

lcri ,r ,v ,c,q,p

vti ,v =
∑

q∈Q

∑
p∈P

vti ,r ,v ,c,q,p
(136)

{
yRHS

i ,r ,v ,c,q,pLCR i ,r ,c,p ≤ lcri ,r ,v ,c,q,p ≤ LCR i ,r ,c,pyRHS
i ,r ,v ,c,q,p

yRHS
i ,r ,v ,c,q,pVT i ,v ,q ≤ vti ,r ,v ,c,q,p ≤ VT i ,v ,qyRHS

i ,r ,v ,c,q,p

q ∈ Q, p ∈ P, (137)

∑

q∈Q

∑

p∈P

yRHS
i ,r ,v ,c,q,p = 1, (138)

yRHS
i ,r ,v ,c,q,p ∈ {0, 1}, q ∈ Q, p ∈ P, (139)

LCR i ,r ,c ≤ lcri ,r ,c ≤ LCR i ,r ,c , (140)

VT i ,v ≤ vti ,v ≤ VT i ,v , (141)

Eqs. (74) and (75). (142)

Eq. (138) states that only one domain partition [q, p] of the bilinear term ηRHS
i ,r ,v ,c

must be selected. The selection of a domain partition (yRHS
i ,r ,v ,c,q,p = 1) activates the set

of envelopes defined in Eqs. (132) to (135), which approximates the bilinear function

ηRHS
i ,r ,v ,c = vti ,v lcri ,r ,c over the domain partition [q, p].

Notice that for a domain partition [q, p] not selected, in which case yRHS
i ,r ,v ,c,q,p = 0,

the constants on the right-hand side of Eqs. (132)-(135) will be driven to zero. More-

over, the bo und constraints (137) will bring the variables lcri ,r ,v ,c,q,p and vti ,r ,v ,c,q,p

to zero, thereby forcing the bilinear term ηRHS
i ,r ,v ,c also to zero. For each partition [q, p],

Eqs. (137) ensure that the variables lcri ,r ,v ,c,q,p and vti ,r ,v ,c,q,p are bounded by the pa-

rameters [LCRi ,r ,c,p, LCRi ,r ,c,p] and [VT i ,v ,q, VT i ,v ,q]. These parameters are defined

respectively in Eqs. (74) and (75).

Eqs. (136) state that the variables lcri ,r ,v ,c,q,p and vti ,r ,v ,c,q,p will respectively

assume the values of the original variables of the model lcri ,r ,c and vti ,v , provided that
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the partition [q, p] is selected. For all other partitions, the former variables are forcibly

set to zero.

Finally, overall bounds on variables lcri ,r ,c and vti ,v are imposed by Eqs. (140)

and (141).
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