
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Thiago Leucz Astrizi

Postquantum Preimage Chameleon Hash Functions for Digital Signatures

Florianópolis

2021

Thiago Leucz Astrizi

Postquantum Preimage Chameleon Hash Functions for Digital Signatures

Dissertação submetida ao Programa de Pós-Graduação
em Ciência da Computação da Universidade Fed-
eral de Santa Catarina para a obtenção do título de mestre
em Ciência da Computação.
Orientador: Prof. Ricardo Custódio, Dr.
Coorientadora: Profa. Lucia Moura, Dra.

Florianópolis

2021

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Astrizi, Thiago
 Postquantum Preimage Chameleon Hash Functions for
Digital Signatures / Thiago Astrizi ; orientador, Ricardo
Custódio, coorientadora, Lucia Moura, 2021.
 187 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2021.

 Inclui referências.

 1. Ciência da Computação. 2. Hash Camaleão. 3.
Assinaturas Digitais. 4. Provas de Segurança. I. Custódio,
Ricardo. II. Moura, Lucia. III. Universidade Federal de
Santa Catarina. Programa de Pós-Graduação em Ciência da
Computação. IV. Título.

Thiago Leucz Astrizi

Postquantum Preimage Chameleon Hash Functions for Digital Signatures

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Prof. Rafael de Santiago, Dr.

Universidade Federal de Santa Catarina

Prof. Edoardo Persichetti, Dr.

Florida Atlantic University

Prof. Julio César López Hernández, Dr.

Universidade Estadual de Campinas

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de mestre em Ciência da Computação.

Coordenação do Programa de

Pós-Graduação

Prof. Ricardo Custódio, Dr.

Orientador

Florianópolis, 2021.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior- Brasil (CAPES) - Código de Financiamento 001.

Agradeço ao Professor Ricardo Custódio e à Professora Lucia Moura por terem

feito parte desta pesquisa, pela orientação e disponibilidade para reuniões e dis-

cussões.

Agradeço aos vários colegas do Laboratório de Segurança em Computação da

Universidade Federal de Santa Catarina (LabSEC-UFSC) que contribuíram com dicas

e conselhos.

Agradeço à Lucila Bethânia de Souza Alosilla e Simone Cruz por terem ajudado

resolvendo diferentes questões burocráticas na universidade e dando aconselhamen-

tos.

Agradeço à minha tia Ana Leuch Lozovei por todo o apoio durante o mestrado.

Agradeço aos professores Rafael de Santiago, Edoardo Persichetti e Julio César

López Hernández pelas suas sugestões e contribuições como membros da banca de

defesa da dissertação.

ACKNOWLEDGEMENTS

This work was financed by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior- Brasil (CAPES) – Finance Code 001.

I thank Professor Ricardo Custódio and Professor Lucia Moura for being part of

the development of this research, for the supervision and availability in meetings and

discussions.

I thank multiple co-workers in computer security laboratory (LabSEC) in Federal

University of Santa Catarina (UFSC) who contributed with tips and advices.

I thank Lucila Bethânia de Souza Alosilla and Simone Cruz for helping to solve

bureaucratic problems in the university and for advices.

I thank my aunt Ana Leuch Lozovei for the help and support during the masters

course.

I thank Professors Rafael de Santiago, Edoardo Persichetti and Julio César

López Hernández for numerous suggestions and contributions while being part of the

defense board of this dissertation.

RESUMO

Funções de hash camaleão são funções hash (ou funções de resumo criptográfico)
com um segredo associado (seu “trapdoor ”) que permite o cálculo de sua primeira
ou segunda pré-imagem somente para aqueles que o conhecem. Essa dissertação
apresenta uma revisão sobre diferentes construções de hash camaleão e suas apli-
cações, em especial para o uso de assinaturas digitais. Também propomos uma nova
construção de assinatura com uma prova de segurança no modelo do oráculo aleatório,
adaptável para adversários clássicos e pós-quânticos. Apresentamos também resulta-
dos de sua implementação. A assinatura proposta tem uma propriedade nova de que
um par formado pela mensagem e sua assinatura armazena qualquer dado arbitrário
que seja escolhido durante a geração de chaves, o qual pode ser revelado computando
um hash da mensagem e sua assinatura. Isso pode ser usado para construir assinat-
uras digitais mais amigáveis ao usuário e ligar um par de chaves a dados biométricos
de seu proprietário. Nossa construção também se destaca por ser a primeira assinatura
baseada em hash camaleão provada segura neste modelo específico de segurança.

Palavras-chave: Hash Camaleão. Assinaturas Digitais. Provas de Segurança.

RESUMO EXPANDIDO

INTRODUÇÃO

Uma função hash tradicional é um algoritmo que, dado uma mensagem msg

produz de maneira eficiente uma saída dgt , geralmente pequena se comparada com o

tamanho da entrada. Além disso, deve ser computacionalmente fácil obter dgt a partir

de msg, mas computacionalmente difícil de obter msg a partir de dgt . Mais ainda, deve

ser também difícil encontrar duas mensagens que resultem na mesma saída.

Ao contrário de funções hash, as funções de hash camaleão são uma primitiva

criptográfica que possui associada a ela um par de chaves (ek , tk). A primeira delas,

que chamamos de chave de avaliação e que é pública, torna possível determinar o

hash de uma mensagem. A outra chave é um “trapdoor” secreto que torna possível

resolver os seguintes problemas que de outro modo seriam difíceis:

• Encontrar duas entradas diferentes que resultam no mesmo hash (computar

colisão).

• Dada uma entrada, encontrar uma segunda entrada que resulta no mesmo hash

(computar segunda pré-imagem).

Algumas funções de hash camaleão também permitem resolver o problema

adicional, que é tão ou mais difícil que os anteriores:

• Dado um valor de hash, encontrar uma entrada da função que produz o valor do

resumo (computar pré-imagem).

Neste trabalho fazemos uma revisão de funções de hash camaleão presentes na

literatura e apresentamos uma proposta de aplicação alternativa para elas: a criação de

assinaturas de pré-imagem. Neste tipo de assinatura, durante a geração das chaves,

um usuário pode escolher qualquer elemento arbitrário do conjunto de saídas de

uma hash camaleão e associá-la ao par de chaves. O elemento escolhido é revelado

durante a verificação da assinatura: o hash de um par formado por uma mensagem e

uma assinatura válida resulta no elemento escolhido.

MOTIVAÇÃO

Este trabalho sobre hash camaleão foi motivado pelo estudo de assinaturas

digitais e pela ideia de criar uma assinatura digital mais amigável aos usuários.

Em assinaturas digitais típicas, para realizar a sua verificação, um usuário ex-

ecuta um algoritmo que retorna se a assinatura foi considerava válida ou não. O que

queremos é que além de termos um algoritmo de verificação, tenhamos também a

possibilidade de extrair determinado símbolo ou informação de uma assinatura válida.

Que se uma assinatura for válida, possamos também extrair dela uma imagem da

assinatura manuscrita de um signatário para exibi-la na tela, por exemplo.

Como em uma assinatura tradicional tipicamente aplicamos uma função hash

tradicional em uma mensagem e então aplicamos um algoritmo de assinatura sobre

o resumo, a ideia inicial era buscar implementar um esquema onde o simples cálculo

do hash sobre a mensagem e sua assinatura pudesse resultar em uma informação

personalizada específica. A qual poderia ser a imagem de uma assinatura manuscrita.

Dado que as funções hash tradicionais não permitem que isso seja feito, passamos

a buscar funções com maior flexibilidade em suas propriedades. Depois de pesquisar

na literatura, concluímos que funções hash camaleão tinham a propriedade que bus-

camos.

OBJETIVOS

O principal objetivo deste trabalho é o desenvolvimento de uma construção de

assinatura digital baseada em hash camaleão. A assinatura desenvolvida deve ter a

propriedade de poder codificar uma mensagem ou conteúdo arbitrário que pode ser

checado durante a verificação da assinatura caso seja uma assinatura legítima.

Também temos como objetivo garantir que a assinatura seja segura mesmo

diante de atacantes quânticos. Com isso espera-se que a assinatura desenvolvida con-

tinue segura mesmo com os possíveis avanços futuros na construção de computadores

quânticos.

Como objetivos específicos para atingir o objetivo geral acima, podemos listar:

1. Revisar o que existe na literatura sobre hash camaleão.

2. Revisar construções existentes de assinaturas digitais usando funções de hash

camaleão.

3. Estudar os requisitos necessários para usar uma função hash camaleão da forma

como descrevemos.

4. Propor uma construção específica e eficiente para nossa assinatura.

5. Demonstrar por meio de uma prova ou redução de segurança que nossa assi-

natura proposta é segura.

6. Implementar um protótipo de nossa assinatura e comparar seu desempenho com

o de outras construções.

METODOLOGIA

Como nossa proposta consiste em criar uma assinatura digital a partir da capaci-

dade de computar a pré-imagem de uma hash camaleão com ajuda de seu trapdoor,

buscamos através de uma revisão sistemática encontrar outros trabalhos que usem

esta capacidade presente em algumas funções de hash camaleão (ao invés de usar

apenas o cálculo da segunda pré-imagem, que é mais comum). Buscamos assim en-

contrar casos de uso anteriores para tal propriedade e identificar se essa mesma ideia

já foi apresentada antes.

Após investigar o que já existia sobre o assunto na literatura, oferecemos uma

proposta nova de construção que pode ser provada segura por meio de uma redução

de segurança mostrando que falsificar uma assinatura em nossa construção, mesmo

podendo induzir o signatário a assinar mensagens específicas escolhidas adaptativa-

mente, é tão difícil quanto resolver um problema baseado em reticulados. Tal problema

é considerado difícil tanto para computadores clássicos como computadores quânticos.

Por fim, após propor uma construção, buscamos oferecer a implementação de

um protótipo para demonstrar a viabilidade da construção e poder comparar o seu

tempo de execução com o de outras assinaturas digitais.

RESULTADOS E DISCUSSÃO

Nossa revisão sistemática mostrou que embora seja menos comum, existem

trabalhos anteriores que exploraram a capacidade de cálculo de pré-imagem de hash

camaleão, e inclusive há trabalhos prévios que usam tal capacidade para construir

assinaturas digitais. Entretanto, nenhuma das propostas existentes tem a propriedade

proposta de permitir codificar informação personalizada arbitrária ligada ao signatário.

As construções anteriores também garantiam a segurança apenas em modelos de

segurança menos rigorosos.

Uma das dificuldades em usar funções de hash camaleão para tal finalidade

é que na maioria das construções, tais funções não permanecem seguras quando

colisões são reveladas. Apesar disso, conseguimos propor uma construção capaz de

garantir a segurança de nossa construção de assinatura. Na construção proposta,

embora não tenhamos provas de que ela permanece segura se colisões arbitrárias

forem reveladas, conseguimos garantir que as colisões específicas reveladas durante

o processo de assinatura não comprometem a segurança do esquema.

A segurança de nossa construção é baseada na dificuldade de resolver o prob-

lema de encontrar vetores pequenos em certos tipos de reticulados, um problema

considerado difícil tanto para computadores clássicos como para computadores quân-

ticos.

Apresentamos também uma implementação de um protótipo em C++ que demon-

stra a viabilidade da proposta.

CONCLUSÃO E TRABALHOS FUTUROS

Este trabalho demonstrou a segurança e viabilidade do conceito de assinaturas

de pré-imagem por meio de uma prova de segurança e implementação de um pro-

tótipo. Com isso, nossa construção poderia ser usada na prática para a assinatura de

documentos eletrônicos.

A propriedade mais interessante de nossa assinatura é que ela é parte da

pré-imagem de um valor escolhido durante a geração de chaves. Isso abre novas

possibilidades, como criar assinaturas onde uma mensagem assinada é verificada

comparando seu “hash” depois de concatenada com sua assinatura para verificar se

o resultado é um dado valor com interesse especial, como por exemplo, a imagem

de uma assinatura manuscrita. Tal uso pode melhorar a experiência do usuário em

termos da confiança na assinatura ao permitir que haja não apenas a sua verificação

criptográfica, mas também uma verificação visual da mesma.

Outras informações biométricas do signatário também podem ser usadas além

da sua assinatura manuscrita. Sua impressão digital, por exemplo. Isso também per-

mite que seja possível ligar as chaves de uma assinatura digital à identidade real de

quem irá utilizá-la.

Trabalhos futuros envolvendo a assinatura descrita aqui envolvem pesquisar

como aperfeiçoar o seu tempo de execução e investigar se é possível usar outros

tipos de construção de hash camaleão em sua composição para que sua segurança

possa ser baseado em outros tipos de pressupostos criptográficos. Também pode

ser possível generalizar o esquema para que ao assinar uma mensagem o signatário

possa escolher uma dentre várias informações personalizadas para associar à sua

assinatura, ao invés de ser sempre a mesma.

ABSTRACT

Chameleon hash functions are hash functions with an associated trapdoor that allows
for first or second preimage computation. Without the knowledge of this trapdoor, the
chameleon hash is collision-resistant like usual hash functions. This thesis presents a
review about different constructions of chameleon hash functions and some applica-
tions. We review previous uses of chameleon hash functions to build digital signature
schemes and propose a novel construction, secure against adaptive chosen message
attacks, even against quantum attackers. A security proof in the random oracle model is
presented together with results about the scheme implementation. The new proposed
signature scheme has an interesting property that a pair composed of a message and
a valid signature can encode any arbitrary data chosen during key generation. This en-
coded data is revealed computing the hash of the message and signature and can be
used to create more user-friendly signatures and link the keys to its owner’s biometric
data. This signature is also notable for being the first signature scheme based on a
chameleon hash function proven secure in this specific security model.

Keywords: Chameleon Hash. Digital Signatures. Provable Security.

LIST OF FIGURES

Figure 1 – The motivating idea. 19

Figure 2 – Attack Game: Factoring Assumption 27

Figure 3 – Attack Game: Discrete Logarithm . 27

Figure 4 – Attack Game: Short Integer Solution 29

Figure 5 – Short Integer Solution Problem . 30

Figure 6 – Attack Game: Ring-SIS Assumption 31

Figure 7 – Attack Game: One-Way Function . 32

Figure 8 – Attack Game: Collision-resistance. 33

Figure 9 – Attack Game: Second preimage resistance. 35

Figure 10 – Attack Game: One-way trapdoor function. 37

Figure 11 – Attack Game: Pseudo-random function, game 0. 38

Figure 12 – Pseudo-random function, game 1 . 39

Figure 13 – Diagram representing the algorithms in a signature scheme. 40

Figure 14 – Attack Game: Signature unforgeability against adaptive chosen mes-

sage attacks . 41

Figure 15 – Attack Game: Signature unforgeability against generic chosen mes-

sage attacks . 42

Figure 16 – Attack Game: Signature unforgeability against random message attacks 43

Figure 17 – Attack Game: Signature unforgeability against adaptive chosen mes-

sage attacks in a random oracle model 45

Figure 18 – Diagram representing the algorithms in a chameleon hash scheme. 52

Figure 19 – Representations of non-uniform chameleon hash (left) and uniform

chameleon hash (right). 53

Figure 20 – Attack Game 1: Collision resistance 53

Figure 21 – Using adversary A that breaks the security of (SIG ◦ CH) to build

adversary B that breaks the security of SIG 68

Figure 22 – Diagram representing the algorithms in a preimage chameleon hash

scheme. 73

Figure 23 – Representation of a chameleon hash with strong uniformity. 73

Figure 24 – Attack Game: Sigma Security . 98

Figure 25 – Building a collision-finder B from attacker A against the sigma-security. 99

Figure 26 – Attack Game: Unforgeability against chosen message attacks for uni-

versal designated verifier signatures 116

Figure 27 – Attack Game: One-Time Signature Security Against Weak Chosen

Message Attack for Homomorphic Signatures 126

Figure 28 – Attack Game: Unforgeability against adaptive chosen message attack

for preimage signatures. 133

Figure 29 – Attack Game: Strong Collision Resistance 153

Figure 30 – Attack Game: Discrete Logarithm in Generic Group Model 154

LIST OF TABLES

Table 1 – Comparing the running time of our implementation with other schemes.138

Table 2 – Size comparison between our keys and signature with other schemes. 138

CONTENTS

1 INTRODUCTION . 18

1.1 MOTIVATION . 18

1.2 JUSTIFICATION . 19

1.3 OBJECTIVES . 20

1.3.1 Specific Objectives . 20

1.4 METHODOLOGY . 21

1.5 SCIENTIFIC CONTRIBUTIONS . 21

1.6 NOTATION . 22

1.7 ORGANIZATION . 22

2 PRELIMINARIES . 23

2.1 PROOFS OF SECURITY . 23

2.2 MATHEMATICAL CRYPTOGRAPHIC ASSUMPTIONS 26

2.2.1 Factoring Assumption . 26

2.2.2 Discrete Logarithm Assumption . 27

2.2.3 Short Integer Solution (SIS) Assumption 28

2.2.4 Ring Short Integer Solution (Ring-SIS) Assumption 30

2.3 CRYPTOGRAPHIC PRIMITIVES . 32

2.3.1 One-Way Function . 32

2.3.2 Hash Function . 33

2.3.2.1 Weaker Properties: Second-Preimage 34

2.3.2.2 Weaker Properties: First Preimage Resistance 35

2.3.3 One-Way Trapdoor Function . 37

2.3.4 Pseudo-Random Functions . 37

2.3.5 Signature Scheme . 39

2.3.5.1 Weaker Security Notion: Generic Chosen Message Attack 41

2.3.5.2 Weaker Security Notion: Random Message Attack 42

2.4 NON-STANDARD MODELS IN SECURITY PROOFS 44

2.4.1 Random Oracle Model . 44

2.4.1.1 Proving Full-Domain Hash Signature in the Random Oracle Model . . 45

2.4.1.2 Random Oracle in a Post-Quantum Model 49

3 CHAMELEON HASH FUNCTIONS: DEFINITIONS AND PROPER-

TIES . 51

3.1 DEFINITION . 51

3.2 PROPERTIES OF CHAMELEON HASH FUNCTIONS 53

3.3 CONSTRUCTIONS OF CHAMELEON HASH FUNCTIONS 56

3.3.1 Chameleon Hash from Discrete Logarithm Assumption 56

3.3.2 Chameleon Hash from Homomorphic One-Way Functions 58

3.3.3 Other Constructions . 62

3.4 APPLICATIONS . 63

3.4.1 Chameleon Signatures . 63

3.4.2 On-line/Off-line Signatures . 65

3.4.3 Transforming GCMA-secure signatures in CMA-secure signatures 66

3.4.4 Redactable Signatures . 70

3.4.5 Chameleon Hash Chains and Authentication 70

4 PREIMAGE CHAMELEON HASH FUNCTIONS 72

4.1 DEFINITION AND PROPERTIES . 72

4.2 CONSTRUCTIONS . 74

4.2.1 Preimage Chameleon Hash from One-Way Trapdoor Permutations 74

4.2.2 Preimage Chameleon Hash based on SIS Assumption 78

4.2.2.1 Generating a Random Matrix with Trapdoor: TRAPGEN 78

4.2.2.2 Finding Short Integer Solutions: SAMPLEPRE 79

4.2.2.3 Sampling Short Random Vectors: SAMPLEDOM 80

4.2.2.4 The Chameleon Hash Construction 81

4.2.3 A Second Chameleon Hash Based on SIS Assumption 84

4.2.4 Other Constructions . 87

4.3 APPLICATIONS . 87

4.3.1 Transforming RMA-Secure Signatures in CMA-Secure Signatures 87

5 SIGNATURES AND CHAMELEON HASH FUNCTIONS 90

5.1 ONE-TIME SIGNATURE SECURE AGAINST WEAK CHOSEN-MESSAGE

ATTACK . 90

5.2 ONE-TIME SIGNATURE FULLY SECURE AGAINST CHOSEN MES-

SAGE ATTACKS . 92

5.3 SIGNATURE SCHEME SECURE AGAINST CLASSICAL ADVERSARIES 96

5.4 BUILDING UNIVERSAL DESIGNATED SIGNATURES 106

5.4.1 Ring Version of TRAPGEN, SAMPLEPRE and SAMPLEDOM 107

5.4.2 The Ring-GPV Signature Scheme 108

5.4.3 Extending the GPV Signature with Chameleon Hash Functions . 112

5.4.4 Security of the Universal Designated Verifier Signature 115

5.5 HOMOMORPHIC SIGNATURES WITH CHAMELEON HASH FUNC-

TIONS . 121

6 POST-QUANTUM SIGNATURE WITH PREIMAGE CHAMELEON HASH-

ING . 131

6.1 PREIMAGE SIGNATURES . 131

6.2 CONSTRUCTION USING PREIMAGE CHAMELEON HASH FUNC-

TIONS . 133

6.3 IMPLEMENTATION, RESULTS AND DISCUSSION 137

7 CONCLUSION . 139

7.1 FURTHER WORKS . 139

REFERENCES . 141

APPENDIX A – GENERAL FORKING LEMMA 148

APPENDIX B – CHAMELEON HASH WITH STRONGER COLLISION

RESISTANCE IN THE GENERIC GROUP MODEL 152

B.1 STRONG COLLISION RESISTANCE 152

B.2 GENERIC GROUP MODEL . 153

B.2.1 Proving the Discrete Logarithm Assumption in the Generic Group

Model . 154

B.2.2 Generic Group in a Post-Quantum Model 158

B.3 PREIMAGE CHAMELEON HASH FROM DISCRETE LOGARITHMS

IN GENERIC GROUPS . 158

ANNEX A – SYSTEMATIC REVIEW ABOUT PREIMAGE CHAMELEON

HASHES . 168

A.1 INTRODUCTION . 168

A.2 OBJECTIVE . 168

A.3 QUESTIONS . 168

A.4 SELECTION OF FONTS . 169

A.4.1 Details About the Search . 169

A.5 RESULTS . 170

A.5.1 Discarded Results . 170

A.5.2 Accepted Results . 183

A.5.2.1 Preimage Chameleon Hash to Increase Signature Security 183

A.5.2.2 Preimage Chameleon Hash for Authentication 183

A.5.2.3 Preimage Chameleon Hash for Signature Construction 184

A.5.2.4 Quantum Preimage Chameleon Hash 184

A.5.2.5 Preimage Chameleon Hash to Construct Regular Chameleon Hash . 185

A.6 CONCLUSION . 185

18

1 INTRODUCTION

The basic building block for secure cryptographic protocols and secure computer

systems are cryptographic primitives. These primitives are a collection of algorithms

with specific properties considered relevant to achieve desired characteristics such as

secrecy, authentication, privacy, integrity and others. Cryptographic primitives should

be simple enough to be defined with only a handful of algorithms and security require-

ments.

Since the beginning of modern cryptography, different primitives such as en-

cryption schemes, digital signature schemes, one-way functions, and collision-resistant

hash functions have been proposed and built based on the security of different crypto-

graphic assumptions. The most used are the difficulty of computing discrete logarithms

and factoring composite integers. Nevertheless, in addition to these more famous primi-

tives, there are other less-known and studied. Occasionally new primitives are proposed

to solve specific tasks.

In 1998, Hugo Krawczyk and Tal Rabin published in (KRAWCZYK; RABIN, 1998)

a technical report that suggested a new cryptographic primitive known as “chameleon

hash”. The report was published in the Theory of Cryptography Library, an online

forum for announcing new works in cryptography. Chameleon hash functions were like

regular hash functions with the additional property of having a trapdoor that allows the

computation of second-preimages. Informally, if traditional cryptographic hash functions

are like a “fingerprint” for digital data, a chameleon hash allows the holder of its trapdoor

to produce data with dynamic and adaptable fingerprints that mimic other fingerprints.

Initially, the primitive was proposed to ensure privacy in a specific signature

scheme, but new use cases were found and proposed.

Most of this dissertation is about the study of chameleon hash functions: its

properties and applications with particular emphasis to their use in building signature

schemes.

1.1 MOTIVATION

This work about chameleon hashing was motivated by the study of digital signa-

tures. The author of this dissertation is part of a laboratory that researches in this area

and there is interest in alternative properties and constructions for signature schemes.

Particularly, in methods for building digital signature schemes which are more user-

friendly.

In typical digital signatures, during verification step, an user executes a verifi-

cation algorithm that returns if the signature is valid or not. What we want is having

a signature where besides the verification algorithm, we also have an algorithm able

to extract custom information from valid signatures. With such construction, we could

Chapter 1. Introduction 20

and handwritten signatures coexist and complement each other in the same electronic

signature. As in a traditional signature scheme, we have a verifying algorithm. If this

algorithm accepts a digital signature, the computer software could extract the image of

the handwritten signature to present it to the user. The user is also allowed the oppor-

tunity to check the handwritten signature as in a regular non-electronic signature. This

could improve the trust of the user in the verification process.

This property also links a pair of keys of a given user to biometric data about

this user. In the above example, we mentioned handwritten signatures, but any other

arbitrary information also could be encoded into valid signatures, such as fingerprints

or pictures. This helps to link the public key of a given user to the identity of a specific

person.

1.3 OBJECTIVES

The main objective of this work is to propose a signature scheme that allows the

encoding of personalized and arbitrary data in our signatures using chameleon hash

functions.

Additionally, due to the imminent availability of quantum computers, which sup-

posedly could break some of the difficult computational problems used in cryptographic

primitives, we want that our new proposed signature be quantum attack-proof. Such

schemes are known in the literature as post-quantum algorithms.

1.3.1 Specific Objectives

To achieve the general objective presented above, the following specific objec-

tives are listed:

1. Literature review about chameleon hash functions. Study different construc-

tions and properties about chameleon hash functions. Check if a chameleon hash

suitable for our objectives is already described in the literature.

2. Literature review about signatures built using chameleon hash functions.

Check if a signature with the desired property already was proposed in the liter-

ature. Furthermore, if not, learn what other ideas about using chameleon hash

functions in signature construction were already explored.

3. Find the requisites necessary for using a chameleon hash in our construc-

tion.

4. Propose a new digital signature scheme. This new scheme should be based

on chameleon hash functions, should be secure against post-quantum attackers

and should have the special property of encoding a custom information chosen

during key generation in valid signatures.

Chapter 1. Introduction 21

5. Write a security proof for the proposed scheme. This involves presenting a se-

curity model for our proposal. Our proof should be compatible with post-quantum

security.

6. Implement the proposed scheme. With an implemented prototype, we can com-

pare the performance of our proposal with other constructions. Moreover, demon-

strate the viability of the construction.

1.4 METHODOLOGY

Initially, we studied the first works on chameleon hash functions. The first work

published was in 1998. Since that date, its definition and use cases have been improved

until approximately 2006, from when there were no changes in the basic concept behind

this cryptographic construction. As a result of this study, we describe precisely the

primitive and its possible uses.

This initial study showed that most papers that propose applications for chameleon

hash functions describe them as hash functions where one can find second-preimages

using the trapdoor. However, we needed a more powerful variant where one can com-

pute preimages, not only second-preimages.

Motivated by this, we have done a systematic review looking for papers in the

last ten years (2010-2020) that mention chameleon hash functions and preimages. Our

review is presented in Annex A. With this search, we evaluated in each work whether

the chameleon hash concept whose trapdoor allows the calculation of the first preimage

had been considered and, if so, for which use cases.

Using the previous survey results, we also checked the works referenced in

them looking for additional research on signature construction using chameleon hash

functions. This procedure yielded some more results that were studied.

After studying the current techniques on signature construction and chameleon

hash functions secure against quantum attackers, we propose to build our signature

scheme using a new variant of lattice-based chameleon hash functions. We built a

prototype of this new signature scheme in a C++ implementation based on an existing

code that implemented the lattice-based GPV signature scheme. Furthermore, using

this implementation, we compared the performance of our initial construction with other

known signatures, both post-quantum signatures and classical ones.

1.5 SCIENTIFIC CONTRIBUTIONS

In this work, we propose a generalisation of the concept of chameleon hash,

which we call preimage chameleon hash. We use this to build a new signature scheme

and show how to adapt the post-quantum chameleon hash from (CASH et al., 2010) to

make our signature secure. We prove our signature scheme to be strongly unforgeable

Chapter 1. Introduction 22

under a chosen message attack (SUF-CMA). The new signature scheme is presented

in chapter 6 which resulted in the following paper:

• ASTRIZI, Thiago; CUSTÓDIO, Ricardo; MOURA, Lucia. Post-quantum signature

with preimage chameleon hashing. In: SBC. XX Simpósio Brasileiro de Segurança

da Informação e de Sistemas Computacionais, 2020

1.6 NOTATION

In this work, we use lower case Latin letters, like a, to represent integer values.

Upper case Latin letters represent sets. Real numbers, possibly non-integers, are rep-

resented by Greek letters like β. Bold lower-case letters, like a, are vectors and bold

upper-case letters, like A are matrices. Polynomials are represented by lower-case

letters followed by parenthesis like in p().

In all the above cases, all elements can have subscripts. For example a1 and b2

are integer numbers. The element Rq is a set and A1 is a matrix.

Additional notation and some exceptions for the above conventions, when nec-

essary, are introduced next to the texts where they are used.

1.7 ORGANIZATION

The remainder of this dissertation is organized as follows.

In Chapter 2, we describe the mathematical background for security proofs and

provide a list of cryptographic primitives and cryptographic assumptions that are refer-

enced in the rest of the document.

In Chapter 3, describes chameleon hashing, the definition, security requirements,

some existing constructions and applications.

In Chapter 4, we introduce a more powerful version of chameleon hash func-

tions, whereby using a trapdoor, it is possible to find first preimages, not only second

preimages. We list existing constructions, properties and applications.

In Chapter 5, we present signature constructions using chameleon hash func-

tions.

In Chapter 6, we present our novel signature construction and the results about

its implementation.

In Chapter 7, we finish with a conclusion and further works.

23

2 PRELIMINARIES

This chapter is organized as follows:

• Section 1 introduces the concept of security proofs, what are cryptographic as-

sumptions, and security reductions.

• Section 2 defines a list of cryptographic assumptions derived from hard mathe-

matical problems used in this work.

• Section 3 defines a list of cryptographic primitives that we use in this work.

• Section 4 is about non-standard models useful in some security proofs. We de-

scribe the random oracle model, a model used in several security proofs in this

dissertation.

2.1 PROOFS OF SECURITY

Having unconditional security proof for a cryptographic construction is hard, and

few primitives have such proof. For example, most cryptographic constructions must

assume that P 6= NP or it would be impossible to guarantee its security. However,

despite the enormous interest in this fundamental question, finding proof that P 6= NP

(or that P = NP) remains an open problem.

Nevertheless, even if one managed to prove that P 6= NP, this would be only

the beginning step necessary to prove the security of most cryptographic constructions.

If P 6= NP, then we can find problems whose solutions can be verified in polynomial

time but cannot be solved in the worst case in polynomial time. However we need hard

problems in cryptography that are hard not only in the worst case, but on average case.

Therefore, we also need proof that there are problems that are hard on average.

Finally, after proving that there exist problems that can be easily verified, but are

hard to be solved on average, we would also need to prove the existence of one-way

functions: functions that are easy to compute but hard to invert. With this proof and

knowing a function that is one-way without doubts, we could have definitive proofs

for some cryptographic constructions and primitives. Nevertheless not for all of them:

while we know necessary primitives that can be built directly from one-way functions

(signature schemes, pseudo-random functions), there is no known construction of some

other primitives (hash functions) based only on one-way functions.

To illustrate all these different steps, in the seminal paper (IMPAGLIAZZO, 1995),

the author Russel Impagliazzo described five different worlds, each one holding a

different number of the above assumptions:

• Algorithmica: In this world, P = NP. Its inhabitants can solve in polynomial time

any problem which could be verified in polynomial time. Most known cryptography

Chapter 2. Preliminaries 24

is useless in this world. However, we still could use the few cryptographic con-

structions with unconditional security: one-time pads and some universal hash

functions, for example. However, keys cannot be shared in any untrusted channel.

• Heuristica: In this world P 6= NP. There are problems that cannot be solved in

polynomial time in the worst case. Though, it is very tough to find these worst

cases. All problems in NP are easy in the average case. This creates a scenario

in which the hardness of a problem is proportional to the time and resources that

we spent looking for the problem. As we use cryptography as protection against

adversaries with more resources than us, most cryptographic techniques also are

useless in this world.

• Pessiland: Here P 6= NP and it is easy to find hard instances of problems. How-

ever, one-way functions do not exist. We cannot find hard problems whose so-

lutions we know simply working backward from the solution to the instance of

the problem. Finding hard problems is easy, but nobody will know the solution to

these problems. This is considered the worst world by Impagliazzo, as most cryp-

tography is still impractical in this world, and at the same time, the computers in

Pessiland are not much more powerful than ours at solving most of the problems.

• Minicrypt: Secure one-way functions exist. Therefore, we know that there are

also other secure primitives like pseudo-random generators (PRG), pseudo--

random functions (PRG), stream ciphers and some signature schemes. Yet, using

only one-way functions, we still do not know how to build secure collision-resistant

hash functions and asymmetric cryptography. So we cannot share secrets in a

untrusted public channel.

• Cryptomania: Both one-way functions and one-way functions with trapdoor exist.

This implies the existence of public key cryptography and the possibility of ex-

changing secret messages over open and insecure channels. It is widely believed

that this is the world where we live.

The five worlds do not encompass all the possibilities. Between Minicrypt and

Cryptomania, we can have intermediary worlds depending on the specific properties

of the secure one-way functions known and depending of what other cryptographic

primitives besides one-way functions are possible. And there are suggestions about

adding another world called Obfustopia to represent a scenario where we also have

indistinguishable obfuscation: we can obfuscate functional computer programs such

that they cannot be distinguished from any other program with the same size and

functionality (GARG et al., 2016). What these five worlds description illustrate is how

far we are from having unconditional proofs for most of cryptographic primitives. We do

Chapter 2. Preliminaries 25

not even prove that we do not live in Algorithmica, Heuristica or Pessiland, where most

of the existing cryptography is entirely insecure.

Because of this difficulty, modern cryptography assumes conditional security and

conditional security proofs, also known as security reductions. We assume that some

specific problem (our cryptographic assumptions) is hard on average and cannot be

solved in polynomial time. Assuming that this is true, then we prove that our crypto-

graphic construction is secure. Usually, this involves using proof by contradiction: given

an adversary that breaks the security of our construction, we create an adversary that

solves the problem that we assume hard.

We have two kinds of cryptographic assumptions. The first kind is based on hard

mathematical problems. We usually trust that they are hard problems not because we

have a proof, but for historical reasons. Some of these problems were studied for a

long time, and despite the amount of time and energy spent trying to solve them, they

remain without a solution. The second kind of assumption is about the existence of

some cryptographic primitive. For example, collision-resistant hash functions or one-

way functions. The following section lists assumptions of the first kind and Section 2.3

will list assumptions of the second type.

When we say that a problem is hard on average, this means that for some

specific challenge modeled as an attacking game between a challenger and some

adversary A, the probability of A succeed and win that game is negligible. Both the

challenger and the adversary are a sequence of algorithms that share an internal state.

The specifications for both the challenger and the adversary are given by a specific

attack game defined for each security property.

When we say that the probability of A succeeds in an attack game is negligible,

we say that for any polynomial p(λ), the following equation holds:

lim
λ→∞

p(λ)Pr [A succeeds] = 0

The probability Pr [A succeeds] is in function of the security parameter λ. We

say that any function that behaves as defined above is a negligible function. We also

use two other related definitions:

Definition 1 We say a function f : N → R is superpolynomial if 1/f (λ) is a negligible

function.

Definition 2 We say a function f : N → R is polynomially bounded or limited poli-

nomially if for some polynomial p(λ) and some constant c, for all λ > 0 it is true that

|f (λ)| ≤ λc .

From properties of limits, we have that:

• If f (n) and g(n) are negligible, then (f + g)(n) and (f · g)(n) are also negligible.

Chapter 2. Preliminaries 26

• If f (n) and g(n) are polynomially bounded, then (f + g)(n) and (f · g)(n) are also

polynomially bounded.

• If f (n) and g(n) are superpolynomial, then (f + g)(n) and (f · g)(n) are also super-

polynomial.

• If f (n) is negligible and g(n) is polynomially bounded, then (f +g)(n) is polynomially

bounded and (f · g)(n) is negligible.

• If f (n) is negligible and g(n) is superpolynomial, then (f + g)(n) is superpolynomial.

• If f (n) is polynomially bounded and g(n) is superpolynomial, then (f + g)(n) and

(f · g)(n) are superpolynomial.

• If for all values n greater than some constant, if f (n) ≤ g(n) and g is negligible,

then f is negligible.

2.2 MATHEMATICAL CRYPTOGRAPHIC ASSUMPTIONS

Here we list the cryptographic assumptions that we will use in this work. The

notation of how we describe them is based on the book (BONEH; SHOUP, 2020).

2.2.1 Factoring Assumption

Let GENPRIME be an efficient algorithm that takes as input a positive integer

n > 1 and outputs a randomly chosen prime number with n bits. As prime numbers are

relatively common, this algorithm can generate random odd numbers and return the

first result that pass in a primality test.

Now we will describe the factoring assumption with the help of the above algo-

rithm and the following attack game:

Attack Game 1 (Factoring Assumption). We have an adversary A and a challenger.

Both are initialized with the security parameter λ. First, the adversary runs the algorithm

GENPRIME(λ) until having two different primes: p and q.

Next, the challenger computes z = pq and send z to the adversary A. And the

adversary sends as response a tuple (p′, q′). We say that the adversary A wins the

game if p′ > 1, q′ > 1 and if p′q′ = z.

The probability of a given adversaryAwinning this game is denoted by FACTadv [A].

The factoring assumption says that for all efficient adversaries A, the value of

FACTadv [A] is negligible (as a function of λ).

It is widely believed that factoring large semiprimes is hard if we only consider

classical algorithms. In the RSA Factoring Challenge, a challenge created by RSA

Chapter 2. Preliminaries 27

Challenger

p
$←−− GENPRIME(λ)

q
$←−− GENPRIME(λ)

z ← pq

Adversary A
λ λ

z

(p′, q′)

Figure 2 – Attack Game: Factoring Assumption

Challenger

(G, q, g) $←−− GENGROUP(λ)

x
$←−− Zq

y ← gx

Adversary A
λ λ

(G, q, g, y)

x ′

Figure 3 – Attack Game: Discrete Logarithm

Laboratories that offered prizes for successful factorization of semiprimes, the biggest

factored number had 829 bits and was the multiplication of two random primes with

415 bits. Therefore, the biggest λ for which the problem was solved is λ = 415 ((ZIM-

MERMAN, 2020)). All known classical algorithms solve the factoring problem only in

superpolynomial time.

The factoring assumption is known to be false when we consider a post-quantum

scenario. A quantum algorithm for factoring semiprimes in polynomial time is proposed

in (SHOR, 1994).

2.2.2 Discrete Logarithm Assumption

Let GENGROUP be an algorithm invoked as (G, q, g) $←− GENGROUP(λ) where

G is a description of a cyclic multiplicative group with order q (where q is a λ-bit number)

and g ∈ G is a generator. It means that G = {g0, g1, . . . gq–1}. We also require that the

multiplication in the group can be performed in polynomial-time. Consider the following

attack game:

Attack Game 2 (Discrete Logarithm). The challenger and the adversary are initial-

ized with the security parameter. The challenger runs GENGROUP(λ) to obtain the tuple

(G, q, g). Then it chooses an integer x uniformly at random between 0 and q – 1 and

computes y = gx . It sends (G, 1, g, y) to the adversary.

The adversary returns an element x ′. It wins the game if gx ′

= y. We represent

as DLadv [A, G′] the probability of a given adversary A wins this game, assuming that

GENGROUP produces groups from the set G′.

Chapter 2. Preliminaries 28

The discrete logarithm assumption says that there exist a family of groups G′

and a corresponding algorithm GENGROUP such that for all efficient adversaries A, the

value of DLadv [A, G′] is negligible.

Usually, when using this assumption, we assume that the order q is a prime num-

ber. For composite numbers, if we can factor them, we could solve the discrete logarithm

reducing one instance of this problem to two smaller instances using the Pohlig-Hellman

algorithm, making the problem easier than expected (see (BACH, 1984)). Another ad-

vantage of prime orders is that any element besides the identity could be chosen as

the generator g.

Some candidate cyclic groups can be used in this problem:

• The multiplicative group Z∗q or one of its subgroups if q is not prime.

• The group composed of points in discrete elliptic curves.

In (BACH, 1984) it was proven that given an adversary A able to compute

discrete logarithm in the cyclic group Z∗n, then it is possible to build an adversary B able

to factor n. Therefore, for all efficient adversaries A that can win the discrete logarithm

attack game for groups in the form Z∗n, there exists an efficient adversary B able to win

the factoring attack game such that:

DLadv [A,Z∗n] ≤ FACTadv [B]

When we have such property given two cryptographic assumptions, we say that

the assumption at the right side of the above inequation is stronger. In our case, this

means that the factoring assumption is stronger than the discrete logarithm assumption.

It is preferred to base the security of cryptographic constructions using the weakest

possible assumption, as we assume that less unproven assumptions are true in our

conditional proofs.

The biggest discrete logarithm in Z∗n solved in a competition had a order with

795 bits (BOUDOT et al., 2020) (λ = 795).

All known classical algorithms solve the discrete logarithm problem in superpoly-

nomial time. But like the factoring problem, we know quantum algorithms to solve this

problem in polynomial time and therefore the discrete logarithm assumption is false in

post-quantum scenarios (SHOR, 1994).

2.2.3 Short Integer Solution (SIS) Assumption

This assumption relies on the difficulty of finding vectors of integers with a suf-

ficiently short euclidean norm such that when multiplied by a known integer matrix

chosen uniformly at random from Z
n×m
q result in a vector filled with zeros.

Chapter 2. Preliminaries 29

Challenger

(m, n, q,β) $←−− SISPARAMS(λ)

A
$←−− Z

n×m
q

Adversary A
λ λ

(m, n, q,β, A)

x

Figure 4 – Attack Game: Short Integer Solution

Assume that we have an algorithm SISPARAMS(λ) that return a tuple (m, n, q,β).

The first two integers will determine the matrix size. The third is the modulus q that

limits the possible integers in the matrix. Moreover, the last value β is what we consider

a sufficiently small euclidean norm.

With this we define the following attack game:

Attack Game 3 (Short Integer Solution). Let a challenger and an adversary A be

initialized by the security parameter λ. The challenger derives secure values (m, n, q,β)

using algorithm SISPARAMS and chooses uniformly at random a matrix A ∈ Z
n×m
q . It

sends to the adversary the tuple (m, n, q,β, A).

AdversaryA sends as response a nonzero vector x ∈ Zm. We say that adversary

A wins the game if the euclidean norm of the vector (denoted by ||x||) is smaller that β

and Ax = 0 (mod q).

We denote by SISadv [A] as the probability of a given adversary A win this game.

According to the SIS assumption, there exists an algorithm SISPARAMS such

that for all adversaries A, the value of SISadv [A] is negligible.

To avoid trivial solutions and at same time ensure that a sufficient number of solu-

tions exist, the parameters are chosen such that β < q (or a trivial solution (q, 0, 0, . . . , 0)

can be returned), n is polynomially bounded by the security parameter, β ≥
√

n log q

and m ≥ n log q.

This assumption was proposed for the first time in the article (AJTAI, 1996).

In that paper, the author proves the relationship between this assumption and some

problems believed to be hard involving lattices. If one could find an adversary A that

wins the above attack game, it could also use A to build an algorithm that solves some

lattice problems believed to be hard in the worst case. For example, finding a sufficiently

short vector different than zero that is the linear combination of other vectors. That was

the first time that a cryptographic assumption was shown to relate to the difficulty of a

known mathematical problem in the worst case, not in the average case as is usual.

Another advantage of this assumption is that it is believed to be true even when

considering quantum algorithms. There are no known classical or quantum algorithms

that can solve the SIS problem in polynomial time. More about the security of this

Chapter 2. Preliminaries 31

Challenger

(Rq, m, q,β) $←−− RSISPARAMS(λ)

a
$←−− Rm

q

Adversary A

λ λ

(Rq, m, q,β, a)

x

Figure 6 – Attack Game: Ring-SIS Assumption

are integers modulo q.

Let p(x) be a polynomial with coefficients a1, . . . , an. We define its euclidean

norm as ||p(x)|| =
√

∑n
i=1(ai)2. And the euclidean norm of a vector of polynomials

v = (p1(x), . . . , pm(x)) is given by ||v|| =
√

∑n
i=1(||pi (x)||)2.

As in the SIS assumption, assume that we have an algorithm RSISPARAMS(λ)

that return a tuple (Rq, m, q,β). The first element is a description of a polynomial ring.

The integer m will be the size of the vectors in our problem. The integer q will be our

modulus. Furthermore, β is the maximum euclidean norm of our vectors.

With this, we can define our new attack game:

Attack Game 4 (Ring-SIS Assumption).

Let a challenger and an adversary A be initialized by λ. The challenger gets

(Rq, m, q,β) running RSISPARAMS(λ). Next, it produces a random and uniform vector

a ∈ Rm
q .

The challenger sends to the adversary the tuple (Rq, m, q,β, a). The adversary

replies with another nonzero vector x ∈ Rm.

We say that the adversary wins the game if ||x|| < β and the scalar multiplication

of a and x is equal to 0. We denote by RSISadv [A] the probability of a given adversary

A wins this game.

According to the Ring-SIS assumption, there exists an algorithm RSISPARAMS

for which for any adversary A, the value of RSISadv [A] is negligible.

This assumption is very similar to the SIS assumption. One of its attractiveness

is that the vector of polynomials a can be smaller than the matrix A from the SIS

assumption. Therefore, cryptographic constructions based on the Ring-SIS assumption

usually has smaller keys and are faster.

Succeeding at the Ring-SIS attack game is shown in (LANGLOIS; STEHLÉ,

2015) to be equivalent to succeeding in a variation of the SIS attack game where the

matrix A is chosen uniformly at random from a subset of matrices with a circulant struc-

ture, where each column is a rotation of the first column and where rotated elements

are multiplied by -1.

Chapter 2. Preliminaries 32

Challenger

x
$←−− Xλ

y ← OWλ(x)

Adversary A
λ λ

y

x ′

Figure 7 – Attack Game: One-Way Function

As for the SIS assumption, there are no known quantum or classical algorithms

that solve the challenge of its attack game in polynomial time ((PEIKERT, 2016)).

2.3 CRYPTOGRAPHIC PRIMITIVES

2.3.1 One-Way Function

A one-way function OW : X → Y is a function such that given some element y

in its codomain, it is hard to find an element x ∈ X such that OW (x) = y . Defining using

an attack game, we have:

Attack Game 5 (One-Way Functions). For a family of one-way functions, we have

an adversary and a challenger initialized by a security parameter λ. Each security

parameter λ properly identifies one one-way function OWλ : Xλ → Yλ in the family.

The challenger chooses a random and uniform element x ∈ Xλ and computes

y = OWλ(x). It sends y to the adversary that outputs some value x ′.
We say that an adversary A wins the game if OWλ(x ′) = y. Note that not neces-

sarily x = x ′.
We denote by OWadv [A, OW] the probability of a given adversary A winning

this attack game for a given family of one-way functions OW.

We say that some one-way function family OW is secure if OWadv [A, OW] is

negligible for all efficient adversaries A.

Except in more formal definitions, we usually keep implicit the security parameter

λ when using one-way functions. If we write OW (x), we assume that we choose a one-

way function from some suitable family with an appropriate security parameter.

The existence of one-way functions is also a cryptographic assumption. We

do not know if they exist. If we surely know that they exist, we also would know that

P 6= NP. Even so, one-way functions are very fundamental primitives. It is easy to

build them using any of the cryptographic assumptions from the previous section. If the

discrete logarithm assumption is true, then OW (x) = gx is a one-way function given a

suitable group and a generator g. If the SIS assumption is true, OW (x) = Ax mod q is

a one-way function given a random and uniform matrix A.

Chapter 2. Preliminaries 33

Challenger Adversary A
λ λ

(msg′, msg′′)

Figure 8 – Attack Game: Collision-resistance.

If for some one-way function OW : X → Y we have that X = Y and that OW is

bijective, we say that OW is an one-way permutation.

For all one-way functions, we can define an adversaryA that randomly chooses a

polynomial number of elements in the domain and checks for each xi obtained this way

if OW (xi) is equal to the challenge y received as input. The probability of this adversary

succeeding in the attack game is at least p(λ)/|Yλ| for some polynomial p(λ). Therefore,

for all one-way function families OW , we can always build an efficient adversary A such

that:
p(λ)
|Yλ|

≤ OWadv [A, OW]

The probability is increased if the codomain is smaller than its image. Therefore,

in a secure one-way function, the cardinality of its codomain (and therefore also the

cardinality of |X |) must be superpolynomial.

2.3.2 Hash Function

A (non-chameleon) hash function is a function HASH : M → D where |D| < |M |

such that the function is collision-resistant. Informally this means that it is difficult

to find distinct msg1, msg2 ∈ M such that HASH(msg1) = HASH(msg2). For a more

formal definition, we use the following attack game:

Attack Game 6 (Collision Resistance). For a family of hash functions, we have an

adversary and a challenger, both initialized with the security parameter λ. Each security

parameter λ properly identifies each hash function HASHλ : Mλ → Dλ in the family.

The adversary outputs a pair (msg′, msg′′) and we say that it wins the game if

msg′ 6= msg′′ and if HASH(msg′) = HASH(msg′′).
We define A’s advantage concerning to the family of hash functions HASH as

the probability of A winning the game. We denote this advantage as CRadv [A, HASH].

We say that a hash function family is collision-resistant if for all efficient adver-

saries A, we have that CRadv [A, HASH] is a negligible value.

As for one-way functions, except in more formal definitions, we keep the security

parameter λ implicit and use HASH(msg) directly assuming that we choose some

HASH family from some family using an appropriate security parameter.

Chapter 2. Preliminaries 34

For any hash function HASH, we always can build an efficient adversary that

chooses a polynomial p(λ) number of messages from Mλ, for each message msgi

with 0 ≤ i < p(λ), it computes dgti ← HASHλ(msgi), and finally checks if some of the

generated output is a collision. This is called a birthday attack. We can find a lower

bound for the probability that this attack succeeds, assuming that the output of HASH

is randomly distributed (if not, the probability increases).

Using the bounds from (WIENER, 2005), we have that for all hash function

families, the upper bound for the probability of not finding a collision for the above

attack is e
– p(λ)(p(λ)–1)

2|Dλ| . Using this and the fact that for all real –1/2 ≤ x ≤ 0 we have that

(1 + x) ≥ e2x , we can conclude that for all hash function families HASH we can build

an efficient A performing a birthday attack such that:

p(λ)(p(λ) – 1)
4|Dλ|

≤ CRadv [A, HASH]

The above inequality is true only if |Dλ| > p(λ)(p(λ) – 1) (as we used in the bound

the fact that the exponent in e was between 0 and –1/2). However, we can see that the

left side is negligible only if |Dλ| is superpolynomial, which for sufficiently big values of λ,

ensures that the exponent is in this range. Therefore, the above lower bound is always

true for collision-resistant hash functions, and a hash function is collision-resistant only

if the cardinality of |D| is superpolynomial.

2.3.2.1 Weaker Properties: Second-Preimage

Sometimes we are interested in functions with properties weaker than collision re-

sistance. One of these properties is the second preimage. While the collision-resistance

says that it is hard to find any two messages (msg′, msg′′) such that HASH(msg′) =

HASH(msg′′), the second-preimage says that it is hard to find some message msg′

that collides with a given random message. More formally, we define this property with

the following attack game:

Attack Game 7 (Second preimage resistance). For a family of hash functions, we

have an adversary and a challenger. Both are initialized with the security parameter λ.

Each security parameter λ properly identifies each hash function HASHλ : Mλ → Dλ in

the family.

The adversary selects uniformly at random a message: msg
$←− Mλ and sends

msg to the adversary.

The adversary outputs msg′ and we say that it wins the game if msg′ 6= msg and

if HASH(msg′) = HASH(msg).

We define A’s advantage with respect to the family of hash functions HASH as

the probability ofAwinning the game. We denote this advantage as SPREadv [A, HASH].

Chapter 2. Preliminaries 35

Challenger

msg
$←−− Mλ

Adversary A
λ λ

msg

msg′

Figure 9 – Attack Game: Second preimage resistance.

A hash function family HASH is second preimage resistant if SPREadv [A, HASH]

is negligible for all adversaries A.

We can show that this property is weaker than the collision-resistance with the

help of the following theorem.

Theorem 1 All collision-resistant families of functions are also second-preimage resis-

tant.

Proof: Assuming that we have an adversary A that interact with the adversary

trying to find a second preimage. Let’s use it to build a new adversary B that finds

collisions in the same functions:

• Adversary B(λ):

1. msg
$←− Mλ

2. msg′ $←− A(λ, msg)

3. return (msg, msg′)

The above adversary finds a collision if the adversary A succeeds at finding a

second preimage. If A fails, then B fails too. Therefore, for all efficient adversaries A,

we can build efficient B such that:

SPREadv [A, HASH] ≤ CRadv [B, HASH]

As by hypothesis, HASH is collision-resistant, the right side of this inequation

is negligible. Therefore, the left side must also be negligible, which proves the second-

preimage resistance of HASH. �

It is important to notice that the converse is not necessarily true. For example, the

MD5 and SHA1 constructions of hash functions are known not to be collision resistant.

However, there is no known method to find second preimages in them.

2.3.2.2 Weaker Properties: First Preimage Resistance

Another related property is the preimage resistance. This property already was

defined in Subsection 2.3.1, it is the same security property used for one-way functions.

Chapter 2. Preliminaries 36

Usually, a second-preimage resistant hash function is also a one-way function,

but not always. If the function compresses the input very little, breaking the preimage

resistance does not break the second-preimage resistance or the collision-resistance. If

there are no existing collisions for most of inputs, it is possible that computing preimages

do not help much in finding collisions.

To better explain this concept, we define the compression factor of a given

function HASH : M → D as |M |
|D| . And we prove the following theorem:

Theorem 2 If a family of functions is second-preimage resistant and has a superpoly-

nomial compression factor, it is also a one-way family of functions.

Proof: As before, we show how we can build an adversary B that tries to find

second-preimages if we have an adversary A that can find preimages:

• Adversary B(λ, msg):

1. dgt ← HASHλ(msg)

2. msg′ $←− A(λ, dgt)

3. return msg′

Let s be the compression factor.

The above adversary wins the game finding a second-preimage if adversary

A succeeds and if msg′ 6= msg. The first probability is OWadv [A, HASH]. About the

second probability, it is not independent of A. In the worst case for our adversary B, A
will succeed to compute preimages only if the digest dgt has a single message mapped

to it by our HASH function. In this case, B never will succeed, even if A sometimes

succeeds.

Fortunately, in a HASH function with compression factor s, we will have |D|

digests and s|D| different messages. The number of messages without second preim-

ages is less than |D|. Therefore, the probability that a random message do not have a

second preimage is less than |D|
s|D| = 1

s .

Therefore, the probability of A producing a correct result for a digest obtaining a

message with existing preimages will be in the worst-case better than OWadv [A, HASH]–
1
s .

However, even if A succeeds in winning its game for some messages that can

collide with other messages, in the worst possible scenario, it will do so only for mes-

sages with a minimal number of collisions. In the worst case, this number will be 2. In

this case, the probability that msg = msg′ will be 1/2. This means that B will succeed

with probability that in the worst case will be 1
2(OWadv [A, HASH] – 1

s). Rewriting this,

we have that for all adversaries A, we can build an adversary B such that:

OWadv [A, HASH] ≤ 2 · SPREadv [B, HASH] +
1
s

Chapter 2. Preliminaries 37

Challenger

(pk , sk) $←−− OWT .KEYGEN(λ)

x
$←−− X

y ← OWT .FUNC(pk , x)

Adversary A
λ λ

(pk , y)

x ′

Figure 10 – Attack Game: One-way trapdoor function.

As we assume that HASH is resistant to second-preimage, 2·SPREadv [B, HASH]

is negligible. Also, by our hypothesis, s is superpolynomial. Therefore, 1/s is negligi-

ble and the right side of the above inequation is negligible. If OWadv [A, HASH] is

always less than some negligible value, independent of the adversary A, this means by

definition that HASH is a one-way function. �

2.3.3 One-Way Trapdoor Function

A one-way trapdoor function is a scheme OWT defined over sets (X , Y) formed

by algorithms (OWT .KEYGEN, OWT .FUNC, OW .INV) such that:

• OWT .KEYGEN is a probabilistic algorithm invoked as (pk , sk) $←− OWT .KEYGEN(λ)

for some security parameter λ. We call pk the public key and sk the secret key.

• OWT .FUNC is a deterministic algorithm invoked as y ← OWT .FUNC(pk , x) with

x ∈ X . The output is an element y ∈ Y .

• OWT .Inv is a deterministic algorithm invoked as x ← OWT .INV(sk , y) with y ∈ Y .

The output is a x ∈ X such that OWT .FUNC(pk , x) = y .

The security of this primitive is defined using the following attack game:

Attack Game 8 (One-way trapdoor function security). For a given one-way trap-

door function scheme OWT defined over sets (X , Y) we have an adversary A and a

challenger, both initialized by λ.

The challenger runs OWT .KEYGEN to get a pair of keys, chooses a random and

uniform x ∈ X, computes y ← OWT .FUNC(pk , x), and sends (pk , y) t the adversary A.

The adversary outputs x ′ ∈ X to the challenger and we say that it wins the game

if OWT .FUNC(pk , x ′) = y. We denote by OWadv [A, OWT] the probability of a given

adversary wins this game.

2.3.4 Pseudo-Random Functions

A pseudo-random function is a cryptographic primitive defined over sets (K , X , Y)

and composed of a function PRF : K × X → Y . The set K is the key space. If we see

Chapter 2. Preliminaries 38

Challenger

k
$←−− Kλ
...

yi ← PRFλ(k , xi)
...

Adversary A
λ λ

...
xi

yi
...

b′

Figure 11 – Attack Game: Pseudo-random function, game 0.

this function applied to a polynomially bounded number of elements x ∈ X using a fixed

key k ∈ K chosen uniformly at random, we cannot distinguish between this function

PRF (k , ·) and a completely random function that maps elements of X to Y .

Let K , X , and Y be finite sets. Let Func[X , Y] denote the set of all functions that

map elements of X to Y . We define the security of a given PRF with the help of two

different attack games.

Attack Game 9 Pseudo-Random Function Security)(Game 0). For a given pseudo-

random function family PRF, let an adversary A and a challenger be initialized by a

security parameter λ. Each λ identifies a function PRFλ in the family defined over sets

(Kλ, Xλ, Yλ).

The challenger chooses a random and uniform key k from Kλ. Next, the chal-

lenger can make a polynomially bounded number of queries qp to the challenger. In

each query it sends some element xi ∈ Xλ. The challenger computes yi = PRF (k , xi)

and sends it to the adversary.

After all the queries, the adversary outputs a single bit b′ ∈ {0, 1}.

The above attack game represents the adversary interacting with the PRF . In

the next one, it interacts with a completely random function.

Attack Game 10 Pseudo-Random Function Security)(Game 1). For a given pseudo-

random function family PRF, let an adversary A and a challenger be initialized by a

security parameter λ. Each λ identifies a function PRFλ in the family defined over sets

(Kλ, Xλ, Yλ).

The challenger chooses a random and uniform function f from Func[X , Y]. Next

the challenger can make a polinomially bounded number of queries qp to the challenger.

In each query it sends some element xi ∈ Xλ. The challenger computes yi = f (xi) and

send yi to the adversary.

After all the queries, the adversary outputs a single bit b′ ∈ {0, 1}.

Chapter 2. Preliminaries 39

Challenger

f
$←−− Func[Xλ, Yλ]

...
yi ← f (xi)

...

Adversary A
λ λ

...
xi

yi
...

b′

Figure 12 – Pseudo-random function, game 1

In a secure PRF no adversary should be able to distinguish between game 0 and

game 1. For some adversary A and a pseudo-random function, we denote by Pr [W0]

the probability of A outputting bit 1 in the attack game 0, and we denote by Pr [W1] the

probability of A outputting the bit 1 in the attack game 1. We denote the advantage of

adversary A as:

PRFadv [A, PRF] = |Pr [W0] – Pr [W1]|

We say that a PRF is secure or indistinguishable from a random function if for

all adversaries A, the value of PRFadv [A, PRF] is negligible.

We can also define a weaker security requirement for pseudo-random functions.

If we modify the previous attack games to forbid queries sent by the adversary, instead

of making the challenger choose a polynomially bounded number of random and uni-

form elements from X and sending the adversary a tuple with pairs (xi , PRF (k , xi)) (in

game 0) and (xi , f (xi)) (in game 1). If a PRF is secure in this modified attack game,

we call it a weak pseudo-random function. And we denote its security in this model as

WPRFadv [A, PRF].

2.3.5 Signature Scheme

A signature scheme SIG is a tuple of efficient algorithms (SIG.KEYGEN, SIG.SIGN,

SIG.VERIFY) defined over two sets (M, S) such that:

• SIGN.KEYGEN is a probabilistic algorithm that takes the security parameter λ as

input and outputs a pair (pk , sk) where pk is the public key and sk is the secret

key.

• SIGN.SIGN is a probabilistic algorithm invoked as sig
$←− SIGN.SIGN(sk , msg)

where sk is a secret key, sig ∈ S and msg ∈ M.

• SIGN.VERIFY is a deterministic algorithm invoked as SIGN.VERIFY(pk , msg, sig).

Here msg ∈ M and sig ∈ S. It outputs either accept or reject.

Chapter 2. Preliminaries 41

Challenger

(pk , sk) $←−− SIG.KEYGEN(λ)
...

sigi
$←−− SIG.SIGN(sk , msgi)

...

Adversary A
λ λ

pk
...

msgi

sigi
...

(msg∗, sig∗)

Figure 14 – Attack Game: Signature unforgeability against adaptive chosen message
attacks

the probability that an adversary A wins the attack game performing a single signing

query by CMAadv1[A, SIG].

2.3.5.1 Weaker Security Notion: Generic Chosen Message Attack

The previous security definition can be relaxed. In the previous attack game,

the adversary could query any message to the challenger, and choose the next query

based on the results of previous queries. For some signature schemes, we can prove

its security only if we disallow these adaptive queries.

In this case, we can use the following weaker attack game:

Attack Game 12 (Signature security against generic chosen message attack). For

a given signature scheme SIG defined over (M, S), let an adversary A and a challenger

be initialized by the security parameter λ.

The challenger computes a pair of keys (pk , sk) using SIG.KEYGEN(λ) and

sends pk to the adversary. The adversary chooses a polynomially bounded number of

qs messages (msg1, . . . , msgqs) and sends this tuple of messages to the challenger.

The challenger computes a signature for each of these messages with SIG.SIGN(sk , ·)
and send a tuple of signatures (sig1, . . . , sigqs) to the adversary.

After this single exchange of communication, the adversary outputs a forgery

(msg′, sig′). We say that the adversary wins this game if SIG.VERIFY(pk , msg′, sig′) =

accept and if the pair (msgi , sigi) is different than all pairs (msgi , sigi) with i ∈ [1, qs].

We denote by GCMAadv [A, SIG] the probability of some adversary A wins this game

against a signature scheme SIG.

We can define some variations in the above attack game as we did for the

adaptive chosen message attack. For some signature constructions, we can prove the

security only in a variant attack game where the adversary makes non-adaptive queries

before knowing the public key. The challenger sends the public key pk with the signature

tuple (sig1, . . . , sigqs). We say that in this case, the unforgeability and security of our

Chapter 2. Preliminaries 42

Challenger

(pk , sk) $←−− SIG.KEYGEN(λ)
...

sig1
$←−− SIG.SIGN(sk , msg1)

...
sigqs

$←−− SIG.SIGN(sk , msgqs)
...

Adversary A

λ λ

pk

(msg1, . . . , msgqs)

(sig1, . . . , sigqs)

(msg′, sig′)

Figure 15 – Attack Game: Signature unforgeability against generic chosen message
attacks

signature are weak. Furthermore, we denote by GCMAadvWeak [A, SIG] the probability

of a given adversary succeed in this attack game. If the signature is also a one-way

signature, we denote it by GCMAadv1-Weak [A, SIG].

It is easy to see that if we have an adversary A that can create forgeries in

this generic chosen message attack, it also can be modified to create forgeries in

the adaptive chosen message attack. It can produce all its signing queries initially,

but instead of sending all of them in a single tuple, it sends each query individually

as required by the adaptive chosen message attack game. Therefore, given a single

signature scheme SIG, for all adversaries A, we can create adversaries B such that:

GCMAadv [A, SIG] ≤ CMAadv [B, SIG]

Being secure against adaptive chosen message attack is a stronger property.

We can also see that an adversary that can create forgeries in an attack game that

defines weak security for the signature can also be adapted to succeed in the stronger

security attack game. It need only ignore the public key pk at the beginning of the attack

game. Therefore, given a single signature scheme SIG, for all adversaries A, we can

create adversaries B such that:

GCMAadvWeak [A, SIG] ≤ GCMAadv [B, SIG]

And also, if we can create a forgery for a one-time signature before knowing

its public key pk , we could also create forgeries in the scenario where we have this

information:

GCMAadv1-Weak [A, SIG] ≤ CMAadv1[B, SIG]

2.3.5.2 Weaker Security Notion: Random Message Attack

Finally, the weakest security definition for signatures that we will consider is

the security against random message attacks. In this security model, the adversary

Chapter 2. Preliminaries 43

Challenger

(pk , sk) $←−− SIG.KEYGEN(λ)

(msg1, . . . , msgqs) $←−− Mqs

sig1
$←−− SIG.SIGN(sk , msg1)

...
sigqs

$←−− SIG.SIGN(sk , msgqs)
...

Adversary A

λ λ

(pk , (msg1, sig1), . . .)

(msg′, sig′)

Figure 16 – Attack Game: Signature unforgeability against random message attacks

cannot choose the messages for signing queries. The challenger computes signatures

for messages chosen uniformly at random and sends for him. We define this security

model with the next attack game:

Attack Game 13 (Signature security against random message attack). For a given

signature scheme SIG defined over (M, S), let an adversary A and a challenger be

initialized by the security parameter λ.

The challenger computes a pair of keys (pk , sk) using SIG.KEYGEN(λ) and also

chooses a polynomially bounded number of qs messages chosen uniformly at random

from the message space M.It signs each of these messages using SIG.SIGN(sk , ·)
and send to the adversary the key pk and a tuple with all pairs of randomly chosen

messages and its signatures.

After this, the adversary outputs a forgery (msg′, sig′). We say that the adversary

wins this game if SIG.VERIFY(pk , msg′, sig′) = accept and if the pair (msgi , sigi) is

different than all pairs (msgi , sigi) with i ∈ [1, qs]. We denote by RMAadv [A, SIG] the

probability of some adversary A wins this game against a signature scheme SIG.

We say that a signature SIG is unforgeable or secure against a random message

attack if for all adversaries A, the value of RMAadv [A, SIG] is negligible.

If we have an adversary A that creates forgeries against SIG in a random mes-

sage attack, we can adapt it to also create forgeries in a generic chosen message

attack. It only needs to choose a total of qs messages chosen uniformly at random and

send these messages to the adversary. Therefore, for all adversaries A in a random

message attack, we can create an adversary B such that:

RMAadv [A, SIG] ≤ GCMAadv [B, SIG]

Chapter 2. Preliminaries 44

2.4 NON-STANDARD MODELS IN SECURITY PROOFS

Some cryptographic primitives are very difficult to be proven secure using stan-

dard techniques. This challenge is common for signature schemes or public-key en-

cryption schemes. In such cases, non-standard models can be used, where part of the

construction is idealized. Proofs using these models bring security guarantees weaker

than proofs in the standard model. Nevertheless such proofs still are useful, as they

attest the security of the construction for a relevant category of attackers. For example,

attackers that treat the result of a hash function as random.

2.4.1 Random Oracle Model

This model was introduced in (BELLARE; ROGAWAY, 1993). It treats hash

functions as completely random functions. For a function HASH : M → D, we model it

as some function chosen uniformly at random from Func[M, D].

Notice that this is an idealization. No real-life hash function will ever behave like

this. Informally, we could program a completely random hash function creating an array

with the number of elements in M, and in each position, we could put an element from D

chosen uniformly at random. The hash of any message msgi ∈ M would be the element

in position i of this array. The space complexity of this construction is superpolynomial.

However, we cannot improve this for a random function. As each element of this array

is random, our array cannot be compressed.

Creating a computer program shorter than this huge array representing our hash

function by itself compresses the array and, therefore, cannot be done for most of the

possible random arrays. In other words, the Kolmogorov complexity of a completely

random hash function would be too big.

Despite not being possible to implement a real random oracle function O, we

can simulate them using lazy evaluation techniques. We start with an empty dictionary,

and each time we want to check the value of A(msgi), we check if the key msgi is

stored in the dictionary. If so, we use the value stored with it. If mi is not a key in the

dictionary, we generate a random and uniform dgti ∈ D, store it in using mi as the key

and assume that dgi = O(msgi). This simulation is how we can trick adversaries in the

random oracle model that they are dealing with a random oracle, when in fact, they are

interacting with an efficient algorithm.

All attack games in the previous section can be adapted to the random oracle

model. The difference is that at the beginning of the game, the challenger chooses

uniformly at random a random oracle O ∈ Func[M, D] for each hash function that

maps M to D. More than one random oracle can be chosen if some cryptographic

construction uses more than one hash function. Every time the challenger needs to

compute some function HASHi , it uses the corresponding random oracle Oi instead. As

Chapter 2. Preliminaries 45

Challenger

O $←−− Func[M, D]
(pk , sk) $←−− SIG.KEYGEN(λ)

...

sigi
$←−− SIG.SIGN(sk , msgi)

...

dgtj ← O(msgj)
...

Adversary A

λ λ

pk
...

msgi

sigi
...

msgj

dgtj
...

(msg′, sig′)

Figure 17 – Attack Game: Signature unforgeability against adaptive chosen message
attacks in a random oracle model

it is expected that an adversary should compute hash functions, we let the adversary

send a polynomially bounded number of qO random oracle queries to the challenger.

In each query it sends some msgi ∈ M and gets as response O(msgi).

As an example, we present in Figure 17 how the attack game for signature

security against adaptive chosen message attacks would be modified in a random

oracle model. The query for message msgi represents the same signing query that we

already had. The query for message msgj is a random oracle query and represents the

access that the adversary has to the hash function. Notice that both kinds of queries

can be intercalated in any order.

We denote the probability of a given adversary A succeed in that attacking game

against a signature SIG by CMAadvRO[A, SIG]. For all other attack games, if we are

using the random oracle model, we also append the suffix RO to distinguish probabilities

in this model from probabilities in the standard model.

To see how one could use the random oracle model to prove the security of a

cryptographic construction, we describe next a signature scheme known as Full-Domain

Hash Signature and prove its security in a random oracle model.

2.4.1.1 Proving Full-Domain Hash Signature in the Random Oracle Model

Consider the signature scheme known as Full-Domain Hash, denoted by SIGFDH .

We will use a collision-resistant function function HASH : M → D and a one-way trap-

door function OWT that is also a trapdoor permutation function and is defined over the

set (D, D). We define the signature scheme SIGFDH defined over sets (M, D) with the

following algorithms:

Chapter 2. Preliminaries 46

• SIGFDH .KEYGEN(λ):

1. (pk , sk) $←− OWT .KEYGEN(λ)

2. return (pk , sk)

• SIGFDH .SIGN(sk , msg):

1. dgt ← HASH(msg)

2. sig ← OWT .INV(sk , dgt)

3. return sig

• SIGFDH .VERIFY(pk , msg, sig):

1. dgt ′ ← OWT .FUNC(pk , sig)

2. if dgt ′ = HASH(msg):

3. return accept

4. else:

5. return reject

This signature works because with the help of a trapdoor sk we can find inverses

for the function OWT .FUNC(pk , ·). Moreover, as this one-way function is a permutation

in this case, for each possible digest returned by HASH for some message, there is a

single valid signature.

To prove the security of this signature, we need the random oracle model.

Theorem 3 If the one-way trapdoor function OWT is secure, then the signature SIGFDH

built using it is secure against adaptive chosen message attacks in the random oracle

model.

Proof: To prove this theorem, we will assume that we have an adversary A
that can create forgeries for SIGFDH after interacting with its challenger in the random

oracle model, as modeled by Figure 17. Using this adversary A, we will show how to

create an adversary B that break the security of OWT as described by the one-way

trapdoor function attack game (seen in Figure 10).

First, we build an adversary B that can trick adversary A int thinking that it is

interacting with a legitimate adversary. Even without knowing the trapdoor of the OWT

function and without implementing a real random oracle, adversary B will interact withA
in a way indistinguishable from a legitimate challenger from a one-way trapdoor function

attack game. For now, adversary B is not producing a correct output, only tricking A.

We build adversary B in the following way:

Chapter 2. Preliminaries 47

• Initialization: First adversary B is initialized with the security parameter λ and

then it gets from its challenger the public key pk of the one-way trapdoor function

and some value y . This pk by itself is a valid public key for the signature SIGFDH .

Then, adversary B initializes adversary A with the security parameter λ and with

the signature public key pk . To help simulate a random oracle efficiently, adversary

B initializes an empty dictionary that will store pairs of messages and signatures.

• Random Oracle Query: Given a random oracle query for the message msgj ,

adversary B first checks in the dictionary if msgj already have a known signature.

If checking the dictionary, it sees that the signature for message msgj is sigj , it can

deduce the value of O(msgj) computing OWT .FUNC(pk , sigj) and sending this as

a response. If it do not know the signature for msgj , first it chooses uniformly at

random some signature sigj ∈ D, store this in the dictionary as the signature for

msgj and compute OWT .FUNC(pk , sigj) to produce the response for the random

oracle query.

Notice that the response for a random oracle produced in this way is indeed ran-

dom and uniform because we are obtaining it by choosing a random and uniform

value (the signature) and applying this over a permutation function (the one-way

trapdoor function). Therefore, the adversary A cannot notice that it is not interact-

ing with a correct challenger, the responses produced by B are indistinguishable

from a legitimate challenger.

• Signing Query: When A sends a signing query for message msgi , adversary

B first checks in the dictionary if the message msgi is already stored with a

corresponding signature. If so, it sends as a response the stored signature. If not,

it produces a signature sigi choosing some value from D uniformly at random.

Notice that in the random oracle model, our signatures are computed using

OWT .INV(sk ,O(msgi)). The output of O(msgi) is random for unknown messages

msgi and OWT .INV(sk , ·) is also a permutation in our case. Therefore, choosing a

signature randomly B produces a response for the query that is indistinguishable

from a response produced by a legitimate challenger.

• Finalization: In the end, adversary A produces a forgery (msg′, sig′). Adversary

B checks if the signature was successful. If msg′ is in the dictionary, A succeeds

if sig′ is the signature stored there and msg′ never was queried in a signing query.

If it is not in the dictionary, we generate a random and uniform signature, and

adversary A wins if this signature is equal to sig′.

Note that our objective with B is not only tricking A, but finding the inverse of y

that is received during the initialization. By definition, this value y is chosen uniformly

at random (as if OWT .FUNC(pk , ·) is a permutation, then y is this permutation applied

Chapter 2. Preliminaries 48

to a value chosen uniformly at random). So for one of the random oracle queries

instead of producing the response described above, we could send y . If we send y

as a response to a random oracle query for message msgj and in the end, we have a

forgery (msg′, sig′) such that msg′ = msgj , this means that sig′ is the inverse of y and

B can output this to win its attack game.

However, this assumes that we correctly guess wich random oracle query has a

message used in the forgery. If we guess wrong, not only adversary B will not be able

to find the preimage of y given a correct forgery, but also there is the risk that A sends

the same message in a signing query and B will not be able to give a correct response.

If the forgery (msg′, sig′) has a message msg′ that was queried before in a random

oracle query, we have a probability of 1/qs of guessing correctly which random oracle

query will be used in the forgery.

However, there is also the possibility that A do not perform a random oracle

query previously with msg′. We can try to guess this scenario too. If we guess correctly

in this case, we assume that O(msg′) = y , and we keep the property that if we guessed

correctly, then the signature sig′ from the forgery is a preimage of y .

Considering that A can produce a forgery using a message sent in any one of

the qO random oracle queries, or can produce a forgery using a message never queried

before, this gives adversary B a total of qO + 1 possible choices when guessing what

will happen. It can make the guess generating a random and uniform value between 1

and qO + 1. If it gets a random oracle query that it assumes by it guess that will be used

in a forgery, it can sent y as response to this query. Or if it guesses that the final forgery

will use a message msg′ never queried before, it assumes that O(msg′) = y . The guess

not necessarily will be correct. In fact, it will have only a probability of 1/(qO +1) of being

correct.

With this change, we have an adversary B that succeed if we have the following

two events:

• Adversary A succeed at creating a forgery. This happens with a probability given

by CMAadvRO[A, SIGFDH].

• We guessed correctly which random oracle query was used in the forgery or if

the forged message never was sent in a random oracle query. This happens with

probability 1
qO+1 .

The two probabilities above are independent. Therefore, the lower bound for the

probability of success for B is given by:

OWTadv [B, OWT] ≥ 1
qO + 1

CMAadvRO[A, SIGFDH]

Rewriting the above inequation, we have that for all adversaries A that forge

signatures in SIGFDH in the random oracle model, we can build an adversary B that

Chapter 2. Preliminaries 49

find a preimage for the one-way trapdoor function OWT such that:

CMAadvRO[A, SIGFDH] ≤ (qO + 1)OWTadv [B, OWT]

By our assumption, the one-way trapdoor function OWT is secure. Therefore

OWTadv [B, OWT] is always negligible for all adversaries. Furthermore, the number of

random oracle queries is polynomially bounded (even if it is modeled by a polynomial

with a very high degree). Multiplying a negligible value by a polynomially bounded value,

we have a negligible value. Therefore, the upper bound for CMAadvRO[A, SIGFDH] is

negligible, and therefore, no adversary can forge signatures in this model, except with

negligible probability. �

2.4.1.2 Random Oracle in a Post-Quantum Model

In the post-quantum model, we assume that the adversaries in the attack game

can use efficient quantum algorithms, not only classical algorithms. In this model, cryp-

tographic assumptions like discrete logarithm or factoring are false, as there are quan-

tum algorithms that can solve them. However, other than using assumptions that hold

against quantum attackers, this usually does not change much in the standard model.

When an attacker and a challenger exchange messages, we assume that they

communicate using a classical channel, not quantum. So it is not necessary to deal

with typical quantum scenarios where we get in our query a superposition of a super-

polynomial number of messages.

However, in a random oracle model, the oracle queries represent access to

a hash function, and in a realistic scenario, a quantum adversary should be able to

perform queries with a superposition of exponentially many messages.

This problem is described in (BONEH et al., 2011) where the author listed the

following scenarios that invalidate security proof in the random oracle model against

quantum adversaries:

1. Adaptive Programmability: If we simulate a random oracle needing to check in-

formation from the past to choose each new query response adaptively correctly,

this technique cannot be used in proof for a post-quantum scenario. A quantum

adversary can perform each query sending a superposition of many messages,

and we would need to reply in such queries a response with information about

many queries at once. This also forbids us to encode a relevant value in our

queries, as we did in the previous proof sending y as one response.

2. Preimage Awareness: If we simulate a random oracle to know beforehand possible

values used in the final output of our quantum adversary and we need to use

this information in our proof, then the proof is not valid for quantum adversaries.

If a quantum adversary can send a super-polynomial number of messages in

Chapter 2. Preliminaries 50

superposition for each query. We cannot guess with non-negligible probability

which message will be used in the adversary output.

3. Efficient Simulation: We cannot simulate a random oracle using lazy evaluation. If

we could get a superpolynomial number of messages in superposition in a single

random oracle query, we need to know beforehand the response for each query,

we cannot generate the responses on the fly, as we did in the previous query.

4. Rewinding: We cannot execute twice the same quantum adversary and expect

that it will produce the same outputs, even if we feed it with the same input in

both executions. For quantum adversaries, this would violate a property known as

the no-cloning theorem. Quantum algorithms can be inherently non-deterministic.

This restriction also applies to proofs in the standard model, not only for proofs in

the random oracle model.

These restrictions are not insurmountable. The same paper presents a technique

to convert some proofs in the random oracle model to a post-quantum scenario at the

cost of having an additional cryptographic assumption. For signature schemes, if the

proof in the random oracle model computes the response for the oracle queries on the

fly, but computes all queries in the same way independent of previous events during

the simulation and also avoids the techniques 1, 2 and 4 above described. Then, the

proof can be adapted and is valid in a post-quantum setting.

In this dissertation, we use the random oracle model in some proofs, and we will

point when these proofs are valid or not against quantum adversaries.

51

3 CHAMELEON HASH FUNCTIONS: DEFINITIONS AND PROPERTIES

This chapter is organized as follows:

• Section 3.1 presents the definition of chameleon hash functions and its security

requirements.

• Section 3.2 presents basic properties of chameleon hash functions derived from

its definitions

• Section 3.3 presents more constructions of chameleon hash functions given dif-

ferent assumptions

• Section 3.4 presents applications of chameleon hash functions

3.1 DEFINITION

Like we did in the previous chapter for other cryptographic primitives, here we

will define the chameleon hash primitive.

A Chameleon Hash Scheme, proposed initially in (KRAWCZYK; RABIN, 1998),

is a tuple of three algorithms: (CH.KEYGEN, CH.HASH, CH.COLLISION) over sets

(M, R, D) such that:

• CH.KEYGEN is a probabilistic algorithm invoked as (ek , tk) $←− CH.KEYGEN(λ).

Where ek is the evaluation key and tk is the trapdoor key. The input λ is the

security parameter.

• CH.HASH is a deterministic algorithm invoked as dgt
$←− CH.HASH(ek , msg, rnd),

where ek was returned by CH.KEYGEN, msg ∈ M is a message, rnd ∈ R is a

randomness, or a random parameter and dgt ∈ D is a digest.

• CH.COLLISION is a probabilistic algorithm invoked as rnd2
$←− CH.COLLISION(tk ,

msg1, rnd1, msg2) where msg1, msg2 ∈ M, rnd1, rnd2 ∈ R.

• We require that for all pairs (ek , tk) returned by CH.KEYGEN, if rnd2 was re-

turned by CH.COLLISION(tk , msg1, rnd1, msg2), then CH.HASH(ek , msg1, rnd1) =

CH.HASH(ek , msg2, rnd2).

• The set R should be efficiently sampleable and recognizable using only informa-

tion public in the evaluation key ek .

We consider a chameleon hash secure if it has two properties: uniformity and

collision-resistance.

Chapter 3. Chameleon Hash Functions: Definitions and Properties 54

each challenger first compute keys (ek , tk), pass ek to the adversary and then proceed

like in the definition for hash functions.

Theorem 4 All collision-resistant chameleon hash functions also are second-preimage

resistant.

The proof for the above theorem is the same than what was presented for Theo-

rem 1. Which means that for all adversaries A that can find the second-preimages in

chameleon hash functions, we can build an adversary B that can bind collisions such

that:

SPREadv [A, CH] ≤ CRadv [B, CH]

Theorem 5 All chameleon hash functions that are second-preimage resistant are also

one-way functions.

Proof: Here, instead of referring to the proof of Theorem 2, we can make a new

proof specific for chameleon hash functions that achieve a better security bound.

Like in the previous proof, we define an adversary that given the security pa-

rameter λ, a chameleon hash evaluation key ek and some chameleon hash input

(msg, rnd) ∈ M × R can compute the second preimage for the chameleon hash CH

given an adversary A that can find the first preimage for the same chameleon hash

CH:

• Adversary B(λ, ek , msg, rnd):

1. dgt ← CH.HASH(ek , msg, rnd)

2. (msg′, rnd ′) $←− A(λ, ek , dgt)

3. return (msg′, rnd ′)

This is almost the same adversary defined for the proof of Theorem 2, we just

changed the adversaries to get an additional parameter ek and to take as input msg and

rnd instead of a single message. This adapts that adversary to the security definitions

of chameleon hash functions.

Contrary to Theorem 2, here we do not need to consider the possibility that A
finds preimages only for digests that have a single preimage. In a chameleon hash, all

digests have at least |M | different preimages, or the algorithm CH.COLLISION would be

impossible.

Therefore, the above adversary B succeed at finding a second-preimage if, and

only if adversary A succeeds and if (msg, rnd) 6= (msg′, rnd ′).
The probability of having (msg, rnd) = (msg′, rnd ′) is at most 1/|M | because this

is the minimum number of inputs that maps for some digest and one of these inputs was

Chapter 3. Chameleon Hash Functions: Definitions and Properties 55

chosen uniformly at random. Then the probability of having if (msg, rnd) = (msg′, rnd ′)
is at least (1 – 1/|M |).

This means that the lower bound for the success of B is given by:

SPREadv [B, CH] ≥ (1 –
1

|M |
)OWadv [A, CH]

Rewriting this inequation, we conclude that for all adversaries A that can find the

first preimages for the chameleon hash CH, then we can build an adversary B than can

find second-preimages such that:

OWadv [A, CH] ≤ |M |
|M | – 1

SPREadv [B, CH]

By our assumption, CH is second-preimage resistant. This means that the prob-

ability SPREadv [B, CH] is always negligible and in the above inequation is multiplied

by a value polynomially bounded. This means that for any A, the probability of finding

a first preimage is negligible. �

Which means that we can also use chameleon hash functions as one-way func-

tions with negligible security loss.

Theorem 6 The composition of a secure hash function and a collision-resistant chameleon

hash is also a chameleon hash.

More precisely, given a collision-resistant chameleon hash scheme CH defined

over (M, R, D) and a collision-resistant hash function HASH : M ′ → M we can define

a composition CH ◦ HASH which is a chameleon hash defined over (M ′, R, D). In this

composition (CH ◦ HASH).KeyGen = CH.KeyGen, (CH ◦ HASH).Hash(ek , msg, rnd) =

CH.Hash(ek , HASH(msg), rnd) and (CH ◦ HASH).Collision(ek , msg1, rnd1, msg2) =

CH.Collision(ek , HASH(msg1), rnd , HASH(msg2)).

We can also use a collision-resistant chameleon-hash CH defined over (M, R, D)

and a hash function HASH : D → D′ to define a new chameleon hash (HASH◦CH) over

(M, R, D′). In this composition, we have (HASH ◦CH).KeyGen = CH.KeyGen, (HASH ◦
CH).Hash(ek , msg, rnd) = HASH(CH.Hash(ek , msg, rnd)) and (HASH◦CH).Collision =

CH.Collision.

Both compositions CH ◦HASH and HASH ◦CH are collision-resistant if CH and

HASH are also collision-resistant.

Proof: In both cases, if an adversary is able to find collisions in the composition,

it means that a collision is also found in HASH or in CH. This means that for all efficient

adversaries A able to find collisions in the composition, exist adversaries B and B′ able

to find collisions respectively in CH and HASH such that:

CRadv [A, CH ◦ HASH] ≤ CRadv (B, CH) + CRadv (B′, HASH)

Chapter 3. Chameleon Hash Functions: Definitions and Properties 56

And also:

CRadv [A, HASH ◦ CH] ≤ CRadv (B, CH) + CRadv (B′, HASH)

Therefore, if both CRadv [B, CH] and CRadv [B′, HASH] are negligible for all

possible adversaries , this means the probability of finding collisions in the compositions

are also negligible. �

Notice that the uniformity property is also preserved: if the chameleon hash CH

is uniform, both CH ◦ HASH and HASH ◦ CH are uniform.

3.3 CONSTRUCTIONS OF CHAMELEON HASH FUNCTIONS

Now we will present some possible constructions of the chameleon hash scheme

using some assumptions from Chapter 2: the hardness of the discrete logarithm prob-

lem and the existance of one-way functions.

3.3.1 Chameleon Hash from Discrete Logarithm Assumption

This chameleon hash (denoted CHDL) is presented as such in (KRAWCZYK;

RABIN, 1998), but the technique was already known in the form of a chameleon com-

mitment scheme.

This construction uses the discrete logarithm assumption, and to define it, we

will use the same algorithm GENGROUP specified in Subsection 2.2.2 to generate a

multiplicative group with prime order.

Let G be a multiplicative group with order q. The chameleon hash CHDL is

defined over sets (M, R, D) where M = R = Zq and D = G. The scheme algorithms are

defined as:

• CHDL.KeyGen(λ):

1. (G, q, g) $←− GENGROUP(λ)

2. x
$←− Z+

q

3. y ← gx

4. ek ← (G, q, g, y)

5. tk ← (G, q, g, x)

6. return (ek , tk)

• CHDL.HASH(ek , m, r):

1. (G, q, g, y)← ek

2. return gmy r

Chapter 3. Chameleon Hash Functions: Definitions and Properties 57

• CHDL.COLLISION(tk , m1, r1, m2):

1. (G, q, g, x)← tk

2. return (m1 + xr1 – m2)x–1

The above construction works because if r2 ← CHDL.COLLISION(tk , m1, r1, m2),

then:

CH.HASH(ek , m2, r2) = gm2y (m1+xr1–m2)x–1

= gm2gx(m1+xr1–m2)x–1

= gm2g(m1+xr1–m2)

= gm2+m1+xr1–m2

= gm1y r1 = CH.HASH(ek , m1, r1)

Theorem 7 The chameleon hash CHDL has the uniformity property.

Proof: For any m, r ∈ Zq, the algorithm CHDL.HASH produces a result comput-

ing gm+rx . If the randomness r is chosen uniformly at random, then the exponent will

also be a random and uniform value in Zq, no matter what are the values of m and x ,

provided that x 6= 0. Therefore, given a random and uniform r we will not be able to

distinguish between the hash of different messages m ∈ M. �

Theorem 8 The above chameleon hash CHDL is collision-resistant if the discrete loga-

rithm assumption is true for Zq.

Proof: We will show that if we have an adversary A able to find collisions in

this chameleon hash, then we can build an adversary B to solve the discrete logarithm

problem described in Section 2.2.2. Our adversary B is composed of the following parts:

• Initialization: Adversary B is initialized by the security parameter λ. It also takes

as input from its challenger the tuple (Q, q, g, y) as defined in the discrete loga-

rithm attack game. It produces the chameleon hash evaluation key ek = (G, q, g, y)

directly from this input. Next, it initializes the chameleon hash collision-finder A
with the security parameter λ and with the key ek .

• Finalization: In the end the adversaryA outputs a possible collision (m′, r ′), (m′′, r ′′).
Assuming that this is really a collision for CHDL, adversary B finds and returns the

solution x ′ = (m′′ – m′)(r ′ – r ′′)–1.

Chapter 3. Chameleon Hash Functions: Definitions and Properties 58

The above adversary B works because given any arbitrary collision for CHDL, it

is possible to extract the value x (and with this, it is possible to recreate the trapdoor

tk). Because if gm′

y r ′ = gm′′

y r ′′ , then this means that gm′+xr ′ = gm′′+xr ′′ and m′ + xr ′ =
m′′ + xr ′′. Any revealed collision in the chameleon hash exposes the value x and the

chameleon hash trapdoor.

This means that for all adversaries A that can find collisions in CHDL, we can

build an adversary B that wins the discrete logarithm attack game such that:

CRadv [A, CHDL] ≤ DLadv [B, G]

Therefore, if computing the discrete logarithm for G is hard, the right side of this

inequation is always negligible. Which means that CHDL is collision-resistant. �

The above security proof shows the collision-resistance for CHDL, but also ex-

poses a severe fragility that limits the usage of most kinds of chameleon hash functions.

Using a trapdoor, we indeed can find collisions for the CH.HASH algorithm. However,

we should not expose or show these collision for other people, or the trapdoor would

be exposed and the collision-resistance cannot be assumed anymore.

3.3.2 Chameleon Hash from Homomorphic One-Way Functions

This construction was presented first at (ALAMATI et al., 2019). The article tried

to build different cryptographic primitives using only one-way functions given additional

properties. For chameleon hash functions, it proposed that they could be built using

an one-way function with homomorphic properties. In this work we add that this homo-

morphic one-way function must also be collision-resistant and show this in Theorem

10.

To build the chameleon hash scheme, we need two groups (X ,⊕) and (Y ,⊗)

and also a collision-resistant one-way function OW : X → Y , such that:

OW

⊕

i∈[1,k]

xi

 =
⊗

i∈[1,k]

OW (xi)

The chameleon hash CHOW is defined over (M, X , Y) with M = {0, 1}k for some

constant k . The scheme’s algorithms are defined as:

• CHOW .KEYGEN:

1. T
$←− X2×k

2. for i ∈ {1, . . . k }:

3. for j ∈ {1, 2}:

4. E[i][j]← OWλ(T[i][j])

Chapter 3. Chameleon Hash Functions: Definitions and Properties 59

5. return (ek = E, tk = T)

Both the trapdoor and the evaluation key are a matrix with 2 lines and k columns.

The first is chosen uniformly at random from X and the second is obtaining applying

the one-way function OWλ to each element in the trapdoor.

The other two algorithms, CHOW .HASH and CHOW .COLLISION are defined as

below:

• CHOW .HASH:

CHOW .HASH(ek = E, m, x) =

⊗

i∈[1,k]

E[i][m[i] + 1]

⊗OWλ(x)

• CHOW .COLLISION:

CHOW .COLLISION(tk = T, m, x , m’) =

⊕

i∈[1,k]

T[i][m’[i] + 1]

–1

⊕

⊕

i∈[1,k]

T[i][m[i] + 1]

⊕ x

We choose the elements used in the computation in E and T depending if each

bit in m is 0 or 1. If the element is 0, we use the first line of the matrix, if the element is

1, we use the second line. As we number the lines in the matrices starting with 1, in the

formulas above we add 1 to each bit to get the correct line.

This constructions works because if we apply the function OWλ to a randomness

x ′ returned by CHOW .COLLISION(tk , m, x , m’), we get:

⊗

i∈[1,k]

OWλ(E[i][m’[i] + 1])

–1

⊗

⊗

i∈[1,k]

OWλ(E[i][m[i] + 1])

⊕OWλ(x)

Computing a chameleon hash using m’ and the x ′ is equivalent to using the

operator ⊗ between the above value and
⊗

i∈[1,k] OWλ(E[i][m’[i] + 1]). Canceling the

inverses, the result becomes equal the chameleon hash CHOW .HASH(ek , m, x) as

expected.

Theorem 9 The chameleon hash CHOW has the uniformity property.

Given any two messages m1 and m2 and given random and uniform x1 and x2,

we have:

x ′1 =

⊕

i∈k

T[i][m1[i] + 1]

⊕ x1 x ′2 =

⊕

i∈k

T[i][m2[i] + 1]

⊕ x2

Chapter 3. Chameleon Hash Functions: Definitions and Properties 60

Independent of the two messages and the keys, both x ′1 and x ′2 are random and

uniform provided that x1 and x2 are also random and uniform.

By definition:

CHOW .HASH(ek , m1, x1) = OW (x ′1) CHOW .HASH(ek , m2, x2) = OW (x ′2)

And so the probability distribution of two different messages are the same if the

random parameter is chosen random and uniform from X . �

Theorem 10 If OW is not collision-resistant family of one-way functions, then the

chameleon hash CHOW also is not collision-resistant.

Proof: If OW is not collision-resistant, this means that exist an efficient adver-

sary A that receives a security parameter λ and returns a pair of collisions for OWλ:

(x ′, x ′′) $←− A(λ).

We can use this adversary to build a collision-finder B for CHOW :

• B(λ, ek):

1. m
$←− {0, 1}k

2. (x ′, x ′′) $←− A(λ)

3. return (m, x ′), (m, x ′′)

The above collision-finder finds a collision for CHOW with the same probability

than A succeeds finding collisions in OW . Therefore, it succeeds with non-negligible

probability and this means that CHOW is not collision-resistant.

�

If we have as OWλ a permutation function, then there are no possible collisions

and the chameleon hash would not be susceptible to such attack.

Theorem 11 If OW is a family of collision-resistant one-way homomorphic functions,

the chameleon hash scheme CHOW is collision-resistant.

For all adversaries A which find collisions in this chameleon hash scheme, we

can build a new adversary B to find a preimages in OW . The adversary B can be

constructed as:

• B(λ, y):

1. (ek = E, tk = T) $←− CHOW .KEYGEN(λ)

2. index
$←− {1, . . . , k }

Chapter 3. Chameleon Hash Functions: Definitions and Properties 61

3. b
$←− {1, 2}

4. E[index][b]← y

5. ((m’, x ′), (m”, x ′′))← A(ek)

6. if m’[index] 6= m”[index]:

7. if m’[index] = b:

8. m1 ← m’; x1 ← x ′; m2 ← m”; x2 ← x ′′

9. else if m”[index] = b:

10. m1 ← m”;x1 ← x ′′;m2 ← m’;x2 ← x ′

11. x ′ ←
(

⊕

i∈[1,index–1] T[i][m1[i] + 1]
)–1
⊕
(

⊕

i∈[index+1,r] T[i][m1[i] + 1]
)–1

12. x ′ ← x ′ ⊕ x–1
1

13. x ′ ← x ′ ⊕
(

⊕

i∈[1,k] T[i][m2[i] + 1]
)

⊕ x2

14. return x ′

The above adversary B works producing a valid pair of keys for the chameleon

hash, but it changes one random element in the matrix E to the value y whose preimage

it wants to discover. Note that in the specific random position where the element y was

inserted in matrix E at line 4, the matrix T does not have the right corresponding

preimage for y as we would expect from a valid key tk . However, the trapdoor tk is

never sent to adversary A and so, our adversary B is correctly simulating a challenger

for A.

Then, assuming that A succeed at finding a collision, adversary B checks if both

messages returned have different values at the random position corresponding to where

it stored y in the matrix E. If this is true, then the preimage of y in OWλ can be deduced.

It is the value that should be in the matrix T in the same position where y was placed

in E. Knowing a collision where only one of the messages in the pair (m’, m”) needs

to evaluate y and knowing all other preimages involved in the computation, adversary

B use the definition of CHOW .COLLISION to create an equation where the preimage of

y is the only unknown. Then, solving this equation yields this preimage in lines 11, 12

and 13.

Three conditions need to be satisfied to the above adversary B succeed at

finding a preimage for a given y in OWλ:

1. The adversary A must succeed at finding a collision in line 5. The probability of

this happening is CRadv [A, CHOW].

2. The collision returned byA in line 5 must have msg∗ 6= msg∗∗. If this is not true, but

A really found a collision, then this means that x ′ 6= x ′′ and OWλ(x ′) = OWλ(x ′′).

Chapter 3. Chameleon Hash Functions: Definitions and Properties 62

Therefore, the probability of this not happening can be modeled by the probability

of some adversary B′ finding a collision in OWλ: CRadv [B′, OW].

3. Given the random index chosen at line 2, it must be true that m’[index] 6= m”[index].

Otherwise, B would not be able to deduce an equation with a single unknown rep-

resenting the preimage of y . This is the condition tested in line 6.

If in line 5 adversary A succeed at finding a collision, then or it also found a

collision in OWλ (when m’ = m” and the second condition above is not satisfied) or it

found a useful collision that B can use to find a preimage (when m’ 6= m” satisfying the

second condition above). Therefore, the probability of finding an useful collision can be

modeled by CRadv [A, CHOW] – CRadv [B′, OW]

If A produced an useful collision, this means that at least one of the elements

in the vectors m’ and m” are different. Then, the probability of having m’[index] 6=
m”[index] is at least 1/k .

Combining these results, we have that the lower bound for the success of B is

given by:

OWadv [B, OW] ≥ 1
k

(CRadv [A, CHOW] – CRadv [B′, OW])

Rewriting the above inequation, we have that for all adversaries A, we can build

adversaries B and B′ such that:

CRadv [A, CH] ≤ k ·OWadv [B, OW] + CRadv [B′, OW]

By our hypothesis, we know that OW is one-way and also collision-resistant.

Therefore, the right side of this inequation is negligible. Then CRadv [A, CH] must also

be negligible and the chameleon hash is collision-resistant. �

3.3.3 Other Constructions

In (SHAMIR; TAUMAN, 2001) was proposed another chameleon hash over

(M, R, D) based on factoring assumption. However, that construction does not have

the required property of having set R efficiently recognizable and sampleable without

sacrificing the uniformity property. To produce a valid randomness r ∈ R it was neces-

sary to have sensible information from the trapdoor key tk . That information could not

be placed in the evaluation key ek without compromising the collision resistance of the

construction.

In (ATENIESE; MEDEIROS, 2004) there are a list of different chameleon hash

functions defined using a generalization of the scheme presented here, where the

CH.HASH and CH.COLLISION use as additional parameter a tag that identify each use

of the chameleon hash. However, all constructions in that paper have its proofs based

on heuristics like the random oracle model and the generic model. The same applies

Chapter 3. Chameleon Hash Functions: Definitions and Properties 63

some other tag-based and identity-based chameleon hash functions in the literature,

like the construction from (ZHANG, F. et al., 2003).

3.4 APPLICATIONS

Here we list some applications for chameleon hash functions proposed in the

literature.

3.4.1 Chameleon Signatures

Usually a signature scheme has the following properties:

• The signer cannot repudiate a signed document if the private key is not compro-

mised. Only the signer knows the private key and only him can create a valid

signature.

• The recipient can show the document and signature to any person and this proves

that the document was originated from the signer and signed with the associated

private key to the public key.

Sometimes the second property can be a problem, as it conflicts with the signer’s

privacy. In some applications it can be desirable to keep the signature verifiable only for

some users, but if they show the message and the signature, they cannot convince third

parties that the message was really signed by the signer. We can achieve this by the

following method using any signature scheme SIG and any chameleon hash scheme

CH:

1. The recipient Bob runs (ek , tk)← CH.KEYGEN(λ) to get the keys for a chameleon

hash scheme.

2. The signer Alice runs (pk , sk)← SIG.KEYGEN(λ) to get the keys for a signature

scheme.

3. Alice and Bob exchange keys. Bob sends ek and Alice sends pk .

4. To sign a message msg, Alice choose a random rnd and runs the algorithm

SIG.SIGN(sk , CH.HASH(ek , msg, rnd)||rnd) to obtain the signature sig. She sends

(msg, rnd , sig) to Bob.

5. Bob can verify the signature with SIG.VERIFY(pk , CH.HASH(ek , msg, rnd), sig).

If Bob got a signed message from Alice and the signature was valid, Alice cannot

repudiate the signed message, as only she knows the signature secret key to produce

Chapter 3. Chameleon Hash Functions: Definitions and Properties 64

a valid signature, and only Bob knows the trapdoor key to compute collisions in the

chameleon hash.

However, if Bob tries to show the message and signature to other people, he

cannot prove for anyone that the signature is valid. As Bob knows the trapdoor key, he

can compute collisions in the chameleon hash and impute any message to Alice. The

only disclosed information for third parties if Bob shows a signed message is that at

some time Alice sent a signed message to Bob, but the real content is unknown.

If necessary in some contexts, Alice can prove that she did not sign some mes-

sage. For example, if Bob falsely accuses her of confessing a crime in a message, she

can proof that she did not sign that message showing another signed message with the

same hash. As she does not know the trapdoor tk , providing a collision shows that the

first message really was not signed by Alice.

However, this presents a possible attack against this scheme: Alice can use

this chameleon signature to tell Bob some secret. Bob can then force her to reveal

this secret to the world forging a false message with a serious crime confession and

attaching her signature to the message. Now to prove her innocence in a very serious

crime, Alice must reveal a collision for the chameleon hash CH. However, as she do

not know the trapdoor tk , she can do so only revealing the original signed message

with her secret.

This problem can be avoided using some specific constructions of chameleon

hash functions instead of using the chameleon hash as a black-box. Using CHDL, for

example, Alice can use the following algorithm for producing a new collision in the

chameleon hash, provided that she has the original message (msg, rnd) and a false

message (msg′, rnd ′) that are a collision in this scheme:

• THIRDCOLLISION(msg, rnd , msg′, rnd ′):

1. msg′′ $←− M

2. x ← (msg′ – msg)(rnd – rnd ′)–1

3. rnd ′′ ← (msg – msg′′ + rnd)x–1

4. return (msg′′, rnd ′′)

The above algorithm works because as discussed in the security proof for CHDL,

if someone discovers a collision in CHDL using the evaluation key ek , is trivial to deduce

the corresponding trapdoor key tk . With the appropriate trapdoor, new collisions can be

obtained.

This also means that such chameleon signatures should be one-time signatures.

Otherwise, the possibility of repudiate a signed message is weakened: if compute a

collision in the chameleon hash exposes the trapdoor, the recipient Bob is less likely to

forge messages risking the secret of his trapdoor.

Chapter 3. Chameleon Hash Functions: Definitions and Properties 65

3.4.2 On-line/Off-line Signatures

This application was first presented at (SHAMIR; TAUMAN, 2001).

Notice that in the chameleon hash CHDL, computing collisions is usually faster

than computing hash functions. In the first case we need to compute two multiplications,

two sums and the inverse of an element. In the second case we need to compute a

multiplication and two exponentiations, which usually is a slower operation.

Given a chameleon hash CH with this property, and given a signature scheme

SIG, we can create a new signature scheme SIGOn/Off that supports on-line/off-line

signatures.

The idea is that in the signature scheme SIGOn/Off , even when we still do not

know what will be the next signed message, we can compute in our spare time part of

the future signature. When we finally discover what will be the next signed message,

we resume the computation that we started before and thus the signature appears to

be computed faster. We want to be able to compute most part of the signature before

knowing the signed message.

We can model this as a signature scheme with four different algorithms. The al-

gorithms SIGOn/Off .KEYGEN and SIGOn/Off .VERIFY works as before. However, instead

of a single signing algorithm, we have two:

• SIGOn/Off .OFFLINESIGN(sk)→ presig

• SIGOn/Off .ONLINESIGN(sk , presig, msg)→ sig

The first algorithm can be precomputed much before we know the signed mes-

sage and the result, presign is then stored. When we know the message to be signed,

we recover the stored presig and compute the real signature sig. These two algorithms

can be used to define a more traditional signing algorithm as:

• SIGOn/Off .SIGN(sk , msg):

1. presig
$←− SIGOn/Off .OFFLINESIGN(sk)

2. sig
$←− SIGOn/Off .ONLINESIGN(sk , presig, msg)

3. return sig

With a chameleon hash CH where computing collisions is faster than computing

hash functions defined over (M, R, D) and with any signature scheme defined over

(D, S), we can build an online/offline signature scheme SIGOn/Off defined over (M, S×R)

with the following algorithms:

• SIGOn/Off .KEYGEN(λ):

1. (pk , sk) $←− SIG.KEYGEN(λ)

Chapter 3. Chameleon Hash Functions: Definitions and Properties 66

2. (ek , tk) $←− CH.KEYGEN(λ)

3. pk ′ ← (pk , ek)

4. sk ′ ← (sk , ek , tk)

• SIGOn/Off .OFFLINESIGN(sk ′):

1. (sk , ek , tk)← sk ′

2. msg′ $←− M

3. rnd ′ $←− R

4. dgt ← CH.HASH(ek , msg′, rnd ′)

5. sig′ $←− SIG.SIGN(sk , dgt)

6. presig ← (sig′, msg′, rnd ′)

7. return presig

• SIGOn/Off .ONLINESIGN(sk ′, presig, msg):

1. (sig′, msg′, rnd ′)← presig

2. (sk , ek , tk)← sk ′

3. rnd
$←− CH.COLLISION(tk , msg′, rnd ′, msg)

4. sig ← (sig′, rnd)

• SIGOn/Off .VERIFY(pk ′, msg, sig):

1. (pk , ek)← pk ′

2. (sig′, rnd)← sig

3. dgt ← CH.HASH(ek , msg, rnd)

4. return SIG.VERIFY(pk, dgt, sig’)

Notice that the computed collision never is leaked, so the chameleon hash re-

mains secure, even after multiple signatures. Contrary to chameleon signatures, here

the signer uses its own keys in the chameleon hash, not the recipient’s keys. Therefore,

the construction has the non-repudiability of a regular signature scheme.

3.4.3 Transforming GCMA-secure signatures in CMA-secure signatures

Combining a chameleon hash with a signature scheme also provides the ad-

ditional property that the signature can become more secure after the combination.

Assume that we have a signature scheme SIG which is secure against generic chosen

Chapter 3. Chameleon Hash Functions: Definitions and Properties 67

message attacks, as described in Subsection 2.3.5.1. We will show that we can com-

bine this signature with any chameleon hash CH producing a new signature scheme

secure against chosen-message attacks.

We will denote this new signature as (SIG ◦ CH) and its algorithms are defined

as:

• (SIG ◦ CH).KEYGEN(λ):

1. (pk , sk) $←− SIG.KEYGEN(λ)

2. (ek , tk) $←− CH.KEYGEN(λ)

3. pk ′ ← (pk , ek)

4. sk ′ ← (sk , ek)

• (SIG ◦ CH).SIGN(sk ′, msg):

1. (sk , ek)← sk ′

2. rnd
$←− R

3. dgt ← CH.HASH(ek , msg, rnd)

4. sig′ $←− SIG.SIGN(sk , dgt)

5. sig ← (sig′, rnd)

6. return sig

• (SIG ◦ CH).VERIFY(pk ′, msg, sig):

1. (pk , ek)← pk ′

2. (sig′, rnd)← sig

3. dgt ← CH.HASH(ek , msg, rnd)

4. return SIG.VERIFY(pk, dgt, sig’)

Notice that we never use the trapdoor key tk in this construction. We use the

chameleon hash as a regular hash function in the hash-and-sign paradigm. However,

with chameleon hash functions we can prove that this construction is secure against

adaptive chosen message attacks if SIG is secure against generic chosen message

attacks.

Theorem 12 Let SIG be a signature scheme defined over (D, S) secure against generic

chosen message attacks and CH be a collision-resistant chameleon hash defined over

(M, R, D). Then, the signature scheme (SIG ◦ CH) over (M, S × R) is secure against

chosen-message attacks.

Chapter 3. Chameleon Hash Functions: Definitions and Properties 68

Adversary B

(ek , tk) $←−− CH.KEYGEN(λ)
pk ′ ← (pk , ek)

(msg1, . . . , msgq) $←−− Mq

(rnd1, . . . , rndq) $←−− Rq

for j ∈ {1, . . . , q}:
dgtj ← CH.HASH(ek , msgj , rndj)

...

rnd ′i
$←−− CH.COLLISION(tk , msgi , rndi , msg′i)

sig′i ← (sigi , rnd ′i)

...

dgt∗ ← CH.HASH(ek , msg∗, rnd∗)

Adversary A
pk ′

...msg′i

sig′i
...

(msg∗, (sig∗, rnd∗))

pk

(dgt1, . . . , dgtq)

(sig1, . . . , sigq)

(dgt∗, sig∗)

Figure 21 – Using adversary A that breaks the security of (SIG ◦CH) to build adversary
B that breaks the security of SIG

Proof: We will show how given an adversary A, which attacks (SIG ◦ CH) with

adaptive chosen message attacks, one could build an adversary B which attacks SIG

using generic chosen message attacks. The full construction is illustrated in Figure 21.

Our forger B that interacts with generic-chosen message attack game, is com-

posed of the following parts:

• Initialization: Here B takes as input pk , a public key for SIG. It proceeds to run

(ek , tk) $←− CH.KEYGEN(λ). Then it chooses a polynomial number of q random

messages (msg1, . . . , msgq) and chooses uniformly at random the same number

of values from R: (rnd1, . . . , rndq). Finally, it computes (dgt1, . . . , dgtq) where all

the elements of this tuple are computed as dgti ← CH.HASH(ek , msgi , rndi).

It passes this tuple of digests to its challenger and gets as response a tuple

(sig1, . . . , sigq) with the signature of each digest using SIG. Finally, it initializes

the adversary A passing pk ′ = (pk , ek) as its public key.

• Queries: The adversary A will do a polynomial number of queries. In each of

them, it will send a message msg′i . The adversary B produces a response com-

puting rnd ′i ← CH.COLLISION(tk , msgi , rndi , msg′i) and then replying with the valid

signature (sigi , rnd ′i).

• Finalization: After all the queries, the adversary A produces as forgery the tuple

(msg∗, (sig∗, rnd∗)). First the adversary B checks if the forgery was successful. If

Chapter 3. Chameleon Hash Functions: Definitions and Properties 69

not, it halts. If yes, it produces its own forgery for signature scheme SIG sending

(CH.HASH(ek , msg∗, rnd∗), sig∗) to its challenger.

The adversary B succeeds at producing a forgery if the following two events

happen:

1. The adversary A succeeds when producing a forgery. This happens with proba-

bility CMAadv [A, (SIG ◦ CH)].

2. The output for A is such that CH.HASH(ek , msg∗, rnd∗) is different than all the

digests in the tuple (dgt1, . . . , dgtq). If this do not happen, this means that we

found a collision in the chameleon hash CH. The probability of this happening is

at most CRadv [B′, CH] for some adversary B′.

These two events are not independent. Adversary A in the worst case could

succeed at creating forgeries precisely computing collisions in the chameleon hash and

finding inputs where collisions are more probable. WhenA succeed in the above interac-

tion, either we obtain an useless forgery that reveals a collision in the chameleon hash

or we find a useful forgery that can be used to produce a forgery in SIG. We can model

the probability of finding a useful forgery by CMAadv [A, SIG ◦ CH] – CRadv [B′, CH]

where B′ is an adversary that finds collisions in CH simulating the above interaction

between a challenger, adversary A and adversary B.

The lower bond for the success of B is given by:

GCMAadv [B, SIG] ≥ CMAadv [A, SIG ◦ CH] – CRadv [B′, CH]

This means that for all efficient adversaries A, one could build efficient adver-

saries B and B′ such that:

CMAadv [A, SIG ◦ CH] ≤ GCMAadv [B, SIG] + CRadv [B′, CH]

By our hypothesis, the chameleon hash CH is collision-resistant and SIG is

secure against generic chosen message attacks. Therefore, the right side of the above

inequation is negligible and the probability of any adversary creating a forgery against

SIG ◦ CH is a adaptive chosen message attack is also negligible.

�

This construction of a CMA-secure signature from a GCMA-secure one was first

described at (SHAMIR; TAUMAN, 2001). However, the article (GENNARO et al., 1999)

used this technique before, treating it as an ad-hoc method to signature scheme that

could be proven secure against adaptive chosen message attacks without using the

random oracle model.

Chapter 3. Chameleon Hash Functions: Definitions and Properties 70

3.4.4 Redactable Signatures

Partitioning a document in multiple parts and signing some parts with a standard

signature and other parts with chameleon signatures, it is possible to create redactable

signatures. With this technique a person can sign a document, but allow an authorized

censor to remove, redact or replace specific parts of a document without invalidating the

signature. This can be useful to anonimize sensible information in documents before

releasing to the public and to ensure privacy for people mentioned in a document.

This application was presented first at (ATENIESE et al., 2005). And a more

rigorous analysis for the security requeriments for such signatures is presented in

(BRZUSKA et al., 2009).

The great difficulty in using chameleon hash functions to build redactable signa-

tures is that it is difficult to maintain the security of chameleon hashes after a collision

is revealed to attackers. In redactable signatures, having the original document and a

redacted copy, or having two different redacted copies will expose a collision. Because

of this, not all chameleon hashes are suitable to build redactable signatures.

3.4.5 Chameleon Hash Chains and Authentication

A hash chain is a sequence of values generated applying a hash function succes-

sively to the same input. Given some input msg and some function HASH : M → D with

D ⊂ M, we can define the hash chain (msg, HASH(msg), HASH(HASH(msg)), . . .).

In (LAMPORT, 1981) hash chains were suggested as a form of authentication.

A user could compute a hash chain (msg, HASH(msg), . . .HASHn(msg)) and send the

last computed value to a server. Each time the user wants to authenticate, it can send

a preimage of the last sent value to the server. This could be used to authenticate n

times in a given server.

In fact, any One-Way function could be used in this authentication scheme, not

necessarily collision-resistant hash functions.

Based on the concept of hash chains, chameleon hash chains also can be used

for authentication. For this, we would need a chameleon hash CH defined over (M, R, D)

with D ⊆ M. A server or some service can allow users to authenticate first requiring a

registration, and then performing the verification step in each authentication.

In the registration step, the user needs to generate a pair of keys (ek , tk) using

CH.KEYGEN(λ) and choose randomly some msg0 ∈ M and rnd0 ∈ R to compute dgt0

as CH.HASH(ek , msg0, rnd0). The tuple (ek , dgt0) is sent to the server and (msg0, rnd0)

is stored.

In the verification step, in the first authentication we set i = 1 and for all other

authentications we increment this value. The user choose uniformly at random new

values msgi ∈ M and rndi ∈ R and compute authi ad CH.HASH(ek , msgi , rndi). Then,

Chapter 3. Chameleon Hash Functions: Definitions and Properties 71

it computes rnd ′i as CH.COLLISION(tk , msgi–1, rndi–1, authi). It sends to the server the

pair (authi , rnd ′i). The server authenticates the user only if CH.HASH(ek , authi , rnd ′i) =

dgti–1. If so, the server also updates dgti ← authi for the next authentication.

Notice that in each new authentication we produce a new digest that will be the

target digest for the next authentication and also will be the message for the current

authentication. The trapdoor allows the user to choose correct values for rndi to make

this true.

This use was suggested first at (DI PIETRO et al., 2006) where the authors

applied the concept of hash chains to chameleon hash functions. Comparing to regular

hash chains, chameleon hash chains have the advantage of providing forward and

backward secrecy and does not have a practical limit on the number of authentications.

Any collision-resistant chameleon hash is suitable for this application, the uniformity

property is not necessary.

72

4 PREIMAGE CHAMELEON HASH FUNCTIONS

The chameleon hash functions presented in the previous chapter allowed for

second-preimage computing using a trapdoor. However, a subset of such chameleon

hash functions allows for the more powerful computation of finding preimages using

the trapdoor while still having collision-resistance if the trapdoor is not used. There is

no standard name for this property or for such stronger version of chameleon hash

functions. They were first mentioned in (SHAMIR; TAUMAN, 2001) where this property

was called “inversion property”. In (SCHMIDT-SAMOA; TAKAGI, 2005) this property was

present as “strong altering”. In (LU et al., 2019c) such chameleon hash functions were

called “chameleon hash plus”. Here we call them “preimage chameleon hash functions”

and in this chapter we list some of its constructions, properties and applications.

This chapter is organized as follows:

• In Section 4.1 we list the definition and additional properties for preimage chameleon

hash functions,

• In Section 4.2 we present different constructions for preimage chameleon hash

functions and present security proofs for them.

• In Section 4.3 we list previous applications for this kind of chameleon hash.

4.1 DEFINITION AND PROPERTIES

We can define a preimage chameleon hash scheme as a chameleon hash

scheme CH over (M, R, D) where we also have an additional probabilistic algorithm

CH.PREIMAGE such that on input tk , msg and dgt , it returns a rnd ∈ R such that

CH.Hash(ek , msg, rnd) = dgt . In other words, as in traditional chameleon hash func-

tions the trapdoor allows for second-preimage calculation, in preimage chameleon hash

functions, it allows for first-preimage calculation.

When defining a preimage chameleon hash, we do not need to define explicitly

the algorithm CH.COLLISION, as using the CH.PREIMAGE algorithm and the evaluation

key we can easily define CH.COLLISION:

CH.COLLISION(tk , msg1, rnd1, msg2)

=

CH.PREIMAGE(tk , msg2, CH.HASH(ek , msg1, rnd1))

We require the same properties of collision resistance and uniformity for preim-

age chameleon hash functions. However, some applications of this primitive require a

stronger version of the uniformity property called “strong uniformity”:

Chapter 4. Preimage Chameleon Hash Functions 74

by CH.KEYGEN(λ), let dgtR ∈ D and rndR ∈ R be elements chosen uniformly at

random. Then Pr [dgtR = dgt] is the probability of picking an specific element dgt ∈ D

when sampling uniformly at random and Pr [CH.HASH(ek , msg, rndR) = dgt] is the

probability of picking a specific dgt ∈ D when computing a chameleon hash with a

randomly sampled rndR . We compute the statistical distance between the chameleon

hash distribution and the strong uniformity distribution as:

maxdgtinD(|Pr [dgtR = dgt] – Pr [CH.HASH(ek , msg, rndR) = dgt]|)

We consider the chameleon hash distribution negligibly next to strong uniformity

if the above statistical distance is negligible (in function of the security parameter λ).

In the above definition, we also do not require that rndR is sampled from an

uniform distribution. There could be another distribution that results in such property,

but we require that this alternative distribution is known for each chameleon hash and

also can be efficiently computable.

We also can require in some applications that both CH.HASH and CH.PREIMAGE

have random and uniform output if some part of the input is random. We can define the

uniformity property for the CH.PREIMAGE algorithm using the definition below.

Definition 6 We say that a given chameleon hash scheme CH defined over (M, R, D)

has the preimage uniformity if for all keys tk returned by CH.KEYGEN and all mes-

sages msg ∈ M, if we choose a digest dgtR uniformly and random, then the probability

distribution for rndR
$←− CH.PREIMAGE(tk , msg, dgtR) is indistinguishable from a ran-

dom and uniform distribution in D.

If a chameleon hash construction uses a relaxed definition for the uniformity

property where the randomness rndR ∈ R is not chosen uniformly at random, but using

some distribution D, then for the preimage uniformity we require that given dgtR cho-

sen randomly, CH.PREIMAGE(tk , msg, dgtR) produces randomness with a probability

distribution indistinguishable from D.

4.2 CONSTRUCTIONS

Here we present three sample constructions of a preimage chameleon hash

scheme. One based on the existance of one-way trapdoor function, and two others

based on the hardness of the Short Integer Solution (SIS) problem.

4.2.1 Preimage Chameleon Hash from One-Way Trapdoor Permutations

This construction was proposed first as a hash function in (DAMGÅRD, 1987)

and was recognized as a chameleon hash at (KRAWCZYK; RABIN, 1998). It uses two

one-way trapdoor function schemes OWT0 and OWT1 (as defined in Subsection 2.3.3).

Chapter 4. Preimage Chameleon Hash Functions 75

Both one-way functions with trapdoor are defined over sets (X , X). We require that

OWT0.FUNC(pk , ·) and OWT1.FUNC(pk , ·) be claw-free permutations, which means

that should be hard to find two values x1, x2 ∈ X such that OWT1.FUNC(pk , x1) =

OWT1.FUNC(pk , x2).

With the help of these one-way trapdoor functions OWT1 and OWT2, we can

define a chameleon hash CH2OWT over sets (M, X , X), where M = {0, 1}k for some

constant k .

The chameleon hash CH2OWT algorithms are defined as:

• CH2OWT .KEYGEN(λ):

1. (pk0, sk0) $←− OWT0.KEYGEN(λ)

2. (pk1, sk1) $←− OWT1.KEYGEN(λ)

3. ek ← (pk0, pk1)

4. tk ← (sk0, sk1)

5. return (ek , tk)

• CH2OWT .HASH(ek , m, x):

1. y ← x

2. for i in (1, . . . , k):

3. if m[i] = 0:

4. y ← OWT0.FUNC(pk0, y)

5. else if m[i] = 1:

6. y ← OWT1.FUNC(pk1, y)

7. return y

• CH2OWT .PREIMAGE(tk , m, y):

1. x ← y

2. for i in (k , . . . , 1):

3. if m[i] = 0:

4. x ← OWT0.INV(sk0, x)

5. else if m[i] = 1:

6. x ← OWT1.INV(sk1, x)

7. return x

Theorem 13 The chameleon hash scheme CH2OWT defined above over sets (M, X , X)

has the strong uniformity property and the preimage uniformity.

Chapter 4. Preimage Chameleon Hash Functions 76

Proof: As both OWT0.Func and OWT1.Func are permutations, composing these

functions as we do to compute CH2OWT .HASH also yields a new permutation. Inde-

pendent of the message input or the key ek , the result is always a permutation over X

having the random parameter x ∈ X as input.

Therefore, if we choose x uniformly at random, and run CH2OWT .HASH(ek , m, x),

the output of this algorithm will also be random and uniform. This is a sufficient condition

to have the strong uniformity property.

The same argument applies for CH2OWT .PREIMAGE, as if OWT0.FUNC and

OWT1.FUNC are permutations, then so are OWT0.INV and OWT1.INV. Therefore, this

construction also has preimage uniformity.

�

Theorem 14 The chameleon hash CH2OWT defined above is collision-resistant if the

one-way trapdoor permutations OWT1 and OWT2 are claw-free.

Proof: If we have distint two colliding inputs (m1, x1) and (m2, x2) for algorithm

CH2OWT .HASH, then necessarily m1 6= m2. If the messages were equal, they would

represent the same composition of permutation functions, which would also result in a

permutation. However, if CH2OWT .HASH(ek , m1, x1) = CH2OWT .HASH(ek , m2, x2) for

x1 6= x2, then this would mean that applying the same permutation to two different inputs

result in the same value, which is impossible.

If m1 6= m2 and they collide in the above hash function, this means that while

we are computing their hash, exist an iteration in line 2 of CH2OWT .HASH where

OWT0.FUNC(xi) = y∗ and OWT1.FUNC(xj) = y∗, where xi 6= xj . Therefore, this iter-

ation of the CH2OWT .HASH algorithm yields different inputs for OWT0.FUNC(pk0, ·) and

OWT1.FUNC(pk1, ·) that result in the same value.

By our hypothesis, both trapdoor functions are claw-free and so it is hard to find

such input. Therefore, it is also hard finding collisions in CH2OWT . �

One drawback of this construction is that there are not many known constructions

of trapdoor permutations that are also claw-free. One possibility is computing x2 under

modular exponentiation like suggested in the previous subsection. If the modulus is

semiprime, it can be proven using the factoring assumption that such exponentiations

are claw-free one-way functions.

We will define a suitable one-way trapdoor permutation function OWT0 and

OWT1, both defined over sets of quadratic residues modulo n = pq. We define them as:

• OWT0.KEYGEN(λ) and OWT1.KEYGEN are the same and both schemes should

share the same keys instead of generating one pair of keys for each of them.

They run algorithm GENPRIME(λ) twice and repeat this until finding primes p and

Chapter 4. Preimage Chameleon Hash Functions 77

q such that p ≡ 3 mod 8 and q ≡ 7 mod 8. Then they set n = pq The secret key

sk is (p, q). The public key pk is n.

• OWT0.FUNC(pk , x) = x2 mod n

• OWT1.FUNC(pk , x) = 4x2 mod n

• OWT0.INV(sk , y) and OWT1.INV(sk , y) can be computed solving respectively the

modular square root of y and y(4)–1 modulo n. This can be done solving it in

modulo p and in modulo q, combining these results with the Chinese remainder

theorem to find the square roots modulo n.

The above restrictions that p ≡ 3 mod 8 and q ≡ 7 mod 8 are necessary to

ensure that both OWT0.FUNC and OWT1.FUNC are permutations. This also ensures

that 2 is not a quadratic residue modulo p and –2 is not quadratic residue modulo q,

properties that ensure that the construction provides two claw-free permutations as

shown in the proof of the theorem below.

Theorem 15 The above constructions of OWT0.FUNC and OWT1.FUNC are claw-free.

Proof: Let’s assume that we found x1 6= x2 such that OWT0.FUNC(pk , x1) collide

with OWT1.FUNC(pk , x2). This means that:

x2
1 ≡ 4x2

2 (mod pq)

x2
1 – 4x2

2 ≡ 0 (mod pq)

(x1 + 2x2)(x1 – 2x2) ≡ 0 (mod pq)

This means that if x1 6= 2x2 and x1 6= –2x2, they are nontrivial factor of a multiple

of pq and this formula yields a factorization of n. We know that x1 6= 2x2, as 2 is not a

quadratic residue modulo p. We know that x1 6= –2x2, as -2 is not a quadratic residue

modulo q. Therefore, if we could find x1 and x2 such that x2
1 ≡ 4x2

2 (mod pq) with

non-negligible probability, then we could find a factorization of pq with non-negligible

probability. The proves that these functions are claw-free. �

The above proof show that if we could find collisions in the presented chameleon

hash scheme, we could find a factorization for n = pq if if p ≡ 3 mod 8 and q ≡ 7

mod 8. If we choose primes p and q at random, we expect that these conditions are

satisfied with probability 1/16 (as both p and q could be congruent to 1, 3, 5 or 7 in

modulo 8 when chosen randomly). Therefore, the upper bound for the probability of

factoring a random semiprime n would be (1/16)CRadv [A, CH2OWT]when we use an

adversary A that finds collisions in CH2OWT .

Chapter 4. Preimage Chameleon Hash Functions 78

Rewriting this, we can conclude that for all adversaries A that can find collisions

in CH2OWT , we can produce adversaries B that can factorise semiprimes such that:

CRadv [A, CH2OWT] ≤ 16FACTadv [B]

By the factoring assumption, it is hard to factorise semiprimes and therefore, all

adversaries that find collisions in CH2OWT can succeed only with negligible probability.

�

4.2.2 Preimage Chameleon Hash based on SIS Assumption

It is possible to define preimage chameleon hash functions using the SIS as-

sumption (from Section 2.2.3). One advantage is that using these assumptions, we

can guarantee the security of the chameleon hash against quantum adversaries, as no

quantum or classical algorithm is known to break that assumption.

Before defining the chameleon hash, we will need some additional building

blocks presented in (MICCIANCIO; PEIKERT, 2012) that we enumerate and define

below.

4.2.2.1 Generating a Random Matrix with Trapdoor: TRAPGEN

We will define here a possible construction for an algorithm that we will denote

by TRAPGEN. This algorithm takes as input parameters (m, n, q,D), and outputs a pair

of matrices (A, T) such that A ∈ Z
n×m
q is indistinguishable from a random and uniform

matrix and T will be a trapdoor that we will use in the next algorithm that was randomly

chosen using distribution D. We will need in the construction a constant matrix G. The

algorithm works as below:

• TRAPGEN(m, n, q,D):

1. A
$←− Z

n×(m–n lg q)
q

2. T
D←− Z

(m–n lg q)×(n lg q)
q

3. A← [A|G – AT]

4. return (A, T)

Notice that in the above algorithm , matrix G is a n × (n lg q) matrix and the

generated matrix A is n ×m as required..

It is believed that the matrix A as computed above is indistinguishable from a

random matrix for appropriate input parameters. The first m′ columns indeed were

chosen uniformly at random. The remaining columns can be considered as the output

of a possible pseudo-random function PRF defined below:

PRFTRAPGEN(T, A) = G – AT

Chapter 4. Preimage Chameleon Hash Functions 79

In fact, this PRF can be a weak PRF : it should be indistinguishable from a

random function provided that its input are always random and uniform, not necessarily

for any chosen input.

4.2.2.2 Finding Short Integer Solutions: SAMPLEPRE

Now we are interested in solving the Short Integer Solution Problem for matrices

A returned by the TRAPGEN algorithm. Given the matrix and the trapdoor, we want to

find short vectors x such that Ax = 0 (mod q). More than this, we want to be able to

find short vectors xi such that for any arbitrary yi ∈ Zn
q we have Axi = yi (mod q).

We will define a possible implementation for an algorithm SAMPLEPRE that given

(m, n, q, A, T, y) produce a x such that Ax = y (mod q) and x has a short euclidean

norm.

First notice that for any A =
[

A G – AT
]

returned by TRAPGEN algorithm, we

have that:
[

A G – AT
]

[

T

I

]

= AT + G – AT = G

We defined the matrix G as any arbitrary non-random constant. We can assume

that we can choose a suitable matrix G such that for this matrix it is easy to find short

vectors x such that Gx is any desired result.

Using these properties, we can provide a possible implementation for SAMPLEPRE:

• SAMPLEPRE(m, n, q, A, T, y):

1. p
D←− Zm

q

2. v← y – Ap mod q

3. Find a small z such that Gz = v mod q

4. x← p +

[

T

I

]

z

5. If ||x|| is not small enough, return to step 1

6. return x

In this algorithm, in line 1 we choose a small perturbation randomly using some

Gaussian distribution that return small values with higher probability. The size of the

obtained x depends on how short is the perturbation, the vector z produced in line 3

and also depends on the quality of the trapdoor T produced by TRAPGEN.

To prove that the algorithm works, notice that multiplying A by a vector returned

by SAMPLEPRE(m, n, q, A, T, y) we really obtain y:

Chapter 4. Preimage Chameleon Hash Functions 80

Ax mod q = A(p +

[

T

I

]

z)

= Ap + A

[

T

I

]

z

= Ap + Gz

= Ap + v

= Ap + y – Ap

= y

When we use SAMPLEPRE in a construction, usually we have a maximum value

for the euclidean norm of vectors returned by SAMPLEPRE. We will make these max-

imum norms explicit as subscripts when we invoke this algorithm. For example, if we

write x
$←− SAMPLEPREβ/2(m, n, q, A, T, y), this means that we are using some imple-

mentation that will always return values with norm smaller than β/2.

Finally, we need to show how we could choose a matrix G such that for any y

we can easily find short vectors x that Gx = y (mod q). By the previous algorithms, G

must be a n × n lg q matrix.

Assume that q is a power of 2. And for example, we have q = 32 and n = 3. In

this case, we could build the following matrix:

G =

1 2 4 8 16 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 2 4 8 16 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 2 4 8 16

Notice that given any y, we can find a suitable binary vector x such that Gx = y let-

ting x be a binary representation for each element in y. For example, if y =
[

2 5 10
]T

,

then we have:

G
[

0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
]T

=

2

5

10

4.2.2.3 Sampling Short Random Vectors: SAMPLEDOM

In our next constructions we will need to sample short vectors x such that the re-

sult Ax is indistinguishable from a random and uniform vector y ∈ Zn
q. For this property,

we cannot choose x uniformly at random from the set of sufficiently short vectors.

To get suitable vectors x with such property, we will assume that we have two

possible methods. First algorithm SAMPLEPRE(m, n, q, A, T, y) return a possible x with

such property if we first choose y uniformly at random. The problem with this method is

that it requires the trapdoor T.

Chapter 4. Preimage Chameleon Hash Functions 81

For the second method, we will assume that we have an algorithm invoked as

x
$←− SAMPLEDOM(m, n, q, A) that return a suitable short vector with such property.

In practice this algorithm is implemented sampling a short vector using a discrete

Gaussian distribution.

We also assume that SAMPLEDOM produce as output vectors x ∈ Zm
q with

a probability distribution indistinguishable from what would be obtained choosing a

random and uniform y ∈ Zm
q and computing SAMPLEPRE(m, n, q, A, T, y).

Like the SAMPLEPRE algorithm, if we are invoking a specific implementation of

SAMPLEPRE where we expect results with norm smaller than some value, we make

this explicit with a subscript. For example, in SAMPLEDOMβ(m, n, q, A) we are referring

to a implementation that always return vectors with norm smaller than β.

4.2.2.4 The Chameleon Hash Construction

Using the previous algorithms TRAPGEN, SAMPLEPRE and SAMPLEDOM, we

can build a chameleon hash denoted by CHSIS over sets (M, R, D).

Here M = {0, 1}k is a binary vector for some constant k , R is the set of vec-

tors from Zm′+n lg q with euclidean norm smaller than 1/2
√

β2 – k and D = Zn
q. The

chameleon hash algorithms are:

• CHSIS.KEYGEN(λ):

1. (m, n, q,β)← SISPARAMS(λ)

2. A1
$←− Z

n×k
q

3. (A2, T) $←− TRAPGEN(m – k , n, q,D)

4. ek ← (m, n, q,β, A1, A2)

5. tk ← (m, n, q,β, A1, A2, T)

6. return (ek , tk)

• CHSIS.HASH(ek , m, r):

1. (m, n, q,β, A1, A2)← ek

2. return A1m + A2r mod q

• CHSIS.PREIMAGE(tk , d, m):

1. (m, n, q,β, A1, A2, T)← tk

2. return SAMPLEPRE1/2
√
β2–k

(m – k , n, q, A2, T, d – A1m)

This construction works because if r = CHSIS.PREIMAGE(ek , m, d), then:

Chapter 4. Preimage Chameleon Hash Functions 82

CHSIS.HASH(ek , m, r) = A1m + A2r mod q

= A1m + (d – A1m) mod q

= d

However, to ensure the strong uniformity property, we cannot simply choose

a short vector r from a uniform distribution. We should always use the algorithm

SAMPLEDOM1/2
√
β2–k

(m, n, q, A).

Theorem 16 If the chameleon hash CHSIS always has the randomness r chosen using

SAMPLEDOM1/2
√
β2–k

(m, n, q, A), then it has the strong uniformity property and the

preimage uniformity.

Proof: When computing the CHSIS.HASH algorithm, if the randomness was

chosen by algorithm SAMPLEDOM, by definition, A2r is a random and uniform vector

in Zn. Therefore, when we sum Am with this value, the resulting digest remains as a

random and uniform value in Zn.

For the preimage uniformity, this is a consequence of how we specified algorithm

SAMPLEDOM: It generate values using exactly the same probability distribution than

computing SAMPLEPRE with a random and unioform y. Therefore, in the definition

of CHSIS.PREIMAGE algorithm, in line 2, id d is a random and uniform value, then

d – A1m is also random and uniform. Therefore, given a random and uniform digest,

CHSIS.PREIMAGE would compute using SAMPLEPRE a randomness with the same

distribution than SAMPLEDOM.

�

The collision-resistance of this construction can be proven using the SIS as-

sumption.

Theorem 17 The above chameleon hash CHSIS is collision-resistant if the SIS as-

sumption is true and if the algorithm TRAPGEN generates a matrix indistinguishable

from a random matrix.

Proof: First we will assume that our adversary that finds collisions for the

chameleon hash CHSIS cannot distinguish between A2 and a random and uniform

matrix. We will denote by A1 any adversary with such characteristics.

Using an adversary A1, we will build an adversary B that uses A1 to solve the

SIS assumption. Adversary B acts in the following way:

• Initialization: Adversary B1 takes as input from its challenger a tuple (m, n, q,β, A).

It separates matrix A in two matrices (A1, A2). The first k columns became matrix

Chapter 4. Preimage Chameleon Hash Functions 83

A1 and the remaining columns became matrix A2.Finally, it initializes adversary

A∞ with the key ek = (m, n, q,β, A1, A2).

• Finalization: After adversary A1 outputs a possible collision (m’, r’) and (m”, r”),

adversary B sends (m’||r’) – (m”||r”) as a solution for the SIS attack game.

The idea is that if A1m’ + A2r’ = A1m” + A2r” in modulo q, this means that

(A1||A2)(m’||r’) = (A1||A2)(m”||r”). And therefore: A(m’||r’) = A(m”||r”). This means

that:

A(m’||r’) – A(m”||r”) = 0 (mod q)

And therefore, (m’||r’) – (m”||r”) is a possible solution for the SIS problem. We

still need to show that the euclidean norm of this resulting vector is indeed less than β

as required by the SIS attack game.

Notice that ||m’ – m”|| ≤
√

k because they are binary vectors with k bits. In the

worst case, m’ is a vector composed only by 1 and m” is a vector composed only by 0,

resulting in the euclidean norm
√

k .

We know that both ||r’|| and ||r”|| have a euclidean norm smaller than 1/2
√

β2 – k .

By triangle inequality, we can conclude that ||r1 – r2|| ≤
√

β2 – k . Therefore, the norm

of the vector returned by B1 is given by:
√

||m’ – m”||2 + ||r’ – r”||2 ≤
√

k + β2 – k ≤ β

This means that adversary B always succeeds if adversary A1 succeeds. How-

ever, this proof is only for adversaries that try to find collisions for CHSIS without trying

to explore any possible difference between matrix A2 and a random and uniform matrix.

A more general adversary A could also try to find a weakness in PRFTRAPGEN defined

in Subsection 4.2.2.1 and explore some pattern not present in a random and uniform

matrix. The probability of finding such difference between A2 and a random and uniform

matrix is given by WPRFadv [B′, PRFTRAPGEN] for some adversary B′.
Therefore, to model the upper bound for the probability of success for the above

adversary B that solves the SIS assumption, we need to discard the probability that A
finds a collision exploring a weakness in PRFTRAPGEN, as such weakness will not be

found in matrices sent by B:

SISadv [B] ≥ CRadv [A, CHSIS] – WPRFadv [B′, PRFTRAPGEN]

Therefore, for all efficient adversaries A that find collisions in CHSIS, we can

build efficient adversaries B and B′ such that:

CRadv [A, CHSIS] ≤ SISadv [B] + PRFadv [B′, PRFTRAPGEN]

By our assumption, the Short Integer Solution (SIS) assumption is hard, therefore

SISadv [B] is negligible. And also we assume that the algorithm TRAPGEN generates

Chapter 4. Preimage Chameleon Hash Functions 84

a matrix computationally indistinguishable from a random and uniform matrix, which

means that WPRFadv [B′, PRFTRAPGEN] is also negligible. Therefore, no adversary can

find collisions in CHSIS, except with negligible probability. �

4.2.3 A Second Chameleon Hash Based on SIS Assumption

This construction was first proposed at (GORBUNOV et al., 2015). The author

presented the construction not as a chameleon hash, but as a new proposed primitive

called “homomorphic trapdoor functions” (HTDF). However, that construction fits in our

definition of chameleon hash.

To build this scheme, we will generalize a little the previously defined algorithms

SAMPLEPRE and SAMPLEDOM producing a matrix version of these algorithms. To dif-

ferentiate between the versions, we will call the matrix versions MATRIXSAMPLEPRE

and MATRIXSAMPLEDOM.

Instead of finding a short vector x such that Ax = y, algorithm MATRIXSAMPLEPRE

finds a matrix X such that AX = Y. And algorithm MATRIXSAMPLEDOM returns a matrix

X such that AX will have a random and uniform distribution. Here X, Y ∈ Z
m×m
q . The new

algorithms can easily be implemented iterating m times original versions SAMPLEPRE

and SAMPLEDOM.

Finally, we will not use the euclidean norm to measure the size of our vectors

and matrices. Our norm will be equal the greatest value in a vector or matrix. This will

allow us to define more easily the norm of matrices. Recall that we denote this norm by

||M||∞.

Using these matrix version of the algorithms, we will denote the new chameleon

hash construction by CHHTDF . The chameleon hash is defined over (M, R, D) where

M = Zq, R is the set of square matrices from Z
m×m
q whose columns are vectors with

norm smaller than (
√

8mβ + 1 – 1)/4m and D = Z
n×m
q . We will also use a matrix G such

that it is easy to find short vectors x such that Gx is any desired result.

The algorithms of this construction are defined as below:

1. CHHTDF .KEYGEN(λ):

a) (m, n, q,β) $←− SISParams(λ)

b) (A, T) $←− TRAPGEN(m, n, q,β,D)

c) ek ← (m, n, q,β, A)

d) tk ← (m, n, q,β, A, T)

e) return (ek , tk)

2. CHHTDF .HASH(ek , x , R):

a) (m, n, q,β, A)← ek

Chapter 4. Preimage Chameleon Hash Functions 85

b) return xG + AR mod q

3. CHHTDF .PREIMAGE(tk , x , D):

a) (m, n, q,β, A, T)← tk

b) return MATRIXSAMPLEPRE(
√

8mβ+1–1)/4m(m, n, q, A, T, D – xG)

This construction works because if R
$←− CHHTDF .PREIMAGE(tk , x , D), then:

CHHTDF .HASH(ek , x , R) = xG + AR

= xG + D – xG

= D

Like in the previous construction, we guarantee the strong uniformity property

and the preimage uniformity only if the randomness used to compute hash functions

is chosen by algorithm MATRIXSAMPLEDOM. The proof for the uniformity property is

analogous to the proof for CHSIS.

The proof for the collision-resistance is given below.

Theorem 18 If the SIS assumption is true and if the matrix A returned by TRAPGEN is

indistinguishable from a random matrix, then the chameleon hash CHHTDF is collision-

resistant.

Proof: If we have an algorithm A that outputs a collision for CHHTDF in the

collision-resistance attack game, it is possible to use it to build an adversary B that wins

the SIS attack game.

If A return a real collision (x ′, R’) and (x ′′, R”), then:

x ′G + AR’ = x ′′G + AR” mod q

(x ′ – x ′′)G = A(R’ – R”) mod q

If m′ = m′, then A(R’ – R”) mod q = 0. Then we can find a solution for the SIS

attack game picking any column from matrix (R’ – R”).

If m′ 6= m′′, we can pick some vector r ∈ Zm
q with norm smaller than β/(3m + 1)

and another vector r’ ∈ Zm
q such that Gr’ = Ar mod q. Now we can use the previous

inequation, multiplying both sides by r and subtracting both sides by Ar’ to obtain:

Chapter 4. Preimage Chameleon Hash Functions 86

(x ′ – x ′′)G = A(R’ – R”) mod q

(x ′ – x ′′)Gr’ = A(R’ – R”)r’ mod q

(x ′ – x ′′)Ar = A(R’ – R”)r’ mod q

Ar = (x ′ – x ′′)–1A(R’ – R”)r’ mod q

0 = (x ′ – x ′′)–1A(R’ – R”)r’ – Ar mod q

0 = (x ′ – x ′′)–1A((R’ – R”)r’ – r) mod q

Which means that a solution for the SIS attack game can be obtaining computing

(R’ – R”)r’ – r.

About the norm of the returned value, we know that ||R’||∞ < (
√

8mβ + 1 – 1)/4m

and ||R”||∞ < (
√

8mβ + 1 – 1)/4m. Therefore, ||R’ – R”|| < (
√

8mβ + 1 – 1)/2m. To find

the upper bound for the norm ||(R’ – R”)r’||∞, recall that in the worst case a matrix and

the vector has all its elements equal its norm. So for any matrix M and vector x we have

the upper bound ||Mx||∞ ≤ m||M||∞||x||∞ where m is the number of elements in x. This

means that:

||(R’ – R”)r’||∞ ≤ m||(R’ – R”)||∞||r’||∞ =
8mβ + 2 – 2

√
8mβ + 1

8m

Finally, if we subtract r’, which also has norm smaller than (
√

8mβ + 1 – 1)/4m

we can compute the norm of the solution as:

||(R’ – R”)r’ – r||∞ ≤
8mβ + 2 – 2

√
8mβ + 1

8m
+
√

8mβ + 1 – 1
4m

= β

However, there is a small probability that (R’ – R”)r’ – r = 0, and in this case,

we fail to produce a solution for the SIS attack game. This probability was shown in

(GORBUNOV et al., 2015) to be O(2– log λ). In this unlikely scenario, we could keep

generating new values for r and compute corresponding r’ until finding a suitable solu-

tion. We will represent the negligible probability of not finding a solution given a valid

collision after a polynomially bounded number of tries by the negligible value ε.

Therefore, if we have an adversary A that finds collisions in this chameleon hash,

we can build an adversary B that solves the SIS∞ assumption such that:

SIS∞adv [B] ≥ CRadv [A, CHHTDF] – ε

Therefore, for all adversaries A, we can build adversaries B such that:

CRadv [A, CHHTDF] ≤ SIS∞adv [B] + ε

By the SIS assumption using the higher element as norm, the value of SIS∞adv [B]

is negligible and ε is also negligible. Therefore, the probability of any adversary finding

a collision in CHHTDF is also negligible. �

Chapter 4. Preimage Chameleon Hash Functions 87

4.2.4 Other Constructions

In (ATENIESE; MEDEIROS, 2004), a preimage chameleon hash construction

based on discrete logarithm was proposed. That construction had a security proof that

the chameleon hash remained secure even if sample collisions are leaked to attackers.

Even after observing a polynomial number of collisions, adversaries could not find new

collisions, except with negligible probability. The security proof was in the generic group

model, a non-standard model like the random oracle model. However, the proof is not

valid against adversaries with access to quantum algorithms.

In (SCHMIDT-SAMOA; TAKAGI, 2005), an alternative construction of chameleon

hash functions based on the difficulty of factoring p2q was also proposed. The alterna-

tive was presented as better suited for using on on-line/off-line signatures.

4.3 APPLICATIONS

Most proposed applications for chameleon hash functions do not need the

stronger property of computing preimages. This explains why despite a lot of existing

chameleon hash functions having this property, usually they are presented as regular

chameleon hash functions.

The exception is the application described below of how to use preimage chameleon

hashes to increase the security of an existing signature scheme, even more than what

is possible with regular chameleon hashes, There are also some applications for preim-

age chameleon hash functions in the building of signature schemes. We let these

applications to the next chapter where they can be presented in more detail.

4.3.1 Transforming RMA-Secure Signatures in CMA-Secure Signatures

In Subsection 3.4.3 we presented how using a chameleon hash one could trans-

form signatures secure against generic chosen message attacks in signatures secure

against adaptive chosen message attacks. However, using preimage chameleon hash

functions an even greater increase in security can be achieved. Using the same trans-

formation we can transform a signature secure against random message attacks in a

signature secure against adaptive chosen message attacks. The technique described

below was first presented at (SHAMIR; TAUMAN, 2001).

Let SIG be a signature scheme defined over (D, S) secure against random mes-

sage attacks (as described in Section 2.3.5). Let CH be a collision-resistant preimage

chameleon hash defined over (M, R, D) with strong uniformity property. Let’s define a

new signature scheme denoted by SIG ◦CH exactly as we defined in Subsection 3.4.3,

but using a preimage chameleon hash instead of a regular chameleon hash.

Theorem 19 If SIG is a signature scheme secure against random message attacks and

Chapter 4. Preimage Chameleon Hash Functions 88

CH is a collision-resistant chameleon hash with preimage uniformity, then the signature

scheme (SIG ◦ CH) defined above is secure against adaptive chosen message attack.

Proof: We will show how using an adversary A, which can forge a signature for

(SIG ◦ CH) in the adaptive chosen message attack game, we could build an adversary

B that forges a signature against SIG in the random message attack game.

Our forger B is composed of the following parts:

• Initialization: Here B is initialized with the security parameter λ and takes as

input from its challenger the public key pk for SIG. It proceeds to run:

(ek , tk) $←− CH.KeyGen(λ)

. Then it gets from its challenger a polynomial number of tuples of messages and

its signatures, where the messages were chosen uniformly at random: ((dgt1, sig1),

. . ., (dgtq, sigq)).

The adversary B can then produce a valid public key pk ′ = (ek , pk) for (SIG ◦CH).

It initializes A with the security parameter λ and sends pk ′ to A.

• Queries: The adversary A will send a polynomial number of queries. In each of

them, it will send a message msgi . The adversary B produces a response com-

puting rndi ← CH.PREIMAGE(tk , msgi , dgti) and sending the signature (sigi , rndi)

to A. Notice that here the preimage uniformity is required, or B would not simu-

late correctly a legitimate signer, as the produced rndi would have a probability

distribution different than expected.

• Finalization: After all the queries, the adversaryA produces an attempted forgery

(msg′, (sig′, rnd ′)). First the adversary B checks if the forgery was successful. If

not, it halts. If yes, it produces a forgery for SIG sending (CH.HASH(ek , msg′, rnd ′), sig′)
to its challenger.

The above adversary B fails if A fails or if the digest CH.HASH(ek , msg′, rnd ′)
was present in the queries sent by the challenger. If this happens, then it means that A
found a forgery in (SIG ◦ CH) computing a collision in CH.

Therefore, the upper bound for the probability of B winning the attack game

is given by the probability of A finding a forgery minus the probability of this forgery

revealing a collision in CH, which can be modeled as CRadv [B′, CH] for some B′:

RMAadv [B, SIG] ≥ CMAadv [A, (SIG ◦ CH)] – CRadv [B′, CH]

Rewriting this inequation, we can conclude that for all adversaries A that can

create forgeries for (SIG◦CH) using an adaptive chosen message attack, we can define

adversaries B and B′ such that:

CMAadv [A, (SIG ◦ CH)] ≤ RMAadv [B, SIG] + CRadv [B′, CH]

Chapter 4. Preimage Chameleon Hash Functions 89

By our assumptions, SIG is secure against random message attacks and CH

is collision-resistant. Therefore, no adversary can create forgeries in (SIG ◦ CH) using

adaptive chosen message attacks, except with negligible probability. �

90

5 SIGNATURES AND CHAMELEON HASH FUNCTIONS

Relationship between chameleon hash functions and signature schemes were

observed by some authors. The oldest article found that noticed this relationship was

(ZHANG, R., 2007), where the author notes that computing a collision in the chameleon

hash could be used as a way to define one-time signatures and that the main difficulty

were proving that an adversary would not be able to forge new signatures computing

new collisions after having access to a sample collision. Despite making this observa-

tion, that article do not develop the concept and suggested this as an open problem.

This chapter deals with other more recent articles that attacked this problem

proposed secure schemes of how to use chameleon hash functions to directly build

digital signature schemes. In the end we propose a new chameleon hash variant and a

novel signature scheme with an interesting property using it.

This chapter is organized as follows:

• Section 5.1 presents the simplest one-time weak signature scheme based in a

chameleon hash scheme.

• Section 5.2 presents another one-time signature, but secure in a stronger security

model.

• Section 5.3 presents a signature scheme secure against adaptive chosen mes-

sage attacks assuming that the adversary is classical.

• Section 5.4 presents a universal designated verifier signature. An alternative

signature scheme that tries to preserve the signer privacy permitting only a desig-

nated person to verify a signed message, similarly to chameleon signatures.

• Section 5.5 presents an homomorphic signature scheme.

• Section 5.6 presents our novel signature scheme, secure against adaptive chosen

message attacks in classical and post-quantum model assuming that the Ring-SIS

assumption is true.

5.1 ONE-TIME SIGNATURE SECURE AGAINST WEAK CHOSEN-MESSAGE AT-

TACK

This signature scheme was first presented at (MOHASSEL, 2010). The idea is

that if we have a chameleon hash CH defined over (M, R, D), then we can produce a sig-

nature for some message msg ∈ M providing a rnd ∈ R such that CH.HASH(ek , msg, rnd)

is equal to some constant value predefined.

This could be achieved with the following algorithms that define a signature

scheme denoted by SIG1 defined over (M, R):

Chapter 5. Signatures and Chameleon Hash Functions 91

• SIG1.KEYGEN(λ):

1. (ek , tk) $←− CH.KEYGEN(λ)

2. msg′ $←− M

3. rnd ′ $←− R

4. dgt ← CH.HASH(ek , msg, rnd)

5. pk ← (ek , dgt)

6. sk ← (tk , msg′, rnd ′)

7. return (pk , sk)

• SIG1.SIGN(sk , msg):

1. (tk , msg, rnd)← sk

2. rnd ′ $←− CH.COLLISION(tk , msg′, rnd ′, msg)

3. sig ← rnd ′

4. return sig

• SIG1.VERIFY(pk , msg, sig):

1. (ek , dgt)← pk

2. if CH.HASH(ek , msg, sig) = dgt :

a) return accept

3. else:

a) return reject

This is a very simple signature scheme, but there are some problems with it.

Each new signature after the first could reveal a collision in the chameleon hash. When

this happens, we cannot guarantee that some adversary cannot use this information to

produce new collisions and forgeries. Because of this, the signature scheme SIG1 can

be used only as a one-time signature, at least for generic constructions that use CH as

a black box.

Even as a one-time signature, we can prove its security only in the weaker

security model where the adversary must make its signing query before knowing the

public key. This is what we called a signature with a weak security in Subsection 2.3.5.1.

Theorem 20 If the chameleon hash scheme CH defined over (M, R, D) is collision-

resistant and has the uniformity property, then the signature SIG1 is a one-time signa-

ture secure against weak chosen message attacks.

Chapter 5. Signatures and Chameleon Hash Functions 92

Proof: We will show how to create an efficient adversary B that finds a collision

in CH if we have an efficient adversary A that forges a signature in SIG1 using the

Attack Game 12 in the weak variant.

Our adversary B acts in the following way:

• Initialization: Adversary B is initialized by the security parameter λ and gets the

chameleon hash evaluation key ek from its challenger. Next, it initializes adversary

A with the same security parameter λ. In this weaker security model, adversary

B does not need to pass the signature public key yet.

• Query: Adversary A makes its single query sending the message msg1. Now

adversary B must send as response the signature public key and the signature

for message msg1.

It chooses as signature for msg1 some rnd1 ∈ R chosen uniformly at random.

Next, it computes a suitable public key for the signature computing dgt1 ←
CH.HASH(ek , msg1, rnd1). It sends to A the public key pk = (ek , dgt1) and the

signature rnd1.

Notice that if the chameleon hash CH has the uniformity property, even if msg1

was not chosen uniformly at random, this do not change the probability distribution

of dgt1 from what is expected in a legitimate key generation.

• Finalization: After receiving the response for the query and the public key, ad-

versary A produces a forgery (msg′, rnd ′). If this is a correct forgery, this means

that CH.HASH(ek , msg′, rnd ′) = dgt1 and (msg′, rnd ′) 6= (msg1, rnd1). Adversary

B can output (msg1, rnd1) and (msg′, rnd ′) as a collision in CH.

The adversary B always succeeds if the adversary A succeeds at finding a

forgery. Therefore, for all adversaries A, we can build efficient adversary B such that:

GCMAadv1-Weak [A, SIG1] ≤ CRadv [B, CH]

Therefore, if the chameleon hash is collision-resistant, the right side of this in-

equation is always a negligible value. Therefore, all adversaries that forge signatures

for SIG1 also can succeed only with negligible probability. �

5.2 ONE-TIME SIGNATURE FULLY SECURE AGAINST CHOSEN MESSAGE AT-

TACKS

Combining more than one application of chameleon hash we can build one-time

signatures secure in a more rigorous security definition. The construction in this section,

like SIG1, is presented at (MOHASSEL, 2010).

Chapter 5. Signatures and Chameleon Hash Functions 93

We will use a collision-resistant chameleon hash CH defined over sets (M, R, D)

and a collision resistant function HASH : D → M ′ with M ′ ⊂ M. We will define an

one-time signature denoted by SIGOT defined over sets (M, R×R). Assume that x ∈ M

is a known and public constant. The signature scheme algorithms are:

• SIGOT .KEYGEN(λ):

1. (ek0, tk0) $←− CH.KEYGEN(λ)

2. (ek1, tk1) $←− CH.KEYGEN(λ)]

3. rnd0
$←− R

4. rnd1
$←− R

5. dgtk ← CH.HASH(ek0, 0, rnd0)

6. msgk ← HASH(CH.HASH(ek1, 0, rnd1))

7. pk ← (ek0, ek1, dgtk)

8. sk ← (tk0, tk1, rnd0, rnd1, msgk)

9. return (pk , sk)

• SIGOT .SIGN(sk , msg):

1. (tk0, tk1, rnd0, rnd1, msgk)← sk

2. rnd ′0
$←− CH.COLLISION(tk0, x , rnd0, msgk)

3. rnd ′1
$←− CH.COLLISION(tk1, x , rnd1, msg)

4. sig ← (rnd ′0, rnd ′1)

5. return sig

• SIGOT .VERIFY(pk , msg, sig):

1. (ek0, ek1, dgtk)← pk

2. (rnd ′0, rnd ′1)← sig

3. msg′ ← HASH(CH.HASH(ek1, msg, rnd ′1))

4. dgt ′ ← CH.HASH(ek0, msg′, rnd ′0)

5. if dgt ′ = dgtk :

6. return accept

7. else:

8. return reject

Chapter 5. Signatures and Chameleon Hash Functions 94

This signature scheme works because if the signature was created by SIGOT .SIGN,

then in the verification algorithm above, at line 3, the result of CH.HASH(ek1, msg, rnd ′1)

will be equal CH.HASH(ek1, x , rnd1) (because rnd ′1 was produced using CH.COLLISION).

Therefore, the msg′ obtained at that line will be equal msgk . And in line 4 of the

verification algorithm, using rnd ′0, the result of the chameleon hash will be equal

CH.HASH(ek0, x , rnd0) = dgtk .

Theorem 21 If the chameleon hash CH and the function HASH are collision-resistant,

then the one-time signature SIGOT defined above is secure against chosen message

attacks.

Proof: We will assume that exist an efficient adversary A that forges signatures

in SIGOT and show hot to use A to build a new adversary B that finds collisions in CH.

Recall that adversary A will make a single signing query, as SIGOT is one-

time signature. We will call msg1 the message sent in the signing query and will call

(rnd01, rnd11) the response sent by B. Assume that after this, adversary A sends the

forgery (msg′, (rnd ′0, rnd ′1)).

Any adversary A will act using one of the following two mutually exclusive strate-

gies:

• It will produce a forgery such that (msg′, rnd ′1) 6= (msg1, rnd11) and, at the same

time, CH.HASH(ek1, msg1, rnd11) = CH.HASH(ek1, msg′, rnd ′1). We will denote by

A1 any adversary that use this strategy.

• It will produce a forgery such that (msg′, rnd ′1) = (msg1, rnd11), or such that

CH.HASH(ek1, msg1, rnd11) 6= CH.HASH(ek1, msg′, rnd ′1). We will denote by A2

any adversary that use this strategy.

First we will produce an adversary B1 that finds collisions using some A1. Next,

we will produce an adversary B2 that finds collisions in CH using adversary A2. In the

end we assume the general case in which we do not know what strategy the adversary

will use.

Our adversary B1 acts as below:

• Initialization: Adversary B1 is initialized with the security parameter λ and with

a public key ek sent by its challenger. This key will be used as ek1 in the sig-

nature scheme. Now it gets (ek0, tk0) $←− CH.KEYGEN(λ) and produces dgtk =

CH.HASH(ek0, x , rnd0) for some rnd0 chosen uniformly at random. It initializes

adversary A1 sending pk = (ek0, ek1, dgtk).

• Signing Query: When A1 sends the first query msg1, B1 computes the sig-

nature choosing some rnd11 uniformly at random and computing the correct

Chapter 5. Signatures and Chameleon Hash Functions 95

matching rnd01 as the result of CH.COLLISION(tk0, x , rnd0, msgk) for msgk =

HASH(CH.HASH(ek1, msg1, rnd11)). Adversary B1 sends (rnd01, rnd11) as re-

sponse to A1.

• Finalization: Adversary A1 produces a forgery (msg′, (rnd ′0, rnd ′1)) such that

(msg′, rnd ′1) 6= (msg1, rnd11) and at the same time CH.HASH(ek1, msg1, rnd11) =

CH.HASH(ek1, msg′, rnd ′1). Therefore, we have a collision in the chameleon hash

using the key ek1 = ek . Adversary B1 outputs collision ((msg1, rnd11), (msg′, rnd ′1))

and exits.

In this case, adversary B1 always succeeds when adversary B1 succeeds. We

have:

CRadv [B1, CH] ≥ CMAadv1[A1, SIGOT]

Now we define how our adversary B2 works:

• Initialization: Adversary B2 is initialized with the security parameter λ and with

a public key ek . This key will be used as ek0 in the signature scheme. After this

it computes (ek1, tk1) $←− CH.KEYGEN(λ), msgk = hash(CH.HASH(ek1, x , rnd1))

and dgtk = CH.HASH(ek0, x , rnd0) for some (rnd0, rnd1) chosen uniformly at ran-

dom. Adversary A2 is initialized with pk = (ek0, ek1, dgtk).

• Signing Query: When A2 sends the query msg1, B2 computes the signature

choosing some rnd01 uniformly at random and computing the correct match-

ing rnd11 as the result of CH.COLLISION(tk1, 0, rnd1, msg). Adversary B2 sends

(rnd01, rnd11) as response to A2.

• Finalization: Adversary A2 produces a forgery (msg′, (rnd ′0, rnd ′1)) such that ei-

ther (msg′, rnd ′1) = (msg1, rnd11) or otherwise, CH.HASH(ek1, msg1, rnd11) 6=
CH.HASH(ek1, msg′, rnd ′1). In either case, we found with high probability a colli-

sion in the chameleon hash in the key ek0 = ek that result in the same digest

dgtk .

The first value is obtained using the values sent in the query. We know that:

CH.HASH(ek0, HASH(CH.HASH(ek1, msg1, rnd11)), rnd01) = dgtk

The second value is obtained using the forgery:

CH.HASH(ek0, HASH(CH.HASH(ek1, msg′, rnd ′1)), rnd ′0) = dgtk

This yields a collision in the chameleon hash with high probability. If A wins the

attack game and (msg′, rnd ′1) = (msg1, rnd11), this always produces a collision,

Chapter 5. Signatures and Chameleon Hash Functions 96

as this means that rnd ′0 6= rnd01. Otherwise, if CH.HASH(ek1, msg1, rnd11) 6=
CH.HASH(ek1, msg′, rnd ′1), then this almost always produces a collision, except

in the case where rnd ′0 = rnd01 and the function HASH outputs the same value in

the two equations above. However, if HASH is collision-resistant, this is unlikely.

The worst case for adversary B2 is precisely when rnd ′0 = rnd01 because there is

a possibility thatA2 succeeds without returning useful information to produce a collision

because it produced a collision in HASH. Therefore, the probability of B2 succeed is

given by the probability of A2 succeed minus the probability of finding a collision in

HASH during the interaction:

CRadv [B2, CH] ≥ CMAadv1[A1, SIGOT] – CRadv [B′, HASH]

Finally, let’s build an adversary B that finds a collision in CH without knowing

if adversary A will behave like adversary A1 or like adversary A2. Adversary B can

simply toss a coin to decide if it will behave like B1 or B2. The probability of guessing

correctly is 1/2. Therefore, the probability of adversary B producing a collision is given

by:

CRadv [B, CH] ≥ 1
2

(CMAadv1[A1, SIGOT] – CRadv [B′, HASH])

Therefore, for all adversaries A, we can build adversaries B and B′ such that:

CMAadv1[A1, SIGOT] ≤ 2 · CRadv [B, CH] + CRadv [B′, HASH]

By our assumption, CH and HASH are collision-resistant. Therefore, the prob-

ability of creating a forgery against this one-time signature is always bounded by a

negligible value. �

5.3 SIGNATURE SCHEME SECURE AGAINST CLASSICAL ADVERSARIES

This section will present a new signature scheme strongly based on the ring

signatures presented in (LU et al., 2019c). That paper presented two ring signatures, a

concept described for the first time at (RIVEST et al., 2001).

In a ring signature, any person can sign a message on behalf of a group in which

she belongs. In the verification process, the verifier can check that the signature was

created by someone in that group, but it is not possible to guess who signed with a

probability greater than 1/n where n is the number of people in the group. Contrary

to the concept of “group signatures”, in a ring signature it is not necessary to have a

central authority to create groups, any person can create a new group only knowing the

public keys of other participants.

However, the article (LU et al., 2019c) as published, presented no security proofs.

An extended version was after published online and a proof for one of the ring signa-

tures was presented. Some issues with the proof were then found and presented at

Chapter 5. Signatures and Chameleon Hash Functions 97

(WANG, Xueli et al., 2019). In this later paper, the author pointed the issues and pro-

posed to solve them with another construction without using chameleon hash functions.

Therefore, the construction presented at (LU et al., 2019c) remain as unproved to the

best of our knowledge.

In this section we build a new scheme modifying the construction from (LU et al.,

2019c) in a way that we can prove the security of the construction using the weakest

assumptions that we could find. The result is a regular signature scheme (not a ring

signature) that can be proven secure against classical attackers, but not against post-

quantum attackers. Despite this being the best proof that we found, this does not discard

the possibility that a better proof with less restricted conditions can be found. Or that

the original ring signature scheme can be proven secure using other techniques.

First we will define the signature scheme SIGΣ with the help of a chameleon

hash CH defined over (M, R, D) and with a hash function HASH : (M ′×{0, 1}k×D)→ M.

Here the set {0, 1}k represents the set of possible public keys and the number k is the

key length. Notice that the digest space of the function HASH is equal to the message

space of the chameleon hash. The signature will be defined over sets (M ′, M ×R). The

signature algorithms are:

• SIGΣ.KEYGEN(λ):

1. (ek , tk) $←− CH.KEYGEN(λ)

2. pk ← ek

3. sk ← tk

4. return (pk , sk)

• SIGΣ.SIGN(sk , msg):

1. (ek , tk)← sk

2. d
$←− D

3. m← HASH(msg, ek , d)

4. r
$←− CH.PREIMAGE(tk , m, d)

5. return (m, r)

• SIGΣ.VERIFY(pk , msg, sig):

1. ek ← pk

2. (m, r)← sig

3. if HASH(msg, ek , CH.HASH(ek , m, r)) = m:

a) return accept

Chapter 5. Signatures and Chameleon Hash Functions 98

Challenger

(ek , tk) $←−− CH.KEYGEN(λ)

msg
$←−− M

Adversary A
λ λ

ek

dgt

msg

rnd

Figure 24 – Attack Game: Sigma Security

4. else:

a) return reject

The reason for representing this signature scheme as SIGΣ is because its secu-

rity depends on the chameleon hash being secure in an alternative attack game, not

the usual collision-resistance game. This alternative security definition can be seen as

an attack against a Σ-protocol:

Attack Game 15 (Sigma-Secure). For a chameleon hash CH defined over (M, R, D),

we model a game with an adversary and a challenger. Both are initialized by a security

parameter λ.

The challenger computes a pair of keys with CH.KEYGEN(λ) and sends the

evaluation key ek to the adversary.

The adversary chooses some dgt ∈ D (not necessarily random) and sends to

the challenger. The challenger chooses a random and uniform msg ∈ M and sends to

the adversary as a challenge. The adversary sends some rnd ∈ R as response.

We say that the adversary wins this game if CH.HASH(ek , msg, rnd) = dgt. For

a given adversary A and chameleon hash CH, we denote as SIGMAadv [A, CH] the

probability that the adversary wins this game.

Definition 7 A chameleon hash CH is sigma-secure if for all efficient adversaries A,

the value of SIGMAadv [A, CH] is negligible.

If a chameleon hash is sigma-secure in the above definition, it means that for this

chameleon hash, if the keys were generated using the standard algorithm CH.KEYGEN,

the owner of the trapdoor can prove its ownership without revealing it by the exchange

of three messages with a verifier. It chooses and sends some digest (that can be found

computing a chameleon hash for a random pair of message and random parameter),

gets a message as challenge and then use the algorithm CH.COLLISION to produce

the final response. The owner of the trapdoor always succeeds in this challenge, but

other parties not, except with negligible probability.

Chapter 5. Signatures and Chameleon Hash Functions 99

Adversary B

msg′ $←−− M

msg′′ $←−− M

Adversary A

Adversary A

λ, ek

(msg′, rnd ′), (msg′′, rnd ′′)

ek

dgt

msg′

rnd ′

ek

dgt

msg′′

rnd ′′

Figure 25 – Building a collision-finder B from attacker A against the sigma-security.

The next theorem was noted first in (BELLARE; RISTOV, 2014). The difference

is that this article assume a classical model of computation, so do not explicitly mention

quantum adversaries in the theorem:

Theorem 22 All collision-resistant chameleon hash CH are sigma-secure against clas-

sical adversaries (but not necessarily against quantum adversaries).

Proof: Let’s assume that we have a classical adversary A that attacks the sigma-

security of a chameleon hash and wins with non-negligible probability. Therefore, we

can build an adversary B that finds a collision as in the following image:

In the above adversary B, it runs two copies of adversary A and they are ini-

tialized with the same evaluation key ek and also the same security parameter λ. If A
is a deterministic adversary, both copies will output the same digest dgt . If they are

probabilistic adversaries, then they must be feed with exactly the same randomness

source to produce the same digest dgt .

Once this happens, we send different messages as a challenge for both copies.

Receiving different inputs, now we expect that both copies acts differently and sends

different rnd ′ and rnd ′′ in the final output.

The adversary B succeeds if the following events happen:

• The first copy of A wins the attack game for sigma-security. This happens with

probability SIGMAadv [A, CH].

Chapter 5. Signatures and Chameleon Hash Functions 100

• The second copy of A wins the attack game for sigma-security. This also also

happens with probability SIGMAadv [A, CH].

• (msg′, rnd ′) 6= (msg′′, rnd ′′). We can ensure that this is true if msg′ 6= msg′′. This

happens with probability (1 – 1
|M |). Therefore, the probability for this event is at

least (|M | – 1)/|M |. We can assume that |M | ≥ 2, which means that this probability

is always greater or equal than 1/2.

With this information, we can deduce this lower bound for the success of adver-

sary B:

CRadv [B, CH] ≥ 1
2

(SIGMAadv [A, CH])2

Using this lower bound for the success of B, we can conclude that for all efficient

adversaries A that attack the sigma-security of the chameleon hash CH, we can build

an efficient adversary B that tries to find collisions in CH such that:

SIGMAadv [A, CH] ≤
√

2(CRadv [B, CH])1/2

By our assumption, the chameleon hash CH is collision-resistant. Therefore,

CRadv [B, CH] is always negligible. Therefore, the square root of this value multiplied

by
√

2 also is negligible. And this proves that any efficient adversary A succeeds only

with negligible probability while attacking the sigma-security.

�

The above proof uses what is called a “rewinding argument”: running two

instances of A while being able to feed them with the same randomness source is

equivalent to have the ability to run A once, and then rewind it to a previous state and

resume the interaction making different choices. This rewinding argument is possible

using a classical model of computation. However, it cannot be done if we assume that

A is a post-quantum adversary that is running quantum algorithms.

The reason is that by the models of quantum mechanics, it is impossible to clone

or copy an arbitrary unknown quantum state, a limitation that is known as the “no-cloning

theorem”. We cannot have two exact copies of A with exactly the same state if A is in a

quantum state. In quantum mechanics model, even if we run two quantum computers

representing adversaries A under exactly the same physical conditions, we will not

receive always the same results from A. Both adversaries could return different values

dgt and with this behaviour, we cannot use them to find collisions in CH. A quantum

adversary that breaks the sigma-security apparently presents no contradiction with the

collision-resistance property.

The sigma security is important in the signature scheme SIGΣ of this section

because if we have a chameleon hash sigma-secure, then the signature SIGΣ built from

it is secure against chosen message attacks in the random oracle model. As we can

Chapter 5. Signatures and Chameleon Hash Functions 101

guarantee sigma-security only against non-quantum adversaries, the signature SIGΣ

can be proven only in a classical model of computation.

Theorem 23 If we have a collision-resistant function HASH and a sigma-secure cha-

meleon hash CH with the uniformity property, then the signature scheme SIGΣ defined

in this section and built using CH and HASH is strongly secure against adaptively

chosen message attacks in the random oracle model.

Proof: Let’s assume that we have an adversary A that forges a signature in the

attack game for signature security against chosen-message attacks. Then we will use

it to build a new adversary B that breaks the sigma-security of the chameleon hash.

In this proof, instead of build the entire adversary B, we will start considering

only an specific adversary A0 instead of a generic one. And we will first build a B0 that

assumes that A0 uses an specific strategy to create a forgery. With this we can first

focus in the main idea of our proof. After this we will begin to generalize our adversary

showing how we can deal with other possible strategies that A can use. In the end we

will produce an adversary B that can use any forger A to break the sigma-security.

Our first adversary B0 assumes that the adversary A0 produces a forgery after

making one random oracle query and without making signing queries. It also assumes

that A0 uses this random oracle query to produce the forgery. For example, it can

first check that the result of HASH(msg′, (ek , d ′)) = m′. And after discovering this, A0

can use some weakness in the chameleon hash CH to find a suitable r ′ such that

CH.HASH(ek , m′, r ′) = d ′. Notice how in this case the pair (m′, r ′) is a valid signature for

msg′ and how the problem of making this forgery is similar to attack the sigma-security

game.

In this scenario, the adversary B0 proceeds as below:

• Initialization: The adversary B0 is initialized with the security parameter λ and

the evaluation key ek . Then, the adversary B0 initializes the adversaryA0 passing

the value ek as the signature public key.

• Random Oracle Query: Receiving the random oracle query (msg′, (ek , d ′)), the

adversary B0 starts to interact with its challenger sending d ′. The challenger, as

required by the sigma-security game chooses a random and uniform m′ ∈ M and

send to B0. As m′ was chosen uniformly at random, we can use it as the response

for the random oracle query. We send m′ to A0.

• Finalization: The adversaryA0 produces a forgery (msg′, (m′, r ′)). Assuming that

this forgery was produced using the random oracle query, this msg′ is the same

message queried in the random oracle query and this m′ is the same value sent to

B0 by its challenger. Therefore, if this is a forgery, then CH.HASH(ek , m′, r ′) = d ′

and B0 can win its game sending r ′ to its challenger.

Chapter 5. Signatures and Chameleon Hash Functions 102

Notice how B0 always wins its game if A0 succeeds at producing a forgery.

However, not all possible adversaries A will act this way. For example, consider

an adversary A1 that makes no random oracle query and no signature query. For

example, an adversary that tries to make a forgery choosing a signature at random.

We will now build an adversary B1 that breaks the sigma-security of CH with the same

probability than A1 succeeds.

During initialization, adversary B1 acts exactly as adversary B1, passing the

chameleon hash key as the signature key to A1. There are no random oracle or signing

queries. The main difference is how B1 acts during the finalization:

• Finalization: Adversary A1 produces a forgery (msg′, (m′, r ′)). Now adversary

B1 proceeds running the verification algorithm SIGΣ.VERIFY. To do so, it first

computes d ′ = CH.HASH(ek , m′, r ′) and sends d ′ to its challenger. The challenger

sends as response a m′ chosen uniformly at random. Adversary B1 sets m′ as the

result of the random oracle for input (msg′, (ek , d ′)). If the signature sent by A1

is valid, then CH.HASH(ek , m′, r ′) = d ′. Therefore, B1 can win the sigma-security

game in this case sending r ′ to its challenger.

Again the adversary B1 wins its game with exactly the same probability that A1

produces a forgery.

Now let’s generalize our scenario assuming that we have an adversary A2 that

makes one random oracle query, no signatures queries, but we do not know if it will

use the random oracle query to produce a forgery like adversary A0 or if the forgery

produced in the end has no direct relationship with some previous random oracle query,

as is the case with adversary A1.

In this scenario, our adversary B2 can act in its game in the following way:

• Initialization: Choose a random bit b
$←− {0, 1}. If 0 was chosen, then B2 will act

as adversary B0. If b = 1, then it will act more like adversary B1. Now adversary

B2 initializes adversary A2 sending the public key ek for it.

• Random Oracle Query: If we are acting like adversary B0, we follow exactly what

was described for this adversary during its query. We use the value presented in

the query to interact with B2’s challenger and use the response to set the response

for the random oracle. If we are acting more like adversary B1, we assume that

this random oracle query will not help us in breaking the sigma-security. We just

choose uniformly at random a response m1 ∈ M and send this as the response

for the query.

• Finalization: We use exactly the same finalization for adversary B0 or adversary

B1, depending of which adversary we are imitating.

Chapter 5. Signatures and Chameleon Hash Functions 103

Now we can see that to win the game, adversary B2 must choose the right bit b

depending of A2 strategy. The lower bound for the success of B2 is given by:

SIGMAadv [B2, CH] ≥ 1
2

CMAadvRO[A2, SIGΣ]

Let’s keep generalizing the model assuming that now we have an adversary A3

that still makes no signing queries, but can make a polynomial number of qO random

oracle queries. The value qO is bounded by a polynomial over the security parameter

λ.

Now the adversary B3 instead of choosing a random bit, must choose a value

uniformly at random between 1 and qO + 1. And need to store the random oracle values

to keep the responses consistent if the same value is queried more that once:

• Initialization: Choose a random value q′ $←− {0, . . . , qO + 1}. Next initialize an

dictionary to keep all random oracle queries and their respective responses. The

dictionary is initialized empty. Now initialize a counter q with 0. This counter

will increment each time we get a new random oracle query. And proceed the

initialization as the previous adversaries, initializing adversary A3 with the public

key ek .

• Random Oracle Query: For each query, adversary B3 first check if this query

was already done before. For this, it checks in the dictionary if the query is stored

there and if this is true, it sends exactly the same response stored there. If the

query never was done before, it increments the counter q. If q = q′, B3 acts in

this query exactly as adversary B0: it assumes that this query will be used in

the forgery. It uses the queried value to interact with the challenger and use the

challenger’s response as the response for the random oracle query. Otherwise, if

q 6= q′, then B3 produces a response choosing a random and uniform mi ∈ M. In

either case, when we produce a response for the random oracle query, we store

the query and the response as a pair in our dictionary. Acting this way, B3 keeps

the consistence of its random oracle simulation.

• Finalization: If q′ = qO + 1, adversary B3 surely did not interacted with its chal-

lenger. In this case, it acts exactly as adversary B1 in the finalization using the

signature verification to interact with its challenger. Otherwise, it acts exactly as

adversary B0 assuming that we guessed correctly which query was used in the

forgery.

Notice that adversary A3 can be any possible adversary that makes no signing

queries. For any adversary A that makes no signing queries, the final forgery is or is

not produced using a previous random oracle query. There are no other third possibility.

Chapter 5. Signatures and Chameleon Hash Functions 104

Now given this adversary B3, we can deduce its lower bound for success as:

SIGMAadv [B3, CH] ≥ 1
qO + 1

CMAadvRO[A3, SIGΣ]

Finally, we can finish our generalization producing the final adversary B that can

deal with any adversary A. We not only let adversary A make a polynomially bounded

number of qO random oracle queries, but we also let it make a polynomially bounded

number of qS signing queries. All queries are adaptive and can be done in any order.

In this case, we can use an adversary B that acts exactly as adversary B3. The

sole difference is that now it needs to produce responses for signing queries. It can

deal with such queries in the following way:

• Signing Query: The adversary A sends a message msgi to be signed. Our

adversary B do not know the secret key for the signature SIGΣ. However, using

the fact that it controls the random oracle simulation, it can produce valid signa-

tures with overwhelming probability. First B generates random and uniform values

mi ∈ M and ri ∈ R and set this random pair (mi , ri) as the signature. To make this

signature valid, adversary B also computes di = CH.HASH(ek , mi , ri). And know-

ing the digest di , it sets mi as the result for random oracle query for (msgi , (ek , di)).

Adversary B stores this in the dictionary used by our random oracle simulator. This

means that after this, future random oracle queries for (msgi , (ek , di)) will always

return mi . After all these steps, B sends (mi , ri) to A as response for the query.

Notice that if the chameleon hash CH has the uniformity property, the value

di generated computing CH.HASH(ek , mi , ri) for a random ri is equivalent to choosing

uniformly at random some value from digest space D, exactly as is required for signature

creation by our definition of SIGΣ.

Also notice that the value mi was chosen uniformly at random from M and that

M is also the digest space for HASH. Therefore, the above strategy correctly choose a

random and uniform value for the random oracle query (msgi , (ek , di)) as is required to

simulate a random oracle.

However, there is a problem in how our adversary B answers the signing query.

What if some value other than mi was already associated with (msgi , (ek , di))? Perhaps

a random oracle query was already produced for (msgi , (ek , di)). Or a previous signing

query for the same message msgi produced a distinct signature (mj , rj) for mj 6= mi such

that CH.HASH(ek , mi , ri) = CH.HASH(ek , mj , rj). If this happens, adversary B cannot at

the same time produce a correct signature and keep the consistency of the simulation.

We assume that in this case it halts, losing the attack game against the sigma-security.

What would be the probability that adversary B fails to produce a signature in

the above signature query? We can find an upper bound for a single signing query

considering that in the worst case we already produced qO different random oracle

Chapter 5. Signatures and Chameleon Hash Functions 105

results computed during random oracle queries and also another qs – 1 random oracle

values produced in previous signing queries. We are performing the last permitted

signing query. We also assume that all the queries were for the same message msg ∈
M ′ and for the public key ek . In this worst-case scenario for a single query, we have a

probability of qO+qS–1
|D| of producing a new digest di in our signing query such that B fails

at producing a signature. This assumes that the digest di produced during the signing

query is random and uniform, as consequence of the uniformity property.

Given this upper bound for a single query, we can multiply it by the number of

signing queries to obtain an upper bound for the probability of A failing while computing

all signing queries. And the complement of this value,
(

1 – qs(qO+qS–1)
|D|

)

, is the lower

bound for the probability of B succeed in all signing queries.

Finally, we can conclude that adversary B succeeds if:

1. Adversary A succeeds.

2. Adversary B, exactly like adversary B3 guessed the correct value for q choosing

a number between 1 and qO + 1.

3. Adversary A succeeds producing responses for all signing queries.

Using the probabilities of the above three events, we can produce the following

lower bound for the success of B:

SIGMAadv [B, CH] ≥
(

1 –
qs(qO + qS – 1)

|D|

)

1
qO + 1

CMAadvRO[A, SIGΣ]

As this last adversary B can deal with any adversary A that produces forgeries,

we can rewrite the above inequation concluding that for all efficient adversaries A, we

can build efficient adversaries B such that:

CMAadvRO[A, CH] ≤ (qO + 1)
(

|D|
|D| – qS(qO + qS)

)

SIGMAadv [B, CH]

In the above inequation, the first term of the multiplication in the right side is poly-

nomially bounded, as qO is polynomially bounded. The second term is negligibly next

to 1, as |D| is superpolynomial and both qO and qS are bounded polynomially. Finally,

the last term of the multiplication is always negligible, because by our assumption, CH

is sigma-secure. This means that the right-side of the inequation is always negligible

because it is the multiplication of a negligible value by polynomially bounded values.

And this proves that the signature is secure in the random oracle model. �

As we do not have a proof that any chameleon hash is sigma-secure against

quantum adversaries, this result is more useful for chameleon hash functions in the

classical model of computation, ignoring quantum adversaries. In this model we can

Chapter 5. Signatures and Chameleon Hash Functions 106

rewrite the above formula using the relationship between sigma-security and collision-

resistance, obtaining the result that for all A, we can obtain B such that:

CMAadvRO[A, CH] ≤ (qO + 1)
(

|D|
|D| – qS(qO + qS)

)√
2(CRadv [B, CH])1/2

5.4 BUILDING UNIVERSAL DESIGNATED SIGNATURES

This signature construction was proposed for the first time at (LI, B. et al., 2018)

and combines a specific signature scheme (the ring variant of the GPV signature that

we will define in this section) with a collision-resistant chameleon hash with preimage

uniformity property to produce what is known as a “universal designated signature”.

An universal designated signature is a special case of signature scheme where

we have not only the algorithms SIG.KEYGEN, SIG.SIGN and SIG.VERIFY, but also

three other additional algorithms in the scheme:

• SIG.DESIGNATE(pks, pkr , msg, sig): It takes as input a message msg, its respec-

tive signature sig, the signer public key pks and some recipient public key pkr . It

produces a new signature dsig designated specifically to the recipient associated

with the public key pkr .

• SIG.DESIGNATEDVERIFY(pks, pkr , msg, dsig): It gets as input a signer public key,

a recipient public key, some message and a designated signature. It returns

accept or reject.

• SIG.SIMULATE(skr , pks, msg): This algorithm produces a forged designated sig-

nature dsig for the message msg attributed to the signer whose public key is pks

to the recipient whose secret key if sks.

The idea of this scheme is that if we have a designated signature dsig, we cannot

differentiate between a legitimate signature created using the algorithm SIG.DESIGNATE

or a forgery created using SIG.SIMULATE if we are no the designated recipient. However,

if we are the designated recipient, we can know if a signature is legitimate. As only

we know our secret key skr , if we never produced this designated signature using

SIG.SIMULATE, then it must be a legitimate signature. Despite knowing this, we cannot

prove for other people the legitimacy of a signature.

Like the chameleon signatures presented in Subsection 3.4.1, this scheme is

intended to be used when we want to sign a message for a single recipient, but perhaps

because the content of a message is confidential and delicate, we do not want that

the signature proves the authenticity of the message for third parties. Contrary to the

chameleon signatures, the scheme also can produce traditional signatures and any

person can generate a designated signatures given a legitimate signature (as this

Chapter 5. Signatures and Chameleon Hash Functions 107

involves only public keys). The disadvantage is that this scheme as presented does not

offer a method to solve disputes.

To show how universal designated signatures could be built from chameleon

hash functions, first we will present a regular signature scheme known as the Ring-

GPV signature, and then we will extend this regular signature to a universal designated

signature with the help of the chameleon hash CHSIS. Before defining the signature,

we will show how the algorithms TRAPGEN, SAMPLEPRE and SAMPLEDOM specified

in Subsection 4.2.2 can be adapted to the polynomial ring setting.

5.4.1 Ring Version of TRAPGEN, SAMPLEPRE and SAMPLEDOM

First recall the algorithms TRAPGEN, SAMPLEPRE and SAMPLEDOM specified

in Subsection 4.2.2. We can adapt all these algorithms to the Ring-SIS assumption

making them act over vectors of elements in a polynomial ring as required by the

Ring-SIS assumption.

Given the description of a modular polynomial ring R and the polynomial ring

Rq where all the coefficients are modulo q, and given parameters m, q associated with

Ring-SIS assumption and the distribution D, our ring-version of the TRAPGEN algorithm

is:

• RINGTRAPGEN(Rq, m, n, q,D):

1. a
$←− Rm–w

q

2. T
D←− R

(m–w)×(n lg q)
q

3. a← a||(g – aT)

4. return (a, T)

Here we also assume that we produced a vector a indistinguishable from a

random and uniform vector from Rm
q . In other words, we assume that the function below

is a suitable weak pseudo-random function assuming any constant g which is a vector

with w elements:

PRFRINGTRAPGEN(T, a) = g – aT)

Using this construction, we also have the property that:

a

[

T

I

]

= (a||g – aT)

[

T

I

]

= aT + g – aT = g

Therefore, we can adapt directly the algorithm SAMPLEPRE to the ring setting. It

will function in the same way, but recall that in this version y () is a polynomial from Rq:

• RINGSAMPLEPRE(Rq, m, q, a, T, y ()):

Chapter 5. Signatures and Chameleon Hash Functions 108

1. p
D←− Rm

2. v ()← y () – ap mod q

3. Find a small z such that gz = v () mod q

4. x← p +

[

T

I

]

z

5. If ||x|| is not small enough, return to step 1

6. return x

We assume that g is a vector for which is easy to find short vectors x such that

gx is any desired result. We could use a vector g using an analogous method from

Subsection 4.2.2.2 where we could build x choosing as coefficients values 0 and 1

forming the binary representation for coefficients in the desired result.

Exactly like in the SIS version of the construction, when we use these functions

usually we use with parameters (Rq, m, q) and with a maximum allowed size such that

lots of different valid results exist for the RINGSAMPLEPRE algorithm. We have a chance

of choosing any of the possible solutions depending on the random p that we choose

in line 1. When we use this algorithm we will assume that no solution have a probability

greater that 1/2 of being chosen and that we have at least two different possible results

for any value y () passed to this algorithm.

Finally, we will also assume the existence of algorithm RINGSAMPLEDOM that

given as input (Rq, m, n, q, a), return a vector x with a short euclidean norm such that the

probability distribution for the output is the same than what would be obtained choosing

a random and uniform polynomial y () and running RINGSAMPLEPRE(Rq, m, n, q, a, T, y ()).

If in some construction we expect that RINGSAMPLEPRE and RINGSAMPLEDOM

return vectors with norm smaller than a given value, then we will express this maximum

norm as index during the invocation of these algorithms.

5.4.2 The Ring-GPV Signature Scheme

The GPV signature was first proposed at (GENTRY et al., 2008) and had its secu-

rity based on the SIS assumption. Here we will need a ring-variant of that signature and

we define it with the help of RINGTRAPGEN, RINGSAMPLEPRE and RINGSAMPLEDOM

algorithms.

This version of the GPV signature scheme is defined over (M, S) and uses a

hash function HASH1 : M → D such that D ⊆ Rq. The set of signatures is S ⊂ Rm
q

such that the norm of a given signature is smaller than β/2.

The algorithms of the scheme are defined as below:

• SIGGPV .KEYGEN(λ):

Chapter 5. Signatures and Chameleon Hash Functions 109

1. (Rq, m, n, q,β) $←− RSISPARAMS(λ)

2. (a, T) $←− RINGTRAPGEN(λ)

3. pk ← (Rq, m, q,β, a)

4. sk ← (Rq, m, q,β, a, T)

5. return (pk , sk)

• SIGGPV .SIGN(sk , msg)

1. (Rq, m, q,β, a, T)← sk

2. y ()← HASH1(msg)

3. s
$←− RINGSAMPLEPREβ/2(Rq, m, q, a, T, y ())

4. return s

• SIGGPV .VERIFY(pk , msg, s):

1. (Rq, m, q,β, a)← pk

2. if ||s|| < β and a · s = HASH1(msg):

3. return accept

4. else:

5. return reject

There is also an additional requirement for the security of the above signature.

There should always have more than one possible valid signature for any given message

and if we sign the same message more than once, we should always produce the same

signature. The first requirement is easily achieved generating correct parameters using

RSISPARAMS. The later requirement can be fulfilled memorizing each signature or

deriving all the probabilistic decisions for algorithm RINGSAMPLEPRE from a pseudo-

random generator fed with a fixed seed chosen during key generation.

Assuming these two requirements above, we present the security proof of this

signature below:

Theorem 24 If the Ring-SIS assumption is true, the vector a returned by RINGTRAPGEN

is indistinguishable from a random and uniform vector, if there are always more than

one valid signature for each message such that no valid signature and if we set SIGGPV

to never return different signatures for the same message, then SIGGPV is a secure sig-

nature scheme against adaptive chosen-message attacks in the random oracle model.

Proof: To prove this, we will, as usual, build an efficient adversary B that solves

the Ring-SIS attack game with non-negligible probability assuming that we have an

Chapter 5. Signatures and Chameleon Hash Functions 110

efficient adversary A that produces a forgery against signature SIGGPV in the adaptive

chosen message attack game and in the random oracle model.

Adversary B proceeds as below:

• Initialization: Adversary B is initialized with the security parameter λ and receives

from its challenger a random and uniform vector a ∈ Rm
q along the parameters

(Rq, m, q,β). It initializes a dictionary that is empty in the beginning, but will store

pairs of messages and signatures. Finally, it initializes adversary A with the public

key (Rq, m, q,β, a).

• Random Oracle Query: For each random oracle query, adversary B gets some

message msgi sent by A. First it checks if the message msgi is in the dictionary.

If so, a signature si for msgi was already produced. We send to A the value a · si

as response. By definition, if si is a correct signature, this scalar multiplication

produces the correct hash or random oracle for msgi .

If msgi is not in the dictionary, msgi never was queried before in any query. Then

first we will choose a valid signature for msgi and using the signature we will de-

duce the correct response for the random oracle query. We choose the signature

running RINGSAMPLEDOM(Rq, m, n, q, a). Recall that by definition this will result

in a vector with probability distribution analogous to computing RINGSAMPLEPRE

over a random and uniform y(). Therefore, choosing the signature in this way

simulates correctly a signature generated legitimately by SIGGPV .SIGN. And after

choosing the signature si , we store it in the dictionary and send asi as response

for the random oracle query.

• Signing Query: For each signing query, B receives from A a message msgi .

First it checks if the message msgi is in the dictionary. If so, it returns the sig-

nature stored with the message. If not, B produces a new signature running

si
$←− RINGSAMPLEDOM(Rq, m, n, q, a), stores the pair (msgi , si) in the dictionary

and sends si to A.

• Finalization: After A outputs a forgery (msg′, s’), adversary A recovers from the

dictionary the signature s” associated with the message msg′. If msg′ is not in

the dictionary, we act as described above in the random oracle query to discover

the result of the random oracle O(msg′).

In both cases, if A produced a correct forgery, we end with two correct signatures

associated with msg′: the signature s’ produced by A and the signature s” stored

in the dictionary kept by B when it used msg′ in a previous query.

Therefore, we have that a ·s’ = as”. Assuming that s’ 6= s”, we have that A(s′ –s′′)
mod q = 0. Adversary B outputs (s′ – s′′) mod q. The result is correct because

Chapter 5. Signatures and Chameleon Hash Functions 111

if both signatures have norm smaller than β/2, the returned value has a norm

smaller than β.

Notice that adversary B always wins its attack game if:

1. A succeeds. This happens with probability CMAadvRO[A, SIGGPV].

2. s 6= s′′. If A queried during the game a signing query for msg′, this happens with

probability 1, as by the rules A would need a different signature to succeed.

If A never queried a signing query for msg′, then exist a possibility that s’ = s”.

However, as we discussed in the previous subsection when described algorithm

RIGSAMPLEPRE, we can safely assume that no possible valid signature for msg′

has a probability greater than 1/2 of being chosen. The lower bound for the prob-

ability Pr [s’ = s”] is therefore 1/2.

If we assume that adversary A cannot distinguish between a real random and

uniform vector a and a vector returned by RINGTRAPGEN, then in this case the lower

bound for the success of B is:

RSISadv [B] ≥ 1
2

CMAadvRO[A, SIGGPV]

However, if we consider that adversary A can also create forgeries exploring

some weakness in algorithm RINGTRAPGEN, the real lower bound is less than this. We

need to subtract the probability that A succeed exploring such weakness distinguishing

between a vector returned by RINGTRAPGEN and a real random and uniform vector.

This probability can be modeler by WPRFadv [B′, PRFRINGTRAPGEN] for some adversary

B. Therefore, the real lower bound is:

RSISadv [B] ≥ 1
2

CMAadvRO[A, SIGGPV] – WPRFadv [B′, PRFRINGTRAPGEN]

Rewriting the above inequation, we have that for all efficient adversaries A, we

can build efficient adversaries B and B′ such that:

CMAadvRO[A, SIGGPV] ≤ 2RSISadv [B] + WPRFadv [B′, PRFRINGTRAPGEN]

As by our assumption, the Ring-SIS problem is hard and the vector returned by

RINGTRAPGEN is indistinguishable from a random and uniform vector, the right side of

the above equation is negligible. Therefore, no adversary can create a forgery in the

GPV signature with non-negligible probability. �

This is an example of security proof using the random oracle model where we

simulate the random oracle in a way that we can produce for each query a response in

an homogeneous way: no single query is treated differently, we did not try to encode

any specific information in the response for these queries and we do not use the input

Chapter 5. Signatures and Chameleon Hash Functions 112

in any query to guess something about the forgery that will be produced. This contrast

with the sample security proof in the random oracle model from Subsection 2.4.1.1

where we tried to guess which query would be used in the forgery and treat differently

this query inserting specific information in the response.

This homogeneous treatment gives us a more tight security proof, but other than

that, it also makes this proof adaptable to a post-quantum scenario. From Subsection

2.4.1.2 the only requisite that this proof does not satisfy is the third one, of efficient

simulation: using the method presented above of simulating a random oracle with a

dictionary, we cannot efficiently evaluate the random oracle over a superpolynomial

superposition of messages. As described in that subsection, in such cases it is possible

to adapt the proof for quantum adversaries at the cost of an additional assumption.

If we use a pseudo-random function to generate the random values necessary

during the queries and such function can be evaluated over quantum inputs in superpo-

sition and is secure even in this scenario (it is a quantum-accessible secure PRF), then

we could use this PRF to generate responses in the queries and we could also use it to

produce consistent responses even when a superposition of a superpolynomial number

of messages is sent in a random oracle query. The additional assumption that the proof

needs in a post-quantum scenario is the existence of such quantum-accessible PRF .

5.4.3 Extending the GPV Signature with Chameleon Hash Functions

To create a universal designated verifier signature DSIG, we can begin with the

GPV signature defined over (M ′, S), using the same algorithms for signing and verifying.

Instead of requiring that our signatures have a euclidean norm smaller than β/2 as

required in the GPV signature, we will now require a norm smaller than β

4
√

n(
√

n+1)
.

We will also require that our polynomial ring Rq be defined modulo (xn – 1)

where n is power of 2 and q is a prime congruent to 5 (modulo 8). As discussed in

(LYUBASHEVSKY; NEVEN, Gregory, 2017), this creates an interesting property where

while not all elements in Rq have multiplicative inverses, we can guarantee that all

elements with a short euclidean norm have inverses.

We use a chameleon hash defined over (M, R, D) to create our algorithms

DSIG.DESIGNATE, DSIG.DESIGNATEDVERIFY and DSIG.SIMULATE. The message space

of this chameleon hash is M = Rq.

We also use in this part a new collision-resistant hash function HASH2 : Rm
q ×

D ×M ′ → C. Here the set C is the set of polynomials in Rq such that its coefficients

are 0 or 1.

A designated signature will be a tuple from C × Z ×R such that Z is a subset of

vectors form Z m
q such that the euclidean norm of them is smaller than β/4

√
n.

We omit the DSIG.SIGN and DSIG.VERIFY algorithms, as they are practically

identical to the algorithms in SIGGPV , only requiring shorter signatures. The remaining

Chapter 5. Signatures and Chameleon Hash Functions 113

algorithms for the designated verifier signature are defined as below:

• DSIG.KEYGEN(λ):

1. (pk , sk) $←− SIGGPV .KEYGEN(λ)

2. (ek , tk) $←− CH.KEYGEN(λ)

3. return (pk’ = (pk, ek), sk’ = (sk, ek, tk))

• DSIG.DESIGNATE(pks, pkv , msg, s):

1. ((Rq, m, q,β, as), eks)← pks

2. ((Rq, m, q,β, av), eks)← pkv

3. x
$←− RINGSAMPLEDOMβ/(4

√
n(
√

n+1))(Rq, m, n, q, as)

4. y ()← as · x

5. rnd
$←− R

6. dgt ← CH.HASH(ekv , y (), rnd)

7. c()← HASH2(as, dgt , msg)

8. z← sc + x

9. return (c(), z, rnd)

• DSIG.DESIGNATEDVERIFY(pks, pkv , msg, (c(), z, rnd)):

1. ((Rq, m, q,β, as), eks)← pks

2. ((Rq, m, q,β, av), eks)← pkv

3. y ′()← as · z – HASH1(msg)c()

4. dgt ′ ← CH.Hash(ekv , y ′(), rnd)

5. c′()← HASH2(as, dgt ′, msg)

6. if ||z|| < β/4
√

n and c() = c′():

7. return accept

8. else:

9. return reject

• DSIG.SIMULATE(pks, skv , msg):

1. ((Rq, m, q,β, as), eks)← pks

2. ((Rq, m, q,β, av , Tv), tkv)← skv

3. y () $←− Rq

Chapter 5. Signatures and Chameleon Hash Functions 114

4. rnd
$←− R

5. dgt ← CH.HASH(ekv , y , rnd)

6. c()← HASH2(as, dgt , msg)

7. s
$←− RINGSAMPLEDOMβ/(4

√
n(
√

n+1))(Rq, m, n, q, as)

8. x
$←− RINGSAMPLEDOMβ/(4

√
n(
√

n+1))(Rq, m, n, q, as)

9. z← sc() + x

10. y ′()← as · z – HASH1(msg)c()

11. rnd ′ $←− CH.PREIMAGE(tkv , y ′(), dgt)

12. return (c(), z, rnd ′)

Notice that we always use the signer’s GPV keys in the above algorithms, never

its chameleon hash keys. For the verifier we always use the chameleon hash keys, not

the GPV keys. If we know that a person only signs messages but never will be the

recipient of a designated signature, we could generate only GPV keys for her. Likewise,

if an user never will sign messages, but could be the recipient of a designated signature,

this person needs only the chameleon hash keys.

In algorithm DSIG.DESIGNATEDVERIFY we check in line 6 the requirement that z

must have an euclidean norm smaller than β/4
√

n. To check that designated signatures

produced by DSIG.DESIGNATE really produce vectors z with such characteristic, note

that such value is produced at line 8 of such algorithm. And both s and x have euclidean

norm smaller than β/(4
√

n(
√

n + 1)). Recall that c() is a polynomial whose coefficients

are always 0 or 1 and therefore has at most
√

n as norm. Therefore, ||sc()|| < β
√

n
4
√

n(
√

n+1)
and after the sum with y, the upper bound for the norm became β/4

√
n.

The algorithm DSIG.DESIGNATEDVERIFY works because at line 3 it recovers

exactly the same polynomial y ′() produced in line 4 of algorithm DSIG.DESIGNATE.

This happens because the signature for message msg is the vector s such that as · s =

HASH1(msg) and so:

as · z – HASH1(msg)c() = as(sc() + x) – HASH1(msg)c()

= assc() + asx – assc()

= asx mod q

Therefore, algorithm DSIG.DESIGNATEDVERIFY, if used in a legitimate signature,

will produce in line 5 exactly the same result than algorithm DSIG.DESIGNATE produces

in line 7.

Algorithm DSIG.SIMULATE also produces accepted designated signatures, but

does so computing first a random chameleon hash digest in line 5, using this digest to

Chapter 5. Signatures and Chameleon Hash Functions 115

produce c() and z, and finally, use the algorithm CH.PREIMAGE to produce a valid rnd ′

such that the correct input for the chameleon hash during the verification produces the

expected digest.

5.4.4 Security of the Universal Designated Verifier Signature

The security of universal designated verifier signatures is given by two properties.

The first is that it is not possible to distinguish a designated signature produced using

DSIG.SIMULATE and a designated signature produced using DSIG.DESIGNATE from a

valid signature previously produced with DSIG.SIGN. This is the privacy property and

can be proven if the chameleon hash CH has preimage uniformity.

Theorem 25 If the preimage chameleon hash CH has the property of uniformity and

preimage uniformity, then the universal designated signature DSIG produced with it has

indistinguishable designated signatures when they are produced by DSIG.SIMULATE or

DSIG.DESIGNATE. .

Proof: A designated signature is a tuple (c(), z, rnd). We will show how for each

of them we cannot identify if it was produced from DSIG.SIMULATE or DSIG.DESIGNATE,

except with a probability negligibly next to 1/2.

The value c(), both in DSIG.SIMULATE and in DSIG.DESIGNATE is produced

computing HASH2. The first and third input for this hash function is the same in both

cases. The second parameter are in both cases produced computing a chameleon

hash choosing the random parameter uniformly at random. By the uniformity property,

these two inputs cannot be distinguished, and therefore, this is also true for the value

c().

The vector z in algorithm DSIG.DESIGNATE is chosen as sc() + y where both

y and s are small vectors and s is a GPV signature produced with RINGSAMPLEPRE.

In algorithm DSIG.SIMULATE, the vector Z is produced with s′c() + y′ with the sole

difference that here s′ is produced with RINGSAMPLEDOM. However, the algorithms

RINGSAMPLEDOM and RINGSAMPLEPRE produce indistinguishable results when algo-

rithm SAMPLEPRE is computing the preimage of a random and uniform vector. There-

fore, in both cases the vector z cannot be distinguished.

Finally, both in DSIG.DESIGNATE and in DSIG.SIMULATE, the third value of the

result is a random parameter for the chameleon hash. In the first case, it is chosen

uniformly at random. In the second, it is computed from CH.PREIMAGE given a random

and uniform dgt . Therefore, its indistinguishability came from the preimage uniformity

present in the chameleon hash. �

Next, we need to define the concept of unforgeability for universal designated

verifier signature. We will use the following attack game in the definition:

Chapter 5. Signatures and Chameleon Hash Functions 116

Challenger

(pks, sks) $←−− DSIG.KEYGEN(λ)

(pkr , skr) $←−− DSIG.KEYGEN(λ)

...

sigi
$←−− DSIG.SIGN(sks, msgi)

...

Adversary A
λ λ

(pks, pkr)
...

msgi

sigi

...

(msg′, dsig′)

Figure 26 – Attack Game: Unforgeability against chosen message attacks for universal
designated verifier signatures

Attack Game 16 (Universal Designated Verifier Signature Unforgeability against

Adaptive Chosen Message Attack). The game is defined using a challenger and an

adversary A. Both are initialized using the security parameter λ. The challenger runs

the signature key generation twice. The first time it produces a pair of keys (pks, sks)

for a signer and the second time it produces a pair of keys (pkr , skr) representing the

keys for a recipient of designated signatures. After this, it sends the pair (pks, pkr) for

the adversary.

Next, the adversary can make a polynomially bounded number of qs signing

queries. In each of them, it sends a message msgi and gets as response its signature

sigi produced with the secret key sks.

After all the queries, the adversary produces as output a pair composed of a

message msg′ and a designated signature attributed to the user of the public key pks

and designated to the user of public key pkr . We say that it wins the game if the message

msg′ was not used in a signing query and DSIG.DESIGNATEDVERIFY(pks, pkr , msg′, dsig′)
outputs accept.

We denote by DCMAadv [A, DSIG] the probability of a given adversary A wins

this game against the universal designated verifier signature scheme DSIG.

Definition 8 We say that an universal designated verifier signature DSIG is unforge-

able against chosen message attacks, if for all adversariesA, the value of the probability

DCMAadv [A, DSIG] is negligible.

Before proving the unforgeability of DSIG, recall that as discussed before present-

ing the algorithms DSIG.DESIGNATE, DSIG.DESIGNATEDVERIFY and DSIG.SIMULATE,

this construction uses parameters such that all polynomials with short euclidean norm

have multiplicative inverses in the polynomial ring R.

Chapter 5. Signatures and Chameleon Hash Functions 117

Notice that by definition, polynomials returned by HASH2 are polynomials whose

coefficients are always 0 or 1, therefore all of them have short euclidean norm and

have multiplicative inverses. If we subtract two results of HASH2, the result is a new

polynomial whose coefficients are 0, 1 or -1. All of them also have inverse multiplicative.

And with these coefficients, its inverse multiplicatives also have coefficients composed

only by 0, 1 or -1 with norm at most
√

n. This means that if c′′() and c′() are both the

result of HASH2, we have that ||c′′() – c′()|| <
√

n and ||(c′′() – c′())–1|| <
√

n.

In the security proof for DSIG we will use the random oracle model. Considering

that DSIG uses two hash functions: HASH1 (which is also used by the SIGGPV signa-

ture scheme) and HASH2, this means that we will use two random oracles denoted by

O1 and O2.

Theorem 26 If the chameleon hash CH is collision-resistant and SIGGPV is unforge-

able against adaptive chosen message attacks, then the designated verifier signature

DSIG is unforgeable against adaptive chosen message attacks.

Proof: We will create an efficient adversary B that breaks the unforgeability of

SIGGPV using an efficient adversary that forges a designated signature for DSIG. We

will first consider a specific adversary A1 and build an adversary B1 that uses A1. Next,

we will generalize this adversary with a new adversary A2 and show how we can adapt

and build B2 using A2. Finally, after some generalizations, we will have an adversary

A that encompass all possible adversaries and using it we will build the final version of

our adversary B.

First consider as A1 an adversary that creates a forgery for DSIG after per-

forming signing queries and random oracle queries both for O1 and for O2. Moreover,

adversary A1 will always create a forgery for some message msg′ using the result of

its last query for O2.

In this case, we can build adversary B1 in the following way:

• Initialization: Adversary B1 gets from its challenger the GPV public key pk com-

posed of a vector of polynomials as ∈ Rm
q as well as all other parameters (m, q,β)

associated with the Ring-SIS assumption. It runs the chameleon hash key gen-

eration algorithm to produce (eks, tks) to the signer. The signer public key is

pks = (pk , eks). The recipient public key pkr can be produced running the al-

gorithms SIGGPV .KEYGEN and CH.KEYGEN. After generating all these keys, it

initializes adversary A1 sending (pkr , pks).

• Random Oracle Query for O1: When adversary A1 queries for the result of

O1(msgi), adversary B1 forwards this query for its challenger and forwards the

received response to A1.

Chapter 5. Signatures and Chameleon Hash Functions 118

• Signing Query: The signing queries set by A1 also are forwarded to B1’s chal-

lenger and the response is sent again to A1.

• Random Oracle Query for O2: When adversary A1 queries for the result of

O2(ai , dgti , msgi), adversary B1 chooses the response ci () ∈ C uniformly at ran-

dom and sends it as response to A1. It also stores this query and its response to

send exactly the same value if the same query is sent again.

• First Finalization: In the end, adversary A1 outputs forgery (msg′, (c′(), z’, rnd ′)).
Adversary B1 store this result.

• Rewinding: Run adversary A1 a second time. Give it exactly the same input than

before. Provided that it uses the same source of randomness, its queries will be

the same. However, when it sends the last query for the second random oracle,

the one used in the forgery, adversary B1 sends a new random and uniform value

c′′().

• Second Finalization: We know that A1 always produces a forgery using the last

random oracle query that represents HASH2. We know that in both executions,

the last random oracle query was the same tuple (as, dgt ′, msg′). And both times

the adversary A1 produced a designated signature for the same message msg′.
However, with high probability, we sent different responses for this same random

oracle query. In the first execution of A1, we sent some random and uniform

value c′() and the second time our response was c′′(). This means that with high

probability, adversary A1 produced two different designated signatures during its

two executions: (c′(), z′, rnd ′) and (c′′(), z′′, rnd ′′).

Assuming that adversary A1 succeeds in creating the forgery both times, this

means by the definition of algorithm DSIG.DESIGNATEDVERIFY, we have that

CH.HASH(ekv , as · z’) – O1(msg′)c′(), rnd ′) = dgt ′ and that CH.HASH(ekv , as ·
z′′ – O1(msg′)c′′(), rnd ′′) = dgt ′. Therefore, either we found a collision in the

chameleon hash or in both cases the chameleon hash had exactly the same

input.

If we had a collision in this chameleon hash, adversary B1 halts. Otherwise,

if we did not found a collision, then this means that we can use the output

to produce a forgery for SIGGPV . In this case, we have that rnd = rnd ′′ and

as · z′ – O1(msg′)c′() = as · z” – O1(msg′)c′′(). Rewriting this equation we have

as ·(z′–z′′) = O1(msg′)(c′()–c′′()). As (c′()–c′′()) is a vector with a short euclidean

norm, it has a multiplicative inverse. And (z′ – z′′)(c′() – c′′())–1 is a valid GPV sig-

nature to msg′. Adversary B1 outputs msg′ and the computed GPV signature as

its output.

Chapter 5. Signatures and Chameleon Hash Functions 119

About the size of the output, notice that as ||z′|| < β/4
√

n and ||z′′|| < β/4
√

n.

Therefore (z’ – z”) has norm smaller than β/2
√

n. And multiplying by (c′() – c′′()) we are

multiplying by a value with norm smaller than
√

n. Therefore:

||(z’ – z”)(c′() – c′′())|| ≤ β/2

If A1 produced a forgery with correct euclidean norm bounds, then B1 can

produce a forgery in the GPV signature such that the forgery also has a sufficient short

euclidean norm as required by the SIGGPV signature.

The above adversary B1 succeeds if the following events happens:

1. Adversary A1 succeed the first time it is executed. This happens with probability

DCMAadv [A, DSIG].

2. Adversary A1 succeed the second time it is executed. This also happens with

probability DCMAadv [A, DSIG].

3. During both executions we sent different values c′() and c′′() as response for the

last query for O2. This happens with probability (1 – 1
2n).

4. The two forgeries do not produce a collision in the chameleon hash CH. The

probability of finding a collision can be modelled as the probability of some ad-

versary B′ finding a collision in CH (this adversary B′ can be built simulating the

interaction between our adversaries and its challenger). Therefore, the probability

of finding a collision instead of a possible forgery is given by CRadv [B′, CH].

Notice that the first three events are independent while the last event is not. It

is possible that adversary A1 succeeds only after finding a digest for CH such that it

can easily find preimages or collisions. Therefore, to produce a correct lower bound for

the probability of success for B1, we should compute the probability of producing in the

second finalization a forgery or a collision, and then we subtract from this the probability

of finding the collision:

CMAadvRO[B1, SIGGPV] ≥
(

1 –
1
2n

)

(

DCMAadvRO[A1, DSIG]
)2

– CRadv [B′, CH]

Next, let’s generalize more our adversary considering an adversary A2 that

creates a forgery in DSIG using the result of any query for O2, not necessarily the last

one. Let’s denote by qO2 the number of random oracle queries for O2. This means that

each of these queries have a probability 1/qO2 of being used in the forgery.

To interact with this adversary A1, we can build an adversary B2 that acts exactly

as adversary B1, except during the rewinding step. During this step, adversary B2 now

acts as below:

Chapter 5. Signatures and Chameleon Hash Functions 120

• Rewinding: Interact again with adversary A2 after the end of the first interaction.

Repeat until it sends again the query for O2(as, dgt ′, msg′) used in the first in-

teraction. Now instead of repeating exactly the same responses for O2 queries,

produce new values uniformly at random.

Now to adversary B2 succeed, adversary A2 needs to choose during the second

execution the same query chosen during the first execution to produce its forgery even

considering that we changed the response for this query and for the queries after it.

This scenario is more complex because the event in which the adversary choose

the same query twice not necessarily is independent from the event in which we sent

different responses fo the same chosen input. And this also is not necessarily inde-

pendent of the event in which the adversary A2 succeed when executing a second

time.

This scenario can be modelled by a known theorem called the general forking

lemma, present in (BELLARE; NEVEN, Greagory, 2006). The theorem description and

proof is present in Appendix A. According with the general forking lemma, the probability

that A2 succeeds in both executions, choose the same query twice and the response

for the chosen query differ in both executions is at least:

DCMAadvRO[A2, DSIG]

(

DCMAadvRO[A2, DSIG]
qO2

–
1
2n

)

In this case, adversary B2 either can compute a forgery for SIGGPV or can find

a collision in CH. The lower bound for the probability of creating a forgery in SIGGPV is

then:

CMAadvRO[B1, SIGGPV] ≥ DCMAadvRO[A2, DSIG]

(

DCMAadvRO[A2, DSIG]
qO2

–
1
2n

)

– CRadv [B′, CH]

Now let’s consider the most general adversary A. It can produce a forgery using

any queried result like A2, or it can produce a forgery without using directly any query

for O2. To produce our final adversary B, we use exactly the same construction than

adversary B2. Except that now adversary B, halts if in the first or in the second execution,

adversary A produce a forgery that do not use information got from some query for O2.

Notice that in a correct forgery (c(), z, rnd) we need to evaluate O2 and check if

the result is equal to c(). If this value never was queried, the probability of producing a

correct forgery is always exactly 1/2n because 2n is the number of different values in

the range of O2. Therefore, this is the probability that adversary A succeeds without

using a query to the second random oracle. In this scenario, to produce our final lower

bound for the success of B, we will subtract 1/2n from the probability of A succeed.

Chapter 5. Signatures and Chameleon Hash Functions 121

This subtraction removes the events in which adversary A succeed, without the help of

a query for O2:

CMAadvRO[B, SIGGPV] ≥
(

DCMAadvRO[A, DSIG] –
1
2n

)

·
(

DCMAadvRO[A, DSIG] – frac12n

qO2
–

1
2n

)

– CRadv [B′, CH]

To get a upper bond for DCMAadvRO[A2, DSIG], we can begin rewritting the

above inequation as:

CMAadvRO[B2, SIGGPV] + CRadv [B′, CH] ≥
(DCMAadvRO[A, DSIG] – 1

2n)2

qO2
–

DCMAadvRO[A, DSIG] – 1
2n

2n

Notice that independent of the value DCMAadvRO[A, DSIG], the subtracted

fraction in the right side of the above inequation is always a negligible value lesser or

equal to 1/2n. We can replace this subtracted fraction in the formula above by 1/2n. And

then, reorganizing the terms, we can conclude that for all adversaries A, we can build

adversaries B and B′ such that:

DCMAadvRO[A, DSIG] ≤
√

qO2(CMAadvRO[B2, SIGGPV] + CRadv [B′, CH] +
1
2

) +
1
2n

We know that 1/2n is negligible. If CH is collision-resistant and if SIGGPV is

secure against chosen message attacks, then both probabilities CMAadv [B2, SIGGPV]

and CRadv [B′, CH]) are negligible and and so is the sum of these three elements.

Multiplying a negligible value by the polynomially bounded qO2 we still get a negligible

value and this means that the square root above also result in a negligible value. This

means that all adversaries that can create forgeries using chosen message attacks

against DSIG can succeed only with negligible probability. �

Notice that we needed the rewinding argument to prove the security of this

signature. Therefore, the above bound is proven only for classical algorithms. The proof

and the bound are not valid against quantum algorithms, even if SIGGPV is secure

against such adversaries.

5.5 HOMOMORPHIC SIGNATURES WITH CHAMELEON HASH FUNCTIONS

The idea of using the homomorphism in some chameleon hash functions to

build homomorphic signatures appear in (GORBUNOV et al., 2015). A homomorphic

signature HSIG is defined over (M, S, C), being M the message space, S the signature

Chapter 5. Signatures and Chameleon Hash Functions 122

space and C a set of possible circuits that map Mk to M. The scheme is composed of

four algorithms:

• HSIG.KEYGEN(λ, k): Takes as input a security parameter λ and an integer k . It

returns a pair (pk , sk) where pk is a public key and sk is a secret key.

• HSIG.SIGN(sk , msg, i): Takes as input a secret key sk , message msg and an

index i ∈ {1, . . . , k }. It returns a signature sigi .

• HSIG.EVAL(pk , C, (msg1, sig1), . . . (msgk , sigk)): Takes as input a public key, the

specification of some circuit C that maps k messages (msg1, . . . , msgk) to a single

message msg′ and a list of k pairs of messages and signatures. The algorithm

outputs a new signature sig′.

• HSIG.VERIFY(pk , C, msg, sig): Takes as input a public key, the specification of

some circuit C ∈ C and a pair of message and signature. It outputs accept or

reject.

The scheme is correct if for all tuples of k messages, if we sign each one

with a different index, and if we pass them with their signatures ordered by their in-

dex to HSIG.EVAL with any circuit C ∈ C, we obtain a new signature sig′ such that

HSIG.VERIFY(pk , C(msg1, . . . , msgk), sig′) = accept.

In other words, if we sign the input for some circuit, we can derive the correct

signature for the output of the same circuit.

As an example, we can build the signature scheme HSIG defined over (M, S, C)

using the lattice-based chameleon hash CHHTDF from Subsection 4.2.3, defined over

(M, R, D). Assume that for any C ∈ C we can build some CR : Rk → R and CD : Dk → D

such that if for all i ∈ [1, k] we have CH.HASH(ek , msgi , rrndi), then:

CH.HASH(ek , C(msg1, . . . , msgk), CR(rnd1, . . . , rndk)) = CD(dgt1, . . . , dgtk)

Using the chameleon hash CHHTDF and the above functions, we can buld HSIG

in the following way:

• HSIG.KEYGEN(λ, k):

1. (ek , tk) $←− CHHTDF .KEYGEN(λ)

2. (D1, . . . , Dk) $←− Dk

3. pk ← (ek , (D1, . . . , Dk))

4. sk ← tk

5. return (pk , sk)

• HSIG.SIGN(sk , msg, i):

Chapter 5. Signatures and Chameleon Hash Functions 123

1. tk ← sk

2. returnCHHTDF .PREIMAGE(tk , msg, Vi)

• HSIG.EVAL(pk , C, (msg1, sig1), . . . , (msgk , sigk)):

1. (ek , (D1, . . . , Dk))← pk

2. Derive a corresponding CR from C

3. returnCR(sig1, . . . , sigk)

• HSIG.VERIFY(pk , C, msg, sig):

1. (ek , (D1, . . . , Dk))← pk

2. Derive a corresponding CD from C

3. if CHHTDF .HASH(ek , msg, sig) = CD(D1,
..., Dk):

4. return accept

5. else:

6. return reject

We still need to define what is the set C of algorithms supported in our homo-

morphic signature and how we derive suitable CR and CD given any circuit C. We will

define four different operations supported by algorithms in C:

• Addition of messages: Given two messages m1, m2 ∈ M, we can define the

addition circuit C(m1, m2) = m1 + m2 mod q. Given this circuit, we can define CR
and CD in the following way:

CR(R1, R2) = R1 + R2 mod q CD(D1, D2) = D1 + D2

The reason because it works is that if CHHTDF .HASH(ek , m1, R1) = D1 and if

CHHTDF .HASH(ek , m2, R2) = D2, then by the definition of CHHTDF :

CHHTDF .HASH(ek , m1 + m2, R1 + R2) = (m1 + m2)G + A(R1 + R2))

= m1G + m2G + AR+1 + AR2

= m1G + AR2 + m2G + AR2

= CHHTDF .HASH(ek , m1, R1)+ CHHTDF .HASH(ek , m2, R2)

Notice that if ||R1||∞ < β′ and if ||R2||∞ < β′, then ||R1 + R2||∞ < 2β′. Therefore,

to keep the result secure according with the SIS assumption, the number of

Chapter 5. Signatures and Chameleon Hash Functions 124

additions in the supported circuits depends on how short are the vectors produced

by MATRIXSAMPLEPRE and MATRIXSAMPLEDOM.

• Addition with constant: Given a message m1 and a constant c, if we have

C(m1) = m1 + c mod q, we can produce CR and CD in the following way:

CR(R1) = R1 CD(D1) = D1 + cG

This works because if CHHTDF .HASH(ek , m1, R1) = D1, then by the definition of

CHHTDF :

CHHTDF .HASH(ek , m1 + c, R1) = (m1 + c)G + AR1

= cG + m1G + AR1

= cG + CHHTDF .HASH(ek , m1, R1)

If ||R1||∞ < β′, then the resulting signature after this operation remains with the

same size β′. There is no limit in the number of additions with constant values

that we can have in circuits in set C.

• Multiplication of messages: Given two messages m1, m2 ∈ M, we can define

C(m1, m2) = m1m2 mod q. Given this algorithm, we can define CR and CD first

computing a matrix X with a short norm such that GX = CHHTDF .HASH(ek , m1, R1).

Then, we define the two derived algorithms as:

CR(R1, R2) = m2R1 + R2X mod q CD(D1, D2) = D2X mod q

The reason becausse it works is that if CHHTDF .HASH(ek , m1, R1) = D1 and

CHHTDF .HASH(ek , m2, R2) = D2, then:

Chapter 5. Signatures and Chameleon Hash Functions 125

CHHTDF .HASH(ek , m1m2, m2R1 + R2X) = m1m2G + A(m2R1 + R2X)

= m1m2G + m2AR1 + AR2X

= m2(m1G + AR1) + AR2X

= m2D1 + AR2X

= m2D1 + (AR2X + m2D1X – m2D1X)

= m2D1 + (AR2X + D2X – D2X)

= m2D1 + (AR2X + D2X – (m2GX + AR2X))

= m2D1 + (AR2X + D2X – (m2D1 + AR2X))

= D2X

In this case, if ||R1||∞ < β′ and if ||R2||∞ < β′, then ||m2R1 +R2X ||∞ < (|m2|+m)β.

This means that we can support multiplication between messages in M only if

one of the multiplicands is a sufficiently small value. Otherwise, the norm of the

randomness for CHHTDF that we use as a signature would be too big to be

considered valid and secure using the SIS assumption.

• Multiplication by constant: Given a message m1 and a constant c, if we have

C(m1) = c(m1) mod q, we can produce CR and CD first computing a matrix X ∈
Z

m×m
q such that GX = aG. After this, we can compute the two derived algorithms

as:

CR(R1) = R1X CD(D1) = D1X

This works because if CHHTDF .HASH(ek , m1, R1) = D1, then:

CHHTDF .HASH(ek , c(m1), R1X) = c(m1)G + AR1X

= c(m1)G + AR1X + D1X – D1X

= c(m1)G + AR1X + D1X – (m1G + AR1)X

= c(m1)G + AR1X + D1X – (m1GX + AR1X)

= c(m1)G + AR1X + D1X – (c(m1)G + AR1X)

= D1X

Here, if ||R1||∞ < β′, then ||R1X||∞ < mβ′.

Chapter 5. Signatures and Chameleon Hash Functions 126

Challenger

(pk , sk) $←−− HSIG.KeyGen(λ)

sig1
$←−− HSIGN.Sign(sk , msg, 1)

...
sigk

$←−− HSIG.SIGN(sk , msgk , k)

Adversary A

(λ, k) (λ, k)

(msg1, . . . , msgk)

pk , (sig1, . . . , sigk)

(C, msg′, sig′)

Figure 27 – Attack Game: One-Time Signature Security Against Weak Chosen Mes-
sage Attack for Homomorphic Signatures

Combining recursively the four kind of operations above we can build any kind of

algorithm that can be expressed using only addition and multiplication. The number of

operations that we can combine depends on how short are the euclidean norm of our

signatures.

Now we will define the security of a one-time homomorphic signature using the

following attack game:

Attack Game 17 (Weak unforgeability for one-time homomorphic signature against

chosen message attack). For a given homomorphic signature scheme HSIG defined

over (M, S, C), the adversary A and the challenger are initialized by the security param-

eter λ and a positive integer k.

The adversary first chooses a list with k target messages (msg1, . . . , msgk) ∈ Mk

and send to the challenger. The challenger runs (pk , sk) $←− HSIG.KEYGEN(λ, k), signs

each message msgj running HSIG.KEYGEN(sk , msgj , j) producing a signature sigj for

1 ≤ j ≤ k.

The challenger sends to the adversary the public key pk and the signature

tuple (sig1, . . . , sigk). After this, the challenger outputs some circuit C ∈ C, a message

msg′ ∈ M and a signature sig′ ∈ S.

We say that the adversary wins the game if HSIG.VERIFY(pk , C, msg′, sig′) =

accept and C(msg1, . . . , msgk) 6= msg′.
We denote by HCMAadv1-Weak [A, HSIG] the probability that a given adversary

A wins this game for a given homomorphic signature scheme HSIG.

With this security definition we can prove that our homomorphic signature HSIG

is secure.

Theorem 27 If the chameleon hash CHHTDF is collision-resistant, then the homomor-

phic signature HSIG defined is a secure one-time signature against weak chosen

message attack.

Chapter 5. Signatures and Chameleon Hash Functions 127

Proof: Assuming that we have an adversary A that forges a homomorphic sig-

nature in the above attack game, we will build an adversary B that finds collisions for

the chameleon hash CHHTDF . Our adversary B works as below:

• Initialization: Adversary B gets from its challenger a key ek for the chameleon

hash CHHTDF . Then it initializes A with the security parameter λ and any arbitrary

k . Adversary A send a list of k messages (m1, . . . , mk).

Now B chooses k random matrices (R1, . . . , Rk) using the previously seen algo-

rithm MATRIXSAMPLEDOM. With these values, it computes (D1, . . . , Dk) as the

resulting digests for:

CHHTDF .HASH(ek , m1, R1), . . . , CHHTDF .HASH(ek , mk , Rk)

. Finally, it sends (ek , (D1, . . . , Dk)) to A as the homomorphic signature public key

and also sends (R1, . . . , Rk) as the signature for the messages.

• Finalization: Adversary A outputs (C′, m′, R’). If this is an accepted signature,

then CHHTDF .EK, M’, R’ = CD(D1, . . . , Dk).

If the adversary A wins, then m′ 6= C(m1, . . . , mk). This means that B can produce

a collision in the chameleon hash using the pairs (C(m1, . . . , mk), CR(R1, . . . , Rk))

and (m′, R′).

The adversary B always succeed when A succeed. Therefore, we have that for

all adversaries A, we can build adversary B such that:

HCMAadv1-Weak [A, HSIG] ≤ CRadv [B, CHHTDF]

By assumption, our chameleon hash is collision-resistant, therefore our signature

is secure when used a single time against a weak chosen-message attack. �

One of the problems of this basic construction is the weak security definition.

However, this can be improved with some modifications. In (GORBUNOV et al., 2015)

one suggestion is improving the signature with the same technique presented in from

Subsection 3.4.3 or in Subsection 4.3.1 to increase the security in a signature scheme.

The same methods that transform a signature secure against generic chosen message

attacks or random message attack in one secure against adaptive chosen message

attacks can also be employed here to transform a signature with a weak security in a

one-time signature in a standard security definition, where the adversary knows the

public key when it sends the signing query.

However, as we are using an homomorphic signature, the chameleon hash used

to increase the signature security also must be an homomorphic chameleon hash. If

we are already using a homomorphic chameleon hash to create the signature HSIG,

Chapter 5. Signatures and Chameleon Hash Functions 128

then this means using the chameleon hash twice. The first chameleon hash must have

as digest space a subset of the message space of HSIG.

Assuming that we already have the one-time homomorphic signature HSIG with

a weak security, we can create an one-time homomorphic signature using the standard

security definition using the homomorphic chameleon hash CH as below:

• HSIG′.KEYGEN(λ, k):

1. (ek , tk) $←− CH.KEYGEN(λ)

2. (pk , sk) $←− HSIG.KEYGEN(λ, k)

3. pk ′ ← (ek , pk)

4. sk ′ ← (ek , sk)

5. return (pk ′, sk ′)

• HSIG′.SIGN(sk ′, msg, i):

1. (ek , sk)← sk ′

2. rnd
$←− R

3. dgt ← CH.HASH(ek , msg, rnd)

4. sig
$←− HSIG.SIGN(sk , dgt , i)

5. sig′ ← (dgt , rnd , sig)

6. return sig′

• HSIG′.EVAL(pk ′, C, (msg1, sig′1), . . . , (msgk , sig′k)):

1. (ek , pk)← pk ′

2. From C, derive CR and CD for CH

3. for i in {1, . . . , k }:

4. (dgti , rndi , sigi)← sig′i

5. dgt ′ ← CD(dgt1, . . . , dgtk)

6. rnd ′ ← CR(rnd1, . . . , rndk)

7. sig′ ← HSIG.EVAL(pk , (dgt1, sig1), . . . , (dgtk , sigk))

8. return (dgt ′, rnd ′, sig′)

• HSIG′.VERIFY(pk ′, C, msg, (dgt , rnd , sig)):

1. (ek , pk)← pk ′

2. if CH.HASH(ek , msg, rnd) 6= dgt :

Chapter 5. Signatures and Chameleon Hash Functions 129

3. return reject

4. return HSIG.VERIFY(pk , dgt , sig)

One problem for our construction using CHHTDF is that using the chameleon

hash twice, the norm of our signature could increase more, depending of how is defined

the chameleon hash CH. In this case, the cost of implementing this more rigorous

security model is a decrease in the number of possible circuits compatible with the

signature.

Theorem 28 If the homomorphic signature HSIG defined over (M, S, C) is secure as a

one-time signature against chosen message attack in the weak security model and CH

is a collision-resistant homomorphic chameleon hash with preimage uniformity defined

over (M ′, R, D) with D ⊆ M, then the signature HSIG′ is secure as a one-time signature

against a chosen message attack in the standard security model.

Proof: Let’s assume that we have an adversary A that breaks the security of

HSIG′ with a single chosen message attack in the standard security. We will use it to

build an adversary B that breaks the security of HSIG in a chosen message attack in

the weak security.

Adversary B works as below:

• Initialization: Adversary B is initialized with (λ, k). First it chooses a tuple of

digests (dgt1, . . . , dgtk) with elements chosen uniformly at random from D and

sends to its challenger. It gets as response a public key pk and a list of signatures

(sig1, . . . , sigk) for each sent digest. It also produces a pair of keys (ek , tk) for the

homomorphic chameleon hash used in the scheme and initializes adversary A
sending the public key (ek , pk).

• Query: Knowing the public key, adversaryA sends a query (msg1, . . . , msgk). For

each message msgi in this tuple, adversary B produces a corresponding rndi run-

ning CH.PREIMAGE(tk , msgi , dgti). Finally, B sends as response the signature for

each message msgi as (dgti , rndi , sigi). If the chameleon hash has the preimage

uniformity property, then each produced rndi has the same probability distribution

as a randomness chosen uniformly at random as required.

• Finalization: After the single query, adversary A produces a possible forgery

(C, msg′, (dgt ′, rnd ′, sig′)). If the forgery is accepted, then C(msg1, . . . , mskk) 6=
msg′. If CD(dgt1, . . . , dgtk) = dgt ′, this means that we found a collision in the

chameleon hash. If not, then adversary B outputs as forgery the tuple (C, dgt ′, sig′).

The lower bound for the success of B is given by the probability of A winning its

attack game minus the probability that it wins finding a collision in CH. The probability

Chapter 5. Signatures and Chameleon Hash Functions 130

of finding a collision in CH can be modelled as CRadv [B′CH] for some adversary B′.
Therefore, the lower bound is:

HCMAadv1-Weak [B, HSIG] ≥ HCMAadv1[A, HSIG′] – CRadv [B′, CH]

Rewriting this as an upper bound for adversary A, we conclude that for all

adversaries A, we can build adversaries B and B′ such that:

HCMAadv1[A, HSIG′] ≤ HCMAadv1-Weak [B, HSIG] + CRadv [B′, CH]

As by our assumptions the right side of this inequation is negligible, this means

that no adversary can forge signatures for the homomorphic one-time signature HSIG′,
except with negligible probability. �

To make possible using this signature more than once without the need of regen-

erating new keys, there are some alternatives proposed like combining this construction

with labelled signatures or labelled chameleon hash functions. These techniques are

proposed both in (GORBUNOV et al., 2015) and in (XIE et al., 2017). However, such

techniques are outside the scope of this work.

131

6 POST-QUANTUM SIGNATURE WITH PREIMAGE CHAMELEON HASHING

In this chapter we present our novel signature scheme, that unlike the previous

signatures described in the last chapter, achieves unforgeability under adaptive chosen

message attacks against both classical and post-quantum adversaries. We let the

adversary performs a polynomially bounded number of queries. The construction is

secure provided that the Ring-SIS assumption is true (Subsection 2.2.4).

Other than this, the construction also has an additional interesting property. It

allows the signer to encode in its signature custom and non-random information that

can be checked during the signature verification.

This chapter is organized as follows:

• In section 6.1, we define preimage signatures, a signature scheme where the

signer can store custom and non-random data in pairs composed of a message

and a valid signature.

• In section 6.2, we provide a construction for our preimage signature using a

suitable chameleon hash. We also show its security proof.

• In section 6.3, we present results about the implementation of the scheme.

6.1 PREIMAGE SIGNATURES

We define a preimage signature PSIG as a signature scheme defined over

sets (M, S, D) where M is the message space, S is the signature space and D is the

data space. The scheme is composed of four algorithms (PSIG.KEYGEN, PSIG.SIGN,

PSIG.VERIFY, PSIG.EXTRACT). In a preimage signature we have the following proper-

ties:

• PSIG.KEYGEN is a probabilistic algorithm that takes as input (λ, dt) where λ is

the security parameter and dt ∈ D is any arbitrary data. It outputs a pair of keys

(pk , sk) like in a regular signature.

• PSIG.SIGN is a probabilistic algorithm that takes as input (sk , msg) where sk is

the secret key and msg ∈ M. It outputs a signature sig ∈ S.

• PSIG.VERIFY is a deterministic algorithm that takes as input (pk , msg, sig) where

pk is a public key, msg ∈ M, sig ∈ S. It outputs accept or reject. It outputs

accept only if the signature sig was generated for the corresponding message

msg.

• PSIG.EXTRACT is a deterministic algorithm that takes as input (pk , msg, sig) like

the PSIG.VERIFY algorithm. If the signature sig was generated for the message

Chapter 6. Post-quantum signature with preimage chameleon hashing 132

msg using the corresponding secret key sk , it outputs dt ∈ D chosen during key

generation.

The security model for this kind of signature must take in consideration that the

data dt ∈ D chosen during key generation is non-random and probably has some

underlying meaning. To model this, we will define the security of this signature using

the usual adaptive chosen message attack game, but we will let the adversary choose

any desired dt before the key generation. Our attack game is given below:

Attack Game 18 (Unforgeability against adaptive chosen message attacks for

preimage signatures). For a preimage signature scheme PSIG defined over (M, S, D),

both an adversary A and the challenger are initialized by a security parameter λ.

Next, the adversary A choose some dt ∈ D and sends to the challenger.

The challenger produces a pair of keys (pk , sk) with PSIG.KEYGEN(λ, dt) and

sends pk to the adversary.

The adversary can make a polynomially bounded number of adaptive signing

queries sending in each of them a message msgi to the challenger. The challenger

computes a signature sigi computing PSIG.SIGN(sk , msgi) and sends it to the adver-

sary.

In the end the adversary outputs a forgery (msg′, sig′). We say that the adversary

wins the game if (msg′, sig′) 6= (msgi , sigi) for all pairs (msgi , sigi) produced during sign-

ing queries and if SIG.VERIFY(pk , msg′, sig′) = accept or if SIG.EXTRACT(pk , msg′, sig′) =

dt.

We denote by PCMAadv [A, PSIG] the probability of some adversary A winning

this attack game against a challenger using the preimage signature PSIG. We say that

a preimage signature PSIG is unforgeable against adaptive chosen message attacks if

for all efficient adversaries A, the value of PCMAadv [A, PSIG] is negligible.

Such signature scheme can have the following applications:

• More user-friendly software for signature verification: a signer could store in its

signatures some dt that represents an image of a handwritten signature of the

signer picture. Such image can be presented in the screen if the signature is

correctly verified.

• Linking digital signatures with biometric data: the data dt encoded in a user signa-

ture could represent some biometric data about him. For example, its fingerprint.

• Alternative signature verification: Instead of using the PSIG.VERIFY algorithm, in

some contexts, the PSIG.EXTRACT algorithm could be used to check the validity

of a signature. The verifier could extract using EXTRACT(pk , msg, sign) some fixed

Chapter 6. Post-quantum signature with preimage chameleon hashing 133

Challenger

(pk , sk) $←−− PSIG.KEYGEN(λ, dt)

...

sigi
$←−− PSIG.SIGN(sk , msgi)

...

Adversary A
λ λ

dt

pk

...
msgi

sigi

...

(msg′, sig′)

Figure 28 – Attack Game: Unforgeability against adaptive chosen message attack for
preimage signatures.

information about the signer, which, if valid and correct, attests the validity of the

signature.

6.2 CONSTRUCTION USING PREIMAGE CHAMELEON HASH FUNCTIONS

We can build a preimage signature using a construction very similar to the one-

time signature scheme presented in Section 5.1. We just replace the regular chameleon

hash with a preimage chameleon hash to let the user choose the encoded data during

key generation. To create a preimage signature defined over sets (M, S, D), we use a

preimage chameleon hash defined over the same sets (M, S, D):

• PSIG.KEYGEN(λ, dt):

1. (ek , tk) $←− CH.KEYGEN(λ)

2. pk ← (ek , dt)

3. sk ← (tk , dt)

4. return (pk , sk)

• PSIG.SIGN(sk , msg):

1. (tk , dt)← sk

2. return CH.PREIMAGE(tk , msg, dt)

• PSIG.EXTRACT(pk , msg, sig):

1. (ek , dt)← pk

2. return CH.HASH(ek , msg, sig)

Chapter 6. Post-quantum signature with preimage chameleon hashing 134

• SIG+.VERIFY(pk , msg, sig):

1. (ek , dt)← pk

2. if CH.HASH(ek , msg, sig) = dt :

3. return accept

4. else:

5. return reject

However, we cannot use any generic chameleon hash to build a secure preimage

signature. As seen in Section 5.1, with a generic chameleon hash we could prove the

signature unforgeability using only a very weak security model. The main problem is

that most versions of chameleon hash not necessarily remain collision-resistant if some

sample collisions are revealed. As in this construction we can reveal new collisions in

CH each time a new signature is revealed, there are chameleon hash functions for

which this construction becomes completely insecure.

To produce a preimage signature unforgeable against adaptive chosen message

attacks, that also can have its keys used more than once and is secure in a post-

quantum model, we will propose a specific construction.

Our chameleon hash will be based on the CHSIS chameleon hash defined in

Subsection 4.2.2.4. The greatest difference is that we will use the Ring-SIS assumption

instead of the SIS assumption. The construction will then produce smaller keys and we

will be able to stress better its similarities with the signature SIGGPV defined in Section

5.4.2.

We will denote this chameleon hash construction by CHRSIS and it is defined

over sets (M, R′, D) where R′ is the subset of elements from the modular polynomial

ring R with short euclidean norm (for using in the preimage signature we can assume

that their euclidean norm is smaller than β/2) and D is the modular polynomial ring Rq

whose coefficients are always modulo q. The construction also uses a collision-resistant

hash function HASH : M → D.

We define CHRSIS algorithms as:

• CHRSIS.KEYGEN(λ):

1. (Rq, m, q,β)← RSISPARAMS(λ)

2. (a, T) $←− RINGTRAPGEN(Rq, m, n, q,D)

3. ek ← (Rq, m, q,β, a)

4. tk ← (Rq, m, q,β, a, T)

5. return (ek , tk)

• CHRSIS.HASH(ek , msg, r):

Chapter 6. Post-quantum signature with preimage chameleon hashing 135

1. (Rq, m, q,β, a)← ek

2. return HASH(msg) + ar

• CHRSIS.PREIMAGE(tk , msg, y ()):

1. (Rq, m, q,β, a, T)← tk

2. return RINGSAMPLEPREβ/2(Rq, m, q, a, T, y () – HASH(msg))

In the proof for our preimage signature, we will model our hash function HASH

as a random oracle.

We also will make another requirement about the use of this chameleon hash in

the context of preimage signatures: the algorithm CH.PREIMAGE should always return

the same value if given the same input. This can be achieved, for example, deriving the

probabilistic decisions in RINGSAMPLEPRE from bits produced by a pseudo-random

function fed with a fixed key chosen during key generation and with RINGSAMPLEPRE

input.

Now we will prove the security of our preimage signature PSIG assuming that is

is built using chameleon hash CHRSIS:

Theorem 29 If the Ring-SIS assumption is true and if the algorithm RINGTRAPGEN (de-

fined in Subsection 5.4.1) produces vectors indistinguishable from random and uniform,

then the signature scheme PSIG defined above using the chameleon hash CHRSIS is

secure against adaptive chosen message attacks in the random oracle model.

Proof: This proof is a generalization of the proof for the SIGGPV signature pre-

sented at Subsection 5.4.2.

We will show that if we have an adversary A that can forge a signature for PSIG,

we can build an adversary B that wins the attack game for the Ring-SIS assumption.

Our adversary B is defined as:

• Initialization: Adversary B takes as input the random and uniform vector a and

the Ring-SIS public parameters (Rq, m, q,β). Next, it initializes adversary A with

the security parameter. AdversaryA outputs a data to be encoded in the signature

d() ∈ Rq. The adversary B produces the public key using the chameleon hash key

ek = (Rq, m, q,β, a) and the polynomial d(). It sends pk = (ek , dt) to adversary A.

• Random Oracle Query: For each msgi queried, if it is a message never queried

before, we will first choose randomly a signature ri using RINGSAMPLEDOM.

Knowing its signature, we deduce its correct random oracle output computing

d() – a · ri . Notice that by definition of algorithm RINGSAMPLEDOM, as a is random

and uniform, the result of a · ri is also indistinguishable from a value chosen uni-

formly at random. Therefore, this computed result is a valid response for a random

Chapter 6. Post-quantum signature with preimage chameleon hashing 136

oracle query. We memorize this random oracle response and the signature for

message msgi . If this message is queried again we will send the same response.

• Signing Query: When adversary A send a signing query msgi , adversary B
checks if this message was queried before in a random oracle query or signing

query. If so, it already has a memorized signature ri associated with it. Adversary

B sends this ri as response.

If msgi never was queried before, adversary B produces a new random signature

ri running RINGSAMPLEDOM, memorizes that this signature is associated with

msgi and sends ri as response.

• Finalization: In the end adversary A produces a forgery (msg′, r’).

If msg′ never was used in a random oracle or signing query, adversary B simulates

a random oracle query for msg′ as described above. Doing so, now we have a

signature r” associated with msg′ that was produced by this random oracle query

simulation. If msg′ had already been sent in a random oracle or signing query,

this is not necessary as we already have a signature r” associated with msg′ that

was produced by a query.

This means that:

HASH(msg′) + ar’ = HASH(msg′) + ar” = d()

And:

a(r’ – r”) = 0

This means that if r’ 6= r”, then B can produce a correct output for the Ring-SIS

attack game with (r’ – r”).

Like in the proof for the SIGGPV signature scheme, we can assume that each

message can have many different signatures and no signature has a probability greater

than 1/2 of being chosen by our algorithm RINGSAMPLEPRE. Therefore, we have a

probability of at least 1/2 that r’ 6= r”.

The probability of A producing a correct forgery in this scenario is given by

PCMAadvRO[A, PSIG] minus the probability that it does so exploring some weak-

ness in the algorithm RINGTRAPGEN (which as usual we model as the probability

WPRFadv [B′, PRFRINGTRAPGEN]).

Our lower bound for the probability that B finds a correct solution in the Ring-SIS

attack game is given by:

RSISadv [B] ≥ 1
2

PCMAadvRO[A, PSIG] – WPRFadv [B′, PRFTRAPGEN]

Chapter 6. Post-quantum signature with preimage chameleon hashing 137

Rewriting this inequation, we conclude that for all adversaries A that can create

a forgery for our signature SIG+, we can create adversaries B and B′ such that:

PCMAadvRO[A, PSIG] ≤ 2(RSISadv [B] + WPRFadv [B′, PRFRINGTRAPGEN])

By our assumptions, the Ring-SIS is a hard problem and RINGTRAPGEN pro-

duces vectors a computationally indistinguishable than random and uniform vectors.

Therefore, no adversary can create forgeries in our signature, except with negligible

probability.

Finally, notice that both r’ and r” obtained by our adversary B are values with

euclidean norm smaller than β/2. Therefore, the output (r’–r”) produced by B has norm

smaller than β as required by the Ring-SIS assumption. �

Like in the proof for the GPV signature, here adversary B treated each query

homogeneously. Except when checking if a query was already sent in the past to

recover the same response, adversary B ignores the historic of previous events when

computing its responses, do not treat any query differently and do not use values sent

in a query to deduce something about the incoming forgery. It also does not execute

adversary A more than once expecting the same outputs while feeding it with the same

input.

This means that this security proof can be adapted to post-quantum scenarios.

Our proposed signature is also secure against quantum adversaries.

6.3 IMPLEMENTATION, RESULTS AND DISCUSSION

To evaluate the performance of our proposed construction, we implemented

the chameleon hash CHRSIS in the form of a preimage signature PSIG using the li-

brary by (ROHLOFF et al., 2020) implementing the ring-based construction from (EL

BANSARKHANI; BUCHMANN, 2014) using the same method to derive the key from

the trapdoor. The polynomial ring was Rq with q having k = 27 bits. The same param-

eters were used both for the GPV signature and our construction. We choose these

parameters to achieve about 100 bits of security according with suggestions from (EL

BANSARKHANI; BUCHMANN, 2014), which used the framework from (RÜCKERT;

SCHNEIDER, 2010).

To compare the execution time, we measured in the same machine the follow-

ing signatures: RSA and ECDSA from OpenSSL 1.1.1 library, CRYSTALS-Dilithium

(proposed in (DUCAS, Léo et al., 2018)) and FALCON (implementation proposed in

(PORNIN, 2019)) from code submitted the NIST standardization project and a BLISS-B

(described in (DUCAS, Léo, 2014)) implementation from strongSwan library version

5.8.4 (STRONGSWAN, 2020). The ECDSA used the curve B-233.

All tests were run in a computer with a Dual-Core Intel Pentium B980 2.40GHz

(without AVX2 support) with 4GB of memory and running Ubuntu 18.04.4. While mea-

Chapter 6. Post-quantum signature with preimage chameleon hashing 138

suring running time, the tests were performed 1000 times, and the mean was extracted.

Given the measured standard deviation, we computed the error margin given an interval

of confidence of 95%, assuming a normal distribution. For all schemes, the signature

time also includes the time to perform a hash on the messages to be signed. All of them

use SHA256, except for CRYSTALS-Dilithium and FALCON, which used SHAKE256.

The code used to measure running times and sizes can be checked in (ASTRIZI, 2020).

Table 1 – Running time comparison [ms]. The confidence interval is 95%.

Scheme
Secu-
rity

level
KEYGEN SIGN/PREIMAGE VERIFY/HASH

RSA 2048 112 160.541 ± 6.540 2.620 ± 0.001 0.053 ± 0.000
ECDSA 233 112 0.661 ± 0.009 0.689 ± 0.001 1.338 ± 0.002
Dilithium
1280×1024

128 0.475 ± 0.023 1.719 ± 0.076 0.453 ± 0.000

BLISS-B I 128 916.577 ±14.900 2.448 ± 0.221 0.224 ± 0.020
FALCON-512 ≈100 15.088 ± 0.542 0.629 ± 0.018 0.079 ± 0.000
GPV (n=512, k=27) ≈100 5.521 ± 0.026 32.005 ± 0.033 0.241 ± 0.008
CHRSIS (n = 512, k =
27)

≈100 5.520 ± 0.021 32.232 ± 0.070 0.244 ± 0.008

Table 2 – Size comparison [bytes].

Scheme Digest σ pk sk

RSA 2048 - 256 259 512
ECDSA 233 - 58 31 29

Dilithium 1280×1,024 - 2,829 1,472 3,504
BLISS-B I - 732 933 1182

FALCON-512 - 651 897 1281
GPV (n = 512, k = 27) - 61,440 61,440 114,688

CHRSIS (n = 512, k = 27) 2048 61,440 61,440 114,688

The results of the running times are summarized in Table 1. The sizes for signa-

tures, keys, and chameleon hash digests are summarized in Table 2. As expected, our

construction has comparable performance and the same key size as a GPV signature.

The tests and implementation prove the viability of the construction. Despite

slower and with bigger keys than classical and more modern post-quantum signature

schemes, our presented construction is, at the present moment, the only one known

to implement post-quantum digital signature securely based on preimage chameleon

hash. The bigger keys and slower signature usually is not a problem when using the

signature scheme in modern computers, but can be a limiting factor when using this in

embedded devices, where there is less storage and the battery consumption is a more

critical concern. Finding new preimage chameleon hash schemes with performance on

par with modern signature schemes is an open research problem.

139

7 CONCLUSION

In this dissertation, we analyzed some constructions of chameleon hash func-

tions, their properties and especially previous applications of chameleon hash functions

to build signature schemes. We ended the dissertation with a new proposal of signature

construction using chameleon hash functions. The new construction, which we call a

preimage signature, allows the signer to encode in its signature chosen information to

be revealed during verification, a property that is novel to the best of our knowledge.

The signature security comes from the security properties present in the chameleon

hash function.

A difficulty that was overcome is keeping the chameleon hash secure, even if

collisions are revealed and publicized during its usage. Even if an attacker learns some

collisions seeing new signed messages, she cannot use this knowledge to produce a

new forgery in our signature scheme, except with negligible probability. Our security

proof is in the random oracle model and based on the Ring-SIS hardness assumption.

To the best of our knowledge, this is the first signature scheme based on

chameleon hash functions where at the same time we can reutilize the same keys

indefinitely, we can allow the adversary to choose messages adaptively to be signed

without compromising the security, and this is guaranteed by a security proof that also

can be adapted to post-quantum adversaries.

As the resulting signature scheme can be seen as a generalization of the GPV

signature, we implemented a prototype adapting code from a C++ library that supported

that signature. We also compared the execution times to other signatures, both classical

and post-quantum. The comparison shows that the new signature algorithm is viable;

that is, it can be used in practice to sign electronic documents.

The more interesting property of our signature is that the signature is part of a

hash preimage of any value chosen by the signer during key creation. This opens new

possibilities, like creating signatures where a signed message is verified comparing its

hash after concatenated with the signature to check if the result is a given value with

some special interest, for example, a representation of a handwritten signature. Such

an approach can improve the user experience in terms of trust in the signature, not only

regarding cryptographic verification, but also visual verification by recipients.

7.1 FURTHER WORKS

In order to use this new preimage signature scheme, further works include finding

more efficient constructions of preimage signatures. As shown in our table comparing

execution times, our preimage signature was running slower than the more recent post-

quantum signatures. The signature FALCON-512 also was based on the GPV signature,

but it implements much more optimizations and runs orders of magnitute faster than

Chapter 7. Conclusion 140

our construction. This shows that we still have lots of room for improvements, we can

study how to apply optimizations and techniques from FALCON-512, like the usage of

the class of NTRU lattices.

As cryptographic assumptions like the Ring-SIS or SIS assumption are less

studied and less used for cryptographic purposes compared to more used assumptions

like the discrete logarithm, it is desirable to have other constructions of chameleon

hash functions based in other assumptions believed to be secure against post-quantum

adversaries. Having these other constructions, we still could use preimage signatures

even if some weakness is found in the current Ring-SIS assumption.

Finally, our security model and proposed scheme can be improved and gener-

alized. It would be useful if we could find a construction and security proof where we

can ensure the security even if the signer can encode not only one, but many different

chosen values.

It should also be interesting if we can ensure the security letting the adversary

not only choose the target encoded data, but also define a list of sufficiently similar data,

letting the adversary win the game not only by producing a signature with the chosen

data, but also by producing a signature that encodes a sufficiently similar data. This

could be useful when linking the preimage signature with biometric data, where some

variation can be expected.

141

REFERENCES

AJTAI, Miklós. Generating hard instances of lattice problems. In: PROCEEDINGS of

the twenty-eigth annual ACM symposium on Theory of computing. [S.l.: s.n.], 1996.

P. 99–108.

ALAMATI, Navid; MONTGOMERY, Hart; PATRANABIS, Sikhar; ROY, Arnab. Minicrypt

primitives with algebraic structure and applications. In: SPRINGER. ANNUAL

International Conference on the Theory and Applications of Cryptographic Techniques.

[S.l.: s.n.], 2019. P. 55–82.

AMOS, Ryan; GEORGIOU, Marios; KIAYIAS, Aggelos; ZHANDRY, Mark. One-shot

signatures and applications to hybrid quantum/classical authentication. In:

PROCEEDINGS of the 52nd Annual ACM SIGACT Symposium on Theory of

Computing. [S.l.: s.n.], 2020. P. 255–268.

ASTRIZI, Thiago L. Repository with preimage chameleon hash test source code.

[S.l.: s.n.], Sept. 2020.

https://github.com/thiagoharry/test_preimage_chameleon_hash.

ATENIESE, Giuseppe; CHOU, Daniel H; DE MEDEIROS, Breno; TSUDIK, Gene.

Sanitizable signatures. In: SPRINGER. EUROPEAN Symposium on Research in

Computer Security. [S.l.: s.n.], 2005. P. 159–177.

ATENIESE, Giuseppe; MEDEIROS, Breno de. On the key exposure problem in

chameleon hashes. In: SPRINGER. INTERNATIONAL Conference on Security in

Communication Networks. [S.l.: s.n.], 2004. P. 165–179.

BACH, Eric. Discrete logarithms and factoring. University of California at Berkeley,

1984.

BELLARE, Mihir; NEVEN, Greagory. Multi-signatures in the plain public-key model and

a general forking lemma. In: PROCEEDINGS of the 13th ACM conference on

Computer and communications security. [S.l.: s.n.], 2006. P. 390–399.

BELLARE, Mihir; RISTOV, Todor. A characterization of chameleon hash functions and

new, efficient designs. Journal of cryptology, Springer, v. 27, n. 4, p. 799–823, 2014.

REFERENCES 142

BELLARE, Mihir; ROGAWAY, Phillip. Random oracles are practical: A paradigm for

designing efficient protocols. In: PROCEEDINGS of the 1st ACM Conference on

Computer and Communications Security. [S.l.: s.n.], 1993. P. 62–73.

BONEH, Dan; DAGDELEN, Özgür; FISCHLIN, Marc; LEHMANN, Anja;

SCHAFFNER, Christian; ZHANDRY, Mark. Random oracles in a quantum world. In:

SPRINGER. INTERNATIONAL conference on the theory and application of cryptology

and information security. [S.l.: s.n.], 2011. P. 41–69.

BONEH, Dan; SHOUP, Victor. A graduate course in applied cryptography. version

0.5. [S.l.: s.n.], 2020. https://cryptobook.us.

BOUDOT, F.; GAUDRY, P.; GUILLEVIC, A.; HENINGER, N.; THOMÉ, E.;

ZIMMERMANN, P. Comparing the difficulty of factorization and discrete

logarithm: a 240-digit experiment. [S.l.: s.n.], 2020. Cryptology ePrint Archive,

Report 2020/697. https://eprint.iacr.org/2020/697.

BRAKERSKI, Zvika; KALAI, Yael Tauman. A Framework for Efficient Signatures, Ring

Signatures and Identity Based Encryption in the Standard Model. IACR Cryptol.

ePrint Arch., v. 2010, p. 86, 2010.

BRZUSKA, Christina; FISCHLIN, Marc; FREUDENREICH, Tobias; LEHMANN, Anja;

PAGE, Marcus; SCHELBERT, Jakob; SCHRÖDER, Dominique; VOLK, Florian.

Security of sanitizable signatures revisited. In: SPRINGER. INTERNATIONAL

Workshop on Public Key Cryptography. [S.l.: s.n.], 2009. P. 317–336.

CASH, David; HOFHEINZ, Dennis; KILTZ, Eike; PEIKERT, Chris. Bonsai trees, or how

to delegate a lattice basis. In: SPRINGER. ANNUAL international conference on the

theory and applications of cryptographic techniques. [S.l.: s.n.], 2010. P. 523–552.

DAMGÅRD, Ivan Bjerre. Collision free hash functions and public key signature

schemes. In: SPRINGER. WORKSHOP on the Theory and Application of

Cryptograpjic Techniques. [S.l.: s.n.], 1987. P. 203–216.

DI PIETRO, Roberto; DURANTE, Antonio; MANCINI, Luigi; PATIL, Vishwas.

Addressing the shortcomings of one-way chains. In: PROCEEDINGS of the 2006 ACM

Symposium on Information, computer and communications security. [S.l.: s.n.], 2006.

P. 289–296.

REFERENCES 143

DUCAS, Léo. Accelerating Bliss: the geometry of ternary polynomials. IACR Cryptol.

ePrint Arch., v. 2014, p. 874, 2014.

DUCAS, Léo; KILTZ, Eike; LEPOINT, Tancrède; LYUBASHEVSKY, Vadim;

SCHWABE, Peter; SEILER, Gregor; STEHLÉ, Damien. CRYSTALS-Dilithium: A

Lattice-Based Digital Signature Scheme. IACR Transactions on Cryptographic

Hardware and Embedded Systems, v. 2018, n. 1, p. 238–268, Feb. 2018. DOI:

10.13154/tches.v2018.i1.238-268. Available from:

https://tches.iacr.org/index.php/TCHES/article/view/839.

EATON, Edward. Signature schemes in the quantum random-oracle model. 2017.

MA thesis – University of Waterloo.

EL BANSARKHANI, Rachid; BUCHMANN, Johannes. Improvement and Efficient

Implementation of a Lattice-Based Signature Scheme. In: SELECTED Areas in

Cryptography – SAC 2013, LNCS 8282. Berlin, Heidelberg: Springer, 2014. P. 48–67.

GARG, Sanjam; PANDEY, Omkant; SRINIVASAN, Akshayaram; ZHANDRY, Mark.

Breaking the Sub-Exponential Barrier in Obfustopia. [S.l.: s.n.], 2016. Cryptology

ePrint Archive, Report 2016/102. https://eprint.iacr.org/2016/102.

GENNARO, Rosario; HALEVI, Shai; RABIN, Tal. Secure hash-and-sign signatures

without the random oracle. In: SPRINGER. INTERNATIONAL Conference on the

Theory and Applications of Cryptographic Techniques. [S.l.: s.n.], 1999. P. 123–139.

GENTRY, Craig; PEIKERT, Chris; VAIKUNTANATHAN. Trapdoors for hard lattices and

new cryptographic constructions. In: PROCEEDINGS of the fortieth annual ACM

symposium on Theory of computing. [S.l.: s.n.], 2008. P. 197–206.

GOLDWASSER, Shafi; MICALI, Silvio; RIVEST, Ronald L. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM Journal on computing,

SIAM, v. 17, n. 2, p. 281–308, 1988.

GORBUNOV, Sergey; VAIKUNTANATHAN, Vinod; WICHS, Daniel. Leveled fully

homomorphic signatures from standard lattices. In: PROCEEDINGS of the

forty-seventh annual symposium on Theory of computing. [S.l.: s.n.], 2015. P. 469–477.

REFERENCES 144

IMPAGLIAZZO, Russel. A personal view of average-case complexity. In: IEEE.

PROCEEDINGS of Structure inb Complexity Theory. Tenth Annual IEEE Conference.

[S.l.: s.n.], 1995. P. 134–147.

KRAWCZYK, Hugo; RABIN, Tal. Chameleon Hashing and Signatures. [S.l.: s.n.],

1998. Cryptology ePrint Archive, Report 1998/010.

https://eprint.iacr.org/1998/010.

LAMPORT, Leslie. Password authentication with insecure communication.

Communications of the ACM, ACM New York, NY, USA, v. 24, n. 11, p. 770–772,

1981.

LANGLOIS, Adeline; STEHLÉ, Damien. Worst-case to average-case reductions for

module lattices. Designs, Codes and Cryptography, Springer, v. 75, n. 3,

p. 565–599, 2015.

LEGROW, Jason. Post-quantum security of authenticated key establishment

protocols. 2016. MA thesis – University of Waterloo.

LI, BaoHong; LIU, YanZhi; YANG, Sai. Lattice-Based Universal Designated Verifier

Signatures. In: IEEE. 2018 IEEE 15th Internationalç Conference on e-Business

Engineering (ICEBE). [S.l.: s.n.], 2018. P. 329–334.

LU, Xingye; AU, Man Ho; ZHANG, Zhenfei. Raptor: A Practical Lattice-Based

(Linkable) Ring Signature. In: DENG, Robert H.; GAUTHIER-UMAÑA, Valérie;

OCHOA, Martín; YUNG, Moti (Eds.). Applied Cryptography and Network Security.

Cham: Springer International Publishing, 2019b. P. 110–130.

LU, Xingye; AU, Man Ho; ZHANG, Zhenfei. Raptor: a practical lattice-based (linkable)

ring signature. In: SPRINGER. INTERNATIONAL Conference on Applied Cryptography

and Network Security. [S.l.: s.n.], 2019c. P. 110–130.

LYUBASHEVSKY, Vadim; NEVEN, Gregory. One-shot verifiable encryption from

lattices. In: SPRINGER. ANNUAL International Conference on the Theory and

Applications of Cryptographic Techniques. [S.l.: s.n.], 2017. P. 293–323.

MICCIANCIO, Daniele; PEIKERT, Chris. Trapdoors for lattices: Simpler, tighter, faster,

smaller. In: SPRINGER. ANNUAL International Conference on the Theory and

Applications od Cryptographic Techniques. [S.l.: s.n.], 2012. P. 700–718.

REFERENCES 145

MOHASSEL, Payman. One-time signatures and chameleon hash functions. In:

SPRINGER. INTERNATIONAL Workshop on Selected Areas in Cryptography.

[S.l.: s.n.], 2010. P. 302–319.

PEIKERT, Chris. A decade of lattice cryptography. Foundations and Trends® in

Theoretical Computer Science, Now Publishers Inc. Hanover, MA, USA, v. 10, n. 4,

p. 283–424, 2016.

PEIKERT, Chris. Limits on the hardness of lattice problems in l-p norms.

Computational Complexity, Springer, v. 17, n. 2, p. 300–351, 2008.

PLAMONDON, R.; SRIHARI, S.N. Online and off-line handwriting recognition: a

comprehensive survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, v. 22, n. 1, p. 63–84, 2000. DOI: 10.1109/34.824821.

PORNIN, Thomas. New Efficient, Constant-Time Implementations of Falcon. IACR

Cryptol. ePrint Arch., v. 2019, p. 893, 2019.

RIVEST, Ronald L; SHAMIR, Adi; TAUMAN, Yael. How to leak a secret. In: SPRINGER.

INTERNATIONAL Conference on the Theory and Application of Cryptology and

Information Security. [S.l.: s.n.], 2001. P. 512–565.

ROHLOFF, Kurt; COUSINS, Dave; POLYAKOV, Yuriy. PALISADE Lattice

Cryptography Library (release 1.9.2). [S.l.: s.n.], Apr. 2020.

https://palisade-crypto.org/.

RÜCKERT, Markus. Adaptively secure identity-based identification from lattices

without random oracles. In: SPRINGER. INTERNATIONAL Conference on Security

and Cryptography for Networks. [S.l.: s.n.], 2010a. P. 345–362.

RÜCKERT, Markus; SCHNEIDER, Michael. Estimating the Security of Lattice-based

Cryptosystems. IACR Cryptol. ePrint Arch., Citeseer, v. 2010, p. 137, 2010.

SCHMIDT-SAMOA, Katja; TAKAGI, Tsuyoshi. Paillier’s cryptosystem modulo p2q and

its applications to trapdoor commitment schemes. In: SPRINGER. INTERNATIONAL

Conference on Cryptology in Malaysia. [S.l.: s.n.], 2005. P. 296–313.

REFERENCES 146

SHAMIR, adi; TAUMAN, Yael. Improved online/offline signature schemes. In:

SPRINGER. ANNUAL International Cryptology Conference. [S.l.: s.n.], 2001.

P. 355–367.

SHOR, Peter W. Algorithms for quantum computation: discrete logarithms and

factoring. In: IEEE. PROCEEDINGS 35th annual symposium on foundations of

computer science. [S.l.: s.n.], 1994. P. 124–134.

SHOUP, Victor. Lower bounds for discrete logarithms and related problems. In:

SPRINGER. INTERNATIONAL Conference on the Theory and Applications of

Cryptographic Techniques. [S.l.: s.n.], 1997. P. 256–266.

STRONGSWAN. Bimodal Lattice Signature Scheme (BLISS). [S.l.: s.n.], Feb. 2020.

https://wiki.strongswan.org/projects/strongswan/wiki/BLISS. Accessed on 29/07/2020.

WANG, Xueli; CHEN, Yu; MA, Xuecheng. Adding linkability to ring signatures with

one-time signatures. In: SPRINGER. INTERNATIONAL Conference on Information

Security. [S.l.: s.n.], 2019. P. 445–464.

WIENER, Michael J. Bounds on Birthday Attack Times. IACR Cryptology ePrint

Archive, Citeseer, v. 2005, p. 318, 2005.

XIE, Dong; PENG, Haipeng; LI, Lixiang; YANG, Yixian. Homomorphic signatures from

chameleon hash function. Informational Technology and Control, v. 46, n. 2,

p. 274–286, 2017.

ZHANDRY, Mark. Cryptography in the Age of Quantum Computers. 2015.

PhD thesis – Stanford University.

ZHANG, Fangguo; SAVAFI-NAIN, Reihaneh; SUSILO, Willy. ID-Based Chameleon

Hashes from Bilinear Pairings. IACR Cryptol. ePrint Arch., Citeseer, v. 2003, p. 208,

2003.

ZHANG, Rui. Tweaking TBE/IBE to PKE transforms with chameleon hash functions. In:

SPRINGER. INTERNATIONAL Conference on Applied Cryptography and Network

Security. [S.l.: s.n.], 2007. P. 323–339.

ZIMMERMAN, Paul. Factorization of RSA-250. [S.l.: s.n.], 2020. Available from:

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;dc42ccd1.2002.

Appendix

148

APPENDIX A – GENERAL FORKING LEMMA

To prove Theorem 26, we referred to the use of a theorem known as the general

forking lemma, present in (BELLARE; NEVEN, Greagory, 2006). Here we show the full

proof for this theorem as presented in the aforementioned work.

Recall that in Theorem 26 we had an adversary that would produce a list of q

queries, gets a random and uniform response for each one, and in the end it would

produce an output in which a choice for some specific response was present. We

needed to know in that theorem what would happen if we run the adversary twice, using

in both times the same source of randomness, repeating the same inputs to get the

same results until the moment that the adversary send the same query whose response

was chosen in the first execution. After this point we would replace the response for

completely new random and uniform values. We needed to know the probability that

at the same time this adversary suceeds, it chooses both times the same query in the

final output and we send different responses in the chosen query in both executions.

A difficulty in this scenario is that these events are not necessarily independent.

To compute these probabilities we should first abstract a little more this scenario. We

can ignore without losing generality repeated queries that do not reveal new information

to the adversary and as all the query responses are chosen uniformly at random, we

also can ignore the queries, representing only their responses.

We can model the adversary A2 from Theorem 26 as an algorithm ADVA that

takes as input some value pk (in our case, the public key) and a tuple with q elements

(h1, . . . , hq) from some set H (representing the random responses for the queries) and

outputs some value y (in the case of adversary A2 this value would be a forgery) and

an integer i ∈ [0, q]. If i > 0, then this represents the scenario that A2 succeed at

creating a forgery and did so using the response number i . If i = 0, this represents the

scenario where the adversary failed, and there is no meaning in expecting a choice for

some query.

The algorithm ADVA can make its choices using any arbitrary criteria, like adver-

sary A2.

Using this algorithm ADVA to model adversary A2 from that security proof, we

can create an algorithm that model adversary B2 as below:

• ADVB(pk):

1. (h1, . . . , hq) $←− Hq

2. (y , i) $←− ADVA(pk , (h1, . . . , hq))

3. if i = 0:

4. return fail

5. (h′i , . . . , h′q) $←− Hq–i–1

APPENDIX A. General Forking Lemma 149

6. (y ′, i ′) $←− ADVA(pk , (h1, . . . , hi–1, h′i , . . . , h′q))

7. if i = i ′ and hi 6= h′i :

8. return success

9. else:

10. return fail

It runs algorithm ADVA twice, we assume that it does so feeding the algorithm

with the same source of randomness. After the first execution, ADVA choose some

input i , assuming that it suceeds. In the second execution, all the inputs hj with j < i are

the same, but the other inputs are chosen uniformly at random. The algorithm returns

success only if ADVB succeed both times, return the same choice for the input and

the chosen inputs are different in both executions. This models the scenario in which

adversary B2 succeeds.

Using the above algorithms, we can present the general forking lemma.

Theorem 30 (General Forking Lemma).Let EvA be the event in which algorithm ADVA

output i > 0 and let EvB the event in which algorithm ADVB outputs success. We have

that:

Pr [EvB] ≥ Pr [EvA]
(

Pr [EvA]
q

–
1

|H|

)

Proof: We have that:

Pr [EvB] = Pr [i = i ′ ∧ i > 0 ∧ hi 6= h′i]

≥ Pr [i = i ′ ∧ i > 0] – Pr [i > 0 ∧ hi = h′i]

= Pr [i = i ′ ∧ i > 0] – Pr [i>0]
|H|

= Pr [i = i ′ ∧ i > 0] – Pr [EvA]
|H|

Now to prove that Pr [i = i ′ ∧ i > 0] ≥ Pr [EvA]2
q :

Pr [i = i ′ ∧ i > 0] =
∑q

j=1 Pr [i = j ∧ i ′ = j]

=
∑q

j=1 Pr [i = j] · Pr [i ′ = j |i = j]

Let for all j ∈ [1, q], the following function represent the probability that for fixed

constant inputs (h1, . . . , hj–1) and for random coins ρ chosen from some set R, the

probability that algorithm ADVA return j as first element in its output.

APPENDIX A. General Forking Lemma 150

xj (ρ, h1, . . . , hj–1) = Pr [i = j |(hj , . . . , kq) $←− Hq–j–1; (i , y) $←− ADVA(pk , (h1, . . . , hq); ρ)]

Now we can rewrite the previous equation as:

Pr [i = i ′ ∧ i > 0] =
q
∑

j=1

∑

ρ,h1,...,hj–1

xj (ρ, h1, . . . , hj–1) · Xi (ρ, h1, . . . , hj–1) · 1
|R||H|j–1

Let E [x] be the expected value for some variable: the average of all possible

values for x weighted by the probability of each value. This means that by definition

we can express the inner sum of the above equation as E [X2
j] where xj represents all

possible outputs for the function xj ():

Pr [i = i ′ ∧ i > 0] =
q
∑

j=1

E [x2
j]

Now we can use the fact that for all random variable x , we have that E [x2] ≥
E [x]2. We present the proof for this statement directly after this proof. Now we have

that:

Pr [i = i ′ ∧ i > 0] ≥
q
∑

j=1

E [xj]
2

For any real number x and integer j ≥ 1, we have that
∑q

j=1 x2 = 1
q (
∑q

j=1 x)2.

We also show the proof for this statement after this proof. Using this information, we

can write:

Pr [i = i ′ ∧ i > 0] ≥ 1
q

q
∑

j=1

E [xj]

2

For all j ∈ [1, q], the value E [xj] is the probability that ADVA choose the specific

j-th input value in its output. This means that
∑q

j=1 E [xj] = Pr [EvA]. This means that:

Pr [i = i ′ ∧ i > 0] ≥ (Pr [EvA])2

q

Combining our results, we have proven the general forking lemma:

Pr [EvB] ≥ (Pr [EvA])2

q
–

Pr [EvA]
|H|

= Pr [EvA]
(

Pr [EvA]
q

–
1

|H|

)

�

In Theorem 26, we had |H | = 2n and we used qO2 to model the number of queries.

We also have that Pr [EvA] = DCMAadvRO[A2, DSIG] and Pr [EvB] is the probability that

APPENDIX A. General Forking Lemma 151

adversary B2 succeeds at finding a forgery at SIGGPV or a collision in the chameleon

hash. This justifies the lower bound for CMAadvRO[B2, SIGGPV] presented there.

Next we present the proofs of two assumptions made in the above proof for the

general forking lemma:

Theorem 31

E [x2] ≥ E [x]2

Proof: Let y = E [x]. As (x – y)2 is non-negative:

0 ≤ E [(x – y)2] = E [x–2xy + y2] = E [x2] – 2yE [x] + y2

= E [x2] – 2y2 + y2 = E [x2] – y2 = E [x2] – E [x]2

If E [x2] – E [x]2 ≥ 0, then E [x2] ≥ E [x]2. �

Theorem 32 Let x1, . . . , xq ∈ R and q ≥ 1. We have:

q
∑

j=1

x2
j =

1
q

(
q
∑

j=1

xj)
2

Proof: We can treat x as a random variable that takes values from {x1, . . . , xq},

each one with probability 1/q. This means that:

E [x2] =
1
q

q
∑

j=1

x2
j

And:

E [x]2 =
1
q2

q
∑

j=1

xj

2

By the previous theorem:

1
q

q
∑

j=1

x2
j ≥

1
q2

q
∑

j=1

xj

2

Dividing by 1/q we get the desired result:

q
∑

j=1

x2
j ≥

1
q

q
∑

j=1

xj

2

�

152

APPENDIX B – CHAMELEON HASH WITH STRONGER COLLISION

RESISTANCE IN THE GENERIC GROUP MODEL

As seen in this dissertation, in some applications it is difficult to use chameleon

hashes because while they are collision resistant primitives and they have a trapdoor to

find collisions, not necessarily this means that we can publicize the computed collisions.

The Attack Game 14 that defines the security of chameleon hashes assumes that the

attacker does not have access to sample collisions.

To solve this problem, it is necessary an alternative and stronger definition of

collision resistance. An attacker could obtain some sample collisions from an attacker,

but should not be able to find new collisions after this.

Building a chameleon hash secure using this stronger definition of collision re-

sistance is very challenging. Several previous works propose to generalize the concept

of chameleon hash functions to meke easier to satisfy this requisite. In (ATENIESE;

MEDEIROS, 2004) a chameleon hash construction was proposed to be used in such

contexts. However, its security was proven in a non-standard model known as the

generic group model.

This appendix presents the concept of stronger collision resistance for chameleon

hash functions, describes the generic group model and presents the chameleon hash

described in (ATENIESE; MEDEIROS, 2004). That chameleon hash also could be used

to build preimage signatures, but it is not described in the main body of the dissertation

because it is not secure against attackers with quantum algorithms. Solving the discrete

logarithm problem, one could easily find collisions in this chameleon hash. Therefore,

with a quantum computer with sufficient power, Shor’s algorithm could be used to find

collisions ((SHOR, 1994)).

B.1 STRONG COLLISION RESISTANCE

A stronger collision-resistance definition should ensure that even if an adversary

is able to query sample collisions (and in the case of preimage chameleon hash func-

tions, it should be able to query sample preimages), it should not be able to produce

new collisions with values different than the ones revealed by the queries. We model

this with the following attack game:

Attack Game 19 (Strong Collision Resistance).

For a given preimage chameleon hash scheme CH defined over (M, R, D), and

an adversary A, consider a challenger and an adversary initialized with the security

parameter λ.

The challenger runs the key generation algorithm CH.KEYGEN(lambda) to get

(ek , tk) and sends ek to the adversary.

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 153

Challenger

(ek , tk) $←−− CH.KEYGEN(λ)
...

rndi
$←−− CH.PREIMAGE(tk , msgi , dgti)

...

Adversary A
λ λ

ek
...

(msgi , dgti)
rndi

...
(msg′, rnd ′, msg′′, rnd ′′)

Figure 29 – Attack Game: Strong Collision Resistance

The adversary can perform a polynomial number of qP preimage queries sending

to the challenger pairs (msgi , dgti) with msgi ∈ M and dgti ∈ D and i ∈ [1, qS]. For each

of them, the challenger runs rndi
$←− CH.PREIMAGE(tk , msgi , dgti) and sends rndi for

the adversary.

In the end, the adversary outputs (msg′, rnd ′, msg′′, rnd ′′) and we say that the

adversary wins the game if CH.HASH(ek , msg′, rnd ′) = CH.HASH(ek , msg′′, rnd ′′) and

if for i ∈ [1, qS], we have that (msg′, rnd ′) 6= (msgi , rndi) and (msg′′, rnd ′′) 6= (msgi , rndi).

We denote by SCRadv [A, CH] the probability of a given adversary A win this

attack game for the preimage chameleon hash CH.

B.2 GENERIC GROUP MODEL

This model was introduced at (SHOUP, 1997), initially as a way to study the limi-

tations and lower bounds ofor generic algorithms: algorithms that solves mathematical

problems without exploring knowledge present in the encoding of the elements.

In this model we take in consideration only generic attacks, attacks composed

only by generic algorithms. This is usually used to create security proofs in cryptography

when we use the discrete logarithm assumption.

The model assumes that an adversary can produce and find new values in a

group performing a polynomially bounded number of multiplications. However, cannot

extract any information about how each element from the group is encoded. We assume

that all elements in our group are encoded randomly. Given two values, the only infor-

mation possible to be extracted is if both elements are equal or not, as each element

has a distinct encoding. Multiplications between known elements are made with the

help of an oracle.

We will use the symbol σ(x) to denote the encoding of an element x from the

multiplicative group G. Furthermore, we denote Enc[G] the set of all possible encodings

of the group G. We will assume that encoding is a function that maps each element

from G to a distinct number between 0 and q – 1 where q is the order of the group.

We could also assume that we can encode the elements to a larger set of numbers

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 154

Challenger

(G, q, g) $←−− GENGROUP(λ)

σ
$←−− Enc[G]

x
$←−− Zq

y ← gx

Adversary A

λ λ

(q,σ(g),σ(y))
...

(ai , bi)

σ(gai ybi)
...

x ′

Figure 30 – Attack Game: Discrete Logarithm in Generic Group Model

or bitstrings, but we keep the encoding simple to simplify the security proofs and keep

them more didactic.

Like with the random oracle model, we can take any attack game previously seen

and update it to the generic group model. The difference is that the challenger gener-

ates a tuple (G, q, g) using algorithm GENGROUP described in the discrete logarithm

assumption, sample a random and uniform encoding σ from Enc[G] and each time it

needs to send an element x ∈ G to the adversary, it sends instead σ(x). We can also

send the adversary the order q of the group, but no other information about it.

We let the adversary make a polynomially bounded number of qG group queries.

For each query, it identifies two previously revealed encoded elements σ(x),σ(y) and

two exponents a, b ∈ Zq. The challenger sends σ(xayb) as response. If we transform

the discrete logarithm to the generic group model, the attack game becomes as in the

Figure 30.

Notice that in Figure 30 the adversary gets the encoding of elements g and y .

Therefore, all other elements that it can obtain can be expressed as powers gayb. The

adversary wins the attack game if gx = y , which is equivalent to σ(gx) = σ(y).

When we talk about the probability of winning an attacking game in the generic

group model, we suffix our description with GG. For example, the probability that an

adversary A wins the discrete logarithm attack game in the generic group model for

group G is given by DLadvGG[A, G].

We present in the next subsection an example of proof using the generic group

model that also was presented in the paper that introduced the generic group model

(SHOUP, 1997).

B.2.1 Proving the Discrete Logarithm Assumption in the Generic Group Model

Theorem 33 In the generic group model, for all adversaries A, the probability of

solving the discrete logarithm problem in a group G with prime order q, denoted by

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 155

DLadvGG[A, G], is always negligible.

Proof: Proof in the generic group model usually are not security reduction proofs.

We can prove exact and unconditional negligible upper bounds for the probabilities.

Notice that the real challenger is not efficient, as it needs to keep and apply a

random and uniform encoding, which has a exponential space complexity for the same

reasons as a random oracle, is not space efficient. Then, to prove that the discrete

logarithm is a hard problem, we build a simulator that acts as a real challenger in this

model, except with negligible probability. Then we prove that if our simulator succeeds

at simulating a real challenger, no adversary can win the attack game interacting with

the simulator, except with negligible probability.

Simulating a random encoding is not so different from simulating a random oracle.

Our simulator can keep a dictionary with space to store up to qG + 3 elements. Each

element uses as key a pair of integers (a, b) modulo q that represent exponents and

store the corresponding random encoding for gayb.

In the first position, it generates and stores the key (1, 0) and a random and

uniform value that represents the encoding of g1y0 = g and in the second position we

store the key (0, 1) with the encoding randomly chosen that represents g0y1 = y . These

two are the encodings sent to the adversary during the initialization of the attack game.

The next qG elements will be generated for each group query sent by the adversary.

Moreover, the last space in the dictionary is to generate a new encoding to check if

the adversary output is correct and if the adversary wins the game. Like in the random

oracle model, if an adversary query the same tuple (a, b) twice, we check that the query

is repeated and send the same response again.

now we will change our simulator, making it different than a real challenger.

Instead of choosing a random and uniform x at the beginning of the attack game and

derive our encodings from real multiplications in the group, we will produce during the

initialization a list with qG + 2 distinct encodings and store them. For each new group

query, we send as a response the next available encoding previously generated. After

all the group queries, we choose a suitable value of x consistent with all previous

responses.

This creates a limitation in our simulator. Interacting with a real challenger, an

adversaryA could find pairs (a, b) 6= (c, d) such that σ(gayb) = σ(gcyd). However, in our

simulator we are making all responses for group queries distinct if the pair of exponents

are distinct. Therefore, there is a probability that our simulator fails at simulating a real

challenger. It happens when the adversary find a collision in f (a, b) = σ(gayb), which

happens if it finds values a, b, c, d ∈ Zq such that a + bx = c + dx for the random and

uniform exponent x chosen by the challenger.

However, as we reveal to the adversary only random encodings, if the adversary

tries to find such values of (a, b, d , c), the only information it learns with each query is

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 156

if it already found a collision or not. Not having any other information, the probability

of finding a collision can be bounded by the same probability than a birthday attack,

presented in Subsection 2.3.2. By the bounds found in that subsection, the probability

of finding such collision is at most p(p–1)
4q where p is the number of tried pairs, and q

is the order of our group. In our attack game, we can produce and test at most qG + 2

different pairs, including the initial pairs (0, 1) and (1, 0). Therefore, the upper bound

for the probability of our simulator failing at simulating a real challenger is this birthday

attack bound applied over qG + 3 tries:

Pr [Simulator fails] ≤ (qG + 2)(qG + 1)
q

Here, our group has a prime order. If not, then our group could contain subgroups

and depending on the capacity of our adversary factor the order q, it could produce

exponents such that all responses for the chosen group queries are elements from the

same subgroup, which would increase the probability of collision. If the order is prime,

this is not possible.

Making all these changes, here is a summary of how our simulator works:

• Initialization: The simulator is initialized with the security parameter λ. It obtains

a tuple (G, q, g) invoking GENGROUP(λ). Next, it creates a list with random qG + 2

distinct elements from Zq representing the encoding of all possible group ele-

ments that we will generate.

After this, it needs to choose suitable encodings for g and y to send to the ad-

versary, as it needs these inputs to try to solve the discrete logarithm problem.

The first element in the list is associated with g1y0 = g. The simulator stores in a

dictionary the exponents (1, 0) and the chosen encoding.

The second element in the list of encodings is associated with the element g0y1 =

y . Because of this, the simulator stores in the dictionary the pair of exponents

(0, 1) that represents y and the corresponding encoding, which is the second

element in the list.

Finally, it interacts with the adversary A, sending (q, list [1], list [2]) that represents

the order of the group and encodings σ(g) and σ(y).

• Group Query: When adversary A sends a group query (ai , bi), the simulator

checks if this tuple of exponents is in the dictionary. If so, it returns the stored

encoding associated with it. If not, the simulator chooses from list [i] the next

encoding. It stores this value in the dictionary, associating with the exponents

(ai , bi) and sends it as a response.

• Finalization: After all the queries, the simulator chooses the exponent x that is

chosen at the beginning of the attack game in a real challenger. It chooses some

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 157

consistent x that would not create a collision given all the group queries previously

done. For all different combinations of distinct queried pairs (ai , bi) and (aj , bj),

we must have that ai + bix 6= aj + bjx in modulus q. After choosing the value of x

uniformly at random between all such consistent candidates, the adversary gets

from the adversary A a value x ′ and this adversary wins the game ix x = x ′.

Now assuming that this simulator succeed at simulating a real challenger, we

will find the upper bound for the probability any adversary A succeed.

If the adversary had not performed any query, then its probability of success

would be given by 1/q. As it performs queries, for each two pair of queries (ai , bi), (aj , bj),

it can deduce that ai +bix 6= aj +bjx and this would inform that (ai –aj)(bj –bi)
–1 mod q

is not a correct value for x . For the best case for A, each pair of group queries would

disclose to A the information that a new element is not a correct guess for the value of

x .

The number of distinct combinations of two queried pairs is given by (qG+2)(qG+1)
2 .

Therefore, the probability of any adversary succeeds guessing the correct value of x

would be bounded by 1
q–(qG+2)(qG+1)/2 .

Consider the following events:

• We will denote by Pr [NotSim] the probability that our simulator fails at simulating

correctly a real challenger. We checked that this happens only when the adver-

sary find two pairs of colliding exponents for σ(gayb). Therefore, Pr [NotSim] ≤
(qG+2)(qG+1)

q .

• We will denote by Pr [Sim] the probability that our simulator correctly simulates a

real challenger. This is (1 – Pr [NotSim]).

• We denote by Pr [AdSim] the probability that an adversary wins against a simulator.

We checked that Pr [AdSim] ≤ 1
q–(qG+2)(qG+1)/2 .

• We denote by Pr [AdChal] the probability that an adversary wins against a real

challenger.

Therefore, we can create an upper bound for DLadvGG[A, G] as:

DLadvGG[A, G] ≤ Pr [NotSim]Pr [AdChal] + Pr [Sim]Pr [AdSim]

As we are interested in a upper bound, we can assume that Pr [AdCHal] = 1 and

round Pr [Sim] to 1:

DLadvGG[A, G] ≤ (qG + 2)(qG + 1)
q

+
1

q – (qG + 2)(qG + 1)/2

We have that qG is a value limited polynomially and q, the degree of the group

superpolynomial. Therefore, all the above fractions on the right side of the inequation

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 158

represent negligible values. This means that the discrete logarithm problem for groups

with prime orders is a hard problem on average in the generic group model. �

B.2.2 Generic Group in a Post-Quantum Model

As the discrete logarithm is not a valid assumption against quantum adversaries,

proofs in the generic group model are not valid in post-quantum models. The generic

model fails to realistically address some possibilities of quantum adversaries, like send-

ing queries with a superpolynomial number of exponents in superposition, for example.

This makes the generic group a helpful model only when considering classical

adversaries, making it a less exciting model when compared with the random oracle

model.

B.3 PREIMAGE CHAMELEON HASH FROM DISCRETE LOGARITHMS IN GENERIC

GROUPS

This construction was first presented at (ATENIESE; MEDEIROS, 2004), where

the authors were trying to address the problem of having the security of chameleon

hash functions compromised if collisions are leaked. The construction can be proven

secure using the stronger version of collision-resistance defined in Subsection B.1.

However, to prove this it is necessary to use the generic group model as heuristics.

The chameleon hash CHGG is defined over the sets (M, R, D), with the help of a

multiplicative group G with prime order q treated as a generic group and using a hash

function HASH : M × Zq → Zq where R = Zq × Zq and D = Zq. As part of the generic

group model, we assume that we will use a group G of order q (where q has λ bits)

where its elements are represented in a completely random encoding as described in

Subsection B.2.

We describe the chameleon hash in the generic group model as:

• CHGG.KEYGEN(λ) :

1. (G, q, g) $←− GENGROUP(λ)

2. σ
$←− Enc[G]

3. x
$←− Zq

4. y ← gx

5. ek ← (q,σ(g),σ(y))

6. tk ← (q,σ, x)

7. return (ek , tk)

• CHGG.HASH(ek , msg, (r1, r2)):

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 159

1. (q,σ(g),σ(y))← ek

2. return r1 – σ(gr2yHASH(msg,r1)) mod q

• CH.PREIMAGE(tk , msg, d) :

1. (q,σ, x)← tk

2. k
$←− Zq

3. r1 ← d + σ(gk) mod q

4. r2 ← k – x(HASH(msg, r1)) mod q

5. return (r1, r2)

Note that in the generic group model an user always can compute CH.HASH per-

forming a single group query to obtain σ(gr2yHASH(msg,r1)) after computing HASH(msg, r1).

The trapdoor tk is never sent to an adversary in our security model, therefore it does

not need to have its values encoded in the random encoding.

This construction works because if (r1, r2) was returned by CH.HASH(ek , msg, d),

then:

CH.HASH(ek , msg, (r1, r2)) = r1 – σ(gr2yHASH(msg,r1)) mod q

= d + σ(gk) – σ(gr2yHASH(msg,r1)) mod q

= d + σ(gk) – σ(gr2+xHASH(msg,r1)) mod q

= d + σ(gk) – σ(gk–xHASH(msg,r1)+xHASH(msg,r1)) mod q

= d + σ(gk) – σ(gk) mod q

= d

Theorem 34 The preimage chameleon hash CHGG has the strong uniformity property.

Proof: This is assured by r1. If the pair (r1, r2) is chosen uniformly at random

for a given ek and a pair of messages msg′ and msg′′, independent of the value of

–σ(gr2yHASH(msg,r1)), we are adding to it the value r1 chosen uniformly at random. We

are performing a operation in an additive group modulo q and as long as one term of

the sum is random and uniform, the result also will be uniform and random. We have

exactly the same probability for all possible digests in this chameleon hash as required

by the strong uniformity property. �

Theorem 35 The chameleon hash CHGG have strong collision-resistance property in

the generic group model if HASH is collision-resistant.

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 160

To prove the full collision-resistance in the generic group model, we modify the

Attack Game 19 allowing the adversary to make qP preimage queries, as already

described in that attack game, and qG group queries, as required by the generic group

model.

With the group queries the adversary can send a pair of exponents (ai , bi) and

gets as response σ(gai ybi). As the adversary gets in the key ek the values σ(g) and

σ(y), this query represents all the values in the group G that the adversary can obtain

using only generic operations.

Like in the proof from Subsection B.2.1, we will build an efficient simulator for the

challenger in the Attack Game 19 in the generic group model. We will show how this

simulator succeeds in acting exactly like a legitimate challenger, except with negligible

probability. And assuming that the simulator correctly simulate a legitimate challenger,

we show how any adversary can succeed in its attack game only with negligible proba-

bility.

Our simulator works in the following way:

• Initialization:

1. (G, q, g) $←− G(n)

2. Initialize an array s with qg + qp + 4 random and uniform elements from Zq.

3. Initialize an empty dictionary that will store pairs of exponents (ai , bi) with the

corresponding value attributed to σ(gai ybi).

4. Initialize an empty list for tuples sent in preimage queries. We will store

tuples in this list for each preimage query and will use this list to know if

in the end the adversary A sent a proper collision that uses no preimage

queries results.

5. Store in the dictionary the pair (1, 0) with the element s[1]. This will represent

the encoding for g1y0 = g.

6. Store in the dictionary the pair (0, 1) with the element s[2]. This will represent

the encoding for g0y1 = y .

7. Send ek = (q, s[1], s[2]) to the adversary.

• Group Query: When adversary A send the query (ai , bi), we check in the dic-

tionary if this pair of exponents were already queried. If so, we send the same

response sent before. If not, we choose as response the value s[i + 2]. We store

this value in the dictionary with the pair (ai , bi) and send it as response to the

adversary.

• Preimage Query: In the line 4 of algorithm CHGG.PREIMAGE, notice that the

value r2 is chosen from a distribution uniform and random, since the value k is

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 161

uniform and random. This means that we can correctly simulate that algorithm

first choosing r2 uniformly at random and then choosing an appropriate r1 to make

the pair (r1, r2) correct. As we control the random encoding simulation, we can

compute these values in the reverse order:

1. Upon receiving the preimage query (msgi , di), choose r2
$←− Zq.

2. Set r1 ← di + s[i + qG + 2] (mod q).

3. Store the pair of exponents (r2, HASH(msgi , r1)) in the dictionary with the

encoding value s[i + qG + 2]. If that pair of exponents is already present in

the dictionary, the simulator failed and halts.

4. Store the values (msgi , r1, r2) in the list that stores tuples from preimage

queries. These values cannot be used in the final output of a collision.

5. Send rndi = (r1, r2) as response to the challenger.

• Finalization: Now the simulator got the output (msg′, (r ′1, r ′2), msg′′, (r ′′1 , r ′′2)). To

know if the adversary won, it needs to compute CH.HASH for these values:

1. Check in the dictionary if we define an encoding for the exponents (r ′2,

HASH(msg′, r ′1)). If not, then we associate s[qg + qp + 3] as the encoding for

gr ′2yHASH(msg′,r ′1). We will denote this encoding by e′.

2. Check in the dictionary if we define an encoding for the exponents (r ′′2 ,

HASH(msg′′, r ′′1)). If not, then we associate s[qg + qp + 4] as the encoding for

gr ′′2 yHASH(msg′′,r ′′1). We will denote this encoding by e′′.

3. The adversary wins if r ′1 – e′ ≡ r ′′1 – e′′ (mod q) and if neither (msg′, r ′1, r ′2)

nor (msg′′, r ′′1 , r ′′2) are stored in the list of tuples sent in preimage queries.

This simulator can fail in two different scenarios. Like the simulator from Sub-

section B.2.1, it assumes that the adversary will not find colliding pairs (ai , bi) 6= (aj , bj)

such that σ(gai ybi) = σ(gaj ybj). Using the bound found in that subsection, here the

probability of finding such colliding exponents in a group or preimage query or during

the verification step is given by:

Pr [A finds colliding exponents] ≤ (qG + qP + 4)(qG + qP + 3)
q

This will be a negligible probability because in the numerator both qG and qP are

polynomially bounded values and q in denominator is a value that grows exponentially

with the security parameter λ.

The second event in which the simulator can fail is if during the preimage query,

when performing step 3, the pair of exponents (r2, HASH(msgi , r1)) is already stored

in the dictionary because it was explicitly queried in a group query or because it was

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 162

randomly produced in a previous preimage query. As the value r2 is chosen uniformly at

random in the preimage query, we can use this to find an upper bound for the probability

of this happening.

In the worst case for our simulator, we can assume that an adversary A already

sent all qG group queries, all of them with distinct values ai in the pair (ai , bi) and

already sent all preimages queries except the last one, where each of them choose a

distinct value for r2. This means that while producing the response for the last preimage

query the simulator has a probability of (qg +qP +1)/q of failing and this is the worst-case

probability for a single preimage query. As we have qP preimage queries, the upper

bound for the probability of our simulator failing during one of these queries is given by:

Pr [Simulator fails in preimage query] ≤
qP(qg + qP + 1)

q

This probability is also negligible because q grows exponentially and bot qP

and qs are polynomially bounded. Combining the probability that the adversary finds

colliding pairs of exponents with the probability that our simulator fails during a preimage

query, we have the upper bound for the probability that our simulator fails to act as a

legitimate challenger:

Pr [Simulator fails] ≤ (qG + qP + 4)(qG + qP + 3)
q

+
qP(qg + qP + 1)

q

Now we will find the upper bound for the probability that any adversary A win the

strong collision-resistance attack game when interacting with our simulator, assuming

that it succeeds at simulation.

Any adversary A can output a final collision following one of there three mutually

exclusive strategies, assuming for now that it does not find collisions in HASH. The

three strategies are:

• The adversary produced a collision (msg′, (r ′1, r ′2)) and (msg′′, (r ′′1 , r ′′2)) such that it

never queried and do not know the value for σ(gr ′2yHASH(msg′,r ′1)) and σ(gr ′′2 yHASH(msg′′,r ′′1)).

We will denote by A1 any adversary that follows this strategy.

• The adversary produced a collision (msg′, (r ′1, r ′2)) and (msg′′, (r ′′1 , r ′′2)), but it

queried and knows only one of the two encodings associated with the collision.

We will assume that i this case it knows only the encoding σ(gr ′′2 yHASH(msg′′,r ′′1))

and will denote by A2 any adversary that uses this strategy.

• Adversary produced a collision (msg′, (r ′1, r ′2)) and (msg′′, (r ′′1 , r ′′2)) and it knows

both encodings associated with these two inputs. We will denote by A3 any ad-

versary that follows this strategy.

When adversary A1 send a forgery, he simulator checks in the finalization step

if r ′1 – s[qP + qG + 3] ≡ r ′′1 – s[qP + qG + 4] (mod q). Each subtraction can have q

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 163

different outputs. In the best scenario for adversary A1, it could correctly guess that it

is interacting with a simulator and that both s[qP + qG + 3] and s[qP + qG + 4] will be

distinct and different than all previous encodings.

Using this strategy, adversary A1 could try to guess what are the two last values

stored in s and would guess correctly with probability at most 1/(q – qP – qG – 2)(q – qP –

qG – 3). After the guess, it chooses suitable values for r ′1 and r ′′1 to produce the collision.

If it guess correctly, it wins the attack game. Even if it guess wrong, in the best case

for it, there are q other q different possible values for s[qP + qG + 3] and s[qP + qG + 4]

that also result in a collision for the chosen (r ′1, r ′′2). Therefore, the upper bound for the

victory of A1 is given by:

Pr [A1 wins against simulator] ≤ q

(q – qP – qG – 2)(q – qP – qG – 3)

The above probability is negligible, as the numerator is q and the denominator

can be written in the form aq2 + bq + c and q grows exponentially with the security

parameter λ.

The upper bound for the probability of success for A2 can be found similarly. In

this case, to verify if the adversary won the game, the simulator checks if r ′1 – e′ ≡
r ′′1 – s[qP + qG + 4] (mod q) where e′ is a value known by the adversary. In this case,

the adversary can try to guess what is the value stored in s[qP + qG + 4] and would

guess correctly at most with probability 1/(q – qP – qG – 2). It would then choose r ′1
and r ′′1 accordingly to produce a collision. However, if it guesses wrong, it would fail at

producing a collision. Therefore, the probability of any adversary A2 winning the attack

game against the simulator is given by:

Pr [A2 wins against simulator] ≤ 1
(q – qP – qG – 2)

The above probability in all scenarios is a greater value than the upper bound

for A1, but still is a negligible probability.

For the adversary A3, after it produces the possible collision (msg′, (r ′1, r ′2)) and

(msg′′, (r ′′1 , r ′′2)), the simulator test if it succeed checking if r ′1 – e′ ≡ r ′′1 – e′′ (mod q)

where e′ = σ(gr ′2yHASH(msg′,r ′1)) and e′′ = σ(gr ′′2 yHASH(msg′,r ′′1)). Moreover, we know

that both e′ and e′′ are values previously returned by a group query. We know that

they were not produced by a preimage query because this would mean that either the

adversary is returning directly values returned by such queries in the collision, which is

not allowed by the rules in this attack game, or the adversary found a collision in HASH,

and for now we are assuming that our adversaries cannot find collisions.

As we are temporally assuming that adversaries cannot find collisions for HASH,

this also means that for all qG group queries in the form (ai , bi), the adversary knows at

most a single pair (msgi , r1i) such that HASH(msgi , r1i) = bi . And if such group query

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 164

is the one that produced encodings e′ or e′′ used in the final output, then necessarily

the final output contains (msgi , (r1i , bi)).

This means that we can find an upper bound for the probability of A3 succeeding

at find a collision in CHGG assuming that in the best case for A3, for all group queries

(ai , bi) that return an encoding ei , it knows a single preimage (msgi , r1i) such that

HASH(msgi , r1i) = bi and checking the probability for having r1i – ei ≡ r1j – ej (mod q)

for any two group queries (ai , bi) and (aj , bj).

To find this probability, consider the scenario whereA3 already made qG–1 group

queries, obtaining in all them different results for the subtraction of their corresponding

r1i and encoding ei . When A3 is performing the last query, to succeed in the attack

game, it needs to produce the last r1qG
such that r1qG

– eqG
is a result already obtained

in a previous query. It can choose value r1qG
, but will discover what is eqG

only after it

sends the query and receive a response.

If adversary A wants to manipulate the subtraction r1qG
– eqG

to produce the

same value than a single specific previous query, then this would be the same scenario

found by adversary A2 when it trying to guess correct values for r ′1 when producing the

last output, except that here adversary A3 performed one less query. In such case, the

probability of guessing the correct rqG
would be given by 1/(q – qP – qG – 1). However,

in this case adversary A3 do not need to guess rqG
such that the subtraction is equal to

one specific previous value, it is enough if the subtraction is equal to any of the previous

(qG – 1) values. In this case, the probability of finding a suitable collision using the last

query is given by (qG – 1)/(q – qP – qG – 1).

That is only the probability for the last query. All the previous queries also have

a smaller chance of producing a suitable collision. We can use the same bound for all

qG queries and get the upper bound for the probability of adversary A3 succeeds as

the sum of the probabilities for each query:

Pr [A3 wins against simulator] ≤ qG(qG – 1)
q – qP – qG – 1

≤
q2

G

q – qP – qG – 1

For sufficient big values of qG, this probability is greater than what was computed

forA1 andA2, but still is a negligible probability. Therefore, we can use this as the upper

bound for the probability of any adversary A succeed against the simulator. However,

there is another possibility that we did not consider until now. We assumed that no

adversary is able to find collisions in HASH. If one could find a single collision, it would

be trivial to find a collision for the chameleon hash CHGG. The probability of finding

collisions in HASH can be represented by CRadv [B, HASH] for some adversary B.

Therefore, the probability for any adversary A winning the attack game when interacting

with the simulator is given by:

Pr [A wins against simulator] ≤
q2

G

q – qP – qG – 1
+ CRadv [B, HASH]

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 165

Finally, as we did in Subsection B.2.1, we can find an upper bound for any

adversary A winning our attack game against a legitimate challenger as the probability

of winning against the simulator plus the probability of the simulator failing to act as a

real challenger. We have then that for all adversaries A:

SCRadvGG[A, CHGG] ≤ (qG + qP + 4)(qG + qP + 3)
q

+
qP(qg + qP + 1)

q
+

q2
G

q – qP – qG – 1
+ CRadv [B, HASH]

By our assumption, the function HASH is collision-resistant. Therefore, all values

in the right side of the above inequation are negligible and any adversary A that tries to

find a collision in CHGG in the strong collision-resistance attack game has a negligible

value as upper bound for its success.

�

As the above proof is in the generic group model, it gives no guarantees if we

assume that the adversary can use non-generic algorithms. Quantum adversaries also

can break the collision-resistance of this construction, as they can solve the discrete

logarithm problem and so they can easily find the trapdoor key tk given an evaluation

key ek .

The construction presented in (ATENIESE; MEDEIROS, 2004) suggest using as

a generic group the subgroup of quadratic residues modulo p = (2q +1) such that both q

and 2q +1 are primes. With such initialization, the keys are represented as ek = (q, g, y)

and tk = (q, x), such that gx mod p = y . The order of the group is q. The algorithm

CHGG.HASH is instantiated as:

• CHGG.HASH(ek , msg, (r1, r2)):

1. (q, g, y)← ek

2. return r1 – (gr2yHASH(msg,r1) mod p) mod q

And the CHGG.PREIMAGE algorithm is instantiated as:

• CH.PREIMAGE(tk , msg, d) :

1. (q, x)← tk

2. k
$←− Zq

3. r1 ← d + (gk mod p) mod q

4. r2 ← k – x(HASH(msg, r1)) mod q

5. return (r1, r2)

APPENDIX B. Chameleon Hash with Stronger Collision Resistance in the Generic Group Model 166

One detail of this instantiation is that the group has order q, a number with λ

bits while elements of this group are encoded using λ + 1 bits, as they are a group

of quadratic residues modulo p = 2q + 1. This means that it could be possible to

find two different elements y1 and y2 in the group such that y1 mod q = y2 mod q.

This possibility was not modeled by our security proof because we assumed that the

encoding of our group has the same number of bits than its order. This doubles the

upper bound for the probability of finding collisions, but other than that, the security

proof remains valid and the upper bounds remains asymptotically the same.

Annex

168

ANNEX A – SYSTEMATIC REVIEW ABOUT PREIMAGE CHAMELEON HASHES

In this annex we describe the stages of our systematic review about the use of

preimage chameleon hashes in the literature.

A.1 INTRODUCTION

Preimage chameleon hashes, or chameleon hashes with a more powerful trap-

door which allows for preimage computation, are not a new concept, but they are

used very rarely in the literature. When we thought about the idea of using this kind

of chameleon hash to build preimage signatures, we conducted a systematic review

to investigate which authors already explored this concept and what use cases of this

construction were already proposed.

A challenge present is that preimage cameleon hashes, while noticed by dif-

ferent researchers, had not a standard name. In some papers they simply define as

“chameleon hashes” what here we call “preimge chameleon hashes”. In other papers,

they call it “a slightly generalization”, without naming it. Finally, in (LU et al., 2019b), the

name “Chameleon Hash Plus” was proposed, but very few authors adopted this name.

Despite this difficuly, one advantage is that chameleon hashes are a relatively

new cryptographic primitive, proposed first in 1998. So, even if we search in the literature

for keywords that in other areas could be too generic, the quantity of results usually is

tractable. Despite the lack of a standard name, we searched for preimage chameleon

hashes looking for articles about chameleon hashes and which explored preimage

properties.

A.2 OBJECTIVE

Our objective initially was discover if our idea about a preimage chameleon hash

scheme was a new propose and, if not, discover for what purposes this primitive was

already being proposed. We was specially interested about possible uses in signature

schemes to check if our idea about preimage signatures was not already introduced.

A.3 QUESTIONS

To fulfill the objective, we formulated two questions to answer with our review:

Q.1) The concept of a chameleon hash whose trapdoor allows for computing

preimages instead of just second-preimages is already present in the literature?

Q.2) If so, for what kind of applications this primitive is being proposed?

These two questions are in fact interleaved. Finding the first article mentioning

preimage chameleon hashes, the first question is answered positively and what this

and the following articles present are answers for the second question. If no article

ANNEX A. Systematic Review about Preimage Chameleon Hashes 169

about preimage chameleon hashes were found, the second question would not need

to be answered.

A.4 SELECTION OF FONTS

To select our fonts, we choosed the following keywords: “chameleon hash” and

“preimage”. We choosed to look for these terms in all the content of each font, not only

in the title or abstract.

We choosed as population published articles, thesis, dissertations and patents.

We excluded books because needing to read and review entire books could be pro-

hibitive.

To select our fonts, the first restriction is that the article should be available by

a public link in the Internet or accessing the university network. We also limited our

database to IEEEXplore, Google Scholar, ACM DL and Springer. We choosed only

databases which allows for full-text search. We also restricted the language to english.

And the search was limited to works published between 2010 and half of 2020.

This range of years was chosen because the first chameleon hash based on

post-quantum assumptions was proposed on 2010 and the first papers that propose

building signatures schemes with chameleon hashes were newer than this. Therefore,

using the selected range of years we expected that we would not miss relevant articles

to our research. The range already encompasses the majority of fonts found with our

keyword. There are less than 30 fonts excluded by our search for being published before

2010.

A.4.1 Details About the Search

Library: IEEEXPlore

Date: August 14,2020 Period: 2010–2020

URL: https://ieeexplore.ieee.org/search/advanced

Search String: (("Full Text & Metadata":"chameleon hash") AND

"Full Text & Metadata":preimage)

Results: 5

Library: Google Scholar

Date: August 14,2020 Period: 2010–2020

URL: https://scholar.google.com

Search String: preimage AND "chameleon hash"

Results: 177

Library: ACM DL

Date: August 14,2020 Period: 2010–2019

ANNEX A. Systematic Review about Preimage Chameleon Hashes 170

URL: https://dl.acm.org/search/advanced

Search String: [All: "chameleon hash"] AND [All: preimage] AND

[Publication Date: (01/01/2010 TO 12/31/2019)]

Results: 2

Library: Springer

Date: August 14,2020 Period: No option to restrict

URL: https://link.springer.com/search

Search String: "chameleon hash" AND preimage

Results: 55

A.5 RESULTS

After joining all the results and excluding the duplicates and false positives, we

got 149 initial results.

Next, we proceeded to keep only fonts which describe preimage chameleon

hashes. For this, we read the abstract for all these results and also searched in the

document for occurences of the terms “chameleon hash” and “preimage”. As expected

given the amplitude of our search, the majority of the fonts were discarded in this

second part. Only 21 papers and thesis were kept after this filter.

The next stage was read with more details all the content of the remaining fonts.

After this third stage of more careful reading, only 12 works remained. All the discarded

and accepted works are listed and classified below.

A.5.1 Discarded Results

1 GOLDSCHLAG, David M. et al. Temporarily hidden bit commitment and lottery applica-

tions. International Journal of Information Security, v. 9, n. 1, p. 33–50, Jan. 2010.

ISSN 16155262. DOI: 10.1007/s10207-009-0094-1.

2 RÜCKERT, Markus. Strongly unforgeable signatures and hierarchical identity-based sig-

natures from lattices without random oracles. In: LECTURE Notes in Computer Science.

[S.l.: s.n.], 2010b. P. 182–200. DOI: 10.1007/978-3-642-12929-2_14.

3 LIU, Joseph K et al. Short generic transformation to strongly unforgeable signature in the

standard model. In: LECTURE Notes in Computer Science. [S.l.: s.n.], 2010. P. 168–181.

DOI: 10.1007/978-3-642-15497-3_11. Available from: https://link.springer.com/

chapter/10.1007/978-3-642-15497-3%7B%5C_%7D11.

4 ABE, Masayuki et al. Efficient hybrid encryption from ID-based encryption. Designs,

Codes, and Cryptography, v. 54, n. 3, p. 205–240, Mar. 2010. ISSN 09251022. DOI:

10.1007/s10623-009-9320-0.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 171

5 HANAOKA, Goichiro et al. Sequential Bitwise Sanitizable Signature Schemes. IEICE

TRANS. FUNDAMENTALS, n. 1, 2011. DOI: 10.1587/transfun.E94.A.392. Available

from: https://search.ieice.org/bin/summary.php?id=e94-a%7B%5C_%7D1%7B%5C_

%7D392.

6 LI, Nan. Self-certified digital signatures. [S.l.], 2011. Available from: http://ro.uow.

edu.au/theses/3404.

7 MOHASSEL, Payman. One-time signatures and chameleon hash functions. In:

SPRINGER. INTERNATIONAL Workshop on Selected Areas in Cryptography. [S.l.: s.n.],

2010. P. 302–319.

8 LIU, Shengli et al. General construction of chameleon all-but-one trapdoor functions. In:

LECTURE Notes in Computer Science. [S.l.: s.n.], 2011. P. 257–265. DOI: 10.1007/978-

3-642-24316-5_18.

9 BOYLE, Elette et al. Fully leakage-resilient signatures. In: LECTURE Notes in Computer

Science. [S.l.: s.n.], 2011. P. 89–108. DOI: 10.1007/978-3-642-20465-4_7.

10 UKNOWLEDGE, Uknowledge; CHANDRASEKHAR, Santosh. CONSTRUCTION OF EF-

FICIENT AUTHENTICATION SCHEMES CONSTRUCTION OF EFFICIENT AUTHEN-

TICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS USING TRAPDOOR

HASH FUNCTIONS. [S.l.], 2011. Available from: https : / / uknowledge . uky . edu /

gradschool%7B%5C_%7Ddiss/162.

11 YANG, Bo et al. An Efficient Identity-based Signature from Lattice in the Random

Oracle Model. v. 7. [S.l.], 2011. P. 3963–3971. Available from: http://www.jofcis.

com1553-9105/.

12 HARALAMBIEV, Kristiyan. Efficient cryptographic primitives for non-interactive zero-

knowledge proofs and applications. 2011. PhD thesis – Citeseer.

13 CHASE, Melissa; KOHLWEISS, Markulf. A Domain Transformation for Structure-

Preserving Signatures on Group Elements. IACR Cryptology ePrint Archive, v. 2011,

p. 342, 2011. Available from: https : / / pdfs . semanticscholar . org / 4bcd /

5b423c9cef7a21701d7f9d0e6d251c8b072e.pdf%20http://dblp.uni- trier.de/db/

journals/iacr/iacr2011.html%7B%5C#%7DChaseK11a.

14 KRZYWIECKI, Lukasz et al. Stamp and extend - Instant but undeniable timestamping

based on lazy trees. In: LECTURE Notes in Computer Science. [S.l.: s.n.], 2012. P. 5–24.

DOI: 10.1007/978-3-642-35371-0_2.

15 FAUST, Sebastian et al. No Title. 7658 LNCS. [S.l.: s.n.], 2012. P. 98–115. ISBN

9783642349607. DOI: 10.1007/978-3-642-34961-4_8. Available from: http://eprint.

iacr.org/2012/045.

16 LI, Jin et al. Generic security-amplifying methods of ordinary digital signatures. Informa-

tion Sciences, v. 201, p. 128–139, 2012. ISSN 00200255. DOI: 10.1016/j.ins.2012.

03.006. Available from: https://www.sciencedirect.com/science/article/pii/

S0020025512002058.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 172

17 TAN, Xiao; WONG, Duncan S. Generalized first pre-image tractable random oracle model

and signature schemes. In: LECTURE Notes in Computer Science. [S.l.: s.n.], 2012.

P. 247–260. DOI: 10.1007/978-3-642-31448-3_19. Available from: https://link.

springer.com/chapter/10.1007/978-3-642-31448-3%7B%5C_%7D19.

18 NACCACHE, David; POINTCHEVAL, David. Autotomic signatures. Lecture Notes in

Computer Science, 6805 LNCS, p. 143–155, 2012. ISSN 03029743. DOI: 10.1007/978-

3-642-28368-0_12.

19 HOFHEINZ, Dennis. All-but-many lossy trapdoor functions. In: LECTURE Notes in Com-

puter Science. [S.l.: s.n.], 2012. P. 209–227. DOI: 10.1007/978-3-642-29011-4_14.

20 YANG, Bo et al. A strong designated verifier signature scheme with secure disavowability.

In: PROCEEDINGS of the 2012 4th International Conference on Intelligent Networking

and Collaborative Systems, INCoS 2012. [S.l.: s.n.], 2012. P. 286–291. DOI: 10.1109/

iNCoS.2012.24. Available from: https://ieeexplore.ieee.org/abstract/document/

6337932/.

21 CHASE, Melissa; KOHLWEISS, Markulf. A new hash-and-sign approach and structure-

preserving signatures from DLIN. In: LECTURE Notes in Computer Science. [S.l.: s.n.],

2012. P. 131–148. DOI: 10.1007/978-3-642-32928-9_8. Available from: https://link.

springer.com/chapter/10.1007/978-3-642-32928-9%7B%5C_%7D8.

22 TA, Nguyen; KHOA, Toan. ZERO-KNOWLEDGE PROOF SYSTEMS FOR LATTICE-

BASED CRYPTOGRAPHY. [S.l.], 2013. Available from: https://www.ntu.edu.sg/

home/khoantt/pubs/Khoa-PhDthesis.pdf.

23 BRESSON, Emmanuel et al. Off-line/on-line signatures revisited: A general unifying

paradigm, efficient threshold variants and experimental results. International Journal

of Information Security, v. 12, n. 6, p. 439–465, Nov. 2013. ISSN 16155262. DOI:

10.1007/s10207-013-0200-2.

24 HOFHEINZ, Dennis. No Title. 7881 LNCS. [S.l.: s.n.], 2013. P. 520–536. ISBN

9783642383472. DOI: 10.1007/978- 3- 642- 38348- 9_31. Available from: https://

link.springer.com/chapter/10.1007/978-3-642-38348-9%7B%5C_%7D31.

25 BONEH, Dan; ZHANDRY, Mark. No Title. 8043 LNCS. [S.l.: s.n.], 2013. P. 361–379.

ISBN 9783642400834. DOI: 10.1007/978-3-642-40084-1_21. Available from: https:

//link.springer.com/chapter/10.1007/978-3-642-40084-1%7B%5C_%7D21.

26 YAN, Jianhua et al. Efficient lattice-based signcryption in standard model. Mathematical

Problems in Engineering, v. 2013, 2013. ISSN 1024123X. DOI: 10.1155/2013/702539.

Available from: https://www.hindawi.com/journals/mpe/2013/702539/abs/.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 173

27 RASS, Stefan. Dynamic proofs of retrievability from chameleon-hashes. In: ICETE

2013 - 10th International Joint Conference on E-Business and Telecommunications;

SECRYPT 2013 - 10th International Conference on Security and Cryptography, Pro-

ceedings. [S.l.: s.n.], 2013. P. 296–304. DOI: 10 . 5220 / 0004505102960304. Available

from: https : / / ieeexplore . ieee . org / abstract / document / 7223178 / ?casa % 7B %

5C _ %7Dtoken = ut9a7lFVYCEAAAAA : g7aXFZ71kMzPTnilW0eEFEYu0jOgtTsOPy % 7B % 5C _

%7DdHwTcC-kIrVi1DoPD8tAUCPKixKJslqJPdtgX.

28 VELEMA, Maria. Classical Encryption and Authentication under Quantum Attacks, July

2013. arXiv: 1307.3753. Available from: http://arxiv.org/abs/1307.3753.

29 YANG, Bo et al. A novel construction of SDVS with secure disavowability. Springer,

v. 16, p. 807–815, 2013. DOI: 10.1007/s10586- 013- 0254- y. Available from: https:

//link.springer.com/content/pdf/10.1007/s10586-013-0254-y.pdf.

30 ARANHA, Diego F. et al. The realm of the pairings. In: LECTURE Notes in Computer

Science. [S.l.]: Springer Verlag, 2014. P. 3–25. DOI: 10.1007/978-3-662-43414-7_1.

31 ZHU, Yan et al. Secure and efficient random functions with variable-length output. Journal

of Network and Computer Applications, v. 45, p. 121–133, 2014. ISSN 10958592. DOI:

10.1016/j.jnca.2014.07.033. Available from: https://www.sciencedirect.com/

science/article/pii/S1084804514001817.

32 LIU, Shengli et al. Public-key encryption scheme with selective opening chosen-ciphertext

security based on the Decisional Diffie-Hellman assumption. Concurrency Computation

Practice and Experience, v. 26, n. 8, p. 1506–1519, 2014. ISSN 15320634. DOI: 10.

1002/cpe.3021. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/

cpe.3021.

33 RAINER, Sebastian; SAARBRÜCKEN, Gerling. Plugging in trust and privacy: three

systems to improve widely used ecosystems. [S.l.], 2014. Available from: https://

core.ac.uk/download/pdf/77125693.pdf.

34 BONEH, Dan; CORRIGAN-GIBBS, Henry. LNCS 8873 - Bivariate Polynomials Modulo

Composites and Their Applications. [S.l.], 2014. Available from: https://link.sprin

ger.com/content/pdf/10.1007/s11390-007-9015-9.pdf.

35 QIN, Baodong; LIU, Shengli. Leakage-flexible CCA-secure public-key encryption: Simple

construction and free of pairing. In: LECTURE Notes in Computer Science. [S.l.]: Springer

Verlag, 2014. P. 19–36. DOI: 10.1007/978-3-642-54631-0_2.

36 WANG, Yuyu; TANAKA, Keisuke. Generic transformation to strongly existentially unforge-

able signature schemes with leakage resiliency. Lecture Notes in Computer Science,

Springer Verlag, v. 8782, p. 117–129, 2014. ISSN 16113349. DOI: 10.1007/978-3-319-

12475-9_9.

37 RAMCHEN, Kim; WATERS, Brent. Fully Secure and Fast Signing from Obfuscation.

dl.acm.org, Association for Computing Machinery, n. 1, p. 659–673, Nov. 2014. DOI:

10.1145/2660267.2660306. Available from: http://dx.doi.org/10.1145/2660267.

2660306.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 174

38 BÖHL, Florian et al. Confined Guessing: New Signatures From Standard Assumptions.

Journal of Cryptology, Springer New York LLC, v. 28, n. 1, p. 176–208, 2014. ISSN

14321378. DOI: 10.1007/s00145-014-9183-z.

39 THAKUR, Tejeshwari; SHARMA, Birendra Kumar. CERTIFICATELESS CHAMELEON

HASH SCHEME BASED ON RSA ASSUMPTION. Math. Lett, p. 12, 2014. ISSN 2049-

9337. Available from: http://scik.org.

40 GHASEMI, Mohsen. An algorithmic-type classification of tetravalent one-regular graphs

using computer algebra tools. Fundamenta Informaticae, v. 135, n. 3, p. 211–228, 2014.

ISSN 01692968. DOI: 10.3233/FI-2014-1119. Available from: https://content.iospre

ss.com/articles/fundamenta-informaticae/fi135-3-01.

41 REN, Wei; LIU, Yuliang. A lightweight possession proof scheme for outsourced files in

mobile cloud computing based on chameleon hash function. International Journal of

Computational Science and Engineering, v. 9, n. 4, p. 339–346, 2014. ISSN 17427193.

DOI: 10.1504/IJCSE.2014.060715. Available from: https://www.inderscienceonline.

com/doi/abs/10.1504/IJCSE.2014.060715.

42 YANG, Chunli et al. A fuzzy identity-based signature scheme from lattices in the standard

model. Mathematical Problems in Engineering, v. 2014, 2014. ISSN 15635147. DOI:

10.1155/2014/391276. Available from: https://www.hindawi.com/journals/mpe/2014/

391276/abs/.

43 SCHÖDER, Dominique; SIMKIN, Mark. Veristream – A framework for verifiable data

streaming. In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2015. P. 548–

566. DOI: 10.1007/978-3-662-47854-7_34.

44 FROMKNECHT, Conner. One-Time, Zero-Sum Ring Signature. [S.l.], 2015. Available

from: https://bitcoinedge.org/ja/papers/demo.pdf.

45 DER NATURWISSENSCHAFTEN, Doktors. On Cryptographic Building Blocks and

Transformations zur Erlangung des akademischen Grades eines. [S.l.], 2015. Avail-

able from: https://d-nb.info/1078957703/34.

46 HUANG, Zhengan et al. n-Evasive all-but-many lossy trapdoor function and its construc-

tions. Security and Communication Networks, v. 8, n. 4, p. 550–564, 2015. ISSN

19390122. DOI: 10.1002/sec.1002. Available from: https://onlinelibrary.wiley.

com/doi/abs/10.1002/sec.1002.

47 YAN, Jianhua et al. Identity-based signcryption from lattices. Security and Communica-

tion Networks, John Wiley and Sons Inc., v. 8, n. 18, p. 3751–3770, Dec. 2015. ISSN

19390122. DOI: 10.1002/sec.1297.

48 BLAZY, Olivier; CHEVALIER, Céline. Generic construction of UC-secure oblivious transfer.

In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2015. P. 65–86. DOI:

10.1007/978-3-319-28166-7_4.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 175

49 KIM, Kee Sung; JEONG, Ik Rae. Efficient verifiable data streaming. Security and Com-

munication Networks, v. 8, n. 18, p. 4013–4018, 2015. ISSN 19390122. DOI: 10.1002/

sec.1317. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.

1317.

50 HABER, Stuart et al. Efficient Transparent Redactable Signatures with a Single

Signature Invocation Efficient Transparent Redactable Signatures with a Single

Signature Invocation 4. [S.l.], 2015. Available from: https://www.labs.hpe.com/

techreports/2014/HPL-2014-90R1.pdf.

51 ZHAO, Xiufeng et al. Cloud data integrity checking protocol from lattice. International

Journal of High Performance Computing and Networking, v. 8, n. 2, p. 167–175,

2015. ISSN 17400570. DOI: 10.1504/IJHPCN.2015.070020. Available from: https:

//www.inderscienceonline.com/doi/abs/10.1504/IJHPCN.2015.070020.

52 WANG, Zhiwei; YIU, Siu Ming. CCA secure PKE with auxiliary input security and leakage

resiliency. In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2015. P. 319–

335. DOI: 10.1007/978-3-319-23318-5_18.

53 BOYEN, Xavier; LI, Qinyi. Towards tightly secure lattice short signature and Id-based

encryption. In: LECTURE Notes in Computer Science. [S.l.: s.n.], 2016. P. 404–434. DOI:

10.1007/978- 3- 662- 53890- 6_14. Available from: https://link.springer.com/

chapter/10.1007/978-3-662-53890-6%7B%5C_%7D14.

54 ALKIM, Erdem et al. TESLA: Tightly-Secure Efficient Signatures from Standard Lat-

tices. [S.l.], 2016. Available from: https : / / www . cryptosith . org / papers / tesla -

20161005.pdf.

55 NOH, Geontae; JEONG, Ik Rae. Strong designated verifier signature scheme from lattices

in the standard model. Security and Communication Networks, v. 9, n. 18, p. 6202–

6214, 2016. ISSN 19390122. DOI: 10.1002/sec.1766. Available from: https://onlinel

ibrary.wiley.com/doi/abs/10.1002/sec.1766.

56 SABIR KIRAZ, Mehmet; UZUNKOL, Osmanbey. Still Wrong Use of Pairings in Cryp-

tography. [S.l.], 2016. arXiv: 1603.02826v3. Available from: https://arxiv.org/abs/

1603.02826.

57 LIBERT, Benoît et al. Signature schemes with efficient protocols and dynamic group

signatures from lattice assumptions. In: LECTURE Notes in Computer Science. [S.l.: s.n.],

2016. P. 373–403. DOI: 10.1007/978- 3- 662- 53890- 6_13. Available from: https:

//hal.inria.fr/hal-01267123.

58 XIE, Dong et al. Short lattice signatures with constant-size public keys. Security and

Communication Networks, v. 9, n. 18, p. 5490–5501, 2016. ISSN 19390122. DOI: 10.

1002/sec.1712. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/

sec.1712.

59 FOUAD, Ahmed; IBRAHIM, Shedeed. NEW SECURE SOLUTIONS FOR PRIVACY AND

ACCESS CONTROL IN HEALTH INFORMATION EXCHANGE, 2016. DOI: 10.13023/

ETD.2016.307. Available from: http://dx.doi.org/10.13023/ETD.2016.307.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 176

60 THAKUR, Tejeshwari; KUMAR SHARMA, Birendra. International Journal of Applied Math-

ematics ID-BASED CHAMELEON HASHING AND CHAMELEON SIGNATURE BASED

ON GQ SCHEME. diogenes.bg, v. 29, n. 2, p. 227–242, 2016. ISSN 1314-8060. DOI:

10.12732/ijam.v29i2.7. Available from: http://diogenes.bg/ijam/contents/2016-

29-2/7/.

61 WANG, Yuyu; TANAKA, Keisuke. Generic transformations for existentially unforgeable

signature schemes in the bounded leakage model. In: 12. SECURITY and Communication

Networks. [S.l.: s.n.], 2016. P. 1829–1842. DOI: 10.1002/sec.1436. Available from: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/sec.1436.

62 DERLER, David et al. Digital Signatures from Symmetric-Key Primitives. IACR Cryp-

tology ePrint Archive, v. 2016, p. 1085, 2016. Available from: https : / / www .

technologyreview.com/s/600715/nsa- says%20http://dblp.uni- trier.de/db/

journals/iacr/iacr2016.html%7B%5C#%7DDerlerORRS16.

63 KOSHY, Binoj et al. Chameleon salting: The new concept of authentication management.

In: SMART Innovation, Systems and Technologies. [S.l.]: Springer Science and Business

Media Deutschland GmbH, 2016. P. 323–337. DOI: 10.1007/978-3-319-30927-9_32.

64 THANALAKSHMI, P.; ANITHA, R. A graph-based chameleon signature scheme. In:

SMART Innovation, Systems and Technologies. [S.l.]: Springer Science and Business

Media Deutschland GmbH, 2016. P. 327–335. DOI: 10.1007/978-81-322-2529-4_34.

65 HUANG, Jianye et al. A black-box construction of strongly unforgeable signature schemes

in the bounded leakage model. In: LECTURE Notes in Computer Science. [S.l.]: Springer

Verlag, 2016. P. 320–339. DOI: 10.1007/978-3-319-47422-9_19.

66 HU, Xiaoming et al. Strong designated verifier signature schemes with undeniable property

and their applications. Security and Communication Networks, v. 2017, 2017. ISSN

19390122. DOI: 10.1155/2017/7921782. Available from: https://www.hindawi.com/

journals/scn/2017/7921782/abs/.

67 ALKIM, Erdem et al. Revisiting TESLA in the quantum random oracle model. [S.l.],

2017. Available from: https://link.springer.com/chapter/10.1007/978-3-319-

28166-7%7B%5C_%7D4.

68 PAWLEGA, Filip et al. Revisiting TESLA in the Quantum Random. PQCrypt 2017, LNCS

10346, p. 143–162, 2017. DOI: 10.1007/978-3-319-59879-6.

69 BASTARA, Rpiit. Password Security Scheme based on a Honeywords Generation through

Hashing Key and Salting Process. academia.edu, v. 5, n. 10, p. 195–199, 2017. Available

from: http://www.academia.edu/download/55288754/IJSRDV5I100139.pdf.

70 LI, Qinyi. Lattice Public-Key Encryption: Richer, Tighter, Stronger. [S.l.], 2017. Avail-

able from: https://eprints.qut.edu.au/107651.

71 DÖTTLING, Nico; GARG, Sanjam. Identity-based encryption from the diffie-hellman

assumption. In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2017b.

P. 537–569. DOI: 10.1007/978-3-319-63688-7_18.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 177

72 GAO, Wen et al. Identity-based blind signature from lattices. Wuhan University Journal

of Natural Sciences, v. 22, n. 4, p. 355–360, 2017. ISSN 10071202. DOI: 10.1007/

s11859-017-1258-x. Available from: https://link.springer.com/chapter/10.1007/

978-3-319-54705-3%7B%5C_%7D13.

73 WANG, Yuyu; TANAKA, Keisuke. Generic transformation for signatures in the continual

leakage model. IEICE Transactions on Fundamentals of Electronics, Communica-

tions and Computer Sciences, E100A, n. 9, p. 1857–1869, 2017. ISSN 17451337. DOI:

10.1587/transfun.E100.A.1857. Available from: https://search.ieice.org/bin/

summary.php?id=e100-a%7B%5C_%7D9%7B%5C_%7D1857.

74 DÖTTLING, Nico; GARG, Sanjam. From Selective IBE to Full IBE and Selective HIBE.

In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2017a. P. 372–408.

DOI: 10.1007/978-3-319-70500-2_13. Available from: https://link.springer.com/

chapter/10.1007/978-3-319-70500-2%7B%5C_%7D13.

75 POETTERING, Bertram; STEBILA, Douglas. Double-authentication-preventing signatures.

International Journal of Information Security, Springer Verlag, v. 16, n. 1, Feb. 2017.

ISSN 16155270. DOI: 10.1007/s10207-015-0307-8.

76 CAMENISCH, Jan et al. Chameleon-hashes with ephemeral trapdoors and applications to

invisible sanitizable signatures. In: LECTURE Notes in Computer Science. [S.l.]: Springer

Verlag, 2017. P. 152–182. DOI: 10.1007/978-3-662-54388-7_6.

77 MA, Jinhua et al. An efficient and secure design of redactable signature scheme with

redaction condition control. In: LECTURE Notes in Computer Science. [S.l.: s.n.], 2017.

P. 38–52. DOI: 10.1007/978-3-319-57186-7_4. Available from: https://link.springer.

com/chapter/10.1007/978-3-319-57186-7%7B%5C_%7D4.

78 WANG, Zecheng et al. Adaptive-ID Secure Identity-Based Signature Scheme from Lat-

tices in the Standard Model. IEEE Access, v. 5, p. 20791–20799, 2017. ISSN 21693536.

DOI: 10.1109/ACCESS.2017.2757464. Available from: https://ieeexplore.ieee.org/

abstract/document/8053461/.

79 LIBERT, Benoît et al. Adaptive oblivious transfer with access control from lattice assump-

tions. In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2017. P. 533–563.

DOI: 10.1007/978-3-319-70694-8_19.

80 BOYEN, Xavier; LI, Qinyi. All-but-many lossy trapdoor functions from lattices and appli-

cations. In: SPRINGER. ANNUAL International Cryptology Conference. [S.l.: s.n.], 2017.

P. 298–331.

81 CHEVALIER, Céline et al. UC-Secure Protocols using Smooth Projective Hash Func-

tions. [S.l.], 2017. Available from: http://www.di.ens.fr/%7B~%7Dccheval/HdR/

manuscrit.pdf.

82 WANG, Yujue et al. Verifiably encrypted cascade-instantiable blank signatures to se-

cure progressive decision management. International Journal of Information Security,

Springer Verlag, v. 17, n. 3, p. 347–363, June 2018. ISSN 16155270. DOI: 10.1007/

s10207-017-0372-2.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 178

83 MARTÍNEZ, Ramiro et al. Title: Fully post-quantum protocols for e-voting, coercion

resistant cast as intended and mixing networks Master of Science in Advanced

Mathematics and Mathematical Engineering. [S.l.], 2018. Available from: https://

upcommons.upc.edu/handle/2117/113449.

84 EMMANUEL, Naina et al. Structures and data preserving homomorphic signatures.

v. 102. [S.l.: s.n.], 2018. P. 58–70. DOI: 10.1016/j.jnca.2017.11.005. Available from:

https://www.sciencedirect.com/science/article/pii/S1084804517303739.

85 ISHIZAKA, Masahito; MATSUURA, Kanta. Strongly Unforgeable Signature Resilient toÂ

Polynomially Hard-to-Invert Leakage Under Standard Assumptions. In: LECTURE Notes

in Computer Science. [S.l.: s.n.], 2018. P. 422–441. DOI: 10.1007/978-3-319-99136-

8_23. Available from: https://link.springer.com/chapter/10.1007/978-3-319-

99136-8%7B%5C_%7D23.

86 UZUNKOL, Osmanbey; KIRAZ, Mehmet Sabır. Still wrong use of pairings in cryptography.

Applied Mathematics and Computation, Elsevier Inc., v. 333, p. 467–479, Sept. 2018.

ISSN 00963003. DOI: 10.1016/j.amc.2018.03.062. arXiv: 1603.02826.

87 KEVIN, Atighehchi; MORGAN, Barbier. Signature Renewal for Low Entropy Data. In:

PROCEEDINGS - 17th IEEE International Conference on Trust, Security and Privacy in

Computing and Communications and 12th IEEE International Conference on Big Data

Science and Engineering, Trustcom/BigDataSE 2018. [S.l.: s.n.], 2018. P. 873–884. DOI:

10.1109/TrustCom/BigDataSE.2018.00126. Available from: https://ieeexplore.ieee.

org/abstract/document/8455994/.

88 JAGER, Tibor; KUREK, Rafael. Short Digital Signatures and ID-KEMs via Truncation

Collision Resistance. In: LECTURE Notes in Computer Science. [S.l.: s.n.], 2018. P. 221–

250. DOI: 10.1007/978-3-030-03329-3_8. Available from: https://link.springer.

com/chapter/10.1007/978-3-030-03329-3%7B%5C_%7D8.

89 CHEN, Yu et al. Regular lossy functions and their applications in leakage-resilient cryp-

tography. Theoretical Computer Science, v. 739, p. 13–38, 2018. ISSN 03043975. DOI:

10.1016/j.tcs.2018.04.043. Available from: https://www.sciencedirect.com/

science/article/pii/S0304397518302937.

90 FLIUNT, Artem et al. Redactable Blockchain-or-Rewriting History in Bitcoin and

Friends. [S.l.], 2018. Available from: https : / / pdfs . semanticscholar . org / f01c /

15b90a5c33719cb452437adc9a5c60a917bb.pdf.

91 JAGADEESAN, Meena et al. Proofs of Sequential Work. [S.l.], 2018. Available from:

https://www.boazbarak.org/cs127/Projects/seq%7B%5C_%7Dwork.pdf.

92 ZIMA, M. P2P Cryptocurrency Exchange and Blockchain Size Reduction. [S.l.], 2018.

Available from: https://is.muni.cz/th/q1in8/thesis.pdf.

93 D2. of the Art on Privacy-Enhancing Cryptography for Ledgers. [S.l.], 2018. Available

from: https://media.voog.com/0000/0042/1115/files/D2.1-State-of-the-Art-on-

Privacy-Enhancing-Cryptography-for-Ledgers.pdf.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 179

94 BLAZY, Olivier; CHEVALIER, Céline. Non-Interactive Key Exchange from Identity-Based

Encryption. dl.acm.org, Association for Computing Machinery, v. 10, Aug. 2018. DOI:

10.1145/3230833.3230864. Available from: https://dl.acm.org/doi/abs/10.1145/

3230833.3230864.

95 LIU, Jianwei et al. Multi-authority Fast Data Cloud-Outsourcing for Mobile Devices.

Springer, Springer Verlag, 11060 LNCS, p. 231–249, 2018. DOI: 10 . 1007 / 978 - 3 -

319- 99136- 8_13. Available from: https://doi.org/10.1007/978- 3- 319- 99136-

8%7B%5C_%7D13.

96 WANG, Yuyu et al. Memory lower bounds of reductions revisited. In: LECTURE Notes

in Computer Science. [S.l.: s.n.], 2018. P. 61–90. DOI: 10.1007/978-3-319-78381-9_3.

Available from: https://link.springer.com/chapter/10.1007/978-3-319-78381-

9%7B%5C_%7D3.

97 NING, Fangxiao et al. Efficient tamper-evident logging of distributed systems via concur-

rent authenticated tree. In: 2017 IEEE 36th International Performance Computing and

Communications Conference, IPCCC 2017. [S.l.]: Institute of Electrical and Electronics

Engineers Inc., Feb. 2018. P. 1–9. DOI: 10.1109/PCCC.2017.8280476.

98 ZHANG, Yanhua et al. Efficient lattice FIBS for identities in a small universe. In: COMMU-

NICATIONS in Computer and Information Science. [S.l.]: Springer Verlag, 2018. P. 83–95.

DOI: 10.1007/978-981-13-3095-7_7.

99 GALBRAITH, Steven D. Authenticated key exchange for SIDH. [S.l.], 2018. Available

from: https://www.math.auckland.ac.nz/%7B~%7Dsgal018/AKE.pdf.

100 BOYEN, Xavier; LI, Qinyi. Almost tight multi-instance multi-ciphertext identity-based en-

cryption on lattices. In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag,

2018. P. 535–553. DOI: 10.1007/978-3-319-93387-0_28.

101 HUANG, Jianye et al. A Black-Box Construction of Strongly Unforgeable Signature

Scheme in the Leakage Setting *. International Journal of Foundations of Computer

Science, World Scientific Publishing Co. Pte Ltd, v. 9, n. 6, p. 761–780, Sept. 2018. DOI:

10.1142/S0129054117400172. Available from: www.worldscientific.com.

102 MOMENG LIU, Yupu Hu. Universally composable oblivious transfer from ideal lattice.

Front. Comput. Sci, Higher Education Press, v. 13, n. 4, p. 879–906, Aug. 2019. DOI:

10.1007/s11704-018-6507-4. Available from: https://doi.org/10.1007/s11704-018-

6507-4.

103 GEONTAE NOH, Ik Rae Jeong. Transitive signature schemes for undirected graphs from

lattices. KSII Transactions on Internet and Information Systems, v. 13, n. 6, p. 3316–

3332, 2019. ISSN 22881468. DOI: 10.3837/tiis.2019.06.030. Available from: http:

//itiis.org/digital-library/manuscript/file/22144/TIISVol13No6-30.pdf.

104 ZHANDRY, Mark. The Magic of ELFs. Journal of Cryptology, v. 32, n. 3, p. 825–866,

2019. ISSN 14321378. DOI: 10 . 1007 / s00145 - 018 - 9289 - 9. Available from: https :

//link.springer.com/article/10.1007/s00145-018-9289-9.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 180

105 MIRCHANDANI, Anisha. The GDPR-Blockchain Paradox: Exempting Permissioned

Blockchains from the GDPR. Fordham Intellectual Property, Media and Entertainment

Law Journal, v. 29, n. 4, p. 1201, 2019. Available from: https://ir.lawnet.fordham.

edu/iplj.

106 NAVID ALAMATI HART MONTGOMERY, Sikhar Patranabis. Symmetric Primitives with

Structured Secrets. In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag,

2019. P. 650–679. DOI: 10.1007/978-3-030-26948-7_23.

107 DÖTTLING, Nico et al. Rate-1 Trapdoor Functions from the Diffie-Hellman Problem. In:

LECTURE Notes in Computer Science. [S.l.]: Springer, 2019. P. 585–606. DOI: 10.1007/

978-3-030-34618-8_20.

108 KARTHIK NANDAKUMAR NALINI RATHA, Sharathchandra Pankanti. Proving Multimedia

Integrity using Sanitizable Signatures Recorded on Blockchain. dl.acm.org, ACM, v. 19,

p. 10, July 2019. DOI: 10.1145/3335203.3335729. Available from: https://doi.org/10.

1145/3335203.3335729.

109 BLAZY, Olivier et al. Post-Quantum UC-Secure Oblivious Transfer in the Standard Model

with Adaptive Corruptions. In: PROCEEDINGS of the 14th International Conference on

Availability, Reliability and Security - ARES ’19. New York, New York, USA: ACM Press,

2019. Available from: https://doi.org/10.1145/3339252.3339280.

110 YOSHIDA, Yusuke et al. Non-Committing Encryption with Quasi-Optimal Ciphertext-Rate

Based on the DDH Problem. In: LECTURE Notes in Computer Science. [S.l.: s.n.], 2019.

P. 128–158. DOI: 10.1007/978- 3- 030- 34618- 8_5. Available from: https://link.

springer.com/chapter/10.1007/978-3-030-34618-8%7B%5C_%7D5.

111 GARG, Sanjam et al. New techniques for efficient trapdoor functions and applications.

In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2019. P. 33–63. DOI:

10.1007/978-3-030-17659-4_2.

112 ALAMATI, Navid et al. Minicrypt primitives with algebraic structure and applications. In:

SPRINGER. ANNUAL International Conference on the Theory and Applications of Cryp-

tographic Techniques. [S.l.: s.n.], 2019. P. 55–82.

113 DERLER, David; SLAMANIG, Daniel. Key-homomorphic signatures: definitions and ap-

plications to multiparty signatures and non-interactive zero-knowledge. Designs, Codes,

and Cryptography, Springer New York LLC, v. 87, n. 6, p. 1373–1413, June 2019. ISSN

15737586. DOI: 10.1007/s10623-018-0535-9.

114 PARK, Sunoo; SEALFON, Adam. It Wasn’t Me!: Repudiability and Claimability of Ring Sig-

natures. In: LECTURE Notes in Computer Science. [S.l.]: Springer Verlag, 2019. P. 159–

190. DOI: 10.1007/978-3-030-26954-8_6.

115 KOCH, Jessica et al. Improvements and New Constructions of Digital Signatures

Doktors der Naturwissenschaften. [S.l.], 2019. Available from: https://pdfs.semanti

cscholar.org/af9d/8d7d5b548a5afacd0a036e7cf7befc0e57e6.pdf.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 181

116 B, Shuichi Katsumata; YAMADA, Shota. Group Signatures Without NIZK : v. 1, Grant

780701, p. 312–344, 2019. DOI: 10.1007/978-3-030-17659-4. Available from: http:

//58.194.172.13:80/rwt/154/http/MS6C63DQNEYG86UH/10.1007/978-3-030-17659-

4%7B%5C_%7D11.

117 ZHANG, Yanhua et al. Efficient fuzzy identity-based signature from lattices for identities

in a small (or large) universe. Journal of Information Security and Applications, v. 47,

p. 86–93, 2019. ISSN 22142126. DOI: 10.1016/j.jisa.2019.04.012. Available from:

https://www.sciencedirect.com/science/article/pii/S2214212618307658.

118 RUFFING, Tim. Cryptography for Bitcoin and Friends. [S.l.], 2019. Available from:

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29102.

119 YU, Bin et al. Chameleon Hash Time-Lock Contract for Privacy Preserving Payment

Channel Networks. In: LECTURE Notes in Computer Science. [S.l.]: Springer, 2019.

P. 303–318. DOI: 10.1007/978-3-030-31919-9_18. Available from: https://link.

springer.com/chapter/10.1007/978-3-030-31919-9%7B%5C_%7D18.

120 AUTHCROPPER: AUTHENTICATED IMAGE CROPPER FOR PRIVACY PRESERVING

SURVEILLANCE SYSTEMS. ACM Trans. Embed. Comput. Syst, Association for Com-

puting Machinery, v. 18, 5s, Oct. 2019. DOI: 10.1145/3358195. Available from: https:

//doi.org/10.1145/3358195.

121 YAN, Jianhua et al. Attribute-Based Signcryption from Lattices in the Standard Model.

IEEE Access, v. 7, p. 56039–56050, 2019. ISSN 21693536. DOI: 10.1109/ACCESS.2019.

2900003. Available from: https://ieeexplore.ieee.org/abstract/document/8653267/.

122 DI LUZIO, Adriano et al. Arcula: A Secure Hierarchical Deterministic Wallet for Multi-asset

Blockchains, June 2019. arXiv: 1906.05919. Available from: http://arxiv.org/abs/

1906.05919.

123 WANG, Xianmin et al. An Identity-Based Signcryption on Lattice without Trapdoor.

v. 25. [S.l.], 2019. P. 282–293. Available from: http://jucs.org/jucs%7B%5C_%7D25%7B%

5C_%7D3/an%7B%5C_%7Didentity%7B%5C_%7Dbased%7B%5C_%7Dsigncryption/jucs%7B%

5C_%7D25%7B%5C_%7D03%7B%5C_%7D0282%7B%5C_%7D0293%7B%5C_%7Dwang.pdf.

124 CAO, Nanyuan et al. All-But-Many Lossy Trapdoor Functions under Decisional RSA Sub-

group Assumption and Application. academic.oup.com, 2019. DOI: 10.1093/comjnl/

bxz008. Available from: https://academic.oup.com/comjnl/article/62/8/1148/

5369686.

125 THANALAKSHMI, P; ANITHA, R. A Quantum Resistant Chameleon Hashing and Sig-

nature Scheme. IETE Journal of Research, 2019. ISSN 0974780X. DOI: 10.1080/

03772063.2019.1698323. Available from: https://www.tandfonline.com/doi/abs/10.

1080/03772063.2019.1698323.

126 ZHANG, Xiao et al. A generic construction of tightly secure signatures in the multi-user

setting. Theoretical Computer Science, v. 775, p. 32–52, 2019. ISSN 03043975. DOI:

10.1016/j.tcs.2018.12.012. Available from: https://www.sciencedirect.com/

science/article/pii/S0304397518307333.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 182

127 CHEN, Liqun et al. A Framework for Efficient Lattice-Based DAA. dl.acm.org, Associa-

tion for Computing Machinery (ACM), p. 23–34, 2019. DOI: 10.1145/3338511.3357349.

Available from: https://doi.org/10.1145/3338511.3357349.

128 LU, Xingye et al. (Linkable) Ring signature from hash-then-one-way signature. In: PRO-

CEEDINGS - 2019 18th IEEE International Conference on Trust, Security and Privacy

in Computing and Communications/13th IEEE International Conference on Big Data Sci-

ence and Engineering, TrustCom/BigDataSE 2019. [S.l.: s.n.], 2019a. P. 578–585. DOI:

10.1109/TrustCom/BigDataSE.2019.00083. Available from: https://ieeexplore.ieee.

org/abstract/document/8887320/.

129 DIMA GRIGORIEV, Vladimir Shpilrain. RSA and redactable blockchains, Jan. 2020. arXiv:

2001.10783. Available from: http://arxiv.org/abs/2001.10783.

130 KAI SAMELIN, Daniel Slamanig. Policy-based sanitizable signatures. In: SS20. LECTURE

Notes in Computer Science. [S.l.]: Springer, 2020. P. 538–563. DOI: 10.1007/978-3-030-

40186-3_23. Available from: https://link.springer.com/chapter/10.1007/978-3-

030-40186-3%7B%5C_%7D23.

131 LI, Cong et al. OUP accepted manuscript. The Computer Journal, 2020. ISSN 0010-

4620. DOI: 10.1093/comjnl/bxaa075. Available from: https://academic.oup.com/

comjnl/article-abstract/doi/10.1093/comjnl/bxaa075/5872129.

132 MOJTABA KHALILI MOHAMMAD DAKHILALIAN, Willy Susilo. Efficient chameleon hash

functions in the enhanced collision resistant model. Information Sciences, v. 510, p. 155–

164, 2020. ISSN 00200255. DOI: 10.1016/j.ins.2019.09.001. Available from: https:

//www.sciencedirect.com/science/article/pii/S002002551930831X.

133 SUBHRA MAZUMDAR, Sushmita Ruj. CryptoMaze: Atomic Off-Chain Payments in Pay-

ment Channel Network, May 2020. arXiv: 2005.07574. Available from: http://arxiv.

org/abs/2005.07574.

134 DAN MICHAEL A. CORTEZ ARIEL M. SISON, Ruji P. Medina. Cryptographic Random-

ness Test of the Modified Hashing Function of SHA256 to Address Length Extension

Attack. In: ACM International Conference Proceeding Series. [S.l.]: Association for Com-

puting Machinery, Apr. 2020. P. 24–28. DOI: 10.1145/3390525.3390540. Available from:

https://doi.org/10.1145/3390525.3390540A.

135 DHARMINDER DHARMINDER, Dheerendra Mishra. Construction of Identity Based Sign-

cryption Using Learning with Rounding. In: COMMUNICATIONS in Computer and Informa-

tion Science. [S.l.]: Springer, 2020. P. 612–626. DOI: 10.1007/978-981-15-6318-8_49.

136 SUN, Yi et al. An Adaptive Authenticated Data Structure with Privacy-Preserving for Big

Data Stream in Cloud. IEEE Transactions on Information Forensics and Security,

v. 15, p. 3295–3310, 2020. ISSN 15566021. DOI: 10.1109/TIFS.2020.2986879. Available

from: https://ieeexplore.ieee.org/abstract/document/9063421/.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 183

137 DARIO CATALANO GEORG FUCHSBAUER, Azam Soleimanian. Double-

authentication-preventing signatures in the standard model. 12238 LNCS. [S.l.],

2020. P. 338–358. ISBN 9783030579890. DOI: 10.1007/978- 3- 030- 57990- 6_17.

Available from: https://eprint.iacr.org/2020/789.pdf.

A.5.2 Accepted Results

A.5.2.1 Preimage Chameleon Hash to Increase Signature Security

These papers use the preimage chameleon hash to improve the signature secu-

rity as described in Subsections 3.4.3 and 4.3.1. In all the cases the authors are using

the post-quantum chameleon hash based on lattices to help building post-quantum

signature schemes that can be proven in the standard model.

1 CASH, David et al. Bonsai trees, or how to delegate a lattice basis. In: SPRINGER. AN-

NUAL international conference on the theory and applications of cryptographic techniques.

[S.l.: s.n.], 2010. P. 523–552.

2 RÜCKERT, Markus. Adaptively secure identity-based identification from lattices without

random oracles. In: SPRINGER. INTERNATIONAL Conference on Security and Cryptog-

raphy for Networks. [S.l.: s.n.], 2010a. P. 345–362

3 BRAKERSKI, Zvika; KALAI, Yael Tauman. A Framework for Efficient Signatures, Ring

Signatures and Identity Based Encryption in the Standard Model. IACR Cryptol. ePrint

Arch., v. 2010, p. 86, 2010

4 ZHANDRY, Mark. Cryptography in the Age of Quantum Computers. 2015. PhD thesis

– Stanford University

5 EATON, Edward. Signature schemes in the quantum random-oracle model. 2017.

MA thesis – University of Waterloo

A.5.2.2 Preimage Chameleon Hash for Authentication

This thesis use a preimage chameleon hash to instantiate part of a post-quantum

key-exchange protocol. The chameleon hash acts as a one-way function with trapdoor.

6 LEGROW, Jason. Post-quantum security of authenticated key establishment proto-

cols. 2016. MA thesis – University of Waterloo.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 184

A.5.2.3 Preimage Chameleon Hash for Signature Construction

These are papers which propose using the chameleon hash to construct signa-

ture schemes.

7 GORBUNOV, Sergey et al. Leveled fully homomorphic signatures from standard lattices.

In: PROCEEDINGS of the forty-seventh annual symposium on Theory of computing.

[S.l.: s.n.], 2015. P. 469–477.

8 XIE, Dong et al. Homomorphic signatures from chameleon hash function. Informational

Technology and Control, v. 46, n. 2, p. 274–286, 2017.

9 LI, BaoHong et al. Lattice-Based Universal Designated Verifier Signatures. In: IEEE. 2018

IEEE 15th Internationalç Conference on e-Business Engineering (ICEBE). [S.l.: s.n.], 2018.

P. 329–334.

10 LU, Xingye et al. Raptor: a practical lattice-based (linkable) ring signature. In: SPRINGER.

INTERNATIONAL Conference on Applied Cryptography and Network Security. [S.l.: s.n.],

2019c. P. 110–130.

The seventh and eighth work are about homomorphic signature schemes using

chameleon hashes, as described in section 5.5.

The ninth work was described in section 5.4.

The tenth work was mentioned in section 5.3. The method proposed to build

a ring signature was used in that section to build an unforgeable signature scheme

against adaptive chosen message attacks.

A.5.2.4 Quantum Preimage Chameleon Hash

This paper describes a quantum preimage chameleon hash, with some proper-

ties that are impossible for classical chameleon hashes. For example, the CH.PREIMAGE

algorithm can be used only once.

11 AMOS, Ryan et al. One-shot signatures and applications to hybrid quantum/classical

authentication. In: PROCEEDINGS of the 52nd Annual ACM SIGACT Symposium on

Theory of Computing. [S.l.: s.n.], 2020. P. 255–268.

It was not described in this thesis because the preimage chameleon hash de-

scribed there is a generalization of the scheme studied here. The quantum chameleon

hash was outside our scope.

ANNEX A. Systematic Review about Preimage Chameleon Hashes 185

A.5.2.5 Preimage Chameleon Hash to Construct Regular Chameleon Hash

This paper shows how to construct new chameleon hashes from some sigma

protocols. One of them is a chameleon hash based on Fiat-Shamir sigma protocol.

The construction is similar to the one presented on Subsection 3.3.2, but replacing the

one-way function from that construction with a one-way trapdoor function. This makes

the construction a preimage chameleon hash.

12 BELLARE, Mihir; RISTOV, Todor. A characterization of chameleon hash functions and

new, efficient designs. Journal of cryptology, Springer, v. 27, n. 4, p. 799–823, 2014.

A.6 CONCLUSION

The existance of so few results about the concept justify our initial thought that

preimages chameleon hashes were a new concept.

Using this systematic review we could answer affirmatively the question about

existing previous works dealing with preimage chameleon hash schemes. We also

could classify 5 different use cases proposed in literature for preimage chameleon

hashes, answering then the second question.

None of the proposed use cases and constructions are equivalent to our pro-

pose of building preimage signatures. The proposed homomorphic signature (accepted

results 7 and 8) is the most similar, as the chameleon hash of a message and a valid

signature will be equal some digest chosen during key creation. However, in that work

the digests are chosen uniformly at random and the signature, if not generalized to

a tag-based signature as both works propose, can be used to sign a single group of

messages for each pair of keys.

The previous constructions also did not guarantee the unforgeability in a secu-

rity model as rigorous as ours: letting an attacker choose adaptively a polynomially

bounded number of signing queries and assuming that the adversary can use quantum

algorithms, a scenario where rewinding techniques cannot be used in the proof.

	Title page
	Approval
	Agradecimentos
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Motivation
	Justification
	Objectives
	Specific Objectives

	Methodology
	Scientific Contributions
	Notation
	Organization

	Preliminaries
	Proofs of Security
	Mathematical Cryptographic Assumptions
	Factoring Assumption
	Discrete Logarithm Assumption
	Short Integer Solution (SIS) Assumption
	Ring Short Integer Solution (Ring-SIS) Assumption

	Cryptographic Primitives
	One-Way Function
	Hash Function
	Weaker Properties: Second-Preimage
	Weaker Properties: First Preimage Resistance

	One-Way Trapdoor Function
	Pseudo-Random Functions
	Signature Scheme
	Weaker Security Notion: Generic Chosen Message Attack
	Weaker Security Notion: Random Message Attack

	Non-standard Models in Security Proofs
	Random Oracle Model
	Proving Full-Domain Hash Signature in the Random Oracle Model
	Random Oracle in a Post-Quantum Model

	Chameleon Hash Functions: Definitions and Properties
	Definition
	Properties of Chameleon hash Functions
	Constructions of Chameleon Hash Functions
	Chameleon Hash from Discrete Logarithm Assumption
	Chameleon Hash from Homomorphic One-Way Functions
	Other Constructions

	Applications
	Chameleon Signatures
	On-line/Off-line Signatures
	Transforming GCMA-secure signatures in CMA-secure signatures
	Redactable Signatures
	Chameleon Hash Chains and Authentication

	Preimage Chameleon Hash Functions
	Definition and Properties
	Constructions
	Preimage Chameleon Hash from One-Way Trapdoor Permutations
	Preimage Chameleon Hash based on SIS Assumption
	Generating a Random Matrix with Trapdoor: TrapGen
	Finding Short Integer Solutions: SamplePre
	Sampling Short Random Vectors: SampleDom
	The Chameleon Hash Construction

	A Second Chameleon Hash Based on SIS Assumption
	Other Constructions

	Applications
	Transforming RMA-Secure Signatures in CMA-Secure Signatures

	Signatures and Chameleon Hash Functions
	One-Time Signature Secure Against Weak Chosen-Message Attack
	One-Time Signature Fully Secure Against Chosen Message Attacks
	Signature Scheme Secure Against Classical Adversaries
	Building Universal Designated Signatures
	Ring Version of TrapGen, SamplePre and SampleDom
	The Ring-GPV Signature Scheme
	Extending the GPV Signature with Chameleon Hash Functions
	Security of the Universal Designated Verifier Signature

	Homomorphic Signatures with Chameleon Hash Functions

	Post-quantum signature with preimage chameleon hashing
	Preimage Signatures
	Construction using preimage chameleon hash functions
	Implementation, Results and Discussion

	Conclusion
	Further Works

	REFERENCES
	General Forking Lemma
	Chameleon Hash with Stronger Collision Resistance in the Generic Group Model
	Strong Collision Resistance
	Generic Group Model
	Proving the Discrete Logarithm Assumption in the Generic Group Model
	Generic Group in a Post-Quantum Model

	Preimage Chameleon Hash from Discrete Logarithms in Generic Groups

	Systematic Review about Preimage Chameleon Hashes
	Introduction
	Objective
	Questions
	Selection of Fonts
	Details About the Search

	Results
	Discarded Results
	Accepted Results
	Preimage Chameleon Hash to Increase Signature Security
	Preimage Chameleon Hash for Authentication
	Preimage Chameleon Hash for Signature Construction
	Quantum Preimage Chameleon Hash
	Preimage Chameleon Hash to Construct Regular Chameleon Hash

	Conclusion

		2021-06-24T14:52:40-0300

		2021-06-24T16:00:37-0300

