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RESUMO

O design de cinematica de suspensao pode ser um processo desafiador. Em processos
de desenvolvimento para veiculos de competicdo, onde a agenda de desenvolvimento
¢ estreita e a qualidade da cinematica € crucial, o trabalho requer ainda mais maturi-
dade. O designer de suspensao precisa conciliar os requisitos de empacotamento dos
componentes no veiculo e percepcdes do piloto enquanto tenta fazer o melhor uso dos
pneus em todo tempo possivel. Recursos computacionais estdo constantemente se
tornando mais baratos e podem ser utilizados para resolver esse problema relacionado
a cinematica auxiliado por ténicas de otimizacao. O processo de otimizagdo pode gerar
novas solucdes de engenharia que ndo sao ébvias ao entendimento humano e difi-
cilmente seriam alcangadas pelo time de engenharia. Dada a natureza multi-objetivo
desse tipo de problema e a falta de convexidade entre as funcdes objetivo, esse tra-
balho propde a integracdo de uma otimizacao multi-objetivo evolucionaria a um solver
cinematico de suspensdo. A otimizagao acarreta em um conjunto de solugbes sub-
6timas que sao colocadas em ordem por um conjunto de funcbes-peso e fatores de
escala. Esse processo oferece uma excelente razao tempo-beneficio, uma vez que
potencialmente pode reduzir semanas de trabalho para algumas horas de esforco com-
putacional. Esse trabalho ilustra o poder do processo de otimizacdo com um estudo de
caso onde uma suspenséao do tipo Duplo-A é completamente sintetizada pelo algoritmo
de otimizacao, que € composto por 19 funcbes-objetivo divididas entre 4 movimentos
diferentes.

Palavras-chave: Suspensao. Cinematica. Otimizacdo. Algorithmo genético.



ABSTRACT

Suspension kinematics design can be a challenging process. In racing and motorsports
development processes, where the design schedule is tighter and the quality of kine-
matics are critical, the job requires even more maturity. The suspension designer must
conciliate vehicle packaging and driver perception requirements whilst trying to make
the best use of the tires at all possible times. Computational resources are constantly
getting cheaper and can be used to solve the kinematics issue aided by optimization
techniques. The optimization process can generate new engineering solutions that are
not obvious to the human understanding and would be hardly achieved by the engi-
neering team. Given the multi-objective nature of this type of problem and the lack of
convexity between the objective functions, this work proposes the integration of an Evo-
lutionary Multi-Objective Optimization (EMOOQO) to a suspension kinematics solver. The
optimization yields a set of sub-optimal solutions that are ranked by a set of weighting
functions and scaling factors. This process offers an excellent time-to-benefit ratio, once
it can potentially reduce weeks of workload to a few hours of computational effort. This
work illustrates the power of such optimization process with a case study where a Dou-
ble A-Arm suspension system is completely synthesized by the optimization algorithm,
which is composed by 19 objective functions split in 4 different movements.

Keywords: Suspension. Kinematics. Optimization. Genetic algorithm.
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1 INTRODUCTION

Automobile racing is structured in many categories. No matter how distinct these
modalities are, there are common grounds to all of them. In general, the objective in
racing is to cover a specific track length or circuit in the shortest possible time (SEWARD,
2014).

As Seward (2014) affirms that, in order to accomplish this objective, the driver
must accelerate the vehicle to the highest speed, break as late as possible and in the
smallest distance and also spend less time in cornering while maximizing the exit speed.
This implies that the competitive driver will spend no time cruising and will exploit the
whole vehicle potential.

Every innovation in racing vehicle development has resulted in the expansion
of the acceleration limits of the vehicle and its exploitation through improvements of
control and driving techniques (MILLIKEN, W. F.; MILLIKEN, D. L., 1995). Under this
perspective, the steering and suspension systems play a vital role on the success of a
new racing prototype, since the steering system is the only real feedback source to the
driver and the suspension movements have an affect on the tires’ performance, thus,
the overall vehicle’s performance

William F. Milliken and Douglas L. Milliken (1995) point that the suspension de-
velopment must be done hand-to-hand with the tires and their characteristic behaviours,
whereas the suspension must maintain the tires in optimal contact with the ground at
all possible times. Using mathematical models that describes the tire behaviour, it is
possible to optimize the suspension to maximize the forces generated at the tire-ground
contact in each one of the axles, which, therefore, expands the limits of acceleration,
both lateral and longitudinal.

Many tire models have been developed during the last century, each one with
its own specific purpose. Different levels of precision and complexity can be introduced
in the distinct use categories, involving completely different approaches (PACEJKA,
2006).

A racing vehicle should be, ideally, developed to enhance the driver-vehicle
system performance. Unfortunately, to the moment, there are no easily exploitable
driver models. That is why the optimization of a racing vehicle refers mostly about the
vehicle itself (MASTINU et al., 2007).

Mastinu et al. (2007) clarify that one of the biggest technical challenges is to
achieve maximum speed in cornering, while tire forces in front and rear axles are
balanced to maintain vehicle handling. Due to this, the adjustment of tire characteristics
and suspension behaviour is of crucial importance.

Even though some real world problems can be reduced to a single objective,
it is really difficult to define all of the criteria in function of a single objective. The
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establishment of multiple objectives usually gives a clearer description of the problem
(ABRAHAM; GOLDBERG, 2006).

According to Abraham and Goldberg (2006), the Multi-Objective Optimization
(MOOQ) is available for at least two decades and its application in real problems is
continuously increasing. Evolutionary algorithms can be employed as tools of MOO and
are distinguished by a population of different solutions, whose reproduction operator
allows the process of combining existing solutions to generate new ones.

The suspension system and its influence on tire behaviour and driver reactions
is far too complex to be given a single objective on an optimization process. Under this
point of view, this work proposes the implementation of an Evolutionary Multi-Objective
Optimization (EMOQ) algorithm as a tool to improve an existing system or even design
a brand new one.

1.1 OBJECTIVES

1.1.1 Main objective

Present an application capable of analysing and optimizing the kinematic be-
haviour of a vehicle’s suspension system.

1.1.2 Specific objectives

» Implement a kinematics analysis software capable of handling tridimensional
suspension systems,

* Model a Double A-Arm suspension system using the implemented software,
* Implement an EMOO,

» Develop a case study on the optimization of a whole vehicle kinematics,
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2 THERORETICAL FOUNDATION

This chapter covers the main topics of fundamental importance to the adequate
comprehension of the theme. It is initiated with the elucidation of the topics through
the justification and necessity of the proposed project in automotive applications. The
chapter deepens on tire behavior and its correlations with the suspension and steering
system, finishing with an overview of optimization methods and the detailing of the
Genetic Algorithm (GA), used in this work.

2.1 THE PROBLEM IMPOSED BY RACING

The technical global objective in motorsport is the accomplishment of a vehicular
configuration capable of covering a given track extension in minimum time or at maxi-
mum average speed, when operated manually by a driver that uses techniques under
his or her limitations. An important principle of racing is that the vehicle’s speed should
never be constant, if not limited by regulation or the vehicle’s top speed (MILLIKEN,
W. F.; MILLIKEN, D. L., 1995).

The problem imposed by racing, according to William F. Milliken and Douglas
L. Milliken (1995), can be synthesized as the extension of the drive-vehicle system
capabilities to spend the most possible time at the friction limits imposed by the contours
of the G-G diagram. The diagram’s limits are defined by the powertrain and tire forces,
disposing of any load transfer effects, suspension movements, balance and brake bias.
These simplifications swell the grip potential, establishing a limit, given on the diagram.
Thus, the G-G diagram works as an upper boundary of the vehicle’s grip factor, where
the engineers and the driver must work together to exploit the inner region. An example
of a G-G diagram is given in Figure 1.

This way, the system can be evaluated through the analysis of this diagram’s
limits. Conceptually, the friction envelope can be applied to the vehicle by collapsing
all four wheels in a single equivalent contact point. In fact, a real vehicle should not be
able to constantly reach the limits imposed by the G-G diagram.

The diagram presented on Figure 1 show in brighter lines the frontier that lim-
its the vehicle’s accelerations. It is possible to observe that the upper portion, which
represents the longitudinal acceleration of the vehicle is limited by the powertrain char-
acteristics. The disarranged lines represent the accelerometer channel’s data on X and
Y axes. Therefore, the suspension system exploits the delimited area on the G-G dia-
gram, once it optimizes the use of the tires. The more disperse the data in the diagram,
the better the driver is using the available tire grip of the car.

The pair analysis, presented by William F. Milliken and Douglas L. Milliken (1995)
is @ more practical alternative to the development of new racing prototypes when com-
pared to the G-G diagram. Normally the objective of this approach is to maximize the
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Figure 1 — Example of a G-G diagram of a common passenger car operating on normal
conditions.
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Source: William F. Milliken and Douglas L. Milliken (1995)

lateral force generated at the tires on both front and rear axles.

Through pair analysis it is possible to explore the changes on functional parame-
ters due to project condition changes on a simplified manner. The pair analysis shows
the relationship of the suspensions’ kinematics and the tires work conditions, whose
characteristics will be presented next.

2.2 TIRES

This section introduces the concept of tire modeling, how they can be exploited
through computer simulations and the correlation of their characteristics with suspen-
sion kinematics.

2.2.1 Introduction

The tires have a crucial importance in the dynamic behavior of a vehicle, as all
the effort made to accelerate, brake and change the car’s directions are transferred to
the ground through the tires.

Given the fact that the tires have such a complex structure, they must be studied
apart from the whole vehicle for their characteristics to be fully comprehended. The
force generation mechanisms in the tires are separated in longitudinal, lateral and self-
aligning torque, introduced in this section. Despite their relevance in racing applications,
combined tire forces and moments will not be discussed in this work, in behalf of
simplification. In addition, the overturn moment of the tires are not discussed in this
work as well.
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Tires are naturally susceptible to deformation and they depend on it to generate
lateral and longitudinal forces. The interaction between the tires and the road generate
the lateral and longitudinal forces needed to handle the car (MILLIKEN, W. F.; MILLIKEN,
D. L., 1995). The main dynamic characteristics of the tires are presented in the following
sections, based on the fundamentals presented by Pacejka (2006).

The tire longitudinal and lateral forces and the self-aligning moment, Fx, Fy and
Mz, respectively, are results of the lateral and longitudinal slip conditions inputs, « and
K, respectively, and the tire inclination angle vy, which will be presented in the next
sections. These forces calculations can be generalized for steady state conditions by
the set of functions (PACEJKA, 2006):

FX=f(Cx'!K!’Y!FZ) (1)
Fy = f(CX,, K%Y, FZ) (2)
M; = f(x, k,v, Fz) (3)

The tire reference coordinates and angles used in this chapter (Adapted SAE)
are shown in Figure 2 while other coordinate systems for tire modelling and analysis
are illustrated in Figure 3.

Figure 2 — Adapted SAE tire reference coordinates.

Source: Pacejka (2006)

2.2.2 Longitudinal dynamics

The starting situation where all slip components are zero can be defined as the
wheel rolling freely, on its upright condition, without applying a driving torque, over a flat
level road surface along a straight line at zero side slip. When the wheel motion from this
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Figure 3 — Different tire coordinate systems and sign conventions.
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zero slip condition, the slip is accompanied by a build-up of additional tire deformation
and partial sliding in the contact patch. Such behavior results on additional horizontal
forces and aligning torque are generated. When an acceleration or braking torque is
applied about the wheel axis, a longitudinal slip arises that is defined in Equation (4)
(PACEJKA, 2006):

Vy—reQ)

K== 4)
where « is the slip ratio, V the longitudinal speed, re the effective tire radius and Q the
angular velocity.

The sign is taken such that for a driving force, k assumes a positive value and
generates a positive longitudinal force Fy. Similarly, the value of k becomes negative
and generates a negative Fy for braking forces. At wheel lock, k = 1 and for very
slippery roads, k becomes a very large value (higher than 1) for acceleration torques.
For braking torques, the « will only be less than —1 if the car is moving forward and the
vehicle is in reverse gear.

2.2.3 Lateral dynamics

Lateral wheel slip is defined as the ratio of the lateral and the forward velocity
of the wheel, which is equivalent to minus the tangent of sleep angle «, as shown
in Equation (5). The negative sign on the right side of the equation is taken such as
positive values of « generate positive values for Fy. If the coordinate system of the tire
is changed, this sign is changed as well.
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V,
tan o = _Vi (5)
where o is the slip angle and V), is the lateral velocity of the tire.

In the Adapted SAE coordinate system, the inclination angle vy is defined positive
when looking from behind the wheel is tilted to the right. The inclination angle differs
from the camber angle — introduced in subsection 2.3.2 — in result of the reference of
such angles. For instance, the camber uses the chassis to define the sign convention,
whilst the inclination angle is arbitrary. This is illustrated in Figure 4, considering the

Adapted SAE coordinate system.

Figure 4 — Difference between camber angle and inclination angle.
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Source: William F. Milliken and Douglas L. Milliken (1995)

2.2.4 The Magic Formula tire model

Tires have such complex behavior and structure that nowadays no theory has
yet been propounded. The tire characteristics still present a challenge to devise a
theory which coordinates the vast mass of empirical data and give some guidance to
the manufacturer and user. From the vehicle dynamicist perspective, the mechanical
behavior of the tire needs to be investigated systematically in terms of its reactions to
the inputs associated with the wheel motions and road conditions (PACEJKA, 2006).

The widely used Magic Formula model is a semi-empirical model, whose devel-
opment was started in mid-eighties. In these models the combined slip situation was
modelled from a physical point of view. The general form of the model is:

y = Dsin(Carctan (Bx — E(Bx — arctan (Bx))) (6)

where:
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X=X+SH (8)

Each of the factors above can be found in the list of symbols. The above function
typically produces a curve that is similar to the one shown in Figure 5.

Figure 5 — General Magic Formula behavior.
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The formula is capable of accurately reproduce the characteristics that match the
measured curves for the side force Fy, the longitudinal force Fy and if desired also for
the self-aligning torque M as functions of their respective slip quantities. The accuracy
is illustrated by overlaying the tire test data and proper coefficients, as shown in Figure 6.
The full set of the Magic Formula equations will not be introduced in this work, but are
fully described in Pacejka (2006). The fitted tire model is shown in continuous lines
while the tire raw data is shown in noisy points in Figure 6. The model was fitted using
OptimumTire! modeling software.

With such model, the suspension designer can exploit the tire characteristics
and therefore define better and more accurate objectives — such as ideal camber and
Ackerman values — for the suspension mechanism, which is approached in the next
section.

2.3 SUSPENSION KINEMATICS

The suspension is the system that links the chassis (suspended mass) to the
wheels (non-suspended masses) and allows relative motion between these two parts
and the ground (JAZAR, 2013). According to Seward (2014), the main purpose of
designing a race car kinematics is to maintain the wheels — hence, the tires — at the
optimal angle to the road surface at all possible times.

1

OptimumG, LLC, more information available at https://optimumg. com/product/optimumtire/
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Figure 6 — Fitted Magic Formula tire model (SAE Coordinates).
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Furthermore, the kinematic design of the suspension needs to take into account
the effects that will be introduced by its elastic elements, such as springs and anti-roll
bars. Highly influenced by the position of the instant centers influence, the load transfer
distribution and response time need to be estimated prior to the design phase.

2.3.1 Motions

The main vehicle movements controlled by the suspension are heave, pitch and
roll. Defined by Dixon (2009), pitch is the angular movement of the vehicle around the
Y axis, with positive values for the front lower than the rear, by the ISO coordinates,
knowing the Y axis points to the left of the car.

The roll movement is defined by the rotation of the vehicle around the X axis,
longitudinal to the vehicle, where in both SAE and ISO coordinates the direction of the
X axis points towards the travel direction. Therefore, for a vehicle with positive roll, the
right side is lower than the left. Figure 7 shows the Cartesian axes and the relative
movements of the chassis in the ISO coordinate system.

The relative movements described above are highly dependent on the vehicle
suspension system. Usually, the pitch is caused by longitudinal accelerations, while the
roll movement is provoked by lateral accelerations. However, due to the coupling and



Chapter 2. Theroretical Foundation 26

Figure 7 — ISO Coordinate Systems for vehicle.
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the possible asymmetry of the suspension mechanism, longitudinal accelerations can
cause roll movements and lateral accelerations can provoke pitch movements.

2.3.2 Wheel relative angles

As mentioned previously, the suspension system is responsible for maintaining
the wheel at the optimal angle and position at all possible times. The two main angles
that define the wheels angular positions with relation to the chassis (and possibly the
ground) are camber and toe.

The camber angle — or camber only —- is the angle between the wheel mid
plane and the vertical (DIXON, 2009). Seward (2014) defines that the camber angle is
said to be positive if the top of the wheel is leaning outwards the vehicle, as shown in
Figure 8a.

As seen in section 2.2, the camber angle — previously referenced as inclination
angle — affects the lateral tire performance, making it a crucial parameter for a compet-
itive vehicle. To optimize a vehicle’s behavior in a turn, the suspension should provide
a slightly negative camber in roll, as dictated by the tire model.

The toe angle is the angle between the mid plane of the car and the direction
of the wheel. It is said that a vehicle has toe-in if the wheels are pointing inwards the
vehicle direction. Similarly, toe-out happens when the wheel directions diverge (JAZAR,
2013). The toe angle is shown in Figure 8b. The vehicle is usually steered by a change
in the steering angle of the front wheels, initially provoked by the driver. However, the
suspension mechanism geometry can also cause this effect in the wheels steering
angle. This effect of steering caused by the vertical movement of the wheel is known
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as bump steer (DIXON, 2009).

Figure 8 — Camber and toe angle definitions.
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In agreement with Jazar (2013), toe settings affect three major performances: tire
wear — hence, tire temperature — , straight-line stability and corner entry handling. For
minimum tire-wear and power loss, the desired toe is zero, whilst different toe setups
can be used in racing applications to the driver’s and the performance engineer’s desires
accordingly.

2.3.3 Instant centers of rotation

In planar kinematics, at a given instant, the velocity of any point of the body can
be expressed as a rotation around a given point. Similarly, in spatial kinematics, the
same can be assumed for a body rotating around an axis. These entities are called the
instant center and instant axis of rotation (JAZAR, 2013).
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The instant centers are analysed within the kinematics studies, once they play
a big role on vehicle handling and ride comfort (PAPAIOANNOU et al., 2020). This
happens mostly because of the said geometric and elastic load transfers, as a result of
the difference of the suspension elements’ stiffness and load paths.

In accordance to the instant axis definition, the roll axis is the axis around which
the vehicle’s body rotates in an axis roughly perpendicular to the ground’s X axis.
Similarly, the pitch axis is the axis around which the vehicle’s body rotates in an axis
roughly perpendicular to the ground’s Y axis. These axes are represented in Figure 9.

The "classic" method to calculate the roll center is shown by William F. Milliken
and Douglas L. Milliken (1995), Jazar (2013) and Seward (2014). However, it is im-
portant to note that the concept of instant centers — that later will be expanded to
roll and pitch centers — are not more than a simplification of reality for better human
understanding. Dixon (2009) points out that the idea of a single roll center for the sus-
pension is just an approximation. This concept has been criticized in the past but is
still used. Originally, the roll center idea was essentially a simplification to facilitate the
manual calculation of the vehicle’s lateral dynamics. That purpose diminished with the
introduction of computers.

Extending the roll center to the lateral view, it's possible to calculate the pitch
axis, which correlate to the anti-features: anti-dive, anti-squat and anti-lift. Similarly to
lateral dynamics, the anti-features change the amount of load going through the springs
on longitudinal dynamics. William F. Milliken and Douglas L. Milliken (1995) show that,
for example, anti-dive reduces the bump deflection on forward braking while anti-squat
reduces the amount of rebound travel on forward acceleration on rear wheel drive cars.
However, such geometries drastically increases the load on the suspension elements,
such as the wishbones.

Even though they are widely used, specially on aerodynamic cars, the usage
of these features can yield negative effects in some cases, such as roughness on
very wavy roads, vibration during braking (DIXON, 2009). In this work, the anti-dive,
anti-squat and front and rear anti-lift are defined as following.

2.3.3.1 Anti-Dive

The anti-dive calculation is represented in Figure 10 and defined in Equation (9).

LtanOf

h—D (9)
CcG

where %AD is the Anti-Dive percentage and %BTF is the braking torque distribution in

the front axle, in percentage as well. The remaining variables are defined in Figure 10.

%AD = %BTg
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Figure 9 — Kinematic roll and pitch axes representation
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2.3.3.2 Anti-Lift

The anti-lift calculation for the front axle is represented in Figure 11 and defined
in Equation (10).

LtanOf,

BALE = DT —

(10)
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Figure 10 — Anti-Dive definition.
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Figure 11 — Anti-Lift on front definition.
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where %ALE is the Anti-Lift percentage in the front axle and %DTFr is the driving torque

distribution in the front axle, in percentage as well. The remaining variables are defined
in Figure 11.

Similarly, for the rear axle, the anti-lift calculation is geometrically represented in
Figure 12 and defined in Equation (11).

Figure 12 — Anti-Lift on rear definition.

Side View Instant Center

Forwa rd|

| 1 l

Source: OptimumG (2019)

Ltanbpg, (1)
hea

where %ALR is the Anti-Lift percentage in the rear axle. The remaining variables are
defined in Figure 12.

%ALg = (1—%BTF)
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2.3.3.3 Anti-Squat

Lastly, the anti-squat calculation is represented in Figure 13 and defined in
Equation (12).

Figure 13 — Anti-Squat definition.
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Ltan®pg,
heg
where %AS is the Anti-Squat percentage in the rear axle. The remaining variables are

defined in Figure 13.

As stated by Mohan et al. (2008), the "classic" method of roll and pitch centers
calculation is limited to the suspension type and the omission of the steering (toe) angle
of the wheel. Therefore, this work uses the approach presented by this later method.

If the roll center happens to coincide with the suspended mass center of mass,
there is no moment, therefore, the vehicle does not roll. In an intuitive way, bringing
the roll center closer to the center of mass is not recommended, due to the fact that
this type of geometry causes high scrub values, increases the non-damped loads in
the suspension linkages and potentiates the phenomenon known as jacking (SEWARD,
2014), introduced in the next item.

%AS = (1 —%DTF) (12)

2.4 THE DOUBLE A-ARM SUSPENSION

There are many construction types for an independent suspension, however,
double A-arm and McPherson strut suspensions are the simplest and the most common
designs. Kinematically, the double-A arm or double wishbone system — also called
short-long arm — is a spatial four-bar mechanism, with the chassis being the ground
link and the coupler being the wheel set (JAZAR, 2013).

The actuation system can also assume different configurations, such as direct ac-
tuation or push/pull rods. Figure 14 shows an example of double wishbone mechanism
with direct actuation.

Even though there are many types of suspension system, this work will focus
on the double wishbone, because it is the most widely used in racing applications. It is
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Figure 14 — Double Wishbone mechanism with direct coil-over actuation.
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also versatile, which means that it not only works for both front and rear axles, but also
allows the designer to combine different actuation and anti-roll bar types with the same
base system.

In a double A-arm suspension system, the steering system’s properties are more
dependent on the connections of the steering mechanism and can be separated from
the basic system of the suspension arms. With this, the suspension arms — also known
as A-arms or wishbones — are used to control parameters such as roll center, camber
gain, anti-dive and caster variation (DIXON, 2009).

2.5 RACK AND PINION STEERING SYSTEM

The steering mechanism demonstrated in this work will be the rack and pinion,
once they are invariably used in competition vehicles. The usual requirement for the
steering system is that it has an accurate and quick response system, so that the driver
can reach the limiting stops in less than half a turn on the steering wheel. However, this
parameter can result in the driver making great efforts (SEWARD, 2014).

In agreement with Dixon (2009), the directional control of a vehicle is usually
carried out by steering the front wheels, that is, rotating the wheels around a roughly
vertical axis. Wheel steering is mainly the result of the steering wheel movement per-
formed by the driver, with a smaller portion attributed to the suspension characteristics,
such as the bump steer.
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The direction of each wheel is controlled by the steering arm, shown in Figure 15.
The steering arm is rigidly connected to the steering upright and can even be part of it. In
the rack-and-pinion system, the rotation movement of the steering wheel is transmitted
to the pinion and converted into translational movement by the rack. The connection of
the box to the steering arm is made through an ideally rigid bar, called a drag link or tie
rod.

Figure 15 — General construction of a double wishbone.

Source: Jazar (2013)

2.5.1 King Pin geometry

When steered, the wheel rotation in old vehicles was realized around an axis
known as king pin. In modern suspension mechanisms, such as the double wishbone,
the steering axis is a virtual projection between the the upper and lower wishbones’
spherical joints (MILLIKEN, W. F.; MILLIKEN, D. L., 1995).

The kingpin and its inclinations can be analysed separately in front and side
views. Notated by William F. Milliken and Douglas L. Milliken (1995), the angle formed
between the steering axis and the tire’'s mid plane is known as king pin inclination
on front view and is illustrated in Figure 16a. Similarly, the angle between the vertical
axis plane and the steering axis is known as caster angle on side view, as shown in
Figure 16b.

The scrub radius — also represented in Figure 16a — is obtained by extending
the steering axis to the ground and measuring the distance from the point coinciding
with the ground plane to the tire’'s mid plane. This parameter influences mostly the lon-
gitudinal loads and alignment efforts transmission, generated in the tire, to the steering
system. The king pin inclination and scrub radius must maintain a compromise between
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Figure 16 — King Pin geometry and reference.
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packaging and performance requirements (MILLIKEN, W. F.; MILLIKEN, D. L., 1995).
The factors of fundamental consideration are:

« The higher the king pin inclination, the greater the effect of steer jacking. For
example, a high king pin inclination with a caster angle equal to zero, the vehicle
is lifted when steered to either sides,

 The king pin inclination influences in the camber variation by steering, also known
as steer-camber,

» The greater the spindle length, the greater the driver sensibility, through moments
on the steering wheel, to variations on the track,

» Longitudinal forces on the tires, originated by breaking or traction, generate mo-
ments around the steering axis and tend to change the direction of the tire force,
inducing an angle of convergence proportional to the compliance of the system.

As for the caster (or mechanical to some authors) trail, shown in Figure 16b, the
centroid of the tire-ground contact point follows behind the steering axis through the
side view. The greater this distance, the greater the lever arm between the steering
axis and the tire, consequently, undergoes greater moments induced by lateral forces
generated in the tires (MILLIKEN, W. F.; MILLIKEN, D. L., 1995). Some considerations
when choosing the caster angle and trail are:

» The greater the trail, the greater the steering efforts,

» The caster angle, like the king pin inclination, causes the chassis lift or jacking.
However, unlike king pin inclination, steering has an asymmetric behavior in rela-
tion to this effect, that is, while for one direction of steering the vehicle raises on
one side, for another, the same side descends,

+ As well as shown for king pin inclination, the caster angle has an influence on the
steer-camber,

« The self-aligning torque can effectively change the mechanical trail and the driver’s
feeling about the feedback provided by the tires,

» The mechanical trail, when measured perpendicularly, gives a better representa-
tion of the moments generated by the tires around the steering axis.
2.5.2 Tie rods location and the Ackerman geometry

The position of the tie rod relative to the wheel set influences parameters such
as the bump steer, Ackerman geometry and steering ratio. These properties will be
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defined below. Due to the construction characteristics of ordinary vehicles, with four
wheels and front steering, when they are steered, for them not to have relative lateral
slip between the inner and outer wheel during cornering, it is necessary that the two
steering wheels have differential steering angles. In this condition, the centre of the
vehicle’s radius of curvature is perpendicular to the rear axle, as shown in Figure 17.

Figure 17 — Kinematic steering of a four-wheel vehicle.

b
Vi s
-
A7 BN :
e
e v
/'/ * GT :
A 5 >
o - A
g I
Il
Ry

Source: Genta and Morello (2008)

A geometry capable of meeting the requirement to maintain a constant centre of
rotation over the entire steering course is determined by Ackerman geometry. Denoted
by Genta and Morello (2008), the Ackerman geometry can be attributed to a mechanism
capable of steering the wheels according to Equation (13):

t
cotdq —cotdo = TF (13)

where &1 and 0, are the steering angle of the inner and outer wheels respectivelly. f¢ is
the front track width and L is the wheelbase. These variables are shown in Figure 17.

The tire performance curves usually show the displacement of the slip angle
at the peak lateral force caused by the change in normal load. The effect can be
detrimental specially when the vehicle is subject to high load transfers (JAZAR, 2013).
This effect is illustrated in Figure 18.

As this phenomenon is naturally seen in racing prototypes, parallel and anti-
Ackerman (also known as reverse Ackerman) steering geometries are commonly used
in these applications. Figure 18 shows a tire that suggests the use of an anti-Ackerman
geometry. According to William F. Milliken and Douglas L. Milliken (1995), it is possible
to calculate the correct amount of reverse Ackerman when the tire and the loading
values are known. This type of geometry the vehicle very hard to handle at low speeds,
as when pitting. The definition of the system geometry is given by the relative positioning
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Figure 18 — Slip angle at the peak Fy shift due to vertical load shift (Adapted 1ISO
Coordinates).

Adapted ISO
- Fy Vs. SA

Zz

-

=

L3

@Q

=

[=]

(18

B

8

-]

-

Fz (N)
=28 a8 D
20 0 0
20 O D
~ M 1D ™~
LMP1 - Front Tire .
0 . . . . . . . . : : ; ] ] —
0 1 2 3 4 5 & & 8 g 10 11 12 13 14 15

Slip Angle (SA) - deg
Source: OptimumG (2020)

between the steering housing, wheel and tie rods, presented by William F. Milliken and
Douglas L. Milliken (1995). These placements are illustrated in Figure 19.

Figure 19 — Pro-Ackerman, parallel and anti-Ackerman steering systems and their cor-
relations to the position of the tie rod.
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Figure 19 affirms yet another compromise between the steering design and the
components packaging in the chassis.
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2.5.3 Steering ratio and the C-Factor

In addition to changing the Ackerman effect, the position of the steering housing
and the tie rod outer joint change the steering ratio, once the movement of the mecha-
nism is non-linear. The steering ratio is defined as the ratio between the steering wheel
angle and the corresponding wheel steering angle. For parallel systems this value is
the same for the inner and outer wheels, since the sides are symmetrical, however,
the steering ratio value will be different between the steering wheels in Ackerman and
reverse Ackerman geometry (MILLIKEN, W. F.; MILLIKEN, D. L., 1995).

Another convenient definition for the steering system, proposed by William F.
Milliken and Douglas L. Milliken (1995) is the c-factor, which translates the linear amount
that the rack moves for each rotation on the steering wheel and is given by equation
Equation (14).

Ctactor = %ﬁf (14)
where cg,4or is the c-factor, Dgpg is the rack travel (given in mm or in) and ¢p is the
pinion rotation in revolutions. The standard definition units definition for the cgyo, IS
mm/rev. This number is very useful to determine the pinion size at the design stage
and also serves as a parameter for defining commercial steering racks.

Pointing out the geometric parameters of the suspension and their correlations,
the need for a methodology or process that assists in understanding the kinematic and
dynamic behaviour of the system is striking.The problem is scaled when the objective
is to optimize all the variables described and establish a commitment to all of them.
Thus, the use of computational tools for analysis and optimization is justified in the
development of new suspension and steering mechanisms.

2.6 NUMERICAL METHODS ON SPATIAL KINEMATICS

This section presents two approaches to solve and analyze spatial mechanisms.
The first one is a method based on distance constraint between points that are con-
tained in a single set and the other is the generic multi-body approach, following the
work of Nikravesh (1988). Both methods rely on the Newton-Raphson root-finding algo-
rithm, introduced next.

2.6.1 The Newton-Raphson algorithm

According to Boyd and Vandenberghe (2018), the Newton-Raphson algorithm
is a variation from the Gauss-Newton, for when the problem consists of a system with
n non-linear equations and n dependent variables. It is an iterative method and the
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general form of the algorithm follows Equation (15):
XKD = xR — @ =T 1(x KDy (15)

where K is the k-th iteration of the solution process. The Newton-Raphson method
approximates the answer of step k + 1 by the linearization of the solution to the root on
step k. The geometric representation of the algorithm for n = 1 is illustrated in Figure 20.

Figure 20 — Graphical representation of the Newton-Raphson method.

4 fix)

Source: Gupta (2019)

As shown by Figure 20, the iterative process is repeated until it reaches a ter-
mination condition: normally when the solution residuals reach a predefined tolerance.
Another termination condition is set for when the algorithm reaches a maximum num-
ber of iterations, that is, the algorithm was not able to converge for a solution within
m iterations. This later issue can happen even when the system has a solution, but is
given a bad initial guess, as represented in Figure 21. On both plots the initial guess is
x =1, but due to the slight difference in the function curvature, the right one diverges.

2.6.2 Point collection and distance constraints

A distance constraint between two points A and B in space can be described by
Equation (16):

Dag = (xg—xa)? + (yB—Yya)? + (28— 24)° —d? =0 (16)

where @ is the distance constraint between points A and B and a2 is the constant
squared distance between the points A and B. The above equation must be satisfied
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Figure 21 — An example of divergence due to a bad initial guess in the Newton-Raphson
algorithm.

Source: Boyd and Vandenberghe (2018)

for any position of the system that contains points A and B. If the system contains
more than two constraints, more equations will need to be satisfied in order to find a
feasible solution. However, these equations are implicit and non-linear, making it difficult
to solve them using simple methods. This set of equations can potentially present more
than one feasible solution, given by its quadratic nature. In order to solve this problem
efficiently, the Newton-Raphson method is chosen. The general problem to be solved
is:

$=0 (17)

where @ is the vector of constraints.

The Jacobian matrix of constraints @ for this problem can be obtained from
the partial derivatives of the constraints. Each row / of the Jacobian represents one
geometric constraint in the system, whilst each column j represents one dependent
coordinate. The Jacobian matrix is then partitioned, removing the columns associated
with the degrees of freedom of the system , resulting in a square, possibly invertible
matrix (NIKRAVESH, 1988). Taking the partial derivatives of the above equation with
respect to the x-coordinate of A:

e =26 = x) (18)
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Expanding this to the other coordinates and assuming a matrix form, yields:

- 1T
—2(Xg — Xp)
—2(yg—ya)
0®pp _ [—2(ZB=24) (19)
aq 2(xg—Xa)
2(yg—ya)
2(zg—zp)

where q is the vector of generalized coordinates. Generalizing for this problem:

o - 4] &

Equations 18 through 20 show that it is rather easy to build a Jacobian matrix
for such a problem. Computationally, it takes only two floating points operations for
each item in the matrix. However, to be invertible, it must be a square, non-singular
matrix. Practically, the matrix becomes singular when there are redundant constraints
or when the constraints form a structure that does not allow any movement on the
independent coordinates. Generally, this method is stable for spatial kinematics and
converges quite fast, given the quadratic convergence rate provided by the Newton-
Raphson algorithm. Moreover, there are many modifications to this method that can
raise the convergence rate, thus, making the algorithm faster, specially for optimization
applications (MCDOUGALL; WOTHERSPOON, 2014).

This geometric approach to spatial kinematics is simple and has a straightfor-
ward implementation. However, when building a more complex system — such as a
suspension mechanism — , this method is not much intuitive from the developer per-
spective and can get really complex when complex joints — the universal or Hooke joint
for example — must be modelled. This ultimately ends up requiring a lot of testing mech-
anisms to ensure that the model represents reality. A feasible solution to these problems
is the multi-body approach, which has a solid theoretical background and is scalable.
This approach is briefly introduced next and derives from the work of Nikravesh (1988).

2.6.3 The multi-body approach to suspension kinematics

A mechanical system is defined as a collection of bodies in which some or all
of the bodies can move relative to one another. Such systems can be either simple
or complex. While motion of some systems can rely on a 2-dimensional plane, other
systems need a 3-dimensional modelling to provide exploitable results, such as a wheel
carrier-steering assembly (NIKRAVESH, 1988).

Nikravesh (1988) shows that a single body in space can be fully described with 6
independent coordinates — 3 translations and 3 rotations. Moreover, Euler Parameters
can be used to avoid singularities when rotating the bodies, adding one dependent
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variable to the body. The generalized vector of coordinates g; for body / represented
with Euler Parameters is denoted in Equation (21) (NIKRAVESH, 1988).

Xj
Yi

Zj
qi = |€oj| = [rl] (21)

&1i
€2i
€3
where Xx;, y; and z; are the position components of the body i and ey, e4;, eo; and es;
are the Euler Parameters (scalar first). The vectors r; and p; represent the translation
components and the rotation respectively, in a more compact form. The Euler constraint
is given in Equation (22). This expression must be derived for each coordinate and
added to the Jacobian matrix for each body that composes the system. Thus, for a
system of m bodies, m Euler constraints shall be appended to the system of equations.

eg+e12+e§+e§=1 (22)
The relative motion between two bodies will depend on the type of constraints
attributed to each body, as shown in Figure 22.

Figure 22 — Vector connecting two points P; and P; located on different bodies.

Source: Flores (2015)

These types of constraints modelling can be then combined to build virtual joints
that represent real world application joints. The two main constraints that form the
joints are parallel (or normal) constraints and the spherical constraint. The parallel
constraint is a constraint that specify that two vectors defined in different bodies remain
perpendicular at all times and its expression is given in Equation (23), which yields one
equation.
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(M1 =S,-TSj=0 (23)
Furthermore, the spherical constraint yields three equations and its constraint
vector can be written as Equation (24) shows. The physical correlation is illustrated in

Figure 23.

Q(S,S)Erf_r‘;D:rj-i_SjP_ri_S’P:O (24)

Both constraints shown can be combined to form different types of joint, such
as the Hooke — also known as universal — , revolute and prismatic joints. They just
depend on vectors defined in the joined bodies, thus, can be easily implemented and
expanded.

The constraints can also be algebraically derived to build the Jacobian matrix
thanks to the use of Euler Parameters, dropping the need of a numerical differentiation
approach. Nikravesh (1988) provides the mathematical formulations that address this
problem.

Figure 23 — Spatial spherical joint representation. Points P; and P; must always coin-
cide.

X

Source: Flores (2015)

The process of solving the system position for a displacement in one of the inde-
pendent coordinates is very similar to the geometric method. The system is displaced
in a desired coordinate by a given amount, the Jacobian matrix is built and partitioned
on the displaced coordinate. The Newton-Raphson algorithm is then applied to solve
the system of non-linear equations until a given tolerance is achieved. The constrained
system is defined by Equation (25).
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P =®(q)=0 (25)

where q denotes the vector of body-coordinates defined in Equation (21) and ® repre-
sents a function describing the kinematic constraints. Non-holonomic constraint equa-
tions in will not be discussed in this work. The iterative equation for the solution process
is given in Equation (26).

") = g0 @ T d(g) (26)

Generally, the multi-body approach is much superior and robust than the geomet-
ric one presented earlier in this work. It can also provide a better physical understanding
of complex mechanisms for the developer than the purely geometric approach, as it
consists of joints and bodies instead of just points and distances. The multi-body ap-
proach can also be extended with joint reaction forces, time-domain simulations, elastic
components and ultimately enhanced with flexible bodies.

On the other hand, the geometric approach is much simpler, easier to implement
and it is more efficient for small and simple systems, where only the kinematics are
analysed. This work uses the geometric approach, as it was derived from the solver of
a worldwide used suspension kinematics software, OptimumKinematicsz.

2.7 OPTIMIZATION

When the engineer can simulate the physical behaviour of a project through
a validated model, the subsequent task is to determine the model’s parameters that
correspond to the desired performance of the problem. Normally these response char-
acteristics are conflicting, where making one better, worsens the other, which makes
necessary the search of a compromise between the different outputs (MASTINU et al.,
2007).

As stated in past sections, the project of a suspension system that holds the
ideal parameters cannot be described in a single objective. In single objective optimiza-
tions (SO0), the search space is well defined. When other input parameters result in
conflicting outputs, a single solution is non-existent, giving place to a set of possible
solutions of similar quality (ABRAHAM; GOLDBERG, 2006).

2.7.1 Design variables

In general, a mathematical system contains a set of parameters. The usual
optimization goal is to find the set of parameters that best suit a given set of objectives.
The optimization procedure changes the set of parameters in order to find the best

2

OptimumG, LLC, more information available at https://www.optimumg.com/software/
optimumkinematics/
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possible solution within the feasible set of design variables, also known as design
space. The design space can contain either bounded — they are limited to a set or
range of values — or unbounded variables — they can assume any feasible value
(MASTINU et al., 2007).

2.7.2 Multi objective optimization and the Pareto-optimal set

Denoted by Miettinen (2001), a generic MOO problem is of the form:

minimize  f(x) = {f1(x), fo(x), . .., f(x)} 27)
subjectto xe€ S
where k is the number of objective functions f; : R — R to be minimized simultaneously.
The vector of design variables x = (X1, Xo, . .. ,xn)T belong to the non-empty feasible
region S, which is also denominated design space. A MOO does not usually yield a
single solution, but a set of equally optimal solutions, called the Pareto set.
To demonstrate the Pareto set in practical terms, Mastinu et al. (2007) illustrates
the Pareto set obtained from a cantilever optimization which has the objectives of
minimize mass and deflection at the same time. As shown in Figure 24, there is no

single optimal solution, but a set of solutions that are equally optimal.

Figure 24 — Pareto optimal set for a cantilever beam optimization.
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Source: Mastinu et al. (2007)

Figure 24 shows an optimization of a cantilever beam, where the objectives
are: minimize the mass and the deflection (maximize stiffness). The points B and C
represent equally optimal solutions, as they belong to the Pareto front, while A is a
sub-optimal solution. m,;, is the minimum mass with a feasible solution and y,;, is
the minimum deflection within the feasible solution set. The figure shows that for such
optimization, there is not a unique solution, but a set of solutions that show that a
compromise must be met.
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An optimal solution on a multi-objective optimization problem is a solution that
is not dominated by any other in the search space. This solution is not unique and is
denominated Pareto-optimal solution. The collection of all Pareto-optimal solutions form
the Pareto optimal set. A solution that is Pareto-optimal — also called non-dominated
solution — means that it is a solution that is not the worst solution in any objective and
yet is the best in at least one, with relation to any other solution in the set (ABRAHAM;
GOLDBERG, 2006).

The methods used to determine the Pareto optimal set can be based in many
optimization techniques. This work is focused on stochastic techniques, that is, it uses
random search to find the best solution for a set of objectives. Metaheuristics techniques
can also be used to find this solution and are introduced next.

2.7.3 Metaheuristics

Optimization problems can be separated in two basic types: discrete and contin-
uous. The arrival of metaheuristics brought the conciliation between these two domain
types, because they can be applied to every type of combinatorial problems and can be
expanded to continuous problems (DREO et al., 2006). The metaheuristics methods
have some common characteristics such as:

» They are, overall, stochastic, to counter the possibilities combinatory explosion.

» Generally, of discrete origin, establishing the advantage of being direct, once they
are independent of objective function gradient computation.

« Their common disadvantages are the difficulty of finding the optimal method pa-
rameters and the huge computational time.

Yet mentioned by Dréo et al. (2006), the methods are not mutually excluded,
since there is no way to evaluate the effectiveness of each one. Moreover, the emergent
tendency is the hybridization of different methods, to use the benefits of the specific
advantages of each approach, through the combination of their concepts.

Classical gradient-based iterative algorithms — such as Sequential Unconstrained
Minimization Technique (SUMT) and Sequential Quadratic Programming (SQP) — can
present the huge disadvantage of trapping the solutions in local minima, whilst meta-
heuristics allow the search mechanism to overcome these local minima, allowing the
acceptance of worse solutions, in order to find a global minimum (MASTINU et al.,
2007).

Some methods, like simulated annealing and tabu search, use the idea of neigh-
bourhood search that allows the algorithm to overcome the local minima region. The
local minima concept is shown through the function drawn on Figure 25.
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Figure 25 — Local and global minimum of the function z = 10(x2 sin x(=(y —10)2 + 100)),
0 < [x;y] <20.
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Source: Mastinu et al. (2007)

According to Dréo et al. (2006), the quoted methods enable the solution to be
extracted from the local minima to search other minimal results, entering on other valley
of the solution gradient. The distributed metaheuristics, as evolutionary algorithms, also
allows the search algorithm to leave the local minima through the mutation operators.

2.7.4 Genetic algorithm

Genetic algorithms (GA) belong to the evolutionary algorithms group and the
solution search is done by mutation and recombination of configurations. As the name
itself suggests, GA mimics the evolution process and use the ideas of natural selection
— the fittest individuals are more likely to survive and reproduce — and genetics —
recombination and mutation — to control the evolution process (ZAPFEL et al., 2010).

Denoted by Zapfel et al. (2010), a population, on genetic algorithms’ context is
a set of solutions, generally called individuals. Every individual is a unique solution,
formed by genes that determine their characteristics. The values that constitute the
genes are denominated alleles.

As defined by Dréo et al. (2006), a set of N points in a search space, chosen
at random, constitute the initial population. Each individual from the population has
a fitness value that measures how well adapted this individual is to a given objective
function. An evolutionary algorithm consists of a gradual evolution of the population’s
composition, of a constant size, through successive generations.

Along generations, the objective is to integrally improve the fitness of the indi-
viduals in the population. The result is obtained through the simulation of the main
mechanisms that the living beings are subjected, the Darwin theory, selection and
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reproduction.

The selection supports the reproduction and the survival of the fittest individuals.
The reproduction allows the mixing and recombination of each individual’s characteris-
tics that constitute the offspring with new potentials.

Individuals are chosen on initial or previous populations by a selection operator.
This operator compares the adaptation of the individuals in a generation with relation to
the global objective. The selected individuals are recombined by a crossover operator,
generating a new offspring. The new generation can be mutated, that is, a random
perturbation is applied to the solutions (ZAPFEL et al., 2010).

The new descendants are then evaluated with relation to the objective functions,
selected and reproduced using the same techniques described above, substituting the
replacement set of individuals of the past generations. A flowchart in Figure 26 shows
the principles of a genetic algorithm proposed by Dréo et al. (2006).

Figure 26 — Generic Evolutionary Algorithm flowchart.

Selection
for the
reproduction

Fitness
evaluation

Population Offspring
initialization fitness

evaluation

Selection
for the
replacement

best individual(s)

Source: Dréo et al. (2006)

Because they deal with a population of instances of solutions, the evolutionary
algorithms are particularly dedicated to find a set of many solutions, when a compromise
of objective functions must be reached, satisfying many global optima. This way, they
provide a sample of solutions that involve many objectives, possibly conflicting (DREO
et al., 2006).

Genetic algorithms are very useful specially when the project variables assume
discrete values. Unfortunately, they are not so easy to implement, when compared to
other methods, when complex optimization problems are being dealt with. In fact, ge-
netic algorithms require an exact definition of a parameter that influences the efficiency
of the search (MASTINU et al., 2007).
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2.7.41 Fitness function

Also known as evaluation function, the fitness function associates one or multiple
fitness (depending if the problem is single or multi objective) values to each individual
in order to determine the number of times it will be selected, be it for reproduction or
for replacement. The quality of such function can greatly improve the efficiency of a
genetic algorithm (DREO et al., 2006).

Depending on the underlying implementation of the genetic algorithm and the
problem that is being solved, the fitness function may or may not correspond to an
objective function. Still, it is at least some kind of quality monitoring tool, once solutions
with better fitness values usually are preferred in the selection steps (ZAPFEL et al.,
2010).

2.7.4.2 Selection operators

From one generation to another, in GA, the population is clustered in two distinct
groups: the reproduction group and the replacement group. One is not necessarily the
complement of the other. The reproduction group contains the individuals that will be
reproduced using the crossover and mutation techniques described later in this chapter.

The replacement group contains the individuals that will be removed from the
current population and will be replaced by the offspring generated by the reproduction
group. The groups are clustered using selection operators, which use their fithess
values as a parameter to select the individuals. The most used selection operators are
introduced next.

2.7.4.2.1 Truncation selection

The truncation selection is probably the simplest and most common selection
operator. It selects the n best individuals in the population, being n a parameter chosen
by the user. It can be easily implemented either for reproduction as for replacement.
This method can lead to fast convergence but may trap the solution in a local minimum
(DREO et al., 2006).

2.7.4.2.2 Deterministic Tournament

The deterministic tournament consists in choosing k individuals at random for
a tournament and choose the best one among them. In fact, there will be as many
tournaments as selected individuals when using deterministic tournament. As stated by
Dréo et al. (2006), this method can be applied for either reproduction and replacement.
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2.7.4.2.3 Ranked selection

The ranked selection is a method that ranks individuals according to their fit-
ness dominance, that is, sorting several Pareto sets for every generation. This method
should only be used on multi-objective optimization cases. A dominated individual is an
individual that has worse fitness values in all objective functions with relation to another
individual. A non-dominated individual is an individual that is not dominated by any
other individual in the set, which can be considered a Pareto solution for that specific
set of individuals.

If an individual has a better fitness value in at least one, but not in every, objec-
tive function, than another individual and both are non-dominated, they belong to the
same rank. The rank 1 individuals are the Pareto front for the current population. This
method can be used to select individuals for reproduction and replacement. The ranked
selection is shown in Figure 27 for a simple minimization of two arbitrary functions
and f». The plot shows two total ranks for the population.

Figure 27 — Examples of a ranked selection of a small population for two functions.
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2.7.4.2.4 Steady state replacement

The steady state selection for replacement is the complement of truncation
selection, which selects the n worst individuals to be replaced, with n being a small
number, as mentioned by Dréo et al. (2006), one or two individuals. This strategy is
useful when the representation of the solution is distributed on several individuals,
that is, when the design variables are really disperse through the population, but the
population has a low overall fitness standard deviation.
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2.7.4.2.5 Generational replacement

The generational replacement is the simplest replacement selection. The whole
population gets replaced, such as that the offspring contains only child individuals.
According to Dréo et al. (2006), the canonical GA uses a generational replacement.

2.7.4.2.6 Elitist replacement

An elitist strategy consists in keeping at least the best individual through genera-
tion g to generation g + 1. There are various elitist strategies in GA, but, in accordance
with Dréo et al. (2006), the current alternatives are those that keep the parents from
generation g in generation g + 1.

2.7.4.3 Crossover methods

Generally, a crossover operator uses two parents to generate one or two off-
spring. Of stochastic nature, they can provide different results when applied to the
same set of parents. Since the evolutionary algorithms (EA) are not subjected to bio-
logical constraints, more then two parents can be matted to generate a new individual
(DREO et al., 2006).

Due to the continuous nature of the search space, a purely uniform crossover
would converge the solution too quickly and would be extremely dependent on popula-
tion initialization. Uniform crossover is effective only when high mutation rates are used
as well. The BLX-« crossover (DREO et al., 2006) variations are more effective when
working with continuous problems. Both methods are explained in detail next.

2.7.4.3.1 Uniform crossover

The uniform crossover is the simplest recombination method. It exchanges the
design variables values from one individual with another to generate a third. The main
problem with this crossover is, with a low mutation rate, the solution converges quickly,
and the individuals become the same in a fast pace (DREO et al., 2006). Figure 28
shows an individual’'s genome of genes x’ and y’ resulting from an uniform crossover
from a parents with genes x and y.

2.7.4.3.2 Linear BLX-« crossover

Also known as arithmetic crossover and intermediary recombination, the linear-
BLX-«x crossover creates a new individual along a line that connects the parent’s design
variables. An alpha constant is added to the operation in order to exploit the neighbour-
hood (DREO et al., 2006). It is geometrically easy to represent and implement, which
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Figure 28 — Uniform crossover representation.
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makes a good choice for this problem. A graphical representation of this operator is
shown in Figure 29.

Figure 29 — Graphical representation of the Linear-BLX-« crossover
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Let p; and ﬁj be points drawn in the design space for individuals / and j respec-
tively. The vector that describes a movement in space from p; ti pj is v = p; — p; and the

midpoint is g = @. Let u be a random scalar drawn in the interval [-1,1] and xg; x a

scalar defined by the user. The offspring’s allele will be:
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—

po=p+ > XBLXYU (28)

where po is the allele of a specific gene of the offspring.

This way, ag; x is a parameter that can allow or forbid the individual to exceed
the parent’s boundaries, in the same line segment that binds them both. The higher the
value of alpha, more likely a new individual will be taken out of its parent’s range and
slower will be the convergence. If alpha is zero, the new individual will always inherit
the midpoint of the two coordinates, converging fast.

2.7.4.3.3 Voluminal BLX-x crossover

The voluminal BLX-« crossover method is much alike the linear version previ-
ously introduced. It differs from the linear approach by choosing new offspring uniformly
inside a hyper-rectangle with sides parallel to the coordinate axes. The parents and the
coefficient «g; x define a one of its longest diagonals, as shown in Figure 30.

Figure 30 — Graphical representation of the Voluminal-BLX-« crossover
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2.7.4.4 Mutation methods

Mutation consists of adding a small numerical value to each component of the
individual, according to a zero-average distribution, with a variance possibility increasing
with time. According to Dréo et al. (2006), this way, the operator leaves the population’s
centroid unchanged. The mutation operator can also be used to keep the population
diversity at a desired value.
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2.7.4.4.1 Uniform mutation

A uniform mutation adds to an individual a random value of uniform probability,
in a hyper-cube. This method can trap the solution to local minima, if the peak on the
objective function is broader then the hyper-cube edge lengths.

2.7.4.4.2 QGaussian mutation

Mentioned by Dréo et al. (2006), the Gaussian mutation is the most widely used
for GA continuous problems solving. It adds to an individual a Gaussian random vari-
able, with zero-average and a user-defined standard deviation, given by the Gaussian
probability distribution. Other Gaussian methods can also be implemented, but since
they are an extension to this one, they are not introduced on this work.

2.7.4.5 Selection pressure

During the evolution of the population, it is important to monitor some statistics to
have a notion of what is happening during the optimization. The EMOQ is a rich source
of statistical data, such as population mean fitness, fittest individual fitness, selection
pressure and more.

The selection pressure is a great indicator of the population’s diversity, as defined
by Equation (29). It measures how close the population is to the best individual.

9
= — 29
Ps 7 (29)

where ps is the value of selection pressure, gy is the best — lowest in value — overall
fitness and g is the average fitness of all individuals in the population.

When the selection pressure comes close to 1, that means that all individuals
are very alike or even have the same configuration. The individuals having the best
fitness values are reproduced more often than the others. If the variation operators,
such as mutation, are inhibited, the best individual shall reproduce faster than the
others until the whole population is equal or nearly equal to it. This is caused by high
selection pressures. With a high selection pressure, there is a great risk of premature
convergence (DREO et al., 2006).

2.8 STATE OF THE ART

In literature, different approaches have been employed for this problem: mathe-
matical programming and metaheuristic methods. In general, mathematical program-
ming methods offer a guarantee of optimality while metaheuristic methods do not.
Sancibrian et al. (2010) introduces a synthesis method based on gradient determina-
tion using exact differentiation to search for optimal solution. The proposed method
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formulates the objective function as a measurement of the synthesis error between
the generated and desired mechanisms. Seven functional parameters are considered
in the optimization. Raghavan (2004) proposes an algorithm for the synthesis of the
tie-rod joints location in a suspension, in order to achieve linear changes in toe-angle
during jounce and rebound. On the other hand, heuristic methods can handle large and
complex optimization problems while mathematical programming methods can face con-
vergence problems when the size of the optimization problem increases (RODRIGUEZ
et al., 2018).

Arikere et al. (2010) present a MOO approach for the design of a double wish-
bone suspension. Three multi-objective optimization methods are proposed: the weighted-
sum method, the min-max method and Multi-Objective Genetic Algorithm (MOGA).
Pareto-optimal solutions to the mechanism synthesis problem are generated. Thus,
the designer can choose from the set of solutions, considering the minimization of two
functional parameters: camber and toe. Cheng and Lin (2014) apply robust optimiza-
tion based on particle swarm optimization for the double wishbone suspension design.
Multi-objective approach is employed, and a set of Pareto solutions is proposed. Afkar
et al. (2012) propose a GA for the optimization of ride comfort, handling and stability
of vehicle. Moreover, sensitivity analysis and variations of geometric parameters of
suspension system resulted from bump and vehicle roll inputs are presented for the
optimal case.
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3 METHODOLOGY

This chapter approaches the conception and development process of the kine-
matic analysis and optimization software. It starts with the problem highlight, elucidates
the basic requirements of such application and presents the proposed structure. It ap-
proaches the parametric study that was run to study the GA parameters and ends with
the presentation of a case study that is used in this work to show the potential of this
type of optimization.

3.1 THE PROBLEM IN SUSPENSION KINEMATICS DESIGN

When designing a new suspension system, there are a set of requirements
imposed to the design of such system. These requirements can range from packaging
and manufacturing tolerance to load path control and kinematic behavior. This list can
grow even bigger if the project belongs to a racing prototype, where tire behavior, driver
characteristics and regulations come to the picture.

The Double A-Arm suspension is composed by 8 pickup points for a quarter of
a vehicle — not including wheels, actuation or anti-roll systems — which yields one
degree of freedom: the vertical wheel movement. Another degree of freedom can be
obtained if the system has a steering mechanism. Expanding this quarter vehicle to
the four corners — considering asymmetric systems — the solution sums up 32 points,
where each point has three Cartesian coordinates — X, Y and Z — totaling 96 variables
in the system configuration. Although it is shown in section 2.3 that specific points have
more or less influence on different characteristics of the suspension system, the design
process of a new suspension system or the improvement of an existing one can become
not only a challenging but also a time- and resource-consuming task.

In order to demonstrate the struggle that the suspension designer goes through,
a simple comparative study was run in OptimumKinematics. A generic Double A-Arm
suspension was taken as the subject of this example. The outer ball joint Z coordinate
of the upper A-Arm of the front suspension is moved from 593.910 mm to 650.000 mm.
These changes, illustrated in Figure 31, are arbitrary, since the objective of this study
is just to show the complexity of the design process. The system is then submitted
to a heave motion ranging from -50 mm (bump) to +50 mm (rebound) from the initial
position.

As Figure 31 shows, only one parameters of the 24 available coordinates —
considering symmetry — that constitute the Double A-Arm suspension was changed.
However, three different outputs of the heave motion simulation for this suspension are
shown in Figure 32: camber angle, toe angle and roll center height. As mentioned in
section 2.3, camber and toe have a direct influence in tire behavior and the vehicle
performance, while the kinematic roll center has an indirect effect in the dynamics of
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Figure 31 — Suspension pickup points change.

(a) Baseline front suspension. (b) Modified front suspension.
Source: Author (2021)

the car. In this case, if the designer was aiming to keep the baseline roll center value
and increase camber gain for both wheels, while eliminating bump steer, only one target
would be achieved.

This means that regarding the change in only one specific kinematic parameter
curve — in this example, increase the camber variation in heave — while keeping all the
other kinematic parameter curves the same, the suspension designer would probably
need to change many other — if not all — pickup points. In addition, it is too difficult
for a human to find the best compromise between a set of kinematic objectives within
the time demands of modern suspension projects. Therefore an optimization procedure
would not only reduce the development time, but also increase the quality of the final
suspension.

This example also shows how complex the design of a double wishbone system
can be, once that a change in one coordinate of the system can be propagated to many
different kinematic curves. Additionally, it shows the multi-objective nature of this type
of problem.

3.2 THE STARTING POINT: OPTIMUMKINEMATICS

Previously mentioned on chapter 2, OptimumKinematics is a powerful tool that
allows suspension designers analyse suspension systems. It has a wide range of
functionalities that allow the user to compare different types of suspension, providing a
good overview and a broad understanding of the overall objectives.

The software is used world-wide by many different customers, ranging from stu-
dents to competition and passenger cars manufacturers. This work uses OptimumKine-
matics’ core solver architecture as its baseline to build the models and analyze them
over a range of motions.
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Figure 32 — Suspension output change for a heave motion (from -50mm to +50mm).
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However, an improvement to the software structure is proposed in this work,
aiming calculation speed and portability. The software — including its kernel — is
currently written in VB.NET, part of the Microsoft .NET Framework', which is not the
fastest available language for numerical computation and, in addition, does not support
cross-platform compilation.

3.3 PROGRAMMING LANGUAGES

For a program to run, its source text — human readable — has to be processed
by a compiler, which are translated into machine-language, not readable by humans.
An executable program is created for a specific hardware or system combination, thus
it is not directly portable from a Windows machine to a Mac or Linux machine. Still,

1

More information available at: https://dotnet.microsoft.com/learn/dotnet/
what-is-dotnet-framework. Accessed on March 25th, 2021.
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depending on the language, the source code can be ported to other systems and
therefore can be compiled for different systems. This is what makes a programming
language portable (STROUSTRUP, 2018).

For this reason, a benchmark of programming languages that would find common
grounds between the needs described above was done. Debian (2021) shows that in
most algorithms — ranging from floating point operations to string processing — the C++
language stands out at the top of the fastest languages for computation speed, shown
in Figure 33. The candles represent the deviation between the different algorithms that
are being used to benchmark each programming language. Besides the computational
speed, programs written in C++ can be compiled for many different platforms and
Operating System (OS). Ultimately, ISO (2020) provides some standard definitions for
the C++ language and is updated every three years.

Figure 33 — Algorithm speed comparison between different programming languages.

How many times slower?

> 40 +
g D ©
0 L
3
"%’ |:||:||:I — :]D:’I:]I:I::I: ¢3V6§
<@ c
~ S
[N
g > £
-+ T E
G 10 ] =
: s : 5 :
s 3 éé S
g | &
S 1 &.lﬂé o
o

benchmarks game 01 Mar 2021 ub4q

Source: Debian (2021)

Figure 33 shows the time taken for set of algorithms run in each language, repre-
sented by the candles. The bars on the top shows the contribution of the community with
new algorithms. As it can be noted, C++ is the language that takes the less time, with a
slight difference between Rust and C. C++ is not only faster but supports object-oriented
programming, thus, it is the language of choice.

3.4 PROGRAM STRUCTURE

Nowadays, software engineering has become an effective engineering disci-
pline. As a result of the constantly increasing in software and engineering complex-
ity, approaching problems using an object-oriented perspective is more effective and
communicative than just the common procedural approach. Moreover, object-oriented
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programming complements the task of generalizing the problem into more abstract
concepts. The Unified Modelling Language (UML) is a communication and mapping
tool based on visualization that allows the software development team share the same
concepts and transfer knowledge between themselves more efficiently (RUMPE, 2016).

OptimumKinematics’ solver was previously written in VB.NET and the translation
to C++ was proposed for this work. The software structure shown in this section is an
improvement proposal over the previously existent implementation of OptimumKinemat-
ics.

The UML Class diagram was used to aid in the identification of the key classes
already present in the former implementation of OptimumKinematics’ geometry solver.
The program is divided in classes, in a way that, the higher the layer, the more depen-
dent it is on the lower classes. The lowest classes are the geometric entities, such as
Point3D, whilst the top layers are the ones whose functionalities are closer to the end
user. Figure 34 shows a class diagram of the base solver, which has its functionality
explained in subsection 2.6.2.

Figure 34 — Base solver classes.
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Furthermore, Figure 35 shows the classes that hold information regarding the
vehicle assembly. A SuspensionAssembly is constituted of two independent suspension
systems, the front and rear suspensions, of type BaseSuspension.

Lastly, the SuspensionAssembly class is combined with the Motion into a Sus-
pensionMotionSimulation class, shown in Figure 36. The Motion class holds information
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Figure 35 — Vehicle assembly classes.
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regarding the motion that the system will be subjected to through the simulation, while
the SuspensionAssembly contains all the characteristics of the system.

Figure 36 — Suspension simulation classes.
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A proper class diagram allows the development team to identify performance
bottlenecks, scalability possibilities and other significant improvement opportunities,
such as memory management. Additionally, the class diagram allowed this work to
happen with a smoother flow, avoiding unidentified problems during the implementation
phase.
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3.5 KINEMATIC MODEL

The suspension system is modeled via a kinematic approach: a set of points are
subject to a set of constraints. The number of dependent variables must be the same
as the number of constraints of the system. To this extent, the points and constraints
of the model are shown in Figure 37 respectively. The points are represented by the
circles and the constraints by the lines.

It is important to note that the points which are bound to the chassis — shown in
red in Figure 37 — have their coordinates imposed through the simulation process, that
is, they can’t be moved by the solver. Similarly the tire contact patch and virtual ground
points — shown in green — have their Z coordinate imposed, so they can only move in
the X and Y directions. Finally, the blue points are the ones that have their degrees of
freedom imposed exclusively by the constraints.

Figure 37 — Double A-Arm kinematic points identification.
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Each point has a name — or key — as shown in Figure 37. The s between the
curly braces represent the side of the car that holds the point. The expression can be
substituted by / or r, that represent the left and the right side of the car, respectively.
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The end user does not need to determine all the points shown in Figure 37, once
the wheel points are calculated using other more commonly used parameters, such
as track width, tire diameter, rim width and the lateral, longitudinal and vertical offsets.
The reference distances — that must be maintained throughout the whole simulation
process — are calculated based on the points coordinates at the beginning of the
simulation process.

The kinematic simulation consists of moving a set of points that are bound to a
virtual body — i.e. the chassis or the contact patch points — in a given direction and
finding the new coordinates that satisfies the set of distance constraints. The heave
motion moves the inboard points in the Z direction.

Both pitch and roll motions consist in rotating the chassis points around a given
axis, defined by a line that connects two points. The pitch and roll axes used in the
simulation can be set fixed by the user or can be determined using the suspension
system’s current roll and pitch centers. If the later approach is chosen, the user must
be aware that the delta steps in the simulation will directly affect the behavior of the
simulation in the later steps. This method can also prevent the simulation to complete,
since the kinematic centers can, theoretically, achieve infinite values.

Lastly, the steering motion displaces the tie rod point bounded to the chassis.
The amount in X, Y, and Z coordinates depend on the steering system type. This work
considers only the rack and pinion steering system, which yields a steering motion that
moves the tie rod inner points in the direction of the line that connects both left and right
tie rod inboard points. The scalar value of the displacement is given by Equation (14).

The system shown in Figure 37 has 19 constraints and 19 variables — or degrees
of freedom — which yield a 19 x 19 Jacobian matrix which needs to be inverted in each
step of the Newton-Raphson algorithm. If the opposite side is considered, the matrix
size is enlarged to 38 x 38. If reference points, actuation systems and anti-roll bars are
added, the system’s size increases quite rapidly and will add computational cost to the
process.

3.5.1 Outputs

The output channels calculate and store the system’s information for each sim-
ulation step. These channels are utterly important, because they describe the system
with information that is meaningful to the designer. During a simulation process, the con-
figuration that describes the system is saved for each step. When the post-processing
is executed, the output values — such as camber and toe angle, roll center position,
scrub radius and mechanical trail — are calculated and stored in ordered vectors. The
calculations of the output channels used in this work are given in Appendix A.
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3.6 GENETIC ALGORITHM

As shown in section 3.1, it is quite common to iterate over a set of suspen-
sion systems when developing a new system or even improving an existing system.
When designing a new system from scratch, a set of tools must be used together to
accomplish a common result, usually established at the design time, therefore a set of
desired output parameters are monitored over each iteration. An example of an iterative
suspension design process is shown in Figure 38.

Figure 38 — Example of an iterative suspension kinematics design process.
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Nevertheless, the design process shown in Figure 38 has no limit on the number
of iterations that the design team may go through. These iterations can take a consider-
able amount of time until a common convergence point between all the objectives and
constraints are achieved, if ever achieved. Thus, the focus of the optimization presented
in this work is to reduce the time spent on this phase.

3.6.1 Optimization workflow

Given the problem illustrated above, an optimization workflow is proposed in this
work. It is graphically represented in Figure 39 and its details will be explained next.
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Figure 39 — Proposed optimization workflow.
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3.6.2 Design variables

The design space in this work is defined as a virtual boundary where a design
variable can be created. In practical terms, it is a volume in 3-dimensional space where
the algorithm performs the search of the pickup point that best matches the objective
functions. The boundaries in this problem can be either hard or soft. A hard boundary
is a boundary that does not allow the variable to leave its imposed limits.

Whenever a design variable leaves that region it is immediately returned to the
region in the nearest possible coordinates. Similarly, the soft boundary does not limit
the design variable, so it can float freely as much as the evaluation functions allow.
Thus, the soft boundary is only used to initialize the population.

Two boundary geometries were implemented in this work: a box and a sphere.
The box is a simple boundary defined by an upper and lower set of coordinates. Geo-
metrically, the upper and lower boundaries are points which define the diagonal of the
volume created in a Cartesian coordinate system. The sphere, on the other hand, is
defined by a point and its radius. Even though the implementation allows the use of soft
boundaries, it is not recommended, because it can generate suspension systems that
are conceptually acceptable but impossible to be fabricated.

3.6.3 Evaluation and objective functions

Despite they have a strong connection, the evaluation and objective functions are
treated separately in this work. An evaluation function is seen here as the movement of
a suspension system. This movement can be any combination of heave, roll, pitch and
steering.

Accordingly, the objective functions are the output channels of the evaluation
function. The algorithm was structured like this in a way that the user can set different
objectives for different movements. For example, it allows the algorithm to find a targeted
camber gain in heave and in steering, separately.

Each objective function has its own weight function and a scaling value. The
weight function represents the degree of importance of an output value in a given
moment of the simulation. On the other hand, the scaling factor defines the degree of
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importance of the function with relation to all other objective functions being used.

Additionally, this factor grants a mean of normalizing the objective functions,
which is indispensable, once the optimization numerically compares many parame-
ters that have different orders of magnitude. The weighting approach allows the multi-
objective problem to be described as a single objective, otherwise, the optimization
would yield several suspension systems.

The GA implemented in this work has two types of fitness values: the objec-
tive and the overall fitnesses. The objective fitness is the fithess value for a given
objective. Thus, for an optimization that involves n objectives, there will be n objective
fithesses. The mathematical expression that describes the objective fitness if given by
Equation (30).

fi = \/El;:o((OUts — objs)ws)? s (30)

k
where f; is the objective / fitness value, k is the number of steps in the evaluation
function, outs is the simulation output value at step s, objs is the objective value at step
S, ws is the weight function value at step s and S; is the scaling factor for objective i. The
overall fitness is simply the average of all objective fitnesses of the given optimization
problem, as shown in Equation (31).

i 31)
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B n
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where 7j is the overall fithess value of the j-th individual, n is the number of objectives.

3.6.4 Operators

All the selection, crossover and mutation operators introduced in subsection 2.7.4
where implemented in this work. However, different operators — and possibly the com-
bination of these operators — yield different behavior in the results, ultimately resulting
in a sub-optimal solution. In order to determine the best set of operators for this specific
application of the GA, a parametric analysis was run. Several setup options were cre-
ated and the results analysed in terms of Key Performance Indicator (KPI), presented
next.

3.6.5 Key performance indicators

The first KPI used in the variance analysis is the convergence rate. The con-
vergence rate is taken as the number of generations that the algorithm takes to find a
solution which has an overall fithess that has a numerical value less than 101% of the
best result of a given GA setup. This error margin was obtained empirically. This KPI
aids on the identification of the setup that yields the solution in a faster manner.
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In complement to the convergence rate, the time to converge is also monitored.
The time to converge is the time that the algorithm takes to solve the problem. Since it
is dependent on the CPU where the program is run, the absolute value of this KPI is
not important, but the comparison between the other setups, as long as they are run in
the same machine, with the same number of threads.

The selection pressure is also taken as a KPI that measures the diversity of the
population for each setup. As mentioned in subsection 2.7.4, a high selection pressure
can yield sub-optimal values, once it makes the algorithm more prone to local-minimum
trapping.

This analysis was separated into two major groups: the single-objective group
and the multi-objective group. The grouping was done because the single objective and
multi-objective optimizations behavior can vary a lot based on the number of objectives.

3.6.6 Implementation

The GA was implemented in C++ as a template library. C++ templates are
classes that are created based on the particular implementation for a particular prob-
lem. This is specially advantageous, once the GA can be extended to other problems,
not only kinematics optimization. The GA is here nominated OptimumGenetics, as it
will become a product of OptimumG@G, intended for internal usage. The general class
structure of OptimumGenetics is shown in Figure 40.

Table 1 summarizes the template classes that are used in OptimumGenetics.
However, in spite of several classes are generically implemented and can be used
without any modifications, some classes need to be overrode to explore the full potential
of the library.

Table 1 — Template parameters for the kinematics optimization.

Template name Assigned class
GeneType Point3D

LocusKeyType string
ChromosomelocationType SuspensionPosition

Type SuspensionAssembly
OutputType OutputsCollection
DataType vector<double>
EvaluationException SimulationFailedException

Source: Author (2021)

The first classes that need a specific implementation are the boundaries. The
boundaries define the limits of the problem. As mentioned previously, there are two im-
plementations of boundaries: the box and the spherical boundaries. The class diagram
that define these classes is shown in Figure 41. The crossover and mutation operators
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Figure 40 — OptimumGenetics template class diagram.
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must also be defined specifically for each problem. The operators implemented for the
kinematics optimization is shown in the diagrams in Figure 42.

Figure 41 — Boundaries class diagram.
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Figure 42 — Genetic operators implementation.
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Furthermore, the class that clones and alters the suspension system based on
its genes — pickup points — also have a specific implementation, shown in Figure 43.
The evaluation implementation is probably the most complex one of the specific classes
and is shown in Figure 44.

3.7 CASE STUDY

A case study is used to demonstrate the potential of the optimization proposed in
this work. The case study consists of an optimization of a whole vehicle, with a Double
A-Arm suspension on both axles.
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Figure 43 — Suspension factory class implementation.
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Figure 44 — Suspension evaluation class implementation.
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The chosen initial system is derived from a GT3-spec race car suspension and its
kinematic model on OptimumKinematics is shown in Figure 45. The average parameters
of a GT3 vehicle are used in order to estimate the expected load transfers. Additionally,
a tire model is used to determine the optimal camber in roll and steering as well as the
Ackerman angle.

Figure 45 — Baseline suspension system model in OptimumKinematics (isometric view)

Source: Author (2021)

The vehicle kinematics are then analyzed in four motions, independently. They
are heave, roll, pitch and steering. A set of objectives was created to describe the
desired kinematic behavior of the system, totaling 19 objective functions, explained in
detail in the next chapter. Moreover, the design space was chosen arbitrarily due to the
lack of information of the packaging restrictions and components dimensions. However,
the removal of the physical constraints allows the algorithm to perform broader searches,
ultimately yielding a better solution than with the extra constraints.
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4 PARAMETRIC ANALYSIS

This chapter introduces the details and display the results of the parametric
analysis. As previously mentioned, the parametric analysis of the genetic algorithm is
of major importance, since the quality of results obtained from the optimization depend
on a proper selection of GA parameters, which are further investigated in this chapter.

4.1 GENETIC ALGORITHM PARAMETRIC ANALYSIS

In order to determine the ideal set of parameters for the GA, 15 different opti-
mization setups were created and run on the same machine. The setups are divided
into two major groups: runs 1 to 6 comprise the Single Objective Optimization (SOO)
setups while runs 7 to 15, the MOO setups.

A generic suspension system, illustrated in Figure 46, is arbitrarily chosen for
this analysis. The design space is defined in two variables: the inner and outer ball
joint positions of the tie rods. The system is set as symmetrical, which means that only
the left side is changed by the optimization and then the system is mirrored by the XZ
plane.

Figure 46 — Suspension model used in parametric analysis (Front View).

Source: Author (2021)

The design space boundaries are defined in millimeters and displayed in Table 2.
Only the front axle is considered in this study. The remaining pickup points coordinates
that compose the baseline system in this study can be found in Appendix B.

The design variables on Table 2 were chosen based on previous experience
for being the most sensitive suspension parameters that change the later proposed
objectives. Before setting the objectives, a set of GA parameters is fixed as shown in
Table 3.

The number of generations is fixed for this study because the objective of the
parametric analysis is not do determine the needed generations to optimize a system,
but to present a set of parameters that converge towards an optimal solution faster.
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Table 2 — Design space defined for the GA parametric study.

Box boundary Spherical Boundary

Boundary Pickup point Upper (mm) Lower (mm) Center (mm) Radius (mm)

[ X] 63.3 73.3
Box CHAS tie | Y 203.0 213.0 -

Z] 233.2 243.2

[ X] 133.8
Sphere UPRI_tie_| Y - - 750.0 50

Z] 191.2

Source: Author (2021)

Table 3 — Fixed parameters for the GA parametric study.

Parameter Value Units
Number of generations 2000 -
Crossover type Voluminal -
xXBLX 2 -
Mutation rate 10 %
Mutation type Gaussian -
Og 2 mm

Source: Author (2021)

Despite the importance of the crossover and mutation operators in the GA setup, they
will not be studied at this time.

Through empirical analysis and intuition, the voluminal crossover and Gaussian
mutation have demonstrated to be better suited for this type of problem. The xg; x =2
was chosen such as even with a crossover operation, the resulting point from the
crossover operation will not restrained inside its parents genes. It gives the GA a lower
selection pressure, maintaining the population diversity through several generations,
when compared to when apg; ¥ < 1, ultimately avoiding local minimum traps.

According to Dréo et al. (2006), common mutation rates range from 1 to 5%.
However, this study uses 10%, because for low mutation strengths, such as 2 mm
of standard deviation for the Gaussian mutation, the operator can maintains a lower
selection pressure without generating too disperse individuals, specially for further
generations. Moreover, the Gaussian distribution allows the algorithm to escape local
minima in a lower rate.

4.1.1 Single objective optimization parameters

The single objective optimization parametric study is based on a bump steer
optimization, where the main objective is to minimize the toe angle variation along the
described motion. A heave motion ranging from -50 to +50 mm from the static position
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is used as an evaluation function. No weight function nor scaling factor are applied to
the following problems.

The first parameter variation studied was the population size combined with trun-
cation selection for reproduction and generational selection for replacement. The details
of these runs are shown in Table 4. The truncation selection for reproduction was not
tested against the steady state selection for replacement because the algorithm would
keep selecting the same individuals through many generations, potentially trapping the
solution into a sub-optimal configuration.

Table 4 — Truncation selection for reproduction variance analysis.

Run number

1 2
Population size 50 200
Selection for reproduction  Truncation
Selection size 10

Selection for replacement Generational
Source: Author (2021)

The results comparison of runs 1 and 2 are shown in Figure 47. As the graph
suggests, the population size does not influence in the convergence behavior of the
optimization. The closer the optimization gets to the final solution, more spread can
be seen in the average fitness, which reaches values very close to 1. Figure 47 also
shows that the mutation operator can keep a minimum diversity in the population on
later generations.

The second parameter to study for the single objective case is the tournament
selection for reproduction. It is combined with generational and steady state selection
for replacement methods. Since the tournament selection has an additional parameter,
the tournament size, the runs were split into four, divided in two comparisons, as shown
in Table 5 and Table 6.

Table 5 — Tournament selection for reproduction variance analysis with generational
selection for replacement.

Run number
3 4
Population size 200 200
Selection for reproduction Tournament
Selection size 10 10
Tournament size 5 10

Selection for replacement Generational
Source: Author (2021)
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Figure 47 — Convergence graphs between runs 1 and 2.
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The results from runs 3 and 4 are shown in Figure 48. As the graph shows, there
is not much difference in the tournament size for this population with regards to the
convergence rate. In both runs, the average fitness is decreasing in roughly the same
rate, taking into account the stochastic nature of the GA.

Figure 48 — Convergence graphs between runs 3 and 4.
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The results comparison between runs 5 and 6 are shown in Figure 49. Once
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Table 6 — Tournament selection for reproduction variance analysis with steady state
selection for replacement.

Run humber

5 6
Population size 50 200
Selection for reproduction  Tournament
Selection size 10 10
Tournament size 5 10
Selection for replacement  Steady state
Selection size 25 100

Source: Author (2021)

again, the tournament selection for reproduction does not show expressive differences
when both are using steady state replacement — even with different population sizes.

Figure 49 — Convergence graphs between runs 5 and 6.
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Figure 50 summarizes the optimization results of this study done for a single
objective optimization. The plot shows that there is not a visual difference between the
result’s quality with relation to any of the setups used. However, it is possible to identify
a difference in the convergence time. The convergence time is measured as the time
needed (in seconds) for the GA to find an individual that has an overall fitness within
101% of the overall fitness of the best individual found at the end of the optimization.

Even though every setup yields an acceptable sub-optimal solution before 5
seconds, run number 5 stands out as the fastest one to achieve such value. However,
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given the stochastic nature of such optimization, it is recommended for future studies
that these runs are repeated several times and an average value is considered.

All setups yielded very similar solutions. The resulting system’s optimized func-
tion is overlaid with its objective function in Figure 51. The result shows that there is
no better solution for the problem in the given design space for this problem. In order
to improve the objective, the designer must change the design space. Still, the design
space also affects the vehicle’s packaging and manufacturing, thus the suspension
designer must be aware of such restriction prior to the optimization.

Figure 50 — Single objective optimization results and KPIs comparison.
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4.1.2 Multiple objectives optimization parameters

As previously mentioned, when running a MOQO, there is usually no single final
solution, but a set of solutions that are equally optimal. OptimumGenetics weight func-
tions and scaling factors provide an interface to the user that allows the MOO to be
treated as an SOO.

However, when the user does not have a clear definition of the objective functions
and the sensitivity of each objective with relation to the overall solution, the optimization
results can provide information regarding the sensitivity of the system with respect to
the given objectives. This section shows another set of parameters that are sensitive to
the MOO process.

Following the philosophy of subsection 4.1.1, the design space is kept for this
section as well, whilst two other objectives contained in another evaluation are con-
sidered. The added objectives are: set a constant steering ratio throughout the whole
steering motion — -270 to 270 degrees in the steering wheel — and provide a parallel
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Figure 51 — Optimization run 5 resulting system overlaid with objective function.
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Ackerman geometry, that is, set the Ackerman angle to zero through the whole steering
motion.

Similarly to subsection 4.1.1, several setups were created in order to define the
best set of parameters for this problem. Table 7 show the input parameters for runs
7 and 8, which are based on the ranked selection for reproduction and generational
selection for replacement. The variable parameter of this run is the population size. The
results comparison between runs 7 and 8 are shown in Figure 52.

Table 7 — Ranked selection for reproduction vs population size variance analysis setup.

Run humber

7 8
Population size 50 200
Selection for reproduction Ranked Ranked
Selection size 1 Rank 1 Rank

Selection for replacement Generational Generational
Source: Author (2021)

Differently from previous results, runs 7 and 8 show a noticeable variation on
the population average fitness, specially on later generations. Moreover, the selection
pressure is kept under 0.25 for later generations, which is an indication of a diverse
population.
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Figure 52 — Convergence graphs between runs 7 and 8.
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These effects happen because the selection operators do not consider the in-
dividuals’ overall fithess — they are instead chosen for reproduction by their objective
functions — and then the whole generation is replaced after. Since weighting and scal-
ing factors are equal to every objective, most of the variation is possibly coming from
only one of the objectives. Figure 53 allows the visual demonstration of such effects.

Figure 53 — Runs 7 and 8 objectives comparison.
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The steering ratio fitnesses as shown Figure 53a and Figure 53b, have a variance
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of about two orders of magnitude with relation to the other objectives for both setups.
This is a huge indication that the objectives should be scaled, in order to produce a
better solution. It is also interesting to note that the objectives yield a very clear Pareto
set, denoted by Rank 1.

Table 8 shows the variation of the objectives for a tournament selection for
reproduction with relation to the variation of the size of the selection for replacement
set (runs 9 and 10). The convergence plots for runs 9 and 10 are found in Figure 54.

Table 8 — Tournament selection for reproduction vs steady state selection for reproduc-
tion selection size variance analysis setup.

Run humber

9 10
Population size 200 200
Selection for reproduction Tournament Tournament
Selection size 10 10
Tournament size 5 5
Selection for replacement Steady state Steady state
Selection size 20 80

Source: Author (2021)

Figure 54 — Convergence graphs between runs 9 and 10.
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As shown in Figure 54, the selection pressure achieves values very close to 1
in later generations and the mutation operator guarantees that the population has a
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minimum diversity, specially on generations past 1000. However, this method is more
sensitive with relation to the weights and scaling factors input by the user.

Even though runs 9 and 10 use a higher population number, they yield sub-
optimal values, possibly trapped in a local minimum. Figure 55 illustrates the objective
functions for the last population. As the figure suggests, the algorithm has a strong
tendency of concentrating the values in a particular region of the feasibility range.

Figure 55 — Runs 9 and 10 objectives comparison.
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Runs 11, 12 and 13 comprise ranked selection for both reproduction and replace-
ment. The variation parameter is the number of ranks chosen for both operators, as
described by Table 9. The convergence of these runs are shown in Figure 56.

Table 9 — Ranked selection for reproduction and replacement variance analysis setup.

Run humber

11 12 13

Population size 200 200 200
Selection for reproduction Ranked Ranked Ranked
Selection size 1 Rank 1 Rank 2 Ranks
Selection for replacement Ranked Ranked Ranked
Selection size 1 Rank 2 Rank 1 Rank

Source: Author (2021)

In correlation to Figure 52, runs 11, 12 and 13 have selection operators that
do not depend on the overall fithess of the population. This causes the low selection
pressure seen in later generations — meaning that the population has a high diversity
— and the large variation of average fitness. Such similarity is shown by Figure 57.



Chapter 4. Parametric Analysis 82

Figure 56 — Convergence graphs between runs 11, 12 and 13.
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Figure 57 shows the similarity to runs 7 and 8. All setups yielded a clear Pareto
set (denoted by Rank 1). Still, run 13 resulted in only one rank, which represents all the
Pareto solutions of the optimization.

At last, runs 14 and 15 compare the ranked selection associated with a steady
state replacement, as shown in Table 10. The results are shown in Figure 58.

Table 10 — Ranked selection for reproduction with steady state selection for replace-
ment variance analysis setup.

Run humber

14 15
Population size 200 200
Selection for reproduction Ranked Ranked
Selection size 1 Rank 1 Rank
Selection for replacement Steady state Steady state
Selection size 100 10

Source: Author (2021)

Figure 58 demonstrate a more stable solution, which has a selection for repro-
duction operator that does not depend on the user-defined weight and scale factors.
Nonetheless, the final solution is still dependent on the weight functions and scaling
factors. Figure 59 show the correlation between the objectives.

Exposed by Figure 59, run 14 is more aggressive towards the final objective —
the overall fitness — whilst run 15 parameters allow the optimization to keep a certain
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Figure 57 — Runs 11, 12 and 13 objectives comparison.
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degree of diversity, possibly allowing the solution to escape local minima traps. Run 14
yielded one set of optimal solutions that are concentrated in a small region, while run
15 has a greater capability of exploring the neighborhood.

Figure 60 compares the setups and the results in terms of quality — overall
fithness — and convergence time. From the chart, run 7 provided a faster convergence
rate but a sub-optimal solution. On the other hand, run 15 did not exceed run 7’s
convergence time by too much and still provided a much better solution, based on the
user-defined weighting functions and scaling factors.

Despite that the results generated from runs 7 to 15 have very different numerical
results and convergence behaviors, the average solution is very similar. The resulting
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Figure 58 — Convergence graphs between runs 14 and 15.
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coordinates of such optimization are shown by the resulting coordinates of the design
variables in Table 11 (units in millimeters). The three objective functions overlaid with
their respective initial and final solutions of run 15 are shown in Figure 61. The visual
difference of the objective results between the other multi-objective setups is so subtle

that cannot be visualized in a chart.

Figure 61 show that even though two of the three objectives were drastically
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Figure 60 — MOO results comparison.
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Table 11 — Final result of runs 7 to 15.

Run number
Point 7 8 9 10 11 12 13 14 15

733 638 733 733 716 679 633 733 733
213.0 2126 213.0 213.0 2126 206.6 213.0 213.0 213.0
233.2 2334 233.2 233.2 233.2 233.2 233.2 233.2 233.2

1182 1178 118.1 1181 1181 1179 1178 118.1 118.1
768.6 766.5 768.3 768.2 768.1 767.4 766.6 768.2 768.2
234.7 235.6 235.0 235.0 235.0 2353 2355 235.0 235.0

Source: Author (2021)

CHAS tie |

UPRI_tie_|

N <X N<X

improved by the optimization algorithm. The steering ratio objective was probably not
reached due to the narrow design space defined for this study. It shows, however, the
best compromise between all the objectives, given the set of weights and scaling factors
defined by the user.

4.1.3 Remarks

This study shows that the parameters of the GA can have a huge influence on the
final result of the optimization. In addition, to yield a single solution to a MOO problem
using this implementation, the user must have a good understanding of the parameters
sensitivity and feasibility. Such feeling may come with practice and experience.

Thus, this kind of implementation may not be well suited for novice suspension
designers. Nevertheless, it also provides an indication of which set of parameters are
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best suited depending on the set of objectives and design space.
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5 CASE STUDY

This chapter introduces the case study conducted to illustrate the potential of
the optimization. It begins elucidating the problem and displaying the basic information
regarding the vehicle to be designed, such as initial pickup points, total mass and load
transfer. Furthermore, a specific tire model for the car under optimization is used to
determine some of the kinematics parameters. The chapter covers all the objective
functions used in the optimization and their respective results.

5.1 PROBLEM DESCRIPTION

The baseline vehicle used in this work is a GT3-spec race car. The information
about this type of car is provided by OptimumG. The make and model of the car are
maintained confidential, however, the other available parameters will be shown in further
sections. The pickup points coordinates in millimeters are displayed in Table 12. The
remaining parameters used for the simulation can be found in Appendix C.

The origin of the system of coordinates is taken in the front axle, coincident to
the ground plane and at the car’s plane of symmetry (mid plane). The X coordinate
is positive towards the forward direction of the vehicle, the Y direction is positive to
the left side of the vehicle and Z is positive to values above the ground. Only the left
coordinates are shown because the system is symmetrical, thus, the Y points are
reflected about the XZ plane.

The OptimumKinematics model of this system was already introduced by Fig-
ure 45. The colored vectors represent the origin of the coordinate system. The X, Y
and Z coordinates are represented by the red, green and blue arrows respectively. This
case study does not take into consideration the vehicle’s packaging due to the lack of
access to the car's CAD model. Even though it lacks a little bit on the sense of reality,
it gives more freedom to the optimization model as the design space can be widened,
fundamentally making this case study more interesting.

5.2 TIRES

The GT3-spec tire model is used in this work was provided by OptimumG. The
data was gathered on a tire testing facility and fitted using OptimumTire tire modeling
software, as mentioned in section 2.2. Since it is not relevant to this work, the fitting
process is not covered. Figure 62 and Figure 63 show the tire models, in continuous
lines, overlaid with the tire’s data. Both plots show a good correlation between the model
and respective data. The data used in this case study is analyzed at constant pressure
— 1.8bar — considering the huge complexity of using multiple pressure values.

The fitted model is then exploited in search of the optimal tire position that
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Table 12 — Baseline suspension system pickup points.

Point name X(mm) Y (mm) Z(mm)

Front suspension
CHAS lower fore | 137.4 416.9 110.0
CHAS_lower_aft_I -249.3 415.5 146.6
CHAS_upper_fore_| 82.2 553.2 452.5
CHAS_upper_aft_I -120.3 560.3 365.1
UPRI_lower_| -1.9 820.1 145.3
UPRI_upper_I -66.6 752.5 445.6
CHAS _tie_l| 64.99 472.3  240.0
UPRI_tie_lI 110.9 786.9  287.9

Rear suspension
CHAS lower_fore | -2454.3 437.8 194.5
CHAS_lower_aft | -2827.3 431.4 125.5
CHAS_upper_fore_| -2451.6 546.4 389.4
CHAS upper_aft_ | -2761.5 541.5 4456

UPRI_lower_I -2573.0 792.6 183.2
UPRI_upper_I -2592.3 768.5 454.0
CHAS _tie_| -2816.5 435.0 248.8
UPRI_tie_lI -2780.0 810.1 270.8

Source: Author (2021)

generates the maximum lateral force for most situations. Figure 64 shows the slip angle
o at peak Fy, shifting. For example, the front axle shown in Figure 64a suggests the
use of a pro-Ackerman steering geometry. The plots also show a tendency that as the
camber angle increases, the lower the Ackerman is required. Still, this effect is more
relevant for lower normal loads.

Moreover, the model can be used to leverage the potential of lateral force in-
crease due to camber. Figure 65 shows the variance of the peak lateral force due to
normal load variation. Three different inclination angles y (IA) are shown. Regarding the
use of the SAE coordinates, a positive y represents a negative camber on the outside
wheel, when it is mounted on a car that is inside a turn. Comparing Figure 65a and
Figure 65D, it is possible to note that the rear tires are a slightly more sensitive to the y
variation than the front tires, indicating a possible preference on the camber variance
objective, which will be discussed later in this text.

5.3 WEIGHT TRANSFER ANALYSIS

In order to determine the kinematics parameters based on the tires, a simplified
steady-state weight transfer analysis is used to determine the vertical load in each tire.
The load transfer model is presented by William F. Milliken and Douglas L. Milliken
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Figure 62 — F), vs « plot for the proposed GT3 front tires (SAE coordinates).
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(1995) and demonstrated over the next equations. The downforce equation generated
by the car is represented in Equation (32).

CoAp air V2
2
where F, is the downforce value, in newtons, CyA is the downforce (negative lift) coef-
ficient multiplied by the frontal area, in m?, p;, is the air density and V is the vehicle
speed, in m/s. Adding the downforce to to the vehicle weight yields the vehicle load at

the given conditions, as denoted in Equation (33).

Fq = (32)

W=mg+Fy4 (33)

where W is the vehicle total load, in newtons, m is the vehicle mass in kg and g is the
gravity, in m/s2. However, to determine the load transfer with more accuracy, the car’s
weight and downforce distributions are considered, shown in Equation (34):

W/: = m,:W + ngisth (34)

where Wk is the normal load on the front axle, in newtons, mg and Cy . are the weight
and downforce distributions in percentage (1 is 100%), respectively. Similarly, for the
rear axle:
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Figure 63 — F), vs « plot for the proposed GT3 rear tires (SAE coordinates).
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Figure 64 — Peak slip angle « shift with relation to the normal load F.
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WR = (1 - m,:)W+ (1 - Cedist)Fd (35)

where Wg is the normal load on the rear axle. The total weight transfer can be simplified
by collapsing the front and rear track widths into an average. The total weight transfer
AW is given by:

_ WAyhcg

le+itg

AW (36)
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Figure 65 — Tire peak lateral force F), with slip angle F; variation for different values of
inclination angle .
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where AW is the total weight transfer, in newtons, Ay is the lateral acceleration, in
m/s2, hcg is the CG height, in meters and tF and g are the front and rear track widths,
respectively. Moreover, the lateral weight transfer is not the same for the front and rear
axles. According to William F. Milliken and Douglas L. Milliken (1995), many parameters
can affect these values, such as anti-roll bars and tire pressure. To simplify this case
study, a lateral weight transfer distribution (LLTD) value was considered, which already
contains all the other terms. The LLTD is given by:

AWE

where LLTD is the lateral load transfer distribution and AWk is the weight transfer on
the front axle, in newtons. By imposing a value to the LLTD, the load transfer on the
front axle and rear axle, AWE and AWg respectively, are given by the equations:

AWEg = AWLLTD (38)

AWg = AW(1 - LLTD) (39)

An average speed and lateral load are assumed using historical data. The G-G
diagram allows a more accurate estimation of speed and lateral acceleration to which
the car will subject to. Figure 66 shows a G-G diagram of a GT3 race car during a flying
lap in Sebring.

The plot shows a dense concentration on the lateral acceleration Ay, ~ 1.65(G),
with a speed varying between 90 and 150 km/h. Therefore, this case study will assume
a vehicle that is pulling 1.65G of lateral force at 120 km/h. The input data shown in
Table 13 contains some specifications of the average GT3 race car. Applying the values
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Figure 66 — G-G diagram of a GT3 race car for a full lap in Sebring.
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from Table 13 to Equation (32) through (39), yields on the normal tire loads shown in

Table 14.

Table 13 — Common parameters of a GT3 car

Input parameter Variable Input value Unit
Total mass m 1420 kg
Total Mass distribution (% Front) mg 46 %
Total mass CG height hca 388 mm
Downforce coefficient multiplied by frontal area C;A 227 -
Downforce distribution (% Front) Cuyes 32.80 %
Air density 0 4ir 112 kg/m3
Speed % 120 km/h
Target lateral acceleration Ay 165 G
Gravity g 9.81 m/s?
Lateral load transfer distribution (% Front) LLTD 53.67 %

Source: Author (2021)



Chapter 5. Case study 93

Table 14 — Weight transfer estimation for the proposed conditions.

Tire vertical load (N)

Axle  Left Right AW (N)
Front 649.5 6220.5 2785.4
Rear 1829.7 6639.6 2404.9

Source: Author (2021)

5.4 DESIGN SPACE

The design space is defined in terms of 3-dimensional geometric regions. As
presented in subsection 3.6.2, box and sphere elements are used to define the regions
inside which the resulting system’s pickup points will be found. All the boundaries were
defined as hard so that the search does not deviate from the intended search space.

The boundaries are presented in two groups for each axle: the inboard and
outboard points. The system is considered symmetric through the optimization process,
so only the left pickup points are shown in the next several tables, once the right
equivalent has the same coordinates with a negative y-coordinate.

The inboard points are defined inside a box boundaries, which can be contem-
plated in Table 15 and Table 17 for the front and rear axles respectively. On the other
hand, the outboard points are defined inside a sphere, given the wheel geometry. The
parameters that describe the outboard points of the front and rear axles are shown in
Table 16 and Table 17 respectively. All coordinates are given in millimeters.

The range defined by these bounds were assumed mostly by experience and
considering the coordinates of the initial position, since there is no access to the CAD
model nor packaging measures of the car being optimized. This can be seen as an
advantage for the study once this empowers even more the possibilities that the GA
can explore.

A special attention is required for the steering rack. As shown previously, the
optimal position of the tie rod outer ball joint for a positive Ackerman value is behind the
wheel and towards the center of the car. For packaging and load path purposes, the
steering rack was positioned behind the king pin, providing a better use of the given
design space.

5.5 GA CONFIGURATION

The chosen GA configuration is shown in Table 19. The choice of such param-
eters took advantage from the parametric analysis run on chapter 4. Given the large
number of design variables and objective functions, a bigger population is needed,
which allows the algorithm to explore more possibilities on the population initialization.



Chapter 5. Case study 94

Table 15 — Front suspension box boundaries definition for case study.

Limits
Point name Lower Upper
xP1 [-215.0] [-105.0
CHAS tie | yP 472.4 472.4
2P 110.0 310.0
xP1 [137.4 157.4
CHAS_lower fore_ | |y” 216.9 516.9
ZP 80.0 210.0
xP1 [-269.3] [-249.3
CHAS_lower_aft_| yP 215.5 515.5
ZP 86.6 246.6
xP1 822 42.2
CHAS_upper_fore | |yP 373.2 653.2
2P 152.5 552.5
xP1 [-140.3] [-120.3
CHAS_upper _aft_| yP 360.3 660.3
2P 115.1 465.1

Source: Author (2021)

Moreover, since the study requires a single final solution, the weighting functions
and scaling factors are applied to the objective functions. This allows the use of a steady
state selection for replacement operator, which pulls the search in a given direction. The
selection size of 200 individuals is arbitrary. In addition, the crossover and mutation
operators were maintained the same as in chapter 4.

The selected settings allow the algorithm to perform a more diverse — and
sparse — search through the generations, ultimately avoiding local minima traps. How-
ever, the ranked selection is computationally more expensive, because it compares all
the objective functions of all the individuals in the population.

5.6 CONVERGENCE

This case study optimization process was run on a AWS EC2' c5a.8xlarge
Ubuntu instance. The instance has a 2nd generation AMD EPYC 7002 processor with
running frequencies up to 3.3GHz, 32 virtual CPUs and 64GB of available RAM. The
setup used 32 working threads to evaluate the individuals. The total time to run the
4000 generations was 14 hours, 10 minutes and 20 seconds.

1

https://aws.amazon.com/ec2/
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Table 16 — Front suspension spherical boundaries definition for case study.

Point name Center Radius
"xF7 [ 0.0 ]
UPRI_upper_| |yP 650.0 150.0
zP|  |350.0]
xP1 100
UPRI_lower | |y” 700.0 150.
ZP|  [275.0]
xP1  [-200.0
UPRI_tie_lI yP 700.0 100.
ZP 300.0

Source: Author (2021)

The evolutionary process took around 1000 generations to start showing conver-
gence signals. However, the only stopping criteria imposed to the algorithm was the
number of generations. Even though this case study used a higher number of genera-
tions, the algorithm kept finding better a individual every — roughly — 70 generations
when the optimization was about to reach is termination condition. This is a good in-
dication that the optimization should have been carried on for a longer period of time,
which could result on an even better solution.

Figure 67 shows the convergence KPIs of this optimization. The selection pres-
sure assumed values greater than 0.95 only after the 1000th generation, which indicates
a very slow convergence rate. The slow convergence rate is a good parameter for this
type of optimization, because it helps the GA to keep a higher diversity and avoid local
minima trapping. However, it is computationally more costly, since it takes much longer
to find an optimized configuration.

Interestingly, Figure 67 shows a drop of almost two orders of magnitude on the
best individual. This proves the capability of the algorithm to explore the whole solution
space. On the other hand, this drop can indicate a bad choice of scaling factors and
weighting functions.

The main indicators of the optimization for the last generation are displayed in
Table 20. The results show that the evolutionary process increases the solution quality
by 92.59%, with relation to the initial population.

5.7 EVALUATION AND RESULTS

The suspension system which is optimized in this case study is evaluated in all
possible movements, independently. This section separates the objective functions per
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Table 17 — Rear suspension box boundaries definition for case study.

Limits
Point name Lower Upper
xP1  [-2770. [—2920.0]
CHAS tie | yP 235.0 485.0
2P ] 100.0 | 300.0 |
xP1  [—2474.3] [—2454.3]
CHAS_lower_fore_| |y” 237.8 537.8
ZP| | 940 | | 2945
'xP1  [-2850.01 [-2830.0]
CHAS _lower _aft_| yP 280.0 480
P | 75.0 | | 175.0 |
xP1  [-2450.01 [-2400.0]
CHAS_upper_fore_| yP 345.0 495.0
ZP| | 240.0 | | 440.0
xP1  [-2810.01 [-2760.0]
CHAS_upper_aft_| yP 340.0 590.50
2P| | 250.0 | | 500.0 |

Source: Author (2021)

evaluation motion. They are: heave, roll, pitch and steering. The results are compared
with the objectives as they are described. An overview of the objective functions of the
resulting individual is shown in Figure 68.

The slices’ size of the inner circle in Figure 68 represent the contribution of
each objective on the overall fitness of the resulting individual, while the outer circle
represents the evaluation function — motion — at which they are evaluated. This chart
highlights the variance of the objectives, for example the front roll center variation in
row and mechanical trail in steering have the biggest shares between all the objectives.
Table 21 shows the chart in numbers and the scaling factors attributed to each objective.

The table clearly shows that some objectives are favored in detriment to others.
Moreover, it shows the immense difference between some objective fitness values, as
the one seen between the camber angle variation in roll on the rear and the roll center
height variation in heave on the front. This indicates either that some objectives are
unfeasible for a given design space or the algorithm preferred one over another.

A possible solution for this behavior is to change the weighting functions and
scaling factors targeting a normalization between all the objectives. However, the sensi-
tivity of each objective to the design variables variance could not be normalized in this
work.

The normalization of the objective functions would be beneficial to the definition
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Table 18 — Rear suspension spherical boundaries definition for case study.

Point name Center Radius
xP1 [-2630.07
UPRI_upper_| |yP 750.0 150.0
zP| | 400.0 |
xP1 [-2630.07
UPRI_lower | |yP 800.0 100.
zP| | 230.0 |
xP1  [-2780.07
UPRI_tie_| yP 850.0 100.
zP| | 250.0 |

Source: Author (2021)

Table 19 — GA setup used in case study.

Parameter

Value

Population size

Number of generations
Selection for reproduction
Selection Size

Selection for replacement
Selection size

Crossover type

XBLX

Mutation rate

Mutation type

Og

400 individuals
4000

Ranked

1 rank

Steady State
200 individuals
Voluminal

2

5%

Gaussian

2

Source: Author (2021)

of weights and scaling factors. Still, the numbers are not easily defined, once the opti-
mization compares angles to lengths in different orders of magnitude and importance.
The normalization is a complex subject that should be handled in future versions of the
GA.

5.7.1 Heave

The heave range is determined from the baseline range. The range used was
-50 mm to +50mm from the static position, determined by the initial coordinates of the
system. The objective functions for this motion are shown in Figure 69 and commented
below.

(a) Kinematic Roll Center Z at Ground [Front]: shown in Figure 69a, the baseline has
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Table 20 — Final indicators of the optimization run for the case study.

Generation Best Average Fithess  Selection
fithess fithess standard pressure
deviation
0 0.000 50.849 413.053 2196.530 0.123
4000 4000.000 3.766 3.820 0.219 0.986
Difference 47.083 409.233 2196.311 -0.863
Drop (%) 92.593 99.075 99.990 -700.858

(c)

Source: Author (2021)

a static value of about 35mm. The objective is set to 55mm, which would yield
on a more aggressive car on tight tracks. Ideally, the roll center height should not
become negative, but as the plot shows, it happens for the baseline, while the
optimized system keeps this value always positive.

Kinematic Roll Center Z at Ground [Rear] : the baseline has a static roll center
height of 55mm and the optimized should reach 85mm. Figure 69b shows that
the optimized curve comes really close to the target. It was also desired that for
every motion the front axle roll center height is never higher than the rear. This
later is satisfied if Figure 69a and Figure 69b are compared.

Scrub radius [Front]: the scrub radius is responsible for generating moments
around the steering axis when longitudinal forces — such as braking or throttling
— are applied at the tires. In reality, having a scrub radius equal to zero in the front
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Roll

Figure 68 — Final result comparison of objectives.
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axle could be detrimental to the driver’s perception in case that the longitudinal
force of the left and right tires are different, for example in a case of a puncture.
This parameter cannot be determined precisely without a dynamic analysis. Thus,
the scrub radius of 10mm was chosen arbitrarily in comparison to the initial value
of more than 15mm and its variation in heave is also minimized. Figure 69c show
that the algorithm found an excellent compromise for these objectives. The weight
on both functions are decreasing as they move away from the initial position
because the vehicle is operated most commonly around the initial position.

Scrub radius [Rear]: on the same manner as the front scrub radius, the rear scrub
radius should be minimized to reduce toe change due to acceleration or braking
torques. Since the rear system does not have a steering mechanism that provides
force feedback to the driver, this parameter is set to be minimized. Figure 69d
shows that a good compromise was achieved for the rear scrub radius too.

Toe angle [Front]: known as bump steer, this parameter should be minimized in
most cases. Even though they can improve the vehicle’s performance if chosen
wisely, this effect is usually undesired. If a vehicle has too much bump steer, it
could lead to tire overheating and stability issues on wavy roads. Figure 69e shows
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Table 21 — Final result objectives fithess

Evaluation: Objective Scaling Fitness Share in overall

factor value fithess
Heave: Roll Center Z (Ground) [Front] 0.1 0.002 0.062 %
Heave: Roll Center Z (Ground) [Rear] 0.1 0.007 0.189 %
Heave: Scrub Radius [Front Left] 0.2 0.015 0.405 %
Heave: Scrub Radius [Rear Left] 0.1 0.001 0.029 %
Heave: Toe Angle [Front Left] 200.0 0.040 1.070 %
Heave: Toe Angle [Rear Left] 200.0 0.007 0.179 %
Heave: Wheelbase 0.1 0.089 2.357 %
Pitch: Anti-Dive Percent [Front Left] 0.1 0.059 1.573 %
Pitch: Anti-Lift Percent [Rear Left] 0.1 0.030 0.785 %
Pitch: Anti-Squat Percent [Rear Left] 0.1 0.123 3.266 %
Pitch: Wheelbase 0.1 0.011 0.287 %
Roll: Camber Angle [Front Left] 100.0 0.062 1.637 %
Roll: Camber Angle [Rear Left] 100.0 1.675 44.483 %
Roll: Roll Center Y (Ground) [Front] 0.5 0.000 0.001 %
Roll: Roll Center Y (Ground) [Rear] 0.5 0.000 0.001 %
Steering: Ackerman Angle [Front] 100.0 0.635 16.871 %
Steering: Camber Angle [Front Left] 10.0 0.033 0.876 %
Steering: Mechanical Trail [Front Left] 0.1 0.878 23.321 %
Steering: Steering Ratio [Front] 1.0 0.098 2.610 %

Source: Author (2021)

that this objective was successfully minimized when compared to the original

system.

(f) Toe angle [Rear]: the bump steer outputs on the rear axle is illustrated by Fig-
ure 69f. The plot shows that the optimized function satisfied the objective on a
better manner than in the front axle. This is due to the broader space that the

vehicle has on the rear search space.

(g) Wheelbase: the wheelbase change was chosen to be minimized to avoid too much
change on the pitch moments when the car is subject to longitudinal accelera-
tions. This parameter is not as sensitive as anti-dive, for example. The optimized
suspension system achieved a function which is much closer to the objective, as

shown in Figure 69g.

5.7.2 Roll

The roll range is determined by the roll gradient and an an arbitrary lateral
acceleration that is used as an upper bound. A constant roll gradient of 0.58°/G is
assumed — taken as an average of the historical roll gradient data for front and rear



101

Figure 69 — Heave motion evaluation objectives.
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axles shown in Figure 70, from the outing that is highlighted by the red box — and a
supposed maximum lateral acceleration of 2.3G. The resulting roll angle is 1.33°, which
is rounded to 1.5°. Thus, the roll motion ranges from +1.5°, with its axis defined at the
ground level and at Y = 0.

Figure 70 — Vehicle suspension roll gradient for several laps.
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The data displayed in Figure 70 is an average roll gradient for each lap, which is

obtained by the potentiometers of the suspension and translated as a roll movement
assuming constant motion ratios and track widths. The objective functions for the roll
motion are shown in Figure 71 and commented below.

(@)

Camber angle [Front Left]: the objective for the camber variation in roll is to keep
it where it generates the most lateral force. However, if the camber variation in roll
is positive — that is, a negative camber on the left wheel for negative values of roll
angle — it can generate too much scrub and uneven tire temperature in heave.
Furthermore it could be detrimental for longitudinal tire force, when braking or
accelerating. The tire model being used in this case study points that a camber
of —3° is the one that generates the most lateral force. On the other hand, the car
has quite an amount of downforce, thus, in fast corners, the vertical position of
the car will be lower, inducing even more camber, resultant from the heave motion.
In addition, the steering mechanism also produces a camber variation to the car
when steered, which is shown later in this section. Therefore, for simplification pur-
poses, this value is set to zero, as shown in Figure 71a. The optimized system is
able to generate negative camber for the outside wheel when the car is under roll.
This behavior is sub-optimal given the objective function, but definitely acceptable
given the tire model presented previously.

Camber angle [Rear Left]: the rear axle does not rely on a steering mechanism,
thus, the camber variation in roll is wished to induce a negative camber on the out-
side wheel. On the other hand, the rear axle is more sensitive to downforce, once
its distribution is biased towards the rear. The objective and optimized functions
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are shown in Figure 71b.The weight function was built in a way that it prioritizes
the mostly used roll angles, obtained from Figure 70 and Figure 66. The result
does not come close to the objective, but it is still better than the baseline.

(c) Roll center Y (Ground) [Front]: from experience, the roll center variation in the Y
direction is a parameter that is desired to be kept as low as possible. However, it is
a really difficult objective to achieve. Thus, the desired target is that the variation
of the roll center Y coordinate in the front axle should be less than in the rear axle.
This objective was improved well by the optimization, as shown in Figure 71c.

(d) Roll center Y (Ground) [Rear]: similarly to the front axle, the rear roll center Y vari-
ation in roll of the optimized system is very close to the objective, as demonstrated

in Figure 71d.
Figure 71 — Roll motion evaluation objectives.
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5.7.3 Pitch

Similarly to the roll motion, the pitch motion is defined with an assumed pitch
gradient, taken from the same outing as the data used for roll, indicated by the red box
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in Figure 72. Even assuming a 2.2G of deceleration, as Figure 66 indicates, the result
pitch is less than 1°. Thus the pitch range is arbitrarily assumed to be +1°.

Figure 72 — Vehicle suspension pitch gradient for several laps.
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The pitch motion is most strongly influenced by longitudinal accelerations, as

mentioned previously. Thus, the objectives for this motion are primarily the anti-features
geometries. Figure 73 shows the objectives of this motion in comparison with the
baseline and optimized suspension systems. The objectives are commented below.

(a) Anti-Dive % [Front]: despite that the initial system has an anti-dive greater than

100%, this parameters is set to a lower value. The value of 30% for the static
anti-dive objective was picked from track experience, while its variation is reduced
through the pitch motion. As Figure 73a shows, the optimized system reaches the
objective accordingly, except for the variation.

Anti-Lift % [Rear]: Similarly to the anti-dive objective, the anti-lift on the rear axle
was targeted to be around the same value as the baseline system for static
conditions, while reducing its variation in pitch motion. Figure 73b demonstrates
that the optimized curve reached the target for static position in detriment of its
variation. Still, the variation is better than the baseline.

Anti-Squat % [Rear]: on contrary to the initial system, the anti-squat percentage
was changed by a great amount. Since the initial system had a negative value for
anti-squat — thus, loading the springs even more in acceleration — the objective
was set to be around 30% in static condition and its variation to be reduced in pitch.
Figure 73c shows that the optimization was able to overcome such difference,
providing an improved individual with relation to this objective function.

Wheelbase: following the same thought presented for the heave motion, the wheel-
base variation is wished to be as minimum as possible, mainly on longitudinal
weight transfer situations. Thus, this parameter is set to a minimum variation
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in pitch. Figure 73d illustrates that the optimized curve is not too close to the
objective, but the variation is yet lower than the baseline system

Figure 73 — Pitch motion evaluation objectives.
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5.7.4 Steering

The steering motion was defined as the limit imposed by the steering rack of the
car. Figure 74 shows the steering angle channel of a GT3 car on a flying lap in Sebring.
Even though the graph shows that the steering wheel angle does not exceed 160°, the
maximum steering wheel angle of 270° is assumed. However, Figure 74 illustrates the
range of steering motion that is more relevant to the kinematics of the system.

The steering objectives and optimized curves are shown in Figure 75. The choice
of objectives are introduced below.

(a) Ackerman Angle [Front]: the Ackerman angle is chosen based on the tires be-
havior. As introduced in section 5.2, the slip angle « in peak Fy shift is used to
determine this objective. As estimated in Table 14, the loads of the inner and
outer tires on the front axle are approximately 650N and 6220N. In accordance
with Figure 64a, the optimal Ackerman should be greater than 10 degrees for the
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Figure 74 — Vehicle speed and steering wheel angle channels of a GT3 car on a flying
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average steering angle on a lap, at a given circuit. However, such number could
be physically infeasible. The feasibility would not be achieved because the tie rod
outer ball joint position would need to be carried over towards the outside of the
car with relation to the virtual king pin. Thus, a pro-Ackerman angle 6 4. of +6°
at the maximum and minimum rack travel is chosen as the objective. The curve of
this output along the steering wheel angle is shown in Figure 75a. As the graph
suggests, the optimized curve is not perfectly drawn over the objective because
the later was defined by hand.

Camber angle [Front Left]: the camber angle in steering can potentially cover the
losses imposed by the roll movement limitations. It is desired that the outside
wheel of the corner produces a negative camber while the inside wheel induces
a positive camber, so to maximize the tires’ Fy. In this case study, the baseline
already had a good amount of camber gain in steering, thus, a very subtle ad-
justment was proposed. The optimized system was not improved with regard to
the baseline for the outside wheel (negative steering wheel angle), as shown in
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Figure 75b. However, since the camber gain in roll was improved, this optimized
parameter is plausible.

(c) Mechanical trail [Front Left]: the mechanical trail is mostly associated with the
load transferred to the tie rods and furthermore to the steering rack, altering the
steering feedback to the driver. This value is not easily determined without a force
analysis on the system, once it influences not only on the steering torque but also
on the driver’s perception. Hence, this parameter was kept the same in static po-
sition, but its variation was set to be reduced. Figure 75c shows that the resulting
system has a worse behavior with relation to the initial system. This discrepancy
is related to the compromise between this and other objective functions.

(d) Steering ratio [Front]: in the same manner as the previous item, the steering ratio
was set to be maintained from the baseline, however, this objective is obviously
worse than the initial system’s, once the initial system is the target. The result for
this objective is shown in Figure 75d. Moreover, the optimized system indicates
that the result yields a progressive steering ratio with relation to the steering
wheel angle, which can be advantageous on some cases where the tires’ M; are
inverted for high slip angle values.

5.8 RESULTING SYSTEM

Despite that the GA does not need an initial guess solution, the optimized system
is compared to the baseline in this work. The optimization yielded an interesting solution
with non-intuitive peculiarities, demonstrated in this section. The resulting set of pickup
points and their absolute variation between the optimized and the initial systems is
shown in Table 22.

Moreover, the systems are visually compared in Figures 76, 77 and 78. As
illustrated, the optimization algorithm was able to explore different regions of the design
space, usually ignored by a human. The resulting system is also feasible in terms of
manufacturing. The packaging restrictions need to be further investigated.

It is shown by Figure 77b that the outer ball joints of the upper and lower wish-
bones are really close to the rim limits, if not exceeding them. Thus, another optimization
could be run with a narrower design space, once the main variables are known.

Figure 78 shows that the optimized system has crooked wishbone axes on the
top view. This is a great proof that the optimization can search for different topologies
which are very unlikely to be designed by humans. Also, this case study does not
comprise the actuation system optimization.

In addition, a force analysis should be run in both systems to investigate the
load paths. The steering system position on the optimized system is concerning, once
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Figure 75 — Steering motion evaluation objectives.

7 —— Objective 1.0
Baseline
. =6 Optimized
08
5
i
=
w4 0.6
H )
g 0.4
¥
2
1 0.2
0
0.0
-300 -200 -100 0 100 200 300
Steering Angle [deg]
(a) Ackerman Angle [Front]
-=- Objective 10
60 Baseline
=>¢ Optimized
_ 50 0.8
E
E
& a0
3
2 08,
£ x 5
B 2
8 2 0.4
£
2
5
£ 10
0.2
0
-10 0.0
-300 ~200 -100 0 100 200 300

Steering Angle [deg]

(¢) Mechanical Trail [Front Left]

—=— Objective

1.0
Baseline
¢ Optimized
4
—_ 0.8
5
£
g
2 °e,
£ 5
s 2
2
f [} 0.4
2
E
£
(8]
-2 0.2
0.0
—300 —200 -100 [} 100 200 300
Steering Angle [deg]
(b} Camber Angle [Front Left]
1.0
15
0.8
14
R 06
2 £
b ]
n 0.4
12
0.2
11 —8— Objective
Baseline
=>¢ Optimized
0.0

—300 —200 -100 100 200

]
Steering Angle [deg]

(d) Steering Ratio [Front]

Source: Author (2021)

300

it could generate bending moments on the steering rack and furthermore generate

undesired mechanical issues.
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Table 22 — Optimized system pickup points.

Point name X Y Z| AX AY  AZ | Units

Front suspension
CHAS lower_aft_I -250.9 455.3 136.9 -1.6  39.8 -9.8 | mm
CHAS lower_fore_| 143.3 2229 823 58 -194.0 -27.7 | mm
CHAS _tie_| -195.9 3742 163.6 | -260.9 -98.2 -76.4 | mm
CHAS_upper_aft_I -120.3 417.2 270.4 -0.0 -143.1  -94.7 | mm
CHAS_upper_fore_| 100.5 366.3 256.3 18.3 -186.9 -196.3 | mm
UPRI_lower_| -11.8 790.9 210.5 -9.8 -29.2 65.1 | mm
UPRI_tie_| -170.5 676.5 297.6 | -281.4 -110.4 9.7 | mm
UPRI_upper_| -60.4 705.9 4754 6.2 -46.6 29.7 | mm

Rear suspension
CHAS lower_aft I -2837.6 343.1 1108 | -10.3 -883 -14.8 | mm
CHAS lower _fore | -2443.7 374.6 193.0 10.6 -63.2 -1.6 | mm
CHAS _tie_| -2720.0 308.0 178.9 96.5 -127.0 -70.0 | mm

CHAS_upper_aft_| -2809.8 4312 367.1 | -483 -110.3 -78.5| mm
CHAS_upper_fore_| -2427.8 4325 328.0 239 -1140 -61.4 | mm

UPRI_lower_| -25698.0 803.9 207.6 | -24.9 11.3 24.3 | mm
UPRI_tie_l -2688.0 714.1 242.3 920 -96.0 -28.6 | mm
UPRI_upper_| -2556.7 747.2 480.9 35.7 -214 26.8 | mm

Source: Author (2021)

Figure 76 — Suspension optimization comparison (Front View).

(c) Baseline [Rear] (d) Optimized [Rear]
Source: Author (2021)
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Figure 77 — Suspension optimization comparison (Side View).

(a) Baseline

(b) Optimized
Source: Author (2021)

Figure 78 — Suspension optimization comparison (Top View).
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6 CONCLUSIONS

This work shows that suspension kinematics design and optimization is an ex-
ceptionally complex task and therefore demands too much time and resources. Further-
more, the multi-objective nature of this type of problem can lead to an overwhelming
design process if done manually, as the objectives are sometimes controversial.

The optimization process using GA proposed in this work is an exceptional
shortcut for the design process of a new suspension mechanism or an improved version
of an existing one. Even though the optimization can be computationally demanding
depending on the number of objectives and how broad is the design space, it can
reduce weeks of workload to a few hours of computational time.

Despite that the GA proved to accelerate the iterative design process, its setup
can be staggering for novice suspension engineers who need to deal with multiple
objectives that have different scaling and weighting functions. Moreover, the user needs
to know not only the kinematics weights and scaling factors, but also its limitations
and the project’s packaging restrictions in order to perform a successful optimization.
The automatic determination of weight functions and scaling factors is a suggestion
for future work. Removing this responsibility from the user can after all provide a more
efficient optimization setup and lead to better results.

The stochastic nature of the EMOO makes it a powerful tool to overcome local
minima that may happen along the evolution process. On the other hand, it can yield
different results for the same set of objectives and design variables. Thus, the user can
run the same setup optimization several times and possibly gather different results.

In addition, the GA has a quite complicated setup process that influences heavily
on the results quality and search efficiency. An automated setup process based on the
design variables and objectives is suggested for future work. Likewise, different design
space geometries, such as cylinder, ellipse and 3D CAD models are also suggested to
define the design space along with exclusion regions.

A penalty system can also be implemented in future versions of the GA, allowing
the objectives and design variables to be described in more detail. Different crossover
and mutation operators could be exploited too as a solution to the computational time.

Ultimately, the same process can be extended to dynamic analyses, once it re-
quires very few adaptations. In order to achieve the dynamic analysis — as for example
a virtual 7-post rig — a multi-body solver implementation is suggested.
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APPENDIX A - KINEMATIC OUTPUTS CALCULATIONS

The wheel axis vector a = [ay, ay, az]T is defined by:

where T; and T, are the inner and outer wheel axis points, denoted in this work as
TIRE_axis_inner_<side> and TIRE_axis_outer_<side> respectively, where <side> is
substituted by "I" and "r", identifying left or right side of the system, respectively. Through
the definition of the wheel axis &, the camber angles on the left and right wheels, C; o4
and Cpjgnt, are given by Equation (41) and Equation (42), respectively.

Tt az
Cleft = 5 ~arccos ;= T (41)
7T
Chight = — 5 —arccos ;= H H (42)

where the vector a is the wheel axis vector corresponding to the given side, left or right.
Moreover, the left and right toe angles 6; and 6g are defined by Equation (43) and
Equation (44), respectively.

o = T _arccos X Ax (43)
2 el
Sp = —(g areeos 12 ||) (44)

Thus, the average steering at a given axle is:

=0, +9
dAvg = % (45)

The Ackerman angle 8 5 is given by:
OAck =0 —0R (46)

The steering ratio value is linearized by a secant method. The steering system
is displaced by AS = +£0.1°. The steering ratio a |s given by:

0S  AS (47)
NVavg  Adayg
where Ad 4 is given by:
AéAvg = 6ng - 6jﬁ-\vg (48)

where 6Avg and 6Avg are the 6 4,4 calculated when the system is at the steering position
displaced by —0.1° and +0.1° from the reference position, respectively.



APPENDIX B - PARAMETRIC ANALYSIS DATA

Table 23 — System points used in parametric analysis data.

Point name X(mm) Y(mm) Z(mm)
TIRE_axis_inner_| 0.0 743.0 290.0
TIRE_axis_outer_| 0.0 997.0 290.0
TIRE_virtual_contact_patch_lI 0.0 870.0 0.0
TIRE_contact_patch_I 0.0 870.0 0.0
TIRE_virtual_gnd_| 290.0 870.0 0.0
CHAS_coil_over_| -250.0 450.0 700.0
UPRI_lower_I 47.0 780.0 150.0
CHAS_upper_aft_I 0.0 450.0 430.0
CHAS lower fore | 30.0 390.0 160.0
UPRI_upper_I -45.0 730.0 460.0
CHAS _lower_aft_I -250.0 390.0 162.0
CHAS _upper_fore_| -250.0 470.0 432.0
CHAS tie_| 68.3 208.0 238.3
UPRI_tie_I 133.9 750.0 191.3
VIRT_coil_over_outer_| -200.0 650.0 450.0
NSMA_attachment_| -200.0 650.0 450.0

Source: Author (2021)
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APPENDIX C - CASE STUDY BASELINE SYSTEM DATA

Figure 79 — Full set of parameters of the baseline suspension used in the case study
extracted from OptimumKinematics Excel exporter.

) Left Right
Point Name
X Y z X ¥ z
CHAS_LowFor 137.456 416.950 110.042| 137.456 -416.950| 110.042
CHAS_LowAft -249.314| 415.522 146.651| -249.314 -415.522| 146.651
Double A-Arm CHAS UppFor 82.217| 553.218 452.504| 82.217 -553.218| 452,594
CHAS_UppAft -120.324 560.309 365.183 -120.324 -560.309 365.183
UPRI_LowPnt -1.973| 820.133 145.399| -1.973 -820.133| 145.399
UPRI_UppPnt -66.624| 752.534 445.662| -66.624 -752.534| 445.662
CHAS TiePnt 654.998| 472.384 240.045| 64.998 -472.384| 240.045
UPRI_TiePnt 110.913 786.942 287.943 110.913 -786.942 287.943]
. Left Right
Point Name = = = = = =
Direct CoilOver
NSMA_AttPnt_L -23.454 716.320 207.556 -23.454 -716.320 207.556|
CHAS AttPnt L -35.285| 520.874 496.428| -35.285 -520.874| 496.428
Rack Pinion Steering Ratio 60.400|
Point Name Left Right
Half Track 868.517 868.517
Longitudinal Offset 0.000) 0.000
Lateral Offset 0.000| 0.000
Vertical Offset 0.000| 0.000
Static Camber 0.000| 0.000
Static Toe 0.000| 0.000
Rim Diameter 457.200 457.200
Tire Diameter 663.000 663.000
Tire Width 300.000 300.000
(a) Front Suspension
. Left Right
Point Name
X Y z X Y Z
CHAS_LowFor -2454.305 437.806 194.573| -2454.305 -437.806| 194.573
CHAS_LowAft -2827.300 431.400| 125.552 -2827.300 -431.400 125.552
CHAS_UppFor -2451.692 546.461 380.424 -2451.692 -546.461 380.424
Double A-Arm CHAS_UppAft -2761.554 541.538 445.610| -2761.554 -541.538| 445.610
UPRI_LowPnt -2573.089 792.640 183.284| -2573.089 -792.640| 183.284
UPRI_UppPnt -2502.375 768.562 454.000 -2502.375 -768.562 454.090|
CHAS_TiePnt -2816.500 435.000| 248.852 -2816.500 -435.000 248.852|
UPRI_TiePnt -2780.000 810.131 270.854| -2780.000 -810.131 270.854
Tierod Attachment Chassis
. Left Right
Point Name = 5 = = = =
Direct CoilOver
NSMA_AttPnt_L -2562.000 707.000 222.352 -2562.000 -707.000 222.352]
CHAS AttPnt L -2636.998 505.822 661.113| -2636.998 -505.822| 661.113
Point Name Left Right
Half Track 847.043 847.043
Longitudinal Offset -2630.000 -2630.000
Lateral Offset 0.000) 0.000
Vertical Offset 0.000| 0.000
Static Camber 0.000| 0.000
Static Toe 0.000| 0.000
Rim Diameter 457.200 457.200
Tire Diameter 690.600 690.600
Tire Width 310.000| 310.000

(b) Rear Suspension
Source: Author (2021)
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