

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO*

* plano de ensino adaptado, em caráter excepcional e transitório, para substituição de aulas presenciais por aulas em meios digitais, enquanto durar a pandemia do novo coronavírus – COVID-19, em atenção à Portaria MEC 344, de 16 de junho de 2020 e à Resolução 140/2020/CUn, de 24 de julho de 2020.

SEMESTRE 2020.1

I. IDENTIFICAÇÃO DA DISCIPLINA:					
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AU	LA SEMANAIS	TOTAL DE HORAS-AULA	
		TEÓRICAS	PRÁTICAS	SEMESTRAIS	
EES7383**	INSTALAÇÕES ELÉTRICAS	04	00	72	

^{**} plano a ser considerado equivalente, em caráter excepcional e transitório na vigência da pandemia COVID-19, à disciplina EES7383.

HORÁRIO				
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE		
08653 - 2.1010(2)	-	Ensino Remoto Emergencial		
4.1830(2)				

II. PROFESSOR(ES) MINISTRANTE(S)

CÉSAR CATALDO SCHARLAU (cesar.scharlau@ufsc.br)
LUCIANO LOPES PFITSCHER (luciano.pfitscher@ufsc.br)

III. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
EES7372	Transmissão e Distribuição de Energia	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Bacharelado em Engenharia de Energia

V. JUSTIFICATIVA

As instalações elétricas constituem um importante campo de trabalho para o Engenheiro de Energia, que pode projetar, ampliar, adequar e melhorar sistemas novos ou existentes. Desta forma, esta disciplina apresenta conceitos de instalações elétricas prediais e industriais visando à máxima eficiência energética desses sistemas.

VI. EMENTA

Instalações elétricas prediais e industriais. Fornecimento de energia elétrica em tensão primária e secundária de distribuição. Materiais utilizados em instalações. Dimensionamento de condutores. Equipamentos de proteção. Iluminação predial e industrial. Correção de fator de potência. Harmônicas. Sistemas de aterramento e proteção contra descargas atmosféricas. Subestações abaixadoras de tensão. Eficiência energética em instalações elétricas.

VII. OBJETIVOS

Objetivo Geral:

Capacitar o aluno para a análise e projeto de instalações elétricas prediais e industriais.

Objetivos Específicos:

Para alcançar o objetivo geral, é esperado do aluno:

- Compreender os conceitos básicos de fornecimento de energia elétrica;
- Utilizar normas de projeto de instalações elétricas;

- Conhecer fundamentos de iluminação predial e industrial;
- Compreender os conceitos de eficiência energética em instalações elétricas;
- Aplicar métodos de correção de fator de potência e análise de harmônicas;
- Avaliar riscos e projetar sistemas de aterramento e proteção contra descargas atmosféricas;
- Conhecer e dimensionar equipamentos e materiais de instalações elétricas prediais e industriais.

VIII. CONTEÚDO PROGRAMÁTICO

Conteúdo Teórico:

- 1. Instalações elétricas prediais e industriais.
- 2. Fornecimento de energia elétrica em tensão primária e secundária de distribuição.
- 3. Dimensionamento de condutores.
- 4. Equipamentos de proteção.
- 5. Iluminação predial e industrial.
- 6. Correção de fator de potência.
- 7. Harmônicas.
- 8. Sistemas de aterramento e proteção contra descargas atmosféricas.
- 9. Subestações abaixadoras de tensão.
- 10. Materiais utilizados em instalações.
- 11. Eficiência energética em instalações elétricas.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A adaptação dessa disciplina ao Ensino Remoto Emergencial (ERE) segue as regras estabelecidas na Resolução Normativa 140/2020/CUn. É importante enfatizar que o planejamento realizado pode sofrer alterações em função de mudanças na legislação, reavaliação de procedimentos, novas determinações das instâncias superiores da universidade ou motivos de força maior. O planejamento também pode ser modificado caso seja realizada a contratação do professor substituto previsto para ministrar essa disciplina no semestre 2020/1.

Pretende-se empregar uma metodologia de ensino inspirada na aprendizagem baseada em projetos. Os conhecimentos serão desenvolvidos ao longo de todo o semestre através da realização de um Projeto Elétrico, envolvendo os tópicos da disciplina, divido em três etapas. Pretende-se utilizar ferramentas computacionais (por exemplo, AutoCAD) nas diferentes tarefas que compreendem a realização desse projeto.

Planeja-se a apresentação dos conteúdos com base na metodologia sala de aula invertida (*flipped classroom* em inglês). Trata-se de um modelo de ensino que coloca, de fato, o discente como protagonista, aproximando-o dos temas e conteúdo antes mesmo de a aula começar.

O processo de aprendizagem será dividido em três momentos:

- a. Antes do encontro: o professor disponibiliza, através do Moodle, atalhos para materiais, vídeos e artigos sobre o conteúdo em destaque. Os alunos acessam o conteúdo, sendo instigados a buscar outras bases e ampliar suas visões sobre o tema. As habilidades cognitivas envolvidas nesse momento são recordar e compreender.
- b. Durante o encontro: o professor e os alunos discutem o conteúdo através de uma videoconferência, possivelmente realizada através do Conferência Web RNP ou Google Meet. São esclarecidas dúvidas, realizados exercícios, debates e apresentados estudos de caso. Habilidades cognitivas: aplicar, analisar, avaliar e criar.
- c. Depois do encontro: os alunos revisam o conteúdo e fazem atividades avaliativas sobre os assuntos tratados em aula. Habilidades cognitivas: recordar, compreender, aplicar, analisar, avaliar e criar.

Atividades assíncronas estão previstas para os momentos a) e c) e atividades síncronas são planejadas nos momentos b) e c).

Horário de atendimento online dos professores ao estudante:

Prof. César: através de videoconferência (Conferência Web RNP ou Google Meet) por agendamento, preferencialmente nas quartas-feiras, das 15 às 16 horas.

Prof. Luciano: através de videoconferência (Google Meet) por agendamento, preferencialmente nas quintas-feiras, das 10 às 12 horas ou nas sextas-feiras, das 14 às 16 horas.

Observação: a utilização indevida da imagem de professores e colegas é considerado crime previsto na Constituição Federal e no Código Civil. Sendo, assim, não é permitido compartilhar e/ou gravar imagens e falas dos docentes e discentes. Além disso, não devem ser compartilhados ou publicados materiais que sejam de propriedade intelectual do professor sem prévia autorização.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

 Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações

A avaliação da disciplina será feita através dos seguintes instrumentos:

- Projeto Elétrico (Proj): será proposto um trabalho envolvendo os tópicos da disciplina, sendo esta uma atividade mista (síncrona e assíncrona). O projeto será dividido em três etapas, sendo que cada uma corresponde à uma entrega a ser avaliada (*Proj1*, *Proj2* e *Proj3*).
- Poderão ser designadas outras atividades para complementar os conteúdos vistos na disciplina. Neste caso, a pontuação dessas atividades será incluída na nota das etapas do projeto.
- Será atribuída nota zero para as atividades onde for verificado plágio.
- O cálculo da média final será efetuado de acordo com a seguinte equação

$$MF = 0.5$$
. Proj 1+0.25. Proj 2+0.25. Proj 3

• A avaliação de recuperação (REC) será uma prova síncrona, em horário e forma a combinar com o(s) aluno(s), e poderá conter questões objetivas, objetivas mistas e dissertativas.

• Registro de frequência

Está prevista a aferição da frequência a partir da entrega das atividades avaliativas, do acesso aos materiais na plataforma Moodle e do registro de presença nas videoconferências síncronas.

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

 O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

XI. CRONOGRAMA PREVISTO					
AULA (semana)	DATA	ASSUNTO	CARGA SÍNCRON A (h-a)	CARGA ASSÍNCRONA (h- a)	
1 ^a	31/08/20 a 05/09/20	1ª Parte – Prof. César Apresentação da disciplina. Instalações elétricas prediais e industriais.	2	2	
2ª	07/09/20 a 12/09/20	Fornecimento de energia elétrica em tensão primária e secundária de distribuição. Dimensionamento de condutores.	2	2	

3 a	14/09/20 a 19/09/20	Dimensionamento de condutores.	3	3
4 ^a	21/09/20 a 26/09/20	Dimensionamento de condutores. Equipamentos de proteção.	3	3
5 ª	28/09/20 a 03/10/20	Iluminação predial e industrial.	2	2
6ª	05/10/20 a 10/10/20	Iluminação predial e industrial.	2	2
7ª	12/10/20 a 17/10/20	Entrega Proj1.	2	2
8 ª	19/10/20 a 24/10/20	2ª Parte – Prof. Luciano Correção de fator de potência.	1	3
9 a	26/10/20 a 31/10/20	Harmônicas.	0	4
10ª	02/11/20 a 07/11/20	Sistemas de aterramento e proteção contra descargas atmosféricas.	0	4
11 ª	09/11/20 a 14/11/20	Sistemas de aterramento e proteção contra descargas atmosféricas.	1	3
12ª	16/11/20 a 21/11/20	Entrega Proj2.	0	6
13 ^a	23/11/20 a 28/11/20	Subestações abaixadoras de tensão.	0	4
14 ^a	30/11/20 a 05/12/20	Projeto Elétrico.	1	3
15 ª	07/12/20 a 12/12/20	Entrega Proj3.	0	6
16 ª	14/12/20 a 19/12/20	REC (Conteúdo Parte 1 e 2)	2	2

Observação: as horas excedentes na 3ª, 4ª, 12ª e 15ª semana referem-se à reposição de aulas.

XII. Feriados e dias não letivos previstos para o semestre 2020.1			
DATA			
07/09/20 (seg)	Independência do Brasil		
12/10/20 (seg)	Nossa Senhora Aparecida		
28/10/20 (qua)	Dia do Servidor Público		
02/11/20 (seg)	Finados		

XIII. BIBLIOGRAFIA BÁSICA

- 1. AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Condições Gerais de Fornecimento de Energia Elétrica Resolução Normativa nº 414/2010. Disponível em: https://www.aneel.gov.br/ren-414 Acessado em 16 de agosto de 2020.
- CENTRAIS ELÉTRICAS DE SANTA CATARINA S.A. Norma Técnica N-321.0001 Fornecimento de Energia Elétrica em Tensão Secundária de Distribuição. Disponível em: https://www.celesc.com.br/padrao-de-entrada Acessado em 16 de agosto de 2020.
- CENTRAIS ELÉTRICAS DE SANTA CATARINA S.A. Norma Técnica N-321.0002 Fornecimento de Energia Elétrica em Tensão Primária de Distribuição. Disponível em: https://www.celesc.com.br/padrao-de-entrada Acessado em 16 de agosto de 2020.
- 4. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 5410: Instalações elétricas de baixa tensão. 2. ed. Rio de Janeiro: ABNT, 2004. VII,209p. Disponível online. Instruções para acesso em: http://www.bu.ufsc.br/framebases.html
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO/CIE 8995-1: Iluminação de ambientes de trabalho, Parte
 1: Interior. Instruções para acesso em: http://www.bu.ufsc.br/framebases.html
 Observação: a disponibilidade de outras referências sobre o conteúdo da disciplina será verificada ao longo do

Observação: a disponibilidade de outras referências sobre o conteúdo da disciplina será verificada ao longo do semestre no acerto digital da BU.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- 1 MAMEDE FILHO, João. Instalações elétricas industriais. 8. ed. Rio de Janeiro: LTC, 2010. xiv, 666 p.
- 2 CAVALIN, Geraldo; CERVELIN, Severino. Instalações elétricas prediais: conforme Norma NBR 5410:2004. 22. ed. São Paulo: Érica, 2014. 422 p.
- 3 NISKIER, Julio; MACINTYRE, A. J. Instalações elétricas. 6. ed. Rio de Janeiro: LTC, 2013. xx, 443 p.
- 4 COTRIM, Ademaro A. M. B. Instalações elétricas. 5. ed. São Paulo: Pearson, c2009. viii, 496 p.
- 5 CREDER, Helio. Instalações elétricas. 15. ed. Rio de Janeiro: LTC, c2007. xiv, 428 p.
- 6 LAMBERTS, Roberto; DUTRA, Luciano; PEREIRA, Fernando Oscar Ruttkay. Eficiência energética na arquitetura. 3. ed. Rio de Janeiro: PROCEL, [201-]. 366 p. Disponível em: http://labeee.ufsc.br/publicacoes/livros Acessado em 16 de agosto de 2020.

	4	c	
М	ro	fesso	res:

Aprovado pelo Colegiado do Curso em	1 1	Presidente do Colegiado:
1 1 - 3		- 3