

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DE JOINVILLE PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E CIÊNCIAS MECÂNICAS SEMESTRE 2020/2

I. IDENTIFICAÇÃO DA DISCIPLINA

Nome: Métodos Numéricos em Fenômenos de Transporte

Código: ECM410063

Carga horária: 45 horas/aula Créditos: 03

Professor(es): Talita Sauter Possamai.

Horários de atendimento: Por demanda em e-mail

II. PRÉ-REQUISITO(S) SUGERIDO(S)

Nenhum.

III. EMENTA

Introdução aos métodos numéricos, Diferenças Finitas, Equações da conservação, Volumes Finitos, Modelagem de Turbulência, Escoamentos em desenvolvimento, Verificação e Validação.

IV. OBJETIVOS

Abordas problemas fundamentais de métodos numéricos aplicados á área de fenômenos de transporte.

V. CONTEÚDO PROGRAMÁTICO

Introdução aos métodos numéricos, Diferenças Finitas, Equações da conservação, Volumes Finitos, Modelagem de Turbulência, Escoamentos em desenvolvimento, Verificação e Validação.

VI. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aulas com conteúdo teórico gravadas e disponibilizadas no moodle da disciplina. Aulas ao vivo para retirada de dúvidas marcadas com os alunos previamente.

VII. METODOLOGIA DE AVALIAÇÃO

V. METODOLOGIA DE AVALIAÇÃO

Avaliação da média aritmética de trabalhos (7) ao longo da disciplina. Os trabalhos devem ser apresentados durante uma aula síncrona para toda a turma. Cada trabalho terá 50% de sua nota na parte escrita, entregue e pdf ao professor por e-mail, e 50% na apresentação em sala.

VIII. AVALIAÇÃO FINAL

Para análise da Frequência e da Avaliação do Aproveitamento Escolar será empregado o Capítulo III, do Título IV, da Resolução Nº 95/CUn/2017, de 04 de abril de 2017, que dispõe sobre a pós-graduação stricto sensu na Universidade Federal de Santa Catarina; bem como, o Capítulo IV da Pós-Graduação, da Resolução Normativa Nº 140/CUn/2020, de 21 de julho de 2020, que dispõe sobre o redimensionamento em função do isolamento social vinculado à pandemia de COVID-19, e sobre o Calendário Suplementar Excepcional referente ao primeiro semestre de 2020.

VII. CRONOGRAMA

Semana	Data	Conteúdo
1	30/11/2020	Apresentação da disciplina/ Introdução aos métodos numéricos/ Diferenças Finitas
2	07/12/2020	Diferenças Finitas
3	14/12/2020	Equações da conservação/Métodos iterativos
4	01/02/2021	Volumes Finitos e elementos finitos – Difusão (Parte 1)
5	08/02/2021	Volumes Finitos – Difusão (Parte 2)
6	15/02/2021	Volumes Finitos – Advecção (Parte 1)
7	22/02/2021	Volumes Finitos – Advecção (Parte 2)
8	01/03/2021	Volumes Finitos – Acoplamento Pressão-Velocidade (Parte 1)
9	08/03/2021	Volumes Finitos – Acoplamento Pressão-Velocidade (Parte 2)
10	15/03/2021	Modelagem de turbulência (Parte 1)
11	22/03/2021	Modelagem de turbulência (Parte 2)
12	29/03/2021	Escoamentos em desenvolvimento
13	05/04/2021	Verificação e Validação

Cronograma sujeito a alterações.

VIII. BIBLIOGRAFIA BÁSICA

PATANKAR, S., Numerical Heat Transfer and Fluid Flow, 1a edição, Taylor & Francis, 1980. ISBN-10: 0891165223, ISBN-13: 978-0891165224.

VERSTEEG, H.K., MALALASEKERA, W., An Introduction to Computational Fluid Dynamics: the Finite Volume Method, 2a edição, Pearson, 2007. ISBN-10: 9780131274983, ISBN-13: 978- 0131274983.

FERZIGER, J.H, PERIC, M., Computational Methods for Fluid Dynamics, 3a edição, Springer-Verlag, 2001. ISBN-10: 3540420746, ISBN-13: 978-3540420743.

ANDERSON, J. Computational Fluid Dynamics, 1a edição, McGraw-Hill, 1995. ISBN-10: 0070016852, ISBN-13: 978-0070016859.

MALISKA, C. R. Transferência de Calor e Mecânica dos Fluidos Computacional, 2a edição, LTC, 2012. ISBN-10: 9798521613961

WHITE, F.M., Fluid Mechanics, 7a edição, McGraw-Hill, 2011. ISBN-10: 0077422414, ISBN-13: 978-0077422417.

WILCOX, D.C., Turbulence Modelling for CFD, 3a. ed.,DCW Industries, 2006. ISBN-10: 1928729088, ISBN-13: 978-1928729082.

ZIKANOV, O. Essential Computational Fluid Dynamics, 1a edição, Wiley, 2010. ISBN-10: 0470423293, ISBN-13: 978-0470423295.

Atualizado em: 09/12/2020