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ABSTRACT

Smart sensors cluster several electronic and software modules into a single device. Such feasibility
leverages that different configurations of communication and routine of measurements might
be dynamically and wireless carried out, and through the same approach the measurement’s
performance might be assessed. If a device’s routine of measurement can be modified, and such
modifications lead to a different quality of measurement, one may assess how the changing of
the routine’s parameters affects the measurements’ performance through the technique of Design
of Experiments. However, the mentioned approach just yields an intuition of how could be the
performance of the phenomenon under study for unobserved situations and combinations of
parameters, since the technique just recognize the patterns of a phenomenon. In order to state a
decision of how a phenomenon will react when facing an yet unobserved situation or combination
of parameters, machine learning can be employed to, relying on former patterns remarked by the
DOE methodology, predict the phenomenon’s response for any situation, if provided enough
data. In this work a smart inclinometer sensor with five configurable measurement routine’s
parameters is fully characterised through an hybrid approach, developed by the author, that
complements the DOE analyses with machine learning algorithms. A full factorial design consists
the characterization achieved by the DOE, and subsequently the machine learning algorithms
rely on the former knowledge acquired to predict the quality of the measurements’ performance
for any combination of parameters that is found inside a closed interval of parameters’ values,
namely a delimited volume of parameters. The predictions accomplished are attested with real
performances, and the accuracy of the full characterization achieved is considered satisfactory.

Keywords: Machine learning. Small dataset. Ensemble regression. Design of Experiments.
Quality of measurement’s performance.



RESUMO

Sensores inteligentes agrupam vários módulos electrônicos e de software em um único dispositivo.
Tal viabilidade possibilita que diferentes configurações de comunicações e rotina de medições
possam ser realizadas de forma dinâmica e sem necessidade de fios, e através da mesma
abordagem o desempenho da medição pode ser avaliado. Se a rotina de medição de um dispositivo
puder ser modificada, e tais modificações conduzirem a diferentes qualidades de medição, pode-
se avaliar como a alteração dos parâmetros da rotina de medição afeta o desempenho das
medições através da técnica de Projeto de experimentos (DOE). No entanto, a abordagem
mencionada apenas produz uma intuição de como poderia ser o desempenho do sensor em
estudo para situações não observadas e diferentes combinações de parâmetros, uma vez que a
técnica apenas reconhece os padrões de um fenômeno. A fim de afirmar uma decisão de como
um fenômeno reagirá ao ser submetido à uma situação ou combinação de parâmetros ainda
não observada, técnicas de aprendizado de máquina podem ser utilizadas para, com base em
padrões anteriormente observados pela metodologia DOE, prever a resposta do fenômeno em
estudo para qualquer situação, se forem fornecidos dados suficientes. Neste trabalho, um sensor
inteligente inclinômetro com cinco parâmetros configuráveis de rotina de medição é totalmente
caracterizado através de uma abordagem híbrida, desenvolvida pelo autor, que complementa as
análises DOE com algoritmos de aprendizado de máquina. Um experimento fatorial completo
consiste a caracterização elaborada pela abordagem DOE, e subsequentemente os algoritmos
de aprendizado de máquina baseiam-se no conhecimento anteriormente adquirido para prever
a qualidade do desempenho das medições para qualquer combinação de parâmetros que se
encontre dentro de um intervalo fechado de valores de parâmetros, a saber um volume delimitado
de parâmetros. As previsões realizadas são verificadas com desempenhos reais, e a precisão da
caracterização completa atingida é considerada satisfatória.

Palavras-chave: Aprendizado de máquina. Dataset pequeno. Aprendizado de conjunto. Projeto
de experimentos. Qualidade do desempenho de medição.
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1 INTRODUCTION

The world faces nowadays the placement and settlement of the Industry 4.0. Never in
the history of science the fastness and progress of technology reached the contemporary standard.
Yet, though new and sophisticated technologies are enhanced and developed every day, their
deployment as a common and general concept in industry and laboratory usually takes a long
time to be settled and to replace outdated and obsolete techniques. The purpose of this work is
to conceptualize a modern and efficient approach to recognize patterns, find sweet spots and
characterize a process or device.

Aspiring to combine the ascending concepts of Industry 4.0 and machine learning
techniques, the team of Large-Scale Metrology from the Chair of Production Metrology and
Quality Management, Laboratory for Machine Tools and Production Engineering (WZL) at
RWTH Aachen University, developed a hybrid model approach in order to predict the volumetric
error of a machine tool (DAHLEM et al., 2020). The idea is to map, with smart sensors, the
machine’s temperature gradient and its structural thermal displacement response. The data
collected from the sensors would train a machine learning model (black box) in order to predict
the transient error (Errtransient) of a rigid body model (white box), aiming to complement an
analysis of a movement’s static error (Errstatic) and assess thereby the residual error (Errresidual)
of a machine tool’s performance. In order to achieve such accomplishment, the Large-Scale
Metrology’s team designed its own temperature and tilt’s smart sensors. These devices must
be capable of providing accurate, sensible and reliable data measurements, since the white and
black box models rely on their information to be characterized.

This work was carried out along with the Large-Scale Metrology’s team, aiming to
provide a full understanding of the two-axis tilt sensor, termed as inclinometer, developed by the
laboratory’s team. In order to reach a sensible response from the sensor, capable of recognizing
thermal displacements, the device measurement parameter’s configuration must be exploited
until an optimum quality of response is achieved. However, a reliable analysis of the sensor’s
performance for the driving of all the possible combinations of parameters values is not a trivial
endeavour, once that the amount of configurable parameters is numerous and their setting values
may range within a wide range.

Inclinometers are devices able to detect spatial rotations of a rigid body. Its applications
range from medical scope (DAI et al., 1996) to the assistance into the development of
navigation’s systems (TANAKA; NISHIFUJI, 1996). The inclinometer’s state of the art
relies on Micro-Electro-Mechanical Systems (MEMS) technology, that has been proving
high sensitivity, reliability and has a affordable cost (ANDREJAŠIČ, 2008). The sensor
under study was developed by the Large-Scale Metrology team. It was designed to combine
the MEMS measurement technology with the versatility of Bluetooth Low Energy (BLE)
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wireless communication protocol, that has its connection stability, power consumption and data
transferring rate enhanced with the arising of Industry 4.0. The final device’s electronic assembly
is composed by a complex of Integrated Circuits (IC) SCA830-D07 from Murata (2020c),
responsible to perform the tilt measurement, and the CYBLE-212006-01 BLE microcontroller
from Cypress (2019), responsible to broadcast the data received to the final receptor. The
connection between these two modules is accomplished through SPI communication protocol.

An immediate assessment of the inclinometer conveyed the knowledge that the sensor
developed has a great potential to achieve an accurate and robust performance, nevertheless the
numerous measurement parameters’ settings must be chosen carefully. Experiments revealed
that the intensity of the measurement’s noise varies significantly according to the parameters
settled. A subtle changing of these parameters may either lead to a severe drop of measurement’s
accuracy and an unreliable behavior, or may drive to a noiseless, optimum and stable state of the
measurement’s responses. Nonetheless, the purpose of the existence these several configurations
is to, indeed, have a dynamical device, capable of operating and being dynamically configured
for different situations. Thus, in order to exploit the maximum potential of the sensor for any
objective, a whole characterization, aiming to optimize the inclinometer’s performance, must
be done in an efficient and smart manner, once that analysing each of the numerous possible
parameters’ combinations is impracticable.

When diverse factors influence a specific characteristic of an element or process under
analysis, Design of Experiments (DOE) is a pretty interesting approach to remark conclusions
in regards of how the combination of these several parameters affects the process’ quality of
response (ANTONY, 2014). The methodology is founded on to systematically change the
input variables of the phenomenon under study, and assess how the output performance reacts
accordingly. This technique was first structured by Sir Ronald Fischer in the early of 1920,
aiming to determinate the effect of different fertilisers on several plots of land (YATES, 1964).
Since then, DOE has been widely used in industrial experimentations, targeting enhancements
of manufacturing process and finding the cheapest configuration for an optimum solution.
Nonetheless, despite the well-established DOE’s state of art, such methodology is not the favorite
among engineers and managers of the present time, due the fact that the technique requires a lot
of time, efforts and is not well suitable for phenomenons with non-linear parameters’ interactions.

In order to complement the analyses of the DOE model and exploit its capability of
pattern recognition, machine learning techniques can be incorporated into the DOE’s evaluation,
aiming to predict singularities and behaviors not observed by the DOE approach. Machine
Leraning (ML) is, in a generic definition, a collection of methodologies and algorithms that
can automatically detect patterns in data and deploy these patterns to predict the future state
of a phenomenon under study (MURPHY, 2012). These predictions can be either a decision, a
classification or a numerical value. The foundation of ML techniques relies on the deployment of
statistical and mathematical models in programming algorithms. These algorithms, when properly
applied, can be able to recognize, through the patterns learned, sweet spots of responses. To
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achieve a robust and well-defined ML model, capable of describing the patterns of a phenomenon,
such algorithms require data that depicts the conditions that had led the phenomenon under
study to such a state. The richer in information is this batch of data, termed Dataset, the more
significant are the predictions of unknown observations.

This work aims to characterize the response of the inclinometer developed by the team
of Large-Scale Metrology, combining DOE and ML approaches in order to develop a hybrid
analysis model able to predict the behavior of the sensor for any parameters’ combination in a
delimited configuration volume. The DOE model provides in this work an assessment of the
inclinometer’s behavior according to the varying of the device’s parameters, so that the approach
depicts the influence of each parameter upon the measurement’s quality. Besides, the DOE model
also provides a dataset with maximum significance for a minimum quantity of data, in order
to map and remark the fundamental aspects of the inclinometer’s characteristics. Further, this
very dataset is employed to train a ML model in order to predict the response for unobserved
parameters’ configurations, and, thereby, a reliable map of the device’s patterns, for a volume of
settings delimited by the DOE’s theory, is provided. The final goal is to fully characterize the
inclinometer’s responses through the hybrid DOE/ML approach carried out in this work. The
sensor’s characterization complies with the Large-Scale Metrology team’s objectives providing
versatility and knowledge of the inclinometer’s behaviour, enabling thus the exploiting of the
device to achieve better performances according to the Large-Scale Metrology team’s goals and
requisites.

To achieve the accomplishment presented, a communication infrastructure between the
sensor and a database was implemented. A reliable and systematic methodology to process and
evaluate the inclinometer’s measurements was developed. Modern techniques to handle with
small datasets in machine learning were deployed. The predictions were evaluated with real
experiments and their match attests that the ML model based on DOE theory has identified the
patterns of the sensor’s performances with a satisfactory accuracy.

1.1 GENERAL OBJECTIVE

To map the response of an inclinometer for any measurement parameters’ combination
into a delimited volume of configuration, deploying a hybrid approach consisted of machine
learning techniques founded on design of experiments theory.

1.2 SPECIFIC OBJECTIVES

• To discuss and document the inclinometer device’s features;
• To employ design of experiments analysis in order to comprehend the sensor’s parameter

interactions and remark performance’s particularities;
• To deploy machine learning techniques with a small dataset aiming to predict the

inclinometer measurement’s responses for any parameters’ combination in a delimited
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volume of configuration.
• To validate the machine learning model founded on design of experiments theory with real

experiments in order to attest its reliability and accuracy.
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2 THEORETICAL FUNDAMENTS

The inclinometer under study has five configurable measurement parameters, namely
interval of measurement, frequency of measurement, number of samples collected at a single
measurement, mode of operation and time of measurement request. The noise in the tilt’s
measurement varies drastically accordingly with the level of each setting. Further in this work is
presented evidences that exist interactions among the device’s parameters, which increases
the complexity of the choice of an optimum setting. In order to understand the contents

discussed in this work, some essential foundations are presented. Is given an introduction

of the inclinometer sensing mechanism and in sequence is explained some principles of Bluetooth

communication protocol and its performance in smart sensors. Further, one finds a study of

design of experiments and the main aspects of its theory and evaluation tools. Concluding, a

research of machine learning basic concepts and approached some algorithms, which were

employed in the experimental evaluation of this work, is provided.

2.1 MEMS INCLINOMETER TECHNOLOGY

The tilt sensing mechanism of the device developed by the Large-Scale Metrology
team is composed of a MEMS IC inclinometer (Murata, 2020c). The MEMS regards to an
instrumentation technology rose at the end of the eighties decade, where mechanical elements
were manufactured in a microelectronic scale, in order to compose sensitive elements of
microelectronic devices. The foremost distinguishing characteristic of MEMS concerns its
structural feature, that almost imitates a mechanical feature. MEMS have channels, membranes,
cantilevers, cavity and holes, while an ordinary electronic IC relies on fixed and compressed
structures (ANDREJAŠIČ, 2008). The manufacture of MEMS components requires the
deployment of micromachining process to perform a sophisticated manipulation of silicon
and other substrates, unlike electronic devices, which are fabricated through computer chip
technology (PARTNERSHIP, 2002). The interaction with the electronic’s micro-world through
miniaturization of existing electric-mechanical technology from the macro-world, leads to the
possibility of developing new concepts and devices that would not work on the macro-world.

Inclinometers operate through a particular case of the sensing mechanism of an
accelerometer. Both the devices work by the very same principle in matters of reading the
physical quantity acceleration, but differs from the range of its measurement and from the data
processing circuit. The ordinary unity of measurement measured by these devices is gravity g,
given as 9.81 m/s2 (although the real value of gravity varies according to the altitude over the
surface of the Earth). Accelerometers are projected to read several different ranges of gravity, for
instance from ±0.26 g up to ±12 g (MURATA, 2020a), whereas inclinometers are constrained to
the range ±1 g. Thus, since the literature regarding to both the sort of devices is the same, it will
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be presented formulations supposing an accelerometer, aiming to idealize a generic case.
Accelerometer MEMS may be studied by four main different means of sensitive

transduction: piezoresistive, capacitive, piezoeletric and tunneling. These devices are composed
of at least three basic components: a proof of mass, a suspension for the proof of mass and a
receptor that correlates the displacement of the mass with an output voltage (AGGARWAL et al.,
2010). The accelerometer employed in this work is a capacitive MEMS, SCA830 from Murata
(2020c). Especially this capacitive technology is pretty well renowned for its excellent sensitivity
and by the fact that its transduction mechanism is by nature insensitive to temperature, as
explained by Andrejašič (2008). The author also asserts that the capacitive sensing is independent
of the base material, due to the fact that it relies on the variation of capacitance when the geometry
of the capacitor is changing.

The basic functionality of a capacitive MEMS accelerometer is presented in the Figure
1. Neglecting the fringing effects of nonuniform distribution near to the edges, the parallel-plate
capacitance is given (LYSHEVSKI, 2002):

C = ε0ε
A

d
= εA

1

d
(1)

Where ε is the permittivity, A is the electrode plate’s area, d is the displacement
between the plates and εA = εA. A change of any of these parameters will result in a
change of the capacitance. Humidity and chemical sensors may be founded on the variation
of ε. Accelerometers works based on the change of d or A. As mentioned before, MEMS
accelerometers are consisted of a proof of mass with movable capacitive plates. This structure
is attached through a mechanical suspension system to a reference frame. The movable plates
stand between the fixed outer capacitive plates. Thus, when a movement by the proof of mass is
performed, the gap x1 and x2 of the fixed plates regarding the movable plate is displaced by a
distance of value x. This variation results in a change of the capacitances C1 and C2, as depicted
in the Figure 1, and can be equated as:

C1 = εA
1

x1 + x
, C2 = εA

1

x2 − x
(2)

Supposing a perfect alignment of the movable mass: x1 = x2. Therefore when there is
no acceleration, x = 0, the difference of capacitance C1 − C2 = ∆C is zero. When a movement
exists, considering x1 = x2, the capacitance’s difference is found to be:

∆C = C1 − C2 = 2εA
x

x2 − x21
(3)

Measuring ∆C, one finds the displacement x through the solving of the nonlinear
algebraic equation:

∆Cx2 − εAx−∆Cx21 = 0 (4)
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Figure 1 – MEMS accelerometer structure. The movable proof of mass is attached through

springs to a base substrate. The structure can move only up and down. The springs

perform the transduction of the changing capacitance C1 and C2 between the movable

and outer fixed capacitor plates

Spring

Spring

Base (Substrate)

Base (Substrate)

Movable plates

Fixed outer plates

x2

x1c1

c2

Motion

Proof mass:
Movable

microstructure

Source: adapted from Lyshevski (2002, p.122)

This equation can be simplified for small displacements, where the term ∆Cx2 become
negligible. Thus, omitting ∆Cx2:

x ≈ x21
εA

∆C (5)

The Eq. 5 express how the capacitance’s difference varies in function of a displacement
x. For an ideal spring, according to the Hook’s law, the module of a restoring force Fs is a
function of the displacement x of the spring, so that Fs = Ksx, where Ks is the spring constant.
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From Newton’s second law of motion, neglecting the air friction, this motion of the spring’s
displacement can be formulated as ma = md2x/dt2 = Ksx (LYSHEVSKI, 2002). Therefore,
the module of the acceleration as a function of the displacement can be presented as:

a =
Ks

m
x (6)

Applying the Eq. 6 on the formulation of the MEMS accelerometer, where m is the
mass of the proof mass structure and Ks is the spring constant of the spring which sustains the
movable mass structure, the displacement x can be correlated to the module of acceleration as a
function of the variety of capacitance between the plates by deploying 5 in 6, resulting:

a =
Ksx

2
1

mεA
∆C (7)

The Eq. 7 depicts the functionality principle of an accelerometer. The difference of
capacitance can be read and converted to voltage by several arrangements of electronic circuits,
which will not be approached in this work. Since Ks, x21, m and εA are known values, the relation
between the module of the proof mass’ acceleration is directly correlated with the capacitive
plate’s capacitance difference.

As commented before, the output electronic circuit of an accelerometer is charged to
interpret the capacitance voltage of the plates and to provide to the user a meaningful value of
acceleration through the eq. 7. In inclinometers, this value is given between the range ± 1 g.
One can thus relate the acceleration given by the sensing axis of the device with the gravity’s
acceleration vector of the Earth g, in order to define the sensing axis’ inclination regarding the
gravity vector.

The Figure 2 illustrates the formulation of the conversion from gravity to tilt angles.
First, is assumed the tilt sensor laid on the x-axis, in such a manner that the sensing axis points
to the negative direction of the x-axis. The Earth’s acceleration vector points downward on the
y-axis. In the situation of the left side of Figure 2, the sensing axis is not tilted and no acceleration
is felt by the device. When there is a slope θs of the sensing axis regarding the x-axis as shown
in Figure 2 middle, the vector acceleration felt by the MEMS mechanism has a magnitude equal
to its projection on the acceleration’s gravity vector. The module of the acceleration felt by the
sensor as is hence a sinusoidal response of the gravity acceleration module g, such as:

as = sin(θs) · g (8)

Since the MEMS electronic circuit provides the value of as as output response, one can
find the inclination angle of the device regarding the gravity through the inverse sine operation:

θs = arcsin(
as
g

) (9)

In this work, the eq. 9 is widely used in the infrastructure created by the author to read
the response of the inclinometer.
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Figure 2 – At the left side, a representation of a inclinometer under effect of gravity and there is

no tilt of its placement regarding the coordinate system. At the center is portrayed the

sensor’s displacement on the reference system when there is a tilt angle θs regarding

the x-axis. At the right is a graphic illustration of the device’s mathematical response

model for all the possible real values of θs.
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Concerning the quality of the tilt measurements, an interesting aspect of the MEMS
accelerometers is the noise characteristics of these devices, which influences their performances
especially under lower g operating conditions. Mohd-Yasin, Korman e Nagel (2003) made
an analysis of the noise aspect of MEMS accelerometers and concluded that there are three
primary noise sources typical of these sensors. The first, is due to the mechanical vibration of
the transductor springs, the second is related to the signal conditioning circuitry and the third is
from the measurement system itself. In their work, the authors also detected that the source of
sporadic high peaks noise is related with the squared wave oscillators inside the accelerometer
conditioning circuitry.

Since these noise characteristics are intrinsic of the MEMS technology, the only easy
approach to optimize the inclinometer response is through finding an optimum operating
configuration of the device. All the strategies and methodologies developed and presented
in this work aims to map the noise response of all the possible configurations of parameters of
the device.

2.2 SMART BLUETOOTH LOW ENERGY SENSORS

The inclinometer was projected as a smart sensor. Specially this category of sensors
devices was responsible for the consolidation of the industry 4.0 and Internet of Things (IoT). This
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accomplishment is due to the robustness and practicality provided through the assembly of several
electronic and software modules into one single sensor device, so that complex infrastructures of
data exchange have become accessible and of easy management. While ordinary sensors normally
just have the sensor element and a wired communication protocol, smart sensors cluster the
sensing element, the amplification and signal conditioning module, an Analog-Digital converter,
a memory system, a logic control unity and typically a wireless communication protocol in
one single device (FRANK, 2013). Besides these features, some modern smart sensors have
improved their power supply module from wired sources to battery, targeting a dynamical and
totally wireless device. The Figure 3 depicts a typical assembly of smart sensors’ modules.
Figure 3 – The figure portraits the general assemble and interactions of a smart sensor. The

elements inside the dashed contour compose a typical smart sensor device. The

device is energized through a power supply module as battery or wired mechanism.

It exchanges information with the receptor device by means of some wireless

communication protocol.
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As commented previously, the sensor developed by the Large-Scale Metrology team
has several features that classify it as a smart sensor. The device has a battery power supply
mechanism, a programmable logic unity, a Bluetooth Low Energy communication protocol that
broadcasts the processed data and a sensing MEMS capacitive mechanism that provides digital
data through SPI communication protocol to the logic unity. By exploiting these features, an
entire infrastructure of communication could be developed to read and program the device with
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a robust performance.
The inclinometer developed has a Bluetooth Low Energy controller from Cypress

(2019). This module is charged to perform the logic processing of the data received from the
sensing element, store this information and broadcast it through BLE technology. Bluetooth is a
wireless communication protocol that allows devices to exchange information by means of radio
links (GUPTA, 2013). It is a global standard communication technology acknowledged for its
short range performance, low power consumption, low cost and small form factor. Bluetooth
Low Energy is an enhancement of the Bluetooth technology added as a part of Bluetooth 4.0
core specification. Although BLE technology is a branch of the classic Bluetooth, it has an entire
different lineage and design goals. As detailed by Gupta (2013), the BLE technology is fully
optimized from its core until the application level to ensure the minimum power consumption.
This enhancement had led to a complete redesign of several key components, in order to assure
the minor requirement of power as possible.
Figure 4 – At the left, a representation of the BLE broadcast mode, that is consisted of the

broadcaster device propagating its small packages of data to several devices able to

pick it up. At the right, a representation of the BLE connected mode, where the central

and peripheral device establish a connection and exchange large packages of data.
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The BLE protocol communicates through two different methodologies: Broadcasting
and Connections. As explained by Townsend, Cufí e Davidson (2014), in Broadcasting mode
small packages of data can be sent out in one-way to any scanning device or receiver in the
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listening range. This concept implies that the broadcaster device propagates its information to
any observer capable of picking it up. On the other hand, the observer device can only read the
package of data broadcast. This configuration is the only method in BLE that allows the same
single information can be read for several devices at the same time. When there is a need of
periodical exchange of larger packages of data, the Connection mode is more suitable. In this
configuration, the peripheral device sends periodically advertising packages. These packages are
picked up by the central device which scans for it, and, when convenient, initiates a connection.
Once the connection is established, the peripheral ceases its propagation of advertising and the
two devices begin to exchange data in both directions. The Figure 4 summarizes the behaviour
of these BLE communication approaches.

In this work, the connection mode was widely exploited. Periodical routines of reading
and reprogramming the inclinometer’s configuration were accomplished through the continuous
exchange of larger packages, which could last a period of several hours. The BLE technology
presented itself high efficiency at the saving of power consumption, so that single units of battery
could supply months of experiments.

2.3 DESIGN OF EXPERIMENTS

Design of experiments is a collection of methodologies and approaches developed in
order to structure the driving and evaluation of processes and experiments. In the engineering
context, experiments are conducted to survey, identify patterns, estimate and confirm assumptions
of real models. In the industrial environment, processes are assessed in order to improve a
product and quality of a process, and to cheapen the production cost. Whether it is a process
or a scientific experiment, DOE provides a systematic procedure to make deliberate changes
of the input parameters or variables of a model, termed as factors, aiming to characterise how
the output functional response varies accordingly (ANTONY, 2014). Some of the input factors
may strongly influence the output response, some may have a moderate impact and some may
have no effect at all. Thus, the final goals of DOE methodologies are to comprehend, through
empirical experiments, which arrangement of variables most affects the output response, and to
determine the levels of these factors that lead to a satisfactory performance.

In real-life conditions, an experiment’s performance is characterised by the
correspondence between input variables and the output response. The process’ variables, also
called factors, are classified into two groups: Controlled variables (represented by I) and
uncontrolled variables (represented by J). The former regards an easily varying setting of
an experiment, as an example the interval of time that a sensor is left collecting some data.
The second concerns to hardly or too costly varying setting, as the environment’s vibration or
temperature. An optimum process or experiment response is achieved when optimal settings of
controlled variables that minimise the effect of uncontrolled variables are reached. The Figure 5
illustrates the base structure of an experiment’s model.



36

Figure 5 – Elementary model of an experiment or process. The input arrow represents the settings

and arrangements of the experiment. The controllable and uncontrollable variables,

represented respectively by I and J , influence the experiment’s output response.
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There are some important terminologies whose the classical DOE is founded. As
mentioned previously, a factor is a process’ variable, either controllable or uncontrollable. A
factor may be set to different levels. Here the term ’level’ refers to a specific value or degree of
the factor under analysis. The changing of the average output response due to a change in the
levels of a factor is called ’effect of a factor’. When the effect of one factor at the output response
is different for different levels of another factor, it is said that exists ’interaction’ between these
two factors. In order to understand and map the response of an experiment, it is important to
vary the factors simultaneously at their respective different levels, aiming to obtain a reliable
and predictable estimation of the factor’s effects. The performance of an experiment whose
the variation of these several factor’s levels composes a unique arrangement of parameter’s
configuration is termed as ’trial’. A DOE evaluation approach exploits the response of several
different combinations of trials.

2.3.1 Replication, blocking and randomization

In order to establish a reliable and systematic methodology, there are three principles of
experimental design that shall be followed: Replication, blocking and randomization. The first
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two assist the improvement of the precision of an experiment, and the last is employed to reduce
experimental bias (DEAN; VOSS; DRAGULJIĆ, 2017).

Is considered as replication the repetition of an entire experiment under more than
one condition, so that the output response of interest can be accurately estimated and the
associated variability observed. An example of replication can be noted in an illustrative chemical
experimentation. It is supposed that one wishes to measure the pH of a material under influence
of a developing acid. The experiment consists of applying a sample of the acid on the material,
and then measuring the material’s pH. The deploying of replication in this procedure could be to
apply a sample of the acid on several samples of the material, and then to measure the pH of
each of them, so that the experiment is replicated. A common misunderstanding of replication is
to, in this example, just repeat the measurement itself of one single material’s pH. An important
property of replication is that it allows an accurate estimation of the experimental error, a term
that designates the difference of what would be observed if the same experimental settings had
been applied several times at the same conditions (ANTONY, 2014). Besides, the precision of
the output response can be improved through the averaging of each replica’s response.

The principle of blocking is related to the concept of arranging similar or homogeneous
trials of experiments into groups (or blocks). As explained by Bisgaard (1994), this approach
is useful to eliminate extraneous variation due to noise factors and thereby improving the
efficiency of the experimental design. The idea consists of grouping a trial with a set of relatively
homogeneous experimental conditions. These groups can be sorted per batch of material, operator,
supplier, etc. Also, it can be grouped under the same experimental conditions, i.e. same day,
same time, same place, etc; so that unwanted sources of variability, such as batch-to-batch or
day-to-day, can be noted and pondered. Conceptualizing it in the pH’s measurement example of
the material under the test of a developing acid, the blocking approach could be set to so arrange
the trials of experiments, that each trial were carried out in a different place from the other trials.
Another strategy would consist of each trial having the material taken from a batch different
from the others trials’ batch, so that each trial would experiment the variation, regarding just the
material, of an specific batch.

The last principle of experimentation is randomization. This one, is considered the most
important rule to avoid experimental and systematic biases (DEAN; VOSS; DRAGULJIĆ, 2017).
Randomization consists of randomly assigning of subjects, material, levels and even the trial’s
blocks execution order. By properly randomising the experiment, possible noisy factors present
in the process may be equally distributed among all the levels of a factor, averaging thereby
the effect of noisy singularities. Back to the pH test example, it is supposed that there are three
different levels of the acid, and the material to be tested is supplied by three different providers.
Without randomizing the procedure, the assignment of the acid’s application could be made
through a systematic order, so that the lower level of the acid would be deployed on the material
from the first supplier, the middle level deployed on the material from the second supplier, and
the highest level deployed on the material provided by the third supplier. One may observe
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that this approach would lead to a systematic bias, once that the materials’ manufacturing is
not exactly equal among the providers. The effect in the output response due to the setting of
different levels would have a systematic response that could not be generalized. The deploying of
randomization, in the portrayed situation, would imply to sort the application of different levels
of acid among the materials from the different providers in a random sequence. One may note
that the noisy singularities of the material would remain intrinsic to its origin, nonetheless its
effects would be averaged in all the levels of the experiment.

2.3.2 DOE architecture

Each of the principles of experiments explained in Subsection 2.3.1 composes the
DOE’s planning phase. The DOE’s methodology is founded on four phases: Planning, designing,
conducting and analysing. At the planning phase, the output responses are defined and the factors
that influence the experiment under study are determined. Hence, an inquiry must be done in
order to consider which of the factors can be treated as a controllable variable I , aiming to
render known the factors that can be regularized. Afterwards, the procedure to handle with the
experiments is architected based on the principles of replication, blocking and randomization.
The following phase is to design the experiment itself.

There are three main designs to orchestrate an experiment: Screening, fractional factorial
and full factorial. The first two are strategies to analyse a large number of process or design
parameters (factors) with a relative small number of experimental runs or trials, and the last,
is an approach that exploits all the possibilities and combinations of parameters and its levels.
Since this last strategy was deployed in this work, the following explanations will have it as
scope. More information about Screening and fractional factorial designs can be found in Antony
(2014).

A full factorial designed experiment consists of the running of trials from all the possible
combinations of levels from all the factors. It is said that an experiment that has k factors, each
one with n-levels, will need kn trials to carry out a full factorial design (ANTONY, 2014). It
is important to note that, although costly, the exploit of all possible parameter’s interactions
certainly will expose patterns and relationships among the factors, in such a manner that it allows
the achievement of an ideal configuration for an optimum output response. A common schematic
of full factorial design, deployed to survey an experiment, is a k2 model. This approach is
normally used to study the behaviour of the experiment at the boundaries of the factors’ levels, so
that the highest levels are denoted as +1 and the lowest levels denoted as -1. This nomenclature
facilitates the organization of the experiment’s trials in tables. As an example, is supposed an
experiment employing a 32 full factorial design. The controllable variables are P , Q and R. The
output response under interest is O. An arrangement of the experimental table for this design is
presented in Table 1.

Once defined and settled the experimentation model design, one may revise how the
three principles of experimentation, i.e. replication, blocking and randomization, works with



39

Table 1 – 32 full factorial design example. The terms P , Q and R are controllable variables and

O is the output response under analysis.

Trial number P Q R O
1 +1 +1 +1 x1

2 +1 +1 -1 x2

3 +1 -1 +1 x3

4 +1 -1 -1 x4

5 -1 +1 +1 x5

6 -1 +1 -1 x6

7 -1 -1 +1 x7

8 -1 -1 -1 x8

the determined design, in order to profitably arrange them. Subsequently, the conducting phase
can be commenced. All the planned experiments are carried out at this phase. There are some
suggestions in the literature (ANTONY, 2014) concerning good practices during the performance
of a designed experiment, such as: The person responsible for the experiment should be present
throughout it; the trials must be always under monitoring; to record the output response on the
prepared data sheet or in a computer; and to record and analyse any experimental deviation
of an unusual occurrence. When every trial is concluded and the output response treated and
computed, one may exploit the obtained results at the analysing phase by means of several
graphical approaches.

2.3.3 Evaluation of experiments

The analysing phase consists of the interpretation of the treated data acquired by the
experiments. By the means of deployment of statistical methodologies and graphical resources,
the patterns of the experiment or process under study may be remarked and thereby the
phenomenon can be characterised. An accurate analysis would employ, besides the graphical
approach, statistical models in order to assess the variation of the output response according to
the changing of levels. Only the graphical approach was employed in this work, since the amount
of controllable factors were not numerous and a visual interpretation would grant an easier and
satisfactory evaluation. Thus, the following presentations of evaluations do not exceed the scope
of graphical methods. More details about statistical methodologies that evaluate experiments can
be found in Dean, Voss e Draguljić (2017)

There are several different graphical models that can be employed in order to assist the
patterns recognition of an experiment. Antony (2014) presents some of the widest employed
models, such as: Main effects plot, interactions plots, cube plots, pareto plot of factor effects
etc. In this work were employed interactions and cube plots. The interactions plot is a powerful
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graphical tool that plots the output response for all the possible settings combinations of two
factors. Supposing a 32 full factorial design experiment and its results portrayed at the table 2,
with P , Q, R as controllable variables and O as output response, its interactions plot would be
as depicted in the Figure 6.
Table 2 – Example of a 32 full factorial design experiment with its respectives output results.

The terms P , Q and R are controllable variables and O is the output response under

analyses.

Trial number P Q R O
1 +1 +1 +1 9.72

2 +1 +1 -1 0.00

3 +1 -1 +1 10.0

4 +1 -1 -1 1.13

5 -1 +1 +1 8.87

6 -1 +1 -1 4.23

7 -1 -1 +1 9.15

8 -1 -1 -1 5.35

Figure 6 – Interactions plot regarding the designed experiment represented in the Table 2. Here,
one may simply visualize the interactions between two factors, when the remaining
factors are set in a specific level. In the present case, for each interaction plot, the
remnant factor is set at the level -1.
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The interactions plot presented in the Figure 6 is developed in order to determine
whether exists or not an interaction between two experiment’s parameters. An interaction can
be remarked when the change in the output response from the setting low level to high level of
a factor does not depend on the level of the other factor. Each interaction plot is so designed
that only two factors in the plot vary. The remaining factors must remain set at a unique level,
either +1 or -1. In the example of the Figure 6, for each plot, the remnant factor is remained at
-1. If the lines of an interaction plot are parallel, it implies that there is no interaction between
the parameters plotted. Differently, if the lines are non-parallel, an interaction exists between
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the factors. The greater the degree of departure from parallelity, the stronger the interaction
effect (ANTONY, 2014). For the interaction P vs Q when R is set in -1, in Figure 6, one may
note that the lines are perfectly parallel, and therefore, there is no interaction between P and
R. In another hand, for the plot concerning R vs P when Q is set in -1, it is huge the degree of
non-parallelism between the lines. Thus, the output response is strongly sensitive for the setting
combination of P and R. An interesting effect occurs in the Q vs R plot, when P is set in -1.
One may note that although the lines are definitely non-parallel, it is not great the degree of
departure from parallelity. This fact implies that there exists interaction between Q and R, but it
is minor. The output response will not be too penalized due to an unfavourable combination of
these two factors.

The other graphical tool employed in this work is cube plots. This approach consists of
plotting the output response, according to the settings which had led to the presented response,
in a squared formation. The goal of cube plots is to simply visualize the contribution of each
level and parameter in the output response, and to facilitate the manual pattern recognition. A
cube plot regarding the experiment example designed in the table 2 is presented in the Figure 7.
Figure 7 – Cube plot of the output response from the experiment designed in the Table 2. The

cube approach embraced with a scaled colour map facilitates the visualization and

recognition of patterns in the output response according to the factors.
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One may note that the cube plot approach relies on the dimensional characteristic of
the total amount of factors in order to be implemented. This means that, designs with more
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than four factors can not be easily interpreted with cube plots. A design with two factors can be
represented with a square plot and a design with four factors can be represented with several
cubes to convey the effect of the fourth factor’s levels. For example, if the experiment of the table
2 were structured differently, supposing a 42 full factorial design, would have been necessary two
plot cubes to represent its features. The first cube would be a representation of the combination
of each of the factors’ settings at a low (or high) level of the fourth factor, and the second plot
would be plotted similarly but under the scope of the remnant factor’s level.

Some considerations must be noted in the cube plot analysis. Its original model
(ANTONY, 2014) does not contemplate a color map distribution. This was an author’s idea to
facilitate the manual analysis and pattern recognition of the output response. Furthermore, the
dependence of the patterns to be recognized through manual reasoning may lead to misunderstood
concerning the true relationships among the factors. Both the interactions plot and cube plots
present themselves useful tools to achieve a good notion about the behaviour of an experiment
at the frontiers of its volume of settings and to recognize some bias among the parameters
interactions. In the cube plot example of the Figure 7, one may just achieve an intuition about
how the output response behaves in the extreme of its factor’s levels +1 and -1. The inner volume
of parameters settings of the cube remains unknown. One could assume a linear relationship
among the factors, and basing on this linear model predict all the untried configurations. This
approach would work quite well if it were attested that there is no interactions among all the
factors, however hardly exists some process or phenomenon whose factors are totally independent
from themselves.

Concluded the four phases of design of experiment, one may finally contemplate a
reliable intuition of the process or experiment analysed, and profitable settings may be chose.
In this work, DOE was employed, at a first approach, in order to map the volume of settings
of a sensor, aiming to find the interactions of the device’s factors. In a second approach, a full
factorial design was expanded aiming to cover a reasonable amount of output responses and the
factors which had led to them, so that a dataset with maximum significance could be provided to
machine learn models. The cube plots tool was essential to understand and remark the patterns
whose ML models could learn and predict.

2.4 MACHINE LEARNING

One may define Machine Learning as a set of computer aided methods that can
automatically detect patterns in an amount of data, and deploy the uncovered patterns to take
decisions or to predict future states of the data (MURPHY, 2012). Machine Learning approaches
relies on the understanding of some phenomenon’s features through mathematical models or
logical algorithms, so that the coefficients of an algebraic formulation or the weights that penalise
decisions can be settled, and thereby the deployment of the trained model leveraged.

Machine learning may be grouped into three main categories: Predictive (or supervised),
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descriptive (or unsupervised) and reinforcement learning algorithms. At the first, is expected
that, given a vector of independent variable x, the model provides an output ŷ. In general, x
could be any complex structured object, such as numbers, sentences, graphs, images, etc. and
though in theory ŷ could be also any of these structures, in practice, most of the methodologies
assume ŷ as either a finite categorical variable or a real-valued scalar (MURPHY, 2012). When
ŷ is categorical, the model is known as a classifier, and is known as a regression when ŷ is a
real-valued. The second main type, descriptive models, does not provide any output given a
vector of independent variable. The goal of this approach is to recognize patterns in the data, and
to provide relations among them. One interesting descriptive model, namely cluster analysis,
groups the independent variable vectors into clusters according to some specific metric, in order
to assess the influence of the independent variable in the output response. The last ML main
branch is known as reinforcement learning. This methodology is employed to optimize decisions
of a software agent in interaction with some system. It induces the software’s learning through a
reward or punishment signals. In this situation, the input is the constant interaction and response
of the software with the system’s environment, and the output is a type of decision.

The conceptualization of machine learning in this work concerns the scope of predictive
algorithms, specifically regression models and techniques. However, most of the following
concepts are intrinsic to any ML category.

2.4.1 Dataset

A dataset must be provided to a predictive machine learning model in order to enable
it to understand patterns and correlations among the data, and predict the output for unknown
observations. A predictive dataset can be stated as:

D = {(xi, yi)}Ni=1

where: xi = (x1i, x2i, ..., xmi),

yi = (y1i, y2i, ..., yji)

(10)

Where xi is the ith vector of independent variable of a dataset D whose size is N , and
yi is the vector of dependent variable respective to the ith vector of independent variable. As
mentioned before, both the independent and dependent variable vector can be any complex
structured object, such as images, sentences, numbers or even other vectors. The literature also
refers to the vectors of independent and dependent variables as feature vector and real output
vector, respectively. A dataset of a predictive model is commonly organized as rows and columns.
Each column represents the total amount of data of the mth independent variable xm, with
exception of the last columns, which are commonly designated to represent the total amount
of data of the jth dependent variable yj . Each line stands for the ith vector of independent and
dependent variable.
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An efficient dataset provides a sufficient amount of significant observations in order to
train a ML model until its saturation. A wrong assumption at the handling of machine learning
models is to assert that the more amount of vectors of independent variable, the better the
performance of the model. Large amounts of data may contain noisy samples and outliers,
which can impair and ruin the ML model’s assumptions. Significant data are samples that better
represent the fundamental characteristics of the phenomenon under study. In contrast, poor data
can even pretty well represent a local behaviour of a phenomenon with a large amount of data,
but the model will fail to remark the global pattern of the phenomenon and hence will fail to
perform general predictions. Another factor that may lead to a poor dataset is to have a small
amount of observations. In this circumstance, the ML model fails to perform general predictions
either due to lack of descriptive information, or overfitting (more details about overfitting can be
found in 2.4.6). The lack of information in the dataset so leads to a generic ML model, that its
predictions are inaccurate. On the other hand, if the model is overfitted, its predictions will be
too bounded with the dataset, so that generalized results can not be achieved.
Figure 8 – Splitting of the dataset during a machine learning application. The original dataset,

presented at the left of the figure, is sectioned into two arrangements, one that is

deployed to cyclically train, tuning and evaluate the model, and another, that has not

been deployed at the learning phase and judges the final performance of the model.

The former is named Train set and Validation set, and the last, Test set.
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The process to train and evaluate a machine learning model embraces the management



45

and splitting of the dataset, as portrayed in the Figure 8. In order to train a model, it is necessary
to hold a portion of the dataset out of the training and optimizing process (GOODFELLOW et al.,
2016). This portion is referenced as test set, whereas the section deployed to train and optimize
is split into training and validation set. The ML algorithm fits its learning design based on the
train set observations. The result of this operation is a functional predictive model. However, in
pursuance of the best fitting of the algorithm’s design into the training observations, enhancements
and improvements must be done regarding the handling of the model’s singularities and in the
model’s hyperparameters (more information of hyperparameters in 2.4.8). These enhancements
and tuning are carried out founded on the evaluation of the employment of the trained model to
predict the output of untrained observations kept by the validation set. Further, the model is again
trained with the train set, had its hyperparameters been improved, and the quality of predictions
is evaluated once more through the employment of this optimized model to predict the output of
the validation set. This cycling process is repeated several times, until the established criteria of
predictions’ performance are achieved. When this enhancement process is believed optimum,
the optimized model must be employed to predict unknown observations, in order to be finally
assessed. These unknown observations are kept by the test set, and its functionality is to simulate
a real use case for the trained ML model. The assessment of the test set predictions asserts the
quality of the model’s performance. If the predictions of the test set are not satisfactory, one may
step back to the training, tuning and evaluation cycle phase, and attempt to improve the response
of the validation set. It is fundamental that the enhancements of the hyperparameters are settled
based on the response at the validation set. If the response of the test set is used as a comparison
for improvements and tuning, the final predictive model would be fitted to better respond to the
test set, and hence the uniqueness of having a set of unknown observations no longer will exist,
and the final assessment will not be reliable.

The definition of the contents and structure of the dataset are decisive elements to achieve
satisfactory predictions of generic observations. The data must contain the most meaningful
information as possible, in order to saturate the training of the algorithm. Besides, a careful
planning of the training, tuning and evaluation process must be so carried out, that an optimum
final model can achieve a good and reliable performance. When planing the constitution of the
dataset, one must consider the splitting dimensions, so that each split has enough data to fulfil its
functionality. The standard structure adopted is to reserve 60% of the total dataset amount to the
training set, 20% to the validation set and 20% to the test set. In this work, the dataset structure
and the enhancements of its data significance were widely exploited in the advancement of the
DOE/ML approach.

2.4.2 Regression

Regression is a branch of predictive models that is characterized by the fitting of real-
valued independent variables into a learning algorithm, in order to predict a real-valued output,
namely dependent variable. Goodfellow et al. (2016) generalize a regression model as a function
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f according to the notation 11, where m is the number of elements that consists the ith vector of
independent variable xi from a dataset represented by the equation 10, and R is the set of the real
numbers.

f : Rm → R (11)

A classical representation of a regression model and application is conveyed in the
Figure 9. The Figure represents the fitting of a polynomial regression model into a dataset
consisted of just two columns and 15 lines. At the first column is found the unique independent
variable that consists the x vector, so that m = 1, and the values of x1 are assigned in the figure
as the x-axis values of the triangular black points. At the second column is found the real-valued
dependent variable values, which are represented in the picture as the y-axis values of the
scattered points. Just a train set was employed in the building and training process of this model,
since the nature of the problem is quite simple and its aim is just for exemplification purpose.
After the model’s hyperparameters have been set, the independent and dependent variable values
were deployed to guide the learning algorithm to find the polynomial equation’s coefficients that
better describe the dispersion of the points. Once the model’s metrics are satisfied or no better
configurations can be achieved, the fitting of the model is finished and it is ready to be deployed
to perform predictions. The targets to be predicted are 300 vectors of independent variable with
m = 1 containing real-valued values uniformly ranged from 0 to 4 at the x-axis. The predicted
values are assigned to the y-axis through the analysing of the red line.

One may attest that in the Figure 9 the polynomial model was able to construct a
curve that generalizes a solution for the given vector of independent variable. Some predictions
were pretty akin to the dependent variable’s values of the train set, whereas others were quite
sparse. A good fitting of model is able to provide generalized and yet accurate predictions to
any further dataset that represents the phenomenon under analyses. It is possible to enhance the
hyperparameters of the deployed polynomial model so that the predicted values would match
perfectly with the train set’s real output. But in this circumstance the built model would be too
specific trained to the train set, so that it would not be able to perform good predictions of data
outer the train set. When this fact occurs, is said that the model is overfitted, and this phenomenon
is approached in the Subsection 2.4.6.

2.4.3 Feature scaling

Before the fitting of a machine learning model, a preprocess must be done in the dataset,
in order to adapt its elements to be compatible with the algorithm semantic and concept. At
the formulation of a regression algorithm model, must be considered whether the learning
methodology is affected if the training data contains elements in different numerical scales. Since
several machine learning algorithms are parameterized through constants that are simultaneously
shared in the fitting of all the independent variables, their different scales might unleash divergent
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Figure 9 – Regression model example. Here, a train set consisted of a single independent variable,
so that m = 1, is fitted into a polynomial regression model. The trained model was
deployed to predict observations whose values range from 0 to 4 in small resolution,
presented at the x-axis. The prediction result associates the values in the x-axis to the
y-axis, through a polynomial curve which best represents the train set distribution
for the given hyperparameters. The polynomial regression model employed in this
example is provided by the open-source API from Pedregosa et al. (2011).
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learning conditions from the originally formulated, as enlightened by Skiena (2017). The author
also states that such divergence leads to unreadable coefficients by the algorithm, numerical
imprecision and inappropriate formulations.

In order to empower scaling sensible algorithms to become capable of fitting any
nature of real-valued data, there is a need, during the preprocessing phase, to scale the entire
dataset. There are two main techniques nowadays employed by the data science community to
scale the dataset’s features: Standardization (also known as Z-Score) and normalization. The
standardization technique operates the scaling of each independent and dependent variable
individually, so that, after standardized, the variable’s samples have a mean value of zero and
a standard deviation of value one. Let xm be the mean value of the mth independent variable’s
values, and σm its standard deviation, the standardization (or Z-Score) technique applied for a
value xmi, located at the ith line of a dataset, can be equated as in eq. 12, where Z(xmi) is the
standardization function.

Z(xmi) =
xmi − xm

σm
(12)

The normalization technique so operates the scaling of a variable, that its values range
from 0 to 1. Let xmax

m and xmin
m be the maximum and minimum value of the mth independent
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variable, the normalization function N(xmi) for the scaling of a value xmi can be formulated as
expressed in eq. 13.

N(xmi) =
xmi − xmin

m

xmax
m − xmin

m

(13)

Some of the machine learning models specify in its application programming interface (API)
which nature of feature scaling is required to the fitting of the algorithm. The data science
community usually employs the normalization scaling when the data of each feature vector
element are normally distributed, and standardization when these data are not normally
distributed. Most of the regression models that require feature scaling employ standardization.

2.4.4 Evaluation metric

In order to assess the fit of a machine learning model, one must consider which goals
the employment of such an algorithm aims, and how one can evaluate its predictions. Concerning
predictive algorithms, one might be interested in deploying a reliable metric to compare the
similarities between the predicted real-valued output and the real real-valued output (dependent
variable). The state of the art for multivariable regression metrics covers four regularly employed
techniques, namely Coefficient of determination (also known as R-square, R2), Mean absolute
error (MAE), Mean squared error (MSE) and Root mean square error (RMSE). The evaluations
presented in this work were achieved through the coefficient of determination, and thus, the study
of the remnant metrics are beyond the present scope. More details about MAE, MSE and RMSE
can be found in the work from Härdle e Simar (2015) and Chai e Draxler (2014).

The coefficient of determination is a metric employed to statistically assess the goodness-
of-fit of a ML regression model, by the means of contrasting the variance of the predicted output
values to the variance of the dependent variable values, as analysed by Allen (1997). The author
assumes at first the development of a reasoning to explain the composition of the dependent
variable’s variance as the sum of the predicted values’ variance and the variance of the errors of
prediction, as respectively equated in eq.14.

N∑
i=1

(yi − y)2 =
N∑
i=1

(ŷi − y)2 +
N∑
i=1

(yi − ŷi)2 (14)

At this expression, N is the dataset size, y is a value of the dependent variable, y the
mean value of the dependent variable values and ŷ is the predicted output. The variance of the
dependent variable’s value numerically evaluates the spreading of the data with reference to its
mean value. The variance of the predicted output, regarding the mean value of the real output,
dictates the consistency of the predictions’ performance. The variance of the errors of predictions
numerically assesses the distance between the true and predicted values. One may remark in
eq.14 that, the smaller the value of the variance of the errors of prediction, the more similar is
the scattering of the predicted values to the scattering of the dependent variable values, regarding
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as reference the mean value of the real output. Given this formulation, Allen (1997) defines as
coefficient of determination the ratio of the variance of the predicted values to the variance of the
dependent variable values as presented in eq.15.

R2 =

N∑
i=1

(ŷi − y)2

N∑
i=1

(yi − y)2
(15)

The equation 15 is commonly expressed in terms of the ratio of the errors prediciton’s
variance to the dependent variable’s variance, through the substitution of eq.14 in eq.15, resulting
in eq.16 as follows:

R2 = 1−

N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − y)2
(16)

The employment of eq.16 generates an interpretable real-valued number in the range
from 0 to 1, so that 0 ≤ R2 ≤ 1. The closer the value of R2 is to 0, the less the predicted
output’s variance is associated with the dependent variable’s variance, and according to eq.14,
this variance is thus due to the error of prediction’s variance between ŷ and y. On the other hand,
the closer the value of R2 is to 1, the greater the similarity of the predicted output’s variance is
to the dependent variable’s variance, and hence less is the error of prediction’s variance. One
may note in eq.16 that R2 can reach negative values. This circumstance implies that the model’s
performance is worst than just to assume each value of ŷ as being the average value y of the real
output values.

The coefficient of determination is a practical and generic evaluation metric that can be
deployed to assess the performance of any regression model, so that it enables the comparison of
different regression algorithms concerning how well each of them fits the data (ALLEN, 1997).
This metric was widely deployed in this work, in order to assess the performance of the employed
algorithms and how its accuracy varies according to the change of settings of the algorithms’
hyperparameters.

2.4.5 Bias and variance

Concerning the fitting and performance of a machine learning model, there are two
main concepts that influence directly the model’s accuracy and reliability, namely overfitting
and underfitting, which are explained through two statistical notions: Bias and variance
(GOODFELLOW et al., 2016). These four approaches are intrinsically related. To find the
sweet spot among them assures satisfactory predictions. Skiena (2017) defines the bias error of a
ML model as the incorrect assumptions taken by the algorithm about the relationship of the train
data that builds the model. The author also states variance error as the performance sensitivity
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of the built model regarding datasets different from the train set. The Figure 10 exemplifies
these concepts. All the models deployed in the figure are provided by the open-source API from
Pedregosa et al. (2011)

The example is carried out supposing a dataset consisted of just one independent
variable, so that m = 1, and one dependent variable. The dataset is split just into train and test set.
A linear and polynomial regression are trained and deployed to predict the respective output for
one independent variable, which consists of observations that numerically range from 0 to 4 in
small resolution. At Figure 10.(a) and (c), the linear regression is trained with the train set, and
the algorithm fits a straight line through it, so that the line strives to represent the relationship
among the data. The Figure 10.(b) and (d) employ the same train set used in the linear regression,
in order to train a polynomial regression model, which strives to fit a polynomial curve into
the train set, aiming to represent the patterns among the data. Observing the Fig.10.(a), one
may remark that the straight line does not have the flexibility to accurately represent the data’s
relationship, because the model predefines the assumption that the train set values are linear
correlated among themselves as a straight line. This predefinition of how the ML model is going
to fit the training data is known as model bias, according to the definition made by Skiena (2017).
Since the linear regression assumptions are hardily softened, it is said that the model has a high
bias. At Fig.10.(b) the polynomial regression is built with a high polynomial degree level, so that
the algorithm almost interpolates the train set values. And since the model (when built with a
high polynomial degree level) roughly does not state assumptions about the train set fitting, it
is said that the model has low bias. The coefficient of determination’s value of the built linear
model from Fig.10.(a), for the predictions of the train set’s dependent variable is 0.78, whereas
the same metric applied for the same predictions performed by the polynomial model from
Fig.10.(b) achieved the value of 0.86.

The figures 10.(c) and (d) presents the performance of the same built models from
Fig.10.(a) and (b) respectively, predicting the output for the same independent variable consisted
of numerical observations ranging from 0 to 4 in small resolution, but now the untrained
observations from the test set are the reference to assess the deterministic model’s accuracy. At
the Fig.10.(c), one may remark that, though the presented fitting is not the best representation,
yet the straight line of the linear regression is capable of describing the test set values as well
good as the train set values. Actually, its coefficient of determination for the predictions of the
test set real output is even higher than the value achieved for the training set, reaching 0.81. The
assessment of the linear regression model leads to the acknowledgement that the performance
of the algorithm is not significantly sensitive to fluctuations of dataset, since the coefficient of
determination value achieved with the predictions of the training and test set are roughly the
same. The sensitivity of a built model’s performance to different datasets is known, according to
the definition stated by Skiena (2017), as variance, and thereby is said that the linear regression
model has low variance. On the other hand, at the Fig.10.(d), one may remark that since the fitting
of the model’s polynomial curve into the training samples was too conservative to the training
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Figure 10 – Linear and polynomial regression built models to predict the real output for a dataset
consisted of one independent variable. All the four red splines represent predicted
outputs for one independent variable consisted of observations numerically ranged
from 0 to 4 in small resolution. The Fig.(a) presents the fitting of the linear regression
straight line into the train set. The strong regularization of the model’s assumptions
of the data characterizes it as owning high bias. At Fig.(b) is shown a high level
degree polynomial regression built model, so that the fitting curve almost interpolates
the train set values. Since the model’s assumptions of the data’s relationship are
pretty flexible, it is said that the algorithm has a low bias. At Fig.(c) the very same
built model from Fig.(a) is presented, but the assessment reference is the test set.
Since the accuracy of the predictions of the test set are visually quite similar to the
predictions made for the test set, is said that the linear regression model has low
variance. At Fig.(d), the same built model from Fig.(b) is shown, but as in Fig.(c),
the assessment reference is the test set. Since the regression’s polynomial curve is
too fitted into the train set, it visually achieves worse accuracy of predictions at the
test set, and hence it is said that the model has high variance.

0 1 2 3 4

2

4

6

(a)

Train set
Predicted output

0 1 2 3 4

2

4

6

(b)

Train set
Predicted output

0 1 2 3 4

2

3

4

5

6

(c)

Test set
Predicted output

0 1 2 3 4

2

3

4

5

6

7

(d)

Test set
Predicted output

Source: Author.



52

set characteristics, the employment of such a curve to represent the patterns of an unknown set
of data, in the case of Fig.10.(d) the test set, does not present the same good predictions as it
did for the train set. Indeed, the coefficient of determination of the prediction of the test set real
output made by the model from Fig.10.(d) reached the value of 0.71. This assessment achieved
by the means of the coefficient of determination metric attests numerically the visual belief that
the performance of the predictions of the test set was worse than it did in the train set. Hence, is
said that the model from Fig.10.(d) has a high variance.

The bias and variance of a built model are defined by the intrinsic construction of the
fitting algorithm and by the choice of the hyperparameters (see 2.4.8). Neither the linear nor
the polynomial regression built in the example of Fig.10 has an optimum setting regarding the
caution to handle with bias and variance errors. In fact, a trade-off between these two concepts
must be so considered in the building of a model, that the learning algorithm does not be too
regularized with data assumptions, leading to a model with high bias, but neither comply with
too soft assumptions, so that the fitting is entirely dictated by the training data, leading to a
model with high variance. The ideal model fitting would have low bias and low variance, in
such a manner that the algorithm would be capable of learning a quite flexible fitting with the
train set, and this fitting would be generic enough to depict any further batch of data from the
phenomenon under study. However, since the learning method is immutable, one can manage the
trade-off between bias and variance by means of tuning the hyperparameters, in order to find
a sweet spot between the model’s bias and variance. Hence, the built ML algorithm would be
empowered to perform accurate predictions for different sets of data and reliably deployed in
future applications.

2.4.6 Overfitting, underfitting and generalization

As mentioned in Section 2.4.5, the well-fitting of a model relies on two main
ML concepts, namely overfitting and underfitting. Goodfellow et al. (2016) describe these
phenomenons as the two central challenges in machine learning. The authors state underfitting
as the inability of a model to reach a low error value in the prediction of the training set, and
asserts overfitting as the inability of a model to achieve similar error performance between the
prediction of the training set and the prediction of the test set, i.e. the error of prediction reaches
significance different scales for each set of data predicted. The authors also convey that these
two concepts are explained through the statistical notions of bias and variance, approached in
Section 2.4.5. When a model is too conservative in its assumptions of the data relationship, such
as the linear regression of the Figure 10.(a) so that it fails to well describe the data distribution
due to high bias, the ML algorithm fails to well perform in the train set prediction, and it is said
that the model is underfitted. On the other hand, it is said that the model is overfitted when the
algorithm is too softy in its assumptions and strives to achieve accurate performance in the train
set prediction through the memorization of the train set features, as remarked in Figure 10.(b), so
that it fails to describe the test set due to high variance.
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Goodfellow et al. (2016) agree that the goal of a machine learning algorithm is to
perform well at the predictions of new, and yet not seen, observations. The authors define the
ability of a model to achieve good predictions at a yet unlearned dataset, as generalization. A
good and reliable ML built model is capable of well learning the relationship of the train set,
reach a good performance in the prediction of the training samples, and further be employed to
predict unknown observations and achieve similar good predictions in it as well as in the train
set, complying with the definition of a generalized model. The achievement of a generalized
model can be pursued through the choice of a learning algorithm that is best able to recognize
the patterns of the data, tunning the hyperparameters, cross-validation techniques, ensemble
methods and other approaches enlightened by Goodfellow et al. (2016).

A particular circumstance that regularly leads to underfitting is the training of a ML
algorithm with a small dataset. The handling of this situation requires caution and it is approached
in Section 2.4.7.

2.4.7 Small dataset features

The fitting of a machine learning model relies on the association between the learning
algorithm and the adjustment of its parameters to mark the patterns of the data. However, when
the dataset does not provide a large amount of observations, the degree of freedom of a model
(i.e. the number of parameters of a model regarding the number of observations in the training
set) increases as a result of the settlement of the model’s unsoftened assumptions, i.e. large bias,
leading to underfitting and consequently decreasing the accuracy of the predictions (ZHANG;
LING, 2018). In fact, it is a well consolidated foundation the notion that a machine learning
algorithms’ performance improves with the increase of the amount of meaningful data of the
training set, as reported by Schmidt et al. (2017) and Faber et al. (2016).

Nevertheless, the employment of a small dataset is inevitable at certain situations, once
that the cost of each observation is expensive and a greater amount of data is not affordable
or simply impossible, as presents Zhang e Ling (2018) and Kamath e Fan (2018). Thereby, in
order to empower the deployment of ML algorithms in such a small set of observations, one
may approach the problem employing different branches of ML strategies to enhance specific
methodologies in the management of the problem, and hence rendering the model competitive.
For instance, one may improve the data’s significance of the training set through sampling the
observations by a DOE methodology, and deploy the evaluating technique of Leave-One-Out
(LOO) in order to accomplish an optimization phase of the model’s building, as did Kamath e
Fan (2018). Another strategy to outperform the achievement with small datasets is through the
softening of the model’s bias, by the means of ML ensemble techniques, as studied by Webb e
Zheng (2004).

Since the nature of the circumstance approached in this work handles with small datasets,
all the three strategies mentioned above were employed into the resolution of the problem of this
work.
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2.4.8 Hyperparameters

The hyperparameters of a machine learning model are the settings of the learning
algorithm that one can set, in order to control the learning algorithm’s behaviour, as assert
Goodfellow et al. (2016). The polynomial regression of the Figure 9 has just one unique
hyperparameter, namely the level of the polynomial degree itself. However, most of the ML
models have several hyperparameters that enable the customisation of the learning approach.
Such customisation is crucial to fit an algorithm into a specific dataset, which has singularities
that must be considered in order to empower the interpretation of the data’s patterns by the
learning methodology.

The setting of the hyperparameters must be designated with caution. In fact, such is the
importance of this procedure that a hyperparameter can not be adapted by the learning algorithm
itself, i.e., it can not be learned (GOODFELLOW et al., 2016). The reason for this statement is
that a learning methodology will always try to fit the training set in such a manner that the best
performance might be achieved in its predictions. Consequently, the algorithm would improve
the hyperparameters values until the predictions of the training set reach an optimum of similarity.
But as it is demonstrated in Figure 11, the careless enhancement of the polynomial degree would
lead to overfitting. The Figure 11 demonstrates how the training and testing performance of
a polynomial regression varies according to the enhancement of its hyperparameter, namely
the polynomial degree. The regression model was trained with a dataset consisted of just one
real-valued independent variable with values that range from 0 to 4, represented in x-axis, and a
real-valued dependent variable represented in the y-axis. The algorithm was deployed to predict
the response for 300 real-valued observations within the range of 0 to 4, distributed in small
resolution. At Fig.11 top, one may remark the increase of complexity of the polynomial curve at
the description of the train set, given the increase of the polynomial degree. The Fig.11 bottom
presents the R2 value for each different hyperparameter level in the train and test set. One
may note that, the more squiggly the predicted curve for the train set, better its performance in
the R2 metric. Nonetheless, since the curve’s complexity is fitted for the train set, the higher
the polynomial degree, the worse the performance in the test set, as one may visually observe
in Fig.11 middle and numerically attest in Fig.11 bottom. In fact, the careless tuning of the
hyperparameters can lead to discrepant situations, where the predictions achieve excellent results
for the train set, and catastrophic for the test set, achieving even negative values for the R2 metric,
as occurs in Fig.11 bottom when the polynomial degree is set to 11.

The process to determine the values of the hyperparameters is carried out during the
cyclic phase of the model’s tuning and evaluation, assessing its performance predicting the
validation set, as detailed in 2.4.1. At this phase, one may remark and assess, through chosen
metrics, how the model’s efficiency of the prediction of the validation set varies according to
the changing of the hyperparameters. Goodfellow et al. (2016) depict this phase as the using of
the validation set to "train" the hyperparameters. Once that the algorithm’s performance at the
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Figure 11 – Polynomial regression built model employed to predict the real output of a dataset
consisted of one independent variable. All the coloured splines from the Fig.
top and middle represent predicted outputs for one independent variable that
consists of observations numerically ranged from 0 to 4 in small resolution. At
fig. top, it is presented the built model predicting the very train set given different
hyperparameter’s levels. In Fig. middle, is found the response for the same built
model from fig. top, but here deployed to predict the response for the test set. At Fig.
bottom is presented the R2 value for each different hyperparameter level in the train
and test set. The polynomial regression model employed in this example is provided
by the open-source API from Pedregosa et al. (2011).
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prediction of the train and validation set is satisfactory, the generalization of the model may be
assessed by means of the deployment of the model to predict the test set.
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2.4.9 Regression models

There are several different logics and principles that guide the learning algorithm of
a machine learning regression model. Each technique has its own intrinsic methodology and
particular aims during the fitting process, in order to better describe the data’s relationship and
hence perform good predictions. In this section, brief explanations of the principles and features
of four regression models are found. These models were employed in the experiments of this
work.

2.4.9.1 XGBoost

XGBoost is a tree boosting based algorithm, developed by Chen e Guestrin (2016).
A tree-based ML model is consisted by the partitioning of the input space, followed by the
assignment of a simple descriptive model (for instance a simple constant) to each split region
(BISHOP, 2006). Tree-based algorithms can be comprehended as a collection of descriptive
models, in which only one description is assigned to perform predictions for a given vector of
independent variable in the input space. The assimilation process of each vector of independent
variable to a descriptive model is carried out by means of a sequential decision process through
the traversal of a binary tree, so that it is characterised by the splitting of two branches at each
node. The boosting strategy consists of building a predictive model by the ensemble of "weak
learner" algorithms (MURPHY, 2012). Each weak learner is trained in sequence employing
weighted versions of the dataset, where the weighting of the data is associated according to the
performance of the previous learner. In particular, the worse the performance at earlier rounds,
the greater the weight value for the next learner. Thereby, a tree boosting algorithm consists of
an ensemble of tree-based models.

The XGBoost model performs the boosting through the Gradient Boosting methodology
(CHEN; GUESTRIN, 2016), so that it generalizes the boosting algorithm to handle with generic
loss functions, and hence regression (MURPHY, 2012). XGBoost also innovates among general
tree boosting algorithms by computing a penalty term in the minimisation of the loss function,
in order to reduce the model’s complexity, and thereby preventing overfitting (LUCKNER;
TOPOLSKI; MAZUREK, 2017). In addition, the model provides a scaling parameter in order
to control the impact of a single tree in the final score, and implements a column subsampling
technique to avoid overfitting and improve the computation speed (CHEN; GUESTRIN, 2016).

2.4.9.2 Gaussian process

Gaussian process (GP) regression is a probabilistic based model. Bousquet, Luxburg
e Ratsch (2004) define GP as a collection of random variables, in which any finite batch has
a consistent joint Gaussian distribution. GP can also be considered a descending extension of
multivariate Gaussian distributions to infinite dimensions, as states Kamath e Fan (2018). The
authors justify the employment of Gaussian process in machine learning, if it is assumed a
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dataset of size N as a single point from a N -variate Gaussian distribution. GP is totally described
by a probabilistic model underlain in a mean function ψ(x) and covariance function κ(xi, xj),
where x is a vector of independent variable, so that the model is a generalization of Gaussian
distribution in order to process functions (BOUSQUET; LUXBURG; RATSCH, 2004). Given
the input data, the algorithm infers a distribution over functions, and rely on these functions to
perform predictions (MURPHY, 2012).

The covariance function of the GP model structure is elementary in the training of the
learning algorithm, since it codifies the assumptions of the function that will be learned, by means
of the determination of the definition of the degree of similarity among vectors of independent
variables, so that nearby vectors of independent variables have high correlated outputs (SU et
al., 2014). In Gaussian process the mean and covariance functions are hyperparameters, so that
prior assumptions and beliefs about the structure of the model may be specified. The covariance
functions also are regarded as kernels, and it is common that several definitions of them can be
found in conjunction with the GP’s API.

2.4.9.3 K-nearest neighbor

The K-Nearest Neighbor (KNN) model is a nonparametric based algorithm, i.e., it does
not take any prior assumption of a learning model function before any data be observed, but
it designs its complexity as a function of the training data (GOODFELLOW et al., 2016).
The training of the learning algorithm consists of simply storing the training set and the
hyperparameters’ values. For regression, given an input independent variable vector, the model
searches in the training set for the K-nearest vector of independent variables and returns the mean
value of their respective dependent variables’ values, as explained by Kramer (2013). The author
clarifies the idea justifying that since the local neighbors of a vector of independent variable
xi are expected to have similar continuous dependent variable’s value yi, the prediction for an
unknown variable xj must has similar value to the value of its neighbors, and such similarity may
be modeled through averaging. The neighbor’s closeness is calculated through a distance metric
defined as a hyperparameter, since each dataset may have different features that can be better
related by a personalized distance metric. It is common that the KNN’s API provides several
options of distance metrics.

The KNN methodology induces local constants responses. In order to smooth the
prediction function, Kramer (2013) presents the weighting of the neighbor’s similarity as an
alternative to avoid plateaus prediction regions. The idea is that closer independent variables
shall contribute more for the final prediction value, leveraging different possible optimizations
concerning the data relationship.
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2.4.9.4 Support vector machine

Support vector machine (SVM) is a linear based ML model. The algorithm computes
a linear regression through a high-dimensional (or infinite-dimensional) mapped feature input
space (WAUTERS; VANHOUCKE, 2014). The ML model exploits the fact that only the inner
product is used in the calculations, to employ kernel functions, i.e. different definitions of the
inner product, in order to enable nonlinear regression performances (BALABIN; LOMAKINA,
2011). Since the relation between the independent and dependent variables are hardily linear, the
model defines a new Euclidian space as a result of a personalized inner product (also regarded
as mapping function) (LUU et al., 2009), aiming to find a hyperplane that better describes the
independent and dependent variables’ relationship in the new dimension space, and based on this
description it performs predictions (WAUTERS; VANHOUCKE, 2014).

SVM may be deployed to solve classifications and regression problems. For regression,
the learning algorithm is built through the penalization of the prediction’s errors, in order to
minimize a cost function (BALABIN; LOMAKINA, 2011). The fitting of the linear regression
in the high-dimensional feature space is controlled by the setting of two mainly hyperparameters,
which regularize the performance at the cost function, so that the model’s overfitting aspects can
be managed, and the best fit reachable.

2.4.10 Ensemble methods

Ensemble methods are a collection of algorithms that try to construct a set of learning
models and combine them (ZHOU, 2012), aiming an enhanced predictive performance. An
ensemble is consisted of a certain amount of base learners that are base learning algorithms
trained with training sets from the same dataset. Zhou (2012) distinguishes ensemble methods
regarding their composition of base learning algorithms, stating as homogeneous ensembles,
methodologies that employ just one type of base learning algorithm in its performance, and
heterogeneous ensembles, as techniques that employ more than one type of base learning
algorithm. The author also notes that the generalization of ensemble models, i.e. the capability of
a model to achieve good predictions of a yet unlearned dataset, is often much higher than those
achieved by single base learners, since the technique is designed to boost the performance of the
base learners. It is a general belief that, in order to achieve a good ensemble, the choice of the
base learning algorithms must be carried out with caution, so that each base learner should be as
accurate as possible, and as diverse as possible (ZHOU, 2012).

There are several ensemble learning algorithms and methodologies, such as bagging,
boosting, combination methods and variants of these techniques, depicted by Webb e Zheng
(2004). Each of them performs different strategies regarding the training and predictions phase,
in order to combine the features of each base learner. Since that in this work it is employed just
the combination methodology of ensemble learning, the other strategies are beyond this scope
and will not be approached. More details about them may be found in Zhou (2012) and Webb e
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Zheng (2004).
Combination learning usually relies on heterogeneous ensembles, so that rather to

try to find the best single learning algorithm, combination learning states the final prediction
basing on the predictions of the base learners. The most popular and fundamental combination
method for regression is known as Averaging, whereas Voting stands for classification (ZHOU,
2012). To comprehend Averaging, it is supposed a conjunct T composed of individual base
learners {h1, h2, ..., hT}, so that the output of hi, given a vector of independent variables x, is
the predicted value hi(x) ∈ R. The final prediction H(x), for a single vector of independent
variables x, in combination with all the base learners, is the simple average of each individual
learner, such as describes the equation 17.

H(x) =
1

T

T∑
i=1

hi(x) (17)

It can be proved that the error of prediction of Averaging ensemble is smaller by a factor
of T than the averaged error of the individual learners (ZHOU, 2012). However, this proof is
only true if there exists no correlation between the trained learners, which is not the case for the
ensemble methodology, where the learners are being trained in the same dataset to solve the same
problem. Thus, the error reduction by a factor of T is hardly reached. Nonetheless, the simplicity
and effectiveness of Averaging is widely acknowledged by the data science community. Indeed,
the main advantages to employ combination methodologies in machine learning applications is
that they are more accurate, has lower bias and lower variance than single base learners (ZHOU,
2012).
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3 MATERIALS AND METHODS

To achieve the characterisation of the device under study through the DOE and ML
approaches, a conceptualization of the combination these two methodologies, in order to
complement each other, was pondered. Experiments were performed based on the DOE theory,
and fundamental conclusions regarding the inclinometer’s behaviour were so achieved that
a significant data set could be extracted from these experiments, in order to train a machine
learn model to fully characterise the device’s features for a delimited scope of parameters’
combinations. In order to perform the experiments, a reliable experimentation methodology and
communication infrastructure were developed for the presented use case.

In this chapter is described the equipment and methodology employed to carry out the

experimentation and analyses. First, is presented an introduction of the device’s functionality,

its parameters and the variety of its noisy response accordingly with the parameters’ settings.

Hereupon is explained the communication infrastructure developed to dynamically perform

experiments and assess the data acquired by the sensors. Further, an evaluation of some

singularities of the inclinometer are presented. In sequence the experimentation methodology

founded on DOE theory and data treatment is detailed. Afterwards, the inclinometer’s design

of experiments is presented, and following, the results of this evaluation’s model are presented,

in order to ponder conclusions on which the machine learning relies to be accomplished. To

conclude, the ML approach is conceptualized into the inclinometer’s DOE.

3.1 THE INCLINOMETER DEVICE

The inclinometer smart sensor device deployed in this work is a project developed by
the team of Large-Scale Metrology under supervising of the Chair of Production Metrology and
Quality Management, WZL at RWTH Aachen University. In order to map the structural thermal
displacement of a machine tool, the Large-Scale Metrology team has designed an inclinometer
smart sensor able to be robust, wireless, dynamically adaptive to different situations, configurable,
and accurate, complying with the standards of smart sensors (Section 2.2). To carry out this
accomplishment, the team had relied on the assembly of already existent electronic modules
to perform the measurement itself and the management and broadcast of the data. The device
developed is presented in Figure 12.

The sensor is projected to read, through the active acceleration felt by a sensing
mechanism (Subsection 2.1), the static tilt angle of two orthogonal axes, namely x and y,
and to read the dynamical acceleration for three degrees of freedom (DOF). The acceleration
of the static tilt is measured by two MEMS ICs SCA830 from Murata (2020c) , whereas the
3-DOF dynamical acceleration is measured by the MEMS IC SCA3300 also provided by Murata
(2020b). Both these modules are found in Figure 12 (b). In this work, only the functionalities
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Figure 12 – The pictures in the figure portray the sensor device explored in this work. Fig.(a)

presents a visualization of the sensor ready to be used. In fig.(b) is found the MEMS

IC module. Fig.(c) shows the electronic board that assembles the battery and the

BLE microcontroller. Finally, in fig.(d), one may behold the entire assembly of the

electronic modules, which are connected through SPI bus line.

(a) (b)

(d)(c)

Source: Author

concerning the static tilt modules were explored. The characterisation of the dynamical sensor
was not accomplished.

After the tilt measurement is performed, the information is conveyed through wired SPI
communication protocol to the BLE microcontroller CYBLE-212006-01 from Cypress (2019),
where the data is processed and broadcast through Bluetooth 4.2. The BLE microcontroller is
part of the assembly from Figure 12 (c). The assembly complex is energized by a single 3.6V
battery, that is attached to the battery structure on the assembly of Fig.12 (c). The electronic
modules are kept by a 3D printed case. This housing has magnets whereby the case can be
magnetized on the surface of a machine tool.

The BLE microcontroller propagates periodically notifications packages, in order to be
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recognized by some central device and establish the Bluetooth connection topology (Subsection
2.2). Once connected, the central device (in this work a personal computer) sends a configuration
package, in order to dictate to the controller the parameters and configurations of the measurement
that are required. The BLE microcontroller process these parameters, and establishes a routine
of measurement, according to the settings received, with the MEMS modules through SPI
communication protocol. The sensor ICs then perform the measurement of the tilt position that
the sensing mechanism is found regarding the gravity vector (Subsection 2.1). The measurement
data is preprocessed and sent back to the BLE microcontroller through SPI. The controller, in turn,
processes the data and broadcast them to the central device through the Bluetooth connection.
The Figure 13 summarizes this schematic of communication and data transferring.
Figure 13 – The figure presents a schematic of the communication among the inclinometer

device’s modules. At first, a measure request is made by the central device, which

in the case of this work is a personal computer, to the inclinometer. The request

is interpreted by the BLE microcontroller, and this, in turn, dictates to the MEMS

inclinometers a routine of measurement’s reading. The MEMS read the active

acceleration interpreted by the sensing mechanism, and this, in turn, return the

measurement through SPI to the BLE microcontroller, which broadcast the data

received to the central device that had requested it.

BLE microcontroller

Sensing mechanism

MEMS inclinometer

SPI

Bluetooth request

Bluetooth response

Read tilt

Response tilt measured

Source: Autor
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3.1.1 Inclinometer’s parameters

The procedure of establishing a Bluetooth connection with the inclinometer device is
carried out through an API written in python by the researchers from the team of Large-Scale
Metrology. By the means of this interface, the user can specify some parameters regarding the
Bluetooth connection and the routine of measurement. Since the Bluetooth related parameters
do not interfere with the quality of the measurement, they are not approached in this work.
The settlement of the routine measurement’s parameters dictates some details of the procedure
performed by the MEMS ICs, and are enlightened as following.

• Operation mode: There are three routines of measurement that can be chosen, namely
Standard, Repeated and Continuous.

– Standard: When the Standard is settled, the BLE microcontroller specifies a period
of time in which the MEMS ICs are going to keep reading and collecting samples of
the actual tilt placement. The reading is performed with a certain frequency regarding
the period of time chosen. For each sample collected, the MEMS ICs are going
to read a certain number of times the sensing mechanism, and return as a single
sample the average value of the amount consulted. After the period of reading time
is ended, the BLE microcontroller averages the value of all the samples collected
in this interval, sends the averaged value and the standard deviation of the averaged
samples to the central device that requested the reading. The inclinometer device
then establishes an idle operation mode, where the sensor does nothing and waits for
the next instructions. An important aspect to observe is that the Bluetooth connection
remains established while the inclinometer is in idle mode, so that new requests
of standard reading can be performed without the need to reconnect the Bluetooth
protocol. The Algorithm 2 in the Appendice A summarizes the procedure of the
Standard operation mode.

– Repeated: The Repeated mode follows the exact same routine as the Standard mode,
but instead of being set to an idle mode after have sent the averaged value to the
central device, the same measurement routine is executed again. The MEMS are
going to read samples within a period of time, with a certain frequency, where each
sample is an average of a certain number of consultations of the sensing mechanism,
and after this interval of measuring is ended and the averaged value of the samples
collected in this period is sent, along with the standard deviation of the averaged
samples in this interval, then the entire procedure is rerun. The repeated procedure is
only ceased when the Bluetooth connection is set to be broken. The Algorithm 3 in
the Appendice A summarizes the procedure of the Repeated operation mode.

– Continuous: The Continuous has a different principle of routine. When set to this
mode, the BLE microcontroller dictates to the MEMS ICs to collect samples at a
certain frequency (this frequency regarding one second), and return the exact sample
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read to the central device, continuously. For each sample, the MEMS ICs are going to
consult the sensing mechanism a certain amount of turns, average the values observed
and return this value as a single sample. This sample is sent to the central device
and the MEMS ICs are scheduled to perform another measurement according to
the frequency settled. This procedure is repeated continuously until the Bluetooth
connection is set to be broken. An interesting point to be remarked is that each
sample sent is not an average of a certain amount of samples collected during a
certain period, and hence no standard deviation of the samples collected in each
measurement procedure is calculated in this mode. The Algorithm 4 in the Appendice
A summarizes the procedure of the Continuous operation mode.

• Interval: Period of time within the MEMS ICs is going to collect samples of the actual tilt
placement. This parameter is only used in the Standard and Repeated operation mode.

• Frequency: Rate of sampling tilt measurements. For the Standard and Repeated operation
mode the frequency of reading the MEMS ICs is regarding the interval selected. For the
Continuous mode the rate of sampling is regarding one second.

• nValue: For each sample required to be read by the MEMS ICs, a certain number nValue of
observations of the sensing mechanism are going to be done by the MEMS and the average
value of the samples is going to be returned as a response for the single sample required.

Another parameter was observed empirically during cycles of measurement
requirements for the Standard mode. It is possible to architect an algorithm to read the
inclinometer in the Standard mode sequentially. In order to accomplish that, one may use
the API interface provided by the team of Large-Scale Metrology to write a loop of standard
measurement while the Bluetooth connection stands, and define a time of interval between the
standard measurements, so that each routine of standard measurement will be started after a
certain amount of time be fulfilled with reference of the last finished measurement. Since the
name of the python function which regularizes this difference of time is named as time.sleep(),
this name was assigned to refer to this period of time. The definition of this parameter is stated
as follows.

• Timesleep: This is an experimental parameter, and only occurs when performing routines
of measurement in the Standard mode. The parameter is the amount of time between the
requests of measurement routine made by the central device.

The possibility to customize the routine of measurement through the settlement of
these several parameters is one of the goals of the inclinometer developed, once that one may
adapt the sensor for each desirable situation. By the regularization of the Interval, Frequency

and nValue, the power consumption can be manageable according to the necessary sampling
rate of the application. The parameter interval can be manageable with a step resolution of 1
millisecond, the parameter frequency with a step resolution of 1 Hz (for any operation mode),
the parameter nValue with 1 unity and the parameter timesleep can be configured with a step
resolution of any real-valued number. The Operation mode can be settled to better comply with
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the use case. And the timesleep can be configured to regularize the rate of execution routine
in the Standard mode. Since it is countless the number of combinations of parameters, simply
analysing the performance of the device for each combination is not a practicable option. A
reliable and feasible methodology to map the inclinometer’s performance for a delimited volume
of settings is the subject of this work.

3.1.2 Inclinometer’s response

The inclinometer developed provides as output for the request of tilt reading the active
acceleration of the sensing mechanism regarding the gravity vector, as detailed in Subsection
(2.1). Since the device is projected with two MEMS inclinometers, placed orthogonality from
each other, it is possible to apply the Equation 9 to map, through the acceleration response, the
inclination of the sensor device of the two orthogonal axes, namely x and y.

As detailed in Subsection 3.1.1, several configurations concerning the routine of the
device’s measurement can be settled, and the performance of the tilt measured’s response varies
according to the combination of these parameters. The Figure 14 presents the sensor’s response
for each axis of measurement at three different configurations of parameters. Each horizontal
couple of graphics exposes the response of each of these three combinations of parameters.
For each set of parameters, the sensor was left laid still on a steady and assumed plain surface,
reading its inclination for several minutes. Ideally, the device’s response for this scenario should
relate 0g (0 radians when applying the Equation 9), as depicted in Figure 2, for any set of
parameters. However, since the manufacture of the inclinometer device is handmade and MEMS
accelerometers have an intrinsically noisy response (Subsection 2.1), the read response for the
conditions depicted is not exactly 0 radians. Indeed, the original inclination received from the
sensor has a static offset value (due ICs’ misalignment regarding an assumed plain surface) and
a complementary noise value. For this scenario, in order to assess the device’s performance
for each parameters combination’s experiment, the static offset value was filtered through the
subtraction of the collected samples’ mean value from each sample, so that only the noise
component is evidenced, as evinced in Figure 14. Each sample in the graphs of Fig.14 represents
the noise complement of the sensing axis experiment’s mean value.
Table 3 – Table portraying the combination of parameters that conducts the experiments from

Figure 14

Experiment Operation mode Interval (ms) Frequency nValue Timesleep (s)
Top STANDARD 400 5 10 0.4

Middle STANDARD 700 5 10 1.3

Bottom STANDARD 1300 70 10 1.0

The Table 3 presents the combination of parameters for each horizontal couple of
graphics from Figure 14. The inclination response read is given in milliradian. One may remark
in the figure that each plot is scaled in the same y-axis boundaries, so that the discrepancy among
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Figure 14 – Incliometer’s response for three different parameter’s settings.
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the noise response from each configuration of parameters can be comparable. Indeed, the stability
of the device’s response is extremely sensitive to subtle changes of the parameters’ values, as it
is clearly evidenced when comparing the response from each horizontal couple of graphics. For
the sensing x-axis in the Figure 14, the difference of the maximum noise amplitude from the
fig. top to fig. middle is 2.28 milliradian, and from fig. middle to fig. bottom is 0.35 milliradian.
For the sensing y-axis, disregarding the outliers, the difference of the maximum noise amplitude
from fig. top to fig. middle is 1.86 milliradian, and from fig. middle to fig. bottom is 0.096
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milliradian. Such a huge difference of performance’s behaviour can not be neglected for high
accuracy applications.

It is known that noise components of any signal can be filtered by modern and
sophisticated averaged-based algorithms. However a filtered response is an approximation of the
real exact values. The less noisy is the signal response, the more accurate is the approximation
of the averaged filter. For high accuracy applications, it is crucial the reduction of noise in the
samples, once that noisy responses decrease the reliability of the signal’s resolution.

The exposition of Figure 14 demonstrates the inclinometer’s response for just three
combinations of parameters, and in the presented situation the noise component responses
distinguish remarkably from each other. Since each parameter can be settled within a wide
range of values, there exist millions of possible combinations of parameters. To reliably assess
each response experimentally is not a practicable option. A modern and feasible technique to
achieve a high trusty intuition of the presented inclinometer’s behaviour, for each combination
of parameters, at a delimited configuration’s volume, is the topic of this work.

Regarding the origin of the noise component in both the sensing axes of the inclinometer
under analysis, a study carried out by Mohd-Yasin, Korman e Nagel (2003) and approached
in Subsection 2.1 brings to light some evidences and answers of the typically noisy response
of MEMS accelerometers. The authors concluded that intrinsic components of the sensing
mechanism and the conditioning circuitry itself are responsible for the typical occurrence of
noise in this technology. Since the foremost sources of the noise component are intrinsic to the
MEMS technology, an enhancement of a stable state of operation is only achievable through the
finding of an optimum adjustment of the device’s parameters.

3.1.3 Inclinometer’s application

As briefly mentioned formerly, the inclinometer device was developed in order to
comply with the requisites of accuracy and versatility at the measurement of a machine tool
structure’s thermal distortion. By the measurement of the degree of displacement reported
by several inclinometers throughout the machine tool, one becomes empowered to employ
mathematical abstraction models, so that a map of the gradient of deformation of the machine
is achievable. The researchers of the team of Large-Scale Metrology are interested to, at the
time of writing of this work, state the transient error (Errtransient) of a machine tool, so that the
volumetric error of operation at the tool center point might be fully characterised.

The volumetric error is defined as the sum of the static error (Errstatic) and Errtransient.
The error’s static component is reasonably not laborious to define. In contrast, the transient
component embraces the deformation of the machine’s structure when performing movements.
Depending on thermal conditions, load of operation, vibration and non-idealities of the
environment, the transient component of the volumetric error is affected, and therefore the
accuracy of the machine tool is impaired.

The inclinometer would so contribute providing data to a mathematical abstraction
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model developed by the team, that a prediction of the transient error might be more accurate.
In order to achieve such an aim, the noise reported by the sensors should not exceed 0.01

milliradian of amplitude, otherwise a recording of the machines’ standard deformation would
not be remarked. Therefore, the contribution of this work with the Large-Scale Metrology’s
goals is to provide an assessment of the inclinometer’s potential by exploiting its combinations
of parameters. In order to render the device more accurate, other techniques and calibration
processes might be employed. However such themes are not under the scope of this work,
once that this last is focused just on improving the sensor’s measurement performance by
characterising its behaviour for a given combination of parameters.

3.2 COMMUNICATION INFRASTRUCTURE

In order to carry out several experiments that assess the inclimoeter’s performance,
a dynamical software infrastructure was created by the author to accomplish the reading of
several sensors at the same time, configure dynamically the parameters of these sensors and
store safely and organized all the data read. The infrastructure was projected aiming robustness
and reliability, so that one program could control another program in order to dictate the
execution flow of instructions, and thereby, new parameters settings of the sensors could be
settled automatically and at any time. Besides, was opted for the InfluxDB open-source database
structure (INFLUXDATA, 2020) to carry out the storing data functionality, since databases are
of easy manipulation and well organized for the handling with large amounts of data.

The communication among the programs in the infrastructure was accomplished through
a standard messaging protocol for IoT, namely MQTT (2020). This protocol works through a
publisher-subscriber paradigm, where the publisher module posts a message into a topic, and
any module that is subscribed to such a topic receives the message. The management of the
data flow among the topics is carried out through a program module known as Broker. In this
work, the MQTT broker protocol employed to convey messages among the infrastructure was
the open-source module developed by Light (2017).

The Figure 15 presents a schematic of the infrastructure developed. At first, the program
inclinometer_publisher.py is executed in order to initialize its MQTT client module and to
initialize the Bluetooth communication among the sensors specified in a file of type JSON. This
program establishes two MQTT connections. The first, the program subscribes to a topic where
is published commands that control its flow of execution. The second, for each new data read
from some sensor, the program publishes this data read into a topic reserved to be subscribed
by another program that is going to read this topic every time that new data is published.
The inclinometer_publisher.py has two functionalities that are executed cyclically while the
application is running: It manages the control of the threads that are going to establish the
Bluetooth connection with each sensor and perform the transferring of data, and it checks whether
there are new commands to be interpreted. These new commands can be either to shutdown/restart
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Figure 15 – Schematic of the communication infrasctructure developed to carry out the reading

of the sensors, the autonomous controlling of new settings of parameters and the

storing of the data read into a database.
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the application, or to set a new combination of parameters for some specific sensor. In order to
avoid the race condition problem (TANENBAUM; BOS, 2014), the publishing of new sensors’
data by several threads into the same topic is controlled by a semaphore structure. The flow of
execution commands sent to inclinometer_publisher.py is made by another program named
control_inclinometer_publisher.py. In this program, one may configure a time-synchronized
routine of commands to be sent. Through this functionality one may, for instance, let configured
to be settled new combinations of parameters for some sensor at every 60 minutes, during
a period of time of 8 hours. And hence, this setting of new parameters would be performed
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automatically and within time constraints. The infrastructure is composed by another program,
named influx_translator.py. This program is subscribed to the topic where is actively published
data from the sensors. While the application is running, the program checks whether there is
new data in the topic, and if yes, it publishes the data received into the InfluxDB database.
Since the database structure is located in the same computer that runs the infrastructure, the
communication between the influx_translator.py and the InfluxDB is made in the localhost. To
finalize, once that there is any data in the database, this information can be visualized in present
time with Grafana dashboard (GRAFANA, 2020). Grafana is an open-source web application
multi-platform. This web application provides an efficient approach to graphically monitor time
serial data stored in some database. By the means of graphically monitoring the inclinometer’s
data, it was possible to easily identify some patterns of the inclinometer’s behaviour according to
the change of its measurements parameters.

The robustness of the infrastructure developed is a crucial point for the automatically
running of experiments, without error of execution, for hours. Indeed, in this work experiments
were left running automatically for hours. Due to the functionality of controlling the
inclinometer’s parameters, it could be possible to configure the infrastructure to for each hour,
a new configuration of parameters were settled, during periods of time up to 8 hours. The fact
that all the thousands of data were organisationally stored in a database enabled reliability and
practicality in the data treatment for the DOE analysis and machine learning dataset.

3.3 INCLINOMETER DEVICE’S SINGULARITIES

The inclinometer device has some particularities that characterize the response observed
in the experiments of this work. In this section, one may find details of the inclinometer’s
behaviour and particularities of its measurement performance. The singularities here presented
are treated and approached in the experiment’s systematic performance (Section 3.4).

3.3.1 Outliers

It is approached, in Subsection 3.1.2, the fluctuation of the sensor’s response according
to the settings established. A particular characteristic that also varies according to the combination
of parameters is the frequency and intensity of outliers in the device’s measurement. Before were
defined the systematic experiment’s approach, an immediate assessment of the inclinometer’s
response conceived the knowledge that for specific sets of parameters the presence of outliers is
systematic and the characteristic of their amplitude and frequency are intrinsically related to the
configured settings.

The Table 4 presents the settings of parameters of the experiments whose the response is
found in Figure 16. The experiments of the Figure 16 were driven with the same methodology as
the experiments from the Figure 12. The sensor was left laid still on a steady and assumed plain
surface, reading its inclination for several minutes, so that the ideal measurement would report 0
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Table 4 – Table portraying the combination of parameters that conducts the experiments from

figure 16

Experiment Operation mode Interval (ms) Frequency nValue Timesleep (s)
Top STANDARD 500 5 10 0.4

Middle STANDARD 1200 5 10 0.4

Bottom STANDARD 500 120 10 0.4

Figure 16 – Inclinometer’s response of the sensing y-axis for three different parameter’s settings,
where the occurrence of outliers is exposed.

0 50 100 150 200 250 300 350 400 450 500 550 600

0

5

10

In
cl

in
at

io
n

(m
ill

ir
ad

)

Sensing axis y

0 50 100 150 200 250 300 350 400 450 500 550 600

0

2

In
cl

in
at

io
n

(m
ill

ir
ad

)

0 50 100 150 200 250 300 350 400 450 500 550 600

0

0.5

1

Time (s)

In
cl

in
at

io
n

(m
ill

ir
ad

)

Source: Author.

radians. The mean value of each signal received was respectively subtracted from the samples of
each experiment, so that the graphics of Fig.16 present the noise component of the signal. In the
figure, is presented just the response for the sensing y-axis, although the outliers are also found
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in the measurements from the sensing x-axis. One may remark that the three graphics are in
different y-axis boundaries, so that the amplitude of the outliers can be more easily comparable
with the noise’s amplitude from that specific set of parameters. In Fig.16 top, the frequency of
outlier samples is quite high, and the noise component reaches the amplitude of approximately
2 milliradians, whereas the outliers’ amplitude reaches the value of 10 milliradians. In Fig.16
middle, yet is found a high frequency of outlier samples, but it is fewer than the fig. top. The
noise’s amplitude rounds the value of 0.6 milliradian, whereas its respective outliers’ amplitude
measured is 3.4 milliradians. And at Fig. 16 bottom, the amount of outliers is visible much lower
than the other two configurations depicted. The noise component reaches the amplitude of value
0.27 milliradians, whereas its outliers’ amplitude rounds the value of 1 milliradian.

The presence of variable-value outliers is a fact that can not be untreated in the strategies
further presented. Outliers can totally destroy statistical analysis and hence conveying wrong
assumptions of the mean value of some signal. In another hand, since the frequency of outliers is
also variable, the presence of this phenomenon may indicate that such combination of parameters
leads to an unstable measuring condition. Thus, future analyses must treat the intensity and
frequency of outliers, so that statistical evaluations are not ruined and yet such instability is
pondered.

3.3.2 Bending effect

In order to assess the stability of the inclinometer device for long periods of unrelenting
measurements, experiments were so accomplished, that the sensor was left laid still on an
assumed plain surface collecting data for approximately 10 hours. These set of long period
experiments were carried out with two inclinometer devices for three different configurations
of parameters. For this subsection, it is approached the raw measurement of just one of these
experiments and just for one device, as presented in Figure 17. More details about these long
period experiments comparing the performance of two inclinometers devices are approached in
Appendice B.4.

Concerning the long period experiment of Figure 17, some important characteristics
may be observed and analysed in the inclinometer’s response for its two sensing axis. One
may visually remark in the figure that the noise component of the inclinometer’s measurement
remains at the same pattern, i.e. has roughly the same performance, during the whole period of
10 hours of measuring. Further it will be presented a metric to assess the noise component of an
experiment, and this very remark for the Fig. 17 will be approached with more details in Section
3.4. Another important aspect that can be visually remarked is that the tilt measured during the
10 hours does not remain constant. Its performance for both the sensing axis shows apparently
to slowly bend through the hours of measurement. Since the sensor device was laid still on an
assumed plain surface, and this surface is not supposed to bend at any time, this bending effect
in the measurements conveyed by Figure 17 is not expected.

As it was formerly mentioned, these long-period experiments were made with two
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Figure 17 – Inclinometer’s response for both the sensing x-axis and y-axis for a long period
experiment, where is evidenced a bending effect in the measurements.
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devices and with different sets of parameters. The results for all these experiments revealed
the same bending effect in the measurement response. However, the bending effect of each
experiment has its own shape performance. Each time that a long period experiment was made,
the bending curve assumed a different shape aspect. For the response of the experiment of Figure
17, the bending of the sensing y-axis is given upward for the first 10000 seconds, and afterwards
its direction is changed to downward. For the sensing x-axis, the measurement remains unbent
for the first 17000 seconds, and afterwards a bend effect begins downward.

In order to understand this issue, some hypothesis are risen. It is possible that, since the
inclinometer devices are manufactured by hand, imperfections of the soldering may lead to noise
aspects into the circuit that communicates with the accelerometer modules. This noise could
destabilize the reading of acceleration inside the accelerometer modules. Another explanation
for the bending effect, and this is more plausible, is that the inclinometer is under environment
variations. As approached in Subsection 3.4, all the experiments were carried out in the same
place, such place that is located in the 7th floor of a building. It is quite reasonable that the
tower may slightly bend due to weather conditions, and the effect of this slightly bending
would be felt by high sensible accelerometers located at the 7th floor of the building. The
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question of environment interference could be ascertained by assessing experiments made in
other location. However this work is written in the period of the COVID-19 pandemic, and long
period experiments are not feasible in other locations at the moment of the writing of this work.

Although the source of the bending effect is not certainly defined, still there is a need
to treat this aspect, so that the bending effect does not impair the DOE and machine learning
approaches to assess a reliable characterisation of the inclinometer device. Strategies to handle
with this issue are presented in Section 3.4.

3.4 THE EXPERIMENT’S SYSTEMATIC PERFORMANCE

In order to validate all the experiments carried out in this work, a systematic
methodology that drives and processes the experiments had to be developed, so that every
experiment could be conducted and analysed under the more similar conditions as possible.

In this work, is defined as an experiment the procedure of configuring the inclinometer
device developed by the team of Large-Scale Metrology with a set of parameters, leave this
device laid still in an assumed plain surface collecting data for several minutes, so that the ideal
result of all the measurements were expected to point 0g (also 0 milliradian when applied the
eq.9). But since the device is not ideal, the measurements have a static offset (probably resulted
from misalignment effects due to handmade manufacturing), outliers and a noise component.
Since the misalignment effect is not a concern of this work, the performance of the inclinometer
for the situation described is assessed through the evaluation of the noise component and outliers,
so that as a final output of the processing of an experiment, one single real-value that represents
the level of noise and outliers of the experiment is provided for the sensing x-axis, and another
for the sensing y-axis.

All the experiments of this work were performed through the infrastructure described
in the Subsection 3.2, at the same place and the same period of time of the day. The place that
the inclinometer device remained still collecting data is located on the surface of a commode,
inside a bedroom that is found in the 7th floor of a student building. This location for experiments
with high sensitive sensors is not ideal, but since the experiments of this work were carried out
during a lockdown unleashed by the COVID-19 pandemic, other locations were not possible
to be employed at the moment. Due to the fact that a student building is not quite still during
the daytime period, all the experiments were carried out in the late of the night until the dawn.
To be precise, the experiments were carried out in between the range from 21h to 8h. Since the
settlement and configuration of a new combination of parameters is autonomously done by the
infrastructure developed, several experiments could have been driven automatically in one night,
while the most people of the building, including the author, were sleeping, taking advantage
thereby of the stillness of the building, so that the experiments could endure the minimum of
environment’s interference as possible.

In this work, most of the experiments lasted about 60 minutes. Was common the
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execution of eight experiments with eight different combinations of parameters in one night
of autonomous experiments. However, in order to avoid some systematic bias concerning the
constant change of the devices’ parameters, a protocol that sets a new parameters’ setting was
developed and deployed. Each time that a new setting was configured to be established, the
inclinometer device was set to stop the measuring, the Bluetooth connection was broken and the
device remained inactive for five minutes. After this period, a new Bluetooth connection was
established, and a new combination of parameters was configured for the next performance of
the measurements. This protocol was followed by every experiment in this work, so that if in one
night eight experiments were carried out, eight times this protocol would be executed.

Every experiment’s measurement data was submitted to the exact same data processing.
The Figure 18 and 19 summarizes graphically the main steps of this processing. After an
experiment is accomplished, its samples are queried from the database, and the samples belonging
to the first six minutes of the experiment are disregarded. This disregarding strategy is so done
that possible instabilities due to the stabilizing time of a new combination of parameters of an
experiment does not interfere in the evaluation. The result of this operation is shown in Figure 18
top, for both sensing axes. Following, the entire experiment’s data is temporally segregated into
segments of three minutes, so that each segment has sequentially in timeline the inclination data
belonging to three minutes of duration, exactly how is depicted in Figure 18 middle, individually
for each the sensing axis. This last observation means that the operation of segmentation is
performed regarding individually the time of inclination reading of each sensing axis, so that
each sensing axis owns its own timeline.

Each segment from each sensing axis is submitted to an outlier filter based on median
values. This filter works as following for each segment: First, is taken the median value of that
segment. Then, is computed the module of the difference of each sample from the segment
with the median value taken. At this stage is found a vector of differences. Subsequently, each
difference from the vector of differences is divided by the median value of the very vector of
differences, and the result of this operation gives a value s for each sample in the segment. Then,
is defined a threshold number, so that is defined as an outlier sample, if a sample whose s value
is equal or greater of this threshold. The outlier sample is then deleted from the segment. In this
work, the threshold number used was the same for all the experiments, and it was determined
empirically, namely the value 80. The considerations to determine this threshold were that just
extreme huge outliers values, that would destroy the following analyses, were deleted. Minor
outliers values, that still can slightly penalize the following analyses were maintained. The
decision to do not filter minor outliers is taken in order to consider the high frequency of their
occurrence as a signal of instability, consequent of the combination of parameters configured.

After the outlier filtering operation, is computed for each segment the standard deviation
of the measurements with Bessel’s correction, given by the Equation 18, where sseg is the
standard deviation of the samples from a segment, Mseg is the total amount of samples in that
segment, ti is the ith sample of a segment and t is the mean value of the samples contained in
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Figure 18 – The figure presents graphically some steps of the experiment systematic performance.
In fig. top, is presented the signal after the disregarding of the samples belonged
to the first six minutes of experiment. Fig. middle presents the segmentation of the
signal from fig. top. And in fig. bottom is found the standard deviation related to the
samples of each segment.
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Figure 19 – The figure presents the value of the Average of the Segment s’ Standard Deviation
from Figure 18.
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a segment. The Figure 18 bottom presents the representation of the standard deviation of the
tilt measurement from each segment, for each sensing axis. One may remark that the standard
deviation metric is sensible to outliers, and thus the well regularization of the outlier filter is
crucial to employ this metric into segments.

sseg =

√√√√√Mseg∑
i=1

(ti − t)2

Mseg − 1
(18)

The final step of this methodology is to average all the segments’ standard deviations
of one sensing axis, in order to obtain a single value that can entirely express the experiment’s
performance. The Figure 19 presents this final step, for the experiment depicted in Figure 18.
This single value expresses the level of spreading of the tilt’s measurement from its mean value.
In this work, this metric is employed to assess the performance of the inclinometer, so that the
closer to 0 is the value of the Average of Segments’ Standard Deviation (ASSD), the smaller is
the noise component in the measurements driven by the parameters’ combination settled, and
thus such set leads to a more stable state of operation of the device.

The approach of to temporally segment the experiment was developed in order to
dissolve the environment’s interference in the ASSD. Besides, such approach also minimizes the
bending effect’s issue, since that the bending occurs through the hours, and the segmentation is
temporally applied in the scale of minutes, so that the bending effect is not strongly felt in the
scale of a segment, and thus the ASSD metric is not severally penalized by this interference in
the measurement’s performance.

The Figure 20 portrays the standard deviation of the samples from the long time
experiment of Figure 17. In Figure 17 it is evidenced the bending effect. One may remark in
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Figure 20 – Standard deviation of each segment from the experiment from Figure 17.
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Figure 21 – The figure presents the value of the average of the segment s’ standard deviation
from Figure 20.
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Figure 20 the effect of minor outliers in the standard deviation of some segments from both
the sensing axis. Each of these numerous segments contributes hence with information of its
samples’ behaviour into a uniform average, as conveys the Figure 21.

From Figure 20, is possible to observe that during a period of almost 10h, the standard
deviation of the samples from the segments underwent small variances. Since the scale of their
standard deviation remained the same, the averaging of their segments’ standard deviation must
provide a satisfactorily reliable numerical value that one may employ to numerically assess the
performance of an experiment.
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3.5 INCLINOMETER’S DOE MODEL

As demonstrated so far, the inclinometer device assumes different performances for
different sets of combinations of parameters. The goal of this work is to present the deployment
of the hybrid ML/DOE technique employed to characterise the features of the smart inclinometer
device. In order to accomplish such aim, it is presented in the Appendice B the deployed DOE
methodologies. Since the DOE strategies and experiments carried out in this work require a
detailed analysis and inspection, in order to do render a smooth reading structure, the results and
approaches concerning the inclinometer’s DOE are placed in the appendice.

Some decisive conclusions are remarked with the inclinometer’s DOE. Concerning the
ASSD metric developed to assess the performance of the sensor, it became proved stable and
reliable. Regarding the behaviour of the performance due to the parameter’s set, the interactions
among the parameters’ combinations of levels were classified as mostly nonlinear, fact that
renders challenging the visual analysis of the set of parameters’ pattern. It was also observed that
the set of parameters can be classified into two groups, each group having its own particularity
regarding the variation of the ASSD score. It has been attested that when a set of parameters leads
to an ASSD score greater than the rank of 0.1, this very achieved ASSD value has a variability
notably higher than ASSD scores below the rank of 0.1, reached by another set of parameters.
Performances that have achieved ASSD values below 0.1 have a trend to reach almost the same
ASSD value, repeatedly. In contrast, performances that have led to ASSD values greater than
0.1 have a trend to diverge from former ASSD values reached by the same conditions. Such is
the discrepancy of ASSD scores’ steadiness between these two categories, that new strategies
may be developed in order to analyse each group’s behaviour separately. Another important
characteristic remarked at the DOE model is that each sensing axis of the sensor has its own
particularities, so that a set of parameters leads to a different quality of measurement for each
sensing axis.

The DOE model provides insights of the sensor’s behaviour, so that one might estimate
the performance of the device for a yet untested set of parameters. However, by the reasons
commented, this is not a trivial endeavour, and mainly due to the non-linearity among the
interactions of parameters, not accurate. The DOE model lacks of a decisive tool that can state,
with a margin of accuracy, the performance of the inclinometer for any set of parameters, already
tested or not. Based on the conclusions achieved by the DOE model, the machine learning model
is proposed in order to complement the observations so far remarked. The a priory information
acquired by the DOE can refine the machine learning strategies and algorithms, so that an
accurate personalised machine learning model for the inclinometer can be accomplished. For
instance, since one can classify the ASSD values into two groups, each group can be evaluated
by a metric that best can assess the particularities of those data. In Section 3.6, the inclinometer’s
DOE conclusions are explored in order to provide theoretical foundations on which the machine
learning approach substantiates itself to become accomplished. The results and main aspects of
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such DOE are recapped whenever mentioned.

3.6 INCLINOMETER’S MACHINE LEARNING MODEL

In the section 3.5 is approached a strategy to characterise the inclinometer’s behaviour
for several combinations of parameters, by the means of experiments and evaluations driven
through the DOE methodology. In this section, is presented the employment of modern machine
learning techniques to complement the analyses achieved through the DOE methodology.

The conceptualization of ML technique here presented relies, in order to be driven, on
former assessments of the inclinometer’s features. The DOE analyses provide some conclusions
that are here explored. Immediately, the result of the several experiments performed with different
parameters’ values and operation modes conveys the knowledge that the device’s performance
is affected by the set of configurations that dictates the sensor’s measurement routine. Had
the inclinometer no performance’s variation due to different configurations of its measurement
routine, no necessity of a characterisation would exist. Nevertheless, the DOE evaluation exposes
clearly that the performance’s accuracy and variability of the acceleration measured is affected
by a logical reasoning among the parameters’ values. It became evident that certain patterns of
configuration lead to more a stable, reliable and accurate performances than others. The design
of experiments could also attest the reliability of the ASSD metric to assess the inclinometer’s
performance, so that the metric provides a real-valued number that assimilates the goodness of
performance. The device’s responses were graphically explored through a delimited volume of
parameters, by the deployment of cube and square plots. These graphic tools can convey a good
notion of how to determine the best settings for a specific application that requires a specific
set of parameters. However, when there exists non-linearity relationship among the parameters,
the graphic DOE tools can not provide a satisfactory knowledge of behaviours of responses for
settings inner the volume of parameters explored, as it is the situation of the inclinometer device.
The interaction plots in the Appendice B, for the standard and repeated operation mode, portrays
the situation where the gradient of better performance changes its direction as inner steps of
experiments are carried out. Since the changing of parameters’ interactions is not predictable
by the DOE approach, there is no assurance that a chosen point inside the parameters’ volume
will follow the patterns of response so far remarked. Hence, the evaluation of configurations of
parameters inner a delimited volume of parameters becomes a considerably complex task, once
that the parameters’ relationship is not fully characterised, but rather outlined.

The machine learning technique consists of relying on a dataset with maximum
significance, provided by a DOE design, in order to train a predictive regression model (Section
2.4) built to predict, with satisfactory accuracy, the behaviour of the inclinometer device for every
possible combination of parameters constrained into a chosen delimited volume of parameters.
The employment of this strategy is enabled by the conclusions remarked in the DOE approach.
Once that the DOE methodology could attest the reliability of the ASSD metric, and could
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enlighten the patterns of the ASSD’s variability for different sets of parameters, the machine
learning approach can be carried out discerningly, and decisions of project can be taken relying
on previous observations. For instance, it is known that the sensor’s responses do not follow
a linear reasoning according to the given parameters’ values. Thus, it is more probable that
better predictions can be achieved through the training of regression models that has a non-linear
learning basement. By the DOE approach is also known that certain levels of ASSD value has
higher variability than others. This knowledge can be explored to create a customized metric to
assess trained ML models.

In this section is presented the methodology of the machine learning approach, relying
on the DOE observations, developed and deployed in this work in order to complement the
characterisation outlined by the DOE methodology. First, is presented the structure and procedure
to acquire a dataset with maximum significance whose the ML models are trained. Further is
presented the metrics employed in the ML approach to assess and judge the performance of
experimented algorithms. Subsequently is found the design of the ML methodology and the
regression models chosen to accomplish the predictions. Afterwards, the process of the models’
training and tunning is described. Concluding the section, is presented how the models so far
built are validated.

3.6.1 Inclinometer’s Dataset

The inclinometer’s machine learning approach is developed in order to predict the ASSD
values for an unobserved configuration of parameters inside a delimited volume of parameters.
Aiming to accomplish this goal, two datasets were collected by a single inclinometer device. One
to characterize the standard operation mode, and other to characterize the repeated operation
mode. The standard operation mode’s dataset is consisted of three independent variables, namely
the operation mode’s DOE factors: interval, frequency and timesleep; and two dependent
variables, which are the respective ASSD values of the sensing axis x and y. In turn, the
repeated operation mode’s dataset is consisted of two independent variables, namely interval

and frequency, and two dependent variables which stand for the respective ASSD values of the
sensing axis x and y. Since the continuous operation mode is already totally characterized by the
DOE approach, as detailed in the Appendice B, the machine learning approach is not applicable
to it.

The standard mode’s dataset is structured as train and test set (Subsection 2.4.1). The
dataset was planned to comply with a DOE design, so that the train set defines a delimited
volume of parameters, and the test set consists of unobserved responses inside this delimited
volume. The choice of combinations of parameters that consists the train set was so defined that
the volume of parameters complies with a 34 full factorial design of experiments. The factors
and levels of the standard mode’s train set design are presented in Table 5. The levels of the
factors were so chosen that the volume of parameters is filled with observations roughly equally
distanced in the volume’s space.
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Table 5 – Table presenting the factors and factors’ levels of the standard operation mode’s train

set design, which is consisted of a 34 full factorial design.

Interval Frequency Timesleep nValue
400 5 0.4 10

700 30 0.7 10

1000 70 1.0 10

1300 120 1.3 10

Table 6 – Table presenting the factors and factors’ levels of the standard operation mode’s test

set design, which is consisted of a 33 full factorial design.

Interval Frequency Timesleep nValue
550 18 0.55 10

850 50 0.85 10

1150 95 1.15 10

The standard mode’s test set structure was also defined following a full factorial design,
but with just three parameter’s levels, so that the design is classified as a 33 architecture. The
levels’ values and factors regarding the standard mode’s test set are found in Table 6. The levels’
values were so defined in order to remark a response that is equally distanced, in the volume of
parameters, of the eight nearest points belonging to the train set.

The Table 34 and Table 35 in the appendice C present the exactly train and test set
which were deployed in the building of the regression models for the predictions regarding the
standard operation mode (disregarding the columns of operation mode, trial and nValue). The
data of both the operation mode’s dataset were collected as dictates the systematic methodology
(Section 3.4), but without considering the randomization of the trials. Besides, each train set
was collected once, and thus, the data employed to train the ML model are not an average of
several runs of trials, as they are in the DOE characterization model. The conclusions provided
by the DOE approach, detailed in the Appendice B, lead the assumption that the ASSD value
of one performance, driven by one set of parameter, does not reach enough variability to report
a different pattern from the reported by the average of ASSD response achieved by several
performances of the same set of parameter. Even though, the acquirement of the standard train
set was carried out just once, yet it was required eight nights of experiments (eight experiments
per night) to fulfil the designed volume of parameters. The standard mode’s test set was collected
three months after the acquirement of the standard mode’s train set, and required three days of
experiments (nine experiments per night) to fulfil the designed volume of parameters.

The Figure 22 portrays the standard operation mode’s dataset as cube graphics
representations. The column of cubes on the left side stands for the train set, whereas the
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Figure 22 – Standard operation mode’s dataset. The column of figures in the left stands for the
train set, whereas the column in the right stands for the test set. The first row of
figures portrays the data regarding the sensing x-axis, whereas the second row refers
to the sensing y-axis’ data.
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cubes on the right side stand for the test set. The first line of cubes refers to the sensing x-axis’
responses, and the sensing y-axis’ responses can be found in the second line of cube plots.
Through the picture, one may remark the standard mode’s delimited volume of parameters that
bounds the standard mode’s dataset. The train set’s delimited volume conveys the patterns of
the inclinometer’s ASSD responses for the given operation mode. In fact, through the train set
presented, some impressions of the devices’ behaviour can be visually, and considerably well,
observed. The characterization of the full volume of parameters, through a regression model, is
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Figure 23 – Standard operation’s mode dataset. The figure evinces a delimited volume of
parameters, which stands for the train set, presented as scaled colored points, in
contrast with the test set, located inward the delimited volume, presented as black
points. The cube plot placed in the figure’s left side stands for the sensing x-axis’
responses, whereas the right side stands for the sensing y-axis’ responses.
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expected to be accomplished by the means of the model’s remarking of the responses’ pattern
expressed by the high significant train set provided. The performed predictions are to be assessed
attesting the similarity with the test set presented in the Figure’s 22 right column of cube plots.
As formerly commented, the test set data were arranged to be so placed inside the volume of
parameters, that each test set point is equally distanced of the eight nearest points belonging to
the train set. As one may visually observe in Figure 22, each test set point is found in the centroid
of a cube whose the vertices are train set points. Such configuration enables one to evaluate the
goodness of remarking patterns of the built regression model, once that the algorithm is going
to be validated by the predictions’ performance of the points most different as possible of the
points that had trained the regression model. The Figure 23 evinces the placement of the test set,
represented as black points, inside the train set’s delimited volume, presented as scaled coloured
points. Figure 23 left stands for the sensing x-axis’ responses, whereas figure 23 right stands for
the responses of the sensing y-axis.

The repeated mode’s dataset was designed and structured following the same systematic
of the standard mode’s dataset. The repeated train set was so architected to comply with a DOE
design, that a delimited volume of parameters is defined to provide significant observations of
the inclinometers’ performance under the repeated operation mode. The choice of parameters’
values of the train set was structured to comply with a 27 full factorial design, and the factor’s
levels are presented in Table 7.

The repeated mode’s test set was also structured in a DOE architecture and can be
classified as a 26 full factorial design. The repeated mode’s test set values were so defined that
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Table 7 – Table presenting the factors and factors’ levels of the repeated operation mode’s train

set design, which is consisted of a 27 full factorial design.

Interval Frequency nValue
300 7 10

500 20 10

700 40 10

900 60 10

1100 80 10

1300 100 10

1500 120 10

Table 8 – Table presenting the factors and factors’ levels of the repeated operation mode’s test

set design, which is consisted of a 26 full factorial design.

Interval Frequency nValue
400 13 10

600 30 10

800 50 10

1000 70 10

1200 90 10

1400 110 10

each point in the test set is equally distanced of the nearest four points in the train set delimited
volume of parameters. The Table 8 present the factor’s levels of this operation mode’s test set.

The tables 36 and 37 in the appendice D present the repeated mode’s train and test set,
respectively, that were deployed in this work to train and attest the regressions models regarding
the repeated operation mode’s characterization (ALso disregarding the columns of operation
mode, trial and nValue). As it is for the standard mode’s data, the repeated train and test set were
acquired and processed through the exact same systematic methodology described in Section
3.4, save for the randomization of the trials, which was not applied in the machine learning data
acquirement. And as carried out for the standard mode’s train set, the repeated mode’s train set
was collected just once, so that the final ASSD values employed to train the ML model are not
an average of several runs of trials, as they are in the DOE approach. The DOE characterization
of the repeated mode had led to the observation that the variability of the repeated mode’s trials
is not considerable to depend upon an average, in order to remark the patterns reported by the
operation mode’s performance. The ASSD response of one performance, driven by a set of
parameters, is not variably enough to report a value out of the pattern reported by the average
of ASSD responses of several performances with the same set of parameters. Nevertheless, the
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acquirement of the repeated mode’s train set required six nights of experiments (roughly eight
experiments per night) to fulfil the parameters’ volume designed. The respective test set was
collected four months after the train set’s acquisition, and required three nights to be fulfilled.

Figure 24 portrays the repeated mode’s dataset. The left column of graphics stands for
the train set, depicted as scaled coloured points, in contrast with the test set, as black points.
The right column of graphics stands for the train and test set, depicted both as scaled coloured
points. The first row of graphics represents the responses of the sensing x-axis, whereas the
second row stands for the sensing y-axis’ responses. Through the figure’s left column, one may
visually remark the architecture of the DOE approach into the dataset structure. The train set
bounds a volume of parameters that significantly contemplates the device’s performance for
the repeated operation mode. The test set is so placed that each point is located at the centroid
of a delimited square whose the vertices are the nearest train set points. Such a configuration
enables the built regression model to be tested to predict points most different as possible of
those whose the model had been trained with. The grey squares on the graphics in Figure
24 represent configurations of parameters that could not have been settled. For the device
whose the experiments concerning the machine learning approach were performed, whenever
the parameters were settled in such a configuration inside the bounds of the grey squares, the
Bluetooth communication reported complications at the fulfilment of the measurement and data
broadcasting. This singularity was not ascertained, and the reasons for such behaviour remain,
at the time of this writing, unknown. A curious observation remains due to the fact that the
performance with combination of parameters consisted of Frequency equal to 120 and Interval

equal to 900 could have been reached in the DOE experiments, in Subsubsection B.3.2, but
was not achievable for the experiments concerning the machine learning approach, although the
procedure carried out to acquire an ASSD value was the same for the DOE and ML experiments.
The regions inner the repeated mode parameters’ volume that may lead to a nonfunctional state
are bypassed in the train and test set.

Both the datasets so far presented rely on former knowledge conveyed by the DOE
approach to be designed. Further, the variability analysis leads the observation that high ASSD
values, in the standard mode, have a trend to present significant ASSD’s variability. And since
the standard mode’s dataset acquired is composed by some high ASSD values, the validation of
the regression model must consider the variability effect in the assessment methodology. The
datasets collected were so designed to feasibly provide data to train regression models, in order
to reliably predict the inclinometer’s performance, assessed through the ASSD metric. Since the
methodology developed to evaluate the sensor’s performance requires a considerable amount of
time to acquire just one single vector of independent and dependent variable, the design of the
standard and repeated mode’s dataset could not have a plenty amount of data. It is known that
the more the amount of significant data a dataset has, the more accurate and generic the built ML
model will be (subsection 2.4.1). Yet, both the datasets acquired have a scarce amount of data.
The standard mode’s train set is composed by 64 observations, whereas the repeated’s mode
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Figure 24 – Repeated operation’s mode dataset. The left column of graphics stands for the train
set, as scaled coloured points, and as black points is represented the test set. The
right column of graphics represents the train and test set, both as scaled coloured
points. The first line of graphics regards to the sensing x-axis’ responses, whereas
the second line concerns to the sensing y-axis’ responses.
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train set is composed by 46 observations. Such dataset’s size limitation could be improved by
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acquisition of more data, but such an accomplishment is not feasible when the resources for the
data acquirement are limited or too expensive. For the inclinometer’s case, the supply of battery
is a limiting factor, once that was designated just a specific amount of battery units to the caring
of this work, and each experiment, that provides just one ASSD observation requires a significant
amount of time of performance, and hence, more power consumption. Thereby, since that the
increase of the dataset’s size is not a viable option, the proper approaches and considerations
must be applied into the training and validation phase.

Another crucial aspect observed in the standard dataset, is that the train set is composed
of just a few high valued ASSD responses, pictured as purple points, in contrast with the numerous
amount of ASSD values ranging below the 0.100 score. Such a discrepancy is identified as outliers
in the dataset (OSBORNE; OVERBAY, 2004), once that there is no smooth transition, from an
aspect of the dataset, that explains the magnitude of such values. Osborne e Overbay (2004) also
assert that, since outliers comply with the increase of error variance and reduce the power of
statistical tests, the presence of outliers in a dataset can lead to deleterious effects in statistical
analyses. However, although from a general dataset aspect the huge ASSD values from the
standard mode represent outliers, yet those values have a meaningful meaning in the real data
context. The purpose of the dataset acquired is to characterize a delimited volume of parameters.
Thus, regardless of the general dataset aspect, the outlier values convey a prized knowledge of
the inclinometer’s behaviour, namely the recognition of regions in the delimited volume that
lead to an unstable measurement behaviour. Therefore, the regression models employed to be
trained with the datasets here presented must be quite flexible in order to perform considerably
well, even predicting outliers.

3.6.2 Evaluation metrics employed

According with the discussion in Subsection 2.4.4, there are several evaluation metrics
that can be employed to assess the training and validation of a machine learning model. In this
work, however, two metrics are deployed in order to remark different aspects of the regression
models’ performance.

There are two main characteristics of the data that consist the standard and repeated
operation mode’s dataset. First, especially for the standard operation mode’s dataset, the vectors
of dependent variable present data scored far outside the general population, where most of
the ASSD values are concentrated below the score 0.100, and a few points scatter above this
bound. Another aspect concerns the variability of the ASSD values, conveyed through the DOE
analyses, which provides an understanding that, depending of the ASSD level, the variability of
some performances are considerable high when contrasting with the variability driven by other
settings. This phenomenon is remarked when comparing the variability of the trial number eight
and one for the sensing y-axis in table 25, where the standard deviation value of the trial eight
is more than 140 times greater than the trial one’s. This variability concern is not relevant for
the training phase, where the algorithm is built to learn the patterns of the training data, but
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a situation shall occur in the validation phase, when the built model performs predictions to
match the test set. Since there is variability, the predictions will not always match the real value,
because this last would be always changing according to its standard deviation. Thereby, if the
model had been well fitted without overfitting, the predicted values will be located at a certain
close range of the test set value, and this close range is correlated with the variability of that
response. The remarking of these two phenomenons in the dataset leads the comprehension
that, the evaluation of the goodness of fitting of a model for the case of study of this work must
consider a former knowledge of the dataset’s patterns, pondering some tolerance of error for the
predictions according with the variability of the true ASSD value, in the test set, targeted to be
predicted.

In order to assess the degree of similarity between the predicted output, with the true
values, the coefficient of determination (also known as R-square, R2) is employed in this work
in order to contrast the variance of the predicted output values to the variance of the true values,
as approached in Subsection 2.4.4. Such a metric enables one to numerically ponder the errors of
prediction. The more similar are the predicted values to the true values, less is the variance of the
errors of prediction, and hence more equal is the true values’ variance to the predicted values’
variance, according with the equation 14 reasoned by Allen (1997).

Another metric is also employed in this work. This metric was developed by the author
in order to consider the variability of each trial in the assessment. Such a metric is nominated
as Radius of Tolerance (RT), and is defined as follows. First, one must assign a tolerance value
η. Then, the ML model must perform predictions for some set of independent variables of
size N (N is the number of rows), with a respective set of dependent variables, where each
dependent variable value is a real-valued number represented as yi. The predictions, also real-
valued numbers, represented as ŷi each, are then compared with the true value yi. If the absolute
difference of yi and ŷi is equal or smaller than the tolerance η specified, a variable χi assimilated
for that prediction is assigned with the value 1. if |yi − ŷi| is greater than η, χi is assigned with
the value 0. This procedure is repeated for all the predictions. Finally, the Radius of Tolerance
is defined as the sum of all the assigned χ variables, divided by the size of the independent
variables’ set N . The Equation 19 portrays the metric’s computation.

Radius of Tolerance =

N∑
i=1

χi

N
, where χi =

1, if |yi − ŷi| ≤ η

0, otherwise
(19)

One may note that the range of the Radius of Tolerance metric is constrained between 0
and 1. The more closer is the metric value to 1, the more similar are the predictions regarding the
true values. The choice of the parameter’s η value regularizes the tolerance of the metric. The
idea is that η may ponder how much similar is the prediction to a true value that has a variability,
and thereby, it is assimilated as a good prediction a value ŷi that lies within a range of η from yi,
so that ŷi ∈ [yi − η, yi + η].
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Both the metrics presented so far, R2 and Radius of Tolerance, are differently employed
into the evaluation of this work. At the tunning of the hyperparameters’ phase, both the metrics
are employed for the standard and repeated mode’s dataset. For the validation phase, where
the built model predicts the test set, both the metrics are employed for the standard mode’s
dataset, but just the Radius of Tolerace is employed for the repeated mode’s dataset. In this work,
the Radius of tolerance is applicable just for true ASSD values below the score of 0.100, with
η = 0.010. The R2 metric is applicable for all the ASSD values. Such a configuration of metric’s
deployment is justified due to the general notion, acquired through the DOE approach, that
ASSD responses greater than 0.100 may be under influence of more variability than ASSD values
bellow the score of 0.100. The assessment of the ML models of this work is more compatible
with the reality of the data’s aspects through the evaluation by the Radius of Tolerance metric.
Had the standard mode’s dataset no ASSD values greater than 0.100, the R2 metric would not
be applicable into the evaluation of the validation of the standard mode’s test set. During the
tunning of the hyperparameters’ phase, the deployment of the R2 metric is considered, for both
the operation modes’ dataset, in order to complement the perception of the model’s goodness of
fitting remarked by the Radius of Tolerance. The final assessment of the test set is also achieved,
in this work, through graphical comparison between the true and predicted data.

3.6.3 Machine learning employed models

The choice of the ML model to be employed for the solution of a situation must consider
the nature of the training data and the phenomenon to be predicted. The inclinometer’s ML
characterisation proposed in this work must ponder the data’s singularities, namely a small dataset,
considerable data variance, and outliers. Such data’s features are not easily treated. The nature of
the inclinometer’s characterisation requires a ML approach classified as predictive (or supervised)
regression, since the characterisation aims to predict a real-valued value, namely ASSD. At
the branch of predictive regression approaches, several distinct strategies are suggestive to be
employed in this work, for instance: Neural networks, regression models, ensemble regression
and etc. However, just a few of the wide range of strategies are suitable to manage the data’s
singularities faced in the inclinometer’s dataset.

Aggarwal (2018) contrasts the performance of neural networks with traditional
machine learning algorithms. The author asserts that neural networks algorithms are capable
of, theoretically, learning any mathematical function, and thus describing any phenomenon, if
provided a sufficient amount of significant training data. The author complements that even the
learning of simple tasks with neural networks often requires an extraordinary amount of data, and
that, since traditional machine learning algorithms have a greater ease of model interpretation
(i.e. has some bias), they outperform neural networks when handling with small datasets. Such
analysis points out that the deployment of neural networks to characterise the inclinometer’s
behaviour would not be a reasonable choice, since the inclinometer’s dataset consists of just a
few observations, and it is not affordable to increase the dataset’s size. Nonetheless, the analysis
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of Aggarwal (2018) also evinces the fact that traditional machine learning models usually trend
to achieve a considerable good performance handling with small datasets due to former intrinsic
assumptions supposed by the model about the dataset. Such intrinsic assumptions, if too harshly
built in the training of the model, may not be advantageous to describe a phenomenon that owns
a natural variable response, as it occurs with the inclinometer’s dataset, because the algorithm
would not be capable of remarking general patterns in the test set for the reason that it would be
too bind to the former assumptions consolidated in the training set. In another words, the model
would have high bias and high variance (Subsection 2.4.5).
Table 9 – Regression machine learning models briefly experimented in order to observe the

performance with the inclinometer’s train set.

Model observed Performance
Linear regression Unsatisfactory

Polynomial regression Unsatisfactory

Piecewise linear regression Unsatisfactory

Multivariate adaptive regression splines Unsatisfactory

Bayesian linear regression Unsatisfactory

Gaussian process regression Satisfactory
Ridge regression Unsatisfactory

Support vector machine regression Reasonable

Nu-Support vector machine regression Reasonable

LOESS regression Unsatisfactory

Decision tree regression Reasonable

Random forest regression Reasonable

XGBoost regression Satisfactory
K-nearest neighbors regression Reasonable

Weighted K-nearest neighbors regression Satisfactory
Radius neighbors regression Reasonable

In order to exploit the desirable feature of traditional regression machine learning models
(also known as base learners) of to be capable of yielding good performances with small datasets,
and yet do not endure the drawbacks of the model’s former data assumptions of the inclinometer’s
dataset, the strategy of ensemble learning is found as a viable solution. In machine learning
topics, ensemble learning consists of a collection of algorithms that tries to construct a set of
learning models and combine them, aiming to enhance the predictive performance (Subsectiction
2.4.10). In this work, was employed a heterogeneous combination learning technique of the type
Ensemble averaging. Such approach was explored in this work to train, with the same train set,
four base learners whose the learning algorithms are as different as possible among themselves.
The procedure of choosing the base learners was carried out by empirically observing the general
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performance of several traditional ML models to predict the inclinometer’s dataset. The list
of models observed was elaborated considering the experiences reported by Kamath e Fan
(2018) and by the datascience community, concerning the training of ML models with small
datasets. The Table 9 lists the regression base learners briefly experimented and observed for the
inclinometer’s characterisation prediction performance. The trying of the models was carried out
through simply training the algorithm, without any other enhancing technique, and predicting
the very train set that was employed to train it.

Due to the singularities of the iclinometer’s dataset, just a few among the models
experimented had shown satisfactory performance, namely Gaussian process regression (GP),
XGBoost regression (XGB) and Weighted K-nearest neighbours regression (WKNN). The
satisfaction of the models was assessed through the R2 metric. According to Zhou (Zhou), it
is a general belief that a favourable ensemble model must be composed by base learners as
accurate and diverse as possible. Thereby, since the three algorithms that had shown satisfactory
performance work through distinctly learning principles regarding themselves, they were chosen
to compose the ensemble regression strategy. The XGB regression is substantiated as a decision
tree based learner, GP regression learns patterns to perform predictions from a probabilistic
approach, and WKNN regression is a nonparametric based algorithm (Subsection 2.4.9). The
ensemble learning approach deployed in this work consists of training each one of the chosen
models with the same train set, and deploy the built models to predict the same set of vector of
independent variable, namely the test or validation set. For each vector of independent variable,
the ensemble prediction is the average of the predictions performed by each algorithm for that
vector of independent variable, as depicts the Equation 17. In order to provide more variability
into the ensemble model so far presented, it was added a fourth base learner to compose the
ensemble, namely Nu-Support vector machine regression (Nu-SVM), which is a variant of
the classical SVM. Such model, although had had not a satisfactory, but rather reasonable
performance, may improve the ensemble prediction accuracy for unobserved datasets, once that
the Nu-SVM is a linear based algorithm and thereby might provide significance to the perception
of linear aspects of the inclinometers’ dataset, diminishing, therefore, the variance and bias of
the ensemble.

Since each operation mode of the inclinometer has its own singularities, as for instance
a particular number of configurable parameters and distinct interactions among parameters (as
remarked by DOE approach), and each mode of operation leads to responses regarding two
sensing axis whose the performances have been proved to be distinct between themselves, the
machine learning approach consists of assigning for each sensing axis, belonged to each operation
mode, an ensemble learning model, in order to characterize the responses for that sensing axis,
as schematized in Figure 25. Thereby, the ensemble learner concerning each sensing axis must
have its own built base learners with the hyperparameters enhanced for that specific sensing axis,
so that the machine learning approach is consisted of 16 built base learners, grouped into four
ensemble learners, to perform predictions. Wherefore, since the ensemble strategy employed
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Figure 25 – Employment of the ensemble learning strategy into the inclinometer’s
characterization. Each sensing axis’ responses, achieved through the setting of
each operation mode, is used to train a unique ensemble model, which is composed
of four different base learners whose the learning algorithms are distinct among
themselves.
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deploys four regression models, the final ensemble prediction of one vector of independent
variable is the average of the base learners’ prediction, as portrays the Equation 20.

ŷ =
ŷXGB + ŷGP + ŷWKNN + ŷNuSVM

4
(20)

To summarize, due to the inclinometer dataset’s singularities, namely small amount of
data, outliers and considerable data variance, traditional machine learning algorithms, composed
of just one base learner, and neural networks, are not a viable option to constitute the ML
characterization approach of the inclinometer. In order to consider the data’s particularities
mentioned, it is employed the strategy of heterogeneous combination learning technique of the
type ensemble averaging. Such method may achieve better performance since it is designed to
be more accurate, have lower bias and lower variance than single base learners (ZHOU, 2012).
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The idea is that, since each base learner owns a different learning algorithm from the others, and
thus each of them has a unique bias, the final ensemble prediction might consider the different
mathematical and logical aspects of the complex inclinometer’s dataset under analyses and
thereby achieve better predictions. The final structure of the inclinometer’s ML approach is
presented in Figure 25, where each sensing axis belonged to each operation mode has its own
ensemble model, consisted of four built base learners. All the base learners employed in this
work are provided by the open source library developed by Pedregosa et al. (2011) in python 3
programming language.

3.6.4 Training of the models

The machine learning approach consists of the characterization of each sensing axis’
responses, for each operation mode, through the training of individual ensemble learning models,
composed of four base learners, in order to predict the ASSD value for any combination of
parameter at any mode of operation, as describe Figure 25. Since a unique ensemble model
is assigned to characterize the performance of one sensing axis at one specific operation
mode, each ensemble model must be trained and have its hyperparameters settled individually.
Consequentially, a base learner will have hyperparameters settled similarly, but still different, to
its respective base learner belonged to other ensembles. Thereby, considering that the training
phase procedure deployed to train one base learner is exactly the same deployed to train the
others, the following explanations describe the training, tunning and evaluation processes of one
base learner.

A usual procedure to train and evaluate the training of a machine learning model consists
of the dataset fragmentation into training, validation and test set (GOODFELLOW et al., 2016).
So far, the datasets presented in Subsection 3.6.1 regard just the train and test set. No validation
set was presented. Since the inclinometer’s datasets are consisted of a small amount of data, to
slice the train or test set in order to compose a third set of data to consist the validation set is not
affordable. No portion of the test set shall be deployed into the training phase, since the very
purpose of the test set is to provide unseen observations to attest the ML model. The train set
also can not be sectioned, because the training step could be impaired due to lack of enough data.
Therefore, in order to evaluate the training performance referent to one set of hyperparameters,
the strategy of Leave-One-Out (LOO) was employed to leverage a validation step.

The LOO is a strategy to evaluate the training performance of a ML model for a given
hyperparameter set. The technique consists of training the model with the entire dataset, save
for one data point (i.e. one independent and dependent variable vector), then deploying the
built model to predict the held data point and evaluate this single prediction through the chosen
metrics. This procedure is applied for the entire dataset repeatedly, so that at each iteration one
different data point is held, the model is trained with the remnant data and the held point is
predicted and evaluated, until every dataset’s point has been held once. The Algorithm 1 present
the LOO procedure deployed in this work, evaluated by the metrics R2 and Radius of Tolerance
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Algorithm 1: Leave-One-Out algorithm deployed in the training of a base learner.
1 dataset_complete = read_dataset( "dataset.csv" );
2 size_dataset = get_size( dataset_complete );
3

4 list_of_R2_trainset = create_empty_list();
5 list_of_R2_validationset = create_empty_list();
6 list_of_predicted = create_empty_list();
7

8 tol_eta = 0.010;
9 i = 0;

10

11 while i < size_datset do
12 train_set = dataset_complete.drop_line_at(i);
13 validation_set = dataset_complete.at(i);
14

15 model = fit_model( train_set );
16

17 train_predicted = model.predict( train_set );
18 validation_predicted = model.predict( validation_set );
19

20 r2_train = r2_score( train_set, train_predicted );
21 r2_validation = r2_score( validation_set, validation_predicted );
22

23 list_of_R2_trainset.append( r2_train );
24 list_of_R2_validationset.append( r2_validation );
25 list_of_predicted.append( validation_predicted );
26

27 i = i + 1;
28 end
29

30 Radius_of_Tolerance = RT_score( dataset_complete, list_of_predicted, tol_eta);
31 R2_train = average( list_of_R2_trainset );
32 R2_validation = average( list_of_R2_validationset );

(RT in the algorithm). One may note that the evaluation of one held data point is stored in lists,
and at the end of the LOO performance all the dataset’s points will have been evaluated and the
lists containing the result of each point’s evaluation will be fulfilled. The final assessment of the
LOO performance for one given hyperparameter set is achieved through the average of the R2

scores concerning the train set predicted and the validation set (i.e the held points) predicted.
For each LOO’s iteration, the held point predicted is stored in a list, in order to, at the end of
the algorithm, the Radius of Tolerance metric can be applied to assess the LOO performance
according to the given η tolerance specified.

Since the LOO strategy is applied to assess the model’s performance of just one
hyperparameter set, the procedure of finding the best hyperparaemter’s settings for just one ML
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model requires a considerable time. The LOO approach is an efficient methodology to leverage a
validation step, since it ponders the prediction of the entire dataset, as like the validation set were
the dataset itself, and due to this applicability the LOO is advantageous to be implemented in the
evaluation of small datasets, as did Kamath e Fan (2018).

An important aspect that must be considered at the training phase, is whether the
ML model to be built must or not be trained with the dataset scaled into some scaling metric
(subsection 2.4.3). The specification of the model’s necessity of feature scaling is usually
specified in the model’s API. For the base learners employed in this work, the GP, WKNN and
Nu-SVM require feature scaling. For these algorithms, the train set is always scaled with the
Standardization score, and the model is trained with the scaled set of data. Consequently, after
the model is built, the independent variables to be predicted must be scaled with the same scaling
score built for the independent variables deployed into the training step, so that the algorithm
may interpret the independent variables to be predicted with the same scale whose the model
was built. Therefore, the predicted dependent variable is also a scaled result, according with the
scaling score built for the dependent variables of the training step, and in order to one be able to
interpret the predicted results in the original scale, they must be reversed scaled by the dependent
variable’s scaling score built at the training step.

In order to train a machine learning model and reach an optimum performance, the
algorithm’s hyperparameters must be so settled, that the model is capable of efficiently remarking
the patterns of the training data (subsection 2.4.8). Aiming to achieve the best performances with
the ensemble learner, the hyperparameters of each base learner must be so settled that each base
learner stands for the best performance at the validation set. Since in this work the validation set
is leveraged by the LOO strategy, for each ensemble model, each base learner must have had its
performance driven by the LOO algorithm for each hyperparameter set tested.

Each base learner has its own specifics hyperparameters. For each hyperparameter,
dozens of values were chosen to be experimented, so that the final amount of combinations
of hyperparameters evaluated for each base learner could reach hundreds of thousands. In this
work, the hyperparameter’s levels to be assessed, concerning one base learner, were chosen
according to the recommendations and specifications of the model’s performance described in the
model’s API. Once that the hyperparameters’ levels to be assessed were chosen, the procedure
to experiment all of the hundreds of thousands of possible combinations were structured as
a full factorial design, where each model’s hyperparameter is a factor, and the evaluation of
each performance driven by one set of configuration of hyperparameters was carried out by the
LOO approach, as depicted in Figure 26. This process of optimization of the hyperparameters
was conducted automatically by written python scripts, so that each hyperparameter set and the
respective metrics’ scores achieved through LOO were stored and saved in text files. Concluded
the hyperparameters’ optimization process, the metrics’ scores stored were plotted, and the
hyperparameter set, whose the performance achieved the higher values at the metrics Radius of
Tolerance and R2 of the validation set predicted, was chosen as the optimum hyperparameter set
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Figure 26 – Hyperpatameters’ optimization procedure. At the beginning of the process, all the
hyperparameters’ levels combinations are experimented and their metrics’ scores
stored in a text file. Afterwards, the scores are plotted and evaluated in order to
determine the final hyperparameter set that will be adopted by a base learner.
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Source: Author.

for that base learner belonged to one of the four ensemble learners.
The chosen hyperparameter set adopted to be the hyperparameters’ levels values of a

base learner was determined first pondering performances that achieved higher scores at the
Radius of Tolerance metric. Subsequently, the R2 scores for the validation set predicted were
evaluated among those with a high Radius of Tolerance score. Afterwards, R2 scores concerning
the train set predicted were evaluated among those performances with a high score at Radius
of Tolerance and R2 of the validation set predicted. For this last score, differently from the
first two, were considered as recommended hyperparameter sets to be adopted, those whose R2

score of train set predicted were more similar with the R2 score of the validation set predicted.
Such consideration has been done in order to avoid overfitting, since if the score achieved at the
validation set were notably lower than the score achieved at the train set, it means that the model
was too bounded to the train set’s patterns and has a lower generalization to accurate predict
unseen observations (Subsection 2.4.6 and 2.4.8). Considering these criteria, the hyperparameter
sets of a single base learner were chosen.

The procedure of training and determine the hyperparameters’ values so far presented
concerns just for the building of one single base learner. Such procedure was deployed in the
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training phase of all the 16 base learners employed in this work. Once that the base learners that
consist of an ensemble learner are trained and optimized, the ensemble model can be attested
with the LOO algorithm in order to remark the ensemble’s performance at the validation set. If
the metrics’ scores achieved by the ensemble were satisfactory for the validation set’s prediction,
the ensemble is ready to be finally assessed predicting the test set. If the scores achieved were
not satisfactory, then the hyperparameters of the ensemble were again pondered and reevaluated.

The strategies employed in this work, such as ensemble learning and LOO, are
recommended approaches to handle with the particularities of a small dataset. Even though, the
time required to train and evaluated all the base learners through the LOO strategy combined
with the hyperparameters’ optimization process was considerable. All the training and testing
performances were carried out through the author’s personal computer. Were the datasets’ size
greater, a requirement of a machine with more computation power would be necessary, in order
to speed up the machine learning computations. The scores achieved by each base learner in the
validation set, set with the optimum hyperparameters set, are presented in the Section 4.1.

3.6.5 Validation of the models

The validation of the ensemble learning models built to predict the ASSD’s performance
of the inclinometer device for any combination of parameters inside a delimited volume of
parameters, given the operation mode, was carried out through the performance achieved at the
prediction of the model’s respective test set. The prediction performance is evaluated through
the scores achieved at the Radius of Tolerance metric with tolerance η = 0.010 and, just for the
standard operation mode, R2 score of the test set predicted. The performances achieved in the
test set’s prediction are presented in section 4.2.
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4 RESULTS AND DISCUSSION

In this chapter is presented the results of the machine learning approach relied on the

DOE technique, reasoned to characterize the response of the inclinometer device, developed

by the Large-Scale Metrology team, for all the measurement parameters’ combination in a

delimited volume of parameters. First, is approached the training scores achieved by the ensemble

regression models assigned for each sensing axis’ responses, for two operation modes: Standard

and repeated. Following, the trained models are undergone to a validation phase, where each

built ensemble model predicts the test set, and these predictions are evaluated in order to

attest the accuracy and reliability of the built ensemble models, and hence, the ML approach.

Afterwards, the built algorithms are employed to fully characterize a volume of parameters, and

the performances predicted are contemplated and discussed. To conclude, the entire methodology

is assessed and discussed, pondering the effectiveness, advantages and drawbacks of such

technique developed to complement the DOE characterization.

4.1 MACHINE LEARNING MODEL’S TRAINING SCORES

In the Section 3.6 was presented the algorithms and approaches whose the machine
learning characterization substantiate itself. In this section, the performance of the ensemble
models’ training phase, approached in Subsection 3.6.4, is assessed through the evaluation
metrics reasoned in Subsection 3.6.2.
Table 10 – Scores achieved in the training phase of the base learners and the ensemble regression,

concerning the standard operation mode. The table present the scores achieved by

the models trained for the sensing x-axis’ characterization, in the left side, and for he

sensing y-axis’ characterization in the right side.

Standard
Operation

Mode
Model RT

R2

Val
R2

Train
Model RT

R2

Val
R2

Train

XGB 0.63 0.95 0.99 XGB 0.75 0.90 0.93

GP 0.71 0.77 0.97 GP 0.56 0.83 0.99

Sensing
x-axis

WKNN 0.50 0.62 0.80
Sensing
y-axis

WKNN 0.50 0.59 0.81

Nu-SVM 0.65 0.35 0.42 Nu-SVM 0.73 0.35 0.45

Ensemble 0.63 0.82 0.79 Ensemble 0.68 0.86 0.80

The Table 10 presents the scores achieved by two built ensemble models, one for the
characterization of each sensing axis, concerning the standard operation mode. The left side
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of Table 10 stands for the scores related to the sensing x-axis’ models, whereas the right side
stands for the scores regarding the sensing y-axis’ models. Each line of scores concerns either a
base learner’s performance, or the performance of the ensemble whose the base learners consist.
The column RT stands for the score achieved at the Radius of Tolerance metric with η = 0.010,
comparing the predictions of the validation set (i.e. the LOO predictions) with their true values.
The column R2 V al regards the scores achieved in the R-Square metric for the very predictions
of the validation set deployed in the evaluation of the RT metric, comparing the predicted
values with their true values. Finally, the column R2 Train stands for the score achieved in
the R-Square metric by the predictions of the very train set employed to train the model that
predicts it, comparing the predicted training values with their true values. The RT metric was
applied to assess the predicted ASSD values whose the true values are found below the rank of
0.1, complying with the conclusions led by the DOE approach, reasoned in Subsection 3.6.2.
The R2 V al and R2 Train assess the validation and train set, respectively, as enlightened in
Subsection 3.6.2. The scores presented in Table 10 were achieved by base learners set with an
optimum hyperparameter set, determined by the procedure described in Subsection 3.6.4.

Assessing the performance of the base learners of Table 10, one may observe that some
models could better remark a specific type of patterns than others. For instance, the algorithm
GP, for the sensing x-axis, could remark quite distinctly the patterns for ASSD values below
the rank of 0.1, however its performance at the R2 V al is overtaken by the XGB algorithm.
As matter of fact, the fraction amount of ASSD values in the sensing x-axis’ validation set
that lay below the rank of 0.1 is 38/64. Still in the sensing x-axis, the RT score achieved by
the Nu-SVM algorithm conveys that it could considerably well remark lower ASSD values’
patterns, however it had no great performance to observe the patterns of higher ASSD values.
The WKNN model achieved a reasonable good performance at both the RT and R2 V al metrics.
Focusing in the R2 Train scores achieved by the base learners for the sensing x-axis, one may
observe that, save for the GP algorithm, the remnant models could achieve a R2 Train value
quite similar with the R2 V al. The fact that the GP algorithm achieved a quite different value at
the R2 Train score from the R2 V al, may indicate that the model is overfitted (Subsection 2.4.5,
2.4.6 and 2.4.8). However, when combining the performance of each base learner, stood for the
sensing x-axis, into an ensemble, the ensemble’s performance ponders the perspectives of each
base learner and provides a general response that is quite satisfactory for the three evaluating
metrics here employed. The ensemble performance of the sensing x-axis of Table 10 does not
achieve an outstanding performance in the R2 V al score, like the XGB, neither a distinctly good
accomplishment in the RT metric, as did the GP algorithm, but yet, the ensemble could balance
the bias of each model, achieving a good perspective of the train and validation set’s patterns.
One may also observe, still for the sensing x-axis performances, that the ensemble’s R2 V al

score could even outweigh theR2 Train score, such fact that strongly suggests that the ensemble
is not overfitted.

Assessing the performance of the base learners from Table 10 for the sensing y-axis’
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characterization, one may observe that the scores achieved by the models referent to the sensing
y-axis are quite similar to those that stand for the sensing x-axis, but with some slight differences.
As matter of fact, the fraction amount of ASSD values of this sensing axis’ validation set that lay
below the rank of 0.1 is 48/64. The XGB model could achieve outstanding scores for both the
RT and R2 V al metrics. The GP base learner achieved a considerable good score in the R2 V al

metric, but reasonable good in the RT metric. The WKNN achieved a reasonable performance for
both the metrics. As it occurred for the sensing x-axis’ Nu-SVM base learner, also for the sensing
y-axis predictions the model could notably well remark the pattern of lower ASSD values, but
had not an impressive score for the R2 V al metric. The scores achieved in the R2 Train were,
again save for the GP model, quite similar to the scores achieved in the R2 V al metric. As
pointed for the sensing x-axis scores’ assessment, the fact that the GP model achieved a particular
higher score in the R2 Train metric than in the R2 V al, may suggest that the model is overfitted
(Section 2.4.5, Subsection 2.4.6 and 2.4.8). Yet, the combination of the base learners into an
ensemble regression could leverage considerably good scores for the three metrics. Again, the
ensemble regression could even achieve a better score in the R2 V al metric than in the R2 Train

metric, such fact that may strongly suggest that the model is not overfitted.
The two ensemble models of the standard operation mode’s characterization achieved

similar scores, although the model for the sensing y-axis’ characterization had presented
performances slightly better. The performances at the RT metric were not outstanding, but
yet were considerable reasonable. The performances at the R2 V al metric were considered
satisfactory, once that this metric assesses the quality of prediction of the entire validation, and
the present dataset is consisted of several particularities as outliers and small amount of training
data. Hence, a R2 score above 0.80 at the validation set suggests that the ensemble could well
learn most of the dataset’s patterns. From such analyses, one may assume that the ensemble
regressions for the standard operation mode’s characterization had a good intuition of the patterns
that rule ASSD values below the rank of 0.1, and have pretty well learned the patterns of the
dataset/validation set seen from a general aspect.

The Table 11 is organized exactly as the Table 10 , but concerns for the training scores
achieved by the base learners and ensemble models charged to characterize the repeated operation
mode. The RT, R2 V al and R2 Train metrics were here employed as it was for the standard
operation mode models’ metrics, save for the applicability of the RT metric, which for the analysis
concerning the standard operation mode is just applicable for ASSD values bellow the rank of
0.1, and here, for the repeated operation mode, is applicable for the entire dataset/validation set,
since the repeated operation mode’s dataset is fully consisted of ASSD values below or equal to
the rank of 0.1.

Assessing the base learners and the ensemble regarding the sensing x-axis’
characterization, left side of Table 11 , one may observe that all the base learners could achieve
satisfactory scores in the three metrics. The performance of the XGB and GP algorithms were
outstanding for the remark of the dataset/validation set’s patterns, and the WKNN and Nu-SVM
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Table 11 – Scores achieved in the training phase of the base learners and the ensemble regression,

concerning the repeated operation mode. The table present the scores achieved by

the models trained for the sensing x-axis’ characterization, in the left side, and for he

sensing y-axis’ characterization in the right side.

Repeated
Operation

Mode
Model RT

R2

Val
R2

Train
Model RT

R2

Val
R2

Train

XGB 1.00 0.97 0.98 XGB 1.00 0.91 0.97

GP 1.00 0.96 0.99 GP 1.00 0.89 0.99

Sensing
x-axis

WKNN 0.93 0.89 0.93
Sensing
y-axis

WKNN 0.95 0.73 0.85

Nu-SVM 0.91 0.90 0.95 Nu-SVM 0.91 0.67 0.83

Ensemble 1.0 0.95 0.96 Ensemble 0.97 0.85 0.91

could pretty well remark it. The ensemble of the base learners achieved, as well the base learners,
satisfactory scores. The scores achieved at the R2 Train metric, by the base learners and the
ensemble, conveys the suggestion that none of the algorithms was overfitted, since the score at
the R2 Train metric was pretty similar to the score achieved at the R2 V al metric.

Similarly were the scores achieved by the base learners and the ensemble regression
concerning the sensing y-axis’ characterization, presented on the right side of the Table 11. The
XGB and GP algorithms could achieve satisfactory scores at the three metrics. An interesting
phenomenon occurs for the scores achieved by the WKNN and Nu-SVM models, where both
could pretty well remark the patterns of the dataset/validation set, but the reasonable scores at
the R2 V al metric, when comparing with the scores achieved at the same metric by the XGB
and GP algorithms, conveys the suggestion that the quality of the patterns learned by the WKNN
and Nu-SVM was not so accurate as it was for the GP and XGB algorithms. In other words, it is
suggested that the absolute difference between the true and predicted ASSD values were more
close to the tolerance η defined in the RT metric, for the WKNN and Nu-SVM, than the same
absolute difference achieved by the XGB and GP models. Nevertheless, the ensemble of the
base learners charged to characterize the sensing y-axis’ performance could achieve satisfactory
scores at the three evaluation metrics. The scores achieved by the base learners and the ensemble
at the R2 Train metric were quite similar to the scores achieved at the R2 V al, save for the GP
model, which achieved a not so negligible difference between the mentioned metrics, which may
suggest that the base learner is slightly overfitted.

The ensemble regressions of the repeated operation mode’s characterization achieved
satisfactory scores at the validation set, although scores achieved by the ensemble concerning
the sensing x-axis’ characterization were better than the scores achieved by the ensemble
which regards the sensing y-axis’ characterization. The performances at the RT metric were
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considered outstanding, and the performances at the R2 V al metric were considered satisfactory.
Although the repeated operation mode’s dataset contains fewer observations than the standard
operation mode’s dataset, the scores’ achievement was notably better at the repeated mode
characterization’s training than for the standard mode. Such phenomenon may be justified due to
the fact that the standard operation mode’s dataset presents a more complex pattern of ASSD
performances than the repeated operation mode’s dataset. This last is composed of just two
independent variables, whereas the first is consisted of three independent variables. Also, the
standard operation mode’s dataset has a scale of ASSD values pretty diverse, even containing
outliers, such that the RT metric could not even be applied to assess the entire set of data, but just
those whose the true ASSD values lay below the rank of 0.1. Such particularities are not trivial to
bypass, so that even a flexible approach, as it is the ensemble regression, may have complications
with the training and fitting of such dataset. The repeated operation mode’s dataset is simpler,
and each of its ASSD values lay below or equal the rank of 0.1. Hence, the training with such
batch of data is more feasible with the ensemble approach.

4.2 MACHINE LEARNING MODEL’S VALIDATION

In Section 4.1 was presented the scores achieved by the trained models, with the best
hyperparameters set settled, for the predictions of the validation and train set. The performance at
the training phase (Subsection 3.6.4) leverages an assessment of the goodness of the algorithms’
fitting. In this Section, it is presented the performance and scores achieved by the ensemble
models for the prediction of unseen observations (i.e. data points that the ensemble models have
not been trained to achieve good predictions’ performance), namely the test set approached in
Subsection 3.6.1. The performance of the ensemble models at the test set’s prediction attests,
in this work, the reliability and accuracy of the machine learning approach to characterize
the inclinometer’s behaviour for any measurement parameters’ combination constrained in a
delimited volume of parameters.

The deployment of the ensemble models to predict the test set was carried out as follows.
First, the ensembles of base learners were trained with the best hyperparameter set. Then, the
built models were deployed to predict all the possible combinations of the parameters’ values
presented in Table 6, for the standard operation mode’s measurement, and Table 8, for the
repeated operation mode’s measurement. Afterwards, the predictions were evaluated comparing
their values with the true values presented in the test set. The evaluation was accomplished
following the metrics’ deployment reasoning developed in Subsection 3.6.2.

The Table 12 conveys the scores achieved by each ensemble model, which stands for
one sensing axis and one operation mode, concerning the performance at the predictions of
the test set. The tolerance value η of the Radius of Tolerance metric, deployed in the test set’s
assessment, was 0.010 for both the operation modes. For the predictions concerning the standard
operation mode, the RT metric was applicable just for true ASSD values below the rank of 0.1,
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Table 12 – Scores achieved by the ensemble models, which consist the machine learning

characterization approach, at the performance of the test set’s prediction.

Standard Repeated
RT R2 RT

Sensing x-axis 0.42 0.70 0.90

Sensing y-axis 0.71 0.83 0.96

as reasoned in Subsection 3.6.2. The fraction amount of predictions evaluated with the RT metric
for the sensing x-axis, at the standard operation mode, was 19/27, whereas the fraction amount
for the sensing y-axis, at the same operation mode, was 21/27. The R2 metric was applicable
for all the test set’s predictions concerning the standard operation mode, and the RT metric was
applicable for all the test set’s predictions concerning the repeated operation mode.

For the test set’s predictions concerning the standard operation mode, one may conclude,
through the observation of the Table 12, that the ensemble model approach could considerably
well remark the general patterns of the test set, since the score achieved at the R2 metric was
considered satisfactory, for the ensemble regarding the sensing y-axis, and reasonable good, for
the ensemble concerning the sensing x-axis. The models’ performance of predictions of ASSD
values below the rank of 0.1, assessed through the RT metric, was considered unsatisfactory for
the predictions regarding the sensing x-axis, and satisfactory for the predictions concerning the
sensing y-axis. One may also note that, still assessing the standard operation mode, the ensemble
model that regards the sensing y-axis achieved better scores than the ensemble model that stands
for the sensing x-axis.

In order to visually remark the performance of predictions concerning both the sensing
axes, and thereby graphically assess the quality of the predictions, the true values of the standard
operation mode’s test set were plotted along with the respective predictions, as presented in
Figure 27. The abscissa axis stands for the standard operation mode test set’s trial number, found
in the Table 35 in the Appendice C. The first graphic on top of the Figure 27 stands for the
sensing x-axis’ performance, whereas the second graphic at the bottom stands for the sensing
y-axis’ performance. Comparing the true and predicted values of the graphic on top, one may
observe that the ensemble regression could reasonably predict the shape of the test set, yet such
predicted shape is not totally well fitted into the true values’ line. It is also possible to observe,
still in the graphic on top, that the ML model had the wrong assumption about the prediction’s
pattern for some trials number, namely number 10, 13 and 19. Comparing the true and predicted
values of the graphic at the bottom, one may observe that the shape of the true values could
be well remarked by the ensemble regression, and the predicted values are placed considerably
close to their respective true values.

By the means of the models’ performance evaluation presented in Table 12 and Figure
27, it is considered that the two ensemble regression models, each one built to characterize one
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Figure 27 – Performance of the predictions of the ensemble regression models, which have been
trained to characterize each sensing axis at the standard operation mode configuration,
at the test set. The graphic on top stands for the performance of the ensemble model
built to predict the ASSD score reached by a set of parameters performed by the
sensing x-axis, whereas the graphic on bottom regards the sensing y-axis. The blue
squares are the true values obtained in real experiments. The red dots are the values
predicted for the same parameters that have led to the blue squares.
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sensing axis’ measurements, at the standard operation mode, could remark the general aspect of
the inclinometer’s behaviour with satisfactory accuracy, for the sensing y-axis’ measurements,
and reasonable accuracy, for the sensing x-axis’ measurements. The difference in accuracy
achieved by the two ensemble models may be justified by the different aspects of data, particular
of each sensing axis. The Figure 22, in Subsection 3.6.1, conveys the knowledge that the
sensing x-axis intrinsically reaches higher ASSD values than the sensing y-axis, and through
the interpretation of the DOE model performed to comprehend the standard operation mode,
it became evident that the higher is an ASSD value, the higher is the uncertainty of that value.
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Therefore, it is expected that the machine learning model achieves, at the standard operation
mode, an worse accuracy for predictions regarding the sensing x-axis, than for the sensing y-axis’,
once that one single true sensing x-axis’ ASSD value, achieved with a given configuration of
parameters, may vary in within a range wider than a sensing y-axis’ ASSD value achieved
through the same parameters’ combination, and hence a sensing x-axis’ predicted ASSD value
will always have a higher probability to lie more distant of the respective true value than a sensing
y-axis’ predicted ASSD value, comparing both the sensing axis’ measurement performance for
the same set of parameters.

The Table 12 also conveys the performance of the ensemble regression models that
concern the characterization of the repeated operation mode’s measurements at the test set. Since
the R2 metric is not an appropriate approach to evaluate the repeated operation mode’s prediction
performances, as discussed in Subsection 3.6.2, just the Radius of Tolerance metric is employed
in the evaluation of the operation mode’s predictions. Thereby, one may conclude by the means
of the score achieved by each ensemble, one for the characterization of each sensing axis that
stands for the repeated operation mode, that the predictions’ performance of the algorithms was
considerably accurate.

The Figure 28 provides a visual understanding of how the two ensemble regression
models remarked the repeated test set’s patterns. The first graphic on top of the figure stands
for the sensing x-axis’ predicted and test set values, whereas the graphic at the bottom stands
for the sensing y-axis’. The abscissa axis of both the graphics regards the trial number of the
test set in compliance with the repeated operation mode’s test set presented in Table 37, found
in the Appendice D. As for the graphics concerning the standard operation mode’s predicted
and test set values, here the tolerance value η = 0.010 of the RT metric is evinced with vertical
bars at each true value, so that is considered a predicted value acceptable according to RT’s η
tolerance, one that lies within the range of the respective true value’s vertical bar. Assessing the
graphic on top of Figure 28, one may observe that the ensemble regression could so accurately
remark the patterns of the sensing x-axis ASSD responses, that almost all the predicted values lie
within the constraint of the RT’s tolerance. In fact, for the sensing x-axis, the ensemble algorithm
could satisfactorily remark the shape of the repeated operation mode’s test set. Assessing the
graphic at the bottom of Figure 28, immediate considerations must be pondered. The sensing
y-axis test set’s values achieved roughly the same ASSD value. Such phenomenon has already
been observed by the DOE assessment of the operation mode in Subsubsection B.3.2, where the
ASSD values barely change according to different parameters’ combinations around a certain
spot of parameters’ values. Nevertheless, the ensemble regression model assigned a pattern to
the sensing y-axis’ performances, and such pattern could lead the predictions to lie within the
RT’s tolerance, as convey the vertical blue bars that depart from the test set values, although the
shape of the predicted values does not well fit to the true values’.

The evaluation of the regression models’ performance at the test set is definitive to
attest the model’s reliability in a real use case. It is relevant to point out that the test set, of
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Figure 28 – Performance of the predictions of the ensemble regression models, which have been
trained to characterize each sensing axis at the repeated operation mode configuration,
at the test set. The graphic on top stands for the performance of the ensemble model
built to predict the ASSD score reached by a set of parameters performed by the
sensing x-axis, whereas the graphic on bottom regards the sensing y-axis. The blue
squares are the true values obtained in real experiments. The red dots are the values
predicted for the same parameters that have led to the blue squares.
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both the operation modes, was collected following the same systematic methodology of ASSD
values’ acquirement, employed to obtain the train set. It is also relevant to evince that the test
set was acquired several months later of the train set’s acquirement, so that it has no correlation
at all with the train set, save for the systematic methodology of experiments, and thereby if the
ML approach could achieve good predictions of the test set, the approach would be considered
satisfactory. A point that might be pondered is that the exposition and use of the inclinometer
device in the time between the acquisition of the train and test set could have modified internal
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electronics aspects of the printed circuit board or the MEMS accelerometer ICs, so that subtle
features of the device’s measurement pattern could have been changed. Such change, if not
underlying, is advantageous to attest the capability of generalization of the built ensemble models
for their deployment in real use cases.

Concluding, given the particularities of the standard operation mode’s dataset, as ASSD
values with high variability and outliers, it is considered that the ML model built to characterize
the standard operation mode has, pondering in a general aspect, a satisfactory accuracy for
the predictions concerning the sensing y-axis, and a reasonable accuracy for the sensing x-
axis. It is considered that one may achieve a decent intuition of the patterns of quality of the
sensor’s measurement, for any configuration of parameters constrained in the train set’s volume
of parameters. The performance of the built models that concern the repeated operation mode’s
characterization is considered to have a satisfactory accuracy for the predictions regarding both
the sensing axes. The intuition provided by the ensemble models charged to characterize the
repeated operation mode is considered efficient for measurements of both the sensing axes.

4.3 MACHINE LEARNING INCLINOMETER’S CHARACTERIZATION

In this section is presented the full characterization achievable by the ML approach.
Each trained ensemble model is deployed to predict the performances’ ASSD values referent to
all the possible combinations of parameters constrained into the train set’s volume of parameters,
according to the model’s sensing axis and operation mode that it was trained to predict, found in
Table 5 and 7.

The figures 29 and 30 present the full characterization of the quality of measurements
performed in the standard operation mode, which is assessed through the ASSD metric, provided
by the machine learning approach. The very same two built models attested in the prediction
of the standard mode’s test set are here employed. The Figure 29 stands for the sensing x-axis’
characterization, whereas the Figure 30 stands for the sensing y-axis’. Each coloured scaled
plot in the figures stands for the ASSD values’ predictions of all the possible combinations of
frequency and timesleep values, when the parameter interval is settled to one fix value, where the
range of frequency varies from value 5 to 120 with a resolution of 1, and the range of timesleep

varies from value 0.4 to 1.3 with a resolution of 0.01. The colour scale of each plot is the same,
and it stands for the ASSD value predicted, where the higher is the number predicted, the worse
is the quality of measurement’s performance.

Assessing the predictions in Figure 29, one may clearly remark the patterns that the
ensemble model had learned, and, afterwards, deployed to perform the full characterization.
Focusing on the characterization of the lower intervals, one may observe three main regions
of ASSD values. As coloured in faded pink is found the region where the ASSD values reach
the highest rank. As coloured in blue is found still a region where the ASSD values are high,
but they are gradually decreasing. And as coloured in green is found the region where the
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Figure 29 – Full characterization of the standard operation mode for the sensing x-axis’
responses.
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measurements are found more stable and with more accurate performance, so that the ASSD
values are found below the rank of 0.1. For the lower intervals, the worse performances are
achieved when frequency and timesleep are set to small values, and the performance is improved
along with the increasing of these parameters’ values. It is interesting to note that, as interval

increases, the faded pink region becomes smaller, and gradually sets on a small spot of frequency

and timesleep values, namely the smallest values of them, but the algorithm does not extinguish
the region for any value of interval. Also, as interval increases, the green region expands, and
a new region, which is coloured as yellow/orange and stands for the smallest ASSD values, is
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Figure 30 – Full characterization of the standard operation mode for the sensing y-axis’
responses.
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arisen roughly between the frequency range of [20, 70], and timesleep range of [0.8, 1.3]. Such
region reaches the largest size and smallest ASSD values between the interval of values 1100

and 1200, so that the region stands for a sweet spot of better performances of the sensing x-axis’
measurements. At the interval 1300, this region seems to become fading.

Assessing the predictions in Figure 30, the patterns of the sensing y-axis’ performances
are evinced. Focusing on the lower intervals, differently of the three regions predicted for the
lower intervals in Figure 29, four regions are here found. As in Figure 29, there are a faded
pink, a blue and a green region, which stand for the same scale of ASSD values remarked in the
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analysis of Figure 29, but a fourth region is arisen, namely a yellow/faint orange coloured region.
The contrast with the predictions of the sensing x-axis responses is remarkable. The faded pink
region is still concentrated when frequency and timesleep are set to low values, but such region is
smaller than it is in the lower intervals of Figure 29. The blue region is here, in the lower intervals
of Figure 30, reduced in size. An interesting comparison with the blue regions in the lower levels
of Figure 29 is that here, the blue region does not reach the spot where frequency is set to lower
values and timesleep is set to high levels, but instead of blue, the spot is occupied by a green/faint
blue region. Such pattern leads to the conclusion that it is possible to reach ASSD values below
the rank of 0.070, in the standard operation mode, for low values of frequency and interval.
Such an accomplishment that is not achievable in the sensing x-axis’ measurements. It is also
interesting to note that, still assessing the lower intervals’ values, the yellow/faint orange region
is becoming with a colour of more deep orange as interval is increased, and the location of such
spot roughly complies with the location of the orange spot observed in the high values of interval

in Figure 29. The increasing of interval leads to a general better performance of measurement,
so that the ASSD values are gradually decreasing in a general aspect. The yellow/faint orange
region expands in high values of interval, so that it almost becomes just with orange colour. In
this region, a notable deep orange spot is arisen roughly when frequency ranges within [20, 60],
timesleep ranges within [0.7, 1.0], and interval is found between [1000, 1300], so that the region
represents a sweet spot of parameters’ combinations that leads to an optimum performance of
the sensing y-axis’ measurements.

The full characterisation achieved by the two ensemble models charged to characterize
the standard operation mode could remark different regions, which stand for combinations of
parameters spot, that lead to different aspects of the operation mode’s performances. One may
deploy the figures 29 and 30 in order to choose the parameters’ values that lead to the most
suitable performance for any application. For instance, if one is interested in saving power
consumption, but still wishes to keep the better accuracy as possible in the measurements of
both the sensing axis, the most suitable option would be to set timesleep to 1.3, frequency to
20 and interval to 1300, because this configuration would ensure a slow rate of measurement
sampling, which would decrease the power consumption, and the performance would still
remain with ASSD values below the score of 0.1 in both the sensing axes’ measurements. But
if the application requires a high rate of measurement sampling, still with the best accuracy as
possible in both the sensing axes’ responses, an interesting recommendation would be to set
interval to 400, frequency to 120 and timesleep to 0.7. Such configuration would ensure short
intervals of measurement, with a reasonable good accuracy, but the power consumption would
increase, once that the amount of tilt measurement samples, necessary to provide one single final
measurement sample (Subsection 3.1.1), would increase. It is also interesting to emphasize that
in real performances, the real ASSD values achieved by the inclinometer device would much
probably not reach, for a given set of combinations of parameters, the exact value suggested
by the characterization, since the ensemble models could well remark the general aspect of the
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standard operation mode’s patterns of ASSD responses, but the predicted values have mostly not
been in compliance with the tolerance of η = 0.010 of the Radius of Tolerance metric.

Figure 31 – Full characterization of the repeated operation mode for the sensing x-axis’
responses.
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The figures 31 and 32 present the characterization of the quality of measurements
performed at the repeated operation mode, assessed through the ASSD metric, provided by
the machine learning approach. Figure 31 stands for the characterization of the quality of
measurements performed by the sensing x-axis, whereas Figure 32 stands for the sensing y-
axis’ quality of measurements. The repeated operation mode’s characterization consists of the
ASSD predictions of all the possible combinations of the parameters interval and frequency with
values constrained into the repeated operation mode’s train set volume of parameters, which
consists of interval’s values ranging within [300, 1500] and frequency’s values ranging within
[7, 120]. The grey squares found in each figure represent combinations of parameters that lead to
performances that could not have been achievable by the inclinometer device during the repeated
operation mode’s train set acquirement (Subsection 3.6.1), and therefore, the possible predictions
of the performances that are driven by parameters’ combinations that lie in the grey square are
disregarded.

Assessing the characterization of Figure 31, one may observe that the ensemble model
could identify three main regions of ASSD values, portrayed as with a colour scale. There is the
blue region, which stands for reasonably high ASSD values, the green region, which stands for
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Figure 32 – Full characterization of the repeated operation mode for the sensing y-axis’
responses.
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ASSD values ranging within [0.050, 0.066], and the yellow/deep yellow region, which stands for
the lowest ASSD values reachable by the sensing x-axis, according to the ensemble regression
characterization. It is interesting to note that the ensemble model could identify a sweet spot of
parameters’ values that lead to an optimum performance, roughly located when interval is set
within [1200, 1500] and frequency is set within [15, 30].

Assessing the Figure 32, one may remark two main scaled coloured regions, namely a
green/yellow region and a faded orange region. The contrast of the sensing y-axis’ performances
against the sensing x-axis’ is notorious. The sensing y-axis’ response at the volume of parameters’
defined for both the sensing axes is totally different. Not just the scale of the predicted ASSD
values is distinctly, but the relationship of the parameters’ interactions is other. This fact is evinced
when comparing the predicted response of both the sensing axes for high values of frequency,
where the higher the parameter’ value, the worse become the ASSD predicted responses for the
sensing x-axis, and sightly better become the ASSD predicted response for the sensing y-axis.
Such predicted phenomenon was already remarked by the DOE characterization in Subsubsection
B.3.2, and is here, in the ML approach, evinced with more details. The ensemble model charged
to characterize the sensing y-axis’ responses could also remark a sweet spot of parameters’
values that leads to an optimum performance of measurement, located roughly when interval is
set within the values [1200, 1500], and frequency is set at any value within [7, 120].
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The full characterization provided by the two ensemble models charged to characterize
the repeated operation mode’s performances, found in the figures 31 and 32, might be deployed
to provide the better configuration of the parameters for any application employing the repeated
operation mode. For instance, if one is interested to save battery and still achieve the best
performance in both the sensing axes, a good recommendation would be to set frequency 20 and
interval to 1500. However, if the sampling rate required is high, a good configuration that would
satisfy such requirement and still reach a reasonable good performance is when interval is set to
300 and frequency is set to 30. Regarding the repeated operation mode’s characterization, one
may satisfactory rely on the predictions achieved, knowing that the predicted values are pretty
close to real values, once that the ML approach could achieve considerable good scores at the
Radius of Tolerance metric with tolerance η = 0.010.

The figures 29, 30, 31 and 32 present the full characterization of the inclinometer’s
quality of measurements, assessed by the ASSD metric, achieved by the machine learning strategy
discussed in this work. The four figures mentioned, along with the figure 50, fully characterize
the three operation modes of the inclinometer device. Such figures might be deployed in a
practical manner by the team of Large-Scale Metrology in order to better satisfy the team’s
measurement requirements and performances’ goals.
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5 CONCLUSIONS

In this work was presented the development and evaluation of a characterization
approach based on DOE theory and enhanced with machine learning algorithms, deployed
to evaluate an inclinometer smart sensor. The inclinometer device, designed and developed by
the Large-Scale Metrology team, achieves different noisy performances in the measurements,
according to the measurements’ parameters set. Thereby, in order to remark the device’s
features for any set of parameters, the device’s behaviour is fully characterized, so that the
Large-Scale Metrology team may define the most suitable combination of parameters for any
application. Aiming to characterize the inclinometer’s performance, experiments must have
been carried out in order to expose the patterns of the sensor’s measurements and assess these
patterns with the DOE/ML approach developed. Such experiments were accomplished through
a systematic methodology that ponders the environmental influences on the sensibility of the
sensing mechanism and reckons the presence of outliers as a signal of instability unleashed
by the parameters settings configured. The systematic methodology yields a single real-valued
value, namely the ASSD metric, that scores the quality of the inclinometer’s performance due
to the parameters’ values configured, where the higher is the ASSD value achieved, the worse
was the performance, which means that the measurements had a considerable amount of outliers
and high amplitude of noise. In order to dynamically conduct the hundreds of experiments
accomplished in this work, an autonomous software infrastructure was developed to perform
the communication with the sensor device, and store the measurement received into a database.
Every experiment presented in this work was conducted by this infrastructure and carried out
through the systematic methodology.

The DOE approach carried out in this work could leverage a partial characterization
of the device, so that crucial information could have been remarked and the ML approach
could thereby have been so developed, that it considers the particularities and limitations of the
inclinometer’s behaviour due to different parameters’ values, and thus could better and more
reliably remark and predict the patterns of such behaviour. The DOE model employed in this
work could leverage the machine learning approach providing four main knowledge. First, the
ASSD values achieved by the sensor due to different settings of parameters constrained into a
delimited volume of parameters’ values may be classified into two groups, high ASSD values,
which stand for values greater than 0.1, and lower ASSD values, which stand for values below the
score of 0.1. Each group has its own behaviours’ singularities. Second, the interactions among
the parameters are mostly nonlinear. Third, each ASSD value has an uncertainty that varies its
magnitude according to the parameters configured. The ASSD values greater than the score of
0.1 have a trend to have a high uncertainty, whereas ASSD values lower than 0.1 normally reach
a low uncertainty. And fourth, each sensing axis leads to different patterns of measurement, so
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that the same parameter set might lead to a different quality of measurement for each sensing
axis.

Relying on the DOE approach’s conclusions, the machine learning approach was so
developed, that it considers the fact that the different ASSD values achieved by the device, due to
the setting of combination of parameters inside the chosen delimited volume of parameters, can
be grouped into two groups, each one with its own particularities and level of uncertainty, and
determines a different criterion of evaluation of predictions for each group, namely the R2 score
for ASSD values greater than 0.1, and the RT metric when the ASSD values lie lower than 0.1.
The ML approach also acknowledges the fact that the responses of each sensing axis follow a
pattern of quality of measurement different in each sensing axis for the same parameters’ values,
and thereby designates a particular built ML model to predict each sensing axis’ performance.
During the training of the machine learning models, the fact that the inclinometer’s parameters
interactions are mostly nonlinear also is considered, so that more effort was dedicated to testing
the performance of nonlinear learning based algorithms, since these models could probably better
remark the patterns of nonlinear parameters’ interactions in the training set. The ML approach
presented also exploits the DOE theory in the acquirement of the dataset, relying on the full
factorial design to collect observations with maximum significance, enabling thereby that a small
dataset could have trained the learning algorithms.

Whereas the DOE approach can provide a description of the phenomenon’s patterns
under study, still it lacks of a decisive tool that actually might state an unobserved state of such
a phenomenon, considering the knowledge already acquired by the methodology. The DOE
approach may just provide an intuition of the phenomenon’s unobserved states. On the other
hand, the machine learning approach may provide a full characterization of any phenomenon,
however the building of the approach must consider the data’s particularities, otherwise the
predictions achieved would not comply with the reality of the phenomenon, leading to low
accurate predictions. Therefore, the hybrid technique presented in this work is consisted of the
implementation of the complementation of what is lacking in both the approaches, the DOE and
ML, namely exactly each other.

The full characterization achieved in this work provides a useful intuition of the
inclinometers’ response operation in the standard mode, and a considered accurate map of
response when the device is operating at the repeated. The continuous mode is fully characterized
by the DOE approach, and thus, its characterization relies on real observations. It is important
to evince that the characterization approached in this work covers just a constrained volume
of parameters, so that any other parameter’s value that is found outer the constrained volume
is uncharacterized, yet the graphics provided by machine learning may suggest a trend of the
inclinometer’s behaviour for combination of parameters beyond the constrained volume here
explored, assessing the devices’ predicted performance at the frontiers of the delimited volume of
parameters. The full characterization achieved in this work could have been much more accurate,
had the nature of the dataset were more behaved (i.e. without outliers) and more training data had
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been acquired. However, since a single ASSD value acquired is considerable costly in matters of
time and battery, the acquirement of a bigger train set was not affordable.

Although the characterization presented in this work well describes the features of
the inclinometer device whose the experiments were deployed in the DOE/ML assessment, the
DOE approach conveyed the knowledge that such characterisation is only meaningful for the
very device employed in this work. Experiments presented in this work (Appendice B) with
another inclinometer device revealed the fact that both the devices diverge the behaviour for some
settings of parameters, and thus the patterns predicted for one device may not be applicable for
the other device. Such fact must be ascertained in future works in order to characterize the level
of divergence of performance of each device and determine whether exists some relationship
that might explain why the devices’ performance is for some configurations the same, and others
different. In the meanwhile, the author suggests that the DOE/ML characterization procedure
developed in this work may be applied individually for each inclinometer device, following
the same ensemble methodology and base learners deployed in this work, and designing the
dataset’s acquirement to have the maximum significance as also presented in this work. Although
quite laborious, it is important that a high sensitive sensor as the inclinometer developed by the
Large-Scale Metrology team is fully characterized, so that the best exploitation may be achieved
by the technology projected.
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A APPENDICE - INCLINOMETER’S OPERATION MODE ALGORITHMS

In this appendice is presented pseudocode algorithms that describes the logistic of the
inclinometer’s operation modes employment.

Algorithm 2: Procedure for the STANDARD operation mode

1 initialize_bluetooth_connection();
2 while bluetooth_connected do
3 incl_x, incl_y, std_x, std_y = read_STANDARD_mode( interval, frequency, nValue);
4 timesleep( seconds );

5 end

Algorithm 3: Procedure for the REPEATED operation mode

1 initialize_bluetooth_connection();
2 initialize_REPEATED_mode( interval, frequency, nValue );
3 while bluetooth_connected do
4 if new_data_received();

5 then incl_x, incl_y, std_x, std_y = new_data;
6

7 end
8 end

Algorithm 4: Procedure for the CONTINUOUS operation mode

1 initialize_bluetooth_connection();
2 initialize_CONTINUOUS_mode( frequency, nValue );
3 while bluetooth_connected do
4 if new_data_received();

5 then incl_x, incl_y = new_data;
6

7 end
8 end



122

B APPENDICE - INCLINOMETER’S DOE PERFORMANCE

In this appendice is presented the formulation and driving of the DOE model structured
to partially characterise the features of the inclinometer, so that an intuition of the device’s
behaviour might be accomplished.

B.1 REPLICATION, BLOCKING AND RANDOMIZATION IN THE INCLINOMETER’S
EXPERIMENT DESIGN

As explained in Subsection 2.3.1, there exist three foundations concerning the planning
and design of experiments, namely Replication, Blocking and Randomization. The DOE
experiments in this work were so architectured that their designs comply with these three
principles.

In this work, DOE was employed so that a conjunct of trials could define a delimited
volume of combinations of parameters. A conjunct of trials performs the experimentation of all
the possible combinations of a given list of parameters, following the structure of a full factorial
design. For instance, given the parameter’s values of Table 13, a conjunct of trials that performs
all the possible combinations for the given factors’ levels is structured as a full factorial design,
sketched in Table 14. Since just three parameters are varying at two levels, it is said that this
approach is a 32 full factorial design.

Table 13 – List of parameter’s values of the conjunct of trials of Table 14.

Parameter Symbol Minimum Value Maximum Value
Interval In 300 1500

Frequency Fr 5 90

Timesleep Ts 0.4 1.3

nValue nV 10 10

Table 14 – Conjunct of trials of the given parameters of Table 13.

Trial In Fr Ts nV
1 +1 +1 +1 -

2 +1 +1 -1 -

3 +1 -1 +1 -

4 +1 -1 -1 -

5 -1 +1 +1 -

6 -1 +1 -1 -

7 -1 -1 +1 -

8 -1 -1 -1 -
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In the DOE experiments of this work, whenever a list of parameters, as the in Table 13,
is structured to be carried out, its respective conjunct of trials is performed three times, in an
interval of three or four days. By the means of the arrangement of executing the conjunct of trials
three times, during different days, the principle of blocking is being obeyed. By sorting several
executions of the same conjunct of trials within days, different sources of variability like day-
to-day can be noted in the conjunct of trials’ responses, and the average of the respective trials’
response can provide a more accurate estimation of the device’s response for the parameters
settled in that trial.

Regarding the performance of the conjunct of trials, in the experiments of this work the
trials’ execution order is randomized. In each one of the three times executed conjunct of trials
of a parameters’ list, the sequential order of execution of each trial in one conjunct of trials is
different from the others conjuncts of trials. This randomization of the trials is autonomously
driven by the infrastructure developed, depicted in Section 3.2. The proper trial’s randomization
order of execution comply with the DOE principle of randomization. This strategy is established
in order to avoid experimental biases, and achieves such aim by equally distributing noise
elements among different levels of a factor, and thereby the effect of noisy singularities is
averaged through the performance of the conjunct of trials.

The last principle to be architected into the inclinometer’s DOE is replication. For the
inclinometer’s DOE scenario, and considering that the experiments of this work were carried out
during a lockdown due to COVID-19 pandemic, the easier and properer formulation of applying
replication is to replicate the performance of some conjunct of trials with different inclinometers
devices, and then average the respective trials’ responses from each conjunct of each device.
This design was planned and executed, but immediately results conveyed the information that
the two inclinometer devices, which the author had at the moment of the experiments, had some
serious divergences regarding the response for the same set of parameters. These divergences
are properly approached in Subsection B.4. However, such divergences had led the decision of
to do not include replication considering different devices into the inclinometer’s DOE, since
the average of the response for the same parameters setting in both the devices would lead to an
unreliable value for both the sensors.

B.2 INCLINOMETER’S DESIGN OF EXPERIMENTS

As previously presented in Subsection 3.1.1, the inclinometer device performs according
to some parameters that drive the measurement’s performance. These parameters are configured
at the moment of the Bluetooth connection, by the means of the infrastructure developed and
detailed in Subsection 3.2. The inclinometer’s design of experiments is so architected that by
varying the levels of the device’s parameters, a variation of the measurement’s performance
and quality is remarked. In the following DOE, the inclinometer’s performance is assessed
through the systematic methodology explained in Section 3.4. Since the noise component of



124

the measurements is the main aspect that influences the sensor’s accuracy, performance, and
reliability, the output response in interest, and evaluated in the inclinometer’s DOE of this work,
is the Average of the Segments’ Standard Deviation (ASSD).

As explained beforehand, the inclinometer device has five configurable measurement
parameters, namely interval, frequency, nValue, operation mode and, for the standard operation
mode, timesleep (Subsection 3.1.1). The first step to architect a design of experiments is to
identify the controllable and uncontrollable factors of the experiment under study. For the
inclinometer device, the five configurable measurement parameters are assigned as controllable
variables. The environment’s influence and unknown sources of measurement’s variability are
assigned, in this work, as uncontrollable variables. Since just controllable variables can be
manipulated, the inclinometer’s DOE is characterised by the five configurable measurement
parameters.

In order to assess the significance of the varying of a parameter in the ASSD metric,
immediately experiments, which do not belong to the DOE approach, were carried out. The
result of these first experiments conveyed the knowledge that the changing of value of the
parameter nValue does not lead to a meaningful difference in the device response. In fact, the
routine in which the nValue acts is a recommended strategy from the manufactures of the MEMS
accelerometer Murata (2020b) employed in the inclinometer device. The manufactures assert
that exists the possibility that, when required to read the acceleration reported by the sensing
mechanism, the sensor may fail to accomplish the measurement. By the setting of a routine of
reading the sensing mechanism for ’nValue’ times, the chance of a faulty response is minimized.
Besides, an averaged measurement of the sensing mechanism is a more reliable response. Thus,
since the varying of nValue does not lead to a significant change in the measurement response,
all the following experiments and designs approached in this work consider a fixed value for the
parameter nValue, such that nValue is equal to 10.

Thereby, the remnant configurable parameters compose the inclinometer’s DOE. As
presented in Subsection 3.1.1, the device’s measurement routine is dictated by the operation
mode. Each operation mode considers a certain set of parameters in its performance. The standard
mode employs the parameters interval, frequency, timesleep and nValue. The repeated mode
employs the same parameters as the standard operation mode, but the parameter timesleep does
not exist for this procedure. And the last operation mode, continuous, employs just the parameters
frequency and nValue. The different behaviours and parameters involved in the routine of each
operation mode leads to the conclusion that each operation mode must have its own DOE. Thus,
for each operation mode, a different conjunct of trials was designed and settled.

In Subsection 3.4 was presented the systematic methodology, and it was shown as
example experiments that were left laid still on an assumed plain surface collecting acceleration
data for 60 minutes, where the first five minutes are a standstill time in which the device does
nothing, and whose the first six minutes of collected data are disregarded. This exact methodology
is followed for each of the design further presented, however for each operation mode, a specific
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time of collecting data is assigned to an experiment. Each experiment belonging to the standard
mode is performed for 60 minutes (49 minutes when disregarding the time of standstill and initial
offset), and each experiment belonged to the repeated and continuous mode were executed for
25 minutes (14 minutes when disregarding the time of standstill and initial offset). Since that in
the repeated and continuous mode the parameter timesleep, which delays the measurement, is
not applied, in these modes the rate of sampling is greater than in the standard mode. Thus, in
order to have roughly the same amount of samples in an experiment belonged to any operation
mode, the time of execution of an experiment in the repeated and continuous mode is smaller
than an experiment belonging to the standard mode.

The standard operation mode is composed by four parameters, and thus is the most
complex mode. For this mode of operation, the delimited volume of parameters is bounded by the
list of parameters presented in Table 15. The respective conjunct of trials’ design is conveyed in
Table 16. Each conjunct of trials was performed three times, and the sequential order of execution
of each trial, in each conjunct of trials, was random. All the experiments were performed through
the exact same systematic methodology presented in Subsection 3.4. Since a conjunct of trials
belonging to this mode lasts eight hours to become fulfilled, for each night of experiments, one
execution of a conjunct of trials was performed.
Table 15 – List of parameter’s values of the first step of the conjunct of trials from the standard

operation mode, whose tables 16 depicts its design.

Parameter Symbol Minimum Value Maximum Value
Interval In 500 1200

Frequency Fr 5 120

Timesleep Ts 0.4 1.3

nValue nV 10 10

Table 16 – Conjunct of trials of the given parameters of Table 15, 17 and 18.

Trial In Fr Ts nV
1 +1 +1 +1 -

2 +1 +1 -1 -

3 +1 -1 +1 -

4 +1 -1 -1 -

5 -1 +1 +1 -

6 -1 +1 -1 -

7 -1 -1 +1 -

8 -1 -1 -1 -

In order to have a better understanding of the device’s behaviour for settings of
parameters inner the bounded volume of parameters from Table 15, two other different conjuncts
of trials were carried out for the standard mode. The goal of the driving of two more different
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conjuncts of trials is to follow the DOE methodology in order to find a sweet spot of factor’s
combination levels that leads to the smallest ASSD value. Thereby, here is introduced another
terminology to organize the sequence of an inner conjunct of trials. The first volume of parameters
is named first step, and is assigned to the standard mode through the Table 15. The second
volume of parameters is bounded inner the first step, and is appointed as second step. The list of
parameters for the second step of the standard mode is presented in Table 17, and the respective
conjunct of trials design is portrayed in Table 16.
Table 17 – List of parameter’s values of the second step of the conjunct of trials from the standard

operation mode, whose Table 16 depicts its design.

Parameter Symbol Minimum Value Maximum Value
Interval In 850 1200

Frequency Fr 63 120

Timesleep Ts 0.85 1.3

nValue nV 10 10

Finally, the third volume of parameters is bounded inner the second step volume, and is
named as third step. Its list of parameters can be remarked in Table 18 and its respective conjunct
of trials design in Table 16.
Table 18 – List of parameter’s values of the third step of the conjunct of trials of the standard

operation mode, whose Table 16 depicts its design.

Parameter Symbol Minimum Value Maximum Value
Interval In 1025 1200

Frequency Fr 63 91

Timesleep Ts 0.85 1.07

nValue nV 10 10

The choice of the parameters that bound the volume of parameters of the first step was
so decide because the Large-Scale Metrology’s team was interested in constantly and shortly
spaced in time data, which justifies the choice of the scale of values for the parameters interval

and timesleep. The parameter frequency was so settled that it respects the limitations of the
MEMS accelerometer IC, stated in its datasheet (MURATA, 2020b) and attested empirically. It
was verified that, for the standard mode, frequencies greater than 120 Hz and smaller than 5 Hz
may lead to unstable and unreliable behaviours. Thus, the parameter frequency was bounded as
conveys Table 15. The parameters from the second and third conjunct of trials were so determined
that they follow the gradient of better performance from the previous step, in order to find a
sweet spot for the smaller value of the ASSD metric. This gradient of better performance and the
choice of the parameters’ values of the second and third step are approached and discussed again
with more details in Subsection B.3.

The repeated operation mode consists of three parameters. Due to its measurement’s
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routine configuration, the existence of the timesleep parameter is not applicable. Thus, the
repeated mode of operation’s DOE is so architected that just two parameters vary. The repeated
operation mode’s DOE is also structured with inner steps of a delimited volume of parameters. In
the first step, the boundaries of the volume of parameters are delimited and presented in Table 19.
The Table 20 portrays the design of the experiments for this first step. It is important to remark
that, since just two parameters are varying in this mode at two different levels, its design is
labelled as a 22 full factorial design. All the three steps of experiments belonging to the repeated
operation mode were performed similarly as they were for the standard mode, repeating each
conjunct of trials of each step three times and following the systematic methodology depicted
in Subsection 3.4. Since that a conjunct of trials of the repeated mode lasts one hour and forty
minutes to become fulfilled, roughly two executions of conjuncts of trials were performed in one
night of experiments.
Table 19 – List of parameter’s values of the first step of the conjunct of trials from the repeated

operation mode, whose Table 20 depicts its design.

Parameter Symbol Minimum Value Maximum Value
Interval In 400 1400

Frequency Fr 7 120

nValue nV 10 10

Table 20 – Conjunct of trials of the given parameters of Table 19, 21 and 22.

Trial In Fr nV
1 +1 +1 -

2 +1 -1 -

3 -1 -1 -

4 -1 -1 -

The second inner step of the repeated operation mode’s volume of parameters is settled
in order to find the sweet spot among the parameter’s levels combination, so that the ASSD
metric has the smallest value. Its boundaries are presented in Table 21 and its respective conjunct
of trials portrayed in Table 20.
Table 21 – List of parameter’s values of the second step of the conjunct of trials from the repeated

operation mode, whose Table 20 depicts its design.

Parameter Symbol Minimum Value Maximum Value
Interval In 900 1400

Frequency Fr 63 120

nValue nV 10 10

The volume of the second step was also explored by a third step of inner parameter’s
boundaries. The parameters of this third step can be found in Table 22, and its respective conjunct
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of trials design is portrayed in Table 20.
Table 22 – List of parameter’s values of the third step of the conjunct of trials of the repeated

operation mode, whose Table 20 depicts its design.

Parameter Symbol Minimum Value Maximum Value
Interval In 1150 1400

Frequency Fr 63 91

nValue nV 10 10

The choice of the parameters that consist the first step of the conjunct of trials from
the repeated operation mode is justified by the interests of the Large-Scale Metrology’s team.
Since the team was interested in data shortly spaced in time, the values of interval were so
settled as conveys Table 19. The maximum value of frequency for the first step was so settled
that it complies with the device’s capacity presented in its datasheet (MURATA, 2020b), and
respects the limitations empirically observed. It was also remarked that, for the repeated mode,
frequencies smaller than 7 lead to unstable and unreliable behaviour. The choice of parameters
for the second and third inner steps was so determined that they follow the gradient of smaller
ASSD value. More details about the choice of the inner parameters are approached in Subsection
B.3.

Finally, the last DOE architected was structured for the continuous operation mode.
This routine works through the setting of just two parameters, namely frequency and nValue.
Since that in this work nValue has a fixed value, the experiments regarding the continuous mode
are driven by the varying of just one parameter, the frequency. For the changing of just one
parameter, the DOE model is simplified to the simple performance of trials in the specified levels
of the factor under analyses. For this situation, there is no need of a full factorial design. Thus, the
DOE for the continuous mode is consisted of one single step, with a respective conjunct of trials
that is executed three times in random trial sequences through the systematic methodology. The
Table 23 depicts the parameter’s configuration of the experiments of the continuous operation
mode, and the Table 24 portrays its conjunct of trials.
Table 23 – List of parameter’s values of the first and unique step of the conjunct of trials of the

continuous operation mode, whose Table 24 depicts its design.

Parameter Symbol Value 1 Value 2 Value 3 Value 4
Frequency Fr 1 2 3 4

nValue nV 10 10 10 10

The choice of the values that consist the parameter frequency was determined in order to
comply with the Large-Scale Metrology’s team objectives. Besides, it was empirically observed
that, for the continuous mode, frequencies greater than 4 Hz leads to an unstable scenario. The
limitation in this case is so that the Bluetooth protocol can not unrelenting operate at the same
rate as the requirements and responses in frequencies greater than 4 Hz.
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Table 24 – Conjunct of trials of the given parameters of Table 23.

Trial Fr nV
1 Value 1 -

2 Value 2 -

3 Value 3 -

4 Value 4 -

In order to summarize the schematic of the inclinometer’s DOE, the Figure 33 presents
the organization of performances among operation mode, step, conjunct of trials and trial.
Figure 33 – Schematic portraying the arrangement of the experiments that consist the

inclinometer’s DOE.
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B.3 INCLINOMETER’S DOE ASSESSMENT

In this subsection are presented the performances of the DOE experiments, regarding

each operation mode, as depicts Figure 33. The conclusions of the DOE analyses are further

the foundations of the development of the machine learning approach, found in Section 3.6.

Subsequently is presented the assessment of the inclinometer’s response for each operation mode,

for a given parameters’ configuration. Cube plots and interaction plots are here employed to
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convey and enlighten the characteristics of the inclinometer’s behaviour. The ASSD metric is

employed to assess the inclinometer’s features. All the preprocessing of the inclinometer’s data

was performed as dictates the systematic methodology in Section 3.4.

B.3.1 Stantard operation mode DOE

The DOE for the standard operation mode is consisted of varying three configurable
parameters, namely interval, frequency and timesleep. The designs of the standard operation
mode are structured into steps, as conveys Figure 33, according to the respective conjunct of
trials presented in tables 15, 17 and 18. In order to easily convey and assess the response of this
operation mode’s DOE, cube plots and interactions plots (Subsection 2.3.3) were deployed to
evaluate each sensing axis.

The figures 34 and 35 present the full cube plot of all the three steps. Figure 34 conveys
the response of the ASSD metric for the sensing x-axis, whereas Figure 35 stands for the sensing
y-axis. In these cube plots, one may easily remark the structure of the steps into a volume of
parameters. The most outer delimited cube stands for the first step, whereas the inner cubes stand
for the second and third step, where the smallest and innermost cube represents the third step. A
colour scale was employed to easier identify the gradient of better response for the ASSD metric,
where, the closer to zero is the ASSD value, the more stable and smaller the noise component
of the response whose the parameters combination had led to. Each coloured point represents
the average of the three trials’ ASSD values, which refers to the performance of the three times
executed conjunct of trials belonging to the step in analysis. Since that in the cube plots, for each
inner volume of parameters, one set of parameters (i.e. one coloured point) is shared by two
cube plots, whenever this graphic particularity occurs, the response of the most outer volume of
parameters is displayed. The real value of the responses that were not exhibited can be found in
the tables 26 and 27.

The assessment of the standard operation mode’s DOE begins following the execution
order of the steps, which was sequential from step one until step three. As formerly mentioned, the
outermost delimited cube stands for the first step. Assessing the first step, the Figure 34 conveys
the information that, for the sensing x-axis, low levels of interval, frequency and timesleep lead
to a pretty unstable behaviour. However, the most meaningful parameter that indeed changed
the scale of the ASSD metric was timesleep. Still in Figure 34 assessing the outermost cube,
one may remark clearly that when timesleep is set to a high level, the ASSD responses are
drastically reduced. Similarly, in this first step of the sensing y-axis, Figure 35 conveys responses
pretty akin to the respective set of parameters of the sensing x-axis, where the lower the level
of the combination of parameters, the greater the value of the ASSD metric, and thereby worse
the measurement’s performance. The values of the ASSD metric at the same combination of
parameters for both the sensing axes in this first step are quite close. Nevertheless, one may
remark that the performances for the sensing y-axis were better for every trial of this first step.

An assessment of the variability of the conjunct of trials’ performance can be conveyed
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Figure 34 – Cube plot of the three steps of experiments from the standard operation mode,
representing the response of the ASSD metric for the sensing x-axis. The most outer
delimited cube stands for the first step, the middle inner cube for the second step,
and the smallest and innermost cube for the third step. One may remark that, the
closer to zero is the ASSD metric value, the more stable and smaller is the noise
component of the response whose a combination of parameters leads.
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by the means of the graphics from Figure 36 and Table 25, where the trials from each conjunct
of trials belonging to the first step, whose the combination of parameters is presented in Table 15
and its trials’ design depicted in Table 16, is plotted in Fig.36 left, for the sensing x-axis, and
Fig.36 right for the sensing y-axis. The information conveyed by the Table 25 is more clearly
remarked in Figure 36, where the reliability of the systematic methodology is attested, since
all the respective trials from each conjunct of trials present ASSD values in the same scale. In
fact, this scale can be quantified by the standard deviation of the respective trials from the three
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Figure 35 – Cube plot of the three steps of experiments from the standard operation mode,
representing the response of the ASSD metric for the sensing y-axis. The most outer
delimited cube stands for the first step, the middle inner cube for the second step,
and the smallest and innermost cube for the third step. One may remark that, the
closer to zero is the ASSD metric value, the more stable and smaller is the noise
component of the response whose a combination of parameters leads.

In
te
rv
al

5 00

850

1025

1200

Frequency

5

63
91

120

T
im

e
sle

e
p

0 .4

0 .85

1 .07

1 .3

1.937

0.116

0.191

0.048

0.605

0.054

0.078

0.034

0.037

0.037

0.038

0.038

0.031

0.031

0.033

0.034

0.035

0.034

0.035

0.032

0.034

0.033

0 .010

0 .024

0 .038

0 .052

0 .066

0 .080

0 .094

0 .180

0 .320

1 .000

A
S
S
D

Source: Author.

conjunct of trials, as presented in Table 25 by the abbreviation ’Std’, followed by the respective
sensing axis’ trial mean ASSD value. One may observe that, almost all the standard deviations
values, for both the sensing axis, are at least tenfold smaller than the respective mean value. There
are two facts observed in Figure 36 and Table 25 that are further established as a foundation on
which relies the machine learning approach for the standard operation mode. First, is attested that
the performance of the sensor for a given combination of parameters keeps the same behaviour.
Each different set of parameters leads to a unique systematic pattern of response, which repeats
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Figure 36 – Graphics presenting the results of the ASSD metric for all the three conjuncts of
trials performed in the first step. The number of trials, found in the abscissa axis
stands for the numeration of the trial’s design from Table 16. The graphic from
figure left regards the response for the sensing x-axis, whereas the graphic in the
right concerns for the sensing y-axis. The abbreviation ’CT’ refers to Conjunct of
Trials.
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whenever the respective set of parameters is settled. Second, the systematic methodology could
attest roughly the same ASSD value for each respective trial from the three conjunct of trials.
The relevance of these facts for the development of the machine learning conceptualization is
further approached in Section 3.6.

In order to evaluate the interactions of the parameters with themselves, for this first step
of the standard operation mode’s DOE, interactions plots (Subsection 2.3.3) were arranged for
each sensing axis, presented in Figure 37. The first horizontal row of graphics in Fig.37 conveys
the interactions among the parameters for the sensing x-axis’ response, whereas the row below
stands for the response of the sensing y-axis. For every interaction plot presented in this work,
the remnant parameter of one interaction plot is set to low level. For instance, the first interaction
plot of the first row of figure 37 presents the interaction between the parameters interval and
frequency, assessing the ASSD response when these factors vary their levels from low to high
level. For the scenario described, the remnant factor timesleep is set to low level, whereas the
factors interval and frequency vary.

The interactions plots have an intuitive propriety that allow one to assess the features
of the influence that the changing of one parameter’s value may affect the influence of the
other parameters in the final response under analyses. When the lines of one interactions plot,
presented in colours red and black in this work, are parallel, there is no interaction between the
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Table 25 – Table presenting the mean and standard deviation value, regarding the sensing axis x

and y, of the three conjunct of trials’ ASSD responses from the first step belonged to

the standard operation mode.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0515 0.0026 0.0341 0.0004

2 0.1020 0.0016 0.0778 0.0012

3 0.0647 0.0355 0.0540 0.0024

4 0.7014 0.0022 0.6050 0.0418

5 0.0733 0.0009 0.0481 0.0018

6 0.2142 0.0020 0.1909 0.0070

7 0.1653 0.0600 0.1157 0.0090

8 2.0692 0.0114 1.9373 0.0573

Figure 37 – Interactions plots of the first step of experiments from the standard operation mode.
The first row of group of three plots stands for the ASSD values of the sensing x-axis’
performance, whereas the second row stands for the sensing y-axis’ performance.
For each interaction plot, the remnant parameter is set to low level.

−1 1

0.5

1

1.5

2

Fr

A
SS

D

In vs Fr In -1 In +1

−1 1
0

0.5

1

1.5

2

In

Ts vs In Ts -1 Ts +1

−1 1
0

0.5

1

1.5

2

Ts

Fr vs Ts Fr -1 Fr +1

−1 1
0

0.5

1

1.5

2

Fr

A
SS

D

In vs Fr In -1 In +1

−1 1

0

0.5

1

1.5

2

In

Ts vs In Ts -1 Ts +1

−1 1

0

0.5

1

1.5

2

Ts

Fr vs Ts Fr -1 Fr +1

Source: Author.

parameters of the plot under analysis. When the degree of non-parallelism between the lines is
subtle, there is interaction between the parameters presented, but it is not considerable. However,
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when the degree of non-parallelism between the lines is quite notable, one may assert that there
is a considerable interaction between the parameters under analyses. Thus, evaluating the first
row of Figure 37, one may remark that, since the degree of non-parallelism of all those plots
of the first row is quite huge, it is said that there is a notable interaction among the parameters.
In fact, the interactions between interval and frequency, and frequency and timesleep, seems
to have roughly the same degree of non-parallelism. The interaction between timesleep and
interval, although notably attested, seems to be less considerable than the interaction for the other
two arrangements, since the degree of non-parallelism presented between the lines is smaller.
Evaluating the second row of the interaction plots from Figure 37, which stands for the sensing
y-axis’ ASSD response, one may visually conclude that the degree of non-parallelism of each
plot is almost the same as its respective plot in the first row, and thus, the same observations
remarked for the sensing x-axis are applicable for the sensing y-axis.

The conclusion that the knowledge of the existence of interaction among all the factors
of the standard mode leads, is that non-linearity rules the behaviour of the combination of
parameters effect, regarding the assessment of the ASSD metric. The increase or decrease of
one factor’s level will affect the effect that the level of other factors lead, and thus, all the
factors in this operation mode contribute with equally high influence on the performance of the
final response under analyses, since the smallest variation of any parameter’s value unleashes
disturbances in the contribution of the other parameters. This scenario conveys that, to achieve
a sweet spot of combination of parameters, in order to reach better performance in the ASSD
metric, is not a trivial endeavour. To accomplish such an aim, one would need to carry out more
experiments with combinations of parameters that follow the gradient of better response.

In order to comply with the aim of to find a sweet spot of combinations of parameters
that lead to a performance that reaches the smaller ASSD values, the standard operation mode’s
first step of experiments is explored, so that combination of parameters inner the boundaries of
the first step’s volume of parameters are architected to be experimented, following the gradient of
better performance and complying with the DOE methodology. Thereby, the second step of the
standard operation mode’s DOE was planned to explore the volume of parameters for the region
of high level of timesleep, high level of interval and high level of frequency, with respect to the
first step, since these configurations have led to performances with the smaller ASSD values.
The choice of the second step parameters’ values was so defined that the new step explores the
half of values of the first step’s levels of parameters. For instance, in the first step, the factor
frequency has low level of 5 and high level of 120. Since the best performance achieved was
according to performances in high level of frequency, the new boundaries of this factor in the
second step is consisted of exploring the half of values closer to 120. Thus, since the value 63
is roughly in the middle of the closed interval [5, 120], the new values of this parameter for the
second step will stand as, low level equal to 63, and high level equal to 120. This reasoning is
applied for the choice of values for the other parameters, and consists the strategy of following
the gradient of better performance.
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The second step of the standard operation mode’s DOE is depicted as the first inner
cube in Figure 34, for the sensing x-axis, and in Figure 35 for the sensing y-axis. An immediately
general assessment of this step through the cube plots conveys the information that this volume
of parameters leads to much more stable performances, for both the sensing axes. For the sensing
x-axis, the ASSD values range from 0.043 to 0.061, whereas the range 0.031 to 0.038 stands
for the sensing y-axis. In comparison with the first step, the scale of the ASSD values dropped
drastically, and thus, better were the performances of the second step. An interesting observation
is remarked regarding a comparison between the two sensing axis. In the first step, the sensing
y-axis achieved ASSD values smaller than the sensing x-axis, for the same combination of
parameters. This pattern remains in the responses of the second step. Furthermore, in the second
step, the range of the ASSD values is smaller for the sensing y-axis, than for the sensing x-axis.
These considerations seem to attest that the sensing y-axis achieves performances more stable
and accurate than the sensing x-axis, for any set of parameters. Another interesting observation
for the results of this step is that the gradient of better performance seems to point to low level of
frequency and high level of interval. Differently from the first step, the varying of the parameter
timesleep seems to lead in the second step to insignificant changes of performance.
Table 26 – Table presenting the mean and standard deviation value, regarding the sensing axis x

and y, of the three conjunct of trials’ ASSD responses from the second step belonged

to the standard operation mode.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0518 0.0046 0.0322 0.0022

2 0.0504 0.0009 0.0329 0.0027

3 0.0425 0.0032 0.0314 0.0019

4 0.0430 0.0007 0.0308 0.0019

5 0.0582 0.0061 0.0381 0.0034

6 0.0605 0.0001 0.0380 0.0025

7 0.0500 0.0010 0.0367 0.0023

8 0.0481 0.0014 0.0365 0.0039

Concerning the variability of the conjunct of trials executions’ responses from the
second step, the Figure 38 and Table 26 present the performance of each trial according to its
respective conjunct of trials. Fig.38 left, presents the responses of the sensing x-axis, whereas
Fig.38 regards the sensing y-axis. The trial’s sequence number stands for the trial’s design from
Table 16. Table 26 conveys the mean and standard deviation values of the respective trials from
each conjunct of trials belonging to the second step. Once more, one may remark that the scale
of the respective trials’ values remained the same, for all the trials. In fact, the variability of the
trials, conveyed through the standard deviation value, is quite similar to the variability from the
first step. However, since the responses from the sensing y-axis achieved values quite akin among
themselves, the difference between two different trial numbers’ responses, for this sensing axis,
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Figure 38 – Graphics presenting the results of the ASSD metric for all the three conjuncts of
trials performed in the second step. The number of trials, found in the abscissa axis,
stands for the numeration of the trial’s design from Table 16. The graphic from figure
left, regards the response for the sensing x-axis, whereas the graphic in the right
concerns the sensing y-axis. The abbreviation ’CT’ refers to Conjunct of Trials.
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edges the uncertainty of an individual trial number’s response, assessed here through the standard
deviation, and thus, the uniqueness of each trial number’s performance in the sensing y-axis
is compromised. This phenomenon is not observed in the responses concerning the sensing
x-axis, though the uncertainty values from both the sensing axes are similar, since the difference
between two different trial numbers’ responses in the sensing x-axis is not close to the trials’
respective uncertainty.

The Figure 39 presents the interactions plots for the second step. The first row of three
plot’s set stands for the sensing x-axis’ responses, whereas the second row for the sensing
y-axis’ responses. Since the results concerning the sensing y-axis’ responses point to unreliability
regarding the performance’s uniqueness of this sensing axis at the second step, the following
analyses concerning the interactions of the sensing y-axis are assumed as a suggestion of the
device’s behaviour.

Evaluating the interactions plots from the first row of plots’ set, one may remark that
the degree of non-parallelism between all the pairs of lines is quite subtle, differently from
the interactions plots of the first step, in Figure 37, where the degree of non-parallelism is
pretty notable. The interactions responses of the sensing y-axis, in the second row of Fig.39,
are found considerable akin to the interactions of the sensing x-axis, save for the fact that the
degree of non-parallelism of the responses belonging to the sensing y-axis seems to be almost
insignificant. The interactions plots of the second step convey the knowledge that the behaviour
of the parameters’ interactions changed from the first step to the second step, not just regarding
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Figure 39 – Interactions plots of the second step of experiments from the standard operation
mode. The first row of group of three plots stands for the ASSD values of the
sensing x-axis’ performance, whereas the second row stands for the sensing y-axis’
performance. For each interaction plot, the remnant parameter is set to low level.
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the degree of non-parallelism, but also the direction of the gradient of better performance seems
to had changed for the interaction between interval and frequency. For the first step, assessing
the interaction between interval and frequency, for both the sensing axes, the smaller ASSD
values are found when the factor frequency is set to high level. This pattern changed in the
second step, where smaller ASSD values are found, for the interaction between interval and
frequency, when the factor frequency is set to low level. These observations convey the fact that
the interactions among the parameters, for a volume of parameters delimited by the frontiers of
the first step (Table 15), are slightly non-linear. The behaviour of the parameters’ interactions
of the inclinometer change according to the inner volume of parameters analysed. Thereby, the
following of better performance’s gradient is inaccurate to find a sweet spot, due to the fact that
the approach deployed to follow this gradient is based in to assess the half of parameters that
had led to the better responses. But since the interactions are non-linear, this gradient could have
changed its direction at any point before the half of parameters’ volume that is being set to be
followed. The DOE approach can not provide much more information to find a sweet spot in a
process that has non-linear parameters’ interactions. It is a limitation of the methodology.

Although the following of better performance’s gradient is no more a reliable approach
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to find a sweet spot of combination of parameters that leads to better performances, since the
interactions among the inclinometer’s parameters were attested no linear through the delimited
volume of parameters of the second step, yet a third step of standard operation mode’s DOE was
performed, in order to remark whether the conclusions so far achieved would be observed again.

The third step of DOE belonging to the standard operation mode is depicted as the
smallest cube plot in Figure 34, for the sensing x-axis, and Fig.35 for the sensing y-axis. The
plots convey the knowledge that the responses of the third step were pretty akin to the value of
the ASSD metric from the second step, though the values for the third step seem to be slightly
smaller. The ASSD values concerning the entire volume of parameters from the third step range
from 0.043 to 0.054, for the sensing x-axis, and from 0.031 to 0.035 for the sensing y-axis.
The short range of values for both the sensing axes suggests the hypothesis that the parameters’
volume of the third step either reaches a spot of stagnating performance, or the levels of the
factors are not spaced enough to unleash a notorious change in the measurement’s performance.
There is also the possibility that both the hypothesis are right.
Table 27 – Table presenting the mean and standard deviation value, regarding the sensing axis x

and y, of the three conjunct of trials’ ASSD responses from the third step belonged to

the standard operation mode.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0501 0.0016 0.0326 0.0021

2 0.0498 0.0012 0.0342 0.0010

3 0.0448 0.0013 0.0324 0.0021

4 0.0455 0.0011 0.0305 0.0020

5 0.0532 0.0012 0.0345 0.0016

6 0.0535 0.0012 0.0340 0.0007

7 0.0473 0.0009 0.0352 0.0003

8 0.0485 0.0015 0.0337 0.0009

The Figure 40 and Table 27 convey the variability’s performance of the conjunct of
trials of the third step from the standard operation mode’s DOE. Fig.40 left presents the response
for the sensing x-axis, whereas Fig.40 right the response of the sensing y-axis. The standard
deviation of the trials’ values, regarding conjunct of trials among themselves, presented in Table
27, brings again the observation that, since the ASSD values from the third step are within a short
range, for both the sensing axes, the uniqueness of each parameters combination’s performance
is compromised, because the range among the responses edges the uncertainty of the trials’
responses, assessed here through the standard deviation.

To conclude the third step’s evaluation, Figure 41 presents its interactions plot. The first
row of plot’s group stands for the results of the sensing x-axis, whereas the second row stands
for the sensing y-axis. An immediate observation must be remarked before the analysis of the
graphics. Since the uniqueness of performance is compromised for some set of parameters, for
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Figure 40 – Graphics presenting the results of the ASSD metric for all the three conjuncts of
trials performed in the third step. The number of trials, found in the abscissa axis
stands for the numeration of the trial’s design from Table 16. The graphic from figure
left, regards the response for the sensing x-axis, whereas the graphic in the right
concerns the sensing y-axis. The abbreviation ’CT’ refers to Conjunct of Trials.
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both the sensing axes, no conclusions can be asserted from these interactions plots. However, is
interesting to observe that, the interactions of the first row of plots suggests that the interactions
among the parameters appear to converge to the state of no interactions, since the interaction lines
assume a parallelism profile. Once that the responses of the sensing y-axis had smaller range
of values than the sensing x-axis, its interactions plots appear to convey that there is interaction
among the parameters, save for the interaction between timesleep and interval, which remained
with the status of no interaction. Nevertheless, these analyses are not reliable. It will be assumed
that the interactions plots of Figure 41 just suggests that the interactions among the parameters
from the third step converge to the status of no interaction.

The three steps of the standard operation mode’s DOE provide a characterisation of
the operation mode, assessing its gradient of better performance for each conjunct of trials
parameters’ list. By the means of the cube plots here provided, one may have an intuition of
which combination of parameters is better for a given application. The interactions plots of the
three steps suggest the knowledge that the parameters interaction’s behaviour changes for each
volume of parameters. This fact leads to the observation that, finding a sweet spot of parameters’
settings that lead to an optimum performance, assessed through the ASSD metric, is not a trivial
endeavour. The variability among the respective trials numbers from each conjunct of trials’
execution is proved small for the standard operation mode, but not regardless. Indeed, it became
evinced that the degree of variability of a trial’s ASSD number depends on the trial’s parameters
settings, since that high ASSD values achieved high standard deviation values with respect to
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Figure 41 – Interactions plots of the third step of experiments from the standard operation
mode. The first row of the group of three plots stands for the ASSD values of the
sensing x-axis’ performance, whereas the second row stands for the sensing y-axis’
performance. For each interaction plot, the remnant parameter is set to low level.
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the same trials numbers belonging to other conjunct of trials’ execution, and low ASSD values
achieved low standard deviation values. The ASSD metric and the systematic methodology could
manage to satisfactory remark the patterns of each trial, so that there is no need to carry out
several runs of the same trial in order to remark an average of the ASSD values to state the
pattern of a given combination of parameters, once that, although with variability, the ASSD
values of each trial number kept the same pattern. The conclusions here presented are further
employed to formulate the design of the machine learning approach for the standard operation
mode, which aims to characterise an entire delimited volume of parameters.

B.3.2 Repeated operation mode DOE

The experiments concerning the repeated operation mode were structured as depicted in
Figure 33. As in the standard operation mode’s DOE, the experiments for the repeated operation
mode also consist of steps, where the first step regards an outer volume of parameters, depicted in
Table 19, the second step stands for combinations of parameters inner the volume of the first step,
approached in Table 21, and the third step provides experiments with settings of parameters inner
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the second step’s volume, as conveys Table 22. The order of step’s execution was sequential,
from step one to step three.
Figure 42 – Square plot of the three steps of experiments from the repeated operation mode,

representing the response of the ASSD metric for the sensing x-axis. The most outer
delimited square stands for the first step, the middle inner square for the second step,
and the smallest and innermost square for the third step. One may remark that, the
closer to zero is the ASSD metric value, the more stable and smaller is the noise
component of the response whose a parameters combination leads.
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Since the standard mode’s DOE has three controllable variables, where each variable
varies between two levels, it is said that its design is composed of a 32 architecture. The repeated
operation mode’s DOE is driven by two controllable variables, at two levels. Thus, this mode
of operation is designed as a 22 architecture. Considering that it is employed the strategy of
full factorial design, a 22 structure can be conveyed through a square plot. In order to easier
assess the repeated operation mode’s performance, the figures 42 and 43 present the square
plots of its experiments. Figure 42 portrays the responses of the ASSD metric for the sensing
x-axis, whereas Figure 43 stands for the sensing y-axis. Each coloured point in the square plots
represents the average of the three trials’ ASSD values, which refer for the performance of the
three times executed conjunct of trials belonging to the step in analyses. As occurs for the cube
plots in the analysis of the standard operation mode, since that in the square plots, for each inner
volume of parameters, one set of parameters is shared by two square plots, whenever this graphic
particularity occurs, the response of the most outer volume of parameters is displayed. The real
value of the responses that were not exhibited can be found in the tables 29 and 30.

Evaluating the most outer square plot regarding the sensing x-axis, which stands for the
first step, an immediate contrast with the standard operation mode first step’s DOE is remarked.
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Figure 43 – Square plot of the three steps of experiments from the repeated operation mode,
representing the response of the ASSD metric for the sensing y-axis. The most outer
delimited square stands for the first step, the middle inner square for the second step,
and the smallest and innermost square for the third step. One may remark that, the
closer to zero is the ASSD metric value, the more stable and smaller is the noisy
component of the response whose a combination of parameters leads.
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The ASSD values for the repeated operation mode’s first step are drastically smaller than the
same step for the standard mode. In fact, the scale of the values from the repeated first step
competes with the performances regarding the standard second step. In Figure 42 one may also
observe that the parameter interval seems to have a considerable influence on the performance’s
behaviour. Better performances for the sensing x-axis of this first step are found when the factor
interval is set to high level. The parameter frequency seems to lead to better performances when
is set to low level. However, an interesting pondering can be remarked for the first step of the
sensing y-axis’ responses (Fig.43), when compared with the same responses of the sensing
x-axis. For the sensing y-axis, the parameter interval also has the majority influence on the
performance’s driving, leading to better responses when set to high level. However, for the
parameter frequency, differently from the responses of the sensing x-axis, better performances
were achieved when the factor frequency was set to high level. These results suggest that the
factor frequency has an inverse-proportional relationship concerning each sensing axis. This
condition leads to a laborious effort when one is interested in to find a sweet spot of combination
of parameters that leads to the best performances, since one would need to set a trade-off between
the performance of both the sensing axis.

The Figure 44 and Table 28 present the performance of the variability among the
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Table 28 – Table presenting the mean and standard deviation value, regarding the sensing axis x

and y, of the three conjunct of trials’ ASSD responses from the first step belonged to

the repeated operation mode.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0520 0.0006 0.0301 0.0006

2 0.0407 0.0016 0.0366 0.0028

3 0.0811 0.0065 0.0496 0.0010

4 0.0704 0.0016 0.0709 0.0022

Figure 44 – Graphics presenting the results of the ASSD metric for all the three conjuncts of
trials performed in the first step. The number of trials, found in the abscissa axis,
stands for the numeration of the trial’s design from Table 20. The graphic from
Figure left, regards the response for the sensing x-axis, whereas the graphic in the
right concerns the sensing y-axis. The abbreviation ’CT’ refers to Conjunct of Trials.
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respective trials from the three conjunct of trials’ execution that consists the first step. Table
28 informs the mean value of a trial’s number, regarding the design from Table 20, and its
associated standard deviation. Figure 44 conveys visually the performance of each conjunct
of trials. Fig.44 left present the response for the sensing x-axis, whereas fig.44 right stands
for the sensing y-axis. One may observe from the graphics that all the conjunct of trials had
performances pretty akin among themselves. In fact, Table 28 conveys numerically, through
the standard deviation, the degree of similarity regarding each number of trial. Since all the
standard deviations values are not found high, one may conclude that the systematic methodology
could remark the performance’s patterns whose each combination of parameters had led with
reasonable low variability.
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Figure 45 – Interactions plots of the first step of experiments from the repeated operation mode.
The Fig. left stands for the ASSD values of the sensing x-axis’ performance, whereas
the Fig. right stands for the sensing y-axis’ performance.
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The Figure 45 presents the interactions plots from the first step of the repeated operation
mode’s DOE. Fig.45 left depicts the interaction between the factors interval and frequency, for
the sensing x-axis, whereas Fig.45 right stands for the sensing y-axis. For both the sensing axis,
the interaction between interval and frequency seems to be stated as non-interaction, since the
interaction lines may be considered parallel, despite the subtle non-parallelism found in the lines
belonging to the sensing y-axis’ response. Figure 45 also provides a visualization of the gradient
of better performance for the repeated mode’s first step. One may note that the ASSD’s smaller
values are found when the interaction lines point to low level of frequency, for the sensing x-axis,
and high level of frequency for the sensing y-axis. Since no interaction is considered for the
repeated operation mode’s factors, it suggests that the endeavour to find a sweet spot of better
settings of parameters that lead to better performances is contemplated just for the finding of a
trade-off of settings, so that the frequency’s inverse-proportional relationship between the two
sensing axis is compensated.

In order to follow the DOE methodology to find a sweet spot of combinations of
parameters that leads to better possible performances, the experiments with the repeated operation
mode were explored into steps, following the same standard described for the standard operation
mode. The choice of parameters that consists the second step’s DOE, presented in Table 21, was
so defined that it complies with the following of better performance’s gradient of the parameter
interval. Since the same levels of the parameter frequency led to different behaviours for the two
sensing axis, the frequency’s gradient of better performance is not the same for the two sensing
axis. Thus, it was chosen, without a particular reason, to follow the frequency’s gradient of better
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performance of the sensing y-axis. Therefore, the volume of parameters that consists the second
step is composed by the exploring of the half of values closer to the high level of interval and
frequency, regarding the first step.

The second step of repeated operation mode’s experiments can be visually assessed
through the first inner square from figure 42 and 43. One may remark that, comparing the second
step with the first step, for both the sensing axis, the performance’s patterns seem to have been
preserved. The sensing x-axis’ responses had better performances when interval is set to high
level, and frequency to low level. For the sensing y-axis, the better responses are found also
when interval is set to high level, but, differently from the sensing x-axis, and keeping the
inverse-proportional frequency’s relationship between the sensing axes, better performances
were achieved when the factor frequency was set to high level. All the performances belonging
to the second step accomplished smaller ASSD values than the experiments belonging to the
first step. One may also note that, the smaller ASSD values are found, for the first and second
step, in the responses from the sensor y-axis. This pattern was also remarked for the experiments
regarding the standard operation mode. Such facts comply with the suggestion that the sensing
x-axis is constrained to achieve worse responses than the sensing y-axis.
Table 29 – Table presenting the mean and standard deviation value, regarding the sensing axis x

and y, of the three conjunct of trials’ ASSD responses from the second step belonged

to the repeated operation mode.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0513 0.0020 0.0324 0.0025

2 0.0425 0.0019 0.0316 0.0057

3 0.0603 0.0024 0.0352 0.0025

4 0.0505 0.0016 0.0385 0.0023

The Figure 46 and Table 29 convey the variability of response regarding each individual
trial number with its respective trials from the other conjuncts of trials belonging to the second
step of the repeated operation mode. The trials’ number and sequence stand for the DOE design
depicted in Table 20. In Figure 46 left, which regards the sensing x-axis, one may observe that
each trial number was distinctly remarked by the ASSD metric and the systematic methodology,
with a reasonable variability. Differently for the responses from the sensing y-axis, Fig.46 right,
where the response of each trial number is pretty akin to the response of other trial numbers.
In fact, the range among the different trials number’s responses edges the uncertainty of an
individual trial number’s response, assessed here through the standard deviation, and hence,
the uniqueness of each trial number’s performance is compromised for the sensing y-axis. This
phenomenon is also observed in the second and third step of the standard operation mode, and
leads to the conclusion that the repeated operation mode’s second step volume of parameters
achieves, for the sensing y-axis, either a spot of stagnating performance, or the levels of the
factors are not spaced enough to provoke a notorious change in the measurement’s performance.
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Figure 46 – Graphics presenting the results of the ASSD metric for all the three conjuncts of
trials performed in the second step. The number of trials, found in the abscissa axis,
stands for the numeration of the trial’s design from Table 20. The graphic from
Figure left, regards the response for the sensing x-axis, whereas the graphic in the
right concerns the sensing y-axis. The abbreviation ’CT’ refers to Conjunct of Trials.
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And as previously noted, there is also the possibility that both the hypothesis are right.
Figure 47 – Interactions plots of the second step of experiments from the repeated operation

mode. The Fig. left stands for the ASSD values of the sensing x-axis’ performance,
whereas the Fig. right stands for the sensing y-axis’ performance.
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The Figure 47 portrays the interaction plot regarding the repeated operation mode’s
second step. Since the results concerning the variability of the responses from the sensing y-axis
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conveyed the knowledge that the performance’s uniqueness of this sensing axis is compromised
for the second step, the interactions plots’ analyses remarked for the sensing y-axis are not reliable.
However, the analyses concerning the sensing y-axis are further presented as a suggestion of the
device’s behaviour of the volume of parameters from the second step.

Comparing the interactions from the second step with those from the first step, one may
remark that the same pattern is maintained, save for the interactions of the sensing y-axis, which
in the first step were considered with the state of non-interaction, and here, in the second step,
can not be as well stated, since the degree of non-parallelism between the interaction lines has
increased considerably. Thus, it is said that the factors of the sensing y-axis have interactions.
The change of interactions’ behaviour from one step to another is also observed in the first
and second step from the standard mode. The occurrence of this phenomenon points out to the
conclusion that the interactions of the inclinometer parameters have a non-linear relationship, so
that the following of the better gradient of performance aiming the finding of a sweet spot of
parameters is impaired.

In order to remark whether the patterns so far observed would remain for other volume
of parameters, the third step of the repeated operation mode’s DOE was so designed that the
better performance’s gradient is followed. The third step volume of parameters was defined
through setting new boundaries of parameters with the half of values closer to the parameters
that had led to better performances of the sensing x-axis at the second step. Thereby, the new
boundaries follow the high level of interval and low level of frequency from the second step. The
third step of the repeated operation mode’s DOE is depicted as the innermost square in Figure 42,
for the sensing x-axis’ responses, and Figure 43 for the sensing y-axis’ responses. Comparing
the ASSD values of the third step with the second step, one may remark an improvement in the
performances belonging to the sensing x-axis. For the sensing y-axis, the responses achieved
roughly the exact same values as the previous step, but slightly improved. This observation
complies with the pattern of all the steps so far assessed, regarding the standard and repeated
operation mode, where the sensing y-axis achieved notably better responses than the sensing
x-axis. Better performances of the sensing x-axis are found when interval is settled to high level,
and frequency to low level. Such exact pattern had been observed in the first and second step for
the responses of this sensing axis. Since the ASSD values belonging to the sensing y-axis are
approximately the same in this step, it is not possible to reliably identify the gradient of better
performance for this step.

The Figure 48 and Table 30 convey the performance’s variability of each trial number
regarding the three conjunct of trials’ executions belonging to the experiments of the third step.
Once again, the systematic methodology could mark the behaviour’s patterns of the sensing
x-axis’ responses, Fig.48 left, with reasonable accuracy. Differently for the sensing y-axis’
responses, Fig.48 right, where the systematic methodology could not assign a unique pattern
for each trial number. The volume of parameters chosen for the third step seems to have led
the sensing y-axis’ performance to a stagnated spot of achievement. One may observe that the
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Table 30 – Table presenting the mean and standard deviation value, regarding the sensing axis x

and y, of the three conjunct of trials’ ASSD responses from the third step belonged to

the repeated operation mode.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0480 0.0008 0.0325 0.0026

2 0.0438 0.0023 0.0308 0.0029

3 0.0503 0.0025 0.0326 0.0039

4 0.0459 0.0016 0.0337 0.0024

Figure 48 – Graphics presenting the results of the ASSD metric for all the three conjuncts of
trials performed in the third step. The number of trials, found in the abscissa axis,
stands for the numeration of the trial’s design from Table 20. The graphic from
Figure left, regards the response of the sensing x-axis, whereas the graphic in the
right concerns the sensing y-axis. The abbreviation ’CT’ refers to Conjunct of Trials.
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sensing y-axis’ mean ASSD values, Table 30, of all the four trials are found with roughly the
same value, with an uncertainty of measurement assessed through the standard deviation, not
neglectable. Thereby, the performance’s uniqueness of the sensing y-axis is compromised in the
third step, since the range among the different trials number’s responses edges the uncertainty of
a individual trial number’s response. Such phenomenon is not observed for the sensing x-axis’
responses in this step, which reinforce the hypothesis that the third’s step settings lead to a spot
of stagnating performance of the sensing y-axis, and undermines the risen hypothesis that the
levels of the factors are not spaced enough to provoke a notorious change in the measurement’s
performance.

The Figure 49 presents the interactions plot of the repeated operation mode’s third step



150

Figure 49 – Interactions plots of the third step of experiments from the repeated operation mode.
The Fig. left stands for the ASSD values of the sensing x-axis’ performance, whereas
the Fig. right stands for the sensing y-axis’ performance.
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DOE. Fig.49 left stands for the interactions regarding the sensing x-axis’ responses, whereas
Fig.49 right for the sensing y-axis’ responses. Once again, the interactions plot concerning the
sensing y-axis is not reliable, since that the variability analysis conveyed the knowledge that the
performance’s uniqueness of this sensing axis is compromised for this step. Nevertheless, the
following assessment concerning the sensing y-axis is presented as a suggestion of the device’s
behaviour for the volume of parameters from the third step.

The interaction between interval and frequency of the sensing x-axis, Fig.49 left,
maintained its pattern of non-interactions, observed in the first and second step, once that
the interaction lines remained parallel. In another hand, the responses for the sensing y-axis
changed their pattern once again, with reference to the first and second step. The sensing y-axis
interactions, Fig.49 right, seem to have been reinforced, since the degree of non-parallelism
between the interaction lines increased.

The repeated operation mode’s three steps DOE so far presented convey a
characterisation of the inclinometer’s performance for the operation mode under analyses. The
systematic methodology could remark the device’s behaviour with reasonable low variability,
so that one is enabled to have an intuition of which combination of parameters is better for
an application. The square plots portray a map of the sensor’s performance according to the
parameters set. The interaction plots convey the knowledge that the device maintains the same
parameter’s interaction behaviour during the three steps for the sensing x-axis. Since the sensing
y-axis responses seemed to have achieved a stagnating spot of performance in the second and
third step, where the uncertainties of the ASSD measurements edge the difference between
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two different trial numbers’ responses, no conclusions can be reliably taken concerning the
sensing y-axis’ interactions in the second and third step. The variability among the respective
trials numbers from each conjunct of trials is not high for the repeated operation mode. Since
the systematic methodology could manage to remark the patterns of each trial number for the
repeated operation mode, there is no need to perform several runs of the same trial in order
to remark an average of the ASSD values to state the performance’s pattern for a given set of
parameters. The conclusions here presented are further employed to substantiate the design of
the machine learning approach for the repeated operation mode, which aims to characterise an
entire delimited volume of parameters.

B.3.3 Continuous operation mode DOE

The continuous operation mode’s DOE consists of just varying the parameter frequency.
Since just one factor is varying, no full factorial design is applied, and thus, no cube/square
plots or interactions plots are possible to be employed. Hence, the continuous operation mode is
assessed just by the means of sequential graphics portraying the performance of each trial number
regarding its respective conjunct of trials, Figure 50, and by the contemplation of the mean ASSD
values from the respective trial numbers belonging to the three conjunct of trials, along with
their standard deviation, presented in the Table 31. Due to the simplicity of the continuous’ DOE
model, there is no need to perform an exploration of the device’s behaviour for inner parameters
volume, once that the first and unique step of its evaluation can fully characterise the device’s
performance for this operation mode, because the step resolution configurable by the parameter
frequency is 1 Hz, and the maximum stable value that this parameter can reach in the continuous
mode is 4 Hz (Subsection 3.1.1). Thus, the delimited volume of parameters from Table 23 fully
characterises the performance of this mode of operation.
Table 31 – Table presenting the mean and standard deviation value, regarding the sensing axis x

and y, of the three conjunct of trials’ ASSD responses from the first , and unique, step

of experiments belonged to the continuous operation mode.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0833 0.0017 0.0979 0.0090

2 0.0863 0.0016 0.0972 0.0026

3 0.0858 0.0022 0.0928 0.0029

4 0.0825 0.0037 0.0923 0.0063

The Figure 50 conveys the variability and scale of the trial numbers’ ASSD values.
Through the figure, one may remark that the variability among the respective trial numbers is
quite similar to the variability observed so far in the other operation modes’ DOE, however the
standard deviations of the respective trial numbers, presented in Table 31 with the abbreviation
’Std’, appear to be slightly higher than for the performance of the other modes of operation. The
scale of the ASSD values, for both the sensing axis, is considerably high in comparison with
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Figure 50 – Graphics presenting the results of the ASSD metric for all the three conjuncts of
trials performed in the firs, and unique, step. The number of trials, found in the
abscissa axis, stands for the numeration of the trial’s design from Table 24. The
graphic from figure left, regards the response of the sensing x-axis, whereas the
graphic in the right concerns the sensing y-axis’. The abbreviation ’CT’ refers to
Conjunct of Trials.
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the responses of the repeated operation mode. Concerning the responses of each sensing axis,
differently from the other modes of operation, the sensing x-axis presents better performances,
for every trial number, than the sensing y-axis. Also, the Table 31 conveys the knowledge that
all the trial numbers achieved roughly the same value, for the sensing x-axis, and quite similar
values, for the sensing y-axis. The observations regarding the continuous operation mode lead
to the conclusion that, regardless of the level of the factor frequency, the continuous operation
mode presents approximately the same performance.

B.4 COMPARISON BETWEEN TWO INCLINOMETER DEVICES

In Subsection B.1 was briefly commented the fact that the strategy of replication
could not have been applied in the inclinometer’s DOE accomplished, due to the fact that two
inclinometer devices had presented different performances for the same volume of parameters. In
this section, the response of the two devices, which the author had in the time of the experiments,
are evaluated and compared for the same combination of parameters.

It is defined as Device A, the inclinometer device that was employed in this work. The
DOE analysis and the machine learning technique were deployed to the responses concerning the
Device A. It is defined as Device B, another inclinometer device, that was just used in this work
in order to compare the responses with the device A. In Figure 51 and Table 32, is presented a



153

Figure 51 – Figure presenting the performances of two inclinometer devices. The experiments
were carried out through the exact same systematic performance from Section 3.4,
so that both are analysed under the same conditions. Both the devices perform
measurements according to the volume of parameters regarded by the Table 15,
which concerns the first step of the standard operation mode’s DOE. The device A
refers to the device that was employed in this work. All the experiments of the DOE
and machine learning approach were carried out by the device A. The device B was
just employed in this work in order to compare the responses with the device A.
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comparison of the responses from both the devices, for the combination of parameters regarding
the first step of the standard operation mode (Table 15). Figure 51 left, presents responses
concerning the sensing x-axis, whereas Figure 51 right stands for the sensing y-axis. The data
regarding the Device A is the same depicted and assessed in the analyses of the standard operation
mode in Subsubsection B.3.1. The Device’s B responses were acquired through the exact same
systematic methodology (Section 3.4), applying the principles of randomization and blocking
(Subsection B.1), so that both the device’s responses were taken under the same conditions,
procedure and data processing. The ASSD trial values presented in figure 51 and Table 32 are the
average of the ASSD response from each respective trial number belonged to the three executions
of conjunct of trials performed in the first step, exactly as also conveyed for the responses of
Subsection B.3.

Assessing Figure 51, one may clearly remark that the devices A and B achieve different
responses for the same trial number, in both the sensing axis. In fact, the responses for the
sensing x-axis, Figure 51 left, appears to follow the same gradient of better performance for
both the devices, but the scale of the responses are mostly different. In contrast, the responses
for the sensing y-axis, Figure 51 right, besides to achieve a total different scale for both the
devices, appear to be driven by a different gradient of better performance in each device. This
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Table 32 – Table presenting the mean and standard deviation value, with respect to the Device B,

regarding the sensing axis x and y, of the three conjunct of trials’ ASSD responses

from the first step belonging to the standard operation mode, portrayed by the tables

15 and 16.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0503 0.0022 0.1043 0.0102

2 0.0677 0.0035 0.2608 0.0035

3 0.0283 0.0021 0.4041 0.1757

4 0.3682 0.0517 1.9824 0.0902

6 0.0793 0.0050 0.1937 0.0072

5 0.1354 0.0042 0.6015 0.0030

7 0.0517 0.0196 1.4077 0.0546

8 1.1927 0.0882 6.1877 0.1071

Figure 52 – Figure presenting the performances of two inclinometer devices. The experiments
were carried out through the exact same systematic performance from Section 3.4,
so that both are analysed under the same conditions. Both the devices perform
measurements according to the volume of parameters regarded by the Table 17,
which concerns the second step of the standard operation mode’s DOE. The device
A refers to the device that was employed in this work. All the experiments of the
DOE and machine learning approach were carried out by the device A. The device B
was just employed in this work in order to compare the responses with the device A.
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last statement can be remarked when analysing the trials number 6 and 7 of the sensing y-axis,
where the ASSD value increases from trial 6 to 7, for the device B, and decrease for the device
A. The Table 32 exposes the values of the mean value of ASSD results regarding the three
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conjunct of trial’s performances for the Device B. The results of this table can be compared with
the results, for the same conditions, of the Device A, in Table 25. The Device’s B variability,
assessed through the standard deviation (abbreviation Std in Table 32) of the respective trials
from each conjunct of trials, when compared with the Device’s A variability (also in Table 25),
presents itself roughly similar for the sensing x-axis, but totally different for the sensing y-axis.
An interesting observation concerns the quality of performance for the two devices in comparison.
In Figure 51, one may remark that the Device B achieves smaller ASSD values than the Device
A, roughly for all the trials numbers regarding the sensing x-axis. The opposite occurs for the
sensing y-axis, where the Device A achieves smaller ASSD values than the Device B.

These results comparing the performance of the standard operation mode’s first step
for two devices, convey the knowledge that the Device B has a totally distinct behaviour in
comparison with the device A, for most of the trials numbers of the volume of parameters from
Table 15, designed in Table 16. These results also convey that, if the concept of replication were
deployed using two sensors devices in the DOE architecture, the average response of the ASSD
values given by both the devices would not be a reliable notion for neither the devices.

In order to remark whether the devices’ different behaviours would remain for another
volume of parameters, another step of experiments was carried out with the Device B, namely
the second step of the standard operation mode’s DOE. The Figure 52 and Table 33 present the
responses of both the Devices A and B, for the set of parameters specified. One may remark that,
the responses of the Device A are the very same found in Subsubsection B.3.1 for the second
step.
Table 33 – Table presenting the mean and standard deviation value, with respect to the Device B,

regarding the sensing axis x and y, of the three conjunct of trials’ ASSD responses

from the second step belonging to the standard operation mode, portrayed by the

tables 17 and 16.

Trial number ASSD mean x-axis Std x-axis ASSD mean y-axis Std y-axis
1 0.0526 0.0016 0.0975 0.0101

2 0.0527 0.0032 0.0910 0.0029

3 0.0421 0.0007 0.0800 0.0069

4 0.0422 0.0003 0.0652 0.0034

5 0.0614 0.0019 0.1208 0.0118

6 0.0641 0.0021 0.1025 0.0046

7 0.0457 0.0020 0.1206 0.0034

8 0.0491 0.0018 0.0790 0.0043

In Figure 52 left, which stands for the responses from the sensing x-axis, one may note
that, differently from the responses of the previous step, both the devices achieved akin ASSD
values. Again in contrast, the sensing y-axis’ responses, Figure 52 right, were found drastically
different for each device. The device B achieved ASSD values much higher than the Device A.
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One may note that, in the previous step, the Device B had achieved better performances than
the Device A. This relationship appears to had been changed through the outer to inner volume
of parameters. The Table 33 presents the variability, assessed through the standard deviation,
of the respective trials numbers from the three conjunct of trials that were carried out in this
second step of the Device B. One may note that, the variability of the trials numbers concerned
the Device B, when compared to the respective from the Device A in Table 26, is quite similar,
though slightly greater.

The Device’s B second step of experiments responses complies with the assertions
that the Devices A and B are driven to different performances by the same set of parameter.
Such a fact justifies the reason to do not include the Device B into the DOE experiments and
the machine learning approach. Some hypothesis can be suggested to explain the device’s
different performance behaviour. Since the inclinometer device is handmade, imperfections in
the component’s soldering are inevitable. Such imperfections vary from device to device, and
could justify singularities for each inclinometer. There is also possible that imperfections in the
electronic components could lead to different responses among the sensors. At the time of this
work, no other devices were able to be compared.
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C APPENDICE - STANDARD OPERATION MODE’S DATASET

Table 34 – Table presenting the train set employed to train the machine learning model of the
standard operation mode.

Trial Interval Frequency nValue Timesleep OM ASSD X ASSD Y
1 400 5 10 0.4 STANDARD 1.9787 2.1555
2 400 5 10 0.7 STANDARD 0.3910 0.2472
3 400 5 10 1.0 STANDARD 0.3353 0.0981
4 400 5 10 1.3 STANDARD 0.3343 0.0929
5 400 30 10 0.4 STANDARD 0.4100 0.4610
6 400 30 10 0.7 STANDARD 0.2477 0.0542
7 400 30 10 1.0 STANDARD 0.0718 0.0386
8 400 30 10 1.3 STANDARD 0.0622 0.0381
9 400 70 10 0.4 STANDARD 0.2702 0.3053
10 400 70 10 0.7 STANDARD 0.0766 0.0468
11 400 70 10 1.0 STANDARD 0.0663 0.0402
12 400 70 10 1.3 STANDARD 0.0604 0.0392
13 400 120 10 0.4 STANDARD 0.2381 0.2317
14 400 120 10 0.7 STANDARD 0.0773 0.0434
15 400 120 10 1.0 STANDARD 0.0741 0.0406
16 400 120 10 1.3 STANDARD 0.0732 0.0423
17 700 5 10 0.4 STANDARD 1.3063 1.5127
18 700 5 10 0.7 STANDARD 0.2242 0.1330
19 700 5 10 1.0 STANDARD 0.2373 0.0758
20 700 5 10 1.3 STANDARD 0.2354 0.0740
21 700 30 10 0.4 STANDARD 0.2353 0.2670
22 700 30 10 0.7 STANDARD 0.2004 0.1628
23 700 30 10 1.0 STANDARD 0.0501 0.0287
24 700 30 10 1.3 STANDARD 0.0358 0.0275
25 700 70 10 0.4 STANDARD 0.1573 0.1810
26 700 70 10 0.7 STANDARD 0.0474 0.0326
27 700 70 10 1.0 STANDARD 0.0422 0.0313
28 700 70 10 1.3 STANDARD 0.0439 0.0318
29 700 120 10 0.4 STANDARD 0.1456 0.1372
30 700 120 10 0.7 STANDARD 0.0506 0.0326
31 700 120 10 1.0 STANDARD 0.0486 0.0375



158

32 700 120 10 1.3 STANDARD 0.0511 0.0335
33 1000 5 10 0.4 STANDARD 0.8267 0.8394
34 1000 5 10 0.7 STANDARD 0.1269 0.0572
35 1000 5 10 1.0 STANDARD 0.1120 0.0571
36 1000 5 10 1.3 STANDARD 0.0430 0.0467
37 1000 30 10 0.4 STANDARD 0.1721 0.1711
38 1000 30 10 0.7 STANDARD 0.0389 0.0260
39 1000 30 10 1.0 STANDARD 0.0372 0.0258
40 1000 30 10 1.3 STANDARD 0.0296 0.0252
41 1000 70 10 0.4 STANDARD 0.1157 0.1204
42 1000 70 10 0.7 STANDARD 0.0424 0.0296
43 1000 70 10 1.0 STANDARD 0.0407 0.0289
44 1000 70 10 1.3 STANDARD 0.0398 0.0310
45 1000 120 10 0.4 STANDARD 0.1036 0.0950
46 1000 120 10 0.7 STANDARD 0.0483 0.0306
47 1000 120 10 1.0 STANDARD 0.0457 0.0303
48 1000 120 10 1.3 STANDARD 0.0442 0.0293
49 1300 5 10 0.4 STANDARD 0.6795 0.6845
50 1300 5 10 0.7 STANDARD 0.1105 0.0497
51 1300 5 10 1.0 STANDARD 0.1213 0.0564
52 1300 5 10 1.3 STANDARD 0.0859 0.0423
53 1300 30 10 0.4 STANDARD 0.1345 0.1250
54 1300 30 10 0.7 STANDARD 0.0336 0.0242
55 1300 30 10 1.0 STANDARD 0.0325 0.0241
56 1300 30 10 1.3 STANDARD 0.0315 0.0233
57 1300 70 10 0.4 STANDARD 0.0924 0.0881
58 1300 70 10 0.7 STANDARD 0.0376 0.0277
59 1300 70 10 1.0 STANDARD 0.0360 0.0228
60 1300 70 10 1.3 STANDARD 0.0348 0.0250
61 1300 120 10 0.4 STANDARD 0.0849 0.0669
62 1300 120 10 0.7 STANDARD 0.0412 0.0251
63 1300 120 10 1.0 STANDARD 0.0391 0.0251
64 1300 120 10 1.3 STANDARD 0.0405 0.0271
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Table 35 – Table presenting the test set employed to assess the machine learning model for the
standard operation mode.

Trial Interval Frequency nValue Timesleep OM ASSD X ASSD Y
1 550 18 10 0.55 STANDARD 0.4270 0.3789
2 550 50 10 0.55 STANDARD 0.2217 0.1801
3 550 95 10 0.55 STANDARD 0.1862 0.1618
4 850 18 10 0.55 STANDARD 0.2625 0.2090
5 850 50 10 0.55 STANDARD 0.1506 0.1179
6 850 95 10 0.55 STANDARD 0.1245 0.0948
7 1150 18 10 0.55 STANDARD 0.2016 0.1627
8 1150 50 10 0.55 STANDARD 0.1092 0.0910
9 1150 95 10 0.55 STANDARD 0.0984 0.0592
10 550 18 10 0.85 STANDARD 0.0486 0.0492
11 550 50 10 0.85 STANDARD 0.0516 0.0434
12 550 95 10 0.85 STANDARD 0.0597 0.0434
13 850 18 10 0.85 STANDARD 0.0379 0.0354
14 850 50 10 0.85 STANDARD 0.0494 0.0359
15 850 95 10 0.85 STANDARD 0.0623 0.0367
16 1150 18 10 0.85 STANDARD 0.0378 0.0340
17 1150 50 10 0.85 STANDARD 0.0438 0.0341
18 1150 95 10 0.85 STANDARD 0.0529 0.0367
19 550 18 10 1.15 STANDARD 0.0505 0.0475
20 550 50 10 1.15 STANDARD 0.0535 0.0433
21 550 95 10 1.15 STANDARD 0.0666 0.0439
22 850 18 10 1.15 STANDARD 0.0423 0.0358
23 850 50 10 1.15 STANDARD 0.0501 0.0349
24 850 95 10 1.15 STANDARD 0.0593 0.0378
25 1150 18 10 1.15 STANDARD 0.0347 0.0342
26 1150 50 10 1.15 STANDARD 0.0409 0.0333
27 1150 95 10 1.15 STANDARD 0.0492 0.0344
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D APPENDICE - REPEATED OPERATION MODE’S DATASET

Table 36 – Table presenting the train set employed to train the machine learning model of the
repeated operation mode.

Trial Interval Frequency nValue OM ASSD X ASSD Y
1 300 7 10 REPEATED 0.0754 0.0784
2 300 20 10 REPEATED 0.0570 0.0530
3 300 40 10 REPEATED 0.0740 0.0525
4 300 60 10 REPEATED 0.0818 0.0541
5 300 80 10 REPEATED 0.0874 0.0588
6 300 100 10 REPEATED 0.0942 0.0543
7 300 120 10 REPEATED 0.1007 0.0552
8 500 7 10 REPEATED 0.0614 0.0652
9 500 20 10 REPEATED 0.0491 0.0407

10 500 40 10 REPEATED 0.0635 0.0427
11 500 60 10 REPEATED 0.0655 0.0444
12 500 80 10 REPEATED 0.0726 0.0433
13 500 100 10 REPEATED 0.0757 0.0464
14 500 120 10 REPEATED 0.0831 0.0470
15 700 7 10 REPEATED 0.0550 0.0557
16 700 20 10 REPEATED 0.0453 0.0370
17 700 40 10 REPEATED 0.0528 0.0401
18 700 60 10 REPEATED 0.0581 0.0394
19 700 80 10 REPEATED 0.0579 0.0374
20 700 100 10 REPEATED 0.0649 0.0418
21 700 120 10 REPEATED 0.0665 0.0407
22 900 7 10 REPEATED 0.0473 0.0479
23 900 20 10 REPEATED 0.0378 0.0361
24 900 40 10 REPEATED 0.0467 0.0352
25 900 60 10 REPEATED 0.0527 0.0423
26 900 80 10 REPEATED 0.0554 0.0361
27 900 100 10 REPEATED 0.0606 0.0385
28 1100 40 10 REPEATED 0.0441 0.0334
29 1100 60 10 REPEATED 0.0465 0.0374
30 1100 80 10 REPEATED 0.0521 0.0330
31 1100 100 10 REPEATED 0.0518 0.0346
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32 1100 120 10 REPEATED 0.0568 0.0378
33 1300 7 10 REPEATED 0.0448 0.0345
34 1300 20 10 REPEATED 0.0336 0.0336
35 1300 40 10 REPEATED 0.0428 0.0332
36 1300 60 10 REPEATED 0.0461 0.0301
37 1300 80 10 REPEATED 0.0507 0.0332
38 1300 100 10 REPEATED 0.0497 0.0363
39 1300 120 10 REPEATED 0.0535 0.0343
40 1500 7 10 REPEATED 0.0375 0.0341
41 1500 20 10 REPEATED 0.0324 0.0311
42 1500 40 10 REPEATED 0.0373 0.0333
43 1500 60 10 REPEATED 0.0453 0.0347
44 1500 80 10 REPEATED 0.0426 0.0320
45 1500 100 10 REPEATED 0.0493 0.0279
46 1500 120 10 REPEATED 0.0489 0.0345
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Table 37 – Table presenting the test set employed to assess the machine learning model of the
repeated operation mode.

Trial Interval Frequency nValue OM ASSD X ASSD Y
1 400 13 10 REPEATED 0.0482 0.0562
2 400 30 10 REPEATED 0.0537 0.0424
3 400 50 10 REPEATED 0.0659 0.0483
4 400 70 10 REPEATED 0.0695 0.0448
5 400 90 10 REPEATED 0.0780 0.0475
6 400 110 10 REPEATED 0.0858 0.0462
7 600 13 10 REPEATED 0.0439 0.0396
8 600 30 10 REPEATED 0.0478 0.0341
9 600 50 10 REPEATED 0.0537 0.0383

10 600 70 10 REPEATED 0.0561 0.0379
11 600 90 10 REPEATED 0.0600 0.0401
12 600 110 10 REPEATED 0.0578 0.0395
13 800 13 10 REPEATED 0.0401 0.0372
14 800 30 10 REPEATED 0.0404 0.0398
15 800 50 10 REPEATED 0.0450 0.0384
16 800 70 10 REPEATED 0.0495 0.0377
17 800 90 10 REPEATED 0.0499 0.0403
18 1000 50 10 REPEATED 0.0421 0.0423
19 1000 70 10 REPEATED 0.0475 0.0382
20 1000 90 10 REPEATED 0.0479 0.0432
21 1200 50 10 REPEATED 0.0412 0.0395
22 1200 70 10 REPEATED 0.0412 0.0379
23 1200 90 10 REPEATED 0.0479 0.0367
24 1200 110 10 REPEATED 0.0474 0.0407
25 1400 13 10 REPEATED 0.0340 0.0383
26 1400 30 10 REPEATED 0.0365 0.0395
27 1400 50 10 REPEATED 0.0390 0.0370
28 1400 70 10 REPEATED 0.0416 0.0405
29 1400 90 10 REPEATED 0.0426 0.0418
30 1400 110 10 REPEATED 0.0474 0.0401
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