

Gabriel Arthur Gerber Andrade

Test generation for shared-memory verification of multicore chips

Tese submetida ao Programa de Pós-Graduação

em Engenharia de Automação e Sistemas para a

obtenção do título de doutor em Engenharia de

Automação e Sistemas.

Orientador: Prof. Luiz Cláudio Villar dos San-

tos, Dr.

Florianópolis

2021

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Andrade, Gabriel Arthur Gerber
 Test generation for shared-memory verification of
multicore chips / Gabriel Arthur Gerber Andrade ;
orientador, Luiz Cláudio Villar dos Santos , 2021.
 112 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2021.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Multicore. 3.
Memória compartilhada coerente. 4. Verificação. 5. Geração de
testes. I. , Luiz Cláudio Villar dos Santos. II.
Universidade Federal de Santa Catarina. Programa de Pós
Graduação em Engenharia de Automação e Sistemas. III. Título.

Gabriel Arthur Gerber Andrade

Test generation for shared-memory verification of multicore chips

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca examinadora

composta pelos seguintes membros:

Prof. Rodolfo Jardim Azevedo, Dr.

Universidade Estadual de Campinas

Prof. Rômulo Silva de Oliveira, Dr.

Universidade Federal de Santa Catarina

Prof. Márcio Bastos Castro, Dr.

Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado

adequado para obtenção do título de doutor em Engenharia de Automação e Sistemas.

Prof. Werner Kraus Junior, Dr

Coordenador do Programa de Pós-Graduação

Prof. Luiz Cláudio Villar dos Santos, Dr.

Orientador

Florianópolis, 2021.

Eu dedico este trabalho ao passado.

ACKNOWLEDGEMENTS

I would like to thank all colleagues, professors, and fellow researchers that contributed,

direct or indirectly, to the development of this work, in special my advisor, Luiz C. V. dos

Santos, and coworkers, Marleson Graf and Nícolas Pfeifer, and seniors, Eberle Rambo and

Leandro Freitas and Olav Henschel. Also, I would like to thank my family and friends for all

support and encouragement provided over the years.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001 and by the Conselho Nacional de

Desenvolvimento Científico e Tecnológico - Brasil (CNPq) - Finance Code GD.

RESUMO

Multiprocessadores consistem de processadores fortemente acoplados que compartilham um

espaço de endereçamento de memória e são construídos com um ou múltiplos multicore chips.

O susbsistema de memória compartilhada envolve componentes de hardware complexos que

implementam um sofisticado protocolo de coerência cujo projeto em RTL é propenso a erros.

Esta tese contribui para a verificação funcional do comportamento da memória compartilhada

durante o projeto de multicore chips. Uma vez que o comportamento não determinístico é

chave para expor erros de memória compartilhada, programas paralelos não sincronizados são

frequentemente utilizados para a verificação do projeto e para o teste do protótipo. No entanto,

durante a etapa de verificação, a lenta execução em um simulador requer o uso de técnicas

não convencionais para expor erros e prover alta cobertura com programas mais curtos. Neste

contexto, esta tese faz três contribuições. A primeira contribuição consiste em duas técnicas

que impõem restrições à geração aleatória convencional de programas de teste para viabilizar

a verificação eficiente da memória compartilhada. Uma delas explora cadeias canônicas de de-

pendências para restringir a geração aleatória de sequências de instruções (de forma a aumentar

a cobertura de transições entre estados que são induzidas por eventos de conflito em um mesmo

endereço), outra explora restrições sobre o espaço de endereçamento para restringir o assina-

lamento aleatório de endereços distintos (de forma a aumentar a cobertura de transições entre

estados devidas a eventos de evicção). Quando comparada a um gerador convencional, a com-

binação destas técnicas reduziu o esforço médio de verificação em uma ordem de magnitude em

vários casos. A segunda contribuição é um novo mecanismo de geração dirigida por modelo

de cobertura para melhorar a qualidade de testes não determinísticos. O mecanismo explora

propriedades gerais de protocolos de coerência e de memórias cache para melhor controlar a

cobertura de transições entre estados (a qual serve como proxy para aumentar a cobertura de

acordo com a métrica que vier a ser adotada em um dado ambiente de verificação). Por ser

independente de métrica de cobertura, de protocolo de coerência, e de parâmetros de cache,

o mecanismo é reusável em projetos e ambientes de verificação bem diferentes. Este gerador

baseado em modelo foi mais rápido para atingir valores de cobertura similares aos de um ge-

rador dirigido por dados baseado em Programação Genética, reportado em trabalho correlato.

Por exemplo, ao executar testes com 1K operações para verificar projetos de 32 núcleos, este

nosso gerador alcançou 60% da cobertura dez vezes mais rápido. A terceira contribuição é uma

abordagem híbrida, a qual não é uma simples combinação de uma técnica dirigida por dados

com outra dirigida por modelo. A abordagem reformula a geração dirigida de testes como um

problema de otimização com dois objetivos e explora vizinhanças para evitar a enumeração ex-

plícita do espaço de estados do protocolo de coerência, sem excluir soluções ótimas do espaço

de pesquisa. Comparada com um gerador puramente dirigido por dados e com outro baseado

em modelo, a abordagem híbrida levou a uma melhor evolução da cobertura ao longo do tempo,

quando avaliada para 32 núcleos e para diferentes protocolos de coerência. Por exemplo, para

um protocolo MOESI de dois níveis, a abordagem foi 2,7 vezes mais rápida do que o gerador

baseado em modelo e cerca de 5 a 19 vezes mais rápido do que o gerador dirigido por dados.

Finalmente, a abordagem híbrida também foi comparada com um gerador dirigido por dados

baseado em Aprendizado por Reforço. Os resultados experimentais mostraram que a aborda-

gem híbrida proposta é de 2 a 3 vezes mais rápida para obter a máxima cobertura atingida por

aquele gerador.

Palavras-chave: Multicores. Memória compartilhada coerente. Verificação. Geração de testes.

RESUMO EXPANDIDO

Introdução

Multiprocessadores são computadores cujos processadores foram acoplados de forma a com-

partilhar um mesmo espaço de endereçamento de memória sob o controle de um único sistema

operacional. Dado que multiprocessadores são construídos com um ou múltiplos multicore

chips, esta tese investiga a verificação de projeto do seu componente básico: o multicore chip.

A comunicação via memória compartilhada costuma aderir a um protocolo de coerência de

cache, frequentemente implementado em hardware. Há indicadores de que a coerência tende

a continuar importante para multicore chips voltados a aplicações de propósitos gerais. Em-

bora o número de estados do protocolo de coerência cresça exponencialmente com o número

de núcleos, há indícios de que (através de decisões de projeto adequadas) é possível preservar a

escalabilidade do hardware de suporte à coerência. Portanto, a viabilidade prática da coerência

em hardware – ao menos no escopo de um multicore chip – acaba resultando em um desafio

à verificação de seu projeto, mesmo sob a limitação que a potência térmica impõe ao cresci-

mento do número de núcleos. Além disso, uma vez que a maioria dos programas paralelos são

elaborados com base em bibliotecas de sincronização, muitos fabricantes passaram a propor

processadores que relaxam a consistência sequencial da memória compartilhada (permitindo o

relaxamento da ordem entre leituras e escritas para endereços distintos), sem que o programa-

dor precise se preocupar com isso. Ora, esta tendência aumenta o número de comportamentos

válidos de um programa paralelo e, consequentemente, contribui para aumentar, ainda mais, a

complexidade da verificação do projeto. Nesse contexto, esta tese contribui para a verificação

funcional do comportamento de operações em memória compartilhada ao se validar um mul-

ticore chip em tempo de projeto. A verificação funcional baseia-se na simulação da execução

de programas não-sincronizados (uma vez que o comportamento não determinístico é chave

para expor erros em memória compartilhada). Ela requer um gerador de programas de teste e

um checker capaz de diagnosticar comportamentos anômalos em tempo de execução, a fim de

sinalizar, o mais cedo possível, um erro de projeto.

Objetivos

Os objetivos usuais para a verificação funcional são: (1) aumentar a probabilidade de descoberta

de erros de projeto, (2) aumentar a cobertura, e (3) reduzir o esforço necessário para encontrar

erros ou para alcançar uma cobertura apropriada. O escopo desta tese é a geração de programas

paralelos não sincronizados. Ela aborda a geração de testes (aleatórios e dirigidos) de maneira

a atingir esses três objetivos usuais, além de um quarto objetivo: a reusabilidade de um gerador

em diferentes projetos, diferentes variantes de protocolos de coerência, e diferentes ambientes

de verificação.

Contribuições

Esta tese relata três contribuições científicas. A primeira contribuição consiste em duas novas

técnicas que impõem restrições à geração aleatória convencional de programas de teste para

viabilizar a verificação eficiente da memória compartilhada. Uma delas, denominada chaining,

explora cadeias canônicas de dependências para restringir a geração aleatória de sequências

de instruções (de forma a aumentar a cobertura de transições entre estados que são induzidas

por eventos de conflito em um mesmo endereço); outra, denominada biasing, explora restri-

ções sobre o espaço de endereçamento para restringir o assinalamento aleatório de endereços

distintos (de forma a aumentar a cobertura de transições entre estados devidas a eventos de

evicção). A segunda contribuição é um novo mecanismo de geração dirigida por modelo de

cobertura para melhorar a qualidade de testes não determinísticos. O mecanismo, denominado

CTG (coverage-driven test generation), explora propriedades gerais de protocolos de coerência

e de memórias cache para melhor controlar a cobertura de transições entre estados (a qual serve

como proxy para aumentar a cobertura de acordo com a métrica que vier a ser adotada em um

dado ambiente de verificação). A terceira contribuição é uma abordagem híbrida para a geração

dirigida de testes, a qual não é uma simples combinação de uma técnica dirigida por dados com

outra dirigida por modelo. A abordagem, denominada HTG (hybrid test generation) reformula

a geração dirigida de testes como um problema de otimização com dois objetivos e explora

vizinhanças para evitar a enumeração explícita do espaço de estados do protocolo de coerência,

sem excluir soluções ótimas do espaço de pesquisa. Por serem independentes de métrica de

cobertura, de protocolo de coerência, e de parâmetros de cache, as contribuições desta tese são

reusáveis em diferentes projetos e em ambientes de verificação bem distintos.

Metodologia

Para validação e avaliação experimental das contribuições propostas, foram adotados os seguin-

tes passos metodológicos: (1) uso de geradores pré-existentes (que capturam o estado-da-arte)

para servir de base de comparação; (2) construção de um novo gerador para cada uma das

contribuições propostas nesta tese; (3) síntese de erros artificiais de projeto para desafiar os

geradores; (4) simulação da execução dos programas sintetizados por cada um dos geradores

disponíveis (os novos e os pré-existentes) para diferentes representações de projetos (com e

sem erros); e (5) comparação dos geradores em termos de eficácia (descoberta de erros), co-

bertura (fração dos estados e transições visitados), e esforço (tempo para detectar erros ou para

atingir uma dada cobertura). Para servir como representações de projeto, adotaram-se modelos

de processador, memória e interconexão (O3, Ruby e simple, respectivamente) disponíveis no

ambiente de simulação gem5. A escolha desse ambiente se deu por razões pragmáticas, em

especial pela disponibilidade em domínio público de uma variedade de complexos protocolos

de coerência, mas também por viabilizar o uso de checkers localmente disponíves, cujo reuso

foi crucial para a viabilidade deste trabalho em tempo. A execução foi simulada para represen-

tações de projeto com 8, 16 e 32 cores (todos com suporte a escalonamento dinâmico) e para

protocolos populares, tais como MESI de três níveis e MOESI de dois níveis. A eficácia dos

geradores foi avaliada com a injeção de diferentes arquétipos de erros de projeto, sob diferentes

métricas de cobertura e para uma ampla configuração de parâmetros de geração (e.g. número

de operações e de variáveis compartilhadas).

Resultados e Discussão

Ao avaliar a primeira contribuição desta tese em comparação com um gerador aleatório de testes

convencional, observou-se que a aplicação das técnicas chaining e biasing tende a ampliar a ca-

pacidade de descoberta de erros de projeto, a aumentar a cobertura e a reduzir significativamente

o esforço médio de verificação. Por exemplo, para projetos com 32 cores, pelo menos 50% do

espaço de geração tornou-se capaz de expor erros, a mediana da cobertura aumentou em 44% e

83% nos dois níveis mais altos de hierarquia de memória, e o esforço médio de verificação foi

reduzido em uma ordem de magnitude em vários casos. Ademais, os resultados experimentais

observados – no âmbito de geração aleatória de testes – indicaram que uma simplificação da

técnica genérica de biasing originalmente proposta poderia viabilizar a exploração dinâmica de

restrições à formação de endereços, beneficiando assim a geração dirigida de testes, o que aca-

bou motivando a segunda contribuição desta tese. Ao avaliar a segunda contribuição desta tese

em comparação com o McVersi Test Generator (MTG) – que é um gerador dirigido por dados,

baseado em Programação Genética – observou-se que a técnica proposta de geração dirigida

por modelo de cobertura (CTG) tende a atingir, em menor tempo, níveis de cobertura simila-

res aos obtidos pelo MTG. Por exemplo, para projetos com 32 cores, ao executar testes com

1K operações, o CTG obteve a mesma cobertura máxima atingida pelo MTG, mas alcançou a

cobertura de 60% em tempo dez vezes menor. Além disso, erros que o MTG levou cerca de

uma hora para detectar foram expostos pelo CTG entre 5 a 30 minutos. Ao avaliar a terceira

contribuição desta tese em comparação com o gerador MTG (puramente dirigido por dados)

e o gerador CTG (puramente dirigido por modelo), observou-se que a abordagem proposta de

geração híbrida (HTG) leva a uma melhor evolução da cobertura ao longo do tempo, mesmo

quando aferida para diferentes protocolos de coerência. Por exemplo, para projetos com 32

cores e um protocolo MOESI de dois níveis, a abordagem HTG foi cerca de 8 a 19 vezes mais

rápida para obter a máxima cobertura atingida pelo MTG e 2,7 vezes mais rápida para obter a

máxima cobertura obtida pelo CTG. Para um protocolo MESI de 3 níveis, o HTG encontrou

em 10 a 15 minutos, alguns erros que o MTG levou de 45 minutos a 7 horas para detectar.

Finalmente, avaliou-se a terceira contribuição desta tese também em comparação com com um

outro gerador puramente dirigido por dados, baseado em Aprendizado por Reforço, denomi-

nado RLG (Reinforcement Learning Test Generator). Embora o RLG tenha sido instrumentado

para utilizar o mesmo módulo de RTG usado pelo HTG (de forma que ambos se beneficiem

das técnicas de chaining e biasing nele aplicadas), observou-se que a abordagem de geração hí-

brida (HTG) é superior ao RLG em termos de evolução da cobertura para diferentes protocolos

de coerência e métricas distintas de cobertura. Por exemplo, para projetos com 32 cores e um

protocolo MESI de 3 níveis, o HTG atingiu a cobertura de 95,8% em 3 horas, enquanto o RLG

levou 6 horas. Para um protocolo MOESI de 2 níveis, o HTG atingiu a cobertura de 95,26% em

2 horas, enquanto o RLG levou 6 horas.

Considerações Finais

A evidência experimental indica que as técnicas propostas nesta tese reduziram o esforço de

verificação, melhoraram a descoberta de erros, e aumentaram a cobertura. Por exemplo, as

técnicas chaining e biasing melhoraram a qualidade dos testes não determinísticos sintetizados

através de geração aleatória de testes (Capítulo 3), geração dirigida puramente baseada em mo-

delo (Capítulo 4), geração puramente dirigida por dados (Capítulo 6) e geração dirigida híbrida

(Capítulos 5). Os resultados experimentais também indicam que, quando técnicas de apren-

dizado são usadas para a geração dirigida de testes (como a Programação Genética no MTG

e o Aprendizado por Reforço no RLG), é improvável que elas exibam evolução de cobertura

superior se: (1) não explorarem dinamicamente restrições que capture propriedades gerais de

memória compartilhada (como ocorre com o MTG) e (2) não se basearem em algum modelo

para guiar a evolução de cobertura enquanto ainda estiverem aprendendo (como acontece com o

RLG e o MTG). Como se espera que a próxima geração de ferramentas de EDA utilize Apren-

dizado de Máquina para atingir alta cobertura em menor tempo, as descobertas relatadas nesta

tese parecem indicar que, em futuras técnicas de geração, a inovação possa efetivamente vir

de técnicas avançadas de aprendizado, desde que não se desprezar a herança recebida da longa

tradição em geração aleatória de testes nem de modelos de cobertura eficientes.

Palavras-chave: Multicores. Memória compartilhada coerente. Verificação. Geração de testes.

ABSTRACT

Multiprocessors consist of tightly coupled processors that share some memory address space

and are built with a single or multiple multicore chips. The shared-memory subsystem in-

volves complex hardware components implementing a sophisticated coherence protocol whose

RTL design is prone to errors. This thesis contributes to the functional verification of shared-

memory behavior during the design of multicore chips. Since non-deterministic behavior is

key to exposing shared-memory errors, non-synchronized parallel programs are often used for

design verification and prototype test. However, in the verification phase, the slow execution

in a simulator requires non-conventional techniques for enabling error exposure and high cov-

erage with shorter programs. In this context, this thesis makes three contributions. The first

contribution consists of two techniques that build upon conventional random test generation

for efficient shared-memory verification. One technique exploits canonical dependence chains

for constraining the random generation of instruction sequences (to raise the coverage of state

transitions due to memory events conflicting at a same shared location), another exploits ad-

dress space constraints for biasing random address assignment (to raise the coverage of state

transitions due to eviction events). As compared to a conventional generator, their combina-

tion reduced the average verification effort by one order of magnitude in many cases. The

second contribution is a new mechanism for directed generation that improves the quality of

non-deterministic racy tests. The mechanism exploits general properties of coherence proto-

cols and cache memories for better control on transition coverage (which serves as a proxy

for increasing the actual coverage metric adopted in a given verification environment). Being

independent of coverage metric, coherence protocol, and cache parameters, the mechanism is

reusable across quite different designs and verification environments. Such a model-based gen-

erator was faster to reach similar coverage as obtained by a data-driven generator (based on

Genetic Programming), reported in a related work. For instance, when executing tests with 1K

operations for verifying 32-core designs, our test generator reached 60% coverage ten times

faster. The third contribution consists of an hybrid approach that is not a simple combination of

data-driven and model-based techniques. It reformulates directed test generation as a double-

objective optimization problem, and it explores neighborhoods to avoid explicit enumeration of

the coherence state space without excluding optimal solutions from the search space. As com-

pared to purely data-driven and model-based generators, the hybrid approach led to superior

coverage evolution with time, when targeting 32-core designs relying on different protocols.

For instance, for a MOESI 2-level protocol, the approach was up to 2.7 faster than the model-

based generator and around 5 to 19 times faster than the data-driven generator. Finally, the

hybrid approach was also compared to a data-driven generator based on Reinforcement Learn-

ing. The experimental results showed that the proposed hybrid approach was 2 to 3 times faster

to obtain the maximal coverage reached by that generator.

Keywords: Multicores. Coherent shared memory. Verification. Test generation.

LIST OF FIGURES

Figure 1 – An overview of the proposed framework 33

Figure 2 – Structure of the proposed generator . 43

Figure 3 – Examples of chain categories 0, 1, 2 and 3 44

Figure 4 – How a canonical chain improves the coverage 46

Figure 5 – Example of address assignment . 47

Figure 6 – Meaning of competition pattern . 48

Figure 7 – Impact on functional coverage for random test generation 60

Figure 8 – How colliding operations avoid revisiting transitions 70

Figure 9 – How proposed variants traverse a plane of the generation space 73

Figure 10 – Coverage evolution for directed test generation 79

Figure 11 – The anatomy of the proposed Directing Engine 83

Figure 12 – Explorer and Driver at work . 86

Figure 13 – Structural coverage evolution for the hybrid generator 94

Figure 14 – Functional coverage evolution for the hybrid generator 96

Figure 15 – Structural coverage evolution against Reinforced Learning 102

Figure 16 – Functional coverage evolution against Reinforced Learning 103

LIST OF TABLES

Table 1 – Relation between distinct terminologies for cache levels 36

Table 2 – Target mixes . 50

Table 3 – Types of artificial design errors . 52

Table 4 – Median improvement in coverage for random test generation 55

Table 5 – Fractions of generation space with potential for error exposure 56

Table 6 – Average improvement in effectiveness and in effort 59

Table 7 – Impact for SWMR violations . 62

Table 8 – Impact for DV violations . 62

Table 9 – How related works address test generation 66

Table 10 – Events inducing distinct classes of transitions 68

Table 11 – Studied design errors . 77

Table 12 – Effort required for finding errors (I) . 81

Table 13 – Effort required for finding errors (II) . 81

Table 14 – DTG approaches for functional verification of multicore chips 84

Table 15 – Studied errors for MESI 3-level designs . 92

Table 16 – Studied errors for MOESI 2-level designs 93

Table 17 – Time for finding errors in MESI 3-level for the hybrid generator 97

Table 18 – Time for finding errors in MOESI 2-level for the hybrid generator 98

Table 19 – Time for finding errors in MESI 3-level against Reinforced Learning 105

Table 20 – Time for finding errors in MOESI 2-level against Reinforced Learning 105

LIST OF ALGORITHMS

Algorithm 1 – The algorithm underlying the directing engine 75

Algorithm 2 – The algorithm underlying the generalized directing engine 87

Algorithm 3 – The algorithm underlying the Explorer 88

Algorithm 4 – The algorithm underlying the auxiliary routine Reduce Neighbor 88

Algorithm 5 – The algorithm underlying the auxiliary routine Generate Neighbor . . . 88

Algorithm 6 – The algorithm underlying the auxiliary routine Select Neighboring Points 89

Algorithm 7 – The algorithm underlying the Driver 90

LIST OF ABBREVIATIONS AND ACRONYMS

CP Competition Pattern.

CPU Central Processing Unit.

CTG Coverage-driven Test Generator.

DFSM Dichotomic Finite State Machine.

DTG Directed Test Generator.

DV Data Value.

EDA Electronic Design Automation.

FSM Finite State Machine.

HTG Hybrid Test Generator.

MCM Memory Consistency Model.

MESI Modified Exclusive Shared Invalid.

MOESI Modified Owned Exclusive Shared Invalid.

MOSI Modified Owned Shared Invalid.

MTG McVerSi Test Generator.

RLG Reinforcement Learning Test Generator.

RTG Random Test Generation.

RTL Register Transfer Level.

SWMR Single-Writer-Multiple-Reader.

CONTENTS

1 INTRODUCTION . 31

1.1 TRENDS IN MULTICORE CHIP DESIGN 31

1.2 CHALLENGES OF SHARED-MEMORY VALIDATION 32

1.3 SHARED-MEMORY FUNCTIONAL VERIFICATION GOALS 33

1.3.1 Main approaches . 33

1.3.2 Main engines and steps . 33

1.3.3 Challenging problems tackled by this thesis 34

1.4 CONTRIBUTIONS . 34

1.5 METHODOLOGY . 36

1.6 ORGANIZATION OF THIS THESIS . 37

1.7 ACKNOWLEDGEMENTS . 37

2 FUNDAMENTAL CONCEPTS . 39

2.1 SHARED-MEMORY BEHAVIOR . 39

2.2 COLLISIONS AND CONFLICTS . 39

2.3 CANONICAL DEPENDENCE CHAINS 40

3 RANDOM TEST GENERATION . 41

3.1 RELATED WORK . 41

3.2 THE PROPOSED GENERATION FLOW 43

3.3 A CONCEPTUAL RE-ELABORATION 43

3.3.1 Exploitation of chains for thread generation 44

3.3.2 Exploitation of constraints for address assignment 47

3.4 EXPERIMENTAL EVALUATION . 49

3.4.1 Experimental setup . 49

3.4.2 Metrics . 51

3.4.2.1 Metric 1: Potential for error exposure . 51

3.4.2.2 Metric 2: Effectiveness in error exposure 53

3.4.2.3 Metric 3: Verification effort . 53

3.4.2.4 Metric 4: Functional coverage . 54

3.4.3 Broad assessment of impact . 55

3.4.3.1 Impact on coverage over the generation space 55

3.4.3.2 Impact of parameter choice on error exposure 55

3.4.3.3 Impact on effectiveness over joint exposure spaces 58

3.4.3.4 Impact on effort over the entire generation space 58

3.4.4 Assessment for a fixed core count . 58

3.4.4.1 Impact on functional coverage . 58

3.4.4.2 Impact on error exposure and effort . 61

3.5 CONCLUSIONS . 63

4 DIRECTED TEST GENERATION . 65

4.1 RELATED WORK . 65

4.2 MAIN IDEAS BEHIND THE CONTRIBUTION 67

4.2.1 Proposed classification of transitions . 67

4.2.2 Proposed constraints on RTG . 68

4.2.2.1 Constraint 1: alternation between Classes 1 and 2 69

4.2.2.2 Constraint 2: uniform competition . 69

4.2.3 Proposed coverage model . 71

4.3 DESCRIPTION OF THE DIRECTING ENGINE 72

4.3.1 An example of how it works . 72

4.3.2 The proposed algorithm . 74

4.4 EXPERIMENTAL EVALUATION . 76

4.4.1 Experimental setup . 76

4.4.2 Experimental results . 76

4.5 CONCLUSIONS . 82

5 HYBRID DIRECTED TEST GENERATION 83

5.1 RELATED WORK . 84

5.2 DTG FORMULATION AS AN OPTIMIZATION PROBLEM 85

5.3 THE DIRECTING ENGINE AT WORK: AN EXAMPLE 86

5.4 THE DIRECTING ENGINE: ALGORITHMS 87

5.4.1 The Data-Driven Explorer . 87

5.4.2 The Model-Based Driver . 89

5.5 EXPERIMENTAL EVALUATION . 91

5.5.1 Experimental setup . 91

5.5.2 Structural coverage evolution . 93

5.5.3 Functional coverage evolution . 95

5.5.4 Error discovery rate and detection time 97

5.6 CONCLUSIONS . 98

6 A COMPARISON OF APPROACHES TO DIRECTED TEST GENER-

ATION . 99

6.1 A BRIEFING ON THE KEY IDEAS BEHIND THE RLG 99

6.2 EXPERIMENTAL EVALUATION . 100

6.2.1 Structural coverage evolution . 100

6.2.2 Functional coverage evolution . 101

6.2.3 Error discovery rate and detection time 104

6.3 CONCLUSIONS . 106

7 CONCLUSIONS AND PERSPECTIVES 107

BIBLIOGRAPHY . 109

31

1 INTRODUCTION

Multiprocessors are "computers consisting of tightly coupled processors whose coor-

dination and usage are typically controlled by a single operating system and that share memory

through a shared address space" (HENNESSY; PATTERSON, 2019). They are built with a

single or multiple multicore chips. This thesis targets the design verification of the basic com-

ponent of multiprocessors: the multicore chip.

This chapter first introduces the main architectural trends that affect multicore chip

design and the resulting verification challenges. Then it clarifies the target problems that define

the scope of this thesis. Finally, it summarizes the main contributions and the methodology

used for their evaluation.

1.1 TRENDS IN MULTICORE CHIP DESIGN

Shared-memory behavior is defined by two complementary aspects: coherence defines

which values can be returned by a load, and consistency defines when a written value will

be returned by a load (PATTERSON; HENNESSY, 2020). The first aspect is related to the

serialization of store operations to a same location. The second one is defined by the ordering

between load and store operations to distinct locations, and to which extent stores are seen as

atomic operations (ADVE; GHARACHORLOO, 1996).

Among the trends in multicore chip design, three aspects are important for defining the

relevance and the scope of this thesis:

• Multicore scaling limited by power. It has long been shown that "multicore scaling is

power limited to a degree not widely appreciated by the computing community" (ES-

MAEILZADEH et al., 2011; ESMAEILZADEH et al., 2012), as a result of the under-

utilization of integration capacity (aka dark silicon). However, even under such limited

multicore scaling, the projected growth still leads to a major challenge in coherent shared-

memory verification, because the protocol state space grows exponentially with the num-

ber of cores. Therefore, pragmatic techniques should not enumerate that space.

• On-chip cache coherence. Coherent shared-memory is expected in many multicore

chips, especially those targeting general-purpose systems (DEVADAS, 2013). Although

there is no consensus on the practical limit for coherent cores per chip, the techniques

devised for graceful scaling up to tens of cores (MARTIN; HILL; SORIN, 2012) seem to

be confirmed by recent examples like IBM Power 9, Xeon E7, and Fujitsu SPARC64X

(HENNESSY; PATTERSON, 2019). Since many multicore chips are likely to be coher-

ent, the exploitation of coherence properties to improve test generation seems pragmatic.

• Relaxed and sequential consistency modes. Most manufacturers have been building

hardware that relax sequential consistency (IBM, 2019; ARM, 2018; WATERMAN;

32

ASANOVI, 2019). Sequential consistency (ADVE; GHARACHORLOO, 1996) is also

often supported by some atomic instructions as an alternative mode. The main challenge

in terms of consistency verification is how to efficiently check designs where the non-

multiple copy atomic behavior of store instructions is architecturally visible (TRIPPEL et

al., 2017), such as in Power and ARMv7, or is exposed in aggressive high-performance

implementations, such as in the revised ARMv8 and RISC-V. Therefore, albeit the role of

consistency is crucial for developing checkers, it is less important for building test genera-

tors. Indeed, to be reusable, a generator should be largely independent of the consistency

model adopted by a given design. Although the exploitation of a specific consistency

model for generation would limit reusability, any pragmatic generation technique should

be able to handle the consistency requirements of sophisticated architectures, instead of

being hampered by them. This trend increases the number of valid behaviors of a parallel

program and, therefore, increases the complexity of design verification even further.

1.2 CHALLENGES OF SHARED-MEMORY VALIDATION

The practical feasibility of coherence in hardware – at least in the scope of a multicore

chip for general-purpose systems – ends up challenging shared-memory validation due to the

large protocol state space, even under the limitation imposed by power on core count. The

relaxation of sequential consistency further increases the challenges.

The validation of the shared-memory system is challenged at different abstraction lev-

els and distinct phases of the design cycle. The validation effort combines formal verification,

e.g. Zhang et al. (2015), and simulation of the coherence protocol at the architectural level,

relies on simulation-based functional verification of the design representation at the micro-

architectural level (ADIR et al., 2004; FINE; ZIV, 2003; WAGNER; BERTACCO, 2008; QIN;

MISHRA, 2012; ELVER; NAGARAJAN, 2016), and finishes with the test of the multicore

chip prototype. Shared-memory test relies on Random Test Generation (RTG) and post-mortem

checking, e.g. Manovit & Hangal (2006). It can exploit long tests with hundreds of thousands

of operations to reach high coverage, because the speed of the hardware prototype allows for

suitable test throughput. Shared-memory verification usually relies on constrained random test

generation and runtime checking to stop simulation as soon as a design error is found (ADIR et

al., 2004; SHACHAM et al., 2008; FREITAS; RAMBO; SANTOS, 2013; GRAF et al., 2019).

It should exploit short tests with tens of thousands of operations (ADIR et al., 2004), because

the speed of the simulator would limit test throughput if much larger tests were used.1

The scope of this thesis is the functional verification of the coherent shared-memory

behavior observed in a representation of a multicore chip at design time.

1 In contrast, post-silicon testing usually relies on tests with tens of millions of operations (MANOVIT; HAN-

GAL, 2006), which are directly executed on the hardware prototype.

34

(s), and the number of distinct cache sets to which the locations can be mapped (k). While

the simulator executes a test program, monitors observe memory events at relevant points of

each core domain. A checker analyzes the monitored events at runtime according to the axioms

of the target Memory Consistency Model (MCM) (GHARACHORLOO, 1995), and it issues a

positive diagnosis as soon as it detects an inconsistency. Besides, other monitors observe events

that serve as coverage witnesses from which an analyzer computes the cumulative coverage of

all tests executed so far. The directing engine takes that coverage value into account before

selecting the next setting of parameters for RTG.

1.3.3 Challenging problems tackled by this thesis

To help building the envisaged verification framework, this thesis addresses three chal-

lenging problems:

1. Given a program size and a number of shared locations as parameters, how to improve

the quality of non-deterministic tests by means of constrained random test generation so

as to reduce the effort, raise bug discovery, and increase coverage?

2. Given a range of program sizes and a range for the number of shared locations, how to

dynamically select proper generation parameters for increasing coverage in less time?

3. Given a space of generation parameters, how to find a subspace that maximizes coverage

in minimum?

1.4 CONTRIBUTIONS

This thesis describes three contributions to test generation for shared-memory verifi-

cation, each solving one of the mentioned challenging problems.

1. The enforcement of non-conventional constraints for improving error discovery and

coverage during random test generation. It consists of a conceptual re-elaboration on

two techniques proposed in previous works (ANDRADE; GRAF; SANTOS, 2016; AN-

DRADE, 2017), along with a more extensive experimental re-evaluation. In such early

works, the conceptual focus was on exploiting memory consistency properties for reduc-

ing the effort of finding design errors. Instead, in the scope of this thesis, the conceptual

focus is on exploiting cache coherence properties for increasing coverage. This shift in

focus allowed a better comprehension of the impact of the techniques on coherent shared-

memory verification, and it paved the way towards a reusable verification framework.

Besides, it prompted the exploitation of techniques originally developed for improving

the quality of random test generation for directed test generation. The first technique,

called chaining, exploits canonical dependence chains for constraining the random gen-

eration of instruction sequences in such a way that the races induced at runtime are likely

35

to raise the coverage of state transitions due to collision events, i.e. due to memory opera-

tions colliding at a same location. The second technique, called biasing, exploits address

space constraints for biasing random address assignment in such a way that the compe-

tition of distinct shared locations for a same cache set can be controlled for raising the

coverage of state transitions due to cache eviction events. We built test generators relying

on each of the proposed techniques, as well as on their combination, and we compared

them to a conventional constrained random test generator for 8, 16, and 32-core architec-

tures. Each of the four generators synthesized 1200 distinct test programs for verifying

10 faulty designs derived from each of the three architectures (144000 verification runs

in total). For 32-core designs, the combination of the proposed techniques made at least

50% of the generation space capable of exposing errors, improved the median functional

coverage by 44% and 83% at the two highest hierarchical levels, and reduced the average

verification effort by one order of magnitude in many cases.

2. The exploitation of non-conventional constraints for increasing coverage faster dur-

ing directed test generation. We propose a new mechanism that relies on a coverage

model to improve the quality of non-deterministic tests. The technique dynamically ex-

ploits constraints capturing general properties of coherence protocols and cache memo-

ries for better control on transition coverage, which serves as a proxy for increasing the

actual coverage metric adopted in a given verification environment. Being independent

of coverage metric, coherence protocol, and cache parameters, the proposed technique is

reusable across quite different designs and verification environments. As compared to a

state-of-the-art generator of racy tests, the proposed technique reached a similar coverage

much faster. For instance, when executing tests with 1K operations for verifying 32-core

designs, the former reached 60% coverage around ten times faster than the latter. Besides,

we identified challenging errors that could hardly be found by the latter within one hour,

but were exposed by our technique in 5 to 30 minutes.

3. The exploration of the generation space for increasing coverage even faster during

directed test generation. We propose a new approach that relies on a reformulation of

directed test generation as a double-objective optimization problem. It explores neigh-

borhoods without excluding optimal solutions from the search space while dynamically

exploiting non-conventional constraints. This leads to a hybrid directed test generator that

is not a simple combination of data-driven and model-based techniques. As compared to

purely model-based and purely data-driven generators, the proposed technique leads to

a better evolution of coverage with time. For instance, when targeting 32-core designs

and a two-level MOESI protocol, the proposed approach was around 5 to 19 times faster

to obtain the maximal coverage reached by a generator based on Genetic Programming,

and it was 3 times faster to obtain the maximum coverage reached by generator based on

Reinforcement Learning.

36

The second and the third contributions were reported in conference papers (ANDRADE

et al., 2018; PFEIFER et al., 2020). The first and the third contributions were reported in journal

articles (ANDRADE; GRAF; SANTOS, 2020; ANDRADE et al., 2020).

1.5 METHODOLOGY

For the experimental validation and evaluation of the proposed contributions, the fol-

lowing methodological steps were adopted: (1) use of pre-existing generators (capturing the

state of the art) to serve as a basis for comparison; (2) building of a new generator for each of

the proposed contributions; (3) synthesis of artificial design errors to challenge the generators;

(4) simulation of the execution of the programs synthesized by each generator (pre-existing and

new ones) for different design representions (with and without errors); (5) comparison of the

generators in terms of effectivess (error discovery), coverage (fraction of all states or transitions

visited), and effort (time for detecting errors or reaching proper coverage).

To serve as design representation, we adopted models for processor, memory, and in-

terconnect (O3, Ruby, and simple, respectively) that are available in the gem5 simulation envi-

ronment. The choice of such environment is due to pragmatic reasons, especially the availability

(in the public domain) of a variety of complex coherence protocols, but also to allow the use of

pre-existing checkers (locally available), whose role was crucial for making this work feasible

in time. Simulations were performed for design representations with 8, 16, and 32 cores (each

allowing out-of-order execution, as it is often the case for general-purpose applications) and for

popular protocols such as 3-level MESI and 2-level MOESI. The effectiveness of the genera-

tors was evaluated with the injection of different archetypes of design errors, under different

coverage metrics, and for a wide set of generation parameters.

To specify the distinct levels of cache, we adopted the terminology used in the gem5

environment, which does not always match the standard terminology used in computer archi-

tecture. To avoid confusion, Table 1 maps the relation between gem5’s terminology and the

standard one.

Table 1 – Relation between distinct terminologies for cache levels

Protocol gem5 standard

MESI 3-level

L0 L1

L1 L2

L2 L3

MOESI 2-level
L1 L1

L2 L2

Coherence protocols are functionally specified by Finite State Machines (FSMs). A

transition between two states is launched by an input event, and it induces an output event. The

hardware implementation of the FSM is subject to mistakes when a functional specification is

translated into a Register Transfer Level (RTL) description, which is often performed manually.

37

Let us illustrate this by means of a simple example. When the write-back policy is adopted by

a coherence protocol (say MESI), the update of shared memory occurs either when a modified

block is about to be replaced in a private cache (similarly to what happens in a single core)

or when a memory block becomes shared by the private caches of two cores (HENNESSY;

PATTERSON, 2019). This second case is detected when some core owns a block and a second

core requests the same block after a miss in its private cache. Assume that a designer uses

the miss event as the criterion to launch the write-back update of a modified block into shared

memory. Although this criterion is sufficient for launching write-back, it is not a necessary

condition: a block becomes shared when one core writes to it and a second core reads it, but it

is not shared when the second core writes to the block (before reading it), because the second

one invalidates the block in the cache of the first core. Therefore, the necessary and sufficient

condition for detecting the sharing of a block between two cores is a read miss of a modified

block (and not any miss). As a result of the mistake, two distinct transitions of the specified

FSM (one with write-back as output event and another without it) would appear to be the same

transition in the implemented FSM. Therefore, both transitions of the specified FSM should be

covered by the execution of a test program in order to expose that design error. That is why

our methodology evaluates the coverage of FSM transitions, and it relies on wrong transitions

(or wrong output events associated with transitions) to implement artificial design errors for

challenging the generators and evaluate their impact on bug discovery.

1.6 ORGANIZATION OF THIS THESIS

The remainder of this thesis is organized as follows. Chapter 2 summarizes the shared-

memory concepts required for understanding the techniques proposed in later chapters. Chap-

ter 3 describes the contribution to constrained random test generation (chaining and biasing).

Chapter 4 reports the first contribution to directed test generation (coverage-model-based test

generation). Chapter 5 describes the second contribution to directed test generation (hybrid

test generation). Chapter 6 reports a comparison of model-based, data-driven, and hybrid ap-

proaches under the same level of constraint exploitation. Finally, Chapter 7 draws the overall

conclusions and puts the work into perspective.

1.7 ACKNOWLEDGEMENTS

To implement the techniques described in this thesis and to perform the respective

experiments, the author counted on the technical help and conceptual discussions with his fellow

graduate students, especially Marleson Graf and Nícolas Pfeifer, which are co-authors of the

publications that originally reported the contributions.

Thanks also to Eberle Rambo, Leandro Freitas, and Olav Henschel for the legacy in-

frastructure enabling this work.

39

2 FUNDAMENTAL CONCEPTS

This chapter defines concepts required to understand the key aspects of the techniques

proposed in Chapters 3 and 4. First, it introduces the order relations required to specify shared-

memory behavior. Then it presents two relations that can be exploited to improve the quality of

directed test generation (Chapter 4). Finally, it reviews canonical multiprocessor dependence

chains (GHARACHORLOO, 1995), which were originally proposed for specifying memory

consistency, but are exploited as non-conventional constraints for improving the quality of test

generation (Chapters 3 and 4).

2.1 SHARED-MEMORY BEHAVIOR

Let (O j)
i
a denote a memory operation O j issued by processor i that makes a reference

to some memory location a. We replace O by L or S to specify that the operation is either a

load or a store, respectively. As shorthand notation, we sometimes drop either a superscript

or a subscript. Given two operations O j and Om, if the instruction inducing the first operation

precedes the instruction inducing the second in some thread, they are in program order, written

O j ≺po Om. Two operations are in execution order, written O j ≤ Om, if the first one ends

execution before the second one starts executing.

A test program may induce many executions with distinct outcomes. An execution

induces a memory behavior. Every valid behavior must satisfy a partial order ≤ on the set

of memory operations, which defines the cases in which the execution order is required to

comply with the program order and with store serialization requirements. From the program

order≺po, a Memory Consistency Model (MCM) specifies the allowed execution order≤. The

literature reports axioms formally defining≤ for distinct MCMs (MANOVIT; HANGAL, 2006;

FREITAS; RAMBO; SANTOS, 2013; ROY et al., 2006).

2.2 COLLISIONS AND CONFLICTS

We say that two memory operations collide if they make reference to the same memory

location (ADIR et al., 2004). We say that two colliding operations conflict if at least one of

them is a store (GHARACHORLOO, 1995). Formally, (L j)
i
a ≤ (Sm)

k
a, (S j)

i
a ≤ (Lm)

k
a, and

(S j)
i
a ≤ (Sm)

k
a denote colliding operations that conflict in execution order, while (L j)

i
a ≤ (Lm)

k
a

denotes colliding operations that do not conflict. Colliding operations induce memory events

that may trigger transitions of the Finite State Machine (FSM) specifying the behavior of a

coherence protocol for a private cache controller. We say that a collision (or conflict) is intra-

processor or inter-processor when the operations involved are both issued by the same core

(i = k) or by distinct cores (i 6= k), respectively.

40

2.3 CANONICAL DEPENDENCE CHAINS

To formally define canonical chains, we adopted a description idiom where simple

barriers are used for enforcing program order between operations to distinct locations. Despite

the idiom’s simplicity, chains can be built with more complex fences without loss of generality,

as explained in Chapter 3.

Definition 1. Let MB be a memory barrier, i.e. a mechanism to restore program order between

load and store operations whose order is relaxed by the memory model. We say that two op-

erations are in significant program order, written O j ≺spo Om, iff one of the following holds:

(O j)a ≺po (Om)b=a or (O j)a ≺po MB≺po (Om)b6=a.

Definition 2. We say that two operations are in conflict order, written O j ≤co Om, if and only if

(O j)
i
a ≤ (Om)

k
b=a and at least one of them is a store.

Definition 3. We say that two operations are in significant conflict order, written O j ≤sco Om,

iff (L j)
i
a ≤ (Sm)

k
a ∨ (S j)

i
a ≤ (Lm)

k
a ∨ (S j)

i
a ≤ (Sm)

k
a ∨ (L j)

i
a ≤ Sx

a ≤ (Lm)
k
a.

Definition 4. A chain is a sequence X≺U≺·· ·≺V ≺Y whose endpoints X and Y are memory

operations, but U, · · · ,V may represent either memory operations or memory barriers. The

relation ≺ between two successive elements denotes one of the relations ≺po,≺spo,≤,≤co, or

≤sco. Let {A≺ B≺}∗ denote zero or more pattern occurrences in the chain, and let {A≺ B≺}+

denote one or more.

To specify chains, we use L,S,O to denote types of operations (respectively, load,

store, any). We assume that distinct operation instances of each type will be used for building

the chain. Gharachorloo (1995) specified a single category of uniprocessor chain and three

categories of multiprocessor chains:

Category 0: Oi
a ≺po {O

i
a ≺po Oi

a ≺po}∗ Oi
a, where two successive elements cannot be of

load type.

Category 1: Si
a ≤ L

j
a ≺po L

j
a or Si

a ≤ L
j
a ≺po S

j
a, where i, j ∈ {1, · · · , p} and i 6= j.

Category 2: Oi
a ≺spo {O

i
b ≤sco O

j
b ≺spo}+ O

j
a, where i, j ∈ {1, · · · , p}, i 6= j and b is

arbitrary.

Category 3: Si
a ≤sco L

j
a ≺spo {O

j
b ≤sco Ok

b ≺spo}+ Lk
a, where i, j,k ∈ {1, · · · , p}, i 6= j,

j 6= k and b is arbitrary.

The next chapter gives examples of such chain categories.

41

3 RANDOM TEST GENERATION: ENFORCEMENT OF NON-CONVENTIONAL

CONSTRAINTS

This chapter summarizes an early contribution to random test generation, which is a

re-elaboration on previous work (ANDRADE, 2017; ANDRADE et al., 2018), as reported in

a recently submitted article (ANDRADE; GRAF; SANTOS, 2020). It describes the key ideas

to exploiting non-conventional constraints for building an efficient and effective random test

generator to be used as the kernel of the coverage-directed test generators proposed in Chapters

4 and 5. The techniques described in this chapter are used to build an RTG Engine (for the

framework depicted in Figure 1). For the detailed algorithms underlying the proposed random

test generator, the reader is referred to previous work (ANDRADE, 2017; ANDRADE; GRAF;

SANTOS, 2020).

This chapter is organized as follows. Section 3.1 summarizes related work. Section

3.2 gives an overview of the generation flow required to enforce non-conventional constraints

on random test generation. Section 3.3 proposes a conceptual re-elaboration on the two tech-

niques, chaining and biasing for the new focus on coherence verification. Section 3.4 reports

an extensive re-evaluation of those techniques under the intended focus. Section 3.5 draws the

chapter’s conclusions.

3.1 RELATED WORK

Recall that a Memory Consistency Model (MCM) specifies rules defining not only

the degree of program order relaxation, but also the extent of store atomicity (ADVE; GHARA-

CHORLOO, 1996). There are two main shared-memory testing approaches that rely on MCMs:

1) the combination of litmus test generation with checking of valid execution witnesses; 2) the

coupling of random test generation and memory-model checking.

The first approach exploits the MCM for automated generation of litmus tests (AL-

GLAVE et al., 2010; ALGLAVE et al., 2015; LUSTIG et al., 2017), i.e. short concurrent

programs designed to stress certain MCM behaviors. The MCM declares which test outcomes

are legal and which are not (LUSTIG et al., 2017). Each test is run thousands of times to

provoke the behavior that the test characterizes (ALGLAVE et al., 2015). Despite its success

in uncovering subtle bugs when testing commercial architectures (ALGLAVE et al., 2010), it

has been shown that this approach has limited coverage when applied at design time (ELVER;

NAGARAJAN, 2016).

In the second approach, memory-model checkers exploit the MCM for reducing the

coupling between testing and implementation details. The paper by Hangal, Vahia, and Manovit

(HANGAL et al., 2004) inspired many post-silicon checkers, e.g. Manovit & Hangal (2006),

Roy et al. (2006), Chen et al. (2009), Hu et al. (2012), which elaborated on their original idea.

This allowed for more reusable checkers and extended post-silicon testing beyond race-free

self-checking tests and towards more effective random tests with intensive data races. However,

42

the claims that post-silicon checkers could be efficiently reused (HANGAL et al., 2004; HU et

al., 2012) for pre-silicon verification only hold for their best effort versions, but not for their

complete versions (offering verification guarantees) (MANOVIT; HANGAL, 2006; HU et al.,

2012), whose poor scalability with growing core counts severely limits their reuse at design

time.

The literature reports two classes of pre-silicon runtime checkers based on memory

models. A relaxed scoreboard (SHACHAM et al., 2008) was proposed for keeping multiple

valid events per entry. It employs an update rule that stores a new event after each write and

dynamically removes events that become invalid after each read until an entry narrows down

to a single memory event. Since it never reconsiders a previous decision, the technique admit-

tedly may raise false negatives for a given test program. In contrast, another work (FREITAS;

RAMBO; SANTOS, 2013) proposes the use of multiple verification engines (one per core) and

a single global checker to build an axiom-based runtime checker with proven guarantees.

Industrial environments have been relying on random generators for processor verifi-

cation since the mid-1980’s. For instance, Genesys-Pro (IBM’s third-generation engine) casts

random test generation into a constraint satisfaction problem (ADIR et al., 2004). It offers a

unified framework for handling the whole system. Albeit not originally intended to handle non-

deterministic behavior, the framework was extended to allow the random generation of collision

scenarios (ADIR; SHUREK, 2002), because programs with intensive data races expose bugs

faster (HANGAL et al., 2004; SHACHAM et al., 2008). Besides, this observation has also fos-

tered random test generation techniques specifically targeting the memory subsystem through

memory-model checking, either for post-silicon test (HANGAL et al., 2004; ROY et al., 2006;

MANOVIT; HANGAL, 2006; HU et al., 2012) or pre-silicon verification (SHACHAM et al.,

2008; FREITAS; RAMBO; SANTOS, 2013).

As opposed to post-silicon testing, verification cannot afford long tests to achieve cov-

erage goals. To reach similar goals with shorter tests, directed-test generation has been advo-

cated (WAGNER; BERTACCO, 2008; QIN; MISHRA, 2012; ELVER; NAGARAJAN, 2016).

In face of the growing number of cores, one of the keys to scalability is the decomposition of

the state space. In MCjammer (WAGNER; BERTACCO, 2008), each core is assigned an agent,

which sees the coherence protocol in terms of a Dichotomic Finite State Machine (DFSM)

(comprising only the states of the local node and the state of the environment). Cooperating

agents formulate their coverage goals in terms of the DFSM, not the product FSM. Another

technique (QIN; MISHRA, 2012) decomposes the state space into simpler structures such as

hypercubes and cliques, which can be traversed (in an Euler tour) to avoid visiting the same

transitions many times. It may allow full coverage with tests 50% shorter than a breadth-first

traversal. In McVerSi (ELVER; NAGARAJAN, 2016), a genetic programming approach is

used to progressively improve the quality of the test suite. It relies on a crossover function that

prioritizes memory operations contributing to non-deterministic behavior.

Since directed-test generation often relies on some basic random generation engine, it

can also benefit from improvements on constrained random test generation, as follows.

45

3c, the chain constrains the first two and the last two operations to be in significant program

order (by exploiting memory barriers). In Figure 3d, if the value 1 is observed for A in P2 and

the value 2 is observed for B in P3, then the value 1 must be observed for A also in P3. If

a multiprocessor chain is formed in execution time (as shown), the outcome of the data race

involving its endpoints is deterministic, otherwise it is non-deterministic. Since each scenario

induces distinct state transitions, their exploitation in different test runs tends to benefit cover-

age. Chains from categories 1, 2, and 3 not only drive the generator to form data races, but they

also favor significant orderings. Such orderings tend to reduce the number of valid execution

witnesses that do not lead to coherence events while the races increase the chances of detecting

invalid ones. Both concur to raise the probability of error exposure and to improve coverage.

That is why we exploit a mix of such categories.

Our technique exploits canonical chains not for enforcing specific consistency rules,

but for favoring proper coherence events instead. Figure 4 shows the conceptual connection

between a canonical chain and coherence events for different protocols. Note that, as the opera-

tions in the chain are executed, an intra-core conflict leads to local requests that induce distinct

transitions in the local Finite State Machine (FSM), while an inter-core conflict leads to local

and remote requests that also induce distinct transitions. Thus, the chain’s alternation between

intra- and inter-core conflicts tends to induce different transitions, which favors transition cover-

age. Since distinct protocols have similar responses for the same coherence transactions (except

for a few transitions and write-back actions), this general property of a canonical chain makes

the impact of our technique largely independent of the protocol implemented in a given design.

Chaining assumes the relaxation of program order for accesses to distinct locations

only when it builds a given chain. Its focus on coherence does not restrain its applicability for

four reasons:

1. the random selection of locations in distinct chains ensures that the stimulation of stronger

orderings is not excluded from the generation space (albeit not favored in the scope of a

given chain);

2. the checker is the guardian of memory model semantics (it may have to check orderings

that are stronger than those relaxed for improving test quality);

3. albeit the use of barriers does not improve coherence coverage, chaining preserves them

for defining general significant orderings (instead of enforcing stricter conflict orderings,

as in Figure 4), because they enable the detection of consistency errors not tied to coher-

ence mechanisms;

4. when complex fences (as in ARMv8 and Power8) replace simple barriers in canonical

chains, our technique can handle sophisticated MCMs.

4
6

Li
a ≺po S

i
a ≤ Lj

a ≺po S
j
a ≤ Li

a ≺po S
i
a ≤ Sja ≺po L

j
a ≤ Sia

1 2 3 4 5 6 7 8 9

MESI Protocol

Core i

ISEM

Other-GetS

3

Other-GetM

7

hit

Other-GetM

Other-GetS

2

silent

hit

Other-GetM

4

6

Own-GetM

hit 5

Own-GetS

(Dir6=I)

9

Own-GetM

1

Own-GetS

(Dir=I)

Core j

ISEM

Other-GetS

5

Other-GetM

9

8

hit

Other-GetM

Other-GetS

silent

hit

Other-GetM

6

4

Own-GetM

hit 3

Own-GetS

(Dir6=I)

7

Own-GetM

Own-GetS

(Dir=I)

L
o
ca
l

R
e
m
o
te

MOSI Protocol

Core i

ISOM

Other-GetS

3

Other-GetM

7

hit

Other-GetM

4

Own-GetM

hit

Other-GetM

2 6

Own-GetM

hit 1 5

Own-GetS

9

Own-GetM

Core j

ISOM

Other-GetS

5

Other-GetM

9

8

hit

Other-GetM

6

Own-GetM

hit

Other-GetM

4

Own-GetM

hit 3

Own-GetS

7

Own-GetM

Figure 4 – How a canonical chain improves the coverage of coherence events independently of the protocol implemented in a given design. For each

protocol, it shows the FSMs of the private cache controllers of two cores i and j. The coherence events are classified as local (Own) and

remote (Other), according to the origin of the request (same or distinct core). Finally, numbers match each operation with the transition it

triggers. The example considers that no cache initially holds a valid copy of the block. For the MESI protocol, the example assumes that

the directory controller keeps the aggregate state of a block in all private caches and knows whether some cache holds a valid copy of a

block (Dir 6= I) or none (Dir = I). For instance, the first operation in the chain (Li
a) induces a local event (Own-GetS) in core-i’s controller,

and triggers a transition (I,S) for the MOSI protocol. For the MESI protocol, that local event triggers a transition (I,E), because no cache

is initially holding a valid copy of the block. Note that the execution of that chain induces a sequence where transitions are rarely revisited

(with the exception of transitions (I,S) and (S,M) for the MOSI protocol).

49

that the locations competing for the same cache set have distinct block addresses: despite the

same index, their tags are all different. Since unrelated shared variables are not stored in the

same memory block, such assignment precludes false sharing. Actually, the sbc is a Boolean

value specifying if true sharing must be enforced or not.

Yet another desirable property is specified by the alignment biasing constraint (abc).

The abc is a natural number specifying that all effective addresses must be aligned to 2abc-byte

boundaries. For instance, if we enforce the alignment to 26 bytes, the six offset bits implicit in

Figure 5 must be zero for all effective addresses to be exploited by the generator.

The motivation for mapping locations to effective addresses lies in the control of re-

placement events. For instance, the alternation between cbcs enabling and disabling block

replacement tends to avoid revisiting the same state transition, which favors coverage and the

probability of exposing design errors.

When multiple data races for distinct locations do not interfere with each other, the

state transitions induced by each of them are quite similar. However, when they are coupled

due to address space constraints (e.g. if two distinct locations are allocated in the same memory

block or if they map to the same cache set), the induced state transitions tend to be rather dif-

ferent. That is why the combination of chaining and biasing is likely to lead to higher coverage

than the application of each technique alone, as reported next.

3.4 EXPERIMENTAL EVALUATION

This section compares generators built with the proposed techniques to a conventional

random test generator. It first describes the experimental conditions and defines the metrics

adopted for comparison. Then it evaluates the generators according to each metric.

3.4.1 Experimental setup

Designs were derived for 8, 16, and 32-core architectures1. We relied on the pseu-

docode described in (FREITAS; RAMBO; SANTOS, 2013) to implement the checker and on

the gem5 infrastructure (BINKERT et al., 2011) for simulation (O3, Ruby, and simple as CPU,

memory, and interconnect models). We selected a 3-level MESI directory protocol that defines

requests for read-only (GETS) and read-write (GETX, UPG) permissions, as well as eviction

notifications for dirty blocks (PUTX). The hierarchy consisted of private L0 (split) caches, pri-

vate L1 (unified) caches, and shared L2 cache, with 4KB (directed-mapped), 64KB (2-way),

and 2MB (8-way), respectively, all operating with the same block size (64 bytes) and the same

replacement policy (LRU).

We compared four generators. 1) PLAIN- is a conventional generator, which is similar

to the ones used for memory-model checking, e.g. Hangal et al. (2004), Shacham et al. (2008).

The sequence of operations forming a thread is obtained by randomly selecting the location

1 In all designs, the adopted architecture was SPARC.

50

and the type of each operation independently of the choice made for other operations belonging

to the same or some other thread. Address assignment is unconstrained (except for the obvi-

ous injection requirement), i.e. binary patterns are randomly selected from a specified address

subspace. Since we could not find an implementation in the public domain, we relied on the

pseudo-code reported by Rambo, Henschel & Santos (2011) to implement our own prototype.

2) PLAIN+ is similar to PLAIN-, but our biasing technique replaces the conventional uncon-

strained assigner. 3) CHAIN- exploits our chaining technique, but relies on a conventional

unconstrained address assigner. 4) CHAIN+ combines chaining and biasing.

All generators have common program parameters that enforce general properties of

the test to be generated: number of threads (p), number of memory operations (n), and num-

ber of shared locations (s), and a common parameter for random generation (seed). How-

ever, each generator has specific parameters tied to its inner mechanism. PLAIN- and PLAIN+

rely on instruction mixes specifying the target proportions of load, store, and membars (whose

values were inspired by a related work (RAMBO; HENSCHEL; SANTOS, 2012). CHAIN-

and CHAIN+ rely on category mixes specifying target proportions of chain categories (whose

values2 were obtained empirically). Table 2 shows the target mixes. Finally, PLAIN+ and

CHAIN+ have common parameters for specifying biasing constraints.

Table 2 – Target mixes

Instruction mix Category mix

Load Store Membar C0 C1 C2 C3

0.30 0.66 0.04 0.4 0.6 0 0

0.48 0.48 0.04 0 1 0 0

0.66 0.30 0.04 0 0.8 0.2 0

0.80 0.16 0.04 0 0.8 0 0.2

To verify each design, a distinct test suite was synthesized with each generator. We

compared the generators for a same setting of the common program parameters by letting the

others vary within pre-defined ranges. We call a verification scenario the collection of all

random tests induced by a same setting of parameters (p,n,s) when distinct mixes and different

seeds are explored.

To select ranges for the parameters, we relied on values reported from industrial en-

vironments (ADIR et al., 2004; MANOVIT; HANGAL, 2006; HU et al., 2012). Tests for

post-silicon usage have hundreds of thousands of operations (MANOVIT; HANGAL, 2006;

HU et al., 2012) and a few hundreds of shared locations (MANOVIT; HANGAL, 2006). Tests

for pre-silicon usage typically have tens of thousands of operations (ADIR et al., 2004). Thus,

since intensive data races are key to error exposure, the number of shared locations should be

kept in the order of a few tens for reaching the same level of operation conflict required by

2 When randomly selecting an operation for a chain, the generator employed the following probabilities: 0.75

for loads and 0.25 for stores.

51

the best post-silicon practices. Each generator synthesized a distinct suite with 1200 tests per

architecture by exploring 15 random seeds (1, · · · ,15), 4 target mixes, 4 amounts of shared lo-

cations (s = 4,8,16,32), and 5 program sizes (n = 1K, 2K, 4K, 8K, 16K), with K standing for

210 operations. We constrained the shared locations within a 225 address subspace.

For the generators PLAIN+ and CHAIN+, each verification scenario was constrained

by a single cbc, exactly the same for both. For the experiments reported in this chapter, we

selected cbc=(1,s), because it fosters eviction as much as possible for the adopted range of s,

allowing an evaluation of the proposed techniques that is largely independent of the associativity

adopted at each hierarchical level. Besides, all addresses were aligned to the block (abc=26)

and true sharing was always enforced (sbc= true).

Since design errors are accidental, there is no standard collection of typical bugs that

could be used as benchmark. Unfortunately, the errors reported in the literature are often tied to

specific consistency models or are not described in sufficient detail to be properly reproduced.

Therefore, as in many related works, we also had to rely on artificially injected errors to chal-

lenge the generators. We deliberately adopted coherence errors that are largely independent

of consistency model and are easily reproducible. To build faulty designs, we used ten types

of errors affecting cache controllers at levels L0, L1, and L2, as described in Table 3, which

indicates modified (white) and new (gray) transitions. Errors were classified according to the

violation of either Data Value (DV) or Single-Writer-Multiple-Reader (SWMR). We assumed

that an error is systemic, i.e. it results in replicas in all controllers at the same level.3 From a

correct design, we derived ten distinct designs, each containing a single type of error.

For every architecture and every generator, we applied each test to ten designs, each

containing an error from a different type (144000 runs in total). Then we determined whether

or not an error was exposed for each of them. We say that a test program exposes a design

error if it leads the checker to detect a violation of the memory model. To avoid that false

negatives (positives) could underestimate (overestimate) error exposure, we used a presilicon

runtime checker with verification guarantees (FREITAS; RAMBO; SANTOS, 2013).

Run times were measured on an HP xw8600 Workstation (Intel Xeon E5430, 2.66

GHz) with 8 GB of main memory.

3.4.2 Metrics

3.4.2.1 Metric 1: Potential for error exposure

To evaluate the potential for error exposure as measured by our experimental results,

we determined whether or not a generator is likely to synthesize a test exposing the error under

each (p,n,s) setting, and we obtained the fraction of all settings with potential for exposure

(the higher the fraction, the smaller the sensitivity to parameter choice). Given two generators,

to correlate their potentials for error exposure, we determined whether both, one, or none is

3 Since most of the functionality of the protocol lies in the L1 controller, Table 3 focuses on errors at that level.

5
2

Table 3 – Types of artificial design errors (for reproducibility, the names of states, events, and actions match those in gem5’s infrastructure).

ID Level Current state Input event Next state Output action

S
W

M
R

D0 L1

IS Data_Exclusive EE instead of E preserved

I WriteBack I popL0RequestQueue

SS WriteBack SS popL0RequestQueue

M_I WriteBack M_I popL0RequestQueue

SINK_WB_ACK WriteBack SINK_WB_ACK popL0RequestQueue

EE WriteBack MM same as in (E, MM)

D1 L1

E L0_Invalidate_when_GETX instead of L0_Invalidate_Else EE instead of E_ILO none

E L0_Invalidate_when_INV_UPG_GETS instead of L0_Invalidate_Else E_ILO preserved

I WriteBack MM same as in (E, MM) plus allocateCacheBlock

S WriteBack S popL0RequestQueue

D2 L1

E L0_Invalidate_when_GETX instead of L0_Invalidate_Else EE instead of E_ILO none

E L0_Invalidate_when_INV_UPG_GETS instead of L0_Invalidate_Else E_ILO preserved

I WriteBack I popL0RequestQueue

S WriteBack S popL0RequestQueue

D3 L1

E L0_Invalidate_when_GETS instead of L0_Invalidate_Else EE instead of E_ILO none

E L0_Invalidate_when_INV_UPG_GETX instead of L0_Invalidate_Else E_ILO preserved

SS WriteBack SS popL0RequestQueue

S WriteBack S popL0RequestQueue

D
V

D4 L0 E Store M dirty=1 precluded in store_hit

D5 L1 M_ILO L0_DataAck EE instead of MM preserved

D6 L1 MM Load E instead of M preserved

D7 L2 MT L2_Replacement MCT_I instead of MT_I preserved

D8 L1 E_ILO L0_DataAck MM writeDataFromL0Response precluded

D9 L1 IS_I DataS_fromL1 I writeDataFromL2Response precluded

53

likely to expose an error under the same (p,n,s). We adopted the following procedure for each

type of error and every scenario. For a given (p,n,s), we generated multiple random tests by

exploring distinct seeds and mixes. Then we applied the multiple tests to a design containing

a given error. If at least one test led to the detection of that error, we marked that scenario as

“exposing”. To correlate the potentials of a pair of generators, say G and g, we adopted the

following procedure for each type of error. For each scenario (p,n,s), we checked whether or

not both generators have marked it as “exposing” for a given error. If so, we labeled (p,n,s)

as a scenario of joint exposure4 (written G.g). If not, we labeled it as a scenario of mutually-

exclusive exposure, depending on whether it was an “exposing” scenario either for G (written

G.g) or for g (written g.G). Otherwise, it was labeled as a joint non-exposure scenario (written

G.g). Finally, for a given type of error, we computed the fraction of all scenarios corresponding

to each label.

3.4.2.2 Metric 2: Effectiveness in error exposure

To evaluate the effectiveness of a generator in exposing a given type of error under a

scenario v=(p,n,s), we measured the fraction ε(v) of all tests induced by v for which violations

were detected. Assuming sufficient sampling, this fraction can be interpreted as the probability

of a generator to expose that type of error when the generation parameters are set to v=(p,n,s).

To calculate the average effectiveness for designs containing the same type of error, we took the

arithmetic mean over the collection of all scenarios.

3.4.2.3 Metric 3: Verification effort

To estimate the verification effort of running the random tests induced by a scenario

v=(p,n,s) in an attempt to expose an error, we combined the effectiveness and the average

test run times measured for a given design in scenario v. Let T = {Ti} be the collection of

tests induced by v and let ti be the measured runtime for test Ti. Let T 0 ∪ T 1 be a partition

of T , where T 0 = {Tj
0} and T 1 = {Ti

1} are, respectively, the tests that do not expose an error

and those that do. Let ε be the effectiveness measured in that scenario. Let us assume that

all tests that do not expose an error (under a same scenario) take essentially the same time t̂0

and let t̂1 = ∑T 1
i ∈ T 1 t1

i /|T
1|. As ε estimates the probability of a collection of random tests to

expose an error, 1/ε serves as an estimation for the average number of tests required to expose

that error. Since execution is stopped as soon as a test hits the error, the time to expose that

error corresponds, on average, to the execution of a sequence of d1/εe tests in which the first

d1/εe−1 tests do not expose the error, but the last one does, i.e. (d1/εe−1)t̂0+ t1
j . As there are

exactly |T 1| such sequences, by taking the arithmetic mean over them, we obtain the average

4 Note that those under joint exposure can be interpreted as the collection of parameter settings for which the

generators are correlated with respect to the potential for error exposure.

54

effort in scenario v=(p,n,s):

EF(v) =




(d1/ε(v)e−1) t̂0(v)+ t̂1(v) if ε(v) 6= 0

|T (v)| t̂0(v) if ε(v) = 0
(3.1)

where t̂1(v) = ∑T 1
i ∈ T 1(v) t1

i /|T
1(v)| denotes the average run time of all tests that expose the

error in scenario v.

Given two generators G and g, we determined the relative effort of G with respect to

g as the ratio EFg(v)/EFG(v). We obtained the average improvement for designs containing a

same type of error by taking the geometric mean over the set of all v. Similarly, when both

generators expose the error in the same scenario v, we determine the relative effectiveness of G

with respect to g as the ratio εG(v)/εg(v)
5.

Since the values obtained for the metrics above largely vary from one error type to

another, we report them on a per-error-type basis, and we deliberately avoid taking the average

over the collection of error types.

3.4.2.4 Metric 4: Functional coverage

We measured the functional coverage as the fraction of transitions covered in the state

machine of each cache controller. For a design containing no errors, we tracked all memory

blocks referenced by the collection of random tests induced by a given scenario v=(p,n,s).

We counted the number of different transitions taken in the machine tracking the state of the

block corresponding to a given location a from the perspective of the cache owned by a given

processor i at level L, written T RAN
i,L
a (v). Then we computed the transition coverage, written

TC
i,L
a (v) = T RAN

i,L
a (v)/total(L), where total(L) is the number of transitions of the state machine

at level L. Next, we obtained the distribution of the transition coverage induced by v at level L,

written TC(v,L), i.e. the distribution of TC
i,L
a (v) over all processors (i) and all locations (a). We

also determined a similar distribution at the (shared) last-level cache, written TC(v,L2). Finally,

for each level L, we took the median over the collection of all scenarios v, written T̂C(L). Given

two generators G and g, we determined the relative coverage of G with respect to g as the ratio

T̂CG(L)/T̂Cg(L).

Next, we report two distinct evaluation approaches: the former shows the relative im-

provement with respect to the baseline over the whole generation space; the latter, the absolute

values for designs with a fixed core count.

5 In this way, a ratio larger than one, either in effort or in effectiveness, can always be interpreted as an improve-

ment of G with respect to g or, otherwise, as a degradation.

55

3.4.3 Broad assessment of impact

3.4.3.1 Impact on coverage over the generation space

Table 4 reports the relative coverage at all levels. It indicates that pure chaining does

not improve the typical coverage. However, it shows that pure biasing improves the coverage

most significantly at lower hierarchical levels. The fact that the improvement increases from the

highest to the lowest level shows how ineffective random address assignment is in face of the

progressively larger associativities towards the lowest level. When combined, the techniques

led to the highest improvement at all levels and every core count. Biasing was the largest

contributor to the combined improvement at L2; chaining, the largest contributor at L0. This is

a first evidence of the complementary nature of the proposed techniques, as it will be explained

in Section 3.4.4.

Table 4 – Median improvement in coverage over the entire generation space

p

Chaining Biasing Chaining and Biasing

CHAIN- w.r.t PLAIN- PLAIN+ w.r.t PLAIN- CHAIN+ w.r.t PLAIN-

L0 L1 L2 L0 L1 L2 L0 L1 L2

8 1.05 0.96 1.02 1.11 1.68 3.39 1.21 1.86 3.46

16 1.00 0.96 1.00 1.12 1.72 3.29 1.35 1.92 3.33

32 1.00 0.96 1.00 1.19 1.67 3.67 1.44 1.83 3.67

The significant improvement in coverage observed for the combination of the proposed

techniques is a general evidence of higher chances of exposing design errors in less time. To

provide further support to that claim, we measured the potential, the effectiveness, and the effort

to expose actual errors over a collection of faulty designs, as follows.

3.4.3.2 Impact of parameter choice on error exposure

Table 5 shows the fractions of verification scenarios with potential for error exposure.

Note that a value in that table represents an optimistic estimate for the actual effectiveness. For

instance, an entry containing a unit value does not mean that all tests are able to expose a given

type of error. Instead, it means that all verification scenarios have potential of exposing it, but

the actual detection is largely independent of the (p,n,s) parameters: either it may depend on

the probabilistic parameters (seed and mix) or on the specific features of each generator. For

each core count, the table has two segments: one reporting the correlation of potential exposure

for pairs of generators, another showing the overall exposure of each generator individually.

For each core count, the first row captures the fraction of the generation space where

the features common to the baseline and the proposed generators were sufficient for error ex-

posure. Such common features narrow down to the random choice of operations and addresses,

as well as the exploitation of conventional constraints (e.g. target operation mix). The results

5
6

Table 5 – Fractions of generation space with potential for error exposure (P-, C-, P+, and C+ are acronyms for PLAIN-, CHAIN-, PLAIN+, and

CHAIN+).

Chaining Biasing Chaining and Biasing

Exposure D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 Exposure D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 Exposure D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

8
co

re
s

P− . C− 0.55 0.40 0.25 0.50 0.00 0.00 0.00 0.00 0.15 0.15 P− . P+ 0.60 0.40 0.15 0.35 0.00 0.00 0.00 0.00 0.20 0.20 P− . C+ 0.60 0.40 0.25 0.60 0.00 0.00 0.00 0.00 0.20 0.25

P− . C− 0.05 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.05 0.10 P− . P+ 0.00 0.00 0.10 0.25 0.00 0.00 0.00 0.00 0.00 0.05 P− . C+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P− . C− 0.05 0.25 0.25 0.05 0.00 0.00 0.00 0.00 0.30 0.05 P− . P+ 0.40 0.60 0.65 0.40 0.60 0.65 0.50 0.60 0.80 0.65 P− . C+ 0.40 0.60 0.75 0.40 0.65 0.70 0.60 0.70 0.80 0.65

P− . C− 0.35 0.35 0.50 0.35 1.00 1.00 1.00 1.00 0.50 0.70 P− . P+ 0.00 0.00 0.10 0.00 0.40 0.35 0.50 0.40 0.00 0.10 P− . C+ 0.00 0.00 0.00 0.00 0.35 0.30 0.40 0.30 0.00 0.10

PLAIN− 0.60 0.40 0.25 0.60 0.00 0.00 0.00 0.00 0.20 0.25 PLAIN− 0.60 0.40 0.25 0.60 0.00 0.00 0.00 0.00 0.20 0.25 PLAIN− 0.60 0.40 0.25 0.60 0.00 0.00 0.00 0.00 0.20 0.25

CHAIN− 0.60 0.65 0.50 0.55 0.00 0.00 0.00 0.00 0.45 0.20 PLAIN+ 1.00 1.00 0.80 0.75 0.60 0.65 0.50 0.60 1.00 0.85 CHAIN+ 1.00 1.00 1.00 1.00 0.65 0.70 0.60 0.70 1.00 0.90

1
6

co
re

s

P− . C− 0.65 0.40 0.30 0.55 0.00 0.00 0.00 0.00 0.15 0.15 P− . P+ 0.70 0.45 0.25 0.45 0.00 0.00 0.00 0.00 0.20 0.25 P− . C+ 0.70 0.45 0.40 0.60 0.00 0.00 0.00 0.00 0.20 0.35

P− . C− 0.05 0.05 0.10 0.05 0.00 0.00 0.00 0.00 0.05 0.20 P− . P+ 0.00 0.00 0.15 0.15 0.00 0.00 0.00 0.00 0.00 0.10 P− . C+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P− . C− 0.05 0.10 0.15 0.10 0.00 0.00 0.00 0.00 0.35 0.10 P− . P+ 0.30 0.50 0.35 0.40 0.50 0.75 0.50 0.70 0.80 0.55 P− . C+ 0.30 0.55 0.60 0.40 0.60 0.75 0.55 0.70 0.80 0.55

P− . C− 0.25 0.45 0.45 0.30 1.00 1.00 1.00 1.00 0.45 0.55 P− . P+ 0.00 0.05 0.25 0.00 0.50 0.25 0.50 0.30 0.00 0.10 P− . C+ 0.00 0.00 0.00 0.00 0.40 0.25 0.45 0.30 0.00 0.10

PLAIN− 0.70 0.45 0.40 0.60 0.00 0.00 0.00 0.00 0.20 0.35 PLAIN− 0.70 0.45 0.40 0.60 0.00 0.00 0.00 0.00 0.20 0.35 PLAIN− 0.70 0.45 0.40 0.60 0.00 0.00 0.00 0.00 0.20 0.35

CHAIN− 0.70 0.50 0.45 0.65 0.00 0.00 0.00 0.00 0.50 0.25 PLAIN+ 1.00 0.95 0.60 0.85 0.50 0.75 0.50 0.70 1.00 0.80 CHAIN+ 1.00 1.00 1.00 1.00 0.60 0.75 0.55 0.70 1.00 0.90

3
2

co
re

s

P− . C− 0.60 0.45 0.35 0.35 0.00 0.00 0.00 0.00 0.00 0.10 P− . P+ 0.80 0.65 0.30 0.35 0.00 0.00 0.00 0.00 0.05 0.15 P− . C+ 0.80 0.65 0.55 0.60 0.00 0.00 0.00 0.00 0.05 0.20

P− . C− 0.20 0.20 0.20 0.25 0.00 0.00 0.00 0.00 0.05 0.10 P− . P+ 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.05 P− . C+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P− . C− 0.05 0.10 0.20 0.15 0.00 0.00 0.00 0.00 0.45 0.10 P− . P+ 0.20 0.35 0.15 0.40 0.50 0.75 0.50 0.60 0.95 0.70 P− . C+ 0.20 0.35 0.45 0.40 0.50 0.75 0.50 0.60 0.95 0.75

P− . C− 0.15 0.25 0.25 0.25 1.00 1.00 1.00 1.00 0.50 0.70 P− . P+ 0.00 0.00 0.30 0.00 0.50 0.25 0.50 0.40 0.00 0.10 P− . C+ 0.00 0.00 0.00 0.00 0.50 0.25 0.50 0.40 0.00 0.05

PLAIN− 0.80 0.65 0.55 0.60 0.00 0.00 0.00 0.00 0.05 0.20 PLAIN− 0.80 0.65 0.55 0.60 0.00 0.00 0.00 0.00 0.05 0.20 PLAIN− 0.80 0.65 0.55 0.60 0.00 0.00 0.00 0.00 0.05 0.20

CHAIN− 0.65 0.55 0.55 0.50 0.00 0.00 0.00 0.00 0.45 0.20 PLAIN+ 1.00 1.00 0.45 0.75 0.50 0.75 0.50 0.60 1.00 0.85 CHAIN+ 1.00 1.00 1.00 1.00 0.50 0.75 0.50 0.60 1.00 0.95

57

indicate that the role of such features vary among designs: it might be significant for some

(D0-D3, D8, D9), but negligible for others (D4-D7).

The second row shows the fraction of the generation space where the baseline generator

exposes an error that is not exposed by one of the proposed generators. Under pure chaining,

that fraction was not negligible for a few designs (32-core D0-D3, 16-core D9). Under pure

biasing, that fraction was zero or negligible for all designs but three (32-core D2-D3, 8-core D3).

When the techniques were combined, that fraction was zero for all designs. Thus, the baseline

generator is rarely superior to a biased generator, especially when it also exploits chaining.

The third row shows the fraction of the generation space in which one of the proposed

generators exposed an error that was not exposed by the baseline generator. Under pure chain-

ing that fraction was significant for a few designs (D1, D2, D3, and D8). In contrast, biasing

significantly increased that fraction (whether pure or combined). The combination of biasing

and chaining was superior over at least 20% and at most 95% of the generation space, as com-

pared to the baseline. Thus, in general, a biased generator is superior for a significant fraction

of the generation space, especially when it also exploits chaining.

The fourth row shows the fraction of the space where neither the features common to

all generators nor the proposed complementary features were able to foster exposure. Biasing

significantly reduced that fraction as compared to pure chaining, except for one design (32-

core D2). The combination of biasing and chaining completely ruled out the joint non-exposure

subspace for half of the designs (D0-D3 and D8). The other half (D4-D7 and D9) gives evidence

of challenging errors that can only be exposed if extra constraints (such as the proposed ones)

prune random test generation.

The last two rows show the overall impact of each generator. Pure biasing increased

the fraction of the space leading to the exposure of errors in all designs but one (32-core D2).

This indicates that biasing, in general, makes error detection less dependent on the choice of pa-

rameters, i.e. it makes constrained random choice useful over a larger fraction of the generation

space. Indeed, within the ranges adopted for the parameters, pure biasing made detection prac-

tically independent of the choice of n and s for three designs (D0, D1, D8), regardless of core

count. When biasing was combined with chaining, the fraction leading to exposure increased

in all designs as compared to the baseline, and at least 50% of all scenarios became suitable for

exposing errors. The combination made detection practically independent of the choice of n and

s for six designs (D0, D1, D2, D3, D8, D9) instead of three. This shows one of the contributions

of chaining: it may help in extending the potential for error exposure over a larger number of

scenarios. Another contribution of chaining (which cannot be inferred from Table 5) comes into

play when a given scenario is selected for a test. Chaining tends to increase the probability of

error detection, making constrained random choice more effective and efficient, as shown next.

58

3.4.3.3 Impact on effectiveness over joint exposure spaces

The top of Table 6 reports the relative effectiveness over joint exposure subspaces. For

four designs (D4-D7), the baseline generator was not able to expose errors with test lengths

between 1K and 16K (empty subspaces are indicated by dashes). Pure chaining kept or slightly

improved the effectiveness for all designs but two (16/32-core D9). In contrast, pure biasing

significantly improved the effectiveness for all designs but two (16/32-core D2). Finally, the

combination of biasing and chaining improved the effectiveness for all designs. Note that the

combination of the techniques led to the largest improvements with respect to the baseline for

all designs but three (8/16/32-core D9). This can be explained by the fact that the structure

of canonical multiprocessor chains foster operation conflict, which is the main mechanism re-

quired to expose errors in most designs.

When two generators are compared in identical verification scenarios where both ex-

pose an error, the improvement in effectiveness is directly reflected as an improvement in effort.

However, since test suites usually exploit distinct settings of parameters, the impact on effort

over the entire generation space provides a better assessment for test throughput. That is why

we relaxed the joint exposure requirement to evaluate the impact on effort, as follows.

3.4.3.4 Impact on effort over the entire generation space

The bottom of Table 6 shows the relative effort over the entire generation space,

whether both, one, or none of the generators under comparison happened to expose a given

type of error. Pure chaining hardly improved the effort. In contrast, pure biasing significantly

improved the effort for all but three designs (32-core D3, 16/32-core D2). The combination of

biasing and chaining improved the effort for all designs. As compared to pure biasing, the com-

bination led to large reductions in effort, which resulted from the gains in effectiveness under

joint exposure (Table 6) and from the higher numbers of scenarios leading to error exposure

(Table 5). Albeit the combination worsened the effort for three designs (32-core D7, 16/32-core

D9), the maximum degradation (32%) was much smaller than the maximum improvement (15

times).

The experimental evidence indicates that pure chaining does not pay off. However, it

indicates that address biasing not only pays off, but it also favors proper operation chaining,

which tends to further reduce the verification effort.

3.4.4 Assessment for a fixed core count

3.4.4.1 Impact on functional coverage

Figure 7 displays the distributions TC(v,L0) and TC(v,L1) resulting from the execution

of all random tests induced by the scenario v=(p,n,s)=(32,4K,32). Each box represents the

5
9

Table 6 – Average improvement in effectiveness (under joint exposure subspaces) and in effort (over the entire generation space).

Metric p

Chaining Biasing Chaining and Biasing

CHAIN- w.r.t PLAIN- PLAIN+ w.r.t PLAIN- CHAIN+ w.r.t PLAIN-

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

εG/εg

8 1.3 1.1 1.1 1.0 — — — — 1.3 1.0 5.9 10.3 1.7 4.3 — — — — 16.1 18.1 21.9 22.8 18.0 13.5 — — — — 55.0 16.7

16 1.5 1.1 1.0 1.5 — — — — 1.3 0.6 7.3 10.3 1.0 2.3 — — — — 10.1 7.8 25.7 18.2 13.3 10.1 — — — — 41.8 4.4

32 1.0 1.4 1.2 1.1 — — — — — 0.4 2.4 9.6 0.8 1.2 — — — — 2.0 12.1 15.5 19.5 9.8 5.7 — — — — 23.0 2.7

EFg/EFG

8 1.2 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.3 1.0 6.7 11.8 1.9 2.5 3.9 7.1 1.5 6.0 7.8 12.5 24.9 29.2 21.1 15.8 8.6 11.7 2.5 6.7 29.7 14.9

16 1.3 1.0 1.0 1.4 1.0 1.0 1.0 1.0 1.2 0.8 4.6 7.3 0.7 1.9 4.0 10.5 1.4 5.3 5.7 8.1 20.4 17.4 10.6 9.4 7.8 15.4 1.9 6.1 26.7 7.5

32 1.0 1.2 1.1 1.0 1.0 1.0 1.0 1.0 1.2 1.0 2.1 6.4 0.6 1.0 2.8 12.0 1.8 5.9 3.2 9.8 12.2 12.2 8.5 6.7 6.0 15.4 1.9 5.7 19.4 6.7

61

same transition at L1. Another reason is the smaller frequency of evictions due to the higher

associativity at L1.

At L2 (where the shared cache also plays the role of directory), the median coverage

was 15% for both PLAIN- and CHAIN- and 53% for both PLAIN+ and CHAIN+. Chain-

ing had marginal impact, because most requests resulting from inter-processor conflict (Inval-

idate, FWD_GETS, FWD_GETX) do not induce transitions at L2 (they are actually outputs ac-

tions). Only 4 out 148 transitions are induced by intra (UPG) or inter-processor conflict (GETX,

GETS). Thus, most of the transitions at L2 are fostered by biasing.

3.4.4.2 Impact on error exposure and effort

Tables 7 and 8 convey three complementary pieces of information. Each table shows

whether or not a generator was able to expose an error with a given test length when targeting

32-core designs (an entry filled in black indicates that the error was undetected). It also shows

the required effort (expressed in seconds) to expose an error or the effort wasted in trying to ex-

pose it. Values in bold indicate the generator leading to the minimum effort for each verification

scenario that exposed a given type of error. Finally, it shows the effectiveness of each generator

to expose a given type of error in every scenario (as indicated between parentheses).

Let us first focus on random tests with 1K operations. In Table 8, note that no unbiased

generator ever exposed errors for designs D4-D7 and D9, but biased generators exposed all

errors except for D9. Table 7 shows that the probability of a random test to expose the error in

design D2 is 1/50 for PLAIN+ and 1/5 for CHAIN+, i.e. PLAIN+ requires 50 tests on average

to expose the error, while CHAIN+ requires only 5. This explains why CHAIN+ requires one

order of magnitude less effort to expose the error in that design.

Let us now analyze the impact over the range of test lengths from 1K to 16K. For errors

leading to SWMR violations (Table 7), neither pure chaining nor pure biasing significantly

improved the effort. However, their combination led to the smallest effort for almost all designs

and test lengths. Errors leading to DV violations (Table 8) were much harder to find. Pure

chaining improved exposure for a single design (D8), whereas biasing significantly improved

error detection for all designs. Their combination exposed the errors in every design for all

cases but two. Although CHAIN+ found practically as many errors as PLAIN+, the former

required the smallest effort in most cases.

Finally, we measured the time to generate tests for 32-core designs with 16K opera-

tions and 32 locations. On average, PLAIN- and PLAIN+ took 0.3 seconds, while CHAIN- and

CHAIN+ took 0.8 seconds (i.e. one to four orders of magnitude smaller than the verification

efforts in Tables 7 and 8).

6
2

Table 7 – Impact on effort (and error exposure) for 32-core designs containing SWMR violations (when exploiting 32 shared locations).

Unbiased Biased

PLAIN- CHAIN- PLAIN+ CHAIN+

n D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3 D0 D1 D2 D3

1K
177 702 701 237 232 685 685 349 92 25 966 986 25 25 70 229

(0.07) (0.02) (0.02) (0.05) (0.05) (0.02) (0.02) (0.03) (0.18) (0.63) (0.02) (0.00) (0.82) (0.78) (0.20) (0.07)

2K
387 759 763 776 754 182 737 755 94 30 1324 1252 29 28 67 225

(0.03) (0.02) (0.00) (0.02) (0.02) (0.07) (0.02) (0.00) (0.22) (0.82) (0.02) (0.00) (0.95) (0.92) (0.27) (0.08)

4K
81 135 163 138 133 197 264 269 91 35 1588 1610 36 35 61 191

(0.17) (0.10) (0.08) (0.10) (0.10) (0.07) (0.05) (0.05) (0.25) (0.77) (0.00) (0.00) (0.92) (0.92) (0.43) (0.13)

8K
236 472 947 317 182 302 302 308 86 42 2039 2072 10 42 47 342

(0.07) (0.03) (0.02) (0.05) (0.08) (0.05) (0.05) (0.05) (0.33) (0.87) (0.02) (0.00) (1.00) (0.93) (0.57) (0.10)

16K
129 166 224 287 90 129 168 169 118 61 1463 3031 55 57 66 285

(0.15) (0.12) (0.08) (0.07) (0.23) (0.15) (0.12) (0.12) (0.33) (0.77) (0.03) (0.00) (0.97) (0.97) (0.73) (0.18)

Table 8 – Impact on effort (and error exposure) for 32-core designs containing DV violations (when exploiting 32 shared locations).

Unbiased Biased

PLAIN- CHAIN- PLAIN+ CHAIN+

n D4 D5 D6 D7 D8 D9 D4 D5 D6 D7 D8 D9 D4 D5 D6 D7 D8 D9 D4 D5 D6 D7 D8 D9

1K
658 645 720 710 645 658 642 628 703 693 312 641 56 8 202 27 131 926 23 8 485 73 23 876

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.00) (0.28) (1.00) (0.08) (0.53) (0.12) (0.00) (0.97) (1.00) (0.03) (0.23) (0.88) (0.00)

2K
718 705 780 769 704 717 694 680 756 745 681 694 50 8 255 32 89 290 9 8 1246 32 27 1119

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.42) (1.00) (0.08) (0.73) (0.23) (0.07) (1.00) (1.00) (0.00) (0.65) (0.92) (0.02)

4K
790 778 855 843 778 154 758 746 821 810 741 756 63 8 210 39 86 1541 34 8 122 42 33 1510

(0.00) (0.00) (0.00) (0.00) (0.00) (0.08) (0.00) (0.00) (0.00) (0.00) (0.02) (0.02) (0.45) (1.00) (0.13) (0.85) (0.28) (0.00) (0.97) (1.00) (0.20) (0.83) (0.87) (0.02)

8K
907 897 975 960 895 908 876 869 942 929 859 876 46 8 525 49 214 2010 9 8 368 48 42 518

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.53) (1.00) (0.07) (0.97) (0.15) (0.00) (1.00) (1.00) (0.10) (0.97) (0.97) (0.07)

16K
1116 1106 1191 1172 1106 1109 1128 1116 1200 1182 212 1127 64 8 1052 12 162 1451 9 8 267 16 53 3229

(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.08) (0.02) (0.63) (1.00) (0.05) (1.00) (0.30) (0.03) (1.00) (1.00) (0.20) (1.00) (0.97) (0.02)

63

3.5 CONCLUSIONS

The experimental results indicate that the proposed techniques are complementary and

improve constrained random test generation when a reusable memory-model checker is ex-

ploited for verification. Address biasing makes error detection less dependent on generation

parameters, while operation chaining raises the probability of error detection. We have shown

design cases for which the combination of biasing and chaining largely reduced the effort. In

half of the 32-core designs, the baseline generator was unable to expose the same errors detected

by our techniques with tests 16 times shorter. Albeit we had to limit the analysis to designs con-

taining ten types of errors, the observed improvement in coverage indicates that the adequacy

of the techniques is not limited to the evaluated design cases.

The techniques re-evaluated in this chapter under the new focus on coherence can be

used to implement the Random Test Generation (RTG) engine for building a coverage-directed

test generation, as depicted in the framework proposed in Figure 1. To do so, we realized that

we had to find a proper way of dynamically exploiting biasing constraints.

During a few preliminary experiments for defining an adequate setup for the experi-

ments reported in Section 3.4, we realized that the impact of abc and sbc on coverage and effort

were much less important than the cbc. For this reason, we concluded that we should simplify

biasing when used for directed test generation: for such purpose, we should keep both abc and

sbc fixed.

More importantly, during those preliminary experiments, we also realized that if we

enforced a uniform competition of locations for cache sets, the probability of inducing cache

evictions was raised, thereby increasing coverage. For this reason, we concluded that we should

simplify dynamic cbc exploitation by selecting a value of χ dependent on κ , instead of inde-

pendently setting the two parameters of a cbc = (κ,χ). Therefore, given a selected number

k of cache sets to which all locations must be mapped, we concluded that we should choose

cbc = (k,s/k) for uniform competition. That is how the parameters k and s are used to en-

force competition biasing constraints. These two parameters, along with the parameter n, are

sufficient for properly driving the RTG engine, as depicted in Figure 1.

Assuming these simplifications, the next chapter shows how chaining and biasing can

be used (inside the RTG engine) for building a novel coverage-directed test generator.

65

4 MODEL-BASED DIRECTED TEST GENERATION

This chapter describes a first contribution on directed test generation that exploits the

constrained random test generator described in Chapter 3. The technique described in this

chapter is used to build a model-based directing engine (for the framework depicted in Figure

1), and it is also used inside the hybrid directing engine to be described in the next chapter.

Since that contribution was previously reported in proceedings (ANDRADE et al., 2018), this

chapter reproduces most of that text.

The features of our model-based Directed Test Generator (DTG) are:

1. The casting of general properties of coherence protocols and cache memories as non-

conventional constraints on Random Test Generation (RTG).

2. A novel coverage model resulting from such constraints, which serves as a proxy for

whatever coverage metric is adopted in the design environment.

3. A novel, steep coverage-ascent algorithm for the directing engine, which relies on the

proposed coverage model.

This chapter is organized as follows. Section 4.1 shows the similarities and differences

of the proposed approach as compared to related works. Section 4.2 presents the main ideas

behind the contribution. Section 4.3 describes the proposed Directing Engine. Section 4.4.2

reports its experimental evaluation as compared to a state-of-the-art generator. Finally, Section

4.5 draws the chapter’s conclusions.

4.1 RELATED WORK

This section employs the engines from Figure 1 (Section 1.3.2, p. 31) as a reference

for discussing the similarities and differences of the proposed approach with respect to related

works, as summarized in Table 9.

Qin and Mishra (QIN; MISHRA, 2012) proposed a simulation-based technique for

protocol verification. Their technique does not require any RTG engine. Its directing engine

builds a graph representation for the product Finite State Machine (FSM) that explicitly enu-

merates the entire protocol space. It exploits topological properties of that graph (clique or

hypergraph) for inducing an efficient Euler tour of its edges. As a result, no transition is ever

visited more than once, and tests leading to full transition coverage can be generated. Albeit the

technique does not scale with growing core counts, the reported results indicate that the explicit

enumeration of the full state space keeps viable for single-level protocols up to 16 cores.

MCjammer (WAGNER; BERTACCO, 2008) is a scalable scheme that avoids the enu-

meration of the full protocol space. Instead of a centralized directing engine, it relies on dis-

tributed intelligent agents that formulate their coverage goals according to Dichotomic Finite

State Machines (DFSMs) capturing the protocol behavior from the perspective of each core

6
6

Table 9 – How related works address test generation and behavior verification.

Verification
Generator

Checker Objective
Reusability restrictions

Approach Scope Directing engine RTG engine Parameters Mechanism Function Generator Checker

Qin & Mishra (2012)
memory in

isolation

Euler tour on

hypergraph/clique
none none (unspecified)

Product FSM

transition

coverage

Protocol

compliance
(unspecified)

Wagner & Bertacco (2008)
memory in

isolation

multiple intelligent

agents
purely random

streams
variable: n, s Data tagging

DFSM

transition

coverage

Protocol

compliance

Partial

MCM

compliance

Fine & Ziv (2003), Adir et al. (2004) full system Bayesian network
constrained random

under biasing

constraints

variable: n, s Golden Model
External

coverage

metric

none
Architecture

compliance

Elver & Nagarajan (2016)
memory within

full system

genetic

programming
constrained random

fixed: n

variable: s
MCM

External

coverage

metric

none
MCM

compliance

This chapter’s
memory within

full system

steep coverage

ascent

constrained random

under coherence &

biasing constraints

variable: n, s,

k
MCM

External

coverage

metric

none
MCM

compliance

67

domain. Given a processor domain, a state in the DFSM captures the state of a block in a lo-

cal cache and an aggregation of the state of that block in the caches from other domains. The

agents exploit the insufficiently verified transitions to formulate their goals towards higher tran-

sition coverage. The generator is reusable only for derivative designs that comply with a same

protocol, because the DFSM must be modified for porting the generator to a protocol variant.

Genesys-Pro is an approach to functional processor verification based on the solution

of a constraint satisfaction problem (ADIR et al., 2004). It provides support for verifying the

entire system, including the memory subsystem, and it relies on coverage-based RTG, where

the directing engine can be, for instance, a Bayesian network (FINE; ZIV, 2003).

McVersi (ELVER; NAGARAJAN, 2016) proposes a Genetic Programming approach,

where an RTG engine is used only for the creation of an initial population of tests. Further

generations of tests are obtained from a pre-existing population by a directing engine that uses

as objective function the fitness of a test, which is obtained from some coverage metric defined

by the verification environment.1 To obtain a new population from the fittest tests, the directing

engine employs a selective crossover function that favors the selection of memory operations

contributing to higher non-determinism.

In McVerSi, the RTG engine is largely unconstrained, while the directing engine ex-

ploits non-determinism. As opposed to McVerSi, the proposed approach exploits general prop-

erties of coherence protocols and cache memories, and it balances their exploitation in separate

engines. Like McVerSi’s (ELVER; NAGARAJAN, 2016), our directing engine distinguishes

the externally measured coverage from the inner mechanism for fostering coverage improve-

ment, as opposed to MCjammer (WAGNER; BERTACCO, 2008), whose mechanism is tied to

its inner coverage metric.

4.2 MAIN IDEAS BEHIND THE CONTRIBUTION

We constrain the RTG engine to produce tests leading to an effective coverage model

for decision making in the directing engine.

The proposed coverage model relies on FSMs that specify the behavior of a coherence

protocol for the cache controllers at each hierarchical level. It distinguishes three classes of

transitions, assumes non-conventional constraints on the building of each test, and relies on

three parameters that can drive the tests towards higher coverage, as explained in the following

subsections.

4.2.1 Proposed classification of transitions

Our approach distinguishes three classes of transitions for the FSMs governing the

private caches owned by a given processor:

1 For instance, in Elver & Nagarajan (2016), the experimental evaluation employs a structural coverage metric

of the logic implementing a FSM for the coherence protocol.

68

• Class 1: transitions induced by local events triggered by the processor or by another

private cache controller lying on the same processor domain at the immediate higher

hierarchical level. Such events result from intra-processor collisions.

• Class 2: transitions induced by local events triggered by requests from remote processors.

Such events result from inter-processor collisions.

• Class 3: transitions induced by replacement events triggered by the cache controller itself.

Table 10 shows examples of events inducing transitions of such classes for a 3-level

MESI protocol available in gem5’s infrastructure (BINKERT et al., 2011).

2

Table 10 – Events inducing distinct classes of transitions

Events inducing transitions from each class

Level Cache Class 1 Class 2 Class 3

L0 private Load, Store Invalidate Replacement

L1 private

L0_UPG,

L0_GETS,

L0_GETX

Invalidate,

FWD_GETS,

FWD_GETX

Replacement

L2 shared UPG, GETS, GETX Replacement

Since all processors share the last-level cache, it does not make sense to distinguish

Classes 1 and 2 at that level. However, their distinction at the private cache levels is one of

the keys to enabling an effective coverage model. The next section shows that, by properly

alternating between such classes in successive accesses to the same location, transitions are

less likely to be revisited, which favors coverage. Besides, it also shows that the controllability

of replacement events is key to further improving coverage, because it allows the distinction

between Class 3 and the other two classes.

4.2.2 Proposed constraints on RTG

Our approach exploits constraints on random test generation as mechanisms for en-

abling better control on coverage improvement. The first constraint enforces the alternation

between Class 1 and Class 2 transitions, which is exploited by the RTG engine itself. The sec-

ond one paves the way to the alternation between Class 3 and Class 1/2 transitions, which is

exploited by the directing engine.

2 The events in Table 10 refer to requests for read-only permission (Load, L0_GETS, FWD_GETS, GETS) and

requests for read-write permission (Store, L0_UPG, L0_GETX, FWD_GETX, UPG, GETX), as well as inval-

idate and replacement events. Load and Store are requests from the home processor. L0_UPG, L0_GETS, and

L0_GETX are requests from the private L0 cache to the private L1 cache of the same core domain. Fwd_GETS

and FWD_GETX are requests from another core domain, which were forwarded by the directory (co-located

at the shared L2 cache). Finally, UPG, GETS, and GETX are requests to the shared L2 cache.

69

4.2.2.1 Constraint 1: enforce alternation between Classes 1 and 2

To increase the chances of raising transition coverage, we enforce the RTG engine to

build each test program according to rules that make successive colliding accesses likelier to

induce transitions that are different from those already covered. Let us illustrate the idea by

means of an example3. Suppose that processors i and j cooperate to execute a chain of memory

operations, and there is no intervening replacement events in their private caches between the

execution of the endpoints of such chain. Albeit a chain may contain operations referencing

distinct locations, let us focus on the operations of a chain that collide at the same memory

location (i.e. operations referencing other locations are abstracted out for simplicity). Figure

8 illustrates which transition of each private cache controller is covered after each operation in

the chain is executed (it excludes replacement-induced transitions and assumes that, initially,

no private cache contains a valid copy of a referenced block).

The chain used in the example was selected to enforce a pattern that alternates intra

and inter-processor conflicts. The numbers serving as labels for elements in the chain and tran-

sitions in FSMs indicate that every operation tends to induce a distinct transition in each FSM.

Note that class alternation happens after every second transition. Thus, inter-processor conflicts

foster transitions of distinct classes, whereas intra-processor conflicts foster distinct transitions

of a same class. This illustrates that the exploitation of conflicting events in intra/inter-processor

alternation benefits coverage. Actually, the chain selected for the example is a particular case

of more general canonical dependence chains (all exhibiting a similar pattern) (GHARACHOR-

LOO, 1995). Our RTG engine was designed to build tests according to the rules of such canon-

ical multiprocessor chains.

Albeit McVersi (ELVER; NAGARAJAN, 2016) also exploits conflicts, it does not dis-

tinguish between intra and inter-processor events, because its fitness function computes the

union of the observed conflicts. On the other hand, our DTG exploits their distinction for cov-

erage improvement. McVersi does not constrain the random generation of conflicting events

(but only observes the fittest for learning how to improve further generation of tests), while our

approach constrains them during RTG to avoid revisiting transitions.

4.2.2.2 Constraint 2: enforce uniform competition

To enable or disable Class 3 transitions, we constraint the choice of effective addresses

in the RTG engine such that it can control the number of shared locations competing for a

same cache set (i.e. the number of locations with same index). First, we define a generation

parameter k, which represents the number of distinct cache sets for which the s shared locations

compete. Then, for each value of s, we constraint the values that can be assigned to k: only

those for which s is multiple of k are kept in the generation space. As a result, the RTG engine

is constrained to assign effective addresses in such a way that exactly s/k locations compete for

3 Although MESI is used as an example, the rules of formation of such a chain are protocol independent.

7
0

ISEM ISEM

core i core j

Li
a ≺PO Si

a ≤ Lj
a ≺PO Sj

a ≤ Li
a ≺PO Si

a ≤ Sj
a ≺PO Lj

a ≤ Si
a

1 2 3 4 5 6 7 8 9

C
l
a
s
s

1
C
l
a
s
s

2

3

Other-GetS

7

Other-GetM

h
i
t

Other-GetM

Other-GetS

2

silent

h
i
t

Other-GetM

4

Own-GetM

6

h
i
t

5

Own-GetS

(Dir6=I)

9

Own-GetM

Own-GetS

(Dir=I)

1

5

Other-GetS

9

Other-GetM

8

h
i
t

Other-GetM

Other-GetS

silent

h
i
t

Other-GetM

6

Own-GetM

4

h
i
t

3

Own-GetS

(Dir 6=I)

7

Own-GetM

Own-GetS

(Dir=I)

Figure 8 – Example of how colliding operations should be chained to avoid revisiting already covered transitions.

71

each cache set. Such uniform distribution maximizes the probability of inducing replacements

in all sets for a given setting of a pair (s,k).

Let α denote the associativity of a cache. For inducing a replacement event in a given

cache set, a sequence of at least α +1 references to distinct locations competing for that set is

required. Therefore, a necessary condition for enabling replacement is s/k≥α+1. Conversely,

a sufficient condition for disabling replacement in all sets is s/k <α+1⇔ s/k≤α . Thus, there

is a threshold s/α for the value of k above which replacement is certainly disabled, but below

which it may be enabled depending on the sequence of references that turns out to be generated

randomly. Therefore, the RTG engine can stimulate the alternation between Class 3 and Class

1/2 transitions by selecting appropriate values of k.

The proposed use of a generation parameter to deliberately enable or disable replace-

ment events is uncommon in the literature on directed test generation for shared memory ver-

ification. It plays a similar role as the biasing constraints employed in the approach that casts

verification as a constraint satisfaction problem (ADIR et al., 2004).

4.2.3 Proposed coverage model

We propose a coverage model that pessimistically assumes that Classes 1, 2, and 3

induce a partition of the set of transitions of a FSM. Let TC = (tran1 + tran2 + tran3)/total =

TC1 +TC2 +TC3 denote the transition coverage of the FSM specifying the protocol behavior

for the memory block containing a given location, where tran j denotes the number of distinct

transitions from Class j and total denotes the overall number of transitions in the FSM.

Every collision leads to a transition from Classes 1 or 2, i.e. TC1/2 = TC1 + TC2

denotes the coverage of collision-induced transitions. Let NCOL = n/s be the average number

of collisions induced by a test. Albeit Constraint 1 increases the probability that successive

colliding accesses lead to distinct transitions in the FSM, this might not always be true. Thus,

we assume that the number of covered transitions is proportional to the average number of

collisions as an estimate for the actual coverage, written T̂C1/2 ∝ n/s.

Let NREP(set(a)) denote the average number of replacement events for the cache set

assigned to the memory block where location a resides. An increase in NREPL(set(a)) raises

the probability of transitions from Class 3. For an estimate of Class 3 transition coverage, we

have to count the number of replacement events, which depends on the associativity and on

the memory access pattern. The ratio n/k measures how many operations are mapped to the

same cache set on average. A best-case access pattern for replacement events is such that every

element of a sequence of n/k accesses makes reference to distinct locations mapped to the same

set. Replacement takes place at every α + 1 such accesses. Therefore, an upper bound for the

average number of replacements is Nmax
REP =(n/k)/(α+1). A worst-case pattern for replacement

events is such that every element of a subsequence of n/s accesses makes reference to the same

location, then another subsequence of n/s accesses makes reference to another location, and

so on. There are s such subsequences, s/k of them map to the same set (on average), and

72

replacement takes place at every α +1 transitions between them. Therefore, a lower bound for

the average number of replacements is Nmin
REP = (s/k)/(α + 1). As a result, we can make the

hypothesis that the number of covered transitions is, in the best case, proportional to the average

number of operations per set, and in the worst case, it is proportional to the average number of

locations mapped to a same cache set. Such hypothesis leads to a suitable estimate for the actual

Class 3 transition coverage, i.e. T̂C3 ∝ n/k, in the best case, and T̂C3 ∝ s/k, in the worst case.

Thus, T̂C(n,s,k) = T̂C1/2(n,s)+ T̂C3(n,s,k) can be used by the directing engine for

making decisions that favor transition coverage. Besides, since we assume that the classes

induce a partition of all transitions in the FSM, the algorithm in the directing engine should

lower the probability of transitions from one class in an attempt to raise the probability of

transitions from another class and vice-versa. The cumulative effect of such exploration of

complementary scenarios should contribute to raising the overall coverage.

The next section first describes, by means of an example, how the directing engine

exploits parameters according to the proposed coverage model, and then it formalizes the un-

derlying algorithm.

4.3 DESCRIPTION OF THE DIRECTING ENGINE

4.3.1 An example of how it works

The values assigned to the parameters (n,s,k) within user-defined ranges induce a

tridimensional generation space. Given such generation space, our directing engine visits planes

that correspond to increasing test sizes (n). Figure 9a depicts a generation space with planes for

1K, 2K, and 4K operations.

Figure 9b illustrates one such plane for a range of shared locations defined as S =

{4,8,16,32}. Let us suppose a memory hierarchy with three cache levels, each with a distinct

associativity: L0 is directed mapped, L1 is 2-way, and L2 is 8-way. A point with a mark (square,

triangle or circle) represents a pair (s,k) that leads to a uniform distribution of location compe-

tition for cache sets. Unmarked points were excluded from the generation space by Constraint

2. Dashed lines correspond to the distinct associativities at each cache level. Each dashed line

groups the points of the generation space that represent the threshold for disabling replacement

events for different values of s. For a given number of locations s, a mark in a dashed line

labeled as α j represents the minimum value of k required for disabling replacement events in a

α j-way cache lying at level j. Therefore, the marks to the left of a dashed line denote the values

of k that are likely to stimulate replacement-induced transitions at level j (Class 3), while all the

marks to the right (or on the line itself) denote values of k that certainly do not induce replace-

ment events in any set of a cache at level j, being therefore likely to stimulate collision-induced

transitions instead (Class 1/2). For this reason, when trying to stimulate collision-induced tran-

sitions, the directing engine could explore only the pairs marked with circles, because the value

k = s is sufficiently large for disabling replacement-induced transitions at all levels for a given

74

s. On the other hand, when trying to stimulate replacement-induced transitions, our engine

could explore only the pairs marked with squares, because the value k = 1 corresponds to the

maximum probability of replacement for a given s. Note, however, that albeit the pairs marked

with squares are likely to enable replacement at most levels, this may not necessarily hold for

all (for instance, (4,1) and (8,1) may enable replacement at L0 and L1, but not at L2).

Therefore, to control the stimulation of a desired type of transition, the directing engine

does not necessarily have to explore all the marked points in Figure 9b, but only search the

subspace marked with squares and circles. Figure 9c illustrates such a reduced search space.

Note that, any traversal alternating between square and circle is likely to stimulate a sequence

of transitions induced by an alternation between replacement and collision events. To select the

most convenient traversal, the directing engine relies on the proposed coverage model. Since

T̂C3 ∝ s/k or T̂C3 ∝ n/k, when exploring a plane for a given n, our engine selects the pair in the

search space with minimum k and maximum s. Since T̂C1/2 ∝ n/s, our engine selects the pair in

the search space with minimum s. Albeit in such case k could be arbitrary selected according to

the coverage model, the engine chooses the maximal k, because it has the advantage of disabling

replacement at all levels. Such choices lead to the traversal indicated by the labeling in Figure

9c. Note that, in such a traversal, a move from a square to a circle, corresponds to the alternation

between the maximum probability of replacement and the maximum probability of collision for

a given unexplored sub-space. Thus, such steep coverage-ascent traversal was designed to reach

the highest coverage as possible in the smallest time (thereby reducing the effort to find errors),

while still exploring the tridimensional search space by successively visiting planes induced

by increasing values of n (for reaching the highest coverage as possible within a pre-specified

range). The labeling in Figure 9b illustrates such a traversal for the original search space.

Finally, Figure 9d illustrates a degeneration of it for an even smaller search space, which fosters

Class 3 transitions predominantly. We propose the three variants illustrated in Figure 9 for the

directing engine.

4.3.2 The proposed algorithm

Let the range of a parameter be the set of all values that can be assigned to it. Let N, S,

and K be sets representing the ranges for the parameters n, s, and k, respectively. Let v denote

a directing engine variant. N, S, and v are user-defined, whereas K is bounded by the maximum

number of locations, i.e. K = {k : 1≤ k ≤maxS}. Let G = N×S×K be the generation space

and let P = S×K be a plane corresponding to a given n. The directing engine explores planes

in order of increasing values of n (for higher test throughput).

Let CV (n,s,k) be a function that maps a setting of parameters to the cumulative cover-

age value obtained by executing all tests generated so far, i.e. it represents the directing engine’s

input-output interaction with the RTG engine (which actually consumes the parameters) and the

coverage analyzer (which actually accumulates the coverage resulting from a suite of tests). Let

cv be a coverage value, x be a Boolean value, P be the points of each plane that belong to the

75

search space, and P∗ be the unexplored points of P.

Let Π(s,v) denote the adopted sub-range of k in the search space for a given number

of locations s and a given variant v, as follows:

Π(s,v) =





{k : (1≤ k ≤ s)∧ (s modk = 0)} if v = 1

{1,s} if v = 2

{1} if v = 3

Algorithm 1 first defines the search space P for the desired variant v (line 2). Then it explores

successive planes for growing test lengths (lines 4-21). It searches each plane in the order

depicted in Figure 9 (lines 7-19). Generation is stopped when all planes in the range of n are

explored or full coverage is reached.

1: procedure DIRECTING-ENGINE(N,S,v)

2: P←{(s,k) : s ∈ S∧ k ∈Π(s,v)}
3: x← 0

4: repeat

5: n←minN

6: P∗← P

7: repeat

8: if x = 0 then

9: k∗←min{k : (s,k) ∈ P∗}
10: s∗←max{s : (s,k) ∈ P∗∧ k = k∗}
11: if v 6= 3 then

12: x← 1

13: else

14: s∗←min{s : (s,k) ∈ P∗∧ k 6= 1}
15: k∗←max{k : (s,k) ∈ P∗∧ s = s∗}
16: x← 0

17: P∗← P∗ \{(s∗,k∗)}
18: cv← CV(n,s∗,k∗)
19: until (P∗ = /0)∨ (cv = 1)
20: N← N \{n}
21: until (N = /0)∨ (cv = 1)

Algorithm 1 – The algorithm underlying the directing engine.

Albeit the traversal order is essentially determined by the proposed coverage model,

some ranking is used to further induce alternation between replacement and collision as much

as possible. Lines 9-10 rank the choice of k before s to stimulate replacement at most levels,

whereas lines 14-15 rank the choice of k after s to avoid replacement at most levels, thereby

stimulating collisions at most of them.

It should be noted that the apparent simplicity of the directing engine results from

proper task encapsulation within the two cooperating DTG engines. First, the complexity of

handling Constraints 1 and 2 lies inside the RTG engine. Second, the exploitation of Constraint

2 resulted in preliminary pruning. Third, the applied constraints resulted in an effective cover-

age model that simplified the traversal of the search space. It is such deliberate encapsulation

76

that enables the DTG to reach a given coverage in less time than a state-of-the-art generator, as

reported in the next section.

4.4 EXPERIMENTAL EVALUATION

4.4.1 Experimental setup

We compared the proposed DTG with the McVerSi (ELVER; NAGARAJAN, 2016)

Test Generator (MTG), which is available in the public domain (ELVER, 2016). We extracted

only the generator’s code, and adapted its interface to our framework’s. Except for the directing

engine (DTG or MTG), and the random test generator (as McVerSi’s code already included a

built-in generator), all the other engines employed in the experiments were exactly the same. We

preserved all genetic parameters exactly as they were originally set in (ELVER; NAGARAJAN,

2016). We enforced uniform operation bias (equal load and store probabilities) and block-

aligned addresses in all experiments.

We relied on the pseudo-code described in (FREITAS; RAMBO; SANTOS, 2013) to

implement the axiomatic checker. We relied on gem5’s infrastructure (BINKERT et al., 2011)

for simulation and design representation (O3 out-of-order CPU model, Ruby memory-system

model, and simple interconnect-network model). We adopted gem5’s 3-level MESI directory

protocol with 4KB (directed-mapped) private caches at L0, 64KB (2-way) private caches at L1,

and a 2MB (8-way) shared cache, all operating with same block size (64 bytes).

Without loss of generality, but for experimental convenience, we adopted within our

coverage analyzer a structural metric similar to the one employed in McVerSi (ELVER; NA-

GARAJAN, 2016). This choice allows us to stress the different coverage roles in our DTG: it is

directed by an external structural coverage metric, but it drives generation according to an inner

functional coverage model. The structural coverage was measured as follows. While running a

test, we tracked the number of distinct transitions covered in the code of FSMs. No distinction

was made between identical controller instances (at a same hierarchical level). Thus, the cover-

age is the fraction of all transitions that were tracked. The MTG receives the coverage of each

test, while the DTG receives the cumulative coverage of the sequence of tests.

We adopted an uniform operation bias for all generators (50% of probability for loads

and 50% for stores). In all generators, addresses were constrained to be aligned to the block

(i.e. base addresses are multiple of a 64-byte stride).

4.4.2 Experimental results

DTG and MTG differ in which parameters are statically defined by the user and which

are dynamically set by their engines. The MTG requires the static definition of a fixed test

length and a single address-space constraint, while the DTG dynamically exploits variable test

lengths and multiple address-space constraints (as a result of varying the parameter k). Since

77

the dynamic exploitation of multiple address-space constraints is one of the distinguishing fea-

tures of the proposed generator, it would be pointless to enforce a single, static address-space

constraint when running the DTG for a comparison with the MTG. Instead, we compare our

results under the dynamic exploitation of multiple address-space constraints with McVerSi’s

static exploitation of a single address-space constraint. However, we also report results for the

DTG under fixed test length and for the MTG under distinct static constraints: the test memory

sizes T M = 1KB and T M = 8KB defined in (ELVER; NAGARAJAN, 2016) (where the use-

ful address space is spread over non-contiguous chunks of 512B, each starting at a distance of

1MB).

McVersi is free to select as many locations as available within its useful address space.

In the proposed DTG, however, the number of locations must belong to a pre-specified range.

To accommodate such difference, we compared the generators under the same upper bound on

the number of (useful) memory locations. Different upper bounds correspond to each TM size

adopted for McVerSi. Under Constraint 2, the maximum number of block-aligned locations

is 16 for TM=1KB and 128 for TM=8KB. As a result, we adopted S = {4,8,16} and S =

{4,8,16,32,64,128} for the DTG when comparing with the MTG under T M = 1KB and T M =

8KB, respectively.

We first measured the cumulative coverage resulting from the execution of a sequence

of tests on designs containing no errors. Then we inserted different artificial errors to challenge

the generators by changing the FSMs (either by modifying the next state or precluding some

due output action). Each faulty design under verification contained a single, distinct error.

The errors studied in our experiments are described in Table 11. To determine the effort spent

in an attempt to find a given error, we measured the runtime until it was found or until the

directing engine stopped generation. Each generated test was executed five times under different

Table 11 – Studied design errors

ID State Input event Next state Precluded output action

E.4.1 (L0) E Store M dirty=1 in store_hit

E.4.2 (L1) M_ILO L0_DataAck EE instead of MM (preserved)

E.4.3 (L1) E WriteBack MM writeDataFromL0Request

E.4.4 (L1) IS_I Data_all_Acks I writeDataFromL2Response

E.4.5 (L1) E_ILO L0_DataAck MM writeDataFromL0Response

E.4.6 (L1) IS_I DataS_fromL1 I writeDataFromL2Response

E.4.7 (L1) E_IL0 WriteBack MM_IL0 writeDataFromL0Request

E.4.8 (L1)

IS Inv IS instead of IS_I (preserved)

SM Data_all_Acks M (preserved as in (IM, M))

SM Data SM (preserved as in (IM, SM))

E.4.9 (L1) S L0_Invalidate_Own SS instead of S_IL0 forward_eviction_to_L0

78

simulation states (not related to the test itself) in such a way that the distinct executions of the

same test are all perturbed differently (ELVER; NAGARAJAN, 2016). To obtain the reported

values of coverage and effort, we launched each generator ten times by exploiting different

seeds, and we took the median values of the resulting distributions. Runtimes were measured

in an HP xw8600 workstation (Intel Xeon E5430, 2.66 GHz, 8GB memory).

We let each generator run until it stops or a time limit of one hour is elapsed, and we

measured the runtime required for reaching increasing cumulative coverage values. Figure 10

compares DTG’s Variant 1 with the MTG. It plots the time to reach increasing coverage values

when DTG and MTG exploit fixed sizes (1K,2K,4K) in different test suites, and the DTG

exploits them in a single suite within some combined range (either {1K,2K} or {1K,2K,4K}).

Notice that, for a given test size, the MTG requires less time than the DTG to reach

coverage values below a certain threshold. This can be explained by the MTG’s exploitation

of variable thread length, as opposed to the current implementation of our RTG engine, which

constrains all threads to have the same length. However, such MTG feature does not seem

to pay off indefinitely. Indeed, above that threshold, the MTG takes much longer than the

DTG. This indicates that the proposed enforcement of alternated conflicts (Constraint 1) is more

efficient for guiding generation towards higher coverage than the MTG’s selective crossover,

i.e. the MTG takes longer to learn how to select the most promising conflicting events than our

approach takes to enforce them by construction.

Observe that, typically, the MTG reached a given coverage faster with n = 4K, which

led to its highest coverage within the one-hour time limit for a 32-core design (67.5%). In

contrast, below 65%, the DTG reached a given coverage slower with N = {4K}. This means

that, up to that value, the variation of parameters (s,k) is sufficient to cover easy-to-stimulate

transitions whatever the test size. However, harder-to-stimulate transitions above 65% cover-

age are more sensitive to test size. That is why the highest values obtained by the DTG with

N = {1K},{2K}, and {4K} are different (66.8%, 67.7%, and 68.9%, respectively, for 32-core

designs).

Note that the MTG sometimes reached higher coverage than the DTG for a fixed test

size, as far as it is let run for a long time. This apparent limitation of the DTG in trading runtime

for higher coverage is just a consequence of the artificial restriction of imposing a fixed size to

an algorithm designed to exploit a range of sizes. Such restriction makes it stop prematurely,

ruling out one of its distinguishing features: the ability to exploit multiple, increasing test sizes

(in the same test suite) for reaching higher coverage faster.

Indeed, when the range {1K, 2K, 4K} was exploited, the DTG attained an even higher

coverage (e.g. 69.3% for a 16-core design) than obtained with fixed sizes (for a 32-core design,

such effect is also observed, but beyond the one-hour time limit adopted in Figure 10). This

can be explained as follows. For a given core count, the shorter the test, the shorter the threads,

and the shorter the multiprocessor chains (i.e. the fewer the number of conflicts). As a result,

the shorter the test, the lower the probability of conflicts. This means that, in our approach, the

variability in test size works as a mechanism for modulating the probability of conflicts, thereby

80

inducing distinct transitions with different test sizes, which benefits coverage. Such advantage

of variable over fixed test size shows that the proposed DTG indeed allows the user to trade

runtime for coverage (or vice-versa) by extending (or shrinking) the range of sizes. Instead,

an MTG user should be able to either guess the proper test size or, otherwise, launch multiple

fixed-size test sequences (at the expense of extra effort).

In short, for 8-core designs, the MTG reached the highest coverage (68.4%), but it

was 2.5 times slower to attain the highest DTG coverage (68.1%). For 32-core designs, the

DTG reached the highest coverage (68.9%), and it was from 1.9 to 5.7 times faster to attain the

highest MTG coverage (67.5%).

Table 12 reports the effort required by each generator for exposing errors in different

designs under distinct upper bounds on the number of locations. It shows the best values in bold.

An entry filled in black indicates that the error was never found despite the wasted effort. The

left-hand partition of Table 12 shows that, albeit the DTG exposes every error in all cases, the

MTG is unable to expose E.4.1 and E.4.2 in most designs. This is due to the inappropriate choice

of address-space constraint (T M = 1KB), which restrains replacement-induced transitions. The

right-hand partition shows that, with a more adequate constraint (T M = 8KB) for the MTG

and, equivalently, with a large enough range of locations for the DTG, every error is exposed

in all cases by each generator. However, the contrast between the partitions show how the

proposed dynamic exploitation of multiple address-space constraints can prevent the user from

inadvertently limiting error exposure.

The right-hand partition of Table 12 shows that n = 2K led the MTG to the best effort

in most 32-core designs, as compared with n = 1K, and it indicates that Variant 3 could be used

for exposing errors in early phases of the verification process, because it was the DTG variant

that exposed all errors with the best effort (except for E.4.4). It shows that, when Variant 3

is compared with the MTG for n = 2K, both led to similar effort for E.4.1, E.4.2 and E.4.5;

otherwise, Variant 3 was up to 2.8 times faster, except for a few E.4.4 and E.4.6 designs, where

it was down to 1.8 times slower than the MTG (for n = 2K). However, for two E.4.4 designs,

Variant 1 was up to 4 times faster. This can be explained as follows. When an error is exposed

with the same effort by all DTG variants (e.g. E.4.1, E.4.2, E.4.3, E.4.5), this means that the

transitions required to expose it happen to be induced by points of the search space with k = 1

(i.e. replacement-induced transitions), and they were covered with few tests. However, when

Variant 3 leads to the smallest observed effort among all DTG variants (e.g. E.4.6), this means

that, albeit the transitions required to expose that error are also predominantly replacement-

induced transitions, a larger number of tests is required to cover them. Finally, when Variant 3

leads to the largest effort among all DTG variants (e.g. E.4.4), collision-induced transitions are

essential to foster error exposure.

Table 13 reports the effort for the designs containing the most challenging studied

errors (whose detection depends on rarely-covered transitions). To handle the difficulty of ex-

posing them, we extended the range of test sizes for both DTG and MTG. We also reported

(between parentheses) how many test suites effectively exposed an error out of the ten suites

8
1

Table 12 – Effort required for finding errors under distinct upper bounds on the number of locations.

16 locations (T M = 1KB) 128 locations (T M = 8KB)

DTG with N = {1K, 2K} MTG DTG with N = {1K, 2K} MTG

Variant 1 Variant 2 Variant 3 n = 1K n = 2K Variant 1 Variant 2 Variant 3 n = 1K n = 2K

Error 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

E.4.1 4 7 335 4 7 178 4 7 100 3600 3600 3600 3600 3600 3600 5 7 14 5 7 14 5 7 14 5 18 23 5 8 36

E.4.2 4 6 12 4 6 12 4 6 12 3600 3600 3600 3600 3600 3600 4 7 13 4 7 13 4 7 13 3 6 12 4 6 13

E.4.3 4 7 25 4 7 25 4 7 25 260 558 1839 264 677 1284 5 8 16 5 8 16 5 8 16 8 11 132 5 16 32

E.4.4 14 21 22 14 21 22 14 21 22 25 18 13 36 7 15 26 44 112 26 44 112 59 97 187 113 59 128 106 72 104

E.4.5 20 73 101 20 72 101 13 42 62 34 174 610 55 207 1091 5 7 14 5 7 14 5 7 14 4 13 23 4 8 15

E.4.6 19 31 72 19 31 72 13 21 47 12 138 459 12 92 182 82 142 352 82 142 356 57 102 249 37 190 1039 42 250 705

Table 13 – Effort required for finding errors under an upper bound of 128 locations.

DTG with N = {1K, 2K,4K} MTG

Variant 1 Variant 3 n = 1K n = 2K n = 4K

Error 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

E.4.7 81 (10) 403 (10) 555 (10) 81 (10) 136 (10) 369 (10) 443 (10) 1483 (9) 3600 (2) 399 (10) 842 (10) 3600 (3) 482 (10) 671 (10) 1280 (6)

E.4.8 89 (10) 47 (10) 121 (10) 224 (6) 189 (10) 587 (10) 2541 (10) 506 (8) 484 (10) 2758 (9) 1441 (10) 294 (10) 2096 (6) 1492 (10) 257 (10)

E.4.9 253 (10) 740 (10) 1841 (9) 306 (0) 505 (0) 1102 (0) 3397 (5) 3600 (1) 3600 (1) 3600 (3) 3600 (1) 3600 (1) 3600 (1) 3600 (1) 3600 (0)

82

generated with different seeds. Notice that the MTG often led to the maximum number of ef-

fective test suites for n = 4K and that Variant 1 was always the most effective DTG variant.

Besides, the test suites generated by DTG’s Variant 1 and by the MTG with n = 4K were sim-

ilarly effective in exposing errors (except for E.4.9), but the DTG was always faster (from 1.6

to 31 times). The DTG was more effective and efficient in exposing E.4.9 in 8, 16, and 32-core

designs.

Thus, the experiments indicate that, for a given range of test sizes, when the DTG

adopts Variant 1 and the MTG operates at the extreme of that range to face hard-to-find errors

in late phases of the verification process, the proposed DTG tends to reach similar or superior

effectiveness in error exposure as the MTG, often requires significantly less effort, and reaches

similar coverage much faster.

4.5 CONCLUSIONS

Racy tests tend to expose shared-memory bugs faster (MANOVIT; HANGAL, 2006;

SHACHAM et al., 2008). Deterministic tests are less likely to expose errors, because too few

of their execution witnesses are invalid (ELVER; NAGARAJAN, 2016). Since the proposed

generator reached similar coverage much faster than the most recently reported generator of

racy tests (ELVER; NAGARAJAN, 2016), this chapter reveals a new facet of test generation

beyond the usual exploitation of non-determinism: when a generator enforces multiprocessor

dependence chains for alternating between intra-processor and inter-processor conflicts, it typ-

ically requires shorter and fewer racy tests for reaching the same coverage, especially if the

alternation between replacements and collisions is properly controlled.

84

not satisfactory, and returns the one leading to the best solution (Gopt). The synergy between its

sub-engines is demonstrated by experimental results.1

The remainder of this chapter is organized as follows. Section 5.1 shows the simi-

larities and differences of the proposed approach as compared to related works. Section 5.2

formulates the target problem as an optimization problem. Sections 5.3 illustrates how the pro-

posed approach works. Section 5.4 describes the proposed generalization. Section 5.5 reports

its experimental evaluation. Finally, Section 5.6 draws the chapter’s conclusions.

5.1 RELATED WORK

Table 14 splits DTG approaches into two main classes. Model-based generators rely

on some abstraction (e.g. FSM or graph) that either explicitly encodes what has to be covered

(e.g. the states or transitions of a coherence protocol (QIN; MISHRA, 2012)) or implicitly

captures how coverage can be increased (ANDRADE et al., 2018). Data-driven generators rely

on feedback loops to adaptively change generation parameters according to coverage evolution.

Table 14 – DTG approaches for functional verification of multicore chips.

Approach Scope Directing Engine

Qin & Mishra (2012) coherence protocol Euler tour

Lyu et al. (2019) coherence protocol Euler tour, quotient space

Andrade et al. (2018) shared memory coverage model

Fine et al. (2006) full system Bayesian network

Wagner & Bertacco (2008) coherence protocol multiple intelligent agents

Elver & Nagarajan (2016) shared memory genetic programming

One approach focuses on coherence protocol verification (QIN; MISHRA, 2012). It

builds sequences of instructions that induce an Euler tour on a graph representing the state

space. Since it relies on the product of FSMs at each core domain, such approach was not

scalable. It deserved a recent extension (LYU et al., 2019), based on a symmetry reduction

technique, which defines equivalent classes and restricts the state space to class representatives,

allowing a trade-off between coverage and verification budget. The approach assumes that

transitions between stable and transient states are correct. Such assumption is not suitable

for memory consistency verification, because it requires artificial order constraints2 for proper

controllability, thereby inhibiting data races, which are well-known mechanisms for exposing

shared-memory design errors (SHACHAM et al., 2008; HANGAL et al., 2004). Besides, the

approach leads to abstract transitions that may aggregate multiple paths over transient states,

but only one of them will be covered by the Euler tour, limiting error discovery. Since the

1 The coverage analyzer and the RTG engine in Figure 11 are the same as already described in Chapter 1.
2 It employs thread barriers to create a global serialization of all instructions.

85

approach explicitly encodes what has to be covered and fixes the way of traversal, it cannot

exploit coverage evolution dynamically.

Bayesian networks were exploited for DTG (FINE et al., 2006). Statistical inference is

used to build a Bayesian network for providing the most probable generator settings that would

achieve a certain coverage goal. This technique requires a training phase to establish the basis

for future decision making. However, the need for training may become a drawback, unless its

contribution to the overall effort can be kept negligible.

Mcjammer (WAGNER; BERTACCO, 2008) decomposes the product FSM into di-

chotomic FSMs that capture the protocol behavior from the perspective of each core domain.

Multiple intelligent agents, each working at a distinct core domain, cooperate to improve the

overall transition coverage.

Genetic Programming offers another approach for building new tests from old ones.

For instance, McVerSi (ELVER; NAGARAJAN, 2016) tailors the fitness function for improving

memory consistency verification. To obtain a new population from the fittest tests, it employs

a selective crossover function that favors the selection of memory operations contributing to

higher non-determinism.

Our prior model-based work (described in Chapter 4) focused on ordering random

tests to favor coverage evolution, but it did not allow dynamic coverage control, and it relied

on greedy heuristics that induced fixed neighborhoods, which hampered faster evolution when

exploring the RTG space. This motivated the more general formulation proposed in the next

section and the hybrid approach proposed in Section 5.4, where a data-driven engine focuses on

coverage-controlled neighborhood exploration and a generalized model-driven engine focuses

on ordering the tests induced by a given neighborhood.

5.2 DTG FORMULATION AS AN OPTIMIZATION PROBLEM

Let N and S be the sets of allowed values for the parameters n and s (respectively) that

are within user-defined bounds and are induced by the range of a function3 f (i) = 2i, and let the

values allowed for parameter k be bounded for each allowed value of s and be constrained to be

multiples4 of k, as follows:

N = {n : nmin ≤ n≤ nmax∧n = 2i f or some i ∈ N},

S = {s : smin ≤ s≤ smax∧ s = 2i f or some i ∈ N},

K = {k : (1≤ k ≤ s)∧ (s ∈ S)∧ (s modk = 0)}.

Each test to be synthesized by the RTG engine is specified by a setting of the parame-

ters corresponding to a point in a three-dimensional generation space G=N×S×K. A collection

of such points induces the generation of a test suite.

3 This could be replaced by another function without loss of generality, as far as the perturbation function defined

in Section 5.4.1 is accordingly adjusted.
4 This constraint results in uniform competition of locations for cache sets, which benefits coverage control, as

will be explained in Section 5.4.2

87

From the current solution (G), the Explorer generates an encoding for a neighbor (Q).

Figure 12b illustrates the encoding of one possible neighbor of G. A few of the neighbor’s

points may coincide with the current solution’s. Such points are not sent to the Driver, as shown

by the unnumbered marks. This avoids re-executing the same tests.

Then the Explorer combines the current solution and its neighbor into a new solution

that certainly does not lead to inferior coverage. A possible outcome of such combination is

depicted in Figure 12c. From this new solution, the entire process is repeated until a termination

criterion is satisfied.

5.4 THE DIRECTING ENGINE: ALGORITHMS

Instead of trying to find the optimal subspace Gopt , we rely on local search for an

approximate solution. We let V ⊂ G denote the collection of points that have been visited, and

we let cv(X) denote the cumulative coverage of all tests induced by an arbitrary collection X ⊂G.

From user-defined bounds, Algorithm 2 induces the generation space (line 2), as de-

scribed in Section 5.2. If no initial solution is provided, it randomly defines one (lines 5-7) from

which local search is launched (line 8).

1: procedure DIRECTING ENGINE(G0,nmin,nmax,smin,smax)

2: G← GENERATION SPACE(nmin,nmax,smin,smax)
3: V ← /0

4: if G0 = /0 then

5: G0←{(n,s,k) : (n,s,k) ∈G∧n = nmin}
6: schosen← RANDOM({s : (n,s,k) ∈ G0})
7: G0←{(n,s,k) : (n,s,k) ∈ G0∧ s≤ schosen}

8: G← EXPLORER(G0)
9: return G

Algorithm 2 – The algorithm underlying the generalized Directing Engine.

5.4.1 The Data-Driven Explorer

Algorithm 3 iteratively generates neighboring solutions (line 4), and keeps the best

solution so far (line 8) until a termination criterion is satisfied (line 9). It invokes the Driver for

the initial solution (line 2) and for every generated neighbor (line 7). To save time, it invokes

the Driver only to points of the neighbor that have never been visited before. Between such

major steps, it treats the cases where the neighbor is either singular or redundant (lines 5-6), i.e.

either all candidate points happened to be out of bounds or have already been visited.

Algorithm 4 combines the points of the current solution and its neighbor (i.e. G∪Q)

and reduces them to a subset (G′) that certainly has the same cumulative coverage.

From the current solution (G), Algorithm 5 generates another solution (Q) according

to a neighborhood function. It first defines an empty dictionary (D) to register which candidate

88

1: procedure EXPLORER(G)

2: DRIVER(G)
3: repeat

4: Q← GENERATE NEIGHBOR(G)
5: if Q\V = /0 then

6: Q← GENERATE NEIGHBOR(V)

7: DRIVER(Q\V)
8: G← REDUCE NEIGHBOR(G,Q)
9: until cv(V) = 1∨ TIMEOUT()∨ (V =G)

10: return G

Algorithm 3 – The algorithm underlying the Explorer.

1: procedure REDUCE NEIGHBOR(G,Q)

2: G′← /0

3: for all (n,s,k) ∈ G∪Q do

4: if cv(G′∪{(n,s,k)})> cv(G′) then

5: G′← G′∪{(n,s,k)}

6: return G′

Algorithm 4 – The algorithm of the auxiliary routine Reduce Neighbor.

points will be used (or not) for encoding the neighbor (line 2). Then, for each point belonging to

the current solution, it selects candidate points for the neighbor (lines 4-5). Finally, the neighbor

is encoded with the selected points (lines 6-8).

1: procedure GENERATE-NEIGHBOR(G)

2: let D : G→{TRUE, FALSE} be an empty dictionary

3: Q← /0

4: for each (n,s,k) ∈ G do

5: D← SELECT-NEIGHBORING-POINTS((n,s,k),D)

6: for each (n,s,k) ∈ D do

7: if D[(n,s,k)] = TRUE then

8: Q← Q∪{(n,s,k)}

9: return Q

Algorithm 5 – The algorithm of the auxiliary routine Generate Neighbor.

Our approach uses a function to map a point of the current solution to candidate points

for the neighbor, as follows:

Definition 5. The perturbation function π : G→P(G) maps each point (n,s,k) to a subset of

the generation space {(2n,s,k),(n,2s,k),(n,s,2k),(n/2,s,k),(n,s/2,k),(n,s,k/2)}.

Note that π can induce whatever point of the generation space, thereby not excluding

optimal solutions a priori. However, multiple criteria could be used for the selection of neigh-

boring points. Without loss of generality, but for compactness, this article shows a single way of

tailoring the neighborhood. Given a point (n,s,k) of the current solution, Algorithm 6 randomly

selects neighboring points that are within bounds.

89

1: procedure SELECT-NEIGHBORING-POINTS((n,s,k),D)

2: for each p ∈ π((n,s,k)) do

3: if p ∈G∧ p 6∈ D then

4: D[p]← RANDOM({TRUE, FALSE})

5: return D

Algorithm 6 – The algorithm of the auxiliary routine Select Neighboring Points.

5.4.2 The Model-Based Driver

The Driver dynamically exploits constraints when commanding the RTG engine5. The

choice of constraints relies on a model that (pessimistically) assumes that transitions are in-

duced either by replacements or by collisions (as discussed in Chapter 4). The Driver applies

a constraint to induce a test favoring replacements and then a different constraint to induce the

next test favoring collisions. The alternation between these two types of bias makes transitions

less likely to be revisited, which favors coverage evolution. To induce such alternation, the

Driver lowers the probability of transitions from one type in an attempt to raise the probability

of transitions of the other type. The control on replacement events is the key to enabling such

alternation, as follows.

For higher controllability, we enforce uniform competition. Remind that k defines the

number of distinct cache sets for which the s shared locations compete. For each value of s, we

constrain the values that can be assigned to k such that exactly s/k locations compete for each

cache set. Such uniform distribution maximizes the probability of controlling replacements in

all sets for a given setting of s.

Let α denote the associativity of a cache. For inducing a replacement event in a given

cache set, a sequence of at least α + 1 references to distinct locations competing for that set is

required. Therefore, a necessary condition for enabling replacement is s/k≥ α +1. Conversely,

a sufficient condition for disabling replacement in all sets is s/k < α + 1⇔ s/k ≤ α . Thus,

there is a threshold s/α for the value of k above which replacement is certainly disabled, but

below which it may be enabled depending on the sequence of references that turns out to be

generated randomly. Note that such threshold is different for hierarchical levels with typically

distinct degrees of associativity. This indicates that multiple values of k should be exploited for

controlling transitions in the FSMs at all levels.

Therefore, the Driver can stimulate the intended alternation by selecting values of k

that enable or disable replacement events. Such selection relies on the following model. Let

NR(set(a)) denote the average number of replacement events for the cache set assigned to the

memory block where location a resides. An increase in NR(set(a)) raises the probability of

transitions induced by replacements. We have to count the number of replacement events, which

depends on the associativity and on the memory access pattern. The ratio n/k measures how

5 The RTG engine (in its turn) enforces such constraints with the biasing technique (described in Chapter 3) to

induce successive tests.

90

many operations are mapped to the same cache set on average. A best-case access pattern for

replacement events is such that every element of a sequence of n/k accesses makes reference to

distinct locations mapped to the same set. Replacement takes place at every α+1 such accesses.

Thus, an upper bound for the average number of replacements is Nmax
R =(n/k)/(α +1). A worst-

case pattern for replacement events is such that every element of a subsequence of n/s accesses

makes reference to the same location, then another subsequence of n/s accesses makes reference

to another location, and so on. There are s such subsequences, s/k of them map to the same set

(on average), and replacement takes place at every α + 1 transitions between them. Thus, a

lower bound for the average number of replacements is Nmin
R =(s/k)/(α+1).

Thus, we can estimate the number of replacement-induced transitions as proportional

to the average number of operations per set, i.e. n/k (best case), or locations per set, i.e. s/k

(worst case). The Driver tries to either maximize or minimize that number for stimulating

either replacement-induced or collision-induced transitions. Note that, although the model is

transition-oriented, it just serves as a proxy for (indirectly) increasing coverage under whichever

metric is adopted by the design environment. Algorithm 7 relies on such mechanism for setting

a distinct constraint on each random test so as to favor either replacements or collisions.

1: procedure DRIVER(G)

2: x← 0

3: repeat

4: P∗←{(s,k) : ∃(n,s,k) ∈ G}
5: repeat

6: if x = 0 then

7: k∗←min{k : (s,k) ∈ P∗}
8: s∗←max{s : (s,k) ∈ P∗∧ k = k∗}
9: x← 1

10: else

11: s∗←min{s : (s,k) ∈ P∗}
12: k∗←max{k : (s,k) ∈ P∗∧ s = s∗}
13: x← 0

14: n←min{n : (n,s,k) ∈ G∧ s = s∗∧ k = k∗}
15: RTG(n,s∗,k∗)
16: G← G\{(n,s∗,k∗)}
17: P∗← P∗ \{(s∗,k∗)}
18: V ←V ∪{(n,s∗,k∗)}
19: until (P∗ = /0)∨ (cv(V) = 1)
20: until (G = /0)∨ (cv(V) = 1)

Algorithm 7 – The algorithm underlying the Driver.

We let x be a Boolean value, and we let RTG(n,s,k) denote the invocation of the RTG

engine for creating a test.

The outer loop (lines 3-20) iteratively visits the points corresponding to a given candi-

date solution G until all are visited or full coverage is reached. In each iteration, P∗ keeps the

generation subspace S×K induced by the points of the candidate solution that have not been

visited yet.

91

The inner loop (lines 5-19) visits those points in an order that tries to maximize cover-

age in minimal time. In each iteration, lines 6-13 induce an alternation between a test favoring

replacements and a test favoring collisions, according to the above model. Besides, some rank-

ing is used to better control the effect of alternation. Lines 7-8 rank the choice of k before s to

stimulate replacement at as most hierarchical levels as possible, whereas lines 11-12 rank the

choice of k after s to avoid replacement at as most levels as possible, thereby stimulating colli-

sions at most of them. Once a pair (s∗,k∗) is chosen, the inner loop selects the point (n,s∗,k∗)

corresponding to the minimum test size (line 14). This selection is another attempt to increase

coverage in minimal time. The inner loop induces the generation of a test in each iteration (line

15), and removes the selected point from those to be visited (line 16).

As a result, successive iterations of the inner loop induce tests where the intended al-

ternation is applied to points (n,s∗,k∗) with possibly distinct test sizes, as opposed to our early

technique (described in Chapter 4), whose heuristics restricted exploration to neighborhoods

corresponding to fixed test sizes. Thus, Algorithm 7 is a generalization that improves the syn-

ergy between Driver and Explorer.

Finally, let us assess the impact of the proposed approach on time complexity. Test

generation is dominated by the time complexity of the RTG engine, which is polynomial (AN-

DRADE; GRAF; SANTOS, 2020). The complexity of the verification algorithms underlying

the adopted MCM checker is also polynomial (FREITAS; RAMBO; SANTOS, 2013).

5.5 EXPERIMENTAL EVALUATION

5.5.1 Experimental setup

We evaluated the hybrid test generator (HTG) built with the proposed approach as

compared to pure model-based and data-driven generators. The former is the Coverage-driven

Test Generator (CTG) built with our early technique (ANDRADE et al., 2018). The latter is

the state-of-the-art McVerSi (ELVER; NAGARAJAN, 2016) test generator (MTG), which is

available in the public domain (ELVER, 2016). We preserved all genetic parameters exactly as

they were originally set in (ELVER; NAGARAJAN, 2016).

We relied on a checker similar to (FREITAS; RAMBO; SANTOS, 2013) and on

gem5’s infrastructure (BINKERT et al., 2011) for simulation (O3, Ruby, and simple as CPU,

memory, and network models). For the designs, we adopted either a 2-level (L1, L2) MOESI

or a 3-level (L0, L1, L2)6 MESI directory protocol with 4KB (directed-mapped) private caches

at L0, 64KB (2-way) private caches at L1, and a 2MB (8-way) shared L2 cache, all with same

block size (64 bytes).

For observing to which extent the generators are independent of coverage metric, they

were all evaluated under two different metrics: one tracking structural coverage, another track-

6 This is the original labeling used in the gem5 implementation, which conceptually corresponds to the standard

levels (L1, L2, L3).

92

ing functional coverage. While running a test, we tracked the number of distinct transitions

covered in the code of each cache controller’s FSM. For the structural metric, no distinction

was made between identical controller instances in distinct core domains (as in (ELVER; NA-

GARAJAN, 2016)). However, a functional metric should distinguish memory events in multiple

core domains as a result of every coherence transaction. Since the global product of all local

FSMs leads to a state space that grows exponentially with core count, an useful metric should

avoid full enumeration by restricting the scope while still capturing the impact of the most rel-

evant memory events. That is why we adopted a functional metric that distinguishes transitions

between identical controller instances in distinct core domains.

The generators differ in which parameters are statically defined by the user and which

are dynamically set by their engines. The MTG requires the static definition of a fixed test length

and a single address-space constraint, while the HTG and CTG dynamically exploit variable

test lengths and multiple address-space constraints (as a result of varying the parameter k). We

report results for the MTG under the (best) static constraint defined in (ELVER; NAGARAJAN,

2016): the test memory size TM=8KB. McVersi is free to select as many locations as available

within its useful address space. For HTG and CTG, however, the number of locations must

belong to a pre-specified range. To accommodate such difference, we compared the generators

under the same upper bound on the number of (useful) memory locations. Under the adopted

constraint that enforces uniform distribution of locations over cache sets, the maximum number

of block-aligned locations is 128 TM=8KB. As a result, we adopted S = {4,8,16,32,64,128} for

HTG and CTG.

Table 15 – Studied errors for MESI 3-level designs

ID State Input event Next state Precluded output action

E.5.1 (L1) IS_I Data_all_Acks I writeDataFromL2Response

E.5.2 (L1)

IS Inv IS instead of IS_I (preserved)

SM Data_all_Acks M (preserved as in (IM, M))

SM Data SM (preserved as in (IM, SM))

E.5.3 (L1) IS_I DataS_fromL1 I writeDataFromL2Response

E.5.4 (L1) E_IL0 WriteBack MM_IL0 writeDataFromL0Request

E.5.5 (L1) S L0_Invalidate_Own SS instead of S_IL0 forward_eviction_to_L0

We first measured the cumulative coverage resulting from the execution of a sequence

of tests on designs containing no errors. Then we inserted different artificial errors by changing

the FSMs (either by modifying the next state or precluding some due output action)7. Each

faulty design contained a single, distinct error. The errors studied in our experiments are de-

scribed in Tables 15 and 16.8 We measured the runtime until the error was found or until the

7 Although our checker is also able to find consistency errors, we focused on coherence errors for experimental

convenience, without loss of generality.
8 Among the MESI 3-level design errors used in the previous chapter, we selected – for the experiments reported

93

Table 16 – Studied errors for MOESI 2-level designs

ID State Input event Next state Precluded output action

e.5.1 (L1) SI Writeback_Ack_Data I Data block in sendData

e.5.2 (L2) ILXW L1_WBDIRTYDATA M writeDataToCache

e.5.3 (L1) OM Fwd_GETS OM Data block in sendData

e.5.4 (L2) ILOXW L1_WBCLEANDATA M writeDataToCache

e.5.5 (L1) SM Fwd_GETS SM Data block in sendData

Directing Engine stopped generation. Each generated test was executed five times under differ-

ent simulation states (not related to the test itself) in such a way that the distinct executions of

the same test are all perturbed differently (ELVER; NAGARAJAN, 2016). To get the reported

values, we launched each generator ten times with different seeds, and we took the median val-

ues of the resulting distributions. Runtimes were measured in an Intel Xeon E5430 workstation

(2.66 GHz, 8GB memory).

5.5.2 Structural coverage evolution

Since the initial verification phase does not display interesting aspects of the generators

under comparison (due to transitions that are easy to stimulate randomly), we focus on the

intermediate phase (after a few tests have been executed) and the final phase (after many tests

have been executed), where sophisticated techniques are needed for increasing coverage.

Figure 13a shows the evolution for a MESI 3-level design. Let us first focus on the

MTG’s behavior. In the intermediate phase, large tests pay off. As compared to n=1Ki, tests

with n=64Ki lead to higher coverage (until they break even around 6000s). In the final phase,

short tests pay off instead, because increasing coverage values (above a certain threshold) be-

comes more dependent on the MTG’s genetic algorithm, which is sensitive to test throughput.

As a result, for covering 94.65% of the transitions, the MTG required 7 hours when n=1Ki, but

around 10 hours when n=64Ki.

Let us now compare the CTG’s behavior with the MTG’s. Since the CTG is not data-

driven, it stops generation as soon as the generation space is exhausted (in this case, after 9

hours). As opposed to the MTG, the CTG automatically adjusts the test size during verification.

The CTG became superior to the MTG after running for 5 minutes (for n=1Ki) and 30 minutes

(for n=64Ki). After that, the CTG always led to higher coverage. The MTG reached its maximal

coverage (94.88%) after 7 hours, whereas the CTG reached that same coverage after only 2.5

hours, and attained its own maximal coverage (96.28%) after 7.5 hours.

Finally, let us compare the HTG with the others. HTG and MTG reached their highest

in this chapter – the ones that were the hardest to find with all generators. This focus on the most challenging

errors is an attempt to capture design scenarios that actually deserve sophisticated generators.

95

coverage values, i.e. 96.28% and 94.88% in around 6 and 7 hours, respectively. Although

both allow dynamic coverage control, the HTG reached the MTG’s maximal coverage 4.6

times faster. This indicates that the HTG’s exploration of neighborhoods and exploitation of

constraints (when properly coupled) can lead to better evolution than genetic-based learning.

Albeit both HTG and CTG dynamically exploit constraints, the former exhibited superior cov-

erage evolution from the intermediate up to the final phase. Thus, the superiority of the HTG

over the CTG does not come from their similar model-based policy (serialization of constraints),

but it is due to the HTG’s data-driven policy (exploration of neighborhoods). The CTG favors

test throughput: it fully explores a plane of the generation space corresponding to the minimum

test size, before fully exploring the next plane corresponding to a larger test size. The results

indicate that the HTG’s policy is better for two reasons: (1) the partial exploration of a plane

of generation space allows the early run of a few larger test programs, which favors coverage

growth, and (2) the perturbation function (devoid of built-in heuristics) is more effective for

exploring multiple test sizes in the same suite.

Figure 13b shows that the more complex MOESI 2-level protocol enhances the differ-

ences between the generators. The MTG’s behavior was more sensitive to test size: it is able to

achieve the same final coverage as the HTG only for n=64Ki. The CTG was always superior to

the MTG (after the 3 initial minutes). The HTG reached the maximal coverage 4.8 times faster

than the MTG, although both exploit dynamic coverage control. Besides, the HTG stopped

generation after 7 hours (when the whole generation space was explored), while the MTG kept

generating tests up to the 10-hour time limit. After 7 min, the HTG became superior to the

CTG until they reach the same coverage (95.26%), which clearly shows the impact of the novel

data-driven Explorer.

The contrast between Figure 13a and Figure 13b indicate that designs relying on more

complex protocols (such as MOESI) are likelier to benefit from the novel data-driven Explorer

and from the generalized model-based Driver, because their synergy leads to higher controlla-

bility.

5.5.3 Functional coverage evolution

Figure 14a shows the functional coverage evolution for a MESI 3-level design. Simi-

larly to what happened for the structural metric, short tests pay off for the MTG at the final ver-

ification phase. After 2.5 hours, HTG, CTG, and MTG covered, respectively, 88.72%, 87.73%,

and 87.53% of the transitions. After 10 hours, both HTG and CTG ended up reaching the same

coverage of 90.96%, while the MTG reached 91.04% for n=64Ki and 91.84% for n=1Ki. This

is the only scenario where higher final coverage was observed for the MTG as compared to the

HTG. The most likely difference to explain this behavior seems the MTG’s exploitation of finer

granularity for the amount of shared locations.

Figure 14b shows the functional coverage evolution for a MOESI 2-level design. Simi-

larly to what was observed for the structural metric, the MTG reached higher coverage (92.62%)

97

for the largest test size than for the shortest one (90.01%). However, even after running for 10

hours, the MTG covered less transitions (92.62%) than the HTG was able to cover (93.15%) in

only 5.5 hours. This contrasts with the structural coverage evolution observed for MOESI 2-

level, where the MTG reached the same final coverage as the HTG. This indicates that the HTG

can reach higher coverage than the MTG, because the higher complexity of the MOESI proto-

col is better captured by the more expressive metric. Similarly to what was observed for the

structural metric, the HTG displayed better evolution than the CTG, but the same final coverage

(93.15%).

By contrasting all four coverage evolution scenarios, we conclude that our hybrid ap-

proach was superior in most cases, especially for the more complex MOESI protocol. This

indicates that a well-designed hybrid approach is likely to cope with the growing complexity

of protocols used in high-end designs, which is better tracked by more expressive coverage

metrics.

5.5.4 Error discovery rate and detection time

Tables 17 and 18 show the median time (in seconds) required by each technique for

exposing every error. They show the best values in bold and report (between parentheses) how

many (out of ten) test suites exposed an error.

Table 17 – Time for finding errors in MESI 3-level 32-core designs =in seconds

MTG CTG HTG

Error Metric 1Ki 64Ki {1Ki, ..., 64Ki} {1Ki, ..., 64Ki}

E.5.1
structural 138 (10) 57 (10) 109 (10) 29 (10)

functional 89 (10) 72 (10) 114 (10) 20 (10)

E.5.2
structural 622 (10) 166 (10) 114 (10) 69 (10)

functional 827 (10) 160 (10) 126 (10) 75 (10)

E.5.3
structural 524 (10) 493 (10) 352 (10) 43 (10)

functional 919 (10) 798 (10) 362 (10) 61 (10)

E.5.4
structural 7370 (8) 2752 (10) 261 (10) 665 (10)

functional 5491 (9) 2649 (10) 690 (10) 838 (10)

E.5.5
structural 11958 (10) 17532 (8) 2026 (10) 821 (10)

functional 11110 (10) 23980 (8) 1769 (10) 851 (10)

For MESI 3-level designs, all CTG and HTG suites exposed every error (while some

MTG suites failed to expose E.5.4 and E.5.5). The HTG required the least time in all cases but

E.5.4. In this case, the HTG required a slightly worse effort (10–14 minutes) than the CTG (4–

11 minutes), but significantly better than the MTG (1.5–2 hours to uncover E.5.4). The HTG

was from 1.65 to 8 times faster than the CTG (except for E.5.4, for which the CTG was 2.5

times faster). The HTG was from 1.65 to 28 times faster than the MTG.

98

Table 18 – Time for finding errors in MOESI 2-level 32-core designs.

MTG CTG HTG

Error Metric 1Ki 64Ki {1Ki, ..., 64Ki} {1Ki, ..., 64Ki}

e.5.1
structural 8 (10) 48 (10) 8 (10) 7 (10)

functional 8 (10) 47 (10) 8 (10) 7 (10)

e.5.2
structural 8 (10) 47 (10) 8 (10) 7 (10)

functional 8 (10) 48 (10) 8 (10) 7 (10)

e.5.3
structural 49 (10) 48 (10) 78 (10) 35 (10)

functional 42 (10) 51 (10) 75 (10) 25 (10)

e.5.4
structural 2692 (5) 2643 (10) 1041 (10) 641 (10)

functional 4191 (5) 2552 (10) 1043 (10) 1073 (10)

e.5.5
structural 3863 (3) 2861 (10) 982 (10) 586 (10)

functional 4011 (2) 1965 (10) 1050 (10) 1044 (10)

For MOESI 2-level designs, the HTG required the least time in nine out of ten cases,

where it was from 1.14 to 3 times faster than CTG, and it was from 1.14 to 6.6 times faster than

the MTG. The exception was e.5.4 under the functional metric, for which the CTG was slightly

faster than the HTG (in this case, the CTG’s greedy shorter-test-size-first heuristic happened to

pay off). The HTG and the CTG were able to expose every error in less than 18 minutes, while

the MTG took as much as one hour and 10 minutes. Besides, the MTG (for n=1Ki) was unable

of exposing errors in e.5.4 and e.5.5 for 50% and 70–80% of the test suites.

Overall, the HTG was able to consistently expose every error in all trials, indepen-

dently of metric and protocol, while the MTG’s error discovery rate was sensitive to metric and

test size. Thus, the HTG seems more robust to cope with different verification scenarios.

5.6 CONCLUSIONS

Our experimental evaluation relied on 54483 test runs, each one executed five times

in distinct simulation conditions, i.e. 272415 test executions in total. The results show that

hybrid coverage-driven RTG can be superior to purely data-driven or model-based approaches,

not as a result of plain composition, but due to proper decoupling of competences: data-driven

(neighborhood) exploration and model-based (constraint) exploitation. The results also indicate

that a well-designed hybrid approach is likely to pay off as designs tend to rely on more complex

protocols, being effective in discovering design errors (quite independently of the coverage

metric adopted in a given design environment). By allowing superior coverage evolution and

high error discovery rate, a hybrid approach can raise the confidence in face of tight verification

deadlines.

99

6 A COMPARISON OF APPROACHES TO DIRECTED TEST GENERATION

This chapter describes an experimental evaluation of the Directing Engines proposed

in this thesis (used by the hybrid HTG and by the model-based CTG) as compared to the one

used by a recently reported directed test generator based on Reinforced Learning (RLG), which

is a pure data-driven approach (PFEIFER et al., 2020). The author of this thesis influenced the

design of the RLG with respect to the choice of Random Test Generation (RTG) engine, and he

helped coupling it to the new Directing Engine, which was developed by a fellow co-worker1.

Like the CTG (proposed in Chapter 4) and the HTG (proposed in Chapter 5), the RLG uses

the same RTG engine proposed in Chapter 3. An important consequence of such choice is

that it enables a comparison of different approaches for exactly the same generation space and

under the same level of constraint exploitation (HTG, CTG, and RLG all rely on chaining and

biasing, and all use the same granularity for the generation parameters, as opposed to the MTG,

the third-party generator employed in previous chapters as a reference for evaluation).

Section 6.1 summarizes the key ideas underlying the Directing Engine of the RLG.

Section 6.2 compares RLG, CTG, and HTG as representatives of data-driven, model-based,

and hybrid approaches. Section 6.3 draws the conclusions on that comparison.

6.1 A BRIEFING ON THE KEY IDEAS BEHIND THE RLG

The RLG (PFEIFER et al., 2020) addresses DTG as a decision process. It models the

definition of a sequence of tests as a decision process, and it tries to find a decision-making

policy that maximizes cumulative rewards resulting from successive actions taken by an agent.

The formulation of the design process is as follows. The environment includes an RTG

engine, the simulator, and the Coverage Analyzer. The Directing Engine is formulated as an

agent that takes actions in such environment. The Coverage Analyzer interprets the environ-

ment into a state representation and a reward value is assigned to each action taken in a given

state. The equation defining reward values is a function of coverage and time.

Since the agent interacts with the environment through the RTG engine’s interface,

actions are formulated in terms of parameters of the RTG engine. The RLG version used for

comparison in the next section employs the parameters n, s, and k (defined in Chapter 3), and

it takes six distinct actions based on them. The implementation employs an adaptation of the

Rainbow agent (HESSEL et al., 2018), where the original deep neural network was replaced by

a recurrent neural network.

1 The Directing Engine used by the RLG will be described in detail – together with experimental evidence on

learning-specific issues – as part of the MSc. dissertation by Nícolas Pfeifer, who is the first author of the paper

where the RLG was reported (PFEIFER et al., 2020). The author of this thesis is a co-author of that paper.

100

6.2 EXPERIMENTAL EVALUATION

In the previous chapter, we have evaluated the proposed hybrid test generator (HTG)

with respect to pure model-based and data-driven generators (CTG and MTG, respectively).

This section extends such evaluation to also compare the HTG to the RLG, a data-driven gen-

erator where Machine Learning is exploited to direct random test generation for synthesizing

programs. This complement is relevant, because the MTG – in contrast – is a data-driven gen-

erator where Machine Learning is exploited to directly generate test programs (without the use

of an RTG engine). Since the RLG relies on the same constrained random test generator as the

HTG and the CTG, this section reports results under the same experimental setup described in

Section 5.5 (including the errors specified in Tables 15 and 16). Regarding the setup for the

RLG itself, we preserved the three-parameter actions described in Pfeifer et al. (2020).

6.2.1 Structural coverage evolution

Figure 15a shows the coverage evolution spanning the intermediate and the final phases

of test generation (but omitting the initial phase) for a MESI 3-level design. Let us first focus

on the comparison of generators whose policy of constraint exploitation is the same (i.e. HTG,

CTG, and RLG).

In the intermediate phase, the HTG exhibited the best coverage evolution, while the

CTG was superior to the RLG (until they broke even after 14000 seconds). The worse evolution

of the RLG in the intermediate phase means that the initial phase was not long enough for it

to learn how to properly constrain random test generation. Indeed, proper learning takes place

exactly during the intermediate phase. That is why, only at the final phase, the RLG displays

similar evolution as the CTG. This indicates that data-driven techniques should be expected

to be less effective at early phases of the verification process, as opposed to a model-based

technique. Although a data-driven technique could be expected to show its advantage during

the final phase, the results show otherwise. The RLG has actually shown a worse evolution

than the CTG. After running for 2.5 hours, the CTG reached 94.88% coverage while the RLG

reached 93.14% (and the HTG reached 95.58%). The HTG displayed the best evolution. While

the RLG reached its highest coverage value (95.81%) after running for around 6 hours, the

HTG obtained the same value in 3 hours (i.e. the HTG was 2 times faster). At first glance, the

superiority of the HTG could be seen as resulting from the simple combination of approaches:

the built-in model allows for better evolution in the intermediate phase, and the data-driven

engine in the final phase. However, the fact that the RLG – neither was able to match the HTG’s

maximal coverage nor the CTG’s – provides extra evidence of synergy between complementary

techniques inside the Directing Engine of the HTG.

Now let us include the MTG into the analysis. During the intermediate phase, the MTG

had a better coverage evolution than the RLG (for both test sizes, 1Ki and 64Ki), but the latter

became superior in the final phase. Such behavior could be explained by distinct constraint

101

policies and different machine learning techniques, but it could also be put down to a major

difference: the direct generation of test programs (in the MTG) and the directed random test

generation (in the RLG). Regardless the difficulty in comparing MTG and RLG, it is actually

the HTG that displayed the best overall coverage evolution. For instance, the HTG was 2.2

times faster than the RLG to reach the coverage value of 95.81%.

Figure 15b shows that the more complex MOESI 2-level protocol enhances the differ-

ences between the generators. Similarly to what happened under the other protocol, the HTG

displayed the best overall coverage evolution. Therefore, the HTG’s advantage seems indepen-

dent of coherence protocol.

Moreover, note that, again, both HTG and CTG displayed a better coverage evolution

than the RLG. Although these three generators reached the same final coverage value (95.26%),

the HTG took 2 hours, the CTG needed 5 hours, and RLG spent 6 hours (i.e. the HTG was 3

times faster than the RLG).

Yet another similarity to the behavior observed for the MESI 3-level design is that the

RLG started losing to the MTG, but displayed a better coverage evolution during the final phase.

Therefore, such final advantage of the RLG over the MTG seems independent of coherence

protocol. Note that the MTG has shown a better evolution than the RLG for the shortest test size

(1Ki) until a saturation point. Such saturation can not be explained by the different constraint

policies nor by the distinct learning techniques underlying those generators, because it does

not happen to the largest test size (64Ki). Indeed, such saturation raises a known limitation

of MTG, which requires a fixed test size for the whole test suite. This seems to indicate that

the superiority of the RLG comes from its ability to shift from one test size to another when

diminishing rewards are observed for a given test size.

It should be noted that, although the RLG reached similar final evolution as the CTG

under MESI 3-level, it failed to do the same under MOESI 2-level. This may indicate a limita-

tion of RLG when targeting more complex protocols.

In conclusion, not only the HTG was superior to all others independently of protocol,

but it exhibited a sharper evolution for the more complex of the two protocols. This makes it

promising to targeting the complexities of future protocols.

6.2.2 Functional coverage evolution

Figures 16a and 16b show the functional coverage evolution for MESI 3-level and

MOESI 2-level designs, respectively. Similarly to what we have observed for the structural

metric, the HTG displayed a better coverage evolution than the CTG and the RLG for both

designs. Once more, the more complex protocol enhanced the differences between them.

For the MESI 3-level design, CTG, RLG, and HTG covered, respectively, 87.73%,

88.03%, 88.72% at the 2.5 hours mark (9000s). While the RLG required 10 hours to reach its

highest coverage value (90.33%), the HTG required only 6.5 hours to reach the same coverage

(i.e the HTG was 1.5 times faster).

104

For the MOESI 2-level design, CTG, RLG, and HTG covered, respectively, 92.04%,

92.53%, and 92.93% after 2.5 hours. While the RLG required 7.5 hours to reach its highest

coverage value (93.11%), the HTG required only 3.4 hours to reach the same coverage (i.e. the

HTG was 2.2 times faster).

Therefore, for the same generation space and under the same policy of constraint ex-

ploitation, the experimental evidence indicates that the hybrid approach is superior to pure data-

driven or model-based approaches, independently of protocol and coverage metric. Moreover,

such advantage seems to be higher for more complex coherence protocols.

Recall that (as already reported in Chapter 5) the MTG reached the highest final cov-

erage as compared to CTG and HTG for MESI 3-level under functional coverage. Even with

its inclusion into the comparison, the RLG was also unable to reach the MTG’s final cover-

age. Since CTG, HTG, and RLG all have the same generation space and exploit the same

constraints, this complementary result reinforces the explanation given in the previous chapter.

Such advantage of the MTG comes from the finer granularity it allows for one of the generation

parameters: the amount of shared locations (s). However, note that, after 2.5 hours (9000s),

the MTG reached the smallest coverage value among all four generators (i.e. 87.53%). The

disadvantage of the MTG in terms of coverage evolution probably comes from the fixed test

size (n) limitation, as already mentioned in the previous section).

6.2.3 Error discovery rate and detection time

Tables 17 and 18 show the median time (in seconds) required by each technique to

expose every error. They show the best values in bold and report (between parentheses) how

many (out of ten) test suites exposed an error.

For MESI 3-level designs, all CTG, HTG, and RLG test suites exposed every error.

On the one hand, the RLG required the least time to expose E.5.1 and E.5.2 (in both cases), and

E.5.3 (in one case). Note, however, that the times required by the HTG for those errors were

competitive with the RLG’s (both found E.5.1, E.5.2, and E.5.3 in less than one minute). This

shows that for discovering design errors that are easy-to-find (the ones that are first discovered

in the verification process), the hybrid approach may not always be advantageous. On the

other hand, the HTG required significantly less time than the RLG to expose the two most

challenging among the studied errors. The HTG was (from 2.4 to 4.3 times) faster than the

RLG to expose E.5.4 and E.5.5, independently of the coverage metric. Since the verification

process is over only after ensuring that no design error can be found after proper coverage is

reached, the bottleneck for verification lies in the time required to expose the most challenging

errors. Therefore, the advantage of the HTG over the RLG for E.5.4 and E.5.5 seems more

significant in practice than the RLG’s advantage for the three other errors.

For MOESI 2-level designs, the HTG required the least time in 7 out of 10 cases,

for which it was from 2.4 to 7.2 times faster than the RLG. In 2 out of 10 cases, the RLG

required the least time. The RLG was from 1.9 to 2.3 times faster than the HTG to expose e.5.3,

105

Table 19 – Time for finding errors in MESI 3-level 32-core designs.

MTG CTG HTG RLG

Error Metric 1Ki 64Ki {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki}

E.5.1
structural 138 (10) 57 (10) 109 (10) 29 (10) 12 (10)

functional 89 (10) 72 (10) 114 (10) 20 (10) 12 (10)

E.5.2
structural 622 (10) 166 (10) 114 (10) 69 (10) 36 (10)

functional 827 (10) 160 (10) 126 (10) 75 (10) 36 (10)

E.5.3
structural 524 (10) 493 (10) 352 (10) 43 (10) 59 (10)

functional 919 (10) 798 (10) 362 (10) 61 (10) 59 (10)

E.5.4
structural 7370 (8) 2752 (10) 261 (10) 665 (10) 2846 (10)

functional 5491 (9) 2649 (10) 690 (10) 838 (10) 2198 (10)

E.5.5
structural 11958 (10) 17532 (8) 2026 (10) 821 (10) 2335 (10)

functional 11110 (10) 23980 (8) 1769 (10) 851 (10) 2039 (10)

Table 20 – Time for finding errors in MOESI 2-level 32-core designs.

MTG CTG HTG RLG

Error Metric 1Ki 64Ki {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki}

e.5.1
structural 8 (10) 48 (10) 8 (10) 7 (10) 17 (10)

functional 8 (10) 47 (10) 8 (10) 7 (10) 17 (10)

e.5.2
structural 8 (10) 47 (10) 8 (10) 7 (10) 18 (10)

functional 8 (10) 48 (10) 8 (10) 7 (10) 18 (10)

e.5.3
structural 49 (10) 48 (10) 78 (10) 35 (10) 13 (10)

functional 42 (10) 51 (10) 75 (10) 25 (10) 13 (10)

e.5.4
structural 2692 (5) 2643 (10) 1041 (10) 641 (10) 4509 (10)

functional 4191 (5) 2552 (10) 1043 (10) 1073 (10) 6127 (10)

e.5.5
structural 3863 (3) 2861 (10) 982 (10) 586 (10) 4262 (10)

functional 4011 (2) 1965 (10) 1050 (10) 1044 (10) 3739 (10)

respectively). As already pointed out in the previous chapter, the CTG was the best generator

in a single case (e.5.4 under functional coverage). In this case, the HTG was the second best

generator after the CTG (and the HTG was 5.7 times faster than the RLG). Similarly to what was

observed for MESI 3-level designs, the HTG was the fastest for exposing the most challenging

errors (the HTG was from 3.6 to 7.2 times faster than the RLG for e.5.4 and e.5.5).

In short, the HTG was able to consistently expose every error in all trials, indepen-

dently of metric and protocol. While the RLG required more than 30 minutes to expose the

most challenging errors, the HTG exposed all errors in less than 20 minutes. Thus, even when

compared to the RLG, the HTG seems more robust to cope with different verification scenarios

and more efficient to expose errors.

106

6.3 CONCLUSIONS

This chapter reported an experimental evaluation relying on 54923 test runs, each

one executed five times in distinct simulation conditions (i.e. 274615 test executions in to-

tal). It compared three coverage-directed constrained random test generators under different

approaches: model-based, data-driven, and hybrid. Besides, it contrasted their results with

those obtained by a directed test generator that does not rely on constrained random test gen-

eration. The results showed that the ability of a generator to provide proper coverage and error

discovery in less time does not come simply from the choice of the technique adopted to direct

generation (e.g. Reinforcement Learning or Genetic Programming), but it is strongly depen-

dent on constraint exploitation and generation space exploration. Besides, they also showed

that a data-driven technique that exploits coverage feedback (e.g. RLG) tends to be superior to

a data-driven technique that does not (e.g. MTG).

The experiments provided evidence that coverage-directed constrained random test

generation leads to superior coverage evolution with time when an hybrid approach enables

proper synergy between model-based and data-driven engines. Despite the superiority of the

hybrid approach, one scenario was found for which a directed test generator (not relying on

an RTG engine) was able to reach higher coverage. However, this does not seem to be due

to a limitation of the hybrid approach itself, but a limitation on the choice of granularity for

one of the parameters defining the generation space (which could be redefined, for instance,

by changing the neighborhood function). On the other hand, the results have shown that a

limitation due to a fixed test size (as in the MTG) is a poor choice for proper coverage evolution

whatever the approach adopted for directed-test generation.

107

7 CONCLUSIONS AND PERSPECTIVES

Design verification and prototype testing have long been exploiting constraints on ran-

dom test generation. In the context of shared-memory validation, conventional constraints cap-

ture basic properties of parallel programs (such as the number of memory operations, the num-

ber of threads, and the number of shared variables) for synthesizing non-deterministic tests,

which are likelier to expose anomalous behavior.

This thesis addressed (random and directed) constrained test generation by exploiting

non-conventional constraints capturing properties of caches and coherence protocols. It has

shown that their adequate exploitation tends to improve the quality of non-deterministic tests

in terms of error discovery, coverage, and effort. Since such properties were selected to be

general enough so as to avoid ties to specific protocols or hierarchies, the proposed techniques

that exploit them have the potential to be useful within a large range of designs and verification

environments.

The experimental results have shown that chaining and biasing tend to improve the

quality of tests synthesized by random test generation (Chapter 3), by pure model-based di-

rected test generation (Chapter 4), by pure data-driven directed test generation (Chapter 6), and

by hybrid directed test generation (Chapters 5). The keys to such improvement lies in the use

of canonical dependence chains to foster conflict events involving the same address (i.e. races)

and the use of proper address assignment to foster eviction events involving distinct addresses

(i.e. replacements).

The thesis has proposed two novel directed test generation techniques:

• A model-based generator (CTG) that is driven by a coverage model where conflict and

eviction events are used to estimate transition coverage, which is used as proxy to the

actual coverage metric, thereby granting large independence from the metric adopted in

different verification environments.

• An hybrid generator (HTG) that combines the exploration of neighborhoods (data-driven)

and the exploitation of constraints (model-based) in such a way that optimal solutions are

kept in the search space.

This thesis has shown that, when chaining and biasing are used to control data races

and cache replacements, the proposed hybrid approach (HTG) is superior (in terms of coverage

evolution) as compared with the proposed model-based approach (CTG) and with the two most

recently reported (pure) data-driven generators: one based on Genetic Programming (MTG),

another on Reinforcement Learning (RLG).

The exploitation of constraints capturing other general shared-memory phenomena can

be devised as future work. For instance, the pragmatic decision of restraining biasing to eviction

events for directed test generation let unexploited the biasing for fostering false sharing events

108

(although the generic biasing technique described in Chapter 3 originally supports it). This is

likely to improve the quality of learning-based generators.

Moreover, it has been shown that, when learning-based techniques are used to build

directed test generators (such as Genetic Programming in the MTG and Reinforcement Learning

in the RLG), they are unlikely to display superior coverage evolution if: (1) they do not exploit

constraints capturing general shared-memory properties dynamically (as it happens for MTG)

and (2) they do not rely on some model to guide coverage evolution while they are still learning

(as it happens for both RLG and MTG).

Since next generation Electronic Design Automation (EDA) tools are expected to rely

on learning techniques, their use for directed test generation is likely. The findings reported in

this thesis indicate that, for reaching high coverage in less time in future generation approaches,

it is not sufficient to rely on learning-based data-driven approaches. Although the innovation

may well come from advanced learning, it should not overlook the legacy from constrained

random test generation nor the efficiency of proper coverage models.

The contributions of this thesis were reported in two journal articles (ANDRADE;

GRAF; SANTOS, 2020; ANDRADE et al., 2020) and two conference papers (ANDRADE et

al., 2018; PFEIFER et al., 2020).

109

BIBLIOGRAPHY

ADIR, A. et al. Genesys-Pro: Innovations in Test Program Generation for Functional Processor

Verification. IEEE Design Test of Computers, v. 21, n. 2, p. 84–93, 3 2004. ISSN 0740-7475.

ADIR, A.; SHUREK, G. Generating concurrent test-programs with collisions for multi-

processor verification. In: 7th IEEE International High-Level Design Validation and Test

Workshop. [S.l.]: IEEE, 2002. p. 77–82.

ADVE, S. V.; GHARACHORLOO, K. Shared Memory Consistency Models: a Tutorial.

Computer, IEEE, v. 29, n. 12, p. 66–76, 12 1996. ISSN 0018-9162.

ALGLAVE, J. et al. GPU Concurrency: Weak Behaviours and Programming Assumptions.

SIGPLAN Notices, Association for Computing Machinery, New York, NY, USA, v. 50, n. 4,

p. 577–591, 3 2015. ISSN 0362-1340.

ALGLAVE, J. et al. Fences in Weak Memory Models. In: TOUILI, T.; COOK, B.; JACKSON,

P. (Ed.). Computer Aided Verification. Berlin, Heidelberg: Springer-Verlag, 2010. p.

258–272. ISBN 978-3-642-14295-6.

ANDRADE, G. A. G. Exploiting canonical dependence chains and address biasing

constraints to improve random test generation for shared-memory verification.

Dissertação (Mestrado) — Universidade Federal de Santa Catarina, Florianópolis, 2017.

ANDRADE, G. A. G. et al. Steep Coverage-ascent Directed Test Generation for Shared-

memory Verification of Multicore Chips. In: IEEE/ACM International Conference on

Computer-Aided Design. New York, NY, USA: Association for Computing Machinery, 2018.

ISBN 978-1-4503-5950-4.

ANDRADE, G. A. G. et al. A Directed Test Generator for Shared-Memory Verification of

Multicore Chip Designs. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, IEEE, v. 39, n. 12, p. 5295–5303, 12 2020. ISSN 0278-0070.

ANDRADE, G. A. G.; GRAF, M.; SANTOS, L. C. V. dos. Chain-Based Pseudorandom

Tests for Pre-Silicon Verification of CMP Memory Systems. In: 34th IEEE International

Conference on Computer Design. [S.l.]: IEEE, 2016. p. 552–559.

ANDRADE, G. A. G.; GRAF, M.; SANTOS, L. C. V. dos. Chaining and Biasing: Test

Generation Techniques for Shared-Memory Verification. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, IEEE, v. 39, n. 3, p. 728–741, 3 2020.

ISSN 1937-4151.

ARM. ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile.

[S.l.], 2018. Disponível em: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-

reference-manual-armv8-for-armv8-a-architecture-profile.

BINKERT, N. et al. The Gem5 Simulator. SIGARCH Computer Architecture News,

Association for Computing Machinery, New York, NY, USA, v. 39, n. 2, p. 1–7, 8 2011. ISSN

0163-5964.

CHEN, Y. et al. Fast Complete Memory Consistency Verification. In: 15th International

Symposium on High Performance Computer Architecture. [S.l.]: IEEE, 2009. p. 381–392.

110

DEVADAS, S. Toward a Coherent Multicore Memory Model. Computer, IEEE, n. 10, p.

30–31, 2013.

ELVER, M. McVerSi Framework. [S.l.]: GitHub, 2016. https://github.com/melver/mc2lib.

ELVER, M.; NAGARAJAN, V. McVerSi: A test generation framework for fast memory

consistency verification in simulation. In: International Symposium on High Performance

Computer Architecture. [S.l.]: IEEE, 2016. p. 618–630.

ESMAEILZADEH, H. et al. Dark Silicon and the End of Multicore Scaling. In: IEEE. 38th

Annual International Symposium on Computer Architecture. [S.l.], 2011. p. 365–376.

ESMAEILZADEH, H. et al. Dark Silicon and the End of Multicore Scaling. IEEE Micro,

IEEE, v. 32, n. 3, p. 122–134, 2012.

FINE, S. et al. Harnessing Machine Learning to Improve the Success Rate of Stimuli

Generation. IEEE Transactions on Computers, IEEE Computer Society, Washington, DC,

USA, v. 55, n. 11, p. 1344–1355, 10 2006. ISSN 1557-9956.

FINE, S.; ZIV, A. Coverage Directed Test Generation for Functional Verification Using

Bayesian Networks. In: 40th Annual Design Automation Conference. New York, NY, USA:

ACM, 2003. p. 286–291. ISBN 1-58113-688-9.

FREITAS, L. S.; RAMBO, E. A.; SANTOS, L. C. V. dos. On-the-fly Verification of Memory

Consistency with Concurrent Relaxed Scoreboards. In: Design, Automation Test in Europe

Conference Exhibition. [S.l.]: IEEE, 2013. p. 631–636. ISBN 978-1-4503-2153-2. ISSN

1530-1591.

GHARACHORLOO, K. Memory consistency models for shared-memory multiprocessors.

Tese (Doutorado) — Stanford University, 1995.

GRAF, M. et al. Spec&Check: An Approach to the Building of Shared-Memory Runtime

Checkers for Multicore Chip Design Verification. In: IEEE/ACM. International Conference

on Computer-Aided Design (ICCAD). [S.l.], 2019. v. 39, n. 3, p. 728–741. ISSN 0278-0070.

HANGAL, S. et al. TSOtool: A Program for Verifying Memory Systems Using the Memory

Consistency Model. SIGARCH Computer Architecture News, Association for Computing

Machinery, New York, NY, USA, v. 32, n. 2, p. 114–123, 3 2004. ISSN 0163-5964.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture: A Quantitative

Approach. 6th. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2019. ISBN

978-0-12-811905-1.

HESSEL, M. et al. Rainbow: Combining Improvements in Deep Reinforcement Learning.

Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, v. 32, n. 1, 4 2018.

HU, W. et al. Linear Time Memory Consistency Verification. IEEE Transactions on

Computers, v. 61, n. 4, p. 502–516, 4 2012. ISSN 0018-9340.

IBM. POWER9 Processor User’s Manual. [S.l.], 2019. Disponível em:

https://ibm.ent.box.com/s/tmklq90ze7aj8f4n32er1mu3sy9u8k3k.

111

LUSTIG, D. et al. Automated Synthesis of Comprehensive Memory Model Litmus Test Suites.

In: International Conference on Architectural Support for Programming Languages and

Operating Systems. [S.l.]: Association for Computing Machinery, 2017. p. 661–675. ISBN

978-1-4503-4465-4.

LYU, Y. et al. Directed Test Generation for Validation of Cache Coherence Protocols. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 38, n. 1,

p. 163–176, 1 2019. ISSN 0278-0070.

MANOVIT, C.; HANGAL, S. Completely verifying memory consistency of test program

executions. In: International Symposium on High-Performance Computer Architecture.

[S.l.]: IEEE, 2006. p. 166–175.

MARTIN, M. M.; HILL, M. D.; SORIN, D. J. Why on-chip cache coherence is here to stay.

Communications of the ACM, Association for Computing Machinery, v. 55, n. 7, p. 78–89, 6

2012.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design RISC-V

Edition: The Hardware Software Interface. 2th. ed. [S.l.]: Morgan Kaufmann Publishers

Inc., 2020. ISBN 9780128203316.

PFEIFER, N. et al. A Reinforcement Learning Approach to Directed Test Generation for

Shared Memory Verification. In: Design, Automation & Test in Europe Conference &

Exhibition (DATE). [S.l.]: IEEE, 2020. p. 538–543. ISSN 1558-1101.

QIN, X.; MISHRA, P. Automated generation of directed tests for transition coverage in cache

coherence protocols. In: Conference on Design, Automation, and Test in Europe. [S.l.]:

EDA Consortium, 2012. p. 3–8. ISSN 1530-1591.

RAMBO, E.; HENSCHEL, O.; SANTOS, L. C. V. dos. Automatic generation of memory

consistency tests for chip multiprocessing. In: International Conference on Electronics,

Circuits and Systems. [S.l.: s.n.], 2011. p. 542–545.

RAMBO, E. A.; HENSCHEL, O. P.; SANTOS, L. C. V. dos. On ESL verification of memory

consistency for system-on-chip multiprocessing. In: Conference on Design, Automation, and

Test in Europe. [S.l.]: EDA Consortium, 2012. p. 9–14. ISSN 1530-1591.

ROY, A. et al. Fast and Generalized Polynomial Time Memory Consistency Verification.

In: BALL, T.; JONES, R. B. (Ed.). 18th International Conference on Computer Aided

Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. v. 4144, p. 503–516. ISBN

978-3-540-37411-4.

SHACHAM, O. et al. Verification of Chip Multiprocessor Memory Systems Using a Relaxed

Scoreboard. In: 41st IEEE/ACM International Symposium on Microarchitecture. Los

Alamitos, CA, USA: IEEE Computer Society, 2008. p. 294–305. ISBN 978-1-4244-2836-6.

TRIPPEL, C. et al. TriCheck: Memory Model Verification at the Trisection of Software,

Hardware, and ISA. In: 22nd International Conference on Architectural Support for

Programming Languages and Operating Systems. New York, NY, USA: Association for

Computing Machinery, 2017. p. 119–133. ISBN 978-1-4503-4465-4.

WAGNER, I.; BERTACCO, V. MCjammer: Adaptive Verification for Multi-core Designs. In:

Conference on Design, Automation, and Test in Europe. New York, NY, USA: Association

for Computing Machinery, 2008. p. 670–675. ISSN 1530-1591.

112

WATERMAN, A.; ASANOVI, K. The RISC-V Instruction Set Manual Volume I:

Unprivileged ISA. [S.l.], 2019. Disponível em: https://riscv.org/specifications/.

ZHANG, M. et al. PVCoherence: Designing Flat Coherence Protocols for Scalable

Verification. IEEE Micro, v. 35, n. 3, p. 84–91, 5 2015. ISSN 0272-1732.

	Title page
	Dedication
	Acknowledgements
	Resumo
	Resumo Expandido
	Abstract
	List of Abbreviations and Acronyms
	LIST OF SYMBOLS
	INTRODUCTION
	TRENDS IN MULTICORE CHIP DESIGN
	CHALLENGES OF SHARED-MEMORY VALIDATION
	SHARED-MEMORY FUNCTIONAL VERIFICATION GOALS
	Main approaches
	Main engines and steps
	Challenging problems tackled by this thesis

	CONTRIBUTIONS
	METHODOLOGY
	ORGANIZATION OF THIS THESIS
	ACKNOWLEDGEMENTS

	FUNDAMENTAL CONCEPTS
	Shared-memory behavior
	Collisions and conflicts
	Canonical dependence chains

	RANDOM TEST GENERATION
	RELATED WORK
	THE PROPOSED GENERATION FLOW
	A CONCEPTUAL RE-ELABORATION
	Exploitation of chains for thread generation
	Exploitation of constraints for address assignment

	EXPERIMENTAL EVALUATION
	Experimental setup
	Metrics
	Metric 1: Potential for error exposure
	Metric 2: Effectiveness in error exposure
	Metric 3: Verification effort
	Metric 4: Functional coverage

	Broad assessment of impact
	Impact on coverage over the generation space
	Impact of parameter choice on error exposure
	Impact on effectiveness over joint exposure spaces
	Impact on effort over the entire generation space

	Assessment for a fixed core count
	Impact on functional coverage
	Impact on error exposure and effort

	Conclusions

	DIRECTED TEST GENERATION
	RELATED WORK
	MAIN IDEAS BEHIND THE CONTRIBUTION
	Proposed classification of transitions
	Proposed constraints on RTG
	Constraint 1: alternation between Classes 1 and 2
	Constraint 2: uniform competition

	Proposed coverage model

	DESCRIPTION OF THE DIRECTING ENGINE
	An example of how it works
	The proposed algorithm

	Experimental evaluation
	Experimental setup
	Experimental results

	Conclusions

	HYBRID DIRECTED TEST GENERATION
	Related Work
	DTG Formulation as an optimization problem
	The Directing Engine at work: an example
	The Directing Engine: algorithms
	The Data-Driven Explorer
	The Model-Based Driver

	Experimental Evaluation
	Experimental setup
	Structural coverage evolution
	Functional coverage evolution
	Error discovery rate and detection time

	Conclusions

	A COMPARISON OF APPROACHES TO DIRECTED TEST GENERATION
	A briefing on the key ideas behind the RLG
	Experimental evaluation
	Structural coverage evolution
	Functional coverage evolution
	Error discovery rate and detection time

	Conclusions

	CONCLUSIONS AND PERSPECTIVES
	Bibliography

		2021-06-21T11:10:03-0300

		2021-06-21T20:09:22-0300

