
UNIVERSIDADE FEDERAL DE SANTA CATARINA
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E

SISTEMAS

Daniel Bristot de Oliveira

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Pisa
2020



Daniel Bristot de Oliveira

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Tese submetida ao Programa de Pós-Graduação
em Engenharia de Automação e Sistemas da Univer-
sidade Federal de Santa Catarina para a obtenção do tí-
tulo de Doutor em Engenharia de Automação e Sis-
temas.
Orientador: Prof. Rômulo Silva de Oliveira, Dr.
Coorientador: Prof. Tommaso Cucinotta, Dr.

Pisa
2020



Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Bristot de Oliveira, Daniel
   Automata-based Formal Analysis and Verification of the
Real-Time Linux Kernel / Daniel Bristot de Oliveira ;
orientador, Rômulo Silva de Oliveira, coorientador, Tommaso
Cucinotta, 2020.
   144 p.

   Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2020.

   Inclui referências. 

   1. Engenharia de Automação e Sistemas. 2. Tempo Real. 3.
Kernel do Linux. 4. Metodos Formais. 5. Verificação. I.
Silva de Oliveira, Rômulo. II. Cucinotta, Tommaso. III.
Universidade Federal de Santa Catarina. Programa de Pós
Graduação em Engenharia de Automação e Sistemas. IV. Título.



Daniel Bristot de Oliveira

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Prof. Marco Di Natale, Dr.
Scuola Superiore Sant’Anna

Prof. Giuseppe Lipari, Dr.
University of Lille

Prof. Rivalino Matias Junior, Dr.
Universidade Federal de Uberlândia

Prof. Márcio Bastos Castro, Dr.
Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi
julgado adequado para obtenção do título de Doutor em Engenharia de Automação e
Sistemas.

Prof. Werner Kraus Junior, Dr.
Coordenação do Programa de

Pós-Graduação

Prof. Rômulo Silva de Oliveira, Dr.
Orientador

Pisa, 2020.



To my adivisors, Tommaso and Rômulo.



ACKNOWLEDGEMENTS

In the first place, I would like to thank my friends and family for supporting me
during the development of this research. In particular, I would like to thank Alessandra
de Oliveira for motivating me to pursue a Ph.D. degree since I was a teenager. But also
for allowing me to use her computer, which was “my” first computer. I also would like to
thank Bianca Cartacci, for the unconditional support in the hardest days of these last
years.

I would like to thank Red Hat, Inc. for allowing me to continue my academic
research in concurrency with my professional life. I would also like to thank the pro-
fessionals that motivated me to remain in the academy and supported this research,
including Nelson Campaner, Steven Rostedt, Juri Lelli and Arnaldo Carvalho de Mello.
In special, I would like to thank Clark Williams, not only for his effort in supporting my
research at Red Hat but, mainly, for his adivises and personal support.

I would like to thank my Ph.D. colleagues from UFSC and Sant’Anna, in special
Karila Palma Silva, Marco Pagani, Paolo Pazzaglia and Daniel Casini, all the members
of the Retis Lab, and the administrave staff of the TeCIP institute at Sant’Anna and
the PPGEAS at UFSC for the support in the cotutela agreement, in special for Enio
Snoeijer.

Finally, and most importantly, I dedicate this work to my advisors. Thanks, Pro-
fessor Tommaso Cucinotta and Professor Rômulo Silva de Oliveira for supporting me
and guiding me in this journey, not only as an academic but as a human as well.



“Este Cargo foi a Lua e voltou.”
(Unknown author.)



RESUMO

Sistemas de tempo real são sistemas computacionais em que o comportamento cor-
reto não depende apenas do comportamento lógico, mas também do comportamento
temporal. Na teoria de sistemas de tempo real, um sistema é uma abstração, mode-
lada usando um conjunto de variáveis que descrevem tão somente o comportamento
temporal de seus componentes. O Linux é uma implementação de um sistema opera-
cional (SO), que atualmente suporta algumas das abstrações fundamentais da teoria
sistemas de tempo real. Apesar de todas as melhorias da última década, classificar o
Linux como um SO de tempo real ainda é uma fonte de atrito entre as comunidades
de desenvolvimento do Linux e da teoria de sistemas de tempo real. O principal mo-
tivo para este conflito está na análise empírica feitas pelos desenvolvedores do Linux,
visto que na teoria, espera-se que as propriedades de um sistema derivem de uma
descrição matemática de seu comportamento. Geralmente, um conjunto rigoroso de
provas se faz necessário antes de obter qualquer conclusão sobre a previsibilidade
do comportamento de tempo de execução de um sistema de tempo real. A diferença
entre o Linux de tempo real e a teoria de tempo real nasce na complexidade do ker-
nel do Linux. Isto se dá pelo grande esforço necessário para se entender todas as
restrições impostas às tarefas de tempo real no Linux. O desafio é então descrever
essas operações, usando um nível de abstração que remova a complexidade inerente
ao código do kernel. Esta descrição deve utilizar-se de formato formal que facilite o
entendimento da dinâmica do Linux pelos pesquisadores, sem ficar muito longe da
maneira como os desenvolvedores observam e melhoram o Linux. Portanto, para mel-
horar a análise e verificação do Linux de tempo real, esta tese apresenta um modelo
formal de sincronização de threads para o kernel PREEMPT_RT do Linux. Esse mod-
elo é construído com base na teoria de autômatos, usando uma abordagem modular
que permite a criação de um modelo baseado em um conjunto de subsistemas in-
dependentes e nas especificações que definem seu comportamento sincronizado. A
tese também apresenta uma metodologia de modelagem, incluindo a estratégia de
validação e ferramentas que comparam o modelo com a execução real do sistema.
Esse modelo é usado como base para a criação de uma metodologia de verificação
em tempo de execução para o kernel do Linux. O método de verificação em tempo de
execução usa a geração automática de código do modelo para facilitar o desenvolvi-
mento do sistema de monitoramento. Além disso, este método utiliza-se dos recursos
de tracing dinâmico do Linux para permitir a verificação on-the-fly do sistema, com
uma baixa sobrecarga do sistema. Por fim, a modelagem formal do comportamento do
kernel é usada como uma etapa intermediária, facilitando o entendimento das regras
e propriedades que regem o comportamento de temporização das tarefas do Linux.
Por fim, um conjunto de especificações do modelo é utilizado como uma passo lógico
na definição de um conjunto de regras e propriedades que definem o comportamento
de tempo das tarefas do Linux. Essas propriedades são usadas na definição formal
dos componentes e na composição da principal métrica usada pelos desenvolvedores
do Linux de tempo real, a latência de escalonamento, no mesmo nível de abstração
usado pelos pesquisadores de tempo real. Os valores para essas variáveis são então
medidos e analisados por uma ferramenta proposta nesta tese.

Palavras-chave: Tempo real. Kernel do Linux. Métodos formais. Automatos. Verifi-
cação.



RESUMO EXPANDIDO

Sistemas de tempo real são sistemas de computacionais que a corretude não depende
apenas do comportamento lógico, mas também do comportamento temporal. Em out-
ras palavras, a resposta a uma solicitação está correta apenas se o resultado lógico
estiver correto e produzido dentro de um tempo limite ou deadline. Caso contrário, o
sistema apresentará uma falha (BUTTAZZO, 2011).

Na teoria de escalonamento de tempo real um sistema é uma abstração, modelada
usando um conjunto de variáveis que descrevem tão somente o comportamento tem-
poral de seus componentes. Por exemplo, geralmente um sistema é composto por
um conjunto de n tarefas τ = {τ1, τ2, ..., τn}. Cada tarefa é definida com um conjunto
de variáveis definidas pelo modelo de tarefa do sistema. Por exemplo, no modelo de
tarefa esporádico, cada tarefa τi é caracterizada por um tempo mínimo entre chegadas
Pi e um tempo de execução Ci . Essas tarefas são escalonadas em um conjunto
de m processadores ρ = {ρ1, ρ2, ..., ρm} e também podem compartilhar q recursos
σ = {σ1,σ2, ...,σq} que requerem exclusão mútua. Nesse contexto, o principal objetivo
do escalonador é atribuir, de alguma forma, o tempo dos processadores de ρ e os
recursos de σ às tarefas de τ a fim de concluir todas as ativações de todas as tarefas
de τ cumprindo as restrições de tempo de cada tarefa. A demonstração de que um
determinado algoritmo de escalonamento cumpre esse objetivo é feita por métodos
analíticos conhecidos como análise de escalonamento.

Linux como um sistema operacional de tempo real

O Linux é uma implementação de um sistema operacional (SO) que atualmente su-
porta algumas das abstrações fundamentais da teoria de escalonamento de tempo
real. No Linux, do ponto de vista do escalonador, as tarefas são as threads. O objetivo
dos escalonadores é atribuir o tempo dos processadores às threads do sistema. Com
o SCHED_DEADLINE (LELLI et al., 2016), o Linux suporta o modelo de tarefa es-
porádico, permitindo a configuração do tempo de execução e do período, equivalentes
ao Ci e Pi , de uma determinada thread. Outra tecnologia importante que habilita o
Linux para sistemas de tempo real é o PREEMPT_RT. Os desenvolvedores do PRE-
EMPT_RT reformularam extensivamente o kernel do Linux para reduzir as seções de
código que poderiam atrasar o escalonamento da thread de mais alta prioridade, com
o objetivo de transformar o Linux em um sistema operacional preemptivo, aproximando
o comportamento Linux ao dos sistemas preemptivos teóricos. Essa característica
permite o uso do Linux para uma ampla variedade de aplicações que requerem baixa
latência na resposta a uma solicitação. De fato, o Linux de tempo real tem sido usado
com sucesso em vários projetos acadêmicos e industriais, desde infra-estruturas dis-
tribuídas e orientadas a serviços (VARDHAN et al., 2009), robótica (GUTIÉRREZ et al.,
2018), redes de sensores (DUBEY; KARSAI; ABDELWAHED, 2009) e automação in-
dustrial (CUCINOTTA et al., 2009), até no controle de drones militares (CONDLIFFE,
2014) e sistemas de bolsas de valores (CORBET, J., 2010).

Apesar de todas as melhorias da última década, classificar o Linux como um sistema
operacional de tempo real ainda é uma fonte de conflito entre os desenvolvedores
do Linux e a academia. Em resumo, existem dois pontos principais de divergência: a



maneira como o Linux é analisado e as suposições usadas no desenvolvimento de
novos algoritmos teóricos.

O uso frequente de suposições como as tarefas são completamente independentes e
as operações são atômicas (BRANDENBURG, B. B.; ANDERSON, J. H., 2007; CALAN-
DRINO et al., 2006) são consideradas uma simplificação excessiva do comportamento
de um sistema moderno pelos desenvolvedores do kernel do Linux (GLEIXNER, 2010).
No Linux, as tarefas podem interferir entre si de uma maneira não negligenciável. Estas
interferências causam atrasos, como por exemplo, o atraso que sofre a tarefa de mais
alta prioridade em começar a sua execução. Esse atraso é conhecido como atraso
de escalonamento ou latência de escalonamento. Reduzir o atraso de escalonamento
é a meta principal dos desenvolvedores do PREEMPT_RT. Os desenvolvedores do
PREEMPT_RT medem este atraso usando o cyclictest. O cyclictest simula uma
tarefa de mais alta prioridade e mede a diferença entre o tempo esperado para o início
da sua execução e o tempo efetivo de início da execução, deste modo, medindo o
atraso de escalonamento.

Apesar de ser útil, a forma com que o cyclictest mede o atraso de escalonamento é
considerada uma simplificação excessiva do problema pela academia. Para a academia,
as propriedades de um sistema de tempo real devem derivar de uma descrição
matemática do seu comportamento. Além do mais, um conjunto rigoroso de provas
é necessário para qualquer conclusão sobre a previsibilidade do comportamento de
tempo de execução de um sistema.

A diferença entre o Linux de tempo real e a teoria de tempo real nasce na complexidade
do kernel do Linux. O esforço necessário para entender todas as restrições impostas
às tarefas de tempo real no Linux não é desprezível. Pode levar anos para um ini-
ciante entender os aspectos internos do kernel do Linux. A complexidade é de fato
uma barreira, não apenas para pesquisadores, mas também para desenvolvedores. O
entendimento das primitivas de sincronização e como elas afetam o comportamento
temporal das threads é fundamental para a definição do Linux nos termos da teoría
de sistemas de tempo real. O desafio então é descrever essas operações, usando um
nível de abstração que remova a complexidade do código no kernel, sem perder em
detalhes.

Métodos formais, modelos formais e runtime verification

Os métodos formais consistem em uma coleção de técnicas matemáticas utilizadas
na especificação de um sistema. As especificações de um sistema podem ser usadas
para vários propósitos. Por exemplo, para fornecer uma prova rigorosa de que o pro-
grama implementado satisfaz algumas propriedades. A vantagem de usar a notação
matemática é que ela remove a natureza ambígua da linguagem natural enquanto
permite a verificação automática do sistema.

Apesar dos argumentos a favor do uso de métodos formais, a sua aplicação é geral-
mente restrita a setores específicos. As razões mais comumente citadas para tal são
a complexidade da notação matemática usada nas especificações e os requisitos de
espaço em memória e tempo de processamento necessários para a verificação de um
sistema usando métodos formais.

Um modelo é uma abstração (um conjunto de equações matemáticas) de um sistema,
enquanto um sistema é algo real, por exemplo, um amplificador, um carro, uma fábrica,



um corpo humano, etc. O processo de modelagem de um sistema envolve a definição
de um conjunto de variáveis mensuráveis associadas ao sistema em questão. Fre-
qüentemente, o modelo apenas aproxima o comportamento completo do sistema. A
adequação é um aspecto crucial durante a definição do nível de abstração usado no
modelo. A adequação de um modelo determina com que eficácia ele representa o com-
portamento subjacente do sistema (O’REGAN, 2017). Os termos sistema e modelo
podem ser usados alternadamente quando um modelo adequado é encontrado.

Portanto, representa um desafio para este trabalho definir um nível de abstração ade-
quado que, ao mesmo tempo, explique o comportamento em tempo de execução das
tarefas de tempo real do Linux, evitando a conhecida limitação dos métodos formais.

Entre as técnicas disponíveis para a aplicação de métodos formais, foi escolhida a téc-
nica de runtime verification (RV) devido à natureza do tempo de execução do modelo
proposto. Runtime verification é um método leve, porém rigoroso, que complementa as
técnicas de verificação exaustivas clássicas (como model checking e theorem proving)
com uma abordagem mais prática. Ao preço de uma cobertura de execução limitada,
que analisa uma única execução trace de um sistema, RV pode fornecer informações
precisas sobre o comportamento em tempo de execução do sistema monitorado (FAL-
CONE et al., 2018).

Objetivo

Com o objetivo de melhorar a análise e verificação do kernel Linux de tempo real,
esta tese propõe a criação de um modelo formal para as tarefa do Linux, incluindo as
primitivas de sincronização que influenciam seu comportamento temporal. Este modelo
deve permitir a verificação formal do comportamento lógico do sistema, bem como a
análise formal do seu comportamento temporal.

Contribuições

As contribuições desta tese para o estado da arte estão divididas em três etapas,
descritas a seguir.

Um modelo formal para as sincronização das threads do Linux de tempo real

Esta etapa compreende o desenvolvimento de um modelo formal para as sincronização
das threads do Linux de tempo real, e inclui:

• a definição de uma metodologia de modelagem usando a teoria dos autômatos e
a abordagem modular;

• o modelo de sincronização das threads para o kernel PREEMPT_RT Linux;

• uma ferramenta de verificação de tempo de execução offline que pode ser usada
na validação de modelo e na verificação de tempo de execução do kernel.

Um método eficiente para a verificação formal do kernel do Linux

Esta etapa compreende o aperfeiçoamento da técnica de verificação, possibilitando a
verificação do comportamento lógico do sistema eficientemente em tempo de execução,
e inclui:



• o desenvolvimento de uma abordagem dinâmica de verificação em tempo de exe-
cução para o kernel Linux, permitindo o monitoramento do sistema em produção;

• o desenvolvimento de uma ferramenta de geração automática de código do kernel
a partir de um modelo de autômato;

• a análise de desempenho do método, demonstrando seu baixo impacto no de-
sempenho do sistema.

Análise temporal do comportamento do kernel do Linux

A última etapa utiliza o modelo proposto anteriormente para extrair um conjunto de
regras e propriedades que definem o comportamento de temporal do atraso de escalon-
amento. As principais contribuições desta etapa são:

• a definição de um conjunto de regras e propriedades sobre a dinâmica básica de
sincronização do kernel Linux, necessária para a definição formal do atraso de
escalonamento;

• a definição formal do conjunto de variáveis e da equação que define o atraso de
escalonamento da tarefa de mais alta prioridade;

• uma ferramenta eficiente utilizada na medição e análise do atraso de escalona-
mento.

Considerações finais

O desenvolvimento de um modelo abstrato usando métodos formais foi uma resposta
natural para desvendar a complexidade do Linux de uma maneira determinística. A
simplicidade do formato dos autômatos e a flexibilidade da abordagem modular foram
a combinação perfeita para conectar essas três áreas complexas: o kernel do Linux,
a teoria dos sistemas em tempo real e os métodos formais. Com relação ao compor-
tamento lógico, o formalismo dos autômatos tornou possível a verificação com baixo
overhead. Com relação ao comportamento temporal, a definição formal do conjunto
de variáveis e da equação que define o atraso de escalonamento da tarefa de mais
alta prioridade permitiu a análise do Linux usando um método aceito pela comunidade
acadêmica, algo que era fonte de atrito por mais de uma década (BRANDENBUG;
ANDERSON, 2009). É importante observar que esse problema permaneceu aberto
não por causa de uma rivalidade, mas por causa da complexidade de traduzir o com-
portamento do kernel para o formalismo de escalonamento de tempo real.



ABSTRACT

Real-time systems are computing systems where the correct behavior does not depend
only on the functional behavior, but also on the timing behavior. In the real-time schedul-
ing theory, a system is an abstraction, modeled using a set of variables that describe
the sole timing behavior of its components. Linux is an implementation of an operating
system (OS), that nowadays supports some of the fundamental abstractions from the
real-time scheduling theory. Despite all improvements of the last decade, classifying
Linux as a real-time operating system (RTOS) is still a source of conflict between real-
time Linux and scheduling communities. The central reasons for this conflict lie in the
empirical analysis of the timing properties of Linux made by practitioners, as it is ex-
pected that the properties of a real-time system derive from a mathematical description
of the behavior of the system. Generally, a rigorous set of proofs is required for any con-
clusion about the predictability of the runtime behavior of a real-time system. The gap
between the real-time Linux and real-time theory roots in the Linux kernel complexity.
The amount of effort required to understand all the constraints imposed on real-time
tasks on Linux is not negligible. The challenge is then to describe such operations,
using a level of abstraction that removes the complexity due to the in-kernel code. The
description must use a formal format that facilitates the understanding of Linux dynam-
ics for real-time researchers, without being too far from the way developers observe and
improve Linux. Hence, to improve the real-time Linux runtime analysis and verification,
this thesis presents a formal thread synchronization model for the PREEMPT_RT Linux
kernel. This model is built upon the automata formalism, using a modular approach that
enables the creation of a model based on a set of independent sub-systems and the
specifications that define their synchronized behavior. The thesis also presents a viable
modeling methodology, including the validation strategy and tooling that compares the
model against the real execution of the system. This model is then used as the base
for the creation of a runtime verification of the method for the Linux kernel. The runtime
verification method uses automatic code generation from the model to facilitate the
development of the monitoring system. Moreover, it uses the dynamic tracing features
of Linux to enable on-the-fly verification of the system, at a low overhead. Finally, the
formal modeling of the kernel behavior is used as an intermediary step, facilitating the
understanding of the rules and properties that rule the timing behavior of Linux tasks.
These properties are then used in the formal definition of the components and compo-
sition of the main metric used by the real-time Linux developers, the scheduling latency,
in the same level of abstraction used by real-time researchers. The values for these
variables are then measured and analyzed by a tool proposed in this thesis.

Keywords: Real-time Systems. Linux kernel. Formal methods. Automata. Runtime
Verification.



LIST OF FIGURES

Figure 1 – Thesis approach and contributions. . . . . . . . . . . . . . . . . . . . 27
Figure 2 – Response-time analysis abstractions in a timeline. . . . . . . . . . . 32
Figure 3 – ftrace output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 4 – Trace timeflow output example. . . . . . . . . . . . . . . . . . . . . 43
Figure 5 – Non-maskable interruption timeline. . . . . . . . . . . . . . . . . . . 44
Figure 6 – Maskable interruption timeline. . . . . . . . . . . . . . . . . . . . . . 44
Figure 7 – Real-time thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 8 – Forms of thread interference. . . . . . . . . . . . . . . . . . . . . . . 46
Figure 9 – Forms of thread blocking. . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 10 – System and Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 11 – Example of automaton. . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 12 – Example of Petri net. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 13 – Monolithic generator G of the washer and dryer machine. . . . . . . 58
Figure 14 – Monolithic specification model S of the washer and dryer machine. . 59
Figure 15 – S/G of the washer and dryer machine. . . . . . . . . . . . . . . . . . 59
Figure 16 – Generator: Gdoor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 17 – Generator: Gwash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 18 – Generator: Gdry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 19 – Specification: S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 20 – Specification: S2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 21 – Specification: S3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 22 – Specification: S4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 23 – Modular generator G of the washer and dryer machine. . . . . . . . 60
Figure 24 – Modular specification S of the washer and dryer machine. . . . . . . 61
Figure 25 – Modular model S/G of the washer and dryer machine. . . . . . . . . 61
Figure 26 – Modeling approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 27 – Examples of generators: G05 need resched (left) and G04 Schedul-

ing context (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 28 – Examples of generators: G01 sleepable and runnable. . . . . . . . . 80
Figure 29 – Sets of sequences of event. . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 30 – perf task_model report dynamic. . . . . . . . . . . . . . . . . . . . 82
Figure 31 – perf_tool definition inside the task_model structure. . . . . . . . . . 83
Figure 32 – task_model and perf_tool initialization. . . . . . . . . . . . . . . . . . 83
Figure 33 – perf thread_model: Events to callback mapping. . . . . . . . . . . . 84
Figure 34 – Handler for the irq_vectors:nmi_entry tracepoint. . . . . . . . . . 84
Figure 35 – process_event : trying to run the automata. . . . . . . . . . . . . . . 85
Figure 36 – Example of the perf thread_model output: a thread activation. . . . 85



Figure 37 – Kernel trace excerpt. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 38 – S18 Scheduler call sufficient and necessary conditions. . . . . . . . 87
Figure 39 – Missing kernel events: the output of perf thread_model. . . . . . . 89
Figure 40 – Missing kernel events: the output of kernel tracepoints. . . . . . . . 89
Figure 41 – Pseudo-code of tracing recurrence. . . . . . . . . . . . . . . . . . . . 89
Figure 42 – Trace excerpt with comments of where the IRQ context is identified

in the trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 43 – mutex_lock not permitted with interrupts disabled. . . . . . . . . . . 90
Figure 44 – S12 Events blocked in the IRQ context. . . . . . . . . . . . . . . . . 91
Figure 45 – S22 Lock while interruptible. . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 46 – Trace of mutex_lock taken in the timer interrupt handler. . . . . . . . 91
Figure 47 – Function stack, from the timer IRQ to the mutex_lock, used in the

report for the Linux kernel developers. . . . . . . . . . . . . . . . . . 92
Figure 48 – Verification approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 49 – Wake-up In Preemptive (WIP) Model. . . . . . . . . . . . . . . . . . 95
Figure 50 – Auto-generated code from the automaton in Figure 49. . . . . . . . . 96
Figure 51 – Helper functions to get the next state. . . . . . . . . . . . . . . . . . 97
Figure 52 – Sleeping While in Atomic (SWA) model. . . . . . . . . . . . . . . . . 98
Figure 53 – Example of output from the proposed verification module, as occur-

ring when a problem is found. . . . . . . . . . . . . . . . . . . . . . . 98
Figure 54 – Phoronix Stress-NG Benchmark Results: as-is is the system without

tracing nor verification; SWA is the system while verifying Sleeping
While in Atomic automata in Figure 56 and with the code in Figure
50; and the trace is the system while tracing the same events used
in the SWA verification. . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 55 – Need re-sched forces scheduling (NRS model). . . . . . . . . . . . . 101
Figure 56 – Latency evaluation, using the SWA model (top) and the NRS model

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 57 – NMI generator (O1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 58 – IRQ disabled by software (O2). . . . . . . . . . . . . . . . . . . . . . 106
Figure 59 – IRQs disabled by hardware (O3). . . . . . . . . . . . . . . . . . . . . 106
Figure 60 – Context switch generator (04). . . . . . . . . . . . . . . . . . . . . . 106
Figure 61 – Context switch generator (05). . . . . . . . . . . . . . . . . . . . . . 106
Figure 62 – Preempt disable (06). . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 63 – Scheduling context (07). . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 64 – Thread runnable/sleepable (08). . . . . . . . . . . . . . . . . . . . . 106
Figure 65 – Need re-schedule operation (09). . . . . . . . . . . . . . . . . . . . . 106
Figure 66 – NMI blocks all other operations (R2). . . . . . . . . . . . . . . . . . . 108
Figure 67 – Operations blocked in the IRQ context (R3). . . . . . . . . . . . . . . 108



Figure 68 – IRQ disabled by thread or IRQs (R4). . . . . . . . . . . . . . . . . . . 108
Figure 69 – The scheduler is called with interrupts enabled (R5). . . . . . . . . . 108
Figure 70 – The scheduler is called with preemption disabled to call the scheduler

(R6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 71 – The scheduler context does not enable the preemption (R7). . . . . 109
Figure 72 – The context switch occurs with interrupts and preempt disabled (R8). 109
Figure 73 – The context switch occurs in the scheduling context (R9). . . . . . . 109
Figure 74 – Wakeup and need resched requires IRQs and preemption disabled

(R10 and R11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 75 – Disabling preemption to schedule always causes a call to the sched-

uler (R12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 76 – Scheduling always causes context switch (R13). . . . . . . . . . . . 109
Figure 77 – Setting need resched always causes a context switch (R14). . . . . 111
Figure 78 – Reference Timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 79 – rt_sched_latency: tool kit components. . . . . . . . . . . . . . . . . 119
Figure 80 – perf rtsl output: excerpt from the textual output (time in nanosec-

onds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 81 – Using perf and the latency parser to find the cause of a large DPOID

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 82 – Workstation experiments: single-core system. . . . . . . . . . . . . . 124
Figure 83 – Workstation and Server experiments: multicore systems. . . . . . . . 124



LIST OF TABLES

Table 1 – Mapping between mechanisms of the Linux kernel and abstractions of
the response-time analysis. . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 2 – Linux events used in the parallel with the response-time analysis. . . 42
Table 3 – Events of the washer and dryer machine. . . . . . . . . . . . . . . . . 58
Table 4 – Interrupt related events. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 5 – Scheduling related events. . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 6 – Locking related events. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 7 – Automata models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 8 – Events and state transitions of Figure 37. . . . . . . . . . . . . . . . . 88
Table 9 – Parameters used to bound LIF. . . . . . . . . . . . . . . . . . . . . . . 115



LIST OF ABBREVIATIONS AND ACRONYMS

API application programming interface
APIC advanced programmable interrupt controller
CCS calculus communicating systems
CFS completely fair scheduler
CI continuous integration
CPU central processing unit
CSP communicating sequential processes
DES discrete event system
EDF earliest deadline first
GPOS general-purpose operating system
INTs interrupts
IRQ maskable interrupt
IRQs maskable interrupts
LDV Linux driver verification
LKMM Linux kernel memory consistency model
NMI nonmaskable interrupt
OS operating system
OSes operating systems
PID process identification number
RT real-time
RTA response-time analysis
RTOS real-time operating system
RV runtime verification
SAT boolean satisfiability
SDV static driver verifier
SLIC specification language for interface checking
SMP symmetric multiprocessing
WCET worst-case execution time



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1 LINUX AS A REAL-TIME OPERATING SYSTEM . . . . . . . . . . . 22
1.2 FORMAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Formal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.2 Runtime verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 GOALS OF THIS THESIS . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 A formal model for Linux tasks . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Runtime verification of the logical behavior of Linux . . . . . . . 26
1.3.3 Runtime analysis of the timing behavior of Linux . . . . . . . . . 26
1.4 CONTRIBUTIONS OF THIS THESIS . . . . . . . . . . . . . . . . . . 26
1.4.1 First stage: modeling the timing behavior of tasks on real-time

Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Second stage: efficient runtime verification for the Linux kernel 27
1.4.3 Third stage: formal definition of the latency components . . . . . 28
1.5 ORGANIZATION OF THIS THESIS . . . . . . . . . . . . . . . . . . . 28
2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 REAL-TIME SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 Real-time scheduling theory . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Response-time analysis . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 LINUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Linux as a real-time operating system . . . . . . . . . . . . . . . . 33
2.2.2 Task abstraction and context synchronization . . . . . . . . . . . 35
2.2.3 Mutual exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3.1 Spinlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3.2 Read-write spinlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3.3 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3.4 Read-write semaphores . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3.5 Mutex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.3.6 RT mutex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.3.7 Spinlocks and RT mutex in the PREEMPT RT . . . . . . . . . . . . . 39
2.2.4 Linux tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.5 Characterization of real-time Linux tasks timeline . . . . . . . . . 41
2.2.5.1 Kernel mechanisms and the response time analysis . . . . . . . . . . 41
2.2.5.2 Trace-timeflow: empircal observation of the system . . . . . . . . . . 42
2.2.5.3 Characterization of interrupt handlers timeline . . . . . . . . . . . . . 43
2.2.5.4 Characterization of the threads timeline . . . . . . . . . . . . . . . . . 45
2.2.5.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



2.3 FORMAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Discrete event systems . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.2.1 Language definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.2.2 DES modeling formalism . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.3 Automata theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3.1 Operations with automata . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.3.2 Modeling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 Runtime verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1 FORMAL METHODS FOR OS KERNELS . . . . . . . . . . . . . . . 64
3.1.1 Formal methods in the Linux kernel community . . . . . . . . . . 67
3.2 AUTOMATA-BASED REAL-TIME SYSTEMS ANALYSIS . . . . . . . 68
3.2.1 Automata-based models for Linux . . . . . . . . . . . . . . . . . . 69
3.3 REAL-TIME LINUX LATENCY . . . . . . . . . . . . . . . . . . . . . . 71
3.4 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 A THREAD SYNCHRONIZATION MODEL FOR THE PREEMPT_RT

KERNEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1 MODELING APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 EVENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Automate or not to automate the model creation? . . . . . . . . . 80
4.4 MODEL VALIDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 OFFLINE RUNTIME VERIFICATION . . . . . . . . . . . . . . . . . . 86
4.5.1 Scheduling in vain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Tracing dropping events . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3 Using a real-time mutex in an interrupt handler . . . . . . . . . . . 90
4.6 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5 ONLINE RUNTIME VERIFICATION . . . . . . . . . . . . . . . . . . . 94
5.1 EFFICIENT FORMAL VERIFICATION FOR THE LINUX KERNEL . . 95
5.2 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . 99
5.2.1 Throughput evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Latency evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 LATENCY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.1 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



6.2 DEMYSTIFYING THE REAL-TIME LINUX SCHEDULING LATENCY 112
6.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.2 Bounding LIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 RT_SCHED_LATENCY: EFFICIENT SCHEDULING LATENCY ESTI-

MATION TOOL KIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 EXPERIMENTAL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1 THE FUTURE OF THE MODEL . . . . . . . . . . . . . . . . . . . . . 127
7.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 LIST OF PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.1 Other publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 INTERACTIONS WITH THE LINUX KERNEL DEVELOPMENT COM-

MUNITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5 ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 131

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



21

1 INTRODUCTION

Real-time systems are computing systems where the correct behavior does not
depend only on the functional behavior, but also on the timing behavior. In other words,
the response to a request is only correct if the logical result is correct and produced
within a deadline. Otherwise, the system will be showing a defect (BUTTAZZO, 2011).

In the real-time scheduling theory, a system is an abstraction, modeled using a
set of variables that describe the sole timing behavior of its components . For example,
usually a system is composed by a set of n tasks τ = {τ1, τ2, ..., τn}. Each task is
defined as a set of variables defined by the task model of the system. For instance, in
sporadic task model, each task τi is characterized by a minimum time between arrivals
Pi and an execution time Ci . These tasks are scheduled on a set of m processors
ρ = {ρ1, ρ2, ..., ρm} and they may share q resources σ = {σ1,σ2, ...,σq} which require
mutual exclusion. In this context, the main goal of the scheduling is to somehow assign
the time of processors from ρ and resources from σ to tasks from τ in order to finish
all jobs of all tasks from τ while meeting the timing constraints of each task. The
demonstration that a given scheduling algorithm can achieve such a goal is done
through analytical methods known as schedulability analysis.

Linux is an implementation of an OS that nowadays supports some of the
fundamental abstractions from the real-time scheduling theory. In Linux, from the
scheduling point of view, the most basic unit is the thread. It is then the goal of the
schedulers to assign the time from the processors to the threads of the system. With
SCHED_DEADLINE (LELLI et al., 2016), Linux supports the classical sporadic task
model, allowing the configuration of the runtime and period, equivalent to the Ci and
Pi , of a given thread. Another key technology enabling Linux for real-time systems
is the PREEMPT_RT. The PREEMPT_RT developers have extensively reworked the
Linux kernel to reduce the code sections that could delay the scheduling of the highest-
priority thread, aiming to transform Linux into a preemptive operating system, trying to
approximate Linux to the theoretical preemptive system. This characteristic allows the
usage of Linux for a wide range of workloads that require low latency in the response
for a request. Indeed, real-time Linux has been successfully used throughout a number
of academic and industrial projects as a fundamental building block of real-time sys-
tems, from distributed and service-oriented infrastructures for multimedia (VARDHAN
et al., 2009), robotics (GUTIÉRREZ et al., 2018), sensor networks (DUBEY; KAR-
SAI; ABDELWAHED, 2009) and factory automation (CUCINOTTA et al., 2009), to the
control of military drones (CONDLIFFE, 2014) and distributed high-frequency trading
systems (CORBET, J., 2010).



Chapter 1. Introduction 22

1.1 LINUX AS A REAL-TIME OPERATING SYSTEM

Despite all improvements of the last decade, classifying Linux as a RTOS is still
a source of conflict between real-time Linux and scheduling communities. In summary,
there are two central sources of divergence: the way that Linux is analyzed, and the
assumptions used in the development of new theoretical real-time algorithms.

From the real-time Linux community, the frequent use of assumptions like tasks
are completely independent, and operations are atomic (BRANDENBURG, B. B.; AN-
DERSON, J. H., 2007; CALANDRINO et al., 2006) are considered an oversimplification
of Linux behavior by kernel developers (GLEIXNER, 2010).

On Linux, tasks can interfere with each other in a non-negligible way, both ex-
plicitly, due to programmed interactions and synchronizations, and implicitly, due to
in-kernel operations that may cause synchronizations among tasks that are not even
directly related. Those in-kernel operations are necessary because of the non-atomic
nature of a sophisticated OS like Linux. For example, the arrival of the highest priority
thread will not atomically load its context in the processor, starting to run instantaneously.
Instead, to notify the activation of a thread, the system needs to postpone the execution
of the scheduler to avoid inconsistency in the data structures that define the thread
and are used by the scheduling algorithms. Moreover, interrupts must be disabled to
avoid race conditions with interrupt handlers. Hence, delays in scheduling and interrupt
handling are created during the activation of a thread (OLIVEIRA; OLIVEIRA, 2016).
Only after the end of the activation process of a thread is that the system will be able
to call the scheduling functions, that will eventually allow the thread to start running.
This delay is known as the scheduling latency, and it drives the development of the
PREEMPT_RT. The PREEMPT_RT developers measure it by using the cyclictest

tool.
The cyclictest tool works by creating a thread that periodically sets an external

timer in the future, and suspends its execution waiting for this timer occurrence. When
the timer awakens the thread, the thread computes the time difference between the
expected activation time and the actual time. By creating one thread per CPU, config-
ured as the highest priority, cyclictest is used in practice to measure the scheduling
latency of each CPU of the system. Maximum observed latency values generally range
from a few microseconds on single-CPU systems to 250 us on non-uniform memory
access systems, which are acceptable values for a vast range of applications with
sub-millisecond timing precision requirements.

Despite useful, the scheduling latency, as measured by cyclictest, is consid-
ered an oversimplification of the problem by the academy. An interesting discussion
about this metric, from the real-time scheduling theory standing point, is presented
in (BRANDENBUG; ANDERSON, 2009). In that work, the authors argue that the dual
notion of correctness of real-time systems, the logical and timing correctness, is for-



Chapter 1. Introduction 23

mally addressed in the academy. The properties of a real-time system must derive from
a mathematical description of the behavior of the system, and a rigorous set of proofs
are required for any conclusion about the predictability of the runtime behavior of a sys-
tem. It is clear that cyclictest results do not provide such a level of certainty, justifying
the argument that there are still further steps to be taken toward a better acceptance of
Linux as a RTOS.

The gap between the real-time Linux and real-time theory roots in the Linux ker-
nel complexity. The amount of effort required to understand all the constraints imposed
on real-time tasks on Linux is not negligible. It might take years for a newcomer to
understand the internals of the Linux kernel. The complexity is indeed a barrier, not only
for researchers but for developers as well. The understanding of the synchronization
primitives and how they affect the timing behavior of a thread is fundamental for the
definition of Linux in terms of real-time scheduling.

The challenge is then to describe such operations, using a level of abstraction
that removes the complexity of the in-kernel code. The description must use a format
that facilitates the understanding of Linux dynamics for real-time researchers, without
being too far from the way developers observe and improve Linux. The usage of math-
ematical notation can remove the ambiguous nature of natural language, enabling the
application of a more sophisticated analysis of the runtime behavior of Linux. To improve
the state-of-art, we believe that a mathematical model, based on well-defined criteria
that describe, in a deterministic way, the Linux behavior is required, which leads this
research to the application of another area from the computer science: formal methods.

1.2 FORMAL METHODS

Formal methods consist of a collection of mathematical techniques to rigorously
state the specification of a system. The specifications of a system can then be used
for multiple purposes. For example, to provide a rigorous proof that the implemented
program satisfies some properties. The advantage of using mathematical notation is
that it removes the ambiguous nature of natural language while enabling automatic
verification of the system.

Despite the arguments in favor of formal methods, its application is generally
restricted to specific sectors. The most commonly mentioned reasons for that are the
complexity of the mathematical notation used in the specifications and the limitations of
computational space and processing time required for the verification of a system using
formal methods. Regarding performance, a common problem faced by practitioners in
the usage of formal methods is the state explosion problem. As exemplified in (CLARKE;
EMERSON; SIFAKIS, 2009), the composition of a model of a system with n tasks,
with each task with m states, will result in a model with mn states. Moreover, it is
also necessary to consider the level of expressiveness of the specification notation.



Chapter 1. Introduction 24

Generally, a more concise notation is likely to be more efficient than feature-rich notation.
Regarding the complexity, it is a challenge for this work to find a formal specification
notation that, at the same time, can be easily interpreted by kernel developers, useful
to demonstrate the timing behavior of tasks, and able to verify the Linux kernel behavior
appropriately.

1.2.1 Formal models

A model is an abstraction (a set of mathematical equations) of a system, whereas
a system is something real, e.g., an amplifier, a car, a factory, a human body, and so
on. The process of modeling a system involves defining a set of measurable variables
associated with the given system. Often, the model only approximates the complete
behavior of the system. The adequacy is a crucial aspect during the definition of the
level of abstraction used in the model. The adequacy of a model determines how
effectively it represents the underlying behavior of the system (O’REGAN, 2017). The
terms system and model can be interchangeably used when an adequate model is
found.

It is then a challenge for this work to define an adequate level of abstraction
that, at the same time, explains the runtime behavior of real-time tasks of Linux while
avoiding the well-known limitation of formal methods.

Regarding the level of abstractions, the developers of Linux observe and debug
the timing properties of Linux using the tracing features present in the kernel (ROSTEDT,
S., 2011; SPEAR; LEVY; DESNOYERS, 2012; TOUPIN, 2011; BRANDENBURG, Bjorn
B.; ANDERSON, James H., 2007). They interpret a chain of events, trying to identify
the states that cause large scheduling latencies delays, and then try to change kernel
algorithms to avoid such delays. For instance, they use ftrace (ROSTEDT, Steven,
2010) or perf1 to trace kernel events like interrupt handling, wakeup of a new thread,
context switch, etc., while cyclictest runs.

The notion of events, traces and states used by developers are common to dis-
crete event system (DES). The admissible sequences of events that a DES can produce
or process can be formally modeled through a language, using the automata formal-
ism. One of the key features of the automata formalism is its directed graph or state
transition diagram representation. This graphical representation hides the complexity of
the language and was very welcome by the Linux kernel community during discussions
about the development of this thesis. Moreover, the automata are amenable to compo-
sition operations, allowing a modular development of the model. The modular approach
allows the model development based on a set of subsystems and the specifications
that synchronizes these subsystems. Moreover, it enables a set of analyses as well,
considering the finite-state case, including runtime verification (RV).
1 More information at: http://man7.org/linux/man-pages/man1/perf.1.html.

http://man7.org/linux/man-pages/man1/perf.1.html


Chapter 1. Introduction 25

1.2.2 Runtime verification

Among the techniques available to the application of formal methods, RV was
chosen because of the runtime nature of the proposed model. RV presents a lightweight,
yet rigorous, method that complements classical exhaustive verification techniques
(such as model checking and theorem proving) with a more practical approach. At
the price of a limited execution coverage, that analyses a single execution trace of
a system, RV can give precise information on the runtime behavior of the monitored
system (FALCONE et al., 2018).

In this context, a monitor is a program that can parse both the formal specification
and the trace of the system, connecting them. The monitor then verifies the runtime
behavior of the system by comparing the trace of its execution against the formal
specification, reporting an error in the case of a model violation.

Monitors can be classified as offline and online monitors. Offline monitors pro-
cess the traces generated by a system after the occurrence of the events, generally by
reading the trace execution from a permanent storage system. Online monitors process
the trace during the execution of the system.

1.3 GOALS OF THIS THESIS

Aiming to improve the runtime analysis and verification of the real-time Linux
kernel, this thesis proposes the creation of a formal model of the Linux task, including
the synchronization primitives that influence their timing behavior. This model should
enable the formal verification of the logical behavior of the system, as well as the formal
analysis of its timing behavior.

This primary goal is divided into sub-goals, presented as follows.

1.3.1 A formal model for Linux tasks

This thesis proposes the creation of a formal model of the Linux task, including
the synchronization primitives that influence their timing behavior. A fundamental step
in the development of a model is the precise definition of its purpose. Thus, the purpose
of creating an explicit model of the Linux tasks are:

• to promote the unambiguous understanding of the system from its formal specifi-
cations;

• to enable the validation of the specifications against the real execution of the
system: a fundamental step to strengthen the trustworthy and accuracy of the
model;

• to formally verify the runtime behavior of the system.



Chapter 1. Introduction 26

Given the foreseeing complexity of such a model, a modeling methodology
should be carefully defined, in such a way to avoid the well-known limitations of the
practical application of formal methods. The methodology should also comprise the
development of an automatic model validation tool.

1.3.2 Runtime verification of the logical behavior of Linux

Giving that the model aims to formalize the runtime behavior of tasks of Linux, a
practical formal verification method should be developed employing RV techniques. To
be practical, the verification method should be able to connect the model and the trace
without requiring extensive manual development of the monitoring tool, maximizing
the automatic code generation from the model. The monitor should also be able to
generate output that helps the developers to debug the conditions that caused the
undesired behavior of the system. It is known that the trace of the system impacts the
timing behavior of the system, so to be practical, the verification software should also
be efficient. By efficient, it means that the monitoring tool must minimize the overhead,
not only to viable values but in such a way to avoid impacting the timing aspects of the
system as much as possible.

1.3.3 Runtime analysis of the timing behavior of Linux

As the last goal, the formal modeling of the kernel behavior is used as an in-
termediary step, facilitating the understanding of the rules and properties that rule the
timing behavior of Linux tasks. To demonstrate the effectiveness of the goal, part of the
Linux behavior should be explained with a level of formalism and granularity similar to
the practices in the real-time scheduling theory. To be effective, the explanation should
result in a set of practical variables that could be measured and serve as the base
for improving the real-time features of Linux. Finally, tools to measure the value for
these variables must be developed, also taking into consideration the efficiency of the
approach in such a way to avoid impacting the timing aspects of the system as much
as possible.

1.4 CONTRIBUTIONS OF THIS THESIS

The original contributions of this thesis can be organized in three stages, as
presented in Figure 1. The major contributions of each stage are detailed in the next
sections.

1.4.1 First stage: modeling the timing behavior of tasks on real-time Linux

This stage focused on the creation of the thread synchronization model for the
PREEMPT_RT Linux kernel, and the main contributions are:



Chapter 1. Introduction 27

Figure 1 – Thesis approach and contributions.

Trace

Operations

Rules

Properties

Variables
T = Period
S = P4 = Hardware delay
A = P1 = e1 Δ e3
B = R1 = e2 Δ e4
E = P1 - R1 = A - B

Analysis
L = S + E + 2*(B/T )

Model

e1
e2

e3
e4

e1
e2

e3
e4

Code Gen.

e1
e2

Measurements
A = 4
B = 1
E = 3
L = S + 3 + 2 (1/T)

Linux

Monitor Online RV

O�ine RV

trace
=

Trace = Model?

Validation

e1
e2

trace

• the definition of a formal modeling methodology using the automata theory and
the modular approach;

• the thread synchronization model for the PREEMPT_RT Linux kernel;

• an offline runtime verification tool that can be used both in the model validation
and the runtime verification of the kernel.

1.4.2 Second stage: efficient runtime verification for the Linux kernel

This stage focused on the development of an efficient runtime verification for the
Linux kernel, based on the modeling formalism presented in the previous stage.

The main contributions of this phase are:

• the development of a dynamic online runtime verification approach for the Linux
kernel, enabling the monitoring of the system on-the-fly ;

• the development of an automatic kernel code generation from an automaton
model;

• the performance analysis of the method, demonstrating its low impact on the
performance of the system.



Chapter 1. Introduction 28

1.4.3 Third stage: formal definition of the latency components

The last stage leverages the thread model to extract a set of rules and properties
that defines the timing behavior of scheduling latency. The main contributions of this
phase are:

• the definition of a set of rules and properties about the basic synchronization
dynamics of the Linux kernel, necessary for the formal definition of the latency;

• the definition of a set of variables and the subsequent scheduling latency analysis;

• an efficient scheduling latency measurement tool.

1.5 ORGANIZATION OF THIS THESIS

The next chapter presents the background topics, covering from essential el-
ements from the real-time theory to the runtime verification methods, passing by an
explanation about real-time Linux and its synchronization methods, formal methods,
and formal models. A set of related work is then presented in Chapter 3.

The development of the thesis is presented in Chapters 4, 5 and 6, where the
development of the thread synchronization model for the PREEMPT_RT Linux kernel,
the efficient runtime verification for the Linux kernel and the formal definition of the
scheduling latency are, respectively, described in details.

Finally, the conclusions, set of publications, and future work are presented in
Chapter 7.



29

2 BACKGROUND

This chapter presents the background information useful for a more comprehen-
sive understanding of the concepts exposed in this thesis. It is divided into three main
sections. The first section covers useful definitions from the classical real-time systems
theory. The second section describes Linux as a real-time operating system, from basic
definitions of tasks and the mutual exclusion mechanism to tracing features present
in the kernel, and an early tentative of framing Linux in the existing real-time research
literature. The third section presents the fundamentals of formal methods, the modeling
of DES using the automata theory, and runtime verification. Finally, Section 2.4 presents
the final remarks, summarizing the background while pointing to the directions that will
be followed in the next chapters.

2.1 REAL-TIME SYSTEMS

Real-time systems are computing systems where the correct behavior does
not depend only on the functional behavior, but also on the timing behavior. In other
words, the response to a request is only correct if the logical result is correct and
produced within a given deadline. Otherwise, the system will be showing a defect
(BUTTAZZO, 2011). Real-time systems can be classified according to the effect of a
timing defect. Critical or hard real-time systems are those systems for which a timing
defect may result in catastrophic consequences. For instance, a failure in the hard
real-time braking system of a car can potentially cause loss of lives. In contrast, non-
critical or soft real-time systems are those systems in which temporal requirements
describe the desired behavior. Still, if not met, they do not invalidate the results nor have
catastrophic consequences, although the application’s utility is reduced (LIU, 2000).

2.1.1 Real-time scheduling theory

In real-time systems, the most basic scheduling unit is the task. A task is a
computation that must be sequentially executed by a processor. When a task becomes
ready to run, it is dispatched, and so it becomes active. Any time a task is activated,
it is said that a new job of the task was dispatched. A job can be either running when
the scheduling algorithm selects it to run or ready to run when it is ready to run but not
running. Jobs ready but still waiting to run are maintained in the ready queue. Generally,
the i th task of a system is denoted by τi .

Real-time tasks are also characterized by the activation pattern of their jobs.
Periodic tasks are those in which jobs are dispatched at a constant rate, with each
activation taking place after a fixed period of time. Sporadic tasks are those in which
a new job arrives after, at least, a minimum time after the arrival of the previous job of



Chapter 2. Background 30

the same task, i.e., they are characterized by a pre-specified minimum inter-arrival time
among consecutive jobs. Those tasks that do not have a regular activation pattern are
said to be aperiodic tasks.

Tasks are also characterized by their deadline. A task has implicit deadline if
its deadline is equal to its activation period or minimum inter-arrival time. A task has
constrained deadline if its deadline is less than or equal to the activation period or
minimum inter-arrival time of the task. Otherwise, the deadline is said to be arbitrary.

Individually, each real-time task τi has a set of timing values that specifies its
behavior according to the previous patterns. For example:

• Period Pi : the activation pattern of task τi ;

• Relative deadline Di : the relative deadline (the specification) of task τi ;

• Computation time Ci : the computation time of the task τi , without interruptions.
The Ci value often represents the worst-case execution time (WCET) of a task.

After activated, some runtime parameters of the mth job the task τi are also used
to describe its execution. For instance:

• Arrival time ai ,m: is the time instant when a job becomes ready for execution;

• Release time ri ,m: is the time instant when a job is queued in the ready queue;

• Absolute deadline di ,m = ai ,m + Di : is the time instant when the job should
already have finished its activation, i.e., it is the runtime parameter of a task;

• Starting time si ,m: is the time instant when a job starts is execution;

• Finishing time fi ,m: is the instant when a job finishes its execution;

• Response time Ri ,m: is the difference between the finishing time and the arrival
time: Ri ,m = fi ,m – ai ,m.

When the number of tasks is higher than the number of processors, central
processing unit (CPU) time needs to be shared among concurrent tasks. Tasks are
selected to run on processors according to a scheduling policy. The set of rules that
define which task runs on which CPU at a given time is called scheduling algorithm.

In the real-time scheduling theory a system is modeled as a set of n tasks τ =
{τ1, τ2, ..., τn}. These tasks are scheduled on a set of m processors ρ = {ρ1, ρ2, ..., ρm}
and they may share q resources σ = {σ1,σ2, ...,σq} which require mutual exclusion. In
this context, the main goal of the scheduler is to somehow assign the time of processors
from ρ and resources from σ to tasks from τ in order to finish all jobs of all tasks from τ

while meeting the timing constraints of each task.



Chapter 2. Background 31

A schedule is said to be feasible when all tasks are able to accomplish their jobs
while respecting all constraints. A task set is said to be schedulable if there is at least
one algorithm that can produce a feasible schedule.

If during the execution, a ready task is interrupted to give place to another task,
the running job is said to be preempted. The preempted job is placed in the ready
queue, while another job becomes the running one. When it is possible to preempt a
job at any point, the scheduler is said to be preemptive. In contrast, when the scheduler
cannot interrupt at an arbitrary point, the scheduler is said to be non-preemptive or
cooperative. The switch between one job and another is named context switch.

2.1.2 Response-time analysis

In order to guarantee timing correctness while executing real-time tasks, one
has to know whether a given set of tasks will complete within their respective deadlines.
There are several analytic methods to obtain this guarantee, depending on the execution
model of the system. As shown later in Chapter 6, part of the Linux behavior can be seen
as a real-time system that schedules tasks using a fixed-priority scheduler, together
with several mutual exclusion protocols. For a theoretical system with this characteristic,
it is possible to verify the schedulability using the method of response-time analysis
(RTA) (JOSEPH; PANDYA, 1986; LEHOCZKY; SHA; DING, 1989; AUDSLEY et al.,
1993).

The RTA considers that a system is composed of a set of n sporadic tasks τ ,
which in turn are described by a set of algebraic variables related to their timing behavior.
In addition to the period Pi , the relative deadline Di , and the worst-case execution time
Ci , the RTA also considers the release jitter and the blocking time of a task, where:

• Release Jitter Ji : is the delay at the beginning of the execution of a task i ;

• Blocking time Bi : is the worst-case blocking time, which is a delay caused by a
lower priority task, generally because the lower priority task holds some resources
required by the task i .

Based on these variables, the RTA is used to define the value of Ii and Wi ,
where:

• Interference Ii : is the interference caused by higher priority;

• Busy window Wi : is the busy-window.

The interference Ii of a task τi is the sum of the computation time of tasks in the
set hp(i) that were activated during the busy period of task i , where hp(i) is the set of
tasks with priorities higher than τi . Formally:



Chapter 2. Background 32

Ii =
∑

j∈hp(i)

⌈
Wi + Jj

Pj

⌉
.Cj (1)

The busy period Wi of a task τi corresponds to the sum of its computational time,
blocking time, and interference. It is given by Equation 2.

Wi = Ci + Bi +
∑

j∈hp(i)

⌈
Wi + Jj

Pj

⌉
.Cj (2)

It is essential to notice that Wi appears on both sides of the equation, due to its
use in the definition of the interference. This dependence implies the use of an iterative
method to determine Wi . In this case, the initial value of Wi is the worst-case execution
time Ci , and Equation 2 is used interactively x times, until W x+1

i = W x
i or W x+1

i > Di .
After obtaining Wi , it is used to determine the response time Ri , that equals to

its busy period Wi added to its release jitter Ji :

Ri = Wi + Ji (3)

A system is said to be schedulable if, for every task τi , the maximum response
time Ri is less than or equal to its deadline Di .

A common way to represent the behavior of a real-time task is using a time-
line format. Figure 2 shows how each abstraction used in the response-time analysis
composes the response time of a real-time task.

Figure 2 – Response-time analysis abstractions in a timeline.

2.2 LINUX

Linux is a full-featured general-purpose OS, that has been adapted and improved
over the last decade to be used as a RTOS, becoming a viable option as a RTOS for



Chapter 2. Background 33

many relevant workloads. This section shortly presents the background for real-time
Linux, along with a description of the tracing subsystem, that is frequently used in the
analysis of the timing behavior of the kernel.

2.2.1 Linux as a real-time operating system

Real-time Linux has been a recurring topic in both research (CALANDRINO et
al., 2006; PALOPOLI et al., 2009; BRANDENBURG; GÜL, 2016) and industry (DUBEY;
KARSAI; ABDELWAHED, 2009; GUTIÉRREZ et al., 2018; CUCINOTTA et al., 2009;
CORBET, J., 2010), for more than a decade now. From the different initiatives for en-
abling real-time Linux, such as RTAI (MANTEGAZZA et al., 2000) and Xenomai (GERUM,
2004; BROWN; MARTIN, 2010), the PREEMPT_RT became the de facto standard. The
difference between the other approaches and the PREEMPT_RT is that, rather than
trying to run a real-time OS in parallel with Linux, the PREEMPT_RT aims to transform
the Linux kernel into a RTOS.

Linux has three preemption models for kernel space activities. The preemption
models range from the non-preemptive mode, in which the kernel code schedules only
on predefined preemption points, to the preemptive mode, in which the kernel code
is preemptive by default, unless when the preemption is explicitly disabled. It is worth
noting that the user-space code is always preemptive, independently of the preemption
model.

In addition to the preemption models present in the vanilla kernel1, The PRE-
EMPT_RT patchset adds the fully-preemptive model, which improves the preemptive
mode. Regarding the fully-preemptive mode, Linux developers have extensively re-
worked the Linux kernel to reduce the code sections that could delay the scheduling
of the highest-priority thread. While PREEMPT_RT improves the responsiveness, it
reduces the throughput of the system, and that justifies the maintenance of the multiple
preemption modes on Linux.

The cyclictest is the primary tool adopted in the evaluation of the fully-preem-
ptive mode of PREEMPT_RT Linux (CERQUEIRA; BRANDENBURG, 2013), and it is
used to compute the time difference between an expected activation time and the actual
start of execution of the high-priority thread running on a CPU. By configuring the mea-
surement thread with the highest priority and running a background task set to generate
disturbance, cyclictest is used in practice to measure the scheduling latency of each
CPU of the system. Maximum observed latency values generally range from a few mi-
croseconds on single-CPU systems to 250 us on non-uniform memory access systems,
which are acceptable values for a vast range of applications with sub-millisecond tim-
ing precision requirements. In this way, PREEMPT_RT Linux closely fulfills theoretical
1 Vanilla kernel is the Linux kernel as-is from its main repository.



Chapter 2. Background 34

fully-preemptive systems assumptions that consider atomic scheduling operations, with
neglectable overheads.

In the fully-preemptive mode, there are three different execution contexts: non-
maskable interrupt (NMI), maskable interrupts (IRQs), and threads. Both the NMI and
the IRQs are asynchronous interrupts (INTs), i.e., mechanisms used to deliver events
coming either from external hardware or by code running on other CPUs via inter-
processor interrupts. The interrupt controller manages interrupts, both queueing and
dispatching one NMI per-CPU and multiple IRQs. For each CPU, the NMI is the highest-
priority interrupt, so it postpones and preempts IRQs. As a design choice, Linux (in the
fully-preemptive mode) handles IRQs with IRQs disabled. Hence an maskable interrupt
(IRQ) cannot preempt another IRQ. Threads have no control over the NMI, but they can
delay the execution of IRQs by temporarily disabling (masking) them. Note that when
IRQs are masked, their occurrence is anyway stored in the interrupt controller. When
IRQs are enabled again, the kernel is notified about the occurrence of such interrupts,
and they are executed as soon as possible, possibly preempting the currently executing
thread. Given the potential interference on threads execution, one of the design goals of
the PREEMPT_RT was to reduce the code that executes in the interrupt context to the
bare minimum, by moving most of it to thread context (OLIVEIRA; OLIVEIRA, 2016).

Despite the existence of different memory contexts in which a regular program
can run, like user programs in the kernel-space, e.g., during a system call, kernel
threads, or the process context in the user-space, from the scheduling viewpoint, they
are all threads. Linux has not one but five schedulers, which are provided to fit the re-
quirements of the manifold different applicative scenarios in which Linux is used. When
invoked, the set of schedulers are queried in a fixed order. The following schedulers are
checked:

• STOP_MACHINE: a pseudo-scheduler used to execute kernel facilities;

• SCHED_DEADLINE (LELLI et al., 2016): An earliest deadline first (EDF) like
real-time scheduler;

• SCHED_FIFO and SCHED_RR: the fixed-priority real-time scheduler;

• SCHED_OTHER: the completely fair scheduler (CFS);

• IDLE: a pseudo-scheduler that runs the idle thread.

Since schedulers are queried in order, the querying order implements the first
level of priority among the threads handled by each scheduler. Every time the scheduling-
related code is executed by the kernel, the highest-priority thread is selected for a
context switch. When no ready threads are available, the IDLE scheduler returns the
idle thread, a particular thread always ready to run. For simplicity, we refer hereafter



Chapter 2. Background 35

with the term scheduler when mentioning the kernel code handling all the scheduling
operations related to all five schedulers. The scheduler is called either voluntarily by
a thread leaving the processor, or involuntarily, to cause a preemption. Any thread
currently executing can postpone the execution of the scheduler while running in the
kernel context by either disabling preemption or the IRQs.

2.2.2 Task abstraction and context synchronization

As mentioned in the previous section, there are three main contexts in which
code can run in the PREEMPT_RT. Two of them are INTs: The NMI, the IRQ, and the
other one is the thread context.

Interrupts are events that indicate that a condition exists somewhere in the sys-
tem, the processor, or within the currently executing thread that requires the attention
of a processor. An interrupt occurrence results in a forced transfer of execution from
the currently running thread to the interrupt handler. The interrupt handling scheduling
is managed by the interrupt controller, provided by hardware2. For instance, in the In-
tel processors, the prioritization of IRQs is done in the local advanced programmable
interrupt controller (APIC) of each CPU.

A thread can postpone the execution of an IRQ by temporarily disabling (or mask-
ing) the IRQs in a given processor. Linux API provides two main methods to disable
IRQs. The first is through the functions local_irq_disable() and local_irq_enable().
The second is through the functions local_irq_save() and local_irq_restore(),
these functions (actually macros) save the processor flags only to be restored lately,
which allows nesting calls to disable/enable interrupts (LOVE, 2010). The processor
can also temporarily disable IRQs without OS intervention. Indeed, the processor tem-
porarily disables all the maskable interrupts before dispatching an interrupt handler. In
the PREEMPT_RT case, the interrupt handler continues executing with the interrupts
disabled until the end return of the handler. Although the IRQ handlers context exists
in the PREEMPT_RT, for most of them, their function is no longer to deal with the
hardware but to wake up the kernel threads that execute the code of interrupt handlers.
For the sake of completeness, it is worth mentioning that IRQs and threads cannot
postpone an NMI execution.

Linux processes are composed of a memory context and a set of one or more
threads. Generally, a thread runs in the process memory context in user-space. How-
ever, when a thread makes a system call or causes an trap, for example, with a page
fault, it changes its execution context from user-space to kernel-space, executing the
kernel code in kernel-space on behalf of the process (CORBET; RUBINI; KROAH-
HARTMAN, 2005). There is also the particular case of threads that only run in kernel-
space, the so-called kernel threads, or kthreads.
2 See Intel R© 64 and IA-32 Architectures Software Developer’s Manual.



Chapter 2. Background 36

Threads are activated by events that change their state in the scheduler, from
sleeping to ready to execute. Ideally, when a lower priority thread awakens a higher
priority thread, the scheduler should be called and promptly start the execution of the
thread with higher priority. However, when preemption or interrupts are disabled, the
lower priority thread runs until preemption or IRQ is enabled again, and the scheduler
can decide to run a thread with higher priority. Differently from interrupts, Linux is
responsible for scheduling threads. The scheduling decisions and the context switch
takes place inside the __schedule() function. The __schedule() function consults all
the schedulers, as described previously, and changes the context to the next selected
thread as needed.

The preemption of a processor can be disabled via the preempt_disable() func-
tion, and then enabled again with the function preempt_enable(). For each call of pre-
empt_disable() there should be a call to preempt_enable(). These calls can be nested,
the number of nesting can be retrieved with the function preempt_count() (CORBET; RU-
BINI; KROAH-HARTMAN, 2005). The function preempt_enable(), when called, checks
whether the preemption counter is 0, that is, whether the preemption system will be
active again. When enabling preemption, if a higher priority task may be ready to run,
the scheduling routine will be called.

2.2.3 Mutual exclusion

The Linux kernel has several mechanisms for mutual exclusion. There are two
reasons for these different mechanisms. The first comes from the needs of the diverse
execution contexts, which have different constraints. For instance, in interrupt context,
the code cannot use methods that put the interrupt handler to sleep, while a thread can
sleep, allowing other threads to execute while the blocked task waits for the resource.
In addition to the restrictions imposed by the execution contexts, the methods of mutual
exclusion are optimized for some instances, some to improve performance, others
seeking determinism.

The next sections introduce the principal mutual exclusion primitives available in
the Linux kernel, presenting the motivation for their usages and the behavior change
in the PREEMPT_RT kernel. It is worth mentioning that this section does not aim to
present an in-depth explanation of all synchronization methods but to introduce the
terminology and some aspects that are later covered in the thesis.

2.2.3.1 Spinlock

In a section protected by a spinlock, only one task is allowed access to a specific
critical region. The behavior of a spinlock depends on whether the kernel is configured
for single-core or multicore systems. In either case, the preemption is disabled before



Chapter 2. Background 37

attempting to acquire a lock and is enabled after the release of the lock. In the single-
core case, this action is already enough to protect the critical section.

In the multicore case, when a task tries to acquire a spinlock that is not held
by any other task, the lock is acquired. Otherwise, the task needs to busy-wait for the
resource to be released by a task running on another CPU. Although busy-waiting
consumes CPU time in vain, it avoids a more complex control, involving changing the
task from ready to sleeping, calling the scheduler routines, causing context switch to
another thread, and so on. Thus, the busy-waiting kernel spinlock is beneficial in the
case of small critical sections. An important detail is that, before attempting to acquire
a spinlock, the current task disables the preemption of the processor, enabling it again
only after releasing the lock.

The spin_lock() and spin_unlock() are the main functions for acquiring and
releasing a spinlock. The application programming interface (API) of the spinlocks also
implements versions that disable interrupts. Such functions are necessary to prevent
deadlocks. For instance: if a thread acquires a spinlock, then an interrupt arrives and
tries to acquire the same spinlock, a deadlock will happen because the thread will be
waiting for the return of the interrupt handler, never releasing the spinlock. The spinlock
is used mainly in parts of the kernel where a task can not sleep, such as interrupt
handlers and non-preemptive sections. In the kernel with PREEMPT_RT, spinlocks are
mostly converted to real-time (RT) mutexes. The reason for this change is described in
Section 2.2.3.7.

2.2.3.2 Read-write spinlocks

In some cases, critical sections are accessed multiple times for data reads, but
fewer times for an update. To improve the throughput, exclusive access to these data is
required only when writing the data, while allowing concurrent accesses to read the data.
In this case, there is contention only when a task waits to write, or tasks wait for a data
being written.To acquire the read-write lock for reading one uses functions read_lock()

and read_unlock() For writing it uses functions write_lock() and write_unlock().
The vanilla kernel uses spinlocks to protect the write access. Thus the read-write

spinlocks disable preemption. The read-write spinlocks also have versions that disable
interrupts and softirqs. It is not possible to upgrade the read_lock() to a write_lock(),
as this causes a deadlock.

An important detail is that the readers always take precedence over the writers.
While there is a reader in the critical section, the writer can not run. Since readers
can get the lock concurrently, even if a writer is waiting for the lock, new readers may
acquire the lock and thus postpone indefinitely the acquiring of the lock by the writer.

In the kernel with PREEMPT_RT, control access to critical sections is made with
the RT mutex, avoiding disabling the IRQs and preemption.



Chapter 2. Background 38

2.2.3.3 Semaphores

Unlike spinlocks, semaphores do not use busy-waiting. When a task tries to
acquire an unavailable semaphore, the task is placed on a waiting list, its status changes
to sleeping, and the task leaves the processor. When the semaphore becomes available,
tasks in the queue are awakened accordingly with the lock acquired, continuing its
execution. As the kernel has some restrictions on where a piece of code can sleep,
semaphores can not be used in the context of interrupts.

Semaphores accept various tasks in its critical section. A counter, created at
the initialization time, controls the access to a critical section. To implement mutual
exclusion using a semaphore, one should initialize the semaphore with a counter
equals to one. Two basic functions can be used to acquire a semaphore: down() and
down_interruptible(). The difference between the two modes is the way that the task
is put to sleep: state interruptible or uninterruptible.

If a thread in the interruptible state receives a signal, it awakens immediately
and the signal delivered to the task. On the other hand, a task in state uninterrupt-
ible is not waked up, thus delivering the signal is delayed until the task is awake
and acquires the semaphore. Of these two, it is more common to use the so-called
down_interruptible(). Function up() releases the semaphore.

When compared with spinlocks, semaphores have an advantage: semaphores
do not disable preemption throughout the critical section. However, semaphores cause
higher overhead because they put the task to sleep and wake it up after some time. In
cases of small critical sections, this overhead can be higher than the critical section
itself, so it is advised only for large critical sections.

Another side effect is that by making the task to sleep, a high-priority task can
suffer unlimited priority inversion.

2.2.3.4 Read-write semaphores

Semaphores also have a read-write version. Read-write semaphores do not
have counters. The rule is the same as read-write spinlocks: a writer requires mutual
exclusion, but several concurrent readers are possible. The precedence of the readers
over the writers is the same as with the read-write spinlocks. Hence, writers can be
blocked indefinitely.

The function to acquire the semaphore for reading is down_read(). For writ-
ing it is used the function down_write(). With read-write semaphores it is possible
to downgrade the state writer to the state reader. This is done with the function
downgrade_write().

In the kernel with PREEMPT RT, control access to critical sections is made with
the RT mutex, and the read-write logic is disabled: all read-write spinlocks end up



Chapter 2. Background 39

converted to regular RT mutex.

2.2.3.5 Mutex

The mutex option was implemented as a simple mutual exclusion to put tasks
on contention to sleep, mainly to replace semaphores initialized with a count of one.
Despite having a behavior similar to a semaphore with a count of one, the mutex has
a simpler interface, better performance, and more use restrictions, which facilitates
system debugging (LOVE, 2010).

To acquire a mutex, it is used the function mutex_lock(). If the mutex is not avail-
able, the task is put to sleep. To release a mutex, the function used is mutex_unlock().
In comparison with spinlocks, mutexes have the same benefits and problems of count-
ing semaphores initialized to one.

2.2.3.6 RT mutex

The RT mutexes extend the semantics of mutexes with the priority inheritance
protocol. In an RT mutex, when a low-priority task holds an RT mutex, and this RT mutex
is blocking a task of higher priority, the low-priority task inherits the higher-priority task
priority. If the task that inherited the priority blocks on another RT mutex, this propagates
the priority to another task until the task that holds the RT mutex releases the mutex
that blocked the highest-priority task. This approach helps to reduce the blocking time
of high-priority tasks, avoiding unbounded priority inversion.

2.2.3.7 Spinlocks and RT mutex in the PREEMPT RT

In the PREEMPT RT, spinlocks and mutexes are converted to RT mutexes. Spin-
locks are converted to RT spinlocks, using the RT mutex to implement mutual exclusion.
This is possible because in the PREEMPT_RT many sections of the kernel, which were
initially in interrupt context, were converted to threads running in the address space
of the kernel, so the spinlocks used in these sections can be converted to RT mutex.
In parts of the kernel that it can not sleep even with the PREEMPT_RT, the original
spinlocks are used, with the prefix raw_, for example, raw_spin_lock().

A major benefit of transforming spinlocks in RT mutexes comes from the fact
that the RT mutexes do not disable preemption, reducing the latency. In fact, the use
of RT mutexes instead of spinlocks and the execution of device interrupt handlers and
softirqs in the context of threads are the two major causes for the decrease of latency
in PREEMPT_RT, when compared to the vanilla kernel.



Chapter 2. Background 40

Figure 3 – ftrace output.

sh-2038 [002] d... 16230.043339: ttwu_do_wakeup <-try_to_wake_up
sh-2038 [002] d... 16230.043339: check_preempt_curr <-ttwu_do_wakeup
sh-2038 [002] d... 16230.043340: resched_curr <-check_preempt_curr
sh-2038 [002] d... 16230.043343: sched_wakeup: comm=cat pid=2040 prio=120 target_cpu=003

2.2.4 Linux tracing

Linux has an advanced set of tracing methods, which are mainly applied in the
runtime analysis of kernel latencies and performance issues3. The most popular tracing
methods are the function tracer that enables the trace of kernel functions (ROSTEDT,
Steven, 2010), and the tracepoint that enables the tracing of hundreds of events in the
system, like the wakeup of a new thread or the occurrence of an interrupt. But there are
many other methods, like kprobes that enable the creation of dynamic tracepoints

in arbitrary places in the kernel code, and composed arrangements like using the
function tracer and tracepoints to examine the code path from the time a task is
woken up to when it is scheduled.

An essential characteristic of the Linux tracing feature is its efficiency. Nowadays,
almost all Linux based operating systems (OSes) have these tracing methods enabled
and ready to be used in production kernels. Indeed, these methods have nearly zero
overhead when disabled, thanks to the extensive usage of runtime code modification
techniques that allow for greater efficiency than using conditional jumps when trac-
ing is disabled. For instance, when the function tracer is disabled, a no-operation

assembly instruction is placed right at the beginning of all traceable functions. When
the function tracer is enabled, the no-operation instruction is overwritten with an
instruction that calls a function that will trace the execution, for instance by appending
information into an in-kernel trace buffer. This is done at runtime, without any need for
a reboot. A tracepoint works similarly, but using a jump label (CORBET, Jonathan,
2010). The mentioned tracing methods are implemented in such a way that it is possible
to specify how an event will be handled dynamically, at runtime. For example, when en-
abling a tracepoint, the function responsible for handling the event is specified through
a proper in-kernel API.

Currently, there are two main interfaces by which these features can be ac-
cessed from user-space: perf and ftrace. Both tools can hook to the trace methods,
processing the events in many different ways. The most common action is to record the
occurrence of events into a trace-buffer for post-processing or human interpretation of
the events. Figure 3 shows the output of the ftrace tracing functions and tracepoints.
The recording of events is optimized by the usage of per-CPU lock-less trace buffers.
Furthermore, it is possible to take actions based on events. For example, it is possible
3 See Linux Tracing Technologies: https://www.kernel.org/doc/html/latest/trace/index.html.



Chapter 2. Background 41

Table 1 – Mapping between mechanisms of the Linux kernel and abstractions of the
response-time analysis.

Mechanism Abstraction
NMI Handler Task
IRQ Handler Task
Thread Task
IRQ Control Release Jitter
Preemption Control Release Jitter
Spinlock Blocking
RW Spinlocks Blocking
Semaphores Blocking
RW Semaphores Blocking
Mutex Blocking
RT Mutex Blocking

to record a stacktrace.
These tracing methods can also be leveraged for other purposes. Similarly

to perf and ftrace, other tools can also hook a function to a tracing method, non-
necessarily, to provide a trace of the system execution to the user-space. For example,
the Live Patching feature of Linux uses the function tracer to hook and deviate the
execution of a problematic function to a revised version of the function that fixes a
problem (POIMBOEUF, 2014).

2.2.5 Characterization of real-time Linux tasks timeline

In (OLIVEIRA; OLIVEIRA, 2016), the authors described the timeline of the tasks
in the PREEMPT_RT kernel, using the abstractions of the response-time analysis. The
description of the timeline was aided by empirical information obtained by tracing the
kernel with a custom-developed tool, based on ftrace. The next sections present
a summary of this research that serves at the same time background and related
work. The limitations and the lessons learned are presented at the end of the section,
motivating for the development presented in this thesis.

2.2.5.1 Kernel mechanisms and the response time analysis

This Section presents the mapping of the Linux kernel synchronization mecha-
nisms to the abstractions used in the response time analysis. This mapping is described
in Table 1. The three execution contexts of Linux, i.e., NMI, IRQs, and threads, were
mapped into the task abstraction. The preemption and interrupt control, that can de-
lay the start of the execution of the task context, were mapped into the release jitter
abstaction. Finally, all the mutual exclusion methods were mapped into the blocking
abstraction.



Chapter 2. Background 42

Table 2 – Linux events used in the parallel with the response-time analysis.

NMI Handlers entry Start of NMI handler execution
NMI Handlers exit Finish of NMI handler execution
IRQ Handlers entry Start of IRQ handler execution
IRQ Handlers exit Finish of IRQ handler execution
IRQ Enable event Disable IRQ handler execution
IRQ Disable event Disable IRQ handler execution
Sched Wakeup Wakeup of a thread
Sched Wakeup New Wakeup of a new thread
Schedule function entry Start of the schedule function
Schedule function exit Finish of the schedule function
Preempt disable Disables the preemption of the current thread
Preempt enable Enable the preemption of the current thread
Context switch Context switch of threads
Lock Acquire The task wants to acquire the lock
Lock Acquired The task acquired the lock
Lock Contended The task contended waiting the lock
Lock Release The task released the lock

Scheduling overhead

An important concept in RTOS design is the overhead imposed by the scheduler.
The scheduling overhead is associated with selecting the next task to be scheduled
and the context switching overhead. A Limitation of the classic response-time analysis
model is the absence of scheduling overhead that resembles Linux behavior. Moreover,
many theoretical studies, often the scheduling overhead, are considered negligible or
considered part of the task’s execution time of the task (SOUTO et al., 2015) (BLOCK;
ANDERSON, 2006). However, many empirical studies consider the measurements of
scheduling overhead. These overheads are measured primarily to determine an upper
bound, or to compare different implementations of schedulers (KENNA et al., 2011)
(BASTONI; BRANDENBURG; ANDERSON, 2010). To demonstrate the impact of the
scheduler overhead in the execution of threads, the work presented in (OLIVEIRA;
OLIVEIRA, 2016) also considers the __schedule() execution in the timeline description.

2.2.5.2 Trace-timeflow: empircal observation of the system

The ftrace tool (ROSTEDT, Steven, 2010) was adapted to trace the occurrence
of interesting events in Linux. The adapted trace tool was called trace timeflow. The
trace timeflow traces the events listed on Table 2. Sich events served to observe the
execution of the three different kinds of tasks and the actions that could impact their
timing behavior. For instance, the IRQ Handlers entry and exit report the starting time
and the finishing time of a job of a given IRQ.

By tracing the execution of threads and interrupt handlers using the trace

timeflow, it was possible to characterize the execution of these tasks using the real-time
scheduling theory abstractions. An example of the trace timeflow output is shown in



Chapter 2. Background 43

Figure 4. In this example, the thread pi, with process identification number (PID) 838,
was running in the CPU 0, when it caused a read system call in Line 5 and 6. The task
then called the function _raw_spin_lock() to acquire a spinlock in Line 8. Then the
preemption is disabled, and the lock mr_lock is acquired without contention, returning
to the thread execution in 989 nanoseconds (Lines from 9 to 12). The thread then calls
the function _raw_spin_unlock(), releases the lock, and enables the preemption, in
Lines from 13 to 16. Finally, the thread finishes its execution returning from the system
call.

Figure 4 – Trace timeflow output example.

1 # tracer: timeflow
2 #
3 # TASK-PID PRIO CPU TIME DURATION FUNCTION CALLS
4 # | | | | | | | | | | | |
5 pi-838 [ 9] [00] 83.910612437 ---------->
6 pi-838 [ 9] [00] 83.910612437 sys_read() {
7 pi-838 [ 9] [00] 83.910613717 run_higher in: c = 1 inc = 11287
8 pi-838 [ 9] [00] 83.910613955 _raw_spin_lock() {
9 pi-838 [ 9] [00] 83.910614175 sched_preempt_disable: at _raw_spin_lock
10 pi-838 [ 9] [00] 83.910614368 lock_acquire: ffffffffa02d6578 &mr_lock
11 pi-838 [ 9] [00] 83.910614750 lock_acquired: ffffffffa02d6578 &mr_lock
12 pi-838 [ 9] [00] 83.910615092 0.989 us } _raw_spin_lock ()
13 pi-838 [ 9] [00] 83.910616591 _raw_spin_unlock() {
14 pi-838 [ 9] [00] 83.910616786 lock_release: ffffffffa02d6578 &mr_lock
15 pi-838 [ 9] [00] 83.910617153 sched_preempt_enable: at _raw_spin_unlock
16 pi-838 [ 9] [00] 83.910617315 0.571 us } _raw_spin_unlock ()
17 pi-838 [ 9] [00] 83.910617648 run_higher out: c = 1 inc = 11288
18 pi-838 [ 9] [00] 83.910618197 5.609 us } sys_read ()
19 pi-838 [ 9] [00] 83.910618197 <----------

2.2.5.3 Characterization of interrupt handlers timeline

Due to the different restrictions imposed on maskable and non-maskable inter-
rupts, it was necessary to characterize the interrupts for these two different modes.

A non-maskable interrupt can be enabled at any time, and therefore must obey
a set of very strict rules. For example, a non-maskable interrupt handler can not use
mutual exclusion mechanisms, except when it is used only in this context, for synchro-
nization with other NMIs running on another CPU. The code of NMI handlers can not
be reentrant, i.e., a second NMI will not be handled during the execution of an NMI.

From these restrictions and the trace of interrupts, it is possible to character-
ize the execution of NMIs as in Figure 5, where the major quantities of interest, as
introduced in Section 2.1 are visually highlighted.

For NMIs, the response time Ri is given by the delay between the IRQ activation
and the return of the NMI handler. The release jitter Ji will occur if the system is already
handling a non-maskable interrupt. In this case, it is safe to assume the worst case:
that the second NMI was activated right after the first NMI was activated.



Chapter 2. Background 44

Figure 5 – Non-maskable interruption timeline.

The busy window Wi is defined as the time that the NMI held the CPU during
its execution, being determined by the time interval between the call and the return
of the IRQ handler. The blocking represented by variable Bi must be implemented
as busy waiting, which should occur only for synchronization between non-maskable
interrupts in different processors. Finally, the runtime Ci is determined by the busy
window, discounting the time that the NMI may have been blocked by another NMI.

The characterization of the maskable interrupt handlers is shown in Figure 6.

Figure 6 – Maskable interruption timeline.

For maskable interrupts, the response time Ri is determined by the time interval
between the activation and the return of the interrupt handler. The release jitter Ji can
happen if the system has interrupts disabled, either by an action of the operating system
or by the action of the processor itself, e.g., if it is already handling an interrupt. In this
case, it is safe to assume that in the worst-case activation took place immediately after
the disabling of interrupts.

Unlike non-maskable interrupts, maskable interrupts can suffer interference Ii ,
caused by a non-maskable interrupt. The busy window Wi is defined as the time that
the interruption held the CPU during its execution, being determined by the time interval
from start to finish of the interrupt handler. Blocking Bi is always implemented as busy
waiting. Lastly, the runtime Ci is determined by the busy window discounting blocking
and interference from other interrupt handlers.



Chapter 2. Background 45

2.2.5.4 Characterization of the threads timeline

The characterization of real-time threads is more complex than that of the inter-
rupt handlers. Therefore, it was made in parts. The first part considers activation without
blocking and interference. The second one identifies the different forms of blocking and
interference, showing how they can affect the timing behavior of real-time threads.
Figure 7 describes the execution of a real-time thread without interference or blocking.

Figure 7 – Real-time thread.

For threads, the response time Ri is the time between the thread activation by
the event sched_wakeup, and the context switch when the thread leaves the processor,
suspending its execution in state S. The busy window Wi is the time interval between
the first context switch after the activation of the task and the context switch in which
the task leaves the processor to sleep, finishing its execution. The release jitter Ji can
be associated with two reasons: preemption or interrupts being disabled by process of
lower priority, and by a scheduler execution that removes the current task. Both must
happen at the processor on which the task was activated.

After a task starts its execution, the scheduling routine that had suspended the
task runs until it returns to the application code. The scheduling overhead is associated
with the variable SCi , comprising the exit-scheduling overhead, i.e., the time between
the calling of function schedule() and the context switch, and the entry-scheduling over-
head, that is the time between the context switch and the return of function schedule().

Finally, the computation time Ci is the time that the thread has executed its
own code, which can be either in user space or kernel space, excluding scheduling
overhead, blocking and interference.

Regarding the interference, Ii , Figure 8 describes the two forms of interference
that a task can suffer: from an interrupt handler and from another thread.

Since the interrupt handlers are activated by the hardware, they do not need to
be scheduled. The interference of an interrupt handler is given by the busy window Wi
of the interrupt handler.

Differently from the interference of interrupt handlers, the interference caused
by threads adds scheduling overhead to the currently running task. This overhead



Chapter 2. Background 46

Figure 8 – Forms of thread interference.

increases the scheduling overhead of the task itself. The interference of a high-priority
thread is given by the time interval between the context switch that removes the current
thread from the processor, and the context switch that gives back the processor to the
thread. It is possible to identify whether a thread is suffering interference by the state
that it is leaving the processor. When a real-time thread leaves the processor in R state,
it is suffering interference.

Regarding locks, one thread can experience two forms of blocking: implemented
as busy waiting, or implemented by suspending the execution of the thread. Figure 9
demonstrates both cases.

Figure 9 – Forms of thread blocking.

The first example of Bi (left) is a busy-waiting lock, where the task keeps running
on its context until another thread releases the lock. In the trace, it is possible to identify
this blocking by the tracepoint lock_contended. After acquiring access to the critical
section, tracepoint lock_acquired is shown. Thus, the blocking time is given by the
time interval between these two tracepoints.

The second example is (right) the type of blocking that suspends the execution of
the thread until it acquires the critical section. In this case, as the scheduling overhead
happens due to the mutual-exclusion mechanism, it is considered that this time is part



Chapter 2. Background 47

of the blocking time of the task, and the measurement is made in a manner analogous
to the mechanisms that do not suspend execution: the time interval between tracepoints
lock_contended and lock_acquired.

2.2.5.5 Final remarks

Although the work presented in (OLIVEIRA; OLIVEIRA, 2016) successfully de-
scribes the execution of tasks on Linux using terms from real-time scheduling theory,
it can be improved to cover all the possible states better a task can have in a single
execution. For example, it shows the kinds of the blocking a task may suffer, but it lacks
the description of how many times a task can block, or that, a task can block during
the scheduling actions or the possibility of nested locking. The interpretation can also
be improved by adding a new set of variables that can better describe the particular
behavior of Linux. To improve the state-of-art, we believe that a mathematical model
is required. The model should be based on well-defined criteria that describe, in a
deterministic way, enabling the analysis of all possible states a task can have on Linux.

Toward the formalization of Linux execution tasks, the next section introduces
concepts from formal methods theory, the modeling of DES, followed by the modeling
approaches applied in the modeling of complex systems.

2.3 FORMAL METHODS

Formal methods are fundamental in the development of cyber-physical systems.
Mainly to systems that can cause major damage, including loss of life, which are the
case of safety-critical hard real-time systems. Formal methods consist of a collection
of mathematical methods to rigorously state the specification of a system. The spec-
ifications of a system can then be used for multiple purposes, including the formal
verification of the correctness of a program. The advantage of the usage of mathemati-
cal notation is that it removes the ambiguous nature of natural language while enabling
automatic verification of the system.

Spivey (SPIVEY, 1989) defines formal specification as:

• "Formal specification is the use of mathematical notation to describe in a pre-
cise way the properties that an information system must have, without unduly
constraining the way in which these properties are achieved."

While O’Regan (O’REGAN, 2017) defines the properties of a system as follows:

• "The properties are a logical consequence of the mathematical definition, and the
requirements may be amended where appropriate."



Chapter 2. Background 48

Several different specification formalisms can be used in the specifications of
computing systems. These formalism can be classified into two different approaches:
the axiomatic or algebraic approach (CENTER et al., 1976) and the model-oriented
approach (CLARKE; EMERSON; SIFAKIS, 2009).

The axiomatic or algebraic approach dates from the mid-70s. This technic uses
different mathematical structures from the modern algebra, such as groups, rings, fields,
in the specification of data types, using then the equational logic as a specification
mechanism (EHRIG et al., 1992). The calculus communicating systems (CCS) and the
communicating sequential processes (CSP) are example of specification languages
using the axiomatic or algebraic approach.

The model-oriented approach uses a mathematical model for the specification of
a system. In this context, a model is a mathematical abstraction of a system that exists
in the real world, containing only the necessary details to explain a given behavior of the
system. Discrete mathematics elements, such as set theory, functions and relations are
applied to the modeling of computer systems, both directly, or as part of more complex
forms, such as finite-state machines and automata. Many sorts of formal verification
methods can be then applied to formal models of systems, such as model checking
and RV.

As presented in Chapter 3, the usage of formal models for Linux has gained
attention in the last year, motivating many different theoretical and practical work. Mo-
tivated by this trend, along with other arguments explained in the next sections, this
thesis follows the model-oriented approach.

2.3.1 Models

A model is an abstraction (a set of mathematical equations) of a system, whereas
a system is something real, e.g., an amplifier, a car, a factory, a human body, and so
on. The process of modeling a system involves the definition of a set of measurable
variables associated with the given system. The subset of variables acting on the sys-
tem from outside is considered input variables. The subset of these variables, which is
possible to measure while varying the input directly, is defined as the set of output vari-
ables. The input variables can be thought as the stimulus, which produces a response
on output variables, as in Figure 10. It is possible that some variables are not associ-
ated with either the input or the output, these are sometimes referred to as suppressed
output variables. To complete a model, it is reasonable to postulate that there exists
some mathematical relationship between the input and the output (CASSANDRAS;
LAFORTUNE, 2010).

It is essential to emphasize flexibility in the modeling process since no unique
way to select input and output variables is imposed. Thus, it is the task of the modeler
to identify these variables, depending on a particular point of view or on the constraints



Chapter 2. Background 49

Figure 10 – System and Model.

System

Input Output

Model

Input
variables

Output
variables

imposed by a specific application. Generally, the model only approximates the complete
behavior of the system, and it is a good practice to try to simplify the model, following
the "Ockham’s Razor" (law of parsimony) approach. The adequacy is a crucial aspect
during the definition of the level of abstraction used in the model. The adequacy of a
model determines how effectively the model represents the underlying behavior of the
system (O’REGAN, 2017). When an adequate model is found, the terms system and
model can be interchangeably used. The following items are desirable characteristics
of a software reliability model:

• good theoretical foundation;

• realistic assumptions;

• good empirical support;

• as simple as possible;

• trustworthy and accurate.

A fundamental step in the development of a model is the clear definition of its
purpose. As described in Section 2.1.1, in the real-time scheduling theory, a system is
modeled as a set of tasks. Based on this point of view, this work endeavors the creation
of an explicit formal model for the tasks of Linux, including the variables that influence
the timing behavior of the tasks.

Generally, the specifications of computing systems are created in an early stage
of the process and are used as a reference for the development and testing of the



Chapter 2. Background 50

system. However, Linux already exists, and it is unrealistic to think about a complete
redesign of the core features of the kernel. Thus, the purpose for the creation of an
explicit model of the task of Linux are:

• to promote the unambiguous understanding of the system from its formal specifi-
cations: useful in the definition of the timing behavior of Linux;

• to enable the validation of the model against the real execution of the system: a
fundamental step to strengthen the trustworthy and accuracy of the model;

• to verify violations of the specifications during the execution of the system: useful
in the formal verification of Linux behavior.

Despite the arguments in favor of the usage of formal methods, its application is
generally restricted to specific sectors. The most commonly mentioned reasons for that
are the complexity of the mathematical notation used in the specifications, along with
limitations of computational space and processing time required for the verification of a
system using formal methods. Regarding the complexity, it is a challenge for this work
to find a formal specification notation that, at the same time, can be easily interpreted by
kernel developers, useful to demonstrate the timing behavior of tasks, and able to verify
the Linux kernel behavior appropriately. Regarding performance, a common problem
faced by practitioners in the usage of formal methods is the state explosion problem.
As exemplified in (CLARKE; EMERSON; SIFAKIS, 2009), the composition of a model
of a system with n tasks, with each task with m states, will result in a model with mn

states. Moreover, it is also important to consider the level of expressiveness of the
specification notation. Generally, a more concise notation is likely to be more efficient
than feature-rich notation.

Hence, as important as defining the goals of a model, it is determining what
are not the goals of a model, limiting its scope to avoid hitting the limitations of formal
modeling. In this regard, a common motivation to create a model is to predict future
behavior (EPSTEIN, 2008) In the case of the real-time system scheduling theory, the
prediction of the future generally means the definition of the schedulability of a system,
with many articles that explore this possibility (FERSMAN; MOKRUSHIN, et al., 2006;
NORSTROM; WALL; WANG YI, 1999; AMNELL, T. et al., 2002; ABDEDDAÏM; MALER,
2001). However, it is essential to clarify that this is not the main goal of this project.
The justification for such choice is avoiding well-known restrictions on the use of formal
methods with complex software such as the Linux kernel.

From all available methods to formally describe a system, the methods used the
DES demonstrated to be an appropriate choice for this research, mainly because:

1. real-time systems models are generally formalized using discrete math methods;



Chapter 2. Background 51

2. OS developers are familiar with state-machine like descriptions;

3. Linux possesses logical and event-based behavior;

4. Linux has a vast set of events that can be traced efficiently;

5. the previous attempt to describe Linux behavior was made using tracing;

6. a vast set of formal verification methods are available for DES, such as RV and
model checking.

The next sections present the basics notions of DES and automata theory used
in the development of the model.

2.3.2 Discrete event systems

A set of appropriate models for DES was developed to adequately describe the
behavior of these systems and provide a framework for analytic techniques to meet
design, control, and performance evaluation goals. This section presents the most basic
format for the description of a DES: the language formalism.

The evolution of a DES can be thought of as a sequence of visited states, and the
associated events causing transitions. The description of the evolution is then done as
a sequence of events, for instance, e1, e2, e3, ..., en, that describes the logical behavior
of the system. All possible sequences of events define the language that describes the
system. The issue of representing a language using appropriate modeling formalism is
the key to do the analysis, control, and hence performance evaluation of a DES.

The starting point of a DES is the underlying finite event set E associated with it.
The set E represents the “alphabet” used to form “strings” (or “words” or even “trace”)
of event sequences that compose a language. This framework can be used either to
define the language to be performed by a new system or to identify the language spoken
by an existing system formally.

A string composed of no events is called the empty string, and it is denoted by ε.
The length of a string is the number of events contained in it, counting repeated events.
If s is a string, |s| will denote the length of s.

2.3.2.1 Language definition

A language defined over an event set E is a set of finite-length strings formed
from events in E .

For example, let the set E be composed of {a, b, c}. It is possible to define the
language L1 with the following four strings:

L1 = {ε, a, ab, acc} (4)



Chapter 2. Background 52

It is also possible to define the language L2 with four strings as following:

L2 = {strings with two elements starting with a} (5)

= {ε, aa, ab, ac}

Moreover, it is also possible to have a set with infinite elements. For instance:

L3 = {all strings starting with a} (6)

The concatenation is the base operation of the composition of a string, hence
a language. Taking L1 as example, acc can be seen as the concatenation of a, c and
c again, or the concatenation of a and cc, or even the concatenation of ac and c.
Regarding the empty string, since aε = εa = a it is possible to classify ε as the identity
element of concatenation.

To be able to formally define concatenation, the Kleene-closure operation, de-
noted by ∗, must be presented. The Kleene-closure of a set E is the set E∗ composed
of all finite strings of elements from E . Therefore, it is possible to state that E is a subset
of E∗. It is noteworthy that E∗ contains an infinity number of elements.

Formally, the Kleene-closure of a language L is defined as: Let L ⊆ E∗, then

L∗ := {ε} ∪ L ∪ LL ∪ LLL ∪ ... (7)

Therefore, concatenation is defined as follows:
Let La, Lb ⊆ E∗, then

LaLb := {s ∈ E∗ : (s = sasb) and (8)

(sa ∈ La) and (sb ∈ Lb)}

Another important operation is the prefix-closure. A language L is said to be
prefix-closed, denoted by L, if any prefix of any string in L is also an element of L.
Formally, Let L ⊆ E∗, then

L := {s ∈ E∗ : (∃t ∈ E∗)[st ∈ L]} (9)

Finally, the following three terms are often used on strings operations:
Let s = abc, then:

• a is a prefix of s,



Chapter 2. Background 53

Figure 11 – Example of automaton.

x

a
z

g

b

y

a,g

a

b

Figure 12 – Example of Petri net.

a
Q

s B c

I

• b is a substring of s, and

• c is a suffix of s.

It is important to note that ε and s are both prefix, suffix and a substring of s.
Moreover, since languages are sets, usual set operations such as union, intersection,
difference, and complement with respect to E∗ can be used.

2.3.2.2 DES modeling formalism

Although languages enable the formal modeling of a DES by describing all pos-
sible sequences of events that a DES can produce or process, the absence of an addi-
tional level of structures to describe the logical behavior of a system makes its usage
not always easy when modeling arbitrarily complex systems. However, it is possible to
surpass this limitation with two formalism: Petri nets and automata. Both formalisms can
represent a language using a graphical state transition format, and enable a modular
modeling approach, turning the development more intuitive and flexible. However, both
formalism have different concepts and representations, as shown Figures 11 and 12.

Both automata and Petri nets were tried with preliminary versions of the IRQ
model (OLIVEIRA, D. B. de et al., 2017). In both cases, it was possible to create
simple models using a modular approach4 and conduce non-functional verification of
the models.

However, the automata format showed to be a better option for this project.
The automata format is simpler and more intuitive for OS developers, facilitating the
4 See Section 2.3.3.2.



Chapter 2. Background 54

goal of promoting the unambiguous understanding of Linux, which was confirmed with
developers during the development of models. For example, preliminary versions of the
models were presented to the real-time Linux kernel community at the Real-time Linux
Summit 2018 (OLIVEIRA, 2018e) and the general community at the Linux Plumbers
Conference (OLIVEIRA, 2018f,d).

Moreover, the more sophisticated format of Petri nets resulted in longer process-
ing times for composition and non-functional verification of the models, even for models
with less than one hundred states in its automata version. Foreseeing a large number
of states for the desired thread model, confirmed by the final thread model in Chapter 4
with more than nine thousand states, the choice for the automata formalism was made.

The next section presents the basics of automata theory, including the modeling
approach used later in the project.

2.3.3 Automata theory

By using automaton formalism, it is possible to define a language according
to well-defined rules. Automata are intuitive and easy to use, they are amenable to
composition operations, and analysis as well, considering the finite-state case.

One of the key features of an automaton is its directed graph or state transition
diagram representation. For example, let the event set be E = {a, b, c}. Then, consider
the state transition diagram in Figure 11, where nodes represent states, labeled arcs
represent transitions between states, the arrow points to the initial state, and the nodes
with double circles are marked states.

Formally, a deterministic automaton, denoted by G, is a quintuple

G = {X , E , f , x0, Xm} (10)

where:

• X is the set of states

• E is the finite set of events

• f : X × E → X is the transition function. It defines the state transition in the
occurrence of a event from E in the state X .

• x0 is the initial state

• Xm ⊆ X is the set of marked states

For instance, the automaton G represented in Figure 11 can be defined as
follows:



Chapter 2. Background 55

• X = {x , y , z}

• E = {a, b, g}

• f =

– f (x , a) = x

– f (y , a) = x

– f (z, b) = z

– f (x , g) = z

– f (y , b) = y

– f (z, a) = f (z, g) = y

• x0 = x

• Xm = {x , z}

It is also possible to add to the automaton the active event function (or feasible
event function) Γ : X =⇒ 2E . Γ(x) is the set of all events e for which f (x , e) is defined
in the state x .

The automaton works as follows. It starts at the initial state x0 and upon the
occurrence of an event e ⊆ E with f (x0, e) defined, the state transition from x0 to
f (x0, e) will take place. This process continues based on the transitions for which f
is defined. For the sake of convenience, f is always extended from domain X × E to
domain X × E∗ in the following recursive manner:

f (x , ε) = x (11)

f (x , se) = f (f (x , s), e) for s ∈ E∗ and e ∈ E (12)

Informally, following the graph of Figure 11 it is possible to see that the occur-
rence of the event a, followed by the event g and a will lead from the initial state to state
y . Using automaton formalism, the same can be formally specified as follows:

f (x , aga) = f (f (x , ag), a) = f (f (f (x , a), g), a) (13)

= f (f (x , g)a) = f (z, a) = y

The language generated by an automaton G = {X , E , f , x0, Xm} consists of all
possible chains of events generated by the state transition diagram starting from the
initial state, formally:



Chapter 2. Background 56

L(G) = {s ∈ E∗|f (x0, s) is defined} (14)

Therefore, s ∈ L(G) if and only if it is an admissible path in the state transition
diagram, here L(G) is prefix-closed by definition. Another language generated by an
automaton is the marked language. The marked language is composed of the set of
words in L(G) that lead the state transition diagram to a marked state. Formally:

Lm(G) = {s ∈ L(G)|f (x0, s) ∈ Xm} (15)

Lm(G) does not need to be prefix-closed. The marked language is also called
the language recognized by the automaton. When modeling systems, a marked state
is generally interpreted as a possible final state for a system, and Lm(G) is the set of
possible final states for a system.

2.3.3.1 Operations with automata

An important automaton operation is the Parallel Composition. The Parallel com-
position allows the merge of two or more automata models into one single model. The
standard way of building a model of the entire system from models of individual systems
components is by parallel composition (CASSANDRAS; LAFORTUNE, 2010).

Before describing the parallel composition, the operation Accessible Part needs
to be presented. From the definition of L(G) and Lm(G), it is possible to see that all
states from G that are not accessible, or reachable, from x0 (the initial state) can be
deleted. When deleting a state, all the transitions attached to that event are also deleted.
The operation that deletes states not accessible from x0 from a given automaton G is
defined as Ac(G), formally:

Ac(G) := (Xac , E , fac , x0, Xac,m) where (16)

Xac = {x ∈ X : (∃s ∈ E∗)[f (x0, s) = x ]}

Xac,m = Xm ∩ Xac

fac = f |Xac×E→Xac

When modeling a system composed of interacting components, it is possible
to distinguish two kinds of events, private events and common events. Private events
belong to a single component, while common events are shared among components.

Given two automata G1 and G2, their parallel composition is defined as:

G1 ‖ G1 := Ac(X1 × X2, E1 ∪ E2, f ,Γ1‖2, (x01, x02), Xm1 × Xm2)

(17)



Chapter 2. Background 57

where:

f ((x1, x2), e) :=


(f1(x1, e), f2(x2, e)) if e ∈ Γ1(x1) ∩ Γ2(x2)
(f1(x1, e), x2) if e ∈ Γ1(x1)\E2

(x1, f2(x2, e)) if e ∈ Γ2(x2)\E1

undefined otherwise

In words, in the parallel composition, a private event, that is an event present in
only one automaton, can execute whenever possible. On the other hand, a common
event, that is, an event in E1 ∩ E2, can only be executed if it is possible in all automata
that contain the event, simultaneously.

2.3.3.2 Modeling approaches

There are two possible approaches to model a system, the monolithic and the
modular approach (RAMADGE; WONHAM, 1987).

The monolithic approach

In the monolithic approach, firstly, an uncoordinated model of the system is
built. This model should comprise all possible chains of events, including undesired
sequences. This model is a named generator G. Then, based on a set of specification,
a specification model S is modeled. The specification S controls the generator G by
disabling all undesired events in a given state. Finally, the specification S and the
generator G are merged using the parallel composition S ‖ G. The composition S ‖ G
represents all the chain of events produced, or accepted, by the system. The resulting
model is denoted by S/G, which is the specification S controlling the generator G. The
language L(S/G) is the language generated by S/G.

For example, suppose that three mechanisms compose a washer and dryer
machine. One mechanism controls the door: it opens and closes the door. The second
mechanism is the washing machine, it accepts two commands: to start washing and to
finish washing. Finally, the drying mechanism accepts two commands, to start drying
and to stop drying.

The alphabet of the system is defined in Table 3. The initial state of the system is
neither washing nor drying and with the door closed. The initial state is also a safe state.
The generator G of the washer and drying machine, including all possible combinations
of events, is presented in Figure 13.

The specification model should be composed of the following specifications:

S1: both washer and dryer should not start working with the door open;

S2: the door should not open while either washing or drying;



Chapter 2. Background 58

Table 3 – Events of the washer and dryer machine.

Event Sub-system Description
close_door door Closes the door
open_door door Opens the door
start_washing washing Starts to wash
stop_washing washing Stops to wash
start_drying drying Starts to dry
stop_drying drying Stops to dry

Figure 13 – Monolithic generator G of the washer and dryer machine.

q0

q1

start_drying

q2

start_washing

q4

open_door

finish_drying

q3
start_washing

q5

open_door

finish_washing

start_drying
q6

open_door

finish_washing

finish_drying

q7

open_door

close_door

start_drying

start_washing

close_door

finish_drying

start_washing

close_door

finish_washing

start_drying

close_door

finish_washing

finish_drying

S3: once start washing, the machine should finish washing before staring drying;
and

S4: once start drying, the machine should finish drying before starting washing
again.

By disabling undesired transitions, it is possible to find the specification model S
presented in Figure 14.

Then, given the generator G and the specification S, the model S/G is found by
the synchronous product of S ‖ G, as in Figure 15.

The modular approach

Although the monolithic approach is good for simple systems, it is not efficient
in the modeling of complex systems, as the number of states increases exponentially.
Moreover, it is not easy to understand which specification disabled a specific event. For
systems composed of many independent sub-systems, with several specifications, the
modular approach becomes more efficient.

In the modular approach, rather than specifying a single generator G, the gen-
erator is modeled as a set of independent sub-systems, where each sub-system has
its own alphabet. The generator G is then composed by the parallel composition of



Chapter 2. Background 59

Figure 14 – Monolithic specification model
S of the washer and dryer ma-
chine.

S0

S1

open_door

S2
start_drying

S3

start_washing

close_door

finish_drying

finish_washing

Figure 15 – S/G of the washer and dryer
machine.

q0

q1

start_drying

q2
start_washing

q3

open_door

finish_drying

finish_washing

close_door

Figure 16 – Generator: Gdoor .

S0 S1
open_door

close_door

Figure 17 – Generator: Gwash.

S0 S1
start_washing

finish_washing

Figure 18 – Generator: Gdry .

S0 S1
start_drying

finish_drying

all sub-systems. Similarly, rather than modeling a single specification S to satisfy all
specifications, each specification is modeled independently, using the alphabet of the
sub-systems of the generator G it aims to control. The parallel composition of all sub-
systems then composes the generator G. This approach allows the module modeling
of complex systems in a simpler way.

Using the same example, the generator can be naturally divided into three sub-
systems: 1) door control; 2) washing; and 3) drying. These three generators are pre-
sented in Figure 16, 17 and 18, respectively.

In the same way, each of the specifications can be modeled separately. In Figure
19, the specification S1 is modeled by blocking washing and drying start while the door
is open. In Figure 20, the specification S2 is modeled by blocking the door opening while
the machine is either washing or drying. In Figure 21, the starting of the dryer is blocked
while washing, and in Figure 22, the starting of the washer is blocked while drying.
These two later models are the modes for the specification S3 and S4, respectively.

The generator G is then defined as {Gdoor ‖ Gwash ‖ Gdry }, resulting in the



Chapter 2. Background 60

Figure 19 – Specification: S1.

S0

start_drying
start_washing

S1
open_door

close_door

Figure 20 – Specification: S2.

S0

open_door

S1

start_drying
start_washing

finish_drying
finish_washing

Figure 21 – Specification: S3.

S0

start_drying

S1
start_washing

finish_washing

Figure 22 – Specification: S4.

S0

start_washing

S1
start_drying

finish_drying

Figure 23 – Modular generator G of the washer and dryer machine.

q0

q1

start_drying

q2

start_washing

q4

open_door

finish_drying

q3
start_washing

q5

open_door

finish_washing

start_drying
q6

open_door

finish_washing

finish_drying

q7

open_door

close_door

start_drying

start_washing

close_door

finish_drying

start_washing

close_door

finish_washing

start_drying

close_door

finish_washing

finish_drying

automaton in Figure 23. Note that the Modular G and Monolithic G (presented in Figure
13) are equivalent models, but developed using different approaches.

The modular specification S is then defined as {S1 ‖ S2 ‖ S3 ‖ S4}, resulting in
the automaton in Figure 24. Which is synchronized with G to compose the controlled
system in Figure 25.

As it is possible to see in Figure 25, the results of both monolithic and modular
approaches are the same. However, the modular approach is more intuitive, helping in
the understanding of each part of the system, and the specifications as well.

The automaton modeling can be done using specialized software, like Supremica.
Supremica is an integrated development environment used in the modeling of large
scale models. Supremica implements monolithic and modular verification and synthesis
algorithms for solving non-blocking, controllability, and combined non-blocking and



Chapter 2. Background 61

Figure 24 – Modular specification S of the
washer and dryer machine.

q0

q1

open_door

q2
start_drying

q3

start_washing

close_door

finish_drying

finish_washing

Figure 25 – Modular model S/G of the
washer and dryer machine.

q0

q1

start_drying

q2
start_washing

q3

open_door

finish_drying

finish_washing

close_door

controllability problems (AKESSON et al., 2006).

2.3.4 Runtime verification

Among the techniques available to the application of formal methods, Runtime
Verification (RV) was chosen because of the runtime nature of the proposed model.
RV presents a lightweight, yet rigorous, method that complements classical exhaustive
verification techniques (such as model checking and theorem proving) with a more
practical approach. At the price of a limited execution coverage, that analyses a single
execution trace of a system, RV can give precise information on the runtime behavior
of the monitored system (FALCONE et al., 2018).

One of the crucial points that motivate the usage of RV is the usage of the events
and trace the abstractions to analyze the runtime behavior of the system. Indeed, real-
time Linux developers use the trace features of Linux in the analysis of the runtime
behavior of the system, and the work presented in Section 2.2.5 also bases in the trace
execution, which are the same abstractions used in previously described DES. In RV, a
property can be abstractly described as a set of traces, and a specification is a concrete
(textual) object describing property, and therefore it denotes a set of traces.

When considering how to use RV to check if the runtime behavior of a system
conforms to some specification, there are three necessary steps to be taken:

1. the specification of the desired, or undesired, behavior of the system;

2. the generation of a monitor that interprets the specification;

3. the connection between the monitor and the system to be observed.

The monitor of the system is the tool that connects the specification written
in a mathematical format and the events generated by the system. The connection



Chapter 2. Background 62

between the system and the monitor is made through the instrumentation of the system.
The instrumentation exhibits the behavior of the system by generating a trace of its
execution.

Monitors can be classified as offline and online monitors. Offline monitors pro-
cess the traces generated by a system after the occurrence of the events, generally
by reading the trace execution from a permanent storage system. Online monitors
process the trace during the execution of the system. Online monitors are said to be
synchronous if the processing of an event is attached to the system execution, blocking
the system during the event monitoring. On the other hand, an asynchronous monitor
has its execution detached from the system. Each type of monitor has a set of advan-
tages. For example, offline monitors can be executed on different machines but require
operations to save the log to a file. Asynchronous online monitors generally result in
lower overhead by avoiding both blocking the execution of the system and the manipula-
tion of files (CASSAR; FRANCALANZA, 2015). However, only the synchronous online
method can take actions at the exact moment a violation occurs, enabling additional
data collection in the precise state in which the system shows a defect.

In the context of this work, the runtime verification will have a dual goal: initially,
to verify the correctness of the model against the real execution of the system. Once a
satisfactory model is found, the model will be used to verify the runtime behavior of the
Linux kernel. To make this possible, this work aims to develop methods to connect the
mathematical model specifying the behavior of tasks on Linux to the real trace of the
Linux kernel, using Linux tracing features such as perf and ftrace.

2.4 FINAL REMARKS

The success of Linux as a general-purpose operating system (GPOS) motivated
its extension to be a RTOS. Over the last decade, Linux has gained a lot of real-time
features and improvements. Nowadays, Linux can perform scheduling decisions in the
microseconds order, and this is motivating its usage on a new class of safety-critical
systems. However, the timing analysis of Linux is based on an empirical evaluation,
and such results are not enough to satisfy the safety requirements necessary in such a
class of systems.

To improve the runtime analysis and verification of the Linux kernel, a new set
of methods needs to be developed, based not only on empirical testing but using
sophisticated techniques from the theory of formal methods and real-time scheduling
systems.

The timing analysis of the PREEMPT RT Linux kernel using the real-time schedul-
ing terminology, presented in Section 2.2.5, represented an improvement in the un-
derstanding of Linux and validated the idea of using the tracing features of Linux to
enlighten its timing behavior. The weak point of the approach was the informal method



Chapter 2. Background 63

used in the inspection and explanation of the trace.
As seen in Section 2.3, the usage of formal methods is highly recommended in

the specifications of safety-critical systems, mainly on the verification of the properties
of the system. In the model-based approach, the verification is conducted using an ab-
stract model of the real system. The model is a simplified representation of the system.
It aims to reduce its complexity, enabling the usage of more specialized methods that
would not be possible in a complete and complex description of the system.

The previous usage of tracing in the analysis of Linux witnesses the event-based
nature of kernel. It also evidences the possibility of using the discrete event systems
theory to create an abstract model of tasks on Linux, focusing on the events that
influence the timing behavior of tasks, from the real-time scheduling theory point of view.
From the formalisms available for the modeling of discrete event systems, the automata
showed to be a viable option during early experiments. The graphical representation of
an automaton hides the complexity of its formal notation, simplifying the understanding
and modeling of a system. Moreover, automata operations enable creating a complex
model from the composition of smaller and specialized models. The modular approach
uses these operations to model a system from a set of independent generators and
specifications.

The abstract model of the Linux tasks has the potential to reduce the complexity
of kernel code while enabling more sophisticated reasoning about the timing behavior
of the system, and the application of runtime verification for the Linux kernel. Before
starting exploring the creation of the model and its usage in the analysis and verification
of Linux, a set of related work is presented in the next chapter.



64

3 RELATED WORK

This Chapter presents prior literature relevant to the work being presented in
this thesis, spanning across three main areas: 1) formal methods applied to operating
systems kernel; 2) use of automata in real-time and operating systems analysis; and
3) real-time Linux latency. The first two topics are fundamental for the development of
the work presented in Chapters 4, and 5, while the last shows the prior work relevant
to Chapter 6.

3.1 FORMAL METHODS FOR OS KERNELS

A particularly challenging area is the one of verification of an operating system
kernel and its various components. Some works that addressed this problem include
the BLAST tool (HENZINGER et al., 2002), where control flow automata have been
used, combining existing techniques for a state-space reduction based on abstraction,
for model checking verification of C code using counterexample-driven refinement, with
lazy abstraction. This allows for an on-demand refinement of parts of the specification
by choosing more specific predicates to add to the model while the model checker is
running, without any need for revisiting parts of the state space that are not affected
by the refinements. Interestingly, the authors applied the technique to the verification of
safety properties of OS drivers for the Linux and Microsoft Windows NT kernels. The
technique required instrumentation of the original drivers, inserting a conditional jump
to an error handling piece of code, and a model of the surrounding kernel behavior to
allow the model checker to verify whether or not the faulty code could ever be reached.

The static code analyzer SLAM (BALL; RAJAMANI, 2002b) shares the primary
objectives with BLAST, in that it allows for analyzing C programs to detect violation
of certain conditions. The SLAM uses a specification language named specification
language for interface checking (SLIC) (BALL; RAJAMANI, 2002a). SLIC rules are
composed by an static set of states (organized as C structures), a set of events and and
its associated handler function, and a set of annotations that connects the specification
with the objects instance in the code.

The Microsoft static driver verifier (SDV) toolset uses SLAM to verify the correct
usage of Windows API on kernel modules, especially device drivers. SDV aims to be
a completely automatic tool, to be used at compile time by developers. Anytime SDV
finds a problem in a driver, it shows the execution path in the driver that leads to a rule
violation. Despite the high level of automatization, the SDV authors do not claim it is a
push buttom solution for verification. Instead, they mention that first, the specification
of the properties to be verified needs to be modeled, which is not a straightforward
step, requiring the understanding, and even the debugging, of the code. Secondly, the
verification tooling needs to be integrated into the development environment to be prac-



Chapter 3. Related Work 65

tical. Last but not least, the problem of state space explosion reduces the application
of the method for specific cases. The SDV authors clarify that the tool does not verify
the complete operating system kernel, but sole the composition of some components
of the system, such as the device drivers, with the highly abstract environmental model
of the procedures of the Windows kernel (BALL; LEVIN; RAJAMANI, 2011).

Different authors also proposed a similar approach for the Linux kernel, resulting
in three different toolsets: DDVerify, Avinux, and Linux driver verification (LDV).

(WITKOWSKI et al., 2007) proposed the DDVerify toolset, extending the capabil-
ities of BLAST and SLAM, e.g., supporting interrupts, deferred tasks, timers, etc. It also
includes specification rules about the usage of the synchronization primitives and the
correct way to initialize variables before usage. The specifications are written in C code.
It also relies on a set of self-developed scripts used in the extraction of information of the
source files to generate a collection of information about the modules to be analyzed.

The Avinux (POST; KÜCHLIN, 2007) proposes an public domain like reimple-
mentation of the SDV for the device drivers of Linux, using an extended version of the
SLIC specification language, named SLICx.

Both DDVerify and Avinux use the CBMC (CLARKE; KROENING; LERDA, 2004)
static verification tool, but DDVerify also supports SATABS (CLARKE; KROENING;
SHARYGINA, et al., 2005). Moreover, both toolsets also present some integration with
Eclipse IDE.

The LVD toolset aims to enable static code analysis for a diverse set of ker-
nel modules (ZAKHAROV, I. S. et al., 2015). The LDV is a newer project and tries to
overcome the limitations of the previously mentioned toolsets. For example, instead of
supporting a fixed set of static verification tools, they proposed a dynamically and con-
figurable set, including, but not limited to, BLAST, CPAchecker (BEYER; KEREMOGLU,
2011), UFO (ALBARGHOUTHI et al., 2012), and CBMC. Although it is mostly centered
on Linux, its methodology can be extended for other OS kernels too. Regarding the
specifications, they are done using the PI-process (ZAKHAROV, I. et al., 2013). The
commit logs of kernel patches fixing problems found by the LDV are generally tagged
with the following message:

Found by Linux Driver Verification project (linuxtesting.org).

This tag enables the collection of some interesting metrics. As of the version
5.6-rc6 of the Linux kernel, there are at least 351 kernel patches fixing problems
found by LDV, from 18 different authors, with dates ranging from 2011 to 2019 1. These
numbers confirm the practical approach of LDV.
1 Run git log –grep "Found by Linux Driver Verification project" in a git tree of the kernel

to see the kernel commit logs related to LDV.



Chapter 3. Related Work 66

Chaki et al. (CHAKI, S. et al., 2004) proposed MAGIC, a tool for automatic
verification of sequential C programs against finite state machine specifications. The
tool can analyze a directed acyclic graph of C functions, by extracting a finite state model
from the C source code, then reducing the verification to a boolean satisfiability (SAT)
problem. The verification is carried out checking the specification against a sequence
of increasingly refined abstractions, until either it is verified, or a counter-example is
found. This, along with its modular approach, allows the technique to be used with
relatively large models avoiding the need for enumerating the state-space of the entire
system. Interestingly, MAGIC has been used to verify the correctness of a number of
functions in the Linux kernel involved in system calls handling mutexes, sockets, and
packet sending. The tool has also been extended later to handle concurrent software
systems (CHAKI, Sagar et al., 2005), albeit authors focus on verifying correctness and
deadlock-freedom in the presence of message-passing based concurrency, forbidding
the sharing of variables. Authors were able to find a bug in the Micro-C/OS source code,
albeit when they notified developers the bug had already been found and fixed in a
newer release.

There have also been other remarkable works assessing formal correctness
of a whole micro-kernel such as seL4 (KLEIN et al., 2009), i.e., adherence of the
compiled code to its expected behavior, stated in formal mathematical terms. seL4 has
also been accompanied by precise WCET analysis (BLACKHAM et al., 2011). These
findings were possible thanks to the simplicity of the seL4 micro-kernel features, e.g.,
semi-preemptability.

Remarks

The works presented in this section, employing the static code analyzers of part
of OS kernels, evidence the applicability of formal methods in this field. The usage of
such technique is generally limited either to a specific interface between the kernel
and their modules/drivers (SDV, DDVerify, Avinux, and LVD); or to a single function of
the system (MAGIC); or applied on specialized/embedded OS kernels (seL4). Such
restriction, as reported in (BALL; LEVIN; RAJAMANI, 2011), is a constraint to avoid
state explosion.

However, the model proposed in this thesis is not limited to a single subsystem
of the kernel, or a single function, but are the synchronization mechanisms embedded
in the entire code. There are also relations between the events that are not written
in the code. For instance, there is no annotation limiting the usage of mutexes to the
preemptive sections of the code. Such cases would have to be handled via a manual
specification of the system, which is precisely the purpose of this work.

Finally, the suggestion of using static code analysis to automatize the creation
of the model was frequently raised during the development of this thesis. The answer



Chapter 3. Related Work 67

to this question received special attention and is specially addressed in Section 4.3.1.

3.1.1 Formal methods in the Linux kernel community

The Linux kernel community is not new to the adoption of formal methods in
the kernel development and debugging workflow. Indeed, a remarkable work in this
area is the lockdep mechanism (CORBET, J., 2006) built into the Linux kernel. Lock-
dep is capable of identifying errors in using locking primitives that might eventually
lead to deadlocks, by observing the order of execution and the calling context of lock
calls. The mechanism includes detecting the mistaken order of acquisition of multiple
(nested) locks throughout multiple kernel code paths and detecting common mistakes
in handling spinlocks across IRQ handler vs. process context, e.g., acquiring a spinlock
from process context with IRQs enabled as well as from an IRQ handler. The number
of different lock states that have to be kept by the kernel is reduced by applying the
technique based on locking classes rather than individual locks.

In (ALGLAVE et al., 2018), a formal memory model is introduced to automate
verification of fundamental consistency properties of core kernel synchronization op-
erations across the wide variety of supported architectures and associated memory
consistency models. The memory model for Linux ended being part of the official Linux
release, with the addition of the Linux kernel memory consistency model (LKMM) sub-
system, which is an array of tools that formally describe the Linux memory coherency
model, and also produce “litmus tests” in the form of kernel code, which can be directly
executed and tested.

Moreover, the well-known TLA+ formalism (LAMPORT, 1994) has been success-
fully applied to discover bugs in the Linux kernel. Examples of problems that were
discovered or confirmed by using TLA+ goes from the correct handling of the memory
management locking in the context switch to the fairness properties of the arm64 ticket
spinlock implementation (MARINAS, 2018). These recent results raised interest in the
potential of the usage of formal methods in the development of Linux.

Remarks

Lockdep is used on a daily bases in the kernel development, and is responsible
for countless bug fixes, and mainly bug prevention, as developers generally use it
even before proposing patches. Although lockdep does not use a formal specification
format, it effectively creates a monitor and conduces a runtime check of the system.
Such a runtime verification like approach is needed because the context, and the
order, in which the locks are taken is highly dependant on the workload of the system,
and the complexity to create a synthetic workload that represents all the user-cases



Chapter 3. Related Work 68

is, at least, unreasonable. During the discussions with the Linux kernel community2,
developers agreed with the possibility of a formal version of lockdep, based on the
approach presented in Chapter 5. Indeed, part of the model proposed in this thesis
already overlaps with lockdep, as shown with the problem found with the model in
Section 4.5.3.

The LKMM model and the usage of TLA+ confirms the trend of using model-
based verification of the kernel, motivating the creation of other models, like the model
proposed in this thesis.

3.2 AUTOMATA-BASED REAL-TIME SYSTEMS ANALYSIS

Automata and discrete-event systems theory have been extensively used to
verify the timing properties of real-time systems. For example, in (WANG; LI; WONHAM,
2016), a methodology based on timed discrete event systems is presented to ensure
that a real-time system with multiple-period tasks is reconfigured dynamically at run-
time using a safe execution sequence, under the assumption of single-processor, non-
preemptive scheduling. In (YOVINE, 1997; BOUAJJANI; TRIPAKIS; YOVINE, 1997;
DAWS; YOVINE, 1995), the Kronos tool is used for checking properties of models
based on multi-rate and parametric/symbolic timed automata.

In (CIMATTI; PALOPOLI; RAMADIAN, 2008), parametric timed automata are
used for the symbolic computation of the region of the parameters’ space guaranteeing
schedulability of a given real-time task set, under fixed-priority scheduling. Authors
extend the symbolic analysis of timed automata (FERSMAN; PETTERSSON; YI, 2002),
by enriching the model with parametric guards and invariant constraints, which is then
checked recurring to symbolic model checking. The approach is also applied to an
industrial avionic case-study (LE et al., 2013), where verification has been carried
out using the UPPAAL model checker (LI et al., 2004). A similar methodology can be
found in (ARTHO; ÖLVECZKY, 2014), where parametric timed automata are used to
perform sensitivity analysis in a distributed real-time system. It makes use of CAN-
based communications and fixed priority CPU scheduling and solved with a tool called
IMITATOR (ANDRÉ et al., 2012). Similar in purposes is also the work in (LARSEN et al.,
2014), where a technique is proposed to compute the maximum allowed imprecision on
a real-time system specification, still preserving desired timing properties. Additionally,
some authors (LAMPKA; PERATHONER; THIELE, 2013) considered composability of
automata-based timing specifications, so that timing properties of a complex real-time
system can be verified with reduced complexity. Interesting work is presented in (SUN;
LIPARI, 2014), where the authors use Linear Hybrid Automaton to model an exact
schedulability analysis for the fixed priority scheduler, considering preemptive tasks in
2 Discussions held at the Linux Plumbers Conference 2019 and the Kernel Recipes 2019.



Chapter 3. Related Work 69

a multiprocessor system.
Similarly to the approach of UPPAAL (LI et al., 2004), the TIMES tool has been

used (AMNELL T. A. F., E. et al., 2004) with an automata-based formalism to describe a
network of distributed real-time components for analyzing their temporal behavior from
the viewpoint of schedulability.

Further works exist introducing mathematical frameworks for analyzing real-time
systems, such as in (KAYNAR et al., 2003; LYNCH; SEGALA; VAANDRAGER, 2003),
making use of Hybrid and Timed Input/Output Automata to prove safety, liveness and
performance properties of a system.

Remarks

The mentioned methodologies focus on modeling the timing behavior of the ap-
plications and their reciprocal interference due to scheduling. Compared to the work
being presented here, they neglect the exact sequence of steps executed by an operat-
ing system kernel, to let, for example, a higher-priority task preempt a lower-priority one.
None of these works formalize the details of what exact steps are performed by the
kernel and within its scheduler and context-switch code path. However, as it will be clar-
ified later, these details can be fundamental to ensure the build of an accurate formal
model of the possible interferences among tasks, as commonly used in the real-time
analysis literature.

3.2.1 Automata-based models for Linux

In (POSADAS et al., 2010), a model of an RT system involving Linux is presented,
with two timing domains: a real-time and a non-real-time one. These are abstracted as
a seven-state and three-state model, respectively.

Matni and Dagenais (MATNI; DAGENAIS, 2009) proposed using automata to
analyze traces generated by the kernel of an operating system. Automata is used to
describe patterns of problematic behavior. An off-line analyzer checks for their occur-
rences. It uses the Linux Trace Toolkit next generation (LTTng) to search for three
scenarios: chroot jail escape, locking validation, and real-time constraints checking.

The usage of trace and automata to verify conditions in the kernel is also pre-
sented in (MATNI; DAGENAIS, 2009). The paper presents models for SYN-flood, es-
caping from a chroot jail, and, more interestingly, locking validation and real-time con-
straints validation. The models are compared against the kernel execution using the
LTTng tracer (SPEAR; LEVY; DESNOYERS, 2012).

An important area that makes use of a formal definition of the system is the State
based/Stateful robustness testing (LEI et al., 2010). Robust testing is a fault tolerance
technique (PULLUM, 2001) also applied in the OS context. In (COTRONEO; DI LEO,



Chapter 3. Related Work 70

et al., 2011), a case study of state-based robustness testing, including the OS states,
is presented. The OS under investigation is a real-time version of Linux. The results
show that the OS state plays an important role in testing for corner cases not covered
by traditional robustness. Another project that uses Linux is SABRINE (COTRONEO;
LEO, et al., 2013), an approach for state-aware robustness testing of OSs using trace
and automata. SABRINE works as follows: In the first step, it traces the interactions
between OS components. Then, the software automatically extracts state models from
the traces. In this phase, the traces are processed in such a way to find sequences
of functions that are similar, to be grouped, forming a pattern. Later, patterns that are
similar are grouped in clusters. Finally, it generates the behavioral model from the
clusters. A behavioral model consists of states connected by events, in the format of
finite-state automata (FSA).

The TIMEOUT approach (SHAHPASAND; SEDAGHAT; PAYDAR, 2016) later
improved SABRINE by recording the time spent in each state. The FSA is then created
using timed automata. The worst-case execution time observed during the profiling
phase is used as the timing parameter of the Timed-FSA, and so it is also possible to
detect timing faults.

Remarks

The model presented (POSADAS et al., 2010), is a high-level one and does
not consider the internal details of the Linux kernel. Similarly, the models presented
in (MATNI; DAGENAIS, 2009) are proof of concept of these ideas, and are very simple:
the largest model, about locking validation, has only five states. The real-time con-
straints model has only two states. But still, this paper corroborates the idea of the
connection between automata and tracing as a translation layer from kernel to formal
methods, also for problems in the real-time features of Linux.

The possibility of extracting models from the operating system, like SABRINE
and TIMEOUT, depends on the specification of the operating system components and
their interfaces. The object of this paper is not a component of the system, but the set
of mechanisms used to synchronize the operations of NMI, IRQs, and threads. The
events analyzed in this paper, such as disabling interruptions and preemption, or locks,
are present in most of the subsystems. Both works can be seen as complementary. The
approach proposed by SABRINE can be used to define the internal models between
states of the model proposed by this paper, or inside the values of each variable
introduced in Chapter 6.2. For example, the model presented in this paper identifies the
synchronization events that cause a delay in the activation of the highest priority thread.
Many different code paths are taken between the event that blocks the scheduling and
the event that re-enables the scheduling. It is worth to note that the overhead involved
in tracing all functions is not negligible, and can considerably influence in the results of



Chapter 3. Related Work 71

the timing analysis, even more than the sole verification of the system, as presented in
Chapter 5. A further discussion about the automatic creation of models is presented in
Section 4.3.1.

These prior works demonstrate that the usage of automata format to test, verify,
and explain the core dynamics of an operating system is not a new idea. Instead, it is
a known field and motivates this thesis, which proposes a different model for different
goals.

3.3 REAL-TIME LINUX LATENCY

Abeni et al. (ABENI et al., 2002) defined a metric similar to cyclictest, called
OS latency that quantifies the difference between the actual schedule produced by the
kernel and the ideal schedule, evaluating various OS latency components of several
standards and real-time Linux kernels existing at the time (2002). They also examined
the effects of the OS latency on a real application, an audio/video player, concluding that
full kernel preemptability can significantly improve the real-time performance of Linux.
During the 18 years since that paper indeed several aspects of Linux preemptability
were enhanced.

Cerqueira and Brandenburg (CERQUEIRA; BRANDENBURG, 2013) described
experiments with cyclictest to evaluate the scheduling latency experienced by real-
time tasks under LITMUSRT, vanilla Linux and Linux with the PREEMPT_RT patch.
Three scenarios were considered: idle system, CPU-bound background workload, and
I/O-bound background workload. Several histograms of observed scheduling latency
in different scenarios and test conditions are presented. These histograms are the
results of measuraments made with cyclictest adpted to LITMUSRT. The authors
also discussed the advantages and limitations of using cyclictest as a metric for
estimating a system’s capability to provide temporal guarantees. A similar experimental
study is presented in (FAYYAD-KAZAN; PERNEEL; TIMMERMAN, 2013).

Reghanzani et al. (REGHENZANI; MASSARI; FORNACIARI, 2017) empirically
measured the latencies of a real-time Linux system under stress conditions in a mixed-
criticality environment. They also indicate the use of tracing (i.e., feathertrace) to
obtain fine-grained measurements. No detailed description of the source of the mea-
sured delays is provided in the paper.

Herzog et al. (HERZOG et al., 2018) presented a tool that systematically mea-
sures interrupt latency, at run-time, in the Linux vanilla kernel. It is based on tracepoint.
Examples are provided for two distinct platforms (ARM and Intel). The tool is used to
measure interrupt latencies, identify jitter causes, and reveal inter-dependencies be-
tween interrupt handlers and user-space workloads. No attempt is made to model Linux
kernel scheduling. Regnier et al. (REGNIER; LIMA; BARRETO, 2008) presented an
evaluation of the timeliness of interrupt handling in Linux.



Chapter 3. Related Work 72

The ftrace’s preemptirqsoff tracer (ROSTEDT, Steven, 2009) enables the
tracing of function when either preempt or IRQs are disabled, trying to capture the
longest window.

Finally, among the works that try to conjugate theoretic analytical real-time sys-
tem models with empirical worst-case estimations based on a Linux OS, we can find (B.
B. BRANDENBURG, 2011). There, the author introduced an “overhead-aware” evalu-
ation methodology for a variety of considered analysis techniques, with multiple steps:
first, each scheduling algorithm to be evaluated is implemented on the LITMUS RT
platform, then hundreds of benchmark task sets are run, gathering average and maxi-
mum values for what authors call scheduling overheads. These figures are injected into
overhead-aware real-time analysis techniques.

Remarks

The scheduling latency is, undoubtedly, the main metric for the PREEMPT_RT,
and so motivated many different works. However, most of them considered Linux as a
black-box, trying to observe the consequences of the synchronization in the delay, but
not the root causes, as in (ABENI et al., 2002; CERQUEIRA; BRANDENBURG, 2013;
REGHENZANI; MASSARI; FORNACIARI, 2017).

Some other works try to find the root cause but based only on empirical anal-
ysis of the system. The approach in (ROSTEDT, Steven, 2009) does not differentiate
between interference due to interrupts and the contribution due to different code seg-
ments disabling preemption or interrupts. However, by adding tracing of functions, it
adds overhead to the measurement, thus potentially heavily affecting the result, often
mispointing the real source of the latency.

The discussion about outliers in (B. B. BRANDENBURG, 2011), along with the
explicit admission of the need for removing some of them manually throughout the
experimentation, witnesses the need for a more insightful model that provides more
accurate information of those overheads.

Regarding latency, this thesis targets explaining, at a finer-grained level of detail,
what these scheduling overheads are, where they originate from, and why. This work
aims to enable a more analytical view of Linux, fulfilling the part of the gap that exists
between real-time Linux and real-time scheduling theory.

3.4 FINAL REMARKS

This set of related work demonstrates the value of the endeavor of applying
formal methods to improve Linux. SDV, LDV are practical examples of the potential of
such techniques. It is also clear that no single solution will solve all the problems: the
state explosion requires a meticulous selection of the goals and acceptable limitations



Chapter 3. Related Work 73

of each methodology. The runtime verification-like method used on lockdep inspires
the development of a similar approach based on a formal set of specifications.

The usage of automata for the description and analysis of Linux was also ex-
plored. However, the vast majority of the work uses straightforward models for very
specialized specifications. The complexity of the presented models is not comparable
with the ones presented by this thesis, so they do not require the use of a more so-
phisticated approach. Still, the previous work demonstrates that the path taken was not
unknown and motivates further exploration.

Finally, the fact that real-time latency is still measured using a black-box ap-
proach shows that the constraints imposed by the synchronization to the Linux tasks
are indeed complex. The complexity, as shown in the next chapter, is given by the im-
pressive number of events and possible sequences that they can have. The translation
of the informal knowledge of Linux, to the level of precision utilized in the real-time
scheduling theory, requires an intermediary step, removing the code complexity, while
enabling the formal definition of the specification and properties of the synchronization
of the task of Linux.



74

4 A THREAD SYNCHRONIZATION MODEL FOR THE PREEMPT_RT KERNEL

Despite all developments made on real-time Linux presented in Section 2.2,
there is still a gap between the restrictions imposed in the task model used in aca-
demic work and the restrictions imposed by the synchronization needed in the real
Linux implementation. For instance, the frequent use of assumptions like tasks are
completely independent, the operating system is (fully) preemptive, and operations
are atomic (BRANDENBURG, B. B.; ANDERSON, J. H., 2007; CALANDRINO et al.,
2006) is a frequent critique from Linux developers. They argue that such restrictions
do not reproduce the reality of real-time applications running on Linux, raising doubts
about the results of the development of theoretical schedulers when putting in prac-
tice (GLEIXNER, 2010). On the other hand, Linux was not designed as a real-time OS,
and so does not use the conventions already established in the real-time academic
community For example, the main evaluation metric used on Linux, the latency, is an
oversimplification of the main metric utilized in the academy, i.e., the response time of
tasks (BRANDENBUG; ANDERSON, 2009).

The developers of Linux observe and debug their timing properties using the
tracing features present in the kernel (ROSTEDT, S., 2011; SPEAR; LEVY; DESNOY-
ERS, 2012; TOUPIN, 2011; BRANDENBURG, Bjorn B.; ANDERSON, James H., 2007).
They interpret a chain of events, trying to identify the states that cause “latencies” in
the activation of the highest priority thread, and then try to change kernel algorithms to
avoid such delays. For instance, they use ftrace (ROSTEDT, Steven, 2010) or perf1

to trace kernel events like interrupt handling, wakeup of a new thread, context switch,
etc., while cyclictest2 measures the “latency ” of the system.

The notion of events, traces and states used by developers are common to
Discrete Event Systems (DES). The admissible sequences of events that a DES can
produce or process can be formally modeled through a language. The language of
a DES can be modeled in many formats, like regular expressions, Petri nets, and
automata.

This chapter presents an automata-based model describing the possible inter-
leaving sequences of kernel events in the code path handling the execution of threads,
IRQs and NMIs in the kernel, on a single-core system. The model also covers ker-
nel code related to locking mechanisms, such as mutexes, read/write semaphores,
and read/write locks, including the possibility of nested locks, such as in the locking
primitives’ own code (OLIVEIRA, Daniel Bristot de et al., 2018).

This chapter also presents the extension of the kernel tracing mechanism used
to capture traces of the kernel events used in the model, to enable validation of the
1 More information at: http://man7.org/linux/man-pages/man1/perf.1.html.
2 The tool is available within the rt-utils software available at: https://git.kernel.org/pub/scm/

utils/rt-tests/rt-tests.git

http://man7.org/linux/man-pages/man1/perf.1.html
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git


Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 75

model by applying a modified perf tool running in user-space against traces captured
from the live running system. This article also presents a major result achieved during
the validation of the presented model: three problems found in the kernel code, one
regarding an inefficiency in the scheduler, another one in the tracing code itself leading
to occasional loss of event data, and erroneous usage of a real-time mutex. These
problems were reported to the Linux kernel community, including suggestions of fixes,
with some of them already present in the current Linux code.

4.1 MODELING APPROACH

Following the approach presented in Figure 26, the knowledge about Linux tasks
is modeled as an automaton using the modular approach. The main sources of infor-
mation, in order of importance, are the observation of the system’s execution using
various tracing tools (ROSTEDT, Steven, 2010), the kernel code analysis, academic
documentation about Linux and real-time systems (OLIVEIRA; OLIVEIRA, 2016) (B. B.
BRANDENBURG, 2011), and hardware documentation. At the same time, we observe
a real system running. The development of the model uses the Linux vanilla kernel with
the PREEMPT_RT patchset applied. The Linux kernel has many different preemption
modes, varying from non-preemptive, to fully-preemptive. This work is based on the
fully-preemptive mode only, that is the mode utilized by the real-time Linux community.
The fully-preemptive mode also enables the real-time alternative for locks. For instance,
it converts mutexes into real-time mutexes and read/write semaphores into real-time
read/write semaphores. Moreover, in the fully-preemptive mode, the vast majority of the
work done in the hard and soft IRQ context is moved to the thread context. The work
left in the hard IRQ context is mostly related to the notification of events from hardware
to the threads that will handle the request, or to decisions that cannot be delayed by
the scheduler of threads. For example, the timer that notifies the SCHED_DEADLINE about
the throttling of a thread must run in this context to avoid being delayed by the task it
aims to throttle. The configuration options of this kernel are based on the configuration
of the Red Hat Enterprise Linux for Real Time, an enterprise version of Linux with
the PREEMPT_RT patchset. However, the kernel was configured to run on a single
CPU. The development of the model started with the version 4.14 of the PREEMPT_RT,
passing by the version 4.19. It is currently based on version 5.0.

4.2 EVENTS

The most important part of the modeling is the choice of events used in the
model. As a computer program, Linux itself is already a model. However, it is a model
with millions of lines of code and complex data structures. The difficulty is then to reduce
the model to the set of events that contributes more to the purpose of the model. The



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 76

Figure 26 – Modeling approach.

Validation
Does the model

match the trace?

Informal

knowledge
Modeling

Kernel Tracing

automaton.dot

trace.data

NO

YES

level of abstraction used in the model is the one used by real-time Linux developers
while discussing the base of scheduling and synchronization problems, in the terms of
real-time systems. The level of abstraction was also highly influenced by the previous
experience, described in Section 2.2.5.

Linux schedules threads on the processors, but threads are not the sole ex-
ecution context. In addition to the threads, interrupts are considered a distinguished
execution context. Interrupts are used by external devices to notify asynchronous events.
For example, a network card uses interrupts to inform of the arrival of network packets,
which are handled by the driver to deliver the packet contents to an application. Linux
recognizes two different kinds of interrupts: IRQs or Maskable Interrupts are those for
which it is possible to postpone the handling by temporarily disabling them, and NMIs or
Non-Maskable interrupts, that are those that cannot be temporarily disabled. Likewise,
on Linux, the model considers these three execution contexts: Threads, IRQs, and NMI,
modeling the context and the synchronization of these classes of tasks. To validate the
level of abstraction and events, the model was discussed with the main real-time Linux
developers at the Real-time Linux Summit 2018 (OLIVEIRA, 2018e) and The Linux
Plumbers Conference 2018 (OLIVEIRA, 2018f,d).

During the development of the model, the abstractions from the kernel are trans-
formed into automata models. Initially, the identification of the system is made us-
ing the tracepoints already available. However, the existing tracepoints were not
enough to explain the behavior of the system satisfactorily. For example, although the
sched:sched_waking tracepoint includes the prio field containing the priority of the
just awakened thread, it is not enough to determine whether the thread has the highest
priority or not. For instance, the SCHED_DEADLINE does not use the prio field, but the
thread’s absolute deadline. When a thread becomes the highest priority one, the flag
TIF_NEED_RESCHED is set for the current running thread. This causes invocation of the
scheduler at the next scheduling point. Hence, the event that most precisely defines that
another thread has the highest priority task is the event that sets the TIF_NEED_RESCHED

flag. Since the standard set of Linux’s tracepoints does not include an event to notify
the setting of TIF_NEED_RESCHED, a new tracepoint had to be added. In such cases,



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 77

Table 4 – Interrupt related events.

Kernel event Automaton event Description
hw_local_irq_disable preemptirq:irq_disable Begin IRQ handler
hw_local_irq_enable preemptirq:irq_enable Return IRQ handler
local_irq_disable preemptirq:irq_disable Mask IRQs
local_irq_enable preemptirq:local_irq_enable Unmask IRQs
nmi_entry irq_vectors:nmi Begin NMI handler
nmi_exit irq_vectors:nmi Return NMI Handler

Table 5 – Scheduling related events.

Kernel event Automaton event Description
preempt_disable preemptirq:preempt_disable Disable preemption
preempt_enable preemptirq:preempt_enable Enable preemption
preempt_disable_sched preemptirq:preempt_disable Disable preemption to call the scheduler

preempt_enable_sched preemptirq:preempt_enable Enables preemption returning from the
scheduler

schedule_entry sched:sched_entry Begin of the scheduler
schedule_exit sched:sched_exit Return of the scheduler
sched_need_resched sched:set_need_resched Set need resched
sched_waking sched:sched_waking Activation of a thread

sched_set_state_runnable sched:sched_set_state Thread is runnable

sched_set_state_sleepable sched:sched_set_state Thread can go to sleepable

sched_switch_in sched:sched_switch Switch in of the thread under analysis

sched_switch_suspend sched:sched_switch Switch out due to a suspension of the
thread under analysis

sched_switch_preempt sched:sched_switch Switch out due to a preemption of the
thread under analysis

sched_switch_blocking sched:sched_switch Switch out due to a blocking of the
thread under analysis

sched_switch_in_o sched:sched_switch Switch in of another thread
sched_switch_out_o sched:sched_switch Switch out of another thread

new tracepoints were added to the kernel.
Tables 4, 5 and 6 present the events used in the automata modeling and their

related kernel events. When a kernel event refers to more than one automaton event,
the extra fields of the kernel event are used to distinguish between automaton events.
tracepoints in bold font are the ones added to the kernel during the modeling phase.

Linux kernel evolves very fast. For instance, in a very recent release (4.17 ),
around 1559000 lines were changed (690000 additions, 869000 deletions) (CORBET,
J., 2018). This makes natural the rise of the question: How often do the events and
abstractions utilized in this model change? Despite the continuous evolution of the
kernel, some principles stay stable over time. IRQs and NMI context, and the possibility
of masking IRQs are present in Linux since its very early days. The fully preemp-
tive mode, and the functions to disable preemption are present since the beginning
of the PREEMPT_RT, dating back to year 2005 (MCKENNEY, 2005). Moreover, the
scheduling and locking related events are implementation independent. For instance,



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 78

Table 6 – Locking related events.

Kernel event Automaton event Description
mutex_lock lock:rt_mutex_lock Requested a RT Mutex
mutex_blocked lock:rt_mutex_block Blocked in a RT Mutex
mutex_acquired lock:rt_mutex_acquired Acquired a RT Mutex
mutex_abandon lock:rt_mutex_abandon Abandoned the request of a RT Mutex
write_lock lock:rwlock_lock Requested a R/W Lock or Sem as writer
write_blocked lock:rwlock_block Blocked in a R/W Lock or Sem as writer
write_acquired lock:rwlock_acquired Acquired a R/W Lock or Sem as writer
write_abandon lock:rwlock_abandon Abandoned a R/W Lock or Sem as writer
read_lock lock:rwlock_lock Requested a R/W Lock or Sem as reader
read_blocked lock:rwlock_block Blocked in a R/W Lock or Sem as reader
read_acquired lock:rwlock_acquired Acquired a R/W Lock or Sem as reader
read_abandon lock:rwlock_abandon Abandon a R/W Lock or Sem as reader

the model does not refer to any detail about how specific schedulers’ implementations
define which thread to pick next (highest priority, earliest deadline, virtual runtime, etc.).
Hence, locking and schedulers might even change, but the events and their effects in
the timeline of threads stay invariable.

4.3 MODELING

The automata model was developed using the Supremica IDE (AKESSON et al.,
2006). Supremica is an integrated environment for verification, synthesis, and simulation
of discrete event systems using finite automata. Supremica allows exporting the result
of the modeling in the DOT format that can be plotted using graphviz (ELLSON et al.,
2002), for example.

The model was developed using the modular approach. All generators and spec-
ifications were developed manually. The generators are the system’s events modeled
as a set of independent sub-systems. Each sub-system has a private set of events.
Similarly, each specification is modeled independently, but using the events of the
sub-systems of the generators it aims to synchronize.

Examples of generators are shown in Figure 27 and 283. The Need Resched
generator (G05) has only one event and one state. The Sleepable or Runnable gen-
erator (G01) has two states. Initially, the thread is in the sleepable state. The events
sched_waking and sched_set_state_runnable cause a state change to runnable. The
event sched_set_state- _sleepable returns the task to the initial state. The Schedul-
ing Context (G04) models the call and return of the main scheduling function of Linux,
which is __scheduler().

Table 7 shows statistics about the generators and specifications that compose
the Model. The complete Model is generated from the parallel composition of all gen-
3 The generators and specifications of the model are presented during the development of next Chap-

ters, as required.



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 79

Table 7 – Automata models.

Name States Events Transitions
G01 Sleepable or runnable 2 3 3
G02 Context switch 2 4 4
G03 Context switch other thread 2 2 2
G04 Scheduling context 2 2 2
G05 Need resched 1 1 1
G06 Preempt disable 3 4 4
G07 IRQ Masking 2 2 2
G08 IRQ handling 2 2 2
G09 NMI 2 2 2
G10 Mutex 3 4 6
G11 Write lock 3 4 6
G12 Read lock 3 4 6
S01 Sched in after wakeup 2 5 6
S02 Resched and wakeup sufficency 3 10 18
S03 Scheduler with preempt disable 2 4 4
S04 Scheduler doesn’t enable preemption 2 6 6
S05 Scheduler with interrupt enabled 2 4 4
S06 Switch out then in 2 20 20
S07 Switch with preempt/irq disabled 3 10 14
S08 Switch while scheduling 2 8 8
S09 Schedule always switch 3 6 6
S10 Preempt disable to sched 2 3 4
S11 No wakeup right before switch 3 5 8
S12 IRQ context disable events 2 27 27
S13 NMI blocks all events 2 34 34
S14 Set sleepable while running 2 6 6
S15 Don’t set runnable when scheduling 2 4 4
S16 Scheduling context operations 2 3 3
S17 IRQ disabled 3 4 4
S18 Schedule necessary and sufficient 8 9 27
S19 Need resched forces scheduling 7 25 53
S20 Lock while running 2 16 16
S21 Lock while preemptive 2 16 16
S22 Lock while interruptible 2 16 16
S23 No suspension in lock algorithms 3 10 19
S24 Sched blocking if blocks 3 10 20
S25 Need resched blocks lock ops 2 15 17
S26 Lock either read or write 3 6 6
S27 Mutex doesn’t use rw lock 2 11 11
S28 RW lock does not sched unless block 4 11 22
S29 Mutex does not sched unless block 4 7 16
S30 Disable IRQ in sched implies switch 5 6 10
S31 Need resched preempts unless sched 3 5 12
S32 Does not suspend in mutex 3 5 11
S33 Does not suspend in rw lock 3 8 16
Model 9017 34 20103



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 80

Figure 27 – Examples of generators: G05 need resched (left) and G04 Scheduling
context (right).

need_resched

sched_need_resched

schedthread schedule_exit

schedule_entry

Figure 28 – Examples of generators: G01 sleepable and runnable.

runnablesleepable sched_set_state_sleepable

sched_waking
sched_set_state_runnable

erators and specifications. The parallel composition is done via the Supremica tool,
automatically. The Model has 34 events, 9017 states, and 20103 transitions. Moreover,
the Model has only one marked state, has no forbidden states, and it is deterministic
and non-blocking.

The complete Model exposes the complexity of Linux. At first glance, the number
of states seems to be excessively high. But, for instance, as it is not possible to mask
NMIs, these can take place in all states, doubling the number of states, and adding two
more transitions for each state. The complexity, however, can be simplified if analyzed
at the generators and specifications level. By breaking the complexity into small specifi-
cations, the understanding of the system becomes more natural. For instance, the most
complex specification has only seven events. The complete Model, however, makes
the validation of the trace more efficient, as a single automaton is validated. Hence,
both the modules and the complete model are useful in the modeling and validation
processes.

4.3.1 Automate or not to automate the model creation?

One frequent question made during the development of this work was: Is it
possible to automatically create a model from the trace output? For instance, tools such
as SABRINE (COTRONEO; LEO, et al., 2013) has done this before, so why not? It
is certainly possible to trace the events used in this work and transform them into an
automaton or a direct acyclic graph (DAG). However, some difficulties arise from such
an approach.

To help in the explanation, cosider the set of events presented in Figure 29 as a
reference:

• all sequences of events is the cartesian product of all events.

• the possible sequences of events are the sequences that can occur in the system



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 81

Figure 29 – Sets of sequences of event.

All sequences of events

without violating any specification.

• the existing sequences of events are the sequences that exist in the current code
of Linux;

• the observed sequences of events are the sequences that a given trace of the
execution of the system shows.

The modeling approach presented in this work starts with the outer set: the
synchronization of all generators creates an automaton with all sequences of events.
The synchronization of the generators and specifications reduces the set of events to
those events that are possible in the system.

The validation approach of this work starts from the inner set, observing the
sequences of events that happened in a given system. However, there is no guarantee
that all existing sequences of events will be observed in a given system, or in reason-
able time. Similarly to what happens with code coverage in software testing, in order to
observe a set of interesting event sequences that may possibly trigger critical conditions,
the system has to be traced for a sufficiently long time, and it must be stimulated with a
sufficiently diverse set of workload conditions. For example, the chances of observing
NMIs occurring in all possible states they could happen are meager, given that they do
not happen very often. Moreover, there are sequences of events that do not exist in
the code but are possible, as they do not violate any of the specifications. For instance,
if the system is not idle, and the current thread disables the preemption to call the
scheduler, there is no place in the code in which interrupts get intentionally disabled
before calling the scheduler. This does not mean it is not a possible sequence, as long



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 82

Figure 30 – perf task_model report dynamic.

perf binary

perf interface
Trace to Event

Interpreter
Graphviz/

Automaton

Y

N

[re] start [re] start

raw tracepoint

event

accept/deny event

output string

run the

automaton

as interrupts get enabled before calling the scheduler, because the kernel will not break
if such a sequence appears in the future.

Hence, the refinement of the approach presented in this thesis has the potential
to define all the possible sequences of events accurately. While an automatic approach
can build an automaton with all observed sequences of events, the amount of time
and resources required to observe all existing sequences of events is undoubtedly
challenging.

The major problem, however, comes from the occurrence of an event that is
not present in the model. In the modular approach, it is possible to analyze each
generator and specification separately, avoiding the analysis in the global model. A
hypothetical automatically generated model would require the analysis of the global
automaton, which is not reasonable, given the number of states and transitions of the
global model. Furthermore, in the likely presence of non-possible sequences in the
kernel, the automated mode is prone to include non-possible sequences in the model.

However, these methods are complementary: The modeling approach presented
in this thesis was validated by observing the kernel execution. By observing the kernel
events, the automaton generated by the kernel is compared against the model, as
described in the next section.

4.4 MODEL VALIDATION

The perf tracing tool was extended to automate the validation of the model
against the execution of the real system. The perf extension is called thread_model,
and it was developed as a built-in command. A perf built-in command is a very efficient
way to extend perf features: They are written in C and compiled in the perf binary. The
perf thread_model has two operation modes: the record mode and the report mode.

The record mode configures the tracing session and collects the data. This



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 83

Figure 31 – perf_tool definition inside the task_model structure.

struct task_model {
struct perf_tool tool;
... other definitions ...

};

Figure 32 – task_model and perf_tool initialization.

struct task_model tmodel = {
.tool = {

.lost = process_lost_event,

.lost_samples = process_lost_event,

.sample = process_sample_event,

.ordered_events = true,
},
... other definitions ...

};

phase involves both the Linux kernel tracing features and perf itself in the user-space.
In the kernel side, tracepoints are enabled, recording the events in the trace buffer.
Once set, tracepoints collect data using lock-free primitives that do not generate
events considered in the model, not influencing in the model validation. In the user-
space side, perf continues running, collecting the trace data from the kernel space,
saving it in a perf.data file.

The record phase challenge is to deal with the high-frequency of events. A Linux
system, even without a workload, generates a considerable amount of events due to
housekeeping activities. For example, the periodic scheduler tick, RCU callbacks, net-
work and disk operations, and so on. Moreover, the user-space side of perf generates
events itself. A typical 30 seconds record of tracing of the system running cyclictest

as workload generates around 27000000 events, amounting to 2.5 GB of data. To re-
duce the effect of the tracing session itself, and the loss of tracing data, a 1 GB trace
buffer was allocated in the kernel, and the data was collected every 5 seconds.

After recording, the trace analysis is done using the perf thread_model report

mode. The report mode has three basic arguments: the model exported by Supremica

in the .dot format; the perf.data file containing the trace; and the pid of the thread
to analyze. The modules of the tool are presented in Figure 30. When starting, perf
interface opens the trace file, and uses the Graphviz library4 to open and parse the
.dot file. The connection between the trace file and the automata is done in the Trace

to Event Interpreter layer.
In the built-in command source, the Trace to Event Interpreter is imple-

mented as a perf_tool. The definition of the tool is shown in Figures 31 and 32.
Two callbacks implement the tool, one to handle tracing samples, and another to no-
4 More information is available at: http://graphviz.org/.

http://graphviz.org/


Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 84

Figure 33 – perf thread_model: Events to callback mapping.

const struct perf_evsel_str_handler model_tracepoints[] = {

{ "irq_vectors:nmi_exit", process_nmi_exit },
/* nmi_entry should be the last for NMI */

{ "irq_vectors:nmi_entry", process_nmi_entry },
{ "irq_vectors:move_cleanup_exit", process_int_exit },
{ "irq_vectors:move_cleanup_entry", process_int_entry },
... lines omitted ...

{ "preemptirq:preempt_disable", process_thread_preempt_disable },
{ "preemptirq:preempt_enable", process_thread_preempt_enable },
{ "sched:sched_entry", process_thread_sched_entry },

/* sched_exit should be the last for THREAD */
{ "sched:sched_exit", process_thread_sched_exit },

};

Figure 34 – Handler for the irq_vectors:nmi_entry tracepoint.

static int process_nmi_entry(struct task_model *tmodel,
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample)

{
const char *event = "nmi_entry";
struct cpu *c = cpu_of_system(&tmodel->system, sample->cpu);

c->in_nmi = 1;
process_event(tmodel, sample, event);

return 0;
}

tify the loss of tracing events. While processing the events, perf calls the function
process_sample_event for each trace entry. Another important point of the tool is that
the default handler for the kernel events is substituted by a custom handler, as shown
in Figure 33.

The process_sample_event waits for the initial condition of the automaton to be
reached in the trace. After the initial condition is met, the callback functions start to be
called. Figure 34 shows an example of a tracepoint callback handler. The tracepoint

handlers translate the raw trace to an event string used in the model.
The process_event function, in Figure 35, is used to run the automaton. If the

automaton accepts the event, the regular output is printed. Otherwise, an error message
is printed, the tool resets the automaton and discards upcoming events in the trace until
the initial condition of the automaton is recognized again. Finally, because of the high-
frequency of events, it might be the case that the trace buffer discards some events,
causing the loss of synchronization between the trace and the automaton. When an
event loss is detected, perf is instructed to call the function process_lost_event (see
Figure 32), notifying the user, and resetting the model. Either way, the trace continues
to be parsed and evaluated until the end of the trace file.

The model validation is done using the complete model. The advantage of using



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 85

Figure 35 – process_event : trying to run the automata.

static int process_event(struct task_model *tmodel, struct perf_sample *sample,
const char *event)

{
int retval;

event_print_before(tmodel, sample, event);
retval = automaton_event(tmodel->automaton, event);
if (!retval) {

event_not_expected(tmodel->automaton, event, sample);
reset_model(tmodel);

}
event_print_after(tmodel, sample, event);
return retval;

}

Figure 36 – Example of the perf thread_model output: a thread activation.

1: Reference model: thread.dot
2: +----> +=thread of interest - .=other threads
3: | +-> T=Thread - I=IRQ - N=NMI
4: | |
5: | | TID | timestamp | cpu | event | state | safe?
6: [...]
7: . T 8 436.912532 [000] preempt_enable -> q0 safe
8: . T 8 436.912534 [000] local_irq_disable -> q8102
9: . T 8 436.912535 [000] preempt_disable -> q19421

10: . T 8 436.912535 [000] sched_waking -> q99
12: . T 8 436.912535 [000] sched_need_resched -> q14076
13: . T 8 436.912535 [000] local_irq_enable -> q1965
14: . T 8 436.912536 [000] preempt_enable -> q12256
15: . T 8 436.912536 [000] preempt_disable_sched -> q18615,q23376
16: . T 8 436.912536 [000] schedule_entry -> q16926,q17108,q2649,q7400
17: . T 8 436.912537 [000] local_irq_disable -> q11700,q14046,q21391,q23792
18: . T 8 436.912537 [000] sched_switch_out_o -> q10337,q20018,q21933,q7672
19: . T 8 436.912537 [000] sched_switch_in -> q10268,q20126
20: + T 1840 436.912537 [000] local_irq_enable -> q20036
21: + T 1840 436.912538 [000] schedule_exit -> q21033
22: + T 1840 436.912538 [000] preempt_enable_sched -> q4303

the complete model is that one kernel transition generates only one transition in the
model. Hence the validation of the events is done in constant time (O(1)) for each event.
This is a critical point, given the number of states in the model, and the amount of
data from the kernel. On the adopted platform, each GB of data is evaluated in nearly 8
seconds. One example of output provided by perf thread model is shown in Figure 36.

When in a given state, if the kernel event is not possible in the automaton, the
tool prints an error message. It is then possible to use the Supremica simulation mode to
identify the state of the automaton, and the raw trace to determine the events generated
by the kernel. If the problem is in some automaton, it should be adapted to include the
behavior presented by the kernel. However, it could be a problem in the kernel code
or the perf tool. Indeed, during the development of the model, three problems were
reported to the Linux community. More details will follow in Section 4.5. The source
code of the model in the format used by Supremica, the kernel patch with kernel and



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 86

Figure 37 – Kernel trace excerpt.

1: ktimersoftd/0 8 [000] 784.425631: sched:sched_switch: ktimersoftd/0:8 [120] R ==> \\
kworker/0:2:728 [120]

2: kworker/0:2 728 [000] 784.425926: sched:sched_set_state: sleepable
3: kworker/0:2 728 [000] 784.425936: sched:set_need_resched: comm=kworker/0:2 pid=728
4: kworker/0:2 728 [000] 784.425939: sched:sched_preempt_disable: at ___preempt_schedule <- \\

___preempt_schedule
5: kworker/0:2 728 [000] 784.425941: sched:sched_entry: at preempt_schedule_common
6: kworker/0:2 728 [000] 784.425945: sched:sched_switch: kworker/0:2:728 [120] R ==> \\

kworker/0:1:724 [120]
7: irq/14-ata_piix 86 [000] 784.426515: sched:sched_waking: comm=kworker/0:2 pid=728 \\

prio=120 target_cpu=000
8: kworker/0:1 724 [000] 784.426610: sched:sched_switch: kworker/0:1:724 [120] t ==> \\

kworker/0:2:728 [120]
9: kworker/0:2 728 [000] 784.426615: sched:sched_preempt_disable: at schedule <- schedule

10: kworker/0:2 728 [000] 784.426616: sched:sched_entry: at schedule
11: kworker/0:2 728 [000] 784.426619: sched:sched_switch: kworker/0:2:728 [120] R ==> \\

kworker/0:2:728 [120]

perf modifications and more information about how to use the model and reproduce
the experiments are available at the paper’s page5.

4.5 OFFLINE RUNTIME VERIFICATION

This section presents three problems found in the kernel while validating the
model, in an example that validates the usage of the model for offline runtime verification
of the kernel. The first problem shows an optimization case, the second is a problem in
the tracing, and the third is regarding an invalid usage of real-time mutex in an interrupt
handler.

4.5.1 Scheduling in vain

In Linux, the main scheduler function (__schedule()) is always called with pre-
emption disabled, as shown in Figure 70. In the model, it can be seen as the event
that precedes a scheduler call. The specification in Figure 38 presents the condi-
tions for the thread under analysis to disable preemption to call the scheduler. In
the initial state, in which the thread is not running, the preempt_disable_sched event
is recognized, because other threads can indeed schedule. The sched_switch_in

switches the state of the thread to running. The running state recognizes three events,
the sched_set_state_sleepable, the sched_need_resched, and the preempt_disable-
_sched. In the case of the occurrence of the event sched_set_state_sleepable, the
thread changes the state to sleepable, where the preempt_disable_sched is rec-
ognized as well. In these states, the sufficient conditions to call the scheduler exist.
However, in the sleepable state, the thread can return to the previous state with the
5 See: https://bristot.me/linux_task_model/

https://bristot.me/linux_task_model/


Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 87

Figure 38 – S18 Scheduler call sufficient and necessary conditions.

not_running
preempt_disable_sched

sched_waking
sched_need_resched

running

sched_switch_in

preempt_runnable

sched_switch_preempt

preempt_disable_sched

preempt_sleepable
sched_switch_preempt
preempt_disable_sched

preempt_to_runnable

sched_waking

sleepable

sched_switch_in

preempt_disable_sched
sched_switch_preempt

sched_switch_in

sched_need_reschedsched_set_state_sleepable

vain

preempt_disable_sched

sched_need_resched

sched_set_state_runnable
sched_waking

suspending

preempt_disable_sched

sched_switch_suspend
sched_switch_blocking

sched_need_resched

sched_switch_in

sched_switch_preempt
preempt_disable_sched

sched_need_resched

occurrence of the event sched_set_state_runnable, and so the scheduler will not
necessarily be called.

In the sleepable state, in the case of the occurrence of the event sched_need-
_resched, the preempt_disable_sched will become possible, moving the thread to the
state preempt- _runnable. In this state, though, it is not possible to return to the running

state without a sched_switch_in event, meaning that a preemption will occur. As the
preemption only occurs in the scheduling context, the sched_need_resched event is
both a necessary and a sufficient condition to call the scheduler.

In the running state, it is already possible to call the scheduler, bringing to a
state named vain, which is a special case. Taking the trace of Figure 37, considering
the thread kworker- /0:2 in analysis, and the model in Figure 38 in the initial state, the
events and state transitions of Table 8 take place.

The thread kworker/0:2 started to run at Line 1. From the running state, it sets
its state to sleepable in Line 2, followed by the need_resched event in Line 3, causing
the preemption to be disabled in Line 4, to call the scheduler in Line 5. Then, the thread



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 88

Table 8 – Events and state transitions of Figure 37.

Line Event New state
1 sched_switch_in running
2 sched_set_state_sleepable sleepable
3 sched_need_resched preempt_sleepable
4 preempt_disable_sched preempt_sleepable
6 sched_switch_preempt preempt_sleepable
7 sched_waking preempt_to_runnable
8 sched_switch_in running
9 preempt_disable_sched vain

switched the context in preemption and left the processor. At Line 7 the thread is awak-
ened, switching the state to preempt_to_runnable. At Line 8 the context_switch_in

takes place, and the thread starts to run. However, right after returning from the sched-
uler function, the thread disables the preemption to call the scheduler again at Line 9
and 10, calling the scheduler in vain state. In fact, as shown in Figure 37, the call to
the scheduler was in vain, at Line 11, as no real context switch takes place.

In a deeper analysis, before calling __schedule() to cause a context switch,
the schedule() function runs sched_submit_work() to dispatch deferred work that
was postponed to the point that the thread is leaving the processor voluntarily, as
an optimization. The optimization, however, caused a preemption, that caused the
scheduler to be called in the path to call the scheduler. Hence, calling the scheduler
twice. Calling the scheduler twice does not cause a logical problem. But it causes the
strange effect of calling the scheduler in vain, doubling the scheduler overhead.

This behavior was reported to the Linux community, along with a suggestion of
fix. The suggestion was submitted to the real-time Linux kernel development list, and it
was accepted for mainline integration (OLIVEIRA, 2018a).

4.5.2 Tracing dropping events

During the validation phase, sometimes, the output of the perf thread_model

pointed to an error in the conditions in which either the sched_waking or sched_need-
_resched events happen, like in Figure 39.

Both mentioned events require the preemption and IRQs to be disabled, as
modeled in Figure 74, which raised the attention for a possible problem in the kernel.
While analyzing the problem, it was noticed that the thing in common with all the
occurrences of these errors was that they took place in the wakeup of threads that are
generally awakened by interrupts. For instance, the trace in Figure 40 shows the raw
trace from kernel for the case evaluated in Figure 39, in which the thread that handles
the IRQ of an HDD controller was being awakened.

By checking the kernel code, it is possible to see that the wakeup of a thread and
the setting of need resched flag always occur with the rq_lock taken, and this ensures



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 89

Figure 39 – Missing kernel events: the output of perf thread_model.

. T 419 361931.701759 [000] preempt_enable -> q0 safe

. T 419 361931.701761 [000] preempt_disable -> q17630

. T 419 361931.701761 [000] preempt_enable -> q0 safe

. T 419 361931.701762 [000] sched_waking
361931.701762 event sched_waking is not expected in state q0

Figure 40 – Missing kernel events: the output of kernel tracepoints.

xfsaild/dm-0 419 [000] 361931.701761: sched:sched_preempt_disable: at cfq_remove_request \\
<- cfq_remove_request

xfsaild/dm-0 419 [000] 361931.701761: sched:sched_preempt_enable: at cfq_remove_request \\
<- cfq_remove_request

xfsaild/dm-0 419 [000] 361931.701762: sched:sched_waking: comm=irq/30-megasas \\
pid=311 prio=49 \\
target_cpu=000

Figure 41 – Pseudo-code of tracing recurrence.

a_kernel_function() {
trace_function() {

func_used_by_trace() {
trace_function() {

/* Trace Recursion */

that both IRQs and preemption are disabled. Also, checking with the ftrace function
tracer, it was possible to observe that interrupts and preemption were always disabled
on the occurrence of the sched_waking or sched_need_resched events by checking the
flags of the events.

A bug report was sent to the Linux kernel developers (OLIVEIRA, 2018c). The
problems turned out to be in the tracing recursion control.

Despite being lock-free and lightweight, tracing operations are not atomic, re-
quiring the execution of functions to register the trace into the trace-buffer, as in the
pseudo-code in Figure 41.

Many kernel functions are set as non-traceable, avoiding this problem. However,
setting functions as non-traceable might not always be desirable, as some of these
functions may be of interest for the developer in other call sites. To overcome this
problem, the trace subsystem uses a context-aware recursive lock. When the trace
function is called, it will try to take the lock. Considering the execution of a thread, if
the lock was not taken, the trace function will proceed normally. If the lock was already
taken, the trace function returns without tracing, avoiding the recursion problem.

However, the recursion is allowed for the case of a task in another context. For
example, if a thread owns the lock when an IRQ takes place, it is desired that the
IRQ can take the recursive lock to trace its execution. Likewise for NMIs. Hence, the



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 90

Figure 42 – Trace excerpt with comments of where the IRQ context is identified in the
trace.

0) ==========> |
0) | do_IRQ() { /* First C function */
0) | irq_enter() {
0) | /* set the IRQ context. */
0) 1.081 us | }
0) | handle_irq() {
0) | /* IRQ handling code */
0) + 10.290 us | }
0) | irq_exit() {
0) | /* unset the IRQ context. */
0) 6.657 us | }
0) + 18.995 us | }
0) <========== |

Figure 43 – mutex_lock not permitted with interrupts disabled.

+ T 32019 2564.541340 [000] preempt_disable -> q8250
+ T 32019 2564.541342 [000] local_irq_enable -> q13544
+ I 32019 2564.541344 [000] hw_local_irq_disable -> q18001
+ I 32019 2564.541345 [000] mutex_lock

2564.541345 event mutex_lock is not expected in state q18001
===== reseting model =====

recursive lock avoids recursion of the trace in the same task context, but not on a
different task context.

The context-aware recursive lock works correctly. The problem is that the vari-
able with information about the task context is set after the execution of the first functions
of the IRQ and NMI handlers, as in Figure 42. Hence, if an interrupt takes place during
the recording of a trace entry, the function do_IRQ() will be detected as a recursion in
the trace, and will not be registered, likewise, the tracepoints that take place before
the operation that sets the current context to the IRQ context.

The solution for this bug requires modification in the detection of the current
context by the tracing sub-system. A proof-of-concept patch fixing this problem was
proposed by the authors to the Linux kernel developers (OLIVEIRA, 2019b). It involves
detecting the current task context before executing any C code.

4.5.3 Using a real-time mutex in an interrupt handler

While validating the model against the 4.19-rt kernel version, the unexpected
event in Figure 43 took place. In words, a mutex_lock operation was tried with interrupts
disabled, to handle an IRQ.

This operation is not expected, due to the specifications S12 and S22, as in
Figures 67 and 45. The raw trace showed that a real-time mutex was being taken in
the timer interrupt, as shown in Figure 46. The interrupt in case was the timer interrupt,



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 91

Figure 44 – S12 Events blocked in the IRQ context.

S0

local_irq_disable
local_irq_enable

preempt_enable_sched
sched_set_state_runnable
sched_set_state_sleepable

sched_switch_in
sched_switch_in_o
sched_switch_out_o

sched_switch_preempt
sched_switch_suspend
sched_switch_blocking

schedule_entry
schedule_exit

mutex_abandon
mutex_acquired
mutex_blocked

mutex_lock
write_abandon
write_acquired
write_blocked

write_lock
read_abandon
read_acquired
read_blocked

read_lock

S1

hw_local_irq_disable

hw_local_irq_enable

Figure 45 – S22 Lock while interruptible.

S0

mutex_abandon
mutex_acquired
mutex_blocked

mutex_lock
read_abandon
read_acquired
read_blocked

read_lock
write_abandon
write_acquired
write_blocked

write_lock

S1

hw_local_irq_disable
local_irq_disable

hw_local_irq_enable
local_irq_enable

Figure 46 – Trace of mutex_lock taken in the timer interrupt handler.

1: bash 32019 [000] 2564.541340: preemptirq:preempt_disable: caller=__up_write+0x36 \\
parent=__up_write+0x36

2: bash 32019 [000] 2564.541342: preemptirq:irq_enable: caller=__up_write_unlock+0x75 \\
parent=(nil)F

3: bash 32019 [000] 2564.541344: preemptirq:irq_disable: caller=trace_hardirqs_off_thunk+0x1a \\
parent=interrupt_entry+0xda

4: bash 32019 [000] 2564.541344: irq_vectors:local_timer_entry: vector=236
5: bash 32019 [000] 2564.541345: lock:rt_mutex_request: pendingb_lock+0x0 queue_work_on+0x41



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 92

Figure 47 – Function stack, from the timer IRQ to the mutex_lock, used in the report
for the Linux kernel developers.

smp_apic_timer_interrupt(){
hrtimer_interrupt() {

__hrtimer_run_queues() {
watchdog_timer_fn() {

stop_one_cpu_nowait() {
#ifdef !CONFIG_SMP

schedule_work() {
queue_work() {

queue_work_on() {
local_lock_irqsave() {

__local_lock_irqsave() {
__local_lock_irq() {

spin_lock_irqsave() {
rt_spin_lock() {

mutex_lock() {

while running the watchdog timer. Figure 47 shows the stack of functions, from the
interrupt to the mutex.

This BUG was the first regression found with the model. The model was first built
and verified against the 4.14-rt kernel (OLIVEIRA; CUCINOTTA; OLIVEIRA, 2019), and
this problem was not present. A change in the watchdog behavior added this problem:
previously, the watchdog used to run as a dedicated per-cpu thread, awakened by the
timer interrupt. This thread used to run with the highest FIFO priority. With the addition
of the SCHED_DEADLINE, the watchdog thread started to be postponed by the threads
running in the SCHED_DEADLINE. To overcome this limitation, the watchdog was moved
to the stop_machine context, which runs with a priority higher than the SCHED_DEADLINE.
The problem, though, is that the queue of work in the stop_machine uses mutexes. The
patch that caused the problem was included in the kernel version 4.19. The bug was
reported to the kernel developers (OLIVEIRA, 2019a).

4.6 FINAL REMARKS

Linux is a sophisticated operating system, where common assumptions like that
the scheduling operation is atomic do not hold. The need for synchronization between
the various task contexts, like threads, IRQs and NMIs; the scheduling operation that
cannot re-entry, the lock nesting needed in the lock implementation, add a level of
complexity that cannot be avoided for the correct development of theoretical work that
aims Linux. The definition of the operations of the Linux kernel that affect the timing
behavior of tasks is fundamental for the improvement of the real-time Linux state-of-the-
art.

Using the modular approach, it was possible to model the essential behavior
of Linux utilizing a set of small and easily understood automata. For example, the
explanation presented in Section 4.5 used only a set of specifications and not all of



Chapter 4. A thread synchronization model for the PREEMPT_RT kernel 93

the models. The synchronization of these small automata resulted in an automaton
that represents the entire system. The development of the validation method/tooling
was simplified because of the shared abstraction of “events”. The problems found
later in the kernel, mainly in the trace, endorse the manual modeling: an automatically
generated model from traces, albeit interesting, would potentially include errors induced
by possible problems in the kernel.

The idea of using the automata model to verify the kernel was presented to the
leading Linux kernel developers, and there is a consensus that the approach should
be integrated into the kernel code, mainly to improve testing of the logical correctness
of the kernel (OLIVEIRA, 2018d), but also for timing regressions, with the creation of
new metrics for the PREEMPT_RT kernel (OLIVEIRA, 2018b). The sole limitation to
offline verification using perf is its efficiency: the need to copy a large volume of trace
data to the user-space is unpractical for many use-cases. The next chapter presents
a method that transforms the offline verification presented in this chapter into online
runtime verification, processing the events in-kernel, with overheads that turn its usage
possible even in production systems.



94

5 ONLINE RUNTIME VERIFICATION

Real-time variants of the Linux OS have been successfully used in many safety-
critical and real-time systems belonging to a wide spectrum of applications, going from
sensor networks (DUBEY; KARSAI; ABDELWAHED, 2009), robotics (GUTIÉRREZ
et al., 2018), factory automation (CUCINOTTA et al., 2009) to the control of military
drones (CONDLIFFE, 2014) and distributed high-frequency trading systems (CORBET,
J., 2010; CHISHIRO, 2016), just to mention a few. However, for a wider adoption of Linux
in next-generation cyber-physical systems, like self-driving cars (LINUX FOUNDATION,
2016), automatic testing and formal verification of the code base is increasingly becom-
ing a non-negotiatable requirement. However, Linux lacks a methodology for runtime
verification that can be applied broadly throughout all of the in-kernel subsystems.

The approach presented in Section 4.5 relies on tracing events into an in-kernel
buffer, then moving the data to user-space where it is saved to disk, for later post-
processing. Although functional, when it comes to tracing high-frequency events, the
act of in-kernel recording, copying to user-space, saving to disk and post-processing the
data related to kernel events profoundly influences the timing behavior of the system.
For instance, tracing scheduling and synchronization-related events can generate as
many as 900000 events per second, and more than 100 MB per second of data, per
CPU, making the approach non-practical, especially for big muti-core platforms.

An alternative could be hard-coding the verification in the Linux kernel code.
This alternative, however, is prone not to become widely adopted in the kernel. It would
require a considerable effort for acceptance of the code on many subsystems. Mainly
because complex models can easily have thousands of states. A second alternative
would be maintaining the verification code as an external patchset, requiring the users
to recompile the kernel before doing the checking, what would inhibit the full utilization of
the method as well. An efficient verification method for Linux should unify the flexibility
of using the dynamic tracing features of the kernel while being able to perform the
verification with low overhead.

This chapter presents an efficient automata-based verification method for the
Linux kernel, capable of verifying the correct sequences of in-kernel events as happen-
ing at runtime, against a theoretical automata-based model that has been previously
created. The method starts from an automata-based model, as produced through the
well-known Supremica modeling tool, then it auto-generates C code with the ability of
efficient transition look-up time in O(1) for each hit event. The generated code em-
bedding the automaton is compiled as a module, loaded on-the-fly into the kernel and
dynamically associated with kernel tracing events. This enables the run-time verification
of the observed in-kernel events, compared to the sequences allowed by the model,
with any mismatch being readily identified and reported. The verification is carried out



Chapter 5. Online runtime verification 95

Figure 48 – Verification approach.

.h
.ko

vmlinux

function()

tracepoint

trace
.c

.dot

Model Code Binary

Code
generation

Compile
and
load

Figure 49 – Wake-up In Preemptive (WIP) Model.

non_preemptive

sched_waking

preemptive preempt_enable

preempt_disable

in kernel space way more efficiently than it was possible to do in user-space, because
there is no need to store and export the whole trace of occurred events. Indeed, results
from performance analysis of a kernel under verification show that the overhead of the
verification of kernel operations is very limited, and even lower than merely activating
tracing for all of the events of interest.

5.1 EFFICIENT FORMAL VERIFICATION FOR THE LINUX KERNEL

An overarching view of the approach being proposed in this paper is displayed
in Figure 48. It has three major phases. First, the behavior of a part of the Linux kernel
is modeled using automata, using the set of events that are available in the tracing
infrastructure1. The model is represented using the .dot Graphviz format (ELLSON
et al., 2002). The .dot format is open and widely used to represent finite-state machines
and automata. For example, the Supremica modeling tool (AKESSON et al., 2006)
supports exporting automata models using this format.

Figure 49 presents the example of an automaton for the verification of in-kernel
scheduling-related events. The model specifies that the event sched_waking cannot
take place while preemption is enabled, in order not to cause concurrency issues with
the scheduler code.

In the second step, the .dot file is translated into a C data structure, using the
dot2c tool 2. The auto-generated code follows a naming convention that allows it to be
1 These can be obtained for example by running: sudo cat /sys/kernel/debug/tra-

cing/available_events.
2 The tools, the verification modules, the BUG report, high-resolution figures and FAQ are available in

the companion page (OLIVEIRA, 2019c).



Chapter 5. Online runtime verification 96

linked with a kernel module skeleton that is already able to refer to the generated data
structures, performing the verification of occurring events in the kernel, according to the
specified model. For example, the automaton in Figure 49 is transformed into the code
in Figure 50.

Figure 50 – Auto-generated code from the automaton in Figure 49.

enum states {
preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};

struct automaton {
char *state_names[state_max];
char *event_names[event_max];
char function[state_max][event_max];
char initial_state;
char final_states[state_max];

};

struct automaton aut = {
.event_names = { "preempt_disable", "preempt_enable",

"sched_waking" },
.state_names = { "preemptive", "non_preemptive" },
.function = {

{ non_preemptive, -1, -1 },
{ -1, preemptive, non_preemptive },

},
.initial_state = preemptive,
.final_states = { 1, 0 }

};

The enum states and events provide useful identifiers for states and events. As
the name suggests, the struct automaton contains the automaton structure definition.
Its corresponding C version contains the same elements of the formal definition. The
most critical element of the structure is function, a matrix indexed in constant time O(1)
by curr_state and event (as shown in the get_next_state() function in Figure 51).
Likewise, for debugging and reporting reasons, it is also possible to translate the event
and state indexes into strings in constant time, using the state_names and event_names

vectors.
Regarding scalability, although the matrix is not the most efficient solution with

respect to the memory footprint, in practice, the values are reasonable for nowadays
common computing platforms. For instance, the thread synchronization model from
Chapter 4, with 9017 states and 20103 transitions, resulted in a binary object of less
than 800KB, a reasonable value even for nowadays Linux-based embedded systems.
The automaton structure is static, so no element changes are allowed during the ver-



Chapter 5. Online runtime verification 97

Figure 51 – Helper functions to get the next state.

char get_next_state(struct automaton *aut, enum states curr_state,
enum events event) {

return aut->function[curr_state][event];
}

ification. This simplifies greatly the needed synchronization for accessing it. The only
information that changes is the variable that saves the current state of the automata, so
it can easily be handled with atomic operations, that can be a single variable for a model
that represents the entire system. For instance, the model in Figure 49 represents the
state of a CPU (because the preemption enabling status is a per-cpu status variable in
Linux), so there is a current state variable per-cpu, with the cost of (1 Byte * the number
of CPUs of the system). The simplicity of automaton definition is a crucial factor for this
method: all verification functions are O(1), the definition itself does not change during
the verification and the sole information that changes has a minimal footprint.

In the last step, the auto-generated code from the automata, along with a set
of helper functions that associate each automaton event to a kernel event, are com-
piled into a kernel module (a .ko file). The model in Figure 49 uses only tracepoints.
The preempt_disable and preempt_enable automaton events are connected to the
preemptirq:preempt_disable and preemptirq:preempt_enable kernel events, respec-
tively, while the sched_waking automaton event is connected to the sched:sched_waking

kernel event. The Sleeping While in Atomic (SWA) model in Figure 52 also uses trace-
points for preempt_disable and enable, as well as for local_irq_disable and enable. But
the SWA model also uses function tracers.

One common source of problems in the PREEMPT_RT Linux is the execution of
functions that might put the process to sleep, while in a non-preemptive code section.
The event might_sleep_function represents these functions. At initialization time, the
SWA module hooks to a set of functions that are known to eventually putting the thread
to sleep.

Note that another noteworthy characteristic of the proposed framework is that,
by using user-space probes (DRONAMRAJU, 2019), it is also possible to perform an
integrated automata-based verification of both user and kernel-space events, without
requiring code modifications.

The kernel module produced as just described can be loaded at any time during
the kernel execution. During initialization, the module connects the functions that handle
the automaton events to the kernel tracing events, and the verification can start. The
verification keeps going on until it is explicitly disabled at runtime by unloading the
module.

The verification output can be observed via the tracing file regularly produced by



Chapter 5. Online runtime verification 98

Figure 52 – Sleeping While in Atomic (SWA) model.

bothsingle

local_irq_enable
preempt_enable

preemptive

might_sleep_function

local_irq_disable
preempt_disable

local_irq_disable
preempt_disable

local_irq_enable
preempt_enable

Figure 53 – Example of output from the proposed verification module, as occurring
when a problem is found.

bash-1157 [003] ....2.. 191.199172: process_event: non_preemptive -> preempt_enable = \\
preemptive safe!

bash-1157 [003] dN..5.. 191.199182: process_event: event sched_waking not expected in \\
the state preemptive

bash-1157 [003] dN..5.. 191.199186: <stack trace>
=> process_event
=> __handle_event
=> ttwu_do_wakeup
=> try_to_wake_up
=> irq_exit
=> smp_apic_timer_interrupt
=> apic_timer_interrupt
=> rcu_irq_exit_irqson
=> trace_preempt_on
=> preempt_count_sub
=> _raw_spin_unlock_irqrestore
=> __down_write_common
=> anon_vma_clone
=> anon_vma_fork
=> copy_process.part.42
=> _do_fork
=> do_syscall_64
=> entry_SYSCALL_64_after_hwframe

Ftrace. As performance is a major concern for runtime verification, debug messages
can be disabled of course. In this case, the verification will produce output only in case
of problems.

An example of output is shown in Figure 53. In this example, in Line 1 a debug
message is printed, notifying the occurrence of the event preempt_enable, moving the
automaton from the state non_preemptive to preemptive. In Line 2, sched_waking is
not expected in the state preemptive, causing the output of the stack trace, to report
the code path in which the problem was observed.

The problem reported in Figure 53 is the output of a real bug found in the kernel
while developing this approach. The bug was reported to the Linux kernel mailing list,
including the verification module as the test-case for reproducing the problem 2.



Chapter 5. Online runtime verification 99

Figure 54 – Phoronix Stress-NG Benchmark Results: as-is is the system without tracing
nor verification; SWA is the system while verifying Sleeping While in Atomic
automata in Figure 56 and with the code in Figure 50; and the trace is the
system while tracing the same events used in the SWA verification.

Bogo Ops/s, More Is Better

Crypto

as-is SWA trace

200

400

600

800

1000

903 881
842

Bogo Ops/s, More Is Better

CPU Stress

as-is SWA trace

500

1000

1500

2000

2500

2422 2431 2373

Bogo Ops/s, More Is Better

Memory Copying

as-is SWA trace

160

320

480

640

800

744 731 717

Bogo Ops/s, More Is Better

Socket Activity

as-is SWA trace

300

600

900

1200

1500
1515

980

598

Bogo Ops/s, More Is Better

Context Switching

as-is SWA trace

500000

1000000

1500000

2000000

2500000

2333154

1034207

619639

Bogo Ops/s, More Is Better

System V Message Passing

as-is SWA trace

400000

800000

1200000

1600000

2000000

1797974

1039991

673163

5.2 PERFORMANCE EVALUATION

Being efficient is a key factor for a broader adoption of a verification method.
Indeed, an efficient method has the potential to increase its usage among Linux devel-
opers and practitioners, mainly during development, when the vast majority of complex
testing takes place. Therefore, this section focuses on the performance of the proposed
technique, by presenting evaluation results on a real platform verifying models, in terms
of the two most important performance metrics for Linux kernel (and user-space) devel-
opers: throughput and latency.

The measurements were conducted on an HP ProLiant BL460c G7 server, with
two six-cores Intel Xeon L5640 processors and 12GB of RAM, running a Fedora 30
Linux distribution. The kernel selected for the experiments is the Linux PREEMPT_RT
version 5.0.7-rt5. The real-time kernel is more sensible to synchronization as the mod-
eled preemption and IRQ-related operations occur more frequently than in the mainline
kernel.



Chapter 5. Online runtime verification 100

5.2.1 Throughput evaluation

Throughput evaluation was made using the Phoronix Test Suite benchmark
(PHORONIX, 2020), and its output is shown in Figure 54. The same experiments were
repeated in three different configurations. First, the benchmark was run in the system
as-is, without any tracing nor verification running. Then, it was run in the system after
enabling verification of the SWA model. Finally, a run was made with the system being
traced, only limited to the events used in the verified automaton. It is worth mentioning
that tracing in the experiments means only recording the events. The complete verifica-
tion in user-space would still require the copy of data to user-space and the verification
itself, which would add further overhead.

On the CPU bound tests (Crypto, CPU Stress and Memory Copying), both trace
and verification have a low impact on the system performance. In contrast, the bench-
marks that run mostly on kernel code highlights the overheads of both methods. In
all cases, the verification performs better than tracing. The reason is that, despite the
efficiency of tracing, the amount of data that has to be manipulated costs more than
the simple operations required to do the verification, essentially the cost of looking up
the next state in memory in O(1), and storing the next state with a single memory write
operation.

5.2.2 Latency evaluation

Latency is the main metric used when working with the PREEMPT_RT kernel.
The latency of interest is defined as the delay the highest real-time priority thread suffers
from, during a new activation, due to in-kernel synchronization. Linux practitioners use
the cyclictest tool to measure this latency, along with rteval as background workload,
generating intensive kernel activation.

Two models were used in the latency experiment. Similarly to Section 5.2.1, the
SWA model was evaluated against the kernel as-is, and the kernel simply tracing the
same set of events. In addition, the Need Re-Schedule (NRS) model in Figure 77 was
evaluated. It describes the synchronization events that influence the latency, and is
modeled as the specification 19 from Chapter 4. The NRS measurements were made
on the same system but configured as a single CPU.

Consistently with the results obtained in the throughput experiments, the pro-
posed verification mechanism is more efficient than the sole tracing of the same events.
This has the effect that the cyclictest latency obtained under the proposed method,
shown in Figure 56 (SWA/NRS curves), is more similar to the one of the kernel as-is
than what is obtained while just tracing the events.



Chapter 5. Online runtime verification 101

Figure 55 – Need re-sched forces scheduling (NRS model).

thread

pd_id

pd_ie

local_irq_enable
hw_local_irq_enable

pe_id

preempt_enable

sched_switch_in
sched_switch_in_o

ie_resched
hw_local_irq_disable
hw_local_irq_enable

pe_ie

preempt_enable_sched

sched

schedule_entry

local_irq_disable
hw_local_irq_disable

schedule_exit

preempt_enable
preempt_enable_sched

schedule_entry

preempt_disable

local_irq_enable
hw_local_irq_enable

preempt_disable_sched

hw_local_irq_disable
hw_local_irq_enable

preempt_disable_sched

local_irq_disable
local_irq_enable

hw_local_irq_disable
hw_local_irq_enable

schedule_entry

sched_switch_in
sched_switch_in_o

sched_need_resched

preempt_disable_sched preempt_enable_sched
hw_local_irq_disable hw_local_irq_enable

local_irq_disable local_irq_enable
preempt_disable preempt_enable

schedule_entry schedule_exit
sched_switch_in sched_switch_in_o

non_atomic_events*

5.3 FINAL REMARKS

The increasing complexity of the Linux kernel code-base, along with its increas-
ing usage in safety-critical and real-time systems, pushed towards a stronger need for
applying formal verification techniques to various kernel subsystems. Nonetheless, two
factors represent a barrier in this regard: 1) the need for complex setups, even including
modifications and re-compilation of the kernel; 2) the excessively poor performance
exhibited by the kernel while under tracing, for collecting data needed in the verification,
typically carried out in user-space.

The solution for both problems seemed to be controversial: the usage of in-
kernel tracing along with user-space post-processing reduces the complexity of the
setup, but incurs the problem of having to collect, transfer to user-space and process
large amounts of data. On the other hand, the inclusion of verification code “hard-coded”
in the kernel requires more complex setups, with the need for applying custom patches
and recompiling the kernel, with said patches being quite cumbersome to maintain as
the kernel evolves over time.



Chapter 5. Online runtime verification 102

Figure 56 – Latency evaluation, using the SWA model (top) and the NRS model (bot-
tom).

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30 35 40 45 50 55

T
h
re

a
d
 a

c
ti
v
a
ti
o
n
s

Latency in microseconds

trace

SWA

as-is

0

100000

200000

300000

400000

500000

600000

700000

800000

0 10 20 30 40 50 60 70 80 90

T
h

re
a

d
 a

c
ti
v
a

ti
o

n
s

Latency in microseconds

trace

NRS

as-is

This chapter tackled these two problems by using the standard tracing infras-
tructure available in the Linux kernel to dynamically attach verification code to a non-
modified running kernel, by exploiting the mechanism of dynamically loadable kernel
modules. Furthermore, the verification code is semi-automatically generated from stan-
dard automata description files, as can be produced with open editors. The presented
benchmark results show that the proposed technique overcomes standard tracing and
user-space processing of kernel events to be verified in terms of performance. More-
over, the proposed technique is more efficient than merely tracking the events of interest
just using tracing features available in the kernel.

The results of this research attracted the attention of the Linux kernel devel-
opment community. In addition to the academic conferences, the results of this chap-
ter were presented at the main open-source conference venues, including the Linux
Plumbers Conference 2019 and the Embedded Linux Conference Europe 2019, being
an invited talk at the Kernel Recipes conference in 2019.



103

6 LATENCY ANALYSIS

This chapter presents the final results of the thesis, being the motivation for the
development of the model. It aims to validate that the model developed in Section 4 has
the potential to describe the PREEMPT_RT execution unambiguously, overcoming the
main limitation of the timeline presented in (OLIVEIRA; OLIVEIRA, 2016), starting by
the principal PREEMPT_RT metric: the scheduling latency.

Regarding the scheduling latency, Linux developers have extensively reworked
the Linux kernel to reduce the code sections that could delay the scheduling of the
highest-priority thread. Cyclictest is the primary tool adopted in the evaluation of
the fully-preemptive mode of PREEMPT_RT Linux (CERQUEIRA; BRANDENBURG,
2013), and it is used to compute the time difference between an expected activation
time and the actual start of execution time of a high-priority thread running on a CPU.
By configuring the measurement thread with the highest priority and running a back-
ground taskset to generate disturbance, cyclictest is used in practice to measure the
scheduling latency of each CPU of the system. Maximum observed latency values gen-
erally range from a few microseconds on single-CPU systems to 250 us on non-uniform
memory access systems (RED HAT. INC, 2020), which are acceptable values for a vast
range of applications with sub millisecond timing precision requirements. In this way,
PREEMPT_RT Linux closely fulfills theoretical fully-preemptive systems assumptions
that consider atomic scheduling operations, with neglectable overheads.

Despite its practical approach and the contributions to the current state-of-art
of real-time Linux, cyclictest has some known limitations. The main limitation arises
from the opaque nature of the latency value provided by cyclictest (BRANDENBUG;
ANDERSON, 2009). Indeed, it only informs about the latency value, without providing
insights on its root causes. Tracing features of Linux are often applied by developers
to help in the investigation. However, the indiscriminate usage of tracing is not enough
to solve the problem: the tracing overhead can easily mask the real sources of latency,
and the excessive amount of data often drives the developer to conjunctures that are
not the actual cause of the problem. For these reasons, the debug of a latency spike
on Linux generally takes a reasonable amount of hours of very specialized resources.

A common approach in the real-time systems theory is the categorization of a
system as a set of independent variables and equations that describe its integrated
timing behavior. However, the complexity of the execution contexts and fine-grained
synchronization of the PREEMPT_RT make it difficult the application of classical real-
time analysis for Linux. Linux kernel complexity is undoubtedly a barrier for both expert
operating system developers and real-time systems researchers. The absence of a
theoretically-sound definition of Linux behavior is widely known, and it inhibits the appli-
cation of the rich arsenal of already existing techniques from the real-time theory. Also,



Chapter 6. Latency analysis 104

it inhibits the development of theoretically sound analysis that fits all the peculiarities of
the Linux task model (GLEIXNER, 2010).

In this Chapter, the model presented in Chapter 4 is used to derive a set of
properties and rules defining the Linux kernel behavior from a scheduling perspec-
tive. These properties are then leveraged to derive a theoretically-sound bound to the
scheduling latency that comprehensively considers the sources of delays, including the
all possible synchronization flows in the kernel code. The analysis builds upon a set of
practically-relevant modeling variables inspired by the foundational principles behind
the development of the PREEMPT_RT Linux Kernel. This chapter also presents an
efficient tracing method, using the same approach presented in Chapter 5, to observe
the kernel events, interpreting them to define observed values for the variables used
in the analysis while reducing the runtime overhead and storage space to values that
make its use feasible in practice. The tool also analyses the trace, serving to distinguish
the various sources of the latency. Moreover, by exploring the interference caused by
adopting different interrupt characterizations, it also derives possible latency bounds
based on real trace execution. Finally, the experimental section compares the results
obtained by the cyclictest and the proposed tool, showing that the proposed method
can find sound bounds faster with acceptable overhead.

6.1 SYSTEM MODEL

This work uses the Thread Synchronization Model, presented in Chapter 4, as
the description of a single-cpu PREEMPT_RT Linux system configured in the fully-
preemptive mode. The advantages of using the model is many-fold: (1) it was devel-
oped in collaboration with kernel developers, and widely discussed with both practition-
ers (OLIVEIRA, 2018e,f) and academia (OLIVEIRA; CUCINOTTA; OLIVEIRA, 2019;
OLIVEIRA, D. B. de et al., 2017); (2) the model is deterministic, i.e, in a given state
a given event can cause only one transition; (3) the model was extensively verified,
both for functional and non-functional properties; indeed, the non-functional runtime
verification of the model was capable of identifying bugs in the Linux kernel that no
other kernel mechanism could discover (OLIVEIRA; OLIVEIRA; CUCINOTTA, 2020)
but mainly; (4) it abstracts the code complexity by using a set of small automata, each
one precisely describing a single behavior of the system.

The model’s task set is composed of a single NMI τNMI, a set ΓIRQ = {τ IRQ
1 , τ IRQ

2 , . . .}
of maskable interruptions (IRQ for simplicity), and a set of threads ΓTHD = {τTHD

1 , τTHD
2 , . . .}.

NMIs, IRQs, and threads are subject to the scheduling hierarchy discussed in Sec-
tion 2.2, i.e., the NMI has always a higher priority than IRQs, and IRQs always have
higher priority than threads. Given a thread τTHD

i , at a given point in time, the set of
threads with a higher-priority than τTHD

i is denoted by ΓTHD
HPi

. Similarly, the set of tasks
with priority lower than τTHD

i is denoted by ΓTHD
LPi

. Although the schedulers might have



Chapter 6. Latency analysis 105

Figure 57 – NMI generator (O1).

nminon_nmi nmi_exit

nmi_entry

threads with the same priority in their queues, only one among them will be selected to
have its context load, and consequently, starting to run. Hence, when scheduling, the
schedulers elect a single thread as the highest-priority one.

The system model is formalized using the modular approach, where the gener-
ators model the independent action of tasks and synchronization primitives, and the
specification models the synchronized behavior of the system. The next sections ex-
plains the generators as the basic operations of the system, and the specifications as
a set of rules that explains the system behavior.

6.1.1 Basic Operations

This section describes generators relevant for the scheduling latency analysis,
starting by the interrupt behavior:

• O1: The NMI context starts with the entry of the NMI handler (nmi_entry), and
exits in the return of the handler (nmi_exit). This operation is modeled as in
Figure 57.

• O2: Linux allows threads to temporarily mask interrupts (local_irq_disable), in
such a way to avoid access to shared data in an inconsistent state. Threads need
to unmask interrupts (local_irq_enable) at the end of the critical section, as
modeled in Figure 58.

• O3: To enforce synchronization, the processor masks interrupts before calling an
interrupt handler on it. IRQs stays masked during the entire execution of an inter-
rupt handler (hw_local_irq_disable). Interrupts are unmasked after the return of
the handler (hw_local_irq_enable), as shown in Figure 59. In the model, these
events are used to identify the begin and the return of an IRQ execution.

The reference model considers two threads: the thread under analysis and an
arbitrary other thread (including the idle thread). The corresponding operations are
discussed next.

• O4: The thread is not running until its context is loaded in the processor (sched_-
switch_in). The context of a thread can be unloaded by a suspension (sched-
_switch_suspend), blocking (sched_switch_blocking), or preemption (sched_-
switch_preempt), as in Figure 60.



Chapter 6. Latency analysis 106

Figure 58 – IRQ disabled by software
(O2).

disabledenabled local_irq_enable

local_irq_disable

Figure 59 – IRQs disabled by hardware
(O3).

irqnon_irq hw_local_irq_enable

hw_local_irq_disable

Figure 60 – Context switch generator
(04).

not_running running

sched_switch_in

sched_switch_suspend
sched_switch_preempt
sched_switch_blocking

Figure 61 – Context switch generator
(05).

preemptedrunning sched_switch_in_o

sched_switch_out_o

Figure 62 – Preempt disable (06).

no_preempt

preempt

preempt_enable

preempt_disable

scheduling

preempt_disable_sched

preempt_enable_sched

Figure 63 – Scheduling context (07).

schedthread schedule_exit

schedule_entry

Figure 64 – Thread runnable/sleepable
(08).

runnablesleepable sched_set_state_sleepable

sched_waking
sched_set_state_runnable

Figure 65 – Need re-schedule operation
(09).

need_resched

sched_need_resched

• O5: The model considers that there is always another thread ready to run. The
reason is that, on Linux, the idle state is implemented as a thread, so at least
the idle thread is ready to run. The other thread can have its context unloaded
(sched_switch_out_o) and loaded (sched_switch_in_o) in the processor, as mod-
eled in Figure 61.

• O6: The preemption is enabled by default. Although the same function is used
to disable preemption, the model distinguishes the different reasons to disable
preemption, as modeled in Figure 62. The preemption can be disabled either to
postpone the scheduler execution (preempt_disable), or to protect the scheduler
execution of a recursive call (preemp_disable_sched). Hereafter, the latter mode
is referred to as preemption disabled to call the scheduler or preemption disabled
to schedule.

• O7: The scheduler starts to run selecting the highest-priority thread (schedule-



Chapter 6. Latency analysis 107

_entry, in Figure 63), and returns after scheduling (schedule_exit).

• O8: Before being able to run, a thread needs to be awakened (sched_waking).
A thread can set its state to sleepable (sched_set_state_sleepable) when in
need of resources. This operation can be undone if the thread sets its state to
runnable again (sched_set_state_runnable). The state-machine that illustrates
the interaction among these events is shown in Figure 64.

• O9: The need re-schedule (sched_need_resched) notifies that the currently run-
ning thread is not the highest-priority anymore, and so the current CPU needs to
re-schedule, in such way to select the new highest-priority thread (Figure 65).

6.1.2 Rules

The Thread Synchronization Model (OLIVEIRA; OLIVEIRA; CUCINOTTA, 2020)
includes a set of specifications defining the synchronization rules among generators
(i.e., the basic operations discussed in Section 6.1.1). Next, we summarize a subset of
rules extracted from the automaton, which are relevant to analyze the scheduling latency.
Each rule points to a related specification, graphically illustrated with a corresponding
figure.

IRQ and NMI rules. First, we start discussing rules related to IRQs and NMI.

• R1: There is no specification that blocks the execution of a NMI (O1) in the au-
tomaton.

• R2: There is a set of events that are not allowed in the NMI context (Figure 66),
including:

– R2a: set the need resched (O9).

– R2b: call the scheduler (O7).

– R2c: switch the thread context (O4 and O5)

– R2d: enable the preemption to schedule (O6).

• R3: There is a set of events that are not allowed in the IRQ context (Figure 67),
including:

– R3a: call the scheduler (O7).

– R3b: switch the thread context (O4 and O5).

– R3c: enable the preemption to schedule (O6).

• R4: IRQs are disabled either by threads (O2) or IRQs (O3), as in the model in
Figure 68. Thus, it is possible to conclude that:



Chapter 6. Latency analysis 108

Figure 66 – NMI blocks all other operations (R2).

nminon_nmi

hw_local_irq_disable
hw_local_irq_enable

local_irq_disable
local_irq_enable
preempt_disable
preempt_enable

preempt_disable_sched
preempt_enable_sched
sched_need_resched

sched_set_state_runnable
sched_set_state_sleepable

sched_switch_blocking
sched_switch_in

sched_switch_in_o
sched_switch_out_o

sched_switch_preempt
sched_switch_suspend

sched_waking
schedule_entry
schedule_exit

non_atomic_events*

nmi_exit

nmi_entry

Figure 67 – Operations blocked in the IRQ context (R3).

irqnon_irq
hw_local_irq_enable

hw_local_irq_disable

local_irq_disable
local_irq_enable

preempt_enable_sched
sched_set_state_runnable
sched_set_state_sleepable

sched_switch_in
sched_switch_in_o
sched_switch_out_o

sched_switch_preempt
sched_switch_suspend
sched_switch_blocking

schedule_entry
schedule_exit

non_atomic_events*

Figure 68 – IRQ disabled by thread or IRQs (R4).

irq_disabled

no_irq

local_irq_enable

irq_runninghw_local_irq_enable

local_irq_disable

hw_local_irq_disable

Figure 69 – The scheduler is called with in-
terrupts enabled (R5).

can_sched

schedule_entry
schedule_exit

cant_sched

local_irq_disable

local_irq_enable

Figure 70 – The scheduler is called with
preemption disabled to call the
scheduler (R6).

can_sched

schedule_entry
schedule_exit

cant_sched preempt_enable_sched

preempt_disable_sched

– R4a: by disabling IRQs, a thread postpones the beginning of the IRQ han-
dlers.

– R4b: when IRQs are not disabled by a thread, IRQs can run.

Thread context. Next, synchronization rules related to the thread context are
discussed. We start presenting the necessary conditions to call the scheduler (O7).

Necessary conditions to call the scheduler.

• R5: The scheduler is called (and returns) with interrupts enabled (Figure 69).



Chapter 6. Latency analysis 109

Figure 71 – The scheduler context does not enable the preemption (R7).

schedulingthread schedule_exit

schedule_entry

preempt_disable
preempt_enable

preempt_disable_sched
preempt_enable_sched

Figure 72 – The context switch occurs with interrupts and preempt disabled (R8).

disabled

sched_switch_in
sched_switch_suspend
sched_switch_preempt

sched_switch_in_o
sched_switch_out_o

sched_switch_blocking

p_xor_i

local_irq_enable
preempt_enable_sched

enabled

local_irq_disable
preempt_disable_sched

local_irq_disable
preempt_disable_sched

local_irq_enable
preempt_enable_sched

Figure 73 – The context switch occurs in the scheduling context (R9).

sched

sched_switch_in
sched_switch_in_o

sched_switch_suspend
sched_switch_preempt
sched_switch_out_o

sched_switch_blocking

thread schedule_exit

schedule_entry

Figure 74 – Wakeup and need resched requires IRQs and preemption disabled (R10
and R11).

disabled

sched_need_resched
sched_waking

p_xor_i

preempt_enable
preempt_enable_sched

local_irq_enable
hw_local_irq_enable

enabled

preempt_disable
preempt_disable_sched

local_irq_disable
hw_local_irq_disable

preempt_disable
preempt_disable_sched

local_irq_disable
hw_local_irq_disable

preempt_enable
preempt_enable_sched

local_irq_enable
hw_local_irq_enable

Figure 75 – Disabling preemption to sched-
ule always causes a call to the
scheduler (R12).

pd

schedschedule_entry

schedule_entry

thread

preempt_enable_sched

preempt_disable_sched

Figure 76 – Scheduling always causes con-
text switch (R13).

a_switch
thread

schedule_exit

b_switch

sched_switch_suspend
sched_switch_preempt
sched_switch_blocking

sched_switch_out_o

schedule_entry



Chapter 6. Latency analysis 110

• R6: The scheduler is called (and returns) with preemption disabled to call the
scheduler (Figure 70).

Rule R7 ensures that the scheduler always run with the preemption disabled.

• R7: The preemption is never enabled by the scheduling context (Figure 71).

Regarding the context switch (O4 and O5), the following conditions are required.

Necessary conditions for a context switch.

• R8: The context switch occurs with interrupts disabled by threads (O2) and pre-
emption disabled to schedule (O6, Figure 72).

• R9: The context switch occurs in the scheduling context (O7, Figure 73).

The necessary conditions to set the need resched (O9) and to wakeup a thread
(O8) are the same. They are listed below, and showed in Figure 74.

Necessary conditions to set the need resched and to wakeup a thread.

• R10: preemption should be disabled, by any mean (O6).

• R11: IRQs should be masked, either to avoid IRQ (O2) or to postpone IRQs (O3).

Until here, we were mentioned necessary conditions. From now on, we will be
considering sufficient conditions.

Sufficient conditions to call the scheduler and to cause a context switch.

• R12: disabling preemption to schedule (O6) always causes a call to the scheduler
(O7, Figure 75).

• R13: calling the scheduler (O7) always results in a context switch (O4,O5). Recall
that if the system is idle, the idle thread is executed after the context switch
(Figure 76).

• R14: setting need resched (O9) always results in a context switch (O4,O5, Fig-
ure 77).



Chapter 6. Latency analysis 111

Figure 77 – Setting need resched always causes a context switch (R14).

thread

pd_id

pd_ie

local_irq_enable
hw_local_irq_enable

pe_id

preempt_enable

sched_switch_in
sched_switch_in_o

ie_resched
hw_local_irq_disable
hw_local_irq_enable

pe_ie

preempt_enable_sched

sched

schedule_entry

local_irq_disable
hw_local_irq_disable

schedule_exit

preempt_enable
preempt_enable_sched

schedule_entry

preempt_disable

local_irq_enable
hw_local_irq_enable

preempt_disable_sched

hw_local_irq_disable
hw_local_irq_enable

preempt_disable_sched

local_irq_disable
local_irq_enable

hw_local_irq_disable
hw_local_irq_enable

schedule_entry

sched_switch_in
sched_switch_in_o

sched_need_resched

preempt_disable_sched preempt_enable_sched
hw_local_irq_disable hw_local_irq_enable

local_irq_disable local_irq_enable
preempt_disable preempt_enable

schedule_entry schedule_exit
sched_switch_in sched_switch_in_o

non_atomic_events*

ii-b

ii-a

i-c

i-b

i-a

Cases in Section 4.2

Figure 78 – Reference Timeline.

IRQ disabledNMI

IRQ disable

Hard IRQScheduling (Thread)Thread Preemption disabled

Preempt disable to sched
Schedule call

Context switch
Preempt enablePreempt disable

Preempt enable from sched
Schedule return

IRQ enable

IRQ disable IRQ enable

Dpoid DpsdA F
Dst

I      (L)NMI

I     (L)IRQ

EV1
EV2 EV3

EV4
EV5

EV6
EV7



Chapter 6. Latency analysis 112

6.2 DEMYSTIFYING THE REAL-TIME LINUX SCHEDULING LATENCY

6.2.1 Problem statement

We start defining the scheduling latency (hereafter only latency) and then we
leverage the rules presented in Section 6.1 and the related automaton model to derive
an upper bound reflecting all the peculiarities of Linux. The latency experienced by
a thread instance (also called job) may be informally defined as the maximum time
elapsed between the instant in which it becomes ready while having the highest-priority
among all ready threads, and the time instant in which it is allowed to execute its own
code after the context switch has already been performed. By extension, the latency of
a thread is defined as reported in Definition 1.

Definition 1 (Thread Scheduling Latency). The scheduling latency experienced by an
arbitrary thread τTHD

i ∈ ΓTHD is the longest time elapsed between the time A in which
any job of τTHD

i becomes ready and with the highest priority, and the time F in which
the scheduler returns and allows τTHD

i to execute its code, in any possible schedule in
which τTHD

i is not preempted by any other thread in the interval [A, F ].

For brevity, we refer next to the event that causes any job of τTHD
i becoming

ready and with the maximum priority as RHPi event1. With Definition 1 in place, this
paper aims at computing a theoretically-sound upper bound to the latency experienced
by an arbitrary τTHD

i ∈ ΓTHD under analysis. To this end, we extract next some formal
properties and lemmas from the operations and rules presented in Section 6.1. We
begin determining which types of entities may prolong the latency of τTHD

i .

Property 1. The scheduling latency of an arbitrary thread τTHD
i ∈ ΓTHD cannot be

prolonged due to high-priority interference from other threads τTHD
j ∈ ΓTHD

HPi
.

Proof. By contradiction, assume the property does not hold. Then, due to the priority
ordering, it means that either: (i) τTHD

i was not the highest-priority thread at the begin-
ning of the interval [A, F ] (as defined in Definition 1), or (ii) τTHD

i has been preempted
in [A, F ]. Both cases contradict Definition 1, hence the property follows.

Differently, Property 2 shows that the latency of a thread may be prolonged due
to priority-inversion blocking caused by other threads τTHD

j ∈ ΓTHD
LPi

with a lower priority.

Property 2. The latency of an arbitrary thread τTHD
i ∈ ΓTHD can be prolonged due to

low-priority blocking from other threads τTHD
j ∈ ΓTHD

LPi
.

Proof. The property follows by noting that, for example, a low-priority thread may dis-
able the preemption to postpone the scheduler, potentially prolonging the latency of
τTHD
i .

1 Note that RHPi is an event external to the model, for instance, it can be a hardware event that dis-
patches an IRQ, or the event that causes a thread to activate another thread.



Chapter 6. Latency analysis 113

With Property 1 and Property 2 in place, we bound the Linux latency as follows,
referring to an arbitrary thread τTHD

i under analysis. First, as a consequence of Prop-
erty 1, only the NMI and IRQs may prolong the latency due to high-priority interference,
and such an interference is equal for all threads τTHD

i ∈ ΓTHD since NMI and IRQs have
higher priorities than threads. We model the interference due to the NMI and IRQs in a
time window of length t with the functions INMI(t) and I IRQ(t), respectively. We then show
next in Section 6.3 how to derive such functions. Besides interference, the latency is
caused by constant kernel overheads (e.g., due to the execution of the kernel code for
performing the context switch) and priority-inversion blocking (see Property 2), which
we bound with a term LIF. In principle, the delays originating LIF may be different for
each thread τTHD

i ∈ ΓTHD. However, for simplicity, we conservatively bound LIF in a
thread-independent manner as discussed next in Section 6.2.2 and 6.3. The latency
of τTHD

i is then a function of the above delays, and is bounded by leveraging standard
techniques for response-time analysis in real-time systems (AUDSLEY et al., 1993;
JOSEPH; PANDYA, 1986; LEHOCZKY; SHA; DING, 1989), i.e., by the least positive
value fulfilling the following equation:

L = LIF + INMI(L) + I IRQ(L). (18)

Next, we show how to bound LIF.

6.2.2 Bounding LIF

Analysis Approach. As discussed in Section 6.1, after the RHPi event occurs (i.e.,
when τTHD

i becomes the ready thread with the highest priority), the kernel identifies the
need to schedule a new thread when the set_need_resched event takes place. Then,
an ordered sequence of events occurs. Such events are motivated by the operations
and rules discussed in Section 6.1, graphically illustrated in the lower part of Figure 78,
and discussed below.

EV1 The necessary conditions to call the scheduler need to be fulfilled: IRQs are
enabled, and preemption is disabled to call the scheduler. It follows from rule R5
and R6;

EV2 The scheduler is called. It follows from R12;

EV3 In the scheduler code, IRQs are disabled to perform a context switch. It follows
from rule R8;

EV4 The context switch occurs. It follows from rule R13 and R14;

EV5 Interrupts are enabled by the scheduler. It follows from R5;

EV6 The scheduler returns;



Chapter 6. Latency analysis 114

EV7 The preemption is enabled, returning the thread its own execution flow.

Note that, depending on what the processor is executing when the RHPi event
occurs, not all the events may be involved in (and hence prolong) the scheduling latency.
Figure 77 illustrates all the allowed sequences of events from the occurrence of the
set_need_resched event (caused by RHPi ) until the context switch (EV4), allowing the
occurrence of the other events (EV5-EV7). According to the automaton model, there are
five possible and mutually-exclusive cases, highlighted with different colors in Figure 77.
Our strategy for bounding LIF consists in deriving an individual bound for each of
the five cases, taking the maximum as a safe bound. To derive the five cases, we
first distinguish between: (i) if RHPi occurs when the current thread τTHD

j ∈ ΓTHD
LPi

is in
the scheduler execution flow, both voluntarily, or involuntarily as a consequence of
a previous set_need_resched occurrence, after disabling the preemption to call the
scheduler and, (ii) otherwise.

We can distinguish three mutually-exclusive sub-cases of (i):

i-a if RHPi occurs between events EV1 and EV2, i.e., after that preemption has been
disabled to call the scheduler and before the actual scheduler call (black in Fig-
ure 77);

i-b if RHPi occurs in the scheduler between EV2 and EV3, i.e., after that the scheduler
has already been called and before interrupts have been disabled to cause the
context switch (pink in Figure 77);

i-c if RHPi occurs in the scheduler between EV3 and EV7, i.e., after interrupts have
already been masked in the scheduler code and when the scheduler returns
(brown in Figure 77);

In case (ii), RHPi occurred when the current thread τTHD
j ∈ ΓTHD

LPi
is not in the sched-

uler execution flow. Based on the automaton of Figure 77, two sub-cases are further
differentiated:

ii-a when RHPi is caused by an IRQ, and the currently executing thread may delay RHPi
only by disabling interruptions (green in Figure 77).

ii-b otherwise (blue in Figure 77).

Variables Selection. One of the most important design choices for the analysis
consists in determining the most suitable variables to be used for deriving the analytical
bound. Since the very early stages of its development, the PREEMPT_RT Linux had
as a target to minimize the code portions executed in interrupt context and the code
sections in which the preemption is disabled. One of the advantages of this design
choice consists indeed in the reduction of scheduling delays. Nevertheless, disabling



Chapter 6. Latency analysis 115

Table 9 – Parameters used to bound LIF.

Param. Length of the longest interval
DPSD in which preemptions are disabled to schedule.
DPAIE in which the system is in state pe_ie of Figure 77.
DPOID in which the preemption is disabled to postpone the scheduler or IRQs are disabled.
DST between two consecutive occurrences of EV3 and EV7.

the preemption or IRQs is sometimes merely mandatory in the kernel code. As pointed
out in Property 2, threads may also disable the preemption or IRQs, e.g., to enforce
synchronization, thus impacting on the scheduling latency. Building upon the design
principles of the fully-preemptive PREEMPT_RT kernel, Table 9 presents and discusses
the set of variables selected to bound the latency, which are more extensively discussed
next in Sections 6.3, and graphically illustrated in Figure 78. Such variables considers
the longest intervals of time in which the preemption and/or IRQs are disabled, taking
into consideration the different disabling modes discussed in Section 6.1.

Deriving the bound. Before discussing the details of the five cases, we present a
bound on the interference-free duration of the scheduler code in Lemma 1.

Lemma 1. The interference-free duration of the scheduler code is bounded by DPSD.

Proof. It follows by noting that by rule R6 the scheduler is called and returns with
the preemption disabled to call the scheduler and, by rules R2d, R3c, and R7, the
preemption is not enabled again until the scheduler returns.

Next, we provide a bound to LIF in each of the five possible chains of events.

Case (i). In case (i), the preemption is already disabled to call the scheduler, hence
either set_need_resched has already been triggered by another thread τTHD

j 6= τTHD
i or

the current thread voluntarily called the scheduler. Then, due to rules R13 and R14, a
context switch will occur. Consequently, the processor continues executing the sched-
uler code. Due to rule R5, the scheduler is called with interrupts enabled and preemp-
tion disabled, hence RHPi (and consequently set_need_resched) must occur because
of an event triggered by an interrupt. By rule R2, NMI cannot cause set_need_resched;
consequently, it must be caused by an IRQ or the scheduler code itself. Due to EV3,
IRQs are masked in the scheduler code before performing the context switch. We recall
that case (i) divides into three possible sub-cases, depending on whether RHPi occurs
between EV1 and EV2 (case i-a), EV2 and EV3 (case i-b), or EV3 and EV7 (case i-c).
Lemma 2 bounds LIF for cases (i-a) and (i-b).

Lemma 2. In cases (i-a) and (i-b), it holds

LIF
(i–a) ≤ DPSD, LIF

(i–b) ≤ DPSD. (19)



Chapter 6. Latency analysis 116

Proof. In both cases it holds that preemption is disabled to call the scheduler and
IRQs have not been disabled yet (to perform the context switch) when RHPi occurs.
Due to rules R2 and R5, RHPi may only be triggered by an IRQ or the scheduler code
itself. Hence, when RHPi occurs set_need_resched is triggered and the scheduler per-
forms the context switch for τTHD

i . Furthermore, in case (i-b) the processor already
started executing the scheduler code when RHPi occurs. It follows that LIF is bounded
by the interference-free duration of the scheduler code. By Lemma 1, such a duration is
bounded by DPSD. In case (i-a), the scheduler has not been called yet, but preemptions
have already been disabled to schedule. By rule R12, it will immediately cause a call to
the scheduler, and the preemption is not enabled again between EV1 and EV2 (rules
R2d, R3c, and R7). Therefore, also for case (i-a) LIF is bounded by DPSD, thus proving
the lemma.

Differently, case (i-c), in which RHPi occurs between EV3 and EV7, i.e., after
interrupts are disabled to perform the context switch, is discussed in Lemma 3.

Lemma 3. In case (i-c), it holds

LIF
(i–c) ≤ DST + DPAIE + DPSD. (20)

Proof. In case (i), the scheduler is already executing to perform the context switch of
a thread τTHD

j 6= τTHD
i . Due to rules R2 and R5, RHPi may only be triggered by an IRQ

or the scheduler code itself. If the scheduler code itself caused RHPi before the context
switch (i.e., between EV3 and EV4), the same scenario discussed for case (i-b) occurs,
and the bound of Equation 19 holds. Then, case (i-c) occurs for RHPi arriving between
EV4 and EV7 for the scheduler code, or EV3 and EV7 for IRQs. IRQs may be either
disabled to perform the context switch (if RHPi occurs between EV3 and EV5), or already
re-enabled because the context switch already took place (if RHPi occurs between EV5
and EV7). In both cases, thread τTHD

i needs to wait for the scheduler code to complete
the context switch for τTHD

j . If RHPi occurred while IRQs were disabled (i.e., between
EV3 and EV5), the IRQ causing RHPi is executed, triggering set_need_resched, when
IRQs are enabled again just before the scheduler returns (see rule R5).

Hence, due to rule R14, the scheduler needs to execute again to perform a
second context switch to let τTHD

i execute. As shown in the automaton of Figure 77, there
may exist a possible system state in case (i-c) (the brown one in Figure 77) in which,
after RHPi occurred and before the scheduler code is called again, both the preemption
and IRQs are enabled before calling the scheduler (state pe_ie in Figure 77). This
system state is visited when the kernel is executing the non-atomic function to enable
preemption, because the previous scheduler call (i.e., the one that caused the context
switch for τTHD

j ) enabled IRQs before returning (EV5). Consequently, we can bound

LIF in case (i-c) by bounding the interference-free durations of the three intervals: IST,



Chapter 6. Latency analysis 117

which lasts from EV3 to EV7, IPAIE, which accounts for the kernel being in the state
pe_ie of Figure 77 while executing EV7, and IS, where preemption is disabled to call
the scheduler and the scheduler is called again to schedule τTHD

i (from EV1 to EV7).
By definition and due to Lemma 1 and rules R2d, R3c, R7, and R12, IST, IPAIE, and
IS cannot be longer than DST, DPAIE, and DPSD, respectively. The lemma follows by
noting that the overall duration of LIF is bounded by the sum of the individual bounds
on IST, IPAIE, and IS.

Case (ii). In case (ii), RHPi occurs when the current thread τTHD
j ∈ ΓTHD

LPi
is not in the

scheduler execution flow. As a consequence of the RHPi events, set_need_resched is
triggered. By rule R14, triggering set_need_resched always result in a context switch
and, since RHPi occurred outside the scheduler code, the scheduler needs to be called to
perform the context switch (rule R9). Hence, we can bound LIF in case (ii) by individually
bounding two time intervals IS and ISO in which the processor is executing or not
executing the scheduler execution flow (from EV1 to EV7), respectively. As already
discussed, the duration of IS is bounded by DPSD (Lemma 1). To bound ISO, we need
to consider individually cases (ii-a) and (ii-b). Lemma 4 and Lemma 5 bound LIF for
cases (ii-a) and (ii-b), respectively.

Lemma 4. In case (ii-a), it holds

LIF
(ii–a) ≤ DPOID + DPSD. (21)

Proof. In case (ii-a) RHPi occurs due to an IRQ. Recall from Operation O3 that when an
IRQ is executing, it masks interruptions. Hence, the IRQ causing RHPi can be delayed by
the current thread or a lower-priority IRQ that disabled IRQs. When RHPi occurs, the IRQ
triggering the event disables the preemption (IRQs are already masked) to fulfill R10
and R11, and triggers set_need_resched. If preemption was enabled before executing
the IRQ handler and if set_need_resched was triggered, when the IRQ returns, it
first disables preemptions (to call the scheduler, i.e., preempt_disable_sched). It then
unmasks interrupts (this is a safety measure to avoid stack overflows due to multiple
scheduler calls in the IRQ stack). This is done to fulfill the necessary conditions to call
the scheduler discussed in rules R5 and R6. Due to rules R3a and R12, the scheduler
is called once the IRQ returns. Hence, it follows that in the whole interval ISO, either the
preemption or interrupts are disabled. Then it follows that ISO is bounded by DPOID, i.e.,
by the length of the longest interval in which either the preemption or IRQs are disabled.
The lemma follows recalling that the duration of IS is bounded by DPSD.

Lemma 5. In case (ii-b), it holds

LIF
(ii–b) ≤ DPOID + DPAIE + DPSD, (22)



Chapter 6. Latency analysis 118

Proof. In case (ii-b) the currently executing thread delayed the scheduler call by dis-
abling the preemption or IRQs. The two cases in which the RHPi event is triggered either
by a thread or an IRQ are discussed below.

(1) RHPi is triggered by an IRQ. Consider first that RHPi is triggered by an IRQ.
Then, the IRQ may be postponed by a thread or a low-priority IRQ that disabled inter-
rupts. When the IRQ is executed, it triggers set_need_resched. When returning, the
IRQ returns to the previous preemption state2, i.e, if it was disabled before the execution
of the IRQ handler, preemption is disabled, otherwise it is enabled. If the preemption
was enabled before executing the IRQ, the same scenario discussed for case (ii-a)
occurs, and the bound of Equation 21 holds. Otherwise, if the preemption was disabled
to postpone the scheduler execution, the scheduler is delayed due to priority-inversion
blocking. Then it follows that when delaying the scheduler execution, either the preemp-
tion or IRQs are disabled. When preemption is re-enabled by threads and interrupts
are enabled, the preemption needs to be disabled again (this time not to postpone
the scheduler execution, but to call the scheduler) to fulfill the necessary conditions
listed in rules R5 and R6, hence necessarily traversing the pe_ie state (shown in Fig-
ure 77), where both preemptions and interrupts are enabled. Hence, it follows that ISO
is bounded by DPOID + DPAIE if RHPi is triggered by an IRQ.

(2) RHPi is triggered by a thread. In this case, a thread causes set_need_resched.
Since the set_need_resched event requires IRQs and preemption disabled, the sched-
uler execution is postponed until IRQs and preemption are enabled (pe_ie state). Once
both are enabled, the preemption is disabled to call the scheduler. Then it follows that
ISO is bounded by DPOID + DPAIE if RHPi is triggered by a thread. Then it follows that
ISO is bounded by DPOID + DPAIE in case (ii-b). The lemma follows recalling that IS is
bounded by DPSD.

By leveraging the individual bounds on LIF in the five cases discussed above,
Lemma 6 provides an overall bound that is valid for all the possible events sequences.

Lemma 6.
LIF ≤ max(DST, DPOID) + DPAIE + DPSD, (23)

Proof. The lemma follows by noting that cases (i-a), (i-b), (i-c), (ii-a), (ii-b) are mutually-
exclusive and cover all the possible sequences of events from the occurrence of RHPi
and set_need_resched, to the time instant in which τTHD

i is allowed to execute (as
required by Definition 1), and the right-hand side of Equation 23 simultaneously upper
bounds the right-hand sides of Equations 19, 20, 21, and 22.

Theorem 1 summarizes the results derived in this section.
2 Note that, internally to the IRQ handler, the preemption state may be changed, e.g., to trigger

set_need_resched.



Chapter 6. Latency analysis 119

Figure 79 – rt_sched_latency: tool kit components.

tr
ac

ep
oi

nt
s

Kernel latency
parser perf

buffer

perf script
record rtsl

perf.data

perf
scheda
report

perf script
report rtsl

Analysis

Chart

Theorem 1. The scheduling latency experienced by an arbitrary thread τTHD
i is bounded

by the least positive value that fulfills the following recursive equation:

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + I IRQ(L) (24)

Proof. The theorem follows directly from Lemmas 6 and Equation 18.

6.3 RT_SCHED_LATENCY: EFFICIENT SCHEDULING LATENCY ESTIMATION TOOL
KIT

The validation tool used in the development of the Thread Synchronization
Model (OLIVEIRA; OLIVEIRA; CUCINOTTA, 2020) exports all the kernel events to
the user-space using perf, for later analysis. Although useful for the model validation
purpose, the low granularity nature of the synchronization primitives generates a pro-
hibitive amount of information for a performance measurement tool. For instance, one
second of trace could generate more than 800 MB of data per CPU. Doing the whole
trace analysis in-kernel has shown to be very efficient, as presented in Chapter 5. The
problem for such an approach lies in the amount of information that can be stored
in kernel memory. While only the worst observed value for some variables, such as
DPOID, are used in the analysis, the IRQ and NMI analysis required the recording of
all interrupts occurrence during the measurements. So the experimental tool kit devel-
oped in this work, called rt_sched_latency, has a hybrid approach: it uses an in-kernel
event parsing and an extension to the perf script tool for a post-processing phase.
Figure 79 describes the interaction of the tools in the tool kit. The tool kit comprises the
latency parser and the perf script extension, named rtsl.

The latency parser uses the kernel tracepoints from the Thread Synchro-
nization Model to observe their occurrence from inside the kernel. The latency parser

registers a callback function to the kernel tracepoints. When a tracepoint from the
model is hit, rather than writing the trace to the trace buffer (a buffer maintained by the
perf tool to store trace data) the respective function is called. The callback functions
are used to pre-process the events, transforming them into relevant information. For
example, nmi_entry event records the arrival time (all the values are observed values,
but the observed qualifiers are omitted for simplicity) without printing the occurrence
of the event. When the nmi_exit occurs, it computes the execution time of the NMI,



Chapter 6. Latency analysis 120

and prints the arrival time and the execution time of the NMI. A similar behavior is
implemented for other metrics, for instance for the IRQ occurence. The difference is
that the interference must be removed from other metrics. For example, if an NMI and
an IRQ occur while measuring a candidate DPOID, the IRQ and the NMI execution time
are discounted from the measured value.

The latency parser communicates with perf using a new set of tracepoints,
and these are printed to the trace buffer. The following events are generated by the
latency parser:

• irq_execution: prints the IRQ identifier, starting time, and execution time;

• nmi_execution: prints the starting time, and execution time;

• max_poid: prints the new maximum observed DPOID duration;

• max_psd: prints the new maximum observed DPSD duration;

• max_dst: prints the new maximum observed DST duration;

• max_paie: prints the new maximum observed DPAIE duration;

By only tracing the return of interrupts and the new maximum values for the
thread metrics, the amount of data generated is reduced to the order of 200KB of data
per second per CPU. Hence, reducing the overhead of saving data to the trace buffer,
while enabling the measurements to run for hours by saving the results to the disk. The
data collection is done by the perf rtsl script. It initiates the latency parser and
start recording its events, saving the results to the perf.data file. The command also
accepts a workload as an argument. For example, the following command line will start
the data collection while running cyclictest concurrently:

perf script record rtsl cyclictest –smp -p95 -m -q

Indeed, this is how the data collection is made for Section 6.4. The trace analysis
is done with the following command line: perf script report rtsl. The perf script will
read the perf.data and perform the analysis. A cyclictest.txt file with cyclictest

output is also read by the script, adding its results to the analysis as well. The script
to run the analysis is implemented in python, which facilitates the handling of data,
needed mainly for the IRQ and NMI analysis.

IRQ and NMI analysis While the variables used in the analysis are clearly defined
(Table 9), the characterization of IRQs and NMI interference is delegated to functions
(i.e., INMI(L) and I IRQ(L)), for which different characterizations are proposed next. The
reason being is that there is no consensus on what could be the single best character-
ization of interrupt interference. For example, in a discussion among the Linux kernel



Chapter 6. Latency analysis 121

developers, it is a common opinion that the classical sporadic model would be too pes-
simistic (OLIVEIRA, 2019d). Therefore, this work assumes that there is no single way to
characterize IRQs and NMIs, opting to explore different IRQs and NMI characterizations
in the analysis. Also, the choice to analyze the data in user-space using python scripts
were made to facilitate the extension of the analysis by other users or researchers. The
tool presents the latency analysis assuming the following interrupts characterization:

• No Interrupts: the interference-free latency (LIF);

• Worst single interrupt: a single IRQ (the worst over all) and a single NMI occur-
rence;

• Single (worst) of each interrupt: a single (the worst) occurrence of each inter-
rupt;

• Sporadic: sporadic model, using the observed minimum inter-arrival time and
WCET;

• Sliding window: using the worst-observed arrival pattern of each interrupt and
the observed execution time of individual instances;

• Sliding window with oWCET: using the worst-observed arrival pattern of each
interrupt and the observed worst-case execution time among all the instances
(oWCET).

These different characterization lead to different implementations of INMI(L) and
I IRQ(L).

perf rtsl output. The perf rtsl tool has two outputs: the textual and the graphical
one. The textual output prints a detailed description of the latency analysis, including the
values for the variables defined in Section 6.2. By doing so, it becomes clear what are
the contributions of each variable to the resulting scheduling latency. An excerpt from
the output is shown in Figure 80. The tool also creates charts displaying the latency
results for each interrupt characterization, as shown in the experiments in Section 6.4.

When the dominant factor of latency is an IRQ or NMI, the textual output al-
ready serves to isolate the context in which the problem happens. However, when
the dominant factor arises from a thread, the textual output points only to the vari-
able that dominates the latency. Then, to assist in the search for the code section, the
tracepoints that prints each occurrence of the variables from latency parser can be
used. These events are not used during the measurements because they occur too
frequently, but they can be used in the debug stage. For example, Figure 81 shows
the example of the poid tracepoint traced using perf, capturing the stack trace of



Chapter 6. Latency analysis 122

Figure 80 – perf rtsl output: excerpt from the textual output (time in nanoseconds).

Interference Free Latency:
paie is lower than 1 us -> neglectable
latency = max(poid, dst) + paie + psd

42212 = max(22510, 19312) + 0 + 19702
Cyclictest:

Latency = 27000 with Cyclictest
No Interrupts:

Latency = 42212 with No Interrupts
Sporadic:

INT: oWCET oMIAT
NMI: 0 0
33: 16914 257130
35: 12913 1843 <- oWCET > oMIAT

236: 20728 1558 <- oWCET > oMIAT
246: 3299 1910321
Did not converge.

continuing....
Sliding window:

Window: 42212
NMI: 0
33: 16914
35: 14588

236: 20728
246: 3299

Window: 97741
236: 21029 <- new!

Window: 98042
Converged!
Latency = 98042 with Sliding Window

Figure 81 – Using perf and the latency parser to find the cause of a large DPOID value.

# perf record -a -g -e rtsl:poid --filter "value > 60000"
# perf script

php 25708 [001] 754905.013632: rtsl:poid: 68391
ffffffff921cbb6d trace_preempt_on+0x13d ([kernel.kallsyms])
ffffffff921039ca preempt_count_sub+0x9a ([kernel.kallsyms])
ffffffff929a507a _raw_spin_unlock_irqrestore+0x2a ([kernel.kallsyms])
ffffffff92109a55 wake_up_new_task+0x1c5 ([kernel.kallsyms])
ffffffff920d4c5e _do_fork+0x14e ([kernel.kallsyms])
ffffffff92004552 do_syscall_64+0x72 ([kernel.kallsyms])
ffffffff92a00091 entry_SYSCALL_64_after_hwframe+0x49 ([kernel.kallsyms])

7f2d61d7a685 __libc_fork+0xc5 (/usr/lib64/libc-2.26.so)
55d87cba3b15 [unknown] (/usr/bin/php)

the occurrence of a DPOID value higher than 60 microseconds3. In this example, it is
possible to see that the spike occurs in the php thread while waking up a process during
a fork operation. This trace is precious evidence, mainly because it is already isolated
from other variables, such as the IRQs, that could point to the wrong direction.

6.4 EXPERIMENTAL ANALYSIS

This section presents latency measurements, comparing the results found by
cyclictest and perf rtsl while running concurrently in the same system. The main
objective of this experimental study is to corroborate the practical applicability of the
analysis tool. To this end, we show that the proposed approach provides latency bounds
respecting the under millisecond requirement in scheduling precision (which is typical of
applications using PREEMPT_RT) for most of the proposed interrupt characterizations.
The proposed perf rtsl tool individually characterizes the various sources of latency
and composes them leveraging a theory-based approach allowing to find highly latency-
intensive schedules in a much shorter time than cyclictest. The experiment was made
in a workstation with one Intel i7-6700K CPU @ 4.00GHz processor, with eight cores,
3 The latency parser tracepoints are also available via ftrace.



Chapter 6. Latency analysis 123

and in a server with two Non-Uniform Memory Access (NUMA) Intel Xeon L5640 CPU
@ 2.27GHz processors with six cores each. Both systems run the Fedora 31 Linux
distribution, using the kernel-rt 5.2.21-rt14. The systems were tuned according to the
best practices of real-time Linux systems (KLECH et al., 2020).

The first experiment runs on the workstation three different workloads for 30
minutes. In the first case, the system is mostly idle. Then workloads were generated
using two phoronix-test-suite (pts) tests: the openssl stress test, which is a CPU
intensive workload, and the fio, stress-ng and build-linux-kernel tests together,
causing a mixed range of I/O intensive workload (PHORONIX, 2020). Different columns
are reported in each graph, corresponding to the different characterization of interrupts
discussed in Section 6.3. The result of this experiment is shown in Figure 82: 1.a, 1.b
and 1.c, respectively. In the second experiment, the I/O intensive workload was exe-
cuted again, with different test durations, as described in 2.a, 2.b, and 2.c. The results
from cyclictest did not change substantially as the time and workload changes. On the
other hand, the proposed approach results change, increasing the hypothetical bounds
as the kernel load and experiment duration increase. Consistently with cyclictest

results, the No Interrupts column also do not vary substantially. The difference comes
from the interrupt workload: the more overloaded the system is, and the longer the tests
run, the more interrupts are generated and observed, influencing the results. In all the
cases, the sporadic task model appears to be overly pessimistic for IRQs: regularly, the
oWCET of IRQs were longer than the minimal observed inter-arrival time of them. The
Sliding Window with oWCET also stand out the other results. The results are truncated
in the charts 2.b and 2.c: their values are 467 and 801 microseconds, respectively.

Although the reference automata model was developed considering single-core
systems, the same synchronization rules are replicated in the multiple-core (mc) config-
uration, considering the local scheduling latency of each CPU. The difference between
single and multiple-core cases resides in the inter-core synchronization using, for ex-
ample, spinlocks. However, such synchronization requires preemption and IRQs to
be disabled, hence, taking place inside the already defined variables. Moreover, when
cyclictest runs in the –smp mode, it creates a thread per-core, aiming to measure
the local scheduling latency. In a mc setup, the workload experiment was replicated in
the workstation. Furthermore, the I/O intensive experiment was replicated in the server.
The results of these experiments are shown in Figure 83. In these cases, the effects of
the high kernel activation on I/O operations becomes evident in the workstation exper-
iment (3.c) and in the server experiment(4.a). Again the Sliding Window with oWCET
also stand out the other results, crossing the milliseconds barrier. The source of the
higher values in the thread variables (Table 9) is due to cross-core synchronization
using spinlocks. Indeed, the trace in Figure 81 was observed in the server running the
I/O workload. The php process in that case was part of the phoronix-test-suit used



Chapter 6. Latency analysis 124

Figure 82 – Workstation experiments: single-core system.

467

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d
s

801

2.a) 15 min. 2.b) 60 min. 2.c) 180 min.

1.a) Idle

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d
s

1.b) CPU Intensive 1.c) I/O Intensive

Figure 83 – Workstation and Server experiments: multicore systems.

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d

s

4.a) Server I/O Intensive

3.a) Workstation Idle

La
te

n
cy

 i
n
 m

ic
ro

se
co

n
d

s

3.b) Workstation CPU Intensive 3.c) Workstation I/O Intensive

2944

1900

to generate the workload.
Finally, by running cyclictest with and without using the perf rtsl tool, it was

possible to observe that the trace impact in the minimum, average and maximum values
are in the range from one to four microseconds, which is an acceptable range, given
the frequency in which events occurs, and the advantages of the approach.



Chapter 6. Latency analysis 125

6.5 FINAL REMARKS

The work done by developers, reworking the Linux kernel to reduce the code
sections that could delay the scheduling of the highest-priority thread, was done em-
pirically, aided by cyclictest. However, the outcomes of such effort were known, and
developers implicitly knew the model. The problem was that it is not trivial for the kernel
developers to express their knowledge using the formalism used in the real-time the-
ory. The challenge was then to connect these two non-trivial areas of knowledge, one
expressed in C code, and another expressed in mathematical formalism, explicitly (EP-
STEIN, 2008).

The usage of the model was an essential intermediary step between the real-
time theory and Linux, facilitating the information exchange among the related, but
intricate domains. The analysis, built upon a set of practically-relevant variables, ends
up concluding what is informally know: the preemption and IRQ disabled sections, along
with interrupts, are the evil for the scheduling latency. The real benefits come from the
decomposition of the variables, and the efficient method for observing the values. Now
users and developers have precise information regarding the sources of the latency on
their systems, facilitating the tune their systems, and the definition of where to improve
Linux’s code, respectively. The improvement of the tool and its integration with the Linux
kernel and perf codebase is the practical continuation of this work. But also researchers
can take benefits from the approach in the creation of novel real-time related algorithms
for Linux, taking into consideration realistic considerations regarding the non-negligible
synchronizations of Linux and their associated delays.



126

7 FINAL REMARKS

Linux is complex, and it is fair to say that nobody knows all the details of its
implementation. In practice, the analysis and development of the PREEMPT_RT do
not require the knowledge of all the details of Linux, but the sole understanding of
some execution context and synchronization mechanism, and this fact inspired the
development of this thesis. The work presented in (OLIVEIRA; OLIVEIRA, 2016) is the
first step in this regard, and it shows that, empirically, the kernel developers can make
parallels with the terms used in the academy, and vice-versa. The problem was that
empirical evidence is not enough when dealing with safety-critical systems, and the
real-time systems theory is highly motivated for such a class of systems.

The development of an abstract model using formal methods was a natural an-
swer to unveil the complexity of Linux in a deterministic way. However, given the known
limitations of the application for formal methods on complex systems, the selection of
the formalism and methodology was not straightforward.

The real-time characteristic of the system would naturally point to timed formal-
ism, such as timed automata, and the runtime nature of the system led to simulation
prone formats such as Petri nets. Still, they did not seem to match with the daily routine
of a kernel developer. The option for the simple automata format for the model was
taken because, for a kernel developer, the occurrence of the events, as read in the
trace, was enough to the understanding of the system. Limiting the model for the goal
of explaining the system dynamics, instead of simulating the system execution with
more complex formalism, certainly contributed to avoiding hitting the limits imposed by
the current state-of-art of formal methods.

The modular approach was another crucial factor in the choice. The guarantee
of not forgetting any transition by synchronizing the generators and creating small
and specialized specifications enabled an easy and secure way to specify the system.
The feedback from the developers that the specification in the formal format was of
straightforward understanding added a level of confidence that the modeling process
was taking the right direction1. Finally, it is worth mentioning that the Supremica IDE
played a central role in the modeling phase, mainly by automatizing the automata
operations and the non-functional verification of the model. It also allows the simulation
of the model, which was fundamental during the debugging of problems.

The simplicity of the automata format and the flexibility of the modular approach
was the perfect match for connecting these three complex areas: the Linux kernel, real-
time systems theory, and formal methods. This conclusion is confirmed with the usage
of automata models (both the complete model, or the specifications) in the verification
of the logical behavior of the system, and in the analysis of the timing behavior of the
1 See Section 7.4.



Chapter 7. Final remarks 127

systems.
Regarding the logical behavior, the automata formalism turned possible the

verification at a low overhead, enabling the usage of a very frequent event set with
a little impact in the system, as shown in Chapter 5. The practical outcomes of this
research received significant attention from the Linux developers, mainly for those that
prospect using Linux on safety-critical systems.

Regarding the timing behavior, the approach taken in Chapter 6 shows that it was
possible to describe the properties and the dynamics of part of the Linux kernel behavior
without actually touching the kernel code. These findings closed an important problem
that was described and discussed with the Linux kernel community by researchers back
in 2009 (BRANDENBUG; ANDERSON, 2009). It is important to note that this problem
stayed open not because of a rivalry but because of the complexity of translating the
kernel behavior to the real-time scheduling formalism. The proposed model successfully
filled this gap.

7.1 THE FUTURE OF THE MODEL

At this point, it is necessary to discuss the future of the model. The event set used
in the thread synchronization model roots the addition of the symmetric multiprocessing
(SMP) support and the early development of the PREEMPT_RT, being part of the kernel
for at least one decade. For instance, the research presented in (OLIVEIRA; OLIVEIRA,
2016) uses almost the same event set, and it is the result of a study that started back in
2010. Given the maturity of the current model and the satisfactory results, now formally
unveiled and confirmed in Chapter 6, it is reasonable to assume that no changes are
expected in the foreseeable future.

Nevertheless, it is the nature of the kernel to change, but that is not the end of
the model. Instead, it will be a chance to show another value of the model. The model
assumes that the current design is correct, based on the fact that the kernel has been
working in this way for a long time. So, during the development, the non-functional
verifications enabled by the automata formalism were used to ensure that the model
was following this assumption, for instance, by not presenting deadlocks or livelocks.
The future changes of Linux might be tried first in the model, enabling the powerful
arsenal of formal methods that requires a model, especially model checking (CLARKE;
EMERSON; SIFAKIS, 2009).

The modular approach will facilitate the changes in the model, but that is not
the sole benefit. With the modular approach, it will be possible to identify which spec-
ifications changed. As a consequence, the technologies that were built upon these
specifications will have to be updated. Knowing this is an essential factor for the sus-
tainability of the Linux ecosystem as a whole, mainly for the safety-critical community.
But, it is fair to say that the model will receive attention only if it shows practical value



Chapter 7. Final remarks 128

over time, being used daily by developers. This topic opens the future work section.

7.2 FUTURE WORK

The proof of concept runtime verification method presented this thesis has the
potential to be used in practice. Still, it needs to be enhanced with the addition of an
intuitive interface. The interface could be similar to the ftrace, including some existing
models already compiled with the kernel, but still enabling the dynamic load of new
models. The runtime verification options, such as the actions to be taken in the occur-
rence of a violation, could have a configuration interface as well. Extending the dot2c

tool to support more complex automata methods, such as the timed automata, is also
another possible work. Finally, the method will be proposed for upstream integration,
enabling the verification at the development time. Indeed, the feedback from the kernel
developers is that this tool will be very useful for the continuous integration (CI) effort2.

The latency measurement tool already has a practical interface. It will also be
extended, including the usage of a database that could record multiple trace sections,
enabling the collection of many days of tracing of the same system or the trace of the
same system with different kernels. The latency parser tool that runs in-kernel will be
proposed upstream as well, being ready to use without involving compiling an external
module by the users.

The model presented in this thesis, like any model, can be extended to include
other aspects. The first aspect would be the inclusion of the synchronization mechanism
used in multicore systems. This effort would include the spin-based locking, described
in Section 2.2, and the migration control. Another essential aspect would be the addition
of other elements in the single-core (or per-cpu) model. For example, the more fine-
grained operations involving the cache memory or concurrent access require memory
ordering. The model could also be extended as is, with the inclusion of parameters or
the timing aspects already existing in the automata formalism. Although this future work
sounds contradictory after the argumentation in favor of the basic automata format,
it is not: the simplest format was also selected because of the unknown number of
states and transitions that the final model would have, but this is not a problem after the
development of this thesis. Moreover, the usage of the simple format was also made
with the awareness of the fact that it could be extended later.

Another possible research branch from this work would be the definition of a
set of non-negligible or non-atomic operations involving the scheduling of tasks on
Linux. These operations are useful for the definition of a more appropriate task model
to be used in the development of novel scheduling algorithms that would fit better in
the context of Linux. The approach for the definition of these operations, their behavior,
2 See: https://kernelci.org/.



Chapter 7. Final remarks 129

and the way they influence the timing aspects of the scheduler could be similar to the
one presented in Chapter 6.

7.3 LIST OF PUBLICATIONS

The following papers were published based on the research work that has been
presented in this thesis:

• D. B. De Oliveira, D. Casini, R. S. De Oliveira. T. Cucinotta. Demystifying the Real-
Time Linux Scheduling Latency, (to appear) in the Proceedings of the 32th Eu-
romicro Conference on Real-time Systems (ECRTS), July 7-10th, 2020, Mod-
ena, Italy.

• D. B. De Oliveira, R. S. De Oliveira, T. Cucinotta. A thread synchronization model
for the PREEMPT_RT Linux kernel, Elsevier Journal of Systems Architecture
(JSA), Vol. 107, August 2020.

• D. B. De Oliveira, T. Cucinotta, R. S. De Oliveira. Efficient formal verification for
the Linux kernel, 17th International Conference on Software Engineering and
Formal Methods (SEFM 2019), September 16-20th, 2019, Oslo, Norway.

• D. B. de Oliveira, R. S. de Oliveira, T. Cucinotta. Untangling the Intricacies of
Thread Synchronization in the PREEMPT RT Linux Kernel, in Proceedings of the
22nd IEEE International Symposium on Real-Time Distributed Computing
(IEEE ISORC 2019), May 7-9, 2019, Valencia, Spain.

• D. B. de Oliveira, T. Cucinotta, R. S. de Oliveira. Modeling the Behavior of Threads
in the PREEMPT_RT Linux Kernel Using Automata, in Proceedings of the Inter-
national Workshop on Embedded Operating Systems (EWILI 2018), October
10th, 2018, Torino, Italy.

• D. B. de Oliveira, R. S. de Oliveira, T. Cucinotta, L. Abeni. Automata-Based Mod-
eling of Interrupts in the Linux PREEMPT RT Kernel, in Proceedings of the 22nd
IEEE International Conference on Emerging Technologies And Factory Au-
tomation (ETFA 2017), September 12-15, 2017, Limassol, Cyprus.

7.3.1 Other publications

The following papers were also published, but they are not directly related to the
work presented in this thesis:

• D. B. de Oliveira, D. Casini, R. S. de Oliveira, T. Cucinotta, A. Biondi and G.
Buttazzo. Nested Locks in the Lock Implementation: The Real-Time Read-Write



Chapter 7. Final remarks 130

Semaphores on Linux, in Proceedings of the International Real-Time Schedul-
ing Open Problems Seminar (RTSOPS 2018), co-located with the 30th Euromi-
cro Conference on Real-Time Systems (ECRTS 2018). July 3, 2018, Barcelona,
Spain.

• K. P. Silva, L. F. Arcaro, D. B. de Oliveira. An Empirical Study on the Adequacy
of MBPTA for Tasks Executed on a Complex Computer Architecture with Linux,
in Proceedings of the 23rd IEEE International Conference on Emerging Tech-
nologies And Factory Automation (ETFA 2018), September 4th - 7th, 2018,
Torino, Italy.

7.4 INTERACTIONS WITH THE LINUX KERNEL DEVELOPMENT COMMUNITY

One key aspect of this thesis is the interaction with the Linux kernel development
community. The interaction aimed to collect feedback about the level of abstraction and
the practical aspects of the formalism, for example, to understand if the automata were
a viable specification language. But also, to present the proof of concept tools derived
from this work, and potential ways to extend them, so to make them widely available to
the kernel developers.

Indeed, the usage of automata-based models for runtime verification was a
secondary goal of this project, mainly because we were not expecting to find bugs in
the kernel during the development of the model. This fact is evidenced by the change
in the modeling approach presented in Figure 26 and in the equivalent illustration used
in the first publication (OLIVEIRA, D. B. de et al., 2017), which did not consider any
change in the kernel, but only from the model. The feedback from the industry and the
kernel development community is good evidence that the runtime verification method
has the potential to be applied all over the kernel.

The topics covered in this thesis were presented to the Linux kernel community
with the following talks:

• Efficient Runtime Verification for the Linux Kernel : Red Hat Research Day Eu-
rope, 2020. Brno, CZ (invited talk).

• Real-time Linux: what is, what is not and what is next : Real-time Linux Summit,
2019. Lyon, FRA.

• Formal verification made easy (and fast)!: Linux Plumbers Conference, 2019.
Lisbon, PT; Kernel Recipe, 2019. Paris, FR (invited talk); Linux Foundation
ELISA project meeting, 2020. Online (invited talk).

• Mathemazing the latency : Linux Plumbers Conference, 2019. Lisbon, PT.



Chapter 7. Final remarks 131

• Mind the gap between real-time Linux and real-time theory : Real-time Linux
Summit, 2018. Edinburgh, UK; Linux Plumbers Conference, 2018. Vancouver,
CA.

• How can we catch problems that can break the PREEMPT_RT preemption model?:
Linux Plumbers Conference, 2018. Vancouver, CA.

• Beyond the latency: New metrics for the real-time kernel : Linux Plumbers Con-
ference, 2018. Vancouver, CA.

7.5 ACKNOWLEDGMENT

This work was developed while the Ph.D. candidate was employed by Red Hat,
Inc. Red Hat supported the development of this work.



132

REFERENCES

ABDEDDAÏM, Yasmina; MALER, Oded. Job-Shop Scheduling Using Timed Automata?
In: BERRY, Gérard; COMON, Hubert; FINKEL, Alain (Eds.). Computer Aided
Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. p. 478–492.

ABENI, L. et al. A measurement-based analysis of the real-time performance of linux.
In: PROCEEDINGS. Eighth IEEE Real-Time and Embedded Technology and
Applications Symposium. San Jose, California: IEEE, 2002. p. 133–142. DOI:
10.1109/RTTAS.2002.1137388.

AKESSON, K. et al. Supremica - An integrated environment for verification, synthesis
and simulation of discrete event systems. In: 2006 8th International Workshop on
Discrete Event Systems. Ann Arbor, MI, USA: IEEE, July 2006. p. 384–385. DOI:
10.1109/WODES.2006.382401.

ALBARGHOUTHI, Aws et al. Ufo: A framework for abstraction-and interpolation-based
software verification. In: SPRINGER. INTERNATIONAL Conference on Computer
Aided Verification. Berkeley, CA, USA: Springer, 2012. p. 672–678.

ALGLAVE, Jade et al. Frightening Small Children and Disconcerting Grown-ups:
Concurrency in the Linux Kernel. In: PROCEEDINGS of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. Williamsburg, VA, USA: ACM, 2018. (ASPLOS ’18), p. 405–418. DOI:
10.1145/3173162.3177156. Available from:
http://doi.acm.org/10.1145/3173162.3177156.

AMNELL TOBIAS AND FERSMAN, Elena et al. TIMES: A Tool for Schedulability
Analysis and Code Generation of Real-Time Systems. In: LARSEN, Kim Guldstrand;
NIEBERT, Peter (Eds.). Formal Modeling and Analysis of Timed Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004. p. 60–72.

AMNELL, Tobias et al. TIMES b— A Tool for Modelling and Implementation of
Embedded Systems. In: KATOEN, Joost-Pieter; STEVENS, Perdita (Eds.). Tools and
Algorithms for the Construction and Analysis of Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002. p. 460–464.

ANDRÉ, Étienne et al. IMITATOR 2.5: A Tool for Analyzing Robustness in Scheduling
Problems. In: GIANNAKOPOULOU, Dimitra; MÉRY, Dominique (Eds.). Proceedings
of the 18th International Symposium on Formal Methods (FM’12). Paris, France:
Springer, Aug. 2012. (Lecture Notes in Computer Science), p. 33–36. Available from:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AFKS-fm12.pdf.

Parametric Schedulability Analysis of Fixed Priority Real-Time Distributed Systems. In:
ARTHO, Cyrille; ÖLVECZKY, Peter Csaba (Eds.). Formal Techniques for
Safety-Critical Systems. Cham: Springer International Publishing, 2014. p. 212–228.

https://doi.org/10.1109/RTTAS.2002.1137388
https://doi.org/10.1109/WODES.2006.382401
https://doi.org/10.1145/3173162.3177156
http://doi.acm.org/10.1145/3173162.3177156
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AFKS-fm12.pdf


REFERENCES 133

AUDSLEY, Neil et al. Applying new scheduling theory to static priority pre-emptive
scheduling. Software engineering journal, v. 8, n. 5, p. 284–292, 1993.

B. B. BRANDENBURG. Scheduling and Locking in Multiprocessor Real-Time
Operating Systems. 2011. PhD thesis – University of North Carolina at Chapel Hill.
Available from: https://cs.unc.edu/~anderson/diss/bbbdiss.pdf.

BALL, Thomas; LEVIN, Vladimir; RAJAMANI, Sriram K. A Decade of Software Model
Checking with SLAM. Commun. ACM, Association for Computing Machinery, New
York, NY, USA, v. 54, n. 7, p. 68–76, July 2011. ISSN 0001-0782. DOI:
10.1145/1965724.1965743. Available from:
https://doi.org/10.1145/1965724.1965743.

BALL, Thomas; RAJAMANI, Sriram K. SLIC: A Specification Language for
Interface Checking (of C). Online, Jan. 2002. p. 12. Available from:
https://www.microsoft.com/en-us/research/publication/slic-a-
specification-language-for-interface-checking-of-c/. Visited on: 26 Mar. 2020.

BALL, Thomas; RAJAMANI, Sriram K. The SLAM Project: Debugging System
Software via Static Analysis. In: PROCEEDINGS of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Portland, Oregon: ACM, 2002.
(POPL ’02), p. 1–3. DOI: 10.1145/503272.503274.

BASTONI, A.; BRANDENBURG, B.B.; ANDERSON, J.H. An Empirical Comparison of
Global, Partitioned, and Clustered Multiprocessor EDF Schedulers. In: REAL-TIME
Systems Symposium (RTSS), 2010 IEEE 31st. San Diego, CA, USA: IEEE, Nov. 2010.
p. 14–24. DOI: 10.1109/RTSS.2010.23.

BEYER, Dirk; KEREMOGLU, M Erkan. CPAchecker: A tool for configurable software
verification. In: SPRINGER. INTERNATIONAL Conference on Computer Aided
Verification. Snowbird, UT, USA: Springer, 2011. p. 184–190.

BLACKHAM, B. et al. Timing Analysis of a Protected Operating System Kernel. In:
PROCEEDINGS of the 32nd IEEE Real-Time Systems Symposium (RTSS11). Vienna,
Austria: IEEE, Nov. 2011. p. 339–348.

BLOCK, A.; ANDERSON, J. H. Accuracy versus migration overhead in real-time
multiprocessor reweighting algorithms. In: 12TH International Conference on Parallel
and Distributed Systems - (ICPADS’06). Minneapolis, MN: IEEE, July 2006. 10 pp.-.
DOI: 10.1109/ICPADS.2006.21.

BOUAJJANI, A.; TRIPAKIS, S.; YOVINE, S. On-the-fly symbolic model checking for
real-time systems. In: PROCEEDINGS Real-Time Systems Symposium. San
Francisco, CA: IEEE, Dec. 1997. p. 25–34. DOI: 10.1109/REAL.1997.641266.

https://cs.unc.edu/~anderson/diss/bbbdiss.pdf
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1145/1965724.1965743
https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
https://doi.org/10.1145/503272.503274
https://doi.org/10.1109/RTSS.2010.23
https://doi.org/10.1109/ICPADS.2006.21
https://doi.org/10.1109/REAL.1997.641266


REFERENCES 134

BRANDENBUG, Bjorn; ANDERSON, James. Joint Opportunities for Real-Time Linux
and Real-Time System Research. In: PROCEEDINGS OF THE 11TH REAL-TIME
LINUX WORKSHOP (RTLWS 2009). Dresden, Germany: [s.n.], Sept. 2009. p. 19–30.

BRANDENBURG, B. B.; ANDERSON, J. H. Integrating Hard/Soft Real-Time Tasks
and Best-Effort Jobs on Multiprocessors. In: 19TH Euromicro Conference on
Real-Time Systems (ECRTS’07). Pisa, Italy: IEEE, July 2007. p. 61–70. DOI:
10.1109/ECRTS.2007.17.

BRANDENBURG, B. B.; GÜL, M. Global Scheduling Not Required: Simple,
Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned
Reservations. In: 2016 IEEE Real-Time Systems Symposium (RTSS). Porto, Portugal:
IEEE, Nov. 2016. p. 99–110. DOI: 10.1109/RTSS.2016.019.

BRANDENBURG, Bjorn B.; ANDERSON, James H. Feather-trace: A light-weight event
tracing toolkit. In: PROCEEDINGS of the Third International Workshop on Operating
Systems Platformsfor Embedded Real-Time Applications (OSPERT’07). Pisa, italy:
[s.n.], 2007. p. 61–70.

BROWN, Jeremy H; MARTIN, Brad. How fast is fast enough? Choosing between
Xenomai and Linux for real-time applications. In: PROC. of the 12th Real-Time Linux
Workshop (RTLWS’12). Nairobi, Kenya: RTLWS, 2010. p. 1–17.

BUTTAZZO, Giorgio C. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. 3rd. New York, USA: Springer Publishing
Company, Incorporated, 2011. ISBN 1461406757, 9781461406754.

CALANDRINO, John M. et al. LITMUSRT : A Testbed for Empirically Comparing
Real-Time Multiprocessor Schedulers. In: PROCEEDINGS of the 27th IEEE
International Real-Time Systems Symposium. Washington, DC, USA: IEEE Computer
Society, 2006. (RTSS ’06), p. 111–126. DOI: 10.1109/RTSS.2006.27.

CASSANDRAS, Christos G.; LAFORTUNE, Stephane. Introduction to Discrete
Event Systems. 2nd. Boston, MA: Springer Publishing Company, Incorporated, 2010.
ISBN 1441941193, 9781441941190.

CASSAR, Ian; FRANCALANZA, Adrian. On Synchronous and Asynchronous Monitor
Instrumentation for Actor-based systems. In: CÁMARA, Javier; PROENÇA, José
(Eds.). Proceedings 13th International Workshop on Foundations of Coordination
Languages and Self-Adaptive Systems. Rome, Italy: Open Publishing Association,
2015. (Electronic Proceedings in Theoretical Computer Science), p. 54–68. DOI:
10.4204/EPTCS.175.4.

CENTER, Thomas J. Watson IBM Research et al. An Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types.

https://doi.org/10.1109/ECRTS.2007.17
https://doi.org/10.1109/RTSS.2016.019
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.4204/EPTCS.175.4


REFERENCES 135

Cambridge, USA: IBM Thomas J. Watson Research Division, 1976. (Research reports
// IBM). Available from: https://books.google.it/books?id=Hi1yPgAACAAJ.

CERQUEIRA, Felipe; BRANDENBURG, Björn. A comparison of scheduling latency in
Linux, PREEMPT-RT, and LITMUS RT. In: SYSGO AG. 9TH Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Applications. Paris, France:
OSPERT, 2013. p. 19–29.

CHAKI, S. et al. Modular verification of software components in C. IEEE Transactions
on Software Engineering, v. 30, n. 6, p. 388–402, June 2004. ISSN 0098-5589. DOI:
10.1109/TSE.2004.22.

CHAKI, Sagar et al. Concurrent software verification with states, events, and
deadlocks. Formal Aspects of Computing, v. 17, n. 4, p. 461–483, Dec. 2005. ISSN
1433-299X. DOI: 10.1007/s00165-005-0071-z. Available from:
https://doi.org/10.1007/s00165-005-0071-z.

CHISHIRO, H. RT-Seed: Real-Time Middleware for Semi-Fixed-Priority Scheduling. In:
2016 IEEE 19th International Symposium on Real-Time Distributed Computing
(ISORC). York, UK: IEEE, May 2016. p. 124–133. DOI: 10.1109/ISORC.2016.26.

CIMATTI, A.; PALOPOLI, L.; RAMADIAN, Y. Symbolic Computation of Schedulability
Regions Using Parametric Timed Automata. In: 2008 Real-Time Systems Symposium.
Barcelona, Spain: IEEE, Nov. 2008. p. 80–89. DOI: 10.1109/RTSS.2008.36.

CLARKE, Edmund M.; EMERSON, E. Allen; SIFAKIS, Joseph. Model Checking:
Algorithmic Verification and Debugging. Commun. ACM, Association for Computing
Machinery, New York, NY, USA, v. 52, n. 11, p. 74–84, Nov. 2009. ISSN 0001-0782.
DOI: 10.1145/1592761.1592781. Available from:
https://doi.org/10.1145/1592761.1592781.

CLARKE, Edmund; KROENING, Daniel; LERDA, Flavio. A Tool for Checking ANSI-C
Programs. In: JENSEN, Kurt; PODELSKI, Andreas (Eds.). Tools and Algorithms for
the Construction and Analysis of Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004. p. 168–176.

CLARKE, Edmund; KROENING, Daniel; SHARYGINA, Natasha, et al. SATABS:
SAT-Based Predicate Abstraction for ANSI-C. In: HALBWACHS, Nicolas;
ZUCK, Lenore D. (Eds.). Tools and Algorithms for the Construction and Analysis
of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. p. 570–574.

CONDLIFFE, Jamie. U.S. Military Drones Are Going to Start Running on Linux.
Online: GIZMODO, July 2014. Available from: https://gizmodo.com/u-s-military-
drones-are-going-to-start-running-on-linu-1572853572. Visited on: 26 Mar.
2020.

https://books.google.it/books?id=Hi1yPgAACAAJ
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1007/s00165-005-0071-z
https://doi.org/10.1007/s00165-005-0071-z
https://doi.org/10.1109/ISORC.2016.26
https://doi.org/10.1109/RTSS.2008.36
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://gizmodo.com/u-s-military-drones-are-going-to-start-running-on-linu-1572853572
https://gizmodo.com/u-s-military-drones-are-going-to-start-running-on-linu-1572853572


REFERENCES 136

CORBET, J. Linux at NASDAQ OMX. Boulder, Colorado: LWN.net, Oct. 2010.
Available from: https://lwn.net/Articles/411064/. Visited on: 26 Mar. 2020.

CORBET, J. Statistics from the 4.17 kernel development cycle. Boulder, Colorado:
LWN.net, May 2018. Available from: https://lwn.net/Articles/756031/. Visited on:
26 Mar. 2020.

CORBET, J. The kernel lock validator. Boulder, Colorado: LWN.net, May 2006.
Available from: https://lwn.net/Articles/185666/. Visited on: 26 Mar. 2020.

CORBET, Jonathan. Jump label. Boulder, Colorado: LWN.net, Oct. 2010. Available
from: https://lwn.net/Articles/412072/. Visited on: 26 Mar. 2020.

CORBET, Jonathan; RUBINI, Alessandro; KROAH-HARTMAN, Greg. Linux Device
Driver. 3. ed. Sebastopol, CA, USA: O’Reilly Media, 2005.

COTRONEO, Domenico; DI LEO, Domenico, et al. A Case Study on State-Based
Robustness Testing of an Operating System for the Avionic Domain. In:
FLAMMINI, Francesco; BOLOGNA, Sandro; VITTORINI, Valeria (Eds.). Computer
Safety, Reliability, and Security. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011. p. 213–227.

COTRONEO, Domenico; LEO, Domenico Di, et al. SABRINE: State-based
Robustness Testing of Operating Systems. In: PROCEEDINGS of the 28th IEEE/ACM
International Conference on Automated Software Engineering. Silicon Valley, CA, USA:
IEEE Press, 2013. (ASE’13), p. 125–135. DOI: 10.1109/ASE.2013.6693073. Available
from: https://doi.org/10.1109/ASE.2013.6693073.

CUCINOTTA, T. et al. A Real-Time Service-Oriented Architecture for Industrial
Automation. IEEE Transactions on Industrial Informatics, v. 5, n. 3, p. 267–277,
Aug. 2009. ISSN 1551-3203. DOI: 10.1109/TII.2009.2027013.

DAWS, C.; YOVINE, S. Two examples of verification of multirate timed automata with
Kronos. In: PROCEEDINGS 16th IEEE Real-Time Systems Symposium. Pisa, Italy:
IEEE, Dec. 1995. p. 66–75. DOI: 10.1109/REAL.1995.495197.

DRONAMRAJU, Srikar. Uprobe-tracer: Uprobe-based Event Tracing. Online: Linux
Kernel Documentation, May 2019. Available from:
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt. Visited on:
26 Mar. 2020.

DUBEY, A.; KARSAI, G.; ABDELWAHED, S. Compensating for Timing Jitter in
Computing Systems with General-Purpose Operating Systems. In: 2009 IEEE
International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing. Tokyo, Japan: IEEE, Mar. 2009. p. 55–62. DOI:
10.1109/ISORC.2009.28.

https://lwn.net/Articles/411064/
https://lwn.net/Articles/756031/
https://lwn.net/Articles/185666/
https://lwn.net/Articles/412072/
https://doi.org/10.1109/ASE.2013.6693073
https://doi.org/10.1109/ASE.2013.6693073
https://doi.org/10.1109/TII.2009.2027013
https://doi.org/10.1109/REAL.1995.495197
https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt
https://doi.org/10.1109/ISORC.2009.28


REFERENCES 137

EHRIG, Hartmut et al. Introduction to algebraic specification. Part 1: Formal methods
for software development. The Computer Journal, The British Computer Society,
Oxford, UK, v. 35, n. 5, p. 460–467, 1992.

ELLSON, John et al. Graphviz— Open Source Graph Drawing Tools. In:
MUTZEL, Petra; JÜNGER, Michael; LEIPERT, Sebastian (Eds.). Graph Drawing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. p. 483–484.

EPSTEIN, Joshua M. Why Model? Journal of Artificial Societies and Social
Simulation, v. 11, n. 4, p. 12, 2008. ISSN 1460-7425. Available from:
http://jasss.soc.surrey.ac.uk/11/4/12.html.

FALCONE, Yliès et al. A taxonomy for classifying runtime verification tools. In:
SPRINGER. INTERNATIONAL Conference on Runtime Verification. Limassol, Cyprus:
Springer, 2018. p. 241–262.

FAYYAD-KAZAN, Hasan; PERNEEL, Luc; TIMMERMAN, Martin. Linux PREEMPT-RT
vs Commercial RTOSs: How Big is the Performance Gap? GSTF Journal on
Computing, v. 3, n. 1, 2013.

FERSMAN, Elena; MOKRUSHIN, Leonid, et al. Schedulability Analysis of
Fixed-Priority Systems Using Timed Automata. Theor. Comput. Sci., Elsevier Science
Publishers Ltd., GBR, v. 354, n. 2, p. 301–317, Mar. 2006. ISSN 0304-3975. DOI:
10.1016/j.tcs.2005.11.019. Available from:
https://doi.org/10.1016/j.tcs.2005.11.019.

FERSMAN, Elena; PETTERSSON, Paul; YI, Wang. Timed Automata with
Asynchronous Processes: Schedulability and Decidability. In: KATOEN, Joost-Pieter;
STEVENS, Perdita (Eds.). Tools and Algorithms for the Construction and
Analysis of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. p. 67–82.

GERUM, Philippe. Xenomai-Implementing a RTOS emulation framework on
GNU/Linux. White Paper, Xenomai, p. 1–12, 2004.

GLEIXNER, Thomas. Realtime Linux: academia v. reality. Linux Weekly News,
LWN.net, Boulder, Colorado, July 2010. Available from:
https://lwn.net/Articles/397422/. Visited on: 26 Mar. 2020.

GUTIÉRREZ, Carlos San Vicente et al. Real-time Linux communications: an
evaluation of the Linux communication stack for real-time robotic applications. CoRR,
abs/1808.10821, 2018. arXiv: 1808.10821. Available from:
http://arxiv.org/abs/1808.10821.

HENZINGER, Thomas A. et al. Lazy Abstraction. In: PROCEEDINGS of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Portland,
Oregon: ACM, 2002. (POPL ’02), p. 58–70. DOI: 10.1145/503272.503279.

http://jasss.soc.surrey.ac.uk/11/4/12.html
https://doi.org/10.1016/j.tcs.2005.11.019
https://doi.org/10.1016/j.tcs.2005.11.019
https://lwn.net/Articles/397422/
https://arxiv.org/abs/1808.10821
http://arxiv.org/abs/1808.10821
https://doi.org/10.1145/503272.503279


REFERENCES 138

HERZOG, B. et al. INTspect: Interrupt Latencies in the Linux Kernel. In: 2018 VIII
Brazilian Symposium on Computing Systems Engineering (SBESC). Salvador, Brazil,
Brazil: IEEE, Nov. 2018. p. 83–90.

JOSEPH, M.; PANDYA, P. Finding Response Times in a Real-Time System. The
Computer Journal, v. 29, n. 5, p. 390–395, Jan. 1986.

KAYNAR, D. K. et al. Timed I/O automata: a mathematical framework for modeling and
analyzing real-time systems. In: RTSS 2003. 24th IEEE Real-Time Systems
Symposium, 2003. Cancun, Mexico: IEEE, Dec. 2003. p. 166–177. DOI:
10.1109/REAL.2003.1253264.

KENNA, C.J. et al. Soft Real-Time on Multiprocessors: Are Analysis-Based Schedulers
Really Worth It? In: REAL-TIME Systems Symposium (RTSS), 2011 IEEE 32nd.
Vienna, Austria: IEEE, Nov. 2011. p. 93–103. DOI: 10.1109/RTSS.2011.16.

KLECH, Jaroslav et al. Advanced tuning procedures to optimize latency in RHEL
for Real Time. Online: Red Hat Customer Portal, Feb. 2020. Available from:
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux_for_real_time/8/html/tuning_guide/index.
Visited on: 26 Mar. 2020.

KLEIN, Gerwin et al. seL4: Formal Verification of an OS Kernel. In: PROCEEDINGS of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles. Big Sky,
Montana, USA: ACM, 2009. (SOSP ’09), p. 207–220. DOI: 10.1145/1629575.1629596.

LAMPKA, Kai; PERATHONER, Simon; THIELE, Lothar. Component-based system
design: analytic real-time interfaces for state-based component implementations.
International Journal on Software Tools for Technology Transfer, v. 15, n. 3,
p. 155–170, June 2013. ISSN 1433-2787. DOI: 10.1007/s10009-012-0257-7.
Available from: https://doi.org/10.1007/s10009-012-0257-7.

LAMPORT, Leslie. The Temporal Logic of Actions. ACM Trans. Program. Lang.
Syst., ACM, New York, NY, USA, v. 16, n. 3, p. 872–923, May 1994. ISSN 0164-0925.
DOI: 10.1145/177492.177726.

LARSEN, Kim G. et al. Robust synthesis for real-time systems. Theoretical
Computer Science, v. 515, p. 96–122, 2014. ISSN 0304-3975. DOI:
https://doi.org/10.1016/j.tcs.2013.08.015. Available from:
http://www.sciencedirect.com/science/article/pii/S0304397513006397.

LE, Thi Thieu Hoa et al. Timed-automata based schedulability analysis for distributed
firm real-time systems: a case study. International Journal on Software Tools for
Technology Transfer, v. 15, n. 3, p. 211–228, June 2013. ISSN 1433-2787. DOI:
10.1007/s10009-012-0245-y. Available from:
https://doi.org/10.1007/s10009-012-0245-y.

https://doi.org/10.1109/REAL.2003.1253264
https://doi.org/10.1109/RTSS.2011.16
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/tuning_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/tuning_guide/index
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/s10009-012-0257-7
https://doi.org/10.1007/s10009-012-0257-7
https://doi.org/10.1145/177492.177726
https://doi.org/https://doi.org/10.1016/j.tcs.2013.08.015
http://www.sciencedirect.com/science/article/pii/S0304397513006397
https://doi.org/10.1007/s10009-012-0245-y
https://doi.org/10.1007/s10009-012-0245-y


REFERENCES 139

LEHOCZKY, J.; SHA, L.; DING, Y. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In: [1989] Proceedings. Real-Time
Systems Symposium. Santa Monica, CA, USA: IEEE, Dec. 1989. p. 166–171.

LEI, Bin et al. State Based Robustness Testing for Components. Electron. Notes
Theor. Comput. Sci., Elsevier Science Publishers B. V., Amsterdam, The Netherlands,
The Netherlands, v. 260, p. 173–188, Jan. 2010. ISSN 1571-0661. DOI:
10.1016/j.entcs.2009.12.037. Available from:
http://dx.doi.org/10.1016/j.entcs.2009.12.037.

LELLI, Juri et al. Deadline scheduling in the Linux kernel. Software: Practice and
Experience, v. 46, n. 6, p. 821–839, 2016. ISSN 1097-024X. DOI: 10.1002/spe.2335.

LI, P. et al. A formally verified application-level framework for real-time scheduling on
POSIX real-time operating systems. IEEE Transactions on Software Engineering,
v. 30, n. 9, p. 613–629, Sept. 2004. ISSN 0098-5589. DOI: 10.1109/TSE.2004.45.

LINUX FOUNDATION. Automotive Grade Linux. Online: The Linux Foundation
Projects, 2016. Available from: https://www.automotivelinux.org/. Visited on: 26
Mar. 2020.

LIU, Jane W. S. W. Real-Time Systems. 1st. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2000. ISBN 0130996513.

LOVE, Robert. Linux Kernel Development. 3. ed. Crawfordsville, Indiana:
Addison-Wesley, 2010.

LYNCH, Nancy; SEGALA, Roberto; VAANDRAGER, Frits. Hybrid I/O automata.
Information and Computation, v. 185, n. 1, p. 105–157, 2003. ISSN 0890-5401. DOI:
https://doi.org/10.1016/S0890-5401(03)00067-1. Available from:
http://www.sciencedirect.com/science/article/pii/S0890540103000671.

MANTEGAZZA, Paolo et al. RTAI: Real-time application interface. -Specialized
Systems Consultants Incorporated: PO Box 55549: Seattle, WA . . ., 2000.

MARINAS, Catalin. Formal Methods for Kernel Hackers. Vancouver, CA: Linux
Plumbers Conference, 2018. Available from: https://linuxplumbersconf.org/
event/2/contributions/60/attachments/18/42/FormalMethodsPlumbers2018.pdf.
Visited on: 26 Mar. 2020.

MATNI, G.; DAGENAIS, M. Automata-based approach for kernel trace analysis. In:
2009 Canadian Conference on Electrical and Computer Engineering. St. John’s, NL,
Canada: IEEE, May 2009. p. 970–973. DOI: 10.1109/CCECE.2009.5090273.

https://doi.org/10.1016/j.entcs.2009.12.037
http://dx.doi.org/10.1016/j.entcs.2009.12.037
https://doi.org/10.1002/spe.2335
https://doi.org/10.1109/TSE.2004.45
https://www.automotivelinux.org/
https://doi.org/https://doi.org/10.1016/S0890-5401(03)00067-1
http://www.sciencedirect.com/science/article/pii/S0890540103000671
https://linuxplumbersconf.org/event/2/contributions/60/attachments/18/42/FormalMethodsPlumbers2018.pdf
https://linuxplumbersconf.org/event/2/contributions/60/attachments/18/42/FormalMethodsPlumbers2018.pdf
https://doi.org/10.1109/CCECE.2009.5090273


REFERENCES 140

MCKENNEY, Paul. A realtime preemption overview. Boulder, Colorado: LWN.net,
Aug. 2005. Available from: https://lwn.net/Articles/146861/. Visited on: 26 Mar.
2020.

NORSTROM, C.; WALL, A.; WANG YI. Timed automata as task models for
event-driven systems. In: PROCEEDINGS Sixth International Conference on
Real-Time Computing Systems and Applications. RTCSA’99 (Cat. No.PR00306). Hong
Kong, China, China: IEEE, Dec. 1999. p. 182–189. DOI: 10.1109/RTCSA.1999.811218.

O’REGAN, Gerard. Concise guide to formal methods. Berlin, Heidelberg: Springer,
2017.

OLIVEIRA, D. B. de et al. Automata-based modeling of interrupts in the Linux
PREEMPT RT kernel. In: 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). Limassol, Cyprus: IEEE, Sept. 2017.
p. 1–8. DOI: 10.1109/ETFA.2017.8247611.

OLIVEIRA, Daniel B. de; OLIVEIRA, Rômulo S. de; CUCINOTTA, Tommaso. A Thread
Synchronization Model for the PREEMPT_RT Linux Kernel. Journal of Systems
Architecture, p. 101729, 2020. ISSN 1383-7621. DOI:
https://doi.org/10.1016/j.sysarc.2020.101729. Available from:
http://www.sciencedirect.com/science/article/pii/S1383762120300230.

OLIVEIRA, Daniel Bristot de. __schedule() being called twice, the second in vain.
Pisa, Italy: Daniel’s page, July 2018. Available from:
http://bristot.me/__schedule-being-called-twice-the-second-in-vain/.
Visited on: 26 Mar. 2020.

OLIVEIRA, Daniel Bristot de. Beyond the latency: New metrics for the real-time
kernel. Vancouver, CA: Linux Plumbers Conference, 2018. Available from:
https://linuxplumbersconf.org/event/2/contributions/241/. Visited on: 26 Mar.
2020.

OLIVEIRA, Daniel Bristot de. BUG-RT: scheduling while in atomic in the
watchdog’s hrtimer. Online: Linux Kernel Mainling List, 2019. Available from:
https://www.spinics.net/lists/linux-rt-users/msg20376.html. Visited on: 26
Mar. 2020.

OLIVEIRA, Daniel Bristot de. BUG: ftrace/perf dropping events at the begin of
interrupt handlers. Online: Linux Kernel Mainling List, 2018. Available from:
https://www.spinics.net/lists/linux-rt-users/msg19781.html. Visited on: 26
Mar. 2020.

OLIVEIRA, Daniel Bristot de. Early context tracking patch set: fixing perf and
ftrace losing events. Pisa, Italy: Daniel’s page, 2019. Available from:

https://lwn.net/Articles/146861/
https://doi.org/10.1109/RTCSA.1999.811218
https://doi.org/10.1109/ETFA.2017.8247611
https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101729
http://www.sciencedirect.com/science/article/pii/S1383762120300230
http://bristot.me/__schedule-being-called-twice-the-second-in-vain/
https://linuxplumbersconf.org/event/2/contributions/241/
https://www.spinics.net/lists/linux-rt-users/msg20376.html
https://www.spinics.net/lists/linux-rt-users/msg19781.html


REFERENCES 141

http://bristot.me/early-context-tracking-patch-set-fixing-perf-ftrace-
losing-events/. Visited on: 26 Mar. 2020.

OLIVEIRA, Daniel Bristot de. How can we catch problems that can break the
PREEMPT_RT preemption model? Vancouver, CA: Linux Plumbers Conference,
2018. Available from:
https://linuxplumbersconf.org/event/2/contributions/190/. Visited on: 26 Mar.
2020.

OLIVEIRA, Daniel Bristot de. Linux Task Model. Pisa, Italy: Daniel’s page, 2019.
Available from: http://bristot.me/linux_task_model/. Visited on: 26 Mar. 2020.

OLIVEIRA, Daniel Bristot de. Mathemizing the Latency. Lisbon, PT: Linux Plumbers
Conference, 2019. Available from:
https://linuxplumbersconf.org/event/4/contributions/413/. Visited on: 26 Mar.
2020.

OLIVEIRA, Daniel Bristot de. Mind the gap between real-time Linux and real-time
theory, Part I. Edinburgh, UK: Real-time Linux Summit, Edinburg, 2018. Available
from: https://wiki.linuxfoundation.org/realtime/events/rt-
summit2018/schedule%5C#abstracts. Visited on: 26 Mar. 2020.

OLIVEIRA, Daniel Bristot de. Mind the gap between real-time Linux and real-time
theory, Part II. Vancouver, CA: Linux Plumbers Conference, 2018. Available from:
https://www.linuxplumbersconf.org/event/2/contributions/75/. Visited on: 26
Mar. 2020.

OLIVEIRA, Daniel Bristot de; CUCINOTTA, Tommaso; OLIVEIRA, Rômulo Silva de.
Untangling the Intricacies of Thread Synchronization in the PREEMPT_RT Linux
Kernel. In: PROC. of the IEEE 22nd International Symposium on Real-Time
Distributed Computing (ISORC). Valencia, Spain: IEEE, May 2019.

OLIVEIRA, Daniel Bristot de; OLIVEIRA, Rômulo Silva de. Timing analysis of the
PREEMPT_RT Linux kernel. Softw., Pract. Exper., v. 46, n. 6, p. 789–819, 2016. DOI:
10.1002/spe.2333.

OLIVEIRA, Daniel Bristot de et al. Nested Locks in the Lock Implementation: The
Real-Time Read-Write Semaphores on Linux. In: PROC. of the 9th International
Real-Time Scheduling Open Problems Seminar (RTSOPS 2018). Barcelona, Spain:
RTSOPS, July 2018.

PALOPOLI, L. et al. AQuoSA – Adaptive Quality of Service Architecture. Softw. Pract.
Exper., John Wiley & Sons, Inc., New York, NY, USA, v. 39, n. 1, p. 1–31, Jan. 2009.
ISSN 0038-0644. DOI: 10.1002/spe.v39:1. Available from:
http://dx.doi.org/10.1002/spe.v39:1.

http://bristot.me/early-context-tracking-patch-set-fixing-perf-ftrace-losing-events/
http://bristot.me/early-context-tracking-patch-set-fixing-perf-ftrace-losing-events/
https://linuxplumbersconf.org/event/2/contributions/190/
http://bristot.me/linux_task_model/
https://linuxplumbersconf.org/event/4/contributions/413/
https://wiki.linuxfoundation.org/realtime/events/rt-summit2018/schedule%5C#abstracts
https://wiki.linuxfoundation.org/realtime/events/rt-summit2018/schedule%5C#abstracts
https://www.linuxplumbersconf.org/event/2/contributions/75/
https://doi.org/10.1002/spe.2333
https://doi.org/10.1002/spe.v39:1
http://dx.doi.org/10.1002/spe.v39:1


REFERENCES 142

PHORONIX. Phoronix Test Suite: Open-Source, Automated Benchmarking.
Online: Phoronix Test Suite, Feb. 2020. Available from:
https://www.phoronix-test-suite.com. Visited on: 26 Mar. 2020.

POIMBOEUF, Josh. Introducing kpatch: Dynamic Kernel Patching. Online: Red
Hat Blog, Feb. 2014. Available from:
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching.
Visited on: 26 Mar. 2020.

POSADAS, H. et al. Early Modeling of Linux-Based RTOS Platforms in a SystemC
Time-Approximate Co-simulation Environment. In: 2010 13th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing.
Carmona, Seville, Spain: IEEE, May 2010. p. 238–244. DOI: 10.1109/ISORC.2010.18.

POST, Hendrik; KÜCHLIN, Wolfgang. Integrated static analysis for Linux device driver
verification. In: SPRINGER. INTERNATIONAL Conference on Integrated Formal
Methods. Oxford, UK: Springer, 2007. p. 518–537.

PULLUM, Laura L. Software Fault Tolerance Techniques and Implementation.
Norwood, MA, USA: Artech House, Inc., 2001. ISBN 1-58053-137-7.

RAMADGE, P. J.; WONHAM, W. M. Supervisory Control of a Class of Discrete Event
Processes. SIAM J. Control Optim., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, v. 25, n. 1, p. 206–230, Jan. 1987. ISSN 0363-0129. DOI:
10.1137/0325013.

RED HAT. INC. Test Suite User Guide. Online: Red Hat Customer Portal, Feb. 2020.
Available from: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_
user_guide/sect-layered-product-certs%5C#cert-for-rhel-for-real-time.
Visited on: 26 Mar. 2020.

REGHENZANI, F.; MASSARI, G.; FORNACIARI, W. Mixed Time-Criticality Process
Interferences Characterization on a Multicore Linux System. In: 2017 Euromicro
Conference on Digital System Design (DSD). Vienna, Austria: IEEE, Aug. 2017.

REGNIER, Paul; LIMA, George; BARRETO, Luciano. Evaluation of Interrupt Handling
Timeliness in Real-Time Linux Operating Systems. v. 42, n. 6, p. 52–63, 2008.

ROSTEDT, S. Using KernelShark to analyze the real-time scheduler. Boulder,
Colorado: LWN.net, Feb. 2011. Available from: https://lwn.net/Articles/425583/.
Visited on: 26 Mar. 2020.

ROSTEDT, Steven. Finding origins of latencies using ftrace, 2009.

https://www.phoronix-test-suite.com
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://doi.org/10.1109/ISORC.2010.18
https://doi.org/10.1137/0325013
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_user_guide/sect-layered-product-certs%5C#cert-for-rhel-for-real-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_user_guide/sect-layered-product-certs%5C#cert-for-rhel-for-real-time
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_hardware_certification/1.0/html/test_suite_user_guide/sect-layered-product-certs%5C#cert-for-rhel-for-real-time
https://lwn.net/Articles/425583/


REFERENCES 143

ROSTEDT, Steven. Secrets of the Ftrace function tracer. Linux Weekly News,
LWN.net, Boulder, Colorado, Jan. 2010. Available from:
http://lwn.net/Articles/370423/. Visited on: 26 Mar. 2020.

SHAHPASAND, R.; SEDAGHAT, Y.; PAYDAR, S. Improving the stateful robustness
testing of embedded real-time operating systems. In: 2016 6th International
Conference on Computer and Knowledge Engineering (ICCKE). Mashhad, Iran: IEEE,
Oct. 2016. p. 159–164. DOI: 10.1109/ICCKE.2016.7802133.

SOUTO, Pedro et al. Overhead-Aware Schedulability Evaluation of Semi-Partitioned
Real-Time Schedulers. In: PROCEEDINGS of the 2015 IEEE 21st International
Conference on Embedded and Real-Time Computing Systems and Applications. USA:
IEEE Computer Society, 2015. (RTCSA ’15), p. 110–121. DOI:
10.1109/RTCSA.2015.13. Available from: https://doi.org/10.1109/RTCSA.2015.13.

SPEAR, A.; LEVY, M.; DESNOYERS, M. Using Tracing to Solve the Multicore System
Debug Problem. Computer, v. 45, n. 12, p. 60–64, Dec. 2012. ISSN 0018-9162. DOI:
10.1109/MC.2012.191.

SPIVEY, J. M. The Z Notation: A Reference Manual. USA: Prentice-Hall, Inc., 1989.
ISBN 013983768X.

SUN, Youcheng; LIPARI, Giuseppe. A Weak Simulation Relation for Real-Time
Schedulability Analysis of Global Fixed Priority Scheduling Using Linear Hybrid
Automata. In: PROCEEDINGS of the 22nd International Conference on Real-Time
Networks and Systems. Versaille, France: Association for Computing Machinery, 2014.
(RTNS ’14), p. 35–44. DOI: 10.1145/2659787.2659814. Available from:
https://doi.org/10.1145/2659787.2659814.

TOUPIN, D. Using Tracing to Diagnose or Monitor Systems. IEEE Software, v. 28,
n. 1, p. 87–91, Jan. 2011. ISSN 0740-7459. DOI: 10.1109/MS.2011.20.

VARDHAN, Vibhore et al. GRACE-2: integrating fine-grained application adaptation
with global adaptation for saving energy. IJES, v. 4, n. 2, p. 152–169, 2009. DOI:
10.1504/IJES.2009.027939. Available from:
https://doi.org/10.1504/IJES.2009.027939.

WANG, X.; LI, Z.; WONHAM, W. M. Dynamic Multiple-Period Reconfiguration of
Real-Time Scheduling Based on Timed DES Supervisory Control. IEEE Transactions
on Industrial Informatics, v. 12, n. 1, p. 101–111, Feb. 2016. ISSN 1551-3203. DOI:
10.1109/TII.2015.2500161.

WITKOWSKI, Thomas et al. Model Checking Concurrent Linux Device Drivers. In:
PROCEEDINGS of the Twenty-second IEEE/ACM International Conference on
Automated Software Engineering. Atlanta, Georgia, USA: ACM, 2007. (ASE ’07),
p. 501–504. DOI: 10.1145/1321631.1321719.

http://lwn.net/Articles/370423/
https://doi.org/10.1109/ICCKE.2016.7802133
https://doi.org/10.1109/RTCSA.2015.13
https://doi.org/10.1109/RTCSA.2015.13
https://doi.org/10.1109/MC.2012.191
https://doi.org/10.1145/2659787.2659814
https://doi.org/10.1145/2659787.2659814
https://doi.org/10.1109/MS.2011.20
https://doi.org/10.1504/IJES.2009.027939
https://doi.org/10.1504/IJES.2009.027939
https://doi.org/10.1109/TII.2015.2500161
https://doi.org/10.1145/1321631.1321719


REFERENCES 144

YOVINE, Sergio. Kronos: A verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer, Springer, v. 1, n. 1-2,
p. 123–133, 1997.

ZAKHAROV, Ilja S. et al. Configurable toolset for static verification of operating
systems kernel modules. Programming and Computer Software, v. 41, n. 1,
p. 49–64, 2015. DOI: 10.1134/S0361768815010065. Available from:
https://doi.org/10.1134/S0361768815010065.

ZAKHAROV, Ilja et al. Generating Environment Model for Linux Device Drivers. In:
DOI: 10.15514/SYRCOSE-2013-7-13.

https://doi.org/10.1134/S0361768815010065
https://doi.org/10.1134/S0361768815010065
https://doi.org/10.15514/SYRCOSE-2013-7-13

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Resumo expandido
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Linux as a real-time operating system
	Formal methods
	Formal models
	Runtime verification

	Goals of this thesis
	A formal model for Linux tasks
	Runtime verification of the logical behavior of Linux
	Runtime analysis of the timing behavior of Linux

	Contributions of this thesis
	First stage: modeling the timing behavior of tasks on real-time Linux
	Second stage: efficient runtime verification for the Linux kernel
	Third stage: formal definition of the latency components

	Organization of this thesis

	Background
	Real-time systems
	Real-time scheduling theory
	Response-time analysis

	Linux
	Linux as a real-time operating system
	Task abstraction and context synchronization
	Mutual exclusion
	Spinlock
	Read-write spinlocks
	Semaphores
	Read-write semaphores
	Mutex
	RT mutex
	Spinlocks and RT mutex in the PREEMPT RT

	Linux tracing
	Characterization of real-time Linux tasks timeline
	Kernel mechanisms and the response time analysis
	Trace-timeflow: empircal observation of the system
	Characterization of interrupt handlers timeline
	Characterization of the threads timeline
	Final remarks


	Formal methods
	Models
	Discrete event systems
	Language definition
	DES modeling formalism

	Automata theory
	Operations with automata
	Modeling approaches

	Runtime verification

	Final Remarks

	Related Work
	Formal methods for OS kernels
	Formal methods in the Linux kernel community

	Automata-based real-time systems analysis
	Automata-based models for Linux

	Real-time Linux latency
	Final Remarks

	A thread synchronization model for the PREEMPT_RT kernel
	Modeling approach
	Events
	Modeling
	Automate or not to automate the model creation?

	Model Validation
	Offline runtime verification
	Scheduling in vain
	Tracing dropping events
	Using a real-time mutex in an interrupt handler

	Final remarks

	Online runtime verification
	Efficient formal verification for the Linux kernel
	Performance evaluation
	Throughput evaluation
	Latency evaluation

	Final remarks

	Latency analysis
	System Model
	Basic Operations
	Rules

	Demystifying the real-time Linux scheduling latency
	Problem statement
	Bounding LIF

	rt_sched_latency: efficient scheduling latency estimation tool kit
	Experimental analysis
	Final remarks

	Final remarks
	The future of the model
	Future work
	List of publications
	Other publications

	Interactions with the Linux kernel development community
	Acknowledgment

	REFERENCES

		2020-07-01T16:45:30-0300


		2020-07-01T17:58:38-0300




