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ABSTRACT

Refrigeration systems are present in various aspects of people’s daily lives, either for
thermal comfort, with the use of air conditioning, or for food conservation, with the
use of freezers and refrigerators. With the high demand of the market, it is required
that these products have more technology onboard to balance energy consumption
with performance, and from the perspective of the industry, the investment in research
and development becomes even more important to supply the market with high quality
products that are aligned with low production cost. Considering this scenario, this work
proposes a study of machine learning techniques and autoML tools combined with a
model for estimating the rotation speed of variable speed refrigeration compressors, in a
non-invasive way, in order to estimate evaporation and condensation temperatures. As
the measurement of these quantities involves a high cost, so that it is only performed
on test benches, it would be very beneficial to use indirect forms of measurement,
turning the refrigerators into a more intelligent product. The results achieved by the
machine learning models were promising, resulting in the estimation of the evaporation
temperature with root mean square error of 1.38 °C, and for condensation temperature,
4.54 °C, highlighting the possibility of using machine learning in the context of estimating
operating conditions of refrigeration systems with non-invasive methods.

Keywords: Machine learning. Automated machine learning. Soft-sensing. Refrigeration
Systems



RESUMO

Os sistemas de refrigeracdo estao presentes em varios aspectos do cotidiano das
pessoas, seja para conforto térmico, com o uso de condicionadores de ar, ou para a
conservacao de alimentos, com o uso de congeladores e refrigeradores. Com a alta
demanda do mercado, € necessario que estes produtos tenham mais tecnologia em-
barcada para equilibrar o consumo de energia com o desempenho, e da perspectiva da
industria, o investimento em pesquisa e desenvolvimento torna-se ainda mais impor-
tante para abastecer o mercado com produtos de qualidade que estejam alinhados com
0 baixo custo de produgdo. Considerando este cenario, o presente trabalho propde um
estudo de técnicas de aprendizado de maquina e ferramentas de autoML combinadas
a um modelo de estimagao de velocidade de rotacdo de compressores de velocidade
variavel para refrigeracao, de forma nao invasiva, a fim de estimar as temperaturas
de evaporacdo e condensacdo. Como a medicdo dessas grandezas envolve um alto
custo, de forma que so € realizada em bancada de testes, seria muito vantajoso utilizar
formas indiretas de medicéao, transformando os refrigeradores em produtos mais inte-
ligentes. Os resultados alcancados pelos modelos de aprendizado de maquina foram
promissores, resultando na estimagéao da temperatura de evaporacdo com raiz de erro
meédio quadratico de 1,38 °C, e para temperatura de condensacéo, 4,54 °C, evidenci-
ando a possibilidade de se utilizar aprendizado de maquina no contexto de estimacgao
de condi¢des de operacao de sistemas de refrigeracdo com métodos nao invasivos.

Palavras-chave: Aprendizado de Maquina. Refrigeracdo. Sensoriamento Virtual.
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1 INTRODUCTION

Refrigeration systems are present in different ways in our lives and their impor-
tance is considerable [1]. They are present in the food and beverage sector, providing
food preservation through the refrigerators and freezers [2], in the thermal comfort as-
pect, through air-conditioning systems, including apartment, houses, public and private
ways of transportation, in industry, in many manufacturing processes, and also in the
health context, preserving pharmaceuticals and medicines [3].

The refrigeration equipment market looks promising. According to [4], the global
commercial refrigeration equipment market is expected to grow with a compound growth
rate (CAGR) of 9% from 2019 to 2024. But, in another view, the energy consumption
of the household and commercial appliances is something to be worried about. Ac-
cording to [5], the residential sector consumes 35% of the total power produced in
the United States of America and the consumption of electricity for air-conditioning
(cooling), freezers and refrigerators together represents 22% of it, according to [6]. The
scenario in Brazil is similar. According to [7], the energy consumption by the residential
and commercial sectors represented 26% and 17%, respectively, of all the country
energy consumed in 2017 in the building sector. From these percentages, 32% and
33% of the energy, respectively, were destined for refrigeration systems.

To follow all the sales growth aligned with the environment care, the refrigera-
tion industry invests in research and development (R&D) to improve the quality of the
products, efficiency of the whole refrigeration system, thinking about sustainability and
production cost aspects. The type of refrigeration system most used in practice is vapor
compression, and this system is composed mainly by the compressor, the condenser,
the expansion valve, and the evaporator, as shown in Figure 1.

Figure 1 —Main components in a refrigerator.

Evaporator

Expansion valve

Condenser

Compressor

Source — Adapted from [8]
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The compressor is the "heart" of the system, which acts as the pump that moves
the refrigerant through the other components, performing the cooling process. To better
extract the cooling capacity of the system and also relevant information, it is important
to know its operating conditions, in this case, through the compressor inlet and outlet
pressures, and what happens to the whole system with their variation, looking for the
improvement of the whole process.

The evaporation and condensation temperatures are two of the main quantities
that characterize the operating conditions of refrigeration systems. However, the mea-
surement of these variables is typically performed by the refrigerant pressures (suction
pressure - at the compressor inlet, and discharge pressure - at the compressor out-
let) and their correlation with these temperatures [9]. Measuring these variables can
bring valuable information about the system, but the cost of directly measuring these
pressures makes it unfeasible for consumer end products.

The measurement of the suction and discharge pressures is commonly per-
formed using pressure transducers [10], but this method is invasive, expensive, and
can impact the durability of the product. The manufacture of a product with such mea-
surements would only be feasible in a prototype character, not presenting itself as a
definitive solution.

The indirect measurement of some interesting variables is possible through a
soft-sensing approach, using several compressor measurements which are available
and already used for its control. This is possible due to the fact that the refrigerant
pressures, in the presence of friction and vibration, are largely responsible for the me-
chanical force to which the compressor is submitted, influencing the electrical quantities
in the compressor supply, which are used for its speed control [11].

The adoption of learning techniques for the indirect measurement purposes is
something that has been applied in the last years in the refrigeration industry, not
only for estimation of operating conditions, like in [11] and [9], but also in other fields.
References [12], [13] and [14] studied fault detection in refrigeration systems with neural
network approaches. Prediction of the energy performance of a heating and cooling
system was also proposed in [15]. Machine learning (ML) techniques were also used
in [16] for the study of fault detection using ML ensemble methods, and in [17] for the
estimation of sound power levels of refrigeration compressors.

It is noticeable the importance of non-invasive methods for measurements in
refrigeration fields, which can be achieved with the use of learning techniques. The
use of these techniques may imply the implementation of the process of estimating
operating conditions in final products, which can make refrigerators become "smart" de-
vices, improving performance and reducing energy consumption, among other benefits.
Therefore, this work aims to study the implementation of different learning approaches,
using ML algorithms as non-invasive methods, in order to validate their applicability in
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the estimation of evaporation and condensation temperatures.

This project was developed in the Laboratory for Instrumentation and Automation
of Tests (LIAE, from the Portuguese Laboratorio de Instrumentacdo e Automacéo de
Ensaios), at UFSC, in partnership with Nidec Global Appliance company, which is a
global reference in technology for the household and commercial cold chain, counting
on a broad, efficient, and competitive portfolio for household, food service, food retalil,
merchandisers, and special applications. The partnership between the laboratory and
the company has yielded several studies in the area of refrigeration in recent years.

1.1 OBJECTIVES

The objective of this work is to evaluate different machine learning techniques to
implement non-invasive methods for the evaporation and condensation temperatures
estimation through measurements which can be done in an inverter. The machine learn-
ing techniques to be evaluated are the neural network, tree-based machine learning
algorithms, and automatic ML (AutoML) approaches.

1.2 SPECIFIC OBJECTIVES

To achieve the general goal, some tasks were set to be managed. All the follow-
ing topics were studied according to the necessity and not necessary in the presented
order.

Analyse the problem and search in the literature for applied solutions;

Study the variable capacity refrigeration compressors that operate with brushless
DC (BLDC) motors;

Study and develop approaches of learning algorithms that are applicable to the
problem;

Search and implement automated ML tools, and study their particularities;

Apply preprocessing techniques that can be valuable to improve the results;

Structure and develop test setup configurations for all the learning tools;

Analyse the obtained results and perform a benchmarking.

1.3 STRUCTURE OF THE DOCUMENT

The document is divided into 5 chapters. The theory, presented in chapter 2,
covers the particularities of BLDC motors, mechanical apparatus used in the work, and
characteristics of ML algorithms and AutoML tools are discussed. The implementation
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of the proposed learning techniques, chapter 3, discuss how the data were prepro-
cessed, how the model was built, and explains how the tests of the ML algorithms and
AutoML tools were performed. In chapter 4, the results obtained with the traditional ML
methods and AutoML tools are shown. Finally, the conclusions are exposed in chap-
ter 5, where more critical analysis is made about the ML algorithms and AutoML tools
used. In addition, are presented the future steps that can be taken into account for the
proposed problem.
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2 THEORETICAL BACKGROUND

This chapter covers the theoretical basis of the fields of knowledge used to carry
out this work. Firstly, the characteristics of the compressor used are presented, followed
by the machine learning tools considered in this study.

2.1 BLDC MOTORS

Electric machines are devices that can convert either mechanical energy to
electrical energy or electrical energy to mechanical energy. In the first case, they are
called generators and in the second case they are called motors [18]. There are a lot of
different types of electric motors, but there are two main classifications: direct current
(DC) motors and alternating current (AC) motors. This work was performed using DC
motors.

Electric machines are made of magnetic materials or materials that have mag-
netic properties, and so do motors. Magnetic fields are the fundamental mechanism by
which energy is converted from one form to another in motors. In permanent magnet
DC motors, a current carrying wire in the presence of a magnetic field has a force
induced on it, which is the basis of motor action. The magnitude of the force is defined
as

F = BILsin (), (1)

where F is the magnitude of the electromagnetic force, B is the magnitude of the
magnetic field density, / is the magnitude of the conductor current, L is the length of the
conductor, and 6 is the angular difference between B and /.

The movement of the conductor in the magnetic field induces an electromotive
force (E), and it can be calculated as

E=BLv, (2)

where v is the speed of the conductor, B is the flux density of the magnetic field, and L
is the length of the conductor.

According to [19], motors have two main parts: stator and rotor. The rotor is the
moving part of the electric motor and it is usually located inside the stator. The rotor
usually has conductors laid into it that carry currents, which interact with the magnetic
field of the stator to generate the forces that turn the shaft, which delivers the mechan-
ical power. The stator is the stationary part of the electric motor and usually consists
of either windings or permanent magnets to generate the magnetic field necessary to
rotate the rotor, shown in Figure 2.

In conventional DC motors, the rotor field is also generated by current through
the coils wrapped around the rotor. This requires the use of a special tool to feed them
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Figure 2 — Rotor and stator of electric motor.
Qutput shaft
(Shaft)

Bearing

<1>Rotor

<2>Bearing

Winding

<3=Stator
% <5>Lead wire
h ) To power
ik supply

<d=Bracket

Source — [20]

since the rotor will be rotating while the motor is in operation. This tool is called brush,
represented in Figure 3, and it has a significant role in the engine operation.

In Brushless direct current (BLDC) motors, the electromagnetic field of the stator
is generated by the current, like the permanent magnet DC motors, which passes
through coils wrapped around it. The advantage is that the rotor is made of permanent
magnets responsible for generating the other field, becoming unnecessary the use of
brushes.

Another difference is that in a conventional DC motor, to keep it rotating, it is
necessary to alternate the electromagnetic field in the rotor because the electromag-
netic field is constant in the stator. To perform this task, a commutator, together with the
brushes, are responsible to alternate this field. Instead of this method, in BLDC motors
this switching process is done in the stator coils, with the use of an electronic inverter. A
comparison of the characteristics of brushed and brushless DC motors is summarized
in Table 1.

Figure 4 represents the BLDC motor studied in this work. It is a three-phase
motor with two pairs of poles on the rotor, and the coils of the three phases (with
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Figure 3 — Brushes in DC motor.

Rator Coils

Shaft Brushes

Source — [21]
impedances Z;, Zy, and Z,) are connected to each other in a star configuration, as

shown in Figure 5, where N is the neutral point.

Figure 4 — Schematic representation of the BLDC motor used

Rotor

Source — Adapted from [23]

In electric motors it is common to define two different position variables: mechan-
ical position (0m) and electromagnetic position (0¢) [19]. The expression that indicates
the relation between them is given as:

9e=p9m, (3)

where p is the number of magnetic pole pairs of the rotor.
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Table 1 — Comparison between BLDC motor and brushed DC motor.

Feature BLDC motor Brushed DC Actual Advantage
motor
Commutation Electronic com- Mechanical Electronic switches replace the mechani-

mutation based brushes and cal devices
on rotor position commutator

information

Efficiency High Moderate Voltage drop on electronic device is
smaller than that on brushes

Thermal perfor- Better Poor Only the armature windings generate heat,

mance which is the stator and is connected to the
outside case of the BLDC.;The case dissi-
pates heat better than a rotor located in-
side of brushed DC motor.

Output Power/ High Moderate/Low Modern permanent magnet and no rotor

Frame Size (Ratio) losses.

Speed/Torque Flat Moderately flat ~ No brush friction to reduce useful torque.

Characteristics

Dynamic Response  Flash Slow Lower rotor inertia because of permanent
magnets.

Speed Range High Slow No mechanical limitation imposed by
brushes or commutator.

Electric Noise Low High No arcs from brushes to generate noise,
causing electromagnetic interference prob-
lems.

Lifetime Long Short No brushes and commutator.

Source —[22],[23].

To visually understand these different positions, in Figure 4 it is possible to see
that if the rotor rotates 180° mechanically, the magnetic poles will be in the original
configuration.

It is possible to obtain the mechanical angular speed as the time derivative of
the mechanical position, as shown in Equation (4). The electromagnetic angular speed
(we) is found using the same approach being given by:

dom

ar (4)

Wm =

2.1.1 BLDC motor control

Brushless DC motors use electric switches, performed by the electronic inverter,
to perform current commutation, and thus continuously rotate the rotor. In this case,
electric switches are connected in an H-bridge structure (inside the inverter) for a three-
phase BLDC motor, as shown in Figure 6.

The switches are performed by transistors that switch the phases using Pulse



Chapter 2. Theoretical background 24

Figure 5 — Star connection

Source — Author

Figure 6 — Three-phase bridge
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Source — Adapted from [23]

width modulation (PWM), which converts a DC voltage into a modulated voltage, thus,
limiting the startup current, and controlling speed and torque.

The inverter converts the DC into Alternating current (AC) voltage and the tran-
sistors are driven in such a way that a rectangular current pulse coming from the bus
(Ipc) gets into the motor through one phase and leaves through another, without it
passing through the remaining phase, depending on the drive strategy [24].

Starting from the premise that

Pm=Fv, (5)

where Pn is the power, F is the force and v is the the speed, and torque is presented
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as
T=Fr, (6)

where r is the radius. Isolating F and substituting in Equation (5), Equation (7) is
obtained.

Pm=;v. (7)

Substituting the linear speed (v) for w, where w is the angular speed (rad/s), the
mechanical power delivered to the rotor of the BLDC motor, Pm, can be calculated as
([19], [24] and [25]):

Pm= Tw = Eulu+Evlv+Ewlw, (8)
where U, V, W are the tree phases represented in Figure 6 and E is the induced
voltage on each phase.

To maximize the efficiency of the motor the switches must be made at a specific
time. They must be made in such a way that a rectangular current pulse between the
phase with the highest positive induced voltage and another rectangular current pulse
leaves the phase with the highest negative induced voltage. This detection can be done
by using Hall effect sensors [24] or sensorless control techniques [26], [27].

In order to simplify the explanation, the method based on the use of Hall sensors
is used, but there are already more modern techniques that work without these types
of sensors. A three-phase BLDC motor requires three Hall sensors to detect the rotor’s
position. Based on the physical position of the Hall sensors, there are two types of
output: a 60° and a 120° phase shift. Using these three Hall sensor signals it is possible
to determine the exact commutation sequence.

The commutation sequence can be visualized in Figure 7. The tree Hall sensors
"a", "b", and "c" are positioned on the stator in 120° intervals, while the three-phase
windings are in a star configuration.

In Figure 7 is possible to see that the Hall sensor state changes for every 60°
rotation and the whole electrical cycle is completed after 6 steps. To be better explain
how the direction of the current changes, Figure 8 shows a Hall sensor diagram that
corresponds to the positions of the electromagnetic poles of the rotor in Figure 7.

To be easily understood, consider that every time that the "N" pole of the rotor
is pointed to "a", "b", or "c" Hall sensor, it is set to 1. For example, starting with the
upper left configuration of Figure 7, the "N" pole is pointed to "c", so, the Hall sensor
value is abc = 001. This configuration is the start point of the Figure 8, where U phase
is identified to "HIGH", V to "LOW" and W to "FLOAT", concluding that the current is
flowing from U to V direction. This behavior continues to keep the rotor rotation. The
"FLOAT" state is a transitory state, in which the phase that was recently turned off is
discharged through the freewheel diodes that follow the transistors.
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Figure 7 — Waveforms during the drive of a BLDC motor
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2.2 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are computational modeling tools that have
found application in many disciplines for modeling complex real-world problems [28].
They can be defined as structures comprised of simple processing elements called neu-
rons, organized in an interconnected network, that are capable of performing massively
parallel computational for data processing and knowledge [29].

The idea of ANN is not to replicate the biological human system but make use
of what is known about the functionality of biological neural networks (NN) to solve
complex problems [28]. Some characteristics of ANNs that are remarkable come from
the similarity with biological NNs, and this is something that turns them so attractive,
such as nonlinearity, high parallelism, robustness, fault and failure tolerance, learning,
ability to handle imprecise and fuzzy information, and their capability to generalize [30].
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Figure 8 — Three-phase BLDC motor sensor versus drive timing
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Figure 9 represents the structure of a biological neuron, which is a basic building
block of the human nervous system responsible for information processing. This basic
unit is composed of 3 main parts: the dendrites, which are responsible for receiving
the signals from the previous neuron and pass them over to the cell body; the body,
responsible for the synthesis of all neuronal proteins; and the axon, which receives
signals from the body and carries them away though the synapses (microscope gaps).
The signal of information follows this sequence and passes it throw another neuron.

The artificial neurons are inspired by their biological counterparts, presenting a
similar structure, which is presented in Figure 10. The analogy is that the connection
between the nodes represents the axons and dendrites, and the connection weights
represent the synapses.

In Figure 10 there are three basic elements: synaptic weights, which store much
of the knowledge in the artificial neuron model, in which the weights are responsible for
weighting the information that enters the neuron; summation, responsible for summing
the input signals, weighted by the respective synaptic strengths of the neuron; and
activation function, which maps the sum of the input data, weighted by synaptic weights,
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Figure 9 — Schematic of a biological neuron
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to the output value of the neuron, limiting the amplitude of this output.
The neuron can be also described in mathematical therms as:

m

Uk = Z ijXj , (9)
J=1

Yk = @(Ug + b)), (10)

where X1, X0, X3...Xm are the input signals, w4, Wio, Wis...Wxm are the synaptic weights
of neuron k, ug is the linear combiner output due to the input signals, by is the bias,
¢(-) is the activation function, and yy is the output signal of the neuron.

The purpose of the bias (by) presented in Figure 10 is to increase or decrease
the net input of the activation function, depending on whether it is positive or negative,
respectively. The use of bias by has the effect of applying an affine transformation to
the output uy, resulting in the activation potential

Vk=Uk+bk, (11)

where vy is the activation potential. Depending on whether the bias by is positive or
negative, the relationship between v, of neuron k and the linear combiner output uy is
modified [31], as shown in Figure 11.
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Figure 10 — Nonlinear model of a neuron k
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So, combining Equation (10) and Equation (11), the final equation can be repre-
sented as

Yk = @(Vg). (12)
Several nonlinear functions can be chosen as activation function, with the main

ones being sigmoid function, identity function, hyperbolic tangent function, rectified
linear units (ReLu) function [32]. Figure 12 represents the main activation functions.
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Figure 11 — Affine transformation produced by the presence of a bias
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Figure 12 — Commonly used activation functions
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A neural network is formed by several artificial neurons, which can be organized
in different architectures [31]. The typical ANN architectures can be divided into two
main categories, based on the information flow direction, which can be feedforward or
recurrent. Feedforward networks are used to solve static problems, while recurrent NNs
are used in problems where temporal context is needed. The main feedforward architec-
tures are single-layer networks [34], multilayer perceptron (MLP) networks [31], radial
basis function (RBF) networks [35], self organizing maps (SOM) [36], and convolutional
networks [37].

For regression problems, the MLP network is a common choice, in which its
structure is represented in Figure 13. This architecture presents at least one hidden
layer, with the artificial neurons being fully connected. The hidden layers are formed by
neurons with a nonlinear activation function, while the output layer has neurons with
the identity function as activation function, in regression tasks. The number of neurons
and hidden layers are the main hyperparameters in this architecture, influencing the
learning ability of the algorithm.

Figure 13 — MLP structure
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The learning ability of a NN occurs through an iterative process of adjustments
applied to its synaptic weights and bias. Initially, the NN receives a stimulus from the
environment, and through the process of weight adjustment, modifies its parameters.
As a result, the network now responds in a new way to the environment, as a result of
changes in its internal structure [31].

This internal modification in response to the environmental stimulus is obtained
through training algorithms, which, through a pre-defined set of rules, including cost
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functions, solve the learning problem. There are a lot of cost functions that can be used,
but this work considered the mean squared error (MSE)
1< &
A= n e, (13)
j=1
where A is the MSE, t is the number of epochs (iterations) and e is the error (difference
between the output generated by the current network and the expected output).
Tensorflow [38], which is an open-source machine learning library that supports
a variety of applications, with a focus on training and inference on artificial neural
networks, was used in this work.

2.3 TREE BASED METHODS

In this section, the tree-based methods used in this work are presented. These
types of models use decision trees (DT) as a building block of the algorithm, which
learns based on a set of if-then-else decision rules.

As the name suggests, this algorithm is structured in form of a tree and can
be applied to classification and regression problems [39]. It works by breaking down
a data set (input) into smaller subsets, while at the same time an associated DT is
incrementally developed. In the end, a "tree" is formed by decision nodes and leaf
nodes. The decision nodes have two or more branches, while leaf nodes represent a
decision made. The topmost decision node in a tree corresponds to the best predictor,
called root node, as detailed in Figure 14.

The selection of which input variable to use and the specific split or cut-point can
be done using a learning algorithm or using a greedy algorithm, which minimizes a cost
function. The greedy approach is a numerical procedure where all the values are lined
up and different split points are tried and tested using a cost function. The split with the
best cost (lowest cost) is selected.

For regression problems, dealt in this work, the sum squared error is typically
used as cost function, and it is expressed as

N
1 R
Aot = > -2, (14)
i=1

where Ap7 is the MSE, N is the total number of iterations, y is the output and y is the
predicted value for each iteration.

Generally, the tree construction ends using predefined stopping criteria. The
most common stopping procedure is to use a minimum count on the number of training
instances assigned to each leaf node [40]. If the count is less than some minimum
then the split is not accepted and the node is taken as a final leaf node. The smaller
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Figure 14 — Decision tree basic structure example
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this number more specific the model for the training data is, and it tends to overfit. The
bigger this number, more the model tends to be generalized and tends to underfit.
subsection 2.3.1 covers the random forest algorithm, which introduces new "fea-
tures" to the DT algorithm. subsection 2.3.2 explains the extremely randomized tree
with its particularities, and then, subsection 2.3.3 approaches the gradient boosting
algorithm with its characteristics. All these algorithms are ensemble methods, which
consist of a combination of algorithms, in this case, DTs, to achieve better performance.

2.3.1 Random Forest

A Random forest (RF) is an ensemble method that combines many DT and it
includes two features in the learning process: random sampling of training data points
when building trees and random subsets of features considered when splitting nodes.
A simple representation of the structure of RF is shown in Figure 15.

The random sampling with replacements of training data is also known as boot-
strapping, which means that some samples can be used multiple times in a single tree.
The main idea is that by training each tree on a different data subset, overall, the entire
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Figure 15 — Random forest bagging approach
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forest will have lower variance but not at the cost of increasing the bias, although each
tree might have high variance with respect to a particular set of the training data [41].
The high variance causes overfitting, and this phenomenon occurs when the model
memorizes the training data by fitting it closely. The problem is that the model learns
not only the actual relationships in the training data but also any noise that is present, as
shown in Figure 16a. The low variance is the opposite, and the model may not be able
to learn any relationship in the training data, and this phenomenon is called underfitting,
as shown in Figure 16b.

The random subsets of features considered when splitting nodes approach
means that only a subset of all the features is considered for splitting each node in
each decision tree. A typical way to select the maximum number of features is use

Mfeatures = vV Nfeatures » (15)

where N0 represents the total number of inputs and Mg, 4,05 Fepresents the
maximum number of features sampled randomly during each node splitting procedure.

During the test time, the predictions are made based on averaging the prediction
of each decision tree considering different bootstrapped subsets of features, Figure 15,
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Figure 16 — Behaviors of the models

(a) Representation of overfitting (b) Representation of underfitting

and this process is called bagging.

2.3.2 Extremely Randomized Trees

The extremely randomized trees (ERTs) consist of a tree-based algorithm, formed
as a DTs ensemble. This algorithm was first introduced in [42] and works by creating
a large number of unpruned DTs from the training dataset, and each of them uses
subsets of features ensemble in each split. Predictions are made by averaging the
prediction of the DTs in the case of regression or using majority voting in the case of
classification.

The difference of ERT from RF is that instead of using a set of DTs obtained by
bootstrapping the training dataset, the ERT algorithm fits each DT on the whole training
dataset. Like the RF, this algorithm will randomly sample the features at each split point
of a DT, but instead of using a greedy algorithm to select an optimal split point, the
algorithm selects a split point randomly [42].

By using this random approach instead of finding the best split, as done in RF, the
computational cost associated with this algorithm is lower than the one of RF, making it
a promising choice in many applications.

2.3.3 Extreme Gradient Boosting

The extreme gradient boosting (XGB), like RF and ERT, is a tree-based model
algorithm that uses DT as its building blocks, to create a model based on an ensemble
of these trees.

This algorithm was first introduced in [43] and it was an scalable implementation
of Gradient boosting machines (GBM) [44]. It differs from other DT ensemble algo-
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rithms described in this work by performing scalable boosting and gradient descent
approaches to achieve the results.

The boosting aspect refers to the fact that instead of bagging approach, seen
in subsection 2.3.1, the individual models are not built on completely random subsets
of data and features, but sequentially by putting more weight on instances with wrong
predictions. The general idea is that instances, which are hard to predict correctly, will
receive more focus during training, with the model being able to exploit past mistakes
to improve its performance [45].

The gradient approach is used to minimize the loss function. The idea is that in
each round of training, the model parameters are adjusted, and its predictions, yj are
built, and compared to the correct outcome that is expected (y). The difference between
prediction and real values represents the model error, that can be used to calculate the

gradient,
m

d d 2

— = — =Y, 16
J=1

which consists of the partial derivative of the loss function. The loss function used was

mean squared error (MSE), described as

1 m

Agb = = > = 9)%, (17)
J=1

where Aygyp, is the MSE, m is the number of examples, y is the real value and yj is the
predicted value. The term ,1—n present in Equation (17) was removed in Equation (16)
because it is a constant.

In ANN, gradient descent looks for the minimum of the loss function, learning
the parameter (weights) for which the prediction error is the lowest in a single model. In
GBM there is a combination of predictions of multiple models, so does not optimize the
model parameters directly but the boosted model predictions.

The combination of gradient and boosting approaches is summarized in Fig-
ure 17.

What differs XGB from GBM is the fact that it uses more accurate approximations
to find the best tree model. There are two main approaches for that: computation of
second-order gradients, which provides better and more information about the direction
of gradients and how to get to the minimum of the loss function, and implementation of
regularizers, which improve the generalization of the model.

2.4 AUTOML TOOLS

During the evolution of machine learning algorithms and approaches for better
results, it was evident to many ML practitioners that extracting the best performance
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Figure 17 — Gradient boosting concept
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from machine learning models requires substantial human expertise. Developing good
models from a dataset is almost an art form involving intuition, experience, and many
manual tasks to tune algorithmic parameters. With the combination of market pressure
for more ML engineers and data scientists, and the process of developing ‘optimal’ ML
solutions emerged the idea of automating the ML tasks [46].

The history of autoML models is recent. The first autoML tool came based on
wekas algorithm, called AutoWeka [47], introduced in 2013. After that, other autoML
tools came in sequence based on scikit-learn (ML package for Python): Auto-sklearn
[48] in 2014, Hyperopt-sklearn (introduced as automatic hyperparameter configuration)
[49] in 2014, TPOT [50] in 2015, Data-robot [51] in 2015, Auto-ml in 2016, H20O-Automl
[52] in 2016, Auto-Keras [53] in 2017, and many others. Besides that, some commercial
tools emerged combined with cloud service: Cloud Automl [54] in 2017 that runs on
Google Cloud platform, Amazon AWS [55] also in 2017, Microsoft AzureML [56] in 2018,
Uber’s Ludwig in 2018 [57] and many others.

Figure 18 shows the idea of what autoML tools cover in a traditional machine
learning pipeline.

The idea in this work is to test some of them, including commercial and non-
commercial autoML tools, and compare the results against the traditional ML algorithms.
For this purpose, this document covers Hyperopt-Sklearn, TPOT, Cloud Automl, and
Microsoft AzureML.
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Figure 18 — AutoML concept structure
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2.41 Hyperopt-Sklearn

Hyperopt-Sklearn tries to achieve better results on algorithms based on Hyperopt
[59] to describe a search space (characterized by a variety of types of variables: contin-
uous, ordinal, categorical, [59]) over possible configurations of scikit-Learn components,
including preprocessing and classification modules.

To use this tool it is necessary to define three things: the search domain, an
object function, and an optimization algorithm. The search domain is specified via
random variables, whose distributions should be chosen so that the most promising
combinations have a high prior probability. The objective function maps a joint sampling
of these random variables to a scalar-valued score that the optimization algorithm will
try to minimize (the same idea of loss function mentioned in the sections above).

Model selection is the process of predicting which model performs better from
among a set of possibilities. This process involves a process called Hyperparameter
optmization (HPO) or simply parameter tuning (a process of finding the best values
for the parameters in a ML algorithm), which traditionally is performed through grid
search and random search approaches. Instead of using these conventional methods,
Hyperopt-Sklean sets up a search space with random variable hyperparameters, uses
scikit-learn to implement the objective function that performs model training and model
validation, and uses Hyperopt to optimize the hyperparameters. The model selection is
exemplified in Figure 19.

In this classification task example is possible to see that there are 6 possible
preprocessing modules and 6 possible classifiers. The highlighted light blue nodes in
the second level represent a principal components analyses approached with K-nearest
neighbors algorithm, resulting in the final model configuration shown in the blue nodes
of the third level. The white leaf nodes at the bottom show example values for their
parent parameters.
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Figure 19 — Hyperopt-sklearn model selection example
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2.4.2 TPOT

Tree-based Pipeline Optimization Tool (TPOT) can be considered as a Python
library for automated machine learning because this tool is built on top of scikit-learn.
The idea is that TPOT will automate the most "tedious" part of machine learning by
intelligently exploring a great number of possible pipelines to find the best one, using
genetic programming (GP). It is important to be clear that some parts of the process of
ML cannot be fully automated, like data collecting and preparation, which are important
steps that depend on hands on parts.

According to [60], GP can be defined as a direct evolution of programs or al-
gorithms for the purpose of inductive learning, which can be considered as a subset
of machine learning. The idea is that the GP is inspired by biological evolution and
its fundamental mechanisms. GP software systems implement an algorithm that uses
random mutation, crossover, a fitness function, and multiple generations of evolution to
resolve a defined task. GP can be used to discover a functional relationship between
features in data (symbolic regression), and to group data into categories (classification)
[61].

Before fitting @ model, the user must prepare the data for modeling by performing
an initial exploratory analysis (looking for missing data) and either correct or remove the
outliers of the data (data cleaning). Next, the user may transform the data in some way
to make it more suitable for modeling, for example, by normalizing the features (feature
preprocessing), removing features that are not useful for modeling (feature selection),
and/or creating new features from the existing data (feature construction). Afterward, the
user must select a machine learning model to fit the data (model selection) and choose
the model parameters that allow the model to make the most accurate classification
from the data (parameter optimization). Lastly, the user must validate the model in some
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Figure 20 — TPOT pipeline structure
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way to ensure that the model predictions generalize to data sets which have not been
used for training (model validation), for example, by testing the model performance on
a holdout dataset that was excluded from the earlier phases of the pipeline. All these
steps mentioned in the grey sector are covered automatically by TPOT.

2.4.3 Cloud AutolML

Google provides various machine learning tools. They are divided into five sec-
tions: AutML Natural Language, proposed for text and document analyses and classifi-
cation; AutoML Tables, recommended for structured data problems; AutoML Translation,
for translation tasks; AutoML Video Intelligence, for classification of shots and videos
according to determined labels; and AutoML Vision, for image classification tasks. In
this work, AutoML Tables was used because the main goal was to use structured data
to find the evaporation and condensation temperatures.

After importing the data, the platform provides information about missing values,
correlation, cardinality, and distribution for each of the features. It is important to mention
that Google only starts charging when the training process begins, so the previous steps
are free of charge.

When the training process begins, AutoML Tables performs automatically feature
engineering and the tasks include normalization and "bucketization" of numeric features,
creation of one-hot encoding for categorical features, operation of basic processing for
text features and extraction of date and time-related features from timestamp columns.
All these preprocessing approaches are used to improve the learning ability of the



Chapter 2. Theoretical background 41

algorithms.

AutoML table performs parallel training, enabling training in different architec-
tures at the same time. It contributes to finding the best model in a short time. Some
model architectures that are included are linear regression, feedforward deep neural
network, gradient booting decision tree, Ada net, and an ensemble of various model
architectures.

As a result, the platform gives the evaluation of the model based on training,
validation, and test sets using the best model found and the metrics chosen by the user
before training starts. Besides that, it shows the feature importance of the data, which
is possible to be downloaded.

Before the training process begins the user must inform how much time will be
set as "maximum running time" for searching the best model. If AutoML Table finds the
best model earlier, the training is automatically stopped; otherwise, it will be continued
until the maximum running time set is reached.

All the processes mentioned above are illustrated in Figure 21.

Figure 21 — How AutoML table works
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2.4.4 Microsoft AzureML

Similar to Google AutoML, Microsoft Azure is an automated machine learning
tool that can be really useful to non-expertise ML practitioners. It is also a commercial
tool, so Microsoft charges per hour/training, in a similar manner as Google Cloud
AutoML.
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Before properly starting the training, the user must choose which kind of task is
going to be performed. Two possible choices can be made: classification and regression.
After that, the user must decide in which framework the task will be performed: in a
software development kit (SDK) in Python or in the Web Studio (Microsoft platform). In
this work the second option was chosen to really experience the tool capability, and this
approach is also recommended for non-programmer users because it does not require
any programming skills to set the configurations of the model.

The dataset should be imported and then the user can define which column of
the dataset is the target for the training. Besides that, some configurations are possible
to be done: maximum training time, the metric that is going to be used to find the best
model, set different split for training and test sets of the data, enable early stopping
function to avoid overfitting, and some other configurations.

Some preprocessing approaches are also included in AzureML: normalization
(stand scaler wrapper, min max scaler, max absolute scaler), principal component
analysis (PCA), truncated SDV wrapper, and many others. This preprocessing part is
automatically done after the training starts.

For the training task, AzureML uses both voting and stacking ensemble meth-
ods for combining models. The first one predicts based on the weighted average of
predicted class probabilities (for classification tasks) or predicted regression targets
(for regression tasks). The second one combines heterogeneous models and trains a
meta-model based on the output from the individual models.

The last configuration that the user must define is where the training process
should be performed: local compute or remote compute. The first one runs on the user’s
computer and the second one uses the cluster of Azure to do the task. The advantage
of the cluster is the possibility of parallelization mentioned in subsection 2.4.3, which
usually shortens the process for large datasets.

Figure 22 represents all the steps mentioned above.
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Figure 22 — Schema of how Azure AutoML works
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3 IMPLEMENTATION OF THE PROPOSED LEARNING TECHNIQUES

In this chapter, the development of the traditional ML models is presented,
namely ANN, RF, ERT, and XGB. The chapter also presents a comparison between
them and AutoML tools, detailed in section 2.4. In section 3.1 the process to obtain
the dataset, the feature creation, and the data preprocessing approach are detailed. In
section 3.2 the process of splitting the data into train and test sets is explained, and be-
sides that, the HPO approach used for the traditional ML methods is covered, together
with the final parameters for each model obtained.

It is important to mention that some parts of this chapter were omitted in public
version of the document to comply with clauses on ownership of intellectual property.

3.1 DATASET AND FEATURE CONSTRUCTION

The data necessary for the development of the models were obtained using
a test rig, which was instrumented to measure and control the pressures associated
with the suction and discharge of the compressor, and to measure evaporation and
condensation temperatures. Using an experimental inverter, it was possible to measure,
additionally, the input variables considered in this study. The nominal list was provided
to the evaluation committee, but is not presented in this document for industrial property
purposes.

In this work, the operating conditions varied between +34 °C and +54 °C for
condensation temperature and between -30 °C and -10 °C for evaporation temperature.
For each operating condition, the temperatures were measured considering 3 distinct
average rotation speeds, consisting of 2100 rotations per minute (rpm), 2850 rpm, and
3600 rpm. These ranges were selected to cover typical application envelope conditions
for domestic refrigeration, in order to guarantee that the models were trained consider-
ing the information of the main operating conditions that the compressor can be subject
to.

The traditional ML pipeline includes not just the feature creation, training and
validation parts, but also a "prior-step" focused on feature preprocessing, which can
include the outlier remotion, completion of missing values, selection of main features,
data augmentation, data balancing, among others. In the ML context, this process is
important to avoid some pitfalls during the model development, which can appear when
the data are imbalanced, or present spurious values.

After trying some data preprocessing approaches, such as normalization, stan-
dardization, PCA, and robust scaling, it was verified that the performance of the models
did not change or barely changed for most of the algorithms, with the exception of the
ANN, that improved with standardization. So it was decided to focus on the approach
of parameter optimization.
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The process of standardization consists of rescaling the features to have a mean
of 0 and a standard deviation of 1. This technique is often applied in the preprocessing
steps because it has the advantage of reducing the large scale difference in the features,
if it exists, usually speeding up the algorithm training convergence, and sometimes,
improving the results by itself.

3.2 MODEL DEVELOPMENT

The whole dataset was split into train and test sets. The train part corresponds
to 70% of the dataset and the test part to the remaining 30%. It is important to mention
that the test dataset was not used at any point during the model development phase
and it was the same set used to compare the results of all learning techniques in order
to achieve a fair performance evaluation. Besides that, when needed, 20% of the train
set was used for validation purposes (to check how the model was performing) and this
split was done in a shuffled way during the training for each algorithm.

For all the models an algorithm was used for the automatic selection of the
hyperparameters, which are the main parameters that influence the performance of
the final model. As exposed in subsection 2.4.1, the HPO consists of trying as many
different possible combinations of values for the algorithm parameters and this approach
is traditionally performed by using grid search and random search. The grid search tries
all the possible combinations with the parameters values, which can be a considerable
time consuming and computational cost task, depending on the number of parameters
to optimize and the range of values to try each of them. The approach of the random
search is to randomly get values of a defined range for each parameter, and try as many
combinations as the user wants. This process usually requires less computational effort,
it is faster, and it can find models that are as good as the ones found by grid search
within a small fraction of the computation time [64]. So, in this work random search
approach was chosen to perform the HPO.

The HPO was applied to the traditional learning algorithms: random forest, ex-
tremely randomized trees, extreme gradient boosting, and artificial neural networks.
The AutoML tools have their own hyperparameter optimization processes and it is not
necessary to manually apply one. It is important to mention that to define the best
combinations of the parameter values, random search used the root-mean-square error
(RMSE) as a metric for evaluation. RMSE, Equation (18), is a metric of the model error,
varying between zero and infinite, with a value closer to zero representing a better
model performance. This metric was chosen because it penalizes large errors, and
also because the RMSE metric is presented in the same magnitude order of the model
output, in degrees Celsius, making the interpretation of the results easier. The RMSE
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is given by

1, .
RMSE = | > (yj—%)?, (18)
j=1

where m is the total number of examples, y is the measured value, and yj is the
predicted value.

The process of random search present a different duration for each algorithm.
The measurement of this time duration was done for comparison purposes, and it is
shown in Table 2. The computer processor used is a Intel Core i5-7200U, 2,5 GHz-2,7
GHz, 8Gb of memory, running Windows 10-64bits as operational system.

Table 2 — Hyperparameters search space time duration.

Algorithm Evaporation - time (min) Condensation - time (min)
Random forest 39 49

Extremely randomized tree 16 20

XGBoost 180 420

Artificial neural network 16 25

Source — Author
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4 EXPERIMENTAL RESULTS

4.1 TRADITIONAL ML MODEL RESULTS

In this section the results obtained with the best parameter configurations values
are presented. For the evaluation of the model, it was checked for similarity between
estimated and measured temperatures by comparing them. The metrics used to per-
form this comparison were RMSE and the coefficient R-squared (R?), metrics usually
applied in regression problems [65]. The R? indicates how well the model fits the data,
varying between 0 and 1 or 0% and 100%, with results closer to 1 representing better
model performance.

Figure 23 shows the results obtained for the RF algorithm, Figure 24 for the ERT
algorithm, Figure 25 for XGB algorithm, and Figure 26 for ANN algorithm. All of them
consist of the comparison between the measured and estimated temperature values
for the test dataset of the evaporation and condensation temperatures, according to the
rotation values. In the left side the estimations for the evaporation temperature are pre-
sented, on the right side the results for the condensation temperature are represented.

To have a deep analysis of the ranges of both temperatures at which the models
could achieve better results, it was plotted the RMSE maps for all the models. The RF
RMSE map is shown in Figure 27, the ERT RMSE map in Figure 28, the XGB RMSE
map in Figure 29 and the ANN RMSE map in Figure 30. On the left side the results for
the evaporation temperature are represented and on the right side the results for the
condensation temperature are represented.

For all of the models, it was perceived that the estimations for evaporation tem-
perature were more precise, which suggests that the data present more information
about the evaporation temperature, which was also verified in the works of [11] and
[9]. This behavior was previously expected because the characteristics of the systems
influence more this temperature, or in other words, the dataset used for the work has
more information related to the evaporation temperature. Between these temperatures,
it was verified a better estimation for the 2100 rpm samples, and this is due to the fact
that increasing the rotation, the system was lead to more critical operating conditions,
reducing the accuracy of the model.

Going deep in the analyses of the quality of the models estimates, it was possible
to check which regions of evaporation and condensation temperatures the models
could bring better results, according to the RMSE maps. In general, for the region of
condensation temperature around +52 °C and +54 °C, the error of the models were
higher. The best results could be achieved for the range of +36 °C and +50 °C for
condensation temperature and the whole range of the evaporation temperature.

The RF algorithm had the worse performance if compared to the other traditional
ML algorithms, but the results were considered satisfactory for evaporation temperature,
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Figure 23 — Results using RF algorithm for evaporation and condensation temperatures
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achieving 1.84 °C of RMSE, and 0.91 of R2. The ERT had the best performance of
all the tree-based models, achieving for evaporation and condensation temperatures,
respectively, 1.68 °C and 5.22 °C of RMSE, and 0.93 and 0.31 of R2. The XGB achieved
slightly better results than RF, reaching for evaporation and condensation temperatures,
respectively, 1.81 °C and 5.50 °C of RMSE, and 0.92 and 0.23 of R2. Finally, the
ANN had much better estimations among all the traditional ML algorithms, achieving
for evaporation and condensation temperatures, respectively, 1.46 °C and 4.54 °C of
RMSE, and 0.94 and 0.47 of R?.

4.2 AUTOML TOOLS

In this section, the AutoML tools mentioned in the section 2.4 were tested with
the default setup configuration of each tool. It is important to consider that this work
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Figure 24 — Results using extremely randomized tree algorithm for evaporation and
condensation temperatures
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made use of commercial and non-commercial tools, which makes the procedure to
obtain each model variable. The input features structure was the same as for traditional
ML methods, including the same train, validation, and test sets, in order to have a fair
comparison between all the approaches.

The metrics used to test the AutoML tools were the same as used for the tradi-
tional ML approach, and the structure of the graphics results containing the comparison
of the estimated and measured temperatures remained the same. The Figure 31 shows
the results obtained for the Hyperopt-Sklearn tool, the Figure 32 for the TPOT tool, the
Figure 33 for Google Cloud-ML tool, and the Figure 34 for Microsoft Azure tool.

It was noticed that, in general, the AutoML tools could perform really well with
the default configurations. To be possible to achieve these results, as mentioned in
section 4.1, it was used the early stopping approach for all the AutoML tools, with
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Figure 25 — Results using extreme gradient boosting algorithm for evaporation and
condensation temperatures
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the exception of Hyperopt-Sklearn. Each of the tools also has its own preprocessing
techniques, being not needed to develop a preprocessing pipeline for these models.
The maximum running time to find the best model for all of the AutoML tool was
set to 60 minutes to have a fair comparison. Besides that, it was verified that using the
evaporation estimations as input for the condensation model improved the results for

Hyperopt-Sklearn and TPOT.

The RMSE maps were also plotted for the AutoML tools in the same structure
used for the traditional ML methods. The Hyperopt-Sklearn RMSE map is shown in
Figure 35, the TPOT in Figure 36, the Google Cloud-ML in Figure 37, and the Microsoft

Azure in Figure 38.
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Figure 26 — Results using artificial neural network algorithm for evaporation and con-
densation temperatures
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As shown in section 4.1, the results of the models were worse in the same
condensation temperature ranges, and the lower errors were concentrated in the same
range of evaporation and condensation temperatures, corroborating with the results
obtained in section 4.1.

In general, the results achieved by the AutoML tools were better than the ones of
the traditional ML methods used, which can be seen as a promising approach for future
works. Among the evaluated tools, Google Cloud-ML had the best result, reaching for
evaporation and condensation temperatures, respectively, 1.38°C and 4.69°C of RMSE,
and 0.95 and 0.44 of R?; followed by TPOT with 1.44°C and 4.89°C of RMSE, and
0.94 and 0.39 of R2; the Azure which achieved 1.65°C and 5.13°C of RMSE, and 0.93
and 0.33 of R2, and the Hyperopt-Sklearn with 1.62°C and 5.38°C of RMSE, and 0.93
and 0.26 of R2. The Azure and Hyeropt-Sklearn had a slight difference, with the Azure
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Figure 27 — RMSE map result for random forest algorithm
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Figure 28 — RMSE map result for extremely randomized tree algorithm
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achieving almost imperceptive worse performance in evaporation temperature, however
a bigger difference for condensation temperature.

4.3 RESULTS DISCUSSION

As exposed in section 4.1 and section 4.2, the estimation for condensation
temperature was harder, which resulted in a worse performance comparing to the evap-
oration temperature. However, it is known that the level of accuracy obtained by the
results can be interesting for some applications, like fault prediction and detection of
unwanted operating conditions. Considering the condensation temperature, the best
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Figure 29 — RMSE map result for XGBoost algorithm
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Figure 30 — RMSE map result for ANN algorithm
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result was achieved by the ANN, followed by Google Cloud-ML and TPQOT. For evapora-
tion temperature, the best model was reached by Google Cloud-ML, followed by TPOT
and ANN.

All the results are summarized in Table 3 and Table 4. It is important to emphasize
that it was used the same test dataset for all the algorithms and AutoML tools to have a
fair comparison.
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Figure 31 — Results using Hyperopt-Sklearn AutoML for evaporation and condensation

temperatures

|
=
o

—— Estimated
Measured

Evaporation
Temperature (°C)
o
o

I
w
=}

NV

w
o

Temperature (°C)
B
o

Condensation

W
o

NWWW\J |

Samples

100 125

(a) 2100 rpm

-10 .
—— Estimated

Measured

W

-20

Evaporation
Temperature (°C)

Condensation
Temperature (°C)

40
Samples

0 20

60

(b) 2850 rpm

-0 Estimated

Measured
=20

Evaporation
Temperature (°C)

w
o

Temperature (°C)
e
o

Condensation

0 20 40
Samples

60

(c) 3600 rpm

Source — Author

—— Estimated
Measured

0 25 50 75

100 125

Samples

—— Estimated
Measured

e

0 20

40 60

Samples

—— Estimated

Measured \[\[\/

MW

Samples

Table 3 — Results for evaporation temperature

Algorithm

Random forest

Extremely randomized tree
XGBoost

Artificil neural network
TPOT

Hyperopt-Sklearn

Google Cloud-ML
Azure-ML

RMSE (°C)
1.84
1.68
1.81
1.46
1.44
1.62
1.38
1.65

RZ

0.91
0.93
0.92
0.94
0.94
0.93
0.95
0.93

Source — Author
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Figure 32 — Results using TPOT for evaporation and condensation temperatures
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Table 4 — Results for condensation temperature.
Algorithm RMSE (°C) R?
Random forest 5.75 0.16
Extremely randomized tree 5.22 0.31
XGBoost 5.50 0.23
Artificil neural network 4.54 0.47
TPOT 4.89 0.39
Hyperopt-Sklearn 5.38 0.26
Google Cloud-ML 4.69 0.44
Azure-ML 513 0.33

Source — Author

Comparing the results, it is possible to conclude that ANN, TPOT, and Google
Cloud-ML achieved better results for both temperatures. This fact reinforces the capa-
bility of the AutoML tools to obtain good results, and so, they should be included in
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Figure 33 — Results using Google Cloud-ML for evaporation and condensation temper-

atures
S —101 __ Estimated _\ﬂv—'\/‘vﬂ s —— Estimated
c & g 50 \/ V
cQ Measured f 5 2 Measured
© 2 N 32 1
S8 —20 Y £ m Ww
o Mo J/w Soao \/
> g‘ nN‘*'w ! 5 g’ A */‘A
Yo NW\;" Vo 'W
F =301 ‘ : F 30 . :
0 25 50 75 100 125 25 50 75 100 125
Samples Samples
(a) 2100 rpm
~_10 —~
Cg —— Estimated Cg —— Estimated
oy Measured 3 v >0 Measured
82 _20 \/‘ Q2
oD 5C
53 T g 40 ,/d [\N*N V
|_|3 E (\.r\j\-\ S E
& —30 oL
() 20 40 60 40 60
Samples Samples
(b) 2850 rpm
= _10 - —
3 < —— Estimated AV | 2 | — Estimated
Sy Measured ﬁ/v\/“\N' 2o 50 Measured
=5 o 5
£ £ -20 A 28 \MA /
o \,I/\/V U = VJV
Q @ o @
© O M c 240
o E o £
] N 'll"/ 0o
- =30 y =
0 20 40 60 60
Samples Samp[es

(c) 3600 rpm

Source — Author

diverse project scopes as possible approaches.

It is hard to select a better approach between traditional ML methods and AutoML
tools, but it was concluded that a good results can be achieved with less effort using the
second one. Besides that, this approach should be considered for non-programmers,
mainly commercial tools like Google Cloud-ML and Azure, because they do not require
programming expertise to be able to perform the data preprocessing, training, and
testing steps.

In another view, the traditional ML approach also could achieve satisfactory
results, and even it was not possible to reach the best one in this work for both temper-
atures, the research group that supported this work believes that even better results
can be reached using traditional ML approach, but in a cost of a significant time and
effort on it.
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Figure 34 — Results using Azure platform for evaporation and condensation tempera-

tures
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Figure 35 — RMSE map result for Hyperopt-Sklearn
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Figure 36 — RMSE map result for TPOT
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Figure 37 — RMSE map result for Google Cloud-ML
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Figure 38 — RMSE map result for Azure platform
32 120
<t 26 24 23 23 23 22 23 22 21 20 L= .m 9.6 9z 88
Te} [Ta]
o~ - 20 20 20 20 20 20 20 20 20 20 19 ~ - 9 89 B85 B4 B4 82 81 78 17 17 73
9 28 o 105
o - 19 18 18 19 18 18 18 18 18 18 18 o- 13 713 73 71 71 70 70 689 69 69 69
N Ta]
Cw T
c A = c [ <
S oy 24 Luwy o0
EEM Y =N 4
$C3 = sc3 =
-3 =4 -3 =4
c ~ -20 c o~ -15
o E < S g <
"hg *; EE R EEE R
< <
8 » BEEEEREEERRE
m 16 Il 6.0
8 oY o [ [ o0 o0 [oe e [0 oo o[ o
m m
3 » AR EEERERRERR
m m g 45

18-16-14-12-10

-30-28-26-24-22-20
Evaporation
Temperature (°C)

-30-28

-26-24-22-20-18-16-14-12-10

Evaporation
Temperature (°C)

(a) RMSE for evaporation temperature (b) RMSE for condensation temperature



60

5 CONCLUSIONS AND NEXT STEPS

In this work the use of traditional ML algorithms and AutoML tools was evaluated
to indirectly estimate the evaporation and condensation temperatures of a refrigeration
compressor. The achieved results were satisfactory, corroborating for possible works
of the company in implementing the non-invasive method to measure evaporation and
condensation temperatures using ML algorithms in its products. Besides that, this work
studied an alternative approach based on AutoML tools, which is not usual in the
refrigeration field, but can bring good results, as shown in chapter 4, and has potential
for saving resource and time in configuring all the traditional ML pipeline.

The AutoML tools were experienced and most of the tools analyzed during this
work are not really fully automated, as the name suggests. The idea is really clear,
which consists of doing automatically the feature selection and engineering, model
building and training, and hyperparameter optimization, parts that represent the most
time-consuming tasks in the ML pipeline. But in the end, most of the tools required
efforts to configure model settings and demanded minor programming expertise, even
some tools say the opposite in their descriptions and advertisements. Google Cloud-
ML was the most easy-to-use tool among all tested, since it requires no programming
expertise and the process of importing the dataset, obtaining the test results, and
deploying the final model is intuitive. One thing that should be considered is the fact
that it is a commercial tool, so it is not so transparent, meaning that it is hard to know
what really happens in the background, which can pose as a limitation, depending on
the final model use case.

The Azure automated ML is a really easy-to-use tool, from the upload of the
dataset until the training and getting the final model results. But, afterward, the platform
is not so clear about the deployment of the best model. Azure has a quick model de-
ployment process, and it generates a REST API URL that can be used by the user. The
platform recommends the user to use Microsoft Power Bl [66], which is a commercial
tool, to get the predictions on a new dataset using this URL, and it can be something
unwanted by the user, since it gets tied to this proprietary solution. Another possible
approach is using the Azure software development kit (SDK), in Python, performing
all steps to obtain new estimations. However, this approach results in loosing the auto-
mated aspect. The last option, used in this work, is to download the model trained in
pickle format (.PKL) and manually make the estimations.

This work used a dataset with just 1316 examples and obtained in satisfactory re-
sults. By using more samples, and consequently more information to the model building,
it might be possible to obtain even better results. Besides that, the use of a dataset with
different input features, combined with different feature creation approaches, should be
considered to achieve better results, mainly for the condensation temperature, which is
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harder to estimate with good precision.

Finally, the implementation on an electronic inverter prototype should be con-
sidered. The focus of this work was to get as good as possible estimation for the
temperatures, not taking into account the implementation of the model in the electronic
inverter. To do the implementation, a study of the computational capacity of the inverter
microcontroller must be considered, and it will define the complexity of the models that
can be used.
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