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RESUMO

A Vibração Induzida por Vórtices (VIV) é um fenômeno de interação fluido-estrutura que

é extremamente importante para a indústria do petróleo. Os risers são frequentemente

excitados por este fenômeno resultando em oscilações que reduzem a vida útil dos

equipamentos. A complexidade deste fenômeno hidro-elástico não-linear ainda não é

completamente entendida pela comunidade científica e investigações em modelos

flexíveis dão suporte para a descoberta de peculiaridades do VIV. Este trabalho

apresenta resultados experimentais de um cilindro flexível longo e horizontal. A resposta

dinâmica do modelo é apresentada, relacionada com a amplitude, a frequência, o

ângulo de fase e as trajetórias dos movimentos. O cilindro é considerado longo, com

razão de aspecto igual a 148, e razão de massa igual a 3, 9. Os experimentos foram

conduzidos em um tanque de reboque e o cilindro flexível foi excitado por perfis

uniformes de escoamento. Vinte velocidades reduzidas foram testadas, em uma faixa

de 1, 75 < V r < 15, 79, correspondendo a números de Reynolds de 1.000 até 10.000. As

medições foram realizadas utilizando um sistema de rastreamento óptico subaquático,

onde movimentos nas três direções foram monitorados a partir de 18 alvos distribuídos

ao longo de aproximadamente metade do comprimento do modelo. Amplitudes

transversais r.m.s de até 0, 77 diâmetros e longitudinais de até 0, 23 diâmetros foram

observadas, e a dinâmica do modelo mostrou comportamento multimodal. A faixa

de sincronização transversal influenciou muito os modos longitudinais excitados. Os

resultados alcançados se mostram extremamente relevantes para futuras validações

de modelos analíticos e códigos numéricos.

Palavras-chave: Cilindros flexíveis. vibrações induzidas por vórtices. experimentos.

projeção modal. transformada de Hilbert-Huang. ângulo de fase.



RESUMO EXPANDIDO

Introdução

A Interação Fluido-Estrutura (FSI), do acrônimo Fluid-Structure Interaction, é um tópico

relevante em muitos setores da engenharia. Na indústria do petróleo não é diferente.

As estruturas como os risers e linhas de amarração, sob a ação de correntes marítimas,

iniciam vibrações indesejadas conhecidas como Vibrações Induzidas por Vórtices (VIV).

Assim, a exploração petrolífera em profundidades cada vez maiores estabelecem um

desafio tecnológico para o setor.

O VIV tem sido investigado também pela sua complexidade e características do

escoamento. Ele é um fenômeno hidro-elástico e não linear que é de difícil entendimento.

Ao longo dos anos, muitos trabalhos simplificaram o problema, como os estudos em

cilindros rígidos, forçados, com um/dois graus de liberdade (DOF), do acrônimo Degree

of Freedom, montados em base elástica. Esses trabalhos mostraram os padrões

de emissão de vórtices, coeficientes de arrasto e sustentação, flutuação das forças,

frequência e amplitude, bem como ramos de resposta do VIV, trajetórias de movimento

e a influência do fator de massa-amortecimento. Algumas revisões importantes são

encontradas nos trabalhos de Bearman (1984a), Williamson and Govardhan (2004),

Sarpkaya (2004), Bearman (2011), Jauvtis and Williamson (2003) e Jauvtis e Williamson

(2004).

No setor offshore, as estruturas esbeltas, como cilindros flexiveis, com baixa razão

de massa, são mais próximas de estruturas reais como os risers. Os cilindros

flexíveis apresentam um escoamento complexo com diversos modos de vibrar. Devido

à complexidade, a relação entre os cilindros rígidos e flexíveis não é entendida

completamente. Vários trabalhos relacionados com cilindros flexíveis foram publicados,

como Chaplin et al. (2005), Lie e Kaasen (2006), Huera-Huarte e Bearman (2009a,

2009b), Rateiro et al. (2012), Pereira et al. (2013), Morooka e Tsukada (2013), Malta

(2015), Franzini et al. (2015, 2016a, 2016b, 2018),

Este trabalho conduz experimentos para investigar o VIV em um cilindro flexível. O

experimento foi feito no tanque de reboque no Instituto de Pesquisas Tecnológicas

(IPT) do estado de São Paulo com parceria da Petrobras. O modelo foi rebocado em

uma faixa de velocidades, medindo diretamente o deslocamento de 18 localizações ao

longo do modelo. As análises buscam características interessantes do VIV, como a

resposta multimodal, trocas entre modos naturais, acoplamento entre os movimentos

e os ângulos de fase. Desta maneira, o resultado e caracterização deste trabalho é

relevante não somente para o entendimento do fenômeno, mas também para futura

validação de modelos numéricos e teóricos para previsão do VIV.



Objetivos

De acordo com a complexidade do fenômeno apresentado, o objetivo geral desta

dissertação é a investigação da dinâmica de um cilindro flexível longo sob a ação das

vibrações induzidas por vórtices.

Esta investigação é experimental, caracterizando o comportamento multimodal de

um cilindro flexível usando técnicas sofisticadas de identificação de frequências e

amplitudes de resposta.

A contribuição desta dissertação são os resultados experimentais do VIV em cilindro

flexíveis usando um método de medição direta, difícil de encontrar na literatura. Além

disso, o significante número de velocidades ensaiadas e todas as análises feitas dão

um conjunto único de resultados em um mesmo trabalho.

Metodologia

O tanque de reboque utilizado possui 280 m de comprimento, 6, 6 m de largura e 4 m de

profundidade. A faixa do número de Reynolds no ensaio foi de 1.000 até 10.000, em 20

velocidades de reboque. O cilindro flexível foi acoplado horizontalmente por duas rótulas.

Em uma delas foi adicionada uma célula de carga unidirecional para a medição da

tração inicial do sistema. Os alvos para medição dos deslocamentos foram distribuídos

de 0 a 56% do comprimento do modelo, a partir de uma das extremidades. Estes alvos

são rastreados por cinco câmeras subaquáticas que registram seus movimentos ao

longo do experimento.

O cilindro flexível foi construído de uma mangueira de silicone de 21 mm de diâmetro

externo preenchida com microesferas de aço de 2, 3 mm. A combinação destes

materiais gerou um modelo com baixa rigidez flexional, mas com uma considerável

rigidez axial. Neste modelo, as frequências e assim como os amortecimentos nos

planos de oscilação vertical e horizontal ficaram próximas. Este modelo é semelhante

aos utilizados nos estudos de Pereira et al. (2013b), Pereira et al. (2013a, 2016) e

Franzini et al. (2016a, 2016b).

Os valores de amortecimento da estrutura foram obtidos com testes de decaimento

no ar, para a obtenção da parcela estrutural, e na água, para o valor total. Em ambos

decaimentos, a tração inicial na estrutura é a mesma aplicada nos experimentos de

VIV.

Para a caracterização do cilindro flexível, o seguinte procedimento foi adotado.

Primeiramente, o modelo é pesado fora da água, onde é também fixado no suporte

com as células de carga e as rótulas. Depois, a tração é imposta, e a funcionalidade

das células de carga são verificadas. Posteriormente, os alvos são dispostos ao longo

do modelo e, então, o conjunto é imerso na água e a tração é novamente medida. Por

fim, as câmeras subaquáticas são calibradas para rastrear os alvos.

Depois do procedimento de calibração, o modelo está pronto para os ensaios de



decaimentos e de VIV. Nos ensaios de VIV, o modelo é rebocado por 350 segundos.

Resultados e Discussões

A resposta dinâmica do cilindro flexível mostrou três faixas de sincronização. Na primeira

faixa, a máxima amplitude na direção transversal ao escoamento foi de Ar.m..sz = 0, 60D

e na direção do escoamento de Ar.m..sx = 0, 13D. Na segunda faixa, Ar.m..sz = 0, 77D

e Ar.m..sx = 0, 23D. A terceira faixa foi visualizada apenas em duas velocidades, e

não foi possível identificar o pico da sincronização. A razão entre as amplitudes no

sentido transversal e longitudinal ao escoamento ficou entre 4 e 6, valores também

publicados por Huera-Huarte e Bearman (2009a). A razão entre frequência de oscilação

evidenciou também as faixas de sincronização. Destes valores, foram obtidos o número

de Strouhal de 0, 16 para a direção transversal e 0, 32 para a direção do escoamento,

valores também encontrados por Huera-Huarte e Bearman (2009a).

A projeção modal aplicada neste trabalho mostrou um resposta multimodal do cilindro

flexível. A amplitude total geralmente é uma composição de alguns modos naturais

sobrepostos, vibrando na frequência do modo dominante. Esta característica foi também

encontrada por Chaplin et al. (2005b).

As análises de Hilbert-Huang mostraram resultados similares as análises de Fourier.

Em regiões com contribuição unimodal superior, as faixas de oscilação da frequência

no tempo foram estreitas. Nestas condições, as frequências obtidas pela análise de

Hilbert-Huang e Fourier coincidem. Contudo, em regiões onde existe contribuição de

mais modos naturais, uma banda larga de frequências é observada.

As trajetórias mostraram sincronização entre os movimentos na direção longitudinal e

transversal ao escoamento. O ângulo de fase relativa mostrou diferentes valores que

impactam nas trajetórias de movimento do cilindro flexível. Alguns casos apresentaram

dois ângulos preferenciais, geralmente no pico da faixa de sincronização.

Considerações Finais

Os resultados encontrados mostraram valores de oscilação menores que cilindros

rígidos e logos, se aproximando de publicações relativas à estruturas flexíveis. A

resposta dinâmica é mais próxima a de cabos tensionados do que de cilindros rígidos

montados em base elástica devido à sucessiva sincronização de modos naturais e a

ausência dos ramos do VIV encontrados na dinâmica dos cilindros rígidos. Ainda, esta

dissertação exibe uma série de análises interessantes em um único experimento com

medição direta dos movimentos, contribuindo para a literatura relativa ao VIV.

Trabalhos futuros aumentando a tração inicial e variando a massa devem trazer um

entendimento ainda melhor do fenômeno. Além disso, a mecânica dos materiais

envolvidas com esta variação de tração também podem ser avaliadas, uma vez que o

material utilizado pode não trabalhar no regime elástico com a variação da tração.





ABSTRACT

The Vortex-induced Vibrations (VIV) is a phenomenon resulting from the fluid-structure

interaction which is extremely important in the oil industry. The risers are frequently

excited by this phenomenon resulting in oscillations which reduce the equipment lifetime.

The complexity of this non-linear and hydro-elastic phenomenon is still not completely

understood by the scientific community and investigations on flexible models support the

peculiarities unveil of the VIV. This work presents experimental results of a horizontal

long flexible cylinder. The model dynamic response is presented, connected to the

amplitude, the frequency, the phase angle, and the trajectories of the movements. The

cylinder is considered long, with aspect ratio equal to 148, and mass ratio equal to

3.9. The experiment was carried out in a towing tank, and the flexible cylinder was

excited by uniform flow profiles. Twenty reduced velocities were tested, in a range of

1.75 < V r < 15.79, corresponding to Reynolds numbers from 1, 000 up to 10, 000. The

measurements were performed using a submerged optical motion capture system,

where displacements in the three directions were monitored from 18 targets distributed

along half of the model’s length. Cross-flow r.m.s amplitude responses up to 0.77

diameters and in-line up to 0.23 diameters were observed, and the model dynamics

showed a multi-modal response behavior. The cross-flow lock-in highly influenced the

in-line excitation modes. The results achieved showed to be extremely relevant for

further validation of analytical models and numerical codes.

Keywords: Flexible cylinders. vortex-induced vibration. experiments. modal projection.

Hilbert-Huang transform. phase angle
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1 INTRODUCTION

In this chapter, the motivation and objectives of the present work are given.

The contextualization presents the fluid-structure problem and how this dissertation is

related to the topic. On the other hand, the objectives inform the reader of the goals

which this work seeks.

1.1 Contextualization

The Fluid-structure Interaction (FSI) is an interesting topic in many engineering

sectors because it directly impacts in project designs, costs, and performance. Inside

the FSI there are the Flow-induced Vibrations (FIV), which concerns to vibrations

and movements caused by the flow incidence. These vibrations are significant for

engineering subjects because, if out of control, may result in catastrophic events such

as the well known Tacoma Narrows bridge.

In the oil industry, it is not different. There are structures such as risers,

umbilicals, and mooring lines under ocean currents which urge unwanted vibrations

known as Vortex-induced Vibrations (VIV). The quest for oil exploration at even greater

depths establishes a technological challenge regarding the optimization of the structure’s

design. This technological challenge depends on the fundamental understanding of the

fluid-structure interaction making scientific research an essential tool for this sector.

Investigation of VIV in risers can be performed experimentally or numerically.

Although the increase of computational capacity during the last years, the solution to

this problem by the finite volume method is still a challenge. Even if applied turbulence

models, the problem requires a coupling between the structural flexibility and the fluid

forces, resulting in simulations unrealistic for real engineering cases. A more simplified

method, named Discrete Vortex Method (DVM), has been an alternative for preliminary

analyses of offshore projects. However, it is not yet widespread and validated. In the

experimental area, there are also barriers. The high rigidity of the lines of operation

requires huge towing tanks, which do not exist in Brazil. Even the ones overseas provide

limitations in the hydraulic diameter for the experiments in real scales. Scaled models

are commonly used. However, the high aspect ratios (ratio between the length and

external diameter) of structures require scale distortions.

Investigations into VIV have been a fluid-structure topic also because of

its complexity and rich flow features. The complexity comes from the hydro-elastic
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interaction and non-linear behavior which make the topic unlikely to be solved quickly.

Therefore simplifications of the problem have been made along the years, such as

studies of rigid cylinders, forced cylinders and one/two degree of freedom (DOF) rigid

cylinders mounted in an elastic base. These studies have shown the flow field vortex

emission, drag and lift coefficients, force fluctuations, frequency and amplitude response,

branches of VIV, coupled trajectories and observations of mass and damping influence

on the phenomenon. Some well known publications and reviews are found in Bearman

(1984a), Bearman (2011), Jauvtis and Williamson (2003), Williamson and Govardhan

(2004), Sarpkaya (2004) and Jauvtis and Williamson (2004).

Regarding the offshore scenario, flexible cylinders with low mass ratio may

represent a real offshore structures, such as flexible risers. The flexible cylinders

present a complex flow field, a high number of vibration modes, coexistence and jumps

between modes. Due to the complexity of the problem, the correlation between the

features of rigid and flexible cylinders are not completely understood by the scientific

community. Several recent works have reported experimental investigations of VIV in

flexible cylinders, such as Chaplin et al. (2005b), Lie and Kaasen (2006), Huera-Huarte

and Bearman (2009a), Huera-Huarte and Bearman (2009b), Rateiro et al. (2012),

Pereira et al. (2013a), Morooka and Tsukada (2013), Malta (2015), Franzini et al. (2015),

Franzini et al. (2016a), Franzini et al. (2016b) and Franzini et al. (2018).

This work intends to conduct an experimental investigation on VIV of a flexible

cylinder. The experiment was carried out in a towing tank at the Institute for Technological

Research (IPT) in partnership with Petrobras. The model was towed in a wide range of

reduced velocities, directly measuring the displacements of 18 locations of the model.

The analysis seeks interesting features of VIV such multi-modal dynamic response,

jumps between modes, the coupling between in-line and cross-flow movements, and

relative phase angles. Therefore, all these characterization and results are relevant

not only for the phenomena understanding but also for validation of mathematical and

numerical models for VIV prediction.

1.2 Objectives

1.2.1 General Objective

According to the complexity of the problem presented, the general objective

of this dissertation is the dynamic response investigation of a long horizontal flexible

cylinder under the vortex-induced vibration phenomenon due to uniform current profile.

This investigation is experimentally carried out, evaluating the multi-modal

behavior of the flexible cylinder using sophisticated analysis techniques of frequency

and amplitude responses.
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1.2.2 Specific Objectives

Based on the general objective, the following specific objectives must be

achieved.

1. Assemble the flexible cylinder and proceed with the characterization of quantities

such as axial rigidity, bending stiffness, natural frequencies, and damping.

2. Plan and execute the experiment in the towing tank;

3. Analyze the amplitude and frequency response of the model searching for the

lock-in regions;

4. Compare the response on the frequency domain using the Fourier and the Hilbert

Huang Transform;

5. Investigate the multi-modal behavior of the flexible cylinder, identifying the modes

excited during the experiment;

6. Analyze the relative phase angle and search for relations between the angle and

the trajectory of the flexible cylinder. Also, verify the relative phase angle of each

mode excited during the experiment;

7. Verify the overall behavior of the flexible cylinder and compare with similar results

in the literature.

1.3 Research Contributions

This dissertation provides VIV results of a flexible cylinder using direct amplitude

measurements of many points of the model, which is difficult to find in the literature.

Further, the significant number of reduced velocities and all the analysis performed

(amplitude responses, frequency analysis using Fourier transform and HHT, modal

projection, relative phase angle, and trajectories) gives a unique set of results in a single

work. This complete work may be relevant for the validation of mathematical models

and numerical codes for the academy and industry.

1.4 Dissertation Outline

The present dissertation is divided into five chapters, the introduction, literature

review, methodology, results, and conclusions. Each chapter has the following content.

Chapter 1 is concerned about identifying the problem related to this dissertation

and give insights about the VIV in the offshore industry. Also, expose the objectives and

the main contribution which this dissertation will provide.

Chapter 2 review the works related to VIV in a rigid and flexible cylinder,

identifying important parameters of VIV.

Chapter 3 explains the methodology used. This chapter is mainly divided into

the experimental set up and procedures and methodology of analysis. The first explains
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how the experiment was constructed and carried, giving insights about equipment and

main procedures. The latest expose how the analysis was performed.

Chapter 4 shows the results of all the analysis performed. This chapter is

the central chapter of this dissertation, where comparisons with other authors and

discussions are made.

Chapter 5 is the conclusion. In this chapter, a summary of the findings and final

remarks are made.
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2 LITERATURE REVIEW

In this chapter details of flow around circular cylinders are given. Firstly, the

Section 2.1 presents the literature in which this dissertation explored for publications of

studies on VIV of flexible cylinders. Secondly, the Section 2.2 brings a brief review of

the flow around a rigid stationary cylinder and VIV of rigid cylinders supported by an

elastic support. Finally, the Section 2.3 compile the results found reviewing the most

critical features on VIV of flexible cylinders.

It is important to highlight that, different from other literature reviews, the current

work does not present it in chronological order. Essential pieces of information are given

when necessary so that the reader understand the phenomenon and the features of VIV.

This section intends to inform the reader in order to understand the following chapters

rather than provide all insights about the subject.

2.1 Articles Research Method

This section is designed to present the method applied to map the principal

scientific researches of VIV of flexible structures.

First, it is necessary to gather information on which this research will be

achieved. For that, quick research showed that most of the publications related to

VIV in flexible cylinders are found in ScienceDirect and Google Scholar database,

the latest cover all Internet content. These two databases cover the main journals

related to VIV, such as Journal of Sound and Vibration, Journal of Fluid and Structures,

Applied Ocean Research, Ocean Engineering and many conference publications such

as the International Conference on Ocean, Offshore and Arctic Engineering (OMAE),

Conference on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV), International

Society of Offshore and Polar Engineers (ISOPE), and the International Conference on

Flow-Induced Vibration (FIV).

With the database defined, key-words are selected and combined for the search.

These key-words are defined from past knowledge. Therefore the following key-words

were used: Vortex-induced Vibration, flexible cylinder, multi-mode and modal analysis.

The results were filtered reading the abstract. In total, 31 articles were selected.

Many of these publications will be used in this work in the bibliographic review and the

result section.
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2.2 Vortex-induced Vibrations of Circular Cylinders

The study of bluff bodies under uniform flow is a classic fluid mechanics problem.

Many engineering applications are under these conditions and VIV is an object of study

in various engineering subjects such as mechanical structures, mechanical of material,

vibrations and fluid mechanics. The applications vary in many sectors, such as bridge

construction, heat exchangers, energy transmission cables, structures related to oil and

gas extraction, and ocean structures mooring systems (SARPKAYA, 2004).

Sarpkaya (2004) states that the state-of-the-art of VIV is interested in the study

of rigid bodies, in the majority with a circular cross-section, with its degree of freedom

reduced from six to one or two translational (in-line and cross-flow).

In order to deeply understand the VIV, firstly we look into the phenomenological

aspects present in bluff bodies. Bearman (1984b) defines a bluff body as that which,

when under fluid flow, result in that fluid separation on a substantial part of its surface.

These bodies form and shed vortices with a similar wake independently the geometry.

The phenomenon of vortices formation and shedding occurs in the following

manner. The fluid approaches the cylinder leading edge increasing the pressure and

creating a stagnation point. The increasing pressure forces the fluid to move around

the body, creating two boundary layers (one in each side). In high Reynolds numbers,

the boundary layer separation occurs, and the fluid does not entirely contour the body

surface. During this process, because the viscous layer of the shear layer moves

slower than the upper layers and the high gradient pressure, the fluid swirls into

the wake, generating and shedding vortices. While the vortices are generated and

shed periodically, the pressure field on the surface is modified, which makes cylindric

structures with DOF vibrate (BLEVINS, 1990). The Figure 1 shows the phenomenon

described. The resulting forces of the flow around the cylinder is the drag coefficient,

identified in the figure as CD, and the lift coefficient, CL. The sum of CD and CL is the

vector CF . Looking closer at the Figure 1, CF changes its direction and magnitude as

the time increases from (a) to (d). This happens because the vortex shedding and the

modification of the pressure field. This force is cyclic and has the period of the vortex

shedding.

Understanding the vortex shedding phenomenon, we infer that the flow regimes

modifies the pressure fields, which are related to the resultant forces on the body. Thus,

it is clear that the vortex street is depended on the Reynolds number (Re), defined by

Equation (2.1) for circular cylinders.

Re =
UDe

ν
(2.1)

Where U (m/s) is the free-stream velocity, De (m) is the cylinder external diameter and

ν (m2/s) the kinematic fluid viscosity. The Figure 2 shows the flow states of a circular
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Figure 1 – Modification of the pressure field around a cylinder at Re = 112000 in
approximately one third of a vortex cycle.

Source: Blevins (1990)

cylinder as function of the Reynolds number.

As shown in Figure 2, for Re < 5, the fluid go around the body without separation.

With the increase ofRe, a pair of symmetrical vortex develop on the wake. These vortices

grow linearly with Re. Between 40 < Re < 150, the periodic wake of laminar vortices

are identified. Subsequently, the transition from laminar to turbulent wake takes place

between 150 < Re < 300. After the transition, over a large range of Re, the flow has

a fully turbulent vortex street. This is called the sub-critical region, 300 < Re < 3 105,

where the separation occurs approximately 80 degrees from the leading edge. For

values between 3 × 105 < Re < 3.5 × 106 the boundary layer becomes turbulent, the

separation angle changes to 140 degrees, and three-dimensionality strongly affects

the vortex wake, becoming disorganized and narrower. Finally, for values greater than

Re = 3.5× 106 the turbulent vortex wake is reestablished.

The alternation of vortex shedding is characterized by the Strouhal number (St),

shown in Equation (2.2). The Stouhal number associate the vortex emission frequency

fst (Hz) and the relation between the flow velocity U (m/s) and the cylinder diameter

De (m). Naturally, the inverse relation of the frequency is the period T (s) of one vortex

cycle.

St =
fstDe

U
(2.2)

Furthermore, replacing the Equation (2.1) into Equation (2.2), the Strouhal
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Figure 2 – Flow regimes for a smooth circular cylinder.

Source: Blevins (1990).

number can be written as function of the Reynolds number, as shown in Equation (2.3).

St =
fstReν

U2
(2.3)

During th sub-critic regime, a typical value of St = 0.2 is found, as shown in

Figure 3.

Although a circular cylinder gives the present example, the vortex emission is

found in any bluff body. The periodic vortex shedding results in a fluid force as shown in
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Figure 3 – Strouhal number of a long rigid and fixed circular cylinder for a large range of
Re.

Source: Norberg (2003).

Figures 1 and 2. These forces are the source of VIV of cylinders, and several parameters

are related to this phenomenon. For example, the mass ratio, which indicates the weight

over the quantity of displaced mass; the damping coefficient that together with the mass

ratio plays a vital role in the VIV response; the reduced velocity and the frequency ratio

which points out the synchronization regions, and the non-dimensional amplitude which

normalize the response amplitude. These main parameters are shown in Table 1. The

variable m∗ is the mass ratio, where m (kg) is the mass, ρ (kg/m3) is the density of the

water, De (m) is the external diameter, L (m) is the length of the cylinder. The variable

ζ is the damping ratio, where c (kg/s) is the structural damping, 2
√
k(m+ma) is the

critical damping in water where k (N/m) is the stiffness and ma (kg) is the added mass.

V r is the reduced velocity, where U (m/s) is the free-stream velocity, fN (Hz) is the

natural frequency. A∗ is the non-dimensional amplitude of response. where A (m) is the

amplitude of response. f ∗ is the frequency ratio, where f is the fluid excitation frequency.

Finally, the Reynolds number (Re) is defined in Equation (2.1).

The VIV in ocean structures is a resonant phenomenon which has

characteristics of self-excitement and self-control. Considering a rigid cylinder mounted

in an elastic support, Bearman (1984b) states that the vortex shedding induces

oscillations mainly in the transverse to the flow incidence direction. According to

Williamson and Govardhan (2004), in this type of systems, when the velocity increases

and the vortex emission frequency get closer to the cylinder natural frequency the fluid
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Table 1 – Main non-dimensional VIV parameters.

Parameter Symbol Equation

Mass Ratio m∗
m

πρD2
eL/4

Damping Coefficient ζ
c

2
√
k(m+ma)

Reduced Velocity Vr
U

fNDe

Non-dimensional Amplitude A∗
A

De

Frequency Ratio f ∗
f

fN

Reynolds Number Re
UDe

ν

Source: The Author (2019).

forces from the pressure field induces the movement of the body. It is important to note

that the vortex shedding frequency (fst) and the vortex emission frequency with the

cylinder in movement (fvs) are different in the excitation region (SARPKAYA, 2004).

Because VIV has self-excitement behavior, the oscillations of the body modify the vortex

shedding whereas fvs and the body oscillation frequency are close although the velocity

increases. This is known as the synchronization region or lock-in.

The amplitude responses in the lock-in may reach oscillations in the order of

the cylinder’s diameter. One of the parameters that affect the responses branches is

the mass of the system. The Figure 4 shows the amplitude response as function of the

reduced velocity.

It is possible to notice that for lower mass ratio values, three branches are

present. Also, this system has higher amplitudes on the upper branch. On the other

hand, higher values of mass arise only two branches, skipping the upper branch,

presenting lower amplitude responses and reducing the lock-in range. The branches
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Figure 4 – Transvers amplitude response (1 degree-of-freedom) as function of the
reduced velocity for m∗ζ = 0.013. Data from Feng (1968) for m∗ = 248.

Vr

Source: Adapted from Khalak and Williamson (1999).

are associated with the vortex street type, as it is shown in Figure 5. The 2S pattern

stands for two single vortices per cycle and appears in the initial branch. The second

pattern 2P, two pairs of vortices per cycle, appears in free-vibrating and forced cylinders.

Finally, the third pattern P+S stands for 1 pair plus 1 single vortices per cycle.

The frequency ratio for the synchronization region is shown in Figure 6. It

appears that the frequency emission is kept near to the cylinder oscillation frequency

during the lock-in range.

The influence of the mass on the dynamic response is evident. Therefore,

Govardhan and Williamson (2002) studied the critical value in which the system

changes its dynamics. The authors suggested a critical value of m∗ = 0.54 for circular

cylinders. In this case, systems with lower mass than the critical value does not present

desynchronization.

Furthermore, studies of 1 degree-of-freedom (1dof) are more common in

literature, considering the in-line or cross-flow direction. The researches which allow

the cylinders to move in both direction are less usual. The vortex shedding frequency

in the in-line direction is roughly twice the cross-flow frequency and the dynamics
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Figure 5 – Vortex patterns in the wake of free-vibrating circular cylinders.

Vr

A*

P+S

C(P+S)

2S

2P

Source: Adapted from Williamson and Govardhan (2004).

allowing 2-degree-of-freedom (2dof) may be different from those with 1dof. Jauvtis and

Williamson (2003) carried out experiments with 2dof to investigate the effect of the dof

on the cylinder’s response. The authors found no modification of the branch responses

and wake patterns for a mass ratio greater than 6. However, values lower than 6 higher

amplitudes (about 1.5 diameter) are found in a new branch with a wake pattern 2T,

which is two triplets of vortex per cycle. This review does not discuss results of VIV

of cylinders with two degree-of-freedom. However, the reader is encouraged to read

articles related to the topic. Finally, aiming to sum up the types of VIV studies in order of

complexity, the Table 2 exposes the main categories found in the literature.

One of the branches of VIV studies is the analytical formulation. Among many

works can be highlight the model of Iwan and Blevins (1974) and Skop and Griffin (1973)

for rigid cylinders. Also, the extension of these works where the van der Pol equation

was modified for flexible cylinders applications, presented in Skop, Griffin et al. (1973)

and Skop and Griffin (1975). Figure 7 brings the main contribution of the articles cited

before, which is the non-dimensional parameter Skop-Griffin (SG) as function of the

maximum amplitude, where St is the Strouhal number, m∗ is the mass ratio and ζ is the

damping factor (see Table 1).

The parameter SG is given by Equation (2.4) for systems with constant mass
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Figure 6 – Frequency ratio as function of reduced velocity for different mass.

Vr

Source: Adapted from Khalak and Williamson (1999).

along the length.

SG = 2π3S2
tm

∗ζ (2.4)

Furthermore, on the theoretical and experimental field, the research published

by Vandiver (1993) brought an interesting interpretation for the added mass, mass ratio,

and damping. The authors found that for low mass ratio systems the lock-in is wider

and present higher amplitudes. These high amplitudes, self-excitation, and lock-in arise

only if the synchronization between the vortex shedding and the movement occurs.

This fact reinforces the idea that the wide synchronization is only possible with the

increase of the frequency response with the flow velocity, which is associated with the

variation of the added mass coefficient Ca along the lock-in. Another contribution of the

authors was to rewrite the SG equation to become independently of the system’s mass,

becoming a relation between the dissipative forces and the hydrodynamic excitation

forces essentially.

The model SG was revised in Skop and Balasubramanian (1997) and from

studies of Khalak and Williamson (1999) the parameter accepted for the amplitude
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Table 2 – Empirical and numerical studies of flow around cylinders.

Type of study Main characteristics

Fixed Measurement of lift and drag forces; visualization
of vortex shedding patterns.

Forced Imposition of movement in one or more
frequencies; visualization of the vortex shedding
as function of amplitude and oscillation frequency;
observation of fluctuations on the forces.

Rigid with 1 degree of
freedom

Simplification of complex cases restricting the
movements in one direction; measurements of
amplitude and frequency in an isolate direction;
influence of parameters such as mass, damping
and stiffness; observation of self-excitement and
self-control mechanisms.

Rigid with 2 degrees of
freedom

Movements in two directions, in-line and
transverse to the flow incidence; measurements
of coupled movements: trajectories and frequency
relations.

Flexible cylinders A system closer to real applications, with
interaction between many vibration modes: shift
between modes, effects of geometry, wave
propagation; and flow profile.

Source: Vieira (2017).

prediction of VIV is given by Equation (2.5), where St is the Strouhal number, m∗ the

mass ratio, Ca the added mass coefficient and ζ the damping ratio (see Table 1).

SG = 2π3S2
t (m

∗ + Ca)ζ (2.5)

This section introduced the VIV phenomenon and its main parameters in a

concise way. The next subsection will expose characteristics of VIV of flexible cylinders

only.
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Figure 7 – The maximum amplitude of vortex-excited oscilation, Amax, for several flexible
cylindrical structures with circular cross-section, as funtion of the response
parameter SG. Legend for the data points: ×, King (1977) in water, flexible
cantilever, L(in water)/D = 20-33; , Vickery and Watkins (1964) in water,
pivoted rod, L/D = 15; N, Vickery and Watkins (1964) in air, pivoted rod,
L/D = 14.2; �, Hartlen, Baines and Currie (1968) in air, pivoted rod, L/D =
13.8; △, Scruton (1936) in air, flexible cantilever, L/D = 27.5; +, Dale, Menzel
and McCandless (1966) in water, flexible cable of 1800 mm length and
2.5 mm diammeter, fourth through eighth modes; ⊖, Dale, Mesnzel and
McCandless (1966) in water, flexible cable of 900 mm length and 2.5 mm
diameter, second through fourth modes.

Source: Skop and Griffin (1975).

2.3 VIV of Flexible Cylinders

Although the study of VIV of rigid cylinders is fundamental for the phenomenon

understanding, the most interesting case in the technological point of view is the study

of flexible models. These models are similar to offshore structures and add complexity to

the study because they have infinite vibrations modes with their respective frequencies,

which allows the flexible models vibrate in infinite modes increasing the flow velocity

and, consequently, the vortex shedding frequency as shown in Equation (2.2).

A vibration mode is defined by a natural frequency and a mode shape. According

to Blevins (1979), a modal shape or eigenvector is a function which describes the
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displacement of any location on the structure as the structure vibrates in a single mode.

The natural frequency or eigenvalue is the frequency that the structure tends to vibrate

when in motion. A structure has many natural frequencies and modal shapes. For

instance, consider a uniform cable with bending rigidity near to zero presented in the

Figure 8, which is similar to the flexible cylinder in this work. Where T0 (N) is the mean

tension, p (N/m) is load per unit of length, L (m) the length between connections and d

(m) is the sag at the middle of the cable.

Figure 8 – Cable hanging in a shallow parabola.

Source: Blevins (1979).

The parabolic function is shown in the Equation (2.6), and the maximum sag at

the middle of the cable in the Equation (2.7).

Y =
pL2

2T0

[
x

L
−
(x
L

)2]
(2.6)

d =
pL2

8T0
(2.7)

Consider that on this cable is imposed a initial displacement from the static

condition. Then, when released, the cable starts to vibrate in the three components,

horizontal motion in the catenary plane X(x, t), vertical motion in the catenary plane

Y (x, t), and transverse motion out of the catenary plane Z(x, t), as shown in Figure 9.

The equations of the free vibration is associated with the mode shapes x̃, ỹ and z̃. The

partial equations are shown in Equations (2.8) to (2.10) (BLEVINS, 1979).

X(x, t) =
∑

i

Aix̃i(x)cos(ωit+ φi) (2.8)

Y (x, t) = Y (x)
∑

i

Biỹi(x)cos(ωit+ ψi) (2.9)

Z(x, t) =
∑

i

Ciz̃i(x)cos(ωit+ ξi) (2.10)
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Where ωi (rad/s) is the natural frequency of the mode i, Ai, Bi (m) are constants and

φi, ψi and ξi (rad) are the phase angles.

Figure 9 – Definition diagram for cable dynamic deflections X,Y, and Z.

Source: Blevins (1979).

Further, the Figure 10 shows the first symmetric and antisymmetric in-plane

cable modes. The equation for the frequency of the mode i out of plane and in-plane

antisymetric modes is shown in Equation (2.11), where m is the mass of the cable per

unit of length. Also, Equation (2.12) shows the frequency of in-plane symmetric plane,

where λi is solved by the roots of Equation (2.13). E (Pa) is the cable modulus and A

(m2) the cross-section area (BLEVINS, 1979).

i

L

(
T0
m

)1/2

; i = 1, 2, 3, ... (2.11)

λi
2L

(
T0
m

)1/2

; i = 1, 2, 3, ... (2.12)

tan
(
πλ
2

)
= πλ

2
− 4

α2

(
πλ
2

)3

α2 =
(
8d
L

)2 EA
T0

L
Le

Le ≈ L
[
1 + 8

(
d
L

)2]
(2.13)

Finally, the mode shapes are given by Equations (2.14) to (2.16) for the

out-of-plane mode, in-plane antisymmetric mode and in-plane antisymmetric mode,

respectively (BLEVINS, 1979).



x̃

ỹ
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 ; i = 1, 2, 3, ... (2.15)
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Figure 10 – First symmetric and antisymmetric in-plane cable modes.

Source: Blevins (1979).
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(
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(2.16)

In risers, the excitation of high modes affects the fatigue lifetime of real structures

because of the higher curvatures. Furthermore, the high aspect ratio (ratio between

the length and the external diameter) and the shear flow profile result in responses of

different modes on different regions of the structure. Therefore, the study of VIV on

flexible cylinders are more complex and closest to the industrial reality, and naturally,

many academic investigations are driven to these cases.

The axial stiffness and the axial tension are also essential parameters in flexible

structures. It is expected that for uniform flows the structure presents one dominant

frequency, excited by the vortex shedding. However, the mechanisms that govern the

phenomenon is not precise, and the prediction of VIV in flexible structures is not fully

validated yet.

Several recent works have been experimentally studying the multi-modal

dynamic response of flexible structures due to fluid excitation. Chaplin et al. (2005b)

carried out in a towing tank a flexible cylinder model. The cylinder was 13.12 m long,

28 mm of diameter and m∗ = 3. The model was totally immersed in water, as shown in

Figure 11.

The model was partially excited (45% of the length) in the uniform current up
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Figure 11 – Experimental setup of Chaplin et al. (2005b) for a vertical flexible cylinder.

Source: Chaplin et al. (2005b).

to 1 m/s. The Figure 12 shows the multi-modal responses found. The series A-E are

different values of axial tension and the values n = 1, 2 ... represent the natural modes

of the structure. It is possible to identify the successive excitation of the natural modes

and frequently the overlap between them. While the velocity increases, there are shifts

of one dominant mode to another. It was observed that the amplitude increases with

the velocity until the change of the dominant mode when there is a sudden amplitude

drop. The authors state that the maximum amplitude is a combination of two or three

fundamental modes, although the structure vibrates in the dominant mode.

Further, Huera-Huarte (2006), Huera-Huarte and Bearman (2009b) and Huera-

Huarte and Bearman (2009a) conducted experiments of VIV on a flexible cylinder in a

towing tank varying the top tension. The model was 1.5 m long and 16 mm wide with

m∗ = 1.8 in a Re range from 1200 to 12000. The authors found cross-flow amplitudes

up to 0.7 diameter and in-line over 0.2 with a dominant frequency of St = 0.16. These

findings are different from rigid cylinders, where amplitudes up to 1.5 diameters were

verified. The variation of the top tension showed that the increase of tension makes the

model behave like a cable making the lower branch disappear.

As mentioned before, the relevance of the study of flexible cylinders is mostly

related to the offshore industry. The slender, flexible risers are an example, and they are

also under VIV action. In this scenario Malta (2015) investigated the VIV on catenary

risers with transversal current incidence varying with the depth, and Pereira (2015)

with a longitudinal and transversal flow in a towing tank. The catenary risers were also
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investigated by Vieira (2017) for varied angles of yaw and azimuth.

Malta (2015) applied the modal projection, also used in the present work, and

states that it enabled the analysis of typical features of VIV in catenary risers, which

the author says to be similar to long flexible lines, such as the successive modal

synchronization gradually overlapping with the increase of the mode order. This was

found independently of the velocity profile. Further, the synchronization appears to start

around to V r = 4. The author claims that the modal projection is useful in the analysis

of multi-modal behavior and a powerful tool for comprehension of VIV mechanisms.

However, the modal projection is strongly dependent on the modal characterization of

the model (mode shape and frequency).

Pereira (2015) also applied the modal projection procedure and stated that it is

essential for the experimental analysis because the phenomenon is highly non-linear

with multi-modal behavior. The coexistence of multiple modal contributions is found near

to the modal transition. On the other hand, in the peaks of the VIV resonance, only the

dominant mode is identified. Some cases, the transition showed the modal contribution

of several modes in another frequency and not in their natural mode.

Vieira (2017) found unimodal excitation for the first mode and multi-modal

behavior for the others. The author tested the independence principle, which states that

the tangential velocity portion does not influence the oscillatory behavior due to VIV,

and found it is suitable to predict the cases carried in his work.

In these works, it was observed the successive natural modes synchronization

with the increase of the velocity. Also, the coexistence of several modes in the lock-

in vibrating in the dominant mode. An example of the modal analysis is shown in

Figure 13. The studies clearly indicate the complexity of the system response due

to VIV excitation and the application of sophisticated tools for experimental results

interpretation. Therefore, the current work also will use these tools for analysis of the

experimental results and VIV mechanisms understanding.

This chapter reviewed the essential aspects related to VIV. The phenomenon

was exposed for rigidly fixed cylinders, rigid cylinders with dof, and finally for flexible

structures. The works presented for flexible structures in catenary risers have shown

a non-linear and multi-modal behavior, which is also expected in this work. Many

publications have been studying the VIV phenomenon in a flexible cylinder. However,

none of them have completed a direct measurement of the displacements. The present

work intends to present a flexible cylinder case with directed measurements and a

varied set of analysis.
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Figure 12 – Measurements of (a) cross-flow response frequencies and (b-h) standard
deviations of cross-flow modal weights as functions of reduced velocity.
A line in (a) indicates the double Strouhal frequency corresponding to a
Strouhal number of 0.17. All plots in (b-h) have identical scales. Data from
all series are shown in (b-h); those from series C and D are omitted from
(a).

Vr

Source: Adapted from Chaplin et al. (2005b).
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Figure 13 – Modal amplitudes of VIV of a catenary riser as function of the reduced
velocity. Figure on the top: maximum amplitude. Figure on the middle:
minimum amplitude. Figure on the bottom: r.m.s. amplitude.
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Source: Adapted from Pereira (2015).
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3 METHODOLOGY

In this chapter, details are given of the analysis applied to the experimental

results. Also, the experimental set up is described in details.

For the sake of understanding, the coordinate system was defined as follows. In-

line or x-direction corresponds to the in-flow, the cross-flow to the vertical or z-direction,

and the span-wise identified by y-direction. It is important to highlight that frequencies

fni and modes Mi are referred according to the subscript, i.e. when i is odd they

are related to the in-line plane, otherwise to the cross-flow plane. For instance, the

Figure 14 shows the first four modes. The lines in red are the same shape, but in

different planes according to the subscript, M3 for the in-flow plane and M4 for the

cross-flow. Furthermore, the subscript is also used for the vibration frequency.

Figure 14 – Notation for the modes and frequencies according to the vibration plane.

M2, fn2

M4, fn4

M1, fn1

M3, fn3

In-flow

Cross-flow

Flow Velocity

x - axis

y - axis

Source: The Author (2019).

3.1 Experimental Set Up and Instrumentation

The experiment was carried out in the Institute for Technological Research

towing tank, located at São Paulo State, Brazil. This facility is 280 m long, 6.6 m wide



48

and 4 m deep. The Reynolds number range tested was from 1, 000 up to 10, 000. The

flexible cylinder was towed in 20 reduced velocities motoring displacements of 18 targets

points along the model’s length.

A structural support was mounted on the towing tank, as shown in Figure 15.

The model was placed on the structure so that the distance of the model from the free

surface and false bottom was around 52 diameters. This distance is enough to avoid

interference of the boundary layer of the false bottom and the interaction between the

model and the free surface.

Figure 15 – Layout of the present experiment. Right: Front view. Left: 3D view.

  

Cameras

Load Cell

Source: The Author (2019).

The flexible cylinder was horizontally fixed by means of two ball joints, which

allows rotations but no translations. Further, in order to access the axial force, an

unidirectional load cell was attached in one of the ends. This load cell was important

to obtain the initial traction imposed on the flexible cylinder. The load cells is shown in

Figure 16.

The movements of the model were directly measured by an optical system of

five sub-aquatic cameras, shown in Figure 17, which track targets placed along the

model. Further, the length of the model is frequently described by the curve-linear

position s divided by the total deformed length L. The curve-linear position of the target

j and the total length were calculated according to Equations (3.1) and (3.2), where

i = 0 represents the target on zero position and N the target located at the middle of
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the model.

sj =

j∑

i=1

√
(∆xi −∆xi−1)2 + (∆yi −∆yi−1)2 + (∆zi −∆zi−1)2 (3.1)

L = 2
N∑

i=1

√
(∆xi −∆xi−1)2 + (∆yi −∆yi−1)2 + (∆zi −∆zi−1)2 (3.2)

In this experiment, eighteen reflective targets were used, from s/L = 0 to

s/L = 0.56, also shown in Figure 17. The tracking of 56% of the model’s length was

enough to reconstruct the whole position of the system. This is possible because of the

vibration modes may be inferred using the frequency response and half of the mode

shape (symmetric or antisymmetric).

Figure 16 – Unidirectional load cell used for the traction control.

Source: The Author (2019).

Figure 17 – Instrumentation. Left: Sub-aquatic cameras. Right: Flexible cylinder model.

Source: The Author (2019).
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The carriage car was towed only in one direction. In this way, the cameras

are always far downstream and, consequently, never upstream. This method avoid

the interference of the cameras in the experiment. The experiment was carried for 20

velocities, from V r = 1.75 to V r = 15.79. This corresponds to a Reynolds number range

from Re = 1065 to Re = 9488. The reduced velocity (V r) was calculated according

to Equation (3.3), where U stands for the towing velocity and D the model’s external

diameter. The frequency fn2 corresponds to the frequency of M2, according to the

description explained in the Figure 14.

V r =
U

fn2D
(3.3)

The following Figures 18 to 20, show the data acquisition example and trajectory

construction of the experiment. For the sake of conciseness, although 18 targets were

monitored, only 5 targets were shown from s/L = 0.1 to s/L = 0.5. It is important

to highlight that, although these are somehow results of the present work, they are

presented in the methodology section to provide information about the signal quality

and inform the reader about the analysis applied in the result section. In this way, the

result section is focused on the result of modal projection, frequency, amplitude, and

relative phase angle, instead of signal treatment.

In the Figure 18 is shown the mean deflection of the flexible cylinder. Also, the

reconstruction of the movements found during the experiment for V r = 6.03 is shown.

The black traces are the targets movements from s/L = 0 to 0.5, and the gray traces the

mirrored targets. The bottom subplots show the trajectory minus its mean values for the

same targets.

In the Figures 19 and 20, the first row of graphs, on the left, exhibits a zero

condition and a transient part of the experiment until around 100 seconds. These

parts of the signal were not taken for the analysis. The second and third column show

respectively the zoom in from 150 and 154 seconds and the spectrum from a Fourier

Transform of the signal. The last two graphs on the bottom shows, deflection of the

flexible cylinder over 4 seconds, the mean deflection of the model and the r.m.s values

(Equation (3.4)).

Looking closer the Figure 18 some features may be identified. For instance,

the top graph shows the deflection of the flexible cylinder caused by the drag, which is

about 4.5 diameters for this reduced velocity. In addition, the weight creates a deflection

as well, which is around 4 diameters. The bottom figures provide information about the

trajectory in several locations. It is interesting to point out that the amplitude response

increases as the location goes towards the middle. In the middle, the trajectory differs

from the other points.

The Figures 19 and 20 bring several features of the experiment as well. For

instance, the first and the second column of graphs exhibit the quality of the data. The
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Figure 18 – Example of coupling motion in V r = 6.03 and Re = 3670. Top figure
represents the flexible cylinder mean deflection, black trajectories are the
monitored targets and gray trajectories are the mirrored targets. Bottom
figures are the trajectories minus its mean value from s/L = 0.1 to s/L = 0.5.

Source: The Author (2019).

acquisition time of 350 seconds is more than enough to achieve the steadiness of the

phenomena. Also, the smoothness of the curves is due to the high acquisition frequency

of 100 Hz. The last column of figures exhibit the sharp peak of the Fourier Transform

in its correspondent location, showing the good results also in the frequency domain.

Furthermore, the sixth row of Figure 19 indicates the vibration mode shape, in this case,

M2, which was defined as the first transversal mode according to Figure 14. Finally,

this mode can be seen as it is in the experiment, with the real deflection of the flexible

cylinder, as shown in the last subplot. The same is valid for Figure 20. However, the

mode M3 is shown in the graph on the sixth row. The different mode shape is due to

the different excitation frequency in the in-flow direction (fz ≈ 2fx), and consequently,
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excitation of a different mode.

Figure 19 – Example of signal acquisition in V r = 6.03 and Re = 3670. Graphs (a)-(e)
are the cross-flow amplitude z/D−mean z/D in 5 targets of all runtime.
Graphs (f)-(j) presents a zoom in from 150 to 154 seconds. Graphs (k)-(o)
are the power density spectrum of the signal (80 to 330 seconds). Graph (p)
is the monitored targets cylinder deflection minus its mean value, solid lines
represent 1

10
of a second during 150 to 154 seconds, dashed line represents

the r.m.s. cross-flow amplitude. Graph (q) is the monitored targets cylinder
deflection, solid lines represent 1

10
of a second during 150 to 154 seconds,

dashed line represents the mean value, δ is the mean value in the center.
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(c)
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(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q) ↑

δ

Source: The Author (2019).
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Figure 20 – Example of signal acquisition in V r = 6.03 and Re = 3670. Graphs (a)-
(e) are the in-line amplitude x/D in 5 targets of all runtime. Graphs (f)-
(j) presents a zoom in from 150 to 154 seconds. Graphs (k)-(o) are the
power density spectrum of the signal (80 to 330 seconds). Graph (p) is
the monitored targets cylinder deflection minus its mean value, solid lines
represent 1

10
of a second during 150 to 154 seconds, dashed line represents

the r.m.s. in-line amplitude. Graph (q) is the monitored targets cylinder
deflection, solid lines represent 1

10
of a second during 150 to 154 seconds,

dashed line represents the mean value.
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Source: The Author (2019).

Considering the results section, all target signals were treated such the transient

part of the signal was removed and only the part where the peaks were steady. As an

example, in Figure 19 and Figure 20 only the time series between 80 seconds and 330

seconds were used. Each treated target signal was offset such the mean value was zero

and then the r.m.s. the value presented in the amplitude analysis was taken according
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to Equation (3.4), where N is the number of elements and g is the displacement vector.

r.m.s(g) =

√√√√ 1

(N − 1)

N∑

i=1

(gi)2 (3.4)

In the last section of the result section, a maximum amplitude is presented. This

was obtained by taking the mean value of the 10% of the highest peaks.

3.2 Flexible Cylinder Characterization and Experimental Procedure Tests

The long flexible cylinder was build of a silicone hose filled with 2.3 mm

stainless micro-spheres. The combination of these materials created a model with

low bending stiffness but a considerable axial rigidity. The model is shown in Figure 21.

This configuration resulted in similar frequencies and damping for the modes M1 and

M2. It is important to highlight, once again, that these modes have the same shape,

but different vibration planes according to Figure 14. The flexible cylinder model was

similar to those used for VIV experiments reported in Pereira et al. (2013b), Franzini et

al. (2016a), Franzini et al. (2016b), Pereira et al. (2016), Pereira et al. (2013a). For more

details regarding the scaling methodology of this flexible cylinder, the article Rateiro et

al. (2012) provides the complete analysis and dynamic similarity. Finally, the data of the

flexible model used in the present work is shown in Table 3.

Figure 21 – Flexible cylinder model used in the present work.

42 mm

Source: The Author (2019).

The damping values were calculated through decay tests in air (structural

damping) and water (total damping). Both experiments were carried out imposing the
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same tension on the model. The linear damping was obtained using an exponential

regression, shown in Equation (3.5). For the structural damping (ζs2) four consecutive

tests were conducted with one excitation point located at s/L = 0.5, the mean of the

four tests finds the final damping value. The modal nomenclature exposed in Figure 14

is valid for the damping, therefore, the subscript i.e 2 stands for the damping of the

mode M2 and the letter s for structural damping. For ζs4, two points were excited, at

s/L = 0.25 and 0.75. Regarding the total damping (ζt2), also four consecutive tests were

carried out, with one excitation point at s/L = 0.5. The nomenclature in this case is the

same, 2 stands for the mode M2 and t inform that it is the total damping. The natural

frequencies are obtained through a Fourier analysis of the same signal. For more pieces

of information see Appendix A.

F = Ae−ζωnt (3.5)

Table 3 – Data of the designed model

Property Value Unit

External diameter (D) 21 mm
Internal diameter (Di) 16 mm
Flexible cylinder initial length (Li) 2690 mm
Distance between connections (Lf ) 3000 mm
Flexible cylinder deformed length (L) 3111 mm
Mass (m) 3.359 kg
Wet weight (ws) 22.4 N/m
Mass ratio (m∗) 3.9 −
Aspect ratio (L/D) 148 −
Axial stiffness (EA) 1.3 kN
Bending stiffness (EI) 4× 10−5 kNm2

Axial traction (T ) 72 N
Natural frequency of M1 fn1 1.39 Hz
Natural frequency of M2 fn2 1.38 Hz
Total Damping ζt2 9.65 %
Structural Damping M2 (ζs2) 2.69 %
Structural Damping M4 (ζs4) 0.25 %

Source: The Author (2019).

Regarding the experimental procedure, the following is described for the decay

tests in water and the VIV experiments.

• The model is first weighed outside the water, where it is also fixed on the structural

support with the load cells and the ball joints;

• The tension is imposed, and the functionality of the load cells are verified;

• The targets are displayed along the model and then it is positioned on the water

where the traction checked again;
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• The cameras are calibrated to track the targets.

After these procedures and calibrations, the model is ready for the decay tests

and the VIV experiments. During the VIV experiments, the model is towed 350 seconds,

and after this time the towing structure stops. When it stops, although the towing

structure is stationary, the movements on the flexible cylinder is still present. In order

to avoid starting a new run while the flexible cylinder is moving, each run starts only if

the tracking system exhibits that the movements of the target locations are within the

tracking system uncertainty.

Finally, the Table 4 brings the plan and the execution of the runs.

Table 4 – Experiment’s planning and execution.

Planned Executed
ID U (m/s) Vr Vr

01 0.05 1.73 1.75
02 0.07 2.45 2.39
03 0.09 3.17 3.14
04 0.11 3.90 3.90
05 0.13 4.62 4.65
06 0.16 5.35 5.30
07 0.18 6.07 6.03
08 0.20 6.80 6.79
09 0.22 7.52 7.54
10 0.24 8.25 8.30
11 0.26 9.01 8.93
12 0.28 9.73 9.80
13 0.30 10.46 10.56
14 0.32 11.18 11.31
15 0.35 11.90 11.94
16 0.37 12.63 12.70
17 0.39 13.35 13.43
18 0.41 14.08 14.08
19 0.43 14.80 14.83
20 0.45 15.53 15.59

Source: The Author (2019).

In order to sum up the experiment information, Table 5 shows the main

characteristics of the experiment described in the section.
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Table 5 – Main information of the experiment.

Reynolds (Re) 1065 - 9488 Equation (2.1)
Reduced Velocity (V r) 1.75 - 15.59 Equation (3.3)
Number Velocities 20
Number of Targets 18
Acquisition Frequency 100Hz
Monitoring Time 350s
Boundaries Conditions Pinned-pinned

Source: The Author (2019).

3.3 Analysis

In this subsection, it is shown to the reader insights of the analyses applied in

the result section. Once again, few results are shown in this part; however, they are only

displayed to help the reader to understand the analysis procedure.

3.3.1 Modal Projection

The modal projection aims to distinguish the amplitude contribution of each

natural mode in the total amplitude multi-modal dynamic response. This method implies

the vibration modes orthogonality which is assumed for this work.

In a simple way, the modal projection allows writing the experimental dynamic

response as an overlap of modal contributions. A modal decomposition based on

Galerkin’s method was applied. This decomposition enables the frequency and

amplitude responses of each mode. Therefore, this work considered up to the 10th

vibration mode, 5 on the cross-flow plane and 5 on the in-flow plane.

The modal amplitude response is defined by Equation (3.6).

Ami(t) =

∫ L

0

<Mn(s), qe(s, t) >

‖ Mn(s) ‖
(3.6)

Where qe is the experiment amplitude response at time t and Mn the eigenvectors of

mode i. The eigenvectors were computationally obtained using the Anflex1 software.

An example of the modal decomposition is shown in Figure 22. Several features

are exposed. First, the subplot on the left shows the non-dimensional amplitude of

Ami(t)/D for each natural mode. This information indicates what modes are being

excited and their contribution to the total amplitude. In this case, it can be visually

seen that M2 and M4 have the most significant values. This is a powerful analysis,

1 Anflex is PETROBRAS’ in-house software developed for static and dynamic analysis of free vibration on
risers and mooring lines. The software was developed by PETROBRAS Research Center (CENPES)
and Federal University of Rio de Janeiro (UFRJ). It uses the Finite Element Method (FEM)
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once the modal projection could revel shift between modes during the experiment as

well modulation on the signal in time. Second, the subplot in the right is the Fourier

transform of the non-dimensional amplitudes. The vertical lines are the numerical natural

frequencies of the flexible cylinder. This subplot also has essential information. For

instance, Am2(t)/D is vibrating near to the frequency of fn2, and Am4(t)/D a much

lower spectrum peak near to fn4.

The type of analysis showed in Figure 22 revel what frequency the modal

contributions are vibrating. It is important to highlight that this figure is for the V r = 6.03.

Therefore, each reduced velocity was analyzed by plotting this type of graph, which

supported the results in the Chapter 4

Figure 22 – Modal decomposition in V r = 6.03 and Re = 3670. The figure on the
left shows the non-dimensional amplitude Ami(t)/D. The figure on the
right shows the frequency spectrum of Ami(t) normalized by the maximum
spectrum value of all modes. Vertical lines are the numerical frequencies
obtained through the Anflex software.
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Further, another advantage of this method is the reconstruction of the total
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amplitude using the Equation (3.7), where Nm is the total number of modes considered.

a =
Nm∑

i=1

Ami(t)Mi(s) (3.7)

The Figure 23 shows the recomposition after the modal projection for the time

t = 100 s. The dashed line is the reconstruction using Equation (3.7), and the black

circles are the experimental results. The recomposition has a couple of advantages.

First, it is possible to recompose not only the portion of the flexible model monitored,

but also the portion not tracked, as shown by the dashed line in the Figure 23. Second,

the whole flexible cylinder position may be recomposed for any experiment time.

Figure 23 – Reconstruction of the flexible cylinder position in V r = 6.03, Re = 3670 and
t = 100 s.
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3.3.2 Hilbert-Huang Transform

The Hilbert-Huang Transform (HHT) was developed by Huang et al. (1998) and

it is a technique for non-stationary signals from non-linear systems, such as the VIV
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phenomenon. The technique consists of applying the Empirical Mode Decomposition

(EMD) finding a set of Intrinsic Mode Functions (IMF) and proceed with a Hilbert

Transform to each IMF. In this work, the code available on Matlab2019a was used.

The EMD recursively decomposes the signal into orthogonal components. Once

the IMF is found, the result is subtracted from the original data, and the process restarts

until the last IMF. The first IMF has the highest frequency. Therefore, the signal can be

written in function of the IMFs, as shown in Equation (3.8).

X(t) =
n∑

j=1

IMFj(t) +Rn (3.8)

Where X(t) is the signal, n is the number of IMF and Rn is the residual value.

The analytical function Zj(t) is written as Equation (3.9), where Yj(t) is the

Hilbert Transform of X(t), defined in Equation (3.10).

Zj(t) = Xj(t) + iYj(t) = aj(t)e
iθj(t) (3.9)

Yj(t) =
1

π
P

∫ +∞

−∞

Xj(τ)

t− τ
dτ (3.10)

Then, a Hilbert Transform is applied to each IMF, and X(t) can be expressed

as Equation (3.11), where Re stands for the real part.

X(t) = Re

(
n∑

j=1

aj(t)e
i
∫
ωj(t)dt

)
(3.11)

ωj(t) =
d

dt
[θj(t)] (3.12)

Therefore, the amplitude aj and the frequency ωj(t) are time dependent for each

IMF. The representation of the instantaneous frequency and amplitude in function of

time is named the Hilbert Spectrum H(ω, t). The marginal spectrum, which represents

the energy contribution of each frequency is defined in Equation (3.13).

h(ω) =

∫ T

0

H(ω, t)dt (3.13)

An example of the IMFs obtained is shown in Figure 24. The IMFs have physical

meaning. They are frequency components within the original signal with their respective

amplitudes. In the example of this work, the IMF2 in close to the original signal, and the

other IMFs are not significant. Therefore, it is implied that the VIV is the only source of

energy in the system, because the signal is reconstructed mainly with one IMF. However,

if other sources inputting an oscillatory force were acting in the experiment, more IMFs

would have significant oscillations.
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Another view of the method is that the EMD is a dyadic filter, which separates

the original signal in multiple components, each with a single frequency sub-band.

Figure 24 – Intrinsic Mode Function for V r = 6.03, Re = 3670 at s/L = 0.25. First figure
is the experimental data for s/L = 0.25. Graphs 2 to 11 are the IMFs. The
figure in the bottom is the residual value.

Source: The Author (2019).

3.3.3 Relative Phase Angle and Trajectories

The trajectories and phase angle are essential features of VIV. This type of

analysis intends to find trajectories and phase angles of the modes excited during

the experiment. In this work, the relative phase angle was calculated according to

Pikovsky, Rosenblum and Kurths (2003). The relationship of instantaneous frequency,
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as described in Equation (3.12), can be defined for in-line and cross-flow direction. In

addition, the relative phase angle is found by Equation (3.14). The constants n and

m are defined by the frequency relation in Equation (3.15). Therefore, according to

Equation (3.14) the relative phase angle is the phase angle of the cross-flow oscillation

minus the phase angle of the in-line oscillations.

φz,x(s/Li, t) = mφz(s/Li, t)− nφx(s/Li, t) (3.14)

ωx(s/Li, t)

ωz(s/Li, t)
=

n

m
(3.15)

This method stands when φz,x is constant in time there is coherence between

motions (in-line and cross-flow). However, due to high scatter on the data, a statistical

analysis is more reliable. In this work, the statistical analysis applied was based on a

cyclic phase difference, according to Equation (3.16), which exposes the angle from 0

to 360◦.

ψz,x(s/Li, t) =
180

π
[φz,xmod(2π)] (3.16)

Because the values of ψz,x brings the relative phase angle values as a function

of time, a histogram with the Probability Density Function (PDF) was built. These

PDF plots frequently exhibited a normal type of distribution. In these cases, a normal

distribution was fitted on the data, according to the Equation (3.17). Roughly, the data

which have shown a normal distribution type means that there is coherence between

motions (in-line and cross-flow).

θz,x(s/Li, t) =
1

σ
√
2π
e

1

2σ2
−(ψ(s/Li,t)−µ)

2

(3.17)

The variable µ is the mean value and σ the standard deviation.

An example of the analysis is found in Figure 25. The analysis shows coherence

of the model and a typical trajectory motion. A unique relative phase relative angle for

the targets s/L < 0.5 was found, only for s/L = 0.5 the relative phase angle jumps

between 287◦ and 72◦, which are the same angle but different direction (±72◦). In this

case, two normal distribution was fitted. The values of σ have an essential meaning on

the results. For instance, it indicates how much spread the normal distribution is and,

consequently, if the angle is varying too much in time. The targets s/L < 0.5 have a

small σ compared to the value found for s/L = 0.5, which means the angle is sharp and

stable in this points. On the other hand, the high σ value for s/L = 0.5 is due to the less

stable condition because of the alternation between the two angles ±72◦.
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Figure 25 – Relative phase angle for V r = 6.03 and Re = 3670. First row represents the
trajectory from 252 to 272 seconds. Second row are the Relative Phase
Angle ψzx from 110 to 310 seconds. Third row are the Probability Density
Function of the relative phase angle. The bottom row represents the medium
relative phase angle (µ) and the standard deviation in each target. Gray
values are mirrored targets symmetric-assumed.

Source: The Author (2019).

In order to sum up the analysis planned, Table 6 shows the main results

expected of each analysis.
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Table 6 – Main information of each analysis planned.

Type Characteristic Objective

Dynamic
response

Traditional analysis of amplitude
response and frequency using
the Fourier transform as a
function of V r.

Visualization of lock-in ranges
and comparisons with other
works.

Modal
Projection

Decomposition of the response
in contributions of vibration
modes using the Galerkin’s
method.

Verify the multi-modal behavior
of the structure and map the
modes present in the total
response.

Hilbert-Huang
Transform

Empirical method valid for non-
stationary signals from non-
linear systems.

Compare with the results of the
Fourier transform and search for
jumps between modes in the
frequency domain.

Relative phase
angle and
trajectories

Calculate the relative phase
angle (phase of cross-flow
response minus the in-line
response).

Verify the relation between the
relative phase angle, trajectory
type and the mode excited.

Source: The Author (2019).
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4 RESULTS

The results presented in this section are amplitude, frequency, relative phase

angle, and trajectory analysis of the VIV dynamic response. Each analysis followed

the procedure exposed in the Sections 3.3.1 to 3.3.3. The last section of this chapter

compares the main results of this work with the literature.

4.1 Dynamic Response

The first analysis is the r.m.s amplitude (Ar.m.s.) and frequency f/fn2 response

in each reduced velocity.

First, Figure 26 shows the results for the cross-flow direction (z − direction). In

this figure, three graphs are available. The graph on the top shows the non-dimensional

r.m.s amplitude response (see Equation (3.4)) as a function of the Reduced Velocity

(V r), in which the colors mark the lock-in of the mode (M). The graph on the middle

presents the frequency ratio of the dominant excitation frequency fdz and the natural

frequency of M2, nominated fn2. The dashed line corresponds to a Strouhal number of

0.16. The graph on the bottom shows a color map where the color is the (Ar.m.s.z /D), the

y − axis is the curvilinear position of the flexible cylinder (s/L = 0 and 1 are the ends)

and x− axis is the V r.

Analyzing the cross-flow response, Figure 26, it is observed four distinct regions.

The first, until 1.75 < V r < 4.65 (gray squares), it is not observed significant amplitude,

and the frequency ratio relies on the line of St = 0.16. The second, between 4.65 <

V r < 8.30 (blue squares), presents significant amplitude. The frequency ratio differs

more from the line St = 0.16, and the value is around one in all range. On the colormap,

it is possible to see the shape of M2 with one peak in the middle of the flexible cylinder,

s/L = 0.5. The third region, between 8.30 < V r < 14.30 (red squares), the amplitude

increase, and the frequency ratio jump to around 1.6. The colormap shows evidence

of the mode shape M4, with two peaks and three nodes. Finally, the fourth region,

between 14.30 < V r < 15.60 (black squares), shows a frequency ratio around 2.5 and

the color map shows the mode shape M6 with three peaks and four nodes.

The same type of result is presented for the in-line direction (x− direction), as

shown in Figure 27. Until V r ≈ 4.65 three modes are successively locked, they are M1,

M3 and M5. Although the small amplitude response, it is possible to see distinctive

steps in the frequency ratio graph and the mode shapes on the colormap. However,
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Figure 26 – Cross-flow amplitude (r.m.s) and frequency responses due to vortex-
shedding excitation versus the reduced velocity.
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instead of the next lock-in be the M7, the mode excited is M3, and the frequency

ratio stays around 2. This happens because of the lock-in of the cross-flow mode M2,

which changes the in-line dynamics breaking the ascending order. During the transition

between the cross-flow modes from M2 to M4, which is around 7.5 < V r < 8.5, the in-

line frequency jumps to around 5. When the cross-flow mode M4 is well established, the

in-line frequency ratio returns to 3, and the mode M5 is locked. For velocities higher than

that, the modes M7 and M9 are synchronized, with distinctive steps in the frequency

and amplitude response. This feature demonstrates the impact of modal response

between vibration planes, where the lock-in of cross-flow modes impact the in-flow

dynamics. Overall, the in-line frequency relies near to St = 0.32 when the cross-flow

modes are locked. These values of Strouhal number, St = 0.16 for cross-flow and 0.32

for in-line were also reported by Huera-Huarte and Bearman (2009a).

The M2 lock-in present a maximum r.m.s amplitude value of Ar.m.s.z /D = 0.60

at V r = 6.79. In the same range but for the in-line response, the maximum amplitude
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Figure 27 – In-line amplitude (r.m.s) and frequency responses due to vortex-shedding
excitation versus the reduced velocity.
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is Ar.m.s.x /D = 0.13 at V r = 6.03. The M4 lock-in, Ar.m.s.z /D = 0.77 at V r = 11.94, and

Ar.m.s.x /D = 0.23 at V r = 14.08. Unfortunately, only two reduced velocities are inside the

M6 lock-in, and the maximum peak cannot be identified. The ratio between cross-flow

and in-flow amplitudes are found to be between 4 and 6 in the most of the cases. The

same value was reported by Huera-Huarte and Bearman (2009a).

Furthermore, the results have not shown the lower branch and the

desynchronization as rigid cylinders (see Section 2.2). Instead, a successive mode

synchronization is present.

4.2 Modal Projection

The amplitudes and lock-in range observed in Figures 26 and 27 have shown

lack of visual desynchronization between modes. This differs from rigid cylinders, where

a successive mode excitation is visually identified with synchronization followed by

desynchronization. However, as exposed in Section 2.3, flexible cylinders may exhibit
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overlap between modes and a multi-modal behavior. In addition, the high mass-damping

factor may be important for the modal response as it is for rigid cylinders, due to the

impact on the inertia of the system. Therefore, it is important to know the modes present

in the response and associate their correct damping, instead a unique value of damping.

Further, because of the reports of multi-modal behavior on flexible structures, the modal

projection may unveil an unusual behavior of the system response.

In order to investigate the modal contribution on the total amplitude, a modal

projection using the 10 first eigenmodes was applied, 5 in-line and 5 cross-flow. The

modal base, shown in Figure 28, is obtained using the finite element code of the Anflex

software, as exposed in Section 3.3.1. The results are shown in Figures 29 and 30, for

amplitude and frequency respectively.

Figure 28 – Eigenmode base used for the modal projection analysis.
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The modal projection amplitude, in Figure 29, confirm a modal contribution

up to the 8th mode on the total response. The M2 lock-in has a higher value for M2,

however near to the desynchronization zone M4 increases in amplitude. The M4 lock-in

is identified by a sudden drop of modal amplitude M2 and growth of M4. This region

have modal contribution of M2, M4 and M6. Finally, on the last two reduced velocities,

M6 and M8 have more significant contributions of the total amplitude, however, as

the M6 lock-in is not completely established, the modal contribution of M6 is not the
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highest. If more velocities were carried out, probably the modal contribution of M6 would

increase.

Figure 29 – Modal r.m.s amplitude responses. The figures present respectively the
cross-flow and in-line direction.
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Further, in Figure 29, the amplitude response overlaps between modes and the

total response is multi-modal. Inside a lock-in region, the amplitude increases steadily,

with a drop when the next mode is becoming dominant. This behavior was found by

Chaplin et al. (2005b), where the overall response is a combination of two or more

modes.

The same analysis may be conducted for the in-line motions. However, the

modal contributions are less precise because of lower amplitudes, although the trend

should be reproduced.

Figure 30 shows the frequency ratio of the modal response. It illustrates that,

as the reduced velocity increases, the frequency ratio advance in distinct steps when

the modes are locked. Another interesting information is observed analyzing the modal

frequency response, see Figure 30. Although there is the modal contribution of many

modes on the total amplitude, the dominant mode frequency is established. For example,

inside the first lock-in of the cross-flow plane, there are contributions of M2 and M4, and
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both modal frequencies are equal fn4 = fn2. The same happens, inside the lock-in of

M4. There are contributions of M2, M4 and M6, however, they vibrate in the dominant

frequency of M4, fn6 = fn2 = fn4.

Figure 30 – Modal r.m.s frequency ratios. The figures present respectively the cross-flow
and in-line direction.
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4.3 Hilbert-Huang Transform

It is known that the VIV is non-linear and the Fourier analysis may not identify

all features regarding the phenomenon. In this context, the Hilbert-Huang transform,

which is a non-stationary technique for non-linear systems, is applied for complementary

analysis and comparison with the Fourier transform. Figure 31 present the analysis

for the Hilbert-Huang transform and Figure 32 for the Fourier transform of the cross-

flow vibration plane. The Hilbert-Huang transform and Fourier transform are shown,

respectively, in Figure 31 and Figure 32 for cross-flow, and Figure 33 and Figure 34 for

in-line vibration plane.

Firstly, the HHT is analyzed for the cross-flow responses. Figure 31 presents

the HHT spectrum for several reduced velocities. The Fourier transform is shown in
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Figure 31 – Cross-flow Hilbert-Huang Spectrum at s/L = 0.25 for V r = 6.03, 7.54, 9.05
and 9.80.

(a) (b)

(c) (d)

Source: The Author (2019).

Figure 32 for the same point and velocities.

The V r = 6.03, Figure 31 (a), is inside the first lock-in and present modal

contribution is mainly of M2, see Figure 29, however, the spectrum presents a frequency

ratio oscillation in time around 1, from 0.7 to 1.3, with several peaks down to 0.3. The

mean value corresponds to the Fourier analysis, as shown in Figure 32 (a), which has

shown a frequency ratio peak around one.

Increasing the velocity to V r = 7.54 and V r = 9.05, respectively Figure 31 (b)

and (c), larger bands of frequency are found. The first (V r = 7.54) is still inside the M2

lock-in and presents contributions of M2 and M4. The HHT reveals a jump around 50

seconds. It seems like the initial part of the run tries to lock on M2 and jumps into a

transition region, where it is hard to find a well define vibration band. At the same point,

Figure 32 (b) present the Fourier transform. It is possible to identify two characteristic
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Figure 32 – Cross-flow Fourier Transform Spectrum at s/L = 0.25 for V r = 6.03, 7.54,
9.05 and 9.80.
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frequencies, one around 1.1 and another 1.7. At this point, the Fourier transform seems

easier to identify the frequencies in the signal.

The V r = 9.05, Figure 31 (c), presents a little more concentrate energy

distribution, and it is on edge between the lock-in change. On the other hand, the

Fourier transform, Figure 32 (c), present a spread energy distribution which agrees with

the Hilbert-Huang analysis.

After that, V r = 9.80 (Figure 31 (d)) is fully the second mode, as shown in

Figure 29, and a similar pattern found for V r = 6.03 is reproduced. A narrower band

frequency with high energy oscillating around a frequency ratio of 1.6, from 1.3 to 1.9,

with several frequency drops. The same velocity but for the Fourier analysis is shown in

Figure 32 (d). The result agrees with the Hilbert-Huang transform and shows a unique

peak with a frequency ratio of 1.6.

The Hilber-Huang transform in the cross-flow confirms the Fourier analysis and
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brings an idea of band frequency rather than a single value. There were not jumps

between modes or more than one response frequency during the analysis.

The Figure 33 and Figure 34 present similar analysis for the in-line motion.

Looking at V r = 6.03, Figure 33(a) , there is a range around the frequency ratio of 2

where the energy is concentrated and a lower value around one. Looking at Figure 34

(a), the same peaks are identified. When the velocity increases to 7.54 and 9.05, the

Hilbert-Huang analysis turns difficult to read because of the widespread energy. This

may be seen in Figure 34 (b)-(c), where a wider band is identified for the Fourier

transform. However, the latest is more convenient to identify the peaks of the vibration

modes. Finally, at 9.80, the Hilbert Huang, Figure 34 (d), and the Fourier transform,

Figure 34 (d), shows the same frequency ratios, around 1.6 and 3.1.

Figure 33 – In-line Hilbert-Huang Spectrum at s/L = 0.25 for V r = 6.03, 7.54, 9.05 and
9.80.
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Source: The Author (2019).

The Hilbert-Huang transform showed similar results to the Fourier analysis

when, according to the modal projection, one mode is mainly present. On the other

hand, for multi-modal responses, the two analysis differ. Furthermore, the advantage of
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Figure 34 – Cross-flow Fourier Transform Spectrum at s/L = 0.25 for V r = 6.03, 7.54,
9.05 and 9.80.
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using the Hilbert-Huang transform is to obtain the frequency as a function of time. This

may be useful if there are modifications of the frequency domain for any reason.

4.4 Trajectory Responses and Relative Phase Angle

The trajectory and relative phase angle evaluate the characteristics of the

coupled motions. In this case, the relative phase angle (Equation (3.14)) is the phase

angle of the cross-flow motions minus the phase angle of the in-line motions. As

explained in Section 3.3.3, the angle is displayed as a Portability Density Function (PDF)

where the best normal distribution was fitted in all velocities that have showed a normal

distribution type, and the mean angle value µ and the standard deviation σ were taken.

Some cases have presented a constant distribution (all angles), and therefore the result

was considered. In order to review the analysis, see Section 3.3.3.
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Figure 35 compiles the results found for the mean relative phase angle (µ) and

the standard deviation (σ) for the cases considered.

Several features can be identified using Figure 35. Looking at V r = 5.30,

an eight shape is identified curved to the opposite in-line orientation and θzx around

338◦. When the reduced velocity increases to V r = 6.03, the shape changes to the

in-flow orientation and θzx also changes to about 174◦. An interesting event happens

at s/L = 0.5, which corresponds to the higher amplitudes. Two angles are present,

θ = 73◦ and 286◦ and the trajectory shape less curved. The θzx in time do not present

two branches, see Figure 25, instead of the angle constantly change between these

two angles.

Increasing the velocity to V r = 6.79, 7.54, 8.30 and 9.05, the high angle θzx occurs.

The trajectory is present as almost straight and sometimes curved. As presented in

V r = 6.03, the first target in V r = 9.05 have a low relative angle.

The first target for V r = 9.05 have a low angle as present in V r = 6.03. Further,

looking at Figure 35, velocities higher than 9.05 are related to M4. Suddenly, when this

mode occurs, the angle also changes to lower values. Interesting, near to the higher

amplitude targets two angles are established, around θzx = 100◦ and 261◦ for V r = 9.80,

and 10.56. Higher values of angles are placed and the low values disappear when the

velocity increases to V r = 11.31, which corresponds to the highest amplitude values

found. After that, the high angles values are step by step established for the other targets

until V r = 12.70. This step by step angle change may happen because the curvature of

the line, where the real reduced velocity is lower near to the connection point.

Jumping to M6, the reduced velocities 14.83 present angles about θzx = 27◦

but with high standard deviation. For V r = 15.59, the relative angles increases and the

standard deviation decreases, mainly near the peaks. These trajectory shapes are a

well defined eight shape.

Recovering the maps of θzx during the experiment, a jump between two different

angles was found, as shown in Figure 36. During the time 140 to 190s and in the final of

experiment a different angle is established for s/L = 0.1, 0.2, 0.3, and 0.4. The difference

between the two angles is clearly shown on the trajectory response, in the last three

graphs of the sixth column in Figure 36. When the angle is around 180◦, the tips of

the trajectory is curved to the in-flow orientation, otherwise, contrary to the in-flow

orientation. This feature was found only on this reduced velocity.

The results found in this analysis shows a high relative angle when the lock-in

happens. Some targets have shown lower angle values which may be associated with

the deflection of the model. The results found by Huera-Huarte and Bearman (2009a) in

the initial branch, considering the middle of the model, was 90◦ increasing to 135◦ and

decreasing to 45◦ in the desynchronization range.
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Figure 35 – Map of the trajectories for s/L = 0.1, 0.2, 0.3, 0.4, and 0.5 according to the reduced velocity from 240 to 250 seconds. Each
trajectory corresponds to a mean relative phase angle µ and the standard deviation σ of the normal distribution on its left
side. Dashed lines represent the lock-in range if in-line modes and the background colors the cross-flow lock-in ranges.
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Figure 36 – Relative phase angle θzx for V r = 6.79 and Re = 4132. First 4 column
represents the model length s/L. First line are the θzx from 110 to 310
seconds. Third, fourth and fifth line are the PDF of the respectively time
110 to 330, 140 to 190, 190 to 290 seconds. Last column are time range
correspondent trajectories for s/L = 0.2.

Source: The Author (2019).

4.5 Final Remarks

The amplitude response is compared to data found in literature, trying to

understand the behavior of flexible cylinders and the relation with rigid cylinders. The

amplitude comparison is shown in Figure 37.

The flexible cylinder experiments are closer to the present experiment, such

Huera-Huarte (2006), also present on Chaplin et al. (2005a), where a multi-modal

response was investigated in a long flexible cylinder with m∗ = 3 and L/D = 468 under

stepped current. Another close experiment is present in Huera-Huarte and Bearman

(2009a) for a flexible cylinder with m∗ = 1.8 and L/D = 94 for several top tensions.

The results for 2 degree-of-freedom rigid cylinders are from Jauvtis and

Williamson (2004) for m∗ = 2.6. The data from Fujarra et al. (2001) are from a cantilever

cylinder only with transverse motion, for m∗ = 2.36 and L/D = 94.

The cross-flow amplitudes of Huera-Huarte (2006) and the present work

reached the upper branch. Results from Jauvtis and Williamson (2004), for m∗ = 2.6

appears on the supper upper branch. Although the amplitudes from Fujarra et al. (2001)

are closer to the supper upper branch, the authors understand as an extension of

the initial branch. As reported in Huera-Huarte and Bearman (2009a), the response

amplitudes is half of the values found in Jauvtis and Williamson (2004), for m∗ = 2.6.
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The authors suggest that the mass-damping and modal characteristics are important

for the response of flexible structures, the latest controlled by the tension applied to the

model. Further, if the tension is high and dominant, a multi-modal response such cables

are predominant, otherwise a high aspect ratio cylinder behavior is established with

amplitudes limited due to the restrains applied.

The response amplitudes found in this work is closer to the data found in

Huera-Huarte (2006). Comparing the initial branch in both data, this work presents an

amplitude jump to 0.65, while a smooth amplitude growth is found for Huera-Huarte

(2006) data. The upper branch is very similar between them. The present work total

amplitude does not show the desynchronization, however looking at the modal projection

values the desynchronization region is identified and the amplitude response for the

second lock-in are closer to Huera-Huarte (2006). Regarding the in-line motions, for the

first lock-in region, the data values are also close.

Comparing the present result with Huera-Huarte and Bearman (2009a), the

amplitudes found in this work are higher. The initial tension applied is similar (60− 72 N ),

however the present work is completely submerged and totally under the current profile,

different from Huera-Huarte and Bearman (2009a) that is vertically mounted and partially

submerged.

As an attempt to predict the VIV amplitudes responses as function of the mass-

damping of the model, a compile data from Huera-Huarte and Bearman (2009a) is

completed with the current work and data from Fujarra et al. (2001). This plot is known

as the Griffin plot, Griffin, Skop and Ramberg (1975), and is shown in Figure 38, where

Ca is 1 and ζ is the structural damping.

The results of this works are plotted considering the total amplitude of the first

lock-in and the damping value of ζs2, the total amplitude of the second lock-in and the

damping ζs4.
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Figure 37 – Cross-flow amplitude (Amaxz /D) response and in-line amplitudes (Amaxx /D).
— Fujarra et al. (2001), m∗ = 2.36. — Jauvtis and Williamson (2004),

m∗ = 2.6. — Huera-Huarte and Bearman (2009a), m∗ = 1.8. — Data
from Huera-Huarte (2006) and Chaplin et al. (2005a), m∗ = 3. — Present
work total amplitude, m∗ = 3.9.
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Figure 38 – Cross-flow amplitude (Amaxz /D) as function of α = (m∗ + Ca)ζ. — Jauvtis
and Williamson (2004), m∗ = 2.54. × — Govardhan and Williamson
(2006). ⋆ — Hover, Techet and Triantafyllou (1998). � — Owen, Bearman
and Szewczyk (2001). — modes 1-8 from Huera-Huarte (2006). —
Huera-Huarte and Bearman (2009a). — Fujarra et al. (2001). ( , ) —
Present work first and second lock-in. —— Solid lines given by (1− 1.12α+
0.3α2)log(0.41Re0.36) from Govardhan and Williamson (2006), Reynolds
number steps of 4000.
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5 CONCLUSION

This work has presented the dynamic response of vortex-induced vibrations

on a long flexible cylinder fixed in both ends with ball joints. Analysis of the amplitude,

frequency, and relative phase angle have been conducted.

First, the r.m.s. amplitudes up to 0.77 diameters for the cross-flow and 0.23

for in-line direction were observed, and the ratio between the cross-flow and in-line

amplitudes are between 4 and 6. These values are lower than low mass rigid circular

cylinders and agree with flexible structures reported in the literature, such as Huera-

Huarte and Bearman (2009a) and Chaplin et al. (2005a). The overall response appears

closer to tensioned structures or cables rather than rigid cylinder mounted in an elastic

base because the successive synchronization of modes and the lack of VIV branches

responses. Probably, the mass-damping factor and the tension applied to the model

plays a role in the system making it closer to cables. The desynchronization was

observed applying the modal projection analysis and the response proved to be multi-

modal, where the total amplitude mostly had contributions of two or more modes,

vibrating in the dominant mode. The latest also reported by Chaplin et al. (2005b),

where the overall response is a combination of two or more modes.

Second, the frequency response based on Fourier analysis recovered the

Strouhal number of 0.16 for the cross-flow motions and 0.32 for the in-line motions

found by Huera-Huarte and Bearman (2009a). A more reliable frequency analysis was

conducted using the Hilbert-Huang Transform, which showed a complex response near

to the transition of modes, where a multi-modal response is present. When one mode is

mainly present a narrow frequency band was found with the value close to the Fourier

Transform analysis.

Third, the cross-flow motion profoundly influenced the in-line modes excited. It

was observed that the successive mode excitation (M1, M3, M5 and so on) it was not

respected. When a cross-flow mode is locked the next in-line mode is locked as well.

Fourth, the trajectories have shown coherence between in-line and cross-flow

motions for most of the reduced velocities. The relative phase angle showed distinct

values which impact the trajectory of the coupled motion. Some cases presented two

angles varying in time, which appears on the peak of the transversal lock-in.

Finally, this work predict the maximum amplitude by the mass damping factor

((m∗ +Ca)ζ). The total overall amplitude of the two first lock-in were used along with the

respective structural damping. The results have shown agreement with past results in
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the literature.

The results presented in this paper presented different features between flexible

structures with low mass ratio and rigid cylinders mounted in an elastic base. Many

technique analysis were conducted in a single experiment making a unique database.

These results may have a significant impact on the development of numerical codes for

the prediction of VIV.
In order to conduct numerical analysis, deeper investigations about the material

characterization should be conducted. Further studies increasing the tension and varying
the mass would bring a better understanding of the phenomena, and the mechanics of
the material with these variations should also be analyzed.
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APPENDIX A – DAMPING, FREQUENCY AND AXIAL STIFFNESS ESTIMATION

The methodology applied was composed by two main parts, the first concern to

the decay tests in water and the second to the decay tests in air.

The decaying tests in water were conducted as follows. The model was placed

under the water with a structure composed with a false bottom. One unidirectional

load cell was attached in one end and accesses the axial force (tension force). An

external stick was used to give an initial displacement at the middle of the model, then

it is suddenly removed and the flexible cylinder vibrates. This process was repeated 4

consecutive times, each one is repeated after the oscillations were softened. A signal

acquisition Lynx ADS 7000 system was used.

For the decay tests in air, the model was fixed on the same load cell used on

the decay tests in water. The same tension was imposed to the model. The frequencies

and damping were obtained using a load cell in one of the ends. Further, the experiment

was repeated three times to assure the reliability of the tests. The experiments were

carried for frequencies in-plane (Even vibration modes) and out-of-plane (Odd vibration

modes), see Figure 14.

Firstly, Table 7 shows the frequencies found using a fast Fourier transform of

the load cell register. An example of the Fourier spectrum is shown in Figure 39.
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Figure 39 – Example of the Fourier Transform Spectrum for the decaying test in water.
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Table 7 – Frequency of the vibration modes obtained through the decaying tests in
water.

Mode Mi Test 1 (Hz) Test 2 (Hz) Test 3 (Hz) Mean Value (Hz)

M1 1.50 1.28 1.38 1.39
M2 1.41 1.30 1.42 1.38
M3 2.46 2.56 2.56 2.53
M4 2.47 2.42 2.43 2.44
M5 3.83 3.85 3.76 3.81
M6 3.89 3.91 3.90 3.89

Source: The Author (2019).

Therefore, the value of the frequency of M2 was found fn2 = 1.38Hz.

Furthermore, Figure 40 shows the fit using the equation F = e−ζωnt of the load cell

peaks. This resulted in a damping of ζ2t = 9.65%

Moreover, the results for the decaying tests in air is shown in Table 8. It is

important to remember that these values represents the modal structural damping and

the frequency in air.

Furthermore, the theory of cables presented in Section 2.3 was used to find

the axial stiffness. Using the Equation (2.12) for the frequency of M2 in air, the value

of λ2 was found. With this parameter, the value of α2 is found using Equation (2.13).

And, finally, the value of the axial stiffness was found using the relation Equation (A.1),

where Le(m) is the deformed length, L(m) the length, T0(N) the initial axial force and
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Figure 40 – Exponential fit: water decaying test.
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Table 8 – Frequency and damping of the vibration modes obtained through the decaying
tests in air.

Mode Mi Test 1 (Hz) Test 2 (Hz) Test 3 (Hz) Mean Value (Hz) Damping ζs(%)

M1 1.34 1.35 1.35 1.34 0.30
M2 1.51 1.51 1.53 1.52 2.69
M3 2.68 2.70 2.68 2.69 0.20
M4 2.64 2.65 2.63 2.64 0.25
M5 4.03 4.03 4.02 4.03 -
M6 4.03 4.04 4.03 4.03 -

Source: The Author (2019).

d = 0.165(m) the sag. For more information about the cable theory, read Section 2.3

and Blevins (1979).

α2 =

(
8d

L

)2
EA

T0

L

Le
(A.1)

The value found was EA = 1.3kN , which is within the range 1 < EA < 1.6kN

found for a similar model reported in Franzini et al. (2015).
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