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RESUMO

O gerenciamento da cadeia de suprimento de petróleo não refinado envolve o gerenciamento
de operações de descarga e transferência em terminais, controle de estoque e mistura de
petróleo bruto para atender às demandas da refinaria. O planejamento das operações torna-se
mais desafiador, pois as viagens dos navios devem ser programadas com precisão para dar
vazão às plataformas de produção do petróleo. Tradicionalmente, métodos de otimização
matemática são utilizados para auxiliar na gestão operacional através de programação não
linear inteira mista (MINLP). Indiscutivelmente, a dificuldade computacional do problema
surge devido ao tamanho e à combinação de decisões discretas com restrições não lineares,
constituídas por termos bilineares que modelam as operações de mistura do petróleo. No
que diz respeito às funções não lineares, este trabalho contribui com a avaliação de téc-
nicas distintas de aproximação linear dos termos bilineares, especificamente: McCormick
envelopes, univariate e bivariate piecewise McCormick, multiparametric disaggregation e
normalized multiparametric disaggregation. Os métodos de relaxação geram um problema
de programação linear inteira mista (MILP), que pode ser combinado com um algoritmo
de programação não linear local (PNL) para atingir um cronograma de operações viável.
Concluímos com uma comparação entre essas abordagens de relaxação juntamente com
abordagens MINLP usuais, e demonstramos resultados computacionais em instâncias do
problema. A relaxação utilizando multiparametric disaggregation produz tempos de solução
menores para resultados similares comparativamente aos métodos de otimização global
comumente utilizados.

Palavras-chaves: Relaxação Linear, McCormick Envelopes, Piecewise McCormick, Multi-
parametric Disaggregation, Normalized Multiparametric Disaggregation.





RESUMO EXPANDIDO

Introdução
O gerenciamento operacional da cadeia de suprimento de petróleo não refinado envolve o
sequenciamento de operações de descarga e transferência em terminais, controle de estoque e
mistura de petróleo bruto para atender às demandas da refinaria. Tradicionalmente, métodos
de otimização matemática são utilizados para auxiliar na gestão operacional através de
programação não linear inteira mista (MINLP). Indiscutivelmente, a dificuldade computa-
cional do problema surge devido ao tamanho e à combinação de decisões discretas com
restrições não lineares, constituídas por termos bilineares que modelam as operações de
mistura do petróleo. No que diz respeito às funções não lineares, este trabalho contribui com
a avaliação de técnicas distintas de aproximação linear dos termos bilineares, especifica-
mente: McCormick envelopes, univariate e bivariate piecewise McCormick, multiparametric
disaggregation e normalized multiparametric disaggregation. Os métodos de relaxação
geram um problema de programação linear inteira mista (MILP), que pode ser combinado
com um algoritmo de programação não linear local (PNL) para atingir um cronograma de
operações viável.

Objetivos
O objetivo desta dissertação consiste em avaliar métodos de relaxação para termos bilineares
em um estudo de caso do Gerenciamento Operacional da Cadeia de Suprimento de Petróleo
Bruto (OMCOS). Além disso, os objetivos específicos são os seguintes: (a) Identificar e
discutir o estado-da-arte em métodos de relaxação, capazes de lidar com o problema em
questão; (b) Aplicar e analisar cada método aplicado ao estudo de caso, avaliando a qualidade
da sua solução e o tempo computacional; (c) Selecionar o melhor método ou combinação de
métodos, considerando a estrutura do problema e comparando seus resultados com solvers
globais.

Metodologia
Os termos bilineares que aparecem nas restrições de mistura são relaxados por meio das
técnicas de relaxação propostas. As instâncias MINLP originais do OMCOS são resolvidas
até obter uma solução ótima ou até atingir o limite de 10h de execução, utilizando um
solver global (Gurobi e SCIP). Estes servem como referência para comparar aos métodos
de relaxação aplicados em um algoritmo de decomposição MILP-PNL. Este algoritmo é
avaliado em três cenários distintos: (a) aplica-se a técnica de relaxação em ambos os termos
bilineares; (b) a técnica de relaxação é aplicada apenas no termo bilinear do lado esquerdo
da igualdade, enquanto um envelope McCormick padrão substitui o termo bilinear do lado
direito da igualdade; (c) a técnica de relaxação é aplicada apenas no termo bilinear do lado
direito da igualdade, enquanto um envelope McCormick padrão substitui o termo bilinear
do lado esquerdo da igualdade. As técnicas são aplicadas com variação de parâmetros que
permitem verificar a solução com relaxações mais e menos apertadas. Em uma relaxação
mais apertada é esperado obter melhores resultados mas com um esforço computacional
maior. Para os experimentos computacionais, foram criadas três instâncias distintas do
problema.

Resultados e Discussão
A restrição de mistura do OMCOS possui uma estrutura única que consiste em dois termos
bilineares conectados por uma restrição de igualdade. Assim, os resultados mostraram
que foi possível melhorar o tempo computacional restringindo apenas um dos termos



bilineares, enquanto o outro permaneceu limitado por um simples Envelope McCormick. A
decomposição do MILP-PNL, quando a relaxação foi aplicada em apenas um dos termos
bilineares, produziu soluções comparáveis às obtidas pelo problema original utilizando
solvers globais. Examinando o Piecewise McCormick, embora o PNL possa obter um limite
inferior ligeiramente melhor aumentando o número de partições, o esforço computacional é
muito alto. Isso sugere que 4 e 8 são os números de partições recomendados, o que vai de
encontro à literatura encontrada. Já para o Multiparametric Disaggregation, os resultados
numéricos mostraram melhores resultados com um número maior de partições. A melhor
solução encontrada para duas instâncias, por exemplo, foi obtida aplicando este método de
relaxação com 500 partições equivalentes. Em relação às diferentes estratégias de relaxação
para termos bilineares aplicadas às instâncias neste estudo, os resultados sugerem que o
Multiparametric Disaggregation é capaz de obter bons resultados para as instâncias em um
tempo computacional mais rápido. O método também produziu resultados semelhantes às
soluções ótimas encontradas resolvendo o MINLP diretamente com o solver Gurobi, e com
melhor performance quando comparado ao solver SCIP.

Considerações Finais
Esta dissertação contribui com a literatura ao trazer novos insights para a solução do Geren-
ciamento Operacional da Cadeia de Suprimento de Petróleo Bruto com termos bilineares.
Ao apresentar diferentes abordagens para a solução do problema, espera-se que resultados
utilizando Multiparametric Disaggregation possam atingir melhor qualidade e tempo com-
putacional em comparação a solvers de otimização global. Os resultados também indicam
que trabalhos futuros podem tirar proveito da formulação relaxada para aplicar métodos
iterativos buscando a redução do domínio das variáveis.

Palavras-chaves: Relaxação Linear, McCormick Envelopes, Piecewise McCormick, Multi-
parametric Disaggregation, Normalized Multiparametric Disaggregation.



ABSTRACT

The operational management of crude oil supply entails solving large-scale mixed-
integer nonlinear programming (MINLP) problems, accounting for unloading and transfer
operations in terminals, inventory control, and blending of crude oils to meet the demands
from the refinery. In offshore oil assets, the planning of operations becomes more challenging
because vessel trips should be scheduled to relieve production platforms from crudes
which are transferred to the terminals. Arguably, the problem’s computational hardness
emerges from its size and the combination of discrete decisions with nonlinear constraints,
consisting of bilinear terms that model blending operations. Concerning the nonlinear
functions, this work contributes by evaluating distinct linear approximation techniques
of the bilinear terms, namely: standard McCormick envelopes, univariate and bivariate
piecewise McCormick, multiparametric disaggregation, and normalized multiparametric
disaggregation. The methods yield a mixed-integer linear programming (MILP) relaxation,
which can be combined with a local nonlinear programming (NLP) algorithm to reach a
feasible schedule of operations. We conclude with a comparison among these relaxation
approaches along with common MINLP approaches and report computational results on
instances of the problem. The relaxation derived using the multiparametric disaggregation
technique is shown to yield faster solution times for similar optimality gaps comparatively
to general global optimization solvers.

Key-words: Linear Relaxation, McCormick Envelopes, Piecewise McCormick Envelopes,
Multiparametric Disaggreagation, Normalized Multiparametric Disaggreagation, Resource
Constraints.
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1 INTRODUCTION

1.1 MOTIVATION

The petrochemical industry is arguably strategic for our society. Crude oil is transformed
into valuable products present in our everyday life, such as plastics, oils, fuels, asphalt, and many
chemicals utilized as raw material across various industries. To achieve that, vertically integrated
oil companies must deal with a broad range of complex physical and chemical processes, from
production and transportation of crude oil to storage and refining. They operate in an extremely
competitive and dynamic market where substantial variations in product demand and crude oil
prices occur frequently. Consequently, their profit margins are comparatively small regarding
other industries, which raises a necessity to realize significant cost savings. Another critical
factor comes from the increased demand for the optimal use of natural resources, with operations
being regulated under strict safety, environmental, and governmental rules. The management of
this intricate supply chain has proven to be a considerable challenge faced by these companies
(ROCHA; GROSSMANN; ARAGÃO, 2009).

As illustrated in Figure 1, the crude oil supply chain starts with the extraction performed
by floating production, storage, and offloading units (FPSOs). After the production stage, vessels
transfer the crude oil from the deep-water offshore units to onshore terminals since oil pipelines
are not technically feasible or economically viable in most cases. After arriving in a terminal,
vessels unload through a pipeline to storage tanks (STs). Since different types of crude oil exist,
mixtures are expected at this point. The crude oil reaches the refinery stage through a pipeline
network connected from the storage tanks to charging tanks (CTs) responsible for continuously
feeding the crude oil distillation units (CDUs). As becomes evident, production planning and
scheduling represent a fundamental and prevalent tool in managing the crude oil supply chain.

Historically, the oil industry has been extensively studying and implementing mathemat-
ical programming techniques to address management issues (BODINGTON; BAKER, 1990).
Particularly for planning and scheduling operations, Linear Programming (LP) and Mixed-Integer
Linear Programming (MILP) have been employed since they are relatively straightforward to
model and solve. However, considering that the crude oil production involves units operating in
both batch and continuous modes, and the mixing of crudes has to be handled simultaneously,
modeling is not a trivial task (KARUPPIAH; FURMAN; GROSSMANN, 2008). Nonlinear
equations are often required when modeling continuous-time representations (KARUPPIAH;
FURMAN; GROSSMANN, 2008; MOURET; GROSSMANN; PESTIAUX, 2011) or blending
equations for mass balance. The blending or mixing equations are the most common type of
constraints in Chemical Engineering (CASTRO, 2015). They contain the product of two decision
variables forming bilinear terms, which, when formulated for optimization problems, give rise to
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Figure 1 – The crude oil supply chain.

Mixed-Integer Nonlinear Programming (MINLP) formulations. In turn, these formulations lead
to multiple local solutions, which gradient-based solvers are unable to guarantee optimality and
are extremely hard to solve (QUESADA; GROSSMANN, 1995).

Such is the case of the MINLP model proposed by Assis et al. (2019) for the operational
management of crude oil supply, where blending constraints containing bilinear terms are the
only nonlinear nonconvex constraint in the formulation. Efforts on handling the difficulty of
solving this type of MINLP problems, with nonconvex bilinear equations, motivate the study of
strategies to obtain significant savings in the computational effort while handling large instances.

Usually, global optimization solvers have in common the generation of linear (LP) or
mixed-integer linear (MILP) relaxations of the original problem (SAHINIDIS, 1996). One
way of relaxing a nonconvex function is to obtain the convex underestimator and concave
overestimator of the function over its domain known as McCormick envelopes (MCCORMICK,
1976). McCormick envelopes coupled with spatial branch and bound search frameworks have
been the basis for many global optimization techniques. A tighter relaxation is crucial to obtain a
fast convergence, and this is highly dependent on the bounds of the bilinear terms, improving as
their domain is reduced (CASTRO, 2016). Simultaneous variable partitioning using piecewise
McCormick envelopes (BERGAMINI; AGUIRRE; GROSSMANN, 2005), multiparametric
disaggregation (KOLODZIEJ; CASTRO; GROSSMANN, 2013), or normalized multiparametric
disaggregation (CASTRO, 2016) can provide better approximations. Still, since additional binary
variables are necessary, it may become too hard computationally. Therefore, each application
requires specific verifications.

Motivated to assess the application of piecewise McCormick, multiparametric disaggre-
gation and normalized multiparametric disaggregation relaxions for the bilinear terms present in
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the operational management of crude oil supply proposed by Assis et al. (2019), this work aims
to evaluate the quality of solution and computational effort when using such a technique against
common MINLP approaches. The evaluation strategy yields a mixed-integer linear programming
relaxation, which can be combined with a local nonlinear programming (NLP) algorithm to
reach a feasible schedule of operations. We conclude with a comparison among these relaxation
approaches along with common MINLP approaches, reporting computational results on instances
of the problem.

1.2 OBJECTIVES

The objective of the present thesis consists in evaluating relaxation methods for bilinear
terms in a Operational Management of Crude Oil supply case study. The problem of concern
entails solving large-scale mixed-integer nonlinear programming problems. Since it is arguably
computational hard to obtain solutions considering their size, discrete variables, and nonlinear
constraints consisting of bilinear terms, it is interesting to assess the performance and quality of
results achieved with existing methods. Specifically:

• Identify and discuss state-of-the-art relaxation methods that are capable of dealing with
the problem of concern;

• Apply and analyze each identified method in the problem of concern, assessing their
solution quality and computational time;

• Select the best method or combination of methods, considering the structure of the problem,
by comparing their outcomes with global solvers.

Therefore, this thesis contributes to the literature by bringing new insights into solving
the operational management of crude oil supply problem with bilinear terms. By presenting
different approaches to the problem’s solution, sufficiently good results are expected to be
reached with a trade-off between quality and computational time.

1.3 OUTLINE OF THE THESIS

The thesis contains six chapters, of which the first is this introduction providing the main
motivation for carrying out the work, along with the objectives.

In Chapter 2, the Operational Management of Crude Oil supply is presented. A short
account of previous related works is introduced before stating the problem and the mathematical
formulation.

Next, the necessary background for relaxation methods of bilinear terms can be found
in Chapter 3. It comprises the important concepts relevant for the application of such methods,
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namely the McCormick envelopes, Piecewise McCormick Envelops with univariate and bivariate
partitions, Multiparametric Disaggregation, and Normalized Multiparametric Disaggregation.

Further, Chapter 4 outlines the strategy and algorithm employed to analyze the application
of each method on the problem of concern. The models generated when remodeling the bilinear
terms of the blending constraint are exposed.

In Chapter 5, the results yielded by each relaxation approach, including performance and
quality evaluation are discussed.

Finally, Chapter 6 concludes and provides reflections on the thesis, in addition to sugges-
tions for future works.



23

2 OPERATIONAL MANAGEMENT OF CRUDE OIL SUP-

PLY

In this chapter, the operational management of crude oil supply is presented in reference
to the work of Assis et al. (2019). Section 2.1 brings a summarized overview and relevant works
in the literature. Further in Section 2.2, the complete mathematical model is detailed in-depth to
provide the reader with enough knowledge concerning the problem.

2.1 OVERVIEW

Supply chain management consists of planning, managing, and coordinating resources
and operations along the chain. Minimizing the overall cost while satisfying the customer
demands with regard to quantity and time is the major objective (SIMCHI-LEVI et al., 2008). As
for oil companies, Sahebi, Nickel and Ashayeri (2014) highlight the relevance of adopting supply
chain management practices and decision supporting tools based on mathematical optimization
to attain operational efficiency. Optimizing the management of this large-scale logistic network
has created new challenges for oil industry managers, and is of interest to both academics and
practitioners.

According to Sahebi, Nickel and Ashayeri (2014), operations in the petroleum chain can
be divided and classified according to their position along the process into upstream, midstream
and downstream as detailed in Table 1.

Table 1 – Segments of the petroleum supply chain.

Upstream Midstream Downstream
Well Well Production Crude Oil Refinery Petrochemical Distribution Market/Customer
Head Platform Platform Terminal (RF) Plant Center/Depot (M/C)
(WH) (WP) (PP) (CT) (PC) (DC)

Typical operations regarding the crude oil supply segment inside the entire petroleum
chain, which will be addressed in the present work, integrates items of both upstream and
midstream segments. They can be summarized as: offshore oil extraction and production, crude
oil transportation and supply, crude oil storage, and finally the feed of CDUs in refineries.
The midstream comprises the refining of crude oil into more elaborated products, while the
downstream segment defines storage, distribution, and retail market of refined products (LIMA;
RELVAS; BARBOSA-PÓVOA, 2016).

As seen in Fig. 2, a typical supply chain follows a hierarchical structure divided into
three levels: Strategic, Tactical, and Operational (BARBOSA-PÓVOA, 2014). Focusing on the
crude oil supply part, at the strategic level, decisions are made considering long-term (years)
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investments such as: infrastructure location and capacity; fleet sizing; and pipeline network design.
Tactical arrangements cover refining these decisions in a medium-term perspective (months),
considering in greater detail the production and distribution planning, inventory management,
and inventory allocation (SAHEBI; NICKEL; ASHAYERI, 2014; BARBOSA-PÓVOA, 2014).
Further, management at the operational level entails activities in a daily basis such as routing,
scheduling of vessels, and scheduling of operations in terminals. In summary, the crude oil
supply chain at the operational level is concerned with what is known as the Maritime Inventory
Routing (MIR) (ASSIS; CAMPONOGARA, 2016) and Crude Oil Scheduling (COS) (MOURET;
GROSSMANN; PESTIAUX, 2009) problems.

Figure 2 – A typical supply chain hierarchical structure

Maritime Inventory Routing comprises scheduling vessel trips between ports in order
to meet product demands within limits of inventory at production and consumption ports. The
work of Ronen (1983) was the first review on this subject. Further models began to combine
inventory control in ports such as in Ronen (2002) and Camponogara and Plucenio (2014). A
more detailed review on MIR problems is found in Christiansen et al. (2013). In Crude Oil
Scheduling problems, the main goal is to meet CDU’s demands in terms of volume and quality of
crude oil. To achieve that, one must schedule a set of operations including the unloading of crude
oil into storage tanks, the transfer between storage and charging tanks, and the feed of CDUs
performed by charging tanks. The first work to address the COS problem is presented in Lee et al.
(1996). The authors proposed and solved a discrete-time MILP model where blending constraints
were not considered and replaced by a linear approximation. To the best of our knowledge, Aires
et al. (2004) were the first to address the integrated problem of supplying crude oil from FPSOs
to CDUs through a MILP formulation for strategic/tactical level decisions. The work tackled the
allocation of crude oil from a set of platforms to a set of terminals in order to satisfy demands
from the refinery in terms of volume and quality.

The solution of maritime inventory routing and crude oil scheduling when obtained
separately may be unable to manage the access to common resources, such as storage tanks.
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More precisely, the MIR generally assumes storage tanks are free for taking crudes from vessels
that arrive periodically at the terminal. However, the availability of storage tanks are managed
by the COS problem, resulting in a mismatch between the volumes and composition of crudes
in those tanks. Furthermore, operational constraints that prohibits simultaneous inlet and outlet
operations in tanks may not be satisfied when solving the MIR and COS problems independently.
Such limitations motivated Assis et al. (2019) to propose the integration of the operational
management of crude oil supply, taking into account elements of the MIR and COS problems
at the operational level (i.e., from FPSOs to CDUs). The novel work took into account the
scheduling of vessels, the scheduling of operations in the terminal and the non-convex non-
linearities associated to the blending of crudes. The problem incorporates elements of maritime
inventory routing and crude oil scheduling through an MINLP discrete-time formulation, named
as the operational management of crude oil supply (OMCOS). Thus, the model stated by Assis
et al. (2019) is utilized in this master’s thesis.

2.2 PROBLEM STATEMENT

Fig.3 represents an instance of the Operational Management of Crude Oil Supply, com-
posed by the following set of resources: FPSOs (FPSO1 and FPSO2), vessels (Vessel1), storage
tanks (ST1 and ST2), charging tanks (CT1 and CT2) and crude oil distillation units (CDU1).
Moreover, the green arrows represent all operations that resources are capable to perform com-
posed by WL (offloading operations), WU (unloading operations), WW (wait operations), WT

(travel operations), WF (tank-to-tank feed operations), and WD (distillation operations).

In Fig. 3, Vessel1 offloads crude oil from FPSOs through operations WL. Traveling
operations of Vessel1 between the crude oil terminal and FPSOs are coordinated by operations
WT, which explains why the arrows are bidirectional.

Figure 3 – The operational management of crude oil supply.
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Approaching at the terminal, vessels can decide between directly unloading crude oil
into storage tanks or waiting in case there is some restriction. Vessel1 wait operations at the
terminal are WW. Unloading into storage tanks ST1 and ST2 are performed by Vessel1 through
operations WU.

Since different types of crude oil exist and can be mixed in storage tanks, transfer
operations WF to charging tanks are ruled by blending constraints. Charging tanks CT1 and CT2

will feed CDU1 through operations WD. Transfer operations WD to CDUs are also regulated by
blending constraints.

In addition to the operations performed by the resources, operational rules and constraints
must be respected to assure feasibility given a real scenario. Also, the feed of crude oil delivered
to CDUs over the planning horizon must satisfy a certain demand of total volume, as much as its
composition bounded to a given range.

Briefly, the optimization problem consists of determining, for the desired planning
horizon, the optimal schedule of operations associated with all resources to satisfy the demands
of CDUs (i.e., both in terms of quality and quantity) while maximizing the gross margin. To this
end, Assis et al. (2019) proposed a discrete-time MINLP model whose major decisions consist
in selecting which operations take place at each time, the level of crudes in each resource, and
the volumes of crude oil transferred between resources.

2.3 MATHEMATICAL MODEL

Before proposing the discrete-time MINLP model, the sets, parameters, variables, con-
straints, and objective function are presented below.

2.3.1 Sets, Parameters and Variables

1. Sets

The following sets are required for the problem formulation:

• T = {1, . . . , PH}: set of discrete time periods which define the planning horizon
PH .

• RF ,RV ,RS ,RC andRD: sets of resources, respectively the set of FPSOs, vessels,
storage tanks, charging tanks, and CDUs.

• R = RF ∪RV ∪RS ∪RC ∪RD: set of all resources.

• WL, WU , WW , WT , WF and WD: sets of operations, respectively, the set of
offloading operations, unloading operations, wait operations, travel operations, tank-
to-tank feed operations and distillation operations.

• W =WL∪WU ∪WW ∪WT ∪WF ∪WD: set of all operations.
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• Ir ⊂ W: set of inlet operations on each resource r ∈ R.

• Or ⊂ W: set of outlet operations on each resource r ∈ R.

• Dr ⊂ W: set of wait operations of each vessel r ∈ RV .

• T Rr ⊂ W: set of travel operations of each vessel r ∈ RV .

• Gr = (Nr, Er) is a graph representing the flow between operations associated to
each vessel r ∈ RV , where Nr = (Ir ∪ Or ∪ Dr ∪ T Rr) is the set of nodes and
Er = Nr ×Nr is the set of arcs. The nodes Nr are the operations regarding vessel
r, while the edges (v, u) ∈ Er indicate the possibility to flow from operation v to u
(v, u ∈ Nr). Since not every pair of consecutive operations is allowed, set VDr ⊂ Er
contains the possible flows between operations related to vessel r. For example, if
vessel r is performing an unloading or a waiting operation, it must execute a travel
operation before offloading an FPSO.

• IOPr ⊂ (Ir ∪ Or ∪ Dr ∪ T Rr): set with the initial operation to be performed by
vessel r ∈ RV .

• C: set of the different crude oils presented in the supply chain.

• K: set of crude oil properties.

• CL: set of cliques of conflicting operations. Let Gc = (Vc, Ec) be an undirected graph
whose vertice set Vc =W consists of all operations, and whose edge set Ec ⊆ Vc×Vc
corresponds to the conflicting operations. This means that two operations u and v
cannot take place simultaneously if and only if (u, v) ∈ Ec. Rather than expressing
a constraint for each pair (u, v) ∈ Ec, CL can be defined as the set of all maximal
cliques that ensure a coverage of all conflicting constraints.

• WCLcl: set of operations in a clique cl. WCLcl ⊂ W is the set of conflicting
operations in a clique cl ∈ CL.

2. Parameters

The following parameters should be considered:

• Gc: gross margin of crude oil c ∈ C, in dollars per thousand barrels [$/103bbl].

• PRODr,c: production rate of crude oil c ∈ C in FPSO r ∈ RF , in 103 barrels per day
[103 bbl/day]. An FPSO r is capable of producing crude oil c only if PRODr,c > 0.

• V TTr,v: number of periods taken for executing travel operation v ∈ T Rr associated
to vessel r ∈ RV .

• [FRv, FRv]: flowrate lower and upper bounds for operation v ∈ W \ (WW∪WT ),
in 103 barrels per day [103 bbl/day]. Bounds on the flowrate of crude oil are imposed
when offloading an FPSO, unloading a vessel, in transfers between storage and
charging tanks, and between charging tanks and CDUs.
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• [CAP r, CAP r]: lower and upper bounds on the volume stored in resource r ∈
R \ RD, in 103 barrels [103 bbl].

• TILr: initial level of crude oil in resource r ∈ R \ RD, in 103 barrels [103 bbl].

• CILr,c: initial level of crude oil c in resource r ∈ R \ RD, in 103 barrels [103 bbl].

• PRk,c: the weight fraction of property k ∈ K in crude oil c ∈ C.

• [DEMCv,k, DEMCv,k]: lower and upper bounds on the weight fraction of property
k of the blend of crudes transferred during operation v ∈ WD from charging tanks
to the CDUs. In other words, the weight fraction of property k in the blend of crudes
flowing in operation v, from a charging tank to a CDU, must be within the bounds
DEMCv,k and DEMCv,k.

• [DEM r, DEM r]: lower and upper bounds on the total volume of crude oil de-
manded by CDU r ∈ RD over the planning horizon, in 103 barrels [103 bbl].

3. Decision Variables

Binary assignment and continuous operation-state variables are needed.

a) Logistic Variables.

• zi,v ∈ {0, 1}, i ∈ T and v ∈ W . Operation variable zi,v = 1 if operation v is
assigned to be executed in period i. Otherwise, zi,v = 0.

• si,r,v,u ∈ {0, 1}, i ∈ (T \ {PH}), r ∈ RV and (v, u) ∈ VDr. Flow variable
si,r,v,u = 1 if vessel r, after executing operation v in period i, performs operation
u in period i+ 1. Otherwise, si,r,v,u = 0.

b) Level and Flow Variables.

• vti,v ≥ 0, i ∈ T and v ∈ W \ (WW ∪WT ). Variable vti,v is the total volume
of crude oil transferred in period i by operation v.

• vcti,v,c ≥ 0, i ∈ T , v ∈ W \ (WW ∪WT ) and c ∈ C. Variable vcti,v,c is the
volume of crude oil c transferred in period i by operation v.

• lri,r ≥ 0, i ∈ T and r ∈ R \ RD. Variable lri,r is the total level of crude oil in
resource r at the end of period i.

• lcri,r,c ≥ 0, i ∈ T , r ∈ R \ RD and c ∈ C. Variable lcri,r,c is the level of crude
oil c in resource r at the end of period i.

2.3.2 Constraints

2.3.2.1 Material Balance and Resource Capacity

Considering all resources except CDUs (r ∈ R \ RD), for each period i there is an
associated total level of crude oil (lri,r) and a specific level of each crude oil c ∈ C (lcri,r,c).
These levels are obtained by Equations (2.1) - (2.8), through the difference between inlet and
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outlet flow of crudes on each resource (i.e., operations v in sets Ir andOr). The total volume and
the specific volume of each crude oil c transferred between resources are defined, respectively,
by vti,v and vcti,v,c.

Additionally, the initial levels (i.e., when i = 1) are handled by specific Equations, using
parameters CILr,c and TILr. These parameters correspond to the initial volume of crude oil c in
resource r and the total initial volume of crude oil in resource r, respectively. Since it is assumed
that CDUs have a daily flow of crude oil to the distillation units according to their processing
capacity, the inventory tracking of this resource is neglected.

The FPSO inventory control is determined by Equations (2.1) through (2.4). Since
FPSOs have no inlet operations but produce crude oil, the volume of crudes c, associated to a
particular FPSO r, correspond to the daily production parameter PRODr,c. The volume of crude
transferred from this particular resource by output operations v ∈ Or is determined by variables
vti,v and vcti,v,c. Note that PRODr,c = 0 if FPSO r does not produce crude oil c ∈ C.

lcri,r,c = CILr,c + PRODr,c −
∑
v∈Or

vcti,v,c r ∈ RF , i ∈ T , c ∈ C, i = 1, (2.1)

lcri,r,c = lcri−1,r,c + PRODr,c −
∑
v∈Or

vcti,v,c r ∈ RF , i ∈ T , c ∈ C, i 6= 1, (2.2)

lri,r = TILr +
∑
c∈C

PRODr,c −
∑
v∈Or

vti,v r ∈ RF , i ∈ T , i = 1, (2.3)

lri,r = lri−1,r +
∑
c∈C

PRODr,c −
∑
v∈Or

vti,v r ∈ RF , i ∈ T , i 6= 1. (2.4)

Following the same reasoning, Eqs. (2.5) through (2.8) track the level of crudes in vessels, storage
tanks and charging tanks. The main difference from Eqs. (2.1) to (2.4) is that these resources
receive flows of crude oil from other resources, rather than producing it. More specifically,
the levels of crude oil c are associated with the input flow (i.e., operations v ∈ Ir , r ∈
RF ∪RS ∪RC), rather than a fixed daily production rate. The volume of crude oil c transferred
by operations v in each period i is determined by vcti,v,c and vti,v.

lcri,r,c = CILr,c +
∑
v∈Ir

vcti,v,c −
∑
v∈Or

vcti,v,c

r ∈ RV ∪RS ∪RC, i ∈ T , c ∈ C, i = 1, (2.5)

lcri,r,c = lcri−1,r,c +
∑
v∈Ir

vcti,v,c −
∑
v∈Or

vcti,v,c

r ∈ RV ∪RS ∪RC, i ∈ T , c ∈ C, i 6= 1, (2.6)

lri,r = TILr +
∑
v∈Ir

vti,v −
∑
v∈Or

vti,v r ∈ RV ∪RS ∪RC, i ∈ T , i = 1 (2.7)

lri,r = lri−1,r +
∑
v∈Ir

vti,v −
∑
v∈Or

vti,v r ∈ RV ∪RS ∪RC, i ∈ T , i 6= 1 (2.8)

The total level of crude oil in a resource r is equal to the sum of the levels of each crude oil c in
the same resource, which is stated by the Ineq. (2.9). In addition, each resource is limited on its
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capacity by the bounds CAP r and CAP r, imposed by Eq. (2.10).

lri,r =
∑
c∈C

lcri,r,c i ∈ T , r ∈ R \ RD (2.9)

CAP r ≤ lri,r ≤ CAP r i ∈ T , r ∈ R \ RD (2.10)

2.3.2.2 Vessel Operations Scheduling

All operations a vessel can perform is determined by the set of nodes Nr = Ir ∪ Or ∪
Dr ∪ T Rr. Thus, a graph Gr = (Nr, Er) can determine the flow between operations associated
to vessel r ∈ RV . In this case, (v, u) ∈ VDr ⊂ Er = Nr ×Nr would be the edges of the graph
denoting the allowed flow between operations.

The initial conditions for the flow of operations is defined in Eq. (2.11), being v the initial
operation performed by vessel r at time i = 1, which is defined in the set IOPr. Intuitively,
allowed operations for the period i = 1 are set to zero in Eq.(2.12)

∑
(v,u)∈VDr

s1,r,v,u = 1, r ∈ RV , v ∈ IOPr, (2.11)

s1,r,v,u = 0, r ∈ RV , v ∈ Nr \ IOPr, (v, u) ∈ VDr. (2.12)

The Eq. (2.13) simply state the conservation of flow with respect to the graph, while Eq.
(2.14) enforces the flow from operation v in period i to operation u in i+ 1 if si,r,v,u = 1.

∑
(v,u)∈VDr

si,r,v,u =
∑

(u,v)∈VDr

si+1,r,u,v, i ∈ T , r ∈ RV , u ∈ Nr, i 6= PH. (2.13)

∑
(v,u)∈VDr

si,r,v,u = zi,v, i ∈ T , r ∈ RV , v ∈ Nr. (2.14)

2.3.2.3 Vessel Travel Times

Vessels are required to travel between crude oil terminals and FPSOs to transfer the oil
produced offshore. Before any traveling to FPSOs, operational rules determine that vessels must
always be empty. The travel operations are represented by u ∈ T Rr for each vessel r. For each
travel operation u, there is an associated parameter V TTr,u defining the duration required for the
travel operation to be performed by vessel r. The travel times are expressed in terms of discrete
periods. The dynamics of offshore trips of a vessel r (i.e., from the terminal to the FPSOs) is
given by Ineq. (2.15).

To illustrate, consider a certain vessel r performing an unloading or a waiting operation
(v ∈ Or ∪ Dr) at the terminal at the period i. If the vessel r will start a new travel operation
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u ∈ T Rr in the next period of time (i + 1), the vessel must arrive V TTr,u periods later at the
FPSO associated with operation u, in order to start the offloading of crude oil.∑

(v,u)∈VDr:
v∈(Or∪Dr)

si,r,v,u ≤
∑

(u,z)∈VDr:
z∈Ir

si+V TTr,u,r,u,z

i ∈ T , r ∈ RV , u ∈ T Rr, i ≤ PH − V TTr,u. (2.15)

Conversely, once the offloading operation v ∈ Ir was performed in an FPSO at period i,
suppose that vessel r will start a new travel operation u ∈ T Rr at the next period of time (i+ 1),
as indicated by si,r,v,u = 1. In this case, the vessel is expected to complete the trip, arriving at
the terminal V TTr,u periods later in order to able to unload or wait (operation z ∈ Or ∪ Dr) at
period (V TTr,u + 1), which is defined by Ineq. (2.16).∑

(v,u)∈VDr:
v∈Ir

si,r,v,u ≤
∑

(u,z)∈VDr:
z∈(Or∪Dr)

si+V TTr,u,r,u,z

i ∈ T , r ∈ RV , u ∈ T Rr, i ≤ PH − V TTr,u. (2.16)

2.3.2.4 Vessel Loading and Unloading Rules

A vessel must offload an FPSO to fill its storage tanks until no residual capacity is left.
Effectively, once a vessel begins to offload crude oil from an FPSO, the vessel loading operation
must continue until its full storage capacity is reached. The maximum flow rate must also be
enforced as much as possible, determined by the flow rate upper bound. This rule is stated by
Ineq. (2.17).

For instance, suppose vessel r is executing a travel operation v ∈ T Rr at time i, and
starts the loading operation u ∈ Ir from an FPSO at time (i+ 1), indicated by si,r,v,u = 1. When
modeling this dynamic behavior to Ineq. (2.17), the right-hand side of the constraint will assume
the value CAP r. This condition will force vessel r to fill its storage capacity by offloading from
the FPSO at a rate FRu, from time (i+ 1) until time dCAP r/FRue. Otherwise, if si,r,v,u = 0

for all operations (v, u) then Ineq. (2.17) becomes innocuous.

∑
c∈C

i+dCAPr
FRu

e∑
t=(i+1)

vctt,u,c ≥ CAP r − CAP r(1−
∑

(v,u)∈VDr

v∈T Rr

si,r,v,u)

i ∈ T , r ∈ RV , u ∈ Ir, i ≤ PH −
⌈
CAP r

FRu

⌉
(2.17)

Moreover, after dCAP r

FRu
e periods of vessel r loading, its maximum storage capacity will be

reached, forcing vessel r to start a travel operation to the terminal. This event is determined
by Ineq. (2.18). Supposing vessel r arrived at an FPSO at time i and started loading at time
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(i + 1), which is indicated by si,r,v,u = 1, then the loading operation must be finished at time
(i+ dCAP r/FRue), and the vessel must start a travel operation z at the next period of time.∑

(v,u)∈VDr:
v∈T Rr

si,r,v,u ≤
∑

(u,z)∈VDr:
z∈T Rr

s
i+dCAPr

FRu
e,r,u,z

i ∈ T , r ∈ RV , u ∈ Ir, i ≤ PH −
⌈
CAP r

FRu

⌉
(2.18)

If a vessel r starts to unload crude oil in the terminal, it must keep unloading until it becomes
empty. Only after the full unloading, a waiting operation u ∈ Dr or a travel operation u ∈ T Rr

from the terminal are allowed, as imposed by constraint (2.19). Therefore, the total level of
crude oil in the vessel is lri,r = 0 at time i, so the right-hand side of Ineq. (2.19) becomes
CAP r/CAP r = 1, which allows si,r,v,u to assume value 1 for a travel or waiting operation u at
time (i+ 1). It can also be inferred that if there is crude oil in the vessel (i.e., lri,r > 0), then the
right-hand side will be less than 1, forcing si,r,v,u = 0 for all variables on the left-hand side.

∑
(v,u)∈VDr:
v∈(Or∪Dr)

si,r,v,u ≤
CAP r − lri,r

CAP r

i ∈ T , r ∈ RV , u ∈ T Rr ∪ Dr (2.19)

2.3.2.5 Transfer Constraints

Transfer operations are defined as operations where crude oil is being transferred be-
tween resources. Concretely, it involves all operations except waiting and travel operations
v ∈ W \ (WW ∪WT ). Ineq. (2.20) determines that the bounds on the flowrate of crude oil
must be respected every period of time i when a transfer operation v ∈ W \ (WW ∪WT )

is being executed, which is indicated by zi,v = 1. The flow of crude oil between resources is
bounded by the lower (FRv) and upper (FRv) bounds of each transfer operation v.

zi,vFRv ≤ vti,v ≤ FRvzi,v i ∈ T , v ∈ W \ (WW ∪WT ) (2.20)

As discussed in Section 2.2, during any transfer operation v executing in a period of time
i, a blending of different types of crudes c can occur. For this reason, Eq. (2.21) assures that the
total volume of crude oil vti,v matches the sum of the volumes vcti,v,c of all crudes c transferred
in the same operation.

vti,v =
∑
c∈C

vcti,v,c i ∈ T , v ∈ W \ (WW ∪WT ) (2.21)

Additionally, storage and charging tanks (r ∈ [RS ∪RC]) have a total level lri,r of crude oil
composed by specific levels of lcri,r,c for each crude type c. Effectively, each blending proportion
of crude type c inside tanks must hold when crude oil is outlet from these tanks. More specifically,
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the proportion lcri,r,c/lri,r inside each resource r and the proportion vcti,v,c/vti,v in each transfer
operation v must be the same, as imposed by Eq. (2.22). This requirement enforces composition
consistency since crude oil compositions inside tanks remain the same when crude oil batches are
transferred between them. For this work, it is essential to emphasize that the blending condition in
Eq. (2.22) is composed by bilinear terms and will be further explored in details for the application
of the proposed linear relaxation methods.

vcti,v,c
vti,v

=
lcri,r,c
lri,r

⇒ vcti,v,c · lri,r = vti,v · lcri,r,c

i ∈ T , r ∈ RS ∪RC, v ∈ Or, c ∈ C (2.22)

2.3.2.6 CDUs

Distillation is constrained by operating ranges of crude oil composition, which corre-
sponds concretely to a feasible range for each property k of the crude oil transferred to the CDU.
In other terms, when a charging tank r outlet operation v ∈ WD is ongoing, the flow that reaches
the target CDU must have its property k within the bounds [DEMCv,k, DEMCv,k]. This
requirement is imposed by Ineq. (2.23). Parameter PRk,c defines the weight fraction of property
k associated to crude c and together with bounds DEMCv,k and DEMCv,k are specified for
each CDU according to the distillation demand by the user.

DEMCv,kvti,v ≤
∑
c∈C

vcti,v,cPRk,c ≤ DEMCv,kvti,v i ∈ T , v ∈ WD, k ∈ K (2.23)

Additionally, over the planning horizon stipulated, the total volume of crude oil delivered
to be distilled in each CDU r is bounded by [DEM r, DEM r] as states Ineq. (2.24).

DEM r ≤
∑
i∈T

∑
v∈Or

vti,v ≤ DEM r r ∈ RC (2.24)

Finally, operational rules for CDUs determine that one and only one distillation operation must
occur in a period. ∑

v∈Ir

zi,v = 1, i ∈ T , r ∈ RD (2.25)

2.3.2.7 Conflicting Operations

Due to logistic rules inherent to the problem, some operations cannot be performed
simultaneously, denominated as conflicting operations. Such operations are aggregated in sets,
as follows.

Let us consider that Vessel1 and Vessel2 can offload FPSO1 through operations v1 and
v2, respectively. For that, let set FPSO-OFFLOAD = {v1, v2}. Similarly, CDU1 can receive
crude oil from charging tanks CT1 and CT2 through operations v19 and v20, respectively. For
that, let set CDU1-INPUT = {v19, v20}.
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The operations within each set cannot be performed in the same period. In other words,
FPSO1 has only one output to transfer crude oil to a single vessel, and CDU1 can only receive
streams of oil from one charging tank at a time. In such case, let the set of cliques be CL =
{FPSO-OFFLOAD, CDU1-INPUT} and the setWCLcl contain the operations of each clique
cl ∈ CL. To prevent conflicting operations from occurring in a time period, Ineq. (2.26) ensures
that at most one operation v ∈ WCLcl will be performed:∑

v∈WCLcl

zi,v ≤ 1, i ∈ T , cl ∈ CL (2.26)

2.3.3 Objective Function

The optimization objective consists of maximizing the sum of gross margin (Gc) over the
total volume. This goal is achieved by setting the optimal schedule for all operations in a given
planning horizon. These operations must satisfy the demands of CDUs both in terms of quality
and quantity. To this end, we propose a discrete-time MINLP model, whose major decisions
consist in selecting what operations take place at each time, the level of crudes in each resource,
and the volume of crude oil transferred between resources.

2.3.4 Nonconvex Discrete Time MINLP Formulation

Having introduced the notation and constraints, the operational management of crude oil
supply is cast as a MINLP:

P : max f =
∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gcvcti,v,c (2.27a)

s.t. : Eqs. (2.1)-(2.26), (2.27b)

zi,v ∈ {0, 1}, i ∈ T , v ∈ W , (2.27c)

si,r,v,u ∈ {0, 1}, i ∈ (T \ {PH}), r ∈ RV , (v, u) ∈ VDr, (2.27d)

vti,v ≥ 0, i ∈ T , v ∈ W \ (WW ∪WT ) (2.27e)

vcti,v,c ≥ 0, i ∈ T , v ∈ W \ (WW ∪WT ), c ∈ C, (2.27f)

lri,r ≥ 0, i ∈ T , r ∈ R \ RD, (2.27g)

lcri,r,c ≥ 0, i ∈ T , r ∈ R \ RD, c ∈ C. (2.27h)

2.4 ILLUSTRATION OF A SOLUTION

In this section, a solution for the MINLP problem is presented to illustrate the schedule
of operations, and the level of the resources, along the planning horizon. Here it was considered
a problem containing 2 FPSOs, 2 vessels, 2 storage tanks, 2 charging tanks, 1 CDU, 2 types of
crude oil, and a planning horizon of 15 days. A more detailed discussion on designing instances
for the OMCOS will be addressed in chapter 5.
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For each resource in the supply chain, Fig. 4 displays from top to bottom: the total level
of crude oil in the resource (lri,r) in a gray bar; the total volume of crude oil transferred if some
operation is being performed (vti,v); a chart in blue showing the possible operations and when
they are being executed. In order to simplify the illustration, the different crude types mixed in
each operation are neglected.

In summary, FPSOs continuously produce crude oil from extraction in a rate of 130
103bbl during each time interval. For that reason, an ongoing raise in the crude oil level is
sustained through the planning horizon. When reaching the capacity limit, the offloading of crude
oil to vessels starts until filling up the vessel’s reservoir completely, as shown during periods 7-8
for FPSO1 and 11-12 for FPSO2.

Vessels initial operations are set before hand: Vessel1 begins unloading to ST1 while
Vessel2 waits at the terminal. Vessel1 unloads until emptying its reservoir at period 3, and then
awaits at the terminal until period 6 when it starts a travelling operation back to FPSO1. At
period 9, upon completing offloading, Vessel1 travels to the terminal and alternates unloading
crude into ST1 and ST2. Similar dynamic unfolds over the horizon with Vessel2. The diagram
shows that the proposed model yields a feasible schedule that effectively integrates the operations
related to maritime inventory routing and crude oil scheduling. Moreover, vessels always travel
to FPSOs with empty tanks and return to the terminal loaded to its full capacity, as required by
the problem statement.

Storage tanks transfer oil to charging tanks following the rules for the bounds on flow of
crude, capacity, demand and crude oil composition. Charging tanks follow the same rules, plus
they must feed continuously crude oil to CDU1, but only one at a time. Additionally, storage
tanks and charging tanks cannot perform inlet and outlet operations occurring at the same period.
Regarding the CDU1, crude oil is constantly being transferred from both charging tanks (but
never overlapping in time). It can be noticed that the operational rules for the problem are being
met altogether.

2.5 SUMMARY

The operational management of crude oil supply problem is a discrete-time mixed-
integer non-linear program of considerable complexity. The model incorporates the schedule of
all resource operations from the production in FPSOs to distillation in CDUs. In a given planning
horizon, the solver must select which operations take place at each time, the level of crudes in
each resource, and the volume of crude oil transferred between resources. The objective is to
satisfying the demands of CDUs both in terms of quality and quantity, while maximizing the
gross margin over the total volume distilled. It is essential to notice that all constraints in the
model are linear, except for the nonlinear nonconvex blending of crudes (2.22).

In Assis et al. (2019), the authors proposed to solve the MINLP using an iterative
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Figure 4 – Illustration of the solution computed for INS1.

MILP-NLP decomposition scheme with domain reduction. The approach obtained solutions in
a reasonable CPU time with reduced gap on small and medium size instances and found good
enough solutions for the larger instance. Despite that, it was clear the difficulty of solving the
non-convex MINLP scheduling problem specially because of the blending equation involving
bilinear terms, which renders the problem computationally hard. For this reason, relaxing these
bilinear terms has a potential to reduce significantly the effort to solve this problem.
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3 RELAXATIONS FOR BILINEAR PROGRAMS

From the previous chapter, it could be noticed that the OMCOS contains a blending
constraint involving bilinear terms. The current work seeks to solve the problem more efficiently
by relying on relaxation methods for bilinear terms. For this reason, in this chapter the necessary
theoretical background on relaxations for bilinear programs is provided.

3.1 OVERVIEW

The management of crude oil supply problem at the operational level is a nonconvex
nonlinear problem where nonconvexities arise due to bilinear terms. The work of Assis et
al. (2019) proposed to handle the nonconvex bilinear terms associated with the blending of
crudes. Blending constraints arise in crude oil operations in refineries (LEE et al., 1996; JIA;
IERAPETRITOU; KELLY, 2003; YADAV; SHAIK, 2012) and are required to model the mixing
of various streams, being the most common type of constraint in Chemical Engineering systems.
They are known for creating bilinear terms that are nonconvex and which give rise to multiple
local solutions.

For the purpose of finding rigorous global optimal solutions to bilinear problems, which
can be of the nonlinear or mixed-integer nonlinear type, alternative algorithms have been pro-
posed to generate linear or mixed-integer linear relaxations of the original problem. Therefore, it
is critical to achieve tight relaxations in order to obtain better solutions. Such bilinear terms appear
in distillation of diesel and gasoline when addressing the blending of different fractions (MORO;
ZANIN; PINTO, 1998; JIA; IERAPETRITOU, 2003; KOLODZIEJ et al., 2013), in mass and
property integration networks (NÁPOLES-RIVERA et al., 2010), in problems associated with
operations of hydroelectric power systems (CATALÃO; POUSINHO; MENDES, 2011; CAS-
TRO; GROSSMANN, 2014), and in the design of electric power converters (CAMPONOGARA;
SEMAN; GILI, 2019), among others.

The most simple strategy corresponds to applying the standard McCormick relaxation
(MCCORMICK, 1976), where a new variable substitutes the bilinear term along with four
sets of linear constraints for the lower and upper bounds. The convex McCormick envelopes
coupled with spatial branch-and-bound search frameworks have been the basis for many global
optimization techniques.

From the standard McCormick relaxation, further reduction in the feasible space of
the relaxed problem is possible, by partitioning the domain of one of the variables present in
the bilinear term. This approach known as univariate piecewise McCormick was proposed by
Bergamini, Aguirre and Grossmann (2005), Karuppiah and Grossmann (2006), being widely
studied in the work of Misener, Thompson and Floudas (2011), Hasan and Karimi (2010),
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and Faria and Bagajewicz (2012). Intending to improve partitioning, Wicaksono and Karimi
(2008) were the first to propose the domain partitioning of both variables, a strategy called
bivariate piecewise McCormick. Bivariate partitioning yielded a stronger relaxation comparably
to univariate partitioning in moderate-size problems in Wicaksono and Karimi (2008) and later
in Hasan and Karimi (2010). A more in-depth study on piecewise McCormick relaxation for
bilinear terms can be found in (GOUNARIS; MISENER; FLOUDAS, 2009).

Further, Teles, Castro and Matos (2012) have introduced a technique to approximate
polynomial constraints through discretization of a subset of variables. Applying this technique
to bilinear terms, Kolodziej, Castro and Grossmann (2013) have shown that the mixed-integer
constraints of the multiparametric disaggregation technique of Teles, Castro and Matos (2012)
can be derived from disjunctive programming and convex hull reformulation. This approximation
technique proved to drive the upper and lower bounding formulations to convergence as the
original nonlinear formulation does, considering an infinite number of discretization intervals. In
short, they can replace the standard McCormick relaxation to provide stronger bounds, at the cost
of higher computational effort from the solution of multiple MILPs instead of LPs (CASTRO;
GROSSMANN, 2014).

The comparison analysis between piecewise McCormick and multiparametric disaggre-
gation depends highly on each application and its characteristics. Some notable comparative
studies have shown that the former is tighter when having quadratic terms, but produces signifi-
cantly larger MILPs for the same number of partitions (KOLODZIEJ; CASTRO; GROSSMANN,
2013). In other words, the number of binary variables grows linearly in piecewise McCormick,
whereas for multiparametric disaggregation the growth is only logarithmic. This behavior allows
the solver to reach lower optimality gaps with multiparametric disaggregation due to a faster
computational performance as noticed by Castro and Teles (2013). In contrast, piecewise Mc-
Cormick notably allows for more freedom to choose the number of partitions, since accuracy in
multiparametric disaggregation can only change by one order of magnitude. Contributions on
bringing multiparametric disaggregation closer to piecewise McCormick, regarding how the num-
ber of partitions can be handled, were made by Castro (2016). He proposed the introduction of a
normalized parameter in [0, 1] to be discretized in the range between the lower and upper bound,
instead of all possible values that a variable can assume. As a result, normalized multiparametric
disaggregation became directly related to the number of partitions in piecewise McCormick,
allowing for a better comparison between the relaxation methods. Global optimization algorithms
for mixed-integer nonlinear programming (MINLP) in oil refinery planning are making use
of piecewise McCormick and Normalized Multiparametric Disaggregation as in (CASTILLO;
CASTRO; MAHALEC, 2017). This work showed that bound tightening using such methods is
essential for large-scale problems, even though it is computationally expensive.
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3.2 BILINEAR PROGRAMS

As seen, problems with bilinear terms have been studied by many researchers because of
their commercial importance and nonconvex characteristics, which makes this subject suitable
for evaluating distinct relaxation methods and algorithmic approaches.

From the OMCOS formulation, one can observe that the bilinear terms appear on both
sides of the equality and are of the form xi ·xj = yi ·yj . In this section, the properties of commonly
used relaxations for such bilinear problems are reviewed.

We consider the class of nonconvex, non-linear problems where all nonlinear terms are
of the bilinear type xi · xj , the continuous variables are denoted by x and the binary variables by
γ. lx is the length of vector x, and lγ is the length of vector γ. In (P), x is an m-dimensional
vector of non-negative variables that lie between given lower xL and upper xU bounds. Set Q
collects all functions fq , including the objective function f0 and all the constraints. BL is an
(i, j)-index set that defines the bilinear terms xi · xj present in the problem and aijq is a scalar.
Note that i = j can be allowed to accommodate quadratic problems.

(P)

max f0(x, γ) (3.1a)

s.t. :

fq(x, γ) ≤ 0 ∀q ∈ Q \ {0} (3.1b)

fq(x, γ) =
∑

(i,j)∈BL

aijqxixj +Bqx+ Cqγ + dq ∀q ∈ Q (3.1c)

xL ≤ x ≤ xU (3.1d)

x ∈ Rlx, γ ∈ {0, 1}lγ (3.1e)

A relaxation of (P) can be achieved by (PR), where the bilinear terms xi ·xj are replaced
by variables wij , thus linearizing fq(x, γ) into fRq (x, γ). A set of linear constraints is added
to determine the values of the wij variables, while the feasible region of such constraints is
represented by W .

(PR)

max fR0 (x, γ) (3.2a)

s.t. :

fRq (x, γ) ≤ 0 ∀q ∈ Q \ {0} (3.2b)

fRq (x, γ) =
∑

(i,j)∈BL

aijqwij +Bqx+ Cqγ + dq ∀q ∈ Q (3.2c)

xL ≤ x ≤ xU (3.2d)

x ∈ Rlx, γ ∈ {0, 1}lγ, w ∈ W ⊂ R|BL| (3.2e)
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Because solving a non convex problem is a complicated task, relaxing the bounds as
performed in (3.2), transforms the baseline problem into a convex relaxation, decreasing the
computational difficulty at the cost of introducing solutions that do not correspond to the original
objective function.

The feasible region W of this baseline problem will be reformulated in the next sections
according to each linear relaxation method employed.

3.3 STANDARD MCCORMICK ENVELOPES

An established method to solving bilinear programs of type (P) is to apply a type of
convex relaxation to bound the bilinear terms using McCormick envelopes (MCCORMICK,
1976). In the standard approach, each bilinear term xi ·xj is replaced by a new variablewij = xixj

and a set with four linear inequality constraints is added to the formulation, two representing the
overestimators and two underestimators (see Fig. 5).

Figure 5 – Graphical interpretation of standard McCormick relaxation.

In this case, the feasible region W will be given by inequations (3.3) as follows:

wi,j ≥ xi · xLj + xLi · xj − xLi · xLj (3.3a)

wi,j ≥ xi · xUj + xUi · xj − xUi · xUj (3.3b)

wi,j ≤ xi · xLj + xUi · xj − xUi · xLj (3.3c)

wi,j ≤ xi · xUj + xLi · xj − xLi · xUj (3.3d)
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Here inequation (3.3) defines the convex envelope of wij = xixj , commonly referred to
as the McCormick Envelope. One can also observe that envelope induced by inequation (3.3)
can be obtained from the following four valid multiplications:

(xi − xLi )(xj − xLj ) ≥ 0, (xi − xUi )(xj − xUj ) ≥ 0 (3.4a)

(xi − xUi )(xj − xLj ) ≤ 0, (xi − xLi )(xj − xUj ) ≤ 0 (3.4b)

Using the McCormick envelope formulation relaxes a nonconvex problem into a convex
problem, resulting in an upper bounding LP if the only nonlinearities are bilinear. By making a
maximization problem convex, the maximum solution found will be a global maximum for the
relaxed problem. This solution is then an upper bound solution for the original problem (P). A
lower bound can be obtained by solving the original non convex problem using values obtained
from the relaxed problem and then checking for feasibility. McCormick Envelopes provide an
envelope that retains convexity while minimizing the size of the new feasible region. This allows
the lower bound solutions obtained by using these envelopes to be closer to the true solution than
if other convex relaxations were used. However, this lower bound can be weak depending on the
bounds on the bilinear terms.

3.4 PIECEWISE MCCORMICK ENVELOPES

The strength of the McCormick envelopes seen in Section 3.3 for a single bilinear term
is strongly dependent on the variable bounds. One can notice that tighter bounds could lead
to even stronger relaxations. Hence, instead of simply including equations with global bounds
for the entire interval, partitioning the intervals of variables and then constructing McCormick
envelopes in each interval leads to a much stronger relaxation. Considering that a bilinear term
has two variables, three possible options for partitioning are evident. Two options consists in
partitioning only one of the two variables, which is called uni variate partitioning. The third
choice is to partition both the variables, known as bivariate partitioning (see Fig.6). The number
of partitions will determine the strength of this new relaxation.

To enforce consistence of this relaxation, auxiliary binary variables must be added in
order to select the appropriate partition. In other words, the new binary variables turn on/off
each partition, with exactly one partition being activated. This gives rise to a MILP relaxation,
referred to as the Piecewise McCormick Relaxation.

Because this method requires the introduction of binary variables, there is a trade-off
between the quality of the relaxation and the computation effort required. In another words, is is
known that better relaxation quality implies more partitions which leads to more binary variables.
Given the maturity of MILP solvers, the current trend for solving nonconvex NLP and MINLP
problems with only bilinear and quadratic terms is to employ piecewise linear relaxations.
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Figure 6 – Graphical interpretation of piecewise McCormick relaxation for the bivariate case.

3.4.1 Univariate Piecewise McCormick Envelopes

A tighter MILP relaxation can be constructed by partitioning the domain of one of the
variables (xj) of the bilinear term into n disjoint regions, with new binary variables being added
to the formulation to select the optimal partition for xj .

In the seminal works by Bergamini, Aguirre and Grossmann (2005), Karuppiah and
Grossmann (2006), partitions are generated uniformly and there is a linear increase in problem
size with the number of partitions. A different uniform partitioning scheme featuring a logarithmic
growth in the number of binary variables was proposed by Misener, Thompson and Floudas
(2011) but the results failed to show major benefits. Other substantial evaluations involving
several piecewise under and overestimators have been performed by Wicaksono and Karimi
(2008), Gounaris, Misener and Floudas (2009).

The quality of the relaxation is influenced by the choice of variables xj selected for
partitioning. In general, there may exist an optimal set of variables that would lead to the best
relaxation, but such an analysis is beyond the scope of this study. In most engineering problems
as in OMCOS, bilinear terms involve two different sets of variables and so there are just a couple
of obvious choices. For instance, Hasan and Karimi (2010) chose to partition flow variables in
problems involving column sequencing for distillation and integrated water use and treatment
systems.

Let xLjn and xUjn represent respectively the lower and upper bounds of variable xj for
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partition n. If the value of xj does belong to such a partition, then binary variable yjn = 1 and the
respective McCormick envelope holds. The Piecewise McCormick Relaxation can be formulated
as a Generalized Disjunctive Program (RAMAN; GROSSMANN, 1994), which is tighter due
to the use of the partition-dependent parameters xLjn and xUjn in the four constraints inside the
disjunction, instead of the global bounds xLj and xUj . The feasible region W will be defined by
Eqs. (3.5).

(PR-UV-GDP)

N∨
n=1



yjn

wi,j ≥ xi · xLjn + xLi · xj − xLi · xLjn
wi,j ≥ xi · xUjn + xUi · xj − xUi · xUjn
wi,j ≤ xi · xLjn + xUi · xj − xUi · xLjn
wi,j ≤ xi · xUjn + xLi · xj − xLi · xUjn


∀{i | (i, j) ∈ BL}

xLjn ≤ xj ≤ xUjn


∀{j | (i, j) ∈ BL} (3.5a)

xLi ≤ xi ≤ xUi ∀{i | (i, j) ∈ BL} (3.5b)
xLjn = xLj +

(xUj −xLj )·(n−1)
N

xUjn = xLj +
(xUj −xLj )·n

N

 ∀{j | (i, j) ∈ BL}, n ∈ {1, ..., N} (3.5c)

yjn ∈ {0, 1} ∀{j | (i, j) ∈ BL}, n ∈ {1, ..., N} (3.5d)

Since the linear GDP needs to be reformulated into a MILP, one alternative consists in
applying the big-M technique. However, this approach was proven to yield a poor relaxation,
specially when dealing with piecewise partitioning (WICAKSONO; KARIMI, 2008). For this
reason, the reformulation is carried out through a convex hull relaxation based on the works of
Karuppiah and Grossmann (2006), Castro and Teles (2013) as follows.

(PR-UV-MILP)

wi,j ≥
N∑
n=1

(
x̂ijnx

L
jn + x̂jnx

L
i − yjnx

L
i x

L
jn

)
∀(i, j) ∈ BL (3.6a)

wi,j ≥
N∑
n=1

(
x̂ijnx

U
jn + x̂jnx

U
i − yjnx

U
i x

U
jn

)
∀(i, j) ∈ BL (3.6b)

wi,j ≤
N∑
n=1

(
x̂ijnx

L
jn + x̂jnx

U
i − yjnx

U
i x

L
jn

)
∀(i, j) ∈ BL (3.6c)

wi,j ≤
N∑
n=1

(
x̂ijnx

U
jn + x̂jnx

L
i − yjnx

L
i x

U
jn

)
∀(i, j) ∈ BL (3.6d)

xi =

N∑
n=1

x̂ijn ∀(i, j) ∈ BL (3.6e)

xj =
N∑
n=1

x̂jn ∀j | (i, j) ∈ BL (3.6f)
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N∑
n=1

yjn = 1 ∀j | (i, j) ∈ BL (3.6g)

xLi yjn ≤ x̂ijn ≤ xUi yjn ∀(i, j) ∈ BL, n ∈ {1, ..., N} (3.6h)

xLjnyjn ≤ x̂jn ≤ xUjnyjn ∀j | (i, j) ∈ BL, n ∈ {1, ..., N} (3.6i)
xLjn = xLj +

(xUj −xLj )(n−1)
N

xUjn = xLj +
(xUj −xLj )n

N

 ∀j | (i, j) ∈ BL, n ∈ {1, ..., N} (3.6j)

yjn ∈ {0, 1} ∀j | (i, j) ∈ BL, n ∈ {1, ..., N} (3.6k)

Notice that if yĵn = 1 for some ĵ, then x̂ĵn ∈ [xL
ĵn
, xU

ĵn
] and x̂jn = 0 for all j 6= ĵ. Further,

x̂iĵn ∈ [xLi , x
U
i ] whereas x̂ijn = 0 for all j 6= ĵ.

3.4.2 Bivariate Piecewise McCormick Envelopes

the domain of both variables bilinear term domain of both variables forming the bilinear
term is known a priori, leading to a relaxation that is usually tighter

In bivariate partitioning, both variables are partiotinng to obtain a tighter relaxation
(HASAN; KARIMI, 2010). The binary variable responsible to select the active partition will
now be yinjn′ . The variable xi is bounded by xLin and xUin) and the variable xj is bounded by xLjn′
and xUjn′ . The bivariate partitioning for the piecewise McCormick relaxation is formulated as a
Generalized Disjunctive Program (PR-BV-GDP).

If the Bivariate Piecewise McCormick Relaxation is used, then the feasible region W
will be given by Eqs. (3.7).

(PR-BV-GDP)

N∨
n=1

N∨
n′=1



yinjn′

wi,j ≥ xi · xLjn′ + xLin · xj − xLin · xLjn′

wi,j ≥ xi · xUjn′ + xUin · xj − xUin · xUjn′

wi,j ≤ xi · xLjn′ + xUin · xj − xUin · xLjn′

wi,j ≤ xi · xUjn′ + xLin · xj − xLin · xUjn′

xLin ≤ xi ≤ xUin

xLjn′ ≤ xj ≤ xUjn′


∀(i, j) ∈ BL (3.7a)

 xLin = xLi +
(xUi −xLi )·(n−1)

N

xUin = xLi +
(xUi −xLi )·n

N

 ∀{i | (i, j) ∈ BL}, n ∈ {1, ..., N} (3.7b)


xLjn′ = xLj +

(xUj −xLj )·(n′−1)
N

xUjn′ = xLj +
(xUj −xLj )·n′

N

 ∀{j | (i, j) ∈ BL}, n′ ∈ {1, ..., N} (3.7c)

yinjn′ ∈ {0, 1} ∀(i, j) ∈ BL,
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n, n′ ∈ {1, ..., N} (3.7d)

Applying the reformulation of the linear GDP into a MILP using the convex hull tech-
nique leads to (PR-BV-MILP). The variable x̂iinjn′ corresponds to the value that xi assumes
considering the bilinear term xi · xj , partition n of variable xi, and partition n′ of variable j.
The constraints below ensure that x̂iinjn′ will be nonzero only if the bivariate partition (n, n′) is
selected for the bilinear term xi · xj . Similar reasoning applies for x̂jinjn′ regarding the second
variable xj of the bilinear term. Notice that the variables xi assume consistent values over all
bilinear terms where they appear.

(PR-BV-MILP)

wi,j ≥
N∑
n=1

N∑
n′=1

(
x̂iinjn′ · xLjn′ + x̂jinjn′ · xLin − xLin · xLjn′ · yinjn′

)
∀(i, j) ∈ BL (3.8a)

wi,j ≥
N∑
n=1

N∑
n′=1

(
x̂iinjn′ · xUjn′ + x̂jinjn′ · xUin − xUin · xUjn′ · yinjn′

)
∀(i, j) ∈ BL (3.8b)

wi,j ≤
N∑
n=1

N∑
n′=1

(
x̂iinjn′ · xLjn′ + x̂jinjn′ · xUin − xUin · xLjn′ · yinjn′

)
∀(i, j) ∈ BL (3.8c)

wi,j ≤
N∑
n=1

N∑
n′=1

(
x̂iinjn′ · xUjn′ + x̂jinjn′ · xLin − xLin · xUjn′ · yinjn′

)
∀(i, j) ∈ BL (3.8d)

xi =
N∑
n=1

N∑
n′=1

x̂iinjn′ ∀(i, j) ∈ BL (3.8e)

xj =
N∑
n=1

N∑
n′=1

x̂jinjn′ ∀(i, j) ∈ BL (3.8f)

N∑
n=1

N∑
n′=1

yinjn′ = 1 ∀(i, j) ∈ BL (3.8g)

xLin · yinjn′ ≤ x̂iinjn′ ≤ xUin · yinjn′ ∀(i, j) ∈ BL, n, n′ ∈ {1, ..., N} (3.8h)

xLjn′ · yinjn′ ≤ x̂jinjn′ ≤ xUjn′ · yinjn′ ∀(i, j) ∈ BL, n, n′ ∈ {1, ..., N} (3.8i) xLin = xLi +
(xUi −xLi )·(n−1)

N

xUin = xLi +
(xUi −xLi )·n

N

 ∀{i | (i, j) ∈ BL}, n ∈ {1, ..., N} (3.8j)


xLjn′ = xLj +

(xUj −xLj )·(n′−1)
N

xUjn′ = xLj +
(xUj −xLj )·n′

N

 ∀{j | (i, j) ∈ BL}, n′ ∈ {1, ..., N} (3.8k)

yinjn′ ∈ {0, 1} ∀(i, j) ∈ BL, n, n′ ∈ {1, ..., N} (3.8l)

Here we briefly discuss the convex-hull reformulation above of the GDP (3.7). Let us
consider a bilinear term (i, j) ∈ BL. From Eq. (3.8g), precisely one partition n̂ is selected
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for variable xi, and one partition n̂′ is selected for variable xj . Then Eq. (3.8h) ensures that
x̂iin̂jn̂′ ∈ [xLin̂, x

U
in̂], while the remaining variables x̂iinjn′ = 0 for all (n, n′) 6= (n̂, n̂′). Likewise

Eq. (3.8i) ensures that x̂jin̂jn̂′ ∈ [xLjn̂′ , x
U
jn̂′ ], while the remaining variables x̂jinjn′ = 0 for

all (n, n′) 6= (n̂, n̂′). Now it can be seen that Eqs. (3.8e) and (3.8f) enforce xi = x̂iin̂jn̂′ and
xj = x̂jin̂jn̂′ which establish the consistency of the values of the variables xi and xj , over all
bilinear terms where they appear and their respective partitions.

3.5 MULTIPARAMETRIC DISAGGREGATION

Based on the general problem (P), with a nonconvex bilinear term wij = xi · xj , the
multiparametric disaggregation described by Teles, Castro and Matos (2013) can be used to
obtain an upper bound on problem (P). Multiparametric disaggregation is a technique for
generating a mixed-integer linear relaxation of a bilinear problem by discretizing the domain of
one of the variables in the bilinear term according to a numeric representation system.

The method works by discretizing one of the bilinear terms over a set of powers l ∈
{p, ..., P}, where P = dlog10 x

U
j e (in case the discretized variable is xj) and p is selected by the

user for accuracy purposes. The formulation is obtained by deriving first a generalized disjunctive
programming (GDP) model followed by a convex hull reformulation and exact linearization.
Simplifying the notation, we assume the bilinear product wij = xi · xj as a single bilinear term
w = u · v. This product can be represented exactly with the following constraints and disjunction:

w = u · v (3.9a)

v =
∑
l∈Z

λl (3.9b)

9∨
d=0

[
λl = 10l · d

]
∀l ∈ Z (3.9c)

The term v is discretized through the disjunction in (3.9c) that selects one digit d ∈ D =

{0, 1, ..., 9} for each power in Z. Here we assume a basis of 10, although other bases can be
selected (MISENER; GOUNARIS; FLOUDAS, 2010). Note that since (3.9c) is defined over the
domain of all the integer numbers, this implies an infinite number of disjunctions. Furthermore,
v can represent any positive real number.

First, let us consider the convex hull reformulation of the disjunction in (3.9c) after which
the disaggregated variables will be introduced,

λl =
9∑
d=0

λ̂d,l ∀l ∈ Z (3.10a)

λ̂d,l = 10l · d · zd,l ∀l ∈ Z, d ∈ D (3.10b)



3.5. Multiparametric Disaggregation 47

9∑
d=0

zd,l = 1 ∀l ∈ Z (3.10c)

zd,l ∈ {0, 1} ∀l ∈ Z, d ∈ D (3.10d)

Substituting (3.10b) into (3.10a) and then into (3.9b) leads to the fully discretized (but
still exact) representation of v:

v =
∑
l∈Z

9∑
d=0

10l · d · zd,l (3.11)

Considering the product w = u ·v by substituting (3.11) into (3.9a) leads to (3.12) which
involves nonlinear terms u · zd,l,

w = u ·

[∑
l∈Z

9∑
d=0

10l · d · zd,l

]
(3.12)

Carrying out an exact linearization, additional continuous variables ûd,l = u · zd,l are
introduced so that:

w =
∑
l∈Z

9∑
d=0

10l · d · ûd,l (3.13)

Since,

u · zd,l =

{
0, if zd,l = 0

u, if zd,l = 1
(3.14)

and ûd,l is non-negative, the following lower and upper bounding constraints are inserted, being
uU and uL the non-negative upper and lower bounds on u respectively.

uL · zd,l ≤ ûd,l ≤ uU · zd,l ∀l ∈ Z, d ∈ D (3.15)

Finally, multiplying equation (3.10c) by u and replacing the bilinear terms by the recent
added continuous variables, results in (3.16).

u =
9∑
d=0

ûd,l ∀l ∈ Z (3.16)

The full set of mixed integer linear constraints for the exact representation of the bilinear product
w = u·v is thus given by Eqs. (3.10c)–(3.11) and (3.13)–(3.16). For convenience, these equations
are brought together below:

9∑
d=0

zd,l = 1 ∀l ∈ Z (3.17a)

zd,l ∈ {0, 1} ∀l ∈ Z, d ∈ D (3.17b)

v =
∑
l∈Z

9∑
d=0

10l · d · zd,l (3.17c)
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w =
∑
l∈Z

9∑
d=0

10l · d · ûd,l (3.17d)

uL · zd,l ≤ ûd,l ≤ uU · zd,l ∀l ∈ Z, d ∈ D (3.17e)

u =
9∑
d=0

ûd,l ∀l ∈ Z (3.17f)

3.5.1 Lower Bounding Formulation

Since it is impractical to compute an infinite sum over all positive integers like in the
previous formulation, now v is limited to a finite level of representation v′, resulting into w′ as
an approximate continuous form of the bilinear term. This approximation is reached by setting p
and P as a minimum and maximum power of 10, respectively.

Further, the constraints in (3.11) and (3.13) are adjusted in (3.18a)-(3.18b) in order to
limit the maximum power of 10 (P) and the minimum power of 10 (p). For the remaining
constraints (3.10c)-(3.10d) and (3.15)-(3.16), it is sufficient to replace l ∈ Z with l ∈ L =

{p, p + 1, ..., P}. This set of constraints correspond to the equations proposed by (TELES;
CASTRO; MATOS, 2013).

v′ =
P∑
l=p

9∑
d=0

10l · d · zd,l (3.18a)

w′ =
P∑
l=p

9∑
d=0

10l · d · ûd,l (3.18b)

Fig. 7 illustrates the lower bounding formulation using multiparametric disaggregation.
The solid curve denotes the feasible region for the bilinear term u · v = 0.1 while the dots
represent the discretization considering parameters p = P = −1.

Now incorporating them into the problem (P), being xj the variable to be discretized
and redefining wij = xi · xj , the feasible region W will be given by the resulting equations
(MDT-MILP).

(MDT-MILP)

wij =

P∑
l=p

9∑
d=0

10l · d · x̂ijdl, ∀(i, j) ∈ BL (3.19a)

xj =

P∑
l=p

9∑
d=0

10l · d · zjdl ∀j ∈ {j|(i, j) ∈ BL} (3.19b)

xi =
9∑
d=0

x̂ijdl, ∀(i, j) ∈ BL, l ∈ {p, p + 1, ..., P} (3.19c)

xLi · zjdl ≤ x̂ijdl ≤ xUi · zjdl, ∀(i, j) ∈ BL, d ∈ {0, ..., 9},

l ∈ {p, p + 1, ..., P} (3.19d)
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Figure 7 – Graphical interpretation of the multiparametric disaggregation relaxation with param-
eters p = P = −1.

9∑
d=0

zjdl = 1, ∀j ∈ {j|(i, j) ∈ BL}, l ∈ {p, p + 1, ..., P} (3.19e)

zjdl ∈ {0, 1}, ∀j ∈ {j|(i, j) ∈ BL}, d ∈ {0, ..., 9},

l ∈ {p, p + 1, ..., P} (3.19f)

When we incorporate the MDT modeling (3.19) into problem (P), by redefining wij =

xi · xj , and selecting xj as the variable on which discretization is performed, the resulting
problem (MDT-P) represents a mixed-integer approximation to the original problem. Further,
note that problem (MDT-P) is a restricted version of problem (P), or equivalently problem (P)
is a relaxation of problem (MDT-P). Notice that if (MDT-P) is a feasible problem, then the
resulting solution is a lower bound.

Although the user can freely set the parameters p and P , some common instructions
must be followed for ensuring feasibility of (MDT-P). The largest power of 10 (P ) must be
sufficient large to allow 10P to represent the upper bound on xj , precisely P = dlog10 x

U
j e. In

regards to p, the guideline is to let it be small enough so that at least one discretization point lies
between the lower and upper bounds for xj . Thus, p ≤ P is the absolute minimum requirement,
but better results and feasibility are more likely obtained decreasing p. However, even respecting
these rules, one cannot guarantee feasibility of (MDT-P) in all cases.
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3.5.2 Upper Bounding Formulation

In the discretized approximation problem (MDT-P) illustrated by Fig. 7, one can notice
the existence of a gap between discretization points. This will always exists for a finite p. Thus, in
order to obtain an upper bounding problem using multiparametric disaggregation, a slack variable
∆xj can be introduced such that xRj = xj

′ + ∆xj , where xj ′ is the discretized representation of
xj , xRj is the continuous representation of xj , and the slack variable ∆xj is bounded between
0 and 10p. Again switching to the notation w = u · v for the bilinear term, we have for the
continuous representation of v, denoted as vR:

vR =
P∑
l=p

9∑
d=0

10l · d · zd,l + ∆v (3.20a)

0 ≤ ∆v ≤ 10p (3.20b)

For the continuous representation of the bilinear term, wR , note that:

wR = u · vR = u · (v′ + ∆v) = w′ + u ·∆v = w′ + ∆w (3.21)

where v′ and w′ are given by (3.18a)-(3.18b) respectively. The slack variable ∆w replaces the
bilinear term u ·∆v that can be relaxed using the McCormick envelope (3.22a)-(3.22b).

uL ·∆v ≤ ∆w ≤ uU ·∆v (3.22a)

(u− uU) · 10p + uU ·∆v ≤ ∆w ≤ (u− uL) · 10p + uL ·∆v (3.22b)

Introducing these constraints into Problem (P), and expressing the variables in terms of
the original variables wij = xi · xj , the feasible region W will be determined by (MDT-MILP-
UB) for all d ∈ D, l ∈ L.

(MDT-MILP-UB)

wij =
P∑
l=p

9∑
d=0

10l · d · x̂ijdl + ∆wij ∀(i, j) ∈ BL (3.23a)

xj =

P∑
l=p

9∑
d=0

10l · d · zjdl + ∆xj ∀{j|(i, j) ∈ BL} (3.23b)

xi =
9∑
d=0

x̂ijdl ∀(i, j) ∈ BL, l ∈ {p, p + 1, ..., P} (3.23c)

xLi · zjdl ≤ x̂ijdl ≤ xUi · zjdl ∀(i, j) ∈ BL, d ∈ {0, ..., 9}

{l ∈ {p, p + 1, ..., P} (3.23d)
9∑
d=0

zjdl = 1 ∀{j|(i, j) ∈ BL}, l ∈ {p, p + 1, ..., P} (3.23e)


xLi ·∆xj ≤ ∆wij ≤ xUi ·∆xj

∆wij ≤ (xi − xLi ) · 10p + xLi ·∆xj

∆wij ≥ (xi − xUi ) · 10p + xUi ·∆xj

 ∀(i, j) ∈ BL (3.23f)
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0 ≤ ∆xj ≤ 10p ∀{j|(i, j) ∈ BL} (3.23g)

zjdl ∈ {0, 1} ∀{j|(i, j) ∈ BL}, d ∈ {0, ..., 9}

l ∈ {p, p + 1, ..., P} (3.23h)

3.6 NORMALIZED MULTIPARAMETRIC DISAGGREGATION

Given the Multiparametric Disaggregation presented before, a normalized version of it
can be derived. This is obtained by discretizing λj ∈ [0, 1], an auxiliary variable that serves to
compute xj as a linear combination of its lower xLj and upper xUj bounds:

xj = xLj + λj(x
U
j − xLj ), ∀j (3.24)

The exact representation of λj can be achieved by considering an infinite number of
positions l ∈ Z− in the decimal system,

λj =
∑
l∈Z−

λjl (3.25)

and by picking the appropriate digit d ∈ {0, 1, ..., 9} for each power l. This can be developed as
a disjunction, using binary variables zjdl to take the value of one if digit d is selected for position
l for discretized λj:

9∨
d=0

[
zjdl

λjl = 10l · d

]
∀j, l ∈ Z− (3.26)

3.6.1 Lower Bounding Formulation

However, because it is impracticable to compute the infinite sums over all negative
integers l, we define a finite precision level by substituting l ∈ Z− with l ∈ {p, p+ 1, ...,−1},
where p is a negative integer chosen by the user.

λj =
−1∑
l=p

λjl ∀j (3.27)

For choosing the appropriate digit d ∈ {0, 1, ..., 9} for each power l, a disjunction is stated as
before, where binary variables zjdl decide whether or not digit d is selected for position l of the
discretized variable λj:

9∨
d=0

[
zjdl

λjl = 10l · d

]
∀j (3.28)
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The convex hull reformulation of the disjunction in (3.28) can be simplified in order to
generate a sharp formulation without disaggregated variables.

λj =
−1∑
l=p

9∑
d=0

10l · d · zjdl ∀j (3.29a)

9∑
d=0

zjdl = 1 ∀j, l ∈ Z− (3.29b)

Multiplying variable xi by (3.24) and substituting xi · xj and xiλj with bilinear variables
wij and vij leads to,

wij = xix
L
j + vij(x

U
j − xLj ) ∀(i, j) (3.30)

Substituting (3.29a) into the definition of vij leads to the appearance of bilinear terms
involving the product of a continuous and a binary variable.

vij = xi · λj

vij =
−1∑
l=p

9∑
d=0

10l · d · xi · zjdl ∀(i, j) (3.31)

An exact linearization can be performed by introducing additional continuous variables
x̂ijdl = xi · zjdl, resulting in:

vij =
−1∑
l=p

9∑
d=0

10l · d · x̂ijdl ∀(i, j) (3.32a)

zjdl · xLi ≤ x̂ijdl ≤ zjdl · xUi ∀(i, j), d ∈ {0, ..., 9}, l ∈ {p, ...,−1} (3.32b)

Finally, multiplying (3.29b) by xi and replacing the bilinear terms by the recent added
continuous variables leads to,

xi =
9∑
d=0

x̂ijdl ∀(i, j), l ∈ {p, ...,−1} (3.33)

The full set of mixed integer linear constraints for the exact representation of bilinear
terms wij = xixj is thus given by Eqs. (3.24), (3.29b)-(3.30) and (3.32)-(3.33), leading to the
following optimization problem (NMDT-MILP-LB).

(NMDT-MILP-LB)

xj = xLj + λj(x
U
j − xLj )

λj =
−1∑
l=p

9∑
d=0

10l · d · zjdl

 ∀j ∈ {j|(i, j) ∈ BL} (3.34a)
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wij = xix
L
j + vij(x

U
j − xLj )

vij =
−1∑
l=p

9∑
d=0

10l · d · x̂ijdl

 ∀(i, j) ∈ BL (3.34b)

xi =
9∑
d=0

x̂ijdl ∀(i, j) ∈ BL, l ∈ {p, ...,−1} (3.34c)

9∑
d=0

zjdl = 1 ∀j ∈ {j|(i, j) ∈ BL}, l ∈ {p, ...,−1} (3.34d)

zjdlx
L
i ≤ x̂ijdl ≤ zjdlx

U
i ∀(i, j) ∈ BL, d ∈ {0, ..., 9},

l ∈ {p, ...,−1} (3.34e)

zjdl ∈ {0, 1} ∀j ∈ {j|(i, j) ∈ BL}, d ∈ {0, ..., 9},

l ∈ {p, ...,−1} (3.34f)

The problem that results by replacing the bilinear terms of (P) with the discretization
given above, also referred to as (NMDT-MILP-LB), is an approximation of the original problem.
In other words, (P) is a relaxation of (NMDT-MILP-LB). If (NMDT-MILP-LB) is feasible,
then the resulting solution is lower bound for (P).

3.6.2 Upper Bounding formulation

With the purpose of allowing λj to reach all possible values, it is required to close the
gap between discretization points. For this reason, a slack variable ∆λj with bounds between 0

and 10p is introduced. The continuous representation of λj is then given by:

λj =
−1∑
l=p

9∑
d=0

10l · d · zjdl + ∆λj ∀j (3.35a)

0 ≤ ∆λj ≤ 10p ∀j (3.35b)

Following the same reasoning, the continuous representation of the bilinear term vij =

xiλj is therefore determined as:

vij =
−1∑
l=p

9∑
d=0

10l · d · x̂ijdl + xi ·∆λj ∀(i, j) (3.36)

It can be noticed that an undesired bilinear term xi ·∆λj appears in Eq. (3.36), which is
replaced by variable ∆vij and the resulting equation is going to be relaxed using McCormick
envelope as follows:

vij =
−1∑
l=p

9∑
d=0

10l · d · x̂ijdl + ∆vij ∀(i, j) (3.37a)

xLi ·∆λj ≤ ∆vij ≤ xUi ·∆λj ∀(i, j) (3.37b)
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(xi − xUi ) · 10p + xUi ·∆λj ≤ ∆vij ≤ (xi − xLi ) · 10p + xLi ·∆λj ∀(i, j) (3.37c)

Substituting Eq. (3.29a) by Eqs. (3.35), and Eq. (3.32a) by Eqs. (3.37), in (NMDT-
MILP-LB), a new optimization problem (NMDT-MILP-UB) is obtained, corresponding to
a relaxation of (P). In other words, (NMDT-MILP-UB) will be feasible for values of wij , xi
and xj that not necessarily satisfy wij = xi · xj . The objective value obtained by solving
(NMDT-MILP-UB) will not be lower than the optimal value of (P).

(NMDT-MILP-UB)

xj = xLj + λj(u
U
j − uLj )

λj =
−1∑
l=p

9∑
d=0

10l · d · zjdl + ∆λj

0 ≤ ∆λj ≤ 10p

 ∀j ∈ {j|(i, j) ∈ BL} (3.38a)

wij = xix
L
j + vij(x

U
j − xLj )

vij =
−1∑
l=p

9∑
d=0

10l · d · x̂ijdl + ∆vij

xLi ·∆λj ≤ ∆vij ≤ xUi ·∆λj
∆vij ≤ (xi − xLi )10p + xLi ·∆λj
∆vij ≥ (xi − xUi )10p + xUi ·∆λj


∀(i, j) ∈ BL (3.38b)

xi =
9∑
d=0

x̂ijdl ∀(i, j) ∈ BL, l ∈ {p, ...,−1} (3.38c)

9∑
d=0

zjdl = 1 ∀j ∈ {j|(i, j) ∈ BL}, l ∈ {p, ...,−1} (3.38d)

zjdlx
L
i ≤ x̂ijdl ≤ zjdlx

U
i ∀(i, j) ∈ BL, d ∈ {0, ..., 9},

l ∈ {p, ...,−1} (3.38e)

3.7 SUMMARY

McCormick Envelopes are a particular class of convex relaxations for bilinear problems.
By maximizing a concave function subject to a convex set, the resulting optimal solution will be
a global maximum for the relaxed problem. This solution is then an upper bound for the original
problem (P). Instead of applying only one envelope for the entire space, one can partition and
apply a tighter envelope for each partition, using Piecewise McCormick. It involves partitioning
the domain of variable xj in (P) for the univariate case or xi and xj in (P) for the bivariate case.
Although bivariate partitioning does increase the size of the model, this is not the only factor that
affects the performance of a global optimization algorithm. The quality of results from a larger
relaxation model may be better comparatively to a smaller model (HASAN; KARIMI, 2010).
Since the number of partitions directly relates to the binary variables added, this is an important
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tuning parameter. Experiments by Misener and Floudas (2012) have shown that N = 2, 4 and 8

are a reasonable choice.

Multiparametric disaggregation is a conceptually distinct class of MILP relaxations. It
operates by discretizing variable xj in (P) to a certain accuracy level p and subsequently adding
slack variables to achieve continuous domains. Accuracy in MDT can only change by one order
of magnitude since partitioning is based on a numeric representation system. For this reason the
number of added binary variables grows logarithmically, while with PMCK it grows linearly. For
this reason, smaller optimality gaps are expected to be achieved with MDT, since computational
performance is often orders of magnitude faster.

The normalized version of the MDT is known as Normalized Multiparamectric Dis-
aggregation and it seeks to bring multiparametric disaggregation closer to uniform piecewise
McCormick. This is done by considering a dimensionless domain for the discretized variables
in MDT. In other words, instead of discretizing all values that a variable can assume, the dis-
cretization happens in a range [0, 1] between the lower and upper bound. Doing so, the accuracy
level parameter p will be directly related to the number of partitions, allowing a more precise
comparison between the two alternative relaxation methods. The important feature of scaling
logarithmically with the number of partitions is kept.
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4 ALGORITHMS, MODELS AND APPLICATION

4.1 STRATEGY OVERVIEW

This sections detail the proposed solution strategy, which consists of applying the
relaxation methods discussed in this work to the Operational Management of Crude Oil Supply
problem stated in Section 2.2.

The approach solves the MILP relaxation of formulation (2.27), in which Eq. (2.22)
is dropped and replaced by the relaxation methods, which will provide an upper bound to the
MINLP maximization problem. Recalling the blending constraint (2.22) imposed in storage and
charging tanks.

vcti,v,c
vti,v

=
lcri,r,c
lri,r

⇒ vcti,v,clri,r = vti,vlcri,r,c

i ∈ T , r ∈ RS ∪RC, v ∈ Or, c ∈ C. (2.22 revisited)

It is important to notice that the two sides of the equation have bilinear terms. However, the
MILP relaxation becomes hard to solve due to the large number of binary variables. Because the
OMCOS blending constraint has a unique structure, consisting of two bilinear terms linked by
an equality constraint, it is also proposed to tight only one of the bilinear terms, while the other
remains bounded by a simple McCormick envelope.

Therefore, the same linear relaxation method must be applied for both of them. In the
next sections, the left bilinear term will be referenced as Left-Hand Side with its respective
variables containing a superscript LHS, and conversely the right bilinear term will be referenced
as Right-Hand Side with its respective variables containing a superscript RHS.

By fixing the logistics decisions (i.e., binary variables) to the values obtained from the
solution of the MILP relaxation, a continuous non-linear program is obtained. Its solution yields
a lower bound for the MINLP problem.

The solution strategy adopted in this work is a MILP-NLP decomposition consisting of
the following steps:

• Step 1: Set initial parameters required by each relaxation technique.

• Step 2: Solve the MILP relaxation of the crude oil operational management problem,
obtained by relaxing the bilinear terms with the relaxation technique. Notice that an upper
bound for the objective function f of OMCOS is obtained when the relaxation is solved to
optimally.
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• Step 3: Fix the binary decision variables of the OMCOS MINLP formulation as the values
obtained from the MILP relaxation solution, namely the logistic decisions regarding the
operations (zi,v) and vessel trips (si,r,v,u). By fixing the binary variables, the OMCOS
results in a continuous Non-Linear Programming (NLP) problem. A feasible solution to
this NLP yields a lower bound for OMCOS.

If Step 3 does not produce a feasible solution or the quality of the solution is not
satisfactory, the procedure can be repeated from Step 1 with new initial parameters. A key feature
of the MILP-NLP decomposition is the simplicity and the use of MILP algorithms, which are
more efficient and robust than MINLP algorithms. Such a strategy proved to be effective in other
applications (ASSIS; CAMPONOGARA; GROSSMANN, 2021).

4.2 STANDARD MCCORMICK ENVELOPES

A linear relaxation using McCormick Envelopes is derived replacing the nonlinear
blending constraints (2.22) by McCormick Envelopes as follows. To obtain the McCormick
envelopes, the left term of the equality (vcti,v,c · lri,r) is replaced by wLHS

i,r,v,c and the right term
(vti,v · lcri,r,c) by wRHS

i,r,v,c.

4.2.1 Left-Hand Side Term

For wLHS
i,r,v,c = vcti,v,c · lri,r, the McCormick envelope is derived from the bound con-

straints for the involved variables:

CAP r ≤ lri,r ≤ CAP r (4.1a)

0 ≤ vcti,v,c ≤ FRv (4.1b)

Rearranging the first of these inequalities,

lri,r − CAP r ≥ 0 (4.2a)

CAP r − lri,r ≥ 0 (4.2b)

and the second,

vcti,v,c ≥ 0 (4.3a)

FRv − vcti,v,c ≥ 0 (4.3b)

and multiplying (4.2) with (4.3), we obtain the McCormick envelopes wLHS
i,r,v,c as follows:

wLHS
i,r,v,c ≥ CAP rvcti,v,c (4.4a)

wLHS
i,r,v,c ≥ CAP rvcti,v,c + FRvlri,r − FRvCAP r (4.4b)

wLHS
i,r,v,c ≤ CAP rvcti,v,c (4.4c)

wLHS
i,r,v,c ≤ CAP rvcti,v,c + FRvlri,r − FRvCAP r (4.4d)
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4.2.2 Right-Hand Side Term

Similarly, for wRHS
i,r,v,c = vti,v · lcri,r,c, the McCormick envelope results from the bound

constraints on the involved variables:

0 ≤ lcri,r,c ≤ CAP r (4.5a)

FRvzi,v ≤ vti,v ≤ FRvzi,v (4.5b)

Rearranging the first of these inequalities,

lcri,r,c − 0 ≥ 0 (4.6a)

CAP r − lcri,r,c ≥ 0 (4.6b)

and the second,

vti,v − FRvzi,v ≥ 0 (4.7a)

FRvzi,v − vti,v ≥ 0 (4.7b)

and multiplying (4.6) with (4.7), we obtain the McCormick envelopes wRHS
i,r,v,c as follows:

wRHS
i,r,v,c ≥ FRvzi,vlcri,r,c (4.8a)

wRHS
i,r,v,c ≥ CAP rvti,v + FRvzi,vlcri,r,c − FRvzi,vCAP r (4.8b)

wRHS
i,r,v,c ≤ FRvzi,vlcri,r,c (4.8c)

wRHS
i,r,v,c ≤ CAP rvti,v + FRvzi,vlcri,r,c − FRvzi,vCAP r (4.8d)

It can be noticed that the bounds for variable vti,v contain the terms FRvzi,v and FRvzi,v

that involve the binary decision variable zi,v, which add complicating bilinear terms in the
envelopes. This issue can be fixed by formulating the McCormick envelope as a Generalized
Disjunctive Program (GDP). For each i ∈ T , r ∈ RS ∪RC, v ∈ Or, c ∈ C, the disjunction
between the following two equations is defined:

zi,v

wRHS
i,r,v,c ≥ FRvlcri,r,c

wRHS
i,r,v,c ≥ CAP rvti,v + FRvlcri,r,c − FRvCAP r

wRHS
i,r,v,c ≤ FRvlcri,r,c

wRHS
i,r,v,c ≤ CAP rvti,v + FRvlcri,r,c − FRvCAP r

0 ≤ lcri,r,c ≤ CAP r

FRv ≤ vti,v ≤ FRv


, (4.9a)


(1− zi,v)
wRHS
i,r,v,c = 0

0 ≤ lcri,r,c ≤ CAP r

vti,v = 0

 , (4.9b)
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To solve a GDP problem using existing solvers, one has to first translate the problem into a MILP
problem by reformulating all the logic expressions into algebraic forms.

For the GDP related to Eqs. (4.9), the convex hull reformulation is derived as follows,

w1RHS
i,r,v,c ≥ FRvlcr1i,r,c

w1RHS
i,r,v,c ≥ CAP rvt1i,v + FRvlcr1i,r,c − FRvCAP r · zi,v

w1RHS
i,r,v,c ≤ FRvlcr1i,r,c

w1RHS
i,r,v,c ≤ CAP rvt1i,v + FRvlcr1i,r,c − FRvCAP r · zi,v

0 ≤ lcr1i,r,c ≤ CAP r · zi,v
FRv · zi,v ≤ vt1i,v ≤ FRv · zi,v
w0RHS

i,r,v,c = 0

0 · (1− zi,v) ≤ lcr0i,r,c ≤ CAP r · (1− zi,v)
vt0i,v = 0

wRHS
i,r,v,c = w0RHS

i,r,v,c + w1RHS
i,r,v,c

lcri,r,c = lcr0i,r,c + lcr1i,r,c

vti,v = vt0i,v + vt1i,v

(4.10a)

Alternatively, instead of using the GDP, we reformulated (4.9) introducing wzi,r,v,c =
zi,v · lcri,r,c and further it is sufficient to apply the big-M strategy for simplicity as follows:

wRHS
i,r,v,c ≥ FRvwzi,r,v,c

wRHS
i,r,v,c ≥ CAP rvti,v + FRvwzi,r,v,c − FRvCAP r · zi,v

wRHS
i,r,v,c ≤ FRvwzi,r,v,c

wRHS
i,r,v,c ≤ CAP rvti,v + FRvwzi,r,v,c − FRvCAP r · zi,v

0 ≤ wzi,r,v,c ≤ bigM · zi,v
−bigM(1− zi,v) + lcri,r,c ≤ wzi,r,v,c ≤ lcri,r,c

(4.11)

Notice that it suffices to use CAP r as the bigM value for a constraint on the variable
wzi,r,v,c. Additionally, the bound constraints on vti,v is already part of the original problem,
namely the constraint (2.20), FRvzi,v ≤ vti,v ≤ FRvzi,v, which was reproduced here for
convenience.

Finally, after the bilinear terms are reformulated as wLHS
i,r,v,c and wRHS

i,r,v,c, the following
constraint must be added:

wLHS
i,r,v,c = wRHS

i,r,v,c, ∀i ∈ T , r ∈ RC, v ∈ Or, c ∈ C (4.12)

4.3 UNIVARIATE PIECEWISE MCCORMICK

To keep the presentation as short as possible, the univariate piecewise McCormick
relaxation is not explicitly developed here. However, this relaxation is derived from the bivariate
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piecewise McCormick relaxation that follows below, by setting the number of partitions for one
of the variables to be equal 1.

4.4 BIVARIATE PIECEWISE MCCORMICK ENVELOPES

A tighter mixed-integer linear programming relaxation will be constructed by partitioning
the domain of both variables in each bilinear term.

4.4.1 Envelope for the Left-Hand Side Term

ForwLHS
i,r,v,c = vcti,v,c ·lri,r, let the new binary variable pn,n

′

i,r,v,c indicate the active partition n
for variable lri,r and n′ for variable vcti,v,c. The bound constraints with partitions n = {1, ..., N}
and n′ = {1, ..., N ′} for the respective involved variables will become,

CAP n
r ≤ lri,r ≤ CAP

n

r (4.13a)

FRn′

v ≤ vcti,v,c ≤ FR
n′

v (4.13b)

The piecewise McCormick relaxation corresponding to the bivariate partitioning case can be
formulated as the following Generalized Disjunctive Program.

The following equations are defined for all i ∈ T , r ∈ RS ∪RC, v ∈ Or, c ∈ C.

N∨
n=1

N ′∨
n′=1



pn,n
′

i,r,v,c

wLHS
i,r,v,c ≥ CAP n

r vcti,v,c + FRn′

v lri,r − FRn′

v CAP
n
r

wLHS
i,r,v,c ≥ CAP

n

r vcti,v,c + FR
n′

v lri,r − FR
n′

v CAP
n

r

wLHS
i,r,v,c ≤ CAP

n

r vcti,v,c + FRn′

v lri,r − FRn′

v CAP
n

r

wLHS
i,r,v,c ≤ CAP n

r vcti,v,c + FR
n′

v lri,r − FR
n′

v CAP
n
r

CAP n
r ≤ lri,r ≤ CAP

n

r

FRn′

v ≤ vcti,v,c ≤ FR
n′

v


(4.14a)

in which 

CAP n
r = CAP r +

(CAP r−CAP r)(n−1)
N

CAP
n

r = CAP r +
(CAP r−CAP r)(n)

N

FRn′

r = FRr +
(FRr−FRr)(n

′−1)
N ′

FR
n′

r = FRr +
(FRr−FRr)(n

′)
N ′

(4.14b)

pn,n
′

i,r,v,c ∈ {True, False}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N ′} (4.14c)
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Then, the linear GDP is reformulated using the convex-hull approach, leading to the
following MILP formulation:



wLHS
i,r,v,c ≥

N∑
n=1

N ′∑
n′=1

CAP n
r vct

n,n′

i,r,v,c + FRn′

v lr
n,n′

i,r,v,c − FRn′

v CAP
n
r · p

n,n′

i,r,v,c

wLHS
i,r,v,c ≥

N∑
n=1

N ′∑
n′=1

CAP
n

r vct
n,n′

i,r,v,c + FR
n′

v lr
n,n′

i,r,v,c − FR
n′

v CAP
n

r · p
n,n′

i,r,v,c

wLHS
i,r,v,c ≤

N∑
n=1

N ′∑
n′=1

CAP
n

r vct
n,n′

i,r,v,c + FRn′

v lr
n,n′

i,r,v,c − FRn′

v CAP
n

r · p
n,n′

i,r,v,c

wLHS
i,r,v,c ≤

N∑
n=1

N ′∑
n′=1

CAP n
r vct

n,n′

i,r,v,c + FR
n′

v lr
n,n′

i,r,v,c − FR
n′

v CAP
n
r · p

n,n′

i,r,v,c

lri,r =
N∑
n=1

N ′∑
n′=1

lrn,n
′

i,r,v,c

vcti,v,c =
N∑
n=1

N ′∑
n′=1

vctn,n
′

i,r,v,c

N∑
n=1

N ′∑
n′=1

pn,n
′

i,r,v,c = 1

(4.15a)



CAP n
r p

n,n′

i,r,v,c ≤ lrn,n
′

i,r,v,c ≤ CAP
n

r p
n,n′

i,r,v,c

FRn′

v p
n,n′

i,r,v,c ≤ vctn,n
′

i,r,v,c ≤ FR
n′

v p
n,n′

i,r,v,c

CAP n
r = CAP r +

(CAP r−CAP r)(n−1)
N

CAP
n

r = CAP r +
(CAP r−CAP r)(n)

N

FRn′

v = FRv +
(FRv−FRv)(n

′−1)
N ′

FR
n′

v = FRv +
(FRv−FRv)(n

′)
N ′

(4.15b)

pn,n
′

i,r,v,c ∈ {0, 1}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N ′} (4.15c)

4.4.2 Envelope for the Right-Hand Side Term

For wRHS
i,r,v,c = vti,v ·lcri,r,c, let the new binary variable qn,n

′

i,r,v,c indicate the active partition n
for the variable lcri,r,c and n′ for the variable vti,v. When the variable lcri,r,c is within a partition
n ∈ {1, ..., N} and respectively vti,v is within a partition n′ ∈ {1, ..., N ′}, they will become
bounded as follows:

CAP n
r ≤ lcri,r,c ≤ CAP

n

r (4.16a)

FRn′

v zi,v ≤ vti,v ≤ FR
n′

v zi,v (4.16b)
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The following equations are defined for all i ∈ T , r ∈ RS ∪RC, v ∈ Or, c ∈ C.

N∨
n=1

N ′∨
n′=1



qn,n
′

i,r,v,c

wRHS
i,r,v,c ≥ CAP n

r vti,v + FRn′

v lcri,r,czi,v − FRn′

v CAP
n
r · zi,v

wRHS
i,r,v,c ≥ CAP

n

r vti,v + FR
n′

v lcri,r,czi,v − FR
n′

v CAP
n

r · zi,v

wRHS
i,r,v,c ≤ CAP n

r vti,v + FR
n′

v lcri,r,czi,v − FR
n′

v CAP
n
r · zi,v

wRHS
i,r,v,c ≤ CAP

n

r vti,v + FRn′

v lcri,r,czi,v − FRn′

v CAP
n

r · zi,v
CAP n

r ≤ lcri,r,c ≤ CAP
n

r

FRn′

v zi,v ≤ vti,v ≤ FR
n′

v zi,v


(4.17a)



CAP n
r = CAP r +

(CAP r−CAP r)(n−1)
N

CAP
n

r = CAP r +
(CAP r−CAP r)(n)

N

FRn′

r = FRr +
(FRr−FRr)(n

′−1)
N ′

FR
n′

r = FRr +
(FRr−FRr)(n

′)
N ′

(4.17b)

qn,n
′

i,r,v,c ∈ {True, False}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N ′} (4.17c)

By introducing the variables wzn,n
′

i,r,v,c = lcri,r,c · zi,v, this GDP is recast using the convex
hull method to obtain the following MILP reformulation:

wRHS
i,r,v,c ≥

N∑
n=1

N ′∑
n′=1

CAP n
r vt

n,n′

i,r,v,c + FRn′

v wz
n,n′

i,r,v,c − FRn′

v CAP
n
r · x

n,n′

i,r,v,c

wRHS
i,r,v,c ≥

N∑
n=1

N ′∑
n′=1

CAP
n

r vt
n,n′

i,r,v,c + FR
n′

v wz
n,n′

i,r,v,c − FR
n′

v CAP
n

r · x
n,n′

i,r,v,c

wRHS
i,r,v,c ≤

N∑
n=1

N ′∑
n′=1

CAP
n

r vt
n,n′

i,r,v,c + FRn′

v wz
n,n′

i,r,v,c − FRn′

v CAP
n

r · x
n,n′

i,r,v,c

wRHS
i,r,v,c ≤

N∑
n=1

N ′∑
n′=1

CAP n
r vt

n,n′

i,r,v,c + FR
n′

v wz
n,n′

i,r,v,c − FR
n′

v CAP
n
r · x

n,n′

i,r,v,c

lcri,r =
N∑
n=1

N ′∑
n′=1

lcrn,n
′

i,r,v,c

vti,v,c =
N∑
n=1

N ′∑
n′=1

vtn,n
′

i,r,v,c

N∑
n=1

N ′∑
n′=1

qn,n
′

i,r,v,c = 1

N∑
n=1

N ′∑
n′=1

xn,n
′

i,r,v,c = zi,v

0 ≤ wzn,n
′

i,r,v,c ≤ bigM · zi,v
−bigM(1− zi,v) + lcrn,n

′

i,r,v,c ≤ wzn,n
′

i,r,v,c ≤ lcrn,n
′

i,r,v,c

xn,n
′

i,r,v,c ≤ qn,n
′

i,r,v,c

xn,n
′

i,r,v,c ≤ zi,v

xn,n
′

i,r,v,c ≥ qn,n
′

i,r,v,c + zi,v − 1

(4.18a)
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qn,n
′

i,r,v,c ∈ {0, 1}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N ′} (4.18b)

xn,n
′

i,r,v,c ∈ {0, 1}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N ′} (4.18c)

Notice that the big-M value for the constraint on wzi,r,v,c can be replaced by CAP r in
order to produce a tigher big-M.



CAP n
r q

n,n′

i,r,v,c ≤ lcrn,n
′

ir,v,c ≤ CAP
n

r q
n,n′

i,r,v,c

FRn′

v x
n,n′

i,r,v,c ≤ vtn,n
′

i,r,v,c ≤ FR
n′

v x
n,n′

i,r,v,c

CAP n
r = CAP r +

(CAP r−CAP r)(n−1)
N

CAP
n

r = CAP r +
(CAP r−CAP r)(n)

N

FRn′

v = FRv +
(FRv−FRv)(n

′−1)
N ′

FR
n′

v = FRv +
(FRv−FRv)(n

′)
N ′

(4.18d)
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4.5 MULTIPARAMETRIC DISAGGREGATION

Here the Multiparametric Disaggregation Technique (MDT) is applied for the linear
approximation and relaxation of the bilinear terms.

4.5.1 Lower Bounding Formulation

4.5.1.1 Left-Hand Side Term

The discretized term in the bilinear term vcti,v,c · lri,r will be vcti,v,c. The formulation is
obtained deriving first a generalized disjunctive programming (GDP) model as follows:

wLHS
i,r,v,c = vcti,v,c · lri,r (4.19a)

vcti,v,c =
P∑
l=p

λLHS
i,v,c,l (4.19b)

9∨
d=0

[
λLHS
i,v,c,l = 10l · d

]
∀l ∈ L (4.19c)

where we discretize vcti,v,c through the disjunction in (4.19c) that selects one digit d ∈ D =

{0, 1, ..., 9} for each power l ∈ L = {p, p + 1, ..., P}. First, we consider the convex hull
reformulation of the disjunction in (4.19c), after which we introduce the disaggregated variables,

λLHS
i,v,c,l =

9∑
d=0

λ̂LHS
i,v,c,l,d ∀l ∈ L (4.20a)

λ̂LHS
i,v,c,l,d = 10l · d · yLHS

i,v,c,l,d ∀l ∈ L, d ∈ D (4.20b)
9∑
d=0

yLHS
i,v,c,l,d = 1 ∀l ∈ L (4.20c)

yLHS
i,v,c,l,d ∈ {0, 1} ∀l ∈ L, d ∈ D (4.20d)

Substituting (4.20b) into (4.20a) and then into (4.19b) leads to the fully discretized (but still
exact representation) of vcti,v,c:

vcti,v,c =
P∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d (4.21)

Considering the product wLHS
i,r,v,c = vcti,v,c · lri,r by substituting (4.21) into (4.19a) leads to (4.22)

which involves nonlinear terms yLHS
i,v,c,l,d · lri,r,

wLHS
i,r,v,c =

[
P∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d

]
· lri,r (4.22)
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Performing an exact linearization, we introduce new continuous variables l̂ri,r,v,c,l,d = yLHS
i,v,c,l,d ·

lri,r so that:

wLHS
i,r,v,c =

P∑
l=p

9∑
d=0

10l · d · l̂ri,r,v,c,l,d (4.23)

Since yLHS
i,v,c,l,d · lri,r =

{
0 if yLHS

i,v,c,l,d = 0

lri,r if yLHS
i,v,c,l,d = 1

}
, l̂ri,r,v,c,l,d is non-negative, the lower bound of

lri,r is CAP r and the upper bound is CAP r, we introduce the bounding constraints:

CAP r · yLHS
i,v,c,l,d ≤ l̂ri,r,v,c,l,d ≤ CAP r · yLHS

i,v,c,l,d ∀l ∈ L, d ∈ D (4.24)

Finally, multiplying equation (4.20c) by lri,r and replacing the bilinear terms by the new contin-
uous variables, results in (4.25),

lri,r =
9∑
d=0

l̂ri,r,v,c,l,d, ∀l ∈ L (4.25)

The full set of mixed integer linear constraints for the exact representation of the bilinear product
wLHS
i,r,v,c = vcti,v,c · lri,r is given by Eqs. (4.26).

(MDT-LHS-LB)

wLHS
i,r,v,c =

P∑
l=p

9∑
d=0

10l · d · l̂ri,r,v,c,l,d (4.26a)

vcti,v,c =
P∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d (4.26b)

lri,r =
9∑
d=0

l̂ri,r,v,c,l,d ∀l ∈ L (4.26c)

CAP r · yLHS
i,v,c,l,d ≤ l̂ri,r,v,c,l,d ≤ CAP r · yLHS

i,v,c,l,d ∀l ∈ L, d ∈ D (4.26d)
9∑
d=0

yLHS
i,v,c,l,d = 1 ∀l ∈ L (4.26e)

yLHS
i,v,c,l,d ∈ {0, 1} ∀l ∈ L, d ∈ D (4.26f)

It can be noticed that the problem (MDT-LHS-LB) represents a mixed integer linear
program (MILP), which is a restricted version of the original problem and therefore its solution
yields a lower bound.

4.5.1.2 Right-Hand Side Term

The discretized variables in the bilinear term vti,v · lcri,r,c will be vti,v. The formulation
is obtained by deriving first a generalized disjunctive programming (GDP) model as follows:

wRHS
i,r,v,c = vti,v · lcri,r,c (4.27a)
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vti,v =
P∑
l=p

λRHS
i,v,l (4.27b)

9∨
d=0

[
λRHS
i,v,l = 10l · d

]
∀l ∈ L (4.27c)

where we discretize vti,v through the disjunction in (4.27c) that selects one digit d ∈ D =

{0, 1, ..., 9} for each power l ∈ L = {p, p + 1, ..., P}. First, we consider the convex hull
reformulation of the disjunction in (4.27c) after which we introduce the disaggregated variables,

λRHS
i,v,l =

9∑
d=0

λ̂RHS
i,v,l,d ∀l ∈ L (4.28a)

λ̂RHS
i,v,l,d = 10l · d · yRHS

i,v,l,d ∀l ∈ L, d ∈ D (4.28b)
9∑
d=0

yRHS
i,v,l,d = 1 ∀l ∈ L (4.28c)

yRHS
i,v,l,d ∈ {0, 1} ∀l ∈ L, d ∈ D (4.28d)

Substituting (4.28b) into (4.28a) and then into (4.27b) leads to the fully discretized (but
still exact representation) of vti,v:

vti,v =
P∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d (4.29)

Considering the product wRHS
i,r,v,c = vti,v · lcri,r,c by substituting (4.29) into (4.27a) leads

to (4.30) which involves the nonlinear terms yRHS
i,v,l,d · lcri,r,c,

wRHS
i,r,v,c =

[
P∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d

]
· lcri,r,c (4.30)

Performing an exact linearization, we introduce new continuous variables l̂cri,r,v,c,l,d =

yRHS
i,v,l,d · lcri,r,c, so that:

wRHS
i,r,v,c =

P∑
l=p

9∑
d=0

10l · d · l̂cri,r,v,c,l,d (4.31)

Since lcri,r,c · yRHS
i,v,l,d =

{
0 if yRHS

i,v,l,d = 0

lcri,r,c if yRHS
i,v,l,d = 1

}
, l̂cri,r,v,c,l,d is non-negative, the lower bound

of lcri,r,c is CAP r and the upper bound is CAP r, we introduce the bounding constraints:

CAP r · yRHS
i,v,l,d ≤ l̂cri,r,v,c,l,d ≤ CAP r · yRHS

i,v,l,d ∀l ∈ L, d ∈ D (4.32)

Finally, multiplying equation (4.28c) by lcri,r,c and replacing the bilinear terms by the
new continuous variables, results in (4.33),

lcri,r,c =
9∑
d=0

l̂cri,r,v,c,l,d, ∀l ∈ L (4.33)
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The full set of mixed integer linear constraints for the exact representation of the bilinear
product wRHS

i,r,v,c = vti,v · lcri,r,c is given by Eqs. (4.34).

(MDT-RHS-LB)

wRHS
i,r,v,c =

P∑
l=p

9∑
d=0

10l · d · l̂cri,r,v,c,l,d (4.34a)

vti,v =
P∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d (4.34b)

lcri,r,c =
9∑
d=0

l̂cri,r,v,c,l,d ∀l ∈ L (4.34c)

CAP r · yRHS
i,v,l,d ≤ l̂cri,r,v,c,l,d ≤ CAP r · yRHS

i,v,l,d ∀l ∈ L, d ∈ D (4.34d)
9∑
d=0

yRHS
i,v,l,d = 1 ∀l ∈ L (4.34e)

yRHS
i,v,l,d ∈ {0, 1} ∀l ∈ L, d ∈ D (4.34f)

Similarly to the left-hand side, the problem (MDT-RHS-LB) represents a mixed integer
linear program (MILP), which is a restricted version of the original problem and therefore its
solution yields a lower bound.

4.5.2 Upper Bounding Formulation

4.5.2.1 Left-Hand Side Term

Now we introduce a slack variable ∆vcti,v,c such that vctRi,r = vcti,v,c
′ + ∆vcti,v,c,

where vcti,v,c′ is the discretized representation of the original bilinear term vcti,v,c, vctRi,r is the
continuous representation, and the slack variable ∆vcti,v,c is bounded between 0 and 10p. Thus,
the continuous representation vctRi,r is denoted as:

vctRi,r =
P∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d︸ ︷︷ ︸

vcti,v,c′

+∆vcti,v,c (4.35a)

0 ≤ ∆vcti,v,c ≤ 10p (4.35b)

For the continuous representation of the bilinear term, wLHS
i,r,v,c , note that wLHS

i,r,v,c =

vctRi,r · lri,r so we can derive:

wLHS
i,r,v,c = vctRi,r · lri,r = (vcti,v,c

′ + ∆vcti,v,c) · lri,r
= wLHS

i,r,v,c
′ + lri,r ·∆vcti,v,c = wLHS

i,r,v,c
′ + ∆wLHS

i,r,v,c (4.36)
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The slack variable ∆wLHS
i,r,v,c replaces the bilinear term lri,r ·∆vcti,v,c that can be relaxed

using the McCormick envelope for:

CAP r ·∆vcti,v,c ≤ ∆wLHS
i,r,v,c ≤ CAP r ·∆vcti,v,c (4.37a)

∆wLHS
i,r,v,c ≥ (lri,r − CAP r) · 10p + CAP r ·∆vcti,v,c (4.37b)

∆wLHS
i,r,v,c ≤ (lri,r − CAP r) · 10p + CAP r ·∆vcti,v,c (4.37c)

Introducing these constraints we obtain the new equations for the bilinear term:

(MDT-LHS-UB)

wLHS
i,r,v,c =

P∑
l=p

9∑
d=0

10l · d · l̂ri,r,v,c,l,d + ∆wLHS
i,r,v,c (4.38a)

vcti,v,c =
P∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d + ∆vcti,v,c (4.38b)

lri,r =
9∑
d=0

l̂ri,r,v,c,l,d, ∀l ∈ L (4.38c)

CAP r · yLHS
i,v,c,l,d ≤ l̂ri,r,v,c,l,d ≤ CAP r · yLHS

i,v,c,l,d ∀l ∈ L, d ∈ D (4.38d)
9∑
d=0

yLHS
i,v,c,l,d = 1 ∀l ∈ L (4.38e)

CAP r ·∆vcti,v,c ≤ ∆wLHS
i,r,v,c ≤ CAP r ·∆vcti,v,c

∆wLHS
i,r,v,c ≥ (lri,r − CAP r) · 10p + CAP r ·∆vcti,v,c

∆wLHS
i,r,v,c ≤ (lri,r − CAP r) · 10p + CAP r ·∆vcti,v,c

 (4.38f)

0 ≤ ∆vcti,v,c ≤ 10p (4.38g)

yLHS
i,v,c,l,d ∈ {0, 1} ∀l ∈ L, d ∈ D (4.38h)

4.5.2.2 Right-Hand Side Term

Now a slack variable ∆vti,v is introduced such that vtRi,v = vti,v
′ + ∆vti,v, where vti,v ′

is the discretized representation of the original bilinear term wRHS
i,r,v,c = vti,v · lcri,r,c, vtRi,v is the

continuous representation, and the slack variable ∆vti,v is bounded between 0 and 10p. Thus,
the continuous representation vtRi,v is denoted as:

vtRi,v =
P∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d︸ ︷︷ ︸

vti,v ′

+∆vti,v (4.39a)

0 ≤ ∆vti,v ≤ 10p (4.39b)

Notice that for optimization purposes, we now consider that vti,v = vtRi,v.
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For the continuous representation of the bilinear term, wRHS
i,r,v,c , note that wRHS

i,r,v,c =

vtRi,v · lcri,v,c so we can derive:

wRHS
i,r,v,c = vtRi,v · lcri,r,c = (vti,v

′ + ∆vti,v) · lcri,r,c
= wRHS

i,r,v,c
′ + lcri,r,c ·∆vti,v = wRHS

i,r,v,c
′ + ∆wRHS

i,r,v,c (4.40)

The slack variable ∆wRHS
i,r,v,c replaces the bilinear term lcri,r,c ·∆vti,v that can be relaxed

using the McCormick envelope that follows:

CAP r ·∆vti,v ≤ ∆wRHS
i,r,v,c ≤ CAP r ·∆vti,v (4.41a)

(lcri,r,c − CAP r) · 10p + CAP r ·∆vti,v ≤ ∆wRHS
i,r,v,c

≤ (lcri,r,c − CAP r) · 10p + CAP r ·∆vti,v (4.41b)

Introducing these constraints, we obtain the new equations for the right-hand side bilinear
term:

(MDT-RHS-UB)

wRHS
i,r,v,c =

P∑
l=p

9∑
d=0

10l · d · l̂cri,r,v,c,l,d + ∆wRHS
i,r,v,c (4.42a)

vti,v =
P∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d + ∆vti,v (4.42b)

lcri,r,c =
9∑
d=0

l̂cri,r,v,c,l,d ∀l ∈ L (4.42c)

CAP r · yRHS
i,v,l,d ≤ l̂cri,r,v,c,l,d ≤ CAP r · yRHS

i,v,l,d ∀l ∈ L, d ∈ D (4.42d)
9∑
d=0

yRHS
i,v,l,d = 1 ∀l ∈ L (4.42e)

CAP r ·∆vti,v ≤ ∆wRHS
i,r,v,c ≤ CAP r ·∆vti,v

∆wRHS
i,r,v,c ≤ (lcri,r,c − CAP r) · 10p + CAP r ·∆vti,v

∆wRHS
i,r,v,c ≥ (lcri,r,c − CAP r) · 10p + CAP r ·∆vti,v

 (4.42f)

0 ≤ ∆vti,v ≤ 10p (4.42g)

yRHS
i,v,l,d ∈ {0, 1} ∀l ∈ L, d ∈ D (4.42h)
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4.6 NORMALIZED MULTIPARAMETRIC DISAGGREGATION

Now we derive a normalized version of the multiparametric disagreggation presented in
previous section.

4.6.1 Left-Hand Side Term

For the left-hand side bilinear term vcti,v,c · lri,r, the NMDT formulation is obtained by
discretizing λLHS

i,v,c ∈ [0, 1], an auxiliary variable that is employed to determine vcti,v,c as a linear
combination of its lower bound FRv and upper bound FRv:

vcti,v,c = FRv + λLHS
i,v,c(FRv − FRv) (4.43)

An approximate representation of λLHS
i,v,c can be achieved by considering a finite number

of positions l ∈ {p, p+ 1, ...,−1}, where p is a negative integer chosen by the operator.

λLHS
i,v,c =

−1∑
l=p

λLHS
i,v,c,l (4.44)

For choosing the appropriate digit d ∈ D = {0, 1, ..., 9} for each power l ∈ L =

{p, p+ 1, . . . ,−1}, a disjunction is stated, where binary variables yLHS
i,v,c,l,d are set to 1 if digit d is

selected for position l for the discretized variable λLHS
i,v,c:

9∨
d=0

[
yLHS
i,v,c,l,d

λLHS
i,v,c,l = 10l · d

]
∀l ∈ L (4.45)

The convex hull reformulation of the disjunction in (4.45) can be simplified in order to
generate a sharp formulation without disaggregated variables.

λLHS
i,v,c =

−1∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d (4.46a)

9∑
d=0

yLHS
i,v,c,l,d = 1 ∀l ∈ L (4.46b)

Multiplying variable (4.43) by lri,r, substituting vcti,v,c ·lri,r with bilinear variablewLHS
i,r,v,c,

and replacing λLHS
i,v,c · lri,r with υLHS

i,r,v,c leads to,

wLHS
i,r,v,c = lri,rFRv + υLHS

i,r,v,c(FRv − FRv) (4.47)

Substituting (4.46a) in υLHS
i,r,v,c = vcti,v,c · λLHS

i,v,c, leads to the appearance of bilinear terms
involving the product of a continuous and a binary variable.

υLHS
i,r,v,c =

−1∑
l=p

9∑
d=0

·10l · d · yLHS
i,v,c,l,d · lri,r (4.48)
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We can now perform an exact linearization by introducing new continuous variables as
l̂ri,r,v,c,l,d = yLHS

i,v,c,l,d · lri,r:

υLHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂ri,r,v,c,l,d (4.49a)

yLHS
i,v,c,l,d · FRv ≤ l̂ri,r,v,c,l,d ≤ yLHS

i,v,c,l,d · FRv ∀d ∈ D, l ∈ L (4.49b)

Finally, multiplying (4.46b) by vcti,v,c and replacing the bilinear terms by the new
continuous variables results in,

lri,r =
9∑
d=0

l̂ri,r,v,c,l,d ∀l ∈ L (4.50)

The full set of mixed integer linear constraints for the approximate representation of
bilinear terms wLHS

i,r,v,c = vcti,v,clri,r is thus given by Eqs. (4.43), (4.46b)-(4.47) and (4.49)-(4.50),
leading to the optimization problem:

(NMDT-LHS-MILP)

vcti,v,c = FRv + λLHS
i,v,c(FRv − FRv) (4.51a)

λLHS
i,v,c =

−1∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d (4.51b)

wLHS
i,r,v,c = lri,rFRv + υLHS

i,r,v,c(FRv − FRv) (4.51c)

υLHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂ri,r,v,c,l,d (4.51d)

lri,r =
9∑
d=0

l̂ri,r,v,c,l,d ∀l ∈ L (4.51e)

9∑
d=0

yLHS
i,v,c,l,d = 1 ∀l ∈ L (4.51f)

yLHS
i,v,c,l,d · CAP r ≤ l̂ri,r,v,c,l,d ≤ yLHS

i,v,c,l,d · CAP r ∀d ∈ D, l ∈ L (4.51g)

With the purpose of allow λLHS
i,v,c to reach all possible values, it is required to close the

gap between discretization points. For this reason, a slack variable ∆λLHS
i,v,c with bounds between

0 and 10p is introduced. The continuous representation of λLHS
i,v,c is then given by:

λLHS
i,v,c =

−1∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d + ∆λLHS

i,v,c (4.52a)

0 ≤ ∆λLHS
i,v,c ≤ 10p (4.52b)
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Following the same reasoning, the continuous representation of the bilinear term υLHS
i,r,v,c =

lri,r · λLHS
i,v,c is therefore determined as:

υLHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂ri,r,v,c,l,d + lri,r ·∆λLHS
i,v,c (4.53)

It can be noticed that a new complicating bilinear term lri,r ·∆λLHS
i,v,c appears in Eq. (4.53),

which is replaced by variable ∆υLHS
i,r,v,c and the resulting equation is relaxed using McCormick

envelopes as follows:

CAP r ·∆λLHS
i,v,c ≤ ∆υLHS

i,r,v,c ≤ CAP r ·∆λLHS
i,v,c (4.54a)

∆υLHS
i,r,v,c ≤ (lri,r − CAP r) · 10p + CAP r ·∆λLHS

i,v,c (4.54b)

∆υLHS
i,r,v,c ≥ (lri,r − CAP r) · 10p + CAP r ·∆λLHS

i,v,c (4.54c)

Substituting Eqs. (4.46a) and (4.49a) in (NMDT-LHS-MILP) by (4.52a) –(4.54c), a
new optimization problem is obtained (NMDT-LHS-UB), corresponding to a relaxation of the
original problem. In other words, (NMDT-UB-MILP) will be feasible for values of wLHS

i,r,v,c,
vcti,v,c and lri,r that not necessarily satisfy wLHS

i,r,v,c = vcti,v,c · lri,r.

(NMDT-LHS-UB)

vcti,v,c = 0 + λLHS
i,v,c(FRv − 0)

λLHS
i,v,c =

−1∑
l=p

9∑
d=0

10l · d · yLHS
i,v,c,l,d + ∆λLHS

i,v,c

0 ≤ ∆λLHS
i,v,c ≤ 10p

 (4.55a)

wLHS
i,r,v,c = lri,r0 + υLHS

i,r,v,c(FRv − 0)

υLHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂ri,r,v,c,l,d + ∆υLHS
i,r,v,c

CAP r ·∆λLHS
i,v,c ≤ ∆υLHS

i,r,v,c ≤ CAP r ·∆λLHS
i,v,c

∆υLHS
i,r,v,c ≤ (lri,r − CAP r)10p + CAP r ·∆λLHS

i,v,c

∆υLHS
i,r,v,c ≥ (lri,r − CAP r)10p + CAP r ·∆λLHS

i,v,c


(4.55b)

lri,r =
9∑
d=0

l̂ri,r,v,c,l,d ∀l ∈ L (4.55c)

9∑
d=0

yLHS
i,v,c,l,d = 1 ∀l ∈ L (4.55d)

yLHS
i,v,c,l,dCAP r ≤ l̂ri,r,v,c,l,d ≤ yLHS

i,v,c,l,dCAP r ∀d ∈ D, l ∈ L (4.55e)

4.6.2 Right-Hand Side Term

For the right-hand side bilinear term, the NMDT formulation is obtained by discretizing
λRHS
i,v ∈ [0, 1], an auxiliary variable that is employed to compute vti,v as a linear combination of
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its lower bound FRv and upper bound FRv:

vti,v = FRv + λRHS
i,v (FRv − FRv) (4.56)

The approximate representation of λRHS
i,v can be achieved by considering a finite number

of positions l ∈ L = {p, p+ 1, ...,−1}, where p is a negative integer chosen by the operator.

λRHS
i,v =

−1∑
l=p

λRHS
i,v,l (4.57)

For choosing the appropriate digit d ∈ D = {0, 1, ..., 9} for each power l, a disjunction
is introduced, where binary variables yRHS

i,v,l,d take the value of 1 if digit d is selected for position l
of discretized variable λRHS

i,v :

9∨
d=0

[
yRHS
i,v,l,d

λRHS
i,v,l = 10l · d

]
(4.58)

The convex hull reformulation of the disjunction in (4.58) can be simplified in order to
generate a sharp formulation without disaggregated variables.

λRHS
i,v =

−1∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d (4.59a)

9∑
d=0

yRHS
i,v,l,d = 1 ∀l ∈ L (4.59b)

Multiplying variable (4.56) by lcri,r,c, substituting lcri,r,c · vti,v with the bilinear variable
wRHS
i,r,v,c, and replacing lcri,r,c · λRHS

i,v with the variable υRHS
i,r,v,c leads to,

wRHS
i,r,v,c = lcri,r,cFRv + υRHS

i,r,v,c(FRv − FRv) (4.60)

Substituting (4.59a) into the definition of υRHS
i,r,v,c leads to the appearance of bilinear terms

involving the product of a continuous and a binary variable.

υRHS
i,r,v,c = lcri,r,c · λRHS

i,v

= lcri,r,c

−1∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d

=
−1∑
l=p

9∑
d=0

10l · d · lcri,r,c · yRHS
i,v,l,d (4.61)

We can now perform an exact linearization by introducing new continuous variables as
l̂cri,r,v,c,l,d = lcri,r,c · yRHS

i,v,l,d:

υRHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂cri,r,v,c,l,d (4.62a)
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yRHS
i,v,l,d · FRv ≤ l̂cri,r,v,c,l,d ≤ yRHS

i,v,l,d · FRv ∀d ∈ D, l ∈ L (4.62b)

Finally, multiplying (4.59b) by lcri,r,c and replacing the bilinear terms by the new
continuous variables results in,

lcri,r,c =
9∑
d=0

l̂cri,r,v,c,l,d ∀l ∈ L (4.63)

The full set of mixed integer linear constraints for the approximate representation of
bilinear termswRHS

i,r,v,c = lcri,r,c·vti,v is thus given by Eqs. (4.56), (4.59b)-(4.60) and (4.62)-(4.63),
leading to optimization problem (NMDT-RHS-MILP).

(NMDT-RHS-MILP)

vti,v = FRv + λRHS
i,v (FRv − FRv) (4.64a)

λRHS
i,v =

−1∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d (4.64b)

wRHS
i,r,v,c = lcri,r,cFRv + υRHS

i,r,v,c(FRv − FRv) (4.64c)

υRHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂cri,r,v,c,l,d (4.64d)

lcri,r,c =
9∑
d=0

l̂cri,r,v,c,l,d ∀l ∈ L (4.64e)

9∑
d=0

yRHS
i,v,l,d = 1 ∀l ∈ L (4.64f)

yRHS
i,v,l,d · CAP r ≤ l̂cri,r,v,c,l,d ≤ yRHS

i,v,l,d · CAP r ∀d ∈ D, l ∈ L (4.64g)

With the purpose of allowing λRHS
i,v to reach all possible values, it is required to close

the gap between the discretization points. For this reason, a slack variable ∆λRHS
i,v with bounds

between 0 and 10p is introduced. The continuous representation of λRHS
i,v is then given by:

λRHS
i,v =

−1∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d + ∆λRHS

i,v (4.65)

0 ≤ ∆λRHS
i,v ≤ 10p (4.66)

Following the same reasoning, the continous representation of the bilinear term υRHS
i,r,v,c =

lcri,r,c · λRHS
i,v is therefore determined as:

υRHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂cri,r,v,c,l,d + lcri,r,c ·∆λRHS
i,v (4.67)
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It can be noticed that the new undesired bilinear term lcri,r,c ·∆λRHS
i,v appears in Eq. (4.53),

which is replaced by variable ∆υRHS
i,r,v,c and the resulting equation is relaxed using a McCormick

envelope as follows:

CAP r ·∆λRHS
i,v ≤ ∆υRHS

i,r,v,c ≤ CAP r ·∆λRHS
i,v (4.68a)

∆υRHS
i,r,v,c ≤ (lcri,r,c − CAP r) · 10p + CAP r ·∆λRHS

i,v (4.68b)

∆υRHS
i,r,v,c ≥ (lcri,r,c − CAP r) · 10p + CAP r ·∆λRHS

i,v (4.68c)

Substituting Eqs. (3.29a) and (3.32a) in (NMDT-RHS-MILP) by (4.65)–(4.68c), a new
optimization problem is obtained (NMDT-RHS-UB), corresponding to a relaxation of the
original bilinear problem. In other words, (NMDT-RHS-UB) will be feasible for values of
wRHS
i,r,v,c, lcri,r,c and vti,v that not necessarily satisfy wRHS

i,r,v,c = lcri,r,c · vti,v.

(NMDT-RHS-UB)

vti,v = FRv + λRHS
i,v (FRv − FRv)

λRHS
i,v =

−1∑
l=p

9∑
d=0

10l · d · yRHS
i,v,l,d + ∆λRHS

i,v

0 ≤ ∆λRHS
i,v ≤ 10p

 (4.69a)

wRHS
i,r,v,c = lcri,r,cFRv + υRHS

i,r,v,c(FRv − FRv)

υRHS
i,r,v,c =

−1∑
l=p

9∑
d=0

10l · d · l̂cri,r,v,c,l,d + ∆υRHS
i,r,v,c

CAP r ·∆λRHS
i,v ≤ ∆υRHS

i,r,v,c ≤ CAP r ·∆λRHS
i,v

∆υRHS
i,r,v,c ≤ (lcri,r,c − CAP r)10p + CAP r ·∆λRHS

i,v

∆υRHS
i,r,v,c ≥ (lcri,r,c − CAP r)10p + CAP r ·∆λRHS

i,v


(4.69b)

lcri,r,c =
9∑
d=0

l̂cri,r,v,c,l,d ∀l ∈ L (4.69c)

9∑
d=0

yRHS
i,v,l,d = 1 ∀l ∈ L (4.69d)

yRHS
i,v,l,d · CAP r ≤ l̂cri,r,v,c,l,d ≤ yRHS

i,v,l,d · CAP r ∀d ∈ D, l ∈ L (4.69e)
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5 ANALYSIS

This chapter presents the analysis of the previous presented relaxation techniques (see
Chapter 4) when applied to the OMCOS problem. In this sense, the bilinear terms that appear in
the blending constraints (2.22) are relaxed by means of Piecewise McCormick Envelops with
univariate and bivariate partitions, Multiparametric Disaggregation, and Normalized Multipara-
metric Disaggregation.

The original MINLP instances of OMCOS were solved to optimality as a benchmark;
this was done using a global solver (Gurobi and SCIP) with a maximum solving time of 10 hours.
The benchmark results will provide a reference to compare with MILP-NLP decomposition,
allowing the comparative analysis of the quality of the solutions and the computational time.

The analysis presented in this chapter employs the following steps:

(i) the relaxation technique is applied on both bilinear terms, that is the left-hand side
(wLHS

i,r,v,c = vcti,v,c · lri,r) and the right-hand side (wRHS
i,r,v,c = vti,v · lcri,r).

(ii) the relaxation technique is applied only on the left-hand side, while a standard McCormick
envelope approximates the right-hand side.

(iii) the relaxation is applied only on the right-hand side, whereas a standard McCormick
envelope replaces the bilinear term on the left-hand side.

For the MILP relaxations of the MILP-NLP decomposition algorithm, regarding the
piecewise McCormick technique, the bilinear terms were partitioned in 2, 4, 8 and 10 partitions
for the univariate and bivariate case. The number of partitions are set directly by parameter
N when univariate partition is used and parameters N and N ′ when the bivariate relaxation is
employed.

When applying MDT, its parameters are set as follows. Since the upper bound on the
discretized variable is 500, we must set P = 2 to enable the selection of the hundredths, for
all instances. As for the smallest power of ten, we selected the precision level p = 2 (coarse
resolution), p = 1, p = 0 (highest resolution) for the MDT employed in the MILP. A greater
computation effort is expected on the lower values of p. Notice that because the upper bound is
500, the discretized variable in the MDT will have 5 partitions with p = 2, 50 partitions with
p = 1, and 500 partitions with p = 0.

The same can be inferred for NMDT, despite partitions not varying according to the
upper and lower bounds as in MDT. The accuracy level parameter p now directly relates to
the number of partitions N , regardless of the lower and upper bound values. For our analysis,
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p = 1 is set to create 10 partitions, allowing for a better comparison with univariate PMCK when
N = 10.

5.1 PROBLEM INSTANCES

For the computational experiments, three instances were designed regarding distinct
scenarios for the operational management of crude oil supply. Designing the instances it is not a
trivial task since it can easily lead to an infeasible problem. For this reason, they were similar
to the instances used by Assis et al. (2019), changing only the initial conditions and the CDU
constraints for the oil demand detailed in Table 3. The instances were named INS1, INS2 and
INS3 and contain 2 FPSOs, 2 vessels, 2 storage tanks, 2 charging tanks, 1 CDU, 2 types of crude
oil, and a planning horizon of 15 days. Although refineries usually contain far more resources,
the instances were designed to capture the essential elements found in a real scenario.

Besides the number of resources, some data are required for the bounds, initial conditions,
and distillation demands. Some key parameters will vary in the experiments, as discussed below.

Distillation is constrained by operating ranges of crude oil composition, which correspond
concretely to a feasible range for each property k of the crude oil transferred to the CDU. Property
k is defined by parameter PRk,c which regards the weight fraction associated to crude c. Together
with the bounds DEMCv,k and DEMCv,k, parameter PRk,c specifies the distillation demand
by the user for each CDU. Tighter bounds inevitably result in a harder problem to solve.

Additionally, over the planning horizon PH stipulated, the total volume of crude oil
delivered to be distilled in each CDU r is bounded by [DEM r, DEM r]. Adjusting these bounds
also affects the difficulty of solving OMCOS when maximizing the total volume distilled.

Finally, the initial level of each crude c in every resource is part of the initial conditions.
Since the blending constraints are the most complex constraints of the problem, and are affected
by the initial mixture of crude types in the tanks, we consider varying initial conditions for the
test scenarios.

The data regarding the crude types appear in Table 2, while the data with initial conditions
and resource bounds appear in Table 3.

Table 2 – Crude Types

Crude Types (c) Property Concentration (PRk,c)

A 0.010
B 0.030



5.2. Numerical Results 79

Table 3 – Data for Problem Instances

Instances INS1 INS2 INS3
CDU bounds on property concentration [DEMCv,k / DEMCv,k]
Lower bound / Upper bound (weight fraction)

CDU1

from CT1
0.005 / 0.015

from CT2
0.020 / 0.030

from CT1
0.005 / 0.025

from CT2
0.010 / 0.040

from CT1
0.005 / 0.015

from CT2
0.020 / 0.030

CDU bounds on distillation demand [DEM r, DEM r]
Lower bound / Upper bound (103 bbl)

CDU1

from CT1
800 / 1200

from CT2
800 / 1200

from CT1
800 / 1700

from CT2
800 / 1700

from CT1
1200 / 1800

from CT2
1200 / 1800

Initial Level Of Crudes (103 bbl)
(Crude type A, Crude type B)
FPSO1 (500 , 0) (500 , 0) (500 , 0)
FPSO2 (0 , 500) (0 , 500) (0 , 500)
Vessel1 (300 , 0) (300 , 0) (300 , 0)
Vessel2 (0 , 400) (0 , 400) (0 , 400)

ST1 (0 , 300) (450 , 50) (0 , 300)
ST2 (0, 0) (400 , 100) (0 , 0)
CT1 (500 , 0) (500 , 0) (500 , 0)
CT2 (0 , 500) (100 , 400) (0 , 500)

5.2 NUMERICAL RESULTS

The proposed mathematical programming models and algorithms were implemented in
AMPL. All instances were solved on a Ubuntu 20.04.1 LTS server, with two Intel Core Xeon
E5-2630 v4 Processors (2.20 GHz), adding up to 20 cores of 2 threads and 64 GB of RAM.
Gurobi Optimizer version 9.0.0 build v9.0.0rc2 and SCIP version 7.0.2 were employed to solve
the MINLPs, which establish the benchmark solution approach. Conversely, for the MILP-NLP
decomposition, the Gurobi Optimizer was used for solving the MILPs, while Knitro 11.1.2
solved the NLP problems. The termination criteria for the MINLP problems is reached with an
optimality gap of 0.01% or a time limit of 10 hours. MILP problems were set to an optimality
gap of 0.01% or 2 hours. Gurobi parallelism was always active with a maximum number of
threads equal to 20.

Table 4 shows the results regarding the solutions obtained by solving the MINLP directly,
with Gurobi and SCIP. The optimal solution and the respective computation time are presented
for each instance. In case the time limit of 10 hours is reached, the best feasible solution found
is reported. It is visible that Gurobi performs better solving the MINLP as expected due to the
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recent improvement of its version 9, which features advanced techniques for solving MINLP
problems with bilinear terms. Also, Gurobi enables parallelism while SCIP runs only in one
core. Moreover, from the results one can observe that for INS2 it is easier to obtain an optimal
solution, since the bounds on distillation demand and property concentration (see Table 3) are
comparatively less restrictive.

Table 4 – Global Optimization results for the OMCOS

Solver INS1 INS2 INS3

Gurobi
22 798 32 700 34 045

(22673.0s) (150.1s) (36000.0s)

SCIP
22 565 32 700 32 522

(36000.0s) (6397.2s) (36000.0s)

The complete results are in Tables 5, 6, 7 for INS1, INS2 and INS3 respectively. The
two best results for each instance are highlighted in bold.

First we analyze whether the relaxation method returns better results when applied only
to one side of the blending equation or both sides. The OMCOS blending constraint has a
unique structure, consisting of two bilinear terms linked by an equality constraint. One could
expect to obtain relaxation models that are harder to solve when relaxing both sides with refined
approximations (e.g., piecewise McCormick and MDT), in part due to the large number of binary
variables added, but this was not the case for the OMCOS. For all instances, the computational
time required to solve the MILP relaxation obtained with tighter approximations on both sides
was generally not comparatively greater than solving the relaxation with a refined model on just
one side, while using a standard McCormick envelope on the other side. However, it is clear that
the best lower bound found in the three instances did not come from the models with both sides
relaxed with refined models (PMCK and MDT). Thus, it was possible to enhance the results and
the computational time by tightening only one of the bilinear terms, while the other remained
bounded by a simple McCormick envelope. The MILP-NLP decomposition, when obtained
from refined relaxation methods applied to just one of the bilinear terms, produced solutions
comparable to the ones obtained by solving the baseline MINLP.

Further, we examine the effects of increasing the number of partitions. As seen in Tables
5, 6, and 7, the computational time raises proportionally to the number of partitions regardless
the relaxation method employed. In terms of quality of the solutions obtained, for univariate and
bivariate PMCK, the MILP tends to achieve a slightly tighter upper bound with the increase of
N . However, a better MILP result will not necessarily generate a better NLP primal solution
in the MILP-NLP decomposition algorithm. The likely explanation is that the binary decision
variables from the MILP are not always optimal and in some cases they are restricting the NLP
when these variables are fixed. Thus, in this case, increasing the number of partitions will not
bring significant improvements to the NLP. Although the NLP may obtain a slightly better lower
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bound when increasing the number of partitions, the computation effort spent for such small
gain does not support the choice of a high number of partitions. None of the three instances have
shown better results when N = 10, so the experiments suggest that N = 4 and 8 are preferred,
which was also claimed by Misener and Floudas (2012) on their experiments.

For MDT and NMDT relaxations, the reader must recall that the number of partitions
can only change by one order of magnitude and the number of added binary variables grows
logarithmically, while with PMCK it grows linearly. For this reason, unlike PMCK, the numerical
results have shown better bounds with a higher number of partitions. For example, the best
solution found for INS2 and INS3 (see Tables 6 and 7) was obtained by applying the MDT
relaxation with 500 partitions (p = 0). Here it should be mentioned that an attempt to increase
the number of partitions was made by setting p = −1, resulting in 5000 partitions. However,
such a high number of partitions resulted in an MILP relaxation that was excessively large for
the solver, which failed to return a feasible solution as one would expect. For these reasons, we
conclude that p = 0 is expected to be the optimal MDT accuracy parameter for the OMCOS
problem based on the instances.

Regarding the different strategies of relaxation for bilinear terms applied in this study, we
analyze and compare the quality of the results and the computational effort to assess whether one
of the relaxation is more suitable for OMCOS. Comparing the univariate and bivariate PMCK, it
is noticeable that bivariate produces tighter bounds due to the greater number of partitions. Yet, it
introduces many binary variables to the model which requires more calculation. Clearly, there is
a trade-off between the quality of the relaxation and the computation work required. Examining
the results of INS1 in Table 5, when relaxing only the left side of the blending constraint and
applying univariate PMCK with 10 partitions, a solution of 22 749 was obtained in 44.22s. A
similar result could also be obtained by bivariate PMCK with 4x4 partitions, reaching a value
of 22 750 but with a total time of 487.2s. Conversely, there are also examples of the contrary
occurring, as in INS2 (see Table 6), when relaxing only the left-hand side of the blending
constraint, the best solution found with univariate PMCK was 32 697 in 66.6s with 4 partitions.
With bivariate PMCK, a similar result of 32 698 was reached in 34.4s. These findings indicate
that a general rule for selecting the best relaxation method is not likely to be designed for the
instances of OMCOS. Nevertheless, we can state that univariate PMCK generally yields good
enough results in a shorter time, being the preferred choice. The bivariate PMCK approach
would only be advised in a situation where the end-user needs to prioritize quality of solution
regardless of computational effort.

From our current choice of univariate PMCK as the best relaxation method, we follow
to evaluate and compare it to MDT. An exact comparison between them is not possible since
MDT could only model 5, 50 or 500 partitions. In this study, we consider MDT with 5 partitions
(p = 2) to compare with univariate PMCK containing 4 partitions. The reader will note that
this approximation does not interfere on the conclusion, since MDT clearly outperforms PMCK
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under those conditions, even when considering a greater number of partitions on the MDT side.
MDT has reached better solutions in the experiments with a faster computational time for most
cases. This can be shown by examining the results when both sides are relaxed by MDT, against
both sides relaxed with PMCK univariate. For INS1 (see Table 5), MDT returned a solution of
22 652 in 3.2s against 22 068 in 3.8s by PMCK. For INS2 (see Table 6) MDT obtained 32 696 in
76.5s versus 32 300 in 171.2s by PMCK. Lastly, for INS3 (see Table 7) MDT reached 33 391 in
77.9s, against 33 139 in 243.5s by PMCK. Moreover, MDT allowed to solve the instances within
a reasonable time, even when modeling bilinear terms with a high number of partitions. It can be
highlighted the optimal solution found in INS2 (see Table 6) using MDT only on the right-hand
side of the blending constraint with p = 0, which is equivalent to 500 partitions. The result was
similar to the optimal solution found by solving the MINLP directly, with Gurobi, within the
same computational time. When comparing it to the the global solver SCIP, the solution obtained
was considerably better and with a significant faster computational time.

Given that they are roughly the same method, NMDT is expected to perform similarly
to MDT. In essence, NMDT provides only an alternative means for the end-user to adjust
the accuracy parameter and consequently the number of partitions. For the experiments, the
parameter adjustment enabled an exact comparison between NMDT and univariate PMCK with
10 partitions by setting p = −1, which is equivalent to 10 partitions. From the findings one can
conclude that NMDT outperforms PMCK undoubtedly for all cases as expected. This conclusion
is inferred contrasting the results from both sides relaxed by NMDT against both sides relaxed
with PMCK univariate. For INS1 (see Table 5), NMDT returned a solution of 22 154 in 5.1s,
against 22 177 in 18.6s by PMCK. For INS2 (see Table 6) NMDT obtained 32 696 in 220.1s
versus 32 327 in 307.0s by PMCK. Lastly, for INS3 (see Table 7) NMDT reached 33 072 in
138.6s against 33 079 in 408.7s by PMCK.
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Table 5 – Solutions for the instance INS1.

Both LHS+RHS Only LHS Only RHS
Method Partitions MILP NLP MILP NLP MILP NLP

Piecewise
Univariate

2
22 800 21 946 22 800 22 325 22 800 22 291
(1.7s) (0.5s) (0.8s) (0.1s) (4.0s) (0.3s)

4
22 800 22 068 22 800 22 540 22 800 22 603
(2.7s) (1.1s) (11.2s) (0.2s) (3.7s) (0.1s)

8
22 800 22 595 22 800 22 456 22 800 22 379
(17.9s) (0.8s) (12.9s) (0.2s) (100.7s) (0.1s)

10
22 800 22 177 22800 22750 22 798 22 638
(18.3s) (0.3s) (43.8s) (0.4s) (42.9s) (0.5s)

Piecewise
Bivariate

2x2
22 800 22 282 22 800 22 338 22 800 22 275
(3.3s) (0.1s) (3.3s) (1.9s) (11.0s) (0.2s)

4x4
22 799 22 290 22798 22750 22 799 22 622

(601.5s) (0.7s) (486.9s) (0.3s) (125.4s) (2.3s)

8x8
22 800 22 189 22798 22796 22 800 22 687

(155.7s) (0.1s) (3690.3s) (0.3s) (1899.0s) (0.2s)

10x10
22 800 22 299 22 798 22 718 22 798 22 718

(5871.1s) (0.2s) (6177.6s) (0.2s) (3480.8s) (13.4s)

MDT

5 (p = 2)
22 800 22 652 22 800 22 662 22 800 22 662
(2.8s) (0.4s) (1.0s) (0.1s) (0.7s) (0.1s)

50 (p = 1)
22 800 22 666 22 800 22 651 22 800 22 479
(33.0s) (0.6s) (100.0s) (0.2s) (4.4s) (0.2s)

500 (p = 0)
22 612 22 200 22 798 22 479 22 799 22 666

(7206.9s) (0.3s) (299.6s) (0.2s) (15.0s) (0.4s)

NMDT 10 (p = 1)
22 750 22 154 22 800 22 632 2250 22 573
(4.4s) (0.7s) (11.8s) (0.8s) (1.5s) (0.2s)
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Table 6 – Solutions for the instance INS2.

Both LHS+RHS Only LHS Only RHS
Method Partitions MILP NLP MILP NLP MILP NLP

Piecewise
Univariate

2
32 700 32 209 32 700 32 209 32 700 32 300

(112.7s) (0.2s) (34.2s) (0.1s) (68.6s) (0.2s)

4
32 700 32 300 32 700 32 697 32 700 32 460

(171.0s) (0.2s) (66.5s) (0.1s) (60.2s) (0.1s)

8
32 700 32 300 32 700 32 300 32 700 32 587

(260.9s) (0.1s) (54.7s) (0.2s) (220.3s) (0.1s)

10
32 700 32 327 32 700 32 694 32 700 32 697

(306.9s) (0.1s) (295.6s) (0.1s) (216.9s) (0.2s)

Piecewise
Bivariate

2x2
32 700 32 695 32 700 32 698 32 700 32 695
(69.1s) (0.1s) (34.4s) (0.4s) (200.2s) (0.1s)

4x4
32 700 32 256 32700 32700 32 700 32 299

(1628.9s) (0.1s) (803.1s) (0.1s) (322.6s) (0.2s)

8x8
32 700 32 256 32 698 32 305 32 700 32 379

(4608.9s) (0.5s) (7066.9s) (0.2s) (7201.0s) (0.5s)

10x10
32 700 32 295 32 698 32 695 x x

(3216.8s) (0.2s) (7201.6s) (0.2s) x x

MDT

5 (p = 2)
32 700 32 696 32 700 32 695 32 700 32 300
(76.3s) (0.2s) (97.6s) (0.1s) (44.8s) (0.2s)

50 (p = 1)
32 700 32 256 32 700 32 695 32 700 32 698

(3689.6s) (0.2s) (441.0s) (0.2s) (233.5s) (0.1s)

500 (p = 0)
x x 32 694 32 695 32700 32700
x x (7200.0s) (0.2s) (152.1s) (0.2s)

NMDT 10 (p = 1)
32 700 32 696 32 700 32 578 32 700 32 697

(220.0s) (0.1s) (103.3s) (0.1s) (55.0s) (0.2s)
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Table 7 – Solutions for the instance INS3.

Both LHS+RHS Only LHS Only RHS
Method Partitions MILP NLP MILP NLP MILP NLP

Piecewise
Univariate

2
34 200 33 352 34 200 33 735 34 200 33 714
(21.1s) (0.5s) (9.2s) (0.4s) (26.8s) (0.5s)

4
34 200 33 149 34 200 33 751 34 200 33 777

(242.9s) (0.6s) (119.2s) (0.9s) (133.1s) (0.2s)

8
34 200 33 003 34200 33976 34 200 30 524

(257.4s) (0.3s) (258.8s) (0.7s) (267.2s) (0.7s)

10
34 200 33 079 34 199 32 799 34 200 33 771

(407.6s) (1.1s) (632.5s) (0.4s) (328.0s) (0.2s)

Piecewise
Bivariate

2x2
34 200 32 771 34 199 33 962 34 200 33 825

(197.3s) (0.5s) (171.9s) (0.3s) (126.1s) (0.6s)

4x4
34 198 33 689 34 200 33 914 34 200 33 787

(1345.8s) (0.2s) (1348.9s) (0.2s) (2915.2s) (2.1s)

8x8
33 900 31 343 33 853 33 697 34 200 33 926

(7200.0s) (1.6s) (7200.0s) (0.2s) (7200.0s) (0.2s)

10x10
30 200 32 072 33 579 33 550 33 579 30 439

(7200.0s) (0.7s) (7200.6s) (0.4s) (7200.0s) (0.4s)

MDT

5 (p = 2)
34 200 33 391 34 200 33 993 34 200 33 209
(76.3s) (1.6s) (96.9s) (0.3s) (19.6s) (1.2s)

50 (p = 1)
33 431 30 400 34 200 33 863 34 198 33 396

(7200.0s) (1.3s) (1139.2s) (4.2s) (38.5s) (0.3s)

500 (p = 0)
x x 34198 34002 34 200 28 400
x x (2611.5s) (0.5s) (198.2s) (0.1s)

NMDT 10 (p = 1)
34 150 33 072 34 200 33 774 34 150 32 400

(138.0s) (0.6s) (184.6s) (0.3s) (18.7s) (0.1s)
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6 FINAL REMARKS

This section presents a brief discussion and concluding remarks in Section 6.1. Future
work appears in Section 6.2 and the resulting publications in Section 6.3

6.1 DISCUSSION AND CONCLUSION

The objective of this thesis was to evaluate the performance of different relaxation
methods applied to bilinear terms that appear in the operational management of crude oil supply
problem. The problem of concern entails solving a computationally hard mixed-integer nonlinear
program which is faced by vertically integrated oil companies.

The evaluation strategy proposed to apply Piecewise McCormick Envelops with univari-
ate and bivariate partitions, Multiparametric Disaggregation, and Normalized Multiparametric
Disaggregation. Implementing these methods yield a mixed-integer linear programming relax-
ation, which was combined with a local nonlinear programming algorithm to reach a feasible
schedule of operations. Instances for the problem were designed for comparison among these re-
laxation methods, along with common MINLP approaches, in order to measure their performance
and quality of the results.

During the implementation of the relaxation methods, it was necessary to consider
the unique characteristic of one of the bilinear terms, which has bounds subject to a decision
variable. Thus, it was necessary to model modified McCormick envelopes considering this
peculiarity in one of the equality constraint sides. This property was not an issue when employing
Multiparametric or Normalized Multiparametric Disaggregation, given that only one of the
variables in the bilinear term must be discretized, so it was straightforward to discretize only the
variable with fixed bounds.

When analyzing the implemented methods, the choice whether to apply them only to
one side of the blending equation or both sides has proved to be the major decision affecting
the results. Since the Operational Management of Crude Oil Supply blending constraint has a
unique structure, consisting of two bilinear terms linked by an equality constraint, it was possible
to enhance the results and reduce the computational time by tightening only one of the bilinear
terms, while the other remained bounded by a simple McCormick envelope. To the best of our
knowledge, this is the first study to propose this alternative.

From the presented results, Multiparametric Disaggregation has reached better solutions
in the experiments with a faster computational time for most cases, allowing to solve the
instances within a reasonable time, even when employing a high number of partitions. For
one instance of the problem, Multiparametric Disaggregation reached the optimal solution
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within the same computational time taken by Gurobi to solve the MINLP directly. When
comparing Multiparametric Disaggregation to the the global solver SCIP, the solution obtained
was considerably better and with a significant faster computational time.

Although a global optimum can be reached given sufficient computational resources
and time, it was noticed that relaxation procedures can yield nearly-optimal solutions using less
computational resources. Thus, the results have shown that the solution based on the proposed
relaxation compares favorably with commercial global solvers.

6.2 FUTURE WORK

Besides showing that MDT can achieve tighter bounds than a global optimization solver
within a given computational time, the results indicate that one can take advantage of the relaxed
formulation for restrict the variable domains and further reduce the optimality gap as in Castro
and Grossmann (2014).

6.3 PUBLICATIONS

This research led to the scientific article titled “Multiparametric Disaggregation Re-
laxation of Bilinear Terms for the Operational Management of Crude Oil Supply,” which was
accepted for presentation in the 17th IEEE International Conference on Automation Science and

Engineering (CASE), to be held in Lyon, France, during August 23-27, 2021.
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