
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CAMPUS UNIVERSITÁRIO, CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Victor Hugo Schulz

A Verification Platform for Improving the Design and Test of Star Trackers

Florianópolis

2020

Victor Hugo Schulz

A Verification Platform for Improving the Design and Test of Star Trackers

Tese submetida ao Programa de Pós-Graduação em En-
genharia Elétrica da Universidade Federal de Santa Cata-
rina para a obtenção do título de doutor em Engenharia
Elétrica.
Supervisor:: Prof. Eduardo Augusto Bezerra, Dr.

Co-supervisor:: Prof. Eduardo Todt, Dr.

Florianópolis

2020

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Schulz, Victor Hugo
 A Verification Platform for Improving the Design and
Test of Star Trackers / Victor Hugo Schulz ; orientador,
Eduardo Augusto Bezerra, coorientador, Eduardo Todt, 2020.
 86 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia Elétrica, Florianópolis, 2020.

 Inclui referências.

 1. Engenharia Elétrica. 2. Sistemas Embarcados. 3.
Determinação de Atitude. 4. Verificação. 5. Pequenos
Satélites. I. Bezerra, Eduardo Augusto. II. Todt, Eduardo.
III. Universidade Federal de Santa Catarina. Programa de
Pós-Graduação em Engenharia Elétrica. IV. Título.

Victor Hugo Schulz

A Verification Platform for Improving the Design and Test of Star Trackers

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca examinadora

composta pelos seguintes membros:

Prof. Sangkyun Kim, Ph.D

Kyushu Institute of Technology - Kyutech

Prof. Fabian Luis Vargas, Dr.

Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS

Prof. Laio Oriel Seman, Dr.

Universidade Federal de Santa Catarina - UFSC

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado

adequado para obtenção do título de doutor em Engenharia Elétrica.

Prof. Telles Brunelli Lazzarin, Dr.

Coordenador do Programa

Prof. Eduardo Augusto Bezerra, Dr.

Supervisor:

Florianópolis, 11 de março de 2020.

Este trabalho é dedicado a meu pai, Jorge Gruhn Schulz, que

sempre buscou o aperfeçoamento pessoal e profissional no es-

tudo e pesquisa acadêmicos, e que serviu de modelo de inspi-

ração e persistência para que eu pudesse concluir meus estudos

com o objetivo de alcançar, como ele, o grau de Doutor.

ACKNOWLEDGEMENTS

I would like to express my gratitude for my supervisor, Prof. Eduardo Bezerra, for the

support in this work, helping me from the beginning to the very end of this journey. To my co-

supervisor, Prof. Eduardo Todt, for the contribution on defining the subject of the work, which

is a continuation of our work on my Master’s dissertation. To Prof. Mengu Cho, for receiving

me and being my co-supervisor during the portion of this work that was done in Kyutech, Japan.

For Professors Sangkyun Kim, Fabian Luis Vargas and Laio Oriel Seman for the excellent

work and contributions, which extended beyond the roles of examiners. For the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Ministério da Educação (MEC)

for the financial sponsoring that made the realisation of this work possible. For my colleagues

in Brazil, Gabriel Mariano Marcelino and Jeferson Santos Barros, who contributed substantially

to the contents of this work; and similarly, to Necmi Cihan Örger, Ibukun Oluwatobi Adebolu,

and Hirokazu Masui in Kyutech, who aided and collaborated in the realization of the space

environment experiments. For the contributions to the quality of the text, I would like to thank

Kent Rush and Aleksander Michal Sobieski for the text revisions; and Manfred Kratzenberg,

Sara Martinez Vega and Juan José Rojas Hernández for the insightful discussions. I would like

to also thank John L. Polansky, George Maeda, Sayo Tsukinari and Atsushi Okubi for the help

with the logistics when relocating to Japan, and specially for Juan José Rojas Hernández (once

more), Yiğit Çay and Aekjira Kuyyakanont, who received me as good friends and helped me to

feel at home.

RESUMO

Não é uma tarefa trivial o processo de desenvolvimento de um sensor de estrelas, desde a fase
conceitual até a sua implementação final, passando simultaneamente pela etapa de certificação
do sistema. O desafio é ainda maior quando, por razões de flexibilidade, sejam escolhidos para
implementação sistemas de processamento do tipo Sistema-em-um-Chip (SoC – System-on-

Chip) combinando componentes de software e hardware configurável. Este trabalho propõe a
utilização de imagens de estrela sintéticas (um céu simulado), unido à estrutura padronizada da
Metodologia de Verificação Universal (UVM – Universal Verification Methodology) como base
de uma abordagem de desenvolvimento. O objetivo é organizar e acelerar o projeto, melhorar
a qualidade do sistema quanto à produção de resultados corretos e oferecer métricas para a
comparação de diferentes algoritmos utilizados em sensores de estrelas. O retrabalho potencial
futuro é reduzido através de duas formas: nesta tese foi desenvolvido um simulador e plataforma
de desenvolvimento que são distribuídos sob licença de software livre; e a estrutura da UVM
estimula a reutilização de código através da adoção de uma abordagem orientada a objetos.
Está sendo proposta uma estrutura do tipo caixa preta para a plataforma de verificação com
interfaces padronizadas, e exemplos foram apresentados sobre como essa abordagem pode ser
aplicada ao desenvolvimento de um sensor de estrelas para pequenos satélites, tendo como alvo o
desenvolvimento em SoC. As mesmas bancadas de testes (test benches) foram aplicadas a ambas
as implementações conceituais iniciais (em software apenas) como a posteriores implementações
de sistemas híbridos (em software e hardware), em uma configuração Hardware no Laço (HIL
– Hardware-In-the-Loop). Essa estratégia de reaproveitamento de bancadas de testes também
se mostrou interessante ao revelar a capacidade de regressão nos testes realizados através da
plataforma desenvolvida. Ainda, o simulador foi utilizado para injetar ruído específico, para que
o sistema pudesse ser avaliado em algumas condições ambientais de mundo real.

Palavras-chave: star tracker; sensor de estrelas; verificação; FPGA; field-programmable-gate-
arrays; cubesat; pequenos satélites; determinação de atitude.

RESUMO EXPANDIDO

Introdução

Atualmente pode-se observar uma tendência no crescimento do lançamento de nano-satélites
(satélites com massa menor que 10 kg). Estes satélites vêm progressivamente substituindo
as funcionalidades antes restritas a satélites maiores, o que gera demanda para subsistemas
miniaturizados que possuem restrições na energia disponível. Isto ocorre devido à menor área
dos painéis solares utilizados em nano-satélites. Um exemplo de tal subsistema, e foco deste
trabalho, são os sensores de estrelas (em inglês star sensors ou star trackers). Sensores de
estrelas são responsáveis por determinar a atitude de veículos espaciais ou satélites, ou seja,
sua orientação no espaço com relação a um sistema de referência inercial. Os sensores de
estrelas se destacam, quando comparados aos demais sensores de atitude, pela maior precisão
(< 0,1°), funcionamento mesmo em condições de eclipse e por diretamente prover a atitude. As
aplicações principais são aquelas que requerem maior precisão: capturar imagens com ângulo de
visão restrito e apontar antenas direcionais. Os sensores de estrelas no estado da arte funcionam
encontrando a correspondência entre as estrelas visíveis e aquelas presentes em um catálogo
interno (identificação). O hardware é muito similar ao das câmeras digitais. A principal diferença
são os algoritmos de processamento de imagens, e a eficiência desses algoritmos impacta no
consumo de energia do subsistema. A redução no número de instruções necessárias para a
realização das tarefas reduz a energia necessária. Em alguns casos, otimizações não apenas de
software, mas também em hardware podem ser encontradas na literatura. A presença de sistemas
com processamento misto traz desafios nas etapas de verificação. A utilização de ferramentas
de verificação recentes, tais como a Metodologia de Verificação Universal (UVM) aplicada à
linguagem de descrição de hardware SystemC alivia estes desafios. Existem trabalhos publicados
em que se aplicam estas ferramentas a sistemas de processamento de imagens, o que suporta
a aplicação também para sensores de estrelas. Neste trabalho foi criada uma plataforma de
verificação para sensores de estrelas utilizando essas ferramentas. A biblioteca OpenCV foi
também utilizada, juntamente a modelos matemáticos existentes, para a geração de imagens
de céu estrelado sintéticas com a introdução de ruído controlado. A ferramenta foi criada para
que universalmente possam ser testados diversos tipos (e partes) de algoritmos de sensores de
estrelas, tanto isolados como agindo de forma integrada. A ferramenta busca resolver problemas
encontrados na avaliação e comparação entre diversos algoritmos, tais como a inexistência de
uma ferramenta disponível como software livre, e a falta de padronização na aplicação de testes.
A plataforma criada está disponível como software livre, pode replicar configurações utilizadas
por diversos autores, permite co-simulação de software e hardware, e trabalha na verificação de
sistemas em configuração de caixa preta, facilitando a troca dos dispositivos ou algoritmos que
são testados por ela.

Objetivos

O objetivo principal é propor um design para sensores de estrelas miniaturizados com o foco
na redução dos requisitos de hardware do sistema de processamento. Isto é realizado através
de otimizações que refletem na redução do número de instruções necessárias para a execução
das rotinas, e também considerando questões do ambiente espacial onde os sensores de estrelas
operam. Como objetivo secundário, uma plataforma de verificação foi construída para acelerar o
desenvolvimento e medir as melhorias efetivas. Essa plataforma também permite a modelagem
de ruídos ambiantais presentes em operações normais de satélites, ou resultantes do lançamento.
A plataforma de verificação foi criada de forma universal para que possa servir para a verificação
de múltiplos algoritmos utilizados em sensores de estrelas.

Metodologia

Foram implementados de forma completa algoritmos de referência de sensores de estrelas (1.
crescimento de região como determinação de centroides; 2. grid como identificação de estrelas; 3.
QUEST para determinação final de atitude). O foco principal foi na otimização do algoritmo de
grid para identificação de estrelas. Este algoritmo pode ter seu banco de dados de características
implementado de forma binária, o que permitiu a aplicação de certas otimizações tentando
melhorar a sua velocidade e desempenho em termos de estrelas corretamente identificadas. Uma
plataforma de verificação foi construída, permitindo medir o impacto destas otimizações, bem
como auxiliar na aceleração do desenvolvimento dos algoritmos em si e introduzir diversos tipos
de ruídos controlados, o que é necessário para a avaliação do comportamento dos algoritmos em
ambientes reais. O algoritmo de determinação de centroides foi também otimizado através de
implementação parcial em FPGA (hardware), e as melhorias foram medidas pela plataforma.

Resultados e Discussão

Como aplicação da plataforma de verificação no desenvolvimento de sensores de estrelas mi-
niaturizados, foi demonstrada a possibilidade de replicar resultados de outros autores. Ainda,
o desenvolvimento do sensor de estrelas foi acelerado através da otimização pontual apenas
de partes que possuem alta demanda de processamento, o que foi medido pela plataforma. As
otimizações realizadas a partir de implementação híbrida em software e hardware em FPGA
levaram a um ganho de até 123 vezes no desempenho do algoritmo de centroide empregado.
No caso do algoritmo de identificação de estrelas, ganhos de até 12.5 vezes na velocidade de
processamento foram atingidos através da aplicação de otimizações puramente em software. A
maneira como o algoritmo de grid realiza a busca no banco de dados interno de padrões de
estrelas foi otimizada. Testes que replicam o ambiente espacial foram realizados em sensores
óticos comerciais que são candidatos a utilização com sensores de estrelas. Estes foram testes
de vibração, choque mecânico e dose total ionizante. As variações observadas nos sensores
reais puderam ser reproduzidas na forma de ruído nas simulações realizadas pela plataforma
de verificação, o que permitiu a avaliação do comportamento dos algoritmos em condições de
mundo real. Modificações na função que pontua a semelhança entre padrões do algoritmo de
grid levaram também a um aumento em 1,5% na taxa de determinação correta de atitude, porém
com um impacto negativo de 50% no tempo de execução. Finalmente, foi possível automatizar
uma série de testes de avaliação dos algoritmos para que possam ser executados em sequência,
acelerando a obtenção de dados.

Considerações Finais

A plataforma de verificação apresentada pela presente tese trouxe diversas contribuições quando
comparada a ferramentas existentes. Exemplos são a utilização da estrutura padronizada da
UVM, a utilização de uma estrutura modular incentivando a reutilização de componentes de ve-
rificação, a possibilidade de verificar subcomponentes de software de sensores de estrelas forma
isolada ou conjunta, a aceleração e auxílio no desenvolvimento e otimizações, e a habilidade
de reproduzir diversas condições utilizadas em testes por outros autores. O compartilhamento
do simulador e plataforma de verificação implementados como software livre também é uma
contribuição, o que permite sua reutilização e melhora pela comunidade científica. Isso permite
que futuramente sejam realizados trabalhos visando a padronização dos procedimentos de testes,
já que o ambiente de testes pode ser mantido o mesmo utilizando a plataforma compartilhada.

Palavras-chave: star tracker; sensor de estrelas; verificação; FPGA; field-programmable-gate-
arrays; cubesat; pequenos satélites; determinação de atitude.

ABSTRACT

Proceeding from the conceptual phases of the development of a star tracker, until a complete
working system is produced, while simultaneously ensuring the correctness of the approach, is
not a trivial task. The challenge can be increased when, for flexibility reasons, the processing
system is implemented through a System-on-Chip (SoC) combining pieces of software and
configurable hardware. This work proposes the use of synthetic star images (a simulated sky),
allied with the standardised structure of the Universal Verification Methodology (UVM) as
the base of a design approach. The aim is to organise the project, speed up the development
time, improve the correctness of the system, and provides metrics for the comparison of
different algorithms. Future rework is reduced through two methods: we developed a simulator
and verification platform that are shared under a free software licence; and the layout of
UVM enforces reusability of code through an object-oriented approach. We propose a
black-box structure for the verification platform with standard interfaces, and provide examples
showing how this approach can be applied to the development of a star tracker for small
satellites, targeting a SoC design. The same test benches were applied to both early conceptual
software-only implementations, and later optimised software-hardware hybrid systems, in a
hardware-in-the-loop configuration. This test bench reuse strategy was interesting also to show
the regression test capability of the developed platform. Furthermore, the simulator was used to
inject specific noise, in order to evaluate the system under some real-world conditions.

Keywords: star tracker; star sensor; verification; star simulator; FPGA; field-programmable-
gate-arrays; cubesat; small satellites; attitude determination.

LIST OF FIGURES

Figure 1 – Number of Nanosatellites by announced launch years up to June, 2019. . . . 19

Figure 2 – Prototype of a Star Tracker produced on GSE/UFSC. 20

Figure 3 – Effect of different test configurations on the behaviour of the Grid Algorithm. 23

Figure 4 – Celestial sphere representing the spacecraft-centered coordinate system. . . 28

Figure 5 – Celestial sphere representing the inertial (celestial) coordinate system. . . . 28

Figure 6 – Internal structure of ASTRO APS star sensor. 30

Figure 7 – Input and output of star tracker software composing parts. 34

Figure 8 – Graphical representation of the Region Growing Algorithm. 36

Figure 9 – Liebe’s features. 37

Figure 10 – The grid pattern. 37

Figure 11 – Construction of the binary grid pattern. 42

Figure 12 – Grid database in the transposed lookup table format. 44

Figure 13 – Levels of abstraction covered by languages. 51

Figure 14 – Structure of the verification platform. 53

Figure 15 – (a) Star tracker software input and output; and (b) star simulator stages. The

boxes indicate the software components, and the arrows indicate the data

flow between them. 55

Figure 16 – Real star image, captured from the ASTERIA CubeSat, JPL/NASA. 58

Figure 17 – A synthetic image generated by our star simulator. 58

Figure 18 – Universal structures for star tracker i/o interfaces. 59

Figure 19 – Behaviour of grid algorithm in different test configurations (reproduced). . . 64

Figure 20 – Closest neighbour angular distance γ as an extra parameter. 68

Figure 21 – Ratio of correct attitude quaternion determination for different grid sizes. . . 71

Figure 22 – Camera module undergoing vibration tests. 72

Figure 23 – Effect of focal length deviation on the performance of reference and modified

algorithms. Here, a field of view of 8° is considered. 73

Figure 24 – Effect of noise on the 2D position of stars on the performance of reference

and modified algorithms. Here, a field of view of 8° is considered. 74

Figure 25 – Camera module and Raspberry PI 2 board near the Cobalt-60 source, before

TID test. 75

Figure 26 – Dose rate measurements over distance. 76

LIST OF TABLES

Table 1 – Classification of satellites by mass. 18

Table 2 – Examples of star trackers for nano-satellites and pico-satellites. 31

Table 3 – Entries from Hipparcos and Hipparcos-2 which are of interest. 41

Table 4 – Classification of the scores and comparison with boolean functions (idealized). 46

Table 5 – Instances of star simulators in software. 50

Table 6 – Runtime test results (Zynq-7000 ARM Cortex A9MP (ARM v71) SoC @ 667

MHz, single thread). 66

Table 7 – Comparison of centroid algorithms, with FOV = 8°. 67

Table 8 – Comparison of centroid algorithms, with FOV = 15°. 68

Table 9 – Comparison of star identification algorithms, FOV = 8°. 69

Table 10 – Comparison of star identification algorithms, FOV = 15°. 70

Table 11 – Focal length variation due to launch environment dynamics. 73

LIST OF ABBREVIATIONS AND ACRONYMS

AMS Analog Mixed-Signal

ARM Advanced RISC Machine

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

CCD Charge-Coupled Device

CMOS Complementary Metal-Oxide Semiconductor

COTS Commercial Off-The-Shelf

CPLD Complex Programmable Logic Device

CSI-2 Camera Serial Interface 2, specification from MIPI

DUT Device Under Test

EKF Extended Kalman Filter

ESA European Space Agency

ESL Electronic System Level Design

FIR Finite Impulse Response (filter)

FOV Field of View

FPGA Field-Programmable Gate Array

GPS Global positioning system

HDL Hardware Description Language

ICRS International Celestial Reference System

IEEE Institute of Electrical and Electronics Engineers

ISO International Organisation for Standardisation

ISS Instruction Set Simulator

JPL Jet Propulsion Laboratory (NASA)

LEO Low Earth Orbit

LSB Least significant bit

LUT Lookup Table

M-12 ISO metric screw thread of 12mm of diameter

MIPI Mobile Industry Processor Interface

MSB Most significant bit

NASA National Aeronautics and Space Administration

NEON Advanced SIMD Instructions

PCB Printed Circuit Board

PSF Point Spread Function

QUEST Quaternion Estimator

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SIMD Single Instruction, Multiple Data

SNR Signal to Noise Ratio

SSE Streaming SIMD Extension

TCP/IP Transmission Control Protocol/Internet Protocol

TID Total Ionizing Dose

TLM Transaction Level Modeling

UVC Universal Verification Component

UVM Universal Verification Methodology

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

LIST OF SYMBOLS

DErad Declination in Radians

DN Brightness

HIP Hipparcos Identifier

Mmax Maximum visual magnitude of stars

POPCNT Population count instruction

RArad Right Ascension in Radians

ROI Region of interest

R Reference stars

VCNT Vector Count set bits

Vmag Visual Magnitude

V Visible stars

XOR Exclusive OR operator

α Right ascension

& Logical AND operator

cx Centre of image sensor plane (x)

cy Centre of image sensor plane (y)

δ Declination

er f (x) Error function

e Acceptable measurement error

fx Focal length (x coordinate)

fy Focal length (y coordinate)

f Focal length

γ Closest neighbor angle

g Grid size

µα Proper motion of right ascension

µδ Proper motion of declination

m Binary mask

NXOR Negated Exclusive OR operator

pat Pattern

pmDE Proper Motion in Declination

pmRA Proper Motion in Right Ascension

pr Pattern radius

p Quaternion representation of unit vector

q Rotation Quaternion

res Resolution of image sensor

r Reference star

tan() Tangent trigonometric operator

θ Angle of rotation

u Unit Vector

xc Centroid coordinate (x)

yc Centroid coordinate (y)

CONTENTS

1 INTRODUCTION . 18

1.1 GENERAL OBJECTIVE . 22

1.2 SPECIFIC OBJECTIVES . 24

1.3 RESEARCH QUESTIONS . 24

1.4 METHODOLOGY . 25

1.5 ORIGINAL CONTRIBUTIONS . 26

1.6 OUTLINE . 27

2 BACKGROUND . 28

2.1 COORDINATE SYSTEMS FOR ATTITUDE DETERMINATION 28

2.2 MINIATURISED STAR TRACKERS . 29

2.2.1 Physical Construction . 29

2.2.2 Literature Review . 30

3 STAR TRACKER SOFTWARE STACK 34

3.1 SUBPIXEL CENTROIDING . 34

3.2 STAR IDENTIFICATION . 36

3.2.1 Literature Review . 36

3.2.2 Discussion . 38

3.2.3 Star Catalog . 40

3.2.4 The Grid Algorithm . 42

3.2.5 Discussion of the Grid Algorithm . 45

3.3 STATIC ATTITUDE DETERMINATION 46

4 VERIFICATION PLATFORM AND STAR SIMULATOR 48

4.1 RELATED WORK . 49

4.1.1 Star Simulators and Testing of Star Trackers 49

4.2 SYSTEM LEVEL VERIFICATION . 50

4.2.1 SystemC . 51

4.2.2 Universal Verification Methodology - UVM 52

4.2.3 Verification of Computer Vision Systems with UVM 52

4.2.4 Structure of the Verification Platform 52

4.3 STAR SIMULATOR . 55

4.3.1 Generating a Synthetic Star Image . 56

4.3.2 Universal Data Structures for Input and Output 58

4.3.3 Configurable Parameters . 59

4.3.4 Noise Injection . 60

4.4 TESTS . 61

5 CASE STUDY DESCRIPTION AND EXPERIMENTAL RESULTS . . 63

5.1 REPRODUCING EXISTING TEST CONDITIONS 63

5.2 COMPUTATIONAL HOT SPOT OPTIMISATIONS 64

5.2.1 Runtime analysis . 65

5.2.2 Improving the Centroid Extraction Step Performance 66

5.2.3 Improving Star Identification Step Performance 67

5.3 IMPROVING THE SCORING FUNCTION 70

5.4 LAUNCH ENVIRONMENT TESTS AND FOCAL LENGTH NOISE . . . 71

5.5 SPACE ENVIRONMENT TESTS AND TOTAL IONIZING DOSE 75

5.6 BATCH OF TESTS . 77

6 CONCLUSIONS, REMARKS AND FUTURE WORKS 78

REFERENCES . 79

18

1 INTRODUCTION

The CubeSat, initially proposed by the California Polytechnic State University, became

a standard format for nanosatellites and picosatellites. CubeSats are composed of units of

10x10x10 cm cubes (1U), with each unit weighing up to 1.33 kg. They were firstly developed

with the academic goal of facilitating the design and test of spacecraft technologies by students.

By following the specifications, it is possible to standardise the orbital deployers (MEHRPAR-

VAR et al., 2014), what in practice results in an overall lessening in deployments costs, with an

ever increasing participation of commercial and amateur projects in addition to the academic

designed CubeSats. A classification of satellites based on their mass is shown in Table 1.

Table 1 – Classification of satellites
by mass.

Type Mass(kg)

Conventional large satellite > 1000

Medium satellite 500-1000

Mini-satellite 100-500

Micro-satellite 10-100

Nano-satellite 1-10

Pico-satellite < 1

Femto-satellite < 0.1

Source: Adapted from Gao, Clark, et al.
(2009).

The number of nanosatellites and picosatellites being launched have increased over

the years, as shown in Figure 1. Associated with this growth, these smaller satellites have

incrementally being able to replace functions previously only performed by bigger satellites, by

the means of miniaturisation of their components. The reduced physical volume also implies

in smaller solar panels and batteries being employed, resulting in stricter energy constraints for

the satellite subsystems. These constraints have brought a demand for technology development

toward optimising size, mass and energy consumption of CubeSat components.

As an example which is the focus of this work, a subsystem might be responsible for

attitude determination, which is finding the satellite’s orientation in space with respect to a given

reference system. Reliable attitude information is required, among other uses, for pointing the

satellite’s solar panels towards the Sun 1 and its antennas to the Earth 2.

There are several types of attitude sensors, which can be used alone or associated for

obtaining complimentary measurements and redundancy. Examples of commonly used ones are

1 In order to optimally generate energy.
2 Directional antennas can be used to improve gain and reduce the required transmission power.

Chapter 1. Introduction 20

Figure 2 – Prototype of a Star Tracker produced on GSE/UFSC.

Source: Elaborated by the author.

programmable logic (for example FPGAs or CPLDs).

Algorithm optimisations in software and hardware form can reduce the requirements

in terms of speed and energy by reducing the necessary processing clock cycles in order to

perform comparable computations. These enhancements are specially desirable for star trackers

embedded in smaller satellites.

After an image is acquired by the CCD or CMOS sensor, there are dedicated algorithms

which are responsible for the image processing, identification of the stars present in the image

and the attitude determination from this data. Thus, star tracker processing computations can be

separated in three parts: subpixel centroiding; star identification; and static attitude determina-

tion, which are individually described in chapter 3.

During the development of star tracker algorithms, it is necessary to evaluate how well

the system behaves. Significant input needs to be generated, and the output response needs to

be checked. While traditionally the algorithms implementation was done in software, there are

recent examples where hardware implementations targeting programmable logic were explored

(ZHOU et al., 2016; ZHAO et al., 2017), bringing advantages in terms of throughput.

Thus, the verification of star trackers has to consider the possibility of the system being

composed of software, hardware, or a combination of both. This ability is also important in

this context of top-down design, when the engineer starts with a conceptual high-level software

implementation that is progressively specialised and optimised for the target hardware and

application.

Modern verification tools can be employed to address these emerging challenges. The

Universal Verification Methodology (UVM), IEEE 1800.2 standard, applied to the SystemC

family of libraries5, offers a standardised structure for constructing an environment that supports

5 https://accellera.org/activities/working-groups/systemc-verification/

uvm-systemc-faq

Chapter 1. Introduction 21

the co-verification of software and hardware. The software part is usually written in the C++

language, and the hardware also described directly in C++, with the help of SystemC. More

traditional hardware description languages (HDLs) such as VHDL and Verilog can also be used

in co-verification. Once a test bench is created, it can be reused without changes during top-down

design. Therefore, the algorithms under development can be directly compared, as they evolve.

As opposed to traditional HDLs, multiple C++ libraries can be used to simplify the high-level

development of the test benches or the system itself, saving time. UVM-SystemC is a recent

development in the field of verification. It is currently a draft under public review, with its first

public version being released in 2016 by Accellera.

There are works where computer vision applications successfully employed UVM-

SystemC as a design aid tool. In Mefenza, Yonga, and Bobda (2014), a verification environment

using SystemC and UVM was created for computational demanding video-based embedded

systems. A system design starting with an executable specification in C++ and the computer

vision library OpenCV6 was verified. The system was progressively refined into lower levels

of abstraction as an FPGA based smart camera. The final system works in a Zynq-7000 SoC,

with the software part running in an ARM processor and the hardware part in the device’s pro-

grammable logic. Similarly, in Campos et al. (2017) a UVM-SystemC environment was used

to build a framework for the design and validation of face detection systems. Differently, no

hybrid system is considered, but instead, a high-level model developed using OpenCV is used

as the golden reference model, from which a complete hardware implementation of the system

in SystemVerilog was compared.

In the present work, we also used the UVM-SystemC environment paired with the

OpenCV computer vision library as the base of our verification platform. The main distinction is

that our approach targets a different area of research: the development of star trackers. Overall,

the similarities in the tools employed support the idea that the methodology can successfully be

applied for the design of star trackers, which can be understood as computer vision systems.

As the nature of the input images of our system is different, we developed a star simulator

that is able to synthesise the required stimulus: synthetic sky images with added controllable

noise. A mathematical model for this type of image synthesis is presented in Hua-Ming, Hao,

and Hai-Yong (2015) and Guangjun Zhang (2017). The general skeleton of the process we

follow in this work is very similar. The main difference is in the way the rotations are performed:

we used quaternions instead of Euler’s rotation matrices. The use of quaternions simplifies the

equations and avoids gimbal lock limitations.

Commonly, sky simulators allow the introduction of controllable noise to the system.

For example, in the previously mentioned models, Gaussian noise was used to model random

background noise. A more thorough model of the optical system of a star tracker, which includes

the lens and image sensor, can be seen in Knutson (2012). The simulator considers the physical

aspects of the optical system for emulating noise. In our verification platform we employed

6 https://opencv.org/

Chapter 1. Introduction 22

a practical approach which uses simplified noise models (not much different than the former

solutions). The mathematical functions for noise generation have their parameters tweaked in

order to behave similarly to a physical optical system used as a reference. In the physical system,

the noise was measured in conditions similar to what is expected during operation.

In the usual way star tracker algorithms are evaluated, the images produced by a star

simulator are employed as the input of one or more reference algorithms. The same input is then

applied to the novel algorithm, and the results compared with the intent of showcasing improve-

ments. Kolomenkin et al. (2008), when discussing this matter, stated that this is not a trivial

task, due to no agreed standard: "Many authors have referred to different aspects of star tracker

performance such as speed, accuracy, memory requirements, and stability. But each of them

used a different configuration". The consequence of their observation can be seen in Figure 3. It

shows three different authors’ (PADGETT; KREUTZ-DELGADO; UDOMKESMALEE, 1997;

ZHANG; WEI; JIANG, 2008; NA; ZHENG; JIA, 2009) data on how the Grid algorithm (PAD-

GETT; KREUTZ-DELGADO, 1997) behaves with the presence of positional noise, using dif-

ferent test configurations for field of view (FOV), resolution (res), maximum visual magnitude

(Mmax), and grid size g. Different star simulators were also used, and it is likely that the imple-

mentation of Grid differs between researches.

Instead of suggesting a given set of configurations that should be followed by researchers

when evaluating star trackers, our contribution is to provide a universal verification platform

and star simulator. It has the flexibility of easily working with any desired conditions. Thus, our

verification platform was built with configurable optical parameters such as sensor resolution,

field of view and maximum visible star magnitude. Noise levels are also configurable. The aim

is to easily test algorithms in similar conditions of those used in multiple, different previous

researches. Effectively, this reduces the need of implementing again reference algorithms.

If widely adopted, our universal verification platform could become a common tool,

improving the reproducibility of results. Therefore, all the code of the simulator and verification

platform is being shared7 under the Apache Licence Version 2.0. Thus, the platform’s structure,

the star simulator and test cases can be reused to evaluate different algorithms. To simplify

interfacing, we proposed a black-box structure following the existing UVM standard, allowing

easier collaboration. Universal interfaces were created so that it becomes possible to test the

centroiding, star identification, and attitude determination algorithms separately or working

together.

1.1 GENERAL OBJECTIVE

This work has the main objective of proposing a design for miniaturised star trackers,

with the focus on reducing the hardware requirements of the processing system. This reflects in

smaller energy requirements through the appropriated sizing of the latter for a computational

7 https://github.com/schulz89/Verification-Platform-for-Star-Trackers

Chapter 1. Introduction 24

1.2 SPECIFIC OBJECTIVES

Considering the general objectives, the following specific objectives are defined:

1. Explore different star identification algorithms as candidates for use in miniaturised star

trackers than those already chosen by other works;

2. Propose improvements in the selected algorithm, focusing on the downsides pointed out

by the scientific community;

3. Evaluate the proposed improvements with tests and metrics that are commonly adopted

with similar algorithms for star identification;

4. Study of standardised testing platforms employed within different research areas and

contexts for serving as a structural blueprint for the proposed testing platform;

5. Generalise the test platform so that it can be used to qualify other algorithms, serving as a

proposed standardised universal testing platform;

6. Publish the testing platform specifications and the companion software in the form of free

software.

1.3 RESEARCH QUESTIONS

This Section presents the research questions that serve as direction for this work’s devel-

opment, supporting the objectives.

1. Could the speed advantages of working directly with binary descriptors be explored in star

identification algorithms of the pattern recognition class9, making them better candidates

for use in miniaturised star trackers? In the related subject of Local Features, which

is also a subclass of pattern recognition problems, the matching of binary descriptors

was shown to be performed faster on modern microprocessors when compared to the

more established vector-based descriptors, due to the available processor instructions

for Boolean operations10 (MUJA; LOWE, 2012). Could a similar performance gain be

achieved within the context of star identification?

2. By doing the pattern matching in the binary format, instead of the usual lookup table11

based approach, could the Boolean matching function be optimised to better use the

available information from the catalogue and sensor descriptors? Existing algorithms of

the pattern recognition class did not yet explore this possibility (ZHANG; WEI; JIANG,

2008; ZHAO et al., 2017).

9 The classes for star identification algorithms are described in subsection 3.2.1
10 subsection 3.2.2 discusses the parallel with Local Features and the specialised instructions.
11 The binary and lookup table formats are described in subsection 3.2.4.

Chapter 1. Introduction 25

3. Could some techniques used to optimise algorithms from the subgraph isomorphism class

be reapplied to algorithms of the pattern recognition class? Would this result in reduction

in complexity and resource requirements? An investigation of which of those techniques

would benefit the optimisations for miniaturisation is necessary.

4. When constructing a verification platform, could the inputs and outputs be made universal,

so that it would be possible to test software components isolated (e.g. centroiding, star

identification or static attitude determination) or associated?

5. How can the design of star trackers be accelerated by the use of a verification platform?

1.4 METHODOLOGY

Based on the research objectives, the complete software stack of a star tracker was im-

plemented in order to be used as a reference. For the star identification part, the grid algorithm

(PADGETT; KREUTZ-DELGADO, 1997) was selected as the basis in which the implemen-

tations are proposed. The algorithm was chosen due to its widely recognition as the reference

algorithm from which the various other pattern recognition algorithms were derived, and due to

its star patterns being defined in the form of binary descriptors, which are targets for optimisation

in computational efficiency during processing.

State of the art algorithms benefit from the acceleration of processing through dedicated

hardware implementation using binary descriptors (ZHAO et al., 2017). These algorithms, de-

rived from the grid algorithm, can also be improved by the same proposed optimisations, without

the need of significant modifications.

An analysis of related publications revealed two main criticism about the grid algorithm.

The first is that its database search procedure is asymptotically worse than newer algorithms of

the subgraph isomorphism class (SPRATLING; MORTARI, 2009). The second is that it usually

requires a large field of view (FOV) for correct matching (NA; JIA, 2006; HO, 2012), as the

attitude determination can be compromised when only a few stars are visible. Considering that

the same sensor is used, when working with a larger FOV, the number of pixels between two

given stars are fewer, impacting negatively the accuracy of measuring their angular distance.

By organising the grid algorithm’s star database in a binary form and working with binary

descriptors, it was possible to propose a few improvements with the existing criticisms in mind,

which can impact positively in the algorithm’s speed and expand the sky coverage by improving

the number of correct matches between sensor derived patterns and the database entries.

An evaluation platform was built in order to verify the implementations and measure the

actual improvements, comparing the algorithm with introduced modifications with the reference

implementation. As the embedded system which composes a star tracker is mixed between

software and hardware, the verification platform was implemented following the IEEE 1800.2-

2017 standard (IEEE, 2017), using the Universal Verification Method (UVM) structure and

Chapter 1. Introduction 26

using the system modelling language SystemC, which allows for the co-verification of mixed

systems with software and hardware, including the support for hardware-in-the-loop structures.

The exposition environments where radiation is present, for example during orbit op-

eration of a star tracker, can cause effects over the images captured by the CMOS sensor in

the form of dark current, and random telegraph signal (HOPKINSON; MOHAMMADZADEH;

HARBOE-SORENSEN, 2004; VIRMONTOIS et al., 2014). In parallel, cyclic thermal deforma-

tions can distort the focal plane of the optical system during operation (SAMAAN; MORTARI;

JUNKINS, 2006). Such effects were measured in hardware using a prototype, and subsequently

mathematically modelled in order to be introduced in the synthetic images produced by the

verification system.

This platform was constructed with generalisation in mind, so that other star identifica-

tion algorithms could also be evaluated by the same benchmarks, thus serving as a contribution

for standardising star identification performance analysis. The associated metrics were designed

to be able to universally evaluate star identification algorithms, so that they can serve as a

common ground of comparison between different implementations.

Linking the verification platform with the star tracker design steps, we considered the

possibility of speeding up development through a top-down design. It begins with the high-level

algorithms being implemented in a computer. Development is simplified by using C++ libraries,

such as OpenCV 3. The system evolves down to lower levels of abstraction, becoming a hybrid

system. Parts of the algorithm that are identified to be more demanding in terms of processing

power are then optimised and implemented in hardware using FPGA stream processing. As

lower level implementations get more specialised, C++ libraries can be dropped in exchange for

targeted code. As the system evolves, the same test cases that were developed simultaneously

with in higher levels of abstraction are reused to ensure correctness of the design in lower levels

(regression test).

1.5 ORIGINAL CONTRIBUTIONS

The original contribution of this work is:

• A verification platform for star tracker algorithms, following the structure of the Universal

Verification Methodology standard, was designed and shared as free software.

Other contributions of this work include:

• The platform can be used to test different algorithms for star trackers that perform centroid

extraction, star identification and attitude determination, separated or acting together. A

universal design was achieved through a black box design and well-defined interfaces;

• Direct comparison with data of different authors can be done, as simulations can easily

run in different conditions by adjusting the optical parameters and noise levels of tests;

Chapter 1. Introduction 27

• The platform can be used as an aid to speed up development. A top-down design of mixed

software and hardware components is explored as a proof of concept;

• Specific noise simulations can also be performed. A prototype was submitted to satel-

lite launch environment conditions, and the measured noise was used to configure the

simulator;

• An initial batch of standard tests that enable direct comparison between algorithms of

different authors was created. This is an initial step into creating a standard for comparing

algorithms;

• An evaluation of the performance effects of working directly with binary descriptors for

pattern based star identification;

• An evaluation of the impact of the proposed modifications for database search complexity

reduction and modified scoring function for star identification algorithms working with

binary descriptors.

1.6 OUTLINE

The work is organized as follow: section 2.1 presents a brief description of coordinate

systems used for attitude determination. This chapter can be skipped if the reader is familiar

with the topic. In sequence, section 2.2 describes how miniaturized star trackers work from

the hardware perspective, with commercial and academic examples. After, chapter 3 discusses

the software components of a star tracker, with focus on the algorithms relevant for this work.

In chapter 4, the verification platform based on UVM/SystemC that was created is presented,

describing how the star simulator was implemented, with an analysis of the common tests that are

done to evaluate star tracker algorithms. In chapter 5, the practical applications of the developed

verification platform for speeding up development and optimising star identification algorithms

are discussed. The chapter also demonstrates how the platform can be used along with traditional

satellite environment tests to evaluate algorithms in the presence of real world noise. Finally,

chapter 6 presents the conclusions of the work, remarks and what could be expanded in future

works.

28

2 BACKGROUND

2.1 COORDINATE SYSTEMS FOR ATTITUDE DETERMINATION

Attitude determination is the process of obtaining spacecraft orientation in space. More

precisely, the orientation is to be determined relative to an inertial frame of reference or a specific

object, such as the Earth or the Sun. The problem of attitude determination can be understood as

a geometric problem on a two-dimensional celestial sphere. In the celestial sphere, two angles

are necessary to represent a point, and the radius is considered to be unitary (WERTZ, 1978).

In this work, two coordinates systems are used: spacecraft-fixed; and inertial. The former

being referenced at the spacecraft itself, and the latter being Earth referenced. They are explained

in more details next.

Spacecraft-fixed coordinates is the system in which the measurements are taken, i.e.

from the perspective of the spacecraft itself. The two angles that compose the celestial sphere

(Figure 4) are called azimuth (the angular distance around the equator between the meridian

passing through the relevant point and the reference meridian) and elevation (arc length distance

above or below the equator of the celestial sphere). For attitude sensing hardware, the field of

view of the sensor is taken as the reference for centring the celestial sphere (WERTZ, 1978).

Figure 4 – Celestial sphere representing
the spacecraft-centered coordi-
nate system.

Source: Reproduced from Wertz (1978).

Figure 5 – Celestial sphere representing
the inertial (celestial) coordinate
system.

Source: Reproduced from Wertz (1978).

The most common inertial coordinate system takes the rotation axis of the Earth as the

reference. The North and South poles of the celestial sphere are defined to be parallel with the

rotation axis of the Earth, and the reference meridian, called the vernal equinox, is defined as

the point where the ecliptic, which is the plane of the Earth’s orbit around the Sun, crosses the

equator going from south to north. This would be a direction parallel to the line from the centre

Chapter 2. Background 29

of the Earth to the Sun on the first day of spring. The idea is that this reference system would be

inertial, i.e. fixed relative to the mean position of the stars in the vicinity of the Sun, but in fact

changes over time due to gravitational interaction between the Earth, the Moon and the Sun, a

phenomenon called precession of the equinoxes. Thus, an inertial coordinate system with the

Earth rotation axis must have a date attached in order to accurately define the position of the

vernal equinox. The two angles that define the celestial sphere are here called ascension and

declination (analogous to the previous azimuth and elevation angles), and they are depicted in

Figure 5 (WERTZ, 1978).

Since the celestial sphere has a unit radius, the coordinates can also be mathematically

represented as a x,y,z rectangular system, in the form of unit vectors. This form of representation

facilitates the expression of mathematical concepts in equations, and is mostly used in this work.

Whenever a unit vector is used in this fashion, the reference is specified as either spacecraft-fixed

or inertial. The problem of determining the attitude from the sensors then becomes determining

the rotation between these two coordinate systems – spacecraft-fixed and inertial, which can

be mathematically expressed in various forms: Euler axis + angle; rotation vector; rotation

quaternion; Rodrigues parameter (and its modified version); and Euler angles. A comprehensive

description of these systems of attitude representation and the conversion between them is

available in Markley and Crassidis (2014).

2.2 MINIATURISED STAR TRACKERS

2.2.1 Physical Construction

State of the art star trackers are composed of two main components: a digital image

sensor, using the CCD or CMOS technology, and a lens. This configuration is a lot similar to

what composes a digital camera (MARKLEY; CRASSIDIS, 2014). An example of an internal

structure of a star tracker can be seen in Figure 6. In order to prevent stray light rays from

introducing errors in the images, a mechanical construct called baffle is used, which allows only

light coming from the front to enter the lenses.

In the same way that smart digital cameras have on-board processing, it makes sense

to consider the hardware responsible for processing the image coming from the optical sensor

as part of the star tracker. Due to the small quantities in which star trackers are manufactured,

usually this processing hardware is present in the form of microprocessors or programmable

logic, i.e. FPGAs (Field Programmable Gate Arrays). Manufacturing specific ASICs for this

purpose is cost-prohibitive at current production volume.

In the later years, due to the increase in the market of smartphones with embedded

cameras, CMOS sensors became available in very small form factors, with increased resolution,

sensibility, lower costs and reduced energy consumption. The CMOS sensors also have, in

comparison with CCD sensors, better immunity to radiation (MARKLEY; CRASSIDIS, 2014).

CCDs were sometimes selected in the past for being able to capture whole images at the same

C
h

a
p

ter
2

.
B

a
ckg

ro
u

n
d

31

Table 2 – Examples of star trackers for nano-satellites and pico-satellites.

Name (Manufacturer) Power Accuracy Frequency

CubeStar (Stellenbosch University) 0.350W (avg.), 0.55W (peak) < 0.01° (c.b.), < 0.03° (a.b.) 1Hz

STELLA (Julius Maximilian Univ. of Würzburg) 0.275W (avg.) 0.01° (c.b.), 0.04° (a.b.) 4Hz

ST-16 (Sinclair Interplanetary) < 0.5W (avg.), 1.0W (peak) < 10′′ (c.b.), < 74′′ (a.b.) 2Hz

ST-16RT (Sinclair Interplanetary) < 0.5W (avg.), 1.0W (peak) < 4′′ (c.b.), < 30′′ (a.b.) 2Hz

MIST (Space Micro) < 3W (avg.) 30′′ (1σ) 10Hz

ST-200 (Berlin Space Technologies) 220mW (avg.), 650mW (peak) 30′′ (3σ) 1Hz

Nano Star Tracker (Blue Canyon Technologies) 0.75W (avg.), < 1.0W (peak) 6′′ (1σ , c.b.), 40′′ (1σ , a.b.) 5Hz

TS Nano (Blue Canyon Technologies) 0.75W (avg.), < 1.0W (peak) 6′′ (1σ , c.b.), 40′′ (1σ , a.b.) 5Hz

Name (Manufacturer) Dimensions Mass Reference

CubeStar (Stellenbosch University) 46×33×70mm (w. baffle) 90g (ERLANK; STEYN, 2014)

STELLA (Julius Maximilian Univ. of Würzburg) 91×46×58mm (w. baffle) 167g (BARSCHKE et al., 2013)

ST-16 (Sinclair Interplanetary) 59×56×32mm + Ø 48×48.5mm (baffle) 85g+35g (baffle) (SINCLAIR INTERPLANETARY, 2015a)

ST-16RT (Sinclair Interplanetary) 62×56×38mm + Ø 57×47mm (baffle) 158g+30g (baffle) (SINCLAIR INTERPLANETARY, 2015b)

MIST (Space Micro) < 100×100×50mm (0.5U ; w. baffle) 500g (w. baffle) (SPACE MICRO, 2015)

ST-200 (Berlin Space Technologies) 30×30×38.1mm (w.o. baffle) 50g (w.o. baffle) (BERLIN SPACE TECHNOLOGIES, 2012)

Nano Star Tracker (Blue Canyon Technologies) 100×55×50mm (w. baffle) 350g (BLUE CANYON TECHNOLOGIES, 2015b)

TS Nano (Blue Canyon Technologies) 100×100×30mm (w. baffle) 200g (BLUE CANYON TECHNOLOGIES, 2015a)

Source: Elaborated by the author.

Note: c.b.: cross-boresight; a.b.: around boresight.

Chapter 2. Background 32

In the first two rows of Table 2 there are examples of star trackers developed by academic

initiative. Erlank and Steyn (2014) developed on Stellenbosch University the CubeStar, a star

tracker specifically designed to be used on CubeSats and built with COTS (Commercial off-the-

shelf) components. Barschke et al. (2013) developed the Stella star tracker at Julius Maximilian

University of Würzburg, which is part of the nanosatellite TechnoSat from the Technische

Universität Berlin. These star trackers have specifications very close to those of commercial

applications, with measurements made with simulations and field tests. Other three examples

which were not featured in the comparison due to the absence of published data are McBryde

and Lightsey (2012), developed by the University of Texas at Austin and destined to be used in

CubeSats, and Rawashdeh (2013), a stellar gyroscope, which is very close to a star tracker but

also provides angular velocity information, developed in the University of Kentucky and part

of the KySat-2 satellite. Lindh (2014) studied the implementation of the electronic system for a

star tracker, without discussing the software implementation.

For the star tracker algorithms, Erlank and Steyn (2014) used the Recursive Region

Growing, Geometric Voting and Quest algorithms for centroiding, star identification and at-

titude determination, respectively. McBryde and Lightsey (2012) selected, in the same order,

Liebe’s centroid algorithm, Geometric Voting and the Singular Value Decomposition method.

Star tracker software components are discussed later in detail in chapter 3.

The other rows of Table 2 are commercial star trackers. In general, the available in-

formation about them is limited to the data presented in the datasheets, which are restricted

to specifications that are relevant for commercialisation purposes. There are some discussions

about the challenges of miniaturisation of the ST-200 of Berlin Space Technologies, which

is derived from the ST-100, projected for bigger satellites (SEGERT et al., 2011). Regarding

MIST, from Space Micro, there is available information about the algorithms that were used,

with the internal simulation system also described (SENG et al., 2005). It was published when

the technology belonged to Comtech and the star tracker was called AeroAstro MST, with the

company’s integration by Space Micro, which occurred in 2014. There is also information about

the physical construction of the camera available for the Nano Star Tracker of Blue Canyon

Technologies, which is published in Palo, Stafford, and Hoskins (2013).

The ST-16, of Sinclair Interplanetary is the commercial star tracker with the most num-

ber of related publications available. During its development phase, the project was called S3S.

Enright, Sinclair, Grant, et al. (2010) discusses the necessary characteristics for attitude determi-

nation using a single star sensor as the only source of information in a satellite. The utilisation

of COTS imaging sensors was discussed in Enright, Sinclair, and Fernando (2011), and results

in the choice of the Aptina MT9P031 CMOS sensor (now owned by On Semiconductors) as the

sensor in use in the ST-16. Later improvements in hardware and software in order to achieve

better precision in attitude readings were published in Enright, Sinclair, and Dzamba (2012).

The validation and tests of a Baffle were presented in Marciniak et al. (2013). Finally, Dzamba

et al. (2014) discusses the validation of the ST-16 aboard a real satellite, and the improvements

Chapter 2. Background 33

that were made online to the software in order to achieve the expected results.

Chapter 3. Star Tracker Software Stack 35

delimited by the constants ROIstart and ROIend. Thus, the process calculates the mean of the

coordinate values weighted by the pixel brightness values.

DN =
ROIend−1

∑
x=ROIstart+1

ROIend−1

∑
y=ROIstart+1

image(x,y) (1)

xc =
ROIend−1

∑
x=ROIstart+1

ROIend−1

∑
y=ROIstart+1

x · image(x,y)

DN
(2)

yc =
ROIend−1

∑
x=ROIstart+1

ROIend−1

∑
y=ROIstart+1

y · image(x,y)

DN
(3)

There is also a more computationally expensive method in which a Gaussian interpolation

method is used to determine the centroids (QUINE et al., 2007), which theoretically should

result in better estimations since the defocused projection of a star in the sensor is very close

to a bidimensional Gaussian distribution. However, when compared with the centre of mass

algorithm with real star images, it was found that it is less stable when successive images are

taken into account (ZHANG, P. et al., 2014).

In these equations, the brightness level of each pixel is considered for weighting its

importance when calculating the centroids, instead of simply considering their positions. Also,

the region of interest is considered to be a square, but does not need to be so. The actual algorithm

used in this work for segmenting the regions of interest of the stars instead separates the precise

contour of pixels above a defined threshold. It is called Region Growing Algorithm, a recursive

algorithm implemented from the description in Erlank (2013), which works as following:

1. The coordinates of a pixel (called seed) belonging to the star is given;

2. The seed is added to a list of pixels belonging to the star;

3. The seed’s pixel value is set to zero to prevent if from being detected again;

4. The seed’s four vertical and horizontal neighbours are checked against the detection

threshold;

5. For the neighbours above the threshold, the algorithm is called recursive with that pixel

as the seed;

6. The algorithm ends when no more neighbours are found above the set threshold.

Two restrictions are added to detected regions: it must exceed a given number of pixels,

in order to avoid dead pixels or other types of noise; and be below a maximum number of pixels,

which could indicate that big objects are being detected and possibly saturating most of the

pixels of the sensor, such objects might be the Moon, the Earth or the Sun entering the FOV. The

Figure 8 illustrates how seeds are given into the Region Growing Algorithm, and how the next

seeds from neighbours are obtained for doing the recursion.

Chapter 3. Star Tracker Software Stack 38

By doing the comparison from the perspective of noise tolerance, algorithms from the

second class tend to perform better than the first class (PADGETT; KREUTZ-DELGADO;

UDOMKESMALEE, 1997). Noise can manifest in star trackers in the form of smaller location

accuracy of stars in the sensor plane, differences in perceived brightness (perceived stellar

magnitude) or the presence of false stars. The reason for this tolerance is that working with

binary patterns leave some room for changes in location of the stars while still generating the

same pattern, and false stars only change a single bit, leaving the pattern still very close to the

original. It is important to notice that there are today algorithms from the first class which have

shown to perform very well in the presence of false stars (KOLOMENKIN et al., 2008).

Complementing this discussion, the survey of Na and Jia (2006) adds that for the same

sensitivity the grid algorithm (second class) generally requires more stars in the field of view

(FOV) for correct identification than other algorithms (from the first class). The advantage of

using a smaller FOV angle with the same sensor resolution is that it results in higher accuracy

of attitude measurements. Star patterns have richer information when multiple stars can be seen

in the FOV, thus in general pattern-based star identification perform worse than subgraph iso-

morphism approaches that can differentiate better between small differences in angles between

stars.

Ho (2012) wrote a survey that focus on star identification algorithms performance at

very low FOV angles. A FOV of 4x4 degrees is considered for evaluation of algorithms. In this

condition, algorithms that use information from past image frames, using tracking and combined

images, are better fitted to the problem. The grid algorithm is deemed unable to work properly

in this conditions, since there is a requirement for multiple stars in the FOV for correctly form

the star patterns, but with the 4x4 degrees restriction, more than 70% of orientations capture less

than two stars.

Guangjun Zhang (2017) considers algorithms based on star patterns to have significant

advantages when compared with the traditional angular distance algorithms, due to their better

tolerance to positional and magnitude noise and smaller database size requirements, but particu-

larly criticises the grid algorithm low probability of matching a particular star, specially if it is

detected close to the borders of the image sensor.

Other significant algorithms that belong to the pattern recognition class are Zhang, Wei,

and Jiang (2008), which transforms the rectangular grid pattern into polar coordinates, working

with the radial and cyclic features, which provided better identification rates at a cost of slower

identification and Na, Zheng, and Jia (2009), which implemented elasticity in the grid algorithm,

also allowing better recognition rates and less susceptibility to noise, also at the cost of increased

complexity.

3.2.2 Discussion

Summarising the previous Section, pattern based star identification is less susceptible

to noise, but has higher asymptotic complexity and is more limited when working with smaller

Chapter 3. Star Tracker Software Stack 39

FOV angles. Since it usually works with binary patterns, it is also relatively simple to make a

hardware implementation as a digital circuit in configurable hardware. For the grid algorithm, the

identification can be preformed by calculating scores using the Hamming weight (sum of ones

in the binary word) of the resulting Boolean bitwise AND operation between the sensor obtained

pattern and the database patterns, with the highest score indicating that the database entry is

the closest to the sensor pattern. While the original implementation still has worse algorithm

complexity, the internal database of patterns can be partitioned and the comparisons can be made

in parallel on multi-core architectures without modifying the results of the algorithm.

Here, another example of pattern recognition problem is presented in order to form a

parallel with the star identification problem. The matching of Local Features is defined as image

patterns that differ from their neighbourhood in terms of intensity, colour and texture. Local

Features can be small image patches, edges or points, and in modern publications are also called

interest points, interest regions or keypoints. Good Local Feature patterns are repeatable, mean-

ing that the same scene being captured in different conditions of point of view or illumination

still detect a high percentage of similar features. They should also be distinctive, to avoid hav-

ing multiple matches when comparing the patterns leading to erroneous pairings (SIEGWART;

NOURBAKHSH; SCARAMUZZA, 2011, p. 212–213).

In this parallel context of Local Features, binary descriptors were shown to have sev-

eral advantages over the more established vector-based descriptors. They are compared using

Hamming distance, which can be computed by performing a bitwise XOR operation followed

by determining the Hamming weight (counting the ones of the result). This operation can be

performed quickly on modern computers, where there are dedicated instructions for bit count-

ing (MUJA; LOWE, 2012). These instructions are POPCNT on Intel x86 architectures which

support SSE4 instructions (INTEL CORPORATION, 2007), and VCNT on ARM architectures

with NEON instructions (ARM LIMITED, 2013).

In one hand, it is desirable to maintain the natural advantage points of pattern recognition

star identification. For example, better noise tolerance and the use of efficient operations when

being run in modern hardware are strong points originally present in algorithms of this group.

On the other hand, it is worthwhile to consider improvements in asymptotic complexity of the

database search and in better detection rates when fewer stars are present on the FOV.

With such developments, pattern recognition algorithms could become more advanta-

geous to use in miniaturised star trackers, specially when considering working with binary

descriptors in current microprocessors or FPGA’s. Fewer instructions or clock cycles would

be necessary to perform the same computations, without compromising the rate of successful

attitude determination. This work is an attempt to address these limitations of pattern recognition

based star identification algorithms using binary descriptors in order to make them more suitable

for use in state of the art star trackers.

Chapter 3. Star Tracker Software Stack 40

3.2.3 Star Catalog

Star catalogues contain astrometric and photometric data, usually collected by observa-

tions of specialised satellites. Such data, in the context of star simulators and star identification

algorithms, is used as the fundamental data for constructing the internal database of stars. In

this work, the Hipparcos1 star catalogue (ESA, 1997) was selected for use, due to its highly

accurate data for brighter stars. Current CCD and CMOS sensors are able to detect stars around

magnitude 6.0 and lower2 (ENRIGHT; SINCLAIR; FERNANDO, 2011), making the selected

catalogue appropriate. The Hipparcos-23 catalogue (LEEUWEN, 2007) was a later improvement

on the accuracy of original Hipparcos data, achieved by a new reduction of astrometric data. The

updated data was considered in this work, complemented with information from the original

Hipparcos catalogue when such data was not available on the updated version.

The entries of interest in Hipparcos and Hipparcos-2 catalogues are shown in Table 3.

On the Table, the most important fields are RArad, DErad and Vmag. They correspond, respec-

tively, to the right ascension coordinate, the declination coordinate, and the visual magnitude

(brightness) of the stars. The coordinates are represented in the International Celestial Reference

System (ICRS), in the epoch 1991.25, defining the inertial reference system of the catalogue

(as defined in section 2.1). The Hipparcos identifiers are useful for pairing entries from the two

catalogues. The proximity and coarse variability flags indicate stars that have close neighbours in

their immediate proximity and stars that have considerable variability in magnitude, respectively.

These flags are useful to determine stars which are bad candidates for being used as references.

Very close stars might be mistaken as a single brighter star, or a star that show significant vari-

ability can produce spurious detection on the limits of sensitivity of the hardware. Finally, proper

motion information are used to correct for the perceived movement of stars through time in the

celestial sphere. Proper motion information can be used to correct for the perceived movement

of stars through time in the celestial sphere.

Both catalogues are presented as ASCII text files, with fields being always delimited by

the same length in bytes. The fields were parsed in the software. The entries shown in Table 3

were selected for building two tables of data, one for each catalogue. These two tables were then

joined in a single table by matching their HIP identifiers. Hipparcos have more entries of stars

than Hipparcos-2. These extra entries were deemed as unreliable and excluded from the joined

table.

The entries of the catalogue which are above the threshold of magnitude considered, and

thus deemed to be undetectable by the sensor, were eliminated. This greatly reduced the dimen-

sions of the database constructed from the data. The star coordinates were updated to current

time through proper motion correction, then transformed from their angular representation (right

ascension α and declination δ) into a unit vector (inertial) in Cartesian coordinates. The process

1 http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/239
2 Counter-intuitively, lower values of star magnitude actually mean brighter stars.
3 http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/311

Chapter 3. Star Tracker Software Stack 41

Table 3 – Entries from Hipparcos and Hipparcos-2 which are of interest.

Symbol Catalogue Label Description Unit

- Hipparcos HIP Identifier (HIP number) -

- Hipparcos Vmag Magnitude in Johnson V mag

- Hipparcos-2 HIP Hipparcos identifier -

α Hipparcos-2 RArad Right Ascension, ICRS, 1991.25 rad

δ Hipparcos-2 DErad Declination, ICRS, 1991.25 rad

µα∗ Hipparcos-2 pmRA Proper motion in Right Ascension mas/year

µδ Hipparcos-2 pmDE Proper motion in Declination mas/year

Source: Adapted from ESA (1997) and Leeuwen (2007).

is detailed in sequence.

Proper motion is defined as the time derivative of the positional coordinates of right

ascension (α) and declination (δ), as seen in Equation 4.

µα =
dα

dt
, µδ =

dδ

dt
(4)

The Hipparcos entries are pmRA (µα∗) and pmDE (µδ). The asterisk in the proper

motion of right ascension denotes that it is converted to great circle measurements for being

directly comparable to µδ . It is necessary to undo this conversion before applying the corrections

(ESA, 1997, p. 25), by determining µα from Equation 5.

µα∗= µα · cos(δ) (5)

Before making the correction, the units for the proper motion variables must be converted

from milliseconds of arc/year to radians/year, as shown in Equation 6 and Equation 7.

µα(rad/year) =
µα(mas/year) ·π
3600 ·1000 ·180

(6)

µδ (rad/year) =
µδ (mas/year) ·π
3600 ·1000 ·180

(7)

Then it is possible to correct the proper motion by using its definition (Equation 4),

which is represented in Equation 8. Here the time t unit is years.

α = α +µα · t, δ = δ +µδ · t (8)

The new α and δ coordinates can then be transformed into unit vectors using Equation 9.

uv =

cos(α) · cos(δ)

sin(α) · cos(δ)

sin(δ)

(9)

Chapter 3. Star Tracker Software Stack 43

1. A star r is selected as the reference to create the pattern;

2. The r star and a part of the surrounding sky with radius pr is translated to the center;

3. A loose square grid of side g is placed, with the pattern rotated so that the closest neighbour

star will lie in the x coordinate axis (achieving rotation invariance);

4. A g2 length bit vector is derived from the grid pattern. The presence of a star in a cell is

represented linearly in the vector so that the bit k ·g+ i is 1, while its absence is represented

as the bit 0.

For example, for extracting the pattern of Figure 11, working with g = 12, and consider-

ing the upper left cell as the origin coordinate [0,0] as being represented by the least significant

bit (LSB) and working left to right, up do down, the pattern on Figure 11 is represented, in hex-

adecimal notation, as: 0x0000000000000000080800000101040400a0, where the pixels

{5,7,18,26,32,40,67,75} are set.

More formally, considering that i is the set of database stars, and j is the set of stars in

the sensor image, and that pati is the set of patterns from the database and pat j is the patterns of

the currently selected reference star to create the pattern, the maximum score needs to be found

(Equation 10), with the match function being defined as Equation 11. The & operator represents

the logical AND operation.

maxi(match(pat j, pati)) (10)

match(pat j, pati) =
g2−1

∑
k=0

(pat j(k) & pati(k)) (11)

The construction of the internal database requires the introduction of a few restrictions.

From the visible stars (V), some unreliable stars are excluded from becoming entries in the

database: stars that have variable brightness; binary stars; or other configurations with high

proximity. The remaining stars that form the database entries are called the Reference Stars R.

For each member of R, which is a reference star, the stars within the pattern radius pr of this

reference star that are members of V are then used to form the pattern, using the procedure

previously mentioned for building the star patterns. Members of the catalogue which have

fewer stars than a constant threshold value α , the known star density, are excluded from the

catalogue. α will restrict the number of stars in the sensor image that are required to result in

an unambiguous match, meaning its value is at least two. This will determine the best possible

recognition rate of the algorithm.

A different way of representing the database was proposed in the original article in order

to reduce its memory requirements, which also resulted in a computationally superior version

of the algorithm. In this representation, a lookup table (LUT) is created (visually represented in

Figure 12). The possible cell numbers k from the pattern (with bit positions 0 to g2 −1) serve

Chapter 3. Star Tracker Software Stack 45

The algorithm works by (1) selecting the first star of the list as the leader of the cluster

and removing it from the list, then (2) assigning all other stars within the FOV angle distance

to this cluster and removing them from the list. (3) Step 1 is then applied recursively to the

remaining stars in the list, until all stars are members of a cluster. The largest cluster is selected

as the output of the verification routine. In case of two or more clusters being the largest, an

error is signalized and there is no output.

This algorithm requires a single pass through the identified stars list to do the clustering,

thus being very fast. A trade-off for the fast speed is that it can produce different results depend-

ing on the ordering of the input list, as it assigns the stars immediately to the current cluster

being considered if it satisfies the FOV angle distance in which the angle is within the possible

FOV, disregarding cases where a star could also be assigned to a different cluster, perhaps within

a smaller angle of the reference star. There is also no careful selection of the cluster leaders.

With this in mind, the diagonal of the sensor is considered as the largest angle permitted for stars

to be considered as within the same cluster.

3.2.5 Discussion of the Grid Algorithm

One of the defining characteristics in the grid algorithm is that rotation invariance is

achieved through aligning the closest neighbour into the image’s x coordinate axis. If a mistake is

done when selecting the next neighbour for creating the pattern, due to sensor noise for example,

the complete pattern is compromised. This can be seen as a disadvantage of the algorithm, but

this particularity can also be explored in a positive way. It was used for improving the database

search procedure, as it will be discussed later in subsection 5.2.3.

The restructuring of the database in the lookup table format brought benefits in memory

requirements and computationally requires less resources, since only the active cells are con-

sidered for the database search. However, this kept it from exploring the advantages of using

a binary descriptor and doing boolean comparisons (which may benefit from dedicated hard-

ware instructions). Bringing back the parallel with Local Feature descriptors (as discussed in

section 3.2). This rearrange of the database in LUT format was also adopted by later algorithms,

inspired by the grid algorithm (ZHANG; WEI; JIANG, 2008; ZHAO et al., 2017).

There is also one important difference from Local Feature descriptors: the grid algorithm

score function (Equation 11) works with the boolean AND operator; while in Local Feature

descriptors this score uses the boolean XOR operation.

For the sake of understanding the selection of the AND function, a naïve approach to

derive a scoring function would be to compare the set and unset bits from the database and

sensor and whether it is expected for the score to go up or down, as show in Table 4. In this

context, it would seem as the NXOR boolean operation would be more suitable to represent the

behavior of what would be expected of a scoring function, rather than the AND function that

was originally selected. The operator was probably chosen instead for the sake of simplicity, a

decision which can be understood with a more detailed analysis of the scoring process.

Chapter 3. Star Tracker Software Stack 46

Table 4 – Classification of the scores and comparison with
boolean functions (idealized).

Database Sensor Classification Scoring Behavior AND NXOR

0 0 true negative up 0 1

0 1 false positive down 0 0

1 0 false negative down 0 0

1 1 true positive up 1 1

Source: Elaborated by the author.

For all the patterns contained within the database, constructed from the star catalogue, a

set bit means that one or more stars are present within the pattern cell and, complementary, a

zero value means that no star is present in the region delimited by the cell. However, the same

cannot be said for the patterns derived from the sensor image. The translation and rotation steps

that are part of the pattern construction make out-of-image areas fall within the space considered

for the construction of the pattern. This means that zeros can both mean that there are no stars

within the cell, or that the existence of stars is unknown because the information is outside of

the boundaries of the sensor.

It can be concluded that from the original way that the patterns were constructed, only

the set values were reliable for the matching function comparison. Therefore only the AND

boolean operation would make sense for the scoring function.

The downside of this approach is that only the true positives are considered for scoring.

Neither false positives nor false negatives impact in score reduction. True negatives also do

not contribute for a higher score. The representation of the unknown state as a zero in the

pattern prohibits the use of the NXOR operator, which ideally would consider all the possible

comparison cases in scoring.

3.3 STATIC ATTITUDE DETERMINATION

Attitude determination can be differentiated from attitude estimation in whether they

are a static method which only information that is acquired at the same time (or very close) is

considered, or when previous measurements are also considered in a dynamic system. In the first

case, there is no memory of previous attitude measurements used when computing the current

attitude. In the second, previous attitude information can be also considered when computing

the new attitude estimate (MARKLEY; CRASSIDIS, 2014).

For dynamic attitude estimation, a Multiplicative Extended Kalman Filter (MEKF)

(MARKLEY, 2003; TRAWNY; ROUMELIOTIS, 2005) can be used to simultaneously esti-

mate the attitude in quaternion representation and correct gyroscope drift with observed attitude

from a star tracker. It differs from the Extended Kalman Filter (EKF) in the prediction step,

where the control information is considered as a quaternion multiplication instead of a sum,

Chapter 3. Star Tracker Software Stack 47

avoiding singularities in the covariance matrix problems for the estimation of attitude in quater-

nion form. Using a quaternion representation for attitude determination has a clear advantage

over using rotation matrices with Euler angles because for three dimensional rotations there is

no need to take precautions against gimbal lock problems.

In this work only a static attitude determination algorithm was implemented, since it is

enough for verifying the complete star tracker structure. Static attitude determination is also a

pre-requisite for attitude estimations, which require attitude measurements for correcting the

filter state vector estimations.

The generalised problem of determining the attitude in the form of a rotation matrix

between two sets of n points which best minimises the least squares error, between the first set

is rotated by the matrix and the second set, was presented by Wahba (1965). This essentially

is the problem that must be solved for finding an attitude on a star tracker, where the rotation

between the unit vector points in the inertial frame (from the star catalogue) and the unit vector

of the detected stars by the sensor must be found with the minimum possible error. There

are many algorithms which solve Wahba’s problem, with many of them using the quaternion

representation for attitude instead of a rotation matrix form. A discussion of these algorithms

can be found in Markley and Crassidis (2014).

For fulfilling the objective of verifying the star identification algorithm, the Quaternion

Estimator (QUEST) algorithm (SHUSTER; OH, 1981) was implemented, based on the equations

show in Hall (2003). It is the most widely used attitude determination algorithm for solving

Wahba’s problem, with a long history of successful application and has some simplifications

for reducing the computations. One problem of the QUEST algorithm is that in its original

form it shows singularity problems in the computed matrices when the rotation angles approach

180 degrees, which resembles gimble lock problems with Euler angles for rotation matrices, a

problem that can be solved by the Method of Sequential Rotations (MARKLEY; CRASSIDIS,

2014).

48

4 VERIFICATION PLATFORM AND STAR SIMULATOR

In order to ensure the correctness of the star tracker algorithms during implementation,

and to provide metrics from which the optimized versions of the algorithms could be compared

to the references, it became necessary to implement a structure for verification.

During the research of metrics that could be applied to the specific implementation of

this work, it became clear that there is no current standard tests from which star trackers, or

more specifically star identification algorithms, could be compared to each other. The metrics

employed by different authors vary1, and naturally have an inclination to focus on the specific

contributions involved.

Kolomenkin et al. (2008) expresses his concern with this point, “Many authors have

referred to different aspects of star tracker performance, such as speed, accuracy, memory

requirements, and stability. But each of them used a different configuration.” Many authors have

done small comparatives of their algorithms with existing references which were relevant at the

time of publishing. These comparatives usually involve one or two other algorithms which were

implemented for the sake of the examination. Most of the tests require a star simulator in order

to be realized, but no specialized simulator is shared within the scientific community.

This approach has been successful in enabling the showcase of the author’s contributions,

but have a few downsides:

1. The implementation of the reference algorithms and simulation environments might differ

and taint the results of the comparisons involved;

2. In many cases it results in rework. By reducing the time implementing reference algo-

rithms and creating testing platforms with sky simulators, this resource could be reallo-

cated to the proper research, potentially improving the quality of the scientific work;

3. Individual testing platforms often produce different metrics as outputs, which in many

cases cannot be directly compared, which reinforce the need to redo the comparisons,

presenting positive feedback for the two previous items.

Therefore, instead of building a testing platform that would only target the algorithms

involved in this work, a more general testing platform that can target other present and future

algorithms for star trackers was considered.

The general structure of the platform is based on black-box testing. The internal mecha-

nism of the star tracker sub-components were ignored, and the testing procedure focused on the

outputs generated in response to controlled inputs and execution conditions (GAO; TSAO; WU,

2003, p. 119–120).

With a proposed standard for the input and outputs, the algorithms being tested could

be interchanged with no necessary modifications to the testing platform. The platform would

1 The references associating authors to specific metrics are shown later in section 4.4.

Chapter 4. Verification Platform and Star Simulator 49

be composed of a star sky simulator, with controllable addition of noise in various forms, the

testing procedures and the generation of statistics and graphics as an output, in a standard format

permitting direct future comparisons. More specific tests that are required for a given algorithm

for other reasons can be implemented as extensions to the testing platform, benefiting from the

existing structure.

4.1 RELATED WORK

In this section, a review of related work on the subject of star simulators and generation of

synthetic sky images is presented. This is important to generate the input for star tracker testing.

Similar applications of the UVM structure to computer vision systems are also discussed in the

context of this work.

4.1.1 Star Simulators and Testing of Star Trackers

On the subject of star image synthesis, a mathematical model is presented in Hua-Ming,

Hao, and Hai-Yong (2015) and Guangjun Zhang (2017). Both works use Gaussian functions

as the Point Spread Function (PSF), for producing slightly defocused projections of stars, and

for simulating random background noise. The approach and equations used in the present work

for image synthesis and noise modelling are also similar, but the rotations performed during the

generation of the star images were done using quaternions, instead of Euler’s rotation matrices.

The advantage of the former attitude representation is in the fact that it is not subject to gimbal

lock limitations.

A more thorough model of the optical system of a star tracker, which includes the lens

and image sensor, can be seen in Knutson (2012). The simulator, written in MATLAB/Simulink,

considers the physical aspects of the optical system for emulating noise.

Some simulators also consider the dynamic conditions of the star tracker during image

synthesis. For example, in Wang et al. (2012) a mathematical model is presented for generating

smeared images of a star field. This covers the simulation of some possible scenarios, such as

a star tracker that is attached to a spacecraft with high angular velocity, generating sky pictures

with motion blur during the exposure time of the photograph. Practical implementations of

simulators with such characteristics can be seen in De Brum et al. (2013) and Filipe et al. (2017),

which can test star trackers in dynamic conditions.

Another relevant feature is the simulator’s ability of working in hardware-in-the-loop

configurations, either in open or closed loop. Examples can be seen in Filipe et al. (2017) and

Samaan, Steffes, and Theil (2011). The former work also presented a miniaturized test bench

where the test equipment rotates with the device under test (DUT), reproducing actual change

in attitude. Hardware-in-the-loop testing is also possible with the structure presented for the

verification platform in the current work. The main difference is the focus. Our platform was

built to be used also during the early stages of development, before hardware implementation.

Chapter 4. Verification Platform and Star Simulator 50

Within the mentioned simulators, the main language used for programming was MAT-

LAB, followed by C++. Some examples of the latter are Filipe et al. (2017) and Ying Zhang et al.

(2011). One advantage that these simulators have is that they support the generation of images

using OpenGL for hardware acceleration, speeding up the synthesis of individual images. As

our verification platform is developed in the same language, this feature can be added in future

instances.

Of all the previously mentioned simulators, none are available online for download, nor

published as free software. The free and open source software Stellarium2, which is intended for

users as a planetarium, is sometimes also used for testing star trackers (MCBRYDE; LIGHTSEY,

2012). Since it is being used outside of its main purpose it presents some limitations, such as

difficulties to add controllable noise or for doing simulations in closed loop configurations.

In contrast to the presented solutions, our simulator is implemented with the specific

features for testing star tracker algorithms in mind, and, at the same time, built from ground

up with a focus in reusability. Our solution is unique in the sense that it becomes the sequence

generator component of a UVM structure, which standardizes the way the test cases are built. The

standard package presented in subsection 4.3.2 simplifies the interfaces between the components

under the test and the UVM test bench in a black box construction, so that it becomes simple to

interface star tracker algorithms to the developed verification environment.

Table 5 shows a summary of the presented star simulators based on information pub-

lished, as none of them are available online, and neither are published as free software.

Table 5 – Instances of star simulators in software.

Reference Language PSF Noise Model Attitude Repr.

Fialho and Saotome (2005) C Gaussian Gaussian Euler Matrices

Samaan, Steffes, and Theil (2011) MATLAB Gaussian Not described Quaternion

Knutson (2012) MATLAB Gaussian Multiple Quaternion

De Brum et al. (2013) C Gaussian Gaussian Euler Matrices

Erlank (2013) MATLAB Gaussian None Quaternions

Hua-Ming, Hao, and Hai-Yong (2015) C++ Gaussian Gaussian Euler Matrices

Guangjun Zhang (2017) MATLAB Gaussian Gaussian Euler Matrices

Source: Elaborated by the author.

4.2 SYSTEM LEVEL VERIFICATION

The demands of miniaturisation of star trackers as part of aerospace systems implies

that today they use embedded design schemes with high integration levels for minimising the

weight, size and power consumption. Thus, the involved algorithms usually run in embedded

2 https://stellarium.org/

Chapter 4. Verification Platform and Star Simulator 52

4.2.2 Universal Verification Methodology - UVM

The verification procedures are important in the design flow of electronic systems to

reveal the existence of potential faults in the design, which can later be fixed. SystemC sup-

ports the use of the Universal Verification Methodology (UVM), which is an IEEE standard

(IEEE, 2017) that has been suggested for use for verification procedures, introduced in 2015 and

standardized by the Accelera Systems Initiative (ACCELERA SYSTEMS INITIATIVE, 2015).

The UVM standard is available in practice in two Hardware Description Languages

(HDLs): SystemVerilog and SystemC, being initially applied to the first language, then ported

to the second.

The main advantage of the specification is that a testbench with the proposed structure

is composed of reusable Universal Verification Components (UVCs) following a consistent

architecture, which are kept separate from the Device Under Test (DUT) (HEIGHT, 2013). In

other words, this block architecture facilitates the reutilisation of testing components, enforcing

a modular structure through a set of rules.

4.2.3 Verification of Computer Vision Systems with UVM

There are existing publications, in other areas of computer vision applications, where

the UVM-SystemC verification environment was used and paired with OpenCV on the earlier

steps of development. The similarities between them and the present work support the idea

that the methodology can successfully be applied for the design of star trackers, which can be

understood as computer vision systems.

In Mefenza, Yonga, and Bobda (2014), a verification environment using SystemC and

UVM was created for computational demanding video-based embedded systems. A system

design starting with an executable specification in C++ and OpenCV was verified, and the

system refined into lower levels of abstraction as an FPGA based smart camera, where the RTL

portion initially modelled in SystemC was ported to VHDL. The final system works with a

Zynq-7000 SoC, with software running in the dual core ARM processor and hardware in the

FPGA portion.

Similarly, in Campos et al. (2017) a UVM-SystemC environment was used to build

a framework for the design and validation of face detection systems. Differently, no hybrid

system is considered, but instead, a high-level model developed using OpenCV is used as the

golden reference model, from which complete hardware implementations of the face detection

algorithms can be compared during the tests. Instead of VHDL, the language used for hardware

description was SystemVerilog.

4.2.4 Structure of the Verification Platform

In this section, the overall structure of the verification platform is explained. The plat-

form follows the structure and terminology of UVM-SystemC (BARNASCONI et al., 2014).

Chapter 4. Verification Platform and Star Simulator 54

Python. The plots displayed later on chapter 5 are examples of the post-processing.

The verification platform is very flexible in generating data and testing different DUTs.

Such flexibility was possible due to the creation of a universal data packet. The packet en-

capsulates the universal i/o structures, generated by the sequences block, and presented in

subsection 4.3.2. The packets are then transmitted to the interfaces of the DUT. They contain

input information that can be used by the individual components (Figure 7), whether working

together as a whole or separately.

The transportation of these packets to the DUT was also standardised with the TLM 2.0

communication standard. This abstract communication pattern transports the data without the

need for further detail on how the data would be transported in the real system.

Two distinct DUT wrappers were developed by us. The first interfaces the TLM packets

from C++ structures to VHDL, and the second transports the structures through TCP/IP inter-

faces. They were used to demonstrate the verification of VHDL components for FPGA designs

and hardware-in-the-loop designs, respectively.

As all the components are implemented with the object-oriented paradigm, they can

easily be reused between tests to the extent it makes sense to. This is made possible by the

inheritance and polymorphism features of the C++ language. The UVM structure enforces the

organisation of the test bench in such a way that it becomes progressively more straightforward

to implement new test cases, as most structures can be reused.

By observing the complete UVM structure, it is possible to conclude that this environ-

ment is built with modularity in mind, supported by its basic components. The stimuli are

generated in high abstraction level, and are progressively refined until they reach the DUT. The

accumulation of results, reversely, progresses from the lower levels to the higher.

The base element of the UVM test bench is the Transaction Level Modelling (TLM).

These transactions are communications between functional blocks and encapsulate data that can

be information packages, for example the address and data in a serial communication protocol,

without exactly containing the information of how this data would be delivered to the DUT.

Within the analogue domain, packages can contain data for configuring a sinusoidal power

source, sawtooth, etc. This allows the generation of input data with the freedom of working in

higher levels of abstraction, without having to worry with the details of the signal level (RATH;

ESEN; ECKER, 2014).

Thus, the UVM is well structured to serve as the fundamental base for implementing the

proposed testing platform. It enables the testing platform to follow a well documented structure,

the easy implementation of the proposed tests and can be expanded and extended easily for the

implementation of future tests by the community. By pairing the UVM standard with SystemC, it

is also possible to apply the same testing platform to different DUTs, and support both software,

hardware and mixed environments in co-verification.

Chapter 4. Verification Platform and Star Simulator 56

4.3.1 Generating a Synthetic Star Image

After all the steps mentioned in subsection 3.2.3 are applied to the catalogue, the result

will be a celestial sphere composed of unit vectors. All stars above the magnitude threshold

being considered will have a respective unit vector on the sphere.

The desired celestial sphere attitude is expressed in the form of a rotation quaternion,

which can be known or randomly generated. Using quaternion multiplication, the original atti-

tude of the reference system can be rotated into the desired attitude. Following the notation on

Markley and Crassidis (2014), Equation 12 shows the form of the rotation quaternion q, and how

it is constructed from a unit vector u, representing the desired axis of rotation, and the desired

angle of rotation θ .

q =

[

q1:3

q4

]

=

[

sin(θ/2) ·u1:3

cos(θ/2)

]

(12)

A 3D unit vector v (of a star) can be expressed in quaternion form according to Equa-

tion 14. The rotation itself is performed using Equation 14.

p =

[

v1:3

0

]

(13)

p′ = q⊗p⊗q∗ (14)

The superscript ∗ denotes the conjugate of the quaternion, which is defined in Equa-

tion 15.

q∗ =

[

q1:3

q4

]∗

≡
[

−q1:3

q4

]

(15)

The cross-product operator is shown in Equation 16.

q̄⊗q =

[

q4q̄1:3 + q̄4q1:3 − q̄1:3 ×q1:3

q̄4q4 − q̄1:3 ·q1:3

]

(16)

After performing the same 3D rotation on all stars, a projection of the unit vectors [XY Z]′

is made using the pinhole camera model (Equation 17) into the virtual sensor image plane. Stars

that do not have a projection lying in this plane are eliminated from the current simulation. In

Equation 17, the left vector is represented using a homography coordinate system, thus it should

be normalised by w. The resulting x and y coordinates represent the projection. In Equation 17,

(cx,cy) are the centre of the sensor plane, in pixels, and (fx, fy) correspond to the focal length of

the lens, also in pixels.

x

y

w

=

fx 0 cx

0 fy cy

0 0 1

X

Y

Z

(17)

Chapter 4. Verification Platform and Star Simulator 57

Finally, a Point Spread Function (PSF) is used to simulate the spreading of the light upon

multiple pixels, and the virtual image is formed. Equation 18 shows the PSF used in Guangjun

Zhang (2017). The simulator designed in this work uses an adapted version of this equation.

I(m,n) =
∫ (m+1) dx

m dx

∫ (n+1) dy

n dy

N

∑
i=i

C

2.512Mi
· exp

(

−(x− X̄i)
2 +(y− Ȳi)

2

2σ2

)

dy dx+B (18)

Where:
I(m,n) = Pixel value function;
(m,n) = Pixel coordinates (discrete);

B,C = Constants;
Mi = Magnitude of i-th star;

(x,y) = 2D sensor frame coordinates (continuous);
(X̄i,Ȳi) = Positional mean;

σ = Positional standard deviation.

The adaptation of Equation 18 for the C++ language was done using the simplified form

for a single star as shown in Equation 19, with the constant substitution shown in Equation 20.

The omitted sum is then implemented using a loop structure, and the calculation is made for all

the stars.

I(m,n) =
∫ (m+1) dx

m dx

∫ (n+1) dy

n dy
D · exp

(

−(x− X̄i)
2 +(y− Ȳi)

2

2σ2

)

dy dx (19)

D =
C

2.512Mi
(20)

While the Gaussian function for a single star can be evaluated at all (m,n) pixels, to in-

crease the performance of the simulator, a configurable window is used to limit the neighbouring

pixels considered for each star.

Equation 19 can be expressed in terms of the error function er f (x) as shown in Equa-

tion 21, which was computed using Wolfram Mathematica v. 11.2.

I(m,n) =
1
2

Dπσ2 ·
(

er f

(

n− X̄i√
2σ

)

− er f

(

1+n− X̄i√
2σ

))

·
(

er f

(

m− Ȳi√
2σ

)

− er f

(

1+m− Ȳi√
2σ

)) (21)

Equation 22 shows the mathematical definition of the error function er f (x). This function

is implemented in computer systems in a table format, and is present in the current C++ standard.

er f (x) =
2√
π

∫ x

0
e−t2

dt (22)

The mathematical model previously described is able to synthesise star images visually

similar to images that can be captured by real hardware. A visual comparison can be done

between Figure 16 and Figure 17.

Chapter 4. Verification Platform and Star Simulator 58

Figure 16 – Real star image, captured
from the ASTERIA CubeSat,
JPL/NASA.

Source: Reproduced from ASTRO-
PHYSICS. . . (2019).

Figure 17 – A synthetic image generated
by our star simulator.

Source: Elaborated by the author.

Note: The images show part of the Orion constellation.

4.3.2 Universal Data Structures for Input and Output

By analysing the star tracker composing algorithms and their inputs and outputs, we

constructed the data structures that are produced as the output of the star simulator. The structure

can be seen in Figure 15 (a). To be considered as universal, the requirements for these structures

are that they should support the verification of any combination of the composing algorithms of

a star tracker, meaning centroid extraction, star identification and attitude determination. Thus,

the structures should have enough information available so that it is possible for the composing

algorithms to be verified as single units or associated. Another instance of the same structure can

also be used to store the results of the computations performed by these algorithms, for scoring

purposes.

In most cases, the types of noises used for verifying a single algorithm that works for

centroid extraction, star identification or attitude determination, or an association of these algo-

rithms, should be injected or added to specific data within the universal i/o structures, reflecting

the particular test case being performed. This is discussed with more details in subsection 4.3.4.

Figure 18 shows the universal structure Sky. It is composed of a sky image, the list

of stars present in the image and the defining attitude quaternion of its camera on the inertial

Chapter 4. Verification Platform and Star Simulator 60

Equation 23 defines how the focus distance, in pixels, can be calculated from the desired field

of view angle (FOVy) and the vertical resolution (resy).

f =
resy

2 · tan(FOVy/2)
(23)

Noise can also be added and controlled in simulations with independent configurable

parameters. The types of noise that are relevant to test each component of star tracker algorithms

are discussed further in subsection 4.3.4.

4.3.4 Noise Injection

For a specific test case, the injection of controlled noise should be done according to the

input being expected by the algorithm. Thus, the most adequate point where noise should be

added depends on what algorithm is being tested. When two adjacent algorithms are being tested

(see Figure 15 (a)), for example centroid extraction and star identification, or star identification

and attitude determination, the former will define the appropriated input noise, while the latter

will define the scoring procedures. From the layout shown in Figure 15 (b), the outputs of each

stage are kept in the universal structures. The ones that correspond to the input of the DUT can

have controlled noise added to them when required.

The quality of the image acquired by the sensor is affected, in a broad perspective, by

changes in the bi-dimensional location of the star projections, or changes on the brightness of

stars (especially ones close to the threshold of detection of the image sensor). The amount of

background noise in the image can reduce the signal to noise ratio (SNR) and bring problems

such as false stars being detected by the centroid extraction algorithm. Radial and tangential

distortions of the lenses, along with chromatic aberration, can also make stars appear in shifted

positions on the image plane. While some of these noises are systematic, and could be minimised,

for example, with a camera calibration in the laboratory, other noises can be random. Under

real operating conditions the optical system could be subject to vibration or thermal variations,

which would affect the lens focal length value and change the distortion pattern. Also, radiation

total-dose and single-events can change the image, respectively, by raising its background noise

(dark current) and by causing the emergence of hot pixels (which could mistakenly be detected as

stars). Devices Under Test (DUTs) that expect an image as input will therefore need to consider

these types of noises to be introduced in the image.

In the case of having star identification being evaluated in a DUT, separated from the

centroid extraction step, the input of the system becomes a list of star centroids with apparent

brightness information. This corresponds to the output of the (now absent) centroid extraction

step. Now, the effects of the previously mentioned noises can be considered directly: absence of

stars that should be detectable; presence of false stars, or even stars that are above the expected

detection threshold of magnitude; errors in estimation of apparent brightness; and positional

errors in the star centroid estimation. This ultimately affects the number of total identified stars

and how many of those were ultimately correctly identified.

Chapter 4. Verification Platform and Star Simulator 61

When the DUT is composed of only the static attitude determination step, its input

becomes a list of stars uniquely identified. Each entry of this list is associated to the star’s

inertial and spacecraft centred coordinates. In this step, errors can happen due to a change in the

position of the unit vectors in camera frame. They can also be caused by misidentifications, when

the inertial coordinates of unrelated stars could be associated with the spacecraft coordinates of

actual stars.

4.4 TESTS

A literature review of some of the existing tests performed by different authors was made,

with the intuit of serving as candidates for composing the battery of tests of the platform. A

summary is shown next:

1. Single star centroid estimation:

– Error vs. noise standard deviation (KOLOMENKIN et al., 2008).

2. Star identification rate / successful attitude determination rate:

– Percentage of correctly identified stars histogram (KOLOMENKIN et al., 2008);

– Percentage of none/correct/ambiguous/wrong stars vs. position error (SILANI;

LOVERA, 2006);

– Percentage of none/correct/ambiguous/wrong stars vs. brightness error (SILANI;

LOVERA, 2006);

– With added false stars (KOLOMENKIN et al., 2008);

– With 1 or 2 added false stars with brightness error (ZHAO et al., 2017);

– With introduced position errors (PADGETT; KREUTZ-DELGADO, 1997; PADGETT;

KREUTZ-DELGADO; UDOMKESMALEE, 1997; ZHAO et al., 2017; NA; ZHENG;

JIA, 2009; ZHANG; WEI; JIANG, 2008);

– With introduced brightnes noise (PADGETT; KREUTZ-DELGADO; UDOMKESMALEE,

1997; ZHAO et al., 2017; NA; ZHENG; JIA, 2009; ZHANG; WEI; JIANG, 2008);

– With introduced focal length deviation (PADGETT; KREUTZ-DELGADO;

UDOMKESMALEE, 1997);

– Percentage of correctly identified stars vs no. of stars in the FOV (ZHANG; WEI;

JIANG, 2008).

3. Bore-sight error, roll error:

– Error vs. number of tests histogram (KOLOMENKIN et al., 2008);

– Error vs. correctly identified stars (KOLOMENKIN et al., 2008).

4. System properties:

– Runtime (KOLOMENKIN et al., 2008; PADGETT; KREUTZ-DELGADO, 1997;

PADGETT; KREUTZ-DELGADO; UDOMKESMALEE, 1997; ZHAO et al., 2017);

– Runtime vs. no. of stars in the FOV (ZHANG; WEI; JIANG, 2008);

Chapter 4. Verification Platform and Star Simulator 62

– Memory requirements (KOLOMENKIN et al., 2008; PADGETT; KREUTZ-DELGADO,

1997; PADGETT; KREUTZ-DELGADO; UDOMKESMALEE, 1997; ZHAO et al.,

2017).

The single star centroid estimation (1) is a test that evaluates the performance of the

centroiding component of a star tracker. The star identification step is evaluated either by the

(2) rate of correct identification of stars or the successful attitude determination, incorporating

the attitude determination subsystem in the test. Both tests can be perturbed by the same kinds

of noise, which can impact the algorithms in different ways. For example, there are algorithms

which work with uncalibrated cameras (SAMAAN; MORTARI; JUNKINS, 2006), which are

expected to have good performance with focal length deviation. (3) Bore-sight errors are a

difference in angle between the determined attitude and the correct attitude, while the roll error

is the rotation difference between them. These two tests can be applied to all parts of a star

tracker. Finally, there are tests which display system properties (4), measuring the runtime of

the algorithms in a given hardware and the memory consumption of the database. The memory

use can be theoretically calculated by analysing the data structures involved, but in practice both

tests will present different results under different hardware and operating system environment

conditions, so it is difficult to present an universal comparison.

The tests can have different results with different parameters, such as the field of view

(which depends on the focal length) and the sensibility of the sensor. Both will affect the number

of stars visible in similar orientation conditions, which can impact the identification rates of

algorithms in different ways. Therefore, both wide and restrict field of view configurations

should be considered, as done in the tests in (KOLOMENKIN et al., 2008).

63

5 CASE STUDY DESCRIPTION AND EXPERIMENTAL RESULTS

This chapter presents practical examples that demonstrate how the verification platform

can be used as an aid in the design of star trackers. From the beginning, having the sky simulator,

the skeleton of the verification platform, and the inputs and outputs well defined relieves the

initial work of the engineer, allowing him/her to focus on the design of the star tracker only,

saving time. The benefits of the verification platform are not limited to the initial set-up though.

In this section, four examples are going to be explored.

The first example, Reproducing Existing Test Conditions, demonstrates the ability of the

verification platform to work in different test configurations.

The second example, Computational Hot Spot Optimisations, shows how the platform

can be applied to effectively speed-up the design of star tracker through optimisations focused

on the most demanding parts of the algorithms. The example focusses on reducing the runtime

of the algorithms, to ultimately reduce the energy requirements.

The third and fourth examples, Launch Environment Tests and Focal Length Noise and

Space Environment Tests and Total Ionizing Dose, explore how measurement of noise levels in

real-world settings, measured in launch/environmental tests, can be used to calibrate the noise

levels of the star simulator. Test benches are constructed, which can then be used to evaluate star

tracker algorithms in similar conditions through software simulations.

The final section, Batch of Tests, lists the current automated tests that were implemented

on the platform, and discusses how future expansions can be made.

5.1 REPRODUCING EXISTING TEST CONDITIONS

In order to demonstrate the flexibility of the verification platform for working in different

conditions, we submitted our own implementation of the Grid algorithm to similar test conditions

of previous researches. The original results from these researches were shown previously in

Figure 3. The reproduced results obtained with our platform can be seen in Figure 19. As some

test condition parameters could not be found in the original articles, and due to differences in

our implementation of the Grid algorithm and star simulator, some differences in the obtained

results can be observed.

The main application of this capability is that, if working with the limitations is possible,

significant time can be saved by avoiding the implementation of reference algorithms for com-

parisons. Instead it becomes possible to use data from other researches directly. As the platform

is shared as free software, with adoption of the same tools, most differences in test conditions

can be completely eliminated in the future.

Chapter 5. Case study description and experimental results 65

6. The same test bench for measuring runtime is applied to the optimised system, determining

the effective changes.

Different test benches can also be used to ensure that the algorithm is still performing as

expected for detection rates. The practical application of these steps is shown next.

5.2.1 Runtime analysis

The test bench created for the runtime tests considered a vision system with a resolution

of 800×600, pixel size of 2.8 µm, and two vertical field of view (FOV) configurations: 8 and

15 degrees. FOVs configurations used for evaluating star trackers vary between authors. The

values considered were selected to simultaneously try to represent popular configurations, and

to allow the observation of differences in the behaviour of the algorithms when operating on

narrower and wider angles. The pixel size and resolution are based on a real COTS sensor, the

MT9D111(MICRON TECHNOLOGY, 2004), working at half its maximum resolution, aiming

to simulate its operation. The lower resolution was chosen to facilitate debugging of hardware

implementations of algorithms, due to limitations in integrated memory. The verification plat-

form does not restrict these parameters; thus the simulation conditions can be easily changed,

and the simulations redone as required.

The algorithms used on the DUT were: the Region Growing (ERLANK, 2013) (for

centroid extraction); the Grid Algorithm (PADGETT; KREUTZ-DELGADO, 1997) (for star

identification, with grid size g = 24) and Quest (SHUSTER; OH, 1981) (for static attitude

determination). The verification platform and star simulator ran in a personal computer, and

a ZedBoard development kit with a dual-core ARM Cortex A9MP (ARM v71) Zynq-7000

SoC @ 667 MHz was running the algorithms in a single thread and behaving as the DUT. The

hardware-in-the-loop was implemented using a TCP/IP communication channel between the

two systems. The sequence considered was a thousand random attitude configurations. For each

attitude, the corresponding sensor image was synthesised by the simulator. This test case was

repeated 11 times, with the first time discarded, and the runtime of each sky configuration was

measured in the kit using the Chrono time library included in the C++11 standard. The repetitions

were performed in order to reduce the impact of random measurement noise on samples. The

operating system used was GNU/Linux, with a non-real-time kernel. Table 6 shows the average

and standard deviation for the sky configurations considered.

A high standard deviation was displayed in the runtime measurements of the star identi-

fication step. This is related to the variable number of stars that can be present in a random sky

image. For the Grid Algorithm, i.e. star identification, configurations that contain more stars will

result in a longer processing time, as more catalogue look-ups need to be performed. The rate

of growth of the algorithm is discussed in more detail in subsection 5.2.3.

Differently, for the centroid step, only a small difference in runtime could be observed

for the different fields of view. This is an indication that the threshold operation used for seg-

Chapter 5. Case study description and experimental results 66

Table 6 – Runtime test results (Zynq-7000 ARM Cortex A9MP (ARM v71) SoC @ 667 MHz,
single thread).

Runtime [ms]

FOV Centroid Star ID Attitude Total

Average
8°

13.22 1.759 0.052 15.03
Std. Dev. 0.274 1.653 0.019 1.770

Average
15°

13.78 42.71 0.082 56.57
Std. Dev. 0.352 30.50 0.018 30.75

Source: Elaborated by the author.

mentation of the stars, which considers all the pixels, predominates over the calculation of the

centroids itself. Thus, the algorithm employed is more sensible to the resolution of the image

then to the number of stars present in it. The standard deviation observed also supports this inter-

pretation: even though the number of stars was changing between images, the runtime remained

almost constant.

Through the analyse of the mean and the standard deviation of the runtime values, and

combining with the knowledge of the structure of the algorithms used, we located two hot spots

of the system: the threshold operation of the centroid step; and the catalogue lookup operation

of the star identification step.

5.2.2 Improving the Centroid Extraction Step Performance

As can be seen in the results listed in Table 6, when working with a narrower FOV, the

centroid extraction becomes the step with the highest consumption of resources. Thus, it is one

possible target for optimisation when aiming for performance improvements of the system as a

whole.

In order to achieve a better performance, a new algorithm for centroid extraction is

used. Considering the observation that segmenting the star pixels from the background through

threshold consumes most of the resources during centroid extraction, the strategy employed for

the new algorithm’s development is to apply the threshold operation for segmentation accelerated

in hardware. This is done as the stream of pixels is being transmitted from the sensor. In our

practical implementation, the pixels coming from the sensor through its CSI-2 interface are

segmented in FPGA hardware. Subsequently, a new stream constituted of only star pixels is sent

to the CPU, which then computes the star centroids.

The centroids are determined by continually filtering the incoming segmented star pixels

using a first order Infinite Impulse Response (IIR) filter. The filter is described in Equation 24,

where Xn = [xn,yn] represents the input, with xn and yn being the coordinates of the pixels, and

Yn is the output. The gain Gn was defined by Equation 25. The optimal value of the a constant,

Chapter 5. Case study description and experimental results 67

selected to minimise the positional error, was found to be 0.8. This was determined through

simulation, considering the system parameters presented in this section.

Yn = Gn ·Xn +(1−Gn) ·Yn−1 (24)

Gn = an (25)

Time is saved in development, when compared to a pure FPGA implementation, by

targeting only the bottleneck of the centroiding step in hardware. The remaining operations are

still performed in software using the C++ language. A pure software implementation of the new

algorithm was also made with the purpose of serving as a ground truth for the comparisons. By

exploring the co-verification functionality of the verification platform, it was possible to use the

same test bench to ensure that the implemented centroid extraction algorithms were performing

correctly. This was done by comparing the pure software with the hybrid version results with

each other and with the reference algorithm (Region Growing). Small changes are expected due

to the different nature of the reference algorithm and due to different numeric precision between

software and hardware implementations. The values can be seen in Table 7 and Table 8. The

runtime results confirm that a better execution time was achieved for the hybrid implementation.

The tests were performed with 1000 random attitude configurations.

Table 7 – Comparison of centroid algorithms, with FOV = 8°.

Region Proposed Proposed

Growing (SW) (SW+HW)

Total 10014 10014 10014
Identified 9938 9923 9923
Correct 9938 9918 9918
Mean Error [px.] 0.710 0.741 0.742
Runtime [ms] 13.22 13.84 0.107

Source: Elaborated by the author.

5.2.3 Improving Star Identification Step Performance

One of the big criticisms of the Grid Algorithm is that, in its binary form, finding the

closest match in the database requires a search which considers all the entries, resulting in O(n)

complexity (SPRATLING; MORTARI, 2009). The effect of this could be seen in Table 6, where

increasing the FOV for the same sensitivity settings increases the number of stars in the images,

quickly degrading the performance. A strategy to improve the runtime of the algorithm was

employed, inspired by the Geometric Voting Algorithm (KOLOMENKIN et al., 2008). The angle

Chapter 5. Case study description and experimental results 69

The result is similar: by measuring the closest neighbour angle along with obtaining the star

pattern, it is possible to restrict the database search within an area of [γ − e,γ + e], where γ is

the nearest neighbour angular distance and e is the acceptable error for the measurement.

This effectively improves the algorithm complexity from O(n) to O(k), with k being

the number of possible stars which have a neighbour with inter-star angle within measurement

tolerance, following the notation used in (SPRATLING; MORTARI, 2009).

The closest neighbour angle feature can also be used to improve the detection rates

of the algorithm, in cases when there is ambiguity in the form of two or more highest-score

matches with identical scores, which happens specially when there are few stars present within

the pattern.

As could be expected, this modification produced a significant speed up, particularly in

cases when lots of stars are present on the scene being processed. Also, for many cases, this

modification increased the correct identification rate of the algorithm. This can be explained

by the fact that the Grid Algorithm depends on the closest neighbour for achieving rotation

invariance. Thus, the correct matching of the closest neighbour is a requirement for generating

a correct pattern in terms of rotation. Restricting the search for patterns that have the closest

neighbour star within the acceptable angular error range excludes patterns that are very unlikely

to be correct, and thus increases the likelihood of correct identification. Table 9 and Table 10

show some comparison data for 8 and 15 degrees of field of view, respectively, comparing the

modified algorithm with different error ranges being considered. Speed ups as high as 9.5 times

were observed. Thanks to the scalability of the proposed algorithm, even higher speed ups could

be achieved as the mean number of stars increases.

Table 9 – Comparison of star identification algorithms, FOV = 8°.

Reference Binary Binary

e = 0.5 mrad e = 1.0 mrad

Total 10014 10014 10014
Identified 6545 (65%) 7100 (71%) 7066 (71%)
Correct 6274 (63%) 7023 (70%) 6976 (70%)
Time µ [ms] 1.759 (1.0x) 1.014 (1.7x) 1.716 (1.0x)
Time σ [ms] 1.653 0.653 1.108

Source: Elaborated by the author.

The acceptable error e parameter should be selected with a high enough value in order

to allow 2D position changes of the projections of the stars in the image sensor. Variations on

position can be expected due to noise, as described previously in subsection 4.3.4. On the other

hand, choosing higher values of e have a significant impact in performance, as it could be seen in

Table 9 and Table 10. This happens because the database area [γ −e,γ +e] that is being consider

Chapter 5. Case study description and experimental results 70

Table 10 – Comparison of star identification algorithms, FOV = 15°.

Reference Binary Binary

e = 0.5 mrad e = 1.0 mrad

Total 35006 35006 35006
Identified 25624 (73%) 24557 (70%) 27280 (78%)
Correct 25099 (72%) 24032 (69%) 26892 (77%)
Time µ [ms] 42.71 (1.0x) 4.453 (9.5x) 6.965 (6.1x)
Time σ [ms] 30.50 2.414 3.641

Source: Elaborated by the author.

is larger, and the search is still being done linearly inside of it. Therefore, the sweet spot of the

acceptable error e parameter should be high enough in order to allow the presence of positional

errors, but low enough to make its introduction useful for enhancing runtime speeds.

Considering the complete software stack of the star tracker, for the cases when the ad-

dition of the closest neighbour angle (γ) feature increased the number of correctly identified

stars, a higher number of correct attitude quaternions was also achieved. An important conse-

quence for hardware requirements is that good identification rates can be realised with a smaller

database. As the database size grows proportional to the square of the grid size g, the space freed

in the database can be easily greater than the space required for the new added feature. Figure 21

demonstrates this change.

Since the modified version of the Grid Algorithm being evaluated could be run in less

time and showed better identification rates, it is easy to jump to the conclusion that it is an

improvement over the original version. However, as can be seen later in section 5.4, it requires

some precautions to ensure that this stands true in real-world conditions.

5.3 IMPROVING THE SCORING FUNCTION

As discussed previously on subsection 3.2.5, the score used for the Grid algorithm

does not consider false positives, false negatives or true negatives, and is based only on true

positive values, as it is based on the binary AND operator. False negatives are complicated to be

measured in the system, as out-of-image areas can be mistaken by non-detections, as rotation

and translation operations are applied to the image, which corresponds to a confined area of the

celestial sphere.

Therefore, we investigated the effects of including the false positive information for

the scoring process of the binary implementation of the Grid algorithm. The number of false

positives can be quickly and reliably obtained by comparing the Population Count (Popcound

function, which counts the numbers of ones in a binary word) in the binary descriptor of the

sensor image with the Population Count applied to the result of the AND operation between the

Chapter 5. Case study description and experimental results 72

tests to simulate the environmental conditions of a small satellite launch. The tests, which the

optical system was submitted, were the quasi-static load test, random vibration test, and shock

test. Before and after each test, a modal survey was also made. All of the tests follow the ISO

19683 recommended levels (ISO, 2017), and were performed in the three coordinates (x, y and

z). The DUT can be seen undergoing the vibration tests in Figure 22. The tests were performed

in the Center for Nanosatellite Testing (CeNT) laboratory of the Kyushu Institute of Technology,

in Kitakyushu, Japan.

Figure 22 – Camera module undergoing vibration tests.

Source: Photo taken by the author.

Three functional tests were performed in order to ensure that the system was working

properly. One was performed before the vibration tests (quasi-static load and random vibration),

the second between the vibration and shock tests, and the last after the shock tests. For the

procedure, a chessboard pattern was captured by the optical system from multiple angles, and

the images were used to perform camera calibration of the optics using the algorithm presented

in Z. Zhang (2000), through OpenCV’s implementation. Thus, it was possible to measure how

the focal length of the lens could change in spacecraft launch conditions. The results can be seen

in Table 11.

Using the verification platform, the focal length was changed from the initial value within

the range [−2,+2] mm, and the percentage of correct attitude quaternions was obtained, which

is shown in Figure 23.

As can be seen in the Figure 23, a direct consequence of selecting a lower value of the

Chapter 5. Case study description and experimental results 75

5.5 SPACE ENVIRONMENT TESTS AND TOTAL IONIZING DOSE

A Raspberry PI V2 board and a Raspberry Camera V2 were submitted to a gamma ray

radiation source (Cobalt-60) in a Total Ionizing Dose (TID) test (Figure 25). The intent of the

realisation of this test was to detect visual changes over the operation life of the miniaturised

star tracker optical system, and subsequently reproduce these conditions with the verification

platform and star simulator.

The intended total irradiation dose was 200 Gy (20 krad), which would be equivalent to 2

years operation in space in LEO conditions. The test was performed in the facilites of the Kyushu

University, in Fukuoka, Japan. The permanent changes in the camera sensor were investigated

by capturing dark images before and after the test. During the test, the system was operational,

capturing images every 5 minutes, and sending the images through an ethernet connection to a

PC.

Figure 25 – Camera module and Raspberry PI 2 board near the Cobalt-60 source, before TID
test.

Source: Photos taken by Dr. Necmi Cihan Örger, who was conducting the test.

The DUT was separated from the radioactive source by a distance of 65cm. The received

dose rate can be estimated from Figure 26 to be approximately 39 Gy/h (3.9 krad/h). The total

test time was 6 hours, indicating the TID was of approximately 234 Gy (23.4 krad).

The board and camera survived the test. Post analysis of the images indicated that the

mean value of pixel intensities increased slightly from 15.58 to 15.60. The pixel intensity ranges

between 0-255 (8-bit). The standard deviation of pixel intensities also increased from 0.53 to

0.62. This remained consistent in subsequent tests done one week and one month after the TID,

indicating that the changes were permanent.

During the TID test, the devices functioned properly. In the subsequent day of the TID

test, a functional test was performed to ensure the system was operational, but the Raspberry PI

Chapter 5. Case study description and experimental results 76

Figure 26 – Dose rate measurements over distance.

Source: Kyushu University, Fukuoka, Japan.

board did not boot successfully. After investigation, it was detected that the SD card used for the

system image was permanently damaged. This did not affect the tests because the GNU/Linux

system running on the Raspberry PI was operating using disk caches from RAM, and did not

need to store or read any information on the SD card during operation.

By using the simulation platform with background noise simulated by Gaussian distri-

bution tuned to the aforementioned values, it was determined that the impact of the received

Chapter 5. Case study description and experimental results 77

radiation dose on the rate of correct attitude determinations by the star tracker system is negligi-

ble. Less than 0.1% variation was detected, which is below the noise level for measurements.

Single Event Upset errors could also cause problems during the normal operation of

the star tracker electronics in space applications. While performing an SEU test would also be

relevant, these errors can not be simulated in the current verification platform, which focuses

more on the optical system. Therefore, SEU tests were not performed in the context of this work.

5.6 BATCH OF TESTS

With the constructed verification platform and star simulator, it is possible to automate

a batch of tests in order to compare different algorithms. In the current version of the platform,

the following tests were automated:

1. Histogram of number of correctly identified stars.

2. Ratio of correct attitude determination under presence of false stars.

3. Ratio of correct attitude determination under focal length change.

4. Ratio of correct attitude determination under presence of star magnitude noise.

5. Ratio of correct attitude determination under presence of position noise on stars.

6. Statistics: number of correct centroid determination, star identifications and attitude deter-

mination. Error on centroid determination, star identifications and attitude determination.

Runtime comparisons.

The output data is used to automatically generate graphics and tables when necessary. All

of the comparison graphics shown in this chapter are examples of automated tests implemented

on the platform. By expanding the number of tests implemented and considering multiple

optical configurations, it would be possible to create a standard batch of tests that could be

used to evaluate star tracker algorithms. The current structure of the platform can support the

implementation of new tests in a quick way by exploring inheritance and polymorphism when

modifying the base test declarations on the Python program that configures the tests.

78

6 CONCLUSIONS, REMARKS AND FUTURE WORKS

The verification platform presented in this thesis brought relevant contributions when

compared to previous works: the use of a well-defined black-box structure for verification,

following the Universal Verification Methodology, of which specific knowledge is transferable

between different systems and scopes; the modularity of this structure, with incentives to the

reusability of verification components; the ability to verify star tracker algorithms and their

subcomponents separated or acting together; the ability to speed-up and assist design of software

and hardware components throughout a top-down approach supporting hardware-in-the-loop

configurations; and the ability to easily reproduce miscellaneous test conditions used in previous

researches. These advantages can directly reduce development time and improve the range of

effectiveness of the verification procedures.

The verification platform and simulator were used for straightforward tests such as

determining the runtime and the number of correctly identified centroids, stars and attitude

quaternions. It was also used to inject noise in the system in controllable and specialised ways,

such as demonstrated in the lens focal length tests. With the aid of the platform, optimisations

in software and hardware of the star tracker were achieved, demonstrating that the energy

requirements of the system can be potentially reduced. Runtime for the centroiding algorithm

was reduced by approximately two orders of magnitude through partial hardware acceleration

in FPGA. The runtime of the star identification was also reduced around one order of magnitude

by employing a different catalogue lookup strategy. In cases where higher accuracy is desirable

over simple speed, it is possible to additionally implement the optimized scoring function that

takes into consideration false positives during the classification.

The sharing of the star simulator and verification platform as free software is also a

contribution, with the aim of being improved and reused by the scientific community. This opens

up opportunities for future work in standardisation of test procedures. With a more thorough

study of which test conditions and procedures could be considered as ideal to perform fair

comparisons, and the current degree of automation of the platform, it would be possible to

define a standard batch of tests. If the same standard procedures and common verification tools

were used in researches, their results could be directly compared. As the number of algorithms

increases over time, being in possession of many implementations at once makes the comparison

task very difficult, hindering scientific process. On the other hand, it is simpler to generate

compatible data, facilitating all future comparisons.

79

REFERENCES

ACCELERA SYSTEMS INITIATIVE. Language Reference Manual. [S.l.]: Accelera
Systems Initiative, Dec. 2015. Disponível em:
http://www.accellera.org/downloads/drafts-review.

ARM LIMITED. NEON Programmer’s Guide. [S.l.: s.n.], 2013. Disponível em: http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0018a/index.html.

ASTROPHYSICS CubeSat Demonstrates Big Potential in a Small Package. [S.l.: s.n.].
Disponível em: https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22413.
Visited on: 27 June 2019.

BARNASCONI, Martin et al. Advancing system-level verification using UVM in SystemC. In:
DESIGN and Verification Conference (DVCon). [S.l.: s.n.], 2014.

BARSCHKE, Merlin et al. TechnoSat-A Nanosatellite Mission for On-Orbit Technology
Demonstration, 2013.

BERLIN SPACE TECHNOLOGIES. ST-200: Miniaturized Autonomous Star Tracker.
[S.l.]: Berlin Space Technologies, 2012. Disponível em:
http://www.berlin-space-tech.com/fileadmin/media/BST_ST-200_Flyer.pdf.

BLACK, David C. et al. SystemC: From the Ground Up, Second Edition. 2nd. [S.l.]:
Springer Publishing Company, Incorporated, 2009. ISBN 978-0-387-69957-8.

BLUE CANYON TECHNOLOGIES. BCT Nano Star Tracker: High-Performance Attitude

Determination for CubeSats. [S.l.]: Blue Canyon Technologies, 2015. Disponível em: http:
//bluecanyontech.com/wp-content/uploads/2015/05/NST-Data-Sheet_1.0.pdf.

BLUE CANYON TECHNOLOGIES. BCT TS Nano Star Tracker: High-Performance

Attitude Determination for CubeSats. [S.l.]: Blue Canyon Technologies, 2015.
Disponível em: http://bluecanyontech.com/wp-content/uploads/2015/05/TS-NST-
Data-Sheet_1.0.pdf.

CAMPOS, N. C. S. et al. A framework for design and validation of face detection systems. In:
2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and
Communication Technologies (CHILECON). [S.l.: s.n.], Oct. 2017. P. 1–7. DOI:
10.1109/CHILECON.2017.8229685.

DE BRUM, A. G. V. et al. The brazilian autonomous star tracker - AST. WSEAS Transactions

on Systems, v. 12, n. 10, p. 459–470, 2013.

DZAMBA, Tom et al. Success by 1000 improvements: flight qualification of the ST-16 star
tracker, 2014.

REFERENCES 80

ENRIGHT, John; SINCLAIR, Doug; DZAMBA, Tom. The Things You Can’t Ignore: Evolving
a Sub-Arcsecond Star Tracker, 2012.

ENRIGHT, John; SINCLAIR, Doug; FERNANDO, Christy. COTS Detectors for Nanosatellite
Star Trackers: A Case Study. AIAA/USU Conference on Small Satellites, Aug. 2011.
Disponível em: https://digitalcommons.usu.edu/smallsat/2011/all2011/66.

ENRIGHT, John; SINCLAIR, Doug; GRANT, Cordell, et al. Towards star tracker only attitude
estimation, 2010.

ERLANK, Alexander O.; STEYN, Willem H. Arcminute Attitude Estimation for CubeSats
with a Novel Nano Star Tracker. IFAC Proceedings Volumes, v. 47, n. 3, p. 9679–9684, 2014.

ERLANK, Alexander Olaf. Development of CubeStar: a CubeSat-compatible star tracker.
2013. PhD thesis – Stellenbosch: Stellenbosch University.

ESA. The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues
derived from the ESA HIPPARCOS Space Astrometry Mission. In: Disponível em:
http://adsabs.harvard.edu/abs/1997ESASP1200.....E. Visited on: 20 Oct. 2017.

FIALHO, Márcio Afonso Arimura; SAOTOME, Osamu. An Environment for Testing and
Simulating Algorithms for Autonomous Star Sensors. In: PROCEEDINGS of COBEM.
[S.l.: s.n.], 2005.

FILIPE, Nuno et al. Miniaturized Star Tracker Stimulator for Closed-Loop Testing of CubeSats.
Journal of Guidance, Control, and Dynamics, v. 40, n. 12, p. 3239–3246, Aug. 2017. ISSN
0731-5090. DOI: 10.2514/1.G002794. Disponível em:
https://arc.aiaa.org/doi/10.2514/1.G002794. Visited on: 9 Aug. 2018.

GAO, Jerry; TSAO, H.-SJ; WU, Ye. Testing and quality assurance for component-based

software. [S.l.]: Artech House, 2003.

GAO, S.; CLARK, K., et al. Antennas for Modern Small Satellites. IEEE Antennas and

Propagation Magazine, v. 51, n. 4, p. 40–56, Aug. 2009. ISSN 1045-9243. DOI:
10.1109/MAP.2009.5338683.

HALL, Christopher D. Spacecraft attitude dynamics and control. Lecture Notes posted on

Handouts page [online], v. 12, n. 2003, 2003. Disponível em:
http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4984/page4.html.

HARTIGAN, John A.; HARTIGAN, J. A. Clustering algorithms. [S.l.]: Wiley New York,
1975. v. 209.

HEIGHT, Hannibal. A practical guide to adopting the universal verification methodology

(UVM). [S.l.]: Lulu. com, 2013.

REFERENCES 81

HO, K. A survey of algorithms for star identification with low-cost star trackers. Acta

Astronautica, v. 73, Supplement C, p. 156–163, Apr. 2012. ISSN 0094-5765. DOI:
10.1016/j.actaastro.2011.10.017. Disponível em:
http://www.sciencedirect.com/science/article/pii/S0094576511003195. Visited
on: 20 Oct. 2017.

HOPKINSON, G. R.; MOHAMMADZADEH, A.; HARBOE-SORENSEN, R. Radiation
effects on a radiation-tolerant CMOS active pixel sensor. IEEE Transactions on Nuclear

Science, v. 51, n. 5, p. 2753–2762, Oct. 2004. ISSN 0018-9499. DOI:
10.1109/TNS.2004.835108.

HUA-MING, Q.; HAO, L.; HAI-YONG, W. Design and Verification of Star-Map Simulation
Software Based on CCD Star Tracker. In: 2015 8th International Conference on Intelligent
Computation Technology and Automation (ICICTA). [S.l.: s.n.], June 2015. P. 383–387. DOI:
10.1109/ICICTA.2015.103.

IEEE. IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std

1666-2011 (Revision of IEEE Std 1666-2005), p. 1–638, Jan. 2012. DOI:
10.1109/IEEESTD.2012.6134619.

IEEE. IEEE Standard for Universal Verification Methodology Language Reference Manual.
IEEE Std 1800.2-2017, p. 1–472, May 2017. DOI: 10.1109/IEEESTD.2017.7932212.

INTEL CORPORATION. Intel® SSE4 Programming Reference. [S.l.: s.n.], 2007.
Disponível em:
https://software.intel.com/sites/default/files/m/8/b/8/D9156103.pdf.

ISO. ISO 19683:2017: Space systems — Design qualification and acceptance tests of small

spacecraft and units. pub-ISO: pub-ISO, 2017. Disponível em:
https://www.iso.org/standard/66008.html;%20https://webstore.ansi.org/.

KNUTSON, Matthew W. (Matthew Walter). Fast star tracker centroid algorithm for high

performance CubeSat with air bearing validation. 2012. Thesis – Massachusetts Institute of
Technology. Disponível em: http://dspace.mit.edu/handle/1721.1/85803. Visited on:
12 Mar. 2018.

KOLOMENKIN, M. et al. Geometric voting algorithm for star trackers. IEEE Transactions

on Aerospace and Electronic Systems, v. 44, n. 2, p. 441–456, Apr. 2008. ISSN 0018-9251.
DOI: 10.1109/TAES.2008.4560198.

KULU, Erik. Nanosats Database. en. [S.l.: s.n.], 2019. Disponível em:
https://www.nanosats.eu/index.html. Visited on: 26 July 2019.

LEEUWEN, F. van. Validation of the new Hipparcos reduction. en. Astronomy &

Astrophysics, v. 474, n. 2, p. 653–664, Nov. 2007. ISSN 0004-6361, 1432-0746. DOI:
10.1051/0004-6361:20078357. Disponível em:

REFERENCES 82

https://www.aanda.org/articles/aa/abs/2007/41/aa8357-07/aa8357-07.html.
Visited on: 20 Oct. 2017.

LIEBE, C. C. Accuracy performance of star trackers - a tutorial. IEEE Transactions on

Aerospace and Electronic Systems, v. 38, n. 2, p. 587–599, Apr. 2002. ISSN 0018-9251. DOI:
10.1109/TAES.2002.1008988.

LIEBE, C. C. Pattern recognition of star constellations for spacecraft applications. IEEE

Aerospace and Electronic Systems Magazine, v. 7, n. 6, p. 34–41, June 1992. ISSN
0885-8985. DOI: 10.1109/62.145117.

LINDH, Marcus. Development and implementation of star tracker electronics. 2014.
PhD thesis.

MARCINIAK, Martin et al. Microsatellite Star Tracker Baffles: Validation and Testing, 2013.

MARKLEY, F. Landis. Attitude Error Representations for Kalman Filtering. Journal of

Guidance, Control, and Dynamics, v. 26, n. 2, p. 311–317, 2003. ISSN 0731-5090. DOI:
10.2514/2.5048. Disponível em: https://doi.org/10.2514/2.5048. Visited on: 20 Oct.
2017.

MARKLEY, F. Landis; CRASSIDIS, John L. Fundamentals of spacecraft attitude

determination and control. [S.l.]: Springer, 2014. v. 33.

MCBRYDE, C. R.; LIGHTSEY, E. G. A star tracker design for CubeSats. In: 2012 IEEE
Aerospace Conference. [S.l.: s.n.], Mar. 2012. P. 1–14. DOI: 10.1109/AERO.2012.6187242.

MEFENZA, Michael; YONGA, Franck; BOBDA, Christophe. Design and Verification
Environment for High-Performance Video-Based Embedded Systems. In: DISTRIBUTED
Embedded Smart Cameras. [S.l.]: Springer, New York, NY, 2014. P. 69–90. ISBN
978-1-4614-7704-4. DOI: 10.1007/978-1-4614-7705-1_4. Disponível em:
https://link.springer.com/chapter/10.1007/978-1-4614-7705-1_4. Visited on: 7
Nov. 2017.

MEHRPARVAR, Arash et al. CubeSat Design Specification Rev 13. The CubeSat Program,

Cal Poly San Luis Obispo, US, 2014.

MICRON TECHNOLOGY. MT9D111 - 1/3.2-Inch System-On-A-Chip (SOC) CMOS

Digital Image Sensor. [S.l.]: Micron Technology, 2004. Disponível em:
https://www.uctronics.com/download/cam_module/MT9D111_SOC2010DS.pdf.

MUJA, M.; LOWE, D. G. Fast Matching of Binary Features. In: 2012 Ninth Conference on
Computer and Robot Vision. [S.l.: s.n.], May 2012. P. 404–410. DOI: 10.1109/CRV.2012.60.

REFERENCES 83

NA, M.; ZHENG, D.; JIA, P. Modified Grid Algorithm for Noisy All-Sky Autonomous Star
Identification. IEEE Transactions on Aerospace and Electronic Systems, v. 45, n. 2,
p. 516–522, Apr. 2009. ISSN 0018-9251. DOI: 10.1109/TAES.2009.5089538.

NA, Meng; JIA, Peifa. A survey of all-sky autonomous star identification algorithms. In: 2006
1st International Symposium on Systems and Control in Aerospace and Astronautics. [S.l.: s.n.],
Jan. 2006. 6 pp.–901. DOI: 10.1109/ISSCAA.2006.1627471.

OPEN SYSTEMC INITIATIVE et al. SystemC Synthesizable Subset Draft 1.3. [S.l.]:
October, 2009. Disponível em: http://www.accellera.org/images/downloads/drafts-
review/SystemC_Synthesizable_subset.1.3.pdf.

PADGETT, C.; KREUTZ-DELGADO, K. A grid algorithm for autonomous star identification.
IEEE Transactions on Aerospace and Electronic Systems, v. 33, n. 1, p. 202–213, Jan. 1997.
ISSN 0018-9251. DOI: 10.1109/7.570743.

PADGETT, Curtis; KREUTZ-DELGADO, Kenneth; UDOMKESMALEE, Suraphol.
Evaluation of Star Identification Techniques. Journal of Guidance, Control, and Dynamics,
v. 20, n. 2, p. 259–267, 1997. ISSN 0731-5090. DOI: 10.2514/2.4061. Disponível em:
https://doi.org/10.2514/2.4061. Visited on: 20 Oct. 2017.

PALO, Scott; STAFFORD, George; HOSKINS, Alan. An agile multi-use nano star camera for
constellation applications, 2013.

QUINE, Brendan M. et al. Determining star-image location: A new sub-pixel interpolation
technique to process image centroids. Computer Physics Communications, v. 177, n. 9,
p. 700–706, Nov. 2007. ISSN 0010-4655. DOI: 10.1016/j.cpc.2007.06.007.
Disponível em:
http://www.sciencedirect.com/science/article/pii/S0010465507003050. Visited
on: 20 Oct. 2017.

RADPOUR, Mohammad; SAYEDI, Sayed Masoud. SystemC-AMS modeling of photodiode
based on PWL technique to be used in energy harvesting CMOS image sensor. Integration,

the VLSI Journal, v. 60, p. 48–55, Jan. 2018. ISSN 0167-9260. DOI:
10.1016/j.vlsi.2017.08.006. Disponível em:
http://www.sciencedirect.com/science/article/pii/S0167926017305217. Visited
on: 20 Mar. 2018.

RATH, A. W.; ESEN, V.; ECKER, W. A transaction-oriented UVM-based library for
verification of analog behavior. In: 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC). [S.l.: s.n.], Jan. 2014. P. 806–811. DOI:
10.1109/ASPDAC.2014.6742989.

RAWASHDEH, Samir A. Visual attitude propagation for small satellites. 2013. PhD thesis –
University of Kentucky.

REFERENCES 84

SAMAAN, M.A.; STEFFES, S.R.; THEIL, S. Star tracker real-time hardware in the loop
testing using optical star simulator. In: p. 2233–2245.

SAMAAN, Malak A.; MORTARI, Daniele; JUNKINS, John L. Nondimensional star
identification for uncalibrated star cameras. en. The Journal of the Astronautical Sciences,
v. 54, n. 1, p. 95–111, Mar. 2006. ISSN 0021-9142. DOI: 10.1007/BF03256478.
Disponível em: https://link.springer.com/article/10.1007/BF03256478. Visited on:
27 Oct. 2017.

SCHMIDT, Uwe. Astro APS - The Next Generation Hi-Rel Star Tracker Based on Active Pixel
Sensor Technology. In: AIAA Guidance, Navigation, and Control Conference and Exhibit.
[S.l.]: American Institute of Aeronautics and Astronautics, 2005. DOI:
10.2514/6.2005-5925. Disponível em:
https://arc.aiaa.org/doi/abs/10.2514/6.2005-5925. Visited on: 24 Aug. 2018.

SEGERT, Tom et al. Development of the pico star tracker ST-200–design challenges and road
ahead, 2011.

SENG, Bill et al. The AeroAstro Fast-Angular-Rate Miniature Star Tracker: Algorithms and
Simulation Results, 2005.

SHUSTER, M. D.; OH, S. D. Three-axis attitude determination from vector observations.
Journal of Guidance, Control, and Dynamics, v. 4, n. 1, p. 70–77, 1981. ISSN 0731-5090.
DOI: 10.2514/3.19717. Disponível em: https://doi.org/10.2514/3.19717. Visited on:
1 Mar. 2019.

SIEGWART, Roland; NOURBAKHSH, Illah Reza; SCARAMUZZA, Davide. Introduction to

Autonomous Mobile Robots. [S.l.]: MIT Press, Feb. 2011. Google-Books-ID:
4of6AQAAQBAJ. ISBN 978-0-262-01535-6.

SILANI, E.; LOVERA, M. Star identification algorithms: novel approach comparison study.
IEEE Transactions on Aerospace and Electronic Systems, v. 42, n. 4, p. 1275–1288, Oct.
2006. ISSN 0018-9251. DOI: 10.1109/TAES.2006.314572.

SINCLAIR INTERPLANETARY. First Generation Star Tracker (ST-16). [S.l.]: Sinclair
Interplanetary, 2015. Disponível em: http:
//www.sinclairinterplanetary.com/startrackers/star%20tracker%202015a.pdf.

SINCLAIR INTERPLANETARY. Second Generation Star Tracker (ST-16RT). [S.l.]:
Sinclair Interplanetary, 2015. Disponível em: http://www.sinclairinterplanetary.com/
startrackers/star%20tracker%20RT%202015a.pdf.

SPACE MICRO. Miniature Integrated Star Tracker (MIST). [S.l.]: Space Micro, 2015.
Disponível em:
http://www.spacemicro.com/assets/datasheets/guidance-and-nav/MIST.pdf.

REFERENCES 85

SPRATLING, Benjamin B.; MORTARI, Daniele. A Survey on Star Identification Algorithms.
en. Algorithms, v. 2, n. 1, p. 93–107, Jan. 2009. DOI: 10.3390/a2010093. Disponível em:
http://www.mdpi.com/1999-4893/2/1/93. Visited on: 20 Oct. 2017.

TRAWNY, Nikolas; ROUMELIOTIS, Stergios I. Indirect Kalman filter for 3D attitude
estimation. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, v. 2, p. 2005,
2005.

VIRMONTOIS, C. et al. Radiation-Induced Dose and Single Event Effects in Digital CMOS
Image Sensors. IEEE Transactions on Nuclear Science, v. 61, n. 6, p. 3331–3340, Dec. 2014.
ISSN 0018-9499. DOI: 10.1109/TNS.2014.2369436.

WAHBA, G. A Least Squares Estimate of Satellite Attitude. SIAM Review, v. 7, n. 3,
p. 409–409, July 1965. ISSN 0036-1445. DOI: 10.1137/1007077. Disponível em:
http://epubs.siam.org/doi/abs/10.1137/1007077. Visited on: 20 Oct. 2017.

WANG, H. et al. Image smearing modeling and verification for strapdown star sensor. Chinese

Journal of Aeronautics, v. 25, n. 1, p. 115–123, 2012. DOI:
10.1016/S1000-9361(11)60369-5.

WERTZ, James R. Spacecraft Attitude Determination and Control. [S.l.]: Springer Science
& Business Media, 1978. v. 73.

ZHANG, Guangjun. Star Identification: Methods, Techniques and Algorithms. Berlin
Heidelberg: Springer-Verlag, 2017. ISBN 978-3-662-53781-7. Disponível em:
https://www.springer.com/gp/book/9783662537817. Visited on: 1 Mar. 2019.

ZHANG, Guangjun; WEI, Xinguo; JIANG, Jie. Full-sky autonomous star identification based
on radial and cyclic features of star pattern. Image and Vision Computing, v. 26, n. 7,
p. 891–897, July 2008. ISSN 0262-8856. DOI: 10.1016/j.imavis.2007.10.006.
Disponível em:
http://www.sciencedirect.com/science/article/pii/S0262885607001990. Visited
on: 27 Oct. 2017.

ZHANG, Peng et al. A Brightness-Referenced Star Identification Algorithm for APS Star
Trackers. en. Sensors, v. 14, n. 10, p. 18498–18514, Oct. 2014. DOI: 10.3390/s141018498.
Disponível em: http://www.mdpi.com/1424-8220/14/10/18498. Visited on: 20 Oct. 2017.

ZHANG, Ying et al. The computer scene generation for star simulator hardware-in-the-loop
simulation. In: INTERNATIONAL Symposium on Photoelectronic Detection and Imaging
2011: Advances in Imaging Detectors and Applications. [S.l.]: International Society for Optics
and Photonics, Aug. 2011. 81943h. DOI: 10.1117/12.903678. Disponível em:
https://www.spiedigitallibrary.org/conference-proceedings-of-

spie/8194/81943H/The-computer-scene-generation-for-star-simulator-

hardware-in-the/10.1117/12.903678.short. Visited on: 9 Aug. 2018.

REFERENCES 86

ZHANG, Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, v. 22, n. 11, p. 1330–1334, Nov. 2000. ISSN 0162-8828.
DOI: 10.1109/34.888718.

ZHAO, Yang et al. Real-time star identification using synthetic radial pattern and its hardware
implementation. Acta Astronautica, v. 131, Supplement C, p. 1–9, Feb. 2017. ISSN
0094-5765. DOI: 10.1016/j.actaastro.2016.11.015. Disponível em:
http://www.sciencedirect.com/science/article/pii/S0094576516306324. Visited
on: 20 Oct. 2017.

ZHOU, F. et al. Fast star centroid extraction algorithm with sub-pixel accuracy based on FPGA.
Journal of Real-Time Image Processing, v. 12, n. 3, p. 613–622, 2016. DOI:
10.1007/s11554-014-0408-z.

	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	General Objective
	Specific Objectives
	Research Questions
	Methodology
	Original Contributions
	Outline

	Background
	Coordinate Systems for Attitude Determination
	Miniaturised Star Trackers
	Physical Construction
	Literature Review

	Star Tracker Software Stack
	Subpixel Centroiding
	Star Identification
	Literature Review
	Discussion
	Star Catalog
	The Grid Algorithm
	Discussion of the Grid Algorithm

	Static Attitude Determination

	Verification Platform and Star Simulator
	Related Work
	Star Simulators and Testing of Star Trackers

	System Level Verification
	SystemC
	Universal Verification Methodology - UVM
	Verification of Computer Vision Systems with UVM
	Structure of the Verification Platform

	Star Simulator
	Generating a Synthetic Star Image
	Universal Data Structures for Input and Output
	Configurable Parameters
	Noise Injection

	Tests

	Case study description and experimental results
	Reproducing Existing Test Conditions
	Computational Hot Spot Optimisations
	Runtime analysis
	Improving the Centroid Extraction Step Performance
	Improving Star Identification Step Performance

	Improving the Scoring Function
	Launch Environment Tests and Focal Length Noise
	Space Environment Tests and Total Ionizing Dose
	Batch of Tests

	Conclusions, Remarks and Future Works
	REFERENCES

		2020-07-19T18:36:43-0300

		2020-07-20T09:37:22-0300

