

Universidade Federal de Santa Catarina Campus Araranguá - ARA Centro de Ciências, Tecnologias e Saúde Departamento de Energia e Sustentabilidade Plano de Ensino

SEMESTRE 2020.2

I. IDENTIFICAÇÃO DA DISCIPLINA							
CÓDIGO	NOME DA DISCIPLINA		Nº DE HORAS-AULA SEMANAIS - TEÓRICAS	Nº DE HORAS-AULA SEMANAIS - PRÁTICAS			
EES7372	Transmissão e Distribuição de Energia		4	0			
TOTAL DE HORAS- AULA SEMESTRAIS	HORÁRIO TURMAS TEÓRICAS	HORÁRIO TURMAS PRÁTICAS		MODALIDADE			
72	06653 - 2.1010(2) e 4.1010(2)			Ensino Remoto Emergencial			

II. PROFESSOR(ES) MINISTRANTE(ES)

Leonardo Elizeire Bremermann (leonardo.bremermann@ufsc.br)

III. PRÉ-REQUISITO(S)

EES7170 - Circuitos Elétricos

EES7367 - Teoria Eletromagnética

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

ENGENHARIA DE ENERGIA [Campus Araranguá]

V. JUSTIFICATIVA

Esta disciplina introduz conceitos básicos e fundamentação de fenômenos da transmissão e distribuição de energia elétrica através de linhas aéreas e cabos subterrâneos. Além de aspectos teóricos, são apresentados aspectos tecnológicos de linhas de transmissão e de redes de distribuição para atender demandas variáveis com tendência crescente.

VI. EMENTA

Conceitos de sistemas elétricos de potência. Representação dos sistemas de potência. Estudo de carga. Estudo de modelos, cálculo de parâmetros e operação das linhas de transmissão. Relações entre tensão e corrente numa linha de transmissão. Subestações. Planejamento da expansão e da operação. Fatores típicos de carga. Cálculo de curto-circuito. Qualidade do serviço em sistemas de transmissão e distribuição. Aspectos tecnológicos de sistemas de distribuição.

VII. OBJETIVOS

Objetivo Geral:

Fornecer subsídios teóricos e práticos para projeto e operação de linhas de transmissão e sistemas de distribuição de energia elétrica.

Objetivos Específicos:

- . Adquirir conhecimentos básicos relativos ao planejamento de linhas aéreas de transmissão e do planejamento e operação da Distribuição de Energia Elétrica.
- . Demonstrar capacidade para o tratamento, validação e interpretação de resultados obtidos em trabalhos práticos.
- . Desenvolver capacidades de trabalho autônomo e de pesquisa bibliográfica.
- . Demonstrar capacidade de integração e de realização de trabalhos em equipe.
- . Demonstrar capacidade de elaboração e desenvolvimento de relatórios escritos e de preparação e realização de exposições orais.

VIII. CONTEÚDO PROGRAMÁTICO

- 1. Introdução a sistemas de transmissão de energia e sinais.
- Histórico e desenvolvimento de sistemas de energia elétrica.
- 3. Modelos de transmissão de sinais e energia.
- 4. Cálculo de parâmetros de linhas de transmissão.
- 5. Aspectos mecânicos de linhas de transmissão.
- 6. Aspectos tecnológicos, operação e manutenção.
- 7. Subestações.
- 8. Sistemas de distribuição. Tipos.
- 9. Aspectos tecnológicos e componentes de sistemas de distribuição.
- 10. Planejamento de Sistemas de Distribuição.
- 11 Previsão de carga.
- 12. Cálculo de curto circuito em sistemas de distribuição.
- 13. Operação e manutenção de redes de distribuição.
- 14. Indicadores de qualidade.
- 15. Automação da distribuição.

IX. COMPETÊNCIAS/HABILIDADES

X. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A metodologia deve ser redefinida, especificando os recursos de tecnologias da informação e comunicação que serão utilizados para alcançar cada objetivo (preferencialmente na forma de uma matriz instrucional) (Art. 15 § 4° da Res. 140/2020/CUn de 24 de julho de 2020).

Todo material utilizado, como apresentações, slides, vídeos, referências, entre outros, deverá ser disponibilizado pelos professores posteriormente, garantindo o acesso do estudante a material adequado (Art. 15 § 3° da Res. 140/2020/CUn de 24 de julho de 2020).

Serão aplicadas diferentes metodologias de ensino remoto:

- 1) Aulas expositivas e síncronas, utilizando salas virtuais (discussões, dúvidas, apresentações);
- 2) Aulas expositivas e assíncronas, disponibilizada aos alunos por meio do AVA Moodle;
- Sala de aula invertida: O professor irá orientar os alunos a lerem um determinado material referente a um tópico do conteúdo. Essa atividade deve ser executada pelos alunos de forma assíncrona. Em seguida, um encontro síncrono é realizado, no qual serão desenvolvidas atividades propostas pelo professor para consolidação do aprendizado;
- 4) Atividades avaliativas assíncronas e/ou síncronas;
- 5) Todo material considerado significativo, ficará disponível no AVA Moodle.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

 NF=(MF+REC)/2
- Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)
- Avaliações

A nota final será computada a partir da combinação das seguintes atividades avaliativas:

• Questionários (P1, P2 e P3): poderão conter questões objetivas, objetivas mistas e dissertativas. Serão aplicadas em formato assíncrono. Atividades assíncronas diversas (P3): constituída por pequenas atividades assíncronas.

A média final será calculada da seguinte forma:

MF = 0.35P1 + 0.4P2 + 0.25P3

Registro de frequência

Neste tópico, deve-se descrever como será realizado o registro de frequência dos alunos, seguindo parâmetros deliberados em colegiados (Art. 15 § 4° da Res. 140/2020/CUn de 24 de julho de 2020).

• A verificação de frequência se dará por meio da participação das atividades síncronas/assíncronas propostas semanalmente.

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

• O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID - sid.cts.ara@contato.ufsc.br).

XII. CRONOGRAMA				
SEMANA	DATAS	ASSUNTO		
1	01/02/2021 a 07/02/2021	Apresentação da disciplina. Histórico da evolução de propagação de sinais e energia. (2 h.a. síncrona) Evolução do Sistema Interligado Nacional. Conceitos básicos de		
		transmissão de potência em corrente alternada (2 h.a. assíncrona) Discussão (2 h.a. síncrona)		
2	08/02/2021 a 14/02/2021	Características mecânicas e elétricas de linhas de transmissão (2 h.a. assíncrona) Planejamento de um sistema de Transmissão de energia (2 h.a. assíncrona) Discussão (4 h.a. síncrona)		
3	15/02/2021 a 21/02/2021	(Carnaval) Modelagem dos principais componentes de um sistema elétrico de potência (2 h.a. assíncrona) Discussão (2 h.a. síncrona)		
4	22/02/2021 a 28/02/2021	Efeitos especiais em linhas: Corona, rádio interferência, ruído audível (2 h.a. assíncrona) Efeito do campo elétrico (2 h.a. assíncrona) Discussão (2 h.a. síncrona)		
5	01/03/2021 a 07/03/2021	Método das Imagens.(2 h.a. assíncrona) Cálculo de parâmetros de linhas: Resistência, Indutância e Capacitância (2 h.a. assíncrona)		
6	08/03/2021 a 14/03/2021	Revisão (2 h.a. síncrona) Atividade Avaliativa P1 (2 h.a. assíncrona)		
7	15/03/2021 a 21/03/2021	Introdução à Sistemas de Distribuição (2 h.a. assíncrona) Planejamento de Subestações: tipos, arranjos de barramentos, medição e proteção (2 h.a. assíncrona) Discussão (3 h.a. síncrona)		
8	22/03/2021 a 28/03/2021	Planejamento de Sistemas de Distribuição (2 h.a. assíncrona) Planejamento de Sistemas de Distribuição (continuação) (2 h.a. assíncrona)		

9	29/03/2021 a 04/04/2021	Previsão de demanda (2 h.a. assíncrona) Planejamento da expansão de rede de distribuição (2 h.a. assíncrona) Discussão (2 h.a. síncrona)
10	05/04/2021 a 11/04/2021	Controle de tensão em Sistemas de Distribuição (2 h.a. assíncrona) Controle de tensão em Sistemas de Distribuição (continuação) (2 h.a. assíncrona)
11	12/04/2021 a 18/04/2021	Qualidade de Energia Elétrica (Planejamento) (2 h.a. assíncrona) Qualidade de Energia Elétrica (continuação) (2 h.a. assíncrona) Discussão (2 h.a. síncrona)
12	19/04/2021 a 25/04/2021	Cálculo de confiabilidade de rede de distribuição (2 h.a. assíncrona) Discussão (1 h.a. síncrona) Dia não letivo
13	26/04/2021 a 02/05/2021	Indicadores Individuais e coletivos (2 h.a. assíncrona) Revisão (2 h.a. assíncrona)
14	03/05/2021 a 09/05/2021	Atividade Avaliativa P2 (2 h.a. assíncrona) Divulgação de notas
15	10/05/2021 a 16/05/2021	Revisão (2 h.a. assíncrona) Atividade Avaliativa de Recuperação (2 h.a. assíncrona)
16	17/05/2021 a 23/05/2021	Divulgação de notas finais

Obs: O caléndario está sujeito a pequenos ajustes de acordo com as necessidades das atividades

XIII. FERIADOS PREVISTOS PARA O SEMESTRE				
15/02/2021	Ponto facultativo Carnaval			
16/02/2021	Carnaval			
02/04/2021	Sexta-feira Santa			
03/04/2021	Aniversário de Araranguá			
21/04/2021	Tiradentes			
01/05/2021	Dia do Trabalho			
04/05/2021	Dia da Padroeira de Araranguá			
03/06/2021	Corpus Christi			

XIV. BIBLIOGRAFIA BÁSICA

- 1. CAMARGO, C. Celso de Brasil. Transmissão de energia elétrica: aspectos fundamentais. 4. ed. rev. Florianópolis: Editora da UFSC, 2009. 277p. ISBN 9788532804679.
- 2. KAGAN, Nelson; OLIVEIRA, Carlos César Barioni de; ROBBA, Ernesto João. Introdução aos Sistemas de Distribuição de Energia Elétrica. 2. ed. São Paulo: Edgard Blucher, 2010. 328p.
- 3. STEVENSON, William D. Elementos de análise de sistemas de potência. São Paulo: McGraw-Hill do Brasil, 1977. ix, 374 p.

XV. BIBLIOGRAFIA COMPLEMENTAR

- 1. VON MEIER, Alexandra. Electric Power Systems: A Conceptual Introduction. 1. ed. Hoboken: John Wiley & Sons, 2006. 309p.
- 2. ELGERD, Olle Ingemar. Introdução a teoria de sistemas de energia elétrica. São Paulo: McGraw-Hill do Brasil, 1976. xviii, 604p.
- 3. CHRISTOPOULOS, Christos. The transmission-line modeling method: TLM. New York: Institute of Electrical and Electronics Engineers; Oxford: Oxford University Press, c1995. 1 online resource (xi, 220 p (IEEE/OUP series on electromagnetic wave theory). ISBN 9780470546659. Disponível em: http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5273048.

Professor(a):

Aprovado pelo Colegiado do Curso em 04/02/2021 Presidente do Colegiado: