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ABSTRACT

In this thesis Zy monopole solutions were studied in Yang—Mills—Higgs theories. We considered
a theory with gauge symmetry su(4) being spontaneously broken to so(4) by a scalar field in
the symmetric part of the 4 x 4 representation. We showed that Z; monopoles are solutions
of this theory and proceded to construct their asymptotic form. These monopoles belong to
continuous families of up to five parameters containing the discrete family previously known.
We also explicitly determined homotopies between solutions, thus classifying those as type Zs.

Palavras-chave: Magnetic Monopoles. Yang—Mills—Higgs Theories. Lie Algebras. Classical
Field Theories.



RESUMO

Neste trabalho estudamos monopolos Zs em teorias de Yang—Mills—Higgs. Consideramos uma
teoria com simetria su(4) espontaneamente quebrada em so(4) por um campo escalar na
parte simétrica da representacao 4 x 4. Mostramos que esta teoria apresenta monopolos Zs
e construimos as formas assintéticas destas solucoes. Estes monopolos apresentam—se em
familias continuas de até cinco parametros, contendo a familia discreta previamente conhecida.
Também encontramos explicitamente as homotopias entre as solucGes as quais classificam os
monopolos na classe Zs,.

Palavras-chave: Monopolos Magnéticos, Teorias de Yang—Mills—Higgs. Algebras de Lie. Teoria
Classica de Campos.



RESUMO EXPANDIDO

0.1 INTRODUCAO

O monopolo magnético é um dos mais antigos tépicos de discussdo na fisica que ndo possui
validacdo experimental. Este interesse prolongado pode inicialmente parecer sem fundamento,
no entanto este campo de pesquisa provou-se muito frutifero do ponto de vista teérico. A beleza
de certos aspectos da teoria, como simetria eletromagnética e quantizacdo eletromagnética
além da sua relevancia para problemas mais modernos em teorias de grande unificacao como
confinamento de quarks tornaram este tépico um foco de interesse tedrico.

Monopolos do tipo Z, surgem em modelos em que o campo de Higgs pertence a uma
representacdo diferente da adjunta. Em (KNEIPP; LIEBGOTT, 2010) e (KNEIPP; LIEBGOTT,
2013) os autores obtém solucdes de monopolo Zy em teoria Yang-Mills-Higgs com simetria de
calibre su(n) quebrada por um campo de Higgs na representacdo n x n simétrica. De maneira
geral foram descritas familias discretas de solucdoes nao fundamentais.

0.2 OBJETIVOS

Como uma extensdo deste trabalho buscaremos novas solucdes assintéticas de monopolo
do tipo Zs no modelo de Yang-Mills-Higgs com campo escalar na representacao n x n do
su(n). Buscando inclusGes genéricas de subalgebras su(2) sera possivel descrever monopolos
genéricos deste modelo e categoriza-los em familias de varios parametros continuos. Estas
familias conteriam, em particular, as familias discretas ja conhecidas deste modelo. Por fim
devemos analisar se estes novos monopolos preservam o grupo de homotopia Z; de seus
predecessores.

0.3 METODOLOGIA

Afim de cumprir com o objetivo propomos uma subélgebra su(2) de su(n) arbitraria e, sem
perda de generalidade, fixamos um de seus geradores na subalgebra de Cartan de su(n) na
representacao simétrica n X n. Partindo disto e de suas relacGes de comutacao, os geradores
restantes devem satisfazer um sistema de equacdes quadraticas. Para soluciona-las, parti-
cionamos as suas matrizes em blocos 2 x 2 e deduzimos condicdes para os coeficientes de um
gerador, ditos pesos magnéticos. Fixando pesos magnéticos admissiveis, foi possivel solucionar
o sistema de equacdes, no caso n = 4, e assim observamos diversas familias de solucdes
distintas.

0.4 RESULTADOS E DISCUSSAO

Nesta dissertacdo desenvolvemos um método para a descricao de novas solucées de monopolos
Zo em teorias de Yang-Mills-Higgs. Por simplicidade nos focamos na quebra de simetria
su(4) — so(4) com campo escalar na parte simétrica da representacdo 4 x 4. Um método
geral foi desenvolvido para se encontrar subélgebras su(2) das quais é possivel escrever a forma
explicita dos campos assintéticos destes monopolos Zs.

Observamos que para os pesos magnéticos 5 = (1,0) e f = (0,1) nossas solucdes se
encontram numa familia de dimensdo assim como o monopolo de Hooft—Polyakov original.



Quando consideramos inclusées isoclinicas, no entanto, observamos familias de dimens3o
quatro. Enquanto que as inclusdes trés-para-um ( = (1, £+3) geram familias de monopolos de
trés parametros.

Ademais caracterizamos homotopias explicitas entre solucdes assintéticas. Assim pode-se veri-
ficar a existéncia de duas classes de homotopia, a trivial e a fundamental, confirmando que o
segundo grupo de homotopia do vacuo para estes novos casos é de fato Z,.

0.5 CONSIDERACOES FINAIS

Em projetos futuros seria possivel generalizar esta ideia para diferentes quebras de simetria, e
se elucidar a contagem do nimero de graus de liberdade restantes destas solucGes. Inclusive
possivelmente determinar condicdes de calibre que permitam solucdes dinamicas de monopolo
analogas ao dyon para modelos em grupos de calibre maiores com quebra em grupos nao
abelianos.
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1 INTRODUCTION

The magnetic monopole is arguably one of the oldest topic of discussion in theoretical
Physics which bears no experimental validation. This huge interest might therefore seem
unfounded at first. Nevertheless it is the vast playground of ideas in this field of study that
sparks peoples interest. The beauty in certain aspects of the theory, such as the concept of
symmetry and the eventual relevance to fundamental problems, such as quark confinement
and electric charge quantization, make it a topic of great theoretical interest.

Throughout History magnetic monopoles have been conceived to exist many times, for
instance by Pierre Curie in 1894. But their theoretical possibility becomes a lot more apparent
in the context of Maxwell's equations which makes apparent the symmetric character of the

theory. In the Lorentz covariant formalism they read

auF;UJ = MOjV?
o' x F,, =0,
where 11, = 0, ..., 3 denote space-time indices, F},, the electromagnetic tensor, j, the electric

four-current and * denotes the Hodge dual. When no charges are present, j, = 0, the above

equations become symmetric in the sense that it is possible to rename
F — *F,,

and the equations are still satisfied. This transformation exchanges the roles of electric and
magnetic fields. The existence of only electric charges nevertheless breaks this symmetry. The
introduction of a magnetic four—current k, would thus restore the symmetry so as long as the
transformation above also exchanges electric and magnetic fluxes accordingly.

If we write the magnetic field B as the curl of some potential

B=VxA,
then it may seem incompatible with non-vanishing magnetic sources for

1

pm=—V-(VxA)=0,

Ho
wherever this vector potential is continuous and well-defined. Dirac was able to reconcile (4)
with non-vanishing charges by considering a string-like singularity carrying some magnetic field
all the way from the spacial asymptotic to a single point, as though it is made up of an
infinitesimally thin solenoid. So long as this string is undetectable this furnishes the theory
with means of describing a magnetic monopole using only the vector potential A, essential
for quantum mechanics. Experimentally this string could be detected via the Aharonov-Bohm

effect (AHARONOV; BOHM, 1959, 3), which is sensitive to phase changes in the wave function.

So requiring the string to be unphysical translates to the equation

eqg = 2whn,
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called Dirac’s quantization condition. Here e and g are the electric and magnetic charges, h
Planck’s constant and n an integer. This states that, provided there is at least one magnetic
monopole in the Universe with magnetic charge g, all other electrically charged particles must
have an electric charge which is an integer multiple of 274 /g. Later the concept of gauge
invariance on compact gauge groups (YANG; MILLS, 1954, 1) allowed for an alternative
explanation for the quantization of electric charge which doesn’t require the existence of
monopoles: Put simply an electric charge operator can now be defined such that its eigenvalues
enumerate the allowed electric charges for particles in the theory. Electric charge is then
quantized in a similar fashion as angular momentum.

The new paradigm of symmetry breaking developed, among others by Nambu (NAMBU,
1960), Goldstone (GOLDSTONE, 1961) and Higgs (HIGGS, 1964) allowed the rediscovery of
the subject of magnetic monopoles. Now it is manifested as a soliton-like solution holding itself
together by means of a self-interaction potential. Which is, in turn, responsible for symmetry
breaking. As first noted by 't Hooft ('T HOOFT, 1974) and Polyakov (POLYAKQV, 1974),
some Yang-Mills-Higgs theories admit non-trivial classical solutions which are both localized
in space and topologically stable. Localization in space together with their assignment of
energy and momentum enables the interpretation of those particular field solutions as particles.
These solutions have their stability guaranteed by the existence of conserved charges given by
topological invariants which remains unchanged under continuous deformations of the field.
Therefore if a field solution and a vacuum solution, for instance, have differing invariants, then
the former cannot be deformed into the latter and it is said to be topologically stable. In
contrast to Noether charges, these conserved charges are not related to continuous symmetry
of the action. They are related to the homotopic degree of the fields which map space time
regions into internal space regions (MANTON; SUTCLIFFE, 2004).

The possibility for non-trivial invariants, on the other hand, relies on the gauge group
considered by the theory and on the pattern of symmetry breaking. Many grand unification
theories predict the existence of magnetic monopoles and that they would have been synthesized
in beginning of the universe (COLEMAN, 1982). Their apparent absence, known as the
monopole problem, can serve the purpose of constraining parameters, ruling theories out
altogether or even proposing new ones(GUTH, 1981).

Magnetic monopoles can be relevant for the so-called Confinement Problem in QCD.
There is no satisfying answer to the question why quarks and gluons appear only as color singlets
in nature. One of the ideas, due to 't Hooft (HOOFT, 1975) and Mandelstam (MANDELSTAM,
1976) conjectures that electric charge confinement in QCD is a dual phenomenon to the
magnetic charge confinement in a type Il superconductor ('T HOOFT, 1982). In this model,
there is an electromagnetic duality (FIGUEROA-O'FARRILL, 1998) mapping monopoles into
electric charged particles and vice versa.

The idea of electromagnetic duality itself is not completely established. There are

some works based on tests leading to a conjecture of an electromagnetic duality in non-Abelian
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models (P. GODDARD; NUYTS; D. OLIVE, 1977), (MONTONEN; D. OLIVE, 1977). However,
there is no proof that this type of duality actually holds. There are studies to be done in this
topic in order to obtain a better understanding of this duality and this is related to a better
understanding of monopoles themselves. In particular, it is necessary a better knowledge of
the so-called Z,, monopoles.

The Z,, monopoles appear when the scalar field is not in the adjoint representation.
In (KNEIPP; LIEBGOTT, 2010) and (KNEIPP; LIEBGOTT, 2013) the authors obtained Z,
monopoles in Yang-Mills theories, and in particular they obtained a discrete family of non
fundamental monopoles. The general aim of this thesis is to overview the construction of
magnetic monopoles in gauge field theories and to describe a method of distinguishing su(2)
subalgebras from which one can construct distinct Zy monopole solutions belonging to multi-
parameter continuous families. We focus on the su(4) — so(4) case but the methods used
can in principle be extended to su(n) — so(n).

In chapter 2 some mathematical background has been reviewed. We discussed results
from Lie algebra theory, Lie groups and their homotopy groups, as well as a brief examination
of the group SO(4) in particular.

In chapter 3 different monopole configurations were considered, from its original de-
scription by Dirac, to the 't Hooft—Polyakov solution in the Georgi—Glashow model and an
asymptotic equivalence between the two. The BPS equations were also defined as well as
the concept of the vacuum manifold and the manifold of collective coordinates known as the
moduli space.

In chapter 4 we review monopole solutions for su(n) — so(n) and develop a general
method for embedding su(2) subalgebras. We then move on to focus on the case su(4) — so(4)
in order to describe all families of embeddings from which one generates monopole solutions.
By the end of the chapter we write down the explicit form for the Higgs field and determine
homotopies between distinct solutions.

In chapter 5 we discuss what we concluded from this thesis and the outlook for further
research.

In the appendix A we explore the connection between topological degree of the
two—sphere and the magnetic flux surface integral, as well as defining the generators for

SO(4) and a useful invariant in this context known as the pfaffian.
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2 MATHEMATICAL REVIEW

2.1 LIE ALGEBRAS

A Lie group is a group defined over a differential manifold. Given a Lie group G of
dimension dim G = d, the generators X,, a = 1,...,d form a basis of the vector space
tangent to the identity 77G. This vector space is called the Lie algebra Lie(G) = g (FULTON;
W. HARRIS; J. HARRIS, 1991). This algebra inherits a product from its parent group called
the Lie bracket. This operation can be constructed as follows: Let = : (0,) — G be a regular
path on G starting at x(0) = [ and satisfying 2/(0) = X € g. Take Y € g, then the vector
tangent to the new path x(¢)Yz(¢)~! also belongs to g. That is, given X, Y € g and a path,

for concreteness the exponential z(t) = ¢* € G, then

d ; —i
XY= — (e ye ™) _€o

defines a bilinear product [.,.] : g x g — g with the following properties:

[X7Y] + [Y,X] =0,
XY 2+ [V (2, X + (2, [X, Y]] = 0,

for all XY, Z € g. A linear representation R of a Lie group G is a group homomorphism
R:G — GL(V), GL(V) the group of general linear transformations on some vector space
W. This representation of GG induces a representation of its algebra R : g — gl(WW), acting on
our basis like R(X,) = T,. Then the representation of the lie bracket yields R([X,, X;]) =
T,T, — T, T, also known as the commutator. Besides it is now possible to endow g with a

symmetric form (.,.) : g X g — R by taking the trace
<Xa7 Xb> = tr(TaTb),

the representation for which the vector space W is g itself is called the adjoint representation
R = Ad of g. In this case the above trace is called the Killing form on g.

A subalgebra ) of g is a vector subspace closed under the bracket operation. An
Abelian subalgebra a of g is a subalgebra for which all its elements are mutually commuting.
Furthermore it is said to be maximal if it is not contained in any larger Abelian subalgebra.
This is also called a Cartan subalgebra CSA(g) and it is of central importance for classifying
Lie algebras. Its dimension defines rank g = 7.

An ideal b of g is a subalgebra of g satisfying [h,g] C b. It is also solvable if the
sequence [h, ..., [h,h]] C {0} eventually. A Lie algebra g is said to be simple if it is neither
Abelian nor does it contain a proper ideal, meaning its only ideals are g itself and {0}. It is
said semisimple if does not contain any solvable proper ideal (KNAPP, 1988). A few notable
ideals are the centralizer of a subset s C g defined by Z,(s) = {X € g: [X,Y] =0, VY € s}
and the normalizer Ny(s) ={X e g: [X,Y] € s, VY € s}.
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In the so called Cartan—Weyl basis a Cartan subalgebra is spanned by Hermitian gen-
erators CSA(g) = span{Hy,..., H,}. Given a representation R : g — gl(V'), one can always
write states of the representation space V' in a basis where all H; are diagonal: H; |1) = p; |1).
Their eigenvectors are called weights and the r—tuple po = (1, ..., py,) is a weight vector. The
remaining d — r generators are step operators E,, defined as simultaneous eigenvectors of H;
in the adjoint representation (GEORGI, 2018). That is

H; \Eo) = Q4 ‘Ea> )

for each @ = 1,...,7. In terms of commutators this means [H;, E,| = «;E,. Note that,
because H; are all Hermitian, E; = F_,. Now, we can think of the eigenvalues «; as images
of a linear functional o : CSA(g) — R defined by a(H;) = «o; (B. HALL; B.C. HALL, 2003).
Their values are called roots and the functional « is a vector of the dual space CSA(g)* which
we write as the r—tuple a = (ay, ..., «,) called a root vector. The state E, |u) has weight
a+ p. Because of this E, |E_,) has weight vector 0 and thus lies in CSA(g). More precisely it
yields [E,, E_,| = a;H; = «- H. This allows one to construct an su(2), = span{T, Tz, T3}

subalgebra generated by the Hermitian operators

1
Ty=——(E,+E_.),
! ﬁyay( )

1
Ty = ——(E,— E_,),
2 ﬂ@\@\( )
1
Th=—«a-H
3 2|Oé|2a )

satisfying [T}, 1] = ie;;j,T). Therefore the generator 75 may only attain integer or half-integer
eigenvalues, depending on its representation. Because of this

ez, (2.1.1)

for any roots «, 8 € ®(g). Furthermore, exchanging the roles of o and  in (2.1.1) and
multiplying both results gives us the strong geometrical constraint

(- B)?

4 a262

=4cos’f € Z,

for any two roots v and 3. This implies that the angle between them must satisfy cos ¢ = i%\/ﬁ
for some integer 0 < n < 4.

Given a basis for our weight space, a weight p is said to be positive if its first non—zero
component is positive. A weight 1 is said to be higher than a weight v if ;1 — v is positive. This
allows us to speak of the highest weight A of a representation, which specifies it completely. It
satisfies E, |A) = 0 for all positive roots «v. A positive root is said to be simple if it cannot be
written as a proper sum of positive roots. The angle between simple roots satisfies 5 < 0 <

and there are always » = rank g linearly independent roots spanning the whole CSA(g)*.
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Their relative angles are used to classify all semisimple Lie algebras. Diagrammatically we

denote simple roots by vertices and their relative angles 6 = 7, %’r, ?jf, %r by 0,1,2,3 lines

between them respectively. These are called Dynkin diagrams. Labeling a base of simple roots
a;, ©=1,...,7r, we may define coroots

Q;
OKZ- =2 5
Q;

and their relative inner product
Kij:Oéi'Oé;-/ GZ,

is called the Cartan matrix of g.

The Dynkin labels for a weight A are the coefficients
A=\ €Z,
the fundamental weights A; are the ones forming a base orthornormal to the coroots, that is,
Ai-af = by,
by reflecting a root [ with respect to another root « the resulting vector
0a(B8) =B —(a" B,

is again a root of g. This is called a Weyl/ reflection, and the set of all such reflections o, is

named the Weyl group.

2.2 HOMOTOPY GROUPS
Given a division algebra A and integer n the group of invertible linear tranformations
O,(A) ={X € GL,(4) | XX =1}, (2.2.1)
defines a manifold embedded in A, one dimension for each matrix entry. The specific cases
O(n) = Ou(R),  U(n) = Ou(C),  Sp(n) = On(H),

are called the orthogonal groups, unitary groups and symplectic groups respectively. The

additional constraint det X = +1 defines the special groups
SO(n) ={X € O,(R) | det X = +1}, SU(n) ={X € O,(C) | det X = +1},

All groups above, except for O(n), are path—connected which means that, given any
two points g, h € G, there exists a continuous path 7 : [0,1] — G connecting them both,
starting at 7(0) = g and ending at v(1) = h. In practice these paths are exponentials of
generators for the group. For instance let G = SO(2) the group of proper rotations on R
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Because dim SO(2) = 1 the algebra g = so(2) contains only one Hermitian generator, namely

T = (O _OZ) = 09, So the path v : [0,7] — SO(2)

) oT ( cosf sin 9)
fy = € = .

—sinf cos6

connects the identity / to a rotation by 7, so any two rotations can be connected by
some continuous path and SO(2) is indeed path—connected.

We can also speak of closed paths starting from and ending at the identity v(0) =
(1) = I also called loops of GG, whose set we'll denote loop(G). By defining a product which
glues the images of two different loops v, n like

y@n:[0,1] — G,

<
b v(2t), t<1/2,
n(2t —1), t>1/2,

we will be able to furnish loop(G) with a group structure. The only major thing
remaining is identifying all loops that can be continuously deformed into one another. To do
this we think of loops as points in loop(G), and we would like to describe paths connecting

different points in this space. That is, given v, 7 € loop(G) if there exists a continuous path

H :[0,1] — loop(G),

s+— H(s),

starting at H(0) =+ and ending at H(1) = n then ~ and 7 are said to be homotopic and the
map H is called a homotopy. Now we can use the existance of this map to define an equivalence
relation ~ and divide loop(G) into equivalence classes [y] = {n € loop(G) : v ~ 1} of mutually
homotopic loops. These classes, together with the product above, define the first homotopy
group of G denoted 71 (G) = (loop(G)/ ~ , ®).

We may go further and think of the space of homotopies themselves starting from and
ending at the identity [/] € m1(G), call it loop,(G). We can then apply the previous reasoning
to define the second homotopy group of G, m3(G) = (loop,(G)/ ~ , @). Note that by varying
both parameters the map ¢(t,s) = H(s)(y(t)) is the image of a 2—sphere in G. So we can
also think of mo(G) as the group of 2-dimensional loops in G, up to continuous deformations.

This procedure can be extended to define the n—th homotopy group m,(G) for n > 3.
Working backwards even 7y(G) makes sense: Here the equivalence classes are comprised of
O-spheres, i.e. points, which are path—connected. So there exists one and only one element
in mo(G) for each connected component of G. That is, G is path—connected if and only if
mo(G) = 1. Similarly G is said to be simply—connected if m1(G) = 1, meaning any path can
be contracted down to a point.

For instance every element of the group G = O(3) satisfies det X = 4-1. Because every

loop in G is continuous its points must also vary in determinant continuously. Thus O(3) falls
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apart into two disconnected components: mo(O(3)) = Z, labeled by the determinant of its
elements.!

For an example of a group which is connected but not simply—connected we can take
G = SO(3). Here, there are loops which cannot be contracted to the identity, for example the
path of rotations around the z—axis ending at the rotation of 27; 7 : [0, 27] — SO(3),

cosf) sinf O
v(0) = | —sinf cosf 0
0 0 1

If, however, we were to go around twice; 7 : [0,47] — SO(3) then the resulting loop would
be homotopic to the identity. This is the case because SO(3) is topologically identical to the
three—dimensional ball B3 with antipodes identified. It can be shown that any loop in SO(3)
is homotopic to one of the two loops above so we have 7, (SO(3)) = Zs.

It is possible, however, to view any lie group G as a subset of a larger simply—connected
group G called its universal covering group®. This defines the spin groups as Spin(n) = /b\(g)
For the previous case 5% = Spin(3) = SU(2).

Given a Lie group G and subgroup H C (&, one may measure the homotopy groups of

the homogeneous quotient space G/ H, the short exact sequence of homomorphisms (ALBERT
SCHWARZ, 1994)

l1—H—G—G/H —1,

provides the isomorphism 7o (G /H) = ker(m (H) — m(G)). When G is simply—connected we

have

mo(G/H) = m(H). (2.2.2)
Similarly, if G is connected we have

m(G/H) = m(H). (2.2.3)

This result will prove useful for determining the second homotopy class of a solution in a
Yang—Mills gauge theory. In particular we will look at the symmetry breakdown su(4) — so(4),
so it will prove useful to understand the defining representation of so(4).

23 SO(4) GROUP STRUCTURE

When considering the symmetry break su(4) — so(4) it proves useful to analyze the
group structure of H = SO(4) in order to determine whether or not topologically stable

monopoles appear in this model.

Z, stands for the finite cyclic group of order~n )
2 In fact there is always some subgroup K of G such that G = G/K.
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Every element g € SO(4) in the defining, four—-dimensional, representation corresponds

to a rotation in R*. By writing ¢ in its block diagonal form, also called its normal form,

cosf; sinb,
—sinf; cosb,

D =
(9) cosfy sinf,

0 —sinf, cosb,
it can be described as a composition of two independent rotations acting on a pair orthogonal
planes. In general these are the only planes left invariant by g. The exception is the case where
both rotations have the same absolute angle, i.e. #; = 1605, then there are an infinite number
of invariant planes all rotating by +6,. These special rotations are called isoclinic, meaning
same angle, and are further distinguished by orientation: The ones for which both angles have
the same sign, 0, = 05, are said to be left—isoclinic whereas when they have opposite signs,

0, = —0,, they are said to be right—isoclinic.

The identity, I, and central inversion, —I, are both left and right—isoclinic and it can
be shown that the product of left(right)—isoclinic rotations is again left(right)—isoclinic which
makes them subgroups SU(2)% and SU(2) of SO(4). Furthermore both subgroups are normal

and the homomorphism

p:SU((2)F x SU(2)F — SO(4),
(91, 9r) — 9LYR,

is two—to—one. This is because every rotation g € SO(4) is a product of isoclinic rotations,

g = gr.gr, and there are exactly two ways of decomposing g, namely

(=91, —9r) = p(91,9r) = 9LIR = G-

Therefore we find

SO(1) = SU(2)£ SU(2)‘

Because SU(2) is simply connected, so is SU(2) x SU(2), therefore this homomorphism allows

one to compute the first homotopy group

m(s0() = my (2 25U,

= 7T0(ZQ> = ZQ.

A discussion about the generators for these subgroups can be found in (A.2)
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3 MONOPOLE CONFIGURATIONS

3.1 DIRAC MONOPOLE

Studied by Paul Dirac (DIRAC, 1931) the now called Dirac monopole offered an
explanation for the quantization of electric charge in nature. Suppose, in the classical setting,
there is a point source of magnetic field with strengh g. No continuous vector potential A

could ever describe this field simply because of Gauss’ law

g:/B-dS:/VxA-dS:/ A-dl=0,
S S 0S=0

S standing for a smooth surface enclosing ¢g. To circumvent this difficulty A must be singular
at some point in S for every choice of S. This describes some curve connecting the charge to
the spacial asymptotic. In order to determine a potential A fitting this requirement it helps
to imagine an infinitesimally thin solenoid coming from (0,0, —c0) and ending at (0,0, 0), the
so—called Dirac string. It produces a magnetic field described by

B, = I + g8(2)5(y)O(—2)2,

42

O standing for the Heaviside step function, see figure 3.1. The flux of the field pointing
radially outwards always cancels the flux going up the solenoid so we have V - B; = 0. Thus

we may look for a potential satisfying

VX A= 49 P+ g0(—2)8(z)8(y)2.

72

Integrating the flux going through a spherical cap of radius  and angle 6 with respect to Z,

Figure 1 — The magnetic field of a Dirac monopole

The radial magnetic field B emanating from a Dirac monopole of charge g may be described by the
curl of an azimuthal vector potential A. Both fields are singular at the negative z semi-axis.
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also assuming A in the ¢ direction we gather!

27 0
A-dl:/ d / 2 gin §dg—I— . 3.1.1
/C o Py "M ( )
A2mrsinf = g(l — cosf), (3.1.2)
g AW
A=— — | . 1.
- tan (2><p (3.1.3)

Note that this diverges when 6 — 7, precisely the singularity designed for A. The Ahara-
nov—Bohm effect could, nevertheless, be used to detect this string. The additional requirement

that the effect always vanishes translates to

exp(Z;/CA-dl)zl,

for any curve C. In particular for a surface intersecting the string, whose boundary is C, the

integral yields g and therefore
eg = 2mnh, (3.1.4)

for some integer n. This is Dirac’s original quantization of the electric charge. In terms of
topology, this reflects the fact that the first homotopy group of the gauge group G = U(1) is

m(U(1)) 2 Z,

which is nontrivial because U(1) is not simply connected. The integer in (3.1.4) specifies
in which sector a loop in U(1), and therefore the configuration for A, lies. In the following
constructions the gauge groups will always be simply connected so we turn to the second

homotopy group in order to search for topological configurations.

3.2 T' HOOFT-POLYAKOV MONOPOLE

Yang—Mills theories where GG is non—Abelian generally allow for magnetic monopoles as
solutions of the equations of motion. Here we have a scalar field ® in the adjoint representation
of g = su(2), that is G = SO(3), breaking the symmetry down to an H = SO(2) subgroup
generated by @ itself. The Lagrangian density is

1 1
L= wFYE, + o tr D'OD,® — V(®),

F' is the non—Abelian field strength, D stands for the covariant derivative in GG

D® = dd + ie[A, D],
F=DA=dA+ie[A, A,

1 the last expression follows from double-angle trigonometric identities
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A is the connection on (7, the non—Abelian generalization of the electromagnetic potential A*.

Choosing a base of generators T, we have

[Tau Tb] = Z‘gabcT'cy
tr TaTb = léab,

Where [ stands for the index of the representation for ®. The quartic scalar potential V' given
by

V(@) = A (o] - ?), (3.2.1)
here the norm for ® is defined by
2 1 2 afa
|| zjtrq) = PP,

In terms of space—time and isospin components we have

v = QFAY — 9V AP — ee g AL AY, (3.2.2)
(D"®), = 9", — eeu AlD,. (3.2.3)

The equations of motion yield a non—linear second order system of differential equations

D'F}, = —ee™®"D, 0", (3.2.4)
DD, ®" = A\ (DD — v?), (3.2.5)

The symmetric energy—momentum tensor is given by

Ty = FS,F + D,®°DFO* — g, L, (3.2.6)
1
Too = 5 ((Ea)? + (Bo)® + (D°®)* + (D®)?) + V(). (3.2.7)

Because physical field configurations carry finite energy we must look for fields with vanishing
energy density in the spacial asymptotic. Because (3.2.7) is positive definite, this means F' = 0,
D® =0 and |®*]*> = v? as r — +00. From this we may infer A in terms of ®:

D® =0, (3.2.8)
;0" = e ALDe (3.2.9)
g€ 0,d" = ec™ec AL Pe (3.2.10)
£?0;0% = e( AP — ASDY). (3.2.11)

Because ¢ generates an Abelian subgroup H = SO(2) we call

tr(A®) 1
_ — Z AP
[|®| v ’
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the Abelian projection of A (SHNIR, 2006). Now contracting the expression above with ®¢

we find

0,0 = ve Al — vA; D,

1 1
A% = — @by d° + —A; D
ve €

From this expression one can derive the field strength
2 1
Fu = W[Qﬂ), 9, P] + ;(I)(auAV o &,A#)—f—
1 1 1
+ ;(@L(I)A,, — 0,PA,) + EH(I)’ 0,®], ®IA, + E[@, [©,0,P]|A,.

Taking the Abelian projection of the field strength F,,, = % tr F,, ® the last three terms vanish

and we arrive at
1
Fop = —35“1’@“6#(1)’78”@0 + A, — O\,
v

Where we can see that the Abelian projection A, acts like the four—potential of Abelian

electrodynamics. The corresponding magnetic field yields

1 1 .. ij
B — §5zjkﬂk _ ﬁgmkgabcq)aﬁjq)b@k@c + 52Jk8jA;§.

And the magnetic four—current is given by

~ 1
kﬂ = (30.7:(,“ = @gw,pggabca'uq)aayq)baaéc.

Notice that, with the assumption of continuity, the dependence of k, on the gauge field
completely vanishes. Because the partial derivatives commute this current is conserved, 0"k, =

0. Finally the magnetic charge contained in a sphere of radius approaching infinity is

g:/d?’xkoz
1
2ev3

1
2ev3

/ A2S™ ey ey DO DO DE,

/ B Eapel ™ (DI DI G°)

This integral can be rewritten as the topological degree of a map 92 — S2_, between the

int

internal and asymptotic spheres:

g= ii / dzf\/det (aa@aaﬁci)a).

Where $% = &4 //3®b = /¢ denotes the normalized field. A proof of this is presented
in section A.1. Taking, for instance, the representative, normalized configuration of winding

number ¢,

A

® = sin 6 cos qpT + sin 0 sin qpi + cos 6Z. (3.2.12)
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The Jacobian J,5 = 0,d*05d* yields

Op® = cos 0 cos qpx + cos O sin qpy — sin 62,
0,P = —gsin b cos T + gsin 0 cos q7.
Their inner product gives Jyg = 1, Jy, = Jpp = 0, J,, = ¢*sin? 6, so
det Jos = JooJ o — Jop oo = ¢° sin” 0.
The magnetic charge of this configuration is thus
g= :I:i /dﬁdgpqsin@ = :I:Zl?;l.

Because & : S2

int

sphere in physical space, ¢ must be an integer, the topological invariant labeling the second

— S2 is a map from the unit sphere in internal space to the asymptotic

homotopy group elements of S2. This can also be interpreted as the second homotopy group
of the homogeneous space G/H = SO(3)/S0(2), that is,

m(SO(3)/S0(2)) 2 m3(S?) = Z.

This homogeneous space defines the vacuum manifold which will come to discuss shortly.

3.3 BPS EQUATIONS

The equations of motion (3.2.5) become easier to solve by completing the square of
the Hamiltonian. Assuming a static, purely magnetic Ay = 0 configuration its total mass is

given by
M= [d (;BZB,‘; + Dy D" + v<<1>)) ,
_ ; [@x(BpF Dt & [@rBppen + [ e vi(@).
Integrating by parts and using DB} = 0, the second terms gives
My = / &3z BID,®" = / 425, Bo?,

which depends only on the spacial asymptotic. Therefore, in the limit A — 0, the energy density

in the bulk of space is minimized by fields satisfying either of
B = +£D;®“. (3.3.1)

These are the BPS equations. Assuming the limits at » — oo to be of the form

o Q" .

(0, ) = g,
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for some generator ) € Lie(G) called the non—Abelian magnetic charge, and some constant
vacuum state ®; which we may assume to lie in the same direction as (). The total mass is

bounded bellow by
M, = :l:/dQSk BIOT = £Q 0.
Depending on the sign chosen for (3.3.1). We arrive at the bound
M = vlg].

Where g = tr(Q(fDO) stands for the abelian projection of () onto ®,. This lower bound means
that the minimum energy achievable at any given sector g is M = v|g| being achieved precisely

when the BPS conditions (3.3.1) are satisfied everywhere in space.

3.4 VACUUM MANIFOLD

We've encountered scenarios where G = U(1) for the Dirac monopole and G = SO(3)
for the 't Hooft—Polyakov monopole. We'd like to generalize the previous procedure to an
arbitrary symmetry group G acting on a scalar field |¢) in a likewise arbitrary representation.
Let's start from the basic assumption that any physical field must reach some minimum energy
state V(®) = D*® = 0 at points far enough from the origin in such a way that its total
energy remains finite. One defines the vacuum manifold given by such states (GODDARD;
D. I. OLIVE, 1978)

V={0ecW: V(@) =0}

Here T stands for the state space of the gauge group G in some representation R. The
self-interaction V(®) being gauge invariant implies the group action of G on every ® € V
remains in V. Moreover when each point ®; € V can be reached by any other 5 € V through
some action g € G, that is,

v@1,®2€G, Elglg GGI glg~(1>2:<1>1.

G is said to act transitively on V), or equivalently V is said homogeneous for GG. Likewise, for
each point in the vacuum, the set of orbits G- ® = {g- P : R(g) € G}, sweeps out all of V.

By fixing a marked vacuum state ®; we may therefore label each point & € V by the
appropriate action g € G which sends ®, to ®. This becomes a one—to—one correspondence
provided we quotient GG by those elements which act trivially on our initial choice, i.e. the
elements which fix ®4. Their set define the unbroken gauge group also known as the stabilizer

subgroup

H((I)()):{hGGhCI)():q)()}
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Thus the Higgs vacuum is isomorphic to the space of right cosets of H(®g) in G-
V= G/H (D). (3.4.1)

Topological solutions in 3—space require a nontrivial asymptotic map oV S? | this
translates to a nontrivial second homotopy group m (V). By virtue of (3.4.1) and (2.2.2) we

have
T (V) = mo(G/H(®g)) = mi(H(Po)).

For instance when the Higgs field belongs to the adjoint representation of G = SU(n),
depending on the multiplicities n; of eigenvalues of ®; (HORVATHY; RAWNSLEY, 1985) the

unbroken group yields 2
H(®y) =S (U(ny) x---xU(ny)).

For the special case where all eigenvalues are distinct from one another and zero, known
as maximal symmetry breakdown, this becomes S (U(1) x --- x U(1)) = U(1)"! and the

second homotopy group of the Higgs vacuum is given by
mV) =m (U ) =z

That is, each field configuration is labeled by a set of n — 1 integers. On the other hand in,
if the Higgs field belongs to a symmetric n x n representation of G = SU(n), n > 4, all its

eigenvalues being identical, then

m(V) =2 m (Spm(n)) = Zs.

Ly

This is the case approached by this thesis.

3.5 ASYMPTOTIC EQUIVALENCE

From a distance 't Hooft—Polyakov monopoles look like Dirac monopoles. The reason
for this is that in the spacial asymptotic there is a gauge transformations which trivialize the
scalar field while simultaneously introducing a string singularity to the gauge field.

Let £ = su(2) be a subalgebra of the gauge symmetry algebra g and 7; a set of
Hermitian generators for E such that 75 € b the unbroken algebra while 77,75 ¢ h. Then
define the asymptotic gauge transformation in terms of Euler angles 6 and ¢ and winding
number ¢ € Z: (ARAFUNE; FREUND; GOEBEL, 1975), (WEINBERG; LONDON; ROSNER,
1984).

U(0, @) = exp(—iqpTs) exp(—ifT5) exp(iqeTs). (3.5.1)

2§ stands for the requirement that only the total determinant be one, i.e. det(U;...U,) =1
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This transformation is able to translate the Dirac configuration into a 't Hooft—Polyakov
configuration. Note that for the winding number ¢ = 1, U is singular at § = 7. We start by
choosing the adjoint Higgs field to be constant and gauge fields to asymptotically resemble

the Dirac monopole potential.

(I)O = ’UT3,
q 0\ .
A, (z) = gtan 59 Ts.

Because of this, this choice of fields will be referred to be in the string gauge, see Figure ?7.
Notice that because all fields point in the same internal direction, T3, this configuration

is effectively abelian:

R = Pl =0,
FI = 00 A — 0V AL — ecqpo AlAY = QR AL — OV AL,
(Dugb)a = augba - egabcAggbc = 0.

Now, by acting on @, with (3.5.1) we have

' = UdUT, (3.5.2)
' (1) = vexp(—iqpTs) exp(—ifTy) Tz exp(i0T5) exp(ipT3). (3.5.3)

Which we may determine by means of the identity

n

exp(A)Bexp(—A)=B+[A,B]+21![A,[A,B]]+---+1[A,---[A,B]---]—|—---.

n!
Yielding
) (—i@)% 00 (—i6)2k+1

exp(—ifTy) Ty exp(i6Ty) = ) (2k) ° kz:%m

k=0

117 = cos 015 + sin 6717.

Substituting back into (3.5.3) we get

O (x) = vexp(—iqpTs)(cos 013 + sin 0T} ) exp(iqpTs),
= v cos 075 + sin O(cos g1, + sin qpTs).

This is the configuration considered in (3.2.12). Provided the gauge field is continuous outside
the origin we conclude that this transformed field configuration carries charge g = 4mq/e. To

make sure we must also transform the field
_ 1 _
A =UA U - S0.UU L
Because Ay = 9pU = 0 we have

A =UAU = vou.
e
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In spherical coordinates the gradient reads

1 A 1
VU =0, Ut + —0yU0 + —
T rsin 6

0,U.
In the convention where 72 = §2 = ¢2 = 1.

0,.U =0,
U = iexp(—iqpTs)Ts exp(if13) exp(iqpTs),
OUU " = i exp(—iqeTs)Ts exp(iqeTs),
= i(cos qpTy + sin qpT1),
0,U = 0, (exp(—iqeTs) exp(ifT3) exp(iqpTs)),
= —iq(TgU — UTg),
0,UU " = —ig(Ty — UTsU ™).
Substituting back in the expressions for A:
A=A =0,
' 1
Ay = —iagUU’1 = —(cos qpT5 + sin qpT),
er er

/ 1t -
AL =UALU™ — 0,00,

1-— 0 '
= ATyt - My U U,
er sinf ersin 0
=19 (T3 — cos QUTU 1],
ersin 6
q

= [T3 — cos® 0T3 — cos 0 sin 6 cos qpTy — cos 0 sin 0 sin Ty,

er sin
a [sin 0T3 — cos 6 cos qpT) + cos 0 sin qpT5).
,

This field is manifestly continuous on the surface of any sphere containing the origin. Hence

the Higgs field ® is the only source of magnetic four—current in this gauge. We might call it

the smooth gauge and we will be working on it through out the whole thesis. Furthermore

notice that by applying an additional global transformation
U = exp(ixTy),
one achieves a one parameter family of solutions
O (x) = veos 0T; + sin O(cos qpT] + sin qpTy),

where

T} = cos xT + sin x T, Ty = cos xTy — sin xT}.

In the 't Hooft—Polyakov monopole, g = su(2), this is the only free parameter, or internal

degree of freedom, available.
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3.6 MODULI SPACE

The unit charge monopole standing at the origin is only one of the possible solutions for
the equations of motion (3.2.5). Other possibilities arise when one considers spacial translations,
boosts as well as a time—dependent phases. In order to encompass the broadest set of solutions
those variations just mentioned are labeled by a set of what are called collective coordinates
q'. Given a topological class n, The manifold M, swept out by those coordinates is called
the moduli space of class n. It is possible to determine its dimension by slightly varying fields
(®, A*) which we know to be solutions: (®, A*) — (& + P, A* + §A*), and requiring that
it remains a solution. This means that the variation (0®,0A*) must satisfy linearized BPS
equations.

We must also decide in which directions those deformed fields result in physically
distinct solutions. To do this one must factor out deformations arising from small (local) gauge
transformations, since those are not physical. Given two variations (6; P, ; A*) and (02®, o A*)

one defines their inner product by
(81D, 5, AP, (5,0, 5, A1) = / B 1 (5,06,D + 5, A 5,A,,) .
The requirement that zero modes must be orthogonal to gauge transformations leads to
D0 A; + ie[®, 5P| = 0. (3.6.1)

Which are called the background gauge conditions.

3.6.1 Dyon

Aside for spatial translations the last zero mode remaining for the 't Hooft—Polyakov
monopole is an internal degree of freedom generated by H(®() = U(1) as previously discussed.
This allows for a solution which, besides carrying magnetic charge also carries an electric
charge, called a Dyon (JULIA; ZEE, 1975, 8). One way of constructing dyons is by applying a

time—dependent gauge transformation

U(0) = esp (Sx(0)2)),

to the asymptotic fields of a purely magnetic monopole. The angular velocity w = x gives rise
to a nonzero electric potential Ay and consequently a proportional electric charge. This choice
of time dependence is such that the background gauge condition (3.6.1) remains satisfied by
this perturbation. Also, because this degree of freedom is angular, the moduli space of charge

one in this model yields a manifold isometric to
M 2R x S,

where each point in M/ corresponds to a static solution centered at some point € R? with

phase y € S'. Low—energy dynamics further supply a curvature for M; in such a way that
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geodesics of this manifold describe dyons of constant internal angular velocity traveling at a
constant speed in space.

When the unbroken gauge group H is also non-Abelian, it seems that the monopole can
transform under new generators of the corresponding non-Abelian global symmetry. One might
therefore suspect that additional collective coordinates could be introduced in a similar fashion
to the dyonic phase. This turns out to not to be the case because it is not always possible to
find zero modes satisfying the linearized field equations while simultaneously preserving the
background gauge conditions (DOREY et al., 1996). This thesis is nevertheless concerned in
labeling the different families of monopoles in g = su(4) without regard to whether or not

these internal parameters give rise to collective coordinates.
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4 CONTINUOUS FAMILIES OF BPS Z, MONOPOLES
41 SU(N)— SO(N)

As an extension to the work done in (KNEIPP; LIEBGOTT, 2010), we will analyze Z,
monopole solutions obtained in a Yang—Mills—Higgs theory having gauge symmetry g = su(n)
broken by a scalar field |¢) in the symmetric D ® D representation®. One defines the Cartan
automorphism of g by the homomorphism ¢ : g — g such that

U(Ha) = _Ha>
o(E,) =—E_,.

The unbroken subalgebra is then defined by the invariants of o, namely the subalgebra
hio) ={Ey — E_o | a € d},

a simple roots of g. We choose

9)g = 7 kz::l |kE) (4.1.1)

as our marked point in some unspecified connected vacuum manifold V which we take to be
homogeneous for GG. One then checks that the invariants of ¢ annihilate the vacuum and form
an so(n) subgroup of g, h(o) = h(|¢),) = so(n). The second homotopy group of V has been
determined by the general method

H
ker R

WQ(G/H)%“m(H)%’m< ) = ker R,

where ker R stands for the kernel of the representation of h which is a finite subgroup of
Z(Spin(n)), the center of Spin(n). For n > 5 it was shown that

(G H) 2 (W) ~7,

And the elements of ker R may be written explicitly as
ker R = Zy = {exp(2mia" - h), exp(2mi(\] + ) - h)},

here ¥ and \{ stand for co—roots and first fundamental co-weight of g.
In order to obtain the asymptotic form of the Higgs field, one applies the asymptotic
gauge transformation (3.5.1) considered before

U0, ¢) = exp(—iqpTs) exp(—itT3) exp(iqpTs),

to the vacuum state (4.9.1). Notice, however, that now we have as many choices for generators
T; as su(2) embeddings in su(n). This prompts us to label different monopole configurations

by the embeddings from which they are generated.

1

D stands for the defining, n—dimensional state space representation
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42 SU(4)— SO(4)

In this thesis we will consider a Higgs field |¢) in the representation space of G, with
algebra Lie(G) = su(4), in the symmetric D ® D representation as before. We choose

ey
=—> |kk).

V25
The algebra for the unbroken gauge group yields h(|¢),) = so(4). This is because, for every
generator

Mij = —Z(El] — Eﬂ) € 80(4),
we have
4

Z(Mij ® I+ 1® M) |kk),

=1

D ® D(My;)|¢) =

s@

2

4
Xy ) )
7 Z ik |Z k? +5jk’ |k Z> ik |jak> — Oik |k?,]>)7

(|7' .]>+|.]7 > |Z,j>—’j,l>)20,

%\@

proving so(4) C h(|¢),). Conversely any generator X € su(4) which annihilates this vaccuum

state must be antisymmetric:

0=D & D(X)|¢o),

M=

(X®I+1®X)|k) k),

4

(18) Xij (IR [K) + [F) i) Xi; (G1K)),

kol

ij

-5 %:Xij(w) +151)),

-5l sl
O [\
T

1 .o
= ﬂ%:<XZ] + ng) |Zaj> .

Since |7, j) are linearly independent we get X;; = —X; and X generates elements of so(4) as
proposed.

Nevertheless in order to figure out the group H(|¢),) one must analyze how the
representation Sym?*(D) of su(4) branches to, or induces, a representation R’ restricted to
so(4). This is not straightforward thus, in order to determine the second homotopy group of
the vacuum manifold we use the following result

Given two representations R; and Ry of g their respective restrictions R} and R), of b

we have

7T2(G1/H1) = WQ(GQ/HQ).



Chapter 4. Continuous Families of BPS Zy Monopoles 35

Where the groups G, Gy and subgroups H; C G, Hy C G4 are defined as the images of
R1, Ry and R, R}, respectively.
Knowing this we can choose the defining, four—dimensional, representation as Ry = D

and check how this one branches to so(4). By adopting the base
1
Yap = 50a ® oy € su(4),

a,b=0,1,2,3; 0g = I. Excluding a = b = 0 so that they remain traceless, we achieve a
complete base of fifteen linearly independent generators for SU(4)

Their commutation relations read

[Ealh Ecd] :igbde(aacEOe + 6Oazce + 5c02ae>+ (421)
+i€ace(6bd206 + 50;,2[16 + 5d02be)- (422)

Out of these elements, six represent generators of h(|¢),) = so(4), the antisymmetric ones,

namely,
so(4) = span{Xy | a = 2,b # 2 or a # 2,b = 2}.

Because these represent the generators of isoclinic rotations

1 1
MY = §(M12 + M3y) = Zoo, My = §(M12 — M3q) = o,
. rR_1
My = §(M13 — May) = o, Myt = §(M13 + May) = g,
. rR_1
M3 = §(M14 + M23) - 221, M3 - §(M14 — Mgg) = 212.

We find that the restricted representation Ry, yields the defining representation of so(4), that
is, Hy = SO(4). Applying the fact that SU(4) is simply connected we find

m(V) = m(G/H),
g7T2(G2/H2)
= m(SU(4)/50(4)),
= m(50(4)),
(
(

m((SU(2 )>< SU(2))/Zs),
o ZQ)

|
3

Il

We conclude that in this model there are only two homotopy classes for the Higgs field

In order to construct them explicitly we start off by embedding su(2) subalgebras in G, as was
done in (KNEIPP; LIEBGOTT, 2010). Among its generators we would like for one of them,
namely T3, to be in the broken subalgebra h = so(n), while T}, Ty & so(n). To do this it is
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easier to work with generators in the defining representation D. We may do this with no loss
of generality as we are working at the level of algebras and it is straightforward to go from

generators of D to Sym?(D):
D®DX)=I®DX)+D(X)®1I,

for all X € su(n).

4.3 SETTING THE BASIS

We will focus on the even dimensional case n = 2m. In the 2m~—dimensional repre-
sentation, D, the lie algebra generators for g = su(2m) and h = so(2m) may all be written
in terms of the canonical basis E;; = [i) (j|, i« = 1,...,2m, where |i), (j|, are the weight
and coweight states, respectively, of D. The canonical basis for h = so(2m) is given by the

antisymmetric generators
M;j = —i(Ey — Eyj).

Among those are the block diagonal ones h, = Ma, 19, with a = 1,...,m = rank(h). Notice
that these are all mutually commuting and so may be chosen as the generators for the Cartan
subalgebra CSA(h) = span{hy, ..., h,}. More generally we will employ indices a,b,c, ... to
run from 1 to m, whereas i, j, k,... run from 1 to 2m. Like the construction of (WEINBERG;
LONDON; ROSNER, 1984) we pick out generators 7T; of an su(2) subalgebras. Among these
generators we would like for one of them, namely T3, to be in the broken subalgebra h = so(n),
while 71, Ty & so(n). In particular we take, without loss of generality, T3 € CSA(g),

T3 = 5 Paha- (4.3.1)

Here? 3 = S.e, stands for a root in the dual vector space CSA(h)*. It is also known as a

magnetic weight. The non—Abelian quantization condition exp(4miT?) = I implies
exp(2mif,hg) H cos(2m3,) + isin(2w 5, )he) = 1,

since h, are all independent we conclude 5, € Z must be integer coefficients. In order to

classify all embeddings it proves useful to factor h, as the following tensor product 3
he = diag(e,) ® o9 = —idiag(e,) ® J,

0

1
where J = ( 0). Therefore (4.3.1) may be rewritten as

1

2 Where e, = (0,...,1,...0), the a—th canonical vector

3 We'll make use of the Pauli matrices o7 = <(1) é) , O
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Take m = 2 for instance, here we have

ngi, 61 X ®J:i BIJ ’ )
20\ 0 py 20\ 0 BoJ

0 B 0 0
1{-8 0 0 o0
20l 0 0 0 B
0 0 —B 0

We may only factor T3 like this in even dimensional cases. Even though it is possible to embed
solutions found here in su(2m + 1) by simply disregarding the last row and column of each
generator, we are not able to describe the most general set of solutions this way. Therefore we

will only treat the even dimensional cases.

4.4 SOLVING FOR su(2) SUBALGEBRAS

To find a generic su(2) subalgebra we start from the system of equations

[Tla TQ] = iT37
(13, Ts) = iTy,
[T37 Tl] = iT27

and eliminate 75 from the first and second equations. After rearranging a few terms we arrive

at the second order system

T3, [T, Th]] = T, (4.4.1)
(T3, 1h], Ih] = T5, (4.4.2)

which we wish to solve for T being given
1
T3 = ?diag(ﬁ) ® J, (4.4.3)
1

Ba € Z to be determined. To do this we must also write T} in terms of 2 x 2 blocks, namely

xab:

1 m
Ti=3 D ea ® Tap,

a,b=1

where e, stands for the canonical basis for the m x m matrices. Notice that 7} being Hermitian

translates to

2l = Tpa. (4.4.4)



Chapter 4. Continuous Families of BPS Zy Monopoles 38

Therefore we have m(m + 1)/2 independent blocks to solve for. Substituting these definitions

we have
(T3, Th] = Z diag(3)eas @ Jxay — eapdiag(B8) @ o, (4.4.5)
=4 %b: €ab @ BaJTap — €ab @ PoTap (4.4.6)
= i@ %} ab @ (BadTap — BoTap ] ). (4.4.7)

Now we analyze equations (4.4.1) and (4.4.2) separately.

4.4.1 Determining T3

Upon substitution of (4.4.3) and (4.4.7), equation (4.4.1) becomes
Ty =15, (15, Th]] = — < Z diag(f) ® J)(eap @ (JTab — Boap]))+

— (eap @ (BadTap — Boxapd))(diag(B) @ J),
= —51% Z €ap ® (—ﬁg%b — 2B.6vJTapJ — ﬁf%b)-
ab

Because e, are linearly independent we get, for each a, b,

1
LTab = Z(ngab + 2Baﬁbjxab'] + ngab)> (448)

(4 - 53 - ﬁl?)xab = 2Baﬁbjxab=]- (449)

The following simple proposition enables us to further constrain the integers (3,.

Proposition: Let x be a complex—valued 2 x 2 matrix and J as before. Given
JxJ = kz, (4.4.10)

for some k € C, then either k = £1 or x = 0 identically.

Proof: Multiplying both sides of this equation by .J on the left and right, using J? =
—1, we get * = kJxJ. Now, apply (4.4.10) to the right—hand side yielding * = k?z. So
(1 —k*)z = 0, meaning that if some component in x is nonzero then k% = 1, otherwise = = 0.
The result follows.

For now we shall assume both ,, 8, # 0 for some pair a, b. Using this, equation (4.4.9)
becomes:
4-p: - By

2845

So for each block z,, that we further assume to be non vanishing the previous proposition

JJZabJ = Tap- (4.4.11)

yields

-5 - B

- ka 5
2845 ’
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for some sign k., = 1. It is worth pointing out that k,, = k., by virtue of the symmetry of

this expression. Following through with this equation we can complete squares to get

4— 32— B2 = 2B, (4.4.12)
4= B2 + 2k By + B2, (4.4.13)

4= By + kaB)?, (4.4.14)

2l = Ba + kav By, ( )

which introduces a new set of signs [, = 1. The previous set k,;, can now be inferred solely
in terms of the new set. To do this, exchange @ and b in (4.4.15) and multiply by ky,:

2lpe, = By + kpafas
2kpalva = koo + Ba-

Subtract this from (4.4.15) yielding

2(lab - kbalab> - (kab - kba)ﬁln (4416)
lap — kpalpe = 0, (4.4.17)
kab = lablba- (4418)

The dependence on 3, vanishes because k;, is symmetric, and our goal was achieved. One can

therefore restate (4.4.15) as the symmetric expression

2 =lwfBa + lbaSp- (4.4.19)

In summary, for each pair f3,, 3, # 0 and block x,, # 0, condition (4.4.2) only holds
when equation (4.4.19) is satisfied by a pair of signs labeled ., and [y,.

If, however, some 3, = 0, take B3 = 0 for definiteness, and 3; # 0. We then refer back
to (4.4.9) to find three independent conditions

(4 - 25%)%1 = 2512JI11J7
(4 - 512)%2 =0,
41’22 = 0.

The general procedure undertaken was to assume 7} mostly zero and then to gradually constrain
B by setting blocks x,, # 0. We may consider, for instance, x1; = 0, 212 # 0. This turns out
not to lead to a solution under further scrutiny. Taking x1; # 0 and x5 = 0 does, on the
other hand, lead to a solution, called the fundamental embedding. In order to describe it we

must first see what conditions the blocks x,, must satisfy.
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4.4.2 Determining T}

We turn to equation (4.4.2):

HTg, Tl]; Tl] = 812 Z(eab & (Bajxab - ﬁbmabj))<€cd &® ch) - <€cd &® xcd)<eab & (ﬁaja:ab - BbxabJ»a
abed

1
= g Z 5bcead ® (5a¢]xab$cd - Bbxamecd) - 6daecb ® (6a-rcdt]xab - 5b$cdxab¢])7
abed

Z €ab X (ﬁa(]xacxcb - ﬁcxacjxcb - chacjxcb + Bbmacxcbj)-

abc

1
Y

Comparing this to T3
T3 = 212 %b: Badapear & J,
blockwise we have
ABabapd =D Pad Tacer — 2Betac Ty + Polacten .
Multiplying on the right by —J
4Babab = Y Bad Tac(— I J) (=) + 2BctacT v + Bpacten (—J),

= Z(ﬁakackcb + 2ﬁckcb + ﬁb)xacxcb-

Here we used (4.4.11), so we should only consider the sum going over indices ¢ for which
neither z,. nor x., are zero. Notice, however, that if we did sum over them this expression
would remain true, with the caveat of neither k,. or k., being previously defined. We shall
adopt, nonetheless, the more general sum for the sake of brevity.

By virtue of (4.4.15) we can further simplify things by factoring out k.

4Ba5ab = Z kcb(ﬁakac + 50 + kcbﬁb + Bc)xacxcba

- Z kcb(2lac + 2lbc>xacxcb-
Which in turn, because of k., = l44lpa, may be restated as

250,5&&) - Z(laclcblbc + lcb)xacxcb- (4420)

C
If we instead chose to multiply by (—.J) on the left we would have arrived at a similar equation

26a5ab - Z(lca + laclcalbc)xacxcb- (4421)

C

Nevertheless, because x!, = 2,, (4.4.20) and (4.4.21) are in fact equivalent.
Now, depending on which blocks we assume to be nonzero we may get different classes

of solutions. The following definition will prove useful.
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45 A NORM FOR BLOCKS

For every pair (3., B, # 0, we have
Jxabj - kabxabv
k., = £1 as before. So each block must be of the form
Ugb Vab,
Lab = )
kabvab _kabuab

for some gy, vy € C. Because T} is Hermitian we get

—hap (UapVa, — UgyVab) |tuqp|* + |vab|?

Notice that the first entry satisfies the following norm properties

(Iabxba) 11 € RZOa

(ZapTpa)11 = 0 = w4 = 0.
So we may adopt the shorthand

| |xab| |2 - (Iabxba)ll‘

4.6 EXPLICIT EMBEDDINGS
4.6.1 Fundamental Embeddings
Assuming only x1; # 0 and (5 = 0, equation (4.4.9) leads to

(2= B}z = JanJ, (4.6.1)
T11 = JZEHJ, (462)

therefore 5 = +1 which, by (4.4.19), is labeled by 8, = [;;. Substituting this in (4.4.20)
yields

1111 = 1. (463)

Because of conditions (4.4.4) and (4.6.3) we have the form

U v
11 = ( ) = V01 + uos. (464)

v —Uu

Where u,v € R. But, because of (4.6.2), u? +v? = 1. Thus the general solution restricted to
this block is given by

11 = COS Y01 + sin o3,
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X € [0,27] is an arbitrary angle. By computing T, = —i[T3,T}] we arrive at

lel cos xo3 +sinyo; 0 ’ ngil cos Yo, —sin yoz 0 7 ngil oy 0 ,
2 0 0 2 0 0

{11 = £1. Notice that we can rewrite

=ew (i) msew (-50)
T11 = eXp 250'2 O3 exXp _Z§U2 .

So we may interpret (4.6.5) as the action of the element U € H

; 2) 0
. exp(ixo2/2) = exp <iXh1) €H,
0 1 :

over the standard embedding:

1 0 1 0 1 0
== "), T—=+- (7" 7). To—+- (7% 7).
210 0 2\0 0 2\0 0

This will be referred to as the 5 = (£1,0) fundamental embedding. Likewise the g = (0, £1)
fundamental embedding is defined by:

1(0 0 1{0 0 1(0 0
lef 5 ngi* 5 T3::i:* .
2 0 03 2 0 01 2 0 02

4.6.2 Excluding One Possibility

Although no solutions exist in what follows, suppose for the sake of completeness that
11 = Tgy = 0 and By = 0. Then (4.4.9) fora = b =1 and a = b = 0 are immediately
satisfied. Setting a = 1, b = 2 yields

(4 - 512)%2 =0,

Since z9; = LEIQ, for T} # 0 we require 81 = +2. Given these conditions

JO 0 T12
T3 = T , Ty = ,
3 jF(O 0) 1 (ﬂz 0)

condition (4.4.2) nonetheless can never be fulfilled. The reason for this is that equation

o, J] 0
[Tla [Tla TSH =4 ([x12x012, ] 0) = T37

translates to [x1521,, J] = —J. But by taking the Hermitian of both sides: [z152 1y, J] = +J.
We arrive at a contradiction, so there are no = (£2,0) or § = (0,+2) embeddings.
If, however, 35 # 0 then solutions confined to x5 do exist, though they are part of a

larger family of embeddings which we come to examine next.
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4.6.3 Isoclinic Embedding

Starting from the assumption that all 3, and blocks z,, are nonzero we find an em-
bedding such that #; = 41 and (3, = +1. Therefore T3 generates some isoclinic rotation
which motivates naming its corresponding embedding an isoclinic embedding. This comes from
equations (4.4.9), for a = b, giving us 31 = l11 and [y = lys. For a # b we get

2012 = l11 + kialaz,
2091 = a2 + k12l11.

Since k is symmetric. Focusing on the case k15 = +1 we get l1; = log = ly1 = l15. Substituting
these in (4.4.15) yields

1 = xy1211 + 212701,
1 = 291212 + To2x92,
0 =anx12 + 222721,

0 = zo1711 + T22721.

Using the fact that x1; and x9, are real and of the form (4.6.4)
uaa Uaa
Laa = 5
Vaa —Uga

2 2
T — Ugq + Vaa 0 _ P2
aataa — — Fa»
0 ug,+ v,

we get

Pa € R. Writing x5 in a similar way:
U2 V12
Ti2 = .
V12 —Ui2

‘u12‘2 + |1112|2 U1aV]y — UT2U12)

We get

_ T
T12T21 = T12X1 = N # 2 2
UTpU12 — U1y |u1a]* + [v1g]

by setting p3y = |uia|* + |v12]?, (4.6.6) becomes

Loy _ P+ i U12V7y — ViaV12
01 UTpU12 — UI2VTo P%l + P%Q

Similarly for the second equation

Lo _ P3a + Pl Uj9V12 — U127y
0 1 U2V]y — UT9V12 P%2 + 9%2
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From the diagonal elements we can thus write

P%l = 032 = cos’1, 022 = sin*7).
We gather that p;; = cosn absorbing the possible sign into the definition of 1. Now pgs =
+ cosn and p;o = £sinn. The off-diagonal elements are zero only if w5 and vy, have the

same phase which we'll call ). From the definition of each p,;, we can define two new angles

¢ and v. The last two equations (4.6.8),(4.6.9) provide us a coupling between angles:
0= e siny [ €800 =) —cos(C=x2)  sin(x1 =€) = sin(C — x2)
—sin(x1 — ¢) +sin(¢ — x2) cos(x1 — () — cos(¢ — x2)
This condition is only satisfied when ( = %(Xl + X2). We assume [;; = 1 with no loss of

generality.* The general solution for k5 = +1 is therefore °

1 [ cosn(cosx o3 +sinxioy) e sinn(cos oz + sin (o)
T, == = ‘ ‘ , (4.6.10)
2 \e ¥sinn(cosCos +sinCoy)  cosn(cos xo03 + sin x207)
T, — 1 CQS n'(cos X101 — sin ?(103) e sin n(cos oy —'sin Cos3) 7 (46.11)
2 \e ¥ sinn(cos oy — sinCoz)  cosn(cos xo01 — sin x203)
1 g9 0
T, = = . 4.6.12
=51 ¢ 02) ( )
A similar computation © for k1o = —1 yields
T — 1 [ cosn(cos xi03 +siny,01) e sinn(cos oy + isin o)
"o e sin n(cos&og —isin€oy)  cosn(cos x203 + sin x207) ’
T 1 [ cosm(cosxiop —sinyio3)  e¥sinn(—icosEoy + sin o)
272 \egin n(icos€oy +sinog)  cosn(— cos x201 + sin x203)
1 0
T3 - = o2 .
2 0 —09

Here ¢ = 3(x1 — x2)- In both cases the requirement that neither T} nor T annihilates the
vacuum state implies T{ # —T} and T # —T5. This in turn excludes the possibilities where
n=m/2and ¢ =m/2, 3w/2, for all x1, x2.

4.6.4 Three-to—One Embedding

There is one nontrivial possibility remaining which is all x,, # 0 except for a single
diagonal block z,, = 0. We'll take it to be the second one for definiteness. Equation (4.4.15)
tells us that 51 = l1; and x15 # 0 implies

2lo1 = Po + ka1 B,
Bo = 2o — karlyy.

For l11 = —1 simply multiply both T5 and T35 by —1.
The second generator follows from [0, 0;] = 2ig;;r0%
®  This time identities {0, 0;} = 2d;;00 and {0, 00} = 20; were employed.




Chapter 4. Continuous Families of BPS Zy Monopoles 45

In this case, in order to avoid falling back to one of the previous families we'll pick By # +1:

291 — korly1 # £1,
l21(2 = ligly) # +£1,

liglhy = —1.
Where we used the identity k., = laplpe. We conclude that [;5 = —I11, upon substituting back,

B = 2lo1 — kaily1,
= =2kl — karlia,
= +3k12l12,
= +3ls,

This fixes 8 = diag(l11, 3l21). Equation (4.4.19) yields

B1 = iz + liaT12291,
0 = 2k12(liy + li2) w1291,
0 = 2k12(liy + li2) w1221,

52 = l21$21$12,

But l15 + l1; = 0, so the second and third conditions are satisfied automatically. Substituting

the remaining values we get

1 =221 — L12%21,

3= T21X12.

Using the fact that Jx15J = kis215 the block has the following form

U2 V12
T2 = .
k1ov12  —kiougo

And 29, = 21, so the last equation is solved by

Fiasinys —kizcos Xz

In this case x12297 = x21212, so the first equation becomes 4 = x;;211, and since x1; must

be real, k11 = +1, we conclude

x11 = 2(cos x103 + sin x1071).
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We assume [;; = 1 as before. For k15 = +1 the complete solution becomes

T _ 1 2(cos x103 + sin x107) V3¢ (cos Y203 + sin xo01)
' V/3e7™(cos Y203 + sin x201) 0 ’
o 1 2(cos x101 — sin x103) V3¢ (cos Y201 — sin x03)
272 V/3e7™(cos Y01 — sin x203) 0 ’
1 0
T3 - = 0-2 .
2 0 —30'2
Meanwhile for ki = —1 we arrive at
T 1 2(cos x103 + sin y101) V/3e™ (cos X200 + i sin x20)
17 V3e™ ™ (cos X200 — i sin x203) 0 ’
T — 1 2(cos x101 — sin x103) V/3e™ (i cos a0 — sin x200)
279 V3e™ ™ (—i cos X209 — sin x200) 0 ’
1 0
T3 = = 02 .
2 0 30'2

We shall refer to these two embeddings as three—to—one because T3 generates a simultaneous
rotation of two orthogonal planes, the second plane rotating three times for each turn of the
first.

4.6.5 Diagrammatic Classification

One way to classify different embeddings is by deciding for which pairs a, b equations
(4.4.19)

2= labﬁa + lbaﬁlﬂ laba lba S {_]-7 +1}>

hold. To visualize this let us define a graph whose vertices, labeled 1 through m, may or may
not be filled in, depending on whether or not equations in the diagonal, a = b, are satisfied.
Notice that for the diagonal these equations reduce to 32 = 1. Meanwhile an edge between

vertices a and b implies the equation for the pair a, b holds. That is,

a a
@ stands for 52 = 1, while O stands for 32 # 1, and

a b
means there are signs l,, lp, such that l,,5, + lpa By = 2.

For m = 1 only one embedding is possible: @. For m = 2 we have found three distinct
possibilities:
Fundamental : o O;
Isoclinic : o—0
Three — to — One : e—O.
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The advantage of these diagrams is that they help clarify whether each possibility has been
considered. Notice for instance that the only non-trivial” diagram missing is O———O and
it did not yield an embedding, as it lead to a contradiction in section 4.6.2. Therefore we may

assert that our list is exhaustive.

47 GENERATING MONOPOLE FAMILIES

The goal of this section is to restate the previous families of embeddings as some action
of G over a simpler embedding.

Like for the fundamental embedding these parameters arise from internal degrees of
freedom of the solution. These define elements of GG which fix T3, but would otherwise act
non trivially on either T} or T5. To be more precise we would like to find which generators of

the stabilizer
G(Ty) ={U € H:UTU" = T3},
do not commute with either T} or T,. To do this explicitly we will adopt the following base

1
Yap = 57 ® oy € su(4),

a,b=0,1,2,3. Excluding a = b = 0 so that tr >,, = 0. This yields a complete base of fifteen

linearly independent generators of su(4) = span{>,}. Their commutation relations read

[Zaba ch] :igbde<5acz:0@ + (SOazce + 6002ae)+ (471)
+i€ace(5bd206 + 50b2d6 + 5d02be)- (472)

Out of these elements, six generate h(|¢),) = so(4), namely,
so(4) =span{X, :a=2,b# 2 or a # 2,b =2},

Let us set T3 = Yo = %(Mlg + Msy) = %(hl + hs). Upon inspection of the commutation

relations we have
9(202) = span{Zog, 2232, 2320, 2912, 2410, 2330, E22} = U(l) ¥ 50(4)- (4-7-3)

Taking 7 = x1 = x2 = 0 on (4.6.10) gives 17 = ¥¢3. By checking which generators of (4.7.3)

do not commute with Y3 we arrive at the subset
Yoz, L1z, X2, Yizz € 9(Xo2).
Exponentiating each of these we construct unitary transformations taking >3 to

o1, L11, 221, 231 € G(Z02) - o3 C 9, (4.7.4)

7 The diagram o © readily implies T} = 0.
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respectively. Now we repeat the process by checking which further elements of g can be
achieved by G(X¢2) actions on (4.7.4), and so on until we complete the orbit of 43 under
G(202). The general solution, when ki3 = +1, (4.6.10)—(4.6.12) can, after some examination,

be expressed as
Ty = USgUT, Ty = USo U, T3 = oo,
where U is given by
U = exp(i(01 — 02)X32) exp(i(01 + 02)X02) exp(—ithE30) exp(inSap).
Similarly, when ki3 = —1,
Ty = VEguVT, Ty =V VT, T3 = S,
where V' is given by

V = exp(i(01 — 02)332) exp(i(6h + 02)X02)) exp(—ithXs0) exp(inLys).

4.8 DIAGONAL EMBEDDING IN su(2m)

In this section we take g = su(2m) and assume ., # 0 for all a and x,, = 0 if a # b.
Equation (4.4.9) further simplifies

2laa = 6{1 + kjaaﬁa - 26a-
Since l,, = *1, k4o = +1 and we get 5, = l,, = +1.The remaining equation simplifies to
1 = ZaaTaa-

So that ||x4||* = 1. The fact that each x,, is Hermitian and their k,, = +1 gives us the form

for some uyq, ves € R. Coupled with the previous condition we get, for an angle parameter

Xa € [0, 27],
COSXq  Sin X,
Loa = .
Sin Y, — COSXq

The remaining generator is given by

. 1
T2 = _Z[T37T1] - _§ZBCLJICL(1-
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Writing these generators in the symmetric representation 8

1
T3 = Z Z 6(1(E2a—1,2a - E2a72a—1)7
1 .
T, = B Z €08 Xa(E2q-12a—1 — E2q,24) + 810 Xo(E2q—1,20 + E2a,24-1),

1 .
T2 - 5 Z 50, S X g (EQa—l,Qa—l + ]E2a72a) - Ba CoSs XQ(EQa—l,Qa - EQa,Qa—l)a

Taking all x, = 0 recovers the results of (KNEIPP; LIEBGOTT, 2010), for the cases where
n, # 0. The cases where some n, = 0 can be treated by reducing the size of 7; to its rank
and applying the same method we employed, setting off-diagonal elements of 77 to zero. This

way we recover all cases previously considered.

Notice, however that y, are not the only internal degrees of freedom available. They
are the only ones appearing here because we confined the solution to the diagonal blocks by
setting x,, = 0 for a # b. In order to find these remaining parameters one may follow the

procedure of the last section of calculating the the orbits of 77 under the stability group G(T3).

49 ASYMPTOTIC HIGGS FIELD

Because our gauge group GG acts transitively over the vacuum manifold we may start

from a particularly simple vacuum state

9o =7 kX::l |kk) . (4.9.1)

By choosing an E' = su(2) embedding, and a winding number ¢, we construct the corresponding

asymptotic solution to this subgroup by applying the unitary transformation
U(0,) = exp(—igyTs) exp(—itT3) exp(iqeTs). (4.9.2)

To the constant state (4.9.1) in the asymptotic sphere. In the tensor product representation a

generic symmetric scalar field
|9) = Z¢z‘j 27) .
ij
transforms as
D® D(g)|¢) =) ¢ U Ulij),

(]

= ¢i |[kl) (KU U @ U i),
ijkl

= Z¢ij |]€l> UkiUlja

ijkl

=Y (UU" )iy |Kl),
K

8  We adopt the notation E;; = D ® D(E;;) = E;; ® I +1 ® E;;.
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in particular the coefficients for (4.9.1) are

v
ij = —=0ij,
@i V2
and their transformation by (4.9.2) yields
v
iy = ﬁ(UUT)ij'

Notice that, as long as we choose ¢ = 0, then for each of the families of embeddings considered,

Ty and T, are symmetric whereas T3 is always antisymmetric. Therefore
UT(0, ) = exp(—iqpTs) exp(—ifTy) exp(iqeTs).
The matrix of coefficients for the asymptotic field becomes
¢ = \;}5 exp(—iqpT3) exp(—2i0T) exp(iqeTs). (4.9.3)

The solution originating from the fundamental embedding 3 = (1,0)

1 0 1 0 1 0
I , =7 L T=o |7 :
2\ 0 0 2\ 0 0 2\ 0 0
Yields, upon expansion,

9), = L{(COS@ +isinfsingp) |11) 4+ isin 6 cos qp(|12) 4 |21))+

V2
+(cosf — isinfcos qp) [22) + |33) + [44)}.

This readily satisfies |¢) (0, ¢ + 27) = |¢) (0, ¢) and is also well defined at # = 0 and 6 = T,
that is, it does not depend on ¢ at the poles. Consequently it defines a continuous map from
the 2—sphere to the vacuum manifold defining an element of loop,(V).

For the fundamental embedding 3 = (0, 1) one exchanges the pairs {1,2} <> {3,4} in

the above expression. For the isoclinic embedding 5 = (1, 1) the solution yields

9), = \;)5{(0080 + isinfsinqgy) [11) + isin 6 cos gp(|12) + [21))+

+(cosf — isin b cos qp) |22) + (cos O + i sin O sin qy) |33) +
+isin 6 cos gp(|34) + |43)) + (cos 6 — isinf cos qp) [44) }

4.9.1 Homotopies between Configurations

By the non—abelian nature of the unbroken gauge group one may deform different field
configurations among themselves via further transformations. Take for instance the rotation

of 1) radians about the {ij} plane

R(¢) = exp (i) M;;) € H.
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Because RT = R' we have

¢' = RoR",
- "R exp(—iqeTs) R' R exp(—2i0T) R R exp(iqpTs) R,

V2

= \% exp(—iqeTy) exp(—2i0T;) exp(iqeTs),

where T} = RT;R' are new generators in the rotated frame. For definiteness let us take, again,

the fundamental embedding 5 = (1,0). By applying a rotation R about the plane {13} we get
T} = J exp(it M) My exp( it M),
= ; cos Y Mqs + ;sin Y Mo,
and
T} = £ exp(it:Mys) (Bro + o) expl—it/Mrs),
= ;cos W(E2 + Ear) + ;sin V(FE3s + Ea3).
Meaning that, as v varies continuously from zero to 7/2, a solution confined to the block

{12} is deformed into a solution confined to the block {32}. The homotopy between the two
is the continuous map H : [0, 7/2] — loopy (V) Given by this global (homogeneous) rotation

H(y) = R(¢) [9) (0, ¢).

Similarly one can rotate a solution from the block {32} to the block {34} by means of
R = exp(it)May). Incidentally this yields the other fundamental solution 5 = (0, 1). Therefore
solutions 5 = (1,0) and 8 = (0,1) are homotopic to one another. By extension of this

argument fundamental solutions within the blocks {ij}, namely

1 1 1
T = §(Ez“ —Ej), Th= §(E¢j +Eji), Ty= o Mij,

for each i and 7, i # j, are topologically equivalent; they lie in the same sector of m5()). Next
we show that there are only two distinct homotopy classes, as expected from 7y (V) = Zy. To
do this we need to find that whenever the winding number ¢ in (4.9.7) is even, ¢ = 2k, there
is a smooth transformation from that configuration to the trivial one. This would identify all
even ¢ configurations to the same element of m3()). Consequently, all odd ¢ configurations

will be identified to a single one where ¢ = 1. Applying a transformation similar to the one
considered in (WEINBERG; LONDON; ROSNER, 1984)

V = exp(i0My3) exp(—2kipT3) exp(—i0M3) exp(i0T5) exp(2kipT3). (4.9.4)
Transposing yields

VT = exp(—2kipTs) exp(ifTs) exp(i6 My3) exp(2kipTs) exp(—if Ms).
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This transformation readily cancels all terms in (4.9.7):

/I T_L
¢ =VoV —\/§I.

And we are back to the trivial configuration. It remains to show that this transformation is
continuous which is the purpose of the conjugation by M;3. We automatically have continuity
at V(0,¢ + 2m) = V(0,¢) and V(0,¢) = I. At the south pole, § = m, we may write

1
V(0,0) =Va(0,0)VB(0, ) exp (292(E12 + E21)> ,
where

Va(0, ) = exp(i0M3) exp (—ikp M) exp(—i@Mi3) (4.9.5)
Ve(0,p) = exp <i6;(E12 + E21)) exp (+ikpMiz) exp (—’i@;(Elz + E21)> , (4.9.6)
expanding
exp (£ikpMs) = cos %(EH + Ey) £ isin %Mlz + (Es3 + Eyq).

Evaluating (4.9.5) and (4.9.6) at § = m, only the sign multiplying M, on the above expression

changes, thus
Va(m, @) = exp (tkpM) Vi(m,¢) = exp (—ikoMiy) .

We find V (7, ¢) to be single—valued and conclude that V (6, ¢) is indeed continuous in the
whole sphere and therefore a homotopy between |¢),, and |¢),,.

A similar, albeit longer, gauge transformation identifies |¢),, ., to |¢),. Factoring it as
W =W WgWge, it reads

Wy = exp(—ipT3) exp(—ifTy),
Wp = exp(z’%MM) exp(10My3) exp(—2kipTs) exp(—ifMi3) exp(—i%MM),

We = exp(i0T3) exp((2k + 1)ipT3).

First, notice that W is responsible for eliminating the original terms in @91 while Wp is
canceled by its own transpose and W4 restores the expression to ¢;. The second exponential
in Wg keeps W well defined at 6§ = 0 while its conjugation by M;3, like in the previous case,
guarantees that W is also well defined at 0 = .

The remaining requirement is periodicity of W (6, ¢) in ¢, which is ensured by the Mj,
conjugation. To see this compute W (0, ¢ + 27); The outermost conjugation by —inT3, which
wasn't present in the ¢ = 2k case, has the effect of changing a sign in M3 which gets corrected
by the im M3, conjugation in W. All other factors being either periodic or unaffected by these

conjugations leads us to our result.
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A straightforward generalization of (4.9.4) gives us a homotopy between the larger
embeddings 8 = (1,%£1), 8 = (1,43) and the trivial ¢y configuration for every ¢. Take

B = (17 1):

SO

v . . .
Og = E eXP(—quog(Mm + Msy)) exp(—i6(FE1o + Eoy + Esq + Ey3)) eXP(W%(Mm + Msy)),

(4.9.7)

and the transformation
0 . 0
14 :eXP(ZQ(Mls — May)) eXp(—qu(Mlz + M34)) eXP(—Zi(Mls — May))-
0 .
: exp(z§(E12 + E9y + E3y + Ey3)) eXp(qu(Mu + Msy)),

which takes it to ¢q is now periodic in ¢ for every g, even or odd. The reason for this is that
now the sign arising from the +inT3 conjugation is global. Similarly monopoles constructed
from 5 = (1,£3) embeddings are all also trivial; Apply a W transformation to the second

block then repeat the previous V' with appropriate signs.

410 FURTHER RESEARCH

The method developed for embedding su(2) subalgebras lead the main equations
(4.4.19) and (4.4.20). These are general enough so as to classify all su(2) subalgebras of su(2m)
bearing one generator of so(2m). Out of those some are straightforward generalizations, like the
fundamental embeddings, § = +e;, i = 1,...,m, and the isoclinic embeddings 5 = ", n;e;,
n; = —1,0, 1, where two or more n; may be nonzero.

Besides those the three—to—one embedding generalizes to § = (£1,+3,..., £(2m—1)),
the first generator yielding

cos sin
T1 =me ( . X X ) +
siny —cosy
m—1 1
} » cos ¢ sin ¢
+ Z m? — ag(ezwaea,a-&-l +e ¢a€a+17a) ® ~a ) ’
p kaa—l—l Sin C(l _kaa—i-l COs CCLJ

Another possibility is to consider different vacuum states |¢) yielding different symmetry
breaking patterns. One idea is that a result analogous to the one for the adjoint representation

may be valid, along the lines of
SU(n) — S(O(ny) x -+ x O(ny)),

where n; represent the multiplicities of the eigenvalues of the coefficient matrix ¢.
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5 CONCLUSION

In this thesis we studied how to obtain new Z, monopole solutions in Yang—Mills—Higgs
theories. For simplicity sake we focused on the case su(4) — so(4) symmetry break with the
scalar field in the symmetric part of the 4 x 4 representation. A general method was devised to
find subalgebras su(2) from which one writes down the explicit form for the asymptotic fields
of these Z, monopoles.

We found that for the magnetic weights § = (1,0) and 5 = (0,1) our solutions
lie in a one dimensional family just like the original 't Hooft—Polyakov monopole. When
we considered the isoclinic embeddings § = (1,+1) we found four—dimensional families of
solutions. Meanwhile the three-to—one embeddings 8 = (1, +£3) generated a three—parameter
family of monopoles.

Furthermore explicit homotopies between these asymptotic solutions were characterized.
Upon inspection we find that there are indeed only two classes of monopoles, i.e. the trivial
and the fundamental, in line with the fact that the second homotopy group of the vacuum
manifold is Zs.

For future projects one may propose to generalize this idea to different symmetry
breaking patterns. Also shedding a light on how to count the number of collective coordinates
of these solutions. Perhaps even figuring out whether background gauge conditions could be
introduced so as to allow for dynamic solutions like the dyon for different gauge symmetries.
The possibilities seem enticing, hopefully this thesis has conveyed some excitement towards

this subject.
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APPENDIX A - APPENDIX

A.1 SURFACE INTEGRAL AS TOPOLOGICAL DEGREE

Starting from the flux

1
g= / da g = 5 / B Eapet ™ (BB D). (A1.1)

/ A25™ e e DU DU D, (A.1.2)

2ev3

and parameterizing x* by spherical coordinates &,, a = 1, 2:

Pt = giiaa’cbb (A.1.3)
J
ox,, Ox
2qQi __ zmn afYrm YEn 12
425t = 2 = . agﬁdf (A.1.4)
=53 / 426 £ oo @O0 PO D, (A.1.5)

One may find that the square of the integrand is a determinant

2 AN~ 1l
<5ab65a5¢>“6a<bb85¢c) = 5ab05a5®“8a¢b65<bcs“ be e“ A @axaa/@b/agwbcl (A16)
= 387 52 DU DO DD 11Dy By Iy B, (A.1.7)
where 53;;0 denotes the generalized Kronecker delta defined by the degree of the permutation

o:{1,2,3} - {1,2,3}, o(a) = d, a(b) =V, o(c) = . Explicitly in three dimensions this
can be written explicitly as

O™ = 00 02 + 04 03 0 + 3¢ 0767 — 0,000 — 050707 — ey 0L, (ALY

abc

And in two dimensions,
S A (A.1.9)

Because ®®* = v? and 9°9,9* = 19, ($°®*) = 0, all factors containing 8, 6¢ 08, 6%

a’’a

vanish

(aabcgaﬁ@aa%baﬁclff = (8965 — 6765102 (65 0¢ — 65 0¥ )0 DD BBy D By D B,

(A.1.10)
= 20%(0,°0°® 050 0° D, — 0,8°0° D0, D0 D,.), (A.1.11)
= 20%((tr 0, 0°0°®)? — tr(0, D0 ®y)?), (A.1.12)
= 4v% det 0,9°0° D, (A.1.13)
The last line follows from an identity for determinants in two dimensions
1
det A = e*PALAG = T Pe s ALAY = (A.1.14)

1
§(A§Ag — AP AG) = 5(tr A —tr A?). (A.1.15)
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Thus

Eabefap P 0a®@ 0s®° = +20,/det 9,D205 0. (A.1.16)

as we wanted to show. Therefore

g= ii / dﬂg\/det ER D (A.1.17)

Where $* = &4 /1/PbHb = $* /v denotes the normilized field.

A.2 THE PFAFFIAN

Given a 2m x 2m skewsymmetric matrix A the following invariant

1

pfA = mgiljlu-imij .. A

iljl : ’Lm]m

is called the Pfaffian of A. For m = 1 we have pf A = Ay, while for m = 2 this reads
pf A = ApgAsy — Ay3Asg + A1y Asg

The Pfaffian satisfies the following important property. Given any complex 2m x 2m matrix

B, the conjugation BAB? is again skewsymmetric and its Pfaffian is given by
pf(BABT) = det Bpf A
. In particular, when B = R € SO(n), det R = +1:
pf(RART) = pf A

. So an orthogonal change of basis preserves the pfaffian. The six generators of SO(4) are all

skewsymetric and can be written as
My = —i(Ey — Ej;), i<
Simultaneous rotations about the planes {ij} and {kl} are written as
R = exp (i6;;M;; + 10 My) , (A.2.1)

Therefore isoclinic rotations are generated by

1 1

Ml = 5(M12 + Msy) Mt = 5(M12 — Msy) (A.2.2)
1 1

ME = 5(M13 — Myy) M = 5(M13 + Moy) (A.2.3)
1 1

M3L = §(M14 + Mgg) Mgf% — §(M14 - M23)7 (A24)
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Note that pf M} = +1 while pf M[* = —1. Here the signs are chosen such that each column

generates an su(2) subalgebra, this can be seen by applying the commutation relations

[M,L Mkl] = Z(deMjl + 5leik - 6ilek -

B
One checks that
[MZ-L, MJL} = ’l&“UkM]f
(M, M) = ie;ju M
[MF, ME] = 0.

? J

Therefore they each generate an su(2) subalgebra as desired.

di M), (A.2.5)

(A.2.6)
(A2.7)
(A.2.8)
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