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RESUMO

O design de cinemática de suspensão pode ser um processo desafiador. Em processos
de desenvolvimento para veículos de competição, onde a agenda de desenvolvimento
é estreita e a qualidade da cinemática é crucial, o trabalho requer ainda mais maturi-
dade. O designer de suspensão precisa conciliar os requisitos de empacotamento dos
componentes no veículo e percepções do piloto enquanto tenta fazer o melhor uso dos
pneus em todo tempo possível. Recursos computacionais estão constantemente se
tornando mais baratos e podem ser utilizados para resolver esse problema relacionado
à cinemática auxiliado por ténicas de otimização. O processo de otimização pode gerar
novas soluções de engenharia que não são óbvias ao entendimento humano e difi-
cilmente seriam alcançadas pelo time de engenharia. Dada a natureza multi-objetivo
desse tipo de problema e a falta de convexidade entre as funções objetivo, esse tra-
balho propõe a integração de uma otimização multi-objetivo evolucionária a um solver
cinemático de suspensão. A otimização acarreta em um conjunto de soluções sub-
ótimas que são colocadas em ordem por um conjunto de funções-peso e fatores de
escala. Esse processo oferece uma excelente razão tempo-benefício, uma vez que
potencialmente pode reduzir semanas de trabalho para algumas horas de esforço com-
putacional. Esse trabalho ilustra o poder do processo de otimização com um estudo de
caso onde uma suspensão do tipo Duplo-A é completamente sintetizada pelo algoritmo
de otimização, que é composto por 19 funções-objetivo divididas entre 4 movimentos
diferentes.

Palavras-chave: Suspensão. Cinemática. Otimização. Algorithmo genético.



ABSTRACT

Suspension kinematics design can be a challenging process. In racing and motorsports
development processes, where the design schedule is tighter and the quality of kine-
matics are critical, the job requires even more maturity. The suspension designer must
conciliate vehicle packaging and driver perception requirements whilst trying to make
the best use of the tires at all possible times. Computational resources are constantly
getting cheaper and can be used to solve the kinematics issue aided by optimization
techniques. The optimization process can generate new engineering solutions that are
not obvious to the human understanding and would be hardly achieved by the engi-
neering team. Given the multi-objective nature of this type of problem and the lack of
convexity between the objective functions, this work proposes the integration of an Evo-
lutionary Multi-Objective Optimization (EMOO) to a suspension kinematics solver. The
optimization yields a set of sub-optimal solutions that are ranked by a set of weighting
functions and scaling factors. This process offers an excellent time-to-benefit ratio, once
it can potentially reduce weeks of workload to a few hours of computational effort. This
work illustrates the power of such optimization process with a case study where a Dou-
ble A-Arm suspension system is completely synthesized by the optimization algorithm,
which is composed by 19 objective functions split in 4 different movements.

Keywords: Suspension. Kinematics. Optimization. Genetic algorithm.
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1 INTRODUCTION

Automobile racing is structured in many categories. No matter how distinct these

modalities are, there are common grounds to all of them. In general, the objective in

racing is to cover a specific track length or circuit in the shortest possible time (SEWARD,

2014).

As Seward (2014) affirms that, in order to accomplish this objective, the driver

must accelerate the vehicle to the highest speed, break as late as possible and in the

smallest distance and also spend less time in cornering while maximizing the exit speed.

This implies that the competitive driver will spend no time cruising and will exploit the

whole vehicle potential.

Every innovation in racing vehicle development has resulted in the expansion

of the acceleration limits of the vehicle and its exploitation through improvements of

control and driving techniques (MILLIKEN, W. F.; MILLIKEN, D. L., 1995). Under this

perspective, the steering and suspension systems play a vital role on the success of a

new racing prototype, since the steering system is the only real feedback source to the

driver and the suspension movements have an affect on the tires’ performance, thus,

the overall vehicle’s performance

William F. Milliken and Douglas L. Milliken (1995) point that the suspension de-

velopment must be done hand-to-hand with the tires and their characteristic behaviours,

whereas the suspension must maintain the tires in optimal contact with the ground at

all possible times. Using mathematical models that describes the tire behaviour, it is

possible to optimize the suspension to maximize the forces generated at the tire-ground

contact in each one of the axles, which, therefore, expands the limits of acceleration,

both lateral and longitudinal.

Many tire models have been developed during the last century, each one with

its own specific purpose. Different levels of precision and complexity can be introduced

in the distinct use categories, involving completely different approaches (PACEJKA,

2006).

A racing vehicle should be, ideally, developed to enhance the driver-vehicle

system performance. Unfortunately, to the moment, there are no easily exploitable

driver models. That is why the optimization of a racing vehicle refers mostly about the

vehicle itself (MASTINU et al., 2007).

Mastinu et al. (2007) clarify that one of the biggest technical challenges is to

achieve maximum speed in cornering, while tire forces in front and rear axles are

balanced to maintain vehicle handling. Due to this, the adjustment of tire characteristics

and suspension behaviour is of crucial importance.

Even though some real world problems can be reduced to a single objective,

it is really difficult to define all of the criteria in function of a single objective. The
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establishment of multiple objectives usually gives a clearer description of the problem

(ABRAHAM; GOLDBERG, 2006).

According to Abraham and Goldberg (2006), the Multi-Objective Optimization

(MOO) is available for at least two decades and its application in real problems is

continuously increasing. Evolutionary algorithms can be employed as tools of MOO and

are distinguished by a population of different solutions, whose reproduction operator

allows the process of combining existing solutions to generate new ones.

The suspension system and its influence on tire behaviour and driver reactions

is far too complex to be given a single objective on an optimization process. Under this

point of view, this work proposes the implementation of an Evolutionary Multi-Objective

Optimization (EMOO) algorithm as a tool to improve an existing system or even design

a brand new one.

1.1 OBJECTIVES

1.1.1 Main objective

Present an application capable of analysing and optimizing the kinematic be-

haviour of a vehicle’s suspension system.

1.1.2 Specific objectives

• Implement a kinematics analysis software capable of handling tridimensional

suspension systems,

• Model a Double A-Arm suspension system using the implemented software,

• Implement an EMOO,

• Develop a case study on the optimization of a whole vehicle kinematics,
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2 THERORETICAL FOUNDATION

This chapter covers the main topics of fundamental importance to the adequate

comprehension of the theme. It is initiated with the elucidation of the topics through

the justification and necessity of the proposed project in automotive applications. The

chapter deepens on tire behavior and its correlations with the suspension and steering

system, finishing with an overview of optimization methods and the detailing of the

Genetic Algorithm (GA), used in this work.

2.1 THE PROBLEM IMPOSED BY RACING

The technical global objective in motorsport is the accomplishment of a vehicular

configuration capable of covering a given track extension in minimum time or at maxi-

mum average speed, when operated manually by a driver that uses techniques under

his or her limitations. An important principle of racing is that the vehicle’s speed should

never be constant, if not limited by regulation or the vehicle’s top speed (MILLIKEN,

W. F.; MILLIKEN, D. L., 1995).

The problem imposed by racing, according to William F. Milliken and Douglas

L. Milliken (1995), can be synthesized as the extension of the drive-vehicle system

capabilities to spend the most possible time at the friction limits imposed by the contours

of the G-G diagram. The diagram’s limits are defined by the powertrain and tire forces,

disposing of any load transfer effects, suspension movements, balance and brake bias.

These simplifications swell the grip potential, establishing a limit, given on the diagram.

Thus, the G-G diagram works as an upper boundary of the vehicle’s grip factor, where

the engineers and the driver must work together to exploit the inner region. An example

of a G-G diagram is given in Figure 1.

This way, the system can be evaluated through the analysis of this diagram’s

limits. Conceptually, the friction envelope can be applied to the vehicle by collapsing

all four wheels in a single equivalent contact point. In fact, a real vehicle should not be

able to constantly reach the limits imposed by the G-G diagram.

The diagram presented on Figure 1 show in brighter lines the frontier that lim-

its the vehicle’s accelerations. It is possible to observe that the upper portion, which

represents the longitudinal acceleration of the vehicle is limited by the powertrain char-

acteristics. The disarranged lines represent the accelerometer channel’s data on X and

Y axes. Therefore, the suspension system exploits the delimited area on the G-G dia-

gram, once it optimizes the use of the tires. The more disperse the data in the diagram,

the better the driver is using the available tire grip of the car.

The pair analysis, presented by William F. Milliken and Douglas L. Milliken (1995)

is a more practical alternative to the development of new racing prototypes when com-

pared to the G-G diagram. Normally the objective of this approach is to maximize the
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Figure 6 – Fitted Magic Formula tire model (SAE Coordinates).

Source: Author (2021)

Furthermore, the kinematic design of the suspension needs to take into account

the effects that will be introduced by its elastic elements, such as springs and anti-roll

bars. Highly influenced by the position of the instant centers influence, the load transfer

distribution and response time need to be estimated prior to the design phase.

2.3.1 Motions

The main vehicle movements controlled by the suspension are heave, pitch and

roll. Defined by Dixon (2009), pitch is the angular movement of the vehicle around the

Y axis, with positive values for the front lower than the rear, by the ISO coordinates,

knowing the Y axis points to the left of the car.

The roll movement is defined by the rotation of the vehicle around the X axis,

longitudinal to the vehicle, where in both SAE and ISO coordinates the direction of the

X axis points towards the travel direction. Therefore, for a vehicle with positive roll, the

right side is lower than the left. Figure 7 shows the Cartesian axes and the relative

movements of the chassis in the ISO coordinate system.

The relative movements described above are highly dependent on the vehicle

suspension system. Usually, the pitch is caused by longitudinal accelerations, while the

roll movement is provoked by lateral accelerations. However, due to the coupling and
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as bump steer (DIXON, 2009).

Figure 8 – Camber and toe angle definitions.

(a) Camber angle.

(b) Toe angle.

Source: OptimumG (2019)

In agreement with Jazar (2013), toe settings affect three major performances: tire

wear — hence, tire temperature — , straight-line stability and corner entry handling. For

minimum tire-wear and power loss, the desired toe is zero, whilst different toe setups

can be used in racing applications to the driver’s and the performance engineer’s desires

accordingly.

2.3.3 Instant centers of rotation

In planar kinematics, at a given instant, the velocity of any point of the body can

be expressed as a rotation around a given point. Similarly, in spatial kinematics, the

same can be assumed for a body rotating around an axis. These entities are called the

instant center and instant axis of rotation (JAZAR, 2013).
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The instant centers are analysed within the kinematics studies, once they play

a big role on vehicle handling and ride comfort (PAPAIOANNOU et al., 2020). This

happens mostly because of the said geometric and elastic load transfers, as a result of

the difference of the suspension elements’ stiffness and load paths.

In accordance to the instant axis definition, the roll axis is the axis around which

the vehicle’s body rotates in an axis roughly perpendicular to the ground’s X axis.

Similarly, the pitch axis is the axis around which the vehicle’s body rotates in an axis

roughly perpendicular to the ground’s Y axis. These axes are represented in Figure 9.

The "classic" method to calculate the roll center is shown by William F. Milliken

and Douglas L. Milliken (1995), Jazar (2013) and Seward (2014). However, it is im-

portant to note that the concept of instant centers — that later will be expanded to

roll and pitch centers — are not more than a simplification of reality for better human

understanding. Dixon (2009) points out that the idea of a single roll center for the sus-

pension is just an approximation. This concept has been criticized in the past but is

still used. Originally, the roll center idea was essentially a simplification to facilitate the

manual calculation of the vehicle’s lateral dynamics. That purpose diminished with the

introduction of computers.

Extending the roll center to the lateral view, it’s possible to calculate the pitch

axis, which correlate to the anti-features: anti-dive, anti-squat and anti-lift. Similarly to

lateral dynamics, the anti-features change the amount of load going through the springs

on longitudinal dynamics. William F. Milliken and Douglas L. Milliken (1995) show that,

for example, anti-dive reduces the bump deflection on forward braking while anti-squat

reduces the amount of rebound travel on forward acceleration on rear wheel drive cars.

However, such geometries drastically increases the load on the suspension elements,

such as the wishbones.

Even though they are widely used, specially on aerodynamic cars, the usage

of these features can yield negative effects in some cases, such as roughness on

very wavy roads, vibration during braking (DIXON, 2009). In this work, the anti-dive,

anti-squat and front and rear anti-lift are defined as following.

2.3.3.1 Anti-Dive

The anti-dive calculation is represented in Figure 10 and defined in Equation (9).

%AD = %BTF

L tan θFD

hCG
(9)

where %AD is the Anti-Dive percentage and %BTF is the braking torque distribution in

the front axle, in percentage as well. The remaining variables are defined in Figure 10.
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Figure 10 – Anti-Dive definition.

Source: OptimumG (2019)

Figure 11 – Anti-Lift on front definition.

Source: OptimumG (2019)

where %ALF is the Anti-Lift percentage in the front axle and %DTF is the driving torque

distribution in the front axle, in percentage as well. The remaining variables are defined

in Figure 11.

Similarly, for the rear axle, the anti-lift calculation is geometrically represented in

Figure 12 and defined in Equation (11).

Figure 12 – Anti-Lift on rear definition.

Source: OptimumG (2019)

%ALR = (1 – %BTF )
L tan θRL

hCG
(11)

where %ALR is the Anti-Lift percentage in the rear axle. The remaining variables are

defined in Figure 12.
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2.3.3.3 Anti-Squat

Lastly, the anti-squat calculation is represented in Figure 13 and defined in

Equation (12).

Figure 13 – Anti-Squat definition.

Source: OptimumG (2019)

%AS = (1 – %DTF )
L tan θRD

hCG
(12)

where %AS is the Anti-Squat percentage in the rear axle. The remaining variables are

defined in Figure 13.

As stated by Mohan et al. (2008), the "classic" method of roll and pitch centers

calculation is limited to the suspension type and the omission of the steering (toe) angle

of the wheel. Therefore, this work uses the approach presented by this later method.

If the roll center happens to coincide with the suspended mass center of mass,

there is no moment, therefore, the vehicle does not roll. In an intuitive way, bringing

the roll center closer to the center of mass is not recommended, due to the fact that

this type of geometry causes high scrub values, increases the non-damped loads in

the suspension linkages and potentiates the phenomenon known as jacking (SEWARD,

2014), introduced in the next item.

2.4 THE DOUBLE A-ARM SUSPENSION

There are many construction types for an independent suspension, however,

double A-arm and McPherson strut suspensions are the simplest and the most common

designs. Kinematically, the double-A arm or double wishbone system — also called

short-long arm — is a spatial four-bar mechanism, with the chassis being the ground

link and the coupler being the wheel set (JAZAR, 2013).

The actuation system can also assume different configurations, such as direct ac-

tuation or push/pull rods. Figure 14 shows an example of double wishbone mechanism

with direct actuation.

Even though there are many types of suspension system, this work will focus

on the double wishbone, because it is the most widely used in racing applications. It is
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Figure 14 – Double Wishbone mechanism with direct coil-over actuation.

Source: Author (2021)

also versatile, which means that it not only works for both front and rear axles, but also

allows the designer to combine different actuation and anti-roll bar types with the same

base system.

In a double A-arm suspension system, the steering system’s properties are more

dependent on the connections of the steering mechanism and can be separated from

the basic system of the suspension arms. With this, the suspension arms – also known

as A-arms or wishbones – are used to control parameters such as roll center, camber

gain, anti-dive and caster variation (DIXON, 2009).

2.5 RACK AND PINION STEERING SYSTEM

The steering mechanism demonstrated in this work will be the rack and pinion,

once they are invariably used in competition vehicles. The usual requirement for the

steering system is that it has an accurate and quick response system, so that the driver

can reach the limiting stops in less than half a turn on the steering wheel. However, this

parameter can result in the driver making great efforts (SEWARD, 2014).

In agreement with Dixon (2009), the directional control of a vehicle is usually

carried out by steering the front wheels, that is, rotating the wheels around a roughly

vertical axis. Wheel steering is mainly the result of the steering wheel movement per-

formed by the driver, with a smaller portion attributed to the suspension characteristics,

such as the bump steer.
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Figure 16 – King Pin geometry and reference.

(a) King pin inclination and scrub radius references.

(b) Caster angle and mechanical trail references.

Source: OptimumG (2019)
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packaging and performance requirements (MILLIKEN, W. F.; MILLIKEN, D. L., 1995).

The factors of fundamental consideration are:

• The higher the king pin inclination, the greater the effect of steer jacking. For

example, a high king pin inclination with a caster angle equal to zero, the vehicle

is lifted when steered to either sides,

• The king pin inclination influences in the camber variation by steering, also known

as steer-camber,

• The greater the spindle length, the greater the driver sensibility, through moments

on the steering wheel, to variations on the track,

• Longitudinal forces on the tires, originated by breaking or traction, generate mo-

ments around the steering axis and tend to change the direction of the tire force,

inducing an angle of convergence proportional to the compliance of the system.

As for the caster (or mechanical to some authors) trail, shown in Figure 16b, the

centroid of the tire-ground contact point follows behind the steering axis through the

side view. The greater this distance, the greater the lever arm between the steering

axis and the tire, consequently, undergoes greater moments induced by lateral forces

generated in the tires (MILLIKEN, W. F.; MILLIKEN, D. L., 1995). Some considerations

when choosing the caster angle and trail are:

• The greater the trail, the greater the steering efforts,

• The caster angle, like the king pin inclination, causes the chassis lift or jacking.

However, unlike king pin inclination, steering has an asymmetric behavior in rela-

tion to this effect, that is, while for one direction of steering the vehicle raises on

one side, for another, the same side descends,

• As well as shown for king pin inclination, the caster angle has an influence on the

steer-camber,

• The self-aligning torque can effectively change the mechanical trail and the driver’s

feeling about the feedback provided by the tires,

• The mechanical trail, when measured perpendicularly, gives a better representa-

tion of the moments generated by the tires around the steering axis.

2.5.2 Tie rods location and the Ackerman geometry

The position of the tie rod relative to the wheel set influences parameters such

as the bump steer, Ackerman geometry and steering ratio. These properties will be
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2.5.3 Steering ratio and the C-Factor

In addition to changing the Ackerman effect, the position of the steering housing

and the tie rod outer joint change the steering ratio, once the movement of the mecha-

nism is non-linear. The steering ratio is defined as the ratio between the steering wheel

angle and the corresponding wheel steering angle. For parallel systems this value is

the same for the inner and outer wheels, since the sides are symmetrical, however,

the steering ratio value will be different between the steering wheels in Ackerman and

reverse Ackerman geometry (MILLIKEN, W. F.; MILLIKEN, D. L., 1995).

Another convenient definition for the steering system, proposed by William F.

Milliken and Douglas L. Milliken (1995) is the c-factor, which translates the linear amount

that the rack moves for each rotation on the steering wheel and is given by equation

Equation (14).

cfactor =
∆DSR

∆ϕp
(14)

where cfactor is the c-factor, DSR is the rack travel (given in mm or in) and ϕp is the

pinion rotation in revolutions. The standard definition units definition for the cfactor is

mm/rev . This number is very useful to determine the pinion size at the design stage

and also serves as a parameter for defining commercial steering racks.

Pointing out the geometric parameters of the suspension and their correlations,

the need for a methodology or process that assists in understanding the kinematic and

dynamic behaviour of the system is striking.The problem is scaled when the objective

is to optimize all the variables described and establish a commitment to all of them.

Thus, the use of computational tools for analysis and optimization is justified in the

development of new suspension and steering mechanisms.

2.6 NUMERICAL METHODS ON SPATIAL KINEMATICS

This section presents two approaches to solve and analyze spatial mechanisms.

The first one is a method based on distance constraint between points that are con-

tained in a single set and the other is the generic multi-body approach, following the

work of Nikravesh (1988). Both methods rely on the Newton-Raphson root-finding algo-

rithm, introduced next.

2.6.1 The Newton-Raphson algorithm

According to Boyd and Vandenberghe (2018), the Newton-Raphson algorithm

is a variation from the Gauss-Newton, for when the problem consists of a system with

n non-linear equations and n dependent variables. It is an iterative method and the
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Expanding this to the other coordinates and assuming a matrix form, yields:

∂ΦAB

∂q
=

⎡

⎢

⎢

⎢

⎢
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⎢
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⎢
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–2(zB – zA)

2(xB – xA)
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2(zB – zA)

⎤

⎥

⎥

⎥
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⎥

⎥

⎥

⎥

⎥

⎦

T

(19)

where q is the vector of generalized coordinates. Generalizing for this problem:

Φq =
[︂

∂Φi
∂q

]︂

(20)

Equations 18 through 20 show that it is rather easy to build a Jacobian matrix

for such a problem. Computationally, it takes only two floating points operations for

each item in the matrix. However, to be invertible, it must be a square, non-singular

matrix. Practically, the matrix becomes singular when there are redundant constraints

or when the constraints form a structure that does not allow any movement on the

independent coordinates. Generally, this method is stable for spatial kinematics and

converges quite fast, given the quadratic convergence rate provided by the Newton-

Raphson algorithm. Moreover, there are many modifications to this method that can

raise the convergence rate, thus, making the algorithm faster, specially for optimization

applications (MCDOUGALL; WOTHERSPOON, 2014).

This geometric approach to spatial kinematics is simple and has a straightfor-

ward implementation. However, when building a more complex system — such as a

suspension mechanism — , this method is not much intuitive from the developer per-

spective and can get really complex when complex joints — the universal or Hooke joint

for example — must be modelled. This ultimately ends up requiring a lot of testing mech-

anisms to ensure that the model represents reality. A feasible solution to these problems

is the multi-body approach, which has a solid theoretical background and is scalable.

This approach is briefly introduced next and derives from the work of Nikravesh (1988).

2.6.3 The multi-body approach to suspension kinematics

A mechanical system is defined as a collection of bodies in which some or all

of the bodies can move relative to one another. Such systems can be either simple

or complex. While motion of some systems can rely on a 2-dimensional plane, other

systems need a 3-dimensional modelling to provide exploitable results, such as a wheel

carrier-steering assembly (NIKRAVESH, 1988).

Nikravesh (1988) shows that a single body in space can be fully described with 6

independent coordinates — 3 translations and 3 rotations. Moreover, Euler Parameters

can be used to avoid singularities when rotating the bodies, adding one dependent
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variable to the body. The generalized vector of coordinates qi for body i represented

with Euler Parameters is denoted in Equation (21) (NIKRAVESH, 1988).

qi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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⎤

⎥
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[︄

ri

pi

]︄

(21)

where xi , yi and zi are the position components of the body i and e0i , e1i , e2i and e3i

are the Euler Parameters (scalar first). The vectors ri and pi represent the translation

components and the rotation respectively, in a more compact form. The Euler constraint

is given in Equation (22). This expression must be derived for each coordinate and

added to the Jacobian matrix for each body that composes the system. Thus, for a

system of m bodies, m Euler constraints shall be appended to the system of equations.

e2
0 + e2

1 + e2
2 + e2

3 = 1 (22)

The relative motion between two bodies will depend on the type of constraints

attributed to each body, as shown in Figure 22.

Figure 22 – Vector connecting two points Pi and Pj located on different bodies.

Source: Flores (2015)

These types of constraints modelling can be then combined to build virtual joints

that represent real world application joints. The two main constraints that form the

joints are parallel (or normal) constraints and the spherical constraint. The parallel

constraint is a constraint that specify that two vectors defined in different bodies remain

perpendicular at all times and its expression is given in Equation (23), which yields one

equation.
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Φ ≡ Φ(q) = 0 (25)

where q denotes the vector of body-coordinates defined in Equation (21) and Φ repre-

sents a function describing the kinematic constraints. Non-holonomic constraint equa-

tions in will not be discussed in this work. The iterative equation for the solution process

is given in Equation (26).

q(k+1) = q(k ) – Φq
–1Φ(q(k )) (26)

Generally, the multi-body approach is much superior and robust than the geomet-

ric one presented earlier in this work. It can also provide a better physical understanding

of complex mechanisms for the developer than the purely geometric approach, as it

consists of joints and bodies instead of just points and distances. The multi-body ap-

proach can also be extended with joint reaction forces, time-domain simulations, elastic

components and ultimately enhanced with flexible bodies.

On the other hand, the geometric approach is much simpler, easier to implement

and it is more efficient for small and simple systems, where only the kinematics are

analysed. This work uses the geometric approach, as it was derived from the solver of

a worldwide used suspension kinematics software, OptimumKinematics2.

2.7 OPTIMIZATION

When the engineer can simulate the physical behaviour of a project through

a validated model, the subsequent task is to determine the model’s parameters that

correspond to the desired performance of the problem. Normally these response char-

acteristics are conflicting, where making one better, worsens the other, which makes

necessary the search of a compromise between the different outputs (MASTINU et al.,

2007).

As stated in past sections, the project of a suspension system that holds the

ideal parameters cannot be described in a single objective. In single objective optimiza-

tions (SOO), the search space is well defined. When other input parameters result in

conflicting outputs, a single solution is non-existent, giving place to a set of possible

solutions of similar quality (ABRAHAM; GOLDBERG, 2006).

2.7.1 Design variables

In general, a mathematical system contains a set of parameters. The usual

optimization goal is to find the set of parameters that best suit a given set of objectives.

The optimization procedure changes the set of parameters in order to find the best
2 OptimumG, LLC, more information available at https://www.optimumg.com/software/

optimumkinematics/
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An optimal solution on a multi-objective optimization problem is a solution that

is not dominated by any other in the search space. This solution is not unique and is

denominated Pareto-optimal solution. The collection of all Pareto-optimal solutions form

the Pareto optimal set. A solution that is Pareto-optimal — also called non-dominated

solution — means that it is a solution that is not the worst solution in any objective and

yet is the best in at least one, with relation to any other solution in the set (ABRAHAM;

GOLDBERG, 2006).

The methods used to determine the Pareto optimal set can be based in many

optimization techniques. This work is focused on stochastic techniques, that is, it uses

random search to find the best solution for a set of objectives. Metaheuristics techniques

can also be used to find this solution and are introduced next.

2.7.3 Metaheuristics

Optimization problems can be separated in two basic types: discrete and contin-

uous. The arrival of metaheuristics brought the conciliation between these two domain

types, because they can be applied to every type of combinatorial problems and can be

expanded to continuous problems (DRÉO et al., 2006). The metaheuristics methods

have some common characteristics such as:

• They are, overall, stochastic, to counter the possibilities combinatory explosion.

• Generally, of discrete origin, establishing the advantage of being direct, once they

are independent of objective function gradient computation.

• Their common disadvantages are the difficulty of finding the optimal method pa-

rameters and the huge computational time.

Yet mentioned by Dréo et al. (2006), the methods are not mutually excluded,

since there is no way to evaluate the effectiveness of each one. Moreover, the emergent

tendency is the hybridization of different methods, to use the benefits of the specific

advantages of each approach, through the combination of their concepts.

Classical gradient-based iterative algorithms — such as Sequential Unconstrained

Minimization Technique (SUMT) and Sequential Quadratic Programming (SQP) — can

present the huge disadvantage of trapping the solutions in local minima, whilst meta-

heuristics allow the search mechanism to overcome these local minima, allowing the

acceptance of worse solutions, in order to find a global minimum (MASTINU et al.,

2007).

Some methods, like simulated annealing and tabu search, use the idea of neigh-

bourhood search that allows the algorithm to overcome the local minima region. The

local minima concept is shown through the function drawn on Figure 25.
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2.7.4.1 Fitness function

Also known as evaluation function, the fitness function associates one or multiple

fitness (depending if the problem is single or multi objective) values to each individual

in order to determine the number of times it will be selected, be it for reproduction or

for replacement. The quality of such function can greatly improve the efficiency of a

genetic algorithm (DRÉO et al., 2006).

Depending on the underlying implementation of the genetic algorithm and the

problem that is being solved, the fitness function may or may not correspond to an

objective function. Still, it is at least some kind of quality monitoring tool, once solutions

with better fitness values usually are preferred in the selection steps (ZÄPFEL et al.,

2010).

2.7.4.2 Selection operators

From one generation to another, in GA, the population is clustered in two distinct

groups: the reproduction group and the replacement group. One is not necessarily the

complement of the other. The reproduction group contains the individuals that will be

reproduced using the crossover and mutation techniques described later in this chapter.

The replacement group contains the individuals that will be removed from the

current population and will be replaced by the offspring generated by the reproduction

group. The groups are clustered using selection operators, which use their fitness

values as a parameter to select the individuals. The most used selection operators are

introduced next.

2.7.4.2.1 Truncation selection

The truncation selection is probably the simplest and most common selection

operator. It selects the n best individuals in the population, being n a parameter chosen

by the user. It can be easily implemented either for reproduction as for replacement.

This method can lead to fast convergence but may trap the solution in a local minimum

(DRÉO et al., 2006).

2.7.4.2.2 Deterministic Tournament

The deterministic tournament consists in choosing k individuals at random for

a tournament and choose the best one among them. In fact, there will be as many

tournaments as selected individuals when using deterministic tournament. As stated by

Dréo et al. (2006), this method can be applied for either reproduction and replacement.
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2.7.4.2.5 Generational replacement

The generational replacement is the simplest replacement selection. The whole

population gets replaced, such as that the offspring contains only child individuals.

According to Dréo et al. (2006), the canonical GA uses a generational replacement.

2.7.4.2.6 Elitist replacement

An elitist strategy consists in keeping at least the best individual through genera-

tion g to generation g + 1. There are various elitist strategies in GA, but, in accordance

with Dréo et al. (2006), the current alternatives are those that keep the parents from

generation g in generation g + 1.

2.7.4.3 Crossover methods

Generally, a crossover operator uses two parents to generate one or two off-

spring. Of stochastic nature, they can provide different results when applied to the

same set of parents. Since the evolutionary algorithms (EA) are not subjected to bio-

logical constraints, more then two parents can be matted to generate a new individual

(DRÉO et al., 2006).

Due to the continuous nature of the search space, a purely uniform crossover

would converge the solution too quickly and would be extremely dependent on popula-

tion initialization. Uniform crossover is effective only when high mutation rates are used

as well. The BLX-α crossover (DRÉO et al., 2006) variations are more effective when

working with continuous problems. Both methods are explained in detail next.

2.7.4.3.1 Uniform crossover

The uniform crossover is the simplest recombination method. It exchanges the

design variables values from one individual with another to generate a third. The main

problem with this crossover is, with a low mutation rate, the solution converges quickly,

and the individuals become the same in a fast pace (DRÉO et al., 2006). Figure 28

shows an individual’s genome of genes x ′ and y ′ resulting from an uniform crossover

from a parents with genes x and y .

2.7.4.3.2 Linear BLX-α crossover

Also known as arithmetic crossover and intermediary recombination, the linear-

BLX-α crossover creates a new individual along a line that connects the parent’s design

variables. An alpha constant is added to the operation in order to exploit the neighbour-

hood (DRÉO et al., 2006). It is geometrically easy to represent and implement, which
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2.7.4.4.1 Uniform mutation

A uniform mutation adds to an individual a random value of uniform probability,

in a hyper-cube. This method can trap the solution to local minima, if the peak on the

objective function is broader then the hyper-cube edge lengths.

2.7.4.4.2 Gaussian mutation

Mentioned by Dréo et al. (2006), the Gaussian mutation is the most widely used

for GA continuous problems solving. It adds to an individual a Gaussian random vari-

able, with zero-average and a user-defined standard deviation, given by the Gaussian

probability distribution. Other Gaussian methods can also be implemented, but since

they are an extension to this one, they are not introduced on this work.

2.7.4.5 Selection pressure

During the evolution of the population, it is important to monitor some statistics to

have a notion of what is happening during the optimization. The EMOO is a rich source

of statistical data, such as population mean fitness, fittest individual fitness, selection

pressure and more.

The selection pressure is a great indicator of the population’s diversity, as defined

by Equation (29). It measures how close the population is to the best individual.

ps =
g0
ḡ

(29)

where ps is the value of selection pressure, g0 is the best — lowest in value — overall

fitness and ḡ is the average fitness of all individuals in the population.

When the selection pressure comes close to 1, that means that all individuals

are very alike or even have the same configuration. The individuals having the best

fitness values are reproduced more often than the others. If the variation operators,

such as mutation, are inhibited, the best individual shall reproduce faster than the

others until the whole population is equal or nearly equal to it. This is caused by high

selection pressures. With a high selection pressure, there is a great risk of premature

convergence (DRÉO et al., 2006).

2.8 STATE OF THE ART

In literature, different approaches have been employed for this problem: mathe-

matical programming and metaheuristic methods. In general, mathematical program-

ming methods offer a guarantee of optimality while metaheuristic methods do not.

Sancibrian et al. (2010) introduces a synthesis method based on gradient determina-

tion using exact differentiation to search for optimal solution. The proposed method
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formulates the objective function as a measurement of the synthesis error between

the generated and desired mechanisms. Seven functional parameters are considered

in the optimization. Raghavan (2004) proposes an algorithm for the synthesis of the

tie-rod joints location in a suspension, in order to achieve linear changes in toe-angle

during jounce and rebound. On the other hand, heuristic methods can handle large and

complex optimization problems while mathematical programming methods can face con-

vergence problems when the size of the optimization problem increases (RODRIGUEZ

et al., 2018).

Arikere et al. (2010) present a MOO approach for the design of a double wish-

bone suspension. Three multi-objective optimization methods are proposed: the weighted-

sum method, the min-max method and Multi-Objective Genetic Algorithm (MOGA).

Pareto-optimal solutions to the mechanism synthesis problem are generated. Thus,

the designer can choose from the set of solutions, considering the minimization of two

functional parameters: camber and toe. Cheng and Lin (2014) apply robust optimiza-

tion based on particle swarm optimization for the double wishbone suspension design.

Multi-objective approach is employed, and a set of Pareto solutions is proposed. Afkar

et al. (2012) propose a GA for the optimization of ride comfort, handling and stability

of vehicle. Moreover, sensitivity analysis and variations of geometric parameters of

suspension system resulted from bump and vehicle roll inputs are presented for the

optimal case.
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3 METHODOLOGY

This chapter approaches the conception and development process of the kine-

matic analysis and optimization software. It starts with the problem highlight, elucidates

the basic requirements of such application and presents the proposed structure. It ap-

proaches the parametric study that was run to study the GA parameters and ends with

the presentation of a case study that is used in this work to show the potential of this

type of optimization.

3.1 THE PROBLEM IN SUSPENSION KINEMATICS DESIGN

When designing a new suspension system, there are a set of requirements

imposed to the design of such system. These requirements can range from packaging

and manufacturing tolerance to load path control and kinematic behavior. This list can

grow even bigger if the project belongs to a racing prototype, where tire behavior, driver

characteristics and regulations come to the picture.

The Double A-Arm suspension is composed by 8 pickup points for a quarter of

a vehicle — not including wheels, actuation or anti-roll systems — which yields one

degree of freedom: the vertical wheel movement. Another degree of freedom can be

obtained if the system has a steering mechanism. Expanding this quarter vehicle to

the four corners — considering asymmetric systems — the solution sums up 32 points,

where each point has three Cartesian coordinates — X, Y and Z — totaling 96 variables

in the system configuration. Although it is shown in section 2.3 that specific points have

more or less influence on different characteristics of the suspension system, the design

process of a new suspension system or the improvement of an existing one can become

not only a challenging but also a time- and resource-consuming task.

In order to demonstrate the struggle that the suspension designer goes through,

a simple comparative study was run in OptimumKinematics. A generic Double A-Arm

suspension was taken as the subject of this example. The outer ball joint Z coordinate

of the upper A-Arm of the front suspension is moved from 593.910 mm to 650.000 mm.

These changes, illustrated in Figure 31, are arbitrary, since the objective of this study

is just to show the complexity of the design process. The system is then submitted

to a heave motion ranging from -50 mm (bump) to +50 mm (rebound) from the initial

position.

As Figure 31 shows, only one parameters of the 24 available coordinates —

considering symmetry — that constitute the Double A-Arm suspension was changed.

However, three different outputs of the heave motion simulation for this suspension are

shown in Figure 32: camber angle, toe angle and roll center height. As mentioned in

section 2.3, camber and toe have a direct influence in tire behavior and the vehicle

performance, while the kinematic roll center has an indirect effect in the dynamics of
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Figure 31 – Suspension pickup points change.

(a) Baseline front suspension. (b) Modified front suspension.

Source: Author (2021)

the car. In this case, if the designer was aiming to keep the baseline roll center value

and increase camber gain for both wheels, while eliminating bump steer, only one target

would be achieved.

This means that regarding the change in only one specific kinematic parameter

curve — in this example, increase the camber variation in heave — while keeping all the

other kinematic parameter curves the same, the suspension designer would probably

need to change many other — if not all — pickup points. In addition, it is too difficult

for a human to find the best compromise between a set of kinematic objectives within

the time demands of modern suspension projects. Therefore an optimization procedure

would not only reduce the development time, but also increase the quality of the final

suspension.

This example also shows how complex the design of a double wishbone system

can be, once that a change in one coordinate of the system can be propagated to many

different kinematic curves. Additionally, it shows the multi-objective nature of this type

of problem.

3.2 THE STARTING POINT: OPTIMUMKINEMATICS

Previously mentioned on chapter 2, OptimumKinematics is a powerful tool that

allows suspension designers analyse suspension systems. It has a wide range of

functionalities that allow the user to compare different types of suspension, providing a

good overview and a broad understanding of the overall objectives.

The software is used world-wide by many different customers, ranging from stu-

dents to competition and passenger cars manufacturers. This work uses OptimumKine-

matics’ core solver architecture as its baseline to build the models and analyze them

over a range of motions.
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3.5 KINEMATIC MODEL

The suspension system is modeled via a kinematic approach: a set of points are

subject to a set of constraints. The number of dependent variables must be the same

as the number of constraints of the system. To this extent, the points and constraints

of the model are shown in Figure 37 respectively. The points are represented by the

circles and the constraints by the lines.

It is important to note that the points which are bound to the chassis — shown in

red in Figure 37 — have their coordinates imposed through the simulation process, that

is, they can’t be moved by the solver. Similarly the tire contact patch and virtual ground

points — shown in green — have their Z coordinate imposed, so they can only move in

the X and Y directions. Finally, the blue points are the ones that have their degrees of

freedom imposed exclusively by the constraints.

Figure 37 – Double A-Arm kinematic points identification.

Source: Author (2021)

Each point has a name — or key — as shown in Figure 37. The s between the

curly braces represent the side of the car that holds the point. The expression can be

substituted by l or r, that represent the left and the right side of the car, respectively.
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The end user does not need to determine all the points shown in Figure 37, once

the wheel points are calculated using other more commonly used parameters, such

as track width, tire diameter, rim width and the lateral, longitudinal and vertical offsets.

The reference distances — that must be maintained throughout the whole simulation

process — are calculated based on the points coordinates at the beginning of the

simulation process.

The kinematic simulation consists of moving a set of points that are bound to a

virtual body — i.e. the chassis or the contact patch points — in a given direction and

finding the new coordinates that satisfies the set of distance constraints. The heave

motion moves the inboard points in the Z direction.

Both pitch and roll motions consist in rotating the chassis points around a given

axis, defined by a line that connects two points. The pitch and roll axes used in the

simulation can be set fixed by the user or can be determined using the suspension

system’s current roll and pitch centers. If the later approach is chosen, the user must

be aware that the delta steps in the simulation will directly affect the behavior of the

simulation in the later steps. This method can also prevent the simulation to complete,

since the kinematic centers can, theoretically, achieve infinite values.

Lastly, the steering motion displaces the tie rod point bounded to the chassis.

The amount in X, Y, and Z coordinates depend on the steering system type. This work

considers only the rack and pinion steering system, which yields a steering motion that

moves the tie rod inner points in the direction of the line that connects both left and right

tie rod inboard points. The scalar value of the displacement is given by Equation (14).

The system shown in Figure 37 has 19 constraints and 19 variables — or degrees

of freedom — which yield a 19×19 Jacobian matrix which needs to be inverted in each

step of the Newton-Raphson algorithm. If the opposite side is considered, the matrix

size is enlarged to 38 × 38. If reference points, actuation systems and anti-roll bars are

added, the system’s size increases quite rapidly and will add computational cost to the

process.

3.5.1 Outputs

The output channels calculate and store the system’s information for each sim-

ulation step. These channels are utterly important, because they describe the system

with information that is meaningful to the designer. During a simulation process, the con-

figuration that describes the system is saved for each step. When the post-processing

is executed, the output values — such as camber and toe angle, roll center position,

scrub radius and mechanical trail — are calculated and stored in ordered vectors. The

calculations of the output channels used in this work are given in Appendix A.
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3.6 GENETIC ALGORITHM

As shown in section 3.1, it is quite common to iterate over a set of suspen-

sion systems when developing a new system or even improving an existing system.

When designing a new system from scratch, a set of tools must be used together to

accomplish a common result, usually established at the design time, therefore a set of

desired output parameters are monitored over each iteration. An example of an iterative

suspension design process is shown in Figure 38.

Figure 38 – Example of an iterative suspension kinematics design process.

Source: Adapted from OptimumG (2020)

Nevertheless, the design process shown in Figure 38 has no limit on the number

of iterations that the design team may go through. These iterations can take a consider-

able amount of time until a common convergence point between all the objectives and

constraints are achieved, if ever achieved. Thus, the focus of the optimization presented

in this work is to reduce the time spent on this phase.

3.6.1 Optimization workflow

Given the problem illustrated above, an optimization workflow is proposed in this

work. It is graphically represented in Figure 39 and its details will be explained next.
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importance of the function with relation to all other objective functions being used.

Additionally, this factor grants a mean of normalizing the objective functions,

which is indispensable, once the optimization numerically compares many parame-

ters that have different orders of magnitude. The weighting approach allows the multi-

objective problem to be described as a single objective, otherwise, the optimization

would yield several suspension systems.

The GA implemented in this work has two types of fitness values: the objec-

tive and the overall fitnesses. The objective fitness is the fitness value for a given

objective. Thus, for an optimization that involves n objectives, there will be n objective

fitnesses. The mathematical expression that describes the objective fitness if given by

Equation (30).

f i =

√︄

∑︁k
s=0((outs – objs)ws)2

k
Si (30)

where f i is the objective i fitness value, k is the number of steps in the evaluation

function, outs is the simulation output value at step s, objs is the objective value at step

s, ws is the weight function value at step s and Si is the scaling factor for objective i . The

overall fitness is simply the average of all objective fitnesses of the given optimization

problem, as shown in Equation (31).

f¯j =
n
∑︂

i=0

f i

n
(31)

where f¯j is the overall fitness value of the j-th individual, n is the number of objectives.

3.6.4 Operators

All the selection, crossover and mutation operators introduced in subsection 2.7.4

where implemented in this work. However, different operators — and possibly the com-

bination of these operators — yield different behavior in the results, ultimately resulting

in a sub-optimal solution. In order to determine the best set of operators for this specific

application of the GA, a parametric analysis was run. Several setup options were cre-

ated and the results analysed in terms of Key Performance Indicator (KPI), presented

next.

3.6.5 Key performance indicators

The first KPI used in the variance analysis is the convergence rate. The con-

vergence rate is taken as the number of generations that the algorithm takes to find a

solution which has an overall fitness that has a numerical value less than 101% of the

best result of a given GA setup. This error margin was obtained empirically. This KPI

aids on the identification of the setup that yields the solution in a faster manner.
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In complement to the convergence rate, the time to converge is also monitored.

The time to converge is the time that the algorithm takes to solve the problem. Since it

is dependent on the CPU where the program is run, the absolute value of this KPI is

not important, but the comparison between the other setups, as long as they are run in

the same machine, with the same number of threads.

The selection pressure is also taken as a KPI that measures the diversity of the

population for each setup. As mentioned in subsection 2.7.4, a high selection pressure

can yield sub-optimal values, once it makes the algorithm more prone to local-minimum

trapping.

This analysis was separated into two major groups: the single-objective group

and the multi-objective group. The grouping was done because the single objective and

multi-objective optimizations behavior can vary a lot based on the number of objectives.

3.6.6 Implementation

The GA was implemented in C++ as a template library. C++ templates are

classes that are created based on the particular implementation for a particular prob-

lem. This is specially advantageous, once the GA can be extended to other problems,

not only kinematics optimization. The GA is here nominated OptimumGenetics, as it

will become a product of OptimumG, intended for internal usage. The general class

structure of OptimumGenetics is shown in Figure 40.

Table 1 summarizes the template classes that are used in OptimumGenetics.

However, in spite of several classes are generically implemented and can be used

without any modifications, some classes need to be overrode to explore the full potential

of the library.

Table 1 – Template parameters for the kinematics optimization.

Template name Assigned class

GeneType Point3D
LocusKeyType string
ChromosomeLocationType SuspensionPosition
Type SuspensionAssembly
OutputType OutputsCollection
DataType vector<double>
EvaluationException SimulationFailedException

Source: Author (2021)

The first classes that need a specific implementation are the boundaries. The

boundaries define the limits of the problem. As mentioned previously, there are two im-

plementations of boundaries: the box and the spherical boundaries. The class diagram

that define these classes is shown in Figure 41. The crossover and mutation operators
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The chosen initial system is derived from a GT3-spec race car suspension and its

kinematic model on OptimumKinematics is shown in Figure 45. The average parameters

of a GT3 vehicle are used in order to estimate the expected load transfers. Additionally,

a tire model is used to determine the optimal camber in roll and steering as well as the

Ackerman angle.

Figure 45 – Baseline suspension system model in OptimumKinematics (isometric view)

Source: Author (2021)

The vehicle kinematics are then analyzed in four motions, independently. They

are heave, roll, pitch and steering. A set of objectives was created to describe the

desired kinematic behavior of the system, totaling 19 objective functions, explained in

detail in the next chapter. Moreover, the design space was chosen arbitrarily due to the

lack of information of the packaging restrictions and components dimensions. However,

the removal of the physical constraints allows the algorithm to perform broader searches,

ultimately yielding a better solution than with the extra constraints.
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4 PARAMETRIC ANALYSIS

This chapter introduces the details and display the results of the parametric

analysis. As previously mentioned, the parametric analysis of the genetic algorithm is

of major importance, since the quality of results obtained from the optimization depend

on a proper selection of GA parameters, which are further investigated in this chapter.

4.1 GENETIC ALGORITHM PARAMETRIC ANALYSIS

In order to determine the ideal set of parameters for the GA, 15 different opti-

mization setups were created and run on the same machine. The setups are divided

into two major groups: runs 1 to 6 comprise the Single Objective Optimization (SOO)

setups while runs 7 to 15, the MOO setups.

A generic suspension system, illustrated in Figure 46, is arbitrarily chosen for

this analysis. The design space is defined in two variables: the inner and outer ball

joint positions of the tie rods. The system is set as symmetrical, which means that only

the left side is changed by the optimization and then the system is mirrored by the XZ

plane.

Figure 46 – Suspension model used in parametric analysis (Front View).

Source: Author (2021)

The design space boundaries are defined in millimeters and displayed in Table 2.

Only the front axle is considered in this study. The remaining pickup points coordinates

that compose the baseline system in this study can be found in Appendix B.

The design variables on Table 2 were chosen based on previous experience

for being the most sensitive suspension parameters that change the later proposed

objectives. Before setting the objectives, a set of GA parameters is fixed as shown in

Table 3.

The number of generations is fixed for this study because the objective of the

parametric analysis is not do determine the needed generations to optimize a system,

but to present a set of parameters that converge towards an optimal solution faster.
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Table 2 – Design space defined for the GA parametric study.

Box boundary Spherical Boundary

Boundary Pickup point Upper (mm) Lower (mm) Center (mm) Radius (mm)

Box CHAS_tie_l

⎡

⎣

X

Y

Z

⎤

⎦

⎡

⎣

63.3
203.0
233.2

⎤

⎦

⎡

⎣

73.3
213.0
243.2

⎤

⎦ - -

Sphere UPRI_tie_l

⎡

⎣

X

Y

Z

⎤

⎦ - -

⎡

⎣

133.8
750.0
191.2

⎤

⎦ 50

Source: Author (2021)

Table 3 – Fixed parameters for the GA parametric study.

Parameter Value Units

Number of generations 2000 -
Crossover type Voluminal -

αBLX 2 -
Mutation rate 10 %
Mutation type Gaussian -

σg 2 mm
Source: Author (2021)

Despite the importance of the crossover and mutation operators in the GA setup, they

will not be studied at this time.

Through empirical analysis and intuition, the voluminal crossover and Gaussian

mutation have demonstrated to be better suited for this type of problem. The αBLX = 2

was chosen such as even with a crossover operation, the resulting point from the

crossover operation will not restrained inside its parents genes. It gives the GA a lower

selection pressure, maintaining the population diversity through several generations,

when compared to when αBLX ≤ 1, ultimately avoiding local minimum traps.

According to Dréo et al. (2006), common mutation rates range from 1 to 5%.

However, this study uses 10%, because for low mutation strengths, such as 2 mm

of standard deviation for the Gaussian mutation, the operator can maintains a lower

selection pressure without generating too disperse individuals, specially for further

generations. Moreover, the Gaussian distribution allows the algorithm to escape local

minima in a lower rate.

4.1.1 Single objective optimization parameters

The single objective optimization parametric study is based on a bump steer

optimization, where the main objective is to minimize the toe angle variation along the

described motion. A heave motion ranging from -50 to +50 mm from the static position
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is used as an evaluation function. No weight function nor scaling factor are applied to

the following problems.

The first parameter variation studied was the population size combined with trun-

cation selection for reproduction and generational selection for replacement. The details

of these runs are shown in Table 4. The truncation selection for reproduction was not

tested against the steady state selection for replacement because the algorithm would

keep selecting the same individuals through many generations, potentially trapping the

solution into a sub-optimal configuration.

Table 4 – Truncation selection for reproduction variance analysis.

Run number

1 2

Population size 50 200
Selection for reproduction Truncation

Selection size 10
Selection for replacement Generational

Source: Author (2021)

The results comparison of runs 1 and 2 are shown in Figure 47. As the graph

suggests, the population size does not influence in the convergence behavior of the

optimization. The closer the optimization gets to the final solution, more spread can

be seen in the average fitness, which reaches values very close to 1. Figure 47 also

shows that the mutation operator can keep a minimum diversity in the population on

later generations.

The second parameter to study for the single objective case is the tournament

selection for reproduction. It is combined with generational and steady state selection

for replacement methods. Since the tournament selection has an additional parameter,

the tournament size, the runs were split into four, divided in two comparisons, as shown

in Table 5 and Table 6.

Table 5 – Tournament selection for reproduction variance analysis with generational
selection for replacement.

Run number

3 4

Population size 200 200
Selection for reproduction Tournament

Selection size 10 10
Tournament size 5 10

Selection for replacement Generational
Source: Author (2021)
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5 CASE STUDY

This chapter introduces the case study conducted to illustrate the potential of

the optimization. It begins elucidating the problem and displaying the basic information

regarding the vehicle to be designed, such as initial pickup points, total mass and load

transfer. Furthermore, a specific tire model for the car under optimization is used to

determine some of the kinematics parameters. The chapter covers all the objective

functions used in the optimization and their respective results.

5.1 PROBLEM DESCRIPTION

The baseline vehicle used in this work is a GT3-spec race car. The information

about this type of car is provided by OptimumG. The make and model of the car are

maintained confidential, however, the other available parameters will be shown in further

sections. The pickup points coordinates in millimeters are displayed in Table 12. The

remaining parameters used for the simulation can be found in Appendix C.

The origin of the system of coordinates is taken in the front axle, coincident to

the ground plane and at the car’s plane of symmetry (mid plane). The X coordinate

is positive towards the forward direction of the vehicle, the Y direction is positive to

the left side of the vehicle and Z is positive to values above the ground. Only the left

coordinates are shown because the system is symmetrical, thus, the Y points are

reflected about the XZ plane.

The OptimumKinematics model of this system was already introduced by Fig-

ure 45. The colored vectors represent the origin of the coordinate system. The X , Y

and Z coordinates are represented by the red, green and blue arrows respectively. This

case study does not take into consideration the vehicle’s packaging due to the lack of

access to the car’s CAD model. Even though it lacks a little bit on the sense of reality,

it gives more freedom to the optimization model as the design space can be widened,

fundamentally making this case study more interesting.

5.2 TIRES

The GT3-spec tire model is used in this work was provided by OptimumG. The

data was gathered on a tire testing facility and fitted using OptimumTire tire modeling

software, as mentioned in section 2.2. Since it is not relevant to this work, the fitting

process is not covered. Figure 62 and Figure 63 show the tire models, in continuous

lines, overlaid with the tire’s data. Both plots show a good correlation between the model

and respective data. The data used in this case study is analyzed at constant pressure

— 1.8bar — considering the huge complexity of using multiple pressure values.

The fitted model is then exploited in search of the optimal tire position that
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Table 12 – Baseline suspension system pickup points.

Point name X(mm) Y (mm) Z (mm)

Front suspension

CHAS_lower_fore_l 137.4 416.9 110.0
CHAS_lower_aft_l -249.3 415.5 146.6
CHAS_upper_fore_l 82.2 553.2 452.5
CHAS_upper_aft_l -120.3 560.3 365.1
UPRI_lower_l -1.9 820.1 145.3
UPRI_upper_l -66.6 752.5 445.6
CHAS_tie_l 64.99 472.3 240.0
UPRI_tie_l 110.9 786.9 287.9

Rear suspension

CHAS_lower_fore_l -2454.3 437.8 194.5
CHAS_lower_aft_l -2827.3 431.4 125.5
CHAS_upper_fore_l -2451.6 546.4 389.4
CHAS_upper_aft_l -2761.5 541.5 445.6
UPRI_lower_l -2573.0 792.6 183.2
UPRI_upper_l -2592.3 768.5 454.0
CHAS_tie_l -2816.5 435.0 248.8
UPRI_tie_l -2780.0 810.1 270.8

Source: Author (2021)

generates the maximum lateral force for most situations. Figure 64 shows the slip angle

α at peak Fy shifting. For example, the front axle shown in Figure 64a suggests the

use of a pro-Ackerman steering geometry. The plots also show a tendency that as the

camber angle increases, the lower the Ackerman is required. Still, this effect is more

relevant for lower normal loads.

Moreover, the model can be used to leverage the potential of lateral force in-

crease due to camber. Figure 65 shows the variance of the peak lateral force due to

normal load variation. Three different inclination angles γ (IA) are shown. Regarding the

use of the SAE coordinates, a positive γ represents a negative camber on the outside

wheel, when it is mounted on a car that is inside a turn. Comparing Figure 65a and

Figure 65b, it is possible to note that the rear tires are a slightly more sensitive to the γ

variation than the front tires, indicating a possible preference on the camber variance

objective, which will be discussed later in this text.

5.3 WEIGHT TRANSFER ANALYSIS

In order to determine the kinematics parameters based on the tires, a simplified

steady-state weight transfer analysis is used to determine the vertical load in each tire.

The load transfer model is presented by William F. Milliken and Douglas L. Milliken
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Figure 62 – Fy vs α plot for the proposed GT3 front tires (SAE coordinates).

Source: Author (2021)

(1995) and demonstrated over the next equations. The downforce equation generated

by the car is represented in Equation (32).

Fd =
CℓAρair V 2

2
(32)

where Fd is the downforce value, in newtons, CℓA is the downforce (negative lift) coef-

ficient multiplied by the frontal area, in m2, ρair is the air density and V is the vehicle

speed, in m/s. Adding the downforce to to the vehicle weight yields the vehicle load at

the given conditions, as denoted in Equation (33).

W = mg + Fd (33)

where W is the vehicle total load, in newtons, m is the vehicle mass in kg and g is the

gravity, in m/s2. However, to determine the load transfer with more accuracy, the car’s

weight and downforce distributions are considered, shown in Equation (34):

WF = mF W + Cℓdist
Fd (34)

where WF is the normal load on the front axle, in newtons, mF and Cℓdist
are the weight

and downforce distributions in percentage (1 is 100%), respectively. Similarly, for the

rear axle:
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Figure 63 – Fy vs α plot for the proposed GT3 rear tires (SAE coordinates).

Source: Author (2021)

Figure 64 – Peak slip angle α shift with relation to the normal load Fz .

(a) Front tire (b) Rear tire
Source: Author (2021)

WR = (1 – mF )W + (1 – Cℓdist
)Fd (35)

where WR is the normal load on the rear axle. The total weight transfer can be simplified

by collapsing the front and rear track widths into an average. The total weight transfer

∆W is given by:

∆W =
WAyhCG

tF +tR
2

(36)
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Figure 65 – Tire peak lateral force Fy with slip angle Fz variation for different values of
inclination angle γ.

(a) Front tire (b) Rear tire
Source: Author (2021)

where ∆W is the total weight transfer, in newtons, Ay is the lateral acceleration, in

m/s2, hCG is the CG height, in meters and tF and tR are the front and rear track widths,

respectively. Moreover, the lateral weight transfer is not the same for the front and rear

axles. According to William F. Milliken and Douglas L. Milliken (1995), many parameters

can affect these values, such as anti-roll bars and tire pressure. To simplify this case

study, a lateral weight transfer distribution (LLTD) value was considered, which already

contains all the other terms. The LLTD is given by:

LLTD =
∆WF

∆W
(37)

where LLTD is the lateral load transfer distribution and ∆WF is the weight transfer on

the front axle, in newtons. By imposing a value to the LLTD, the load transfer on the

front axle and rear axle, ∆WF and ∆WR respectively, are given by the equations:

∆WF = ∆WLLTD (38)

∆WR = ∆W (1 – LLTD) (39)

An average speed and lateral load are assumed using historical data. The G-G

diagram allows a more accurate estimation of speed and lateral acceleration to which

the car will subject to. Figure 66 shows a G-G diagram of a GT3 race car during a flying

lap in Sebring.

The plot shows a dense concentration on the lateral acceleration Ay ≈ 1.65(G),

with a speed varying between 90 and 150 km/h. Therefore, this case study will assume

a vehicle that is pulling 1.65G of lateral force at 120 km/h. The input data shown in

Table 13 contains some specifications of the average GT3 race car. Applying the values
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Figure 66 – G-G diagram of a GT3 race car for a full lap in Sebring.

Source: Author (2021)

from Table 13 to Equation (32) through (39), yields on the normal tire loads shown in

Table 14.

Table 13 – Common parameters of a GT3 car

Input parameter Variable Input value Unit

Total mass m 1420 kg

Total Mass distribution (% Front) mF 46 %
Total mass CG height hCG 388 mm

Downforce coefficient multiplied by frontal area CℓA 2.27 –
Downforce distribution (% Front) Cℓdist

32.80 %
Air density ρair 1.12 kg/m3

Speed V 120 km/h
Target lateral acceleration Ay 1.65 G

Gravity g 9.81 m/s2

Lateral load transfer distribution (% Front) LLTD 53.67 %
Source: Author (2021)
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Table 14 – Weight transfer estimation for the proposed conditions.

Tire vertical load (N)

Axle Left Right ∆W (N)

Front 649.5 6220.5 2785.4
Rear 1829.7 6639.6 2404.9

Source: Author (2021)

5.4 DESIGN SPACE

The design space is defined in terms of 3-dimensional geometric regions. As

presented in subsection 3.6.2, box and sphere elements are used to define the regions

inside which the resulting system’s pickup points will be found. All the boundaries were

defined as hard so that the search does not deviate from the intended search space.

The boundaries are presented in two groups for each axle: the inboard and

outboard points. The system is considered symmetric through the optimization process,

so only the left pickup points are shown in the next several tables, once the right

equivalent has the same coordinates with a negative y-coordinate.

The inboard points are defined inside a box boundaries, which can be contem-

plated in Table 15 and Table 17 for the front and rear axles respectively. On the other

hand, the outboard points are defined inside a sphere, given the wheel geometry. The

parameters that describe the outboard points of the front and rear axles are shown in

Table 16 and Table 17 respectively. All coordinates are given in millimeters.

The range defined by these bounds were assumed mostly by experience and

considering the coordinates of the initial position, since there is no access to the CAD

model nor packaging measures of the car being optimized. This can be seen as an

advantage for the study once this empowers even more the possibilities that the GA

can explore.

A special attention is required for the steering rack. As shown previously, the

optimal position of the tie rod outer ball joint for a positive Ackerman value is behind the

wheel and towards the center of the car. For packaging and load path purposes, the

steering rack was positioned behind the king pin, providing a better use of the given

design space.

5.5 GA CONFIGURATION

The chosen GA configuration is shown in Table 19. The choice of such param-

eters took advantage from the parametric analysis run on chapter 4. Given the large

number of design variables and objective functions, a bigger population is needed,

which allows the algorithm to explore more possibilities on the population initialization.
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Table 15 – Front suspension box boundaries definition for case study.

Limits

Point name Lower Upper

CHAS_tie_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–215.0
472.4
110.0

⎤

⎦

⎡

⎣

–105.0
472.4
310.0

⎤

⎦

CHAS_lower_fore_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

137.4
216.9
80.0

⎤

⎦

⎡

⎣

157.4
516.9
210.0

⎤

⎦

CHAS_lower_aft_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–269.3
215.5
86.6

⎤

⎦

⎡

⎣

–249.3
515.5
246.6

⎤

⎦

CHAS_upper_fore_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

82.2
373.2
152.5

⎤

⎦

⎡

⎣

42.2
653.2
552.5

⎤

⎦

CHAS_upper_aft_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–140.3
360.3
115.1

⎤

⎦

⎡

⎣

–120.3
660.3
465.1

⎤

⎦

Source: Author (2021)

Moreover, since the study requires a single final solution, the weighting functions

and scaling factors are applied to the objective functions. This allows the use of a steady

state selection for replacement operator, which pulls the search in a given direction. The

selection size of 200 individuals is arbitrary. In addition, the crossover and mutation

operators were maintained the same as in chapter 4.

The selected settings allow the algorithm to perform a more diverse — and

sparse — search through the generations, ultimately avoiding local minima traps. How-

ever, the ranked selection is computationally more expensive, because it compares all

the objective functions of all the individuals in the population.

5.6 CONVERGENCE

This case study optimization process was run on a AWS EC21 c5a.8xlarge

Ubuntu instance. The instance has a 2nd generation AMD EPYC 7002 processor with

running frequencies up to 3.3GHz, 32 virtual CPUs and 64GB of available RAM. The

setup used 32 working threads to evaluate the individuals. The total time to run the

4000 generations was 14 hours, 10 minutes and 20 seconds.
1 https://aws.amazon.com/ec2/
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Table 16 – Front suspension spherical boundaries definition for case study.

Point name Center Radius

UPRI_upper_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

0.0
650.0
350.0

⎤

⎦ 150.0

UPRI_lower_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

0.0
700.0
275.0

⎤

⎦ 150.

UPRI_tie_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–200.0
700.0
300.0

⎤

⎦ 100.

Source: Author (2021)

The evolutionary process took around 1000 generations to start showing conver-

gence signals. However, the only stopping criteria imposed to the algorithm was the

number of generations. Even though this case study used a higher number of genera-

tions, the algorithm kept finding better a individual every — roughly — 70 generations

when the optimization was about to reach is termination condition. This is a good in-

dication that the optimization should have been carried on for a longer period of time,

which could result on an even better solution.

Figure 67 shows the convergence KPIs of this optimization. The selection pres-

sure assumed values greater than 0.95 only after the 1000th generation, which indicates

a very slow convergence rate. The slow convergence rate is a good parameter for this

type of optimization, because it helps the GA to keep a higher diversity and avoid local

minima trapping. However, it is computationally more costly, since it takes much longer

to find an optimized configuration.

Interestingly, Figure 67 shows a drop of almost two orders of magnitude on the

best individual. This proves the capability of the algorithm to explore the whole solution

space. On the other hand, this drop can indicate a bad choice of scaling factors and

weighting functions.

The main indicators of the optimization for the last generation are displayed in

Table 20. The results show that the evolutionary process increases the solution quality

by 92.59%, with relation to the initial population.

5.7 EVALUATION AND RESULTS

The suspension system which is optimized in this case study is evaluated in all

possible movements, independently. This section separates the objective functions per
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Table 17 – Rear suspension box boundaries definition for case study.

Limits

Point name Lower Upper

CHAS_tie_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2770.
235.0
100.0

⎤

⎦

⎡

⎣

–2920.0
485.0
300.0

⎤

⎦

CHAS_lower_fore_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2474.3
237.8
94.0

⎤

⎦

⎡

⎣

–2454.3
537.8
294.5

⎤

⎦

CHAS_lower_aft_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2850.0
280.0
75.0

⎤

⎦

⎡

⎣

–2830.0
480

175.0

⎤

⎦

CHAS_upper_fore_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2450.0
345.0
240.0

⎤

⎦

⎡

⎣

–2400.0
495.0
440.0

⎤

⎦

CHAS_upper_aft_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2810.0
340.0
250.0

⎤

⎦

⎡

⎣

–2760.0
590.50
500.0

⎤

⎦

Source: Author (2021)

evaluation motion. They are: heave, roll, pitch and steering. The results are compared

with the objectives as they are described. An overview of the objective functions of the

resulting individual is shown in Figure 68.

The slices’ size of the inner circle in Figure 68 represent the contribution of

each objective on the overall fitness of the resulting individual, while the outer circle

represents the evaluation function — motion — at which they are evaluated. This chart

highlights the variance of the objectives, for example the front roll center variation in

row and mechanical trail in steering have the biggest shares between all the objectives.

Table 21 shows the chart in numbers and the scaling factors attributed to each objective.

The table clearly shows that some objectives are favored in detriment to others.

Moreover, it shows the immense difference between some objective fitness values, as

the one seen between the camber angle variation in roll on the rear and the roll center

height variation in heave on the front. This indicates either that some objectives are

unfeasible for a given design space or the algorithm preferred one over another.

A possible solution for this behavior is to change the weighting functions and

scaling factors targeting a normalization between all the objectives. However, the sensi-

tivity of each objective to the design variables variance could not be normalized in this

work.

The normalization of the objective functions would be beneficial to the definition
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Table 18 – Rear suspension spherical boundaries definition for case study.

Point name Center Radius

UPRI_upper_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2630.0
750.0
400.0

⎤

⎦ 150.0

UPRI_lower_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2630.0
800.0
230.0

⎤

⎦ 100.

UPRI_tie_l

⎡

⎣

xP

yP

zP

⎤

⎦

⎡

⎣

–2780.0
850.0
250.0

⎤

⎦ 100.

Source: Author (2021)

Table 19 – GA setup used in case study.

Parameter Value

Population size 400 individuals
Number of generations 4000

Selection for reproduction Ranked
Selection Size 1 rank

Selection for replacement Steady State
Selection size 200 individuals

Crossover type Voluminal
αBLX 2

Mutation rate 5%
Mutation type Gaussian

σg 2
Source: Author (2021)

of weights and scaling factors. Still, the numbers are not easily defined, once the opti-

mization compares angles to lengths in different orders of magnitude and importance.

The normalization is a complex subject that should be handled in future versions of the

GA.

5.7.1 Heave

The heave range is determined from the baseline range. The range used was

-50 mm to +50mm from the static position, determined by the initial coordinates of the

system. The objective functions for this motion are shown in Figure 69 and commented

below.

(a) Kinematic Roll Center Z at Ground [Front]: shown in Figure 69a, the baseline has
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Table 21 – Final result objectives fitness

Evaluation: Objective Scaling

factor

Fitness

value

Share in overall

fitness

Heave: Roll Center Z (Ground) [Front] 0.1 0.002 0.062 %
Heave: Roll Center Z (Ground) [Rear] 0.1 0.007 0.189 %
Heave: Scrub Radius [Front Left] 0.2 0.015 0.405 %
Heave: Scrub Radius [Rear Left] 0.1 0.001 0.029 %
Heave: Toe Angle [Front Left] 200.0 0.040 1.070 %
Heave: Toe Angle [Rear Left] 200.0 0.007 0.179 %
Heave: Wheelbase 0.1 0.089 2.357 %
Pitch: Anti-Dive Percent [Front Left] 0.1 0.059 1.573 %
Pitch: Anti-Lift Percent [Rear Left] 0.1 0.030 0.785 %
Pitch: Anti-Squat Percent [Rear Left] 0.1 0.123 3.266 %
Pitch: Wheelbase 0.1 0.011 0.287 %
Roll: Camber Angle [Front Left] 100.0 0.062 1.637 %
Roll: Camber Angle [Rear Left] 100.0 1.675 44.483 %
Roll: Roll Center Y (Ground) [Front] 0.5 0.000 0.001 %
Roll: Roll Center Y (Ground) [Rear] 0.5 0.000 0.001 %
Steering: Ackerman Angle [Front] 100.0 0.635 16.871 %
Steering: Camber Angle [Front Left] 10.0 0.033 0.876 %
Steering: Mechanical Trail [Front Left] 0.1 0.878 23.321 %
Steering: Steering Ratio [Front] 1.0 0.098 2.610 %

Source: Author (2021)

that this objective was successfully minimized when compared to the original

system.

(f) Toe angle [Rear]: the bump steer outputs on the rear axle is illustrated by Fig-

ure 69f. The plot shows that the optimized function satisfied the objective on a

better manner than in the front axle. This is due to the broader space that the

vehicle has on the rear search space.

(g) Wheelbase: the wheelbase change was chosen to be minimized to avoid too much

change on the pitch moments when the car is subject to longitudinal accelera-

tions. This parameter is not as sensitive as anti-dive, for example. The optimized

suspension system achieved a function which is much closer to the objective, as

shown in Figure 69g.

5.7.2 Roll

The roll range is determined by the roll gradient and an an arbitrary lateral

acceleration that is used as an upper bound. A constant roll gradient of 0.58◦/G is

assumed — taken as an average of the historical roll gradient data for front and rear
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axles shown in Figure 70, from the outing that is highlighted by the red box — and a

supposed maximum lateral acceleration of 2.3G. The resulting roll angle is 1.33◦, which

is rounded to 1.5◦. Thus, the roll motion ranges from ±1.5◦, with its axis defined at the

ground level and at Y = 0.

Figure 70 – Vehicle suspension roll gradient for several laps.

Source: Author (2021)

The data displayed in Figure 70 is an average roll gradient for each lap, which is

obtained by the potentiometers of the suspension and translated as a roll movement

assuming constant motion ratios and track widths. The objective functions for the roll

motion are shown in Figure 71 and commented below.

(a) Camber angle [Front Left]: the objective for the camber variation in roll is to keep

it where it generates the most lateral force. However, if the camber variation in roll

is positive — that is, a negative camber on the left wheel for negative values of roll

angle — it can generate too much scrub and uneven tire temperature in heave.

Furthermore it could be detrimental for longitudinal tire force, when braking or

accelerating. The tire model being used in this case study points that a camber

of –3◦ is the one that generates the most lateral force. On the other hand, the car

has quite an amount of downforce, thus, in fast corners, the vertical position of

the car will be lower, inducing even more camber, resultant from the heave motion.

In addition, the steering mechanism also produces a camber variation to the car

when steered, which is shown later in this section. Therefore, for simplification pur-

poses, this value is set to zero, as shown in Figure 71a. The optimized system is

able to generate negative camber for the outside wheel when the car is under roll.

This behavior is sub-optimal given the objective function, but definitely acceptable

given the tire model presented previously.

(b) Camber angle [Rear Left]: the rear axle does not rely on a steering mechanism,

thus, the camber variation in roll is wished to induce a negative camber on the out-

side wheel. On the other hand, the rear axle is more sensitive to downforce, once

its distribution is biased towards the rear. The objective and optimized functions





Chapter 5. Case study 104

in Figure 72. Even assuming a 2.2G of deceleration, as Figure 66 indicates, the result

pitch is less than 1◦. Thus the pitch range is arbitrarily assumed to be ±1◦.

Figure 72 – Vehicle suspension pitch gradient for several laps.

Source: Author (2021)

The pitch motion is most strongly influenced by longitudinal accelerations, as

mentioned previously. Thus, the objectives for this motion are primarily the anti-features

geometries. Figure 73 shows the objectives of this motion in comparison with the

baseline and optimized suspension systems. The objectives are commented below.

(a) Anti-Dive % [Front]: despite that the initial system has an anti-dive greater than

100%, this parameters is set to a lower value. The value of 30% for the static

anti-dive objective was picked from track experience, while its variation is reduced

through the pitch motion. As Figure 73a shows, the optimized system reaches the

objective accordingly, except for the variation.

(b) Anti-Lift % [Rear]: Similarly to the anti-dive objective, the anti-lift on the rear axle

was targeted to be around the same value as the baseline system for static

conditions, while reducing its variation in pitch motion. Figure 73b demonstrates

that the optimized curve reached the target for static position in detriment of its

variation. Still, the variation is better than the baseline.

(c) Anti-Squat % [Rear]: on contrary to the initial system, the anti-squat percentage

was changed by a great amount. Since the initial system had a negative value for

anti-squat — thus, loading the springs even more in acceleration — the objective

was set to be around 30% in static condition and its variation to be reduced in pitch.

Figure 73c shows that the optimization was able to overcome such difference,

providing an improved individual with relation to this objective function.

(d) Wheelbase: following the same thought presented for the heave motion, the wheel-

base variation is wished to be as minimum as possible, mainly on longitudinal

weight transfer situations. Thus, this parameter is set to a minimum variation
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Figure 75b. However, since the camber gain in roll was improved, this optimized

parameter is plausible.

(c) Mechanical trail [Front Left]: the mechanical trail is mostly associated with the

load transferred to the tie rods and furthermore to the steering rack, altering the

steering feedback to the driver. This value is not easily determined without a force

analysis on the system, once it influences not only on the steering torque but also

on the driver’s perception. Hence, this parameter was kept the same in static po-

sition, but its variation was set to be reduced. Figure 75c shows that the resulting

system has a worse behavior with relation to the initial system. This discrepancy

is related to the compromise between this and other objective functions.

(d) Steering ratio [Front]: in the same manner as the previous item, the steering ratio

was set to be maintained from the baseline, however, this objective is obviously

worse than the initial system’s, once the initial system is the target. The result for

this objective is shown in Figure 75d. Moreover, the optimized system indicates

that the result yields a progressive steering ratio with relation to the steering

wheel angle, which can be advantageous on some cases where the tires’ Mz are

inverted for high slip angle values.

5.8 RESULTING SYSTEM

Despite that the GA does not need an initial guess solution, the optimized system

is compared to the baseline in this work. The optimization yielded an interesting solution

with non-intuitive peculiarities, demonstrated in this section. The resulting set of pickup

points and their absolute variation between the optimized and the initial systems is

shown in Table 22.

Moreover, the systems are visually compared in Figures 76, 77 and 78. As

illustrated, the optimization algorithm was able to explore different regions of the design

space, usually ignored by a human. The resulting system is also feasible in terms of

manufacturing. The packaging restrictions need to be further investigated.

It is shown by Figure 77b that the outer ball joints of the upper and lower wish-

bones are really close to the rim limits, if not exceeding them. Thus, another optimization

could be run with a narrower design space, once the main variables are known.

Figure 78 shows that the optimized system has crooked wishbone axes on the

top view. This is a great proof that the optimization can search for different topologies

which are very unlikely to be designed by humans. Also, this case study does not

comprise the actuation system optimization.

In addition, a force analysis should be run in both systems to investigate the

load paths. The steering system position on the optimized system is concerning, once





Chapter 5. Case study 109

Table 22 – Optimized system pickup points.

Point name X Y Z ∆X ∆Y ∆Z Units

Front suspension

CHAS_lower_aft_l -250.9 455.3 136.9 -1.6 39.8 -9.8 mm
CHAS_lower_fore_l 143.3 222.9 82.3 5.8 -194.0 -27.7 mm
CHAS_tie_l -195.9 374.2 163.6 -260.9 -98.2 -76.4 mm
CHAS_upper_aft_l -120.3 417.2 270.4 -0.0 -143.1 -94.7 mm
CHAS_upper_fore_l 100.5 366.3 256.3 18.3 -186.9 -196.3 mm
UPRI_lower_l -11.8 790.9 210.5 -9.8 -29.2 65.1 mm
UPRI_tie_l -170.5 676.5 297.6 -281.4 -110.4 9.7 mm
UPRI_upper_l -60.4 705.9 475.4 6.2 -46.6 29.7 mm

Rear suspension

CHAS_lower_aft_l -2837.6 343.1 110.8 -10.3 -88.3 -14.8 mm
CHAS_lower_fore_l -2443.7 374.6 193.0 10.6 -63.2 -1.6 mm
CHAS_tie_l -2720.0 308.0 178.9 96.5 -127.0 -70.0 mm
CHAS_upper_aft_l -2809.8 431.2 367.1 -48.3 -110.3 -78.5 mm
CHAS_upper_fore_l -2427.8 432.5 328.0 23.9 -114.0 -61.4 mm
UPRI_lower_l -2598.0 803.9 207.6 -24.9 11.3 24.3 mm
UPRI_tie_l -2688.0 714.1 242.3 92.0 -96.0 -28.6 mm
UPRI_upper_l -2556.7 747.2 480.9 35.7 -21.4 26.8 mm

Source: Author (2021)

Figure 76 – Suspension optimization comparison (Front View).

(a) Baseline [Front] (b) Optimized [Front]

(c) Baseline [Rear] (d) Optimized [Rear]

Source: Author (2021)
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Figure 77 – Suspension optimization comparison (Side View).

(a) Baseline

(b) Optimized

Source: Author (2021)

Figure 78 – Suspension optimization comparison (Top View).

(a) Baseline (b) Optimized
Source: Author (2021)
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6 CONCLUSIONS

This work shows that suspension kinematics design and optimization is an ex-

ceptionally complex task and therefore demands too much time and resources. Further-

more, the multi-objective nature of this type of problem can lead to an overwhelming

design process if done manually, as the objectives are sometimes controversial.

The optimization process using GA proposed in this work is an exceptional

shortcut for the design process of a new suspension mechanism or an improved version

of an existing one. Even though the optimization can be computationally demanding

depending on the number of objectives and how broad is the design space, it can

reduce weeks of workload to a few hours of computational time.

Despite that the GA proved to accelerate the iterative design process, its setup

can be staggering for novice suspension engineers who need to deal with multiple

objectives that have different scaling and weighting functions. Moreover, the user needs

to know not only the kinematics weights and scaling factors, but also its limitations

and the project’s packaging restrictions in order to perform a successful optimization.

The automatic determination of weight functions and scaling factors is a suggestion

for future work. Removing this responsibility from the user can after all provide a more

efficient optimization setup and lead to better results.

The stochastic nature of the EMOO makes it a powerful tool to overcome local

minima that may happen along the evolution process. On the other hand, it can yield

different results for the same set of objectives and design variables. Thus, the user can

run the same setup optimization several times and possibly gather different results.

In addition, the GA has a quite complicated setup process that influences heavily

on the results quality and search efficiency. An automated setup process based on the

design variables and objectives is suggested for future work. Likewise, different design

space geometries, such as cylinder, ellipse and 3D CAD models are also suggested to

define the design space along with exclusion regions.

A penalty system can also be implemented in future versions of the GA, allowing

the objectives and design variables to be described in more detail. Different crossover

and mutation operators could be exploited too as a solution to the computational time.

Ultimately, the same process can be extended to dynamic analyses, once it re-

quires very few adaptations. In order to achieve the dynamic analysis — as for example

a virtual 7-post rig — a multi-body solver implementation is suggested.
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APPENDIX A – KINEMATIC OUTPUTS CALCULATIONS

The wheel axis vector a⃗ = [ax , ay , az ]T is defined by:

a⃗ = Ti – To (40)

where Ti and To are the inner and outer wheel axis points, denoted in this work as

TIRE_axis_inner_<side> and TIRE_axis_outer_<side> respectively, where <side> is

substituted by "l" and "r", identifying left or right side of the system, respectively. Through

the definition of the wheel axis a⃗, the camber angles on the left and right wheels, CLeft

and CRight , are given by Equation (41) and Equation (42), respectively.

CLeft =
π

2
– arccos

az

∥a⃗∥
(41)

CRight = –
(︃

π

2
– arccos

az

∥a⃗∥

)︃

(42)

where the vector a⃗ is the wheel axis vector corresponding to the given side, left or right.

Moreover, the left and right toe angles δL and δR are defined by Equation (43) and

Equation (44), respectively.

δL =
π

2
– arccos

ax

∥a⃗∥
(43)

δR = –
(︃

π

2
– arccos

ax

∥a⃗∥

)︃

(44)

Thus, the average steering at a given axle is:

δAvg =
–δL + δR

2
(45)

The Ackerman angle δAck is given by:

δAck = δL – δR (46)

The steering ratio value is linearized by a secant method. The steering system

is displaced by ∆S = ±0.1◦. The steering ratio ∂S
∂δAvg

is given by:

∂S

∂δAvg
≈

∆S

∆δAvg
(47)

where ∆δAvg is given by:

∆δAvg = δ–
Avg – δ+

Avg (48)

where δ–
Avg and δ+

Avg are the δAvg calculated when the system is at the steering position

displaced by –0.1◦ and +0.1◦ from the reference position, respectively.
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APPENDIX B – PARAMETRIC ANALYSIS DATA

Table 23 – System points used in parametric analysis data.

Point name X(mm) Y(mm) Z(mm)

TIRE_axis_inner_l 0.0 743.0 290.0
TIRE_axis_outer_l 0.0 997.0 290.0
TIRE_virtual_contact_patch_l 0.0 870.0 0.0
TIRE_contact_patch_l 0.0 870.0 0.0
TIRE_virtual_gnd_l 290.0 870.0 0.0
CHAS_coil_over_l -250.0 450.0 700.0
UPRI_lower_l 47.0 780.0 150.0
CHAS_upper_aft_l 0.0 450.0 430.0
CHAS_lower_fore_l 30.0 390.0 160.0
UPRI_upper_l -45.0 730.0 460.0
CHAS_lower_aft_l -250.0 390.0 162.0
CHAS_upper_fore_l -250.0 470.0 432.0
CHAS_tie_l 68.3 208.0 238.3
UPRI_tie_l 133.9 750.0 191.3
VIRT_coil_over_outer_l -200.0 650.0 450.0
NSMA_attachment_l -200.0 650.0 450.0

Source: Author (2021)
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