

Universidade Federal de Santa Catarina Campus Araranguá - ARA Centro de Ciências, Tecnologias e Saúde Departamento de Energia e Sustentabilidade Plano de Ensino

SEMESTRE 2020.2

I. IDENTIFICAÇÃO DA DISCIPLINA						
CÓDIGO	NOME DA DISCIPLINA		Nº DE HORAS-AULA SEMANAIS - TEÓRICAS	Nº DE HORAS-AULA SEMANAIS - PRÁTICAS		
EES7170	Circuitos Elétricos		3	1		
TOTAL DE HORAS- AULA SEMESTRAIS	HORÁRIO TURMAS TEÓRICAS	НС	DRÁRIO TURMAS PRÁTICAS	MODALIDADE		
72	05653 - 3.1010(2) / 5.1010(1)		05653 - 5.1100(1)	Ensino Remoto Emergencial		

II. PROFESSOR(ES) MINISTRANTE(ES)

CÉSAR CATALDO SCHARLAU (cesar.scharlau@ufsc.br)

III. PRÉ-REQUISITO(S)

FQM 7112 Física C

FQM 7106 Cálculo IV

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

ENGENHARIA DE ENERGIA [Campus Araranguá]

V. JUSTIFICATIVA

Circuitos Elétricos é um dos pilares da formação do Engenheiro de Energia e essa disciplina introduz ao aluno conceitos básicos de circuitos elétricos de corrente contínua e de corrente alternada.

VI. EMENTA

Conceitos básicos. Leis fundamentais. Métodos de análise e teoremas para circuitos de corrente contínua e alternada. Fasores. Resistores, capacitores e indutores. Circuitos de primeira e segunda ordem. Análise em regime permanente senoidal. Potência em corrente alternada. Circuitos trifásicos.

VII. OBJETIVOS

Objetivo Geral:

Fornecer subsídios para o entendimento de circuitos elétricos de corrente contínua e de corrente alternada.

Objetivos Específicos:

Para alcançar o objetivo geral, é esperado do aluno:

- Compreender conceitos básicos de circuitos elétricos;
- Aplicar técnicas de análise de circuitos em corrente contínua;
- Analisar circuitos de primeira e segunda ordem;
- Compreender o conceito de fasores;
- Aplicar técnicas de análise de circuitos de corrente alternada;
- · Analisar circuitos trifásicos.

VIII. CONTEÚDO PROGRAMÁTICO

- 1. Elementos de Circuitos
- 1.1. Fontes de tensão e corrente
- 1.2. Lei de Ohm
- 1.3. Construção de um modelo de circuito
- 1.4. Leis de Kirchhoff
- 1.5. Análise de circuitos com fontes dependentes
- 2. Circuitos Resistivos Simples
- 2.1. Resistores em série
- 2.2. Resistores em paralelo
- 2.3. Circuitos divisores de tensão e divisores de corrente
- 3. Técnicas de Análise de Circuitos
- 3.1. Método das tensões de nó
- 3.2. Método das tensões de nó com fontes dependentes
- 3.3. Método das correntes de malha
- 3.4. Método das correntes de malha com fontes dependentes
- 3.5. Método das tensões de nó versus o método das correntes de malha
- 3.6. Transformações de fonte
- 3.7. Equivalentes de Thévenin e Norton
- 3.8. Máxima transferência de potência
- 3.9. Superposição
- 4. Indutância e Capacitância
- 4.1. Indutor
- 4.2. Capacitor
- 4.3. Combinações de indutância e capacitância em série e paralelo
- 5. Resposta de Circuitos de Primeira Ordem
- 5.1. Resposta natural
- 5.2. Resposta completa
- 5.3. Resposta ao impulso e ao degrau
- 6. Resposta de Circuitos de Segunda Ordem
- 6.1. Resposta natural
- 6.2. Resposta completa
- 6.3. Resposta ao impulso e ao degrau
- 7. Análise do Regime Permanente Senoidal
- 7.1. Fonte senoidal
- 7.2. Resposta senoidal
- 7.3. Fasor
- 7.4. Elementos passivos no domínio da frequência
- 7.5. Leis de Kirchhoff no domínio da frequência
- 7.6. Transformações de fonte e circuitos equivalentes de Thévenin e Norton
- 7.7. Método das tensões de nó
- 7.8. Método das correntes de malha
- 7.9. Diagramas fasoriais
- 8. Cálculos de Potência em Regime Permanente Senoidal
- 8.1. Potência instantânea
- 8.2. Potência média e potência reativa
- 8.3. Valor eficaz e cálculos de potência
- 8.4. Potência complexa
- 9. Circuitos Trifásicos
- 9.1. Ligação em estrela e triângulo
- 9.2. Circuito para cargas equilibradas
- 9.3. Sistemas deseguilibrados
- 9.4. Potência em circuitos trifásicos

IX. COMPETÊNCIAS/HABILIDADES

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A adaptação dessa disciplina ao Ensino Remoto Emergencial (ERE) segue as regras estabelecidas na Resolução Normativa 140/2020/CUn. É importante enfatizar que o planejamento realizado pode sofrer alterações em função de mudanças na legislação, reavaliação de procedimentos, novas determinações das instâncias superiores da universidade ou motivos de força maior.

Considerando as características e as especificidades da disciplina, propõem-se uma metodologia de ensino inspirada na sala de aula invertida (flipped classroom em inglês). Trata-se de um modelo de ensino que coloca, de fato, o discente como protagonista, aproximando-o dos temas e conteúdo antes mesmo de a aula começar.

O processo de aprendizagem será dividido em três momentos:

- a. Antes do encontro: o professor disponibiliza, através do Moodle, atalhos para materiais, vídeos e artigos sobre o conteúdo em destaque. Os alunos acessam o conteúdo, sendo instigados a buscar outras bases e ampliar suas visões sobre o tema. As habilidades cognitivas envolvidas nesse momento são recordar e compreender.
- b. Durante o encontro: o professor e os alunos discutem o conteúdo através de uma videoconferência, possivelmente realizada através do BigBlueButton/Conferência Web RNP. São esclarecidas dúvidas, realizados exercícios, debates e apresentados estudos de caso. Habilidades cognitivas: aplicar, analisar, avaliar e criar.
- c. Depois do encontro: os alunos revisam o conteúdo e fazem atividades sobre os assuntos tratados em aula. Habilidades cognitivas: recordar, compreender, aplicar, analisar, avaliar e criar.

Atividades assíncronas estão previstas para os momentos a) e c) e atividades síncronas são planejadas nos momentos b) e c).

As atividades práticas serão desenvolvidas através de trabalhos e tarefas envolvendo a utilização de programas de simulação de circuitos.

Está prevista a participação de um monitor nessa disciplina.

Horário de atendimento do professor ao estudante: através de videoconferência (BigBlueButton/Conferência Web RNP) por agendamento, preferencialmente nas quartas-feiras, das 15 às 16 horas.

Observação: a utilização indevida da imagem de professores e colegas é considerado crime previsto na Constituição Federal e no Código Civil. Sendo, assim, não é permitido compartilhar e/ou gravar imagens e falas dos docentes e discentes. Além disso, não devem ser compartilhados ou publicados materiais que sejam de propriedade intelectual do professor sem prévia autorização.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.

A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).

O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

NF = (MF + REC)/2

Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

A avaliação da disciplina está sendo planejada através dos seguintes instrumentos:

* Provas: serão realizadas três provas regulares síncronas durante o semestre, previstas para ocorrer no horário da disciplina.

O cálculo da média final será efetuado de acordo com a seguinte equação

MF = 0.25.P1 + 0.30.P2 + 0.45.P3

onde:

- P1 nota da primeira prova;
- P2 nota da segunda prova;
- P3 nota da terceira prova.

Observações:

- 1. As avaliações poderão conter questões objetivas, objetivas mistas e dissertativas.
- 2. Poderão ser designadas outras atividades para complementar os conteúdos vistos na disciplina. Neste caso, a pontuação dessas atividades será incluída na nota das provas.
- 3. Será atribuída nota zero para as atividades onde for verificado plágio.

Registro de frequência:

Está prevista a aferição da frequência a partir da entrega das atividades avaliativas, do acesso aos materiais e do registro de presença nas videoconferências síncronas.

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97:

O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

XII. CRONOGRAMA		
SEMANA	DATAS	ASSUNTO
1	01/02/2021 a 07/02/2021	Apresentação da disciplina. Elementos de circuitos. Circuitos resistivos simples. Carga síncrona: 2 h-a. Carga assíncrona: 2 h-a.
2	08/02/2021 a 14/02/2021	Técnicas de análise de circuitos. Carga síncrona: 2 h-a. Carga assíncrona: 2 h-a.
3	15/02/2021 a 21/02/2021	Dia não letivo. Técnicas de análise de circuitos. Carga síncrona: 1 h-a. Carga assíncrona: 3 h-a.
4	22/02/2021 a 28/02/2021	Técnicas de análise de circuitos. Carga síncrona: 2 h-a. Carga assíncrona: 3 h-a.

5	01/03/2021 a	Técnicas de análise de circuitos. Carga síncrona: 2 h-a.
	07/03/2021	Carga assíncrona: 2 h-a.
6	08/03/2021 a	Indutância e capacitância. Resposta de circuitos de
	14/03/2021	primeira e segunda ordem. Carga síncrona: 2 h-a. Carga
		assíncrona: 2 h-a.
7	15/03/2021 a	Resposta de circuitos de primeira e segunda ordem.
	21/03/2021	Exercícios. Carga síncrona: 2 h-a. Carga assíncrona: 3 h-a.
8	22/03/2021 a	1º PROVA (23/03). Análise do regime permanente senoidal.
	28/03/2021	Carga síncrona: 3 h-a. Carga assíncrona: 2 h-a.
9	29/03/2021 a	Análise do regime permanente senoidal. Carga síncrona: 2
	04/04/2021	h-a. Carga assíncrona: 3 h-a.
10	05/04/2021 a	Análise do regime permanente senoidal. Carga síncrona: 2
	11/04/2021	h-a. Carga assíncrona: 3 h-a.
11	12/04/2021 a	Exercícios. 2ª PROVA (15/04). Carga síncrona: 3 h-a. Carga
	18/04/2021	assíncrona: 2 h-a.
12	19/04/2021 a	Cálculos de potência em regime permanente senoidal.
	25/04/2021	Carga síncrona: 2 h-a. Carga assíncrona: 3 h-a.
13	26/04/2021 a	Cálculos de potência em regime permanente senoidal.
	02/05/2021	Circuitos trifásicos. Carga síncrona: 2 h-a. Carga
		assíncrona: 3 h-a.
14	03/05/2021 a	Dia não letivo. Circuitos trifásicos. Carga síncrona: 1 h-a.
	09/05/2021	Carga assíncrona: 3 h-a.
15	10/05/2021 a	Exercícios. 3a PROVA (13/05). Carga síncrona: 3 h-a. Carga
	16/05/2021	assíncrona: 1 h-a.
16	17/05/2021 a	AVALIAÇÃO DE REPOSIÇÃO - Nova Avaliação (18/05).REC
	23/05/2021	(20/05). Carga síncrona: 4 h-a. Carga assíncrona: 0 h-a.

Obs: O caléndario está sujeito a pequenos ajustes de acordo com as necessidades das atividades

XIII. FERIADOS PREVISTOS PARA O SEMESTRE				
15/02/2021	Ponto facultativo Carnaval			
16/02/2021	Carnaval			
02/04/2021	Sexta-feira Santa			
03/04/2021	Aniversário de Araranguá			
21/04/2021	Tiradentes			
01/05/2021	Dia do Trabalho			
04/05/2021	Dia da Padroeira de Araranguá			
03/06/2021	Corpus Christi			

XIV. BIBLIOGRAFIA BÁSICA

- 1. IEEE Xplore. Disponível em: https://ieeexplore.ieee.org Acessado em 16 de dezembro de 2020.
- 2. SANTOS, Kelly V. dos. Fundamentos de Eletricidade. Disponível em:

http://redeetec.mec.gov.br/images/stories/pdf/eixo_infor_comun/tec_man_sup/081112_fund_eletr.pdf

3. BASTOS, Carlos Wesley da Mota. Análise de Circuitos. Disponível em:

http://proedu.rnp.br/handle/123456789/805

Observação: a disponibilidade de outros livros sobre o conteúdo da disciplina será verificada ao longo do semestre no acerto digital da BU.

XV. BIBLIOGRAFIA COMPLEMENTAR

- 1. ALEXANDER, Charles K.; SADIKU, Matthew N. O. Fundamentos de circuitos elétricos. 5. ed. Porto Alegre: AMGH, 2013. xxii, 874 p.
- 2. NILSSON, James William; RIEDEL, Susan A. Circuitos elétricos. 8. ed. São Paulo: Pearson Prentice Hall, c2009. xiii, 574 p.
- 3. JOHNSON, David E.; HILBURN, John L.; JOHNSON, Johnny Ray. Fundamentos de análise de circuitos elétricos. 4. ed. Rio de Janeiro: LTC, c1994. 539 p.
- 4. NAHVI, Mahmood; EDMINISTER, Joseph A. Teoria e problemas de circuitos elétricos. 4. ed. Porto Alegre: Bookman, 2005. 478 p.
- 5. BOYLESTAD, Robert L. Introdução à análise de circuitos. 12. ed. São Paulo: Pearson, c2012. xiii, 959 p.
- 6. GIACOMIN, João C. Princípio de Circuitos Elétricos. Apostila disponível em:

http://algol.dcc.ufla.br/~giacomin/Com145/Eletricidade_T.pdf

7. KUROKAWA, Sérgio. Eletricidade. Apostila disponível em:

https://www.feis.unesp.br/Home/departamentos/engenhariaeletrica/apostila_eletricidade.pdf

8. AFONSO, Antonio Pereira. Eletrônica: circuitos elétricos. Vol. 1. Disponível em:

http://www.colecaotecnica.cpscetec.com.br/

Professor(a):

Aprovado pelo Colegiado do Curso em 09/02/2021 Presidente do Colegiado: