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RESUMO 

 

A implementação de controladores eletrônicos no setor automotivo melhorou 
significativamente a segurança, conforto e consumo de combustível dos veículos. Contudo, 
com a chegada de novas tecnologias como veículos elétricos e autônomos a demanda por 
controladores aumentou, ampliando desafios ainda presentes como controladores para sistemas 
completamente não lineares, a necessidade de dados dificilmente medidos ou dificuldade de 
definir modelos que representam o ambiente. Para avaliar as possibilidades de superar algumas 
destas restrições a presente pesquisa implementa diferentes algoritmos baseados em Machine 
Learning com Ator-Crítico para controlar o escorregamento do pneu de um kart elétrico de 
tração traseira. O controlador baseado em Machine Learning aprende por benefícios e punições 
o melhor comportamento a seguir e duas redes neurais são implementadas para julgar e 
controlar o sistema sem a necessidade de modelá-lo. Dois tipos diferentes de processo de 
aprendizado foram avaliados, incluindo algoritmos de aprendizagem iterativa e direta. O 
algoritmo proposto chamado Directly Trained Network Actor-Critic (DTNAC) simplificou o 
processo de aprendizado, permitindo a coleta de dados do ambiente em uma única vez e a 
realização do treinamento em uma estação off-line. Ambos controladores, cíclico e proposto 
foram avaliados nos estados nos quais foram treinados e em ambientes com diferentes pisos e 
manobras. A necessidade de aplicar a velocidade do veículo como uma entrada do controlador 
também foi analisada. Os controladores sem a velocidade do veículo como um dado de entrada 
apresentaram mais sensibilidade à qualidade dos dados usados no treinamento, enquanto o 
algoritmo que leva a velocidade em consideração apresentou um comportamento mais robusto. 
Todos os controladores avaliados apresentaram adequado controle do veículo nos estados 
treinados, contudo algumas limitações ocorrem quando a direção do veículo é simulada em 
manobras não treinadas. O algoritmo DTNAC com a velocidade do veículo como um dado de 
entrada do controlador, apresentou uma aplicação próspera. Quando treinado em solos de gelo 
e asfalto seco, o controlador foi capaz de governar o veículo na neve e no asfalto molhado em 
diferentes manobras, apresentando sucesso no controle de sistemas não-lineares sem a 
necessidade de modelar o sistema. Nos casos onde estão disponíveis dados que representem 
todos os estados, a remoção da velocidade do veículo como uma entrada também pode ser 
aplicada para reduzir a quantidade de dados medidos.  

 
Palavras-Chave: Aprendizado de Máquina. Redes Neurais. Dinâmica veicular. Controlador. 
DTNAC. 
  



  

RESUMO EXPANDIDO 

 

INTRODUÇÃO 

O sistemas de assistência ao motorista exercem um importante papel de auxiliar o condutor no 
controle do veículo. Estes sistemas possuem componentes eletrônicos, os quais, através de 
sensoriamento, consideram o veículo, o motorista e restrições de tráfego.  (Braess & Seiffert, 
2005). A aplicação destes controladores permite o aumento do conforto e segurança a bordo 
além de reduzir o consumo de combustível e a poluição ao meio ambiente através de sistemas 
de tração mais eficientes (Rathmann, 2007). Recentemente, a combinação de controladores 
eletrônicos com técnicas de aprendizado de máquina tem-se apresentado como uma ótima 
oportunidade de melhoria dos controladores atuais. Pesquisas aplicando estas técnicas tem sido 
realizadas em direção autônoma (Jaritz, et al., 2018), (El Sallab, et al., 2016), (El Sallab, et al., 
2017), gerenciamento de baterias (Hsu, et al., 2010) e sistemas ativos de segurança (Radac & 
Precup, 2018), (de Amaral, 2018). Quando aplicado em combinação com redes neurais o 
aprendizado de máquina proporciona a possibilidade de aprender a controlar um sistema por 
tentativa e erro, obtendo sucesso em diversas atividades como em jogos virtuais (Mnih, et al., 
2013) ou controle de hardware (Taitler & Shimkin, 2017). No ramo de segurança automotiva 
esta técnica foi implementada por de Amaral, et al. (2018) que avaliou um controle de 
estabilidade eletrônico em ambiente simulado com aplicação da técnica Neural Fitted Q-
interection, a qual apresentou resultados inadequados para aplicação em tempo real. Por outro 
lado, os testes de bancada com sistemas ABS (Anti-lock Brake System) apresentaram sucesso 
na aplicação desta técnica (Radac & Precup, 2018). A implementação de controladores de 
tração, possui uma importante função de evitar o escorregamento dos pneus sob tração, contudo 
seu desenvolvimento possui limitações devido a não-linearidade dos pneus e a necessidade de 
controle em tempo real (Borrelli, et al., 2006). Controladores de aprendizado por reforço 
apresentam uma grande possibilidade de satisfazer estes requisitos, permitindo o uso se 
modelos que compreendem não linearidades e que atuam com um resposta adequada no tempo 
(Radac & Precup, 2018). Além disto, a aplicação de aprendizado por reforço requer de maneira 
geral um baixo investimento pois os sensores necessários para capturar dados para este 
controlador são os mesmos já empregados nos controles de tração convencionais. Desta forma, 
a presente pesquisa visa a avalição da viabilidade desta aplicação em um ambiente simulado, 
avaliando metodologias para treinamento e as características dos dados que são necessárias para 
um adequado treinamento do controlador. Além disso um método off-line de treinamento é 
proposto para facilitar o processo em casos nos quais dados reais são implementados para 
treinar as redes neurais.   
 
OBJETIVOS 

O objetivo principal desta pesquisa consiste na implementação de um algoritmo de aprendizado 
por reforço denominado Deep Actor-Critic, em tradução livre, Ator-Crítico Profundo, para 
controlar a tração de um veículo elétrico de tração traseira. A implementação em ambiente 
virtual tem como intuito evitar o alto escorregamento dos pneus em casos de baixo atrito do 
contato pneu-pista. Entre os objetivos específicos é possível destacar a validação do Deep 
Actor-Critic como um controlador adequado para implementações automotivas, compreender 
a influência dos parâmetros de treinamento e da presença da velocidade do veículo na 
desempenho do controle, comparar a aplicação dos treinamentos cíclico e direto nos resultados 
do controlador, analisar o comportamento do controlador sob mudanças de cenário incluindo 
aqueles não abordados durante o treinamento do mesmo e avaliar a possibilidade de aplicar este 
controlador quando os sensores possuem diferentes taxas de aquisição.  



  

 
METODOLOGIA 

O processo de treinamento da rede neural responsável por controlar o veículo pode ser dividida 
em três grandes áreas: Exploração do ambiente, processamento de dados e o treinamento 
propriamente dito. Para a exploração do ambiente o veículo elétrico disponível para testes foi 
modelado em um ambiente virtual, o qual leva em conta a dinâmica longitudinal do veículo, o 
contato pneu-pista e a dinâmica do sistema de tração, incluindo o motor elétrico o qual 
propulsiona o veículo. Durante o processamento dos dados, os dados obtidos são normalizados 
entre 0 e 1 para evitar a desigualdade das grandezas físicas, facilitando o treinamento da rede 
neural. A partir destes dados são calculados os benefícios e punições que o sistema irá receber 
para indicar os comportamentos adequados e inadequados apresentados pelo controlador. Estes 
benefícios e punições levam em conta se a posição virtual do pedal do acelerador proveniente 
do controlador se encontra dento do intervalo adequado, se a saída do controlador é inferior à 
aceleração desejada pelo motorista, se o escorregamento está dentro da faixa desejada. Quando 
todos estes fatores são atendidos o benefício é obtido pela diferença entre o a posição do pedal 
do acelerador pressionado pelo usuário e a posição do pedal de acelerador virtual gerado pelo 
controlador. A arquitetura de ator e crítico empregam duas redes neurais, o crítico avalia a 
qualidade das ações empregadas em cada estado enquanto o ator realiza o mapeamento entre 
estados e ações. No presente estudo uma rede neural com duas camadas ocultas e 20 nós em 
cada uma das camadas somos aplicadas. Esta possui de cinco a seis entradas dependendo da 
inclusão da velocidade do veículo e apenas uma saída a qual representa as punições ou 
benefícios esperados para o futuro, chamado função de valor. A rede que representa o ator 
possui arquitetura semelhante, porém possui apenas 12 nós em cada camada oculta e uma 
entrada a menos que o crítico. Convencionalmente o treinamento é realizado de forma iterativa, 
onde com base nos erros e acertos obtidos o algoritmo tem a oportunidade de melhorar seu 
desempenho. Desta mesma forma um aprendizado cíclico foi implementado no presente estudo. 
Neste caso, dados gerados no ambiente virtual são salvos em um banco de dados e usados no 
treinamento em mini lotes, os quais correspondem a uma porcentagem de todos os dados 
disponíveis. Com a combinação de estados, ações e função de valor, o crítico é treinado através 
da optimização de Levenberg-Marquart. Posteriormente a ação que maximiza a função de valor 
é determinada e o ator é treinado de maneira semelhante ao crítico. Este processo é repetido até 
que ocorra a convergência dos pesos das redes neurais. Posteriormente o comportamento do 
veículo é novamente testado no ambiente virtual e caso ocorram comportamentos inadequados 
o processo é reiniciado com nova coleta de dados. Contudo esta forma de treinamento requer 
um grande investimento de tempo na coleta de dados e simultâneo upgrade da rede neural 
treinada. Assim, um novo método off-line foi proposto, no qual uma maior quantidade de dados 
é coletada somente uma vez e as redes neurais são treinadas usando os dados coletados sem a 
influência do controlador. Neste caso, uma inserção de dados randômicos é necessária para 
simular a posição do pedal do acelerador enquanto esta é usada como saída do controlador. Esta 
adequação foi necessária pois a ausência do ator impede a geração de dados pelo mesmo. Para 
definição dos melhores parâmetros de treinamento ambas as metodologias foram avaliadas com 
o uso da técnica de Design of Experiments (DOE) com planejamento de dois níveis e k fatores. 
A influência dos fatores foi avaliada sobre o tempo de treinamento e o benefício médio 
apresentado pelo controlador quando submetido aos cenários nos quais a rede neural foi 
treinada. Definidos os melhores controladores para os treinamentos cíclico e direto e também 
para controladores com e sem a velocidade do veículo como entrada, estes foram comparados 
em diferentes cenários, incluindo aqueles usados no treinamento, diferentes manobras e 
diferentes condições de pista.   
 
 



  

RESULTADOS E DISCUSSÃO 

Avaliando as redes neurais obtidas constata-se que o método de treinamento cíclico apresenta 
instabilidade na convergência dos valores e baixa repetitividade. O treinamento cíclico da rede 
neural que inclui a velocidade do veículo como uma entrada não apresenta fatores que 
influenciam significativamente o tempo de treinamento. Enquanto isso, somente a quantidade 
de dados usados para o treinamento influencia a qualidade do controlador, onde menores 
quantidades de dados geram uma rede neural com melhor desempenho.  Quando o treinamento 
cíclico é avaliado sem a presença da velocidade do veículo como entrada do controlador o fator 
de desconto apresenta-se como único que influencia significativamente o desempenho do 
controlador. Este fator é responsável por determinar a proporção na qual o treinamento tomará 
em conta os futuros benefícios esperados pelo sistema. De acordo com o DOE realizado, os 
controladores que não realizam observações futuras possuem melhor desempenho. Altos 
valores do fator de desconto e maiores quantidades de dados também levam a maiores tempo 
de treinamento durante o treinamento cíclico com velocidade do veículo como entrada do 
controlador. Quando avaliados os controladores treinados de forma não cíclica, aqueles que 
consideram a velocidade do veículo apresentam um treinamento mais robusto sem grande 
influencia da qualidade dos dados usados no treinamento. Por outro lado, quando a velocidade 
do veículo não é considerada, as características dos dados usados influenciam 
significativamente os controladores obtidos. Em ambos os casos com e sem a velocidade do 
veículo como entrada, a quantidade de dados usada para o treinamento influencia no tempo de 
treinamento. Todos os controladores apresentam desempenho adequado quando analisados nos 
cenários usados para o treinamento do controlador. Quando diferentes padrões de aceleração 
são analisados somente o controlador incluindo a velocidade do veículo e treinado de forma 
direta apresenta comportamento adequando enquanto os outros controladores apresentam 
oscilações principalmente quando o veículo encontra-se em baixas velocidades. Durante as 
avaliações em diferentes condições de pista o controlador cíclico com a velocidade do veículo 
apresenta melhores resultados. Contudo, o controlador treinado diretamente e com a velocidade 
do veículo apresenta funcionamento adequado apenas em solos que apresentam um coeficiente 
de atrito entre os empregados para o treinamento. Por outro lado quando pistas com menores 
coeficientes de atritos são empregas o controlador não apresenta resultados plausíveis. Visto 
que este controlador possui o melhor desempenho nos demais testes um novo treinamento foi 
realizado utilizando as pistas de asfalto seco e gelo para geração do banco de dados. A rede 
neural treinada nestas condições apresenta uma capacidade de interpolar todas as pistas 
avaliadas dentro deste intervalo de coeficiente de atrito, incluindo neve fresca e asfalto 
molhado. Por fim os resultados obtidos com esta rede neural para tempos de aquisição 
diferentes entre os sensores não apresentam resultados adequados. Para solução desta limitação 
é indicada a implementação de uma rede neural que inclua diferentes passos de tempo nas 
entradas para que seja possível a interpretação das diferentes taxas de aquisição.  
 
CONSIDERAÇÕES FINAIS 

A aplicação de aprendizado por reforço com redes neurais de ator e crítico apresenta-se 
promissora para o controle de sistemas não lineares e necessidades de aplicação em tempo real. 
Ambas as técnicas de treinamento aplicadas apresentam resultados adequados quando todas os 
cenários de teste e de treinamento coincidem, contudo melhores resultados são obtidos pelo 
controlador treinado diretamente e incluindo a velocidade do veículo nas entradas. Este 
controlador permite a interpolação dos dados, sendo possível controlar o veículo em situações 
não apresentadas durante o processo de treinamento. Esta possibilidade é vantajosa para campos 
como o automotivo onde todas os cenários possíveis não podem ser cobertos durante o 
treinamento. O controlador obtido pelo treinamento direto também apresenta a facilidade de 



  

possuir uma coleta única de dados, evitando a necessidade de dirigir o carro mantendo pausas 
para treinamento ou de incluir um uma máquina com elevada potência computacional no 
veículo para realizar o treinamento on-line. A implementação de todos os parâmetros que 
descrevem fisicamente o sistema apresenta melhores resultados visto que os controladores que 
não empregam a velocidade do veículo como uma entrada não apresentam resultado tão 
satisfatório como aqueles que tem acesso a velocidade do veículo. O controlador proposto 
apresentou uma característica de interpolação, permitindo treinar apenas usando dados que 
representem condições extremas do ambiente. Esta característica apresenta grande potencial na 
redução da quantidade de dados necessários para o treinamento dos controladores, sendo 
indicado a avaliação desta característica em outras aplicações. Para trabalhos futuros indica-se 
a construção de uma rede neural que considere mais passos de tempo para a análise de diferente 
tempos de aquisição dos sensores e uma avaliação mais aprofundada do efeito dos dados de 
treinamento nos resultados dos controladores.  
 
Palavras-Chave: Aprendizado de Máquina. Redes Neurais. Dinâmica veicular. Controlador. 
DTNAC. 
 
  



  

ABSTRACT 

 

The implementation of electronic controllers in the automotive sector significantly improved 
vehicle safety, comfort and fuel consumption. However, with new technologies as electric and 
autonomous driving, the demand by controllers increase significantly and some challenges are 
still present, as the controller of a completely non-linear system, the necessity of data hardly 
measured or difficulty to define models that represent the environment. To evaluate the 
possibility of overcoming some of these restrictions, the present research implemented different 
Reinforcement Learning Actor-Critic algorithms to control the wheel slip of a rear traction 
electrical go-kart. These Machine Learning based controllers learn by rewards and punishments 
the best behaviour to follow and two deep networks are implemented to judge and control the 
system without the necessity of environment modelling. Two different types of learning process 
were evaluated, including iterative and direct learning algorithms. The proposed Directly 
Trained Network Actor-Critic (DTNAC) simplifies the learning process and permits to collect 
data from the environment a single time, realizing the training process in an off-line station. 
Both cyclic and proposal controllers were evaluated on the trained states and in distinct 
environments as varied grounds and maneuvres. The necessity of the vehicle velocity as an 
input of the controller was also analyzed. The controllers without the vehicle velocity as an 
input showed more sensibility to the training data quality, while the algorithm that took the 
vehicle velocity into account had more robust behaviours. All the evaluated controllers 
presented an adequate control of the vehicle on the trained states, however, some limitation 
occurs when the vehicle driving is simulated on non-trained manoeuvres. The DTNAC 
algorithm with vehicle velocity presents itself as a prosperous application. When trained in ice 
and dry-asphalt, the controller was able to deal with snow and wet asphalt floors in different 
manoeuvres showing success in non-linear conditions without the necessity of modelling the 
system. In cases where the data that represent all the possible states are available, the removal 
of the vehicle velocity also can be applied to reduce the number of measured variables.  

 
Key-words: Machine learning. Neural network. Vehicular dynamics. Controller. DTNAC. 
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1 INTRODUCTION  

 

A stable behaviour of lateral and longitudinal accelerations of the vehicle is 

necessary to an efficient vehicle movement prediction by the driver, since the driver 

commands the vehicle movements by your own movements combined with control 

systems (steering, acceleration, brake, etc.) (Dixon, 2007). To assist the driver during this 

task, these control systems have electronical components which consider the overall 

vehicle, driver and traffic-relevant constrain resulting in a better behaviour of the 

automobile (Braess & Seiffert, 2005).  

The use of electronic systems in the control of motor vehicles is increasing faster 

since the beginning of the eighties. The electronic increase vehicle comfort and safety 

and reduce consumption due to better efficiency on powertrains systems. On the other 

side, the electronic control systems permit to attend the actual legislation about safety and 

environmental pollution (Rathmann, 2007).  

In the safety area, electronic active safety systems as Antilock Braking System 

(ABS), Antislip Control (ASC) and Electronic Stability Control (ESC) help to prevent 

accidents and reduce traffic risks. Due to this safety improvement, since the end of 

nineties, these systems are applied in all vehicles in production in Germany, at least as an 

optional (Robert Bosch GmbH, 1998). After that, predictive safety systems as collision 

warning and emergency braking were also developed (Rathmann, 2007) as first steps of 

vehicle automation, following to recent studies about autonomous driving (Naujoks, et 

al., 2016). 

Recently, the combination of electronic systems and reinforcement learning 

method presents itself a good opportunity for improvement in vehicles tasks. The 

researches using these technics are implemented in autonomous drive (Jaritz, et al., 2018), 

(El Sallab, et al., 2016), (El Sallab, et al., 2017), battery management (Hsu, et al., 2010) 

and safety active systems (Radac & Precup, 2018), (de Amaral, 2018). 

Reinforcement Learning is a topic of the computer sciences area, in which 

intelligent programs, called agents, work in an environment in constant cyclic interaction. 

This relationship between environment and agent permit the system adaptation and 

learning through positive or negative feedbacks called rewards and punishments 

respectively (Nandy & Biswas, 2018). 

The earliest use of Reinforcement Learning (RL) framework was Samuel’s 

checkers in 1959. In this research, a computer learns to play checkers just based on the 
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game rules, a sense of direction and parameters that show the targets of the game (Samuel, 

1959). After that, RL was improved aiming the learning of the system control with the 

prediction of future behaviour based on past experience (Sutton, 1988). On the 

automotive area, the RL was recently applied in battery management also showing good 

results. The RL implementation allows that the vehicle learns the best way to control the 

energy, aiming adequate comfort to the user and maximum displacement (Hsu, et al., 

2010). 

The RL combined with neural networks, named neural fitted Q interaction 

showed promising with the possibility of excellent performance in game playing (Mnih, 

et al., 2013) and systems control (Taitler & Shimkin, 2017). The recent researches using 

neural fitted Q interaction in the automotive area are focused on autonomous driver, 

usually using race game environments to evaluate the vehicle response to an RL control 

without risks (Jaritz, et al., 2018), (El Sallab, et al., 2016), (El Sallab, et al., 2017). De 

Amaral, et al. (2018), evaluated an ESC strategy with Neural fitted Q interaction with 

simulations in CarMaker environment, but the results showed inadequate learning times 

to real applications. On the other hand, the test of an ABS system in benches, showed 

adequate results with Neural fitted Q interaction controls (Radac & Precup, 2018).  

In the vehicle safety area, the Traction Control exerts an important function of 

avoiding the wheel slipping during acceleration, improving acceleration and cornering. 

In 1998, the Traction Control of electrical vehicles had been already researched due to 

the easy control of electric motors and the benefit of use low-drags tires to improve the 

battery autonomy (Hori, et al., 1998).  

Traction control systems development presents challenges due to the 

nonlinearities of tires and simplicity needed to the real-time application (Borrelli, et al., 

2006). Besides that, describing the behaviour of the tire is a very complex task, usually 

applying empirical or semi-empirical equations as the so-called Magic Formula (Pacejka, 

2002). Thus, the use of model-free control techniques, which do not need the model of 

the system, can be a good opportunity for improvement (Radac & Precup, 2018).  

The RL methods show a good possibility to fulfil these requirements, allowing 

the use of non-model techniques and applying adequate time response to control the 

system (Radac & Precup, 2018). A successful implementation can provide safety 

improvement to the automotive sector, due to better control of tire slips and avoidance of 

vehicle uncontrollability. The consumption can be also reduced by the use of low-drags 

tires (Hori, et al., 1998). 
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 Moreover, to the impletation of the Traction Control based on Reinforcement 

Learning, low or no cost with sensor development is needed, since the necessary data is 

already collected to the conventional Traction Control systems. In this case, the costs are 

the algorithm and methodology development and any increase on the computation power 

of the control processor.   

In this way, the present research aims to develop and investigate a Traction 

Control system to a rear-wheel driven electric vehicle, based on an actor-critic 

reinforcement learning. The evaluation takes into account the longitudinal behaviour of 

the vehicle and permits to understand the possible implementation of reinforcement 

learning methods in automotive controls.  

To this task, the algorithm receives data from the vehicle sensors and the driver 

intention of acceleration from the throttle pedal position. Based on the actual state of the 

vehicle and drive intention the controller generates a new optimized virtual throttle pedal 

position that controls the electric motor.   

During the research, two different training algorithms were evaluated. The first 

implemented a cyclic approach which uses the last trained controller to collect new data 

in each training cycle, due to the difficulty in real applications a second trained process 

was proposed using a single data collection without the interaction of the controller. 

 

1.1  OBJECTIVES 
 

The main objective of the research is to implement a Deep Actor-Critic 

Reinforcement Learning algorithm to control the traction of a rear-wheel driven electric 

vehicle. The implamentation is done in a simulated environment, aiming to avoid the 

inadequate slip of the wheels.  

Among the specific objectives of the research can be highlighted:  

 Validate the Deep Actor-Critic algorithm as an adequate controller to 

automotive implementations;  

 Understand the training parameter influence and the vehicle velocity presence 

on the performance of the controller; 

 Compare the cyclic and the direct training process by the vehicle response 

when the RL controller is implemented;  

 Analyze the controlled vehicle behaviour with scenarios changing, including 

different tracks and maneuvres; 
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 Evaluate the operation of the controller when the sensors have different 

acquisition times.  

 

2 LITERATURE REVIEW  

 

This section is divided in the well stabilished physical background necessary to 

understand the current research and the state-of-art of the related areas including anti-slip 

control systems, RL and neural network applications.  

 

2.1 PHYSICAL BACKGROUND 
 

The physical background sub-section include the main physical and 

mathematical methodologies applied during the research. Inicially the physical behaviour 

of the vehicle is explained to support the understantding of the environment simulation. 

After that, the basis of Anti-slip control are clarified to combustion and electrical 

powertrains. To finish, the components and the mathematical development of the RL and 

neural network are exposed.  

 

2.1.1 Vehicle Dynamics 

 

The vehicle is composed of many individual components with different positions 

inside the vehicle, however, the whole vehicle moves together. In this way, in a simplified 

method, all the accelerations can actuate on a concentrated mass, positioned in the so-

called Center of Gravity (CG) (Gillespie, 1992).  

To create a standard according to the coordinates position on the vehicles CG, 

The Society of Automotive Engineering (SAE) (1976) defined it in the J670e standard as 

presented in Figure 1.  
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Figure 1 - Vehicle Coordinate System. 
 

 
 

Source: J670e standard SAE (1976). 
 

In Figure 1 the coordination system follows the right-hand rule, with the Z axle 

pointing down. The rotation on X, Y and Z axes are respectively Roll, Pitch and Yaw.  

The evaluation of the dynamic behaviour of the vehicle on X axle (longitudinal 

direction), is possible by using Newton’s Second Law. In Figure 2 is presented the main 

forces that actuated in a passenger car (Gillespie, 1992).  

 

Figure 2 - Forces acting on a vehicle. 
 

 
 

 Source: Gillespie (1992, p. 11). 
 

In Figure 2, W is the weight of the vehicle acting on vehicle CG. When the 

vehicle is on an inclination, this force presents two components, one perpendicular to the 

ground (Wcosϴ) and another parallel to the road (Wsinϴ).  
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The normal forces from the road are shown in Figure 2 to front and rear wheels 

as Wf and Wr respectively. Parallel with the road, are presented tractive (Fxf, Fxr) and 

resistive (Rxf, Rxr) forces. When the vehicle is towing a trailer, there are also the forces 

Rhz and Rhx, which represent the vertical and longitudinal interaction with the attached 

trailer (Gillespie, 1992). 

 The “d’Alembert force” denoted by the vehicle mass times the acceleration 

acting at the vehicle CG can represent the Inertia of vehicle movement. This force always 

acts in the opposite direction of the acceleration or braking force applied on the vehicle 

(Den Hartog, 1948). 

The aerodynamic force DA acts on the centre of pressure of the vehicle 

generating a longitudinal resistance force. In addition, there is a distance between the 

centre of pressure and the vehicle CG. This distance generates a pitch moment on the 

vehicle. The generated moment directly depends on the difference between the CG height 

(h) and the DA actuation height (ha). The DA force depends on geometric parameters as 

vehicle frontal area, drag coefficient and the square of vehicle velocity. The square 

dependence on velocity means that the force increase fast with the velocity increasing, so 

the aerodynamical force only has a significant influence at velocities over 40km/h 

(Hucho, 1998). 

The forces transmission from the vehicle to the ground is directly depended on 

the tires distortions and slip. Several types of mathematical models were developed to 

describe the relationship between the longitudinal force, side force and moment with the 

tire deformation. However, some limitations are still present in describing the dynamical 

behaviour of the tyre (Pacejka, 2002). 

 

2.1.2  Tyre Model 

  

According to Pacejka (2002), when evaluating just the longitudinal behaviour 

the tire can be described as a spring with stiffness CFk. In this case, the correlation between 

the longitudinal Fx and the longitudinal slip ratio K is given by Equation (1).  

 

 𝐹௫ ൌ 𝐶ி𝐾 (1) 

  

However, with Equation (1) is it possible to evaluate the tire behaviour just in 

the linear range, while the real force presents a nonlinear shape. To overcome the 
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simplifications new equations were developed including the description of peak 

accelerations in determined slip ratios. Among them it is possible to highlight the 

semiempirical Magic Formula (MF) (Pacejka, 2002). 

Widely used in vehicle dynamics studies, this formula is a combination of 

physical evaluations and experimental results. Based on experimental tests of the tire, the 

constants of the equations can be obtained and the model is used to simulate or estimate 

the forces based on the slip. The model is governed by Equation (2) (Pacejka, 2002): 

 

 y = D sin [C arctan {Bx-E(Bx- arctan Bx)}] (2) 

 

where:  Yሺxሻ = y ሺxሻ+SV and  x=X+Sh 

 

Y is the output variable: longitudinal force Fx, side force Fy or aligning moment 

Mz. X is the input parameter: it can be tangent of lateral slip angle α or longitudinal slip 

K. B, C, D and E refer to stiffness, shape, peak and curvature factors respectively. Sh and 

Sv refer to horizontal and vertical shift respectively. In Figure 3 is presented the curve 

produced by Equation (2) and the meaning of curve parameters.  

 

Figure 3 - Curve produced by the Magic Formula Equation to the longitudinal force. 
 

 
 

Source: Pacejka (2002, p. 173). 
 

In addition, the traction force is correlated with the normal force on the wheel 

by the friction coefficient μ as shown in Equation (3).  
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 Fx(F,R) = μWF,R (3) 

 

In this way, adapting the MF parameters, longitudinal (μx) and lateral (μy) 

friction coefficients can be output parameters as well (Ružinskas & Sivilevičius, 2017). 

Comparing lateral and longitudinal coefficients based on tires slip it is possible to obtain 

Figure 4 (Hori, et al., 1998). 

 

Figure 4 - Friction coefficient correlation with slip. 
 

 
 

Source: Adapted from Hory, et al. (1998, p. 1131). 
 

Evaluating Figure 4, the lateral friction coefficient is maximum near to zero and 

when the slip increase, the friction between rubber and track decrease quickly. This 

behaviour can occur due to high acceleration or suddenly steering by the driver. The low 

friction permits an unstable behaviour of the vehicle including drift out or spin (Robert 

Bosch GmbH, 1998) 

By contrast, the longitudinal coefficient increase with the slip increment until a 

maximum point where the friction decrease slowly. However, the use of MF just is 

possible in steady-state applications where the experimental data is collected. Due to this 

limitation, it is difficult to implement MF equation in onboard systems since the vehicle 

load, tire type, tire pressure and track conditions change frequently (Braess & Seiffert, 

2005).   

To control the traction force of the vehicle and keep a stable behaviour usually 

are implemented traction control systems, which keeps the vehicle-tire velocity difference 

in an adequate ratio (Robert Bosch GmbH, 1998). 
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2.1.3  Intern Combustion Engine Traction Control  

 

The Traction Control System (TCS) or Antislip Control (ASC) suppresses tire 

slip when the vehicle accelerates in a low friction surface as the icy or muddy road (Hori, 

et al., 1998). By maintaining the traction forces at an adequate level, this system 

assurances vehicle stability, increase acceleration performance and reduce the tire wear. 

A brake ASC and an engine/motor ASC can compose the control system (Braess & 

Seiffert, 2005).  

The brake ASC actuate using the Antilock Brake System (ABS). Based on wheel 

speed sensors, the system brakes the wheel that present high slip compared with the 

vehicle average velocity. The benefits of this composition are the possibility to control 

the wheels individually and the transference of torque to the free wheel by the differential. 

On the other hand, the brake cannot be pressed for a long time, due to the brake 

overheating (Braess & Seiffert, 2005).  

To reduce the brake use, the motor or engine ASC can be applied in spite of not 

permit the individual wheel control. The motor torque reduction can generate vehicle 

stability in manoeuvres which both wheels present a low friction coefficient, as a linear 

acceleration on ice. Due to this characteristic, the implementation of engine ASC avoids 

dangerous manoeuvre during acceleration (Braess & Seiffert, 2005).  

 

Figure 5 - Brake and motor ASC to a commercial vehicle. 
 

 
 

Source: Adapted from Robert Bosch GmbH  (1998, p. 198). 
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On this approach, the ABS/ASC control unit receives from the Engine Control 

Unit (ECU) a driver request through the throttle pedal position. This data is compared 

with the brake and slip scenarios to return to the ECU a desired fuel injection to the 

engine. In some cases, the ASC unit directly actuated on the engine providing mechanical 

retarder in exhausts gases (Robert Bosch GmbH, 1998). In Figure 5 is possible to identify 

a Brake and Engine ASC scheme to a commercial vehicle.   

The ASC was showed at first time in 1986 as an extension possibility to the 

already installed ABS system. According to Gerstenmeier (1986), using small hardware 

or software improvement would be possible to implement the ASC in the vehicle.  

The suceeding researches in ASC area focused on the control strategy, usually 

using the same actuators and sensors. Among the control strategies, it is possible to 

highlight the control method of sliding mode, widely used due to the robustness in non-

linear dynamic systems (Kabganian & Kazemi, 2001).  

 

2.1.4 Electric Motor Traction Control   

 

The first electrical motors implemented in vehicles was the direct current (DC) 

motors due to the easy control and connection with the DC batteries. The DC motor works 

based on three main components: coil, rotor and a commutator as showed the simplified 

scheme in Figure 6 (Khajepour, et al., 2014). 

 
Figure 6 - Schematic of a brushed DC motor.  

  

 
 

Source: Khajepour, Fallah and Goodarzi (2014, p. 55). 
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As shown in Figure 6, a set of coils mounted inside the motor generates a 

magnetic field that combined with the current on the rotor create the torque. The 

commutator act switching the supply voltage to the revolving rotor from the stationary 

brush making the rotor turn. In this way, changing the voltage and consequent current 

level in the rotor the final torque is easily controllable.  

However, the DC motor has disadvantages about its weight, efficiency, 

reliability and high maintenance with the brushes wear when compared with the 

alternated current (AC) motors. On the other hand, the AC motors have more complex 

control systems correlated with the frequency of the current waves (Khajepour, et al., 

2014).  

 

2.1.5 Machine Learning  

 

The Machine Learning is a field of computer science, considered from some 

authors as a kind of AI (Kim, 2017) and for others as a field that is closely related with 

the AI, as well as it is related with pattern recognition and computational statistics 

(Paluszek & Stephanie, 2017). However, what really defines the Machine Learning field 

is the ability to use existing data to predict future data. 

Usually implemented to recognition and statistics tasks, where it is not feasible 

to write algorithms, machine learning has the ability to learn directly from the 

environment data (Paluszek & Stephanie, 2017). Based on captured data the algorithm 

generates a model as a final product, permitting predict the future data based on the model 

generated by the old data. (Kim, 2017).  

In these cases, the model suffers adaptations without the direct human 

intervention, allowing the solution of problems for which analytical models are hardly 

available. The algorithm learns by already known input-output correlations that permit 

the model update as a fitting process. In Figure 7 it is indicated the relation between the 

training process and the model application (Kim, 2017).  
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Figure 7 - Training and input data. 
 

  
 

Source: Kim (2017, p. 5). 
 

As showed in Figure 7, some training data is used by the machine learning 

process to obtain the model that represents the input-output relation (Paluszek & 

Stephanie, 2017). When the model is already learned, the input data can be used to obtain 

the waited output results. The learning process can be divided into three principal types 

as showed in Figure 8 (Kim, 2017). 

 

Figure 8 - Three types of machine learning techniques. 
 

 
 

Source: Kim (2017, p. 12). 
 

The supervised learning means that a specific training set is applied to the 

system. In this part, a human gives a correct combination of input and output to the 

system. It is not necessary that the human actively validate the results, but the system 

needs to know specifically which output is expected from each input (Paluszek & 

Stephanie, 2017). 

During the training, the correct choice of data is very important, in the way that 

the data need to be widespread enough to permit the input comprehension returning a 

correct output (Kim, 2017). 
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 The unsupervised learning acts just with input data, without a correct output to 

learn. In this case, the main principle is usually to investigate the data with the possibility 

of finding hidden structures. For example, it is possible to evaluate a face identification 

data to understand what could be a correct recognition output (Paluszek & Stephanie, 

2017).  

Reinforcement learning (RL) act based on input, some output and a grade for the 

output. This type of machine learning is widely used for classification because, in the 

place of the correct output, classification of the analyzed data is learned. The RL is used 

in more applications then unsupervised and supervised learning (Kim, 2017). 

  

2.1.6  Reinforcement Learning 

 

The RL permits a continuous learning process based on the environment relation 

and feedbacks that consider the environment and system interactions (Nandy & Biswas, 

2018). Therefore, the RL presents itself as a good tool to improve vehicle control as 

autonomous driven or simpler systems like ASC or ABS.  

The system that executes the action receives the name of agent. The agent work 

in a known or unknown environment constantly adapting and learning based on given 

points. The feedback may be positive, known as reward, or negative called punishment. 

The agent and the environment interaction is called state. Based on the state, the agent 

chooses the next action aiming to maximize the reward or minimize the punishment 

(Nandy & Biswas, 2018).  

One of the pioneer use of Reinforcement Learning (RL) framework was 

Samuel’s checkers in 1959. In this research, a computer learns to play checkers just based 

on the game rules, a sense of direction and parameters that show the targets of the game 

(Samuel, 1959). After that, RL was improved aiming the learning of the system control 

with the prediction of future behaviour based on past experience (Sutton, 1988). 

 

2.1.6.1  Elements of reinforcement learning 

 

Beyond the agent and the environment, it is possible to identify sub-elements of 

RL system: policy, reward function, value function and optionally a model of the 

environment (Sutton & Barto, 2017). 
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A deterministic policy π is a mapping from the agent-environment interaction to 

the action to be taken. The policy can be very simple equation, or in some cases a complex 

search process. In general, policies may also be stochastic and can change during the time 

due to the learning process (Sutton & Barto, 2017), (Wiering & van Otterlo, 2012).  

The reward function defines the goal of the system. It maps the state or state-

action to a reward or a punishment, composed by a value, defining how good or bad is 

the actual state. The main objective of the agent is to maximize the reward or minimize 

the punishment in the long run. The reward function is defined by the programmer and 

cannot be changed by the agent. However, it may serve as a basis to change the policy 

(Sutton & Barto, 2017). 

While the reward function indicates how good is a state in an immediate sense, 

the value function makes the same to the long run. The value function can be explained 

as the amount of reward that the agent can expect to the future starting from the actual 

state. This function avoids that the agent chooses an action that gives an immediate great 

reward but is preceded by low rewards (Sutton & Barto, 2017).  

 Finally, the model of the environment mimics the behaviour of the environment. 

The model permits to predict the next state and reward based on simulated actions, aiming 

to choose the best action before taking it. The use of models in machine learning is 

relatively new, and bring the possibility of planning the action rather than act exclusively 

with try and error learners (Sutton & Barto, 2017).   

 

2.1.6.2  The Agent-Environment Interface 

 

The RL problem consists of learning from interaction until achieving a goal. The 

learning and decision-maker is the agent, everything that is not controllable by the agent 

is called environment, which the agent interacts. The agent and the environment interact 

cyclically as shown in Figure 9. The agent select actions and the environment respond to 

these actions presenting a new state. In this step, a reward also can be calculated based 

on the new state and the taken action (Sutton & Barto, 2017).  
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Figure 9 - The agent-environment interaction in reinforcement learning. 
 

 
 

Source: Sutton and Barto (2017, p. 52). 
 

The agent and the environment interact in discrete time steps. At each step t, the 

agent receives some representation of the state st and choose a possible action at to this 

state. The next state st+1 is a result of the later action and based on these factors a reward 

rt+1 is calculated. State and reward are sent to the agent that chooses a new action. The 

agent always tries to maximize the reward, choosing the action that returns the best value 

during the time (Sutton & Barto, 2017).   

  

2.1.6.3  Online versus offline learning  

 

Online learning performs the learning directly on the problem instance, while 

off-line learning uses a simulator of the environment as a safe and fast way to train the 

policy. The online learning is difficult applicable, due to the time consuming and the 

safety of use simulation environments mainly in arbitrary training situations (Wiering & 

van Otterlo, 2012).  

Sometimes an adequate policy can be created in a simulated environment and 

then, fine-tuned in the real task. This learning process permit that the agent makes 

dangerous errors in the simulation and tune the behaviour taking into account the real 

physical behaviour of the system (Wiering & van Otterlo, 2012).  

   

2.1.6.4  The Exploration-Exploitation Trade-off  

 

The most important characteristic that differentiates the RL from the other 

learning algorithms is the evaluation of the actions taken rather than the use of instructs 

by giving correct actions. This creates a necessity of trial-and-error search to find the best 

policy, this search received the name of exploration. On the other hand, at any time the 
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agent can choose the action the return the best reward, which is called greedy action. The 

choice of the greedy action receive the name of exploitation (Sutton & Barto, 2017). 

Exploiting maximize the expected reward in one play, but exploration can 

produce a greater reward in the long run. This occurs because when the agent chooses the 

actual greater reward, the other actions are not evaluated to verify if there is a better action 

to this state. The balancing of these two applications is called exploration-exploitation 

problem (Sutton & Barto, 2017). 

Whether it is better to explore or exploit depends in a complex way on the precise 

of the values estimates, uncertainties and the number of plays remaining. However, some 

simplified methods can be applied to overcome this difficulty. A simple alternative is to 

exploit the most part of the time, but with a small probability ϵ choose a random action in 

the possible actions. This type of method is named ϵ-greedy (Sutton & Barto, 2017). 

Although simple, the ϵ-greedy method permits the convergence of all rewards to 

the maximum value, as all the action will be tried many times when the number of plays 

increase. In Figure 10 is presented the average reward of ϵ-greedy with three different ϵ 

values: 0, 0.01 and 0.1 (Sutton & Barto, 2017). 

 

Figure 10 - Average performance of the ϵ-greedy method.  
 

 
 

Source: Sutton and Barto (2017, p. 29). 
 

In Figure 10 is possible to verify that ϵ = 0 increase faster at the very beginning, 

but levelled off at a lower level, achieved around 70% if the possible reward. This 

behaviour is waited due to the high possibility to get stuck in suboptimal performance, 

not exploring better rewards (Sutton & Barto, 2017). 

On the other hand, the ϵ = 0.1 show worse rewards at the very beginning but 

achieve a higher reward due to the high exploration. The ϵ = 0.1 actives earlier the optimal 
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action, but 10% of the time the agent exploring among the possible actions. The ϵ = 0.01 

increase slowly but with more plays could pass the ϵ = 0.1, as long as the ϵ = 0.01 is 

exploring just 1% of the time. In a more robust algorithm is also possible to reduce the ϵ 

over time to optimize the ϵ-greedy method (Sutton & Barto, 2017). 

 

2.1.6.5  Markov Decision Process 

 

The environment in time t+1 responds to an action taken at time t usually taking 

into account all prior states and actions. When the system is Markovian or has a Markov 

property, the response of the system in time t+1 depends only on the state and action at 

the time t. In Equation (4) is showed the relation (Wiering & van Otterlo, 2012). 

 

 Pሺst+1|st, at, st-1, at-1,…s0, a0ሻ = Pሺst+1|st,atሻ (4) 

 

According to the Equation (4), the probability of having a state st+1 given all the 

prior states and actions is the same as having a state st+1 given just the last action and 

state. It means that the last state and action have all the important information to know 

which new state the system will active applying a determined action in the actual state 

(Wiering & van Otterlo, 2012).  

Another important way to interpret Equation (4), is that taking an action in the 

same state, the probability distribution to active the next state is the same at all the times 

that the system makes this decision. This property makes the learning process possible 

(Sutton & Barto, 2017).  

The Markov Decision Process (MDP) also uses the reward function defined as 

R(st), which the reward is given based on the actual state. Depending on the used 

algorithm the reward can be defined as R(st, at), which is given based on the actual state 

and action or R(st, at, st+1) which depends on state transition. The last one is usually 

implemented in model-free algorithms, permitting to correlate start and resulting states 

(Sutton & Barto, 2017).   

   

2.1.6.6  Value Functions 

 

The value function estimates how good is to the agent to be in a given state or 

taken an action in a given state. This “how good” notion is defined in terms of future 



39 
 

rewards that can be expected and consequently depends on the future states and actions. 

In this way, being the policy π the mapping from state to actions, the value function Vπ 

takes into account that starting in a taken state the agent will follow the policy π thereafter 

(Sutton & Barto, 2017).  

A state-value function for policy π of an MDP can be defined in terms of the so-

called Bellman Equation as present in Equation (5)  (Wiering & van Otterlo, 2012).  

 

 Vπሺsሻ =Tሺs, πሺsሻ, s'ሻ
s'

൫r(s, a, s')+γ Vπሺs'ሻ൯ (5) 

 

In Equation (5) the term T(s,π(s),s’) correspond to the probability of transition 

from the state st to the state s’ or st+1 and the term γ is the discount factor that permits to 

operate in infinity horizons. The discount factor is always between 0 and 1 and makes 

that the latest rewards obtained, have a more significant influence than rewards obtained 

in the past. The greater the γ more important are the older values, in the case that the γ = 

0 the agent is called myopic and just take into account the most recent reward (Wiering 

& van Otterlo, 2012). 

Evaluating the Equation (5), it denotes that the expected value of a state is 

defined in terms of the immediate reward and values of possible next states weighed by 

the transition probabilities and a discount factor (Wiering & van Otterlo, 2012). 

In the same way, it is possible to define a state-action-value Q function that 

follows the policy π as shown in Equation (6) (Wiering & van Otterlo, 2012). 

 

 Qπሺs, aሻ =Tሺs, πሺsሻ, s'ሻ
s'

ቀr(s, a, s')+γQπሺs', a'ሻቁ (6) 

 

The goal of the RL algorithm is to find the best policy, which receives more 

rewards. The optimal policy is named π*
 and occurs when the optimal value function V*(s) 

is bigger or equal than the policy value function Vπ(s) to all the states and policies. The 

optimal state-value function is given by Equation (7) (Wiering & van Otterlo, 2012). 

 

 V*ሺsሻ = max
a
Tሺs, a, s'ሻ

s'

ቀr(s, a, s')+γ V*ሺs'ሻቁ (7) 
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The Equation (7) is named Bellman optimality equation and present that the 

value of a state under the optimal policy is equal to the expected return for the best action 

in that state. In this case, Equation (8) can be applied (Wiering & van Otterlo, 2012). 

 

 π*ሺsሻ = argmax
a

Tሺs, a, s'ሻ
s'

ቀr(s, a, s')+γ V*ሺsሻቁ (8) 

 

The policy of the Equation (8) is called greedy policy because it greedily selects 

the best action using the state-value function. In the same way that the Equation (7) the 

optimal action-state-value function can be obtained as showed in the Equation (9) 

(Wiering & van Otterlo, 2012). 

 

 Q*ሺs, aሻ =Tሺs, a, s'ሻ
s'

ቀr(s, a, s')+ γmax
a'

Q*ሺs', a'ሻቁ (9) 

 

To find the optimal policy, the action-state-value function no needs the transition 

function and no forward-reasoning step is needed. This is an advantage of the Q-functions 

instead of V-functions because Q-function makes the learning process of model-free 

systems easier. The optimal action selection can be present as in Equation (10) (Wiering 

& van Otterlo, 2012). 

 

 π*ሺsሻ= argmax
a

Q*ሺs, aሻ (10) 

 

Based on Equation (10) it is possible to define a greedy policy related to the Q-

function. Different from the greedy policy related to the V-value in the Q based there is 

no need to consult the model of the MDP (Wiering & van Otterlo, 2012). 

 

2.1.6.7  Model-free 

 

As opposed to the Dynamic Programming models where a model of the 

environment is necessary, the RL uses model-free algorithms that permit to obtain the 

policy from sampling and exploration. The RL does not present a priori known of 

transition and reward models, what makes necessary to explore the environment by doing 
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actions and observing the states to estimate the state-action value functions (Wiering & 

van Otterlo, 2012). 

However, most of the model-free methods are focused on direct estimation of 

action values. In this approach transition and reward, functions cannot appear in the 

update rules. In this case, the action is based on the actual state and on the value function 

Q or V. These RL algorithms are called temporal difference learning and Q-learning is 

one of the examples of this algorithm (Wiering & van Otterlo, 2012). 

 

2.1.6.8  Q-Learning 

 

Christofer Watkins developed the Q-learning method in 1989 as an algorithm 

that does not need a model of the system (Watkins, 1989). The algorithm converges when 

evaluating a discrete case, with a finite number of actions and states (Harmon, et al., 

1996).  

The Q-learning algorithm was applied with success in a differential game in 

1996. The game evaluated a strategy of aeroplane and missile simulation, which the 

aeroplane avoid the missile and the missile pursues the aeroplane. Applying the Q-

learning combined with residual-gradient technic, the authors achieve an excellent result, 

where the aeroplane and the missile learn to achieve low levels of reward in a moment to 

increase significantly the reward during the next steps (Harmon, et al., 1996). 

The Q-learning strategy uses the Q-value improvement to learn from a sequence 

of experiences in which every action is tried (Harmon, et al., 1996).  In the Q-learning, 

the value function is changed incrementally after each state transition based on the 

rewards obtained by the last state-action combination. Initially, the Q-values are set 

randomly and updated to achieve the optimal Q-value by Equation (11). This Equation is 

derived from the Bellman Equation (Harmon, et al., 1996).   

 

 Qሺs,aሻ= ቀr(s, a)+ γ∆t max
a

Qሺs', aሻቁ (11) 

 

The unique solution to Equation (11) is the optimal Q-function. The policies 

implied by the optimal Q-function return the best action for each state, permitting to find 

the optimal actions to the system (Harmon, et al., 1996). 

The complexity of one interaction of the Equation (11) does not depend on the 

number of states. However, when the Q-values are saved in a looked up table the 
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complexity depends linearly with the number of actions, due to the time to find the action 

that returns the maximum Q-value. The Q-learning algorithm also presents a restriction 

with short time steps, which increase significantly the time required to train the bigger 

number of data. In continuous-time, it is impossible to work with Q-learning based 

algorithms (Harmon, et al., 1996).  

 

2.1.6.9 Neural Network in Reinforcement Learning 

 

To overcome the number of states restriction, the neural networks may be 

applied. In this case, a neural network replaces the machine learning model as shown in 

Figure 11. The training data is replaced by a learning rule that uses already explored data 

to create the correct policy between input and output data (Kim, 2017).  

 

Figure 11 - Relation between machine learning and neural network. 
 

 
 

Source: Kim (2017, p. 12). 
 

2.1.6.9.1  Neural network 

 

The neural network mimics the mechanism of the brain, using a network 

connection of nodes in the place of neurons and the connection between the “neurons” is 

made by weight values. Figure 12 represents one node of the neural network (Wiering & 

van Otterlo, 2012). 
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Figure 12 - Node, three inputs, bias and output. 
 

  
 

Source: Kim (2017, p. 20). 
 

The node receives three inputs that are multiplied by the weights (w1, w2, w3) 

respectively. Lastly, in the sum of the products is added the bias b that also contributed 

to the final output result. Using this methodology the information on the neural network 

is saved in weights and bias, permitting the input-output relation similar to an equation 

(Kim, 2017).  

Before the final output, an activation function determinate the behaviour of the 

node, usually including a non-linearity. The most common activation equation is the 

sigmoid function presents in Equation (12). This function guarantees that all the outputs 

maintain their values between zero and one (Kim, 2017). 

 

 φሺxሻ=
1

1+e- (12) 

 

Like the brain, the neural network is composed of a large number of nodes 

connected to each other as present in Figure 13. The squared nodes represent the input 

ones, which do not compute any calculation, working just as passage nodes. The group 

of rightmost nodes are called output layer and from the output of these nodes are obtained 

the results of the neural network. The nodes between input and output are named hidden 

layers. These nodes are not accessible from the outside of the network (Kim, 2017). 
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Figure 13 - Layered structure of nodes. 
 

 
 

Source: Kim (2017, p. 22). 
 

The neural network can be classified according to the number of hidden layers. 

The first developed network had just input and output layers, which receive the name of 

single-layer neural network. This type of network has a limitation about the data that is 

possible to evaluate and learn due to the low number of layers. In the case of complex 

classification rules, the number of layers needs to be increased (Kim, 2017). 

When hidden layers are applied the network receives the name of multi-layered 

network. The multi-layered network that has just one hidden layer is designated shallow 

or vanilla neural network. On the other hand, the multi-layered networks with more than 

two hidden layers are called deep neural network (Kim, 2017). 

The correct weights and bias are learned in the network by data containing 

known inputs and outputs. Using the error between the output calculated by the network 

and the expected output, the weights and bias are updated until obtained a corrected 

relation between input-output (Kim, 2017). The update is realized based on Equation (13) 

(Kim, 2017).  

 

 wij = wij+β φi
' ൫ήi൯ ei xj (13) 

 

Where wij is the weight between the output of the node i and input in the node j, 

β is the learning rate, which is between 0 and 1 and determines how fast the weight is 

updated, φi
' ൫ήi൯ is the derivative of the activation function φ of the output node i evaluated 

at the weighted sum of the output node i, ei is the error of the output node i and xj is the 

output from the input node j (Kim, 2017).  
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The learning process may be realized in three different ways, Stochastic Gradient 

Descent (SGD), batch and minibatch (Kim, 2017): 

 The SGD calculates the error for each training data and adjusts the weight 

immediately.  

 The batch method use averages of errors based on all training data, updating 

the error just once. The possible large number of data evaluated to update the 

weight make the batch slower than SGD, but the use of average values permit 

a more stable learning process. 

 The minibatch is a mix between SGD and batch. In this approach, the 

algorithm selects out an arbitrary part off the total training data, permitting to 

increase the velocity when a large training data is used (Kim, 2017). 

The learning process in single-layer networks is easily realized using one of the 

mentioned methods. However, in multi-layered networks, the errors of the hidden layers 

cannot be calculated because the expected results are not available. In this way, the use 

of the backwards propagation method needs to be applied (Kim, 2017). 

Usually, the data travel in the network from the input to the output, what is called 

forward propagation. Introduced in 1986 (Rumelhart, et al., 1986), the backpropagation 

consist of making the “travel” of the final error from the output value in the direction of 

the input value. The layer transition is made using the same weights of the forward 

propagation, and the error in each hidden node is updated using the same relations of the 

output error calculation.   

  

2.1.6.9.2  Neural Fitted Q Iteration 

 

The Neural Fitted Q Interaction (NFQ) use a network to update the Q value, 

based on the Bellman’s equation. In this case, the network starts with random weights 

Q(s, a, w0), where w0 are the initial weights. Alternating between exploration and neural 

update, the Q-values at the kth interaction is updated towards the target value as shown in 

Equation (14) (Francois-Lavet, et al., 2018). 

 

 Yk
Q. =r(s,a,s')+ γ max

a'
Q*ሺs',a',wk ሻ (14) 

 

The term γ is the discount factor that permits to operate in infinity horizons, r is 

the reward function and Q* is calculated based on the last Q network available. 
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The network is updated using stochastic gradient descent to minimize the square 

loss between the network value Q(s, a, wk) and the target value 𝑌
ொ. Thus, the weights 

upgrade is given by the Equation (15) where β is the learning rate. (Francois-Lavet, et al., 

2018) (Riedmiller, 2005). 

 

 wk+1 = wk + β ൣYk
Q - Qሺs, a, wkሻ൧ ∇wk

 Qሺs, a, wkሻ (15) 

 

Based on Equation (15), the weights are updated by the last weight plus the 

multiplication of the error and the gradient of the Q value. The learning rate β is applied 

to permit the programmer to control the rate of change in the network weights (Francois-

Lavet, et al., 2018).  

The very straight-forward application of NFQ and the possibility of work in 

continuous states makes the algorithm widely applicable in many areas. The use in control 

tasks is a very interesting example since the NFQ permit the autonomously learn of near-

optimal controls. Besides that, the use of batch has contributed to a major use of NFQ in 

control area due to the data efficiency (Wiering & van Otterlo, 2012). 

However, the NFQ as the , the network update may propagate errors and present 

a slow convergence or no convergence as showed experimentally by Riedmiller (2005). 

Due to the instability of the algorithm, specific care has to be taken to obtain good results 

(Francois-Lavet, et al., 2018). To overcome these convergence restrictions, other 

algorithms were developed, as for example Deep Q Network.  

When the neural fitted Q iteration uses a deep network it is called deep fitted Q 

interaction (DFQ), a method inside the Deep RL area. With this strategy, application 

which require more computational power can be executed just with one single network. 

For example, in this case it is possible to control more than one policy or learn directly 

from images using just one network (Wiering & van Otterlo, 2012). 

 

2.1.6.9.3  Deep Q Network  

 

Improving the NFQ ideas, the Deep Q Network (DQN), was proposed by Mnih, 

et al. (2013) and Mnih, et al. (2015). The application was related to game playing, 

especially due to the algorithm possibility of learns to play a large number of different 

games using the same architecture. Based on the input raw pixels, the algorithm was able 
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to learn how to measure and obtain rewards, applying a variant of the Q-Learning 

algorithm.   

In DQN the target Q-network in Equation (14) is replaced by Q(s’, a’; wk
- ) where 

the weights  wk
-  are updated only after a specific number of iterations c, avoiding the risk 

of divergences. Using a replay memory, all the explored data, collected by a ϵ-greedy 

policy in N-replays are saved. The update is made using a mini-batch containing data 

from all replays. (Francois-Lavet, et al., 2018) (Mnih, et al., 2015). In Figure 14 is shown 

a sketch of the DQN algorithm. 

   

Figure 14 - DQN algorithm sketch. 
 

 
 

Source: François-Lavet et al. (2018, p. 29). 
 

Another important heuristic to DQN keeps the rewards between -1 and 1 which 

limits the generation of errors. The use of normalizes inputs from -1 to 1 also makes it 

easier to operate different magnitudes in the neural network without converging 

problems.   

 

2.1.6.10  Reinforcement Learning in Continuous State-Action  

 

Deep Q-learning algorithms permit the evaluation of continuous states spaces 

but still work with discrete action states. In the real world, the use of discrete action maybe 

not enough to control a complete system. In this way, the use of algorithms that can 

choose actions from an infinitely large action range is a good opportunity of improvement 

(El Sallab, et al., 2017) (Wiering & van Otterlo, 2012). 

In problems of control, the aim is an approximation of the optimal policy π* that 

maximizes the value function Q* for each state. Therefore, the π* estimation may be made 
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directly or, based in Q*estimation. This relation leads to three general methodologies of 

solution (Wiering & van Otterlo, 2012): 

 Model approximation: This kind of algorithms approximate the MDP and 

compute the desired policy on this approximate MDP. Based on s, a, γ the 

algorithm may learn the T and r to construct π* and Q*. However, the 

extraction of all states is usually very difficult or impossible. 

 Policy approximation: Policy-approximation algorithms store a policy 

directly and update this policy to found the optimization. This type of 

algorithm is also called direct policy-search or actor-only algorithms.   

 Value approximation: In value-approximation algorithms, the actions, states 

and rewards are used to directly update a value function. Many algorithms 

use this procedure, including on-line, off-line, on-policy and off-policy 

algorithms as SARSA, Q-Learning and DQN. 

 

2.1.6.10.1  Stochastic Policy Gradient  

 

Policy gradient is a very common continuous action reinforcement-learning 

algorithm based on policy approximation. (Francois-Lavet, et al., 2018).  

In this algorithm, the policy gradient method updates the policy parameters ψ in 

the direction of the greater performance measure of the corresponded policy ρπ. The 

performance measure may be for example an average reward per step. The application of 

this method permits to find a locally optimal policy based on the maximum performance 

objective J(π). Equation (16) shows the gradient calculation (Francois-Lavet, et al., 2018) 

(Silver, et al., 2014) (Sutton, et al., 1999). 

  

 ∇ψJ൫πψ൯ =න ρπ
.

S
න∇ψ

.

A
πψሺa|sሻQπሺs,aሻdads 

(16) 

                 =Es~ρπ,  a~ψൣ∇ψlogπψሺa|sሻQπሺs,aሻ൧ 

 

The state-action value function Qπ(s,a) in the Equation (16) needs to be 

estimated. One approach is to use the actual rewards as an approximation as show 

Equation (17) and Equation (18) (Sutton, et al., 1999). 

 

 ρ(π) = E ሼ∑ γt-1rt
∞
t=1 หs0 ,πሽ (17) 
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 Qπሺs,aሻ = E ൛∑ γk-1rt+k
∞
k=1 หst =s,at =a,πൟ (18) 

 

This leads to the function gradient estimator known as REINFORCE algorithm 

(Francois-Lavet, et al., 2018) (Sutton, et al., 1999) (Williams, 1992). The use of this 

algorithm permits network implementation as the policy function. In the network, the 

weights represent the policy parameters ψ, In this algorithm, the learning process uses as 

input the states and as output the action distribution (Sutton, et al., 1999). 

 

2.1.6.10.2  Deterministic Policy Gradient (DPG) 

 

The majority of model-free reinforcement learning methods are based on 

generalized policy interaction, interleaving policy evaluation and policy improvement. 

While the evaluation estimates Q, policy improvement uses the estimated Q to improve 

the policy. Considering π as a deterministic policy, the most common approach to 

evaluation is the greedy maximization of Q as shown in the Equation (19) (Silver, et al., 

2014). 

 

 πk+1ሺsሻ = argmax
a

Qπk
ሺs,aሻ (19) 

 

In continuous action-spaces is computationally difficult to solve Equation (19), 

but is possible to move the policy in the direction of the gradient of the Q value (Silver, 

et al., 2014). 

Based on this, the DPG is underpinned in Stochastic Policy Gradient, but the 

transition between state and action is directly given, without a probabilistic distribution. 

This methodology permits that DPG evaluates the integration only on the state space as 

present in the Equation (20). On the other hand, the stochastic police gradient needs the 

state and action integration, which increases the implementation challenge (Silver, et al., 

2014). 

 

 ∇ψJ൫πψ൯ =න ρπሺsሻ
.

S
∇ψπψሺsሻ ∇aQ

ψሺs,aሻ|a=π0(s)ds 
(20) 

                      = Es~ρπ ቂ∇ψπψሺsሻ ∇aQ
πሺs,aሻ|a=π0(s)ቃ 
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This modification permits a reduction in the data quantity since it is not 

necessary to evaluate a large number of actions. However, to ensure that DPG has a 

satisfactory exploration it is necessary to use off-policy methods. In this instance, the 

actions are chosen according to a stochastic behaviour policy, but the learning process 

uses a deterministic target policy (Silver, et al., 2014).  

 

2.1.6.11  Actor-Critic algorithms  

 

The Actor-Critic algorithm is a combination of policy approximation and value 

function approximation. This method uses an explicit approximation of the state value 

function Vπ or action-state value function Qπ to obtain the policy approximation.  This 

value function approximation is called critic. The policy that generates the relation state-

action based on value function optimization is called actor (Francois-Lavet, et al., 2018). 

Figure 15 presents the actor-critic algorithm architecture (Uc-Cetina, 2013).  

 

Figure 15 - The actor-critic architecture. 
 

 
 

Source: Uc-Cetina (2013, p. 3). 
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The earliest actor-critic algorithm had its value function based on the TD (0) 

algorithm, permitting to obtain the TD-error δt by the Equation (21) (Wiering & van 

Otterlo, 2012).  

 

 δt = r+γ Vሺs'ሻ - Vtሺsሻ (21) 

 

Applying the Equation (21), the critic analyses the selection of the last action in 

the last state, evaluating its strengthen or weaken. A preference for an action in a specific 

state is given by the Equation (22), where p is the preference and ξ is the update size 

(Wiering & van Otterlo, 2012).  

 

 p൫st,at൯ ← p൫st,at൯+ξδt (22) 

 

The first advantage of the actor-critic algorithm is the possibility to work with a 

large number of actions since there is no need to consider all actions to select one of them. 

The second advantage is the possibility to learn stochastic policies from scratch, 

permitting to apply the same algorithm to different physical systems (Wiering & van 

Otterlo, 2012). Due to this, the actor-critic algorithm show successful applications in the 

control area, as robot movement (Wang, et al., 2015), adaptive cruise control (Zhao, et 

al., 2013) (Zhao, et al., 2017) and autonomous driving (Jaritz, et al., 2018) (El Sallab, et 

al., 2016). 

Several new versions of the actor-critic algorithms were developed based on Q-

learning (Silver, et al., 2014), DQN (El Sallab, et al., 2017), SARSA (Uc-Cetina, 2013), 

NFQ (Radac & Precup, 2018) (Hafner & Riedmiller, 2011), among others specific value 

approximations (Jaritz, et al., 2018) (Wiering & van Otterlo, 2012) (Francois-Lavet, et 

al., 2018) (Zhao, et al., 2017).  

 

2.1.6.11.1  Deep Actor-Critic  

 

The use of the DPG as policy approximation in actor-critic algorithms, permit 

the use in off-policy applications when the Q-learning algorithm is used as value function 

approximation. This combination permit efficient model-free learning of different tasks 

as board game playing or arm robot controller (Silver, et al., 2014).  
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To take all the advantages of the NFQ and DQN algorithms, combined with the 

possibility of continuous actions the Neural Fitted Q Interaction with Continuous Actions 

(NFQCA) (Hafner & Riedmiller, 2011) and the Deep Deterministic Policy Gradient 

(DDPG) (Lillicrap, et al., 2016) algorithms were developed. 

The NFQCA uses two neural networks to control the policy and the value 

function. Using the off-policy method all the collect data is saved in a dataset with the 

inputs (s, a, s’). The policy is represented by a neural policy function, π(s), with weights 

wπ. Considering that the policy represents the Q greedy of the state-action value function, 

the Equation (23) may be formulated (Hafner & Riedmiller, 2011). 

 

 Qk+1ሺs,aሻ = rሺs,aሻ + Qk൫s',πkሺs'ሻ൯ (23) 

 

The Equation (23) is computed for each transition sample of the dataset. 

Employing the batch approach, the weights of the critic network are updated using 

backpropagation of the Q error. Using the already learned critic the actor network has its 

weights updated by the gradient of the Q-value, aiming to find the optimum action.  

(Hafner & Riedmiller, 2011).   

The application of NFQCA exhibit good control possibilities in simulation and 

real application. The RL algorithm present results similar to optimal controllers, with fast 

learning time and the possibility to control continuous and non-linear systems (Hafner & 

Riedmiller, 2011).  

The more recent Deep Deterministic Policy Gradient (DDPG) has a similar 

approach; using DQN instead of NFQ to found Qπ. Based on this, a second deep network 

is used to found the policy π (Lillicrap, et al., 2016). 

The DDPG has a similar architecture to the NFQCA but implements some 

upgrades that guarantee better behaviour on the learning process. To avoid the instability 

during the networks update the algorithm uses copies of the critic and actor networks on 

the calculations to smoothly update the final networks (Lillicrap, et al., 2016).  

The copies are designated as Q’ and π’ to the critic and actor respectively. At the 

end of the calculations, the copies are updated by the slow target network ζ given by the 

Equation (24) to critic and Equation (25) to actor weights (Lillicrap, et al., 2016).  

  

 wQ'
 ← ζwQ + (1-ζ) wQ'

 (24) 

 



53 
 

 wπ'
 ← ζwπ + (1-ζ) wπ'

 (25) 

 

The networks copies were already proposed in the DQN algorithms but without 

the soft update of the weights. In DQN the weights were directly changed (Mnih, et al., 

2013). 

Another important improvement already present in DQN is the use of mini-batch 

that permit to evaluate a large number of data on the replay memory without a significant 

loss of performance (Mnih, et al., 2013) (Lillicrap, et al., 2016).  

To improve the learning time, normalization of the collect data was also applied 

as already proposed by Ioffe and Szegedy (2015). When working with low dimensional 

feature vectors the large difference between physical units can difficult the learning 

efficiency in the network. The use of batch normalization normalizes each dimension 

across samples in minibatch to have unit mean and variance (Lillicrap, et al., 2016).   

The DDPG implementation presented a good result in learning and controlling 

diverse tasks. The algorithm was able to actuate using low-dimensional feature vectors 

and high-dimensional pixel inputs, due to the use of deep networks. The DDPG presented 

better results than the NFQCA mainly due to the use of target networks, which improve 

considerably the control performance (Lillicrap, et al., 2016). 

 

2.1.7 Design of Experiments 

 

 According to Montgomery (2009a) the implementation of designed experiments 

is a powerful methodology to verify the influence of the inputs of a system on its outputs. 

The evaluation occurs by the analyses of the outputs according to a controlled variation 

of the inputs. The Design of Experiments (DOE) represents the guidelines and standards 

to be followed during the execution of the tests.  

Before the execution of the experiment, a planning phase include the choice of 

factors and levels, where factor represents each one of the inputs that will be variated and 

the levels indicate the magnitudes of the inputs that will be evaluated. When a significant 

number of factors is applied, a factorial design can be applied. In this case, all factors 

variate together permitting the evaluation of all possible combinations of factor levels. 

(Montgomery, 2009a).  

The effect of a factor is measured by the response change due to a change in the 

levels of the factor. When just two levels are applied to a factor, they are usually named 
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high (+) and low (-) levels.  In this case, the effect is calculated by the difference of the 

average from all results with low levels and the average of all results with high levels as 

presented in Equation (26) where A represents the effect of a factor,  𝑦തశ is the average 

of all results where the level of the factor is high and 𝑦തష is the average of all results 

which have low levels of the factor (Montgomery, 2009a). 

 

 A = 𝑦തశ െ 𝑦തష (26) 

 

To deal with the replications of the experiment and the statistical validation of 

the results, the analyses of variance (ANOVA) is applied. Is this case the hypotheses of 

no significant effect from each factor is tested with a level of significance αv. In this way, 

the effect of the factor just is considered significant when it can be confirmed with more 

than 100 *(1- αv) %  of certain according to the available data. So, in case that the data 

present high variability or a small quantity of data is collected, the effect cannot be 

statistically confirmed (Montgomery, 2009a). 

In statistical tools, the significance of each factor effect on the results is 

graphically plotted in a Pareto graph. In this graph is plotted the correlation of the 

calculated t-value for each factor correlating it with a red line, which is drawn on the 

quantile of a t-distribution with degrees of freedom (DOF) equal to the DOF of the DOE 

error. The calculation of the DOF considers the number of levels, number of factors and 

number of evaluated interactions of the experiment. In the final plot the factor which 

advances the red line shows significant influence on the results (Minitab, 2019).   

With the corresponding tools and methodologies, complex analysis of the system 

can be realized. However, to preliminary studies, it is very common the application of the 

2k factor study. In this methodology, each factor applies two levels and a k number of 

factors can be evaluated. This experiment permits to variate all factor together, reducing 

the number of tests to find the best solution in a reduced time (Montgomery, 2009b).  

 

2.2 STATE OF THE ART  
 

This sub-section includes the manly researches in the traction control and RL 

with neural network areas. This sub-topic expose the studies used as base to the 

development of the present research.  
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2.2.1 Traction Control  

 

After the proposal of the Traction Control System by Gerstenmeier (1986), the 

researches are focused mainly in the development of the algorithms that control the 

system. As an example, Engbom, et al. (2004) overcame the limitations of tuning the 

controller to new vehicles, implementing the Internal Model Control (IMC). The benefit 

of this type of controller is the changeability of the control between vehicles, adjusting 

measurable vehicle parameters in the controller.  

More recently Kirchner and Southward (2013) applied an adaptive gradient 

ascent algorithm to find the best controller. In this research, the author also evaluates new 

possibilities of sensors, taking the vehicle accelerations as possible input data to the 

controller. The results present the possibility of implement this type of algorithm with 

significant advantages when compared with the traditional ones. The use of acceleration 

as input shows better results in situations where the performance is the main objective 

while using the traditional input data prevents excessive tire slip. 

Jin, et al. (2018) presented the possibility of optimizing a common Proportional, 

Integral and Derivative (PID) controllers using the Ant Colony Optimization (ACO) 

algorithm. This combination permits to found an optimized PID controller using 

statistical algorithms, based on ants behaviour. The results present a good possibility of 

improving in the ASC when compared with the normal PID controllers.  

Due to the easier controller of electrical motor, the torque available in low speeds 

and the tendencies of electrical vehicles the recent researches are focused mainly on 

electrical motors traction control. However the early researches in traction control of 

electric vehicles were from the seventies. Using simple DC motors, Bose & Steigerwald 

(1978) emphasizes the necessity of smooth acceleration of the vehicle and the possibility 

of vehicle boost controlling the thermal range of the motor. 

  Twenty years after, Hori, et al. (1998) realized new researches using DC motors 

now implemented in prototype vehicles. The main emphasis was the quick control due to 

the fast response of torque in electrical vehicles, showing a possible advantage against 

the combustion engines.  

More recently, many controllers types have been applied usually based on the 

wheel velocity and motor data (Lee & Tomizuka, 2003), (Khatun, et al., 2003), (Sampaio, 

et al., 2012), (Hu, et al., 2012), (Gasbaoui, et al., 2017). The main strategy applied is the 

Fuzzy controller (Lee & Tomizuka, 2003), (Khatun, et al., 2003), but it is also possible 
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to find a large number of other strategies as PID, H-infinity (Sampaio, et al., 2012) and 

some specific controllers to traction control as Maximum Transmissible Torque 

Estimation (MTTE)  (Hu, et al., 2012) and Direct torque control based on space vector 

modulation (SVM-DTC) (Gasbaoui, et al., 2017). 

The specific controllers usually are developed to solve problems found in the 

conventional controllers. For example, MTTE was implemented by Hu, et al. (2012) to 

avoid vehicle velocity evaluation, parameter that is difficult to be appropriately measured, 

mainly in 4WD vehicles. According to the author in vehicles where the traction occurs in 

all wheels, the data is collected by accelerometers, causing deviations and errors. 

The use of electrical motors also brought the possibility of control the wheel 

individually without brakes system actuation when the vehicle has one electric motor for 

each wheel (Hu, et al., 2012), (Gasbaoui, et al., 2017). This characteristic permits more 

control freedom on the vehicle behaviour, in curves or wheel actuating in different friction 

coefficients.  

Some author as Sampaio, et al. (2012), Kirchner & Southward (2013)  and Jin,  

et al. (2018) starts to use optimization techniques to find the best performance of the Anti-

Slip controllers. The successful application of Artificial Intelligence (AI)-based neuro-

fuzzy controllers (Sampaio, et al., 2012), controller optimization using statistics 

algorithms as ant colony (Jin, et al., 2018) and adaptive gradient ascent algorithm 

implementation (Kirchner & Southward, 2013) show a possible application of Machine 

Learning to the control of wheel slip.  

 

2.2.2 Neural Reinforcement Learning  

 

Reinforment Learning algorithms combined with Neural Networks are applied 

with success in many complex tasks. Riedmiller, et al. (2009) implement NQF controllers 

for soccer-playing robots, which participate in a RoboCup competition. In this 

competition, the robot is able to evaluate the environment by image processing, realize 

dribbles against the other competitors and intercept the ball during the game.  

With the application of Deep Neural Networks with a DQN algorithm, Taitler 

and Shimkin (2017) controlled an air hockey striking. After the learning process the RL 

algorithm was able to make points based on the first instruction of strike the disk and 

rewards by achived goals. The system was also able to learn how to use the table rebound 

angle, winning a human player. 
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In the automotive area, the Neural RL algorithms present a good possibility of 

success in applications related to autonomous driven and control improving. Riedmiller 

et al. (2007), still using an NFQ, controlled a vehicle steering, obtaining a good result in 

the vehicle behaviour. The vehicle was able to learn the correct steering in 20 minutes of 

driving  

In the same way, de Amaral et al. (2018) developed a torque-vectoring algorithm 

using deep RL algorithm. The policy was learned in CarMaker environment, which 

permits to simulate the vehicle environment. The controller showed a good ability to 

avoid dangerous manoeuvres, however, the authors highlight the great time take to learn 

and control, what could difficult the real implementation. 

The use of DQN on automation drive was applied in a simulated environment 

using game engines. The possibility of learning in this kind of environment permit 

assimilate the policy from scratch in a safe way. Good results were presented using an 

open-source Race simulator, where the vehicle learn to keep the central area of the street, 

based on a deep RL algorithm (El Sallab, et al., 2016), (El Sallab, et al., 2017). 

The combination of Actor and Critic Neural Networks presents excellent 

performance in some automotive applications, highlighting Zhao, at al. (2017) adaptive 

cruise control research. Using an actor-critic algorithm named model-free optimal control 

(MFOC), was possible to control the gas pedal position and brake pressure of the vehicle. 

The MFOC is based on Q-learning rules with two networks to criticize and controlling of 

the system respectively. The actor and the critic were trained alternatively until 

convergence. The converged actor network was used to control the vehicle in a hardware 

in the loop simulation. The results present a better control behaviour than the widely used 

PID controller (Zhao, et al., 2017).  

The DDPG method proposed by Lallicrap, at al. (2016) was also evaluated in 

automotive area in Torcs simulated environment. Torcs permits the vehicle control based 

on video input or on the vehicle physical parameter as position, velocity, steer and 

acceleration. The results presented good behaviour of the vehicle mainly when physical 

parameters were used, showing a possible use of DDPG in autonomous driving.  

The use of Actor-Critic controller in the Torcs environment was also applied by 

El Sallab et al. (2016). The authors use an algorithm similar to DDPG, with two networks, 

based on DQN. The results were also very satisfactory, with the actor-critic being able to 

control in a smoothly way the vehicle steering (El Sallab, et al., 2016) (El Sallab, et al., 

2017).  
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Unfortunately, few studies test the Actor-Critic controller in real environments. 

In the automotive area is possible to highlight the Radac and Precup (2018) research that 

uses an NFQ value function approximation combined with DPG policy approximation to 

control an ABS system. The tests and data collection was realized in a bench, showed 

adequate results on slip avoidance. The authors indicate the algorithm as a good 

opportunity of control to be implemented in the automotive industry, with adequate time 

cycle to control real time systems (Radac & Precup, 2018). 

Despite the good results obtained by Radac and Precup (2018), some authors 

emphasise the challenging of implement RL algorithms directly in the final hardware 

(Heim, et al., 2018). A possible option to overcome this difficulty is learning the first 

policy in simulation and after that tune-up the policy in the real hardware (Wiering & van 

Otterlo, 2012). 
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3  METHODOLOGY 

 

Based on the already made researches, the main objective of this work is 

evaluating the possibility of implementation of a Deep Actor-Critic Algorithm as a 

controller in a rear-wheel driven electrical vehicle. The vehicle system behaves as a 

Markovian Decision problem, which the next state depends only on the actual state-action 

combination, permitting the RL controller.  

The implementation of actor-critic RL algorithms as DDPG and NFQAC usually 

is given by an iterative learning and exploration principle. In this case, simulated data of 

the vehicle behaviour is generated and the data saved in the database. This data is treated 

and used to train the networks in small minibatches.  

To controlling application, the trained actor network is used as a controller in the 

environment, generating new data that is saved together with the old data in the database. 

All the database is once again used to learn the networks and generate a new controller, 

keeping the cycle until achieving the desired behaviour.  

This implementation may be divided into three main steps that work in a cyclic 

process as showed in Figure 16:  

 

Figure 16 - Steps of the implementation. 
 

 
 

Source: Elaborated by the author. 
 

 Environment exploration: Is the place where the data is collected and the 

controller evaluated. As proposed by Wiering and Otterlo (2012), an initial 

simulated environment is used to avoid dangerous behaviour in the real 

world;  

Learning 
process

Environment 
explorationData process
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 Data treatment: All the data collected are saved and needed treatment. As 

proposed by Ioffe and Szegedy (2015) a normalization was realized to make 

the network learning process easier. During this step, the reward was also 

calculated; 

 Learning process: This step consists of actor and critic networks training by 

the update of the weights.  

 

The Learning algorithm implemented in the cyclic learning process is based on 

NFQCA (Hafner & Riedmiller, 2011) and DDPG (Lillicrap, et al., 2016) methods, with 

some updates to permit the use of MATLAB functions. The vehicle behaviour is 

evaluated at each step of the learning process, training the controller until no bad 

behaviours are founded or the maximum number of cycles is achieved. 

Despite being long applied in simulations and virtual platforms, the iterative 

learning process presents a restriction in the applicability in real environments due to the 

necessity of controller update and new data collection at each learning step. Therefore, a 

second learning process was proposed which a greater amount of data is simulated or 

measured without the influence of the controller. The obtained data is treated and the 

actor and critic networks are directly trained based on these data.  

The next sub-sections present each one of the steps that comprise the complete 

research, including the environment, treatment of the data and learning process in both 

implemented algorithms.  

  

3.1  EVALUATED VEHICLE 
 

The simulated vehicle is an electrical Go-kart with rear traction. The rear axle is 

rigid, demanding the same torque/rotation to both wheels, what permit a simplification in 

the ASC research. Figure 17 shows the vehicle and the main components that influence 

the research.  

The vehicle has a combination of four 12V batteries connected in series to 

provide 48V that run the electrical powertrain as highlighted in Figure 17 a). The 

accelerator pedal position is measured by a potentiometer showed in Figure 17 b). This 

sensor sends a signal with its position to the Millipak 4QPM controller that uses a Pulse-

width modulation (PWM) signal to control the motor (Sevcon, 2002). 
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Figure 17 - Electric Go-kart components. 
 

 
 

 Source: Elaborated by the author. 
 

The wheel slip angle is given by the difference between vehicle velocity and 

wheel rotation. In this way, to evaluate the slip in the vehicle tire the real vehicle velocity 

may be estimated by an optical sensor fixed at the vehicle body (Raoul, et al., 2004).   

The sensor showed in Figure 17 c) is an Optical Flow low-cost sensor proposed 

by Schraufstetter (2018). This sensor permits estimate the real velocity of the vehicle by 

the calculation of successively recorded images of the ground (Schraufstetter, 2018).   

The automotive yaw rate sensor of Bosch Company present in Figure 17 d) 

measures the vehicle longitudinal acceleration. To measure the wheel rotation a gear tooth 

speed sensor model GS1005 from Cherry is applied at the rear axle as shown in Figure 

17 f).  The last data used in the training process is the current of the motor measured by 

the transducer of LEM, model HTA 400-S, shown in Figure 17 g). 

 The vehicle powertrain is composed by a 48V Lynch LEM 200-127 brushed DC 

motor, shown in Figure 17 e), which produces a rated torque of 31.5 Nm and rated power 

of 8.55 kW or 11.5 hp.  

The data of all sensors are sent via CAN bus communication to the vehicle 

controller, which is connected to a telemetry system. A Holybro V.3 radio module 

compose the telemetry showed in Figure 17 h).  

More technical information of the actuators and sensors of the vehicle are 

available in APPENDIX A. All the available data in the real vehicle is used to create the 
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generation of data in the simulated environment to the training process. The next 

subsection presents the simulated environment and the variables save in database.  

 

3.2  SIMULATED ENVIRONMENT 
 

To allow an iterative training implementation a simulated environment is 

implemented to the execution of data collection and controller evaluation. The simulation 

consists of a Simulink/Matlab based algorithm that takes into account vehicle longitudinal 

behaviour, powertrain system and tire behaviour. In Figure 18 is shown the Simulink 

algorithm.  

 

Figure 18 - Simulated vehicle longitudinal behaviour. 
 

  
 

 Source: Elaborated by the author. 
 

In Figure 18 omega_A is the motor rotational velocity, U_A is the voltage from 

the power electronics, T_A and M_torque are the torque generated in the electric motor, 

Slip represents the slip ratio, a_x, v_x and s_x are respectively longitudinal acceleration, 

velocity and displacement, v_r is the linear velocity of the surface of the tyre in contact 

with the rouad and omega_r is the rotational velocity of the wheel. Each component of 

the environment shown in Figure 18 is explained in more details in the next subsections. 

 

3.2.1  Accelerometer pedal signal and Power Electronics 

 

Initially, a signal generator produces an accelerator pedal signal, which depends 

on the desired manoeuvre. The signal is sent in a 20 ms time rate, updating the 

acceleration pedal position in a discrete way as occurs in the real vehicle. The signal is 

multiplied in the box representing the Power electronics, which change the range from 0-

5V to a range of 0 up to 48V.  
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3.2.2  DC motor 

 

The block representing the DC electrical motor calculates motor current and 

torque based on the motor velocity and on voltage originated at the power electronics. In 

Figure 19 is presented the equivalent electric circuit of the DC motor, that is used to 

implement the code.  

 

Figure 19 - Equivalent circuit of a DC motor. 
 

 
 

 Source: Adapted of Khajepour, et al. (2014, p. 201). 
 

In Figure 19 ia(t) is the armature current, vi(t) is the induced voltage, Ra is the 

armature resistance, La is the armature inductance, va(t) is the  armature voltage, ωm is the 

speed of the motor, Tm is the motor torque and Ta is the torque of the armature. Based on 

the equivalent circuit the calculation is made by the Kirchhoff’s law obtaining the 

Equation (27) (Khajepour, et al., 2014). 

 

 vaሺtሻ=Raiaሺtሻ+La
diaሺtሻ

dt
+viሺtሻ (27) 

 

Due to the constant magnetic field originating from the permanent magnet a 

linear relation between ωm and vi(t) may be obtained as showed the Equation (28), where 

Kgv is the speed constant (Khajepour, et al., 2014). 

 

 ωm=Kgvviሺtሻ (28) 
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Solving Equation (27) and Equation (28) where Kgv = 54 rpm/V,  La = 23E-6 H 

and Ra = 0.0225 Ohm are constants provided by the supplier (LEM, 2019), the motor 

current is directly obtained. 

The linear relation also occurs between Ta(t) and ia(t) that is given by Equation 

(29) (Khajepour, et al., 2014). 

 

 Taሺtሻ=KgTiaሺtሻ (29) 

 

The KgT = 0.15 Nm/A is the torque constant, also provided by the supplier. 

Therefore, the motor torque may be obtained from the motor current. 

 

3.2.3  Torque Balance on the wheel 

 

The torque balance on the vehicle wheel is based on the torque originating from 

the motor Tm, the tractive force μWr and geometric relations of the vehicle as rotational 

inertia and the dynamic radius of the wheel rw (Gillespie, 1992). In Figure 20 is shown 

the balance of forces acting on the wheel and motor.  

 

Figure 20 - Torque balance on the wheel. 
 

   
 

 Source: Elaborated by the author. 
 

Evaluating Figure 20 and realizing the sum of moments, the torque on the wheel 

Ta may be obtained by Equation (30) (Gillespie, 1992). 
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 Ta = μWrrw+Iwαw = ሺTm+Imαmሻik (30) 

 

In Equation (30) Iw is the rotational inertia of the wheel, calculated with base in 

the axle and wheel dimensions and mass. The rotational inertia of the motor Im = 0.0236 

is provided by the manufacturer (LEM, 2019), ik is the gear ratio between the motor and 

the wheel axle in this case equal to 4, finally αw and αm are the wheel and motor rotational 

acceleration, which can be related by Equation (31). 

 

 αm = αwik (31) 

 

To obtain the motor rotational acceleration by Equation (30), firstly the friction 

coefficient μ need to be estimated. To evaluate different track coefficients, the correlation 

curve between the friction coefficient and slip is taken from the literature (Braess & 

Seiffert, 2005). In Figure 21 is shown the curves implemented in the simulations.  

 

Figure 21 - Friction coefficient vs.slip rate.   

 
 

Source: Adapted from Braess, et al. (2005, p. 410). 
 

The slip rate is easily calculated by the relation of wheel and vehicle speeds, as 

showed in the next subsection. The friction coefficient is directed obtained by the 

interpolation of the curve showed in Figure 21.  
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The vehicle dynamics is given by a simplified evaluation of Figure 2, where the 

vehicle is in a surface without inclination, the velocity is low enough to reject 

aerodynamic forces, there is no trailer attached and the tire losses are rejected. The used 

forces and dimensions are shown in Figure 22. 

 

Figure 22 - Simplified forces on Go-kart. 
 

 
 

 Source: Elaborated by the author. 
 

By the sum of forces on the longitudinal axle is possible to obtain the Equation 

(32). 

 

 max = μWr (32) 

 

Where the rear normal force is given by the Equation (33) when considering the 

load transfer between the axles during acceleration. In Equation (33) represents the 

gravity acceleration.  

 

 Wr =  W ൬
LI

L
+

axh

gL
൰ (33) 

 

Substituting Equation (33) in the Equation (32) and rearranging, the acceleration 

of the vehicle can be directed calculated by Equation (34).  

  

 ax = 
LI g
L
μ -h

 (34) 

 

During the simulation, the friction coefficient is estimated from the slip angle 

and the Equation (34) are used to obtain the vehicle acceleration. With the friction 
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coefficient and the normal load on the rear axle, the Equation (30) is solved to obtain the 

motor rotational acceleration. Integrating the acceleration it is possible to obtain the motor 

rotational velocity.  

 

3.2.4  Slip calculation 

 

The calculation of the slip rate is directly made by the normalized difference 

between wheel velocity and vehicle velocity (Radac & Precup, 2018). The algorithm 

takes into account two conditions:  

a) When the vehicle is accelerating the wheel turns faster than the vehicle 

velocity the slip is calculated by the Equation (35). 

 

 Slip = 
 v r- vx

vr
 (35) 

 

b) when the vehicle is decelerating the wheel turns slower than the vehicle 

velocity and the slip may be calculated by the Equation (36). 

 

 Slip = 
vr-vx

vx
 (36) 

 

In the algorithm a value of 10-16 is summed in the divisor to avoid divisions by 

zero. 

 

3.2.5  Vehicle longitudinal movement 

 

The block “vehicle longitudinal movement” in Figure 18 realize the integration 

of the vehicle acceleration originated from the “torque balance on the wheel” block. 

Therefore, vehicle velocity and vehicle displacement are obtained.  

 

3.2.6  Display and save  

 

Finally, the data is saved in an array. The data saved consist in accelerator pedal 

position, vehicle and wheel velocity, slip angle, vehicle acceleration and motor current.  
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3.3  DATA PROCESSING 
 

This step of the implementation consists of the creation of adequate data to the 

learning process. All collected data is normalized and the reward is calculated to permit 

the training of the network. All the data collected in both environments are treated and 

saved in a database inside an array containing: actual state, actual action, next state and 

reward. 

Each one of the procedures to normalize and to calculate the cited parameters 

are described in the next subsections.   

 

3.3.1  States and actions 

 

The states and actions are directly measured from the environment and saved in 

the database. To accelerates the network training, data is normalized as proposed by Ioffe 

and Szegedy (2015). The authors proposed a normalization based on the variance and 

average of each minibatch.  

However, to keep the correct correlation between the variables the normalization 

of the data is realized directly by the maximum and minimum expected values. This 

procedure reduces the difference between the physical units keeping the characteristics 

of the raw data.  

All the received data is normalized in a range from 0 to 1. The calculation is 

made by the Equation (37) where xn is the normalized value, x is the measured value and 

xmax and xmin are the maximum and minimum possible values respectively. 

 

 xn=
x - xmin

xmax - xmin
 (37) 

 

The input states for actor and critic networks are vehicle velocity, motor current, 

vehicle acceleration, accelerator pedal position and wheel velocity. However, two 

approaches are taken, with and without the vehicle velocity. Since the real velocity of the 

vehicle is difficult to be measured, it can be obtained just during the training process with 

optical measurement of the vehicle velocity. Without the vehicle velocity as an input of 

the controller the trained algorithm can be applied in other vehicles without the necessity 

of measuring the real velocity of the vehicle.  
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The action used as input in the critic network and as output of the actor is the 

desired position of the acceleration pedal that keep the slip of the wheels in the desired 

range.  

 

3.3.2  Reward function 

 

The reward function is responsible to indicate how “good” is take an action in 

the actual state. Considering a Markovian Decision problem, the actual state and action 

can be directly evaluated by the next state.  

The adequate acceleration of the vehicle should keep the wheel slip in an 

adequate range to obtain a greater friction coefficient (Hori, et al., 1998). In Figure 4 is 

presented this range as proposed by Hory, et al. (1998).  

However, the most important relation is that the desired accelerator position 

never can be higher than the accelerator position chosen by the driver. This behaviour can 

cause a vehicle over acceleration placing the driver in a dangerous situation.  

The application of this controller may use a product result of the driver 

acceleration and the network output to avoid this dangerous manoeuvre. However, this 

operation would make impossible to fully understand the limitations during the 

application of the network in automotive controllers. 

The reward function is calculated based on the database using the Equation (38), 

where GP is the acceleration pedal position chosen by the driver, a is the controller output 

action and vx’ and slip’ are the vehicle velocity and wheel slip ratio in the next state.  

 

 rሺs,aሻ=

⎩
⎨

⎧
0 if 0 >  a > 1 

0 , if GP + 0.05 < a
0, if |slip'| > 0.2 

1- |a - GP|, if หslip'ห≤ 0.2 or (vx
'  ≤ 0.05 and vr

'  ≤ 0.0625)

   (38) 

 

As shown by Equation (38) null reward was applied when the action is out of 

the range, the action is greater than the desired acceleration or the wheel slip ratio in the 

next step exceeds 0.2, changing to an unstable situation.  

When the wheel slip is kept in the desired area, the vehicle can be in the required 

velocity or can be kept stationary for example. To avoid this event the reward is calculated 

by the difference between the throttle pedal position of the driver and the output action.  
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Evaluating the Equation (36), very small velocities of the vehicle present an 

inconsistency on the slip calculation. When the vehicle is stopped (vx=0), any wheel 

velocity presents an infinity wheel slip. To avoid this inconvenience and permit the 

controller to learn how to start from rest a maximum wheel velocity of 6,25% of the final 

value is consider as good behaviour when the vehicle velocity is smaller than 5% of the 

final velocity of the car.   

The next subsection explains the training process to obtain the final network 

responsible to control the system.  

 

3.4  TRAINING PROCESS 
 

Two different training processes were applied, one of these keeps the iterative 

learning way proposed by DDPG and NFQAC, while the new proposed algorithm named 

Directly Trained Neural Actor-Critic (DTNAC), takes the treated data obtained and 

directly trains the controller only once. The networks and both training algorithms are 

thoroughly explained in the next subsections.  

 

3.4.1 Actor and critic networks 

 

Both training processes used the same networks just changing the mode as the 

weights are learned. In this way, the characteristic of the network can be explained just 

once.  The critic is a deep network with two hidden layers with twenty nodes each layer. 

The input number is six or five depending on the inclusion of the vehicle velocity in the 

inputs. The output consists of one node that represents the value function Q. Figure 23 

shows a representation of the critic network without the vehicle velocity as an input.  

 

Figure 23 - Critic network representation. 
 

 
 

 Source: Elaborated by the author. 
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In Figure 23 the number of hidden nodes is resumed easing the comprehension. 

The critic network used in the hidden layers a Tangent-Sigmoid activation function to 

permit non-linear behaviours and a completely linear function was used in the output 

layer to permit a large range of outputs values. (Kim, 2017). 

The actor-network used two hidden layers with twelve nodes each. The inputs 

were the same used in the critic network excluding the action that is the output of the 

network. The actor-network applies the same activation functions as the critic networks.  

 

3.4.2 Cyclic learning process 

 

Based on the algorithm proposed by Hafnet, et al. (2011) and Lillicrap, et al. 

(2016), the used cyclic algorithm suffer some updates to permit the application in our 

problem and the use of functions already available at MATLAB. The algorithm runs the 

training and treatment part on MATLAB and the simulation of the environment is given 

by the SIMULINK routine shown in subsection 3.2. 

 
Figure 24 - Cyclic training process.  

 

 
 

 Source: Elaborated by the author. 
 

Figure 24 shows in a schematic way the learning process in the cycle training of 

the networks. As presents in the scheme, the learning process occurs in two cycles inside 

each other. The path highlighted in red consist of the collection and treatment of the data 
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and the evaluation of the obtained controller. When applying this process in a real 

environment it occurs outside the main algorithm, driving the vehicle and evaluating the 

obtained controller.  

In Figure 24, the blue path represents the training part where the networks are 

updated and the best actions are estimated to each collected state. In the next subsections, 

the scheme is explained in details. 

 

3.4.2.1 Generate data in the environment 

 

In the simulation environment, the desired manoeuver is given by the signal 

representing the driver accelerator pedal. In the evaluated case, this signal is a 

combination of a sinus wave, steps and a random signal that is included in a percentage 

of the data. This combination permits to vary the vehicle velocity and acceleration during 

the data generation. The input data without the randomization is shown in Figure 25. 

 

Figure 25 - Input acceleration used during environment simulation. 
 

 
 

Source: Elaborated by the author. 
 

The trained network is implemented as a controller and the output is given 

directly by the weights of the network. At the first run, instead of using a completely 

random network to control the system as proposed by other authors, the controller is 

ignored, considering the output equal to the input. This tactic is used to create a “hint-to-

go”, which shows to the network that to keep the output similar to the input in some cases 

is a “good” behaviour.  
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3.4.2.2 Treat the data and save in database 

 

The environment simulation is run for 10 seconds in each cycle generating 500 

points of data. Subsequently, the data is normalized and the rewards calculated as present 

in subsection 3.3.1. Subsequently, the data is saved in the database. The database archives 

a maximum value of data and start to replace the older one, always keeping the first “hint-

to-go” simulation.  

 

3.4.2.3 Load minibatch and calculate Q-value 

 

To the training process, a minibatch corresponding to a percentage of the total 

database is selected randomly. This procedure avoids the loss of important data collected 

in the old tests and reduce the time of the learning process, as long as less data is needed 

for the learning process. 

The first step after choosing the data is to calculate the value function Q, using 

the most recent networks available. The state action value function also named Q-value 

evaluates the expected reward on the next steps. Therefore, the Q of the actual state and 

action is based on the actual reward plus the Q waited to the next state, when the greedy 

policy is followed. 

The next Q value can be easily obtained by the last trained networks. The actor 

evaluated at the next state, directly returning the next best action. The critic network, with 

the next state and action as input, result in the next Q-value. The Q-value is updated by 

the Equation (39) where γ, called discount factor, permit to operate in infinity horizons.  

 

Qk+1ሺs,aሻ = rሺs,aሻ+γ Qk ቀs', μk
ሺs'ሻቁ (39) 

 

The Q-value is updated at each time that a new network is calculated and a new 

minibatch is loaded. The Q-value is calculated to the entire minibatch and is used to train 

the critic.  

 

3.4.2.4  Train Critic Network 

 

With the collected states, actions and calculated Q-values the critic network can 

be trained to permit the correlation between the inputs (states and action) and the output 
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(Q-value). The training of the critic network is made by the minimization of the 

normalized mean square error of the output. 

The chosen method for minimization of the error is a Levenberg-Marquardt 

optimization. This method is a trust region method which consists of a combination of 

simplified Newton and Gradient descendent methods (MathWorks, 2019). 

Both Newton and Gradient descendent methods move iteratively the calculated 

position inside the function in the descent direction until finding a minimum value that 

attends the convergence tolerance. The difference between the methods is given by the 

equation used to calculate the descendant direction. Newton descendent uses Equation 

(40), while Gradient descendent applies Equation (41) (Quarteroni, et al., 2014). 

 

 d(k) = - ൣH൫xሺkሻ൯൧
-1
∇f൫xሺkሻ൯ (40) 

 

 d(k) = - ∇f൫xሺkሻ൯ (41) 

 

In Equation (40) and Equation (41) d(k) is the descent direction at the interaction 

k, H is the Hessian matrix, x(k) is the point evaluated, f is the function and ∇ is the gradient 

vector.  

Due to the implementation of the Hessian matrix, the Newton method converges 

in quadratic order but is more sensitive to the chosen initial values. On the other hand, the 

gradient descendent permit a global converge, that do not depend on the initial values. 

However, its converges linearly. (Quarteroni, et al., 2014).   

Another restriction of Newton descendent method is the necessity of calculating 

the Hessian matrix “H” to find the descent direction. The Hessian matrix is composed of 

second-order derivates and its calculation takes large computational power and time 

consumption (Quarteroni, et al., 2014).  

The applied Levenberg-Marquardt method overcomes the Hessian and the 

gradient calculation by changing it by the Jacobian matrix as shown Equation (42) and 

Equation (43). In Equation (42) and Equation (43) JR is the Jacobian matrix that contains 

first derivates of the network errors with respect to weights and bias and e(k) is the vector 

of network errors (MathWorks, 2019). 

 

 H൫xሺkሻ൯ = JR
T൫xሺkሻ൯ JR൫x

ሺkሻ൯ (42) 
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 ∇f൫xሺkሻ൯ = JR
T൫xሺkሻ൯ eሺkሻ (43) 

 

The trust-region methods also apply a different approach when compared with 

descendent methods. In this case, instead of evaluating the descendant direction, the next 

point inside a specific region is directly calculated. According to the position inside the 

region, the next evaluation area can change de centre position and radius until the 

optimization of the answer. (Quarteroni, et al., 2014). 

Therefore, the calculation of the next weights and bias of the network is given 

by Equation (44) (MathWorks, 2019). 

 

 xሺk+1ሻ = xሺkሻ-ൣJR
T൫xሺkሻ൯ JR൫x

ሺkሻ൯ + εI൧
-1

JR
T൫xሺkሻ൯ eሺkሻ (44) 

 

In Equation (44) I correspond to the Identity matrix and ε is a scalar that permits 

change between gradient and Newton methods. When ε is null the optimization behaves 

as a Newton descendent algorithm, however, when ε is large the behaviour is similar to a 

simple Gradient descendent method. In this way, ε decrease at each step that the algorithm 

presents a reduction of the error and increases when the error increase. These 

implementations permit adequate behaviour in large size problems due to the gradient 

descendent behaviour and a faster and precise definition of the minimum value when a 

small evaluation area is achieved. Due to these, it is defined as the fastest method for 

training moderate-sized feedforward neural networks (MathWorks, 2019). 

  

Table 1 - Training stop criteria. 
 

Maximum number of epochs 1000 
Minimum gradient 1 e-7 

Maximum ε 1 e10 
Maximum validation failure 6 

 
Source: Elaborated by the author. 

 

The criteria used to stop the training is given in Table 1 where each epoch is 

counted when all the data pass the network once and the validation failure consists in the 

number of consecutive times that the validation performance degrades.    
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3.4.2.5 Find maximum action  

 

To find the correct correlation between states and actions each state of the 

minibatch needs a correspondent best action to permit the actor training. In this process, 

each one of the states has the action varied inside the action range until finding the best 

Q-value and the correspondent best action. 

Using the last trained critic network the states are fixed and the action variated 

in 11 equal spaced points as shown the first calculation in Figure 26 After that, the actions 

that result in first and second-best Q-values are used as limits to a new division of 11 

equal spaced points. The action that returns the best Q-value inside this range is saved 

together with the correspondent state. 

 

Figure 26 - Chosen of the best action. 
  

 
 

Source: Elaborated by the author. 
 

3.4.2.6 Train Actor Network 

 

Based on the pairs of states and best actions available at the actual minibatch, 

the actor-network is trained using the same optimization method and stop criteria present 

in the Critic-Network training available in subsection 3.4.2.4. In actor-network case, the 

states are used as input and the best actions are applied as the output of the network. 

 

3.4.2.7 Smoothly Update of the Network 

 

As proposed by Lillicrap et al. (2016) a copy of the networks is used to improve 

the algorithm convergence. After the training of the network, new actor and critic 
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networks receive part of the weights and bias from the last calculated networks and keep 

part of the old values. 

The weights and bias of the copy networks are updated with a slow target 

networks change given by the Equation (24) to critic and Equation (25) to the actor-

network (Lillicrap, et al., 2016).  

 

3.4.2.8 Convergence criteria 

 

The blue cycle in Figure 24 is considered converged when the calculated and the 

updated actor networks achieve a similar output to the same inputs. To calculate this 

difference all the states from the minibatch are used to generate an array of outputs in 

both networks. The mean square error of the output arrays is calculated and when it 

achieves a minimal tolerance the learning process is considered converged and the 

algorithm follow to the next step.  

 

3.4.2.9 Controller Evaluation 

 

To evaluate the performance of the updated networks the simulated environment 

is run again on the trained floors. This time the input signal is the same used in the training 

process, present in Figure 25, but without implementing the random pedal position. 

Based on the rewards received in this simulation is possible to evaluate the 

occurrence of ‘bad behaviours’. When all the rewards are greater than 0.2, no actions out 

of range or high slip ratios are found in the simulation. The minimum of 0.2 also 

guarantees that the action is not kept in 0 when the drive desired is to accelerate the 

vehicle. Besides the greater reward condition, a maximum number of 200 runs has been 

set to prevent non-convergent models from maintaining the cycle infinitely. 

When the controller is considered adequate, the actor-network is saved, 

otherwise, the training process is continued restarting the simulation of the environment. 

The results of the simulation increase the amount of data or change it by a more 

actualized, always using the most recent controller available. With the new data, the cycle 

of Figure 24 continues by a chose of a new minibatch and training of new networks.  
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3.4.3 Proposed learning process 

 

The proposed algorithm is similar to the cyclical, however, some simplification 

was applied due to the non-iterative implementation. The main reason for the application 

of cyclic algorithms is the necessity of improvement of the Q-value from a sequence of 

experiences. The Q-value or value function is changed incrementally after each cycle 

based on the rewards obtained by the last state-action combination and the last Q-value 

evaluated in the same state-action, as present in Equation (39).  

To overcome this restriction a so-called myopic value function can be used. In 

this approach, the discount factor γ is null and the Q-value is equal to the reward and the 

last value function is ignored as present the Equation (45). The advantage of this learning 

process is the possibility to calculate the value function in only one cycle. 

 

 Qk+1ሺs,aሻ = rሺs,aሻ (45) 

  

With this simplification, some steps of the cyclic learning process can be 

removed, resulting in the learning process shown in Figure 27.  

 

Figure 27- Non-cyclic learning process. 
 

 
 

Source: Elaborated by the author. 
 

The next subsections present in detail the topics of Figure 27.  

 

3.4.3.1 Generate data in the environment 

 

The generation of data is the part of the training process that suffered the greatest 

change inside the algorithm due to the necessity of having enough data to cover a large 

number of different state and actions. Instead of applying a known input as driver throttle 

pedal position, a combination of sinus and step in different phases and a small noise was 

applied to the input, permitting to vary all region of velocities and accelerations.  In Figure 
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28 inside the “Drive pedal position (action)” box is shown part of the created driver pedal 

position.   

As indicate in Figure 28, the second restriction is given by the absence of the 

controller, impeding the generation of actions calculated by its. To overcome it, the 

acceleration pedal position provided by the driver was directly used as the action. This 

procedure was made taking into account that just the accelerator pedal generated by the 

controller has a correlation with the environment to generate the next states. On the other 

hand, the accelerator position chosen by the driver has just a mathematical correlation 

inside the networks as presented in Figure 28.  

Taking into account the necessity of evaluating a large number of states, a new 

completely random accelerator position was chosen as a state in the training process. It 

allows the network to understand if the chosen action and generated states are adequate 

in different accelerations desired by the driver. In Figure 28, is presented the random input 

used as accelerator pedal position in the training process inside the box named “Random 

data (State – Drive Pedal)”. 

 

Figure 28 - Correlation between environment and input data. 
 

 
 

Source: Elaborated by the author. 
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When applying the proposed algorithm in a real environment the measured 

driver pedal position can be used as environment input (action) in a way similar to the 

simulation, avoiding the necessity of cyclic training. To the training step, a completely 

random array can be used to simulated the driver pedal position.  

 

3.4.3.2 Process the data and save in database 

 

As opposed to the cyclical method, the data generation occurs just once. After 

it, all collected data is normalized and the rewards calculated as present in subsection 

3.3.2. Subsequently, the data is saved in the database.  

 

3.4.3.3 Train critic network 

 

Critic-Network training occurs in a similar way that the training applied in the 

cyclic process. Using all obtained states, actions and calculated rewards, the critic can 

train the weights and bias to obtain the correct input-output correlation. The same 

optimization method and similar stop criteria as the cyclic training available in section 

3.4.2.4 are adopted. The single stop criteria changed is the maximum validation failure 

which is increased to 20 to avoid the early ending of the training.  

 

3.4.3.4 Find maximum action for each state  

 

The process to find the best action is the same applied in the cyclic training and 

described in section 3.4.2.5.   

 

3.4.3.5 Train and save actor-network 

 

Based on the pairs of states and best actions available in the database, the actor-

network is trained using the same optimization method and stop criteria present in the 

Critic-Network training available in section 3.4.3.3.  

In the proposed algorithm no evaluation of the controller is realized. The final 

output is directly saved and applied in the environment as long as in the real 

implementation the controller need to be evaluated directly in the vehicle.  
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3.5 TRAINING EVALUATION 
 

Before starting the evaluation of the trained controllers an adequate controller 

needed to be chosen and the influence of the input variables on the results understood. 

Therefore a factorial design of experiments (DOE) was applied at the cyclic and the 

proposed training algorithms, evaluating separately the controllers with and without the 

vehicle velocity as input.  

To statistically determine if the factor produces a significant influence on the 

result, the 2k analyses use a t-statistics method which tests the null hypothesis considering 

the effect on the result as null (Minitab, 2019). The level of significance applied in this 

study is 5%. 

The DOE is run in the Minitab 18, evaluating the effects on the mean reward and 

on the time to train the network. The mean reward is calculated in 20 seconds of 

manoeuvre. The manoeuvre simulates the vehicle driver in two different floors using the 

trained throttle position as input.  

The statistical effect on the results by each factor is evaluated by the Pareto 

graph. This graph plots the correlation of the t-value value for each factor correlating it 

with a red line, which is drawn on the quantile of a t-distribution with degrees of freedom 

(DOF) equal to the DOF of the DOE error. The DOF takes into account the number of 

levels, number of factors and number of evaluated interactions (Minitab, 2019).   

To understand the correlation of the effects the main effect graphs are also 

plotted. In this case, the average output to high and low levels are plotted to evaluate the 

influence of the factors.  

 

3.5.1 Identification of variables influence in the cyclic learning algorithm 

 

The factorial DOE applied at the cyclic algorithm uses 5 factors. No replication 

or centre point is applied and a resolution V is implemented to reduce the number of runs 

from 32 to 16. According to Montgomery (2009b), this resolution allows the estimation 

of all main effects and two-factor interactions. How in this research just the mains effects 

are evaluated the resolution V is sufficient. In Table 2 is presented the factor and levels 

utilized during the training.  
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Table 2 - Factors of the DOE for the cyclical algorithm. 
 

Factor Low level High Level 

Target update 0.2 1 

Discount Factor 0 0.9 

Minibatch Size 0.25 1 

Min number of training cycles 1 5 

Data randomization 0.1 0.5 
 

Source: Elaborated by the author. 
 

In Table 2 the target update consists in the constant proposed by Lillicrap, et al 

(2016) that defines how smoothly is the update of the copied matrix as present in Equation 

(24) and Equation (25). The discount factor is the parameter in the value function shown 

in Equation (39) that define how much future behaviours influence the actual decision. 

The minibatch size corresponds to the percentage of data from the database which is 

selected to the training process. The minimum number of training cycles represents the 

minimum number of times that the blue cycle in Figure 24 is calculated. The data 

randomization gives the percentage of random data using in the data generation insert in 

the input of the controller. 

  

3.5.2 Identification of variables influence on the proposed learning algorithm 

 

The analyses applied to the proposed training process uses just 3 factors, without 

replication or centre point. In this case, all factors are related to data generation form, 

aiming to improve the reliability of the data and the possibility of evaluating a larger space 

of states and actions. Due to the small number of factors, a full resolution experiment is 

implemented, totalizing 8 runs. In Table 3 is presented the factor and levels utilized during 

the training.  

 

Table 3 - Factors of the DOE for the proposed algorithm. 
 

Factors Low level High Level 

Step No Yes 

Reward -1 0 

Amount of data 25 min 50 min 
 

Source: Elaborated by the author. 
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The step factor in Table 3 consists of the application of a unitary step with a 

period of 20 seconds and a pulse width of 50%. This signal multiplies the accelerator data 

before the noise application permitting to keep the pedal position around zero and reduce 

the velocity of the vehicle. This strategy is evaluated to permit the creation of data in the 

states where the vehicle velocity is slow. In Figure 29 a) is presented the accelerator signal 

without the step, while in Figure 29 b) is shown the signal with the step application.  

 

Figure 29 - Signal influence by the step factor. 
 

 
a)                                                               b) 

 
Source: Elaborated by the author. 

 

The reward factor in Table 3 is related to the reward given when bad behaviour 

is computed. In the high level of this factor, the Equation (38) is kept the same, while in 

the low level all the 0 rewards of Equation (38) are changed to -1.  This factor permit to 

understand how the learning process works with large and small differences between 

good and bad rewards.  

Finally, the factor amount of data is respective to the time which data is collected, 

aiming to understand how important is applied a large amount of data.  

 

3.6 CLASSICAL CONTROLLER 
 

According to Rajamani (2006), the actual controllers are mainly based on ABS 

actuation, which takes into account the wheel acceleration to suppress the rotational 

velocity by braking. In this approach, the wheel acceleration is used to determine unstable 

behaviours, applying two threshold values, a1 and a2. When the acceleration of the wheel 

reaches a2 the brake pressure is increased until the acceleration of the wheels falls below 

a2. After that, the pressure of the brake is kept until the wheel acceleration is lower than 



84 
 

a1, where the brake pressure provided by the driver is again directly passed through the 

system. In Figure 30 is shown an example of controller behaviour.  

 

Figure 30 - ABS based controller behaviour.  
 

  
 

Source: Elaborated by the author. 
 

Based on it, a simple classical controller is used to permit the understanding of 

classic controllers limitations and the benefits of using Actor-critic controllers. In the 

applied classical control, instead of controlling the brake pressure, the throttle position is 

administrated. In this architecture, the acceleration thresholds do not show adequate 

results and the controller is directly based on the last calculated slip ratio. However, this 

is an ideal application, as long as in a real environment the slip cannot be directly 

calculated, but with some accuracy, can be estimated by a correlation between wheel 

velocity and vehicle acceleration. 

Based on the ABS controller, the proposed classical controller applied two slip 

ratio thresholds, the first at 0.15 and the second at 0.2. Each step that the slip ratio is 

higher than 0.2 the virtual pedal position is reduced in 0.1. Inside the region of slip ratio 

between 0.15 and 0.2, the virtual throttle is kept fixed on the last adequate value and in 

slip ratios slower than 0.15 the driver desired acceleration position is passing through.  

In addition, the virtual throttle always should be small than the real acceleration 

pedal position and the output of the virtual throttle signal should always be kept inside 

the 0 to 1 range. The calculated output of the controller that is higher than the driver 
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desired value is changed to the desired value and calculations that return negative values 

are changed to 0.   

The implemented classical controller generates a high-frequency shift of the 

desirable throttle position in a similar way that brake pressure oscillates in the ABS 

system. To understand the correlation of the acquisition rate on the slip behaviour, an 

initial experiment variating the simulated acquisition rate is applied to evaluate the mean 

reward received and the slip during the time. To this test, the input of Figure 25 is given 

as driver accelerator pedal position. 

 

3.7  CONTROLLER TEST 
 

After the optimization of the controllers, four Actor-Critic controllers are 

obtained by the combination of the cyclic or proposed algorithm and with or without 

vehicle velocity as input. Those controllers are compared in different situations to 

understand its limitations.  

The next subsections present the different environments evaluated.  

   

3.7.1 Trained conditions 

 

The first evaluation of the results consists of the comparison of the different 

training process, including the cyclic and proposal trained networks with and without the 

vehicle velocity as an input. The results are compared with the classical algorithm on the 

trained grounds and acceleration signals. This first evaluation is important to understand 

the control possibility in scenarios included in the training process. This application also 

permits to compare the performance of the RL controllers with the system without a 

controller or with the classical controller.  

 

3.7.2 Different acceleration patterns 

 

To verify if the trained networks can handle with no trained situations a different 

input signal is evaluated on the trained grounds. The results are compared with the system 

without a controller and with the classic controller.  

In Figure 31 is presented the signal of the training process and the step signal 

chose to evaluate the controller behaviour in a different situation. The step signal is 
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chosen due to the fast and high change on the signal condition and because it is a very 

common behaviour of the electrical Go-kart drivers. 

  

Figure 31 - Acceleration strategy during simulation. 
 

  
 

 Source: Elaborated by the author. 
 

3.7.3 Different floor patterns 

 

The controller behaviour in untrained tracks is realized by the changing of the 

friction coefficient vs slip rate curve in the simulation. In the first step, all the tracks 

available in Figure 21 are tested in all evaluated controllers using controllers trained in 

tracks of snow and dry asphalt. It permits the evaluation of extrapolation and interpolation 

possibility of the controllers, as long as ice represents the slippest floor, providing an 

extrapolation analysis while wet asphalt is a floor with characteristic between the snow 

and the dry asphalt, permitting the interpolation investigation. 

In a second step, the proposed algorithm is trained in ice and dry asphalt with 

the velocity as input to verify how the controller works in a complete interpolation mode. 

To improve the controller performance different periods of low velocity in the training 

process are also evaluated. 
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3.7.4 Different acquisition rates 

 

The real implementation of the controller on the vehicle presents limitations due 

to the sample time of the individual sensors. As explained in Appendix A, the vehicle 

velocity sensor has a sample time of 50 ms, while the wheel velocity has a sample time 

of 200 ms. The higher sample time occurs due to the calculation of the parameters that 

depend on the average of the displacement on the time, requiring more than one capture 

to process the velocity.  

 In all previous simulations, this factor is neglected, but a final test evaluates the 

proposed controller trained on ice and dry asphalt with vehicle velocity as input using 

data generated with different sample times, similar to the real vehicle.  
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4 RESULTS 

 

This section presents the definition of the best controllers and the influence of 

training and generated data on the obtained controllers. In the second part, the chosen 

controllers are compared in different environments to comprehend its limitations. 

 

4.1 TRAINING EVALUATION 
 

The next subsection presents the influence of the training set and the collected 

data on the controller reliability in addition to the definition of the best training process 

to each controller. To facilitate the denomination in this and further subsections the 

algorithms with the vehicle velocity as a controller input are named 5 states, while the 

algorithms without the velocity of the vehicle as input are named 4 states. 

 

4.1.1 Identification of variables influence in cyclic learning 

 

Due to the complete different behaviour and to easily comprehension the 4 and 

5 states controllers are evaluated separately, allowing to obtain optimized controllers in 

both cases.  

 

4.1.1.1 Five states algorithm 

 

The Pareto charts of the 5 states cyclic algorithm obtained by the influence on 

the average reward and on the time are shown in Figure 32 and Figure 33 respectively. 

This chart present, with 95% of confidence, which factor had an influence on the 

evaluated result. Effects that present a result higher than the red reference line, statistically 

are significant on the results influence.   

Evaluating the Pareto charts just the minibatch size influenced the results on the 

best average reward, while the evaluated factors do not influence the time. The low 

influence can occur by the small change of the results with the parameters change or by 

a great variation of the collected data. To understand the correlation, the main effects 

plots for best average reward and for time are shown in Figure 34 and Figure 35 

respectively. In Figure 35 the time is given in minutes.  
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Figure 32 - Pareto Chart of the Standardized Effects on Best average time - 5 states, cyclic algorithm α = 
0.05. 

 

 
 

 Source: Elaborated by the author. 
 

Figure 33 - Pareto Chart of the Standardized Effects on time - 5 states, cyclic algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
 

As shown in Figure 34, the average reward really suffers a small change with the 

variation of the parameter. This is an awakened outcome result, as long as the cyclic 

algorithm trains the network until the convergence of the controller, allowing high 

average rewards to all trained controllers. 
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Figure 34 - Main effects plot for best average reward - 5 states, cyclic algorithm. 
 

 
 

 Source: Elaborated by the author. 
 

In Figure 34 minibatches of 25% presents a better behaviour of the trained 

controller. Despite that the discount factor is not considered as a factor that influences the 

results, in this test, the null discount factor receives a better average reward when 

compared with the controller trained with discount factors of 0.9.  

 

Figure 35 - Main effects plot for time - 5 states, cyclic algorithm. 
 

 
 

 Source: Elaborated by the author. 
 

In Figure 35 a large change in the training time is presented, with averages from 

30 to 280 minutes, which are large changes in the waiting time for training. In this way, 

the no influence of the factors on the time are derivated of the high variation of the training 

time, which do not present an adequate pattern. Thus, the application of the cyclic 

algorithm shows a limitation on its robustness, since is not possible to define a 

convergence time.  

How it is not possible to really define a better training process and as all the 

trained networks were available, the network that returns the best average reward was 

chosen. The network used in the next subsections is trained with the factors shown in 

Table 4. 
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Table 4 - Training parameter of the 5 states cyclic algorithm. 
 

Factor 
Target 

update 

Discount 

factor 

Minibatch 

size 

Minimum 

training cycles 

Data 

randomization 

Value 0.2 0.0 0.25 1.0 0.1 

 
 Source: Elaborated by the author. 

 

4.1.1.2 Four states algorithm 

 

Figure 36 is shown the Pareto chart for the 4 states cyclic algorithm, evaluating 

the best average reward result. Among the factors, the discount factor is the only to show 

influence on the average reward. 

 

Figure 36 - Pareto Chart of the Standardized Effects on best average reward  - 4 states, cyclic algorithm α 
= 0.05. 

 

 
 

 Source: Elaborated by the author. 
 

To identify how the influenceable factor interact with the levels the main effects 

plot of the cyclic 4 states algorithm is presented in Figure 37. Evaluating the plot, the 

discount factor presents a similar behaviour as the effects on the 5 states cyclic algorithm, 

returning better results when it is equal to 0 and does not take the future behaviours of the 

system into account. This presents itself as a good opportunity of success of the proposed 

algorithm, which ignores the future behaviour of the vehicle to permit the training in one 

single step. 
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Figure 37 - Main effects plot for best average reward - 4 states, cyclic algorithm. 
 

 
 

 Source: Elaborated by the author. 
 

In the Pareto chart of Figure 38, the discount factor and minibatch size influence 

the time of training while the minimum number of training cycles, the target update and 

the data randomization did not show significant influence on the time when four states 

are evaluated  with the cyclical training.   

 

Figure 38 - Pareto Chart of the Standardized Effects on time - 4 states, cyclic algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
 

To understand the correlation between the factors and the time, the evaluation of 

the effects on time in the 4 states cyclic algorithm is shown in Figure 39. In this 

evaluation, again the results that do not present influence on the Pareto graph had a large 

variance of time, reaching 150 minutes of difference between the averages of the low and 

the high levels.  
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Figure 39 - Main effects plot for time - 4 states, cyclic algorithm. 
 

 
 

 Source: Elaborated by the author. 
 

This behaviour reinforces the instability of the cyclic training, which with 4 or 5 

states had large variations on the time processing which made impossible to comprehend 

the interaction between the factors and the time. It means that in the evaluated application, 

using the same parameters the training process could have very different training times 

depending on uncontrolled factors. 

  That is probably a result of the evaluation process, where the controller needs 

to reach a completely adequate behaviour. In the case that this perfect behaviour is not 

reached due to a small number of errors the controller can be overtrained and a larger 

time is necessary to reach the adequate behaviour in a second time.  

Since the large variation did not permit do define the best controller, the trained 

network that returned the best average reward was chosen to the next evaluations. Despite 

that the fitted values of Figure 37 indicate 0.25 as the best target update, the individual 

controller that results in the best reward was the networks which apply a target update of 

1. The difference between the statistical evaluation and the best result is derivated from 

the possibility of variation on the results and the small influence of this factor.  

Table 5 indicates the train parameters used in the 4 states cyclic algorithm, which 

was applied as controllers in the next subsections. Most of the training parameters of the 

chosen controllers are the same between the 5 and 4 states cyclic algorithms, excluding 

the target updated which suffer changes. 

 
Table 5 - Training parameter of the 4 states cyclic algorithm. 

 

Factor 
Target 

update 

Discount 

factor 

Minibatch 

size 

Minimum 

training cycles 

Data 

randomization 

Value 1.0 0.0 0.25 1.0 0.1 

 
 Source: Elaborated by the author. 
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4.1.2 Identification of variables influence in proposal learning 

 

In the same way that the cyclic algorithm, the proposed learning process was 

evaluated separately with and without the vehicle velocity as input, the next two 

subsection presents the factor effects and the optimized training factors.  

 

4.1.2.1 Five states algorithm 

 

The influence of the factors on the average reward of the proposed algorithm 

with the velocity as an input can be visualized in the Pareto chart in Figure 40. 

 
Figure 40 - Pareto Chart of the Standardized Effects on average reward - 5 states, proposed algorithm α = 

0.05. 
 

 
 

 Source: Elaborated by the author. 
 

Analysing the results of Figure 40, all the factors had no influence on the reward 

of the controller, in the same way, that in the cyclic evaluation, this behaviour can 

demonstrate a greater variance on the experiment or a really small change of the reward 

with the factors change.  

Based on the cube plots all the fitted results can be displayed and a better 

understanding of the factors influence can be evaluated. In Figure 41 is presented the cube 

plot of the influence on the average reward.  
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Figure 41 - Cube plot of the best average reward - 5 states, proposed algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
 

Evaluating Figure 41 all the results present similar values with small variance. 

This behaviour evidences that the evaluated factors really had no influence on the average 

reward of the controller. This result is a positive aspect of the training method, as long as 

the controller did not suffer the influence of the collected data, it shows itself as a robust 

training process, where no special care needs to be taken on the data collection. 

 

Figure 42 - Pareto Chart of the Standardized Effects on the time - 5 states, proposed algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
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On the other hand, as shown in Figure 42, the amount of data had a significant 

influence on the training process, result that is reinforced by the cube plot of the time 

dependence shown in Figure 43. In the plot, the amount of data generated an average 

increase of 40 minutes in the training process with the change from 25 to 50 minutes of 

data collected. The cube plot also presents a small influence of the step and the reward 

that can be ignored when compared with the amount of data influence.  

The smallest time was present with the training process of no step, 0 of reward 

in bad situations and 25 minutes of data collection with a total of 7 minutes of training, 

while the opposite corner showed a training time of  54 minutes.   

 

Figure 43 - Cube plot of the time - 5 states, proposed algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
 

As long as all controllers are already trained and the controller performance is 

the most important variable in this study, the controller to the next evaluations is chosen 

just based on the best reward.  

In the cube plot of the average rewards in Figure 41, the training that presents 

the best fitted average reward is the training with data composed by steps, with 50 minutes 

of data and punishment of -1 as value function. However, in the real data, the best result 

occurs with the controller trained with null rewards that result in an average reward of 

0.8769. This behaviour happened due to the variability of the results and the small 

influence of the reward. How the trained controllers are already available the controller 

with reward 0 is chosen to the next evaluations.  
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4.1.2.2 Four states algorithm 

 

In Figure 44 is shown the Pareto chart of the effects on the average reward of the 

proposed controller trained without the vehicle velocity as an input. The results can also 

be confirmed in the Cube plot in Figure 45. 

 

Figure 44 - Pareto Chart of the Standardized Effects on best average reward - 4 states, proposed algorithm 
α = 0.05. 

 

 
 

 Source: Elaborated by the author. 
 

Figure 45 - Cube plot of the best average reward - 4 states, proposed algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
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The result of the Pareto chart showed a significant influence of the step and the 

reward on the performance of the controller. It indicates a higher dependence on the data 

quality in the 4 states controller when compared with the 5 states controller. Analyzing 

the cube plot, the influence indicated by the Pareto chart is reinforced and the best 

controller is given by the training process with a greater amount of data, null reward and 

data generated without the presence of steps in the throttle pedal position.  

The difference of desirable data characteristic between the 5 and 4 states 

controllers indicate the necessity of redefining the data every time that the controller 

architecture is changed. 

 

Figure 46 - Pareto Chart of the Standardized Effects on time - 4 states, proposed algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
 

The Pareto chart of the effects on time showed in Figure 46, exhibit the same 

correlations as the 5 states controller, in which the training time just suffers significant 

influence of the amount of data used to train the controller. Comparing the cube plots of 

5 and 4 states in Figure 43 and Figure 47 respectively, the results are very similar. Both 

graphs present the fastest convergence with the training process without steps in the input, 

a smaller amount of data and null reward. In both cases, the slowest converge occurs in 

the opposite corner of the cube. The 4 states network also presented a slightly higher time 

to converge when compared with the 5 states algorithm.  

As long as all the controllers are already trained and available, the training time 

was not taken into account to choose the controller to the next evaluations. In this way, 
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the applied controller is trained with 50 minutes of data collection, null reward and data 

generated without the presence of steps in the throttle pedal position. 

 

Figure 47 - Cube plot of the time - 4 states, proposed algorithm α = 0.05. 
 

 
 

 Source: Elaborated by the author. 
 

4.2 CLASSICAL CONTROLLER LIMITATIONS 
 

The influence of the acquisition rate on the slip ratio of the system with the 

classical controller on a dry asphalt ground is displayed in Figure 48 together with the 

output signal of the controller and the vehicle velocity.  

The long-time between the measurement and the action in the larger time step 

present a high variation of the slip ratio. In this condition, the slip ratio reached similar 

values as the no control condition indicating a poor behaviour of the control. Evaluating 

the velocity is possible to see that the vehicle acceleration is completely compromised by 

the controller, indicating that the classical controller can not work adequately in so large 

time steps.   

With the reduction of the acquisition rate, the behaviour of the controller 

improves considerably, reaching very smoothly control of the slip ratio already with 2 ms 

of the acquisition rate. In 2 ms and 0.2 ms acquisition rates, the increase of the velocity 

also presents an improvement when compared with the system without control, indicating 

a good behaviour of the control and a consequent improvement of safety and comfort to 

the vehicle occupants.  
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Figure 48 - Influence of the acquisition rate in the classical control on the dry asphalt. 
 

 

 

 
 

 Source: Elaborated by the author. 
 

In Figure 50 is shows the evaluation of the controller behaviour on the snow. In 

this case, the results are more problematic to the 20 ms acquisition rate due to the faster 

increase of the slip ratio in the very low friction surface. The reduction of the time step 

increases significantly the quality of the results reaching a good controller of the slip ratio 

mainly on the 0.2 ms of acquisition rate. However, the real implementation of sensors 

that processes the data in this time steps is improbable. 

The average reward calculated over the data on both grounds is presented in 

Figure 50. As expected by the calculation form of the reward, the snow floor always has 

worse results than the asphalt. In both floors, the system without a controller shows a 

better performance than the classical controller with 20 ms of acquisition rate, while the 

controllers with smaller time steps present better average rewards.  
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Figure 49 - Influence of the acquisition rate in the classical control on the snow. 
 

 
 Source: Elaborated by the author. 

 

Figure 50 - Influence of the acquisition rate on the reward. 
 

 
 

 Source: Elaborated by the author. 
 

Despite the limitation of the classical controller to operate in 20 ms of acquisition 

rate, the available data on the real environment just can be run with this time step. In this 

way, the present evaluation is important to understand the control limitation, but the 20 

ms controller is applied to the next studies.  

 

4.3 TESTS OF THE CONTROLLERS  
 

Defined the best parameters to each controller, this step of the work intended to 

compare the developed controllers in different environments, as different inputs and 
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floors. The next subsection presents the results of the comparison of the controllers on 

the trained conditions, aiming to understand the applicability of the controllers when 

enough data is available to describe all possible situations of the environment.  

To resume the work all the results were evaluated based on the mean reward, but 

the complete data of slip ratio, throttle pedal position, vehicle velocity and reward are 

available in Appendix C. 

  

4.3.1 Trained conditions 

 

On the trained conditions, all the reinforcement learning algorithms present 

better performance than the classical controller and the system without a controller. The 

controllers that take the velocity of the vehicle into account have slightly better 

performance as shown in Figure 51.  

 

Figure 51 - Comparison of the average reward in trained conditions. 
 

 
 

Source: Elaborated by the author. 
 

The cyclical and proposed algorithms show very similar results alternating the 

better performance on different floors and number of states. This similar quality of 

proposed and cyclical algorithms show a successful application of the proposal controller 

in trained conditions, permitting to capture a large amount of data and train the network 

in an off-line station.   
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The outputs of the controllers that apply 5 states are shown in Figure 52, while 

the outputs obtained in the 4 states controllers are displayed in Figure 53. The slight 

difference between the 4 and 5 states performance can be explained by the high-frequency 

variation present on the 4 states controllers that punctually decrease the reward values.  

As can be compared in Figure 52 and Figure 53 the 5 states algorithm presents a very 

smoothly change of the desired acceleration pedal, while the 4 states controller of Figure 

53 shows a small variation of the throttle position on both the cyclic and proposed training 

algorithms.  

 

Figure 52 - Output signal of 5 states controller on dry asphalt. 
 

 
 

Source: Elaborated by the author. 
 

Figure 53 - Output signal of 4 states controller on dry asphalt. 
 

 
 

Source: Elaborated by the author. 
 

The remainder captured data used to calculate the average rewards of this 

subsection are available in Appendix C in Figure 73, Figure 74, Figure 75 and Figure 76.  
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4.3.2 Different acceleration patterns 

 

The results of the average reward on the controllers when a step input is given 

as driver accelerator pedal are shown in Figure 54. In the step manoeuvre, the classical 

controller and the system without control present good reward values, as long as a large 

part of the time the output is exactly the expected, in this case, 100% of the pedal position. 

 

Figure 54 - Comparison of the average reward of different acceleration patterns. 
 

 
 

Source: Elaborated by the author. 
 

Figure 55 - Output signal of 5 states controller on dry asphalt with step signal in the accelerator pedal. 
 

 
 

Source: Elaborated by the author 
 

Despite the adequate average results of the 4 states algorithms, the single 

controller that presents an expected behaviour is the proposed algorithm with 5 states as 

shown Figure 55, all other algorithms show difficulty to handle with low velocities. This 
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behaviour is probably justified by the step multiplication applied just on this controller. 

The step multiplication changes the pattern of accelerator pedal position during the 

training, including a step to permit the generation of states with low velocities.  

The very low average reward of the cyclic algorithm with 5 states can be justified 

by the great period of time that the output was bigger than the maximum value of the 

range. This problem and the small variation of the proposed controller in the region where 

the input acceleration pedal is null can be solved by the limitation of the range in a real 

application.  

The remainder captured data used to calculate the average rewards of this 

subsection are available in Appendix C in Figure 77, Figure 78, Figure 79 and Figure 80. 

 

4.3.3 Different floor patterns 

 

In Figure 56 is compared the average reward of manoeuvres on wet asphalt and 

ice using controllers trained on dry asphalt and snow.   

 

Figure 56 - Comparison of the average reward of different floors patterns. 
 

 
 

Source: Elaborated by the author. 
 

The results present a good behaviour of the controllers that take the vehicle 

velocity into account when the vehicle is driven on the wet asphalt, while the 4 states 

controller present high values of slip as shown in Figure 57. 
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Figure 57 - Slip ratio of 4 states controllers on wet asphalt. 
 

 
 

Source: Elaborated by the author. 
 

On the ice ground it is possible to note the 5 states cyclic algorithm that reaches 

a very high average reward. However, the proposed algorithm seems to have a limitation 

to deal with behaviours that extrapolate the learning environment, as long as the wet 

asphalt has a friction coefficient between the dry asphalt and the snow, while the ice 

ground has friction out of this range.  

In Figure 58 it is presented the exemplary behaviour of the cyclical controller on 

an ice surface, while the proposed algorithm presents a completely undesirable 

characteristic with out of range values most part of the time. This characteristic is 

probably originated from non-trained states, where the algorithm does not have a 

reference of the desired output.  

 

Figure 58 - Output signal of 5 states controller on ice. 
 

 
 

Source: Elaborated by the author. 
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The remainder captured data used to calculate the average rewards of this 

subsection are available in Appendix C in Figure 81, Figure 82, Figure 83 and Figure 84. 

 

4.3.4 Final comparison of the controllers 

 

To summarize all the comparison tests is presented in Figure 59 a compilation 

of all average rewards.  

 

Figure 59 - Comparison of the average reward of all simulated conditions. 

 
 Source: Elaborated by the author. 

 

Evaluating the graph, the step input returns better reward even in the classical 
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presents a reduction of the reward with the decreasing of the friction. The classical 

controller always presents an inadequate response with similar or worse rewards as the 

system without a controller.  

All the reinforcement learning algorithms presented an adequate behaviour on 

the trained floors, however, the 4 states controllers presented unsatisfactory results in the 

no trained scenarios as the dry asphalt with step input or the ice floor. The  5 states 

algorithms present better rewards, but both the cyclical and the proposal algorithms 

presented occasional problems.  

The cyclical controller with 5 states showed limitations on the step inputs, but 

the range problem showed by this algorithm can be easily solved by the application of a 

limit for the outputs. On the other hand, the proposed algorithm with 5 states presents a 

limitation on the extrapolation of the floor data.  

As long as the 4 states algorithms showed limitations on the predictability and 

the cyclic algorithm cannot be applied on the real vehicle, the proposed algorithm with 5 

states is evaluated during the next tests. Since this algorithm show limitation with the 

extrapolation, the next subsection presents a complete interpolated experiment.  

 

4.3.5 Interpolation test  

 

The evaluation of the proposed controller with 5 states trained in ice and dry-

asphalt show very prosperous results with smoothly full control of the system as shown 

in Figure 60.  

 

Figure 60 - Output of the 5 states controller trained on ice and dry asphalt. 
 

 
 

 Source: Elaborated by the author. 
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The slip results present in Figure 61 indicate that in all floors the controller was 

able to keep the slip around the desired value with a small number of oscillations when 

the sinus with steps signal is evaluated. Comparing the output of the controller and the 

slip ratio is possible to check that the same network is able to change the inclination of 

the accelerator pedal curve to keep the slip ratio below the desired value. 

This result indicates a prosperous implementation of the DTNAC, as long as just 

extreme characteristics need to be trained to generate a controller able to interpolate 

intermediary states. 

  

Figure 61 - Slip ratio of the 5 states controller trained on ice and dry asphalt. 
 

 
 

 Source: Elaborated by the author. 
 

However, when the step input is evaluated, the snow and ice grounds presented 

an unexpected behaviour in low velocities as show in Figure 62. 

 
Figure 62 - Output of the 5 states controller trained on ice and dry asphalt and simulated with step input. 

 

 
 

 Source: Elaborated by the author. 
 

This oscillation behaviour may be explained by the physical limitation in low 

velocities where the difference between the vehicle velocity and the wheel velocity is 
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small. Other possibilities are a small number of states in low velocities or the restriction 

of the random input to describe this kind of behaviour.  

The larger time taken by the vehicle to decrease its velocity on the ice floor could 

be a possible limitation due to the smaller number of states in low velocity, which would 

impede the network from learning the correct behaviour in this state. However, the 

increasing of the multiplication step period in two times did not increase the data quality. 

Considering just the sinus with steps as input, which did not present problems 

with the low-velocity conditions, the implementation of the controller in the real vehicle 

has a second limitation in terms of acquisitions rates.   

 

4.3.6 Different acquisition rates 

 

To apply the controller on the real vehicle it is necessary that the controller works 

with different acquisition rates, due to the sensors applied in the vehicle. The controller 

output with different acquisition rates and the respective wheel velocity and slip are 

shown in Figure 63 and Figure 64. 

 

Figure 63 - Output of the 5 states controller trained on ice and dry asphalt with different acquisition rates. 
 

 
 

 Source: Elaborated by the author. 
 

As given in Figure 63 the output of the controller had a high number of 

fluctuations that indicate an inadequate work of the controller. Evaluating the slip and the 

wheel velocity in Figure 64 it becomes clear that the large time step of the wheel velocity 

sensor implicates in a behaviour similar to the classical algorithm where the large time 

between the data update entail in the wrong decision by the controller. 
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Figure 64 - Velocity and slip of the 5 states controller trained on ice and dry asphalt with different 
acquisition rates. 

 

 
 

 Source: Elaborated by the author 
 

When the average of the wheel velocity is low, the calculation results in a small 

slip ratio, that permits the increase of the output of the controller. However, the high 

accelerator pedal position increases the slip of the wheel, which is calculated just after 

200 ms. Past this time the high slip ratio indicates the reduction of the throttle pedal 

position, thus the controller is not reading the real behaviour of the vehicle but a past 

velocity, impeding the correct correlation of slip and throttle.  

When applying different acquisition rates the vehicle stops behaving like a 

Markov system impeding reinforcement learning algorithm to be applied. To the real 

implementation, an update of the kart hardware or the use of networks with a time-

depended input may be possible solutions. In the case of time depending controller, the 

input of the last ten data points could provide to the network the necessary information 

about the vehicle behaviour. With this network update, the captured data should be 

enough to completely describe the vehicle state,  returning the Markov characteristic.  
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  CONCLUSIONS 

 

The actor-critic reinforcement learning showed itself as a promising controller 

to many activities where the physical modelling is non-linear and complex. This 

algorithm is able to find the best behaviour by own and define a matrix controller. The 

obtained results proved that when the system scenario that needs to be controlled is 

incorporated in the training process both the proposed and the cyclical training process 

are able to generate an adequate controller. However, in vehicular applications, when the 

data that represent all the possible states are not available, some restriction can be found 

as the inaquete behavior of the trained controllers in novel states.   

The cyclical training presented difficulties to real applications due to the 

necessity of executing the real test dozens of times. The obtained controller also had a 

restriction during the implementation in different scenarios. The proposed DTNAC 

training process, on the other hand, had a robust application with fewer parameters to be 

checked and the possibility of collecting the data only once, training the neural network 

in an off-line station.  

With the implemented architecture, the cyclical training algorithm demonstrated 

better results with null discount factor, which makes the controller unable to predict future 

behaviours. This behaviour reinforces the possibility of simplifying the value function by 

the reward function as is made in the proposed algorithm.  

The algorithms that implemented all the physical parameters necessary to 

calculate the slip behaviour, including the vehicle velocity, generated more robust results, 

which had small dependence of the data quality and quantity to generate an adequate 

controller. The 5 states algorithm is able to handle different scenarios with smoothly 

change of the output and small deviations from the desired behaviour. The 4 states 

algorithms, in contrast, presented a higher dependency on the data quality and quantity 

beside the high-frequency oscillation, usually present on the controller output. However, 

when implemented just on trained scenarios the algorithm without velocity work 

adequately and could simplify the sensor necessity. 

By the comparison of all evaluated scenarios, all reinforcement learning 

controllers had an adequate response on the trained scenarios. However, the proposed 

controller with 5 states can be highlighted, because it is able to control appropriately the 

system in varied no-trained conditions as different grounds or accelerator pedal inputs, 

except on the ice ground. This characteristic is probably derived from the necessity of the 
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controller to have extreme points of reference, permitting to operate in an interpolation 

mode. It was proved by the training of a new controller based on ice and dry asphalt tracks 

to the training process, which was able to manage all the floors with the expected 

behaviour.  

The limitation of all controllers is present in low velocities, where the controllers 

usually had a completely inadequate behaviour with high oscillations or unexpected 

increase of the output amplitude. This problem is partially solved on the proposed 

algorithm by the insertion of data corresponded to low velocity, but on ice and snow floors 

with step input, this event is still present. The proposed algorithm also could not handle 

with different acquisition rates impeding the implementation of the controller on the real 

vehicle without adaptations on the vehicle or controller.  

Further researches consist of a deeper evaluation of the influence of the data on 

the controller, permitting clarify how the controller could be applied in all possible 

scenarios without the necessity of train the network in all possible states. This 

understanding would permit the proposed controller with 5 states implementation in 

different grounds and acceleration patterns without inadequate results.  

The second research consists of the development of a time-dependent controller 

that take into account past data to enable the control of data with different time steps, as 

occur in the real vehicle. In this case, the last 10 points should be used as input in the 

network training and in the final controller. Finally, the obtained controller should be 

implemented on the real vehicle to understand the real physical limitation of the controller 

and the system.  

As a suggestion for other researches, the proposed method can be implemented 

in other control applications as steer by wire, brake by wire, Automatic Cruise Control or 

inclusively in no automotive applications since that the implementation of the proposed 

algorithm is facilitated, permitting to directly train from real data.  
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APPENDIX A - Go-kart components 

 

Batteries, Figure 17 a): 12V absorbent glass mat batteries. High-current 

batteries, which reduce the recharge time of up to 50%. The choice of this kind of battery 

also contributes to avoiding spilling and leaking during the vehicle vibration (Exide, 

2019). In the vehicle, four batteries are connected in series to provide 48 V of electrical 

voltage.  

Accelerator potentiometer, Figure 17 b): The identification of the driver 

acceleration intention is given by a conductive polymer potentiometer. The sensor used 

is an “LM10” model from the “ab” brand that presents a linear motion with 10 mm of 

effective travel (AB Elektronik GmbH, 2018). The sensor is connected to the accelerator 

pedal, and according to the pedal position send at each 20 ms a signal to the Millipak 

4QPM controller that uses a Pulse-width modulation (PWM) signal to control the motor 

(Sevcon, 2002). 

Vehicle velocity sensor, Figure 17 c): It is an Optical Flow low-cost sensor 

proposed by Schraufstetter (2018). In this sensor, an internal microcontroller based in 

successively recorded images of the ground calculates the vehicle speed. The longitudinal 

and lateral speeds are then transmitted via a CAN bus interface to the control of the kart. 

The optical flow sensor has a standard deviation smaller than 1 km/h for all range 0-50 

km/h and permits a 50 ms sample time (Schraufstetter, 2018). 

Longitudinal acceleration, Figure 17 d):  Automotive yaw rate sensor of Bosch 

Company. The sensor has a measurement range of ± 4.1g and an absolute resolution of 

0.01g. The sensor itself has a low-pass filter of 15 Hz (Bosch Engineering GmbH, 2016). 

The obtained data is sent by CAN communication to the controller system.  

 

Table 6 - LEM 200-127 technical data. 
 

Peak 

Power 

Peak 

Efficiency 

Peak 

Current 

Rated 

Power 

Rated 

Speed 

Rated 

Current 

Rated 

Torque 

16.08 kW 89 % 400 A 8.55 kW 2592 Rpm 215 A 31.5 Nm 

 
 Source: LMC Limited (2019). 

 

Vehicle motor, Figure 17 e): The vehicle powertrain is composed by a 48V 

Lynch LEM 200-127 brushed DC motor. The motor data is present in Table 6 (LCM 

Limited, 2019). The motor is connected with the wheel axle by a belt and pulleys with a 
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transmission rate of four times. The relation reduces the vehicle velocity to a safe area 

and improves the vehicle wheel torque.  

Wheel velocity, Figure 17 f): Gear tooth speed sensor model GS1005 from 

Cherry is applied at the rear axle of the vehicle to measure the wheel speed. The sensor 

uses the Hall Effect, permitting to measure from near zero velocities up to 15 kHz 

(Cherry, 2015). The gear has 29 teeth with tooth width of 10.9 mm and a distance between 

teeth of 10.4 mm. The wheel speed sensor has a sample time of 200 ms.  

Motor current, Figure 17 g): Measured by a current transducer of LEM, model 

HTA 400-S. The sensor uses the Hall Effect to measure the motor current. The 

measurable range is ± 1000 A (LEM, 2019). The current transducer data is accessed at 

each 20 ms by the vehicle controller. 

Telemetry System, Figure 17 h): All the data available on the vehicle is sent via 

CAN bus communication to the vehicle controller, which is connected to a telemetry 

system. A Holybro V.3 radio module composes the telemetry. 
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APPENDIX B - Residual Plots of DOE 

 

Figure 65 - Residual plot for best average reward in 5 states cyclic algorithm.  
 

 
 

 Source: Elaborated by the author. 
 

Figure 66 - Residual plot for time in 5 states cyclic algorithm. 
 

 
 

 Source: Elaborated by the author. 
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Figure 67 - Residual plot for best average reward in 4 states cyclic algorithm.  
 

 
 

 Source: Elaborated by the author. 
 

Figure 68 - Residual plot for time in 4 states cyclic algorithm. 
 

 
 

 Source: Elaborated by the author. 
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Figure 69 - Residual plot for average reward in 5 states proposed algorithm. 
 

 
 

 Source: Elaborated by the author. 
 

Figure 70 - Residual plot for time in 5 states proposed algorithm. 
 

 
 

 Source: Elaborated by the author. 
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Figure 71 -  Residual plot for average reward in 4 states proposed algorithm. 
 

 
 

 Source: Elaborated by the author. 
 

Figure 72 - Residual plot for time in 4 states proposed algorithm. 
 

 
 

 Source: Elaborated by the author. 
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APPENDIX C - Algorithms comparison  

 

Figure 73 - Simulation results - Dry asphalt - 5 states. 
 

 

 

 

 
 Source: Elaborated by the author. 
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Figure 74 - Simulation results - Snow - 5 states. 
 

 

 
 

 Source: Elaborated by the author. 
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Figure 75 - Simulation results - Dry asphalt - 4 states. 
 

 

 

 

 
 

Source: Elaborated by the author. 
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Figure 76 - Simulation results - Snow - 4 states. 
 

 

 

 

 
 

Source: Elaborated by the author. 
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Figure 77 - Simulation results - Dry asphalt with step input - 5 states.  
 

 

 

 

 
 Source: Elaborated by the author. 
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Figure 78 - Simulation results - Snow with step input - 5 states.  
 

 

 

 

 
 

 Source: Elaborated by the author. 
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Figure 79 - Simulation results - Dry asphalt with step input - 4 states. 
 

 

 

 
 

 Source: Elaborated by the author. 
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Figure 80 - Simulation results -Snow with step input - 4 states. 
 

 

 

 
 

 Source: Elaborated by the author. 
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Figure 81 - Simulation results - Wet asphalt - 5 states. 
 

 

 

 

 
 

 Source: Elaborated by the author. 
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Figure 82 - Simulation results - Ice - 5 states. 
 

 

 

 
 

 Source: Elaborated by the author. 
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Figure 83 - Simulation results - Wet asphalt - 4 states. 
 

 

 

 

 
 

 Source: Elaborated by the author. 
 

 

 
 



136 
 

Figure 84 - Simulation results - Ice - 4 states. 
 

 

 

 

 
 

 Source: Elaborated by the author. 
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