

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO*

* plano de ensino adaptado, em caráter excepcional e transitório, para substituição de aulas presenciais por aulas em meios digitais, enquanto durar a pandemia do novo coronavírus – COVID-19, em atenção à Portaria MEC 344, de 16 de junho de 2020 e à Resolução 140/2020/CUn, de 24 de julho de 2020.

SEMESTRE 2020.1

I. IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	N ^º DE HORAS-AU TEÓRICAS	ILA SEMANAIS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAIS
EES7340**	PRODUÇÃO DE BIOCOMBUSTÍVEIS E COPRODUTOS	04	00	72

^{**} plano a ser considerado equivalente, em caráter excepcional e transitório na vigência da pandemia COVID-19, à disciplina EES7340.

HORÁRIO			
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE	
06653 - 2.1420(2)	-	Ensino Remoto Emergencial	
4.1420(2)			

II. PROFESSOR(ES) MINISTRANTE(S)	
ELAINE VIRMOND (elaine.virmond@ufsc.br)	

III. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
EES7330	Fundamentos de Biotecnologia	
EES7350	Termodinâmica I	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA	
Bacharelado em Engenharia de Energia	

V. JUSTIFICATIVA

No Brasil, as duas mais importantes cadeias produtivas da agroenergia são a de produção de bioetanol a partir da cana-de-açúcar e a de produção de biodiesel a partir, principalmente, da soja. Além dessas duas culturas, diversas outras cadeias do agronegócio brasileiro têm potencial para aumentar ainda mais a produção desses biocombustíveis já consagrados e para abrir novos mercados. Grande quantidade de resíduos orgânicos eliminados safra após safra, juntamente com biomassa agroindustrial e industrial, demanda fins mais nobres, dentre esses, a produção de mais biocombustíveis, bioenergia e outros produtos de alto valor agregado. Conhecer o cenário mundial e nacional de biocombustíveis, perspectivas, demandas, processos, tecnologias consolidadas e em desenvolvimento, além do conceito emergente de Biorrefinarias, que tem potencial impacto positivo no cenário energético mundial e, particularmente, nacional, contribuirá para a formação do(a) Engenheiro(a) de Energia.

VI. EMENTA

Panoramas mundial e brasileiro em biocombustíveis. Matérias-primas para biocombustíveis. Processos e tecnologias de produção de biocombustíveis. Aproveitamento de coprodutos e resíduos. Biorrefinarias.

VII. OBJETIVOS

Objetivo Geral: Fornecer subsídios para descrever e analisar os processos e as tecnologias aplicadas à produção de biocombustíveis e coprodutos, o estado-da-arte e os desafios relacionados.

Objetivos Específicos:

- Apresentar e caracterizar as principais matérias-primas utilizadas para a produção de biocombustíveis;
- Descrever a necessidade de estabelecimento de logística otimizada de oferta de matéria-prima para a indústria de biocombustíveis e coprodutos;
- Relacionar as principais características da matéria-prima aos respectivos processos de produção de biocombustíveis e coprodutos;
- Apresentar tecnologias e processos industriais para a produção de biocombustíveis;
- Definir biorrefinarias, apresentar tipos, processos e tecnologias que as integram e os respectivos desafios tecnológicos.

VIII. CONTEÚDO PROGRAMÁTICO

Conteúdo Teórico:

- 1. Introdução:
 - Biocombustíveis: conceitos, definições e histórico;
 - Panoramas mundial e brasileiro em biocombustíveis;
- 2. Matérias-primas para biocombustíveis:
 - Matérias-primas oleaginosas;
 - Matérias-primas sacaríneas:
 - Matérias-primas amiláceas;
 - Outras matérias-primas;
- 3. Biorrefinarias:
 - Conceito e comparação entre refinarias de petróleo e biorrefinarias;
 - Tipos e desenvolvimento de biorrefinarias;
- 4. Processos e tecnologias para a produção de biocombustíveis e coprodutos Introdução:
 - Introdução a processos químicos e bioprocessos;
 - Noções de cinética química e bioquímica;
 - Introdução a reatores guímicos e biorreatores;
- 5. Produção de bioetanol:
 - Fundamentos do processo produtivo;
 - Tecnologias para a produção de bioetanol;
 - Propriedades, especificação do biocombustível e legislação;
 - Armazenamento e distribuição do bioetanol;
 - Coprodutos e resíduos gerados no processo e aplicações;
- 6. Produção de biogás:
 - Fundamentos do processo produtivo;
 - Tecnologias para a produção de biogás;
 - Propriedades, processos de purificação, especificação do biocombustível e legislação;
 - Distribuição e uso do biogás;
 - Coprodutos e resíduos gerados no processo e aplicações;
- 7. Produção de biodiesel:
 - Fundamentos do processo produtivo;
 - Tecnologias para a produção de biodiesel;
 - Propriedades, especificação do biocombustível e legislação;
 - Armazenamento e distribuição do biodiesel;
 - Coprodutos e resíduos gerados no processo e aplicações;
- 8. Produção de outros biocombustíveis.

Conteúdo Prático: Não se aplica.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- A adaptação dessa disciplina ao Ensino Remoto Emergencial (ERE) segue as regras estabelecidas na Resolução Normativa 140/2020/CUn. É importante enfatizar que o planejamento realizado pode sofrer alterações em função de mudanças na legislação, reavaliação de procedimentos, novas determinações das instâncias superiores da universidade ou motivos de força maior.
- A Plataforma Moodle-UFSC será o ambiente virtual de aprendizagem utilizado para comunicação entre
 professora e estudantes, para disponibilização de material didático e de apoio, e para o desenvolvimento das
 atividades previstas neste plano de ensino, tanto de forma assíncrona quanto síncrona.

- Os encontros síncronos serão previamente agendados com a turma, sendo previamente disponibilizada orientação sobre a ferramenta e forma de acesso correspondente, com possibilidade de utilização de outras ferramentas além do Moodle-UFSC, como por exemplo Conferência Web RNP ou Google Meet. As aulas síncronas podem ser gravadas e disponibilizadas aos estudantes até o final do período letivo se houver capacidade técnica para tal.
- Todo material utilizado, como apresentações, *slides*, vídeos, referências, entre outros, será disponibilizado pela professora, garantindo o acesso do estudante a material adequado (Art. 15 § 3° da Res. 140/2020/CUn de 24 de julho de 2020).
- Diferentes metodologias de ensino serão integradas às atividades de ensino adaptadas, principalmente Sala de Aula Invertida, por meio da qual o estudante tem acesso ao conteúdo por meio da sala virtual antes do encontro síncrono, e pode colaborar com mais eficácia no desenvolver da aula. Dessa forma, os encontros síncronos terão como objetivo discutir e esclarecer dúvidas de conteúdo e atividades avaliativas por meio de uma videoconferência, possivelmente realizada utilizando-se ferramenta do Moodle-UFSC, Conferência Web RNP ou Google Meet. Dentre as atividades propostas incluem-se: elaboração de conteúdos digitais, seminários e trabalhos escritos individuais ou em grupo, estudo de tópico para discussão em grupo/fórum, entre outras.
- As atividades da disciplina serão realizadas conforme descrito a seguir e indicado no cronograma.
- Horário de atendimento aos estudantes: a professora estará disponível para atendimento por meio de videoconferência (Conferência Web RNP ou Google Meet) por agendamento, preferencialmente nas quintasfeiras, das 16:00 às 18:00.
- **Observação:** a utilização indevida da imagem de professores e colegas é considerado crime previsto na Constituição Federal e no Código Civil. Sendo, assim, não é permitido compartilhar e/ou gravar imagens e falas dos docentes e discentes. Além disso, não devem ser compartilhados ou publicados materiais que sejam de propriedade intelectual do professor sem prévia autorização.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

• Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações

- Serão realizadas 3 (três) atividades avaliativas assíncronas individuais ou em grupo (A1, A2 e A3) e aplicados 3 (três) questionários avaliativos individuais (Q1, Q2 e Q3), assíncronos, ao longo do semestre.
 Será avaliada também a participação (P) em outras atividades assíncronas, tais como fóruns de discussão e espaço de colaboração.
- Cada atividade avaliativa receberá nota entre zero (0) e dez (10) e a média final (MF) da disciplina será calculada da seguinte forma:

$$MF = 0.10 * A1 + 0.20 * A2 + 0.10 * Q1 + 0.10 * Q2 + 0.25 * A3 + 0.15 * Q3 + 0.10 * P$$

- Os questionários avaliativos poderão conter questões objetivas, objetivas mistas e dissertativas.
- Será atribuída nota zero para as atividades onde for verificado plágio. A Avaliação de recuperação (REC)
 englobará todo o conteúdo do semestre e ocorrerá conforme indicado no cronograma a seguir.

Registro de frequência

 A frequência será aferida a partir da entrega das atividades avaliativas, da participação nos fóruns de discussão, do acesso aos conteúdos disponibilizados e demais atividades realizadas. A frequência não será contabilizada nos encontros síncronos.

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/Cun/97

 O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

AULA (semana)	DATA	ASSUNTO	CARGA SÍNCRONA (h-a)	CARGA ASSÍNCRONA (h-a)
1 ^a	04/03/20 a 07/03/20	Apresentação da disciplina e do plano de ensino. 1) Introdução: Biocombustíveis - conceitos, definições e histórico.	Ministrada na modalidade presencial	
2 a	09/03/20 a 14/03/20	Introdução: Panoramas mundial e brasileiro em biocombustíveis.	Ministrada na preser	
3 ^a	31/08/20 a 05/09/20	Apresentação do plano de ensino adaptado e contextualização. 1) Introdução: Panoramas mundial e brasileiro em biocombustíveis. ATIVIDADE 1 (A1).	2	2
4 ^a	07/09/20 a 12/09/20	ATIVIDADE 1 (A1). 2) Matérias-primas para biocombustíveis: oleaginosas; sacaríneas; amiláceas; outras matérias-primas. ATIVIDADE 2 (A2).	0	4
5 ^a	14/09/20 a 19/09/20	ATIVIDADE 2 (A2).	4	0
6ª	21/09/20 a 26/09/20	3) Biorrefinarias. 4) Processos e tecnologias para a produção de biocombustíveis e coprodutos - Introdução.	0	4
7 ^a	28/09/20 a 03/10/20	4) Processos e tecnologias para a produção de biocombustíveis e coprodutos - Introdução.	1	3
8 ^a	05/10/20 a 10/10/20	4) Processos e tecnologias para a produção de biocombustíveis e coprodutos - Introdução. Questionário avaliativo 1 (Q1).	2	2
9 ^a	12/10/20 a 17/10/20	5) Produção de bioetanol.	0	4
10 ^a	19/10/20 a 24/10/20	5) Produção de bioetanol. Questionário avaliativo 2 (Q2).	1	3
11 ^a	26/10/20 a 31/10/20	6) Produção de biogás.	0	4
12 ^a	02/11/20 a 07/11/20	6) Produção de biogás.	0	4
13 ^a	09/11/20 a 14/11/20	6) Produção de biogás. ATIVIDADE 3 (A3).	4	0
14 ^a	16/11/20 a 21/11/20	7) Produção de biodiesel.	0	4
15 ^a	23/11/20 a 28/11/20	7) Produção de biodiesel.	0	4
16 ^a	30/11/20 a 05/12/20	7) Produção de biodiesel. Questionário avaliativo 3 (Q3).	2	2
17 ^a	07/12/20 a 12/12/20	8) Produção de outros biocombustíveis.	0	4
18 ^a	14/12/20 a 19/12/20	NOVA AVALIAÇÃO E AVALIAÇÃO DE RECUPERAÇÃO.	0	4

XII. Feriados e di	as não letivos previstos para o semestre 2020.1
DATA	

07/09/20 (seg)	Independência do Brasil
12/10/20 (seg)	Nossa Senhora Aparecida
28/10/20 (qua)	Dia do Servidor Público
02/11/20 (seg)	Finados

XIII. BIBLIOGRAFIA BÁSICA***

- 1. OLSSON, L. **Biofuels.** Berlin: Springer-Verlag Berlin Heidelberg, 2007. (Advances in Biochemical Engineering/Biotechnology, 0724-6145; 108). [Springer e-books]. Disponível em: https://link.springer.com/content/pdf/10.1007%2F978-1-84882-011-1.pdf. Acesso em: 05/08/2020.
- DEMIRBAS, A. Biodiesel: a realistic fuel alternative for diesel engines. London: Springer-Verlag, 2008. ISBN 9781846289958. [Springer e-books]. Disponível em: https://link.springer.com/content/pdf/10.1007%2F978-1-84628-995-8.pdf. Acesso em: 05/08/2020.
- LEITE, R.C.C. Bioetanol combustível: uma oportunidade para o Brasil Brasília, DF: Centro de Gestão e Estudos Estratégicos, 2009. Disponível em: https://www.cgee.org.br/documents/10195/734063/5Bioetanol+de+Cana+de+A%C3%A7ucar+2009_6407.pdf.
 Acesso em: 24/08/2020.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- FOGLER, H.S. Elementos de Engenharia das Reações Químicas. 4. ed. Rio de Janeiro: LTC, 2009. 853p. ISBN 9788521617167.
- 2. LEVENSPIEL, O. **Engenharia das reações químicas.** 3ª ed. São Paulo: Edgard Blucher, c2000. xvii, 563 p. ISBN: 9788521202752.
- 3. LORA, E.E.S.; VENTURINI, O.J.(Coord.). **Biocombustíveis.** Rio de Janeiro: Interciência, 2012. 2 v. ISBN 9788571962289 (obra completa).
- *** A bibliografia principal das disciplinas deverá ser pensada a partir do acervo digital disponível na Biblioteca Universitária, como forma de garantir o acesso aos estudantes, ou, em caso de indisponibilidade naqueles meios, deverão os professores disponibilizar versões digitais dos materiais exigidos no momento de apresentação dos projetos de atividades aos departamentos e colegiados de curso (Art. 15 § 2° da Res. 140/2020/CUn de 24 de julho de 2020).

<u>Observação</u>: A bibliografia sobre o conteúdo da disciplina será verificada ao longo do semestre no acerto digital da BU e informada aos estudantes. Os conteúdos das bibliografias que não estiverem disponíveis no formato digital serão disponibilizados pela professora no ambiente da disciplina no Moodle-UFSC nessa versão.

Professor:	
Aprovado pelo Colegiado do Curso em//	Presidente do Colegiado: