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"Beneath all the wealth of detail in a geological map lies an elegant, orderly

simplicity."— Tuzo Wilson



RESUMO

Os avanços tecnológicos na caracterização de reservatórios de petróleo e gás, como atributos

sísmicos e sísmica 3D, enriqueceram a descrição da subsuperfície feita por especialistas. No

entanto, o processo de segmentação de imagens deste enorme volume de dados tornou-se uma

tarefa complexa. A fim de gerenciar de forma mais eficiente grandes dados sísmicos, este

trabalho explora uma rede computacionalmente mais barata, com o uso de redes neurais con-

volucionais em planos ortogonais 2D redes neurais convolucionais para classificação de fácies

e grupos lito-estratigráficos em cubos sísmicos 3D, guiados por uma heurística baseada nas

Leis da estratigrafia, que é uma das etapas no processo de caracterização de reservatórios e

exploração de óleo e gás. Foi proposta uma transferência de conhecimento de 2D para 3D, na

qual dividimos as amostras de nosso dado 3D em 3 planos ortogonais entre si e a subsequente

conversão dos parâmetros treinados para uma rede convolucional tri-dimensional equivalente.

Cada um dos planos bi-dimensionais é convenientemente convertida em uma convolução tri-

dimensional, emulando a visão de um géologo da amostra em 3 vistas ortogonais. As amostras

de ambas redes (2D e 3D) foram extraídas em posições X,Y selecionadas aleatoriamente, si-

mulando a extração de informação de poços já perfurados. A arquitetura de uma UNet foi

selecionada para a rede proposta, visto que ela é uma das mais amplamente utilizadas para tare-

fas de segmentação de imagem. A metodologia proposta foi aplicada tanto em dados sintéticos

(StanfordVI Reservoir) e dados sísmicos reais (F3-Block). Os experimentos no primeiro ob-

tiveram excelentes resultados (96% na metrica IOU e 97,9% na métrica F1-Score), melhores

que uma rede UNet 3D equivalente. Os resultados no dado F3-Block também foram superi-

ores aos obtidos na literatura (ALAUDAH et al., 2019) e de uma rede UNet 3D, obtendo um

resultado 7% maior que as demais na métrica MCA (Acurácia média por classe). Em compara-

ção a outros modelos no mesmo benchmark, a rede proposta obteve melhores resultados a um

custo computacional viável, sugerindo que essa metodologia é promissora, versátil e de fácil

replicação.

Palavras-chave: Redes Neurais Convolucionais. Segmentação de Imagem. Interpretação Sís-

mica. Inteligência Artificial.



RESUMO ESTENDIDO

Introdução

Um depósito sedimentar pode se apresentar em diferentes escalas e formas, ambas controla-

das pelo gradiente deposicional em direção à bacia (HESTHAMMER; LANDRO; FOSSEN,

2001). Um geólogo tem como objetivo olhar o dado por todas as perspectivas, de modo a ob-

ter uma classificação confiavel de um depósito e/ou suas fácies e evitar a influência do ruído

na interpretação. O mapemamento das camadas sedimentares e sua relevância econômica são

fundamentais na avaliação de um campo de petróleo, incluindo a análise de risco inerente à

atividade.

Interpretação de dados sísmico é o método mais utilizado para estimar as propriedades físicas e

geológicas na indústria de óleo e gás. Através da sísmica, geocientistas avaliam o reservatório

em relação à sua composição, fluido, dimensões e geometria.

Durante o processo de interpretação, geólogos/geofísicos utilizam análise dos sinais e seu co-

nhecimento geológico para, manualmente, dividir o dado seguindo algum critério (Cronológico,

sedimentar, geofísico) em classes. Essa tarefa tem grande potencial de aprimoramento através

de Inteligência Artificial(IA), já que esta já é amplamente aplicada em problemas de segmenta-

ção de imagens.

Nesse contexto, o presente trabalho propõe uma abordagem de IA que emula o processo de in-

terpretação de um geólogo, para uma tarefa de segmentação de imagem em sísmica 3D, através

de uma abordagem convolucional multi-ortogonal.

Objetivos

Essa tese propôe:

• Investigar se cada vista ortogonal obtém uma perfomance distinta;

• Verificar se a influência do conhecimento geológico na arquitetura da rede na perfor-

mance;

• Comparar os resultados entre uma rede multi-ortogonal e uma rede 3D equivalente, em

relação à acurácia e o custo computacional;

Metodologia

De acordo com os estudos de (O’Mahony et al., 2018), a simplificação de um modelo 3D em

múltiplos slices é uma idéia que permite operacões convolucionais eficientes e que torna viável

o emprego de redes profundas pré-treinadas em grandes Datasets. Considerando isso, e as

desvantagens de outras abordagens da literatura, a rede AOE (Anisotropic Ortogonal Ensemble)

foi proposta, usando uma estrutura baseada na UNet (RONNEBERGER; FISCHER; BROX,

2015). A UNet foi criada para tarefas de segmetação de imagens médicas, cuja aquisição é

baseada em um princípio físico semelhante ao da sísmica de reflexão. Para os experimentos

foram utilizados um dado sísmico sintético e um real. Em ambos os casos 10 coordenadas

X/Y foram aleatoriamente selecionadas, simulando poços já perfurados na área. Os dados de

treinamento 2D foram extraídos ao longo dos mesmos, assim como os dados de treinamento

3D. Os dados de teste foram todas as amostras do dado. Todas as rotinas foram implementadas

utilizando um Desktop com um processador Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz,

com 64GBRAM e uma placa de vídeo NVIDIA GeForce GTX 1080 Ti 12GB GPU. O código

está disponível em https://github.com/eltontrindade/F3-block-dataset.



Resultados e Discussão

Os resultados do treinamento em 2D já demonstram que cada vista ortogonal das amostras pos-

suem performances distintas umas das outras. A rede com amostras com a visão em planta

obteve um resultado bem inferior às demais, enquanto que a rede no plano transversal obteve

o melhor resultado geral, apesar de a rede longitudinal ter obtido um melhor resultado para a

fácies "Canal". Tais diferenças foram interpretadas como reflexo da anisotropia dos depositos

(em cada vista a associação de fácies e suas dimensões e geometrias diferem) e da frequência

de ocorrências das classes. No dado Stanford VI, as redes AOE obtiveram os melhores resul-

tados nas métricas utilizadas, melhor inclusive que uma rede UNet 3D (em média 1% melhor).

Também foram realizados experimentos no dado sísmico real do bloco F3 do mar do norte

(F3-block Dataset). Para esse dado, as classes eram unidades litoestratigraficas, que além de

possuir características litológicas também possuem uma correlação com a idade geológica de

formação. Nesse sentido, foi incorporada um conhecimento a priori baseado na Lei de Steno

(Sobreposição vertical de camadas) e a Lei de Walter. A primeira afirma que dada uma sequen-

cia de rochas empilhadas verticalmente, caso não haja nenhum evento tectonico significativo,

as camadas inferiores são mais antigas que as superiores. A segunda afirma que camadas sedi-

mentares verticalmente sobrepostas ocorrem lateralmente no tempo. De modo a adicionar essa

informação, foi extraida a profundidade para cada amostra, usando apenas a indexação do pró-

prio dado. A rede proposta obteve um resultado melhor que as da literatura em todas métricas,

em especial a rede que utilizava a sísmica e a profundidade como informação de treinamento

(aproximadamente 10% e 2% respectivamente). Esse resultado corrobora com a influência da

adição de um conhecimento geológico a priori pode levar a uma melhor performance da rede.

A rede AOE se mostrou melhor que a rede proposta por (ALAUDAH et al., 2019), fato com-

provado por um teste estatistico com um poder de 98 % e um nivel de confiança de 95%).

Considerações Finais

Esta tese de mestrado descreve nossa abordagem para um problema de Segmentação de Imagens

tri-dimensionais, através de nossa rede AOE. Este modelo foi capaz de obter uma performance

melhor com uma menor complexidade computacional. Nossa proposta de planos ortogonais

demonstrou-se viável para capturar o contexto 3D do dado e a diferença de resolução e aniso-

tropia dos corpos geológicos, que também são aplicáveis a outras áreas da ciência. Embora os

experimentos desta tese foram conduzidos apenas com a UNet como base, essa abordagem é

flexivel e pode ser utilizada com qualquer arquitetura, inclusive diferentes arquiteturas dentro

do ensemble. Essa flexibilidade, assim como sua eficiência, permite que essa metodologia seja

atrativa para a indústria do petróleo, uma vez que o enorme tamanho dos dados sísmicos requer

que a rede seja precisa e eficiente em termos de tempo processamento.

Palavras-chave: Redes Neurais Convolucionais. Segmentação de Imagem. Interpretação Sís-

mica. Inteligência Artificial.



ABSTRACT

Technological advances in oil and gas reservoir characterization, such as 3D seismic and seis-

mic attributes, enriched the subsurface’s description made by specialists. Nevertheless, image

segmentation process of this now huge volume of data became a complex task. In order to

more efficiently manage big seismic data, this work explores a computationally cheaper net-

work with the use of 2D orthogonal planes convolutional neural networks for 3D seismic cube

facies classification and lithostratigrafic groups, supported by an heuristic based on the Laws

of Stratigraphy, which is one of the steps of reservoir characterization and oil and gas explo-

ration. We proposed a 2D to 3D Transfer-learning in which we split the training samples of our

3D data as 3 orthogonal slices and convert the trained parameters to a 3D counterpart of the

network, with each direction of the training planes conveniently converted to a 3D convolution,

as if a geologist could see each sample through one of the orthogonal views. The samples for

both 2D and 3D network were extracted in random selected X,Y locations, a sampling method

that emulates the information extraction of drilled wells. Unet was selected as the backbone

of the proposed network, since it it is one of the most applied architectures in image segmen-

tation/classification tasks. Our methodology was applied in the synthetic data of the Stanford

VI-E reservoir and the real seismic data of F3-block dataset. The experiments in the former

obtained remarkable results (96 % in IOU and 97.9% in FWIU), even better than a 3D net-

work using Unet. The results in the F3-block dataset were also superior to the ones obtained

in the literature (ALAUDAH et al., 2019) and also a 3D Unet, with a MCA 7% above the pre-

vious mentioned networks. Compared to other models in the same benchmark, the proposed

Anisotropic Orthogonal Ensemble Network classifier obtained better results than other archi-

tectures of literature at a very feasible computational cost, which suggests that such approach is

a promising one and of easy replication.

Keywords: Convolutional Neural Networks, Transfer-learning, Image Segmentation, Seismic

Interpretation.
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1 INTRODUCTION

A sedimentary deposit may present itself in different scales and shapes, both are mainly

controlled by the depositional gradient towards the basin (HESTHAMMER; LANDRO; FOS-

SEN, 2001). A geologist aims to look at all perspectives to have a confident classification of

a deposit and/or its facies and avoid noise influence on the interpretation (HESTHAMMER;

LANDRO; FOSSEN, 2001), meaning that in a real-world scenario the seismic data is manually

interpreted in 2D images, rather than in a volumetric scale (XIONG et al., 2018). The mapping

of the sedimentary layers and its economic relevance is fundamental in an oil field evaluation,

including the risk assessment inherent to oil exploration.

Seismic data interpretation (Figure 1) is the most used method to estimate geological

and physical properties in the oil and gas industry since it set out to detect shapes and petro-

physical properties of underlying rocks in several scales (MONDOL; BJøRLYKKE, 2011).

Geoscientists use the seismic data to evaluate the reservoir regarding their composition, fluid,

dimensions and geometry (SELLEY; SONNENBERG, 2014).

In order to be more feasible, seismic interpretation is performed mainly by interpreting

horizons in 2D seismic lines. Those horizons are mainly interpretation of paleo-surfaces or the

boundaries (either top or bottom) of interpreted rock layers.

After the horizon interpretation phase, the amplitudes between those layers, or over

the horizons, are extracted in order to identify depositional features, fluids and understand the

distribution and connectivity of the sedimentary deposits as separate geobody units.

All those information combined result in a geological model conception, based on

which the location of the well is chosen. Additionally, the geological prediction of the litholo-

gies expected to be present in the well location are imperative for the well planning, and during

the future development of the field (HAQUE; ISLAM; SHALABY, 2018). This task, however,

is quite challenging since it requires the extraction of the most relevant information available

and combines it with the complex knowledge of both geology and geophysics (HESTHAM-

MER; LANDRO; FOSSEN, 2001).

The amount of data available for an oil field and/or concession block is quite large

(several TeraBytes) and its analysis is very time-consuming (over several weeks/months). In

this scenario, the introduction of automatic routines may aid in tasks, such as interpretation

and success probability predictions, since the amount of data is steadily increasing each day.

Besides saving time in interpretation tasks, it also has a better capacity of combining several

data sources in its output, compared to a human geologist/geophysicist.

During the seismic data interpretation process, the geologists/geophysicists responsi-

ble for the area, using all the geological knowledge and signal analysis, manually divide the

seismic section according to his criteria (chronological, sedimentary, anomaly) in classes, in

a very subjective and manual process. After identifying some geological features and/or sur-

faces, the interpreter reviews the assigned labels according to the literature distribution of the

interpreted features (lateral and vertical association, lateral continuity, shape, among others),
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Figure 1 – Seismic Volume simplified in three orthogonal slices, which is the most frequent method geolo-

gists/geophysicists survey the data and map geologic features. Source: (WU et al., 2018)

as well as its spatial distribution on a 3D context. This tasks can be treated as image segmen-

tation/classification problems, based on the seismic data amplitudes and geological features

shapes, just like other AI (Artificial Intelligence) applications in image datasets.

Segmentation, classification and regression problems are very common in the com-

puter science world, with several methodologies, approaches and insights, which some could

be very useful in the seismic mapping. Artificial intelligence has a vast range of applications,

from face recognition to e-mail spam filtering. In seismic interpretation, for instance, one main

goal is to automatically model the reservoir properties from seismic data. This characterization,

if automatically performed in large seismic datasets, can result in important time savings during

the process of interpretation (RAMIREZ; LARRAZABAL; GONZáLEZ, 2015).

For instance, estimation of rock physical properties based on seismic data in com-

bination with well logs data can be treated as a regression problem, where the informations

obtained through the wells can be extrapolated through the whole data. Currently, the majority

of commercial inversion technologies are usually based on the application of linear equations of

the convolution type for estimating the functions of the reflectivity along the seismic track and

follow-up evaluation of acoustic and elastic parameters of the geological formation (HAMP-

SON; RUSSELL; BANKHEAD, 2005).

When it comes to image classification and segmentation, CNN’s (Convolutional Neu-

ral Networks) are the front runners deep learning algorithms, ever since the AlexNet won the

ImageNet Challenge (KöPüKLü et al., 2019). Image classification is where machines can look
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at an image and assign a (correct) label to it (or the probability of it), whereas image segmen-

tation is based on partitioning an image into multiple parts or regions, usually based on the

characteristics of the pixels in the image. Even though they have a bigger computational cost

compared to other deep learning techniques, their better overall performance greatly make up

for it(LECUN; BENGIO; HINTON, 2015). They have an advantage over the regression prob-

lems, since it takes into account the spatial correlation between the samples, which is very

useful in geological bodies identification and classification, since those bodies are often amor-

phous and of heterogeneous distribution.

A seismic facies is a sedimentary unit which has different seismic characteristics than

its surrrounding units. Seismic facies identification is a fundamental process to identify geolog-

ical patterns and can be treated as an image segmentation/classification problem, reducing the

tedious and time consuming manual interpretation(DI; WANG; ALREGIB, 2018). Although

CNN’s and other deep learning methods seem suitable to this task, the majority of them classify

the images as a whole, whereas in seismic the main goal is distinguishing geological bod-

ies and/or features within the same image, therefore, an image segmentation problem (ZHAO,

2018).

Image segmentation has been proposed in medical imaging datasets, such as magnetic

resonance (MRI) and computed tomography (CT) (YANG et al., 2021), which are comparable

to seismic data. Coincidentally, the studies conducted by Su et al. (SU et al., 2015) with 3D

shapes showed that building networks using a multi-view 2D image of those shapes dramatically

outperform the classifiers designed directly on the 3D representations, which suits what happens

in the seismic interpretation. Some geological features have complex three dimensional shapes

and, albeit influenced by many environmental factors such as tectonic activity, may be present

at different orientations. Since most of the available studies published in computer vision are

applied in 2D images, and big image datasets are more available than 3D ones (YANG et al.,

2021), it creates a gap to employ Transfer-learning techniques, since it brings a computationally

cheaper way of capturing 3D contexts.

Transfer-learning is motivated by the fact that people can intelligently apply knowl-

edge learned previously to solve new problems faster or with better solutions (PAN; YANG,

2010), just like someone who already plays guitar may use this prior knowledge to learn

how to play bass faster. Since real data is scarce and of high cost in the oil and gas indus-

try, Transfer-learning alternatives may benefit applications of AI, since information from large

trained datasets or from other areas with similar characteristic and much more reliable informa-

tion could be used to fit the model.

Transfer-learning from 2D CNNs, trained on large-scale datasets, has been proposed

in 3D medical image analysis since there is a shortage of available labeled data of 3D datasets

(YANG et al., 2021). It benefits from large scale pretraining on natural images, although its

conversion to a 3D context might not be trivial (YANG et al., 2021).

In the Yang et al. work (YANG et al., 2021), it is proposed a 2D to 3D Transfer-

learning, where three orthogonal (axial, coronal and sagital) networks are concatenated in the
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channel dimension and operate at the same time in the 3D input (ACS Convolutions). However,

in the proof-of-concept experiment, the kernels are extracted over the same 2D image, rotating

the learned filter to each of the orthogonal axis as the ACS kernels. Such inference might be

valid for some contexts but that does not suit well in an anisotropic image dataset and geobodies,

like seismic facies.

The studies of Liu et al. (LIU et al., 2018) also transferred knowledge from a 2D

pre-training in their proposed 3D Anisotropic Hybrid Network (AH-Net), but assigning the

learned kernels in just 2 axis, regarding the resolution difference between slices and within

slices. This difference is often observed in the seismic interpretation process. Seismic lines

have a much lower resolution inter-lines than intra-lines, with the vertical resolution commonly

around dozens of meters and the horizontal (or inter-lines) distance over 100 meters. Addition-

ally, the interpreters also analyze a 3D seismic through 2D orthogonal slices, in order to grasp

how the desired feature behaves in all directions or through the reflector shape assign more ac-

curately a lithology or other geological feature. Another step aims to check whether what was

interpreted in the surrounding lines, and the ones perpendicular, are indeed consistent with each

other.

Based on the previous mentioned similarities, this master thesis proposes to combine

the advantages of these previous works as an extension of the AH-Net proposed by Liu et al.

(LIU et al., 2018) with the principles of the ACS architecture proposed by Yang et al. (YANG

et al., 2021), in a model we called Anisotropic Orthogonal Ensemble Network (AOE Net). This

network employs a Transfer-learning in which we split the training samples of our 3D data as 3

orthogonal slices (like a geologist/geophysicist usually does) and convert the trained parameters

to a 3D counterpart of the network, with each direction of the training planes conveniently

converted to a 3D convolution, by the expansion of each 2D kernel in one dimension, similarly

to the Anisotropic Hybrid Networks (AH-Nets) proposed by Liu et al.(LIU et al., 2018), but

with a specific axis assigned to each parameter 3D conversion.

At the end of the network the outputs of each AH-Net is averaged in an Ensemble,

in order to take into account the output of the network from all three orthogonal points of

view. This approach may also benefit from parameters learned in 2D images large datasets.

This model aims to insert a geological heuristic based on the different views of the geobodies,

similar to the human manual interpretation process and its application in anisotropic 3D images

while maintaining a low computational cost.

1.1 RESEARCH PROBLEM

Although the main source of data for oil exploration consists of a 3D seismic volume,

the interpretation process is mainly conducted in 2D sections. Additionally, that approach is

a simplification in order to make the process more feasible for a human interpreter. A 3D

interpretation is a more accurate and has a better spatial contextualization than a 2D one, but

it is more complex computationally wise and is not supported by most of the interpretation
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softwares. This trade-off is present in the oil and gas industry workflow for many years and has

a potential for AI optimization techniques.

In order to increase the AI applications in oil and gas industries, the algorithm must

find routines that have a good performance and during feasible time, which is not an easy task,

since the amount of data can often are be as large as several Terabytes.

Most of the datasets in which AI routines are applied are from natural images, which

do not have an expert insight or a innate knowledge approach. Even on medical datasets, which

derives from expensive and manual labelling process, the principles that guide an specialist

labelling is usually not taken into account during the model conception.

Considering all the issues regarding the high computational cost of a pure 3D network,

and the inherent anisotropy of geological features and seismic data, this research proposes a

seismic facies classification composed of 3 AH-NET like networks arranged, based on geolog-

ical knowledge, in an Ensemble (AOE Network). We adopted the UNet(LECUN; BENGIO;

HINTON, 2015) backbone since it is the most employed architecture and was developed to a

medical image segmentation task. Both seismic data and medical images (like tomography) are

acquired through the same physical property. Both compose their images based on the interac-

tion between the target ( rock layers and human tissues, respectively) and the waves emitted by

the source. The physical contrast between the waves and the target are captured and its response

results in the image analyzed by experts.

1.2 OBJECTIVES

1.2.1 General Objectives

In order to investigate the before aforementioned hypothesis, this thesis proposed to

explore a multi-orthogonal approach for a 3D network, allied with a specialist knowledge input,

to increase the accuracy in 3D seismic facies prediction.

1.2.2 Specific Objectives

This thesis aims to:

• Investigate whether each orthogonal view of the network has a different performance;

• Verify whether the influence of geological knowledge in the network architecture im-

proves the performance;

• Compare the results between a multi-orthogonal network and a 3D equivalent, regarding

the accuracy and in computational cost;
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1.3 RESEARCH QUESTION

For this thesis, there are the following research question:

• Does an orthogonal planes approach achieve better results than a 3D counterpart?

1.3.1 Hypothesis

Automatic segmentation of geologic features is very useful and time saving in the oil

exploration workflow. This task, however, is conducted on very large data, which leads to a very

costly and a large time consuming process. Besides, this automatic extraction and inference of

geological interpretation does not possess any heuristic or geological knowledge inherent to

it. This research aims to investigate if a simplification of a 3D network in orthogonal planes,

through an ensemble network, outperforms its 3D equivalent and other state-of-art proposals in

seismic facies segmentation, with a lower computational cost.

The research considers the following hypotheses:

• Hypothesis 1: Prior knowledge does not yield better results than a default 3D and state-

of-art approach. Alternative: Neural Networks achieves superior results than a default 3D

and state-of-art approach.

• Hypothesis 2: Three Orthogonal planes ensemble does not yield better results than a

default 3D and state-of-art approach. Alternative: Three Orthogonal planes ensemble

achieves superior results than a default 3D and state-of-art approach.

1.4 TEXT STRUCTURE

This thesis is organized in the following topics: After the Introduction, Chapter 2

covers the core concepts regarding both geology/geophysics and machine learning topics related

to the research. Chapter 3 contains the review of AI applications and its main contributions to

oil and gas tasks and/or image segmentation. In Chapter 4 the methodology of the experiments

and the data information is provided and explained in more detail. Chapter 5 contains the

results of the experiments proposed, as well as the comparison between different architectures

and approaches, throgh the concepctions of the proposed methods. And, lastly, the conclusions

and final considerations are presented in Chapter 6.
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2 BACKGROUNG

Since our research involves two very distinct science fields (Artificial intelligence and

geology), this chapter several key topics are exposed in order to better contextualization of the

theoretical foundation of this work.

2.1 GEOLOGY CONCEPTS

2.1.1 Facies

Outcrop and rock description has been the mainstay of the geology, even before it was

defined as a science. Even without much formalism, the descriptions were based on some cri-

teria, in order to differentiate one rock formation from another. Along the geological concepts

creation, some authors postulated their principles which they observation relied on (CROSS;

HOMEWOOD, 1997; TEICHERT, 1958). However, it was needed standard criteria to correlate

horizontally and vertically different and similar formations, which could be based on deposi-

tional process, age, petrologic features, among others. The term "facies" created by the swiss

geologist A. Gressly is the most widely used when dealing with sedimentary rocks (CROSS;

HOMEWOOD, 1997). Facies are rock layers with paleontologic and petrologic features that

are distinguishable from its surroundings. Classifying lithologies and facies, and its associa-

tions, is important to distinctly define rocks of interest and to build a better understanding of

the depositional environments encountered, making it more feasible to interpret the depositional

environment and how the sedimentary process took place in the area (MOHAMED et al., 2019).

Facies classification is an essential element of geologic investigations and involves us-

ing recorded attributes and measurements to assign a class or type to rock samples. Defining

a rock facies precisely can build a better understanding of the depositional environment pen-

etrated by a wellbore (WEI et al., 2019). Even though Gressly is widely credited with the

first modern use and definition of “facies” (DUNBAR; RODGERS, 1957; TEICHERT, 1958),

his contributions to stratigraphic principles are much broader and deserve greater appreciation.

He explained the genesis of sedimentary facies by processes operating in depositional envi-

ronments, and demonstrated regular lateral facies transitions along beds that he interpreted as

mosaics of environments along depositional profiles. He recognized the coincidence of particu-

lar fossil morphologies with particular facies, and distinguished “facies fossils” from those that

had time value and that were useful for biostratigraphy (“index” or “zone” fossils) (WEI et al.,

2019).

Teichert (TEICHERT, 1958) summarized Gressly’s use of the term “facies” and his

derivation of the facies concepts, since Gressly’s purpose was not just to propose the term “fa-

cies” for descriptive rock attributes independent of time connotation, rather setting apart a rock

term (“facies”) from a time term (“terrain” or timestratigraphic unit). Without having a language

to express these two properties of strata, one cannot differentiate between lateral variations in
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lithology (“facies”) along one or more beds (timestratigraphic units), and vertical changes and

repetitions in lithology through a succession of beds. Gressly defined the term “facies” to sin-

gle out those observable physical, chemical, and biological properties of rocks that collectively

permit objective description, as well as distinctions among rocks of different types (WEI et

al., 2019). One fundamental aspect of Gressly approach is its explicit discrimination between

objectively observable properties and any connotation of their age (CROSS; HOMEWOOD,

1997).

Having explained that facies are properties of rocks not specific to time, Gressly fur-

ther recognized that facies are products of genetic processes that operated in the depositional

environments in which they accumulated. Just as laterally linked depositional environments

change over a geographic area, the facies that are incorporated into the stratigraphic record

change gradationally along beds that are parallel original depositional surfaces. He observed

that, by walking along beds and following changes in the physical and paleontological compo-

nents of facies, one can establish the details of a depositional profile (CROSS; HOMEWOOD,

1997). Gressly understood that there are two basic concepts in stratigraphy: the first is that

sediments accumulate by a set of processes in depositional environments, and the second is that

this happens during the passage of time.

Gressly then newly conceived approach had a few advantages, being the most signifi-

cant:

• It simplifies the apparent complexity in paleontology and provides a coherent link be-

tween paleontological and physical and lithological attributes by establishing a limited

number of closely interrelated laws.

• It is the basis for reconstructing successive paleogeographies and depositional profiles

through time.

• He developed a new method of stratigraphic correlation, based not upon establishing the

equivalency of rock type, but upon establishing equivalency of rocks in a time frame. it

is the basis for understanding four-dimensional time-stratigraphic relationships.

These principles are employed by geologist from many areas of study, ranging from

basic field research to oil exploration, allowing geoscientists to properly correlate and/or estab-

lish geological models even when information is scarce and far apart.

2.1.2 Brief review of Depositional systems

Sedimentary basins are large (at least 10.000 km2) lower topographic areas where the

combination of deposition and subsidence has formed thick accumulations of sediment and

sedimentary rock. Sedimentary basins are of great scientific and economic value, since it host

the majority of oil and gas accumulations and it contains the geological and biological evolution

in its sediments/rocks. A sedimentary environment is a geographic location characterized by a
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particular combination of climate conditions and physical, chemical, and biological processes

(Figure 2) which reflect in their petrological features (grain size, sorting, mud content, among

others).

Marine environments can be classified based on the distance from land (GROTZINGER

et al., 2007), which we will focus on two main ones for the oil and gas industry:

• Continental margin and slope environments are found in the deeper waters at and off the

edges of the continents, where sediment is deposited by turbidity currents. A turbidity

current is a turbulent submarine avalanche of sediment and water that moves downslope.

Sediments deposited by turbidity currents are almost always siliciclastic, except for sites

where organisms produce a lot of carbonate sediment. In this case, continental margin

and slope sediments may be rich in carbonates.

• Deep-sea environments include all the floors of the deep ocean, far from the continents,

where the waters are much deeper than the reach of wave-generated currents and other

shallow-water currents, such as tides. These environments include the continental slope,

which is built up by turbidity currents traveling far from continental margins; the abyssal

plains, which accumulate carbonate sediments provided mostly by the skeletons of plank-

ton; and the midocean ridges.

Continental shelves on passive margins (such as in the East Coast of South America)

are mainly composed by fine-grained sediments, siliclastic and/or carbonatic, with episodic

coarse-grained deposits caused by mass flow into the basin. Albeit formed in distinct sedi-

mentary environments, deep water deposits and fluvial deposits share some similarities (Figure

3), which is a consequence of both being mainly driven by the same physical principles and

physiographic factors (gravity, relief, viscosity, surface, grain size, among others).

Among the several types of sedimentary deposits in this paleo-geographic context, the

high density debris flows, better known as turbidites, are the ones with the most economic rele-

vance. Turbidites are formed by turbidity current moving downward due to its density contrast

with the sea water, which impacts the intensity, erosion strength and geometry of the sediments

flow. Those currents represent the main mechanism sedimentary deposition to oceanic basins

(MUTTI et al., 2009; TALLING et al., 2015).

Turbidites usually occur with distinct longitudinal and transverse variation, depending

on its position in the slope. They typically are elongated parallel to the steepest slope direction

and towards the basin depocentre, with its sinuosity (perpendicular to the flow direction), varies

according to the irregularities of the surface or even the decrease of the energy of the flow

(Figure 3). Additionally, the shape of the geological bodies, in a transverse view, may range

from thinner and larger in area (basin-floor fan) to incised valleys, whose geometries are also

driven by the terrain physiography and the sediment flow properties (higher density flows result

in more restrict and thicker deposits, whereas lower density ones form shallower and broader

deposits). It is noteworthy that, due to the relative sea-level oscillation during geologic time
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A “sedimentary facies” (or just “facies”) is a term used to identify a sedimentary

rock/layer unit regarding its distinct and specific descriptive features, originated from physi-

cal, biological, and/or chemical processes, during formation and from which an interpretation

of its origin may be made (LOPEZ, 2013). In other words, specific environment and sedimento-

logical conditions results in different facies. Sedimentary facies can be associated and grouped

by lateral (or horizontal) association, or “facies sequence” when assigned to distinct vertical

stacking, succession, or sequence of facies that reflects a particular depositional environment or

linked environments in the stratigraphic record (MIDDLETON, 1973).

Those concepts were later used in sedimentology as foundation to the Walther’s Law,

which states that various deposits of the same facies and similarly the sum of the rocks of dif-

ferent ones are formed beside each other in space, though in a cross section they are vertically

stacked (WALTHER, 1894). As a depositional environment shifts, so too must the sedimentary

facies in any location change. As time progresses, the positions of facies also progress laterally

in space and time, causing the laterally related environments to become superimposed form-

ing vertical successions, preserving the originally laterally continuous environments in vertical

sections (MIDDLETON, 1973). The combination of both lateral facies tracts and vertical suc-

cessions can be used to map broader three-dimensional depositional systems tracts that migrate

through time and space as a function of cyclic forcing (FRIEDMAN; SANDERS; KOPASKA-

MERKEL, 1992). Identifying and mapping these depositional systems tracts and how they

change through time are a fundamental component of sequence stratigraphy and very useful in

finding targets for oil and gas reservoirs. Such insight is imperative in oil and gas industry, since

the hard data is obtained mainly through wells, which have a horizontal resolution of inches.

By understanding the vertical stack, geologist have a better understanding of which facies to

expect in the whole oil field area, since this correlation is likely to occur horizontally.

2.1.4 Seismic data

In seismic reflection, a controlled sound wave is generated on the ground surface or

underwater in marine environment and detected on the surface using geo- or hydro-phones.

As seismic waves from the source through the earth, portions of that energy are reflected back

to the surface as the energy waves traverse through different geological layers affected by the

contrast of properties of the rocks (AMINZADEH; DASGUPTA, 2013). The reflections, which

are a result of a significant property contrast between layers/rocks, are captured at the surface

by the receptors (geo- or hydro-phones), where their delay time (from source to reflectors) and

amplitude is recorded (Figure 4).

Since the amplitude is a measure of the contrast of properties between layers, it can be

used for prediction of heterogeneity’s in reservoir rocks, net pay prediction, and fluid contacts.

Lateral changes in amplitude from trace to trace along the same events or rock interface across

an area could be an indicator of changes in deposition environment, porosity, rock type, or fluid

saturation. (AMINZADEH; DASGUPTA, 2013). One relevant aspect of the seismic amplitude
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2.2 BRIEF REVIEW OF DEEP LEARNING

The pioneers convolutional neural networks (CNN’s) studies, similarly to the percep-

tron, had their origin in biological experiments. In the late 50’s and early 60’s, the researchers

Hubel and Wiesel (HUBEL; WIESEL, 1959) studied the nervous system of cats and the im-

age processing mechanism of their visual system. In their study it was noted that neurons

from different stages of visual cortex were activated by patterns strongly orientated by light,

but seemed to ignore more complex patterns, which in response were activated in latter stages

neurons (RAWAT; WANG, 2017). In 1979, a multi-layer neural network named neocognitron

was proposed by Fukushima (FUKUSHIMA; MIYAKE, 1982), based on Hubel and Wiesel ex-

periments. This network achieved good results in simple input pattern recognition, regardless

of distortion or position variation of the object (RAWAT; WANG, 2017). Such results set the

foundation the framework of the 21’s century CNN’s (LECUN; BENGIO; HINTON, 2015).

Convolutional Neural Networks (CNN’s) are multi-layer artificial neural networks de-

signed to handle inputs with more than a single dimension with two main structures: convo-

lution and pooling layers. The basic operators of convolutional layers are kernels (or filters),

which are matrix of values (or weights) that are updated during the training to identify better the

features. The input is convolved with the kernels, aiming to extract the most relevant features

for each kernel, with the overlapping area of the kernel with the input called receptive field.

The output of each convolutional layer is summed with a bias term and a non-linear activation

function, such as ReLU (Rectified Linear Unit), which is one of the most popular and resembles

the neurological impulse of the brain. The training process becomes more efficient, memory

and time-wise, with the addition of a pooling layer between convolutional layers, reducing the

input redundancy and the amount of data passed through the deeper layers of the network. Pool-

ing operators, besides reducing the feature maps resolution, allows the network to be invariant

to distortions and translations. Several convolutional and pooling layers are sequentially or-

ganized in the network architecture, with last one followed by a fully-connected layer and a

feature vector, where the network output is evaluated, just like the traditional neural networks

(Figure 5).

Although they were already a fact since the early 90’s, the computational power then

available was not enough to implement it. The application of CNN became a new trend when

a CNN greatly outperformed the state-of-art architectures during the Imagenet challenge in

2012. Even though several variations of its core concepts have been proposed, with the birth

of classical networks (AlexNet, VGG, ResNet), the majority of those competitions utilized 2D

datasets, with a great amount of labelled data. 3D datasets are not abundant, being comprised

mostly by medical images and video data (time as the third dimension). The former is the most

frequent in the literature, since its annotation is more feasible with a specialist input and its vital

application in medical treatments, such as early cancer nodules identification.

Initially conceived to 2D images applications, CNN’s architectures can be converted

to a n-dimensional context, like a 3D seismic data. However, the size of a 3D dataset is much





29

network instead of running a new one from scratch, saving many hours, even days, of processing

time without a significant loss of accuracy. Such techniques have shown remarkable results even

when the shared parameters were exhaustively trained in a different semantic context than the

ones you are targeting.

Shortly after ImageNet competition revolutionized the Neural Networks field, some

authors described the good generalization ability of pre-trained networks trained with ImageNet

datasets (LECUN et al., 1998; DONAHUE et al., 2014). Transfer-learning with a pre-trained

network has two common approaches (LUNDSTR OM, 2017):

• Feature extractor or frozen weights: the output from some layer in the network is used

as features for a trainable classifier (usually the layer before the classification layer is

chosen);

• Weight initialization or fine-tunning: it uses some of the pre-trained layers as a weight

initialization and then trains the entire network for the new task;

In the work of (AZIZPOUR et al., 2015) the influence of 5 factors affecting the trans-

ferability were investigated: which layers to cut, whether fine-tuning should be used, the under-

lying architecture, source/target similarity and the benefit of additional data. This study came to

a conclusion that fine-tuning generally helps, which was also stated by (YOSINSKI et al., 2014)

on experiments with the ImageNet. In their study fine-tuning and frozen weights were studied

layer by layer of the network, regarding which layer could be cut. They concluded that fine-

tuning is unsusceptible to the layer choice, whereas the frozen weights are heavily dependant

of the layers localization.

Transfer-learning aims at improving the performance of target learners on target do-

mains by transferring the knowledge contained in different but related source domains. In this

way, the dependence on a large number of target domain data can be reduced for constructing

target learners (ZHUANG et al., 2021). However, there are instances where labeled training

data is scarce and expensive, which creates a need to obtain high-performance learners from

datasets from different domains (WEISS; KHOSHGOFTAAR; WANG, 2016). This knowledge

transfer can be divided into two main categories: homogeneous and heterogeneous Transfer-

learning. Homogeneous Transfer-learning approaches are developed and proposed for handling

the situations where the domains are of the same feature space or slightly different, whereas

in heterogeneous Transfer-learning the domains are different (Figure 8), which requires some

adaptations and makes it more complex than the former (ZHUANG et al., 2021).

According to (PAN; YANG, 2010), the Transfer-learning approaches can be catego-

rized into four groups:

• Instance-based: mainly based on the instance weighting strategy;

• Transform the original features to create a new feature representation;
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Figure 7 – Transfer-learning main workflow components. Source:(MCGUINESS, 2017)

• Transfer the knowledge at the model/parameter level;

• Mainly focus on the problems in relational domains;

The learning process can also be divided in two classes (SHLEZINGER et al., 2020):

data-based and model based. The former, also known as "hand-designed method", has its map-

ping guided by prior knowledge of the underlying statistics relating the input x and the label.

The latter, in contrast, learn their mapping through data. Roughly speaking, data-based inter-

pretation covers the above-mentioned instance-based and feature-based Transfer-learning ap-

proaches, but from a broader perspective. Model-based interpretation transfers the knowledge

at the model/parameter level.

Most Transfer-learning proposals heavily focus on transferring the knowledge via the

adjustment and the transformation of data (Figure 8). If there is an available dataset that is drawn

from a domain that is related to, but does not an exactly match a target domain of interest, then

homogeneous transfer learning can be used to build a predictive model for the target domain, if

the input feature space is the same (WEISS; KHOSHGOFTAAR; WANG, 2016).

The methodology of homogeneous transfer learning is directly applicable to a big data

environment, such as seismic data. In this study, we focus more on homogeneous Transfer-

learning, which aims to reduce the distribution difference between the source-domain and the

target-domain instances.

2.2.2 Deep learning applied to oil and gas industry

At present, AI has been widely used in many industries (such as communication, fi-

nancial, search engines), and, although has been recently widely applied, it still has a long way
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Since sampling all the wells drilled in an area is not feasible, machine-learning meth-

ods were used to transfer the information obtained by the above previous methods in one or few

wells to the many others drilled in the same area, tying the information through the well log

data, which is much cheaper and obtained by the default.

It is worth mentioning that it is imperative the collection and high quality of hard

data from wells and its adequate geological description in order to have a robust result. In the

field of exploration, Artificial Neural Networks have already achieved good results in reducing

exploration risks like improving the success rate of exploration wells (CADEI et al., 2020) and

reducing the drilling cost (HOJAGELDIYEV, 2018).

Seismic data interpretation is the most used method to estimate geological and phys-

ical properties in the oil and gas industry since it set out to detect shapes and petrophysical

properties of underlying rocks in several scales (MONDOL; BJøRLYKKE, 2011). Geoscien-

tists use the seismic data to evaluate the reservoir regarding their composition, fluid, dimensions

and geometry (SELLEY; SONNENBERG, 2014), mainly interpreting horizons in orthogonal

seismic lines associated with seismic attributes extracted over the interpreted surfaces, in order

to identify depositional facies and understand the distribution and connectivity of the sedimen-

tary deposits as separate geobody units, which are imperative for the well planning during

future development of the field (HAQUE; ISLAM; SHALABY, 2018). This task, however, is

quite challenging since it requires the extraction of the most relevant information available and

combines it with the complex knowledge of both geology and geophysics (HESTHAMMER;

LANDRO; FOSSEN, 2001).

Seismic facies mapping is a fundamental process to identify geological patterns and

can be treated as an image segmentation problem, reducing the tedious and time consuming

manual interpretation (DI; WANG; ALREGIB, 2018). One main goal is to automatically model

the reservoir properties from seismic data. This characterization, if automatically performed in

large seismic datasets, can result in important time savings during the process of interpretation

(RAMIREZ; LARRAZABAL; GONZáLEZ, 2015). Accurate prediction of reservoir presence

and estimation of reservoir properties (net-to-gross, porosity, permeability, geometry, continu-

ity, etc.) has been critical for the economic evaluation of an oil field.

Since sedimentary deposit may present itself in different scales and shapes, both are

mainly controlled by the depositional gradient towards the basin (HESTHAMMER; LANDRO;

FOSSEN, 2001), a geologist/geophysicist aims to look at all perspectives to have a confident

classification of a deposit and/or its facies and avoid noise influence on the interpretation. How-

ever, it is much more feasible and agile for interpreters to inspect a huge seismic volume in

2D slices, or seismic sections, and that’s how the majority of interpretation softwares work. In

other words, in a real-world scenario the seismic data is manually interpreted in 2D images,

rather than in a volumetric scale (XIONG et al., 2018), using all the prior geological knowledge

of all the principles that rule the depositional system, including inferences regarding the 3D

correlation with the adjacent slices.
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3 RELATED WORK

The theoretical foundation of this research is divided between both Geology and Com-

puter Science, which have very few publication merging those two subjects, specially in a 3D

context. After first searching for AI application for geological spatial contexts, it was conducted

a review of the latest studies regarding three dimensional CNN’s for image segmentation, which

were conducted mainly on medical images and video datasets.

Medical images are usually obtained through tomography, which measures a physical

property contrast similar to a seismic data. Based on that, another survey used as filter param-

eters papers more recent than 2018 and containing the keyword "Medical image" and "image

segmentation". Although the datasets were relatively large (around a few GB), they had a small

number of classes and anotation compared to a seismic data. Additionally, most of the paper

addressed the problem in a pure 3D or 2D approach, which would be either time-costly (for a

3D approach) or without enough spatial relevance (for a 2D approach). Based on this issue,

another search was conducted looking for studies of 2D to 3D transfer learning.

3.1 3D IMAGE SEGMENTATION

According to the universal approximation theory, a neural network can approximate

any continuous function with a sufficient number of parameters and training samples (HORNIK;

STINCHCOMBE; WHITE, 1989). However, training a large number of network parameters

requires a great amount of manually labeled real data, which usually is unfeasible for most

researchers and interpreters in geophysics (SHENGRONG et al., 2019).

Convolutional Neural Networks (CNN’s) achieve the better performance overall com-

pared to other architectures when applied to seismic data (HUANG; DONG; CLEE, 2017; SHI;

WU; FOMEL, 2019; Wang et al., 2018; ZHAO, 2018) and are also the most popular networks

employed in medical image segmentation, with two main approaches (ZHAO, 2018): a pixel

patch-based model (where the output from the network is a single value representing the fa-

cies label of the seismic sample at the center of the input patch) and an encoder-decoder model

(where output is an image class labels with the same dimension as the input image).

The former has 2 disadvantages in 3D interpretation (SHI; WU; FOMEL, 2019): it

requires a sliding cube/window to scan the whole dataset to assign a class to every centered

pixel and it could have issues establishing the boundaries of geological objects. Therefore, the

model proposed in this study is an encoder-decoder type, which is also the most popular in

medical image segmentation experiments (YANG et al., 2021; Shan et al., 2018).

In their work (ZHAO, 2018) the authors state that the encoder-decoder model gener-

ates superior classification, despite the bigger training time and labeled data picking process.

Besides, the encoder-decoder model output resulted in cleaner geobodies, such effect was cor-

related with the ability of the network of capturing the large scale spatial correlation between

classes.
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Similarly to seismic data, 3D medical images problems have a large size and very few

labeled data. Researchers tackled those limitations by training a 2D network through slices

of the dataset and then initializing a 3D counterpart of the previous network with the learned

parameters (XIONG et al., 2018; YANG et al., 2021). This technique was applied by (Shan et

al., 2018) to a medical image denoising problem, where a 3×3 convolutional filter is expanded

to a 3× 3× 3 kernel in a 3D network, with 3 adjacent slices with the same size as the input.

The proposed network outperformed all the other networks in the experiment and led to the

conclusion that a 3D network with 2D pre-training shows better results than its counterpart

trained from scratch.

Moreover, the studies of Li et al. (LI et al., 2020a) the authors addressed the issue with

the "black box" nature of most deep-learning methods, where there’s very low interpretabillity

of the results of the algorithm. The authors state that improving the interpretabillity between the

results and the inputs is necessary to improvement for AI applications, especially in complex

problems, such as geological context.

3.2 3D IMAGE SEGMENTATION THROUGH 2D PROBLEM REDUCTION

The works of (Wang et al., 2018) and (LIU et al., 2018) approached a 3D image clas-

sification problem by a prior simplification to a 2D context, taking into account the balance

between receptive field, model complexity and memory consumption. (Wang et al., 2018) real-

ized that a small receptive field induces the model to majorly use local features, whereas a larger

receptive field focus more global features. The small receptive field has the downside of global

features and the larger one has a much higher memory consumption, restricting the model com-

plexity and representation ability. Based on those remarks, (LIU et al., 2018) proposed the 3D

Anisotropic Hybrid Network (AH-Net) to learn features from medical images, based on the fact

that the image resolution in XY plane/slice (or within-slice resolution) is higher (up to 10 times)

than that of the Z resolution (or between-slice resolution). They use a ResNet backbone to train

the data in a 2D context and then convert the 3× 3 convolutions to 3× 3× 1 and 1× 1× 3

counterpart, so that the convolutions are more suited to extract the features within slices and

between slices, respectively (Figure 9), which has shown better results than other 3D networks

in a liver lesion segmentation task (Figure 10). Moreover, the authors suggest that more de-

signs of the anisotropic kernels might yield a performance increase (LIU et al., 2018), since

their approach was based on the different resolution between the slices depending of the axis.

Regarding this, an expert knowledge might be helpful for the network design. In this thesis, a

geological inference was taken into account during the algorithm architecture conception.

In the (YANG et al., 2021) work, it is proposed a 2D to 3D Transfer-learning, similar

to AH-Nets, where each ACS kernel (axial, coronal and sagital), extracted in three orthogonal

views from the data, are concatenated in the channel dimension and operate at the same time in

the 3D input (Figure 11). This approach allows any 2D network architecture to be seamlessly

converted to an ACS equivalent (YANG et al., 2021).
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3.3 AI APPLIED TO SEISMIC

In seismic interpretation and seismic data analysis, it is imperative to effectively iden-

tify certain geologic formations from very large seismic datasets (DI; WANG; ALREGIB,

2018). Machine learning is based on parallel processing used for approximation, clustering and

pattern recognition purposes in large multivariant datasets (MOHAMED et al., 2019) and can

explore the hidden connections among different physical quantities. Artificial intelligence ap-

plications in the oil and gas industry have been reported since the early ’90s. Most of them, how-

ever, have been majorly in lithology prediction with well logs, using techniques such as SVM

(Support Vector machines) (AN-NAN; LU, 2009), fuzzy logic (LAMMOGLIA; OLIVEIRA;

FILHO, 2014) and random forest (BESTAGINI; LIPARI; TUBARO, 2017).

The application of geophysics was mainly applied in the exploration to locate the hy-

drocarbon reservoirs and to evaluate potential targets for drilling. More recently the the eval-

uation of optimum development and more accurate drilling locations have been increasingly

emphasized, since it maximize the start-up production rate by drilling the sweetest spots of the

reservoir first (AMINZADEH; DASGUPTA, 2013).

Even though many deep learning techniques are suitable for geological problems, the

high demand for labeled data restricts their application in a real-world scenario with limited

annotations (YANG et al., 2021). The main issue regarding geological modeling of an oil field

is to spatially correlate the knowledge obtained through the well to the seismic volumes, since

well data is rare and sparse (ZHAO, 2018).

Recently, more studies have been focused on algorithms to make predictions in a 3D

volume, like the study developed by Shi et al. (SHI; WU; FOMEL, 2019), which aimed to

identify salt boundaries in the SEAM 3D seismic dataset (FEHLER; KELIHER, 2011), using

an encoder-decoder architecture (Figure 13). This methodology showed good results in salt

bodies segmentation, both in synthetic and real data. However, the author pondered about the

high computational cost of such method, since the input had dimensions 128x128x128, limiting

the batch size of training to only 2 samples.

More recently, the studies of Alaudah et al. (ALAUDAH et al., 2019) proposed a

benchmark seismic facies classifier based on the F3-block dataset (BARONI et al., 2018). The

authors employed a 2D classifier using UNet as the network architecture, for both patch-based

(32x32 images) and section based models (each inline/crossline as a sample). Comparing the

perfomance on both patch and section-based samples is a relevant analysis, since the patch-

based models are more feasible memory-wise compared to section-based ones, since a section

can easily be hundreds of times bigger than a single patch, limiting the batch size of the experi-

ments (Figure 14). Albeit more memory-consuming, the authors pointed out that section-based

experiments are able to learn the spatial correlation between the classes, which yielded better

results in their study, even though the main goal was to propose a benchmark classifier. The

experiments showed good overall results, they were obtained on 2D samples, without any 3D

spatial information taken into account. Even better results were obtained through data augmen-







40

4 METHODOLOGY

This section describes the steps and the relevant information regarding the issues and

benefits taken into account during the experiments, until the conception of the proposed net-

work.

4.1 DATASETS DESCRIPTION

The proposed method was tested on 2 of the most widely used 3D seismic volume

available: The synthetic model of Stanford VI (CASTRO; CAERS; MUKERJI, 2005) and the

real seismic data of the F3-block (BARONI et al., 2018). Both datasets, although with the

purpose of segmentation and classification of geological bodies, have different scales and class

distribution.

4.1.1 Stanford VI Dataset

The reservoir is 3.75 km wide (East-West) and 5.0 Km long (North-South), with a

shallowest top depth of 2.5 Km and deepest top depth of 2.7 km. The reservoir is 200 m

thick and consists of three layers with thicknesses of 80 m, 40 m, and 80 m respectively. In

terms of a grid, the Stanford VI-E reservoir is represented in a 3D regular stratigraphic grid

of 150× 200× 200 cells and the dimensions of the grid correspond to 25 m in the x and y

directions and 1 m in the z direction (CASTRO; CAERS; MUKERJI, 2005).

The stratigraphy of the Stanford VI-E reservoir (Figure 15) corresponds to a prograding

fluvial channel system, where deltaic deposits represented in layer 3 were deposited first and

followed by meandering channels in layer 2 and sinuous channels in layer 1 (Figure 15). The

model contains 4 different facies: floodplain (shale deposits), point bar (sand deposits that

occur along the convex inner edges of the meanders of channels), the channel (sand deposits),

and the boundary (shale deposits) (CASTRO; CAERS; MUKERJI, 2005). Each of those classes

have different mineralogy and petrological characteristics that reflect the different mechanisms

responsible for their deposition (flow strength, declivity, river depth). This difference yield a

different physical properties and, by consequence, a different seismic response.

4.1.2 F3-block Dataset

The F3-block is an area located on the shelf of the North Sea in the Netherlands (BA-

RONI et al., 2018). The North Sea is rich in hydrocarbon deposits, which is why this area is

very well examined (thanks of the drilling and seismic profiling) and described in the literature

(BARONI et al., 2018). Within the shelf of the North Sea Group ten geological units have been

distinguished. Alaudah et al. (ALAUDAH et al., 2019) based on the data of 26 wells and 40

different interpreted horizons, merged the various lithostratigraphic described in the literature
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information without a relevant increment of memory usage, with the filters being of the same

order of complexity of regular 2D networks.

Additionally, the correct positioning of the weights to its orthogonal positions is fun-

damental to assign each of the trained parameters to their respective views of the data. This

was inspired by the AH-Net proposed by (LIU et al., 2018), although their original motivation

for this approach was mainly the resolution discrepancy between intra-slice and inter-slice of

medical images.

The dataset is also sampled in 3D cubes, which are convolved by those ACS kernels

in three different parts, one for each of the orthogonal views of the 2D pre-training (Figure 17).

This section works as if 3 different interpreters look at the same data through different views

(cross-lines, inlines and top-view), with their own conclusions (or classes), at first, independent

from each other. At the last layer of the network, the output of the 3 ACS convolutions is

the average of the probabilities for each class, which is the final output of the proposed AOE

Network Network.

With this weight transfer, the 3D part of the network does not need to random initialize

its weights, which leads to a faster convergence. It also offers a great flexibility, since it can be

seamlessly applied to any network architecture.

4.2.4 Metrics

In order to properly compare the results obtained in this research with other approaches

in the literature, it was proposed to evaluate the performance of our network based on the

following metrics:

• Pixel Accuracy(PA): The percent of pixels in the image (or of each class) which were

correctly classified.

Pixel Accuracy(PA) =
T P+T N

T P+T N +FP+FN

(TP= True Positives, TN= True Negatives, FP= False Positives, FN= False Negatives)

• Mean Class Accuracy(MCA): The mean of the Pixel Accuracy (PA) of each class.

Mean Class Accuracy(MCA)=
1

nc
∑

i

PAi

(nc= number of classes, i= class index)

• F1-Score/Dice: The harmonic mean of precision and recall.

F1-Score/Dice =
T P

T P+0.5(FP+FN)
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• Frequency Weighted Intersection over Union(FWIU): Intersection over Union is defined

as the number of elements of the intersection of Fi (the set of pixels classified as class i)

and Gi (set of pixels that belong to class i) over the number of elements of their union set.

Intersection over Union(FWIU) =
F i ∩Gi

F i ∪Gi

In order to prevent this metric from being overly sensitive to small classes, each class is

pondered by their frequency.

Frequency Weighted Intersection over Union (FWIU)=

1

∑Gi

.∑
i

Gi.
F i ∩Gi

F i ∪Gi

4.2.5 Implementation

All the routines were implemented in PyTorch and the experiments were conducted

using a Desktop with a Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz processor, with 64GB

RAM and a NVIDIA GeForce GTX 1080 Ti 12GB GPU. The code is available at https://github.

com/eltontrindade/F3-block-dataset.
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5 EXPERIMENTS

5.1 EXPERIMENTS ON THE STANFORD VI DATASET

In a attempt to verify the feasibility of the network, the experiments first investigated

how each view of the sample (Longitudinal, Transverse and Top view) performed when used

individually during the image segmentation task in the Stanford VI dataset. Using the UNet

architecture as the backbone, this thesis implemented the following networks:

• UNet 2D: A 2D network using UNet as the backbone was executed to obtain the 2D

weights for the transfer-learning.

• ACS Network: with a 3D input Xi ∈ RCi×Di×Hi×Wi and a 3D output Xo ∈ RCo×Do×Ho×Wo ,

and 2D filters W ∈ RCoXCi×K×K , the filters are divided and rearranged in 3 (three) parts

(ACS kernels) by the channel output, in order to obtain the 3D representation associated to

each view plan: Wa ∈ RCo(a)×Ci×K×K×1, Wc ∈ RCo(c)×Ci×K×1×K , Ws ∈ RCo(s)×Ci×1×K×K ,

with Co(a) + Co(c) + Co(s) = C(o) (C= Channel, K= kernel dimension, D ×H ×W = data

dimension, i = input, o = output). The inputs are convolved with each ACS kernel and are

concatenated by the channel to generate the output Xo.

• 2,5D Network : Using the same approach proposed by Liu et al. (LIU et al., 2018) for the

AH-Net like networks, each ACS convolution is replaced by convolutions with 1 ×K×K

kernels.

• 3D UNet: The same architecture of the classic UNet, where, instead of ACS convolutions

or the previous approach, fully 3D convolutionals were employed, without any weight

transfer.

The Table 2 shows the comparison between the several networks complexity and

memory-wise.

The experiments consisted of randomly selected 10 coordinates (x,y) in the Stanford

VI-E dataset and extracting cubes of dimensions 32x32x32 along the z-axis, centered in those

coordinates, which compose the 3D training set. The 2D training data are the 3 orthogonal

planes (Longitudinal, Transverse and Top view) of the 3D training set cubes. The whole dataset

is used as the test set, including the 3D training set.

For a comparative analysis, we also train a 3D version of the UNet but randomly ini-

tialized. To verify if our network combines the prediction of each AH-Net of the Ensemble, we

also compared the results with the ones from each network separately. As already mentioned,

the dataset is not balanced, so in order to mitigate that issue, the F1-Score/Dice per batch was

used as the metric for the model adjustment. As the studies of Sudre et al. (SUDRE et al.,

2017) have shown, this metric performs well even with imbalanced datasets, since it penalizes

the false positives predictions.
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Table 2 – Time and Space complexity comparison between the networks.(Co,Ci, are the number of channels of

output and input respectively, D=Depth,H=Height,W=Width of input and K the kernel size)

Network Time

Complexity

Space

Complexity

2D UNet O(DHWCoCiK
2) DHWCo

AOE Network O(DHWCoCiK
2) DHWCo

3D UNet O(DHWCoCiK
3) DHWCo

Regarding the metric for the models evaluation, it was adopted the 2 most used ones in

the literature: Frequency Weighted Intersection Over Union (FWIU) and Dice/F1-Score, both

weighted by the number of samples of each class. The batch-size during training was 64 and 4,

for the 2D and 2,5D/3D training respectively, and the test set batch size for the 2,5D/3D equal

to 8. The remaining parameters were the same for both networks (learning rate=0.001, filter

size=3, momentum=0.9, number of epochs=50).

5.1.1 2D Networks

The results of the 2D training already show that each view of the samples has a very

distinct performance from one another (Figure 20). The network fed with the Top view planes

performed significantly worse than the other two, while the network with the Transverse plane

samples was the best one. Besides having the better performance overall, the networks also

have different proficiency in classification regarding each class. For instance, the Transverse

network, even though has the best performance overall, has slightly worse accuracy for the

"channel" facies (Figure 20) compared to the Longitudinal network.

This divergence may be a consequence of the environmental conditions that controls

their deposition and by consequence their shapes. For instance, in a section parallel to the

biggest slope of the basin, mass flow deposits and turbidity currents should form a elongated

shaped deposits, whereas in a perpendicular view those deposits should be thicker and of limited

lateral continuity (Figure 21). Besides, since each network works on only a 2D from the data,

each of the 2D slices may have a different class frequency and a different class transition from

each other (a 2D section in the middle of the river, along its axis, would rarely show a floodplain

or other deposits that usually deposit far from the river, for example).

Such information might suggest that a simple combination of the predictions might
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samples of a whole seismic line (larger image) greatly outperforms a patch-based model, stat-

ing that such approach can easily learn the relationships between different classes and can take

the depth information into account when labeling the samples. Since AOE Network is a patch

based network, were conducted experiments with only the seismic as input and one with the

addition of a depth feature to each pixel of the volume, in order to take that information into ac-

count during the segmentation. This approach is supported by the Law of Superposition, firstly

proposed by Nicolas Steno, which states that in undeformed stratigraphic sequences, the oldest

strata will be at the bottom of the sequence. Based on the Law of Superposition, depth was used

as an additional feature for each sample, since the classes of the dataset were lithostratigrafic

units with chronological relation with each other. Even though there are some geological defor-

mation in the data, in general those classes relative positions are strongly related to their depth

of occurrence. The experiments were conducted in the same data in which (ALAUDAH et al.,

2019) proposed its benchmark classifier:

• 2D Training set: The F3-block dataset has 10 locations corresponding to actual wells

drilled. On those (x,y) coordinates planes of dimensions 32x32 were sampled along the

z-axis, centered in those coordinates, in which the 3 orthogonal planes (Longitudinal,

Transverse, and Top view) were extracted, like in the previous experiment, totalling 525

samples for each orthogonal view.

• 3D Training set: Aiming to reproduce the experiments of the benchmark proposed by

(ALAUDAH et al., 2019) the 3D training set includes all the data in the range of inlines

[300,700] and crosslines [300,1000]. 399 voxels of dimensions 32x32x32 were extracted

from the training set, using padding operation to cover the whole dataset and to avoid

overlap between samples. The padding was set as equal to the border values of each

dimension. Bigger voxels (64 and 128 dimensions) were experimented but did not ob-

tain noticeably better results and implicated and much larger training time and memory

limitations, since it restrained the batch size.

• 3D Test set: It’s composed by the samples in the range of inlines [100,299] and crosslines

[300,1000] (Test Set 1) and inlines [100,700] and crosslines [1001,1200] (Test set 2).

The results were evaluated using the same metrics used by (ALAUDAH et al., 2019):

• PA (Pixel Accuracy): The percentage of accurate predictions over all samples;

• CA (Class Accuracy): The percentage of correctly predicted samples for each class;

• MCA(Mean Class Accuracy): The average Class Accuracy over all classes;

• FWIU (Frequence Weighted Intersection over Union): The IoU for each class, weighted

by the size of its corresponding class.
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The batch-size during training/test was the same as the experiments in the Stanford VI

data set (2D= 64 for both training and test set; 2,5D/3D= 4 for training and 8 for test).

During the experimentation, better results were obtained with a filter size 7 compared

to smaller ones (3 and 5). The remaining parameters used were a learning rate of 0.001, mo-

mentum of 0.9 and number of epochs of 50. It’s worth mentioning that it was not employed any

operation of data augmentation during the experiments.

5.2.1 Results

The experiments obtained a good result on the task, with superior performance when

compared to the patch-based from Alaudah et al (ALAUDAH et al., 2019), although the section-

based one obtained superior results in the 4 most frequent classes and in the FWIU and PA

accuracy metrics (Tabela 4). The proposed network, however, had a better performance in the

deeper and less frequent classes (over 30% better in some classes) and with only one class with

accuracy below 50% (Scruff=46%), whereas the benchmark network obtained subpar results

(below 30%).

Additionally, a network with both seismic and depth as a feature was also executed, on

the same samples as the single channel one. That approach was aided by a geological insight,

since the classed are chronostratigraphic units and have a vertical distribution strongly condi-

tioned by age, as the Law of Superposition proposes, which means that the vertical succession

of the units should probably match their age relation. It’s worth mentioning that this feature

was applied by using the depth of each sample as an approximation of this relative age, without

any processing or other costly acquisition necessary.

The AOE Network networks with 2 features (seismic and depth) showed better perfor-

mance overall and for most classes in the metrics selected (Table 4), showing that a geoheuristic

is indeed a efficient approach. As expected, the less frequent classes showed a higher error rate,

but the network still managed to have a good performance in more complex context. The results

are far superior than the patch-based one from the benchmark (over 10% in PA and over 17% in

FWIU) and slighlty better than the section-based one (around 1.4% and 2.5%, in PA and FWIU,

respectively). Additionally the proposed method seems to be less biased by the imbalance of

the dataset, showing a higher mean class accuracy (over 7% better than the benchmark model).

These results emphasize the effect of the geoheuristic, based on the Law of Superposition, ap-

plied to the classifier modeling and the task domain evaluation. In Figure 26 the output from

the network (with the depth and seismic as input features) is compared with the ground truth

labels, where it’s evident the potential of this approach, since even high deformed areas near the

salt diapir (bottom-right) showed good accuracy.

A comparison with a native 3D counterpart, like in the previous experiment with the

Stanford VI dataset, was also conducted, when 12 iteractions of training both networks were

executed for 20 epochs. The results of two metrics (FWIU and F1-Score) were compared in a

test of difference between matched pairs of experiments through 12 iterations. The results from
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6 CONCLUSIONS

This master thesis describes our approach to a 3D image segmentation problem through

a Anisotropic Orthogonal Ensemble Network. This model is able to achieve a better perfor-

mance with a lower computational complexity in both syntetic and real seismic data. This re-

sult is accomplished firstly by a quick 2D training in orthogonal planes extracted in 10 random

locations, where a cube is simplified by three orthogonal 2D simplification, just as a geologist

looking at seismic sections. Afterwards the learned weights are converted to their 3D counter-

part and used as the initial weights for the 3D Ensemble Network, each set of weights assigned

to the geometrically correct axis.

The majority of the related work in the literature either evaluates similar problems

fully by either 2D or 3D networks, since the former demands less computational power and

the latter is more accurate for 3D objects. Some works addressed some proposals of 2D to 3D

space adaptation for 3D objects segmentation tasks, but they lacked a deeper analysis of the

resolution and object shape anisotropy in a 3D data. In our work, the seismic data resolution

and the sedimentary concepts were taken into account, since geological features usually have a

distinct morphology base on the source rock and the deposition mechanism.

Our proposal of orthogonal planes showed a viable approach to both capture the 3D

context and address the difference of resolution and shape distribution of the classes in a 3D

seismic, which can also be applied to other areas, such as medical images.

In the initial experiments our network outperformed even a native 3D network (3D

UNet), confirming the potential of this approach. Additionally the difference between the per-

formance of the three orthogonal networks individually showed that the orientation of the sam-

ples and training reflect on the network accuracy.

The experiments in the F3-block dataset also showed a great performance in lithos-

tratigraphy units segmentation, even surpassing the benchmark proposed by Alaudah et. al.

(ALAUDAH et al., 2019). For this experiment it was also evaluated a version of the network

with depth as an additional feature. This approach showed that this additional feature increased

the performance of the network.

Although the experiments were only conducted with UNet as the backbone of the

network, this approach is flexible and support several network architectures, including different

ones in the same ensemble. This flexibility, as well as the resource efficiency, enables this

methodology to be very attractive to oil and gas industry, since the huge size of the data makes

it imperative to have a accurate and time-efficient network.
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7 FUTURE PERSPECTIVES

Although with good results, this work still has room to improve. For instance, the pro-

posed network averages the output of all three networks of the ensemble, without any inference

whether the networks performs equally in the same task or in accuracy for each label.

Most geological features are irregularly shaped and have heterogeneous distribution,

but they might have different shapes and classes association depending on the point of view.

Also, other network architectures could be tested in our network, which can be easily applied.

Other networks might be more efficient and/or more accurate in Seismic facies segmentation or

even a combination of different ones in the ensemble.

Since the author of this work is a geologist, the application in this paper was mainly

focused for a geological context. However, this methodology can be explores by other subjects,

such as medical images.

Due to the limitations of this work, we propose the following activities:

• Experiments with other architectures other than UNet as the backbone of the network;

• Analysis of the same methodology in other domains (Medical Images, Video analysis);

• The addition of a layer where the output of each orthogonal network is weighted by a

trainable variable;
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8 PUBLICATIONS

During the studies conducted during this research, the article entitled Multi-view 3D

Seismic Facies Classifier (Qualis-CAPES: A1) was accepted and presented at the The 36th

ACM/SIGAPP Symposium On Applied Computing (March 22-March 26, 2021), .
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