

Universidade Federal de Santa Catarina Campus Araranguá - ARA Centro de Ciências, Tecnologias e Saúde Departamento de Energia e Sustentabilidade Plano de Ensino

SEMESTRE 2020.2

I. IDENTIFICAÇÃO DA DISCIPLINA						
CÓDIGO	NOME DA DISCIPLINA		Nº DE HORAS-AULA SEMANAIS - TEÓRICAS	Nº DE HORAS-AULA SEMANAIS - PRÁTICAS		
EES7368	Energia Oceânica		2	0		
TOTAL DE HORAS- AULA SEMESTRAIS	HORÁRIO TURMAS TEÓRICAS	HORÁRÍO TURMAS PRÁTICAS		MODALIDADE		
36	05653 2.1010(2)			Ensino Remoto		

II. PROFESSOR(ES) MINISTRANTE(ES)

Carla de Abreu D'Aquino (carla.daquino@ufsc.br)

III. PRÉ-REQUISITO(S)

FOM7111 Física B

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

ENGENHARIA DE ENERGIA [Campus Araranguá]

V. JUSTIFICATIVA

A energia elétrica a partir do aproveitamento dos recursos oceânicos é vista como uma fonte promissora de energia limpa e renovável. A disciplina tem como objetivo promover o conhecimento dos oceanos e seus recursos energéticos (ondas, marés correntes, biomassa e térmica), a fim de preparar os futuros engenheiros de energia para atuarem no mercado de geração de energia oceânica.

VI. EMENTA

Introdução ao movimento dos oceanos. Forças geradoras das ondas. Tipos de ondas. Ondas oceânicas e seu potencial energético: caracterização, estimativas e avaliação, dispositivos para conversão. Forças geradoras de marés. Maré astronômica e meteorológica. Energia das marés e dispositivos para conversão.

VII. OBJETIVOS

Objetivo Geral:

Fornecer subsídio teórico e metodológico para o entendimento básico dos oceanos e de seus recursos energéticos.

Objetivos Específicos:

- Introdução aos oceanos e seus processos;
- . Introdução aos movimentos oceânicos;

Analisar o oceano como fonte de energia (ondas e marés);

VIII. CONTEÚDO PROGRAMÁTICO

1° Parte:

- Origem e formação dos oceanos;
- Características físicas dos oceanos;
- Energia térmica oceânica;
- Energia por gradiente de salinidade;
- Circulação oceânica;

2° Parte:

- Ondas oceânicas:
- Energia das ondas oceânicas;
- Dispositivos para conversão;

3° Parte:

- Marés e correntes de maré;
- Energia das marés:
- Dispositivos para conversão;

IX. COMPETÊNCIAS/HABILIDADES

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Serão aplicadas diferentes metodologias de ensino remoto:

- 1. Aulas expositivas e síncronas, utilizando salas virtuais (discussões, dúvidas, apresentações);
- 2. Sala de aula invertida: O professor irá orientar os alunos a lerem um determinado material referente a um tópico do conteúdo. Essa atividade deve ser executada pelos alunos de forma assíncrona. Em seguida, um encontro síncrono é realizado, no qual serão desenvolvidas atividades propostas pelo professor para consolidação do aprendizado;
- 3. Atividades avaliativas assíncronas e/ou síncronas;

Todo material considerado significativo, ficará disponível no Moodle.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.

A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).

O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

NF = (MF + REC)/2

Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações

As avaliações poderão conter questões objetivas, objetivas mistas, ilustrativas e dissertativas.

Média ponderada UFSC = atividade 1 (assíncrona, peso 1); avaliação teórica 1 (síncrona, peso 3,5); atividade de ondas (assíncrona, peso 2); avaliação teórica 2 (síncrona, peso 3,5)

Registro de frequência

O registro de frequência dos alunos, utilizará os parâmetros deliberados em colegiados (Art. 15 § 4° da Res. 140/2020/CUn de 24 de julho de 2020):

A verificação de freguência se dará por meio da participação das atividades assíncronas e síncronas.

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

1 -1 (- ,		
XII. CRONOGRAMA		
SEMANA	DATAS	ASSUNTO
1	01/02/2021 a 07/02/2021	Apresentação da disciplina; Origem e formação dos oceanos; Características físicas dos oceanos; (aula síncrona) (2h)
2	08/02/2021 a 14/02/2021	Características físicas dos oceanos; (assíncrona) (2h)
3	15/02/2021 a 21/02/2021	Energia térmica oceânica; (aula síncrona) (2h)

4	22/02/2021 a 28/02/2021	Energia por diferença de salinidade (assíncrona) (4 h)
5	01/03/2021 a 07/03/2021	Circulação Oceânica (assíncrona) (2h)
6	08/03/2021 a 14/03/2021	Avaliação teórica 1 (atividade síncrona) (2h)
7	15/03/2021 a 21/03/2021	Ondas oceânicas (aula síncrona) (2h)
8	22/03/2021 a 28/03/2021	Ondas oceânicas (assíncrona) (2h)
9	29/03/2021 a 04/04/2021	Energia das Ondas oceânicas (aula síncrona) (2h)
10	05/04/2021 a 11/04/2021	Dispositivos para conversão (assíncrona) (2h)
11	12/04/2021 a 18/04/2021	Marés (aula síncrona) (2h)
12	19/04/2021 a 25/04/2021	Marés (assíncrona) (2h)
13	26/04/2021 a 02/05/2021	Correntes de maré; Energia das marés e dispositivos; (assíncrona) (4 h)
14	03/05/2021 a 09/05/2021	Energia das marés e dispositivos (assíncrona) (2h)
15	10/05/2021 a 16/05/2021	Avaliação teórica 2 (atividade síncrona) (2h)
16	17/05/2021 a 23/05/2021	REC (atividade síncrona) (2h)

Obs: O caléndario está sujeito a pequenos ajustes de acordo com as necessidades das atividades

XIII. FERIADOS PREVISTOS PARA O SEMESTRE				
15/02/2021	Ponto facultativo Carnaval			
16/02/2021	Carnaval			
02/04/2021	Sexta-feira Santa			
03/04/2021	Aniversário de Araranguá			
21/04/2021	Tiradentes			
01/05/2021	Dia do Trabalho			
04/05/2021	Dia da Padroeira de Araranguá			
03/06/2021	Corpus Christi			

XIV. BIBLIOGRAFIA BÁSICA

- 1. GARRISON, Tom. Fundamentos de Oceanografia. 1.ed. São Paulo: Cengage Learning, 2010. 526p.
- 2. TOLMASQUIM, Mauricio Tiomno. Energia Renovável: hidráulica, biomassa, eólica, solar, oceânica. Rio de Janeiro: Empresa de Pesquisa Energética (2016). 452 p.

XV. BIBLIOGRAFIA COMPLEMENTAR

- 1. THURMAN, Harold V.; TRUJILLO, Alan P. Introductory oceanography. 10. ed. Upper Saddle River: Prentice Hall, 2004. 608p.
- 2. THE OPEN UNIVERSITY. Waves, tides and shallow water processes. Butterworth-Heinemann, Oxford, 1999. 227 p.

Professor(a):

Aprovado pelo Colegiado do Curso em 04/02/2021 Presidente do Colegiado: