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ABSTRACT

Refrigeration systems are present in various aspects of people’s daily lives, either for
thermal comfort, with the use of air conditioning, or for food conservation, with the
use of freezers and refrigerators. With the high demand of the market, it is required
that these products have more technology onboard to balance energy consumption
with performance, and from the perspective of the industry, the investment in research
and development becomes even more important to supply the market with high quality
products that are aligned with low production cost. Considering this scenario, this work
proposes a study of machine learning techniques and autoML tools combined with a
model for estimating the rotation speed of variable speed refrigeration compressors, in a
non-invasive way, in order to estimate evaporation and condensation temperatures. As
the measurement of these quantities involves a high cost, so that it is only performed
on test benches, it would be very beneficial to use indirect forms of measurement,
turning the refrigerators into a more intelligent product. The results achieved by the
machine learning models were promising, resulting in the estimation of the evaporation
temperature with root mean square error of 1.38 ◦C, and for condensation temperature,
4.54 ◦C, highlighting the possibility of using machine learning in the context of estimating
operating conditions of refrigeration systems with non-invasive methods.

Keywords: Machine learning. Automated machine learning. Soft-sensing. Refrigeration
Systems



RESUMO

Os sistemas de refrigeração estão presentes em vários aspectos do cotidiano das
pessoas, seja para conforto térmico, com o uso de condicionadores de ar, ou para a
conservação de alimentos, com o uso de congeladores e refrigeradores. Com a alta
demanda do mercado, é necessário que estes produtos tenham mais tecnologia em-
barcada para equilibrar o consumo de energia com o desempenho, e da perspectiva da
indústria, o investimento em pesquisa e desenvolvimento torna-se ainda mais impor-
tante para abastecer o mercado com produtos de qualidade que estejam alinhados com
o baixo custo de produção. Considerando este cenário, o presente trabalho propõe um
estudo de técnicas de aprendizado de máquina e ferramentas de autoML combinadas
a um modelo de estimação de velocidade de rotação de compressores de velocidade
variável para refrigeração, de forma não invasiva, a fim de estimar as temperaturas
de evaporação e condensação. Como a medição dessas grandezas envolve um alto
custo, de forma que só é realizada em bancada de testes, seria muito vantajoso utilizar
formas indiretas de medição, transformando os refrigeradores em produtos mais inte-
ligentes. Os resultados alcançados pelos modelos de aprendizado de máquina foram
promissores, resultando na estimação da temperatura de evaporação com raiz de erro
médio quadrático de 1,38 ◦C, e para temperatura de condensação, 4,54 ◦C, evidenci-
ando a possibilidade de se utilizar aprendizado de máquina no contexto de estimação
de condições de operação de sistemas de refrigeração com métodos não invasivos.

Palavras-chave: Aprendizado de Máquina. Refrigeração. Sensoriamento Virtual.
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The compressor is the "heart" of the system, which acts as the pump that moves

the refrigerant through the other components, performing the cooling process. To better

extract the cooling capacity of the system and also relevant information, it is important

to know its operating conditions, in this case, through the compressor inlet and outlet

pressures, and what happens to the whole system with their variation, looking for the

improvement of the whole process.

The evaporation and condensation temperatures are two of the main quantities

that characterize the operating conditions of refrigeration systems. However, the mea-

surement of these variables is typically performed by the refrigerant pressures (suction

pressure - at the compressor inlet, and discharge pressure - at the compressor out-

let) and their correlation with these temperatures [9]. Measuring these variables can

bring valuable information about the system, but the cost of directly measuring these

pressures makes it unfeasible for consumer end products.

The measurement of the suction and discharge pressures is commonly per-

formed using pressure transducers [10], but this method is invasive, expensive, and

can impact the durability of the product. The manufacture of a product with such mea-

surements would only be feasible in a prototype character, not presenting itself as a

definitive solution.

The indirect measurement of some interesting variables is possible through a

soft-sensing approach, using several compressor measurements which are available

and already used for its control. This is possible due to the fact that the refrigerant

pressures, in the presence of friction and vibration, are largely responsible for the me-

chanical force to which the compressor is submitted, influencing the electrical quantities

in the compressor supply, which are used for its speed control [11].

The adoption of learning techniques for the indirect measurement purposes is

something that has been applied in the last years in the refrigeration industry, not

only for estimation of operating conditions, like in [11] and [9], but also in other fields.

References [12], [13] and [14] studied fault detection in refrigeration systems with neural

network approaches. Prediction of the energy performance of a heating and cooling

system was also proposed in [15]. Machine learning (ML) techniques were also used

in [16] for the study of fault detection using ML ensemble methods, and in [17] for the

estimation of sound power levels of refrigeration compressors.

It is noticeable the importance of non-invasive methods for measurements in

refrigeration fields, which can be achieved with the use of learning techniques. The

use of these techniques may imply the implementation of the process of estimating

operating conditions in final products, which can make refrigerators become "smart" de-

vices, improving performance and reducing energy consumption, among other benefits.

Therefore, this work aims to study the implementation of different learning approaches,

using ML algorithms as non-invasive methods, in order to validate their applicability in
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the estimation of evaporation and condensation temperatures.

This project was developed in the Laboratory for Instrumentation and Automation

of Tests (LIAE, from the Portuguese Laboratório de Instrumentação e Automação de

Ensaios), at UFSC, in partnership with Nidec Global Appliance company, which is a

global reference in technology for the household and commercial cold chain, counting

on a broad, efficient, and competitive portfolio for household, food service, food retail,

merchandisers, and special applications. The partnership between the laboratory and

the company has yielded several studies in the area of refrigeration in recent years.

1.1 OBJECTIVES

The objective of this work is to evaluate different machine learning techniques to

implement non-invasive methods for the evaporation and condensation temperatures

estimation through measurements which can be done in an inverter. The machine learn-

ing techniques to be evaluated are the neural network, tree-based machine learning

algorithms, and automatic ML (AutoML) approaches.

1.2 SPECIFIC OBJECTIVES

To achieve the general goal, some tasks were set to be managed. All the follow-

ing topics were studied according to the necessity and not necessary in the presented

order.

• Analyse the problem and search in the literature for applied solutions;

• Study the variable capacity refrigeration compressors that operate with brushless

DC (BLDC) motors;

• Study and develop approaches of learning algorithms that are applicable to the

problem;

• Search and implement automated ML tools, and study their particularities;

• Apply preprocessing techniques that can be valuable to improve the results;

• Structure and develop test setup configurations for all the learning tools;

• Analyse the obtained results and perform a benchmarking.

1.3 STRUCTURE OF THE DOCUMENT

The document is divided into 5 chapters. The theory, presented in chapter 2,

covers the particularities of BLDC motors, mechanical apparatus used in the work, and

characteristics of ML algorithms and AutoML tools are discussed. The implementation
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of the proposed learning techniques, chapter 3, discuss how the data were prepro-

cessed, how the model was built, and explains how the tests of the ML algorithms and

AutoML tools were performed. In chapter 4, the results obtained with the traditional ML

methods and AutoML tools are shown. Finally, the conclusions are exposed in chap-

ter 5, where more critical analysis is made about the ML algorithms and AutoML tools

used. In addition, are presented the future steps that can be taken into account for the

proposed problem.
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2 THEORETICAL BACKGROUND

This chapter covers the theoretical basis of the fields of knowledge used to carry

out this work. Firstly, the characteristics of the compressor used are presented, followed

by the machine learning tools considered in this study.

2.1 BLDC MOTORS

Electric machines are devices that can convert either mechanical energy to

electrical energy or electrical energy to mechanical energy. In the first case, they are

called generators and in the second case they are called motors [18]. There are a lot of

different types of electric motors, but there are two main classifications: direct current

(DC) motors and alternating current (AC) motors. This work was performed using DC

motors.

Electric machines are made of magnetic materials or materials that have mag-

netic properties, and so do motors. Magnetic fields are the fundamental mechanism by

which energy is converted from one form to another in motors. In permanent magnet

DC motors, a current carrying wire in the presence of a magnetic field has a force

induced on it, which is the basis of motor action. The magnitude of the force is defined

as

F = BIL sin (θ) , (1)

where F is the magnitude of the electromagnetic force, B is the magnitude of the

magnetic field density, I is the magnitude of the conductor current, L is the length of the

conductor, and θ is the angular difference between B and I.

The movement of the conductor in the magnetic field induces an electromotive

force (E), and it can be calculated as

E = BLv , (2)

where v is the speed of the conductor, B is the flux density of the magnetic field, and L

is the length of the conductor.

According to [19], motors have two main parts: stator and rotor. The rotor is the

moving part of the electric motor and it is usually located inside the stator. The rotor

usually has conductors laid into it that carry currents, which interact with the magnetic

field of the stator to generate the forces that turn the shaft, which delivers the mechan-

ical power. The stator is the stationary part of the electric motor and usually consists

of either windings or permanent magnets to generate the magnetic field necessary to

rotate the rotor, shown in Figure 2.

In conventional DC motors, the rotor field is also generated by current through

the coils wrapped around the rotor. This requires the use of a special tool to feed them
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Table 1 – Comparison between BLDC motor and brushed DC motor.

Feature BLDC motor Brushed DC

motor

Actual Advantage

Commutation Electronic com-
mutation based
on rotor position
information

Mechanical
brushes and
commutator

Electronic switches replace the mechani-
cal devices

Efficiency High Moderate Voltage drop on electronic device is
smaller than that on brushes

Thermal perfor-
mance

Better Poor Only the armature windings generate heat,
which is the stator and is connected to the
outside case of the BLDC.;The case dissi-
pates heat better than a rotor located in-
side of brushed DC motor.

Output Power/
Frame Size (Ratio)

High Moderate/Low Modern permanent magnet and no rotor
losses.

Speed/Torque
Characteristics

Flat Moderately flat No brush friction to reduce useful torque.

Dynamic Response Flash Slow Lower rotor inertia because of permanent
magnets.

Speed Range High Slow No mechanical limitation imposed by
brushes or commutator.

Electric Noise Low High No arcs from brushes to generate noise,
causing electromagnetic interference prob-
lems.

Lifetime Long Short No brushes and commutator.

Source – [22],[23].

To visually understand these different positions, in Figure 4 it is possible to see

that if the rotor rotates 180º mechanically, the magnetic poles will be in the original

configuration.

It is possible to obtain the mechanical angular speed as the time derivative of

the mechanical position, as shown in Equation (4). The electromagnetic angular speed

(ωe) is found using the same approach being given by:

ωm =
dθm

dt
. (4)

2.1.1 BLDC motor control

Brushless DC motors use electric switches, performed by the electronic inverter,

to perform current commutation, and thus continuously rotate the rotor. In this case,

electric switches are connected in an H-bridge structure (inside the inverter) for a three-

phase BLDC motor, as shown in Figure 6.

The switches are performed by transistors that switch the phases using Pulse
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as

T = Fr , (6)

where r is the radius. Isolating F and substituting in Equation (5), Equation (7) is

obtained.

Pm =
T

r
v . (7)

Substituting the linear speed (v ) for ω, where ω is the angular speed (rad/s), the

mechanical power delivered to the rotor of the BLDC motor, Pm, can be calculated as

([19], [24] and [25]):

Pm = Tω = EU IU + EV IV + EW IW , (8)

where U, V , W are the tree phases represented in Figure 6 and E is the induced

voltage on each phase.

To maximize the efficiency of the motor the switches must be made at a specific

time. They must be made in such a way that a rectangular current pulse between the

phase with the highest positive induced voltage and another rectangular current pulse

leaves the phase with the highest negative induced voltage. This detection can be done

by using Hall effect sensors [24] or sensorless control techniques [26], [27].

In order to simplify the explanation, the method based on the use of Hall sensors

is used, but there are already more modern techniques that work without these types

of sensors. A three-phase BLDC motor requires three Hall sensors to detect the rotor’s

position. Based on the physical position of the Hall sensors, there are two types of

output: a 60◦ and a 120◦ phase shift. Using these three Hall sensor signals it is possible

to determine the exact commutation sequence.

The commutation sequence can be visualized in Figure 7. The tree Hall sensors

"a", "b", and "c" are positioned on the stator in 120◦ intervals, while the three-phase

windings are in a star configuration.

In Figure 7 is possible to see that the Hall sensor state changes for every 60◦

rotation and the whole electrical cycle is completed after 6 steps. To be better explain

how the direction of the current changes, Figure 8 shows a Hall sensor diagram that

corresponds to the positions of the electromagnetic poles of the rotor in Figure 7.

To be easily understood, consider that every time that the "N" pole of the rotor

is pointed to "a", "b", or "c" Hall sensor, it is set to 1. For example, starting with the

upper left configuration of Figure 7, the "N" pole is pointed to "c", so, the Hall sensor

value is abc = 001. This configuration is the start point of the Figure 8, where U phase

is identified to "HIGH", V to "LOW" and W to "FLOAT", concluding that the current is

flowing from U to V direction. This behavior continues to keep the rotor rotation. The

"FLOAT" state is a transitory state, in which the phase that was recently turned off is

discharged through the freewheel diodes that follow the transistors.
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functions, solve the learning problem. There are a lot of cost functions that can be used,

but this work considered the mean squared error (MSE)

λ =
1
t

t
∑

j=1

e2
j , (13)

where λ is the MSE, t is the number of epochs (iterations) and ej is the error (difference

between the output generated by the current network and the expected output).

Tensorflow [38], which is an open-source machine learning library that supports

a variety of applications, with a focus on training and inference on artificial neural

networks, was used in this work.

2.3 TREE BASED METHODS

In this section, the tree-based methods used in this work are presented. These

types of models use decision trees (DT) as a building block of the algorithm, which

learns based on a set of if-then-else decision rules.

As the name suggests, this algorithm is structured in form of a tree and can

be applied to classification and regression problems [39]. It works by breaking down

a data set (input) into smaller subsets, while at the same time an associated DT is

incrementally developed. In the end, a "tree" is formed by decision nodes and leaf

nodes. The decision nodes have two or more branches, while leaf nodes represent a

decision made. The topmost decision node in a tree corresponds to the best predictor,

called root node, as detailed in Figure 14.

The selection of which input variable to use and the specific split or cut-point can

be done using a learning algorithm or using a greedy algorithm, which minimizes a cost

function. The greedy approach is a numerical procedure where all the values are lined

up and different split points are tried and tested using a cost function. The split with the

best cost (lowest cost) is selected.

For regression problems, dealt in this work, the sum squared error is typically

used as cost function, and it is expressed as

λDT =
1
N

N
∑

i=1

(yi – ŷi )
2 , (14)

where λDT is the MSE, N is the total number of iterations, y is the output and ŷ is the

predicted value for each iteration.

Generally, the tree construction ends using predefined stopping criteria. The

most common stopping procedure is to use a minimum count on the number of training

instances assigned to each leaf node [40]. If the count is less than some minimum

then the split is not accepted and the node is taken as a final leaf node. The smaller
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rithms described in this work by performing scalable boosting and gradient descent

approaches to achieve the results.

The boosting aspect refers to the fact that instead of bagging approach, seen

in subsection 2.3.1, the individual models are not built on completely random subsets

of data and features, but sequentially by putting more weight on instances with wrong

predictions. The general idea is that instances, which are hard to predict correctly, will

receive more focus during training, with the model being able to exploit past mistakes

to improve its performance [45].

The gradient approach is used to minimize the loss function. The idea is that in

each round of training, the model parameters are adjusted, and its predictions, ŷj , are

built, and compared to the correct outcome that is expected (y ). The difference between

prediction and real values represents the model error, that can be used to calculate the

gradient,

∂

∂ŷj
λxgb =

∂

∂ŷj

m
∑

j=1

(yj – ŷj )
2 , (16)

which consists of the partial derivative of the loss function. The loss function used was

mean squared error (MSE), described as

λxgb =
1
m

m
∑

j=1

(yj – ŷj )
2 , (17)

where λxgb is the MSE, m is the number of examples, y is the real value and ŷj is the

predicted value. The term 1
m present in Equation (17) was removed in Equation (16)

because it is a constant.

In ANN, gradient descent looks for the minimum of the loss function, learning

the parameter (weights) for which the prediction error is the lowest in a single model. In

GBM there is a combination of predictions of multiple models, so does not optimize the

model parameters directly but the boosted model predictions.

The combination of gradient and boosting approaches is summarized in Fig-

ure 17.

What differs XGB from GBM is the fact that it uses more accurate approximations

to find the best tree model. There are two main approaches for that: computation of

second-order gradients, which provides better and more information about the direction

of gradients and how to get to the minimum of the loss function, and implementation of

regularizers, which improve the generalization of the model.

2.4 AUTOML TOOLS

During the evolution of machine learning algorithms and approaches for better

results, it was evident to many ML practitioners that extracting the best performance
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Before properly starting the training, the user must choose which kind of task is

going to be performed. Two possible choices can be made: classification and regression.

After that, the user must decide in which framework the task will be performed: in a

software development kit (SDK) in Python or in the Web Studio (Microsoft platform). In

this work the second option was chosen to really experience the tool capability, and this

approach is also recommended for non-programmer users because it does not require

any programming skills to set the configurations of the model.

The dataset should be imported and then the user can define which column of

the dataset is the target for the training. Besides that, some configurations are possible

to be done: maximum training time, the metric that is going to be used to find the best

model, set different split for training and test sets of the data, enable early stopping

function to avoid overfitting, and some other configurations.

Some preprocessing approaches are also included in AzureML: normalization

(stand scaler wrapper, min max scaler, max absolute scaler), principal component

analysis (PCA), truncated SDV wrapper, and many others. This preprocessing part is

automatically done after the training starts.

For the training task, AzureML uses both voting and stacking ensemble meth-

ods for combining models. The first one predicts based on the weighted average of

predicted class probabilities (for classification tasks) or predicted regression targets

(for regression tasks). The second one combines heterogeneous models and trains a

meta-model based on the output from the individual models.

The last configuration that the user must define is where the training process

should be performed: local compute or remote compute. The first one runs on the user’s

computer and the second one uses the cluster of Azure to do the task. The advantage

of the cluster is the possibility of parallelization mentioned in subsection 2.4.3, which

usually shortens the process for large datasets.

Figure 22 represents all the steps mentioned above.
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Figure 22 – Schema of how Azure AutoML works

Source – [63]
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3 IMPLEMENTATION OF THE PROPOSED LEARNING TECHNIQUES

In this chapter, the development of the traditional ML models is presented,

namely ANN, RF, ERT, and XGB. The chapter also presents a comparison between

them and AutoML tools, detailed in section 2.4. In section 3.1 the process to obtain

the dataset, the feature creation, and the data preprocessing approach are detailed. In

section 3.2 the process of splitting the data into train and test sets is explained, and be-

sides that, the HPO approach used for the traditional ML methods is covered, together

with the final parameters for each model obtained.

It is important to mention that some parts of this chapter were omitted in public

version of the document to comply with clauses on ownership of intellectual property.

3.1 DATASET AND FEATURE CONSTRUCTION

The data necessary for the development of the models were obtained using

a test rig, which was instrumented to measure and control the pressures associated

with the suction and discharge of the compressor, and to measure evaporation and

condensation temperatures. Using an experimental inverter, it was possible to measure,

additionally, the input variables considered in this study. The nominal list was provided

to the evaluation committee, but is not presented in this document for industrial property

purposes.

In this work, the operating conditions varied between +34 ◦C and +54 ◦C for

condensation temperature and between -30 ◦C and -10 ◦C for evaporation temperature.

For each operating condition, the temperatures were measured considering 3 distinct

average rotation speeds, consisting of 2100 rotations per minute (rpm), 2850 rpm, and

3600 rpm. These ranges were selected to cover typical application envelope conditions

for domestic refrigeration, in order to guarantee that the models were trained consider-

ing the information of the main operating conditions that the compressor can be subject

to.

The traditional ML pipeline includes not just the feature creation, training and

validation parts, but also a "prior-step" focused on feature preprocessing, which can

include the outlier remotion, completion of missing values, selection of main features,

data augmentation, data balancing, among others. In the ML context, this process is

important to avoid some pitfalls during the model development, which can appear when

the data are imbalanced, or present spurious values.

After trying some data preprocessing approaches, such as normalization, stan-

dardization, PCA, and robust scaling, it was verified that the performance of the models

did not change or barely changed for most of the algorithms, with the exception of the

ANN, that improved with standardization. So it was decided to focus on the approach

of parameter optimization.
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The process of standardization consists of rescaling the features to have a mean

of 0 and a standard deviation of 1. This technique is often applied in the preprocessing

steps because it has the advantage of reducing the large scale difference in the features,

if it exists, usually speeding up the algorithm training convergence, and sometimes,

improving the results by itself.

3.2 MODEL DEVELOPMENT

The whole dataset was split into train and test sets. The train part corresponds

to 70% of the dataset and the test part to the remaining 30%. It is important to mention

that the test dataset was not used at any point during the model development phase

and it was the same set used to compare the results of all learning techniques in order

to achieve a fair performance evaluation. Besides that, when needed, 20% of the train

set was used for validation purposes (to check how the model was performing) and this

split was done in a shuffled way during the training for each algorithm.

For all the models an algorithm was used for the automatic selection of the

hyperparameters, which are the main parameters that influence the performance of

the final model. As exposed in subsection 2.4.1, the HPO consists of trying as many

different possible combinations of values for the algorithm parameters and this approach

is traditionally performed by using grid search and random search. The grid search tries

all the possible combinations with the parameters values, which can be a considerable

time consuming and computational cost task, depending on the number of parameters

to optimize and the range of values to try each of them. The approach of the random

search is to randomly get values of a defined range for each parameter, and try as many

combinations as the user wants. This process usually requires less computational effort,

it is faster, and it can find models that are as good as the ones found by grid search

within a small fraction of the computation time [64]. So, in this work random search

approach was chosen to perform the HPO.

The HPO was applied to the traditional learning algorithms: random forest, ex-

tremely randomized trees, extreme gradient boosting, and artificial neural networks.

The AutoML tools have their own hyperparameter optimization processes and it is not

necessary to manually apply one. It is important to mention that to define the best

combinations of the parameter values, random search used the root-mean-square error

(RMSE) as a metric for evaluation. RMSE, Equation (18), is a metric of the model error,

varying between zero and infinite, with a value closer to zero representing a better

model performance. This metric was chosen because it penalizes large errors, and

also because the RMSE metric is presented in the same magnitude order of the model

output, in degrees Celsius, making the interpretation of the results easier. The RMSE
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is given by

RMSE =

√

√

√

√

1
m

m
∑

j=1

(yj – ŷj )2 , (18)

where m is the total number of examples, y is the measured value, and ŷj is the

predicted value.

The process of random search present a different duration for each algorithm.

The measurement of this time duration was done for comparison purposes, and it is

shown in Table 2. The computer processor used is a Intel Core i5-7200U, 2,5 GHz-2,7

GHz, 8Gb of memory, running Windows 10-64bits as operational system.

Table 2 – Hyperparameters search space time duration.

Algorithm Evaporation - time (min) Condensation - time (min)

Random forest 39 49

Extremely randomized tree 16 20

XGBoost 180 420

Artificial neural network 16 25

Source – Author
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4 EXPERIMENTAL RESULTS

4.1 TRADITIONAL ML MODEL RESULTS

In this section the results obtained with the best parameter configurations values

are presented. For the evaluation of the model, it was checked for similarity between

estimated and measured temperatures by comparing them. The metrics used to per-

form this comparison were RMSE and the coefficient R-squared (R2), metrics usually

applied in regression problems [65]. The R2 indicates how well the model fits the data,

varying between 0 and 1 or 0% and 100%, with results closer to 1 representing better

model performance.

Figure 23 shows the results obtained for the RF algorithm, Figure 24 for the ERT

algorithm, Figure 25 for XGB algorithm, and Figure 26 for ANN algorithm. All of them

consist of the comparison between the measured and estimated temperature values

for the test dataset of the evaporation and condensation temperatures, according to the

rotation values. In the left side the estimations for the evaporation temperature are pre-

sented, on the right side the results for the condensation temperature are represented.

To have a deep analysis of the ranges of both temperatures at which the models

could achieve better results, it was plotted the RMSE maps for all the models. The RF

RMSE map is shown in Figure 27, the ERT RMSE map in Figure 28, the XGB RMSE

map in Figure 29 and the ANN RMSE map in Figure 30. On the left side the results for

the evaporation temperature are represented and on the right side the results for the

condensation temperature are represented.

For all of the models, it was perceived that the estimations for evaporation tem-

perature were more precise, which suggests that the data present more information

about the evaporation temperature, which was also verified in the works of [11] and

[9]. This behavior was previously expected because the characteristics of the systems

influence more this temperature, or in other words, the dataset used for the work has

more information related to the evaporation temperature. Between these temperatures,

it was verified a better estimation for the 2100 rpm samples, and this is due to the fact

that increasing the rotation, the system was lead to more critical operating conditions,

reducing the accuracy of the model.

Going deep in the analyses of the quality of the models estimates, it was possible

to check which regions of evaporation and condensation temperatures the models

could bring better results, according to the RMSE maps. In general, for the region of

condensation temperature around +52 ◦C and +54 ◦C, the error of the models were

higher. The best results could be achieved for the range of +36 ◦C and +50 ◦C for

condensation temperature and the whole range of the evaporation temperature.

The RF algorithm had the worse performance if compared to the other traditional

ML algorithms, but the results were considered satisfactory for evaporation temperature,



























60

5 CONCLUSIONS AND NEXT STEPS

In this work the use of traditional ML algorithms and AutoML tools was evaluated

to indirectly estimate the evaporation and condensation temperatures of a refrigeration

compressor. The achieved results were satisfactory, corroborating for possible works

of the company in implementing the non-invasive method to measure evaporation and

condensation temperatures using ML algorithms in its products. Besides that, this work

studied an alternative approach based on AutoML tools, which is not usual in the

refrigeration field, but can bring good results, as shown in chapter 4, and has potential

for saving resource and time in configuring all the traditional ML pipeline.

The AutoML tools were experienced and most of the tools analyzed during this

work are not really fully automated, as the name suggests. The idea is really clear,

which consists of doing automatically the feature selection and engineering, model

building and training, and hyperparameter optimization, parts that represent the most

time-consuming tasks in the ML pipeline. But in the end, most of the tools required

efforts to configure model settings and demanded minor programming expertise, even

some tools say the opposite in their descriptions and advertisements. Google Cloud-

ML was the most easy-to-use tool among all tested, since it requires no programming

expertise and the process of importing the dataset, obtaining the test results, and

deploying the final model is intuitive. One thing that should be considered is the fact

that it is a commercial tool, so it is not so transparent, meaning that it is hard to know

what really happens in the background, which can pose as a limitation, depending on

the final model use case.

The Azure automated ML is a really easy-to-use tool, from the upload of the

dataset until the training and getting the final model results. But, afterward, the platform

is not so clear about the deployment of the best model. Azure has a quick model de-

ployment process, and it generates a REST API URL that can be used by the user. The

platform recommends the user to use Microsoft Power BI [66], which is a commercial

tool, to get the predictions on a new dataset using this URL, and it can be something

unwanted by the user, since it gets tied to this proprietary solution. Another possible

approach is using the Azure software development kit (SDK), in Python, performing

all steps to obtain new estimations. However, this approach results in loosing the auto-

mated aspect. The last option, used in this work, is to download the model trained in

pickle format (.PKL) and manually make the estimations.

This work used a dataset with just 1316 examples and obtained in satisfactory re-

sults. By using more samples, and consequently more information to the model building,

it might be possible to obtain even better results. Besides that, the use of a dataset with

different input features, combined with different feature creation approaches, should be

considered to achieve better results, mainly for the condensation temperature, which is
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harder to estimate with good precision.

Finally, the implementation on an electronic inverter prototype should be con-

sidered. The focus of this work was to get as good as possible estimation for the

temperatures, not taking into account the implementation of the model in the electronic

inverter. To do the implementation, a study of the computational capacity of the inverter

microcontroller must be considered, and it will define the complexity of the models that

can be used.
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