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Resumo

Nesta tese, propomos e analisamos novas versões do método Douglas-Rachford split-
ting (DRS) para operadores monótonos maximais e do alternating direction method of
multipliers (ADMM) para otimização convexa. Inicialmente, apresentamos um método
Douglas-Rachford splitting (DRS) inexato e um método Douglas-Rachford-Tseng forward-
backward (F-B) splitting para resolver inclusões monótonas de dois e quatro operadores,
respectivamente. Provamos complexidade computacional em iteração, tanto no sentido
pontual quanto no sentido ergódico, mostrando que ambos os algoritmos admitem duas
iterações diferentes: uma que pode ser incorporada ao hybrid proximal extragradient
(HPE) method de Solodov e Svaiter, para a qual a complexidade em iteração é conhecida
desde o trabalho de Monteiro e Svaiter, e outra que exige uma análise em separado. Em
seguida, estudamos o comportamento assintótico de novas variantes dos algoritmos DRS
e ADMM, ambos com efeito de relaxação e inércia, e com critério de erro relativo para
os subproblemas. Por fim, com objetivo de demonstrar a aplicabilidade dos métodos
propostos neste trabalho, realizamos experimentos numéricos aplicando nosso método
ADMM (relaxado e com inércia) aos problemas LASSO e regressão logística.

Palavras-chave: ADMM. Algoritmos de decomposição. Algoritmo de ponto proximal.
Complexidade. Critério de erro relativo. Método de Douglas-Rachford splitting inexato.
Método HPE. Métodos inerciais. Método do tipo Tseng forward-backward. Operadores
monótonos. Relaxação.
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Resumo Expandido

Introdução

Seja H um espaço de Hilbert com produto interno 〈·, ·〉 e induzido pela norma
‖ · ‖ :=

√
〈·, ·〉.

Um operator T : H⇒ H é dito monótono se

〈z − z′, v − v′〉 ≥ 0, ∀v ∈ T (z), ∀v′ ∈ T (z′). (1)

Por outro lado, T é um operador monótono maximal se T é monótono e maximal na
família dos operadores monótonos em H. A teoria de operadores monótonos e monótonos
maximais desempenha um papel central na análise não linear e, como consequência,
possui aplicações em diversas áreas como, por exemplo, análise funcional, engenharia,
física matemática, matemática aplicada e otimização.

Um problema de inclusão monótona (MIP) consiste em encontrar z ∈ H tal que

0 ∈ T (z) (2)

onde T : H⇒ H é um operador monótono maximal para o qual o conjunto solução de
(2) é não vazio. Uma grande variedade de problemas de diferentes campos da matemática
aplicada e da otimização podem ser descritos por (2).

Um dos algoritmos mais populares para encontrar soluções aproximadas do MIP (2)
é o método do ponto proximal (PP), que desenvolvido inicialmente por Martinet [60]
para resolver desigualdades variacionais monótonas (com operadores ponto-a-ponto) e
posteriormente estudado e desenvolvido por Rockafellar para um contexto mais geral
de operadores monótonos maximais. É bem conhecido que a aplicabilidade prática de
esquemas numéricos que estão baseados no cálculo exato de resolventes de operadores
monótonos depende fortemente de estratégias que permitem cálculos inexatos. Este é o
caso do algoritmo de ponto proximal. Em seu trabalho pioneiro [74], Rockafellar provou
que soluções de (2) podem ser obtidas utilizando o critério de erro somável. Este resultado
encontrou aplicações importantes no projeto e análise de muitos algoritmos práticos para
resolver problemas desafiadores em otimização e campos relacionados.

Muitas versões modernas inexatas do método ponto proximal usam tolerâncias de erro
relativas, em oposição ao critério de erro somável, para resolver os subproblemas associados.
Os primeiros métodos deste tipo foram propostos por Solodov e Svaiter em [77, 76]. Entre
esses novos métodos, o hybrid proximal extragradient (HPE) method [76], proposto por
Solodov e Svaiter em 2000, tem se destacado como uma estrutura eficaz para o projeto e
análise de muitos algoritmos concretos (por exemplo, [14, 23, 38, 51, 52, 57, 64, 65, 68,
76, 78, 79, 63]). Em 2010, a complexidade de iteração do método HPE foi provada por
Monteiro e Svaiter em [67].
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Neste trabalho, além do MIP (2), consideramos o problema de inclusão monótona de
operadores que consiste em encontrar z ∈ H tal que

0 ∈ A(z) + B(z) (3)

bem como o MIP de quatro operadores que consiste em encontrar z ∈ H tal que

0 ∈ A(z) + C(z) + F1(z) + F2(z) (4)

onde A,B e C são operadores (ponto-conjunto) monótonos maximais em H, F1 : D(F1)→
H é Lipschitz contínuo e F2 : H → H é cocoersivo. Os problemas (3) e (4) aparecem em
diferentes campos da matemática aplicada e otimização, incluindo otimização convexa,
processamento de sinais, PDEs, problemas inversos, entre outros [11, 48]. Note que,
impondo condições suaves aos operadores C, F1 e F2, o problema (4) se torna um caso
particular de (3) com B := C + F1 + F2.

Um dos algoritmos mais populares na atualidade para obter soluções aproximadas
do MIP (3) é o Douglas-Rachford splitting (DRS) method. Proposto originalmente por
Douglas e Rachford (1954), em [35], para resolução de problemas com operadores lineares,
o método DRS foi generalizado por Lions e Mercier (1979), em [56], para operadores
monótonos maximais não lineares gerais. O método DRS consiste em um método
iterativo no qual, a cada iteração, os resolventes dos operadores A e B são empregados
separadamente ao invés do resolvente do operador completo, A+B, que pode ser caro para
calcular numericamente. Deste modo, resolvemos sequencialmente dois subproblemas
regularizados (proximais) em substituição à resolução do problema completo.

Em 1992, Eckstein e Bertsekas provaram que o método DRS é um caso especial do
algoritmo de ponto proximal, em [37]. Devido a este fato, grande parte da teoria do DRS,
e sua instância especial chamada alternating direction multiplier method(ADMM) [45, 47],
podem ser analisados dentro da teoria do ponto proximal. Além disso, a equivalência entre
o método DRS e o método ponto proximal de Rockafellar esclarece a natureza proximal
do método DRS, explica o fato de que o método DRS tem propriedades de convergência
mais gerais do que outros algoritmos de separação proximal [36, 37] e permite a derivação
de novas versões inexatas e relaxadas dos métodos DRS e ADMM.

Nos últimos anos, a área de machine learning tem atraído a atenção de diversos grupos
de pesquisa, com considerável impacto nas mais diversas áreas aplicadas. Nesse contexto,
o uso de algoritmos de machine learning em grandes conjuntos de dados estatísticos
tem gerado um impacto significativo em muitas áreas, como, por exemplo, inteligência
artificial, internet, biologia computacional, medicina, marketing, publicidade, análise de
rede, logística, detecção de fraude, opinião mineração e economia, entre outros [17]. Esta
vasta gama de problemas podem ser reescritos no quadro geral de otimização convexa,
dado por

min
x∈Rn
{f(x) + g(x)} (5)

onde f, g são funções convexas em R
n.

O método de multiplicadores de direção alternada (ADMM) [45, 47] é um algoritmo
de primeira ordem simples, porém poderoso, para resolver (5), que ganhou popularidade
durante a última década, em grande parte devido à seu amplo leque de aplicações em
ciência de dados. Embora ideias semelhantes tenham aparecido ainda no início da década
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de 1950 (ver, por exemplo, [17]), o ADMM foi apresentado pela primeira vez em meados
da década de 1970 por Gabay, Mercier, Glowinski e Marroco [45, 47].

Em [46], Gabay apresentou, pela primeira vez, o ADMM como uma aplicação do
método DRS para resolução do seguinte problema de inclusão monótona

0 ∈ ∂f(x) + ∂g(x) (6)

que é, em particular, um caso especial de (3) com A = ∂g e B = ∂f (ou vice-versa).
Portanto, sob condições de qualificação padrão, o problema (6) é equivalente a (5). Essa
percepção foi crucial para a obtenção de alguns dos resultados apresentados por Eckstein
em [36, 37] e, como conseqüência, para obter os algoritmos derivados em [40] e os
algoritmos propostos por esta tese. Ao longo deste trabalho, assumimos que (6) admite
pelo menos uma solução.

A aceleração de método proximais tem sido objeto de intensa pesquisa nos últimos
anos. Uma das principais características dos algoritmos inerciais proximais é que a
iteração atual é definida a partir das duas últimas iterações. Os estudos que objetivam
acelerar a convergência dos métodos proximais concentram-se, especialmente, na adição
de informações de segunda ordem para atingir uma convergência ainda mais rápida. Uma
das principais características do algoritmo inercial proximal é que a iteração atual é
definida usando as informações das duas últimas iterações. Neste sentido, os algoritmos
inerciais para otimização convexa e inclusões monótonas [2] aparecem em conexão com
dinâmica contínua - ver, por exemplo, [2, 9, 10] - algoritmos de primeira e segunda ordem
acelerados e métodos de divisão de operador - ver, por exemplo, [7, 8, 16, 26, 27, 30, 58] -
com boas melhorias de desempenho teórico e prático em relação aos métodos anteriores.

Objetivos

• Propor e estudar a complexidade de iteração de um inexact Douglas-Rachford
splitting method e um Douglas-Rachford-Tseng’s forward-backward (F-B) splitting
method para resolver (3) e (4), respectivamente.

• Desenvolver uma sequência de três algoritmos inexatos, inercias e relaxados, cada
um baseado no anterior. O primeiro algoritmo é uma nova variante do algoritmo
do ponto proximal para (2). Nosso método proposto é uma nova variante inercial
do método de projeção proximal híbrida relaxada (HPP) de Solodov e Svaiter.
Usando este primeiro algoritmo, desenvolvemos uma nova variante inexata do
método Douglas-Rachford para resolver (3). Por fim, com base neste último método,
derivamos uma nova variante inexata do algoritmo do método de multiplicadores
de direção alternada (ADMM) para resolver problemas da forma (5).

• Ilustrar aplicabilidade dos métodos propostos neste trabalho a partir de experimentos
numéricos, que consistem na aplicação do método ADMM (relaxado e com inércia),
proposto nesta tese (Algoritmo 8), aos problemas LASSO e regressão logística.
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Metodologia

Os limites de complexidade de iteração tanto do método Douglas-Rachford splitting
inexato e quanto do método Douglas-Rachford-Tseng’s forward-backward (F-B) splitting
são obtidos no sentido pontual (não ergódico), bem como no sentido ergódico, mostrando
que eles admitem duas iterações diferentes: uma que pode ser incorporada ao método HPE,
para o qual a complexidade da iteração é conhecida desde o trabalho de Monteiro e Svaiter,
e outra que exige uma análise separada. Por outro lado, o estudo do comportamento
assintótico das novas variantes dos métodos Douglas-Rachford splitting e ADMM splitting,
ambos sob efeitos de relaxação e inércia, que fazem uso do critério inexato (erro relativo)
para resolver os subproblemas associados, está baseada essencialmente em uma nova
versão inexata do algoritmo do ponto proximal, que também foi proposta nesta tese
(Algoritmo 6), sob efeito inclui tanto de um passo inercial quanto de uma relaxação.

Resultados, Discussão e Considerações Finais

Nesta tese, propomos e analisamos algumas variantes do método Douglas-Rachford
para resolução de inclusões monótonas e do método de direção alternada de multiplicadores
para otimização convexa. Inicialmente, propomos e estudamos a complexidade de iteração
de um inexact Douglas-Rachford splitting method e um Douglas-RachfordTseng’s forward-
backward splitting method para resolver inclusões monótonas de dois e quatro operadores,
respectivamente. O primeiro método, Algoritmo 3, (embora baseado em um mecanismo
ligeiramente diferente de iteração) foi motivado pelo trabalho recente de J. Eckstein
e W. Yao, no qual um método DRS inexato é derivado de uma instância especial do
hybrid proximal extragradient (HPE) method de Solodov e Svaiter, enquanto o segundo,
Algoritmo 5, combina o método DRS inexato que propomos (Algoritmo 3) (usado
como uma iteração externa) com um método do tipo Tseng’s forward-backward splitting
(usado como uma iteração interna) para resolver os subproblemas correspondentes. Na
sequência, estudamos o comportamento assintótico de novas variantes dos métodos
Douglas-Rachford splitting e ADMM splitting, ambos sob efeitos de relaxação e inércia,
usando critério inexato (erro relativo) para resolver os subproblemas associados. Por
fim, com objetivo de demonstrar a aplicabilidade dos métodos propostos neste trabalho,
realizamos experimentos numéricos aplicando nosso método ADMM (relaxado e com
inércia) aos problemas LASSO e regressão logística. Cabe ressaltar que obtivemos um
desempenho computacional melhor do que os métodos ADMM inexatos apresentados
anteriormente por [39, 40]. Além disso, nossos resultados numéricos indicam que as
versões inexatas, propostas neste trabalho, são uma ferramenta útil para resolver de
aplicações reais que podem ser descritas pelo quadro geral de otimização convexa.

Palavras-chave: ADMM. Algoritmos de decomposição. Algoritmo de ponto proximal.
Complexidade. Critério de erro relativo. Método de Douglas-Rachford splitting inex-
ato. Método HPE. Métodos inerciais. Método Tseng forward-backward. Operadores
monótonos. Relaxação.
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Abstract

In this thesis, we propose and analyze new versions of the Douglas-Rachford splitting
(DRS) method for maximal monotone operators and the alternating direction method of
multipliers (ADMM) for convex optimization. Firstly, we present an inexact Douglas-
Rachford splitting (DRS) method and a Douglas-Rachford-Tseng’s forward-backward
(F-B) splitting method for solving two-operator and four-operator monotone inclusions,
respectively. We prove iteration-complexity bounds for both algorithms in the pointwise
(non-ergodic) as well as in the ergodic sense by showing that they admit two different
iterations: one that can be embedded into the Solodov and Svaiter’s hybrid proximal
extragradient (HPE) method, for which the iteration-complexity is known since the work
of Monteiro and Svaiter, and another one that demands a separate analysis. We also
study the asymptotic behavior of new variants of the DRS and ADMM splitting methods,
both under relaxation and inertial effects, and with inexact (relative-error) criterion for
subproblems. To demonstrate the applicability of the proposed methods, we performed
numerical experiments applying the ADMM (relaxed and inertial) on LASSO and logistic
regression problems.

Keywords: ADMM. Complexity. HPE method. Inertia. Inexact Douglas-Rachford
method. Monotone operators. Operator splitting. Proximal point algorithm. Relative
error criterion. Relaxation. Splitting. Tseng’s forward-backward method.
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Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖·‖ :=
√
〈·, ·〉.

A set-valued map T : H⇒ H is a monotone operator if

〈z − z′, v − v′〉 ≥ 0, ∀v ∈ T (z), ∀v′ ∈ T (z′). (7)

On the other hand, T is a maximal monotone operator if T is monotone and T = S
whenever S is monotone on H and T ⊆ S.

According to [36], the definition of maximal monotone operator first appeared in [53].
The theory of monotone and maximal monotone operators plays a central role in nonlinear
analysis and consequently has numerous applications in functional analysis, engineering,
mathematical physics, applied mathematics, and optimization. An example of a monotone
operator is the subdifferential operator ∂f , which is an effective tool in the analysis of
nondifferentiable convex functions and algorithms in convex programming [11, 28, 36].

The pioneering work of Rockafellar [74, 75] clarified the role of monotone operators
in the area of mathematical programming and established conditions for the maximal
monotonicity of subdifferential mappings, the maximality of sum of two operators, among
other relevant results. In 1976, he studied and developed the proximal point (PP)
algorithm for solving the monotone inclusion problem (MIP), i.e., the problem of finding
z ∈ H such that

0 ∈ T (z) (8)

where T : H⇒ H is maximal monotone. A wide variety of problems of different fields of
applied mathematics and optimization can be placed in the structure of (8). Moreover,
this formulation is at the core of the modeling of inverse problems for solving diverse
real-world problems; as for example, in phase retrieval, in sensor networks, in comprised
tomography, and data compression [41]. An example of this is when T = ∂f , with f a
convex function, which reduces problem (8) to the problem of minimizing f .

The term “proximal point” was originally coined in French by Moreau [70] at the
beginning of the 1960s. The PP method was firstly proposed for solving variational
inequalities, at the beginning of the 1970s, by Martinet [60] and later on popularized
by the work of Rockafellar in [74, 75]. In its exact formulation, an iteration of the PP
method can be described as

zk = (λkT + I)−1zk−1 ∀k ≥ 1, (9)

where λk > 0 is a stepsize parameter and zk−1 is the current iterate. In [74], Rockafellar
proved that if, at each iteration k ≥ 1, zk is computed satisfying

‖zk − (λkT + I)−1zk−1‖ ≤ ek,
∞∑

k=1

ek <∞, (10)
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and {λk} is bounded away from zero, then {zk} converges (weakly, in infinite dimensions)
to a solution of (8). This result has found important applications in the design and
analysis of many practical algorithms for solving challenging problems in optimization
and related fields [36].

In this thesis, we consider the two-operator MIP of finding z such that

0 ∈ A(z) + B(z) (11)

as well as the four-operator MIP, i.e., of finding z such that

0 ∈ A(z) + C(z) + F1(z) + F2(z) (12)

where A, B, and C are (set-valued) maximal monotone operators on H, F1 : D(F1)→ H
is (point-to-point) Lipschitz continuous and F2 : H → H is (point-to-point) cocoercive
(see Section 2.2 for the precise statement). Problems (11) and (12) appear in different
fields of applied mathematics and optimization, including convex optimization, signal
processing, PDEs, inverse problems, among others [11, 48]. Under mild conditions on
the operators C, F1, and F2, problem (12) becomes a special instance of (11) with
B := C + F1 + F2.

One of the most popular algorithms for finding approximate solutions of (11) is the
Douglas-Rachford splitting (DRS) method. It consists of an iterative method in which, at
each iteration, the solutions of two regularized (proximal) subproblems are computed
sequentially. In other words, at each iteration, the resolvents JγA = (γA + I)−1 and
JγB = (γB + I)−1 of A and B, respectively, are employed separately instead of the
resolvent Jγ(A+B) = (γ(A+B) + I)−1 of the full operator A+B, which may be expensive
to compute numerically.

An iteration of the method can be described by

zk = JγA(2JγB(z
k−1)− zk−1) + zk−1 − JγB(zk−1) ∀k ≥ 1, (13)

where γ > 0 is a scaling parameter and zk−1 is the current iterate. The DRS method
was originally proposed by Douglas and Rachford (1954), in [35], for the power-series
analysis of a discretization of the heat equation and generalized by Lions and Mercier
(1979), in [56], for general nonlinear maximal monotone operators, where the formulation
(13) was first obtained.

In [37], Eckstein and Bertsekas proved that the DRS method (13) is a special case of
the PP method (9) with λk ≡ 1 and T := Sγ,A,B, where Sγ,A,B is a maximal monotone
operator on H whose graph is

Sγ,A,B = {(y + γb, γa+ γb) ∈ H ×H | b ∈ B(x), a ∈ A(y), γa+ y = x− γb} . (14)

The splitting operator Sγ,A,B is fundamental for proving that the DRS method is,
actually, an application of the proximal point algorithm. Due to this fact, much of the
theory of the DRS, and its special instance so-called alternating direction method of
multipliers (ADMM) [45, 47], can be analyzed within the proximal point theory.

The Eckstein and Bertsekas’ result also clarifies the proximal nature of the DRS
method and gives some intuition to the fact that the DRS method has more general
convergence properties than other proximal splitting algorithms [36, 37]. Moreover, the
equivalence between (13) and the PP method of Rockafellar allowed [37] to derive new
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inexact and relaxed versions of the DRS and ADMM methods, after describing (13)
according to the following procedure:

compute (xk, bk) such that bk ∈ B(xk) and γbk + xk = zk−1, (15)

compute (yk, ak) such that ak ∈ A(yk) and γak + yk = xk − γbk,
set zk = yk + γbk. (16)

As an alternative to the summable error criterion (10), many modern inexact versions
of the PP method use relative error tolerances for solving the associated proximal
subproblems. The first methods of this type were proposed by Solodov and Svaiter
in [76, 77] and subsequently studied in [66, 67, 68, 78, 79]. The key idea consists in
decoupling (9) as an inclusion-equation system:

v ∈ T (z+), λv + z+ − z = 0, (17)

where (z, z+, λ) := (zk−1, zk, λk), and relaxing (17) within relative error tolerance criteria.
Among these new methods, the hybrid proximal extragradient (HPE) method [76] has
been very effective as a framework for the design and analysis of many concrete algorithms
(see, e.g., [14, 23, 38, 51, 52, 57, 63, 64, 65, 68, 76, 78, 79]).

In this thesis, we propose and study the iteration-complexity of an inexact Douglas-
Rachford splitting method (Algorithm 3) and of a Douglas-Rachford-Tseng’s forward-
backward (F-B) four-operator splitting method (Algorithm 5) for solving (11) and (12),
respectively. The former method is inspired and motivated (although based on a slightly
different mechanism of iteration) by the recent work of J. Eckstein and W. Yao [40],
while the latter one, which, in particular, will be shown to be a special instance of the
former, is motivated by some variants of the Tseng’s F-B splitting method [84] recently
proposed in the current literature [6, 20, 66]. For more detailed information about the
contributions of this thesis in light of reference [40], we refer the reader to the first remark
after Algorithm 3. Moreover, we mention that, contrary to the majority of proximal
splitting algorithms for solving problems with more than two blocks, Algorithm 5 is a
purely primal splitting method for solving the four-operator MIP (12).

In the last years, the area of machine learning has attracted the attention of many
research groups, with considerable impact in applied fields. In this context, the use of
machine learning algorithms on large datasets in statistics has generated a significant
impact in many areas, such as artificial intelligence, the internet, computational biology,
medicine, marketing, advertising, network analysis, logistics, fraud detection, opinion
mining, and economics, among others [17]. These problems can be posed in the general
framework of convex optimization

min
x∈Rn
{f(x) + g(x)} (18)

where f, g are convex functions in R
n.

The ADMM [45, 47] is a simple and yet powerful first-order algorithm for solving (18).
It became popular over the last decade largely due to its wide range of applications in
data science. It was first presented in the mid-1970s by Gabay, Mercier, Glowinski, and
Marroco [45, 47], although similar ideas appeared still early in the 1950s (see, e.g., [17]).
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When applied to (18), one iteration of the method can be described as

xk+1 ∈ argminx∈Rn

{
f(x) + 〈pk, x〉+ c

2
‖x− zk‖2

}
, (19)

zk+1 ∈ argminz∈Rn

{
g(z)− 〈pk, z〉+ c

2
‖xk+1 − z‖2

}
, (20)

pk+1 = pk + c(xk+1 − zk+1), (21)

where c > 0 is a penalization parameter. The ADMM blends the advantages of dual
decomposition and augmented Lagrangian for constrained optimization, and can be
described as a coordinated decomposition procedure, in which the solutions of local
subproblems (minors) are coordinated to find the solution of a global (larger) problem
(see, e.g. [17]). However, unlike the augmented Lagrangian, in the ADMM the variables
x and z are updated in an alternated (or sequential) fashion (see (19) and (20)), which
accounts for the term alternating direction.

Moreover, in many applications, while one of the subproblems has a closed-form
solution (e.g., when g(·) = ‖ · ‖1), the other one can be expensive to solve numerically.
Motivated by this, many inexact versions of the ADMM method (19)–(20) have been
proposed (see, e.g., Algorithm 8 in Chapter 3).

In [46], Gabay presented, for the first time, the ADMM as an application of the DRS
method for solving

0 ∈ ∂f(x) + ∂g(x) (22)

which is, in particular, a special case of (11) with A = ∂g and B = ∂f (or vice
versa). Problem (22) is, under standard qualification conditions, equivalent to (18). This
perception was crucial to obtain some of the results presented by Eckstein in [36, 37] and,
as a consequence, to obtain the algorithms proposed in [40] as well as the ones in this
thesis.

Inertial algorithms for convex optimization and monotone inclusions [2] has been a
subject of intense research in recent years. They appear in connection with continuous
dynamics — see, e.g., [2, 9, 10] — accelerated first- and second-order algorithms, and
operator splitting methods — see e.g., [7, 8, 16, 26, 27, 30, 58] — with good theoretical
and practical performance improvements over prior methods.

This thesis develops a sequence of three inertial algorithms, each building on the
previous one. The first algorithm (Algorithm 6) is a new variant of the PP algorithm [74]
for solving the problem (8). It is, in particular, a new inertial variant of the relaxed
hybrid proximal projection (HPP) method introduced in [79]; see also [77]. It lacks
the full generality of [79], but introduces a new “inertial” step modification. From the
first algorithm, we then develop a new inexact variant of the DRS method for solving
monotone inclusion problems of the form (11). For such, we follow a similar derivation
to [37], but use our Algorithm 6 in place of the HPE method of [76]. The resulting
algorithm is an inertial-relaxed (inexact) relative-error DRS and is presented in Section
3.2 as Algorithm 7.

Finally, based on this latter method, we derive a new inexact variant of the ADMM
algorithm for solving convex optimization problems of the form of (18). The resulting
algorithm is presented in Section 3.3 as Algorithm 8. Using the well-known LASSO
and logistic regression problems as examples, we perform some computational tests in
Section 3.4 to show the applicability of the methods proposed in this work. Our numerical
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results showed better computational performance in terms of the number of iterations and
execution time, when compared to earlier proposed inexact ADMM methods in [39, 40].

The main contributions of this thesis

The path for developing inexact DRS and ADMM methods was pioneered in [37] and
is also taken in the more recent paper by Eckstein and Yao [40]. In both cases, one takes
an approximate form of PP method [74] and uses it to obtain an approximate form of
DRS, which can then be used to obtain new variants of the ADMM.

In this thesis, motivated by [40], we derive new inexact variants of the DRS method
for maximal monotone operators and the ADMM for convex optimization. Firstly, we
develop in Section 2.1 an inexact version of the DRS method (Algorithm 3) for solving
(11) in which inexact computations are allowed in both the inclusion and the equation in
(15). At each iteration, instead of a point in the graph of B, Algorithm 3 computes a
point in the graph of the ε-enlargement Bε of B (it has the property that Bε(z) ⊃ B(z)).
Moreover, contrary to the reference [40], we study the iteration-complexity of the proposed
method for solving (11). We show that Algorithm 3 admits two types of iterations, one
that can be embedded into the HPE method and another one that demands a separate
analysis. We emphasize again that, although motivated by the latter reference, the
Douglas-Rachford type method proposed in Chapter 2 is based on a slightly different
mechanism of iteration, specially designed to allow its iteration-complexity analysis (see
Theorems 2.1.5 and 2.1.6).

Secondly, in Section 2.2, we consider the four-operator MIP (12), for which we propose
and study the iteration-complexity a Douglas-Rachford-Tseng’s F-B splitting type method
(Algorithm 5), which combines Algorithm 3 (as an outer iteration) and a Tseng’s F-B
splitting type method (Algorithm 4) (as an inner iteration) for solving the corresponding
subproblems. The resulting algorithm, namely Algorithm 5, has a fully splitting nature
and solves (12) without introducing additional variables.

Finally, in Chapter 3, we derive new inertial inexact variants of the PP, DRS and
ADMM methods. One of the main differences between Chapter 3 and the development
of “admm_primDR” in [40] is in the underlying variant of the PP algorithm. The
“admm_primDR” analysis used the HPE method [76] due to Solodov and Svaiter, whereas
here we use the new inexact HPP developed in Section 3.1. Moreover, contrary to [40],
we introduce inertial and relaxation effects, which substantially improves the numerical
performance of our algorithms. Our general approach resembles that of [40] that it
using a primal derivation and the “coupling matrix” between f and g in the optimization
formulation must be the identity, whereas [37], drawing on early work in [46], uses a dual
derivation, and allows for more general coupling matrices. Our analysis is also much
closer to [40] than that of [39], which uses a primal-dual “Lagrangian splitting” analysis
patterned after [43]. Moreover, the inertial methods proposed in this thesis have the
novel property of simultaneously combining inexact iterations, inertia, and relaxation,
with the maximum inertial step α and maximum relaxation factor ρ̄ that are subject
to a mutual constraint; see (3.1.20) and (3.1.21). Thus, we may choose the inertia and
relaxation parameters independently of the relative-error tolerances.
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Most related works

In [18], the relaxed forward-Douglas-Rachford splitting (rFDRS) method was proposed
and studied to solve three-operator MIPs consisting of (12) with C = NV , V closed vector
subspace, and F1 = 0. Subsequently, among other results, the iteration-complexity of the
latter method (specialized to variational problems) was analyzed in [31]. Problem (12)
with F1 = 0 was also considered in [32], where a three-operator splitting (TOS) method
was proposed and its iteration-complexity studied. On the other hand, problem (12)
with C = NV and F2 = 0 was studied in [19], where the forward-partial inverse-forward
splitting method was proposed and analyzed. In [20], a Tseng’s F-B splitting type method
was proposed and analyzed to solve the special instance of (12) in which C = 0.

The iteration-complexity of a relaxed Peaceman-Rachford splitting method for solving
(11) was recently studied in [69]. The method of [69] was shown to be a special instance
of a non-Euclidean HPE framework, for which the iteration-complexity was also analyzed
in the latter reference (see also [49]). Two inexact versions of the ADMM were presented
in [39]. The first method uses an absolutely summable error criterion and the second
method uses a relative error criterion. Moreover, as we mentioned earlier, an inexact
version of the DRS method for solving (11) was proposed and studied in [40]. Both in [39]
and [40], various approximate forms of ADMM were tested computationally on different
classes of problems. A different inexact of Douglas-Rachford method, in which both
proximal subproblems are solved within a relative error tolerance, was recently proposed
and studied in [82], but without computational testings. The sequences generated by this
method converge weakly to the solution of the underlying inclusion problem, if any.

Presentation of chapters

This thesis is divided into three chapters, as described below.

Chapter 1: This chapter summarizes some definitions and preliminary results that
contribute to structure, analyze, and clarify the nature of the methods proposed in this
thesis. For more details, the material presented here can be readily found (often in more
general form) in [21, 36, 67]. We start, in Section 1.1, by presenting the general notation
and some basic concepts about convexity, maximal monotone operators, ε-enlargements,
and related facts. Section 1.2 is dedicated to a concise review of the DRS, Rockafellar’s
PP and Solodov-Svaiter’s HPE methods (Algorithm 1), as well as of a special version
of the HPE method (Algorithm 2) of Marques Alves, Monteiro, and Svaiter for solving
strongly monotone inclusions. Some results on the convergence analysis of the latter two
methods are also presented in this section. These results are fundamental for studying
the iteration-complexity of methods developed in Chapter 2.

Chapter 2: This chapter is devoted to developing and studying the iteration-
complexity of an inexact DRS method and a Douglas-Rachford-Tseng’s forward-backward
(F-B) splitting method for solving two-operator and four-operator monotone inclusions,
respectively. It is divided into two sections. In Section 2.1, we present the first method
(Algorithm 3) which, although based on a slightly different mechanism of iteration, is
motivated by the recent work of J. Eckstein and W. Yao [40], in which an inexact DRS
method is derived from a special instance of the HPE method of Solodov and Svaiter.
The second method (Algorithm 5) proposed in this chapter is introduced in Section 2.2,
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it combines the proposed inexact DRS method (Algorithm 3, used as an outer iteration)
with a Tseng’s F-B splitting type method (used as an inner iteration) for solving the
corresponding subproblems. In this context, we prove iteration-complexity bounds for
the two algorithms, in both sections, in the pointwise (non-ergodic) (Theorems 2.1.5
and 2.2.3) as well as in the ergodic sense (Theorems 2.1.6 and 2.2.4) by showing that
they admit two different iterations: one that can be embedded into the HPE method,
for which the iteration-complexity is known since the paper of Monteiro and Svaiter [67],
and another one which demands a separate analysis.

The results of this chapter were published in [4].

Chapter 3: This chapter derives new inexact variants of the DRS method for
maximal monotone operators and ADMM for convex optimization. The analysis of these
two algorithms is based on our inertial-relaxed HPP method (Algorithm 6) presented in
Section 3.1. It consists of a new inertial variant of the relaxed HPP method introduced
in [79] (see also [77]), which includes both an inertial step and an overrelaxation. In this
sense, it is important to emphasize that our method does not have the full generality of [79].
Nonetheless, it introduces a new “inertial” step modification. In Theorems 3.1.4 and 3.1.5
we prove the convergence analysis of Algorithm 6. Using our first algorithm (HPP
method), Section 3.2 develops an inexact inertial-relaxed DRS method (Algorithm 7),
for two-operator monotone inclusion problems of the form (11), for which convergence
is established in Theorem 3.2.3. Section 3.3 then uses inertial-relaxed DR method to
derive a partially inexact relative-error ADMM method (Algorithm 8) for solving convex
optimization problems of the form (18). The main result of this section is Theorem 3.3.4.
Finally, we perform some computational tests of this last algorithm in Section 3.4 using
the well-known LASSO and logistic regression problems as examples, finding better
practical performance than earlier proposed inexact ADMM methods [39, 40].

The results of this chapter were published in [3].
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Chapter 1

Preliminaries and background

materials

In this chapter, we present some definitions and preliminary results that contribute to
structure, analyze, and clarify the nature of the methods developed in the other chapters.
We start by recalling notations, definitions, and some preliminary materials of convexity,
maximal monotone operators, and ε-enlargements, that shall be used throughout this
thesis. In Section 1.2, we briefly review the following methods: DRS, Rockafellar’s PP,
HPE of Solodov and Svaiter (Algorithm 1), and a special version of the HPE method
(Algorithm 2) proposed by Marques Alves, Monteiro, and Svaiter to solve strongly
monotone inclusions. To clarify the analysis of the methods proposed in Chapter 2,
in Subsections 1.2.4 and 1.2.5 we recall the pointwise and ergodic iteration-complexity
bounds of Algorithms 1 and 2, respectively.

For further details regarding the results presented in this chapter, we refer the reader
to [21, 36, 67].

1.1 General notation and ε-enlargements

Throughout this thesis H is a real Hilbert space with the inner product 〈·, ·〉 and
induced norm ‖ · ‖ :=

√
〈·, ·〉 and H×H denotes the Cartesian product endowed with

the usual inner product and norm.
As we mentioned in the Introduction, the theory of (set-valued) maximal monotone

operators plays a relevant role in different fields of applied mathematics and optimization
including convex optimization, signal processing, PDEs, inverse problems, among others
[11, 48]. Next, we review some basic definitions, facts, and notations from (set-valued)
maximal monotone operators that will be used throughout this thesis.

A set-valued map T : H⇒ H is monotone if 〈z− z′, v− v′〉 ≥ 0, ∀v ∈ T (z), ∀v′ ∈
T (z′). On the other hand, T is a maximal monotone operator if T is monotone and T = S
whenever S is monotone on H and T ⊆ S. Here, we identify any monotone operator T
with its graph, i.e., we set: T = {(z, v) ∈ H × H | v ∈ T (z)}. The sum T + S of two
set-valued maps T, S is defined via the usual Minkowski sum and for λ ≥ 0 the operator
λT is defined by (λT )(z) = λT (z) := {λv | v ∈ T (z)}. The inverse of T : H ⇒ H,
denoted by T−1 : H ⇒ H, is defined by v ∈ T−1(z) if and only if z ∈ T (v). Moreover,
the set of zeros of T : H ⇒ H is given by zer(T ) := T−1(0) = {z ∈ H | 0 ∈ T (z)}. The
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resolvent of a maximal monotone operator T is JT := (T + I)−1, where I denotes the
identity map on H, and, in particular, the following holds: x = JλT (z) if and only if
λ−1(z − x) ∈ T (x) if and only if 0 ∈ λT (x) + x− z. According to Minty in [62], if T is a
maximal monotone operator, its resolvent is single-value operator defined everywhere on
H.

We denote by ∂εf the usual ε-subdifferential of a proper closed convex function f :
H → (−∞,+∞], defined by ∂εf(z) := {v ∈ H : f(z′) ≥ f(z) + 〈v, z′− z〉 − ε ∀z′ ∈ H},
and by ∂f := ∂f0 the Fenchel-subdifferencial of f as well. The normal cone of a closed
convex set X will be denoted by NX and by PX the orthogonal projection onto X.

For T : H ⇒ H maximal monotone and ε ≥ 0, the ε-enlargement [21] of T is the
operator T ε : H⇒ H defined by

T ε(z) := {v ∈ H | 〈z − z′, v − v′〉 ≥ −ε ∀(z′, v′) ∈ T} ∀z ∈ H. (1.1.1)

Note that T (z) ⊂ T ε(z) for all z ∈ H.
The following proposition summarizes some useful properties of T ε which will be

useful in this thesis (see [67, Proposition 2.1]).

Proposition 1.1.1. Let T, S : H⇒ H be set-valued maps. Then,

(a) if ε ≤ ε′, then T ε(x) ⊆ T ε′(x) for every x ∈ H;

(b) T ε(x) + S ε′(x) ⊆ (T + S)ε+ε′(x) for every x ∈ H and ε, ε′ ≥ 0;

(c) T is monotone if, and only if, T ⊆ T 0;

(d) T is maximal monotone if, and only if, T = T 0;

Next we present the transportation formula for ε-enlargements.

Theorem 1.1.2. ([22, Theorem 2.3]) Suppose T : H⇒ H is maximal monotone and let
zℓ, vℓ ∈ H, εℓ, αℓ ∈ R+, for ℓ = 1, . . . , j, be such that

vℓ ∈ T εℓ(zℓ), ℓ = 1, . . . , j,

j∑

ℓ=1

αℓ = 1,

and define

zj :=

j∑

ℓ=1

αℓ zℓ , vj :=

j∑

ℓ=1

αℓ vℓ , εj :=

j∑

ℓ=1

αℓ [εℓ + 〈zℓ − zj, vℓ − vj〉] .

Then, the following hold:

(a) εj ≥ 0 and vj ∈ T εj(zj).

(b) If, in addition, T = ∂f for some proper, convex and closed function f and vℓ ∈
∂εℓf(zℓ) for ℓ = 1, . . . , j, then vj ∈ ∂εjf(zj).
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1.2 Proximal point and operator splitting methods

1.2.1 The Douglas-Rachford splitting (DRS) method

One of the most popular algorithms for finding approximate solutions of (11) is the
Douglas-Rachford splitting (DRS) method. It consists of an iterative procedure in which
at each iteration the resolvents JγA = (γA + I)−1 and JγB = (γB + I)−1 of A and B,
respectively, are employed separately instead of the resolvent Jγ(A+B) of the full operator
A+B, which may be expensive to compute numerically. An iteration of the method can
be described as in (13), i.e.,

zk = JγA(2JγB(zk−1)− zk−1) + zk−1 − JγB(zk−1) ∀k ≥ 1, (1.2.1)

where γ > 0 is a scaling parameter and zk−1 is the current iterate. Originally proposed in
[35] for solving problems with linear operators, the DRS method was generalized in [56]
for general nonlinear maximal monotone operators, where the formulation (1.2.1) was
first obtained. It was proved in [56] that {zk} converges (weakly, in infinite dimensional
Hilbert spaces) to some z∗ such that x∗ := JγB(z

∗) is a solution of (11). Recently, [80]
solved the long standing open question of proving the weak convergence of the sequence
JγB(zk) to a solution of (11).

1.2.2 The Rockafellar’s proximal point (PP) method

The proximal point (PP) method is an iterative method for seeking approximate
solutions of the MIP (8), i.e.,

0 ∈ T (z) (1.2.2)

where T is a maximal monotone operator on H for which the solution set of (1.2.2) is
nonempty. It was first proposed by Martinet [60] for solving monotone variational inequal-
ities (with point-to-point operators) and further studied and developed by Rockafellar.
In its exact formulation, an iteration of the PP method can be described as in (9), i.e.,

zk = (λkT + I)−1zk−1 ∀k ≥ 1, (1.2.3)

where λk > 0 is a stepsize parameter and zk−1 is the current iterate. It is well-known
that the practical applicability of numerical schemes based on the exact computation of
resolvents of monotone operators strongly depends on strategies that allow for inexact
computations. This is the case of the PP method (1.2.3). In his pioneering work [74],
Rockafellar proved that if, at each iteration k ≥ 1, zk is computed satisfying (10), i.e.,

‖zk − (λkT + I)−1zk−1‖ ≤ ek,
∞∑

k=1

ek <∞, (1.2.4)

and {λk} is bounded away from zero, then {zk} converges (weakly, in infinite dimensions)
to a solution of (1.2.2). This result has found important applications in the design and
analysis of many practical algorithms for solving challenging problems in optimization
and related fields.
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1.2.3 The DRS method is an instance of the PP method (Eck-
stein and Bertsekas)

In [37], the DRS method (1.2.1) was shown to be a special instance of the PP method
(1.2.3) with λk ≡ 1. More precisely, it was observed in [37] (among other results) that
the sequence {zk} in (1.2.1) satisfies

zk = (Sγ,A,B + I)−1zk−1 ∀k ≥ 1, (1.2.5)

where Sγ,A,B is the maximal monotone operator on H whose graph is given by (14), i.e.,

Sγ,A,B = {(y + γb, γa+ γb) ∈ H ×H | b ∈ B(x), a ∈ A(y), γa+ y = x− γb} . (1.2.6)

It can be easily checked that z∗ is a solution of (11) if and only if z∗ = JγB(x
∗) for some

x∗ such that 0 ∈ Sγ,AB(x
∗). The fact that (1.2.1) is equivalent to (1.2.5) clarifies the

proximal nature of the DRS method and as a consequence, much of the theory of PP
method can be transported to the DRS context and its special cases, included the ADMM.
Moreover, allowed that [37] to obtain inexact and relaxed versions of the DRS and ADMM
methods by alternatively describing (1.2.5) according to the procedure (15)-(16), given
by:

compute (xk, bk) such that bk ∈ B(xk) and γbk + xk = zk−1; (1.2.7)

compute (yk, ak) such that ak ∈ A(yk) and γak + yk = xk − γbk;
set zk = yk + γbk. (1.2.8)

1.2.4 The hybrid proximal extragradient (HPE) method of Solodov
and Svaiter

Consider the monotone inclusion problem (MIP) (8), i.e.,

0 ∈ T (z) (1.2.9)

where T : H⇒ H is a maximal monotone operator for which the solution set T−1(0) of
(1.2.9) is nonempty.

Many applications recent interest in different fields of applied mathematics and
optimization can be presented in the framework of monotone inclusion problem (8). As
we mentioned earlier, the proximal point (PP) method of Rockafellar [74] is one of the
most popular algorithms for finding approximate solutions of (1.2.9). Among the modern
inexact versions of the PP method, the hybrid proximal extragradient (HPE) method
of [76], which we present in what follows, has been shown to be very effective how a
framework for the design and analysis of many concrete algorithms (see e.g. [14, 23, 38,
51, 52, 57, 64, 65, 68, 76, 78, 79, 63]).
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Algorithm 1. Hybrid proximal extragradient (HPE) method for (1.2.9)

(0) Let z0 ∈ H and σ ∈ [0, 1) be given and set j ← 1.

(1) Compute (z̃j, vj, εj) ∈ H ×H× R+ and λj > 0 such that

vj ∈ T εj(z̃j), ‖λjvj + z̃j − zj−1‖2 + 2λjεj ≤ σ2‖z̃j − zj−1‖2. (1.2.10)

(2) Define

zj = zj−1 − λjvj, (1.2.11)

set j ← j + 1 and go to step 1.

Remarks.

1. If σ = 0 in (1.2.10), then it follows from Proposition 1.1.1(d) and (1.2.11) that
(z+, v) := (zj, vj) and λ := λj > 0 satisfy (17), which means that the HPE method
generalizes the exact Rockafellar’s PP method.

2. Condition (1.2.10) clearly relaxes both the inclusion and the equation in (17) within
a relative error criterion. Recall that T ε(·) denotes the ε-enlargement of T and
has the property that T ε(z) ⊃ T (z) (see Subsection 1.1 for details). Moreover, in
(1.2.11) an extragradient step from the current iterate zj−1 gives the next iterate zj .

3. We emphasize that specific strategies for computing the triple (z̃j, vj, εj) as well as
the stepsize λj > 0 satisfying (1.2.10) will depend on the particular instance of the
problem (1.2.9) under consideration. On the other hand, as mentioned before, the
HPE method can also be used as a framework for the design and analysis of concrete
algorithms for solving specific instances of (1.2.9) (see, e.g., [38, 64, 65, 66, 67, 68]).
We also refer the reader to Sections 2.1 and 2.2, in this work, for applications of the
HPE method in the context of decomposition/splitting algorithms for monotone
inclusions.

Since the appearance of the paper [67], we have seen an increasing interest in studding
the iteration-complexity of the HPE method and its special instances (e.g., Tseng’s forward-
backward splitting method, Korpelevich extragradient method and ADMM [66, 67, 68]).
This depends on the following termination criterion [67]: given tolerances ρ, ǫ > 0, find
z, v ∈ H and ε > 0 such that

v ∈ T ε(z), ‖v‖ ≤ ρ, ε ≤ ǫ. (1.2.12)

Note that, by Proposition 1.1.1(d), if ρ = ǫ = 0 in (1.2.12) then 0 ∈ T (z), i.e., z ∈ T−1(0).
We now summarize the main results on pointwise (non ergodic) and ergodic iteration-

complexity [67] of the HPE method that will be used in this thesis. The aggregate stepsize
sequence {Λj} and the ergodic sequences {z̃j}, {vj}, {εj} associated to {λj} and {z̃j},

29



{vj}, and {εj} are, respectively,

Λj :=

j∑

ℓ=1

λℓ , (1.2.13)

z̃j :=
1

Λj

j∑

ℓ=1

λℓ z̃ℓ, vj :=
1

Λj

j∑

ℓ=1

λℓ vℓ, (1.2.14)

εj :=
1

Λj

j∑

ℓ=1

λℓ

[
εℓ + 〈z̃ℓ − z̃j, vℓ − vj〉

]
=

1

Λj

j∑

ℓ=1

λℓ

[
εℓ + 〈z̃ℓ − z̃j, vℓ〉

]
. (1.2.15)

Theorem 1.2.1 ([67, Theorem 4.4(a) and 4.7]). Let {z̃j}, {vj}, etc, be generated by the
HPE method (Algorithm 1) and let {z̃j}, {vj}, etc, be given in (1.2.13)–(1.2.15). Let
also d0 denote the distance from z0 to T−1(0) 6= ∅ and assume that λj ≥ λ > 0 for all
j ≥ 1. Then, the following hold:

(a) For any j ≥ 1, there exists i ∈ {1, . . . , j} such that

vi ∈ T εi(z̃i), ‖vi‖ ≤
d0
λ
√
j

√
1 + σ

1− σ , εi ≤
σ2d20

2(1− σ2)λ j
.

(b) For any j ≥ 1,

vj ∈ T εj(z̃j), ‖vj‖ ≤
2d0
λ j

, εj ≤
2(1 + σ/

√
1− σ2)d20

λ j
.

Remark.

The (pointwise and ergodic) bounds given in (a) and (b) of Theorem 1.2.1 guarantee,
respectively, that for given tolerances ρ, ǫ > 0, the termination criterion (1.2.12) is
satisfied in at most

O
(
max

{
d20
λ2ρ2

,
d20
λǫ

})
and O

(
max

{
d0
λρ
,
d20
λǫ

})

iterations, respectively. We refer the reader to [67] for a complete study of the
iteration-complexity of the HPE method and its special instances.

The proposition below will be useful in the next sections.

Proposition 1.2.2 ([67, Lemma 4.2 and Eq. (34)]). Let {zj} be generated by the
HPE method (Algorithm 1). Then, for any z∗ ∈ T−1(0), the sequence {‖z∗ − zj‖} is
nonincreasing. As a consequence, for every j ≥ 1, we have

‖zj − z0‖ ≤ 2d0,

where d0 denotes the distance of z0 to T−1(0).
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1.2.5 A HPE variant for strongly monotone sums

We now consider the MIP

0 ∈ S(z) + B(z) =: T (z) (1.2.16)

where the following is assumed to hold:

(C1) S and B are maximal monotone operators on H;

(C2) S is (additionally) µ–strongly monotone for some µ > 0, i.e., there exists µ > 0
such that

〈z − z′, v − v′〉 ≥ µ‖z − z′‖2 ∀v ∈ S(z), v′ ∈ S(z′);

(C3) the solution set (S +B)−1(0) of (1.2.16) is nonempty.

The main motivation to consider the above setting is Subsection 2.2.1, in which the
monotone inclusion (2.2.5) is clearly a special instance of (1.2.16) with S(·) := (1/γ)(·−z̊),
which is obviously (1/γ)-strongly maximal monotone on H.

The algorithm below was proposed and studied, however using a different notation,
in [6, Algorithm 1].

Algorithm 2. A specialized HPE method for solving strongly monotone in-
clusions

(0) Let z0 ∈ H and σ ∈ [0, 1) be given and set j ← 1.

(1) Compute (z̃j, vj, εj) ∈ H ×H× R+ and λj > 0 such that

vj ∈ S(z̃j) + Bεj(z̃j), ‖λjvj + z̃j − zj−1‖2 + 2λjεj ≤ σ2‖z̃j − zj−1‖2. (1.2.17)

(2) Define

zj = zj−1 − λjvj, (1.2.18)

set j ← j + 1 and go to step 1.

Next proposition will be useful in Subsection 2.2.1.

Proposition 1.2.3 ([6, Proposition 2.2]). Let {z̃j}, {vj} and {εj} be generated by
Algorithm 2, let z∗ := (S +B)−1(0) and d0 := ‖z0 − z∗‖. Assume that λj ≥ λ > 0 for all
j ≥ 1 and define

α :=

(
1

2λµ
+

1

1− σ2

)−1

∈ (0, 1).

31



Then, for all j ≥ 1,

vj ∈ S(z̃j) + Bεj(z̃j),

‖vj‖ ≤
√

1 + σ

1− σ

(
(1− α)(j−1)/2

λ

)
d0,

εj ≤
σ2

2(1− σ2)

(
(1− α)j−1

λ

)
d 2
0 .
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Chapter 2

Iteration-complexity of an inexact

Douglas-Rachford method and of a

Douglas-Rachford-Tseng’s F-B

four-operator splitting method for

solving monotone inclusions

In this chapter, we propose and study the iteration-complexity of an inexact Douglas-
Rachford splitting method and a Douglas-Rachford-Tseng’s forward-backward splitting
method for solving two-operator and four-operator monotone inclusions, respectively. We
prove iteration-complexity bounds for both algorithms in the pointwise and the ergodic
sense by showing that they admit two different iterations: one that can be embedded into
the HPE method, for which the iteration-complexity is known since the work of Monteiro
and Svaiter, and another one which demands a separate analysis.

This chapter is organized as follows. In Section 2.1, we present the first method
(Algorithm 3) in which inexact computations are allowed in both the inclusion and the
equation in (1.2.7). The main results of this section are Theorem 2.1.5 and Theorem
2.1.6. In Section 2.2, we derive the second method (Algorithm 5 that combines Algorithm
3 (used as an outer iteration) with a Tseng’s F-B splitting type method (Algorithm 4),
used as an inner iteration) for solving the corresponding subproblems. The main results
of this section are Theorem 2.2.3 and Theorem 2.2.4.

The results of this chapter were published in [4].

2.1 An inexact Douglas-Rachford splitting (DRS) method

and its iteration-complexity

Consider problem (11), i.e., the problem of finding z ∈ H such that

0 ∈ A(z) + B(z) (2.1.1)

where the following hold:

(D1) A and B are maximal monotone operators on H;
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(D2) the solution set (A+B)−1(0) of (2.1.1) is nonempty.

In this section, we propose and analyze the iteration-complexity of an inexact version
of the Douglas-Rachford splitting (DRS) method [56] for finding approximate solutions of
(2.1.1) according to the following termination criterion: given tolerances ρ, ǫ > 0, find
a, b, x, y ∈ H and εa, εb ≥ 0 such that

a ∈ Aεa(y), b ∈ Bεb(x),

γ‖a+ b‖ = ‖x− y‖ ≤ ρ,

εa + εb ≤ ǫ,

(2.1.2)

where γ > 0 is a scaling parameter. Note that if ρ = ǫ = 0 in (2.1.2), then z∗ := x = y is
a solution of (2.1.1).

As we mentioned earlier, the algorithm below is motivated by (1.2.7)–(1.2.8), as well
as by the recent work of Eckstein and Yao [40].

Algorithm 3. An inexact Douglas-Rachford splitting method for (2.1.1)

(0) Let z0 ∈ H, γ > 0, τ0 > 0 and 0 < σ, θ < 1 be given and set k ← 1.

(1) Compute (xk, bk, εb, k) ∈ H ×H× R+ such that

bk ∈ Bεb, k(xk), ‖γbk + xk − zk−1‖2 + 2γεb, k ≤ τk−1. (2.1.3)

(2) Compute (yk, ak) ∈ H ×H such that

ak ∈ A(yk), γak + yk = xk − γbk. (2.1.4)

(3) (3.a) If

‖γbk + xk − zk−1‖2 + 2γεb,k ≤ σ2‖γbk + yk − zk−1‖2, (2.1.5)

then

zk = zk−1 − γ(ak + bk), τk = τk−1 [extragradient step]. (2.1.6)

(3.b) Else

zk = zk−1, τk = θ τk−1 [null step]. (2.1.7)

(4) Set k ← k + 1 and go to step 1.

Remarks.

1. We emphasize that although it has been motivated by [40, Algorithm 3], Algorithm
3 is based on a slightly different mechanism of iteration. Moreover, it also allows
for the computation of (xk, bk) in (2.1.3) in the εb,k– enlargement of B (it has the
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property that Bεb,k(x) ⊃ B(x) for all x ∈ H); this will be crucial for the design and
iteration-complexity analysis of the four-operator splitting method of Section 2.2.
We also mention that, contrary to this work, no iteration-complexity analysis is
performed in [40].

2. Computation of (xk, bk, εb, k) satisfying (2.1.3) will depend on the particular instance
of the problem (2.1.1) under consideration. In Section 2.2, we will use Algorithm 3
for solving a four-operator splitting monotone inclusion. In this setting, at every
iteration k ≥ 1 of Algorithm 3, called an outer iteration, a Tseng’s forward-backward
(F-B) splitting type method will be used, as an inner iteration, to solve the (prox)
subproblem (2.1.3).

3. Whenever the resolvent JγB = (γB + I)−1 is computable, then it follows that
(xk, bk) := (JγB(zk−1), (zk−1−xk)/γ) and εb, k := 0 clearly solve (2.1.3). In this case,
the left hand side of the inequality in (2.1.3) is zero and, as a consequence, the
inequality (2.1.5) is always satisfied. In particular, (1.2.7)–(1.2.8) hold, i.e., in this
case Algorithm 3 reduces to the (exact) DRS method.

4. In this chapter, we assume that the resolvent JγA = (γA + I)−1 is computable,
which implies that (yk, ak) := (JγA(xk − γbk), (xk − γbk − yk)/γ) is the demanded
pair in (2.1.4). An interesting topic for future investigation would be to relax (2.1.4)
to allow inexact computations of (yk, ak) similarly to (2.1.3).

5. Algorithm 3 potentially performs extragradient steps and null steps, depending
on the condition (2.1.5). It will be shown in Proposition 2.1.2 that iterations
corresponding to extragradient steps reduce to a special instance of the HPE method,
in which case pointwise and ergodic iteration-complexity results are available
in the current literature (see Proposition 2.1.3). On the other hand, iterations
corresponding to the null steps will demand a separate analysis (see Proposition
2.1.4).

As we mentioned in the latter remark, each iteration of Algorithm 3 is either an extra-
gradient step or a null step (see (2.1.6) and (2.1.7)). This will be formally specified by
considering the sets:

A := indexes k ≥ 1 for which an extragradient step is executed at the iteration k.

B := indexes k ≥ 1 for which a null step is executed at the iteration k.
(2.1.8)

That said, we let

A = {kj}j∈J , J := {j ≥ 1 | j ≤ #A} (2.1.9)

where k0 := 0 and k0 < kj < kj+1 for all j ∈ J , and let β0 := 0 and

βk := the number of indexes for which a null step is executed until the iteration k.
(2.1.10)

Note that direct use of the above definition and (2.1.7) yield

τk = θβkτ0 ∀k ≥ 0. (2.1.11)
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In order to study the ergodic iteration-complexity of Algorithm 3 we also define the
ergodic sequences associated to the sequences {xkj}j∈J , {ykj}j∈J , {akj}j∈J , {bkj}j∈J , and
{εb, kj}j∈J , for all j ∈ J , as follows:

xkj :=
1

j

j∑

ℓ=1

xkℓ , ykj :=
1

j

j∑

ℓ=1

ykℓ , (2.1.12)

akj :=
1

j

j∑

ℓ=1

akℓ , bkj :=
1

j

j∑

ℓ=1

bkℓ , (2.1.13)

εa, kj :=
1

j

j∑

ℓ=1

〈ykℓ − ykj , akℓ − akj〉 =
1

j

j∑

ℓ=1

〈ykℓ − ykj , akℓ〉, (2.1.14)

εb, kj :=
1

j

j∑

ℓ=1

[
εb, kℓ + 〈xkℓ − xkj , bkℓ − bkj〉

]
=

1

j

j∑

ℓ=1

[
εb, kℓ + 〈xkℓ − xkj , bkℓ〉

]
. (2.1.15)

Moreover, the results on iteration-complexity of Algorithm 3 (pointwise and ergodic)
obtained in this chapter will depend on the following quantity:

d0, γ := dist (z0, zer(Sγ,A,B)) = min {‖z0 − z‖ | z ∈ zer(Sγ,A,B)} (2.1.16)

which measures the quality of the initial guess z0 in Algorithm 3 with respect to zer(Sγ,A,B),
where the operator Sγ,A,B is such that JγB(zer(Sγ,A,B)) = (A+B)−1(0) (see (1.2.6)).

In the next proposition, we show that the procedure resulting by selecting the
extragradient steps in Algorithm 3 can be embedded into HPE method.

First, we need the following lemma.

Lemma 2.1.1. Let {zk} be generated by Algorithm 3 and let the set J be defined in
(2.1.9). Then,

zkj−1
= zkj−1 ∀j ∈ J. (2.1.17)

Proof. Using (2.1.8) and (2.1.9) we have {k ≥ 1 | kj−1 < k < kj} ⊂ B, for all j ∈ J .
Consequently, using the definition of B in (2.1.8) and (2.1.7) we conclude that zk = zkj−1

whenever kj−1 ≤ k < kj . As a consequence, we obtain that (2.1.17) follows from the fact
that kj−1 ≤ kj − 1 < kj.

Proposition 2.1.2. Let {zk}, {(xk, bk)}, {εb,k} and {(yk, ak)} be generated by Algorithm
3 and let the operator Sγ,A,B be defined in (1.2.6). Define, for all j ∈ J ,

z̃kj := ykj + γbkj , vkj := γ(akj + bkj), εkj := γεb,kj . (2.1.18)

Then, for all j ∈ J ,

vkj ∈ (Sγ,A,B)
εkj (z̃kj), ‖vkj + z̃kj − zkj−1

‖2 + 2εkj ≤ σ2‖z̃kj − zkj−1
‖2,

zkj = zkj−1
− vkj .

(2.1.19)

As a consequence, the sequences {z̃kj}j∈J , {vkj}j∈J , {εkj}j∈J and {zkj}j∈J are generated
by Algorithm 1 with λj ≡ 1 for solving (1.2.9) with T := Sγ,A,B.
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Proof. For any (z′, v′) := (y + γb, γa+ γb) ∈ Sγ,A,B we have, in particular, b ∈ B(x) and
a ∈ A(y) (see (1.2.6)). Using these inclusions, the inclusions in (2.1.3) and (2.1.4), the
monotonicity of the operator A and (1.1.1) with T = B we obtain

〈xkj − x, bkj − b〉 ≥ −εb,kj ,

〈ykj − y, akj − a〉 ≥ 0.

(2.1.20)

Moreover, using the identity in (2.1.4) and the corresponding one in (1.2.6) we find

(ykj − y) + γ(bkj − b) = (xkj − x)− γ(akj − a). (2.1.21)

Using (2.1.18), (2.1.20) and (2.1.21) we have

〈z̃kj − z′, vkj − v′〉 = 〈(ykj + γbkj)− (y + γb), (γakj + γbkj)− (γa+ γb)〉
= 〈ykj − y + γ(bkj − b), γ(akj − a) + γ(bkj − b)〉
= γ〈ykj − y + γ(bkj − b), akj − a〉+ γ〈ykj − y + γ(bkj − b), bkj − b〉
= γ〈ykj − y + γ(bkj − b), akj − a〉+ γ〈xkj − x− γ(akj − a), bkj − b〉
= γ〈ykj − y, akj − a〉+ γ〈xkj − x, bkj − b〉
≥ γ〈xkj − x, bkj − b〉
≥ −εkj ,

which combined with definition (1.1.1) gives the inclusion in (2.1.19).
From (2.1.18), (2.1.17), the identity in (2.1.4) and (2.1.5) we also obtain

‖vkj + z̃kj − zkj−1
‖2 = ‖γ(akj + bkj) + (ykj + γbkj)− zkj−1‖2

= ‖(xkj − ykj) + (ykj + γbkj)− zkj−1‖2
= ‖γbkj + xkj − zkj−1‖2
≤ σ2‖γbkj + ykj − zkj−1‖2 − 2γεb,kj
= σ2‖z̃kj − zkj−1

‖2 − 2εkj ,

which gives the inequality in (2.1.19). To finish the proof of (2.1.19), note that the
desired identity in (2.1.19) follows from the first one in (2.1.6), the second one in (2.1.18)
and (2.1.17). The last statement of the proposition follows from (2.1.18), (2.1.19) and
Algorithm 1’s definition.

Proposition 2.1.3. (rate of convergence for extragradient steps) Let {(xk, bk)},
{(yk, ak)} and {εb, k} be generated by Algorithm 3 and consider the ergodic sequences
defined in (2.1.12)–(2.1.15). Let d0,γ and the set J be defined in (2.1.16) and (2.1.9),
respectively. Then,

(a) For any j ∈ J , there exists i ∈ {1, . . . , j} such that

aki ∈ A(yki), bki ∈ Bεb, ki (xki), (2.1.22)

γ‖aki + bki‖ = ‖xki − yki‖ ≤
d0,γ√
j

√
1 + σ

1− σ , (2.1.23)

εb, ki ≤
σ2d 2

0,γ

2γ(1− σ2)j
. (2.1.24)
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(b) For any j ∈ J ,

akj ∈ Aεa,kj (ykj), bkj ∈ Bεb, kj (xkj), (2.1.25)

γ‖akj + bkj‖ = ‖xkj − ykj‖ ≤
2d0,γ
j

, (2.1.26)

εa, kj + εb, kj ≤
2(1 + σ/

√
1− σ2)d 2

0,γ

γj
. (2.1.27)

Proof. Note first that (2.1.22) follow from the inclusions in (2.1.3) and (2.1.4). Using the
last statement in Proposition 2.1.2, Theorem 1.2.1 (with λ = 1) and (2.1.16), we obtain
that there exists i ∈ {1, . . . , j} such that

‖vki‖ ≤
d0,γ√
j

√
1 + σ

1− σ ,

εki ≤
σ2d20,γ

2(1− σ2)j
,

which, in turn, combined with the identity in (2.1.4) and the definitions of vki and εki
in (2.1.18) gives the desired inequalities in (2.1.23) and (2.1.24) (concluding the proof of
(a)) and

‖vj‖ ≤
2d0,γ
j

,

εj ≤
2(1 + σ/

√
1− σ2)d20,γ
j

,

(2.1.28)

where vj and εj are defined in (1.2.14) and (1.2.15), respectively, with Λj = j and

λℓ := 1, vℓ := vkℓ , εℓ := εkℓ , z̃ℓ := z̃kℓ ∀ℓ = 1, . . . , j. (2.1.29)

Since the inclusions in (2.1.25) are a direct consequence of the ones in (2.1.3) and
(2.1.4), Proposition 1.1.1(d), (2.1.12)–(2.1.15) and Theorem 1.1.2, it follows from (2.1.26),
(2.1.27) and (2.1.28) that to finish the proof of (b), it suffices to prove that

vj = γ(akj + bkj),

γ(akj + bkj) = xkj − ykj ,
εj = γ(εa, kj + εb, kj).

(2.1.30)

The first identity in (2.1.30) follows from (2.1.29), the second identities in (1.2.14) and
(2.1.18), and (2.1.13). On the other hand, from (2.1.4) we have γ(akℓ + bkℓ) = xkℓ − ykℓ ,
for all ℓ = 1, . . . , j, which combined with (2.1.12) and (2.1.13) gives the second identity
in (2.1.30). Using the latter identity and the second one in (2.1.30) we obtain

(ykℓ − ykj) + γ(bkℓ − bkj) = (xkℓ − xkj)− γ(akℓ − akj) ∀ℓ = 1, . . . , j. (2.1.31)
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Moreover, it follows from (1.2.14), (2.1.29), the first identity in (2.1.18), (2.1.12) and
(2.1.13) that

z̃j = z̃kj =
1

j

j∑

ℓ=1

(ykℓ + γbkℓ) = ykj + γbkj . (2.1.32)

Using (2.1.32), (2.1.29), (2.1.18) and (2.1.31) we obtain, for all ℓ = 1, . . . , j,

〈z̃ℓ − z̃j, vℓ〉 = 〈(ykℓ + γbkℓ)− (ykj + γbkj), γ(akℓ + bkℓ)〉
= γ〈(ykℓ − ykj) + γ(bkℓ − bkj), akℓ〉+ γ〈(ykℓ − ykj) + γ(bkℓ − bkj), bkℓ〉
= γ〈(ykℓ − ykj) + γ(bkℓ − bkj), akℓ〉+ γ〈(xkℓ − xkj)− γ(akℓ − akj), bkℓ〉
= γ〈ykℓ − ykj , akℓ〉+ γ2〈bkℓ − bkj , akℓ〉+ γ〈xkℓ − xkj , bkℓ〉 − γ2〈akℓ − akj , bkℓ〉,

which combined with (1.2.15), (2.1.29), (2.1.14) and (2.1.15) yields

εj =
1

j

j∑

ℓ=1

[
εℓ + 〈z̃ℓ − z̃j, vℓ〉

]
=

1

j

j∑

ℓ=1

γ
[
εb, kℓ + 〈xkℓ − xkj , bkℓ〉+ 〈ykℓ − ykj , akℓ〉

]

= γ(εa, kj + εb, kj),

which is exactly the last identity in (2.1.30). This finishes the proof.

Proposition 2.1.4. (rate of convergence for null steps) Let {(xk, bk)}, {(yk, ak)}
and {εb,k} be generated by Algorithm 3. Let {βk} and the set B be defined in (2.1.10)
and (2.1.8), respectively. Then, for k ∈ B,

ak ∈ A(yk), bk ∈ Bεb, k(xk), (2.1.33)

γ‖ak + bk‖ = ‖xk − yk‖ ≤
2
√
τ0
σ

θ
βk−1

2 ,

γεb, k ≤
τ0
2
θβk−1 .

Proof. Note first that (2.1.33) follows from (2.1.3) and (2.1.4). Using (2.1.8), (2.1.3) and
Step 3.b’s definition (see Algorithm 3) we obtain

τk−1 ≥ ‖γbk + xk − zk−1︸ ︷︷ ︸
pk

‖2 + 2γεb,k > σ2‖γbk + yk − zk−1︸ ︷︷ ︸
qk

‖2,

which, in particular, gives

γεb, k ≤
τk−1

2
, (2.1.34)

and combined with the identity in (2.1.4) yields,

γ‖ak + bk‖ = ‖xk − yk‖ = ‖pk − qk‖
≤ ‖pk‖+ ‖qk‖

≤
(
1 +

1

σ

)√
τk−1. (2.1.35)

To finish the proof, use (2.1.34), (2.1.35) and (2.1.11).
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Next we present the main results regarding the pointwise and ergodic iteration-
complexity of Algorithm 3 for finding approximate solutions of (2.1.1) satisfying the
termination criterion (2.1.2). While Theorem 2.1.5 is a consequence of Proposition 2.1.3(a)
and Proposition 2.1.4, the ergodic iteration-complexity of Algorithm 3, namely Theorem
2.1.6, follows by combining the latter proposition and Proposition 2.1.3(b). Since the
proof of Theorem 2.1.6 follows the same outline of Theorem 2.1.5’s proof, it will be
omitted.

Theorem 2.1.5. (pointwise iteration-complexity of Algorithm 3) Assume that
max{(1 − σ)−1, σ−1} = O(1) and let d0,γ be as in (2.1.16). Then, for given tolerances
ρ, ǫ > 0, Algorithm 3 finds a, b, x, y ∈ H and εb ≥ 0 such that

a ∈ A(y), b ∈ Bεb(x),

γ‖a+ b‖ = ‖x− y‖ ≤ ρ,

εb ≤ ǫ

(2.1.36)

after performing at most

O
(
1 + max

{
d 2
0,γ

ρ2
,
d 2
0,γ

γǫ

})
(2.1.37)

extragradient steps and

O
(
1 + max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})
(2.1.38)

null steps. As a consequence, under the above assumptions, Algorithm 3 terminates with
a, b, x, y ∈ H and εb ≥ 0 satisfying (2.1.36) in at most

O
(
1 + max

{
d 2
0,γ

ρ2
,
d 2
0,γ

γǫ

}
+max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})
(2.1.39)

iterations.

Proof. Let A be as in (2.1.8) and consider the cases:

#A ≥Mext :=

⌈
max

{
2 d 2

0,γ

(1− σ)ρ2 ,
σ2d 2

0,γ

2γ(1− σ2)ǫ

}⌉
and #A < Mext. (2.1.40)

In the first case, the desired bound (2.1.37) on the number of extragradient steps to find
a, b, x, y ∈ H and εb ≥ 0 satisfying (2.1.36) follows from the definition of J in (2.1.9) and
Proposition 2.1.3(a).

On the other hand, in the second case, i.e., #A < Mext, the desired bound (2.1.38)
is a direct consequence of Proposition 2.1.4. The last statement of the theorem follows
from (2.1.37) and (2.1.38).

Next is the main result on the ergodic iteration-complexity of Algorithm 3. As
mentioned before, its proof follows the same outline of Theorem 2.1.5’s proof, now
applying Proposition 2.1.3(b) instead of the item (a) of the latter proposition.
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Theorem 2.1.6. (ergodic iteration-complexity of Algorithm 3) For given toler-
ances ρ, ǫ > 0, under the same assumptions of Theorem 2.1.5, Algorithm 3 provides
a, b, x, y ∈ H and εa, εb ≥ 0 such that

a ∈ Aεa(y), b ∈ Bεb(x),

γ‖a+ b‖ = ‖x− y‖ ≤ ρ,

εa + εb ≤ ǫ.

(2.1.41)

after performing at most

O
(
1 + max

{
d0,γ
ρ
,
d 2
0,γ

γǫ

})

extragradient steps and

O
(
1 + max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})

null steps. As a consequence, under the above assumptions, Algorithm 3 terminates with
a, b, x, y ∈ H and εa, εb ≥ 0 satisfying (2.1.41) in at most

O
(
1 + max

{
d0,γ
ρ
,
d 2
0,γ

γǫ

}
+max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})
(2.1.42)

iterations.

Proof. The proof follows the same outline of Theorem 2.1.5’s proof, now applying Propo-
sition 2.1.3(b) instead of Proposition 2.1.3(a).

Remarks.

1. Theorem 2.1.6 ensures that for given tolerances ρ, ǫ > 0, up to an additive logarith-
mic factor, Algorithm 3 requires no more than

O
(
1 + max

{
d0,γ
ρ
,
d 2
0,γ

γǫ

})

iterations to find an approximate solution of the monotone inclusion problem (2.1.1)
according to the termination criterion (2.1.2).

2. While the (ergodic) upper bound on the number of iterations provided in (2.1.42)
is better than the corresponding one in (2.1.39) (in terms of the dependence on the
tolerance ρ > 0) by a factor of O(1/ρ), the inclusion in (2.1.41) is potentially weaker
than the corresponding one in (2.1.36), since one may have εa > 0 in (2.1.41), and
the set Aεa(y) is in general larger than A(y).

3. Iteration-complexity results similar to the ones in Proposition 2.1.3 were recently
obtained for a relaxed Peaceman-Rachford method in [69] . We emphasize that,
in contrast to this work, the latter reference considers only the case where the
resolvents JγA and JγB of A and B, respectively, are both computable.
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The proposition below will be important in the next section.

Proposition 2.1.7. Let {zk} be generated by Algorithm 3 and d0,γ be as in (2.1.16).
Then,

‖zk − z0‖ ≤ 2d0,γ ∀k ≥ 1. (2.1.43)

Proof. Note that (i) if k = kj ∈ A, for some j ∈ J , see (2.1.9), then (2.1.43) follows from
the last statement in Proposition 2.1.2 and Proposition 1.2.2; (ii) if k ∈ B, from the first
identity in (2.1.7), see (2.1.8), we find that either zk = z0, in which case (2.1.43) holds
trivially, or zk = zkj for some j ∈ J , in which case the results follows from (i).

2.2 A Douglas-Rachford-Tseng’s forward-backward four-

operator splitting method

In this section, we consider problem (12), i.e., the problem of finding z ∈ H such that

0 ∈ A(z) + C(z) + F1(z) + F2(z) (2.2.1)

where the following hold:

(E1) A and C are (set-valued) maximal monotone operators on H.

(E2) F1 : D(F1) ⊂ H → H is monotone and L-Lipschitz continuous on a (nonempty)
closed convex set Ω such that D(C) ⊂ Ω ⊂ D(F1), i.e., F1 is monotone on Ω and
there exists L ≥ 0 such that

‖F1(z)− F1(z
′)‖ ≤ L‖z − z′‖ ∀z, z′ ∈ Ω. (2.2.2)

(E3) F2 : H → H is η−cocoercive, i.e., there exists η > 0 such that

〈F2(z)− F2(z
′), z − z′〉 ≥ η‖F2(z)− F2(z

′)‖2 ∀z, z′ ∈ H.

(E4) B−1(0) is nonempty, where

B := C + F1 + F2. (2.2.3)

(E5) The solution set of (2.2.1) is nonempty.

Aiming at solving the monotone inclusion (2.2.1), we present and study the iteration-
complexity of a (four-operator) splitting method which combines Algorithm 3 (used as an
outer iteration) and a Tseng’s forward-backward (F-B) splitting type method (used as an
inner iteration for solving, for each outer iteration, the prox subproblems in (2.1.3)). We
prove results on pointwise and ergodic iteration-complexity of the proposed four-operator
splitting algorithm by analyzing it in the framework of Algorithm 3 for solving (2.1.1)
with B as in (2.2.3) and under assumptions (E1)–(E5). The (outer) iteration complexities
will follow from results on pointwise and ergodic iteration complexities of Algorithm
3, obtained in Section 2.1, while the computation of an upper bound on the overall
number of inner iterations required to achieve prescribed tolerances will require a separate
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analysis. Still regarding the results on iteration-complexity, we mention that we consider
the following notion of approximate solution for (2.2.1): given tolerances ρ, ǫ > 0, find
a, b, x, y ∈ H and εa, εb ≥ 0 such that

a ∈ Aεa(y),

either b ∈ C(x) + F1(x) + F εb
2 (x) or b ∈ (C + F1 + F2)

εb (x), (2.2.4)

γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εa + εb ≤ ǫ,

where γ > 0. Note that (i) for ρ = ǫ = 0, the above conditions imply that z∗ := x = y is
a solution of the monotone inclusion (2.2.1); (ii) the second inclusion in (2.2.4), which
will appear in the ergodic iteration-complexity, is potentially weaker than the first one
(see Proposition 1.1.1(b)), which will appear in the corresponding pointwise iteration-
complexity of the proposed method.

We also mention that problem (2.2.1) falls in the framework of the monotone inclusion
(2.1.1) due to the facts that, in view of assumptions (E1), (E2) and (E3), the operator A
is maximal monotone, and the operator F1 + F2 is monotone and (L+ 1/η)–Lipschitz
continuous on the closed convex set Ω ⊃ D(C), which combined with the assumption
on the operator C in (E1) and with [66, Proposition A.1] implies that the operator B
defined in (2.2.3) is maximal monotone as well. These facts combined with assumption
(E5) give that conditions (D1) and (D2) of Section 2.1 hold for A and B as in (E1) and
(2.2.3), respectively. In particular, it gives that Algorithm 3 may be applied to solve the
four-operator monotone inclusion (2.2.1).

In this regard, we emphasize that any implementation of Algorithm 3 will heavily
depend on specific strategies for solving each subproblem in (2.1.3), since (yk, ak) required
in (2.1.4) can be computed by using the resolvent operator of A, available in closed form
in many important cases. In the next subsection, we show how the specific structure
(2.2.1) allows for an application of a Tseng’s F-B splitting type method for solving each
subproblem in (2.1.3).

2.2.1 Solving the subproblems in (2.1.3) for B as in (2.2.3)

In this subsection, we present and study a Tseng’s F-B splitting type method [11,
20, 66, 84] for solving the corresponding proximal subproblem in (2.1.3) at each (outer)
iteration of Algorithm 3, when used to solve (2.2.1). To begin with, first consider the
(strongly) monotone inclusion

0 ∈ B(z) +
1

γ
(z − z̊) (2.2.5)

where B is as in (2.2.3), γ > 0 and z̊ ∈ H, and note that the task of finding (xk, bk, εb,k)
satisfying (2.1.3) is related to the task of solving (2.2.5) with z̊ := zk−1.

In the remaining part of this subsection, we present and study a Tseng’s F-B splitting
type method for solving (2.2.5). As we have mentioned before, the resulting algorithm
will be used as an inner procedure for solving the subproblems (2.1.3) at each iteration
of Algorithm 3, when applied to solve (2.2.1).
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Algorithm 4. A Tseng’s F-B splitting type method for (2.2.5)

Input: C, F1,Ω, L, F2 and η as in conditions (E1)–(E5), z̊ ∈ H, τ̊ > 0, σ ∈ (0, 1) and γ
such that

0 < γ ≤ 4ησ2

1 +
√
1 + 16L2η2σ2

. (2.2.6)

(0) Set z0 ← z̊ and j ← 1.

(1) Let z′j−1 ← PΩ(zj−1) and compute

z̃j =
(γ
2
C + I

)−1
(
z̊ + zj−1 − γ(F1 + F2)(z

′
j−1)

2

)
,

zj = z̃j − γ
(
F1(z̃j)− F1(z

′

j−1)
)
.

(2.2.7)

(2) If

‖zj−1 − zj‖2 +
γ‖z′j−1 − z̃j‖2

2η
≤ τ̊ , (2.2.8)

then terminate. Otherwise, set j ← j + 1 and go to step 1.

Output: (zj−1, z
′
j−1, zj, z̃j).

Remark.

Algorithm 4 combines ideas from the standard Tseng’s F-B splitting algorithm [84]
as well as from recent insights on the convergence and iteration-complexity of some
variants the latter method [6, 20, 66]. In this regard, evaluating the cocoercive
component F2 just once per iteration (see [20, Theorem 1]) is potentially important
in many applications, where the evaluation of cocoercive operators is in general
computationally expensive (see [20] for a discussion). Nevertheless, we emphasize
that the results obtained in this chapter regarding the analysis of Algorithm 4 do
not follow from any of the just mentioned references.

Next corollary ensures that Algorithm 4 always terminates with the desired output.

Corollary 2.2.1. Assume that (1− σ2)−1 = O(1) and let dz̊,b denote the distance of z̊
to B−1(0) 6= ∅. Then, Algorithm 4 terminates with the desired output after performing
no more than

O
(
1 + log+

(
dz̊, b√
τ̊

))
(2.2.9)

iterations.

Proof. See Subsection 2.2.3.
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2.2.2 A Douglas-Rachford-Tseng’s F-B four-operator splitting
method

In this subsection, we present and study the iteration-complexity of the main algorithm
in this chapter, for solving (2.2.1), namely Algorithm 5, which combines Algorithm 3,
used as an outer iteration, and Algorithm 4, used as an inner iteration, for solving the
corresponding subproblem in (2.1.3). Algorithm 5 will be shown to be a special instance
of Algorithm 3, for which pointwise and ergodic iteration-complexity results are available
in Section 2.1. Corollary 2.2.1 will be specially important to compute a bound on the total
number of inner iterations performed by Algorithm 5 to achieve prescribed tolerances.

Algorithm 5. A Douglas-Rachford-Tseng’s F-B splitting type method for
(2.2.1)

(0) Let z0 ∈ H, τ0 > 0 and 0 < σ, θ < 1 be given, let C, F1,Ω, L, F2 and η as in
conditions (E1)–(E5) and γ satisfying condition (2.2.6), and set k ← 1.

(1) Call Algorithm 4 with inputs C, F1,Ω, L, F2 and η, (̊z, τ̊) := (zk−1, τk−1), σ and γ
to obtain as output (zj−1, z

′
j−1, zj, z̃j), and set

xk = z̃j, bk =
zk−1 + zj−1 − (zj + z̃j)

γ
, εb, k =

‖z′j−1 − z̃j‖2
4η

. (2.2.10)

(2) Compute (yk, ak) ∈ H ×H such that

ak ∈ A(yk), γak + yk = xk − γbk. (2.2.11)

(3) (3.a) If

‖γbk + xk − zk−1‖2 + 2γεb,k ≤ σ2‖γbk + yk − zk−1‖2,

then

zk = zk−1 − γ(ak + bk), τk = τk−1 [extragradient step]. (2.2.12)

(3.b) Else

zk = zk−1, τk = θ τk−1 [null step]. (2.2.13)

(4) Set k ← k + 1 and go to step 1.

In what follows we present the pointwise and ergodic iteration complexities of Algo-
rithm 5 for solving the four-operator monotone inclusion problem (2.2.1). The results
will follow essentially from the corresponding ones for Algorithm 3 previously obtained
in Section 2.1. On the other hand, bounds on the number of inner iterations executed
before achieving prescribed tolerances will be proved by using Corollary 2.2.1.

We start by showing that Algorithm 5 is a special instance of Algorithm 3.
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Proposition 2.2.2. The triple (xk, bk, εb, k) in (2.2.10) satisfies condition (2.1.3) in Step
1 of Algorithm 3, i.e.,

bk ∈ C(xk) + F1(xk) + F
εb,k
2 (xk) ⊂ Bεb, k(xk), ‖γbk + xk − zk−1‖2 + 2γεb, k ≤ τk−1,

(2.2.14)

where B is as in (2.2.3). As a consequence, Algorithm 5 is a special instance of Algorithm
3 for solving (2.1.1) with B as in (2.2.3).

Proof. Using the first identity in (2.2.21), the definition of bk in (2.2.10) as well as the
fact that z̊ := zk−1 in Step 1 of Algorithm 5 we find

bk = vj −
1

γ
(z̃j − zk−1) = vj −

1

γ
(z̃j − z̊). (2.2.15)

Combining the latter identity with the second inclusion in (2.2.22), the second identity
in (2.2.21) and the definitions of xk and εb, k in (2.2.10) we obtain the first inclusion in
(2.2.14). The second desired inclusion follows from (2.2.3) and Proposition 1.1.1(b). To
finish the proof of (2.2.14), note that from the first identity in (2.2.15), the definitions of
xk and εb, k in (2.2.10), the definition of vj in (2.2.21) and (2.2.8) we have

‖γbk + xk − zk−1‖2 + 2γεb, k = ‖zj−1 − zj‖2 +
γ‖z′j−1 − z̃j‖2

2η
≤ τ̊ = τk−1,

which gives the inequality in (2.2.14). The last statement of the proposition follows from
(2.2.14), (2.1.3)–(2.1.7) and (2.2.11)–(2.2.13).

Theorem 2.2.3. (pointwise iteration-complexity of Algorithm 5) Let the oper-
ator B and d0,γ be as in (2.2.3) and (2.1.16), respectively, and assume that max{(1 −
σ)−1, σ−1} = O(1). Let also d0,b be the distance of z0 to B−1(0) 6= ∅. Then, for given
tolerances ρ, ǫ > 0, the following hold:

(a) Algorithm 5 finds a, b, x, y ∈ H and εb ≥ 0 such that

a ∈ A(y), b ∈ C(x) + F1(x) + F εb
2 (x), γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εb ≤ ǫ (2.2.16)

after performing no more than

kp; outer := O
(
1 + max

{
d 2
0,γ

ρ2
,
d 2
0,γ

γǫ

}
+max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})

outer iterations.

(b) Before achieving the desired tolerance ρ, ǫ > 0, each iteration of Algorithm 5
performs at most

kinner := O
(
1 + log+

(
d0,γ + d0,b√

τ0

)
+max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})

(2.2.17)

inner iterations; and hence evaluations of the η–cocoercive operator F2.
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As a consequence, Algorithm 5 finds a, b, x, y ∈ H and εb ≥ 0 satisfying (2.2.16) after
performing no more than kp; outer × kinner inner iterations.

Proof. (a) The desired result is a direct consequence of the last statements in Proposition
2.2.2 and Theorem 2.1.5, and the inclusions in (2.2.14).

(b) Using Step 1’s definition and Corollary 2.2.1 we conclude that, at each iteration
k ≥ 1 of Algorithm 5, the number of inner iterations is bounded by

O
(
1 + log+

(
dzk−1, b√
τk−1

))
(2.2.18)

where dzk−1, b denotes the distance of zk−1 to B−1(0). Now, using the last statements
in Propositions 2.2.2 and 2.1.2, Proposition 1.2.2 and a simple argument based on the
triangle inequality we obtain

dzk−1,b ≤ 2d0,γ + d0,b ∀k ≥ 1. (2.2.19)

By combining (2.2.18) and (2.2.19) and using (2.1.11) we find that, at every iteration
k ≥ 1, the number of inner iterations is bounded by

O
(
1 + log+

(
d0,γ + d0,b√
θβk−1τ0

))
= O

(
1 + log+

(
d0,γ + d0,b√

τ0

)
+ βk−1

)
.

Using the latter bound, the last statement in Proposition 2.2.2, the bound on the number
of null steps of Algorithm 3 given in Theorem 2.1.5, and (2.1.10) we conclude that, before
achieving the prescribed tolerance ρ, ǫ > 0, each iteration Algorithm 5 performs at most
the number of iterations given in (2.2.17). This concludes the proof of (b).

To finish the proof, note that the last statement of the theorem follows directly from
(a) and (b).

Theorem 2.2.4. (ergodic iteration-complexity of Algorithm 5) For given toler-
ances ρ, ǫ > 0, under the same assumptions of Theorem 2.2.3 the following hold:

(a) Algorithm 5 provides a, b, x, y ∈ H and εa, εb ≥ 0 such that

a ∈ Aεa(y), b ∈ (C + F1 + F2)
εb (x), γ‖a+ b‖ = ‖x− y‖ ≤ ρ, εa + εb ≤ ǫ

(2.2.20)

after performing no more than

ke; outer := O
(
1 + max

{
d0,γ
ρ
,
d 2
0,γ

γǫ

}
+max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})

outer iterations.

(b) Before achieving the desired tolerance ρ, ǫ > 0, each iteration of Algorithm 5
performs at most

kinner := O
(
1 + log+

(
d0,γ + d0,b√

τ0

)
+max

{
log+

(√
τ0
ρ

)
, log+

(
τ0
γǫ

)})

inner iterations; and hence evaluations of the η–cocoercive operator F2.

As a consequence, Algorithm 5 provides a, b, x, y ∈ H and εb ≥ 0 satisfying (2.2.20) after
performing no more than ke; outer × kinner inner iterations.

Proof. The proof follows the same outline of Theorem 2.2.3’s proof.
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2.2.3 Proof of Corollary 2.2.1

We start this subsection by showing that Algorithm 4 is a special instance of Algorithm
2 for solving the strongly monotone inclusion (2.2.5).

Proposition 2.2.5. Let {zj}, {z′j} and {z̃j} be generated by Algorithm 4 and let the
operator B be as in (2.2.3). Define,

vj :=
zj−1 − zj

γ
, εj :=

‖z′j−1 − z̃j‖2
4η

, ∀j ≥ 1. (2.2.21)

Then, for all j ≥ 1,

vj ∈ (1/γ)(z̃j − z̊) + C(z̃j) + F1(z̃j) + F
εj
2 (z̃j) ⊂ (1/γ)(z̃j − z̊) + B εj(z̃j), (2.2.22)

‖γvj + z̃j − zj−1‖2 + 2γεj ≤ σ2‖z̃j − zj−1‖2, (2.2.23)

zj = zj−1 − γvj. (2.2.24)

As a consequence, Algorithm 4 is a special instance of Algorithm 2 with λj ≡ γ for
solving (1.2.16) with S(·) := (1/γ)(· − z̊).

Proof. Note that the first identity in (2.2.7) gives

zj−1 − z̃j
γ

− F1(z
′

j−1) ∈ (1/γ)(z̃j − z̊) + C(z̃j) + F2(z
′

j−1).

Adding F1(z̃j) in both sides of the above identity and using the second and first identities
in (2.2.7) and (2.2.21), respectively, we find

vj =
zj−1 − zj

γ
∈ (1/γ)(z̃j − z̊) + C(z̃j) + F1(z̃j) + F2(z

′

j−1),

which, in turn, combined with Lemma A.2 and the definition of εj in (2.2.21) proves
the first inclusion in (2.2.22). Note now that the second inclusion in (2.2.22) is a direct
consequence of (2.2.3) and Proposition 1.1.1(b). Moreover, (2.2.24) is a direct consequence
of the first identity in (2.2.21).

To prove (2.2.23), note that from (2.2.21), the second identity in (2.2.7), (2.2.6) and
(2.2.2) we have

‖γvj + z̃j − zj−1‖2 + 2γεj = γ2‖F1(z̃j)− F1(z
′

j−1)‖2 +
γ‖z′j−1 − z̃j‖2

2η

≤
(
γ2L2 +

γ

2η

)
‖z′j−1 − z̃j‖2

≤ σ2‖zj−1 − z̃j‖2,

which is exactly the desired inequality, where we also used the facts that z′j−1 = PΩ(zj−1),
z̃j ∈ D(C) ⊂ Ω and that PΩ is nonexpansive. The last statement of the proposition
follows from (2.2.22)–(2.2.24), (2.2.5), (1.2.17) and (1.2.18).
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Proof of Corollary 2.2.1. Let, for all j ≥ 1, {vj} and {εj} be defined in (2.2.21).
Using the last statement in Proposition 2.2.5 and Proposition 1.2.3 with µ := 1/γ and
λ := γ we find

‖γvj‖2 + 2γεj ≤
((1 + σ)2 + σ2)(1− α)j−1‖z̊ − z∗γ‖2

1− σ2
, (2.2.25)

where z∗γ := (S +B)−1(0) with S(·) := (1/γ)(· − z̊), i.e., z∗γ = (γB + I)−1(̊z). Now, using
(2.2.25), (2.2.21) and Lemma A.1 we obtain

‖zj−1 − zj‖2 +
γ‖z′j−1 − z̃j‖2

2η
≤

((1 + σ)2 + σ2)(1− α)j−1d 2
z̊, b

1− σ2
,

which in turn combined with (2.2.8), after some direct calculations, gives (2.2.9).
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Chapter 3

Relative-error inertial-relaxed inexact

versions of Douglas-Rachford and

ADMM splitting algorithms

In this chapter, we analyze the asymptotic behavior of new variants of the DRS and
ADMM splitting methods, both under relaxation and inertial effects and with inexact
(relative-error) criterion for subproblems. The first is an inexact version of the proximal
point algorithm that includes both an inertial step and overrelaxation. The second is
an inexact variant of the Douglas-Rachford splitting method for maximal monotone
operators, while the latter is an inexact variant of the alternating direction method of
multipliers (ADMM) for convex optimization.

This chapter is organized as follows. In Section 3.1, we present our inertial-relaxed
HPP method (Algorithm 6) and its convergence analysis. In Section 3.2, we use the HPP
method (Algorithm 6) to develop an inexact inertial-relaxed DR method (Algorithm 7), for
which convergence is established in Theorem 3.2.3. In Section 3.3, we use inertial-relaxed
DR method to derive a partially inexact relative-error ADMM method (Algorithm 8).
The main result of this section is Theorem 3.3.4. In Section 3.4, we performed numerical
experiments using our new inexact ADMM method (proposed in Section 3.3) to LASSO
and logistic regression problems.

The results of this chapter were published in [3].

3.1 An inertial-relaxed hybrid proximal projection (HPP)

method

We begin by developing a new method for the problem (8), i.e.,

0 ∈ T (z), (3.1.1)

where T : Rn
⇒ R

n is a maximal monotone operator; we assume that this problem has a
solution. Our new proposed procedure for this problem, related to the method of [79]
but having a new “inertial” step feature, is given below as Algorithm 6.
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Algorithm 6. A relative-error inertial-relaxed HPP method for solving
(3.1.1)

Initialization: Choose z0 = z−1 ∈ R
n and 0 ≤ α, σ < 1 and 0 < ρ < ρ < 2

for k = 0, 1, . . . do

Choose αk ∈ [0, α] and define

wk = zk + αk(z
k − zk−1) (3.1.2)

Find (z̃k, vk) ∈ R
n × R

n and λk > 0 such that

vk ∈ T (z̃k), ‖λkvk + z̃k − wk‖2 ≤ σ2
(
‖z̃k − wk‖2 + ‖λkvk‖2

)
(3.1.3)

If vk = 0, then stop. Otherwise, choose ρk ∈ [ ρ, ρ ] and set

zk+1 = wk − ρk
〈wk − z̃k, vk〉
‖vk‖2 vk (3.1.4)

end for

We make the following remarks concerning this algorithm:

(i) The extrapolation step in (3.1.2) introduces inertial effects — see e.g. [1, 2] —
controlled by the parameter αk. The effect of the overrelaxation parameter ρk
in (3.1.4) is similar but not identical, as shown in Figure 3.1 below. Conditions on
{αk}, α ∈ [0, 1) and ρ ∈ (0, 2) that guarantee the convergence of Algorithm 6 are
given in Theorem 3.1.5 — see (3.1.20) and (3.1.21) and Figure 3.2 below.

zk−1

zk
wk

zk+1

Hk

wk+1

Figure 3.1: Geometric interpretation of steps (3.1.2) and (3.1.4) in Algorithm 6. The
overrelaxed projection step (3.1.4) is orthogonal to the separating hyperplane Hk, which
can differ from the direction between zk−1, zk, and wk when αk > 0.
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(ii) If α = 0, in which case αk ≡ 0, Algorithm 6 reduces to a special case of the HPP
method of [79]; see also [77]. Algorithm 6 is also closely related to the inertial
version of the HPP method presented in [1], although that method uses a different
relative error criterion. During the reviewing process of [3], one of the referees
pointed out that Algorithm 6 is a special instance of Algorithm 1 in [59]. While
this is true, it also appears that the convergence analysis in [59, Theorem 2.1] has a
flaw: in particular, the key inequality (54) in that analysis reduces to 3 ≤ −1 if one
sets α = −1, γ = 1, µ = 0 and τn ≡ τ = 1, so it is unclear whether the convergence
result claimed in [59, Theorem 2.1] is valid.

(iii) At each iteration k, condition (3.1.3) is a relative error criterion for the inexact
solution of the proximal subproblem z̃k = (I + λkT )

−1(wk) := JλkT (w
k). If σ = 0,

then this equation must be solved exactly and the pair (z̃k, vk) may be written
(z̃k, vk) = (JλkT (w

k), λ−1
k (wk−z̃k)). Here, we are primarily concerned with situations

in which the calculation of JλkT (w
k) is relatively difficult and must be approached

with an iterative algorithm. In such cases, we use the condition (3.1.3) as an
acceptance criterion to truncate such an iterative calculation, possibly saving
computational effort. We do not specify the exact form of the iterative algorithm
used to produce a pair (z̃k, vk) satisfying (3.1.3), as it depends on the class of
problems to which the algorithm is being applied (and thus the structure of the
operator T ). See [77, 79] for a related discussion; an abstract formalism of the class
of algorithm needed to find a solution to (3.1.3) is the “B-procedure” described
in [40] and also used in Section 3.2 below.

(iv) The point zk+1 in (3.1.4) may be viewed as zk+1 = wk + ρk(PHk
(wk)− wk), where

PHk
denotes orthogonal projection onto the hyperplane

Hk := {z ∈ R
n | 〈z, vk〉 = 〈z̃k, vk〉}, (3.1.5)

which strictly separates wk from the solution set T−1(0) of (3.1.1). This kind of
projective approach to approximate proximal point algorithms was pioneered in [77].

(v) Algorithm 6 is an inexact variant of the proximal point algorithm (PPA) [74]. In
particular, each of its iterations performs an approximate resolvent calculation
subject a relative error criterion, and then executes a projection operation in the
manner introduced in [77]; see [76, 79] for related work. The main difference
from [77] is the inertial step (3.1.2).

If vk = 0 in Algorithm 6, then it follows from the inclusion in (3.1.3) that z̃k is
a solution of (3.1.1), that is, 0 ∈ T (z̃k), so we halt immediately with the solution z̃k.
For the remainder of this section, we assume that vk 6≡ 0 and hence that Algorithm 6
generates an infinite sequence of iterates.

The following well-known identity will be useful in the analysis of Algorithm 6:

‖(1− ρ)p+ ρq‖2 = (1− ρ)‖p‖2 + ρ‖q‖2 − ρ(1− ρ)‖p− q‖2 ∀p, q ∈ R
n ∀ρ ∈ R.

(3.1.6)
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Lemma 3.1.1. [79, Lemma 2] For each k ≥ 0, condition (3.1.3) implies that

1− σ2

1 +
√
1− (1− σ2)2

‖z̃k − wk‖ ≤ ‖λkvk‖ ≤
1− σ2

1−
√
1− (1− σ2)2

‖z̃k − wk‖. (3.1.7)

An immediate implication of Lemma 3.1.1 is that vk = 0 if and only if z̃k = wk.
The proof of the following proposition can be found, using different notation, in [79].

For the convenience of the reader, we also present it here.

Proposition 3.1.2. Let {zk}, {z̃k} and {wk} be generated by Algorithm 6 and define,
for all k ≥ 1,

sk = (2− ρ)max
{
ρ−1‖zk − wk−1‖2, ρ (1− σ2) 2‖z̃k−1 − wk−1‖2

}
. (3.1.8)

Then, for any z∗ ∈ T−1(0),

‖zk+1 − z∗‖2 + sk+1 ≤ ‖wk − z∗‖2, ∀k ≥ 0. (3.1.9)

Proof. We start by defining ẑ k+1 as the orthogonal projection of wk onto the hyperplane
H := {z ∈ R

n | 〈z, vk〉 = 〈z̃k, vk〉}, i.e.,

ẑ k+1 := wk − 〈w
k − z̃k, vk〉
‖vk‖2 vk. (3.1.10)

Next we show that the hyperplane H strictly separates the current point wk from the
solution set Ω := T−1(0) 6= ∅, that is,

〈wk, vk〉 > 〈z̃k, vk〉 ≥ 〈z∗, vk〉 ∀z∗ ∈ Ω. (3.1.11)

To this end, 0 ∈ T (z∗), vk ∈ T (z̃k) and the monotonicity of T yield 〈z̃k − z∗, vk〉 ≥ 0,
which is equivalent to the second inequality in (3.1.11). On the other hand, note that
from (3.1.3) and the Young inequality 2ab ≤ a2 + b2 we have

〈wk − z̃k, vk〉 ≥ 1− σ2

2λk

(
‖z̃k − wk‖2 + ‖λkvk‖2

)
≥ (1− σ2)‖wk − z̃k‖‖vk‖,

which in turn yields

〈wk − z̃k, vk〉
‖vk‖ ≥ (1− σ2)‖wk − z̃k‖ > 0. (3.1.12)

One consequence of (3.1.12) is the first inequality in (3.1.11), so (3.1.11) must hold.
From (3.1.10) and (3.1.11), we may infer that ẑk+1 is the projection wk onto the

halfspace {z ∈ R
n | 〈z, vk〉 ≤ 〈z̃k, vk〉}, which is a convex set containing z∗. The

well-known firm nonexpansivess properties of the projection operation then imply that

‖wk − z∗‖2 − ‖ẑ k+1 − z∗‖2 ≥ ‖wk − ẑ k+1‖2. (3.1.13)

Algebraic manipulation of (3.1.4) and (3.1.10) yields z k+1 − z∗ = (1 − ρk)(wk − z∗) +
ρk(ẑ

k+1 − z∗). Combining this equation with (3.1.6) with (p, q) = (wk − z∗, ẑ k+1 − z∗)
gives

‖zk+1 − z∗‖2 = (1− ρk)‖wk − z∗‖2 + ρk‖ẑ k+1 − z∗‖2 − ρk(1− ρk)‖wk − ẑ k+1‖2,
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which after some rearrangement yields

‖wk − z∗‖2 − ‖zk+1 − z∗‖2 = ρk
(
‖wk − z∗‖2 − ‖ẑ k+1 − z∗‖2

)
+ ρk(1− ρk)‖wk − ẑ k+1‖2.

Using (3.1.13) in the first term on the right-hand side of this identity produces

‖wk − z∗‖2 − ‖zk+1 − z∗‖2 ≥ ρk‖wk − ẑ k+1‖2 + ρk(1− ρk)‖wk − ẑ k+1‖2

= (ρk + ρk(1− ρk))‖wk − ẑ k+1‖2

= ρk(2− ρk)
(〈wk − z̃k, vk〉

‖vk‖

)2

[by (3.1.10)] (3.1.14)

≥ ρk(2− ρk)(1− σ2)2‖wk − z̃k‖2. [by (3.1.12)] (3.1.15)

To finish the proof, we observe that (3.1.14) and (3.1.4) yield

‖wk − z∗‖2 − ‖zk+1 − z∗‖2 ≥ ρ−1
k (2− ρk)‖zk+1 − wk‖2.

Combining this inequality with (3.1.15), (3.1.8) and the bounds ρk ∈ [ ρ, ρ ] results in
(3.1.9).

The inequality (3.1.17) presented in the following proposition plays a role in the
convergence analysis of inertial proximal algorithms — see e.g. [2] — similar to that
played by Fejér monotonicity in the analysis of standard proximal algorithms.

Proposition 3.1.3. Let {zk}, {wk} and {αk} be generated by Algorithm 6 and let {sk}
be as in (3.1.8). Further let z∗ ∈ T−1(0) and define

(∀k ≥ −1) ϕk := ‖zk − z∗‖2 and (∀k ≥ 0) δk := αk(1 + αk)‖zk − zk−1‖2. (3.1.16)

Then, ϕ0 = ϕ−1 and

ϕk+1 − ϕk + sk+1 ≤ αk(ϕk − ϕk−1) + δk ∀k ≥ 0, (3.1.17)

that is, the sequences {ϕk}, {sk}, {αk} and {δk} satisfy the assumptions of Lemma A.7.

Proof. From (3.1.2) we obtain zk − z∗ = (1 + αk)
−1(wk − z∗) + αk(1 + αk)

−1(zk−1 − z∗),
which in conjunction with (3.1.6) and some algebraic manipulation yields

‖wk − z∗‖2 = (1 + αk)‖zk − z∗‖2 − αk‖zk−1 − z∗‖2 + αk(1 + αk)‖zk − zk−1‖2.

Using the above identity and (3.1.16) we obtain, for all k ≥ 0, that

‖wk − z∗‖2 = (1 + αk)ϕk − αkϕk−1 + δk.

From (3.1.9) in Proposition 3.1.2 and the definition of ϕk in (3.1.16), the above inequality
yields (3.1.17). Finally, ϕ0 = ϕ−1 follows from the initialization z0 = z−1 and the first
definition in (3.1.16).

The following theorem presents our first result on the asymptotic convergence of
Algorithm 6 under the summability assumption (3.1.18). Next, Theorem 3.1.5 gives
sufficient conditions (3.1.20) and (3.1.21) on the inertial and relaxation parameters to
assure that (3.1.18) is satisfied.
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Figure 3.2: The relaxation parameter upper bound ρ(β) from (3.1.21) as a function
of inertial step upper bound β > 0 of (3.1.20). Note that ρ(1/3) = 1, while ρ(β) > 1
whenever β < 1/3.

Theorem 3.1.4 (Convergence of Algorithm 6). Let {zk}, {z̃k}, {vk}, {λk} and
{αk} be generated by Algorithm 6. If infk λk > 0 and

∞∑

k=0

αk‖zk − zk−1‖2 < +∞ (3.1.18)

then {zk} converges to a solution of the monotone inclusion problem (3.1.1). Moreover,
{z̃k} converges to the same solution and {vk} converges to zero.

Proof. Define {sk} is as in (3.1.8). Using Proposition 3.1.3, (3.1.18), that αk ≤ α < 1
for all k ≥ 0, and Lemma A.7, it follows that (i) limk→∞ ‖zk − z∗‖ exist for every
z∗ ∈ Ω := T−1(0) 6= ∅ and

∑
∞

k=1 sk < +∞. So, in particular, {zk} is bounded and (ii)
limk→∞ sk = 0 . From the form of (3.1.8), that limk→∞ sk = 0, and the assumption that
inf λk > 0, and Lemma 3.1.1, we conclude that

lim
k→∞

‖zk − wk−1‖ = lim
k→∞

‖z̃k − wk‖ = lim
k→∞

‖vk‖ = 0. (3.1.19)

Now let z∞ ∈ R
n be any cluster point of the bounded sequence {zk}. By (3.1.19), this

point is also a cluster point of {wk} and {z̃k}. Let {kj}∞j=0 be an increasing sequence of
indices such that z̃kj → z∞. We then have

(∀j ≥ 0) vkj ∈ T (z̃kj), lim
j→∞

vkj = 0 and lim
j→∞

z̃kj = z∞,

which by the standard closure property of maximal monotone operators yields z∞ ∈ Ω =
T−1(0). Hence, the desired result on {zk} follows from (i) and Opial’s lemma (stated
below as Lemma A.6). On the other hand, the convergence of {zk} and (3.1.19) yields
the remaining results regarding {z̃k} and {vk}.
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Theorem 3.1.5 (Convergence of Algorithm 6). Let {zk}, {αk} and {λk} be gener-
ated by Algorithm 6. Assume that α ∈ [0, 1), ρ ∈ (0, 2) and {αk} satisfy the following
(for some β > 0):

0 ≤ αk ≤ αk+1 ≤ α < β < 1 ∀k ≥ 0 (3.1.20)

and

ρ = ρ(β) :=
2(β − 1)2

2(β − 1)2 + 3β − 1
. (3.1.21)

Then,

∞∑

k=1

‖zk − zk−1‖2 < +∞. (3.1.22)

As a consequence, it follows that under the assumptions (3.1.20) and (3.1.21) the sequence
{zk} generated by Algorithm 6 converges to a solution of the monotone inclusion problem
(3.1.1) whenever inf λk > 0. Moreover, under the above assumptions, {z̃k} converges to
the same solution and {vk} converges to zero.

Proof. Using (3.1.2), the Cauchy-Schwarz inequality and the Young inequality 2ab ≤
a2 + b2 with a := ‖zk+1 − zk‖ and b := ‖zk − zk−1‖ we find

‖zk+1 − wk‖2 = ‖zk+1 − zk‖2 + α2
k‖zk − zk−1‖2 − 2αk〈zk+1 − zk, zk − zk−1〉

≥ ‖zk+1 − zk‖2 + α2
k‖zk − zk−1‖2 − αk

(
2‖zk+1 − zk‖‖zk − zk−1‖

)

≥ (1− αk)‖zk+1 − zk‖2 − αk(1− αk)‖zk − zk−1‖2. (3.1.23)

Starting with a rearrangement of (3.1.17), we then obtain

ϕk+1 − ϕk − αk(ϕk − ϕk−1) ≤ δk − sk+1

≤ αk(1 + αk)‖zk − zk−1‖2 − (2− ρ)ρ−1‖zk+1 − wk‖2 [by (3.1.8) and (3.1.16)]

≤ αk(1 + αk)‖zk − zk−1‖2

− (2− ρ)ρ−1
[
(1− αk)‖zk+1 − zk‖2 − αk(1− αk)‖zk − zk−1‖2

]
[by (3.1.23)]

= −(2− ρ)ρ−1(1− αk)‖zk+1 − zk‖2 +
[
αk(1 + αk) + (2− ρ)ρ−1αk(1− αk)

]
‖zk − zk−1‖2

= −(2− ρ)ρ−1(1− αk)‖zk+1 − zk‖2 + γk‖zk − zk−1‖2, (3.1.24)

where

γk := −2(ρ−1 − 1)α2
k + 2 ρ−1αk ∀k ≥ 0. (3.1.25)

Some elementary algebraic manipulations of (3.1.24) then yield

ϕk+1 − ϕk − αk(ϕk − ϕk−1)− γk‖zk − zk−1‖2 ≤ −(2 ρ−1 − 1)(1− αk)‖zk+1 − zk‖2 ∀k ≥ 0.
(3.1.26)

Define now the scalar function:

q(ν) := 2(ρ−1 − 1)ν 2 − (4ρ−1 − 1)ν + 2ρ−1 − 1, (3.1.27)
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and

µ0 := (1− α0)ϕ0 ≥ 0,

µk := ϕk − αk−1ϕk−1 + γk‖zk − zk−1‖2 ∀k ≥ 1,
(3.1.28)

where ϕk is as in (3.1.16). Using (3.1.26)-(3.1.28) and the assumption that {αk} is
nondecreasing — see (3.1.20) — we obtain, for all k ≥ 0,

µk+1 − µk ≤
[
ϕk+1 − ϕk − αk(ϕk − ϕk−1)− γk‖zk − zk−1‖2

]
+ γk+1‖zk+1 − zk‖2

≤
[
γk+1 − (2ρ−1 − 1)(1− αk+1)

]
‖zk+1 − zk‖2

= −
[
2(ρ−1 − 1)α2

k+1 − (4ρ−1 − 1)αk+1 + 2ρ−1 − 1
]
‖zk+1 − zk‖2

= −q(αk+1)‖zk+1 − zk‖2. (3.1.29)

We will now show that q(αk+1) admits a uniform positive lower bound. To this end, note
first that from (3.1.21) and Lemma A.4 that we have

β =
2(2− ρ)

4− ρ+
√
ρ(16− 7ρ)

.

Using the latter identity, (3.1.27), and Lemma A.5 with a = 2(ρ−1 − 1), b = 4ρ−1 − 1,
and c = 2ρ−1 − 1, we conclude that q(·) is decreasing in [0, β] and β > 0 is a root of q(·).
Thus, in view of (3.1.20), we conclude that

q(αk+1) ≥ q(α) > q(β) = 0, (3.1.30)

which gives the desired uniform positive lower bound on q(αk+1).
Using (3.1.29) and (3.1.30) we find

‖zk+1 − zk‖2 ≤ 1

q(α)
(µk − µk+1), ∀k ≥ 0, (3.1.31)

which, in turn, combined with (3.1.20) and the definition of µk in (3.1.28), gives

k∑

j=0

‖zj+1 − zj‖2 ≤ 1

q(α)
(µ0 − µk+1),

≤ 1

q(α)
(µ0 + αϕk) ∀k ≥ 0. (3.1.32)

Note now that (3.1.31), (3.1.20) and (3.1.28) also yield

µ0 ≥ . . . ≥ µk+1 =ϕk+1 − αkϕk + γk+1‖zk+1 − zk‖2
≥ϕk+1 − αϕk, ∀k ≥ 0,

and so,
ϕk+1 ≤ αk+1ϕ0 +

µ0

1− α ≤ ϕ0 +
µ0

1− α ∀k ≥ −1. (3.1.33)

Hence, (3.1.22) follows directly from (3.1.32) and (3.1.33). On the other hand, the second
statement of the theorem follows from (3.1.22) and Theorem 3.1.4 (recall that αk ≤ α < 1
for all k ≥ 0).
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We close this section with a few further remarks about the analysis of Algorithm 6:

(i) If we set β = 1/3 in (3.1.20), then it follows immediately from (3.1.21) that ρ = 1.
On the other hand, we have ρ > 1 in (3.1.21) whenever β < 1/3 (see also Figure 3.2).
Setting β = 1/3 in (3.1.20) corresponds to the standard strategy in the literature
of inertial proximal algorithms; see e.g. [2, 26].

(ii) Conditions (3.1.20) and (3.1.21) on {αk}, α and ρ guarantee that the summability
condition (3.1.18) is satisfied, thus guaranteeing the convergence of Algorithm 6.
Similar conditions were also recently proposed and studied in [5, 8]. Since Algo-
rithm 6 is be the basis of the DR and ADMM methods that will be developed in
the Chapter 3, conditions (3.1.20) and (3.1.21) will also play an important role in
their convergence analysis.

3.2 A partially inexact inertial-relaxed Douglas-Rachford

(DR) algorithm

Consider problem (11), i.e., the problem of finding z ∈ R
n such that

0 ∈ A(z) + B(z) (3.2.1)

where:

(F1) A and B are (set-valued) maximal monotone operators on R
n;

(F2) the solution set (A+B)−1(0) of (3.2.1) is nonempty.

As mentioned previously, a popular operator splitting algorithms for finding approxi-
mate solutions to (3.2.1) is the Douglas-Rachford (DR) algorithm [56, 37], the iteration
of the method is given in (13), i.e.,

zk+1 = JγA
(
2JγB(z

k)− zk
)
+ zk − JγB(zk) ∀k ≥ 0, (3.2.2)

where γ > 0 is a scaling parameter, zk is the current iterate and JγA = (γA+ I)−1 and
JγB = (γB+I)−1 are the resolvent operators of A and B, respectively. The DR algorithm
(3.2.2) is a splitting algorithm for solving the (structured) inclusion (3.2.1) in the sense
that the resolvents JγA and JγB are employed separately, but the resolvent Jγ(A+B) of
A+B is not. Such methods are useful in the situations in which the values of JγA and
JγB are relatively easy to evaluate in comparison to those of Jγ(A+B).

This section will develop an inexact version of the DR algorithm (3.2.2) for the
situation in which the resolvent of one of the operators, say B, is relatively hard, but
evaluating JγA is a simple calculation. To this end, we consider the following equivalent
formulation of (3.2.2) (see, e.g., [37]) : given some rk, bk ∈ R

n,

Find (sk+1, bk+1) ∈ B such that sk+1 + γbk+1 = rk + γbk; (3.2.3)

Find (rk+1, ak+1) ∈ A such that rk+1 + γak+1 = sk+1 − γbk+1. (3.2.4)
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In this case, zk = rk+γbk. Since the resolvent JγA of A is assumed to be easily computable,
the pair (rk+1, ak+1) in (3.2.4) is explicitly given by

rk+1 = JγA(s
k+1 − γbk+1)

and

ak+1 = γ−1(sk+1 − rk+1)− bk+1.

For B, we by contrast suppose that exact computation of the pair (sk+1, bk+1) satisfying
(3.2.3) requires a relatively time-consuming iterative process, which we model immediately
below by the notion of a B-procedure as introduced in [40]. We first remark that (3.2.3)
can be posed in the more general framework of solving monotone inclusion problems of
the form

0 ∈ s+ γB(s)− (r + γb), (3.2.5)

where r, b ∈ R
n and γ > 0.

Definition 3.2.1 (B–procedure for solving (3.2.5)). A B–procedure for (approxi-
mately) solving any instance of (3.2.5) is a mapping B : Rn×R

n×R++×R
n×R

n×N
∗ →

R
n × R

n such that if one lets (sℓ, bℓ) = B(r, b, γ, s̄, b̄, ℓ) for all ℓ ∈ N
∗ and any given

r, b, s̄, b̄ ∈ R
n and γ > 0, then bℓ ∈ B(sℓ), for all ℓ ∈ N

∗, the sequence {(sℓ, bℓ)} is
convergent, and sℓ + γbℓ → r + γb.

Following [40], the intuitive meaning of (sℓ, bℓ) = B(r, b, γ, s̄, b̄, ℓ) is that (sℓ, bℓ) is the ℓth

trial approximation generated by some iterative procedure for solving (3.2.5), starting
from some initial guess (s̄, b̄) ∈ R

n ×R
n. We refer the interested reader to [40, Section 5]

for a more detalied discussion and interpretation on the B-procedure concept.
We make the following standing assumption:

Assumption 1. There exists a B-procedure (according to Definition 3.2.1) for approxi-
mately solving any instance of (3.2.5).

We now combine the hypothesized B-procedure with an acceptance criterion for the
approximate solution of (3.2.3). We will follow the general approach of [40], which is to
exploit the connection between the DR algorithm (3.2.3)-(3.2.4) and the proximal point
algorithm as established in [37]. Specifically, the DR algorithm (3.2.3), (3.2.4) is a special
instance of the PP algorithm in the sense that,

rk+1 + γbk+1 = (Sγ,A,B + I)−1(rk + γbk) ∀k ≥ 0

where the “splitting" operator Sγ,A,B is defined as (1.2.6), i.e.,

Sγ,A,B := {(r + γb, s− r) ∈ R
n × R

n | b ∈ B(s), a ∈ A(r), γa+ r = s− γb}. (3.2.14)

As we presented in Subsection 1.2.1, the operator defined in (3.2.14) is maximal monotone
and

(A+B)−1(0) = JγB
(
S −1
γ,A,B(0)

)
, (3.2.15)
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which, in particular, gives that any solution z∗ ∈ R
n of the monotone inclusion problem

(3.1.1) with T := Sγ,A,B, namely

0 ∈ Sγ,A,B(z) (3.2.16)

yields a solution x∗ := JγB(z
∗) of (3.2.1).

Here, we follow a similar derivation to [40], but use Algorithm 6 of Section 3.1
to (3.2.16) in place of the HPE method of [76]. The result is an inertial-relaxed inexact
relative-error DR algorithm for solving (3.2.1). We should emphasize that even when
αk ≡ 0 (there is no inertial step) and ρk ≡ 1 (no overrelaxation), the resulting algorithm
differs from that of [40]. This difference arises because the underlying “convergence engine”
of Algorithm 6 is a form of hybrid proximal-projection (HPP) algorithm, whereas [40]
used an HPE algorithm in the equivalent role, using an extragradient step instead of
projection.

The proposed algorithm for solving (3.2.1) is shown as Algorithm 7. We should
mention that a different inexact DR splitting algorithm in which relative errors are
allowed in both (3.2.7) and (3.2.9) was recently proposed and studied in [82], but without
computational testing. The following proposition shows that Algorithm 7 is indeed a
special instance of Algorithm 6 for solving (3.1.1) with T := Sγ,A,B.

Proposition 3.2.2. Consider the sequences evolved by Algorithm 7 and for each k ≥ 0
let ℓ(k) denote the value of ℓ for which (3.2.10) is satisfied. For each k ≥ 0, define, with
γ as in Algorithm 7,

zk := rk + γbk,

wk := r̂k + γb̂k,

z̃k := rk,ℓ(k) + γbk,ℓ(k),

vk := sk,ℓ(k) − rk,ℓ(k).

(3.2.17)

Then these latter sequences satisfy the conditions (3.1.2)-(3.1.4) of Algorithm 6 with
λk ≡ 1 and T = Sγ,A,B.
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Algorithm 7. A partially inexact inertial–relaxed Douglas-Rachford split-
ting algorithm for solving (3.2.1)

Choose γ > 0, 0 ≤ α, σ < 1 and 0 < ρ < ρ < 2.
Initialize (s0, b0, r0) = (s−1, b−1, r−1) ∈ (Rn)3.

for k = 0, 1, 2, . . . do

Choose αk ∈ [0, α] and define

(ŝk, b̂k, r̂k) = (sk, bk, rk) + αk

[
(sk, bk, rk)− (sk−1, bk−1, rk−1)

]
(3.2.6)

repeat {for ℓ = 1, 2, . . . }

Improve the solution to

bk,ℓ ∈ B(sk,ℓ), sk,ℓ + γbk,ℓ ≈ r̂k + γb̂k (3.2.7)

by setting

(sk,ℓ, bk,ℓ) = B(r̂k, b̂k, γ, ŝk, b̂k, ℓ) (3.2.8)

(thus incrementally executing a step of the B–procedure)

Exactly find (rk,ℓ, ak,ℓ) ∈ R
n × R

n such that

ak,ℓ ∈ A(rk,ℓ), rk,ℓ + γak,ℓ = sk,ℓ − γbk,ℓ (3.2.9)

until

‖sk,ℓ + γbk,ℓ − (r̂k + γb̂k)‖2 ≤ σ2
(
‖rk,ℓ + γbk,ℓ − (r̂k + γb̂k)‖2 + ‖sk,ℓ − rk,ℓ‖2

)

(3.2.10)

if sk,ℓ = rk,ℓ, then stop

otherwise, choose ρk ∈ [ ρ, ρ ] and set

sk+1 = sk,ℓ, rk+1 = rk,ℓ (3.2.11)

θk+1 =
〈(r̂k − rk,ℓ) + γ(b̂k − bk,ℓ), sk,ℓ − rk,ℓ〉

‖sk,ℓ − rk,ℓ‖2 (3.2.12)

bk+1 = b̂k − γ−1
[
(1− ρk θk+1)r

k+1 + ρk θk+1s
k+1 − r̂k

]
(3.2.13)

end for
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Proof. Fix any k ≥ 0. From (3.2.6) and the definitions of zk and wk in (3.2.17) we have

wk = r̂k + γb̂k = rk + γbk + αk[r
k + γbk − (rk−1 + γbk−1)]

= zk + αk(z
k − zk−1),

which is exactly (3.1.2). Now note that the inclusion in (3.1.3) follows from the fact that
T := Sγ,A,B, (3.2.14), (3.2.9), bk,ℓ(k) ∈ B(sk,ℓ(k)) from (3.2.7), and the definitions of vk

and z̃k in (3.2.17).
Further, (3.2.17) and (3.2.10) yield

‖vk + z̃k − wk‖2 = ‖sk,ℓ(k) + γbk,ℓ(k) − (r̂k + γb̂k)‖2

≤ σ2
(
‖rk,ℓ(k) + γbk,ℓ(k) − (r̂k + γb̂k)‖2 + ‖sk,ℓ − rk,ℓ‖2

)

= σ2
(
‖z̃k − wk‖2 + ‖vk‖2

)
,

which is exactly the inequality in (3.1.3) with λk = 1. Finally,

zk+1 = rk+1 + γbk+1 [by (3.2.17)]

= rk,ℓ(k) + γ

(
b̂k − 1

γ

[
(1− ρkθk+1)r

k,ℓ(k) + ρkθk+1s
k,ℓ(k) − r̂k

])
[by (3.2.11) and (3.2.13)]

= r̂k + γb̂k + ρkθk+1

(
rk,ℓ(k) − sk,ℓ(k)

)

= wk − ρkθk+1v
k [by (3.2.17)]

= wk − ρk
〈wk − z̃k, vk〉
‖vk‖2 vk, [by (3.2.12) and (3.2.17)]

which establishes (3.1.4) and thus completes the proof of the proposition.

The following theorem states the asymptotic convergence properties of Algorithm 7, which
are essentially direct consequences of Proposition 3.2.2 and Theorem 3.1.5.

Theorem 3.2.3 (Convergence of Algorithm 7). Consider the sequences evolved by
Algorithm 7 with the parameters α ∈ [0, 1), ρ ∈ (0, 2) and {αk} satisfying the condi-
tions (3.1.20) and (3.1.21) of Theorem 3.1.5. Then

(a) If the outer loop (over k) executes an infinite number of times, with each inner
loop (over ℓ) terminating in a finite number of iterations ℓ = ℓ(k), then {sk} and
{rk} both converge to some solution x∗ ∈ R

n of (3.2.1), and {bk,ℓ(k)} and {bk} both
converge to some b∗ ∈ B(x∗), with {ak,ℓ(k)} converging to −b∗ ∈ A(x∗).

(b) If the outer loop executes only a finite number of times, ending with k = k̄, with
the last invocation of the inner loop executing an infinite number of times, then
{sk̄,ℓ}∞ℓ=1 and {rk̄,ℓ}∞ℓ=1 both converge to some solution x∗ ∈ R

n of (3.2.1), and
{bk̄,ℓ}∞ℓ=1 converges to some b∗ ∈ B(x∗), with {ak̄,ℓ}∞ℓ=1 converging to −b∗ ∈ A(x∗).

(c) If Algorithm 7 stops with sk,ℓ = rk,ℓ, then z∗ := sk,ℓ = rk,ℓ is a solution of (3.2.1).

Proof. (a) For each k ≥ 0, again let ℓ = ℓ(k) be the index of inner iteration that first meets
the inner-loop termination condition. Using Proposition 3.2.2, (3.2.11), the descriptions

63



of algorithms 6 and 7, and Theorem 3.1.5, we conclude that there exists z∗ ∈ R
n such

that 0 ∈ Sγ,A,B(z
∗) and

zk = rk + γbk → z∗ z̃k−1 = rk + γb(k−1),ℓ(k−1) → z∗ vk−1 = sk − rk → 0. (3.2.18)

From 0 ∈ Sγ,A,B(z
∗) and (3.2.15) we obtain that x∗ := JγB(z

∗) is a solution of (3.2.1).
Moreover, it follows from (3.2.18), the inclusion in (3.2.7), (3.2.11), and the continuity of
JγB that

sk + γb(k−1),ℓ = vk−1 + z̃(k−1) → 0 + z∗ = z∗ (3.2.19)

and

sk = JγB(s
k + γb(k−1),ℓ)→ JγB(z

∗) = x∗. (3.2.20)

We also have rk → x∗ since, from (3.2.18), sk − rk → 0. Altogether, we have that x∗ is
a solution of (3.2.1) and {sk} and {rk} both converge to x∗. From (3.2.19) and (3.2.20)
we now have

bk,ℓ(k) = γ−1(sk+1 + γbk,ℓ(k) − sk+1)→ γ−1(z∗ − x∗) := b∗. (3.2.21)

From x∗ = JγB(z
∗) we then obtain b∗ ∈ B(x∗). On the other hand, using the equation in

(3.2.9), (3.2.11), (3.2.18) and (3.2.21) we find

ak,ℓ(k) = γ−1(sk+1 − rk+1)− bk,ℓ(k) → 0− b∗ = −b∗.

Using the above convergence result, that rk,ℓ(k) = rk+1 → x∗, the inclusion in (3.2.9), and
Lemma A.3, we obtain that −b∗ ∈ A(x∗). Finally, bk = γ−1(zk− rk)→ γ−1(z∗− r∗) = b∗.

(b) First note that using (3.2.8) we obtain (sk̄,ℓ, bk̄,ℓ) = B(r̂k̄, b̂k̄, γ, ŝk̄, b̂k̄, ℓ), which
in view of Definition 3.2.1 yields (sk̄,ℓ, bk̄,ℓ) ∈ B, for all ℓ ≥ 1, sk̄,ℓ + γbk̄,ℓ → r̂k̄ + γb̂k̄,
sk̄,ℓ → x∗, and bk̄,ℓ → b∗, for some x∗, b∗ ∈ R

n. Combining limits, we obtain that
r̂k̄ + γb̂k̄ = x∗ + γb∗. From Lemma A.3, we also have b∗ ∈ B(x∗). Now combining the
limits with (3.2.9) and the continuity of JγA, we also find

rk̄,ℓ = JγA(s
k̄,ℓ − γbk̄,ℓ)→ JγA(x

∗ − γb∗) =: r∗

and so

ak̄,ℓ = γ−1
(
sk̄,ℓ − rk̄,ℓ

)
− bk̄,ℓ → γ−1(x∗ − r∗)− b∗ =: a∗. (3.2.22)

From the inclusion in (3.2.9) and (again) Lemma A.3 we obtain that a∗ ∈ A(r∗). On the
other hand, using (3.2.10) and the hypothesis that the inner loop executes an infinite
number of times at iteration k = k̄, we obtain, for all ℓ ≥ 1, that

‖sk̄,ℓ + γbk̄,ℓ − (r̂k̄ + γb̂k̄)‖2 > σ2
(
‖rk̄,ℓ + γbk̄,ℓ − (r̂k̄ + γb̂k̄)‖2 + ‖sk̄,ℓ − rk̄,ℓ‖2

)
.

(3.2.23)

Since the left-hand side of the above inequality converges to zero and the right-hand side
is nonnegative, the right-hand side also converges to zero and in particular sk̄,ℓ− rk̄,ℓ → 0.
Since sk̄,ℓ → x∗ and rk̄,ℓ → r∗, we conclude that x∗ = r∗ and, hence, from (3.2.22), that
a∗ = −b∗.

(c) If sk,ℓ = rk,ℓ =: z∗, then it follows from the inclusion in (3.2.7) and (3.2.9) that
0 = γ−1(sk,ℓ − rk,ℓ) = ak,ℓ + bk,ℓ ∈ A(rk,ℓ) + B(sk,ℓ) = (A+B)(z∗).
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3.3 A partially inexact relative-error inertial-relaxed

ADMM

We now consider the convex optimization problem (18), i.e.,

min
x∈Rn
{f(x) + g(x)} (3.3.1)

where f, g : Rn → (−∞,∞] are proper, convex and lower semicontinuous functions for
which (∂f + ∂g)−1(0) 6= ∅.

The alternating direction method of multipliers (ADMM) [45] is a first-order algorithm
for solving (3.3.1) which has become popular over the last decade largely due to its wide
range of applications in data science (see, e.g., [17]). As applied to (3.3.1), one iteration
of the ADMM may be described as in (19)-(20), that is:

xk+1 ∈ argminx∈Rn

{
f(x) + 〈pk, x〉+ c

2
‖x− zk‖2

}
, (3.3.2)

zk+1 ∈ argminz∈Rn

{
g(z)− 〈pk, z〉+ c

2
‖xk+1 − z‖2

}
, (3.3.3)

pk+1 = pk + c(xk+1 − zk+1). (3.3.4)

In many applications, the function g is such that (3.3.3) has a closed-form or otherwise
straightforward solution (e.g., g(·) = ‖ · ‖1). We consider situations in which this is the
case, but solving (3.3.2) is more difficult and requires some form of iterative process.
Eckstein and Yao [40, Section 6] proposed and studied the asymptotic convergence of
an inexact version of the ADMM tailored to such situations: at each iteration, (3.3.2)
may be approximately solved within a relative-error tolerance. This method is a special
version of their inexact relative-error Douglas-Rachford (DR) algorithm mentioned in
Section 2.1, as applied to the monotone inclusion (22), i.e.,

0 ∈ ∂f(x) + ∂g(x) (3.3.5)

which is, in particular, a special case of (3.2.1) with A = ∂g and B = ∂f (or vice versa).
Problem (3.3.5) is, under standard qualification conditions, equivalent to (3.3.1). Recall
that we are assuming (∂f + ∂g)−1(0) 6= ∅, i.e., that (3.3.5) admits at least one solution.

In this section, we propose and study the asymptotic behaviour of a (partially) inexact
relative-error inertial-relaxed ADMM algorithm for solving (3.3.1). The proposed method,
namely Algorithm 8, is a special version of Algorithm 7 when applied to solving (3.3.5)
and may be viewed as an alternative to the Eckstein-Yao approximate ADMM [40] that
incorporates inertial and relaxation effects to accelerate convergence.

To formalize the inexact solution process for the subproblems (3.3.2), we introduce
the notion of an F-procedure [40]. First, we note that any instance of (3.3.2) can be
posed slightly more abstractly as

min
x∈Rn

{
f(x) + 〈p, x〉+ c

2
‖x− z‖2

}
(3.3.6)

where p, z ∈ R
n and c > 0.
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Definition 3.3.1 (F-procedure for solving (3.3.6)). A F–procedure for (approxi-
mately) solving any instance of (3.3.6) is a mapping F = (F1,F2) : R

n × R
n × R++ ×

R
n × N

∗ → R
n × R

n such that if one lets (xℓ, yℓ) = F(p, z, c, x̄, ℓ) for all ℓ ∈ N and any
given p, z, x̄ ∈ R

n and c > 0, then

lim
ℓ→∞

yℓ = 0 and (∀ℓ ∈ N) yℓ ∈ ∂x
[
f(x) + 〈p, x〉+ c

2
‖x− z‖2

]
x=xℓ

. (3.3.7)

Quoting [40, Assumption 2], “the idea behind this definition is that F(p, z, c, x̄, ℓ) is the
ℓth iterate produced by the x-subproblem solution procedure with penalty parameter c,
the Lagrange multiplier estimate pk equal to p, and zk = z, starting from the solution
estimate x̄”. For the remainder of this section, we assume the following.

Assumption 2. There exists a F–procedure (according to Definition 3.3.1) for approxi-
mately solving any instance of (3.3.6).

The next lemma shows that the F-procedure is essentially a form of B–procedure (see
Definition 3.2.1). Although the proof essentially duplicates analysis in [39, 40], it is not
presented as a separate result there. Therefore we include the proof in the interest of
rigor and completeness.

Lemma 3.3.2. Let F(·) = (F1(·),F2(·)) be a F–procedure for solving (3.3.6), where
Fi : R

n×R
n×R++×R

n×N
∗ → R

n, for i = 1, 2, and define B : Rn×R
n×R++×R

n×
R

n × N
∗ → R

n × R
n by

B(r, b, γ, s̄, b̄, ℓ) = F(−b, r, γ−1, s̄, ℓ) +
(
0, b− γ−1(F1(−b, r, γ−1, s̄, ℓ)− r)

)
. (3.3.8)

Then, B is a B–procedure (see Definition 3.2.1) for approximately solving (3.2.5) in which
s := x, B := ∂f , γ = c−1, r := z and b := −p.
Proof. Assume that (sℓ, bℓ) = B(r, b, γ, s̄, b̄, ℓ) for some r, b, s̄, b̄ ∈ R

n, γ > 0 and all ℓ ∈ N
∗.

In view of (3.3.8) and the fact that F = (F1,F2) we have

(sℓ, bℓ) =
(
F1(−b, r, γ−1, s̄, ℓ),F2(−b, r, γ−1, s̄, ℓ)

)
+
(
0, b− γ−1(F1(−b, r, γ−1, s̄, ℓ)− r)

)

and so, for all ℓ ∈ N
∗,

(sℓ, bℓ − b+ γ−1(sℓ − r)) =
(
F1(−b, r, γ−1, s̄, ℓ),F2(−b, r, γ−1, s̄, ℓ)

)
= F(−b, r, γ−1, s̄, ℓ).

Using the latter identity and the fact that F(·) is a F–procedure (see Definition 3.3.1)
we obtain

lim
ℓ→∞

(bℓ − b+ γ−1(sℓ − r)︸ ︷︷ ︸
=:yℓ

) = 0 and (∀ℓ ∈ N) yℓ ∈ ∂x
[
f(x)− 〈b, x〉+ 1

2γ
‖x− r‖2

]

x=sℓ

which, in particular, after some computations, yields (sℓ, bℓ) ∈ G(∂f), i.e., bℓ ∈ ∂f(sℓ) for
all ℓ ∈ N

∗. Using this fact and the definition of yℓ we find sℓ = (γ∂f + I)−1(r+ γ(yℓ+ b)),
which in turn combined with the fact that limℓ→∞ yℓ = 0 and the continuity of Jγ∂f :=
(γ∂f + I)−1 implies that sℓ → Jγ∂f(r + γb). On the other hand, using the definition of
yℓ (again) we also obtain γbℓ + sℓ = γ(yℓ + b) + r, which gives that {bℓ} is convergent
and γbℓ + sℓ → r + γb. Altogether, we proved that (sℓ, bℓ) ∈ ∂f , for all ℓ ∈ N

∗, that the
sequence {(sℓ, bℓ)} is convergent and sℓ + γbℓ → r + γb, which finishes the proof.
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Algorithm 8. Partially inexact relative-error inertial-relaxed ADMM for
(3.3.1)

Choose c > 0, 0 ≤ α, σ < 1 and 0 < ρ < ρ < 2.
Initialize (x0, z0, p0) = (x−1, z−1, p−1) ∈ (Rn)3.

for k = 0, 1, 2, . . . do

Choose αk ∈ [0, α] and define

(x̂k, ẑk, p̂k) = (xk, zk, pk) + αk[(x
k, zk, pk)− (xk−1, zk−1, pk−1)] (3.3.9)

repeat {for ℓ = 1, 2, . . . }

Improve the solution

xk+1 ≈ argminx∈Rn

{
f(x) + 〈p̂k, x〉+ c

2
‖x− ẑk‖2

}
(3.3.10)

by setting

(xk,ℓ, yk,ℓ) = F(p̂k, ẑk, c, x̂k, ℓ) (3.3.11)

(thus incrementally executing a step of the F–procedure)

Define

pk,ℓ = p̂k + c(xk,ℓ − ẑk)− yk,ℓ (3.3.12)

Exactly find

zk,ℓ = argminz∈Rn

{
g(z)− 〈pk,ℓ, z〉+ c

2
‖xk,ℓ − z‖2

}
(3.3.13)

until

‖yk,ℓ‖2 ≤ σ2
(
‖pk,ℓ − p̂k − c(zk,ℓ − ẑk)‖2 + c2‖xk,ℓ − zk,ℓ‖2

)
(3.3.14)

if xk,ℓ = zk,ℓ then stop

otherwise, choose ρk ∈ [ ρ, ρ ] and set

xk+1 = xk,ℓ, zk+1 = zk,ℓ (3.3.15)

θk+1 =
〈c(ẑk − zk,ℓ)− (p̂k − pk,ℓ), xk,ℓ − zk,ℓ〉

c‖xk,ℓ − zk,ℓ‖2 (3.3.16)

pk+1 = p̂k + c
[
(1− ρk θk+1)z

k+1 + ρk θk+1x
k+1 − ẑk

]
(3.3.17)

end for
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Our inertial-relaxed inexact ADMM for solving (3.3.1) is presented as Algorithm 8.
Before establishing its convergence, we make the following remarks regarding this algo-
rithm:

(i) Similarly to Algorithm 7, Algorithm 8 benefits from inertial and relaxation effects
— see (3.3.9) and (3.3.17) — as well as from the relative error criterion (3.3.14)
allowing inexact solution of the f -subproblem (3.3.10).

(ii) Algorithm 8 can be viewed as an inertial-relaxed version of Algorithm 4 in [40],
but we emphasize that even without inertia or relaxation (that is, when α = 0
and ρk ≡ 1) it differs from the latter algorithm since Algorithm 4 is based on an
approximate proximal point algorithm using an extragradient “corrector” step, while
Algorithm 8 is instead based indirectly on Algorithm 6, an approximate proximal
point method using projective corrector steps. In developing Algorithm 8, we also
experimented with using extragradient correction, but obtained better numerical
performance from projective correction.

(iii) The derivation of Algorithm 8 mirrors that in [40], except that the underlying
convergence “engine” from [77] is replaced by Algorithm 6. It should be noted
that [39] provides a different way of deriving approximate ADMM algorithms. This
approach results in different approximate forms of the ADMM, allowing for both
relative and absolute error criteria, both of a practically verifiable form. It is also
possible that the work in [82] could lead to still more approximate forms of the
ADMM.

(iv) As in [40], the derivation of our algorithm is based on a primal reformulation (3.3.5)
of the optimization problem (3.3.1) as a monotone inclusion. Using a primal
formulation is necessary here, as in [40], because Algorithm 7 requires pairs (sk,ℓ, bk,ℓ)
that are in the graph of B. Working with the dual inclusion 0 ∈ ∂f ∗(−p) + g∗(p)
would in general require exact optimization of linear or quadratic perturbations of f
and g, and would thus not lead to a method in which (3.3.2) is solved approximately
in a practical manner. In the case of problem (3.3.1), applying exact Douglas-
Rachford splitting to either the primal inclusion (3.3.5) or the dual inclusion
0 ∈ ∂f ∗(−p) + g∗(p) is known to yield the same ADMM algorithm (3.3.2)-(3.3.4);
see for example [36, Proposition 3.43]. Here, we select the primal approach since it
leads to a tractable form of approximation for (3.3.2).

The drawback of the primal approach is that does not readily adapt to more general
problem formulations such as minx∈Rn{f(x)+g(Mx)} (where M is an m×n matrix
and g is now defined over Rm instead of Rn) or the linearly constrained formulation
used in [17]. Such formulations require different techniques, such as those employing
primal-dual inclusion formulations as in [39].

Proposition 3.3.3. For any given execution of Algorithm 8, define

(sk, bk, rk) := (xk,−pk, zk), (3.3.18)

(ŝk, b̂k, r̂k) := (x̂k,−p̂k, ẑk), (3.3.19)
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(sk,ℓ, bk,ℓ, rk,ℓ) := (xk,ℓ,−pk,ℓ, zk,ℓ), (3.3.20)

ak,ℓ := c(sk,ℓ − rk,ℓ)− bk,ℓ, (3.3.21)

for all applicable k and l. Then these sequences conform to the recursions (3.2.6)-(3.2.13)
in Algorithm 7 with γ = 1/c, the B-procedure (3.3.8), and the maximal monotone operators
A = ∂g and B = ∂f .

Proof. In view of (3.3.18), (3.3.19) and (3.3.9) we have

(ŝk, b̂k, r̂k) = (x̂k,−p̂k, ẑk) =
(
xk + αk(x

k − xk−1),−pk − αk(p
k − pk−1), zk + αk(z

k − zk−1)
)

= (sk, bk, rk) + αk

[
(sk, bk, rk)− (sk−1, bk−1, rk−1)

]
,

which is identical to (3.2.6) in Algorithm 7. Fix γ = 1/c. Then (3.3.11), Definition 3.3.1,
(3.3.19) lead to

xk,ℓ = F1(p̂
k, ẑk, c, x̂k, ℓ) = F1(−b̂k, r̂k, γ−1, ŝk, ℓ). (3.3.22)

Combining (3.3.20), (3.3.12), (3.3.11), (3.3.22), (3.3.19), and (3.3.8), we deduce that

(sk,ℓ, bk,ℓ) = (xk,ℓ,−pk,ℓ)
= (xk,ℓ, yk,ℓ) + (0,−p̂k − γ−1(xk,ℓ − ẑk))
= F(−b̂k, r̂k, γ−1, ŝk, ℓ) + (0, b̂k − γ−1(F1(−b̂k, r̂k, γ−1, ŝk, ℓ)− r̂k))
= B(r̂k, b̂k, γ, ŝk, b̂k, ℓ),

which yields (3.2.7) and (3.2.8). Note now that (3.3.13) is equivalent to the condition
0 ∈ ∂g(zk,ℓ) − pk,ℓ + c(zk,ℓ − xk,ℓ), which, in view of (3.3.20) and (3.3.21), is clearly
equivalent to (3.2.9) with A = ∂g. To prove (3.2.10), note that from (3.3.18), (3.3.20),
(3.3.12) and (3.3.14) we obtain

‖sk,ℓ + γbk,ℓ − (r̂k + γb̂k)‖2 = ‖γ yk,ℓ‖2

≤ γ2σ2
(
‖pk,ℓ − p̂k − c(zk,ℓ − ẑk)‖2 + c2‖xk,ℓ − zk,ℓ‖2

)

which in view of (3.3.19) and (3.3.20) is equivalent to (3.2.10). Finally, similar reasoning
establishes that (3.2.11)-(3.2.13) are equivalent to (3.3.15)-(3.3.17).

Theorem 3.3.4 (Convergence of Algorithm 8). Consider any execution of Algo-
rithm 8 for which α ∈ [0, 1), ρ ∈ (0, 2), and {αk} satisfy conditions (3.1.20) and (3.1.21)
of Theorem 3.1.5. Then:

(a) If for each k ≥ 0 the outer loop (over k) executes an infinite number of times,
with each inner loop (over ℓ) terminating in a finite number of iterations ℓ = ℓ(k),
then {xk} and {zk} both converge to some x∗ ∈ R

n solution of (3.3.5), and {pk}
converges to some p∗ ∈ ∂g(x∗) such that −p∗ ∈ ∂f(x∗).

(b) If the outer loop executes only a finite number of times, ending with k = k̄, with
the last invocation of the inner loop executing an infinite number of times, then
{xk̄,ℓ}ℓ and {zk̄,ℓ}ℓ both converge to some x∗ ∈ R

n solution of (3.3.5), and {pk̄,ℓ}ℓ
converges to some p∗ ∈ ∂g(x∗) such that −p∗ ∈ ∂f(x∗).

(c) If Algorithm 8 stops with either pk,ℓ − p̂k = c(zk,ℓ − ẑk) or xk,ℓ = zk,ℓ then
x∗ := xk,ℓ = zk,ℓ is a solution of (3.3.5).

Proof. The result follows from immediately by combining Proposition 3.3.3, Theorem
3.2.3, and the definitions of Algorithms 7 and 8.
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3.4 Numerical experiments

This section describes numerical experiments on the LASSO and logistic regression
problems, which are both instances of the minimization problem (3.3.1). We tested the
following algorithms: the inexact relative-error ADMM admm_primDR from [40]; the
relative-error method relerr from [39]; Algorithm 8 from this thesis, which we denote as
admm_primDR_relx_in; the absolute-error aproximate ADMM absgeom discussed in
[39, 40], and (for logistic regression problems only) a backtracking variant of FISTA [12]
(also discussed in [40]). We implemented all algorithms in MATLAB, and, analogously to
[40], we used the following condition to terminate the outer loop:

dist∞ (0, ∂x[f(x) + g(x)]x=xk) ≤ ǫ, (3.4.1)

where dist∞(t, S) := inf{‖t− s‖∞ | s ∈ S}, and ǫ > 0 is a tolerance parameter set to 10−6.
Moreover, in our implementation of Algorithm 8 from this thesis, we replaced the

error condition (3.3.14) with the stronger condition

‖yk,ℓ‖ ≤ σmax
{
‖pk,ℓ − p̂k − c(zk,ℓ − ẑk)‖, c‖xk,ℓ − zk,ℓ‖

}
, (3.4.2)

which we empirically found to yield better numerical performance.

3.4.1 Numerical experiments on the LASSO problem

In this subsection, we report numerical experiments on the LASSO or “compressed
sensing” problem which readily fits the form (18) [42]. The LASSO is an l1 regularized
version of linear regression written as [83]

min
x∈Rn

1

2
‖Ax− b‖22 + ν‖x‖1, (3.4.3)

where A ∈ R
m×n, b ∈ R

m and ν > 0, which is an instance of (3.3.1) with f(x) :=
(1/2)‖Ax− b‖22 and g(x) := ν‖x‖1.

For the data A and b, we used four categories of (non-artificial) datasets, as in [40]:

Gene expression: This category consists of six standard cancer DNA microarray
datasets from [33]. These instances have dense, wide, and relatively small matrices A,
with the number of rows m ∈ [42, 102], and the number of columns n ∈ [2000, 6033].
These problems are called: brain (with m = 42 and n = 5597), colon (with m = 62
and n = 2000), leukemia (with m = 72 and n = 3571), lymphoma (with m = 62
and n = 4026), prostate (with m = 102 and n = 6033) and srbct (with m = 63 and
n = 2308).

Single-Pixel camera: This category consists of four compressed image sensing
datasets from [34]. These instances have dense, wide, and relatively small ma-
trices A, with m ∈ [410, 4770] and n ∈ [1024, 16384]. These problems are called:
Ball64_singlepixcam (with m = 1638 and n = 4096), Logo64_singlepixcam (with
m = 1638 and n = 4096), Mug32_singlepixcam (with m = 410 and n = 1024) and
Mug128_singlepixcam (with m = 410 and n = 1024).
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Finance: This category consists in a single large dense financial dataset from [54],
with m = 30465 and n = 216842.

PEMS : This category consists in a single large, wide, and dense dataset from the
California Department of Transportation from [55], with m = 267 and n = 138672.

We tested three algorithms for solving (3.4.3):

• The inexact relative-error ADMM admm_primDR from [40]. For this algorithm,
we used the same parameter values as in [40], namely σ = 0.99 and c = 1 (except
for the PEMS problem instance, for which c = 20).

• The relative-error algorithm relerr from [39]. We also used σ = 0.99, c = 1 (for all
problem instances except PEMS, which we used c = 20). For this set of LASSO
problems, the experiments in [39, 40] already show admm_primDR to outperform
the algorithms of [39], as well as FISTA [12].

• Algorithm 8 from this thesis which we denote as admm_primDR_relx_in. We used
the parameter settings αk ≡ α = 0.18966, β = 0.18976 and ρk ≡ ρ = ρ = 1.4882 —
see conditions (3.1.20) and (3.1.21) and Figure 3.2. We also set σ = 0.99 and c = 1
(except for the PEMS problem instance, for which c = 20).

We implemented all of the algorithms in MATLAB, using a conjugate gradient proce-
dure to approximately solve the subproblems corresponding to f(x) = (1/2)‖Ax− b‖2,
exactly as in [40]. As in [17], we set the regulation parameter ν as 0.1‖AT b‖∞ and scaled
the vector b and the columns of matrix A to have unit l2 norm.

Table 3.1 shows the number of outer iterations required by each algorithm on each
problem instance and the geometric mean taken over the set of test problems. Table 3.2
shows the cumulative total number of inner iterations required by each algorithm on each
problem (conjugate gradient) and again the geometric mean taken over the set of test
problems. Table 3.3 shows runtimes in seconds demanded by each algorithm to terminate
each problem, with the geometric mean taken over the set of test problems. Figure 3.3
shows the same results graphically. In each table, the smallest value in each row appears
in bold. In terms of runtime, the new algorithm outperforms that of [40] for all problem
except the finance1000 instance.

3.4.2 Numerical experiments on logistic regression problems

This section describes numerical experiments on the ℓ1–regularized logistic regression
problem [44, 72]

min
(w,v)∈Rn−1×R

q∑

i=1

log
(
1 + exp(−bi(aTi w + v))

)
+ ν‖w‖1, (3.4.4)

using a training dataset consisting of q pairs (ai, bi), where ai ∈ R
n−1 is a feature vector,

bi ∈ {−1,+1} is the corresponding label, w ∈ R
n−1 represents a weighting of the feature
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Table 3.1: LASSO outer iterations; α = 0.18966, β = 0.18976 and ρ̄ = 1.4882

Problem relerr admm_primDR admm_primDR_ iteration3

iteration1

iteration3

iteration2

relx_in
(iteration1) (iteration2) (iteration3)

Ball64_singlepixcam 280 278 123 0.439 0.442
Logo64_singlepixcam 283 282 139 0.491 0.493
Mug32_singlepixcam 153 153 136 0.888 0.888
Mug128_singlepixcam 920 914 435 0.473 0.476
finance1000 974 1709 1079 1.107 0.631
PEMS 3354 3648 1088 0.324 0.298
Brain 1855 2295 1219 0.657 0.531
Colon 450 482 256 0.568 0.531
Leukemia 675 774 424 0.628 0.547
Lymphoma 908 925 482 0.531 0.521
Prostate 1520 1739 998 0.656 0.574
srbct 426 401 221 0.519 0.551
Geometric mean 692.06 761.02 399.85 0.577 0.525

Table 3.2: LASSO total inner iterations; α = 0.18966, β = 0.18976 and ρ̄ = 1.4882

Problem relerr admm_primDR admm_primDR_ iteration3

iteration1

iteration3

iteration2

relx_in
(iteration1) (iteration2) (iteration3)

Ball64_singlepixcam 603 382 191 0.316 0.500
Logo64_singlepixcam 621 369 212 0.341 0.574
Mug32_singlepixcam 998 307 302 0.303 0.984
Mug128_singlepixcam 1214 1046 488 0.402 0.466
finance1000 18944 7852 9737 0.514 1.240
PEMS 85858 9318 9235 0.107 0.991
Brain 24612 7116 7655 0.311 1.075
Colon 5847 1401 1461 0.249 1.042
Leukemia 7888 2321 2543 0.322 1.095
Lymphoma 15266 3179 3083 0.202 0.969
Prostate 20615 5193 6629 0.321 1.276
srbct 6213 1505 1334 0.215 0.886
Geometric mean 5859.43 1876.32 1652.97 0.282 0.880
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Figure 3.3: Comparison of performance in LASSO problems

(a) LASSO outer iterations
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(b) LASSO total inner iterations
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(c) LASSO total inner iterations

F
in

an
ce

P
E

M
S

B
ra

in

0

20

40

60

80

·103

C
um

ul
at

iv
e

in
ne

r
it

er
at

io
ns

relerr

admm_primDR

admm_primDR_relx_in

(d) LASSO runtimes in seconds

M
ug

12
8

F
in

an
ce

P
E

M
S

0

2

4

6

8
·103

R
un

ti
m

es
in

se
co

nd
s

relerr

admm_primDR

admm_primDR_relx_in

(e) LASSO runtimes in seconds
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Table 3.3: LASSO runtimes in seconds; α = 0.18966, β = 0.18976 and ρ̄ = 1.4882

Problem relerr admm_primDR admm_primDR_relx_in time3

time1

time3

time2

(time1) (time2) (time3)

Ball64_singlepixcam 11.02 7.86 3.75 0.341 0.477
Logo64_singlepixcam 11.37 7.62 4.04 0.355 0.531
Mug32_singlepixcam 1.07 0.51 0.43 0.374 0.862
Mug128_singlepixcam 248.38 218.08 101.17 0.407 0.464
finance1000 805.17 327.56 347.97 0.432 1.062
PEMS 7546.11 1092.16 988.12 0.131 0.905
Brain 13.59 5.94 5.53 0.407 0.929
Colon 1.56 0.45 0.28 0.179 0.620
Leukemia 4.24 2.23 1.59 0.375 0.717
Lymphoma 7.18 2.63 2.03 0.283 0.773
Prostate 33.21 13.15 11.88 0.357 0.904
srbct 1.83 0.42 0.35 0.192 0.847
Geometric mean 21.13 8.75 6.41 0.303 0.733

and v ∈ R reresents a kind of bias. Problem (3.4.4) is clearly a special instance of (3.3.1)
with x = (v, w) and

f(v, w) :=

q∑

i=1

log
(
1 + exp(−bi(aTi w + v))

)
and g(v, w) := ν‖w‖1. (3.4.5)

For test data, we selected three standard cancer DNA microarray non-artificial datasets
(Gene expression, described in the previous subsection) from [33] (also used in [40,
Subsection 7.2]), that have bi ∈ {−1, 1} for all i. In addition, we also Arcene [50]
datasets, from the UCI Machine Learning Repository. This dataset is sparse and has
m = 900 and n = 10000. We tested five algorithms: absgeom, relerr, admm_primDR,
FISTA and admm_primDR_relx_in. For relerr and admm_primDR algorithms we
used the same parameter values as in Subsection 3.4.1; for admm_primDR_relx_in we
used the parameter settings αk ≡ α = 0.1, β = 0.1001 and ρk ≡ ρ = ρ = 1.7606 — see
conditions (3.1.20) and (3.1.21) and Figure 3.2. We also set σ = 0.99 and c = 1.

Analogously to [40], we used an L-BFGS procedure to approximately solve the
subproblems corresponding to f(·) from (3.4.5). As in [17], we set the regulation parameter
ν as 0.1‖AT b‖∞ and scaled the vector b and the columns of matrix A to have unit l2
norm. Table 3.4 shows the number of outer iterations required by each algorithm on
each problem and the geometric mean taken over the set of test problems. Note that the
relative-error methods take similar numbers of outer iterations, while the absolute-error
method requires more outer iterations. Table 3.5 shows the cumulative total number of
inner iterations required by each algorithm on each problem and again the geometric
mean taken over the set of test problems. The next to last column of Table 3.5 shows the
total number of iterations of the FISTA algorithm when run with the same termination
accuracy as the ADMM methods. Table 3.6 shows runtimes in seconds demanded by
each algorithm to terminate each problem, with the geometric mean taken over the set
of test problems. These results are also graphically summarized in Figure 3.4. The new
algorithm has the best aggregate performance by all measures, and the best run time for
all the datasets.
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Table 3.4: Outer iterations for logistic regression problems.

Problem absgeom relerr admm_primDR admm_primDR_relx_in
(iteration1) (iteration2) (iteration3) (iteration4)

Colon 2666 2145 1979 1578

Leukemia 1662 1116 922 788

Prostate 1936 1583 1677 1198

Arcene 419 276 359 290
Geometric mean 1376.91 1011.28 1023.76 810.72

Problem iteration4

iteration1

iteration4

iteration2

iteration4

iteration3

iteration2

iteration3

Colon 0.5919 0.7356 0.7974 1.0839
Leukemia 0.4741 0.7061 0.8546 1.2104
Prostate 0.6188 0.7568 0.7144 0.9439
Arcene 0.6921 1.0507 0.8078 0.7688
Geometric mean 0.5887 0.8016 0.7924 0.9849

Table 3.5: Total inner iterations for logistic regression problems.

Problem absgeom relerr admm_primDR FISTA admm_primDR_relx_in
(iteration1) (iteration2) (iteration3) (iteration4) (iteration5)

Colon 20612 23919 21697 26247 8283

Leukemia 7715 12086 11625 6536 4448

Prostate 18901 27505 24548 13730 10997

Arcene 780 3236 3589 4648 1450
Geometric mean 6958.73 12665.18 12209.43 10228.97 4923.21

Problem iteration5

iteration1

iteration5

iteration2

iteration5

iteration3

iteration5

iteration4

iteration4

iteration1

Colon 0.4018 0.3463 0.3817 0.3156 0.9499
Leukemia 0.5765 0.3681 0.3826 0.6805 0.6636
Prostate 0.5818 0.3998 0.4479 0.8009 0.7699
Arcene 1.8589 0.4481 0.4041 0.3119 0.2173
Geometric mean 0.7074 0.4032 0.4032 0.4813 0.5699
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Table 3.6: Logistic regression runtimes in seconds.

Problem absgeom relerr admm_primDR FISTA admm_primDR_relx_in
(time1) (time2) (time3) (time4) (time5)

Colon 182.3601 36.5207 91.5726 73.2987 12.8243

Leukemia 112.7412 105.4221 241.1378 60.9476 23.0547

Prostate 342.1609 719.6731 850.8159 206.3883 128.6972

Arcene 122.7208 312.1101 370.9415 184.3489 46.1276

Geometric mean 171.41 224.11 288.93 114.18 36.39

Problem time5

time1

time5

time2

time5

time3

time5

time4

time4

time3

Colon 0.0703 0.1203 0.1401 0.1749 0.8003
Leukemia 0.2045 0.2186 0.0956 1.0215 0.2527
Prostate 0.3761 0.1788 0.1513 0.6236 0.2426
Arcene 0.3759 0.1478 0.1244 0.2502 0.4969
Geometric mean 0.2123 0.1623 0.1259 0.3187 0.3951
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Figure 3.4: Comparison of performance in logistic regression problems

(a) Outer iterations
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(b) Total inner iterations
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(c) Runtimes in seconds
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Chapter 4

Final Remarks

In this thesis, we proposed and analyzed some variants of the Douglas-Rachford
method for solving monotone inclusions and of the alternating direction method of
multipliers for convex optimization. Initially, we proposed and studied the iteration
complexity of an inexact Douglas-Rachford splitting method and a Douglas-Rachford-
Tseng’s forward-backward splitting method for solving two-operator and four-operator
monotone inclusions, respectively. The former method (although based on a slightly
different mechanism of iteration) has motivated by the recent work of J. Eckstein and
W. Yao, in which an inexact DRS method is derived from a special instance of the
hybrid proximal extragradient (HPE) method of Solodov and Svaiter, while the latter one
combines the proposed inexact DRS method (used as an outer iteration) with a Tseng’s
forward-backward splitting type method (used as an inner iteration) for solving the
corresponding subproblems. We proved iteration complexity bounds for both algorithms
in the pointwise (non-ergodic) as well as in the ergodic sense by showing that they
admit two different iterations: one that can be embedded into the HPE method, for
which the iteration complexity is known since the work of Monteiro and Svaiter, and
another one which demands a separate analysis. Secondly, we studied the asymptotic
behavior of new variants of the Douglas-Rachford splitting and ADMM splitting methods,
both under relaxation and inertial effects and with inexact (relative-error) criterion for
subproblems. Our analysis has essentially based on a new inexact version of the proximal
point algorithm, also proposed by this thesis, that includes both an inertial step and
overrelaxation. To demonstrate the applicability of the proposed methods, we performed
numerical experiments applying the ADMM (relaxed and inertial) on LASSO and logistic
regression problems. We obtained present better computational performance than earlier
inexact ADMM methods. Moreover, our numerical results indicate that the proposed
inexact versions are a useful tool for solving some real-life applications that can be posed
in the general framework of convex optimization.
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Appendix A

Auxiliary Results

Lemma A.1. ([6, Lemma 3.1]) Let z∗γ := (γB + I)−1(̊z) be the (unique) solution of
(2.2.5). Then,

‖z̊ − z∗γ‖ ≤ ‖z̊ − x∗‖ ∀x∗ ∈ B−1(0). (A.1)

Lemma A.2. ([81, Lemma 2.2]) Let F : H → H be η–cocoercive, for some η > 0, and
let z′, z̃ ∈ H. Then,

F (z′) ∈ F ε(z̃) where ε :=
‖z′ − z̃‖2

4η
.

Lemma A.3 (See for example Proposition 20.33 of [11]). If T is maximal monotone on
R

n, {(z̃j, vj)} is such that vj ∈ T (z̃j) for all j ≥ 0, limj→∞ z̃j = z∞, and limj→∞ vj = v∞,
then v∞ ∈ T (z∞).

Lemma A.4. The inverse function of the scalar map

(0, 2) ∋ ρ 7→ φ(ρ) :=
2(2− ρ)

4− ρ+
√

16ρ− 7ρ2
∈ (0, 1)

is

(0, 1) ∋ β 7→ ψ(β) :=
2(β − 1)2

2(β − 1)2 + 3β − 1
∈ (0, 2).

Proof. We first claim that ψ(β) ∈ [0, 2] for all β ∈ [0, 1] and ψ(β) ∈ (0, 2) for all β ∈ (0, 1).
To establish this claim, we first note that by elementary calculus and some simplifications,
we have

d
dβ
ψ(β) =

6β2 − 4β − 2
(
2(β − 1)2 + 3β − 1

)2 =
6β2 − 4β − 2
(
2β2 − β + 1

)2 . (A.2)

The discriminant of 2β2 − β + 1 is negative, so it has no real roots and the denominator
of (A.2) is always positive. The expression in the numerator is convex and applying
the quadratic formula yields that that its roots are −1/3 and 1, so therefore it is
nonpositive on [0, 1] and negative on (0, 1). Therefore, d

dβ
ψ(β) exists for all β ∈ [0, 1]

and is negative for all β ∈ (0, 1), implying that ψ is a decreasing function on (0, 1). By
direct calculation, ψ(0) = 2 and ψ(1) = 0, so therefore

{
ψ(β) | β ∈ [0, 1]

}
= [0, 2] and
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{
ψ(β) | β ∈ (0, 1)]

}
= (0, 2), establishing the initial claim. To continue the proof, we

next establish that

φ(ψ(β)) = β ∀β ∈ (0, 1). (A.3)

To this end, fix any β ∈ (0, 1) and define

(0, 2) ∋ ρ := ψ(β) =
2(β − 1)2

2(β − 1)2 + 3β − 1
=

2β2 − 4β + 2

2β2 − β + 1
,

which implies the quadratic equation

2(1− ρ)β2 − (4− ρ)β + (2− ρ) = 0. (A.4)

We now consider three cases in (A.4): ρ = 1, ρ < 1, and ρ > 1.

ρ = 1: in this case, simplification of (A.4) and the definition of φ yield that β = 1/3 =
φ(1).

ρ < 1: the unique minimizer of the quadratic function in (A.4) is β∗ := (4−ρ)/
(
4(1−ρ)

)
,

which must be greater than 1 because ρ > 0. Thus, we have β∗ > 1 > β > 0, so β
is the smaller root of the quadratic equation in (A.4). Using the quadratic formula
and rationalizing the denominator,

β =
4− ρ−

√
(ρ− 4)2 − 4 · 2(1− ρ)(2− ρ)

2 · 2(1− ρ) =
4− ρ−

√
16ρ− 7ρ2

4(1− ρ) (A.5)

=
4− ρ−

√
16ρ− 7ρ2

4(1− ρ) · 4− ρ+
√

16ρ− 7ρ2

4− ρ+
√
16ρ− 7ρ2

=
16− 24ρ+ 8ρ2

4(1− ρ)
(
4− ρ+

√
16ρ− 7ρ2

) =
8(1− ρ)(2− ρ)

4(1− ρ)
(
4− ρ+

√
16ρ− 7ρ2

)

=
2(2− ρ)

4− ρ+
√
16ρ− 7ρ2

= φ(ρ). (A.6)

ρ > 1: in this case, β∗ as defined in the previous case is the unique maximizer of the
quadratic function in (A.4) and β∗ < 0. So β∗ < 0 < β < 1 and β is the larger root
of the quadratic in (A.4). Since the coefficient of the quadratic term is negative in
this case, this root also takes the form (A.5), and consequently (A.6) still holds.

The proof of (A.3) is now complete. Finally, we now prove that

ψ(φ(ρ)) = ρ ∀ρ ∈ (0, 2). (A.7)

To this end, let 0 < ρ < 2 and define

(0, 1) ∋ β := φ(ρ) =
2(2− ρ)

4− ρ+
√

16ρ− 7ρ2
.

Using the above definition and the quadratic formula, we conclude that β also satisfies
the quadratic equation (A.4), which after some simple algebra gives

ρ =
2(β − 1)2

2(β − 1)2 + 3β − 1
,

that is, ρ = ψ(β), which in turn is equivalent to (A.7).
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Figure A.1: Possible cases for the quadratic function q(·) in Lemma A.5.

Lemma A.5. Let R ∋ ν 7→ q(ν) := aν2 − bν + c be a real function and assume that
b, c > 0 and b2 − 4ac > 0. Define

β :=
2c

b+
√
b2 − 4ac

> 0. (A.8)

(i) If a = 0, then q(·) is a decreasing affine function and β > 0 as in (A.8) is its unique
root (see Figure A.1(a)).

(ii) If a > 0 (resp. a < 0), then q(·) is a convex (resp. concave) quadratic function and
β > 0 as in (A.8) is its smallest (resp. largest) root (see Figure A.1(b) and Figure
A.1(c), resp.).

In both cases (i) and (ii), β > 0 as in (A.8) is a root of q(·), and q(·) is decreasing in the
interval [0, β] (see Figure A.1).

Proof. The proof of (i) is straightforward. To prove (ii), note that rationalizing the
denominator of (A.8) results in β =

(
b−
√
b2 − 4ac

)
/2a, which in turn implies that (ii)

follows from the quadratic formula and the assumption that b, c > 0. The last statement
of the lemma is a direct consequence of (i), (ii) and the assumption that b, c > 0.

Lemma A.6 (Opial [73]). Let ∅ 6= Ω ⊂ R
n and {zk} be a sequence in R

n such that every
cluster point of {zk} belongs to Ω and limk→∞ ‖zk − z∗‖ exists for every z∗ ∈ Ω. Then
{zk} converges to a point in Ω.

The following lemma was essentially proved by Alvarez and Attouch in [2, Theorem 2.1].

Lemma A.7. Let the sequences {ϕk}, {sk}, {αk} and {δk} in [0,+∞) and α ∈ R be
such that ϕ0 = ϕ−1, 0 ≤ αk ≤ α < 1 and

ϕk+1 − ϕk + sk+1 ≤ αk(ϕk − ϕk−1) + δk ∀k ≥ 0. (A.9)

The following hold:

(a) For all k ≥ 1,

ϕk +
k∑

j=1

sj ≤ ϕ0 +
1

1− α

k−1∑

j=0

δj. (A.10)
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(b) If
∑

∞

k=0 δk < +∞, then limk→∞ ϕk exists, i.e., the sequence {ϕk} converges to some
element in [0,+∞).

Proof. It was proved in [2, Theorem 2.1] thatM := (1−α)−1
∑k

j=0 δj ≥
∑k+1

j=1 [ϕj−ϕj−1]+,
where [·]+ = max{·, 0}. Using this, the assumptions ϕ0 = ϕ−1, 0 ≤ αk ≤ α < 1 and (A.9),
and some algebraic manipulations we find, for all k ≥ 0,

ϕk+1 +
k+1∑

j=1

sj ≤ ϕ0 + α

k+1∑

j=1

[ϕj − ϕj−1]+ +
k∑

j=0

δj

≤ ϕ0 + αM+ (1− α)M = ϕ0 +M,

which proves (a). To finish the proof, we note that (b) was established within the proof
of [2, Theorem 2.1].
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