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ABSTRACT

In this thesis Z2 monopole solutions were studied in Yang–Mills–Higgs theories. We considered
a theory with gauge symmetry su(4) being spontaneously broken to so(4) by a scalar field in
the symmetric part of the 4 ◊ 4 representation. We showed that Z2 monopoles are solutions
of this theory and proceded to construct their asymptotic form. These monopoles belong to
continuous families of up to five parameters containing the discrete family previously known.
We also explicitly determined homotopies between solutions, thus classifying those as type Z2.

Palavras-chave: Magnetic Monopoles. Yang–Mills–Higgs Theories. Lie Algebras. Classical
Field Theories.



RESUMO

Neste trabalho estudamos monopolos Z2 em teorias de Yang–Mills–Higgs. Consideramos uma
teoria com simetria su(4) espontaneamente quebrada em so(4) por um campo escalar na
parte simétrica da representação 4 ◊ 4. Mostramos que esta teoria apresenta monopolos Z2

e construímos as formas assintóticas destas soluções. Estes monopolos apresentam–se em
famílias contínuas de até cinco parâmetros, contendo a família discreta previamente conhecida.
Também encontramos explicitamente as homotopias entre as soluções as quais classificam os
monopolos na classe Z2.

Palavras-chave: Monopolos Magnéticos, Teorias de Yang–Mills–Higgs. Álgebras de Lie. Teoria
Clássica de Campos.



RESUMO EXPANDIDO

0.1 INTRODUÇÃO

O monopolo magnético é um dos mais antigos tópicos de discussão na física que não possui
validação experimental. Este interesse prolongado pode inicialmente parecer sem fundamento,
no entanto este campo de pesquisa provou-se muito frutífero do ponto de vista teórico. A beleza
de certos aspectos da teoria, como simetria eletromagnética e quantização eletromagnética
além da sua relevância para problemas mais modernos em teorias de grande unificação como
confinamento de quarks tornaram este tópico um foco de interesse teórico.

Monopolos do tipo Zn surgem em modelos em que o campo de Higgs pertence à uma
representação diferente da adjunta. Em (KNEIPP; LIEBGOTT, 2010) e (KNEIPP; LIEBGOTT,
2013) os autores obtêm soluções de monopolo Z2 em teoria Yang-Mills-Higgs com simetria de
calibre su(n) quebrada por um campo de Higgs na representação n ◊ n simétrica. De maneira
geral foram descritas famílias discretas de soluções não fundamentais.

0.2 OBJETIVOS

Como uma extensão deste trabalho buscaremos novas soluções assintóticas de monopolo
do tipo Z2 no modelo de Yang-Mills-Higgs com campo escalar na representação n ◊ n do
su(n). Buscando inclusões genéricas de subálgebras su(2) será possível descrever monopolos
genéricos deste modelo e categoriza-los em famílias de vários parâmetros contínuos. Estas
famílias conteriam, em particular, as famílias discretas já conhecidas deste modelo. Por fim
devemos analisar se estes novos monopolos preservam o grupo de homotopia Z2 de seus
predecessores.

0.3 METODOLOGIA

Afim de cumprir com o objetivo propomos uma subálgebra su(2) de su(n) arbitrária e, sem
perda de generalidade, fixamos um de seus geradores na subalgebra de Cartan de su(n) na
representação simétrica n ◊ n. Partindo disto e de suas relações de comutação, os geradores
restantes devem satisfazer um sistema de equações quadráticas. Para solucioná-las, parti-
cionamos as suas matrizes em blocos 2 ◊ 2 e deduzimos condições para os coeficientes de um
gerador, ditos pesos magnéticos. Fixando pesos magnéticos admissíveis, foi possível solucionar
o sistema de equações, no caso n = 4, e assim observamos diversas famílias de soluções
distintas.

0.4 RESULTADOS E DISCUSSÃO

Nesta dissertação desenvolvemos um método para a descrição de novas soluções de monopolos
Z2 em teorias de Yang-Mills-Higgs. Por simplicidade nos focamos na quebra de simetria
su(4) æ so(4) com campo escalar na parte simétrica da representação 4 ◊ 4. Um método
geral foi desenvolvido para se encontrar subálgebras su(2) das quais é possível escrever a forma
explícita dos campos assintóticos destes monopolos Z2.

Observamos que para os pesos magnéticos β = (1, 0) e β = (0, 1) nossas soluções se
encontram numa família de dimensão assim como o monopolo de Hooft–Polyakov original.



Quando consideramos inclusões isoclínicas, no entanto, observamos famílias de dimensão
quatro. Enquanto que as inclusões três-para-um β = (1, ±3) geram famílias de monopolos de
três parâmetros.

Ademais caracterizamos homotopias explicitas entre soluções assintóticas. Assim pode-se veri-
ficar a existência de duas classes de homotopia, a trivial e a fundamental, confirmando que o
segundo grupo de homotopia do vácuo para estes novos casos é de fato Z2.

0.5 CONSIDERAÇÕES FINAIS

Em projetos futuros seria possível generalizar esta ideia para diferentes quebras de simetria, e
se elucidar a contagem do número de graus de liberdade restantes destas soluções. Inclusive
possivelmente determinar condições de calibre que permitam soluções dinâmicas de monopolo
análogas ao dyon para modelos em grupos de calibre maiores com quebra em grupos não
abelianos.
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1 INTRODUCTION

The magnetic monopole is arguably one of the oldest topic of discussion in theoretical

Physics which bears no experimental validation. This huge interest might therefore seem

unfounded at first. Nevertheless it is the vast playground of ideas in this field of study that

sparks peoples interest. The beauty in certain aspects of the theory, such as the concept of

symmetry and the eventual relevance to fundamental problems, such as quark confinement

and electric charge quantization, make it a topic of great theoretical interest.

Throughout History magnetic monopoles have been conceived to exist many times, for

instance by Pierre Curie in 1894. But their theoretical possibility becomes a lot more apparent

in the context of Maxwell’s equations which makes apparent the symmetric character of the

theory. In the Lorentz covariant formalism they read

∂µFµν = µ0jν ,

∂µ ú Fµν = 0,

where µ, ν = 0, . . . , 3 denote space-time indices, Fµν the electromagnetic tensor, jν the electric

four-current and ú denotes the Hodge dual. When no charges are present, jν = 0, the above

equations become symmetric in the sense that it is possible to rename

Fµν æ úFµν ,

and the equations are still satisfied. This transformation exchanges the roles of electric and

magnetic fields. The existence of only electric charges nevertheless breaks this symmetry. The

introduction of a magnetic four–current kν would thus restore the symmetry so as long as the

transformation above also exchanges electric and magnetic fluxes accordingly.

If we write the magnetic field B as the curl of some potential

B = Ò ◊ A,

then it may seem incompatible with non-vanishing magnetic sources for

ρm =
1

µ0

Ò · (Ò ◊ A) = 0,

wherever this vector potential is continuous and well-defined. Dirac was able to reconcile (4)

with non-vanishing charges by considering a string-like singularity carrying some magnetic field

all the way from the spacial asymptotic to a single point, as though it is made up of an

infinitesimally thin solenoid. So long as this string is undetectable this furnishes the theory

with means of describing a magnetic monopole using only the vector potential A, essential

for quantum mechanics. Experimentally this string could be detected via the Aharonov-Bohm

effect (AHARONOV; BOHM, 1959, 3), which is sensitive to phase changes in the wave function.

So requiring the string to be unphysical translates to the equation

eg = 2π~n,



Chapter 1. Introduction 14

called Dirac’s quantization condition. Here e and g are the electric and magnetic charges, ~

Planck’s constant and n an integer. This states that, provided there is at least one magnetic

monopole in the Universe with magnetic charge g, all other electrically charged particles must

have an electric charge which is an integer multiple of 2π~/g. Later the concept of gauge

invariance on compact gauge groups (YANG; MILLS, 1954, 1) allowed for an alternative

explanation for the quantization of electric charge which doesn’t require the existence of

monopoles: Put simply an electric charge operator can now be defined such that its eigenvalues

enumerate the allowed electric charges for particles in the theory. Electric charge is then

quantized in a similar fashion as angular momentum.

The new paradigm of symmetry breaking developed, among others by Nambu (NAMBU,

1960), Goldstone (GOLDSTONE, 1961) and Higgs (HIGGS, 1964) allowed the rediscovery of

the subject of magnetic monopoles. Now it is manifested as a soliton-like solution holding itself

together by means of a self-interaction potential. Which is, in turn, responsible for symmetry

breaking. As first noted by ’t Hooft (’T HOOFT, 1974) and Polyakov (POLYAKOV, 1974),

some Yang-Mills-Higgs theories admit non-trivial classical solutions which are both localized

in space and topologically stable. Localization in space together with their assignment of

energy and momentum enables the interpretation of those particular field solutions as particles.

These solutions have their stability guaranteed by the existence of conserved charges given by

topological invariants which remains unchanged under continuous deformations of the field.

Therefore if a field solution and a vacuum solution, for instance, have differing invariants, then

the former cannot be deformed into the latter and it is said to be topologically stable. In

contrast to Noether charges, these conserved charges are not related to continuous symmetry

of the action. They are related to the homotopic degree of the fields which map space time

regions into internal space regions (MANTON; SUTCLIFFE, 2004).

The possibility for non-trivial invariants, on the other hand, relies on the gauge group

considered by the theory and on the pattern of symmetry breaking. Many grand unification

theories predict the existence of magnetic monopoles and that they would have been synthesized

in beginning of the universe (COLEMAN, 1982). Their apparent absence, known as the

monopole problem, can serve the purpose of constraining parameters, ruling theories out

altogether or even proposing new ones(GUTH, 1981).

Magnetic monopoles can be relevant for the so-called Confinement Problem in QCD.

There is no satisfying answer to the question why quarks and gluons appear only as color singlets

in nature. One of the ideas, due to ’t Hooft (HOOFT, 1975) and Mandelstam (MANDELSTAM,

1976) conjectures that electric charge confinement in QCD is a dual phenomenon to the

magnetic charge confinement in a type II superconductor (’T HOOFT, 1982). In this model,

there is an electromagnetic duality (FIGUEROA-O’FARRILL, 1998) mapping monopoles into

electric charged particles and vice versa.

The idea of electromagnetic duality itself is not completely established. There are

some works based on tests leading to a conjecture of an electromagnetic duality in non-Abelian
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models (P. GODDARD; NUYTS; D. OLIVE, 1977), (MONTONEN; D. OLIVE, 1977). However,

there is no proof that this type of duality actually holds. There are studies to be done in this

topic in order to obtain a better understanding of this duality and this is related to a better

understanding of monopoles themselves. In particular, it is necessary a better knowledge of

the so-called Zn monopoles.

The Zn monopoles appear when the scalar field is not in the adjoint representation.

In (KNEIPP; LIEBGOTT, 2010) and (KNEIPP; LIEBGOTT, 2013) the authors obtained Z2

monopoles in Yang-Mills theories, and in particular they obtained a discrete family of non

fundamental monopoles. The general aim of this thesis is to overview the construction of

magnetic monopoles in gauge field theories and to describe a method of distinguishing su(2)

subalgebras from which one can construct distinct Z2 monopole solutions belonging to multi-

parameter continuous families. We focus on the su(4) æ so(4) case but the methods used

can in principle be extended to su(n) æ so(n).

In chapter 2 some mathematical background has been reviewed. We discussed results

from Lie algebra theory, Lie groups and their homotopy groups, as well as a brief examination

of the group SO(4) in particular.

In chapter 3 different monopole configurations were considered, from its original de-

scription by Dirac, to the ’t Hooft–Polyakov solution in the Georgi–Glashow model and an

asymptotic equivalence between the two. The BPS equations were also defined as well as

the concept of the vacuum manifold and the manifold of collective coordinates known as the

moduli space.

In chapter 4 we review monopole solutions for su(n) æ so(n) and develop a general

method for embedding su(2) subalgebras. We then move on to focus on the case su(4) æ so(4)

in order to describe all families of embeddings from which one generates monopole solutions.

By the end of the chapter we write down the explicit form for the Higgs field and determine

homotopies between distinct solutions.

In chapter 5 we discuss what we concluded from this thesis and the outlook for further

research.

In the appendix A we explore the connection between topological degree of the

two–sphere and the magnetic flux surface integral, as well as defining the generators for

SO(4) and a useful invariant in this context known as the pfaffian.
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2 MATHEMATICAL REVIEW

2.1 LIE ALGEBRAS

A Lie group is a group defined over a differential manifold. Given a Lie group G of

dimension dim G = d, the generators Xa, a = 1, . . . , d form a basis of the vector space

tangent to the identity TIG. This vector space is called the Lie algebra Lie(G) = g (FULTON;

W. HARRIS; J. HARRIS, 1991). This algebra inherits a product from its parent group called

the Lie bracket. This operation can be constructed as follows: Let x : (0, ε) æ G be a regular

path on G starting at x(0) = I and satisfying xÕ(0) = X œ g. Take Y œ g, then the vector

tangent to the new path x(t)Y x(t)≠1 also belongs to g. That is, given X, Y œ g and a path,

for concreteness the exponential x(t) = eitX œ G, then

[X, Y ] =
d

idt

1

eitXY e≠itX
2

-
-
-
-
-
t=0

œ g,

defines a bilinear product [., .] : g ◊ g æ g with the following properties:

[X, Y ] + [Y, X] = 0,

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0,

for all X, Y, Z œ g. A linear representation R of a Lie group G is a group homomorphism

R : G æ GL(V ), GL(V ) the group of general linear transformations on some vector space

W . This representation of G induces a representation of its algebra R : g æ gl(W ), acting on

our basis like R(Xa) = Ta. Then the representation of the lie bracket yields R([Xa, Xb]) =

TaTb ≠ TbTa also known as the commutator. Besides it is now possible to endow g with a

symmetric form È., .Í : g ◊ g æ R by taking the trace

ÈXa, XbÍ = tr(TaTb),

the representation for which the vector space W is g itself is called the adjoint representation

R = Ad of g. In this case the above trace is called the Killing form on g.

A subalgebra h of g is a vector subspace closed under the bracket operation. An

Abelian subalgebra a of g is a subalgebra for which all its elements are mutually commuting.

Furthermore it is said to be maximal if it is not contained in any larger Abelian subalgebra.

This is also called a Cartan subalgebra CSA(g) and it is of central importance for classifying

Lie algebras. Its dimension defines rank g = r.

An ideal h of g is a subalgebra of g satisfying [h, g] ™ h. It is also solvable if the

sequence [h, . . . , [h, h]] ™ {0} eventually. A Lie algebra g is said to be simple if it is neither

Abelian nor does it contain a proper ideal, meaning its only ideals are g itself and {0}. It is

said semisimple if does not contain any solvable proper ideal (KNAPP, 1988). A few notable

ideals are the centralizer of a subset s µ g defined by Zg(s) = {X œ g : [X, Y ] = 0, ’Y œ s}

and the normalizer Ng(s) = {X œ g : [X, Y ] œ s, ’Y œ s}.
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In the so called Cartan–Weyl basis a Cartan subalgebra is spanned by Hermitian gen-

erators CSA(g) = span{H1, . . . , Hr}. Given a representation R : g æ gl(V ), one can always

write states of the representation space V in a basis where all Hi are diagonal: Hi |µÍ = µi |µÍ.
Their eigenvectors are called weights and the r–tuple µ = (µ1, . . . , µn) is a weight vector. The

remaining d ≠ r generators are step operators Eα defined as simultaneous eigenvectors of Hi

in the adjoint representation (GEORGI, 2018). That is

Hi |EαÍ = αi |EαÍ ,

for each i = 1, . . . , r. In terms of commutators this means [Hi, Eα] = αiEα. Note that,

because Hi are all Hermitian, E†
α = E≠α. Now, we can think of the eigenvalues αi as images

of a linear functional α : CSA(g) æ R defined by α(Hi) = αi (B. HALL; B.C. HALL, 2003).

Their values are called roots and the functional α is a vector of the dual space CSA(g)ú which

we write as the r–tuple α = (α1, . . . , αr) called a root vector. The state Eα |µÍ has weight

α +µ. Because of this Eα |E≠αÍ has weight vector 0 and thus lies in CSA(g). More precisely it

yields [Eα, E≠α] = αiHi = α · H. This allows one to construct an su(2)α = span{T1, T2, T3}

subalgebra generated by the Hermitian operators

T1 =
1Ô
2|α|

(Eα + E≠α),

T2 =
1Ô

2i|α|
(Eα ≠ E≠α),

T3 =
1

2|α|2
α · H,

satisfying [Ti, Tj] = iεijkTk. Therefore the generator T3 may only attain integer or half–integer

eigenvalues, depending on its representation. Because of this

2
β · α

α2
œ Z, (2.1.1)

for any roots α, β œ Φ(g). Furthermore, exchanging the roles of α and β in (2.1.1) and

multiplying both results gives us the strong geometrical constraint

4
(α · β)2

α2β2
= 4 cos2 θ œ Z,

for any two roots α and β. This implies that the angle between them must satisfy cos θ = ±1

2

Ô
n

for some integer 0 Æ n Æ 4.

Given a basis for our weight space, a weight µ is said to be positive if its first non–zero

component is positive. A weight µ is said to be higher than a weight ν if µ≠ν is positive. This

allows us to speak of the highest weight Λ of a representation, which specifies it completely. It

satisfies Eα |ΛÍ = 0 for all positive roots α. A positive root is said to be simple if it cannot be

written as a proper sum of positive roots. The angle between simple roots satisfies π
2

Æ θ < π

and there are always r = rank g linearly independent roots spanning the whole CSA(g)ú.
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Their relative angles are used to classify all semisimple Lie algebras. Diagrammatically we

denote simple roots by vertices and their relative angles θ = π
2
, 2π

3
, 3π

4
, 5π

6
by 0, 1, 2, 3 lines

between them respectively. These are called Dynkin diagrams. Labeling a base of simple roots

αi, i = 1, . . . , r, we may define coroots

α‚
i = 2

αi

α2
i

,

and their relative inner product

Kij = αi · α‚
j œ Z,

is called the Cartan matrix of g.

The Dynkin labels for a weight λ are the coefficients

λi = λ · α‚
i œ Z,

the fundamental weights Λi are the ones forming a base orthornormal to the coroots, that is,

Λi · α‚
j = δij,

by reflecting a root β with respect to another root α the resulting vector

σα(β) = β ≠ (α‚ · β)α,

is again a root of g. This is called a Weyl reflection, and the set of all such reflections σα is

named the Weyl group.

2.2 HOMOTOPY GROUPS

Given a division algebra A and integer n the group of invertible linear tranformations

On(A) = {X œ GLn(A) | XúX = 1}, (2.2.1)

defines a manifold embedded in An2

, one dimension for each matrix entry. The specific cases

O(n) = On(R), U(n) = On(C), Sp(n) = On(H),

are called the orthogonal groups, unitary groups and symplectic groups respectively. The

additional constraint det X = +1 defines the special groups

SO(n) = {X œ On(R) | det X = +1}, SU(n) = {X œ On(C) | det X = +1},

All groups above, except for O(n), are path–connected which means that, given any

two points g, h œ G, there exists a continuous path γ : [0, 1] æ G connecting them both,

starting at γ(0) = g and ending at γ(1) = h. In practice these paths are exponentials of

generators for the group. For instance let G = SO(2) the group of proper rotations on R
2.
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Because dim SO(2) = 1 the algebra g = so(2) contains only one Hermitian generator, namely

T =

Q

a
0 ≠i

i 0

R

b = σ2, So the path γ : [0, τ ] ≠æ SO(2)

γ(θ) = eiθT =

Q

a
cos θ sin θ

≠ sin θ cos θ

R

b .

connects the identity I to a rotation by τ , so any two rotations can be connected by

some continuous path and SO(2) is indeed path–connected.

We can also speak of closed paths starting from and ending at the identity γ(0) =

γ(1) = I also called loops of G, whose set we’ll denote loop(G). By defining a product which

glues the images of two different loops γ, η like

γ ü η : [0, 1] ≠æ G,

t ‘≠æ
Y

]

[

γ(2t), t Æ 1/2,

η(2t ≠ 1), t > 1/2,

we will be able to furnish loop(G) with a group structure. The only major thing

remaining is identifying all loops that can be continuously deformed into one another. To do

this we think of loops as points in loop(G), and we would like to describe paths connecting

different points in this space. That is, given γ, η œ loop(G) if there exists a continuous path

H : [0, 1] ≠æ loop(G),

s ‘≠æ H(s),

starting at H(0) = γ and ending at H(1) = η then γ and η are said to be homotopic and the

map H is called a homotopy. Now we can use the existance of this map to define an equivalence

relation ≥ and divide loop(G) into equivalence classes [γ] = {η œ loop(G) : γ ≥ η} of mutually

homotopic loops. These classes, together with the product above, define the first homotopy

group of G denoted π1(G) = (loop(G)/ ≥ , ü).

We may go further and think of the space of homotopies themselves starting from and

ending at the identity [I] œ π1(G), call it loop2(G). We can then apply the previous reasoning

to define the second homotopy group of G, π2(G) = (loop2(G)/ ≥ , ü). Note that by varying

both parameters the map φ(t, s) = H(s)(γ(t)) is the image of a 2–sphere in G. So we can

also think of π2(G) as the group of 2–dimensional loops in G, up to continuous deformations.

This procedure can be extended to define the n–th homotopy group πn(G) for n Ø 3.

Working backwards even π0(G) makes sense: Here the equivalence classes are comprised of

0–spheres, i.e. points, which are path–connected. So there exists one and only one element

in π0(G) for each connected component of G. That is, G is path–connected if and only if

π0(G) ≥= 1. Similarly G is said to be simply–connected if π1(G) ≥= 1, meaning any path can

be contracted down to a point.

For instance every element of the group G = O(3) satisfies det X = ±1. Because every

loop in G is continuous its points must also vary in determinant continuously. Thus O(3) falls
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apart into two disconnected components: π0(O(3)) ≥= Z2 labeled by the determinant of its

elements.1

For an example of a group which is connected but not simply–connected we can take

G = SO(3). Here, there are loops which cannot be contracted to the identity, for example the

path of rotations around the z–axis ending at the rotation of 2π; γ : [0, 2π] æ SO(3),

γ(θ) =

Q

c
c
c
a

cos θ sin θ 0

≠ sin θ cos θ 0

0 0 1

R

d
d
d
b

.

If, however, we were to go around twice; γ : [0, 4π] æ SO(3) then the resulting loop would

be homotopic to the identity. This is the case because SO(3) is topologically identical to the

three–dimensional ball B3 with antipodes identified. It can be shown that any loop in SO(3)

is homotopic to one of the two loops above so we have π1(SO(3)) ≥= Z2.

It is possible, however, to view any lie group G as a subset of a larger simply–connected

group G̃ called its universal covering group2. This defines the spin groups as Spin(n) = ŜO(n).

For the previous case ŜO(3) ≥= Spin(3) ≥= SU(2).

Given a Lie group G and subgroup H µ G, one may measure the homotopy groups of

the homogeneous quotient space G/H, the short exact sequence of homomorphisms (ALBERT

SCHWARZ, 1994)

1 ≠æ H ≠æ G ≠æ G/H ≠æ 1,

provides the isomorphism π2(G/H) ≥= ker(π1(H) æ π1(G)). When G is simply–connected we

have

π2(G/H) ≥= π1(H). (2.2.2)

Similarly, if G is connected we have

π1(G/H) ≥= π0(H). (2.2.3)

This result will prove useful for determining the second homotopy class of a solution in a

Yang–Mills gauge theory. In particular we will look at the symmetry breakdown su(4) æ so(4),

so it will prove useful to understand the defining representation of so(4).

2.3 SO(4) GROUP STRUCTURE

When considering the symmetry break su(4) æ so(4) it proves useful to analyze the

group structure of H = SO(4) in order to determine whether or not topologically stable

monopoles appear in this model.

1
Zn stands for the finite cyclic group of order n

2 In fact there is always some subgroup K of G̃ such that G ≥= G̃/K.
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Every element g œ SO(4) in the defining, four–dimensional, representation corresponds

to a rotation in R
4. By writing g in its block diagonal form, also called its normal form,

D(g) =

Q

c
c
c
c
c
c
a

cos θ1 sin θ1

≠ sin θ1 cos θ1

0

0
cos θ2 sin θ2

≠ sin θ2 cos θ2

R

d
d
d
d
d
d
b

,

it can be described as a composition of two independent rotations acting on a pair orthogonal

planes. In general these are the only planes left invariant by g. The exception is the case where

both rotations have the same absolute angle, i.e. θ1 = ±θ2, then there are an infinite number

of invariant planes all rotating by ±θ1. These special rotations are called isoclinic, meaning

same angle, and are further distinguished by orientation: The ones for which both angles have

the same sign, θ1 = θ2, are said to be left–isoclinic whereas when they have opposite signs,

θ1 = ≠θ2, they are said to be right–isoclinic.

The identity, I, and central inversion, ≠I, are both left and right–isoclinic and it can

be shown that the product of left(right)–isoclinic rotations is again left(right)–isoclinic which

makes them subgroups SU(2)L and SU(2)R of SO(4). Furthermore both subgroups are normal

and the homomorphism

ρ : SU(2)L ◊ SU(2)R æ SO(4),

(gL, gR) ‘æ gLgR,

is two–to–one. This is because every rotation g œ SO(4) is a product of isoclinic rotations,

g = gLgR, and there are exactly two ways of decomposing g, namely

ρ(≠gL, ≠gR) = ρ(gL, gR) = gLgR = g.

Therefore we find

SO(4) ≥= SU(2) ◊ SU(2)

Z2

.

Because SU(2) is simply connected, so is SU(2)◊SU(2), therefore this homomorphism allows

one to compute the first homotopy group

π1(SO(4)) ≥= π1

A

SU(2) ◊ SU(2)

Z2

B

,

≥= π0(Z2) ≥= Z2.

A discussion about the generators for these subgroups can be found in (A.2)
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3 MONOPOLE CONFIGURATIONS

3.1 DIRAC MONOPOLE

Studied by Paul Dirac (DIRAC, 1931) the now called Dirac monopole offered an

explanation for the quantization of electric charge in nature. Suppose, in the classical setting,

there is a point source of magnetic field with strengh g. No continuous vector potential A

could ever describe this field simply because of Gauss’ law

g =
⁄

S
B · dS =

⁄

S
Ò ◊ A · dS =

⁄

∂S=?
A · dl = 0,

S standing for a smooth surface enclosing g. To circumvent this difficulty A must be singular

at some point in S for every choice of S. This describes some curve connecting the charge to

the spacial asymptotic. In order to determine a potential A fitting this requirement it helps

to imagine an infinitesimally thin solenoid coming from (0, 0, ≠Œ) and ending at (0, 0, 0), the

so–called Dirac string. It produces a magnetic field described by

Bs =
g

4πr2
r̂ + gδ(x)δ(y)Θ(≠z)ẑ,

Θ standing for the Heaviside step function, see figure 3.1. The flux of the field pointing

radially outwards always cancels the flux going up the solenoid so we have Ò · Bs = 0. Thus

we may look for a potential satisfying

Ò ◊ A =
g

4πr2
r̂ + gθ(≠z)δ(x)δ(y)ẑ.

Integrating the flux going through a spherical cap of radius r and angle θ with respect to ẑ,

B

gg

θ = π

Figure 1 – The magnetic field of a Dirac monopole

The radial magnetic field B emanating from a Dirac monopole of charge g may be described by the

curl of an azimuthal vector potential A. Both fields are singular at the negative z semi-axis.
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also assuming A in the ϕ̂ direction we gather1

⁄

C
A · dl =

⁄
2π

0

dϕ

⁄ θ

0

r2 sin θdθ
g

4πr2
, (3.1.1)

A2πr sin θ =
g

2
(1 ≠ cos θ), (3.1.2)

A =
g

4πr
tan

A

θ

2

B

ϕ̂. (3.1.3)

Note that this diverges when θ æ π, precisely the singularity designed for A. The Ahara-

nov–Bohm effect could, nevertheless, be used to detect this string. The additional requirement

that the effect always vanishes translates to

exp
3

ie

~

⁄

C
A · dl

4

= 1,

for any curve C. In particular for a surface intersecting the string, whose boundary is C, the

integral yields g and therefore

eg = 2πn~, (3.1.4)

for some integer n. This is Dirac’s original quantization of the electric charge. In terms of

topology, this reflects the fact that the first homotopy group of the gauge group G = U(1) is

π1(U(1)) ≥= Z,

which is nontrivial because U(1) is not simply connected. The integer in (3.1.4) specifies

in which sector a loop in U(1), and therefore the configuration for A, lies. In the following

constructions the gauge groups will always be simply connected so we turn to the second

homotopy group in order to search for topological configurations.

3.2 T’ HOOFT–POLYAKOV MONOPOLE

Yang–Mills theories where G is non–Abelian generally allow for magnetic monopoles as

solutions of the equations of motion. Here we have a scalar field Φ in the adjoint representation

of g = su(2), that is G = SO(3), breaking the symmetry down to an H = SO(2) subgroup

generated by Φ itself. The Lagrangian density is

L = ≠ 1

4l
tr F µνFµν +

1

2l
tr Dµ

ΦDµΦ ≠ V (Φ),

F is the non–Abelian field strength, D stands for the covariant derivative in G

DΦ = dΦ + ie[A, Φ],

F = DA = dA + ie[A, A],

1 the last expression follows from double-angle trigonometric identities
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A is the connection on G, the non–Abelian generalization of the electromagnetic potential Aµ.

Choosing a base of generators Ta we have

[Ta, Tb] = iεabcTc,

tr TaTb = lδab,

Where l stands for the index of the representation for Φ. The quartic scalar potential V given

by

V (Φ) = λ
1

|Φ|2 ≠ v2
22

, (3.2.1)

here the norm for Φ is defined by

|Φ|2 =
1

l
tr Φ

2 = Φ
a
Φ

a.

In terms of space–time and isospin components we have

F µν
a = ∂µAν

a ≠ ∂νAµ
a ≠ eεabcA

µ
b Aν

c , (3.2.2)

(Dµ
Φ)a = ∂µ

Φa ≠ eεabcA
µ
b Φc. (3.2.3)

The equations of motion yield a non–linear second order system of differential equations

DνF a
µν = ≠eεabc

Φ
bDµΦ

c, (3.2.4)

DµDµΦ
a = λΦ

a(Φb
Φ

b ≠ v2), (3.2.5)

The symmetric energy–momentum tensor is given by

Tµν = F a
µρF ρa

v + DµΦ
aDµ

Φ
a ≠ gµνL, (3.2.6)

T00 =
1

2

1

(Ea)2 + (Ba)2 + (D0
Φ)2 + (DΦ)2

2

+ V (Φ). (3.2.7)

Because physical field configurations carry finite energy we must look for fields with vanishing

energy density in the spacial asymptotic. Because (3.2.7) is positive definite, this means F = 0,

DΦ = 0 and |Φa|2 = v2 as r æ +Œ. From this we may infer A in terms of Φ:

DΦ = 0, (3.2.8)

∂iΦ
a = eεabcAb

iΦ
c, (3.2.9)

εade∂iΦ
a = eεabcεadeAb

iΦ
c, (3.2.10)

εabc∂iΦ
a = e(Ab

iΦ
c ≠ Ac

iΦ
b). (3.2.11)

Because Φ generates an Abelian subgroup H = SO(2) we call

Λ =
tr(AΦ)

l|Φ|
=

1

v
A

a
Φ

a,
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the Abelian projection of A (SHNIR, 2006). Now contracting the expression above with Φc

we find

εabc
Φ

c∂iΦ
a = veAb

i ≠ vΛiΦ
b,

Aa
i =

1

ve
εabc

Φ
b∂iΦ

c +
1

e
ΛiΦ

a.

From this expression one can derive the field strength

Fµν =
2

iev2
[∂µΦ, ∂νΦ] +

1

v
Φ(∂µΛν ≠ ∂νΛµ)+

+
1

v
(∂µΦΛν ≠ ∂νΦΛµ) +

1

v3
[[Φ, ∂µΦ], Φ]Λν +

1

v3
[Φ, [Φ, ∂νΦ]]Λµ.

Taking the Abelian projection of the field strength Fµν = 1

lv
tr FµνΦ the last three terms vanish

and we arrive at

Fµν =
1

v3
εabc

Φ
a∂µΦ

b∂νΦ
c + ∂µΛν ≠ ∂νΛµ.

Where we can see that the Abelian projection Λµ acts like the four–potential of Abelian

electrodynamics. The corresponding magnetic field yields

Bi =
1

2
εijkFjk =

1

2v3
εijkεabc

Φ
a∂jΦ

b∂kΦ
c + εijk∂jΛk.

And the magnetic four–current is given by

kµ = ∂σF̃σµ =
1

2ev3
εµνρσεabc∂

µ
Φ

a∂ν
Φ

b∂σ
Φ

c.

Notice that, with the assumption of continuity, the dependence of kµ on the gauge field

completely vanishes. Because the partial derivatives commute this current is conserved, ∂µkµ =

0. Finally the magnetic charge contained in a sphere of radius approaching infinity is

g =
⁄

d3x k0 =
1

2ev3

⁄

d3x εabcεmnk∂m(Φa∂n
Φ

b∂k
Φ

c)

=
1

2ev3

⁄

d2Sm εabcεmnkΦ
a∂n

Φ
b∂k

Φ
c.

This integral can be rewritten as the topological degree of a map Φ̂ : S2
int æ S2

Œ, between the

internal and asymptotic spheres:

g = ±
1

e

⁄

d2ξ

Ú

det
1

∂αΦ̂a∂βΦ̂a
2

.

Where Φ̂a = Φa/
Ô

ΦbΦb = Φa/v denotes the normalized field. A proof of this is presented

in section A.1. Taking, for instance, the representative, normalized configuration of winding

number q,

Φ̂ = sin θ cos qϕx̂ + sin θ sin qϕŷ + cos θẑ. (3.2.12)
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The Jacobian Jαβ = ∂αΦ̂a∂βΦ̂a yields

∂θΦ = cos θ cos qϕx̂ + cos θ sin qϕŷ ≠ sin θẑ,

∂ϕΦ = ≠q sin θ cos ϕx̂ + q sin θ cos qϕŷ.

Their inner product gives Jθθ = 1, Jθϕ = Jϕθ = 0, Jϕϕ = q2 sin2 θ, so

det Jαβ = JθθJϕϕ ≠ JθϕJϕθ = q2 sin2 θ.

The magnetic charge of this configuration is thus

g = ±
1

e

⁄

dθdϕ q sin θ = ±
4πq

e
.

Because Φ̂ : S2
int æ S2

Œ is a map from the unit sphere in internal space to the asymptotic

sphere in physical space, q must be an integer, the topological invariant labeling the second

homotopy group elements of S2. This can also be interpreted as the second homotopy group

of the homogeneous space G/H = SO(3)/SO(2), that is,

π2(SO(3)/SO(2)) ≥= π2(S
2) ≥= Z.

This homogeneous space defines the vacuum manifold which will come to discuss shortly.

3.3 BPS EQUATIONS

The equations of motion (3.2.5) become easier to solve by completing the square of

the Hamiltonian. Assuming a static, purely magnetic A0 = 0 configuration its total mass is

given by

M =
⁄

d3x
3

1

2
Ba

kBa
k + DkΦ

aDkΦ
a + V (Φ)

4

,

=
1

2

⁄

d3x (Ba
k û DkΦ

a)2 ±
⁄

d3x Ba
kDkΦ

a +
⁄

d3x V (Φ).

Integrating by parts and using DkBa
k = 0, the second terms gives

M0 =
⁄

d3x Ba
kDkΦ

a =
⁄

d2Sk Ba
kΦ

a,

which depends only on the spacial asymptotic. Therefore, in the limit λ æ 0, the energy density

in the bulk of space is minimized by fields satisfying either of

Ba
k = ±DkΦ

a. (3.3.1)

These are the BPS equations. Assuming the limits at r æ Œ to be of the form

Ba
k(θ, ϕ) =

Qa

4πr2
r̂k,

Φ
a(θ, ϕ) = Φ

a
0,
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for some generator Q œ Lie(G) called the non–Abelian magnetic charge, and some constant

vacuum state Φ0 which we may assume to lie in the same direction as Q. The total mass is

bounded bellow by

M0 = ±
⁄

d2Sk Ba
kΦ

a = ±Qa
Φ

a
0.

Depending on the sign chosen for (3.3.1). We arrive at the bound

M Ø v|g|.

Where g = tr(QΦ̂0) stands for the abelian projection of Q onto Φ0. This lower bound means

that the minimum energy achievable at any given sector g is M = v|g| being achieved precisely

when the BPS conditions (3.3.1) are satisfied everywhere in space.

3.4 VACUUM MANIFOLD

We’ve encountered scenarios where G = U(1) for the Dirac monopole and G = SO(3)

for the ’t Hooft–Polyakov monopole. We’d like to generalize the previous procedure to an

arbitrary symmetry group G acting on a scalar field |φÍ in a likewise arbitrary representation.

Let’s start from the basic assumption that any physical field must reach some minimum energy

state V (Φ) = DµΦ = 0 at points far enough from the origin in such a way that its total

energy remains finite. One defines the vacuum manifold given by such states (GODDARD;

D. I. OLIVE, 1978)

V = {Φ œ W : V (Φ) = 0}.

Here W stands for the state space of the gauge group G in some representation R. The

self–interaction V (Φ) being gauge invariant implies the group action of G on every Φ œ V

remains in V . Moreover when each point Φ1 œ V can be reached by any other Φ2 œ V through

some action g œ G, that is,

’Φ1, Φ2 œ G, ÷g12 œ G : g12 · Φ2 = Φ1.

G is said to act transitively on V , or equivalently V is said homogeneous for G. Likewise, for

each point in the vacuum, the set of orbits G · Φ = {g · Φ : R(g) œ G}, sweeps out all of V .

By fixing a marked vacuum state Φ0 we may therefore label each point Φ œ V by the

appropriate action g œ G which sends Φ0 to Φ. This becomes a one–to–one correspondence

provided we quotient G by those elements which act trivially on our initial choice, i.e. the

elements which fix Φ0. Their set define the unbroken gauge group also known as the stabilizer

subgroup

H(Φ0) = {h œ G : h · Φ0 = Φ0}.
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Thus the Higgs vacuum is isomorphic to the space of right cosets of H(Φ0) in G:

V ≥= G/H(Φ0). (3.4.1)

Topological solutions in 3–space require a nontrivial asymptotic map Φ̂ : V æ S2
Œ, this

translates to a nontrivial second homotopy group π2(V). By virtue of (3.4.1) and (2.2.2) we

have

π2(V) ≥= π2(G/H(Φ0)) ≥= π1(H(Φ0)).

For instance when the Higgs field belongs to the adjoint representation of G = SU(n),

depending on the multiplicities ni of eigenvalues of Φ0 (HORVATHY; RAWNSLEY, 1985) the

unbroken group yields 2

H(Φ0) = S (U(n1) ◊ · · · ◊ U(np)) .

For the special case where all eigenvalues are distinct from one another and zero, known

as maximal symmetry breakdown, this becomes S (U(1) ◊ · · · ◊ U(1)) ≥= U(1)n≠1 and the

second homotopy group of the Higgs vacuum is given by

π2(V) ≥= π1

1

U(1)n≠1
2 ≥= Z

n≠1.

That is, each field configuration is labeled by a set of n ≠ 1 integers. On the other hand in,

if the Higgs field belongs to a symmetric n ◊ n representation of G = SU(n), n Ø 4, all its

eigenvalues being identical, then

π2(V) ≥= π1

A

Spin(n)

Z2

B

≥= Z2.

This is the case approached by this thesis.

3.5 ASYMPTOTIC EQUIVALENCE

From a distance ’t Hooft–Polyakov monopoles look like Dirac monopoles. The reason

for this is that in the spacial asymptotic there is a gauge transformations which trivialize the

scalar field while simultaneously introducing a string singularity to the gauge field.

Let E = su(2) be a subalgebra of the gauge symmetry algebra g and Ti a set of

Hermitian generators for E such that T3 œ h the unbroken algebra while T1, T2 ”œ h. Then

define the asymptotic gauge transformation in terms of Euler angles θ and ϕ and winding

number q œ Z: (ARAFUNE; FREUND; GOEBEL, 1975), (WEINBERG; LONDON; ROSNER,

1984).

U(θ, ϕ) = exp(≠iqϕT3) exp(≠iθT2) exp(iqϕT3). (3.5.1)

2 S stands for the requirement that only the total determinant be one, i.e. det(U1 . . . Up) = 1
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This transformation is able to translate the Dirac configuration into a ’t Hooft–Polyakov

configuration. Note that for the winding number q = 1, U is singular at θ = π
2
. We start by

choosing the adjoint Higgs field to be constant and gauge fields to asymptotically resemble

the Dirac monopole potential.

Φ0 = vT3,

Aµ(x) =
q

er
tan

A

θ

2

B

ϕ̂ T3.

Because of this, this choice of fields will be referred to be in the string gauge, see Figure ??.

Notice that because all fields point in the same internal direction, T3, this configuration

is effectively abelian:

F µν
1 = F µν

2 = 0,

F µν
3 = ∂µAν

3 ≠ ∂νAµ
3 ≠ eε3bcA

µ
b Aν

c = ∂µAν
3 ≠ ∂νAµ

3 ,

(Dµφ)a = ∂µφa ≠ eεabcA
µ
b φc = 0.

Now, by acting on Φ0 with (3.5.1) we have

Φ
Õ = UΦ0U

†, (3.5.2)

Φ
Õ(x) = v exp(≠iqϕT3) exp(≠iθT2) T3 exp(iθT2) exp(iϕT3). (3.5.3)

Which we may determine by means of the identity

exp(A)B exp(≠A) = B + [A, B] +
1

2!
[A, [A, B]] + · · · +

1

n!

n
˙ ˝¸ ˚

[A, · · · [A, B] · · · ] + · · · .

Yielding

exp(≠iθT2)T3 exp(iθT2) =
Œÿ

k=0

(≠iθ)2k

(2k)!
T3 +

Œÿ

k=0

(≠iθ)2k+1

(2k + 1)!
iT1 = cos θT3 + sin θT1.

Substituting back into (3.5.3) we get

Φ(x) = v exp(≠iqφT3)(cos θT3 + sin θT1) exp(iqφT3),

= v cos θT3 + sin θ(cos qϕT1 + sin qϕT2).

This is the configuration considered in (3.2.12). Provided the gauge field is continuous outside

the origin we conclude that this transformed field configuration carries charge g = 4πq/e. To

make sure we must also transform the field

AÕ
µ = UAµU≠1 ≠ i

e
∂µUU≠1.

Because A0 = ∂0U = 0 we have

A
Õ = UAU≠1 ≠ i

e
ÒUU≠1.
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In spherical coordinates the gradient reads

ÒU = ∂rUr̂ +
1

r
∂θU θ̂ +

1

r sin θ
∂ϕU ϕ̂.

In the convention where r̂2 = θ̂2 = ϕ̂2 = 1.

∂rU = 0,

∂θU = i exp(≠iqϕT3)T2 exp(iθT2) exp(iqϕT3),

∂θUU≠1 = i exp(≠iqϕT3)T2 exp(iqϕT3),

= i(cos qϕT2 + sin qϕT1),

∂ϕU = ∂ϕ (exp(≠iqϕT3) exp(iθT2) exp(iqϕT3)) ,

= ≠iq(T3U ≠ UT3),

∂ϕUU≠1 = ≠iq(T3 ≠ UT3U
≠1).

Substituting back in the expressions for A:

AÕ
t = AÕ

r = 0,

AÕ
θ = ≠ i

er
∂θUU≠1 =

1

er
(cos qϕT2 + sin qϕT1),

AÕ
ϕ = UAϕU≠1 ≠ i

e
∂ϕUU≠1,

= ≠ q

er

1 ≠ cos θ

sin θ
UT3U

≠1 ≠ iq

er sin θ
(iT3 ≠ iUT3U

≠1),

=
q

er sin θ
[T3 ≠ cos θUT3U

≠1],

=
q

er sin θ
[T3 ≠ cos2 θT3 ≠ cos θ sin θ cos qϕT1 ≠ cos θ sin θ sin qϕT2],

=
q

er
[sin θT3 ≠ cos θ cos qϕT1 + cos θ sin qϕT2].

This field is manifestly continuous on the surface of any sphere containing the origin. Hence

the Higgs field Φ is the only source of magnetic four–current in this gauge. We might call it

the smooth gauge and we will be working on it through out the whole thesis. Furthermore

notice that by applying an additional global transformation

U = exp(iχT3),

one achieves a one parameter family of solutions

Φ(x) = v cos θT3 + sin θ(cos qϕT Õ
1 + sin qϕT Õ

2),

where

T Õ
1 = cos χT1 + sin χT2, T Õ

2 = cos χT2 ≠ sin χT1.

In the ’t Hooft–Polyakov monopole, g = su(2), this is the only free parameter, or internal

degree of freedom, available.
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3.6 MODULI SPACE

The unit charge monopole standing at the origin is only one of the possible solutions for

the equations of motion (3.2.5). Other possibilities arise when one considers spacial translations,

boosts as well as a time–dependent phases. In order to encompass the broadest set of solutions

those variations just mentioned are labeled by a set of what are called collective coordinates

qi. Given a topological class n, The manifold Mn swept out by those coordinates is called

the moduli space of class n. It is possible to determine its dimension by slightly varying fields

(Φ, Aµ) which we know to be solutions: (Φ, Aµ) æ (Φ + δΦ, Aµ + δAµ), and requiring that

it remains a solution. This means that the variation (δΦ, δAµ) must satisfy linearized BPS

equations.

We must also decide in which directions those deformed fields result in physically

distinct solutions. To do this one must factor out deformations arising from small (local) gauge

transformations, since those are not physical. Given two variations (δ1Φ, δ1A
µ) and (δ2Φ, δ2A

µ)

one defines their inner product by

È(δ1Φ, δ1A
µ), (δ2Φ, δ2A

µ)Í =
⁄

d3x tr (δ1Φδ2Φ + δ1A
µδ2Aµ) .

The requirement that zero modes must be orthogonal to gauge transformations leads to

DiδAi + ie[Φ, δΦ] = 0. (3.6.1)

Which are called the background gauge conditions.

3.6.1 Dyon

Aside for spatial translations the last zero mode remaining for the ’t Hooft–Polyakov

monopole is an internal degree of freedom generated by H(Φ0) ≥= U(1) as previously discussed.

This allows for a solution which, besides carrying magnetic charge also carries an electric

charge, called a Dyon (JULIA; ZEE, 1975, 8). One way of constructing dyons is by applying a

time–dependent gauge transformation

U(t) = exp
3

ie

v
χ(t)Φ

4

,

to the asymptotic fields of a purely magnetic monopole. The angular velocity ω = χ̇ gives rise

to a nonzero electric potential A0 and consequently a proportional electric charge. This choice

of time dependence is such that the background gauge condition (3.6.1) remains satisfied by

this perturbation. Also, because this degree of freedom is angular, the moduli space of charge

one in this model yields a manifold isometric to

M1
≥= R

3 ◊ S1,

where each point in M1 corresponds to a static solution centered at some point x œ R
3 with

phase χ œ S1. Low–energy dynamics further supply a curvature for M1 in such a way that
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geodesics of this manifold describe dyons of constant internal angular velocity traveling at a

constant speed in space.

When the unbroken gauge group H is also non-Abelian, it seems that the monopole can

transform under new generators of the corresponding non-Abelian global symmetry. One might

therefore suspect that additional collective coordinates could be introduced in a similar fashion

to the dyonic phase. This turns out to not to be the case because it is not always possible to

find zero modes satisfying the linearized field equations while simultaneously preserving the

background gauge conditions (DOREY et al., 1996). This thesis is nevertheless concerned in

labeling the different families of monopoles in g = su(4) without regard to whether or not

these internal parameters give rise to collective coordinates.
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4 CONTINUOUS FAMILIES OF BPS Z2 MONOPOLES

4.1 SU(N)æ SO(N)

As an extension to the work done in (KNEIPP; LIEBGOTT, 2010), we will analyze Z2

monopole solutions obtained in a Yang–Mills–Higgs theory having gauge symmetry g = su(n)

broken by a scalar field |φÍ in the symmetric D ¢ D representation1. One defines the Cartan

automorphism of g by the homomorphism σ : g æ g such that

σ(Ha) = ≠Ha,

σ(Eα) = ≠E≠α.

The unbroken subalgebra is then defined by the invariants of σ, namely the subalgebra

h(σ) ={Eα ≠ E≠α | α œ Φ
+},

α simple roots of g. We choose

|φÍ
0

=
vÔ
2

nÿ

k=1

|kkÍ , (4.1.1)

as our marked point in some unspecified connected vacuum manifold V which we take to be

homogeneous for G. One then checks that the invariants of σ annihilate the vacuum and form

an so(n) subgroup of g, h(σ) = h(|φÍ
0
) = so(n). The second homotopy group of V has been

determined by the general method

π2(G/H) ≥= π1(H) ≥= π1

A

H̃

ker R

B

≥= ker R,

where ker R stands for the kernel of the representation of h which is a finite subgroup of

Z(Spin(n)), the center of Spin(n). For n Ø 5 it was shown that

π2(G/H) ≥= π2

A

SU(n)

Spin(n)/Z2

B

≥= Z2.

And the elements of ker R may be written explicitly as

ker R ≥= Z2
≥= {exp(2πiα‚ · h), exp(2πi(λ‚

1 + α‚) · h)},

here α‚ and λ‚
1 stand for co–roots and first fundamental co–weight of g.

In order to obtain the asymptotic form of the Higgs field, one applies the asymptotic

gauge transformation (3.5.1) considered before

U(θ, ϕ) = exp(≠iqϕT3) exp(≠iθT2) exp(iqϕT3),

to the vacuum state (4.9.1). Notice, however, that now we have as many choices for generators

Ti as su(2) embeddings in su(n). This prompts us to label different monopole configurations

by the embeddings from which they are generated.
1 D stands for the defining, n–dimensional state space representation
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4.2 SU(4)æ SO(4)

In this thesis we will consider a Higgs field |φÍ in the representation space of G, with

algebra Lie(G) = su(4), in the symmetric D ¢ D representation as before. We choose

|φÍ
0

=
vÔ
2

4ÿ

k=1

|kkÍ .

The algebra for the unbroken gauge group yields h(|φÍ
0
) ≥= so(4). This is because, for every

generator

Mij = ≠i(Eij ≠ Eji) œ so(4),

we have

D ¢ D(Mij) = Mij ¢ I + I ¢ Mij,

D ¢ D(Mij) |φÍ =
vÔ
2

4ÿ

k=1

(Mij ¢ I + I ¢ Mij) |kkÍ ,

= ≠ ivÔ
2

4ÿ

k=1

(δjk |i, kÍ + δjk |k, iÍ ≠ δik |j, kÍ ≠ δik |k, jÍ),

= ≠ ivÔ
2

(|i, jÍ + |j, iÍ ≠ |i, jÍ ≠ |j, iÍ) = 0,

proving so(4) µ h(|φÍ
0
). Conversely any generator X œ su(4) which annihilates this vaccuum

state must be antisymmetric:

0 = D ¢ D(X) |φ0Í ,

=
1Ô
2

nÿ

k=4

(X ¢ I + I ¢ X) |kÍ |kÍ ,

=
1Ô
2

ÿ

ijk

(|iÍ Xij Èj|kÍ |kÍ + |kÍ |iÍ Xij Èj|kÍ),

=
1Ô
2

ÿ

ij

Xij(|ijÍ + |jiÍ),

=
1Ô
2

ÿ

ij

(Xij + Xji) |i, jÍ .

Since |i, jÍ are linearly independent we get Xij = ≠Xji and X generates elements of so(4) as

proposed.

Nevertheless in order to figure out the group H(|φÍ
0
) one must analyze how the

representation Sym2(D) of su(4) branches to, or induces, a representation RÕ restricted to

so(4). This is not straightforward thus, in order to determine the second homotopy group of

the vacuum manifold we use the following result

Given two representations R1 and R2 of g their respective restrictions RÕ
1 and RÕ

2 of h

we have

π2(G1/H1) ≥= π2(G2/H2).
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Where the groups G1, G2 and subgroups H1 µ G1, H2 µ G2 are defined as the images of

R1, R2 and RÕ
1, RÕ

2 respectively.

Knowing this we can choose the defining, four–dimensional, representation as R2 = D

and check how this one branches to so(4). By adopting the base

Σab =
1

2
σa ¢ σb œ su(4),

a, b = 0, 1, 2, 3; σ0 = I. Excluding a = b = 0 so that they remain traceless, we achieve a

complete base of fifteen linearly independent generators for SU(4)

Their commutation relations read

[Σab, Σcd] =iεbde(δacΣ0e + δ0aΣce + δc0Σae)+ (4.2.1)

+iεace(δbdΣ0e + δ0bΣde + δd0Σbe). (4.2.2)

Out of these elements, six represent generators of h(|φÍ
0
) = so(4), the antisymmetric ones,

namely,

so(4) = span{Σab | a = 2, b ”= 2 or a ”= 2, b = 2}.

Because these represent the generators of isoclinic rotations

ML
1 =

1

2
(M12 + M34) = Σ02, MR

1 =
1

2
(M12 ≠ M34) = Σ32,

ML
2 =

1

2
(M13 ≠ M24) = Σ23, MR

2 =
1

2
(M13 + M24) = Σ20,

ML
3 =

1

2
(M14 + M23) = Σ21, MR

3 =
1

2
(M14 ≠ M23) = Σ12.

We find that the restricted representation RÕ
2 yields the defining representation of so(4), that

is, H2 = SO(4). Applying the fact that SU(4) is simply connected we find

π2(V) ≥= π2(G/H),

≥= π2(G2/H2),

≥= π2(SU(4)/SO(4)),

≥= π1(SO(4)),

≥= π1((SU(2) ◊ SU(2))/Z2),

≥= π0(Z2) ≥= Z2.

We conclude that in this model there are only two homotopy classes for the Higgs field

π2(V) ≥= Z2.

In order to construct them explicitly we start off by embedding su(2) subalgebras in G, as was

done in (KNEIPP; LIEBGOTT, 2010). Among its generators we would like for one of them,

namely T3, to be in the broken subalgebra h = so(n), while T1, T2 ”œ so(n). To do this it is
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easier to work with generators in the defining representation D. We may do this with no loss

of generality as we are working at the level of algebras and it is straightforward to go from

generators of D to Sym2(D):

D ¢ D(X) = I ¢ D(X) + D(X) ¢ I,

for all X œ su(n).

4.3 SETTING THE BASIS

We will focus on the even dimensional case n = 2m. In the 2m–dimensional repre-

sentation, D, the lie algebra generators for g = su(2m) and h = so(2m) may all be written

in terms of the canonical basis Eij = |iÍ Èj|, i = 1, . . . , 2m, where |iÍ, Èj|, are the weight

and coweight states, respectively, of D. The canonical basis for h = so(2m) is given by the

antisymmetric generators

Mij = ≠i(Eij ≠ Eij).

Among those are the block diagonal ones ha = M2a≠1,2a with a = 1, . . . , m = rank(h). Notice

that these are all mutually commuting and so may be chosen as the generators for the Cartan

subalgebra CSA(h) = span{h1, . . . , hm}. More generally we will employ indices a, b, c, . . . to

run from 1 to m, whereas i, j, k, . . . run from 1 to 2m. Like the construction of (WEINBERG;

LONDON; ROSNER, 1984) we pick out generators Ti of an su(2) subalgebras. Among these

generators we would like for one of them, namely T3, to be in the broken subalgebra h = so(n),

while T1, T2 ”œ so(n). In particular we take, without loss of generality, T3 œ CSA(g),

T3 =
1

2
βaha. (4.3.1)

Here2 β = βaea stands for a root in the dual vector space CSA(h)ú. It is also known as a

magnetic weight. The non–Abelian quantization condition exp(4πiT 3) = I implies

exp(2πiβaha) =
mŸ

a=1

(cos(2πβa) + i sin(2πβa)ha) = I,

since ha are all independent we conclude βa œ Z must be integer coefficients. In order to

classify all embeddings it proves useful to factor ha as the following tensor product 3

ha = diag(ea) ¢ σ2 = ≠idiag(ea) ¢ J,

where J =

Q

a
0 1

≠1 0

R

b. Therefore (4.3.1) may be rewritten as

T3 =
1

2i
diag(β) ¢ J.

2 Where ea = (0, . . . , 1, . . . 0), the a–th canonical vector

3 We’ll make use of the Pauli matrices σ1 =

3
0 1
1 0

4

, σ2 =

3
0 ≠i
i 0

4

, σ3 =

3
1 0
0 ≠1

4

, σ0 =

3
1 0
0 1

4

.



Chapter 4. Continuous Families of BPS Z2 Monopoles 37

Take m = 2 for instance, here we have

T3 =
1

2i

Q

a
β1 0

0 β2

R

b ¢ J =
1

2i

Q

a
β1J 0

0 β2J

R

b ,

=
1

2i

Q

c
c
c
c
c
c
a

0 β1 0 0

≠β1 0 0 0

0 0 0 β2

0 0 ≠β2 0

R

d
d
d
d
d
d
b

.

We may only factor T3 like this in even dimensional cases. Even though it is possible to embed

solutions found here in su(2m + 1) by simply disregarding the last row and column of each

generator, we are not able to describe the most general set of solutions this way. Therefore we

will only treat the even dimensional cases.

4.4 SOLVING FOR su(2) SUBALGEBRAS

To find a generic su(2) subalgebra we start from the system of equations

[T1, T2] = iT3,

[T2, T3] = iT1,

[T3, T1] = iT2,

and eliminate T2 from the first and second equations. After rearranging a few terms we arrive

at the second order system

[T3, [T3, T1]] = T1, (4.4.1)

[[T3, T1], T1] = T3, (4.4.2)

which we wish to solve for T1 being given

T3 =
1

2i
diag(β) ¢ J, (4.4.3)

βa œ Z to be determined. To do this we must also write T1 in terms of 2 ◊ 2 blocks, namely

xab,

T1 =
1

2

mÿ

a,b=1

eab ¢ xab,

where eab stands for the canonical basis for the m◊m matrices. Notice that T1 being Hermitian

translates to

x†
ab = xba. (4.4.4)
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Therefore we have m(m + 1)/2 independent blocks to solve for. Substituting these definitions

we have

[T3, T1] =
1

4i

ÿ

ab

diag(β)eab ¢ Jxab ≠ eabdiag(β) ¢ xabJ, (4.4.5)

=
1

4i

ÿ

ab

eab ¢ βaJxab ≠ eab ¢ βbxabJ, (4.4.6)

=
1

4i

ÿ

ab

eab ¢ (βaJxab ≠ βbxabJ). (4.4.7)

Now we analyze equations (4.4.1) and (4.4.2) separately.

4.4.1 Determining T3

Upon substitution of (4.4.3) and (4.4.7), equation (4.4.1) becomes

T1 = [T3, [T3, T1]] = ≠1

8

ÿ

ab

(diag(β) ¢ J)(eab ¢ (Jxab ≠ βbxabJ))+

≠ (eab ¢ (βaJxab ≠ βbxabJ))(diag(β) ¢ J),

= ≠1

8

ÿ

ab

eab ¢ (≠β2

axab ≠ 2βaβbJxabJ ≠ β2

b xab).

Because eab are linearly independent we get, for each a, b,

xab =
1

4
(β2

axab + 2βaβbJxabJ + β2

b xab), (4.4.8)

(4 ≠ β2

a ≠ β2

b )xab = 2βaβbJxabJ. (4.4.9)

The following simple proposition enables us to further constrain the integers βa.

Proposition: Let x be a complex–valued 2 ◊ 2 matrix and J as before. Given

JxJ = kx, (4.4.10)

for some k œ C, then either k = ±1 or x = 0 identically.

Proof : Multiplying both sides of this equation by J on the left and right, using J2 =

≠1, we get x = kJxJ . Now, apply (4.4.10) to the right–hand side yielding x = k2x. So

(1 ≠ k2)x = 0, meaning that if some component in x is nonzero then k2 = 1, otherwise x = 0.

The result follows.

For now we shall assume both βa, βb ”= 0 for some pair a, b. Using this, equation (4.4.9)

becomes:

JxabJ =
4 ≠ β2

a ≠ β2
b

2βaβb

xab. (4.4.11)

So for each block xab that we further assume to be non vanishing the previous proposition

yields

4 ≠ β2
a ≠ β2

b

2βaβb

= kab,
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for some sign kab = ±1. It is worth pointing out that kba = kab by virtue of the symmetry of

this expression. Following through with this equation we can complete squares to get

4 ≠ β2

a ≠ β2

b = 2kabβaβb, (4.4.12)

4 = β2

a + 2kabβaβb + β2

b , (4.4.13)

4 = (βa + kabβb)
2, (4.4.14)

2lab = βa + kabβb, (4.4.15)

which introduces a new set of signs lab = ±1. The previous set kab can now be inferred solely

in terms of the new set. To do this, exchange a and b in (4.4.15) and multiply by kba:

2lba = βb + kbaβa,

2kbalba = kbaβb + βa.

Subtract this from (4.4.15) yielding

2(lab ≠ kbalab) = (kab ≠ kba)βb, (4.4.16)

lab ≠ kbalba = 0, (4.4.17)

kab = lablba. (4.4.18)

The dependence on βb vanishes because kab is symmetric, and our goal was achieved. One can

therefore restate (4.4.15) as the symmetric expression

2 = labβa + lbaβb. (4.4.19)

In summary, for each pair βa, βb ”= 0 and block xab ”= 0, condition (4.4.2) only holds

when equation (4.4.19) is satisfied by a pair of signs labeled lab and lba.

If, however, some βa = 0, take β2 = 0 for definiteness, and β1 ”= 0. We then refer back

to (4.4.9) to find three independent conditions

(4 ≠ 2β2

1)x11 = 2β2

1Jx11J,

(4 ≠ β2

1)x12 = 0,

4x22 = 0.

The general procedure undertaken was to assume T1 mostly zero and then to gradually constrain

β by setting blocks xab ”= 0. We may consider, for instance, x11 = 0, x12 ”= 0. This turns out

not to lead to a solution under further scrutiny. Taking x11 ”= 0 and x12 = 0 does, on the

other hand, lead to a solution, called the fundamental embedding. In order to describe it we

must first see what conditions the blocks xab must satisfy.
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4.4.2 Determining T1

We turn to equation (4.4.2):

[[T3, T1], T1] =
1

8i

ÿ

abcd

(eab ¢ (βaJxab ≠ βbxabJ))(ecd ¢ xcd) ≠ (ecd ¢ xcd)(eab ¢ (βaJxab ≠ βbxabJ)),

=
1

8i

ÿ

abcd

δbcead ¢ (βaJxabxcd ≠ βbxabJxcd) ≠ δdaecb ¢ (βaxcdJxab ≠ βbxcdxabJ),

=
1

8i

ÿ

abc

eab ¢ (βaJxacxcb ≠ βcxacJxcb ≠ βcxacJxcb + βbxacxcbJ).

Comparing this to T3

T3 =
1

2i

ÿ

ab

βaδabeab ¢ J,

blockwise we have

4βaδabJ =
ÿ

c

βaJxacxcb ≠ 2βcxacJxcb + βbxacxcbJ.

Multiplying on the right by ≠J

4βaδab =
ÿ

c

βaJxac(≠JJ)xcb(≠J) + 2βcxacJxcbJ + βbxacxcbJ(≠J),

=
ÿ

c

(βakackcb + 2βckcb + βb)xacxcb.

Here we used (4.4.11), so we should only consider the sum going over indices c for which

neither xac nor xcb are zero. Notice, however, that if we did sum over them this expression

would remain true, with the caveat of neither kac or kcb being previously defined. We shall

adopt, nonetheless, the more general sum for the sake of brevity.

By virtue of (4.4.15) we can further simplify things by factoring out kcb

4βaδab =
ÿ

c

kcb(βakac + βc + kcbβb + βc)xacxcb,

=
ÿ

c

kcb(2lac + 2lbc)xacxcb.

Which in turn, because of kab = lablba, may be restated as

2βaδab =
ÿ

c

(laclcblbc + lcb)xacxcb. (4.4.20)

If we instead chose to multiply by (≠J) on the left we would have arrived at a similar equation

2βaδab =
ÿ

c

(lca + laclcalbc)xacxcb. (4.4.21)

Nevertheless, because x†
ab = xba, (4.4.20) and (4.4.21) are in fact equivalent.

Now, depending on which blocks we assume to be nonzero we may get different classes

of solutions. The following definition will prove useful.
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4.5 A NORM FOR BLOCKS

For every pair βa, βb ”= 0, we have

JxabJ = kabxab,

kab = ±1 as before. So each block must be of the form

xab =

Q

a
uab vab,

kabvab ≠kabuab

R

b ,

for some uab, vab œ C. Because T1 is Hermitian we get

xabxba = xabx
†
ab =

Q

a
|uab|

2 + |vab|
2 kab(uabv

ú
ab ≠ uú

abvab),

≠kab(uabv
ú
ab ≠ uú

abvab) |uab|
2 + |vab|2

R

b .

Notice that the first entry satisfies the following norm properties

(xabxba)11 œ RØ0,

(xabxba)11 = 0 ≈∆ xab = 0.

So we may adopt the shorthand

||xab||
2 = (xabxba)11.

4.6 EXPLICIT EMBEDDINGS

4.6.1 Fundamental Embeddings

Assuming only x11 ”= 0 and β2 = 0, equation (4.4.9) leads to

(2 ≠ β2

1)x11 = Jx11J, (4.6.1)

x11 = Jx11J, (4.6.2)

therefore β1 = ±1 which, by (4.4.19), is labeled by β1 = l11. Substituting this in (4.4.20)

yields

x11x11 = 1. (4.6.3)

Because of conditions (4.4.4) and (4.6.3) we have the form

x11 =

Q

a
u v

v ≠u

R

b = vσ1 + uσ3. (4.6.4)

Where u, v œ R. But, because of (4.6.2), u2 + v2 = 1. Thus the general solution restricted to

this block is given by

x11 = cos χσ1 + sin χσ3,
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χ œ [0, 2π] is an arbitrary angle. By computing T2 = ≠i[T3, T1] we arrive at

T1 =
1

2

Q

a
cos χσ3 + sin χσ1 0

0 0

R

b , T2 = ±
1

2

Q

a
cos χσ1 ≠ sin χσ3 0

0 0

R

b , T3 = ±
1

2

Q

a
σ2 0

0 0

R

b ,

(4.6.5)

l11 = ±1. Notice that we can rewrite

x11 = exp
3

i
χ

2
σ2

4

σ3 exp
3

≠i
χ

2
σ2

4

.

So we may interpret (4.6.5) as the action of the element U œ H

U =

Q

a
exp(iχσ2/2) 0

0 I

R

b = exp
3

i
χ

2
h1

4

œ H,

over the standard embedding:

T1 =
1

2

Q

a
σ3 0

0 0

R

b , T2 = ±
1

2

Q

a
σ1 0

0 0

R

b , T3 = ±
1

2

Q

a
σ2 0

0 0

R

b .

This will be referred to as the β = (±1, 0) fundamental embedding. Likewise the β = (0, ±1)

fundamental embedding is defined by:

T1 =
1

2

Q

a
0 0

0 σ3

R

b , T2 = ±
1

2

Q

a
0 0

0 σ1

R

b , T3 = ±
1

2

Q

a
0 0

0 σ2

R

b .

4.6.2 Excluding One Possibility

Although no solutions exist in what follows, suppose for the sake of completeness that

x11 = x22 = 0 and β2 = 0. Then (4.4.9) for a = b = 1 and a = b = 0 are immediately

satisfied. Setting a = 1, b = 2 yields

(4 ≠ β2

1)x12 = 0,

Since x21 = x†
12, for T1 ”= 0 we require β1 = ±2. Given these conditions

T3 = ûi

Q

a
J 0

0 0

R

b , T1 =

Q

a
0 x12

x†
12 0

R

b ,

condition (4.4.2) nonetheless can never be fulfilled. The reason for this is that equation

[T1, [T1, T3]] = ±i

Q

a
[x12x

†
12, J ] 0

0 0

R

b = T3,

translates to [x12x
†
12, J ] = ≠J . But by taking the Hermitian of both sides: [x12x

†
12, J ] = +J .

We arrive at a contradiction, so there are no β = (±2, 0) or β = (0, ±2) embeddings.

If, however, β2 ”= 0 then solutions confined to x12 do exist, though they are part of a

larger family of embeddings which we come to examine next.



Chapter 4. Continuous Families of BPS Z2 Monopoles 43

4.6.3 Isoclinic Embedding

Starting from the assumption that all βa and blocks xab are nonzero we find an em-

bedding such that β1 = ±1 and β2 = ±1. Therefore T3 generates some isoclinic rotation

which motivates naming its corresponding embedding an isoclinic embedding. This comes from

equations (4.4.9), for a = b, giving us β1 = l11 and β2 = l22. For a ”= b we get

2l12 = l11 + k12l22,

2l21 = l22 + k12l11.

Since k is symmetric. Focusing on the case k12 = +1 we get l11 = l22 = l21 = l12. Substituting

these in (4.4.15) yields

1 = x11x11 + x12x21, (4.6.6)

1 = x21x12 + x22x22, (4.6.7)

0 = x11x12 + x22x21, (4.6.8)

0 = x21x11 + x22x21. (4.6.9)

Using the fact that x11 and x22 are real and of the form (4.6.4)

xaa =

Q

a
uaa vaa

vaa ≠uaa

R

b ,

we get

xaaxaa =

Q

a
u2

aa + v2
aa 0

0 u2
aa + v2

aa

R

b = ρ2

a,

ρa œ R. Writing x12 in a similar way:

x12 =

Q

a
u12 v12

v12 ≠u12

R

b .

We get

x12x21 = x12x
†
12 =

Q

a
|u12|

2 + |v12|
2 u12v

ú
12 ≠ uú

12v12

uú
12v12 ≠ u12v

ú
12 |u12|

2 + |v12|
2

R

b ,

by setting ρ2
12 = |u12|

2 + |v12|
2, (4.6.6) becomes

Q

a
1 0

0 1

R

b =

Q

a
ρ2

11 + ρ2
12 u12v

ú
12 ≠ vú

12v12

uú
12v12 ≠ u12v

ú
12 ρ2

11 + ρ2
12

R

b .

Similarly for the second equation
Q

a
1 0

0 1

R

b =

Q

a
ρ2

22 + ρ2
12 uú

12v12 ≠ u12v
ú
12

u12v
ú
12 ≠ uú

12v12 ρ2
22 + ρ2

12

R

b .
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From the diagonal elements we can thus write

ρ2

11 = ρ2

22 = cos2 η, ρ2

12 = sin2 η.

We gather that ρ11 = cos η absorbing the possible sign into the definition of η. Now ρ22 =

± cos η and ρ12 = ± sin η. The off-diagonal elements are zero only if u12 and v12 have the

same phase which we’ll call ψ. From the definition of each ρab we can define two new angles

ζ and ψ. The last two equations (4.6.8),(4.6.9) provide us a coupling between angles:

0 = eiψ sin η

Q

a
cos(χ1 ≠ ζ) ≠ cos(ζ ≠ χ2) sin(χ1 ≠ ζ) ≠ sin(ζ ≠ χ2)

≠ sin(χ1 ≠ ζ) + sin(ζ ≠ χ2) cos(χ1 ≠ ζ) ≠ cos(ζ ≠ χ2)

R

b .

This condition is only satisfied when ζ = 1

2
(χ1 + χ2). We assume l11 = 1 with no loss of

generality.4 The general solution for k12 = +1 is therefore 5

T1 =
1

2

Q

a
cos η(cos χ1σ3 + sin χ1σ1) eiψ sin η(cos ζσ3 + sin ζσ1)

e≠iψ sin η(cos ζσ3 + sin ζσ1) cos η(cos χ2σ3 + sin χ2σ1)

R

b , (4.6.10)

T2 =
1

2

Q

a
cos η(cos χ1σ1 ≠ sin χ1σ3) eiψ sin η(cos ζσ1 ≠ sin ζσ3)

e≠iψ sin η(cos ζσ1 ≠ sin ζσ3) cos η(cos χ2σ1 ≠ sin χ2σ3)

R

b , (4.6.11)

T3 =
1

2

Q

a
σ2 0

0 σ2

R

b . (4.6.12)

A similar computation 6 for k12 = ≠1 yields

T1 =
1

2

Q

a
cos η(cos χ1σ3 + sin χ1σ1) eiψ sin η(cos ξσ0 + i sin ξσ2)

e≠iψ sin η(cos ξσ0 ≠ i sin ξσ2) cos η(cos χ2σ3 + sin χ2σ1)

R

b ,

T2 =
1

2

Q

a
cos η(cos χ1σ1 ≠ sin χ1σ3) eiψ sin η(≠i cos ξσ2 + sin ξσ0)

e≠iψ sin η(i cos ξσ2 + sin ξσ0) cos η(≠ cos χ2σ1 + sin χ2σ3)

R

b ,

T3 =
1

2

Q

a
σ2 0

0 ≠σ2

R

b .

Here ξ = 1

2
(χ1 ≠ χ2). In both cases the requirement that neither T1 nor T2 annihilates the

vacuum state implies T T
1 ”= ≠T1 and T T

2 ”= ≠T2. This in turn excludes the possibilities where

η = π/2 and ψ = π/2, 3π/2, for all χ1, χ2.

4.6.4 Three–to–One Embedding

There is one nontrivial possibility remaining which is all xab ”= 0 except for a single

diagonal block xaa = 0. We’ll take it to be the second one for definiteness. Equation (4.4.15)

tells us that β1 = l11 and x12 ”= 0 implies

2l21 = β2 + k21β1,

β2 = 2l21 ≠ k21l11.

4 For l11 = ≠1 simply multiply both T2 and T3 by ≠1.
5 The second generator follows from [σi, σj ] = 2iεijkσk
6 This time identities {σi, σj} = 2δijσ0 and {σi, σ0} = 2σi were employed.
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In this case, in order to avoid falling back to one of the previous families we’ll pick β2 ”= ±1:

2l21 ≠ k21l11 ”= ±1,

l21(2 ≠ l12l11) ”= ±1,

l12l11 = ≠1.

Where we used the identity kab = lablba. We conclude that l12 = ≠l11, upon substituting back,

β2 = 2l21 ≠ k21l11,

= ≠2k21l11 ≠ k21l11,

= +3k12l12,

= +3l21,

This fixes β = diag(l11, 3l21). Equation (4.4.19) yields

β1 = l11x11x11 + l12x12x21,

0 = 2k12(l11 + l12)x12x21,

0 = 2k12(l11 + l12)x12x21,

β2 = l21x21x12,

But l12 + l11 = 0, so the second and third conditions are satisfied automatically. Substituting

the remaining values we get

1 = x11x11 ≠ x12x21,

3 = x21x12.

Using the fact that Jx12J = k12x12 the block has the following form

x12 =

Q

a
u12 v12

k12v12 ≠k12u12

R

b .

And x21 = x†
12 so the last equation is solved by

x12 =
Ô

3eiψ

Q

a
cos χ2 sin χ2

k12 sin χ2 ≠k12 cos χ2

R

b .

In this case x12x21 = x21x12, so the first equation becomes 4 = x11x11, and since x11 must

be real, k11 = +1, we conclude

x11 = 2(cos χ1σ3 + sin χ1σ1).
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We assume l11 = 1 as before. For k12 = +1 the complete solution becomes

T1 =
1

2

Q

a
2(cos χ1σ3 + sin χ1σ1)

Ô
3eiψ(cos χ2σ3 + sin χ2σ1)Ô

3e≠iψ(cos χ2σ3 + sin χ2σ1) 0

R

b ,

T2 =
1

2

Q

a
2(cos χ1σ1 ≠ sin χ1σ3)

Ô
3eiψ(cos χ2σ1 ≠ sin χ2σ3)Ô

3e≠iψ(cos χ2σ1 ≠ sin χ2σ3) 0

R

b ,

T3 =
1

2

Q

a
σ2 0

0 ≠3σ2

R

b .

Meanwhile for k12 = ≠1 we arrive at

T1 =
1

2

Q

a
2(cos χ1σ3 + sin χ1σ1)

Ô
3eiψ(cos χ2σ0 + i sin χ2σ2)Ô

3e≠iψ(cos χ2σ0 ≠ i sin χ2σ2) 0

R

b ,

T2 =
1

2

Q

a
2(cos χ1σ1 ≠ sin χ1σ3)

Ô
3eiψ(i cos χ2σ2 ≠ sin χ2σ0)Ô

3e≠iψ(≠i cos χ2σ2 ≠ sin χ2σ0) 0

R

b ,

T3 =
1

2

Q

a
σ2 0

0 3σ2

R

b .

We shall refer to these two embeddings as three–to–one because T3 generates a simultaneous

rotation of two orthogonal planes, the second plane rotating three times for each turn of the

first.

4.6.5 Diagrammatic Classification

One way to classify different embeddings is by deciding for which pairs a, b equations

(4.4.19)

2 = labβa + lbaβb, lab, lba œ {≠1, +1},

hold. To visualize this let us define a graph whose vertices, labeled 1 through m, may or may

not be filled in, depending on whether or not equations in the diagonal, a = b, are satisfied.

Notice that for the diagonal these equations reduce to β2
a = 1. Meanwhile an edge between

vertices a and b implies the equation for the pair a, b holds. That is,

a
stands for β2

a = 1, while
a

stands for β2
a ”= 1, and

a b
means there are signs lab, lba such that labβa + lbaβb = 2.

For m = 1 only one embedding is possible: . For m = 2 we have found three distinct

possibilities:

Fundamental : ;

Isoclinic : ;

Three ≠ to ≠ One : .
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The advantage of these diagrams is that they help clarify whether each possibility has been

considered. Notice for instance that the only non–trivial7 diagram missing is and

it did not yield an embedding, as it lead to a contradiction in section 4.6.2. Therefore we may

assert that our list is exhaustive.

4.7 GENERATING MONOPOLE FAMILIES

The goal of this section is to restate the previous families of embeddings as some action

of G over a simpler embedding.

Like for the fundamental embedding these parameters arise from internal degrees of

freedom of the solution. These define elements of G which fix T3, but would otherwise act

non trivially on either T1 or T2. To be more precise we would like to find which generators of

the stabilizer

G(T3) = {U œ H : UT3U
† = T3},

do not commute with either T1 or T2. To do this explicitly we will adopt the following base

Σab =
1

2
σa ¢ σb œ su(4),

a, b = 0, 1, 2, 3. Excluding a = b = 0 so that tr Σab = 0. This yields a complete base of fifteen

linearly independent generators of su(4) = span{Σab}. Their commutation relations read

[Σab, Σcd] =iεbde(δacΣ0e + δ0aΣce + δc0Σae)+ (4.7.1)

+iεace(δbdΣ0e + δ0bΣde + δd0Σbe). (4.7.2)

Out of these elements, six generate h(|φÍ
0
) = so(4), namely,

so(4) = span{Σab : a = 2, b ”= 2 or a ”= 2, b = 2},

Let us set T3 = Σ02 = 1

2
(M12 + M34) = 1

2
(h1 + h2). Upon inspection of the commutation

relations we have

g(Σ02) = span{Σ02, Σ32, Σ20, Σ12, Σ10, Σ30, Σ22} ≥= u(1) ü so(4). (4.7.3)

Taking η = χ1 = χ2 = 0 on (4.6.10) gives T1 = Σ03. By checking which generators of (4.7.3)

do not commute with Σ03 we arrive at the subset

Σ02, Σ12, Σ22, Σ32 œ g(Σ02).

Exponentiating each of these we construct unitary transformations taking Σ03 to

Σ01, Σ11, Σ21, Σ31 œ G(Σ02) · Σ03 µ g, (4.7.4)

7 The diagram readily implies T1 = 0.
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respectively. Now we repeat the process by checking which further elements of g can be

achieved by G(Σ02) actions on (4.7.4), and so on until we complete the orbit of Σ03 under

G(Σ02). The general solution, when k12 = +1, (4.6.10)–(4.6.12) can, after some examination,

be expressed as

T1 = UΣ03U
†, T2 = UΣ01U

†, T3 = Σ02,

where U is given by

U = exp(i(θ1 ≠ θ2)Σ32) exp(i(θ1 + θ2)Σ02) exp(≠iψΣ30) exp(iηΣ20).

Similarly, when k12 = ≠1,

T1 = V Σ03V
†, T2 = V Σ31V

†, T3 = Σ32,

where V is given by

V = exp(i(θ1 ≠ θ2)Σ32) exp(i(θ1 + θ2)Σ02)) exp(≠iψΣ30) exp(iηΣ13).

4.8 DIAGONAL EMBEDDING IN su(2m)

In this section we take g = su(2m) and assume xaa ”= 0 for all a and xab = 0 if a ”= b.

Equation (4.4.9) further simplifies

2laa = βa + kaaβa = 2βa.

Since laa = ±1, kaa = +1 and we get βa = laa = ±1.The remaining equation simplifies to

1 = xaaxaa.

So that ||xaa||2 = 1. The fact that each xaa is Hermitian and their kaa = +1 gives us the form

xaa =

Q

a
uaa vaa

vaa ≠uaa

R

b ,

for some uaa, vaa œ R. Coupled with the previous condition we get, for an angle parameter

χa œ [0, 2π],

xaa =

Q

a
cos χa sin χa

sin χa ≠ cos χa

R

b .

The remaining generator is given by

T2 = ≠i[T3, T1] = ≠1

2

ÿ

a

βaJxaa.
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Writing these generators in the symmetric representation 8

T3 =
1

2i

ÿ

a

βa(E2a≠1,2a ≠ E2a,2a≠1),

T1 =
1

2

ÿ

a

cos χa(E2a≠1,2a≠1 ≠ E2a,2a) + sin χa(E2a≠1,2a + E2a,2a≠1),

T2 =
1

2

ÿ

a

βa sin χa(E2a≠1,2a≠1 + E2a,2a) ≠ βa cos χa(E2a≠1,2a ≠ E2a,2a≠1),

Taking all χa = 0 recovers the results of (KNEIPP; LIEBGOTT, 2010), for the cases where

np ”= 0. The cases where some np = 0 can be treated by reducing the size of T3 to its rank

and applying the same method we employed, setting off–diagonal elements of T1 to zero. This

way we recover all cases previously considered.

Notice, however that χa are not the only internal degrees of freedom available. They

are the only ones appearing here because we confined the solution to the diagonal blocks by

setting xab = 0 for a ”= b. In order to find these remaining parameters one may follow the

procedure of the last section of calculating the the orbits of T1 under the stability group G(T3).

4.9 ASYMPTOTIC HIGGS FIELD

Because our gauge group G acts transitively over the vacuum manifold we may start

from a particularly simple vacuum state

|φÍ
0

=
vÔ
2

4ÿ

k=1

|kkÍ . (4.9.1)

By choosing an E ≥= su(2) embedding, and a winding number q, we construct the corresponding

asymptotic solution to this subgroup by applying the unitary transformation

U(θ, ϕ) = exp(≠iqϕT3) exp(≠iθT2) exp(iqϕT3). (4.9.2)

To the constant state (4.9.1) in the asymptotic sphere. In the tensor product representation a

generic symmetric scalar field

|φÍ =
ÿ

ij

φij |ijÍ ,

transforms as

D ¢ D(g) |φÍ =
ÿ

ij

φij U ¢ U |ijÍ ,

=
ÿ

ijkl

φij |klÍ Èkl| U ¢ U |ijÍ ,

=
ÿ

ijkl

φij |klÍ UkiUlj,

=
ÿ

kl

(UφUT )kl |klÍ ,

8 We adopt the notation Eij = D ¢ D(Eij) = Eij ¢ I + I ¢ Eij .
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in particular the coefficients for (4.9.1) are

φij =
vÔ
2

δij,

and their transformation by (4.9.2) yields

φÕ
ij =

vÔ
2

(UUT )ij.

Notice that, as long as we choose ψ = 0, then for each of the families of embeddings considered,

T1 and T2 are symmetric whereas T3 is always antisymmetric. Therefore

UT (θ, ϕ) = exp(≠iqϕT3) exp(≠iθT2) exp(iqϕT3).

The matrix of coefficients for the asymptotic field becomes

φ =
vÔ
2

exp(≠iqϕT3) exp(≠2iθT2) exp(iqϕT3). (4.9.3)

The solution originating from the fundamental embedding β = (1, 0)

T1 =
1

2

Q

a
σ3 0

0 0

R

b , T2 =
1

2

Q

a
σ1 0

0 0

R

b , T3 =
1

2

Q

a
σ2 0

0 0

R

b .

Yields, upon expansion,

|φÍq =
vÔ
2

{( cos θ + i sin θ sin qϕ) |11Í + i sin θ cos qϕ(|12Í + |21Í)+

+( cos θ ≠ i sin θ cos qϕ) |22Í + |33Í + |44Í}.

This readily satisfies |φÍ (θ, ϕ + 2π) = |φÍ (θ, ϕ) and is also well defined at θ = 0 and θ = π,

that is, it does not depend on ϕ at the poles. Consequently it defines a continuous map from

the 2–sphere to the vacuum manifold defining an element of loop2(V).

For the fundamental embedding β = (0, 1) one exchanges the pairs {1, 2} ¡ {3, 4} in

the above expression. For the isoclinic embedding β = (1, 1) the solution yields

|φÍq =
vÔ
2

{( cos θ + i sin θ sin qϕ) |11Í + i sin θ cos qϕ(|12Í + |21Í)+

+( cos θ ≠ i sin θ cos qϕ) |22Í + (cos θ + i sin θ sin qϕ) |33Í +

+i sin θ cos qϕ(|34Í + |43Í) + (cos θ ≠ i sin θ cos qϕ) |44Í}

4.9.1 Homotopies between Configurations

By the non–abelian nature of the unbroken gauge group one may deform different field

configurations among themselves via further transformations. Take for instance the rotation

of ψ radians about the {ij} plane

R(ψ) = exp (iψMij) œ H.
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Because RT = R† we have

φÕ = RφRT ,

=
vÔ
2

R exp(≠iqϕT3)R
†R exp(≠2iθT2)R

†R exp(iqϕT3)R
†,

=
vÔ
2

exp(≠iqϕT Õ
3) exp(≠2iθT Õ

2) exp(iqϕT Õ
3),

where T Õ
i = RTiR

† are new generators in the rotated frame. For definiteness let us take, again,

the fundamental embedding β = (1, 0). By applying a rotation R about the plane {13} we get

T Õ
3 =

1

2
exp(iψM13)M12 exp(≠iψM13),

=
1

2
cos ψM12 +

1

2
sin ψM23,

and

T Õ
2 =

1

2
exp(iψM13)(E12 + E21) exp(≠iψM13),

=
1

2
cos ψ(E12 + E21) +

1

2
sin ψ(E32 + E23).

Meaning that, as ψ varies continuously from zero to π/2, a solution confined to the block

{12} is deformed into a solution confined to the block {32}. The homotopy between the two

is the continuous map H : [0, π/2] æ loop2(V) Given by this global (homogeneous) rotation

H(ψ) = R(ψ) |φÍ (θ, ϕ).

Similarly one can rotate a solution from the block {32} to the block {34} by means of

R = exp(iψM24). Incidentally this yields the other fundamental solution β = (0, 1). Therefore

solutions β = (1, 0) and β = (0, 1) are homotopic to one another. By extension of this

argument fundamental solutions within the blocks {ij}, namely

T1 =
1

2
(Eii ≠ Ejj), T2 =

1

2
(Eij + Eji), T3 =

1

2
Mij,

for each i and j, i ”= j, are topologically equivalent; they lie in the same sector of π2(V). Next

we show that there are only two distinct homotopy classes, as expected from π2(V) = Z2. To

do this we need to find that whenever the winding number q in (4.9.7) is even, q = 2k, there

is a smooth transformation from that configuration to the trivial one. This would identify all

even q configurations to the same element of π2(V). Consequently, all odd q configurations

will be identified to a single one where q = 1. Applying a transformation similar to the one

considered in (WEINBERG; LONDON; ROSNER, 1984)

V = exp(iθM13) exp(≠2kiϕT3) exp(≠iθM13) exp(iθT2) exp(2kiϕT3). (4.9.4)

Transposing yields

V T = exp(≠2kiϕT3) exp(iθT2) exp(iθM13) exp(2kiϕT3) exp(≠iθM13).
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This transformation readily cancels all terms in (4.9.7):

φÕ = V φV T =
vÔ
2

I.

And we are back to the trivial configuration. It remains to show that this transformation is

continuous which is the purpose of the conjugation by M13. We automatically have continuity

at V (θ, ϕ + 2π) = V (θ, ϕ) and V (0, ϕ) = I. At the south pole, θ = π, we may write

V (θ, ϕ) = VA(θ, ϕ)VB(θ, ϕ) exp
3

iθ
1

2
(E12 + E21)

4

,

where

VA(θ, ϕ) = exp(iθM13) exp (≠ikϕM12) exp(≠iθM13) (4.9.5)

VB(θ, ϕ) = exp
3

iθ
1

2
(E12 + E21)

4

exp (+ikϕM12) exp
3

≠iθ
1

2
(E12 + E21)

4

, (4.9.6)

expanding

exp (±ikϕM12) = cos
qϕ

2
(E11 + E22) ± i sin

qϕ

2
M12 + (E33 + E44).

Evaluating (4.9.5) and (4.9.6) at θ = π, only the sign multiplying M12 on the above expression

changes, thus

VA(π, ϕ) = exp (ikϕM12) , VB(π, ϕ) = exp (≠ikϕM12) .

We find V (π, ϕ) to be single–valued and conclude that V (θ, ϕ) is indeed continuous in the

whole sphere and therefore a homotopy between |φÍ
2k and |φÍ

0
.

A similar, albeit longer, gauge transformation identifies |φÍ
2k+1

to |φÍ
1
. Factoring it as

W = WAWBWC , it reads

WA = exp(≠iϕT3) exp(≠iθT2),

WB = exp(i
ϕ

2
M34) exp(iθM13) exp(≠2kiϕT3) exp(≠iθM13) exp(≠i

ϕ

2
M34),

WC = exp(iθT2) exp((2k + 1)iϕT3).

First, notice that WC is responsible for eliminating the original terms in φ2k+1 while WB is

canceled by its own transpose and WA restores the expression to φ1. The second exponential

in WB keeps W well defined at θ = 0 while its conjugation by M13, like in the previous case,

guarantees that W is also well defined at θ = π.

The remaining requirement is periodicity of W (θ, ϕ) in ϕ, which is ensured by the M34

conjugation. To see this compute W (θ, ϕ + 2π); The outermost conjugation by ≠iπT3, which

wasn’t present in the q = 2k case, has the effect of changing a sign in M13 which gets corrected

by the iπM34 conjugation in WB. All other factors being either periodic or unaffected by these

conjugations leads us to our result.
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A straightforward generalization of (4.9.4) gives us a homotopy between the larger

embeddings β = (1, ±1), β = (1, ±3) and the trivial φ0 configuration for every q. Take

β = (1, 1),

T1 =
1

2

Q

a
σ3 0

0 σ3

R

b , T2 =
1

2

Q

a
σ1 0

0 σ1

R

b , T3 =
1

2

Q

a
σ2 0

0 σ2

R

b ,

so

φq =
vÔ
2

exp(≠iqϕ
ϕ

2
(M12 + M34)) exp(≠iθ(E12 + E21 + E34 + E43)) exp(iq

ϕ

2
(M12 + M34)),

(4.9.7)

and the transformation

V = exp(i
θ

2
(M13 ≠ M24)) exp(≠iq

ϕ

2
(M12 + M34)) exp(≠i

θ

2
(M13 ≠ M24))·

· exp(i
θ

2
(E12 + E21 + E34 + E43)) exp(iq

ϕ

2
(M12 + M34)),

which takes it to φ0 is now periodic in ϕ for every q, even or odd. The reason for this is that

now the sign arising from the ±iπT3 conjugation is global. Similarly monopoles constructed

from β = (1, ±3) embeddings are all also trivial; Apply a W transformation to the second

block then repeat the previous V with appropriate signs.

4.10 FURTHER RESEARCH

The method developed for embedding su(2) subalgebras lead the main equations

(4.4.19) and (4.4.20). These are general enough so as to classify all su(2) subalgebras of su(2m)

bearing one generator of so(2m). Out of those some are straightforward generalizations, like the

fundamental embeddings, β = ±ei, i = 1, . . . , m, and the isoclinic embeddings β =
q

i niei,

ni = ≠1, 0, 1, where two or more ni may be nonzero.

Besides those the three–to–one embedding generalizes to β = (±1, ±3, . . . , ±(2m≠1)),

the first generator yielding

T1 = me11 ¢
Q

a
cos χ sin χ

sin χ ≠ cos χ

R

b +

+
m≠1ÿ

a=1

Ô
m2 ≠ a2(eiψaea,a+1 + e≠iψaea+1,a) ¢

Q

a
cos ζa sin ζa

kaa+1 sin ζa ≠kaa+1 cos ζa,

R

b .

Another possibility is to consider different vacuum states |φÍ yielding different symmetry

breaking patterns. One idea is that a result analogous to the one for the adjoint representation

may be valid, along the lines of

SU(n) æ S(O(n1) ◊ · · · ◊ O(np)),

where ni represent the multiplicities of the eigenvalues of the coefficient matrix φ.
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5 CONCLUSION

In this thesis we studied how to obtain new Z2 monopole solutions in Yang–Mills–Higgs

theories. For simplicity sake we focused on the case su(4) æ so(4) symmetry break with the

scalar field in the symmetric part of the 4 ◊ 4 representation. A general method was devised to

find subalgebras su(2) from which one writes down the explicit form for the asymptotic fields

of these Z2 monopoles.

We found that for the magnetic weights β = (1, 0) and β = (0, 1) our solutions

lie in a one dimensional family just like the original ’t Hooft–Polyakov monopole. When

we considered the isoclinic embeddings β = (1, ±1) we found four–dimensional families of

solutions. Meanwhile the three–to–one embeddings β = (1, ±3) generated a three–parameter

family of monopoles.

Furthermore explicit homotopies between these asymptotic solutions were characterized.

Upon inspection we find that there are indeed only two classes of monopoles, i.e. the trivial

and the fundamental, in line with the fact that the second homotopy group of the vacuum

manifold is Z2.

For future projects one may propose to generalize this idea to different symmetry

breaking patterns. Also shedding a light on how to count the number of collective coordinates

of these solutions. Perhaps even figuring out whether background gauge conditions could be

introduced so as to allow for dynamic solutions like the dyon for different gauge symmetries.

The possibilities seem enticing, hopefully this thesis has conveyed some excitement towards

this subject.
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APPENDIX A – APPENDIX

A.1 SURFACE INTEGRAL AS TOPOLOGICAL DEGREE

Starting from the flux

g =
⁄

d3x k0 =
1

2ev3

⁄

d3x εabcεmnk∂m(Φa∂n
Φ

b∂k
Φ

c). (A.1.1)

=
1

2ev3

⁄

d2Sm εabcεmnkΦ
a∂n

Φ
b∂k

Φ
c. (A.1.2)

and parameterizing xi by spherical coordinates ξα, α = 1, 2:

∂j
Φ

b =
∂ξγ

∂xj

∂αÕ

Φ
b (A.1.3)

d2Si =
1

2
εimnεαβ ∂xm

∂ξα

∂xn

∂ξβ

d2ξ (A.1.4)

g =
1

2ev3

⁄

d2ξ εabcεαβΦ
a∂α

Φ
b∂β

Φ
c. (A.1.5)

One may find that the square of the integrand is a determinant
1

εabcεαβΦ
a∂α

Φ
b∂β

Φ
c
22

= εabcεαβΦ
a∂α

Φ
b∂β

Φ
cεaÕbÕcÕ

εαÕβÕ

ΦaÕ∂αÕΦbÕ∂βÕΦcÕ (A.1.6)

= δaÕbÕcÕ

abc δ
αÕβÕ

αβ Φ
a∂α

Φ
b∂β

Φ
c
ΦaÕ∂αÕΦbÕ∂βÕΦcÕ , (A.1.7)

where δaÕbÕcÕ

abc denotes the generalized Kronecker delta defined by the degree of the permutation

σ : {1, 2, 3} æ {1, 2, 3}, σ(a) = aÕ, σ(b) = bÕ, σ(c) = cÕ. Explicitly in three dimensions this

can be written explicitly as

δaÕbÕcÕ

abc = δaÕ

a δbÕ

b δcÕ

c + δbÕ

a δcÕ

b δaÕ

c + δcÕ

a δaÕ

b δbÕ

c ≠ δbÕ

a δaÕ

b δcÕ

c ≠ δaÕ

a δcÕ

b δbÕ

c ≠ δcÕ

a δbÕ

b δaÕ

c , (A.1.8)

And in two dimensions,

δ
αÕβÕ

αβ = δαÕ

α δ
βÕ

β ≠ δβÕ

α δαÕ

β . (A.1.9)

Because ΦaΦa = v2 and Φa∂αΦa = 1

2
∂α (ΦaΦa) = 0, all factors containing δbÕ

a , δcÕ

a , δaÕ

b , δaÕ

c

vanish
1

εabcεαβΦ
a∂α

Φ
b∂β

Φ
c
22

= (δαÕ

α δ
βÕ

β ≠ δβÕ

α δαÕ

β )δaÕ

a (δcÕ

b δcÕ

c ≠ δcÕ

b δbÕ

c )Φa∂α
Φ

b∂β
Φ

c
ΦaÕ∂αÕΦbÕ∂βÕΦcÕ ,

(A.1.10)

= 2v2(∂αΦ
b∂α

Φc∂βΦ
b∂β

Φc ≠ ∂αΦ
b∂β

Φb∂αΦ
c∂β

Φc), (A.1.11)

= 2v2((tr ∂αΦ
β∂α

Φb)
2 ≠ tr(∂αΦ

b∂β
Φb)

2), (A.1.12)

= 4v2 det ∂αΦ
b∂β

Φb. (A.1.13)

The last line follows from an identity for determinants in two dimensions

det Aβ
α = εαβA1

αA2

β =
1

2!
εαβεγδA

γ
αAδ

β =, (A.1.14)

=
1

2
(Aα

αAβ
β ≠ Aβ

αAα
β) =

1

2
(tr2 A ≠ tr A2). (A.1.15)
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Thus

εabcεαβΦ
a∂αΦ

b∂βΦ
c = ±2v

Ò

det ∂αΦa∂βΦa. (A.1.16)

as we wanted to show. Therefore

g = ±
1

e

⁄

d2ξ

Ú

det
1

∂αΦ̂a∂βΦ̂a
2

(A.1.17)

Where Φ̂a = Φa/
Ô

ΦbΦb = Φa/v denotes the normilized field.

A.2 THE PFAFFIAN

Given a 2m ◊ 2m skewsymmetric matrix A the following invariant

pf A =
1

2mm!
εi1j1...imjm

Ai1j1
· · · Aimjm

is called the Pfaffian of A. For m = 1 we have pf A = A12 while for m = 2 this reads

pf A = A12A34 ≠ A13A24 + A14A23

The Pfaffian satisfies the following important property. Given any complex 2m ◊ 2m matrix

B, the conjugation BABT is again skewsymmetric and its Pfaffian is given by

pf(BABT ) = det B pf A

. In particular, when B = R œ SO(n), det R = +1:

pf(RART ) = pf A

. So an orthogonal change of basis preserves the pfaffian. The six generators of SO(4) are all

skewsymetric and can be written as

Mij = ≠i(Eij ≠ Eji), i < j

Simultaneous rotations about the planes {ij} and {kl} are written as

R = exp (iθijMij + iθklMkl) , (A.2.1)

Therefore isoclinic rotations are generated by

ML
1 =

1

2
(M12 + M34) MR

1 =
1

2
(M12 ≠ M34) (A.2.2)

ML
2 =

1

2
(M13 ≠ M24) MR

2 =
1

2
(M13 + M24) (A.2.3)

ML
3 =

1

2
(M14 + M23) MR

3 =
1

2
(M14 ≠ M23), (A.2.4)
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Note that pf ML
i = +1 while pf MR

i = ≠1. Here the signs are chosen such that each column

generates an su(2) subalgebra, this can be seen by applying the commutation relations

[Mij, Mkl] = i(δikMjl + δjlMik ≠ δilMjk ≠ δikMjl), (A.2.5)

One checks that

[ML
i , ML

j ] = iεijkML
k (A.2.6)

[MR
i , MR

j ] = iεijkMR
k (A.2.7)

[ML
i , MR

j ] = 0. (A.2.8)

Therefore they each generate an su(2) subalgebra as desired.
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