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” All that is gold does not glitter,
Not all those who wander are lost;

The old that is strong does not wither,
Deep roots are not reached by the frost.

From the ashes a fire shall be woken,
A light from the shadows shall spring;

Renewed shall be blade that was broken,
The crownless again shall be king.”

J.R.R. Tolkien, The Fellowship of the Ring, 1954



RESUMO

À medida que os sistemas se tornam menores, chegando a escalas quase atômicas,
os efeitos quânticos tornam-se cada vez mais presentes. Nessa linha, tem crescido o
interesse pelo estudo da termodinâmica quântica. No entanto, os arranjos experimen-
tais para realizar esses estudos com átomos podem ser complicados, pois requerem
sistemas como armadilhas magneto-ópticas. Por outro lado, os fótons são estáveis,
relativamente fáceis de produzir e manipular. O principal problema é que os fótons
não têm níveis de energia ou massa. Para contornar este problema, usamos uma
analogia entre a equação de onda paraxial e a equação de Schrodinger 2D para im-
plementar uma simulação experimental de sistemas quânticos. Nessa analogia, uma
medida em momento angular orbital (OAM) está relacionada a uma medida projetiva
em energia, permitindo-nos em condições adequadas estudar a Termodinâmica Quân-
tica com sistemas fotônicos. Demonstramos como implementar e manipular estados
térmicos usando OAM como um grau de liberdade. Dentro do contexto da Termodinâ-
mica Quântica, também implementamos o primeiro Demônio de Maxwell fotônico com
feed-forward ativo usando "interruptores ópticos ultrarrápidos"(UFOS), onde também
estudamos como banhos térmicos com correlações poderiam aumentar o poder do
Demônio. O último experimento aqui apresentado está fora do contexto da termodi-
nâmica, onde implementamos um protocolo de feed-forward baseado em fibra com
o UFOS, permitindo-nos preparar estados de fóton único em polarização com alta
fidelidade.

Palavras-chave: Termodinâmica Quântica. Fótons. Feed-forward.



RESUMO EXTENDIDO

Introdução - No final do século XIX/início do século XX, Plank [1, 2] resolveu o pro-
blema da radiação do corpo negro, onde introduziu o conceito de que as oscilações
atómicas dentro das paredes da cavidade têm valores discretos de energia. Foi o
primeiro passo para o desenvolvimento do que viria a ser a mecânica quântica. Foi
contra intuitivo na altura, pois a comunidade científica acreditava que a energia era
uma quantidade intrinsecamente contínua. Einstein explicou o efeito fotoelétrico [3]
descrevendo a luz como pequenos pacotes de energia de E = h⌫, que ficou conhecido
como um fóton. Usando o mesmo conceito, Einstein desenvolveu também a teoria da
emissão estimulada [4, 5], de onde T. H. Maiman [6] foi capaz de construir o primeiro
laser (light amplification by stimulated emission of radiation) - amplificação de luz por
emissão estimulada de radiação.
A invenção do laser cria a possibilidade de um mundo inteiramente novo na óptica.
Esta nova fonte de luz produziu feixes com uma direção de propagação bem definida,
espectro de frequência estreito e elevado grau de coerência. Além disso, iniciou uma
nova era no estudo da óptica não-linear. Em particular o processo óptico não linear de
Conversão Paramétrica Espontânea Descendente (CPDE) surgiu como um sistema
interessante e potencialmente útil [7, 8]. Os pares de fótons gerados por SPDC estão
emaranhados, o que significa que partilham correlações mesmo à distância.
Os campos produzidos pela CPDE são naturalmente correlacionados em graus de
liberdade como frequência e tempo [9], posição e momentum [10], Momento Angular
Orbital (MAO) [11] e no número de fótons. Eles também podem ser preparados em
estados emaranhados de polarização usando uma variedade de estratégias experi-
mentais, como foi demonstrado, por exemplo, na referência [12]. Nesta tese, usamos
correlações no MAO descritas no capítulo 2, correlações em polarização descritas
no capítulo 3 e as correlações no número de fótons que foram empregadas em um
experimento descrito no capítulo 4.
Mais recentemente testemunhamos o desenvolvimento de uma nova disciplina que
tenta reconciliar duas teorias distantes: Termodinâmica e Mecânica Quântica. Ela é
chamada Termodinâmica Quântica e tem como objetivo estender conceitos de Ter-
modinâmica como entropia, trabalho e calor ao domínio quântico [13]. Além disso,
espera-se que o acesso experimental e o alto grau de controle de alguns sistemas
quânticos nos permitam encontrar algum tipo de vantagem quântica para os processos
da Termodinâmica. No contexto desta tese, estamos interessados na relação de flutu-
ação introduzida por C. Jarzynski [14] no domínio da física clássica e posteriormente
estendida aos sistemas quânticos por H. Tasaki [15]. Relaciona o trabalho gerado em
um processo com a mudança na energia livre, que é uma quantidade de equilíbrio que
é difícil de ser calculada e medida para sistemas com um grande número de partículas.
Experiências recentes demonstraram a reconstrução experimental da distribuição de
trabalho de um processo, permitindo a verificação da relação de flutuação Jarzynski,
usando ressonância magnética nuclear em estado líquido [16] e um único íon preso em
um potencial harmônico [17]. Motivados pelo alto grau de controle que é possível obter
sobre um sistema óptico, decidimos estudar a termodinâmica quântica usando fótons.
Entretanto, os fótons não têm níveis energéticos nem massa, o que é uma desvan-
tagem em comparação com átomos e moléculas para estudar Termodinâmica. Uma
maneira de contornar este problema é usar a analogia entre a equação de Schrödinger
2D e a equação de onda paraxial [18, 19]. Esta analogia nos permite implementar uma



simulação experimental de sistemas quânticos usando fótons [20, 21]. Sob condições
apropriadas, uma medida do momento angular orbital de um fóton é equivalente à
medida da energia de um oscilador harmônico quântico. Usando esta abordagem, é
possível implementar o chamado protocolo de duas medidas para determinar a distri-
buição do trabalho de um processo e, em seguida, testar a relação Jarzynski.
Na maioria dos experimentos relativos à Termodinâmica Quântica, os estados térmicos
devem ser preparados e manipulados no Laboratório. Para testes experimentais da
relação Jarzynski, entretanto, pode ser mais conveniente preparar autoestados de
energia, executar o processo e então utilizar estatísticas térmicas no processando de
dados, ao invés de preparar os estados térmicos de inicio [20, 21]. Para os fins onde
os estados térmicos são necessários, desenvolvemos um método para preparar os
estados térmicos MAO de um fotón. Fazemos uso do fato de que os pares de fótons
produzidos no CPDE estão naturalmente emaranhados em MAO [11]. Ao medir um
dos fótons e realizar o traço sobre o grau de liberdade do MAO, o fóton conjugado é
preparado remotamente em estado térmico. Além disso, estudamos o efeito de alguns
processos que atuam sobre ele. Um dos processos é a simulação de turbulência
atmosférica, que é um processo interessante que aparece naturalmente nos canais de
comunicação do espaço livre.
Na linha da termodinâmica clássica, Maxwell propôs a experiência de pensamento [22]
conhecida como Demônio de Maxwell, para testar os limites da 2ª lei da termodinâmica.
Mais tarde, após algumas reinterpretações, descobriu-se que o paradoxo do Demônio
de Maxwell poderia ser explicado em termos de informação (feed-forward – alimentar o
sistema) e extração de trabalho. Atualmente, tornou-se possível realizar experimentos
que implementam e estudam este e outros aspectos fundamentais da Termodinâmica,
como o princípio de Landauer [23–34]. Em sistemas fotônicos M. D. Vidrighin et. al
[35] apresentaram uma prova de princípio de um Demônio fotônico, no qual dois feixes
térmicos em dois modos diferentes são enviados a dois fotodiodos em um circuito
onde eles estão a um capacitor com polaridades. Sem a ação do Demônio, a carga
líquida no capacitor seria nula, pois ambos os modos têm a mesma temperatura, ou
seja, o mesmo número médio de fótons. Ao ajustar um divisor de feixe com baixa
refletividade em ambos os modos e detectores de fótons nos braços refletidos, o
Demônio adquire a informação sobre qual é o modo com maior número de fótons.
Com este conhecimento, ele pode inverter a polaridade dos terminais do capacitor
para que seja atingida uma carga líquida. Isso é possível, pois os feixes térmicos têm
um efeito de “bunching” (agrupamento). No entanto, eles não implementam a ação de
feed-forward no Demônio, realizando somente a análise condicional dos dados.
No capítulo 4, descrevo uma configuração baseada em fibra para implementar um
Demônio de Maxwell fotônico com feed-forward ativo, onde podemos variar parâmetros
como as informações do Demônio e implementar diferentes tipos de banhos térmi-
cos. Nosso protocolo de feed-forward é baseado em um interruptor óptico ultra-rápido
(UFOS – Ultrafast optical switch), um dispositivo baseado em fibra com duas entra-
das/saídas, e condicionado a um determinado sinal eletrônico, ele cruza ou deixa as
entradas/saídas paralelas, selecionando o caminho dos fótons. A operação de troca
dos caminhos ópticos é equivalente à troca da polaridade do capacitor. Estudamos
primeiro como o Demônio pode aumentar a diferença no número de fótons entre os mo-
dos (efeito do Demônio) usando as informações para alimentar o sistema em banhos
térmicos não correlacionados produzidos por fontes pseudotérmicas. Também estuda-
mos como um único estado térmico dividido em dois modos não fornece informações
úteis para o Demônio, reduzindo seu efeito a zero. Finalmente, fomos além dos banhos



térmicos usuais, implementando banhos térmicos correlacionados que foram capazes
de superar o desempenho do Demônio em comparação com os não correlacionados.
Utilizamos os fótons correlacionados provenientes da CPDE e os estados NOON de
dois fótons preparados com um interferômetro do tipo Hong-Ou-Mandel.
A última experiência é a única fora do escopo da termodinâmica quântica. Trata de
uma abordagem de preparação remota de estado utilizando feed-forward a qual foi re-
alizada antes do experimento sobre o Demônio Maxwell [35]. No entanto, percebemos
que os UFOS seriam adequados para implementar o Demônio de Maxwell fotônico.
Este experimento implementa uma preparação remota de estado de um único fóton
em uma configuração experimental baseada em fibra, usando apenas componentes
ópticos largamente disponíveis no mercado. Na preparação de estado remota, quando
projetamos um dos fótons, preparamos remotamente o estado do outro. Entretanto,
como a polarização é uma base bidimensional, há duas projeções, a correta e a errada
uma, que ao somarmos ambas as contribuições obtemos um estado misto. Para obter
o estado desejado no regime de um único fóton o tempo todo, preparamos inicialmente
o estado ( –), o que significa que se projetarmos o fóton complementar, sabemos
exatamente o estado do fóton sinal, e com esta informação, podemos decidir quando
o fóton precisa ser corrigido.
Trabalhos anteriores implementaram sistemas para preparação remota de estados de
um único fóton com componentes óticos que utilizam o efeito Pockels [36–39] que são
dispositivos que podem agir como uma placa de onda controlada por pulsos elétricos.
A utilização de três células Pockels permite a transformação de qualquer estado de
polarização de um ponto arbitrário para outro na esfera de Poincaré. Entretanto, elas
requerem calibrações complexas que produzem erros consideráveis, e requerem até
kV para operar. À nossa maneira, implementamos as operações unitárias com placas
de ondas fixas, e redirecionamos o caminho dos fótons para as operações unitárias
adequadas usando os UFOS. Com este protocolo, alcançamos a maior fidelidade para
a preparação remota no regime de um único fóton até o momento, alcançando uma
media de 99%.
Os resultados descritos no capítulo 2 foram obtidos em Florianópolis na UFSC, e são
resultados preliminares do projeto. Os resultados descritos nos capítulos 3 e 4 foram
obtidos na Universidade de Viena, sob a supervisão do Prof. Philip Walther, Lee A.
Rozema e Maxime J. Jacquet. Fiquei lá por 18 meses, sendo 14 meses financiados
pelo CNPq (Conselho Nacional de Desenvolvimento Científico - Brasil), e durante os
últimos quatro meses, fui financiado pelo grupo do Prof. Walther.
Objetivos - O principal objetivo desde trabalho é o estudo experimental de termodi-
nâmica quântica utilizando sistemas fotônicos. Para realizar este estudo queremos
implementar experimentalmente a preparação remota de estado térmicos utilizando
MAO como grau de liberdade. Discutiremos também como produzir o estado remoto de
um únici fóton com uma alta fidelidade utilizando os UFOS para a implementação de
um protocolo de feed-forward. Por último discutimos a implementação de um Demônio
de Maxwell fotônico com feed-forward ativo. Neste sistema, além dos banhos térmicos
usuais, implementamos banhos térmicos com correlações clássicas e demonstramos
que eles podem aumentar em até duas ordens de grandezas o efeito do Demônio.
Metodologia - Para a implementação de todos os objetivos utilizam-se os pares fótons
emaranhados produzidos pela CPDE. No primeiro trabalho os fótons estão emaranha-
dos nos graus transversais, a partir dos quais utilizamos o emaranhamento em MAO
para produzir remotamente os estados térmicos. Estes estados podem ser utilizados
nos estudos de termodinâmica quântica com sistemas fotônicos.



No segundo objetivo utilizamos a CPDE para produzir pares de fotos maximamente
emaranhados em polarização, os chamados estados de Bell, a partir dos quais ao
realizar a projeção de um deles em uma determinada base, produzimos remotamente
o estado do outro. Porém esta projeção tem dois estados possíveis o desejado e um
ortogonal. Utilizando um sistema experimental baseado nos UFOS, podemos redirecio-
nar os fótons que estão na projeção errada para serem corrigidos. Neste caso quando
a projeção desejada é realizada não precisamos agir no sistema, e os fótons com a
projeção errada são corrigidos, obtendo assim o estado desejado o tempo todo.
No último sistema também utilizamos os UFOS para implementar um Demônio de
Maxwell fotônico. Neste sistema ao realizar medidas, o Demônio obtém informação
sobre o sistema e a partir disso pode tomar decisões para aumentar a extração de
trabalho no sistema. Além dos estados térmicos usuais, implementamos estados tér-
micos com correlações, produzidos pela CPDE, demonstrando que estas correlações
extras podem aumentar o efeito do Demônio.
Resultados obtidos Nesta tese demonstramos como preparar remotamente um es-
tado térmico utilizando MAO como grau de liberdade. Para tal feito, utilizamos fato
de que a CPDE é naturalmente emaranhada em MAO e a distribuição espectral da
CPDE em MAO tem o decaimento exponencial característico de um estado térmico.
Demonstramos como realizar a preparação remota do estado de polarização de um
único fóton com uma alta fidelidade. Para tal realização utilizamos um sistema com
feed-forward utilizando os UFOS que nos permitiu corrigir os fótons com estado de
polarização errada. Demonstramos com duas famílias de estado que nosso sistema
nos permite criar estados com altíssima fidelidade, tendo na média 99%. No último
estudo implementamos o primeiro Demônio de Maxwell fotônico com feed-forward
ativo em tempo real. Demonstramos também que a utilização de banhos térmicos com
correlações clássicas provém informações extras ao Demônio, em relação ao estado
térmico clássico, que permite que o Demônio aumente seu efeito.
Palavras-chave: Termodinâmica Quântica. Fótons. Feed-forward.



ABSTRACT

As systems become smaller, going to almost atomic scales, the quantum effects be-
come more and more present. Following this line, the interest in the study of quantum
thermodynamics has grown. However, the experimental setups to perform these stud-
ies with atoms can be complicated, as they require systems as magneto-optical traps,
for example. On the other side, photons are stable, relatively easy to produce and ma-
nipulate. The main problem is that photons do not have energetic levels or mass. To
overpass this problem, we use an analogy between the paraxial wave equation and the
2D Schrodinger equation to implement experimental simulations of quantum systems.
In this analogy, a measurement in orbital angular momentum (OAM) is related to a pro-
jective measurement in energy, allowing us in the proper conditions to study Quantum
Thermodynamics with photonic systems. Here we demonstrate how to implement and
manipulate thermal states using OAM as a degree of freedom. Inside the Quantum
Thermodynamics context, we also implemented the first photonic Maxwell’s Demon
with active feed-forward by using ultra-fast optical switches (UFOS), where we also
studied how thermal baths with correlations could enhance the Demon’s power. The
last experiment presented here is outside the context of thermodynamics, where we
implemented a fiber-based photonic feed-forward protocol with the UFOS, allowing us
to prepare single-photon states in polarization with high fidelity.

Keywords: Quantum Thermodynamics. Photons. Feed-forward.
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1 INTRODUCTION

At the end of the XIX century/beginning of XXth, Plank [1, 2] solved the black
body radiation problem, where he introduced the concept that the atomic oscillations
inside the cavity walls have discrete values of energy. It was the first step for the de-
velopment of what would become quantum mechanics. It was counterintuitive at that
time as the scientific community believed that the energy was an intrinsically continu-
ous quantity. Einstein explained the photoelectric effect [3] describing the light as tiny
packages of energy of E = h⌫, that became known as a photon. Using the same con-
cept, Einstein also developed the theory of the stimulated emission [4, 5], from where
T. H. Maiman [6] was able to construct the first laser - light amplification by stimulated
emission of radiation.

The invention of the laser creates the possibility of a whole new world in optics.
This new light source produced beams with a well-defined direction of propagation, nar-
row frequency spectrum and high degree of coherence. Moreover, it started a new era in
the study of nonlinear optics. In particular the nonlinear optical process of Spontaneous
Parametric Down Conversion (SPDC) has emerged as an interesting and potentially
useful system [7, 8]. The photon pairs generated by SPDC are entangled, meaning that
they share correlations even at a distance.

The fields produced by SPDC are naturally correlated in degrees of freedom like
frequency and time [9], position and momentum [10], Orbital Angular Momentum (OAM)
[11] and in the photon number. They can also be prepared in polarization-entangled
states using a variety of experimental strategies, as it was demonstrated, for instance
in Ref. [12]. In this thesis, we have used correlations in OAM, described in chapter 2,
polarization correlations, described in chapter 3 and the photon number correlations,
which were employed in an experiment described in chapter 4.

More recently, we have witnessed the development of a new discipline that at-
tempts to reconcile two distant theories: Thermodynamics and Quantum Mechanics. It
is called Quantum Thermodynamics and aims at extending concepts of Thermodynam-
ics like entropy, work and heat to the quantum domain [13]. Moreover, the experimental
access and high degree of control of some quantum systems is expected to allow us to
find some kind of quantum advantage for Thermodynamics processes. In the context
of this thesis, we are interested the fluctuation relation introduced by C. Jarzynski [14]
in the classical physics domain and later extended to quantum systems by H. Tasaki
[15]. It relates the work generated in a process with the free energy change, which is
an equilibrium quantity that is hard to calculate and measure for systems with a large
number of particles.

Recent experiments have demonstrated the experimental reconstruction of the
work distribution of a process, allowing the verification of the Jarzynski fluctuation
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relation, using liquid-state nuclear magnetic resonance [16] and a single ion trapped
in a harmonic potential [17]. Motivated by the high degree of control that is possible to
achieve over an optical system, we have decided to study quantum thermodynamics
using photons. Nevertheless, photons have no energetic levels and no mass, which is
a disadvantage in comparison with atoms and molecules for the purpose of studying
Thermodynamics. One way around this problem is to use the analogy between the
2D Schrödinger and the paraxial wave equation [18, 19]. This analogy allows us to
implement an experimental simulation of quantum systems using photons [20, 21].
Under appropriate conditions, the measurement of the orbital angular momentum of a
photon is equivalent of measuring the energy of a quantum harmonic oscillator. Using
this approach, it is possible to implement the so called two-measurement protocol
for determination of the work distribution of a process and then testing the Jarzynski
relation.

In most of the experiments concerning Quantum Thermodynamics, thermal
states must be prepared and manipulated in the Laboratory. For experimental tests
of the Jarzynski relation however, it may be more convenient preparing energy eigen-
states, performing the process for each one at a time and computing the thermal
statistics by processing the data, instead of preparing initial thermal states [20, 21].
For the purposes where thermal states are required, we have developed a method for
preparing single-photon OAM thermal states. We make use of the fact that the pairs of
photons produced in SPDC are naturally entangled in OAM [11]. By measuring one of
the photons and performing the trace over the OAM degree of freedom, the conjugate
photon is remotely prepared in a thermal state. In addition, we study the effect of a
few processes acting on it. One of the processes is simulated atmospheric turbulence,
which is an interesting process that naturally appears in free space communication
channels.

In the line of classical thermodynamics, Maxwell proposed the thought experi-
ment [22] know as Maxwell’s Demon, to test the limits of the 2nd law of thermodynamics.
Later on, after some reinterpretations, it was found that the Maxwell’s Demon paradox
could be explained in terms of information (feed-forward) and work extraction. Nowa-
days, it has become possible to realize experiments that implement and study this and
other fundamental aspects of Thermodynamics, like the Landauer principle [23–34]. In
photonic systems M. D. Vidrighin et. al [35] presented a proof of principle of a photonic
Maxwell’s Demon, wherein two thermal beams in two different modes are sent to two
photodiodes in a circuit where they are connected with opposite polarities to a capacitor.
Without the Demon’s action, the net charge in the capacitor would be null as both modes
have the same temperature, meaning the same average photon number. By setting a
beam-splitter with low reflectivity in both modes and photon detectors in the reflected
arms, the Demon acquires the information about what is the mode with higher number
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of photons. With this knowledge, he can flip the polarity of the capacitor terminals so
that a net charge is achieved. It is possible as thermal beams have a bunching effect.
However, they do not implement the feed-foward action of the Demon.

In chapter 4, I describe a fiber-based setup to implement a photonic Maxwell De-
mon with active feed-forward, where we can vary parameters as the Demon’s informa-
tion and implement different types of thermal baths. Our feed-forward protocol is based
on an ultrafast optical switch (UFOS), a fiber-based device with two inputs/outputs, and
conditioned on a given signal, it crosses or leaves the input/outputs paralell, exchang-
ing the photonic paths or leaving them inaltered. The operation of switching the optical
paths is equivalent of switching the capacitor polarity. We first studied how the Demon
can increase the difference in the photon number between the modes (Demon’s power)
using the information to feed the system in uncorrelated thermal baths produced by
pseudo-thermal sources. We also studied how a single thermal state split into two
modes provides no helpful information for the Demon, reducing his power to zero. Fi-
nally, we have gone beyond the usual thermal baths, implementing correlated thermal
baths that were able to surpass the Demon’s performance compared to uncorrelated
ones. We have used SPDC correlated photons and two-photon NOON states prepared
with a Hong-Ou-Mandel interferometer.

The last experiment is the only one outside the Quantum Thermodynamics
scope. It deals with the feed-forward approach and it was actually realized before the
experiment about the Maxwell’s Demon [35]. However, we realized that the UFOS
scheme would be suitable for implementing the photonic Maxwell’s Demon. This ex-
periment implements a single photon remote state preparation in a fiber-based setup
using just bulk components. In the remote state preparation, when we project one of
the photons, we remotely prepare the state of the other. However, as polarization is a
bi-dimensional basis, there are two projections, the correct and the wrong one, making
the final state a mixed state. To obtain a single-photon state in the desired one all the
time, we prepare the singlet state (| –i), meaning that if we project the idler, we know
precisely the signal’s state, and by this knowledge, we can decide when the photon
needs to be corrected.

Previous works have implemented the feed-forward in the single-photon prepa-
ration using Pockels cells [36–39] that are devices that can act as a wave plate by
implementing the correct signal. Using three Pockels cells allows the transformation of
any polarization state from one point to another arbitrary one in the Poincaré sphere.
However, they require complex calibrations that produce considerable errors, and they
require up to kV to operate. In our way, we implement the unitary operations by fixed
wave plates, and we re-route the path of the photons to proper unitary operations using
the UFOS. With this protocol, we achieved the highest average fidelity in this type of
remote state preparation to date, achieving 99%.
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The results described in chapter 2 were partially obtained in Florianópolis at
UFSC. In this thesis, I present the initial results obtained with my participation. The
results described in chapters 3 and 4 were obtained at the University of Vienna under
the supervision of Profs. Philip Walther, Lee A. Rozema and Maxime J Jacquet. I stayed
there for 18 months, wherein 14 months I was funded by CNPq (National council of
scientific development - Brazil), and during the last four months, I was funded by Prof.
Walther’s group.

1.0.1 Outline of the Thesis

In chapter 2, we provide an overview of quantum thermodynamics with struc-
tured light, presenting the fundamental concepts and discussing of some previous
experiments that have motivate us. We then discuss the implementation of a remote
state preparation of a thermal state using orbital angular momentum as a degree of
freedom. We then show our experimental results and an initial study of how to control
the temperature of the distributions. In the last section, we present our conclusions
about the preliminary results.

In chapter 3 we discuss our fiber-based single-photon remote state preparation,
where we discuss the theoretical aspects of using polarization as a degree of freedom.
We also discuss the theory to project the theoretical and the experimental two-photon
state into the projected family of states for the calculus of the fidelity of the states.
We show how to prepare each family of states and the relative unitary operation that
corrects the state. We demonstrate how the UFOS operate, as they are the core of
the experiments in chapter 3 and 4. Finally, in the last subsections, we present the
experimental results and discussions.

In chapter 4, we present our photonic Maxwell Demon, providing a discussion
about all thermal baths studied and their relation with the Maxwell’s Demon thought
experiment. We also present the theory developed to support the experimental data. In
the last sections, we show the experimental implementation and results for all baths an-
alyzed. Finally, in the last section, we discuss our conclusions and future perspectives.

1.0.2 List of Publications

1. G. L. Zanin, M. Antesberger, M. J. Jacquet, P. H. S. Ribeiro, L. A. Rozema,
P.Walther, Enhanced Photonic Maxwell’s Demon with Correlated Baths, 2021
- arXiv:2107.09686

2. G. L. Zanin, M. J. Jacquet, M. Spagnolo, P. Schiansky, I. A. Calafell, L. A.Rozema,
P. Walther, “Fiber-compatible photonic feed-forward with 99% fidelity”, Optics Ex-
press 2021, 29, 3425–3437.
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3. P. H. Souto Ribeiro, T. Häffner, G. L. Zanin, N. Rubiano da Silva, N. Rubiano, R.
Medeiros de Araújo, W. C. Soares, R. J. de Assis, L. C. Céleri and A. Forbes, "Ex-
perimental study of the generalized Jarzynski fluctuation relation using entangled
photons", Physical review A 2020, 101, 052113

4. T. Häffner, G. L. Zanin, R. M. Gomes, L. C. Céleri, P. H. S. Ribeiro, “Remote
preparation of single photon vortex thermal states”, The European Physical Jour-
nal Plus 2020, 135, 601.

5. G. L. Zanin, T. Häffner, M. A. A. Talarico, E. I. Duzzioni, P. H. S. Ribeiro, G. T.
Landi, L. C. Céleri, “Experimental Quantum Thermodynamics with Linear Optics”,
Brazilian Journal of Physics 2019 , 49, 783–798.

The first paper is under review at Physical Review X.
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2 EXPERIMENTAL PHOTONIC RESOURCES FOR QUANTUM THERMODYNAM-
ICS

A beam of light carries angular momentum in two forms. The first form is the spin
angular momentum [40] (±h̄ per photon), which is related to its polarization. The second
form corresponds to the spatial distribution of the wavefronts. M. Padgett & L. Allen
[41] demonstrated that helical wavefronts carry orbital angular momentum (OAM). The
solutions of the paraxial Helmholtz equation that naturally contain angular momentum
are the Laguerre-Gaussian modes LGp` [42], in which p is the radial quantum number
and ` is the azimuthal quantum number. In the results presented in this thesis, we will
only be concerned with `, hence for convenience we choose p = 0.

This type of beam is widely used due to its easy creation and manipulation
[43], besides the applications in classical [44] and quantum [45] communications, and
quantum simulations [20]. In the field of communications in specific, LG modes have
great applicability because they are a set of modes with arbitrary dimension (qudit),
allowing to encode a more significant amount of information in a single photon.

In a previous work of Araújo et al. [20], they implemented intense beam with ther-
mal statistics using OAM as a degree of freedom. However, in this project, we will work
in the single-photon regime produced by spontaneous parametric down-conversion
(SPDC) [46]. SPDC creates a pair of photons that are entangled in their angular spec-
tra [47], as a consequence, they are also entangled in orbital angular momentum [11].
The entanglement between the photon pair will be the crucial tool for the remote prepa-
ration of thermal states. J. P. Torres et al. [48] showed that the spectrum of the photon
pairs in terms of their orbital angular moments has an exponential decay type depen-
dence on the ` modulus, the azimuthal quantum number. Furthermore, we can relate
photonic states with OAM to two-dimensional quantum oscillators [18, 20]. Thus, we
can start from an OAM entangled state of two photons, measure one of the photons
(signal), using detection in coincidences to announce the presence of the other photon
(idler). If we do not select any value of OAM at the signal, we remotely prepare a ther-
mal state in OAM at the idler. It means that by performing the partial trace at one side,
we remotely prepare a thermal state in OAM at the other.

The development of Thermodynamics is a theory that was in the context of
macroscopic systems. However, new technologies allow the manipulation of physical
systems on ever-smaller scales. In this regime, classical and quantum fluctuations
become highly relevant. Fluctuation-dissipation relations have been developed along
these lines. In our work, the Jarzynski relation [14] is the chosen one. It establishes
a relation between equilibrium quantities, such as free energy, and non-equilibrium
quantities, such as the work distribution relative to some physical process. This relation
requires that the system be reversible on small time scales (micro-reversibility) and
that the system’s initial state is thermal. This fluctuation-dissipation relation was initially
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developed for classical systems, but was quickly extended to quantum systems [15, 49,
50].

To perform the calculations using Jarzynski’s relation, it is also necessary to know
the work distribution of some process acting on the system in question. For quantum
systems, the work is defined as the difference between two projective measurements in
energies, requiring the so-called two-measurement protocol. These measurements are
non-trivial, making the number of experimental works available in the literature small.
The first measurement of a quantum work distribution is from T. Batalhão et al. [16] using
a nuclear magnetic resonance platform, followed by Shuoming et al. [17] who used ions
in a trap. Another work along these lines is the one by R. M. de Araujo et al. [20], in
which they use the analogy between Schrödinger’s equation for a harmonic oscillator in
two dimensions and Helmholtz’s paraxial wave equation to simulate a quantum system
using linear optics. Within this analogy, a measurement in OAM becomes equivalent
to a projective measurement in energy. We will use the same analogy in our work to
calculate the temperature of the thermal distributions, such as their average energy
before and after applied processes.

This chapter is divided as follows: In the first section, we are going to present
the fundamental concepts as the Helmholtz paraxial wave equation and its leading so-
lutions (sec. 2.1.1), spontaneous parametric down-conversion and its entanglement in
the transverse degrees of freedom (sec. 2.1.2) and the Jarzynski fluctuation-dissipation
relation (sec. 2.1.3). The second section presents some previous experiments in quan-
tum thermodynamics with optical systems that motivate the work presented in this
and the following chapters. In the third section, the first results related to the remote
preparation of a thermal state in OAM and some applications will be presented and the
theory that validated the thermal state. The results presented in this thesis were the
preliminary results in the project, in which the group finished later and, the final results
are published in [51]. In the last section, we will present the conclusions of the results
generated in this project.

2.1 FUNDAMENTAL CONCEPTS

In this section, I will present the fundamental concepts required for a better
understanding. In section 2.1.1, I will demonstrate the Helmholtz paraxial wave equation
and its leading solutions. In section 2.1.2, an explanation is given of how the process of
spontaneous parametric down-conversion occurs, focusing on the transverse degrees
of freedom and how it applies to our context. In section 2.1.3 we will look at Jarzynski’s
fluctuation relation, which will be used in the context of quantum thermodynamics.
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2.1.1 Paraxial wave equation

The wave equation in Cartesian coordinates has the following form:

r2U –
1
c2
@2U(r , t)
@t2 = 0, (2.1)

where c = 1/µ0✏0 is the speed of light and r2 is the Laplacian operator, which is defined
as:

r2 =
@2

@x2 +
@2

@y2 +
@2

@z2 . (2.2)

To solve the wave equation, let’s propose a solution for a monochromatic wave:

U(r , t) = U(r )e–i!t , (2.3)

where U(r) is the complex amplitude of the wave and ! is its frequency. Substituting
the equation 2.3 into equation 2.1 we arrive at the Helmholtz equation:

(r2 + k2)U(r ) = 0, (2.4)

with k = !/c.
A usual light source is a laser that propagates in a well-defined direction (z),

without many variations in the other directions during its propagation. It allows us to
perform the paraxial approximation, in which we can write our function U(r ) concerning
an envelope function A(r), taking into account that its longitudinal components have a
tiny variation about eikz .

U(r ) = A(r )eikz . (2.5)

The function eikz is a plane wave. We also consider that the envelope function A(r)
varies slowly in respect to the z-direction, meaning that if the beam propagates a
distance �z = �, the variations in �A are much smaller than A (�A << A). The variation
of �A is �A = @A

@z�z = @A
@z �, from which we can calculate the derivatives:

@A
@z

<< kA ! @2A
@z2 << k2A. (2.6)

We can observe that the first derivative is small, showing that the second one is even
smaller, allowing us to discard this therm. Substituting the paraxial equation (eq. 2.5)
into the Helmholtz equation (eq. 2.4) and neglecting the second derivative in z concern-
ing the first one, we obtain:

r2
T A + i2k

@A
@z

= 0, (2.7)

where r2
T = @2A/@x2 + @2A/@y2 is the Laplace operator in the transverse coordinates.
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2.1.1.1 Gaussian Solution

The simplest solution of the paraxial Helmholtz equation is the paraboloidal wave:

A(r ) =
A1

q(z)
exp

"
–ik

⇢2

2q(z)

#
, (2.8)

from which we obtain the Gaussian solution by considering q(z) = z + iz0, where z0
is the Rayleigh range. In order to separate the amplitude and phase of the complex
envelope, we will rewrite 1/q(z) concerning its real R(z) and complex W (z) parts:

1
q(z)

=
1

R(z)
– i

�

⇡W 2(z)
, (2.9)

where R(z) is the curvature of the wavefront and W (z) is the beam width. Substituting
the equation 2.9 into 2.8 and using the paraxial equation (eq. 2.5) we obtain the following
form for the Gaussian wave function:

U(r ) = A0
W0

W (z)
exp

"
–

⇢2

W 2(z)

#
exp

"
–ikz – ik

⇢2

2R(z)
+ i⇣(z)

#
, (2.10)

in which

W (z) = W0

"
1 +

✓
z
z0

◆2
# 1

2

(2.11)

R(z) = z

1 +

⇣z0
z

⌘2�
(2.12)

⇣(z) = tan–1
✓

z
z0

◆
(2.13)

W0 =
✓
�z0
⇡

◆ 1
2

, (2.14)

with A0 = A1/iz0. The equations 2.11 to 2.14 are the parameters that completely deter-
mine a Gaussian beam.

2.1.1.2 Laguerre-Gaussian solution

Another solution to Helmholtz’s paraxial wave equation (eq. 2.7) are the Laguerre-
Gaussian (LG) modes. LG modes are the essential solution in the present work because
they carry [41] angular orbital momentum (OAM). For this solution, it is necessary to
rewrite the Helmholtz paraxial wave equation in cylindrical coordinates:

 
1
r
@

@r

✓
r
@

@r

◆
+

1
r2

@2

@�2 + 2ik
@

@z

!
LGp`(r ,�, z) = 0. (2.15)
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LG modes have the following form:

LGp`(r ,�, z) =cp`
W0

W (z)

 p
2⇢

W (z)

!|`|

L|`|
p

 
2⇢2

W 2(z)

!
exp

 
–

⇢2

W 2(z)

!

⇥ exp

"
–i

 
k⇢2

2R(z)
+ (2p + |`| + 1)⇣(z)

!#
exp(–i`�),

(2.16)

L`p are the Laguerre modes in which ` and p are the azimuthal and radial quantum
numbers. Figure 1 shows the intensity profile of the LG modes.

Figure 1 – LGp` modes with ` from 0 to 3 and p from 0 to 2.

2.1.2 Parametric down-conversion and the entanglement in transverse spatial degrees
of freedom.

Parametric down-conversion is a process where a light beam interacts with
a non-linear medium. This non-linear medium consists of a birefringent crystal with
different refractive indices for different beam propagation directions. The photons from
the pump beam are absorbed by the crystal and be re-emitted as a pair of photons,
commonly known as twin photons. This process is called spontaneous parametric
down-conversion (SPDC). The figure 2 illustrates the process.

Figure 2 – A laser shines on the nonlinear crystal and creates a pair of photons called
signal (s) and idler (i). Where the energy is conserved as in equation 2.18.

This work will focus on the spatial correlations arising from the angular spectrum
of photons in the SPDC. Therefore the treatment given will be in the transverse degrees
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according to the references [52, 53], in which they studied how to manipulate the
transferred angular spectrum for twin photons.

We will consider that the pump beam has a wave vector kp and frequency
!p. The photon pair, on the other hand, will be called signal (s) and idler (i), having
wave vectors ks, ki and frequencies !s, !i respectively. Since this process conserves
momentum and energy, we have that:

kp = ks + ki (2.17)

and
!p = !s +!i . (2.18)

The pump beam is incident on a nonlinear crystal (BBO-type I), located at the origin
of the coordinate system, with dimensions (Lx , Ly and Lz ). In a multi-mode description
[54], the quantum state of the twin photons generated in SPDC is:

| i = ↵ |vaci + �
Z

dks

Z
dkisinc


1
2

(!s +!i –!p)t
�
�(ks, ki ) |1, ksi |1, kii ,

(2.19)
the first term represents the situation where SPDC did not occur, and the pump beam
did not interact with the crystal, and the second term represents the entangled state
of the twin photons. We have that ↵ and � are constants such that h 

�� i = 1, with
|↵|2 � |�|2, i.e., the probability rate of the pump beam not interacting with the crystal is
much higher than the rate of a photon pair be created in the SPDC. These probabilities
depend on the dimensions and the nonlinearity (�2) of the crystal. The phase-matching
conditions for the process to occur and the conservation of energy (eq. 2.18) are
consequences of the sinc function. The polarization labels are present in the wave
function, but we omit them in our treatment as our focus is on the transverse degrees
of freedom.

The function �(ks, ki ) expresses the emission spectrum of twin photons, and
its explicit form is given by:

�(ks, ki ) =
Z

dkpV (kp)

"
!s!i!p

n2(ks)n2(ki )n2(kp)

#1/2 3Y

j=1
sinc


1
2

(ks + ki – kp)j Lj

�
,

(2.20)
V (kp) is the angular spectrum of the pump beam in the plane of the crystal, and n(ki )
is the linear refractive index of the crystal.

From now on, we will apply some approximations on the twin photons state,
equation 2.19, referring to the type of analysis we wish to perform, relating it to the
experimental apparatus that we work with. We will consider that the angular frequencies
of interest are well defined using interference filters and narrow bandwidth (⇡ 10 nm).
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In our case, the pump beam has a wavelength of 405 nm, and the pair of photons
of interest has a wavelength of 810 nm. We can treat our system as monochromatic,
writing !s +!i = !p. This allows us to perform the following approximation on the sinc
function at equation 2.19:

sinc


1
2

(!s +!i –!p)t
�

= 1. (2.21)

We will consider that the three beams (pump, signal, and idler) propagate close
to their propagation axes, making |k | � |q|, where q is the transverse component
of the wave vector k . Since the refractive indices can be considered approximately
constant, let us assume that the transverse dimensions of the crystal (Lx and Ly ) are
large compared to the inverse of the modulus of the transverse components of its wave
vectors and that Lz is small compared to the inverse of the modulus of the longitudinal
wave vectors. We then obtain:

sinc


1
2

(ks + ki – kp)xLx

�
sinc


1
2

(ks + ki – kp)yLy

�
⇡ �(qs + qi – qp) (2.22)

and
sinc


1
2

(ks + ki – kp)zLz

�
⇡ 1. (2.23)

Since we are in the monochromatic approximation kp is constant, then
R

dkp !
R

dqp
and V (kp) ⌘ V (qp). With this we obtain:

�(ks, ki ) ⇡
Z

dqpV (qp)�(qs + qi – qp) = V (qs + qi ). (2.24)

With all these approximations, the equation state for the SPDC (eq. 2.19) in the
transverse degrees of freedom becomes:

| i = ↵ |vaci + �
Z

dqs

Z
dqiV (qs + qi ) |1, qsi |1, qii . (2.25)

Analyzing | i it can be seen that this state is entangled in the transverse degree of
freedom, since it is not possible to separate the probability amplitude, as V (qs + qi ) 6=
V (qs)V (qi ), due to the fact that qp = qs + qi . This fact demonstrates the transfer of the
angular spectrum of the pump beam to the twins photons state.

To observe the effect of the transfer of the angular spectrum of the pump beam,
we will calculate the single counts and coincidence counts, considering that we will
detect the signal and idler photons at the rs and r i positions, respectively. It is necessary
to take into account that the aperture of the detector is small. Figure 3 illustrates the
process of simple and coincidence counts.

The single count rate for the signal (idler) is S(rs) (S(r i )) is proportional to the
2nd order correlation function G(1,1)(r i , r i ) = h | Ê (–)

i (r i )Ê
(+)
i (r i ) | i, where Ê (–)

i (r i ) and

Ê (+)
i (r i ) represent the operators of the electric field of the signal and idler. The field
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Figure 3 – This figure illustrates the process of detection for the signal and idler beams.
In single counts, we record the number of photons detected in a given time. In
the case of coincidence counts, the detector that registers a photon triggers
the window of coincidence, in our case 5 ns, and if the other photon clicks in
this interval, we consider it a coincidence. An FPGA analyzes the electrical
pulses coming from each detector to determine whether or not it was a
coincidence detection.

contains all the information about the optical components inserted in the propagation
path. In our case, the propagation will be along the z axis. Let us then write the electric
field operator in terms of plane waves:

Ê (+)
i (r i ) =

i
(2⇡)2/3

Z
dki

s
h̄!i
2✏0

â(ki )exp[iki · r i ], (2.26)

where â(ki ) is the annihilation operator for a mode with ki and Ê (–)
i (r i ) =

h
Ê (+)

i (r i )
i†

.
Using the paraxial approximation, we obtain:

exp
⇥
iki · r i

⇤
⇡ exp

"
i

 
⇢i · qi –

q2
i

2k2
i

zi

!#
, (2.27)

where r = (⇢x , ⇢y , z) and ki = (qx , qy , kz). It has been taken into account that ki � qi .
The field becomes:

Ê (+)
i (r i ) = i

s
h̄!i

16⇡3✏0
eikiz

Z
dqi â(qi )exp

"
i

 
⇢i · qi –

q2
i

2k2
i

zi

!#
. (2.28)

Using this field, the single count rate for the signal beam becomes:

S(⇢s, zs) /
���Ê (+)

s (rs) | i
���
2

/

�����

Z
dq0

sâ(q0
s)exp

"
i

 
⇢s · q0

s –
q02

s
2k 0

s
zs

!#

⇥

|vaci +

Z
dqs

Z
dqiV (qs + qi ) |1, qsi |1, qii

�����
2

.

(2.29)

To perform the integrals in equation 2.29, we will rewrite the angular spectrum
of the pump beam in its Fourier integral representation:

V (qs + qi ) = c
Z

d⇢W (⇢)exp
⇥
–i(qs + qi ) · ⇢

⇤
. (2.30)
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We need to use the commutation relations between the annihilation and creation oper-
ators [a(q0

s), a†(qs)] = �(q0
s – qs).

The single count rate becomes:

S(⇢s, zs) /
Z

dq0
s

Z
dq0

i

Z
d⇢0W ⇤(⇢0)exp

⇥
i
�
q0

s – q0
i
�
⇢0
⇤

exp

"
–i

 
q0

s⇢s –
q02

s
2ks

zs

!#

⇥
Z

dqs

Z
dqi

Z
d⇢W (⇢)exp

⇥
–i (qs – qi )⇢

⇤
exp

"
i

 
qs⇢s –

q2
s

2ks
zs

!#

⇥ �(q0
i – qi ).

(2.31)

The integral in qs is a Gaussian integral and has the following result:
Z

dqsexp

(
i

"
(⇢s – ⇢)qs –

q2
s

2ks
zs

#)
= Cexp

"
i |⇢s – ⇢|2

k2
s

2zs

#
. (2.32)

After performing integrations and simplifications, we arrive at the following expression
for the single count rate:

S(⇢s, zs) /
Z

d⇢
��W (⇢)

��2 . (2.33)

After analyzing the single count rate expression, it is possible to observe that it
depends only on the intensity of the pump beam, i.e., the angular spectrum of the pump
beam does not affect the simple count rate distribution.

We then want to observe if it is possible to observe the transfer of the angular
spectrum of the pump beam to the coincidence rate C(rs, r i ) between twin photons.
This rate is proportional to the fourth-order correlation function and has the following
form:

C(rs, r i ) / G2,2(rs, r i ) = h | Ê (–)
s (rs)Ê (–)

i (r i )Ê
(+)
i (r i )Ê

(+)
s (rs) | i , (2.34)

rewriting it in terms of the field operators: (eq. 2.26)

C(rs, r i ) /

�����

Z
dqs

Z
dqiV (qs + qi )exp

"
i

 
qs · ⇢s –

q2
s

2ks
zs

!#

⇥ exp

"
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qi · ⇢i –

q2
i

2ki
zi

!#�����

2

.

(2.35)

The resolution process is similar to that of single counts, using the equations
2.30 and 2.32 we obtain:

C(rs, r i ) /
����
Z

d⇢W (⇢)exp

i

kp
2Z0

��R – ⇢
��2
�����

2
, (2.36)

with
1

Z0
=

ks
kp

1
zs

+
ki
kp

1
zi

(2.37)
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and
R =

Z0
zs

ks
kp

⇢s +
Z0
zi

ki
kp

⇢i . (2.38)

The integral in equation 2.36 describes the propagation of the pump beam from the
position z = 0 (crystal) to the plane z = z0 in the paraxial approximation. Solving the
integral we obtain:

C(rs, r i ) /
��W (R, Z0)

��2 . (2.39)

The coincidence rate is dependent on the intensity distribution of the pump beam at
position Z0. This effect comes from the transfer of the angular spectrum of the pump
beam. If we insert an object like a slit or lens into the pump beam before the crystal, it
will modify the profile formed at z0 to the coincidence counts between the twin photons.

Among the studies of entanglement in spatial modes, it was demonstrated that
spontaneous parametric down-conversion conserves angular momentum [55–57]. A.
Mair et al. [11] have experimentally demonstrated that the angular momentum of the
pump beam is transferred to the twin photons `p = `s + `i . This fact will be crucial in the
preparation of thermal states in OAM, as in the results presented in section 2.3 because
change the beam diameter can change the temperature of the thermal distribution.

To understand how remote preparation of thermal states in OAM occurs in the
context of SPDC, let us write its density operator using the equation 2.25:

⇢si = | i h | . (2.40)

This density matrix represents the entangled state of the signal and idler photons.
However, to perform remote preparation of thermal states in OAM, we need to use
the signal beam to announce the presence of one of the photons in the pair. For this
purpose, the detector is left entirely open, which does not discriminate any OAM values.
By performing the OAM measurement in coincidence in the idler, we remotely obtain
a thermal state. Mathematically, this operation is equivalent to performing the partial
trace on the signal subsystem, leaving the idler information on the other arm of the
experiment. By performing the partial trace, we obtain the reduced matrix of the idler
beam:

⇢i ⌘ trs
⇣
⇢si
⌘

, (2.41)

the partial trace is calculated as:

trS
⇣
⇢si
⌘
⌘
Z

dqi

Z
dq0

i

Z
dqsV ⇤(qs + qi )V (qs + q0

i )
�
|1, qii

⌦
1, q0

i
�� . (2.42)

With equations 2.42 and 2.41 we get the reduced matrix of the idler beam. After the
basis change to the Laguerre-Gaussian modes, the coefficients from equation 2.42
are related with the thermal probabilities from equation 2.57. We discuss the spectral
distribution in SPDC , where this change of basis is performed.
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2.1.3 Jarzynski Fluctuation Theorem

In thermodynamics, the extraction of work is one of the most crucial tasks, as
it is applied to create thermal machines and devices that work with thermodynamic
cycles. When we change the parameters infinitely slowly from a point A to B along a
path �, the total work we can perform on the system is equal to the Helmholtz free
energy difference �F . However, when the parameters are changed in a finite rate along
�, the work is dependent on initial conditions, and in average, it will exceed �F :

hWi � �F , (2.43)

where �F = F – F0 is the variation of the free energy, which has the following definition:

F = U – TS, (2.44)

with U being the internal energy, T the temperature, and S the entropy of the system.
The development of the thermodynamic theory occurred for macroscopic sys-

tems in thermal equilibrium. However, as technologies advance, systems become
smaller in the limit where the fluctuations of the system start to become relevant, to the
point that thermodynamic quantities, for example, work W, can be treated as random
variables. In this case, we can describe the variables by a probability distribution P(W),
from which one obtains the probability of extraction of a given amount of work W per
cycle of the process.

As the variables become random, it is necessary to work with stochastic theo-
ries to account for fluctuations in these variables. In this context, the development of
fluctuation relations allows us to obtain information from a system out of equilibrium.
The basic assumptions of these fluctuation relations are that the system’s initial state
is thermal and the principle of micro-reversibility. The fluctuation relation we will use is
the Jarzynski [14] relation: D

e–�W
E

= e–��F , (2.45)

with � = 1/kbT . Then we can write the left-hand side of the relation concerning its
probabilities as: D

e–�W
E

=
Z

dWP(W)e–�W . (2.46)

The first development of this fluctuation relation was in the context of classical mechan-
ics. However, several works extending it for the quantum systems are available [15, 49,
50].

Applying Jensen’s inequality [58] to the equation 2.45, we recover the second
law of thermodynamics for the average work hWi:

hWi � �F . (2.47)
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In this case, individual violations of the equation 2.43 could occur, however equation
2.47 is always valid, due to the central limit theorem, fluctuations vanish as we approach
the thermodynamic limit.

In the case of quantum systems it is necessary to perform the protocol of two
projective measurements on energy eigenstates in the system to obtain the work in a
process:

W = Ef – Ei . (2.48)

In our research group, the work of Araújo et al. [20] measured the work distribution in
the two-measurement protocol using a photonic system. More details will be given in
section 2.2.3.

2.2 THERMODYNAMICS EXPERIMENTS WITH OPTICAL SYSTEMS

This section introduces experiments with optical setups for quantum thermody-
namics. Even though photons are non massive particles and do not interact directly
with each other, they can be used as the thermodynamic fluid in some processes and
they can be very useful for emulating other classical or quantum physical systems.
Moreover, the experimental control over the degrees of freedom of light can be very
high, in contrast with massive particles like ions and neutral atoms that require a greater
experimental effort.

2.2.1 Single-qubit thermometry

In thermodynamics, the temperature is defined only for systems in equilibrium
and in contact with a thermal bath. The usual method for measuring temperature without
affecting the system and not changing its equilibrium is to use thermometers. However,
as systems get smaller and smaller, thermometers need to adapt to the dimensions of
the system. Otherwise, the external agent could modify the equilibrium conditions. In
this line of work Jevtic et al [59] proposed a theoretical model using a single qubit to
distinguish between two temperatures of a bosonic bath. Mancino et al [60] were the
first to experimentally implement this type of system.

They implemented an experimental simulation of the interaction between a qubit
and a thermal bath in a linear optical apparatus. In this case, the goal is to measure
the thermal bath temperature, distinguishing between a "cold" (T1) and a "hot" (T2)
temperature. When the qubit is isolated from the thermal bath, T0 is the excited state,
and T1 is the ground state, and T2 is the energy difference between both levels.

With a quantum channel, it is possible to simulate the presence of the qubit
in the thermal bath implementing the excitation (decay) of the ground (excited) state.
The quantum channel representing such an interaction is the generalized amplitude
damping (GAD), described by two pairs of Kraus operators. The first pair is E0 and E1,
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are related to the qubit decay (|0i ! |1i) due to the "cold" bath (T1). The second pair,
E2 and E3, on the other hand, describe the situation when the qubit is excited to the
|0i state due to the action of the "hot" bath (T2), i.e., they describe the inverse process
of E0 and E1 operators. Knowing the four Kraus operators, it is possible to reconstruct
the system’s density matrix and thus reconstruct the entire process.

Figure 4 – Experimental setup for the implementation of GAD. The figure was taken
from the reference [19].

The experimental setup is shown in figure 4. It consists of a Sagnac like inter-
ferometer [61], in which an SLM (spatial light modulator) replace one of the mirrors, to
create holograms using phase modulation. In the interferometer the fundamental state
|1i (excited |0i) is represented by the vertical polarization state |V i (horizontal |Hi).

The preparation of the thermometer consists of three possible initial states
(qubit): (i) the thermometer is on the ground state (|V i) and the reservoir will heat
it; (ii) the thermometer is on the excited state (|Hi) and the reservoir will cool it; (iii) the
third state (|+i = (|V i + |Hi)/

p
2) is the superposition between the hot and cold states.

The idea of the experiment is to send to the interferometer the three initial states and
then analyze the polarization states at the output of the interferometer using process
tomography. By the population difference in the outputs, it is possible to determine if
the thermal bath was cold (T1) or hot (T2).

For short interaction times, the results obtained came very close to the theo-
retical predictions. It was possible to conclude that the three initial states are equally
suitable for the task and the superposition state had no gain over the other two in this
context. The conclusion was that polarization qubits could emulate thermometers in
these thermal baths.

2.2.2 Photonic Maxwell’s Demon

The so-called Maxwell’s demon is a thought experiment proposed by James
Clerk Maxwell to test the limits of the second law of thermodynamics. The experiment
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consists of a box with a division that separates it into two parts, initially containing a
particle gas on the left side. Imagine that in this wall, we have a "Demon," an external
agent that can obtain some information from the system, acts conditionally to this
information. The information known to the demon is the energy of the particles. Imagine
that it controls a door in this wall and opens the door for the hot particles to the right
side, but blocks the cold particles (closing the door) to leave the hot particles on the
right side of the box and the cold ones on the left side. Figure 5 shows the action of the
demon performing this separation.

Figure 5 – Pictorial representation of Maxwell’s demon. The picture was taken from the
public repository "Wikimedia Commons". [62].

After separating all particles concerning their temperature, the demon reduces
the system’s entropy without performing any work, something that would violate the
second law of thermodynamics. After various reinterpretations nowadays, the Maxwell’s
Demon is considered a system that obtains information with measurements, and with
these results, it feeds the system by applying specific controls (feed-forward) to extract
work.

Vidrighin’s et al. [35] works use the information of the presence or not of a
thermal beam to perform a proof of principle that it is possible to implement a photonic
Maxwell’s demon. Figure 6 shows the experimental setup, in which the beams splitters
(BS) divide each of the two uncorrelated pseudo-thermal light beams into two paths.
The BS’s have high transmission, which means almost the whole beam is transmitted.
The transmitted beam passes through the BS to be detected by a photodiode, and a
photon counter detects the reflected (low reflectivity arm) beam.

The photodiodes convert light into electric current and in the setup they are
inversely polarized between each other and connected to a capacitor. On average, the
capacitor’s charge will always be zero as we have approximately the same number
of photons arriving at each photodiode. However, thermal light has a bunching effect,
and since the reflection probability of a photon by BS is low, when a photon arrives
at one of the detectors, we can conclude that there is a high probability that there are
other photons at the transmission port towards the photodiode. The goal is to use the
detection’s information to switch the polarization of the capacitor to take advantage of
all the current generated by the photodiodes and thus charge it efficiently and then use
the energy to perforn another task.
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Figure 6 – Experimental setup for the proof of principle of a photonic Maxwell’s Demon
by Vidrighin et al..

The authors measured only the difference in the photodiodes intensities condi-
tioned to the information of the detection events in each detector at Demon’s arm. As
the feed-forward itself was not applied, this experiment is proof of principle that this pho-
tonic Maxwell’s Demon is feasible. However, in chapter 4 we are going to present our
results where we implement a photonic Maxwell’s Demon with active feed-forward. We
also study how quantum correlations may affect the Demon’s efficiency in comparison
with classical thermal baths.

2.2.3 Work Distribution for Optical Vortices Using the Two-Measurement Protocol

Section 2.1.3 briefly discusses some experimental realizations that can measure
the work and reconstruct the work distribution of quantum systems. Among these
mentioned realizations, the one of most interesting is the experiment performed by
Araújo et al. [20]. In this section, we will discuss this work in more detail.

For the work calculation according to the equation 2.48, it is necessary to perform
two projective measurements in energy eigenstates, a prerequisite for using Jarzynski’s
fluctuation-dissipation relation 2.45 in the quantum regime. However, in this system, it
is not possible to perform these measurements directly. A workaround for this problem
is the analogy between the paraxial Helmholtz equation (eq. 2.7) and the Schrödinger
equation in two dimensions, considering a quantum harmonic oscillator [18]. In this
analogy, we can realize the following relationships:

 (x , y , t) ! A(x , y , z)

t ! z.
(2.49)

The 2D wave function ( (x , y , t)) propagates in time, whereas the solutions of the
paraxial Helmholtz equation (eq. 2.7) propagate as an A(x , y , z) envelope along the z
axis. The paraxial wave equation with the index of refraction is:
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A(x , y , z). (2.50)
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To hold the analogy we need to include the potential in the 2D Schröedinger’s equation:

i h̄
@ (x , y , t)

@t
=
⇣

–̄h2r2
? + V (x , y )

⌘
 (x , y , t). (2.51)

Comparing equations 2.50 and 2.51 in the analogy we can relate the index of refraction
n(x , y ) and the potential V (x , y ). Considering the 2D quantum harmonic oscillator that
has the following potential:

V (x , y ) =
m
2
!2(x2 + y2), (2.52)

where m is the mass of the oscillator and ! is the frequency of oscillation. Under
the proper conditions for the index of refraction, the LGp` modes can emulate the 2D
quantum harmonic oscillator. Their eigenvalues are:

✏`p = (|`| + 2p + 1)̄h!. (2.53)

If we consider only the family of modes with p = 0, the eigenvalues become:

✏` = (|`| + 1)̄h!. (2.54)

The eigenenergy for the 2D quantum harmonic oscillator and LG modes have the same
form. Since LG modes have angular momentum, when we measure its ` is equivalent
to measure the energy for the same energetic level (✏`) at the harmonic oscillator. If we
restrict ourselves to processes that change only the angular momentum of the beam,
we obtain the following work:

W``0 = (|`0| – |`|)̄h!, (2.55)

where ` is the initial and `0 the final state.
With this definition, we can calculate the probability distribution:

P(W) =
X

``0
�(W – W``0)p``0 . (2.56)

where p``0 = p`p`0|` is the probability of observing the transition ` ! `0 , p`0|` is the
probability of observing `0 given that the initial state was ` and p` are the thermal
probabilities according to:

p` = e–�(|`|+1)̄h!e�h̄! tanh
�h̄!

2
. (2.57)

The LG modes accept negative values for ` , but the harmonic oscillator does not.
However, it is possible to avoid this problem, as the probabilities and the eigenvalues
depend only on the ` modulus, then the eigenenergies have the same value. The
degeneracy of the system, except for ` = 0, was taken into account to obtain the
thermal probabilities.
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The setup for performing the study of the two-measurement protocol is according
to figure 7. The SLM1 creates a phase hologram that imprints the desired OAM to the
laser beam. As we prepare the initial `, the eigenenergy is known. It can be considered
as the first measurement of the protocol.

At SLM2, a new phase hologram is generated to introduces transitions between
energy levels to perform work on the system. A device called "mode-sorter" [63] per-
forms the second measurement of the protocol. The mode-sorter performs the spatial
separation of modes by `, i.e., each region of the image can be associated with a spe-
cific value of OAM. A CCD camera records the image that by the peaks position can
give us information of which components of OAM are present.

Figure 7 – At this experimental setup, the SLM1 prepares the state with a desired `,
being the first measurement. The SLM2 introduces the transitions between
the eigenenergies (` ! `0). The mode-sorter and the camera perform the
final measurement, allowing us to calculated the work. The figure is from
reference [19].

With the first (state preparation) and the second (mode-sorter) OAM measure-
ments, it is possible to reconstruct the work distribution using an optical system. In
this same work, they implement an experiment like a photonic Maxwell’s Demon, in
which the "available" information was about the sign (negative or positive) of OAM, then
performing conditional operations on ` being positive or negative.

2.3 REMOTE STATE PREPARATION OF THERMAL STATES IN ORBITAL ANGULAR
MOMENTUM WITH ENTANGLED PHOTONS

This section is divided into two main parts. The first is concerned with the spec-
tral distribution in the SPDC (sec. 2.3.1), which will be of utmost importance for the
interpretation of the thermal state distributions in OAM presented in the results section
(sec. 2.3.2). In the results section, we introduce the concept of remote state preparation
of thermal states in OAM. In the following subsections results regarding atmospheric
turbulence (sec. 2.3.2.0.1), Fresnel lens (sec. 2.3.2.0.2) and variation of the detector
aperture in the signal beam (sec. 2.3.2.0.3) are presented.
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2.3.1 Spectral Distribution in Spontaneous Parametric Down-Conversion

In the 2.1.2 section, we discussed some properties of parametric down-conversion
in the transverse spatial degrees of freedom, such as conservation of OAM [11]. Be-
cause of the entanglement in these degrees of freedom, J. P. Torres et al. [48], analyzed
the states of twin photons concerning LGp` modes and obtained the quantum spiral
bandwidth.

They start the analysis, with a wave function for the parametric down-conversion
similar to the one in equation 2.19:

| i =
Z

dqs

Z
dqi�(qs, qi )a

†
s(qs)a†i (qi ) |0, 0i . (2.58)

The decomposition of the quantum state | i on the basis of the eigenstates of the
orbital angular momentum operator, the LGp` modes, was performed according to:

| i =
X

`sps

X

`i pi

C`i ,`sps,ps
|`s, ps; `i , pii (2.59)

and the coeficients of the expansion C`i ,`sps,ps
are:

C`i ,`sps,ps
=
Z

dqs

Z
dqi�(qs, qi )

⇥
LGps`s (qs)

⇤⇤ ⇥LGpi`i (qi )
⇤⇤ . (2.60)

With these coefficients we determine the weights P`s,`i
ps,pi

=
���C`s,`i

ps,pi

���
2

of the superposition
of the LGp` modes in the wave function | i, which give us the joint detection proba-
bilities of one photon of the signal mode (`s, ps) and another photon of the idler mode
(`i , pi ). Figure 8 shows the calculated probabilities for the case where the pump beam
is Gaussian, hence `s + `i = 0 [48]. They used three configurations for the pump beam
diameter in their calculations. By analyzing these results, it is possible to observe that
the larger the diameter of the pump beam, the wider the spiral spectral distribution
becomes. A critical aspect of our application is that the decay of the coefficients follows
an exponential decay. This result is important in the preparation of the thermal state.

We will associate these exponential distributions to single-photon thermal states
for the OAM degree of freedom. For this, we can rely on the natural form of the OAM
distribution for photon pairs.

2.3.2 Experimental results for the remote state preparation of thermal states

There are several possible strategies for thermal state preparation in optical
systems, depending on the degree of freedom of interest. The references [35, 64]
implemented pseudo-thermal states from a laser with the technique know as Arecchi
wheel [65–67]. The beam is incident on a ground glass disk that rotates at a certain
speed. The propagation of light through the spinning disk produces a speckle pattern,
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Figure 8 – Figures (a), (b) and (c) show the theoretical probabilities [48] P`s,–`i
0.0 when

the pump beam is Gaussian, hence `s + `i = 0. Thus the weights are P`s,–`s .
Probability distributions were obtained for different values of wp = wp/

p
�L,

where wp and � are the width and wavelength of the pump beam and L is
the crystal thickness.

where the light collected within this pattern has a photon statistic similar to that of a
natural thermal source, where its second-order correlation g2(⌧) ! 2. However, it is a
mono frequency beam opposite the usual thermal light with a wide frequency range.
The advantage of employing a pseudo-thermal source from a laser is that the intensity
is much higher.

In our work, we wish to prepare thermal states involving the OAM. For this
purpose, we use the setup presented in figure 9, in which a laser of � = 405 nm
is incident on a nonlinear crystal (BBO - type I) and generates two beams with � =
810 nm, the signal and idler. The signal passes through a lens with a focal length
equal to 25 mm and is detected by an SPCM (single-photon counting module). On
the other hand, the idler beam passes through a similar lens and goes through an
SLM, then coupled to a single-mode optical fiber detected by the second SPCM. Each
SPCM generates an electronic pulse for every detected photon. The electronic circuit
implemented by an FPGA (Field Programmable Gate Array) receives the pulses to
checks the time interval between the arrival of the pulses in the signal and idler beam
detectors. When they arrive inside the window of 5ns, it is a coincidence count, i.e.,
meaning they are twin photons. The single-mode fiber, present in the path of the idler
beam, couples only modes with no orbital angular momentum, which means just LG0,0.
So it is used in conjunction with the SLM to perform the measurements of the orbital
angular momentum values.

For our measurements, we use the fact that the single-mode optical fiber can
couple only Gaussian modes (LG0,0), by doing that, we use the SLM to increase or
decrease the OAM by an arbitrary value by applying the desired hologram of phase. For
example, if the photon generated by the crystal has angular momentum ` = 2, we need
to generate a mask on the SLM that applies ` = –2 (a mask that reduces the OAM of
the incident beam by two units), reducing its OAM to zero, and then it can be coupled
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Figure 9 – The experimental setup used for the remote state preparation of thermal
states. We detect the signal beam with the detector completely open, which
means we do not discriminate any value of OAM. It is equivalent to perform
the partial trace at the system, making the idler a thermal distribution natu-
rally. To confirm it, we use an SLM to scan the OAM distribution applying the
–` operation to make the total ` = 0 and then couples it into a single-mode
optical fiber to be detected in coincidences.

into the fiber, allowing detection in coincidences. In order to measure the whole thermal
distribution, we scan ` from -10 to 10, recording the coincidence counts for every "–`"
applied. The SLM can also be used to apply quantum processes such as turbulence or
a Fresnel lens. Both types of masks have been applied to thermal states to study the
effects of these processes.

To produce the thermal state remotely, we used the entanglement of the twin
photons produced by the SPDC relative to the OAM. Detecting the signal photon, with
it utterly open before any process or measurement on the idler beam, is equivalent to
performing the partial trace on this subsystem. When measuring the idler at OAM basis
in coincidences with the signal, we obtained a thermal distribution according to figure
10.

The thermal distribution calculated in the reference [48], figure 8 has perfect
symmetry concerning the values of `, which we expect since the probabilities of the
thermal distribution (eq. 2.57) depend only on the modulus of `. However, the result
obtained in our measurements is not 100% symmetric, having small variations in the
rate of coincidences for measurements of the same |`|. This variation is due to exper-
imental errors in the measurement process, mainly the center of the hologram’s for
orbital angular momentum raising or decreasing.

As we want to check if our distributions are thermal, we fitted the experimental
data with a tentative function given by:

p` = ne–b(x+1), (2.61)

where x = |`|. Comparing with equation 2.57 leads to the following identifications:

n =e�h̄! tanh
�h̄!

2
b =�h̄!.

(2.62)
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Figure 10 – Thermal distribution measured according to the experimental setup in
figure 9. We perform the measurements using an SLM and single-mode
optical fiber in coincidences where we record the coincidence rates to
reconstruct the experimental probabilities P`i .

From parameter b we can find an effective temperature for our system:

T =
h̄!
kbb

. (2.63)

In the context of thermal distribution, the higher the temperature, the wider the dis-
tribution becomes, as the higher energy levels (or those with larger `) become more
populated. In this case, according to the equation 2.63, the smaller the b parameter of
the fit, the higher the system’s temperature.

The weights on the expansion in equation 2.60 [48], depends on the crystal
length and the pump beam width wp. The square modulus of the coefficients is directly
related to equation 2.61, from which we can calculate the parameters of the distribution.

We also analyze the average energy of each distribution according to:

hEi =
X

`

p(`)✏`, (2.64)

with p(`) being the thermal probabilities and ✏(`) being the energy of the `-th energy
level.

The results obtained will be separated into three subsections, production of
thermal states and consequent application of the following processes: (i) turbulence, (ii)
Fresnel lens, and (iii) variation of the detector aperture of the signal beam. We obtain
all results according to the setup of the figure 9. However, in each subsection, it will
be explained what differentiates each type of measurement performed. The error bars
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where omitted in all experimental plots as the statistics is the Poissonian and the errors
bars are the standard deviation of the coincidence counting rate, ie, the square root.

2.3.2.0.1 Turbulence

Using orbital angular momentum to encode information has advantages and
disadvantages over polarization qubits. The most significant advantage is that the
orbital angular momentum has infinite possible ` values, allowing coding information
more efficiently. However, several studies have shown that atmospheric turbulence
degrades the transversal modes, consequently degrading the information coded in
these modes [68–70]. H. Ibrahim et al. [70] already showed the degradation of the
wavefront with orbital angular momentum under turbulent processes. However, the
aspects of how a thermal distribution behaves under these conditions are still an open
subject. So, let us then analyze the effect of turbulence on the thermal states of OAM
from a thermodynamic point of view.

Our goal here is to check how turbulence would alter the thermal distribution and
consequently the average energy of the system. Consider the experimental apparatus
in figure 9. We know that the detection of a signal photon performs the remote prepa-
ration of a thermal state in the idler beam. To evaluate the effect of the propagation
of the idler through a turbulent medium, we can apply a phase mask before the SLM
used in the OAM measurement method. Several recipes show how to create a phase
mask that reproduces Komolgorov turbulence with controlled Fried parameter [71–73].
Furthermore, B. Rodenburg et. al [69] have shown that the turbulence mask can be
applied in superposition with the OAM masks for lifting and lowering it is ` with the same
SLM. In this way, we can perform two tasks in the same SLM. The turbulence used
initially had no noticeable effect on the distribution. This effect is likely a consequence
of the large difference between the length scales of the modulation and the beam size,
leaving the final hologram (turbulence + orbital angular momentum) almost intact. To
increase the effectiveness of the Turbulence, we modulate a phase mask where we
repeat the previous one in a grid where each mask had 1% of the original size. Figure
11 (a) shows a measured distribution without the turbulence mask applied. Figure 11
(b) shows the resulting distribution when the turbulence mask is applied. From the data,
we then calculate the average energy for the initial thermal state hEi = 3.89h⌫, and for
the state after applying the turbulent process hEi = 3.93h⌫.

For this modulation, we have not yet obtained any significant effects. We attribute
this to the fact that the mask has a small modulation relative to the beam diameter. We
then made new measurements by changing the size of the turbulence mask to 5% of
the original size instead of the 1% used in the previous measurements.

We show the measurements with the second turbulence mask in figure 12 (b).
The distribution obtained after turbulence still has a shape very close to an exponential.
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Figure 11 – Measurements of thermal distributions where (a) have no turbulence, as
we wish to calibrate the system. Figure (b) is with turbulence, where the
mask is composed of a grid where each element is a copy with 1% of the
original size.

Figure 12 – Measurements of thermal distributions where (a) have no turbulence, as
we wish to calibrate the system. Figure (b) is with turbulence, where the
mask is composed of a grid where each element is a copy with 5% of the
original size.

However, we can see that the modes with higher OAM have become slightly more
populated. Assuming that it is still possible to fit the distribution as a thermal distribution,
we can compare the values of b. In the absence of turbulence b = 0.33195 and with
turbulence b = 0.27467. In this case, we can relate this b variation to a temperature
increase in the distribution. The mean energy also had an appreciable change, as the
calibration curve had hEi = 3.66h⌫ and the distribution after turbulence had it is mean
energy increased to hEi = 4.79h⌫. The increase in temperature and mean energy
by the turbulent process is consistent with the expectation that this type of process
increases the system’s disorder.
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2.3.2.0.2 Fresnel Lens

Our OAM measurement procedure includes the coupling of a light beam to a
single-mode optical fiber that couples only Gaussian modes, whose waist, i.e., the
family of modes, is determined by the optical elements that we choose for the task.
Here, we employ a commercial system with a factory pre-aligned aspherical lens in our
setup, which couples Gaussian modes with a waist of about 2mm. We plan the whole
setup to fit these requirements.

In this measurement scheme, if we change the characteristics of the incident
OAM modes, we will measure the coverage of each mode of the incident family with the
modes defined by the measurement system, i.e., we will measure one element of the
decomposition of the new family of modes. For this reason, we tested another process,
implementing lens at the system, as it will changes the structure of the modes and can
be seen as a squeezing [19] type operation.

We applied Fresnel lenses through the same SLM that we implement the OAM
measurement scheme to the turbulence process, avoiding the need for complicated
realignments of the system every time we change the lens, as it would be for a physical
optical element. We used focal lengths of 1 and 1.5 m. We chose these values as the
distance between the SLM, and the fiber coupler is approximate ⇡ 1.27m. Thus, we
have one situation where the focal length is smaller (1 m) and another where it is larger
(1.5 m) than the distance between the SLM and the coupler.

Figure 13 – The results for the calibration curve before the Fresnel Lens measure-
ments.

The calibration curve (with no process) is shown in figure 13. The fit parameter
b of the thermal distribution without process (bterm ' 0.27) is smaller than the values
obtained with the Fresnel lens of 1m (b1 ' 0.49) and 1.5m (b1.5 ' 0.39). Since the
distributions obtained by applying the process are still in the form of thermal distribution,
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Figure 14 – Measurements for the process using Fresnel lenses. Figure (a) represents
the situation where the focus is smaller (1m) than the distance between the
SLM and the fiber coupler. Figure (b) represents the situation where the
focus is larger (1.5m) comparing this distance. The measurements were
performed according to the setup in figure 9.

a possible interpretation would be cooling. Corroborating this interpretation is the fact
that the average energies also decrease:

• hEtermoi = 4.21h⌫

• hE1i = 3.22h⌫

• hE1.5i = 3.52h⌫.

Observing the results, we can conclude that this implementation will reduce the
temperature of the distributions. However, even being a simple way of implementation,
its utility and control are not helpful. A more effective manner of controlling it would be
changing the beam waist of the pump, even if the realignment of the whole system is
complicated. Despite if the objective of change the temperature of beam distribution is
not accomplished, we can still interpret the meaning of changing the family of modes
in terms of thermodynamics. Using the analogy of paraxial wave equation and the
Schrödinger’s equation, as described in section 2.2.3, this change of family of modes
can be related to a change of the potential of 2D harmonic oscillator [19].

2.3.2.0.3 Variation of the detector aperture in the signal beam

In the measurements performed so far, the signal beam detector remained com-
pletely open. It was used only to announce the presence of a photon in the idler beam.
Leaving the detector completely open in this case is equivalent to performing the trace
over all the orbital angular momentum states of this subsystem. However, if we close
it, we start to select which values of OAM can pass through the aperture, meaning that
we perform the partial trace over it.
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The goal of the measurements described in this section is to verify if we can
use the detector aperture as a parameter to control the idler photon’s state. Figure 15
shows the results of measurements of the OAM distribution in the idler beam when the
signal detector is fully open (calibration) (a), with 0.58mm (b), 1mm (c) and 1.5mm (d)
apertures.

Figure 15 – Figure (a) represent the calibration measurement. Figures (b) to (d) are
the situations where we vary the detectors aperture, where (b) is 0.58mm,
(c) is 1mm and (d) is 1.5mm.

Calibration 0.58 mm 1 mm 1.5 mm
b 0,333 ± 0,026 0,613 ± 0,021 0,604 ± 0,015 0,484 ± 0,017

Table 1 – Evolution of the curve fitting parameter according to the detector opening in
the signal beam. It is possible to observe that as the aperture decrease, we
select just smaller values of OAM, cooling the distributions, as the tempera-
ture is the inverse of b.

The results indicate that the distributions still follow an exponential decay law and
indicate that we can still interpret them as thermal distributions. By analyzing b at 1, we
can see that, as we decrease the aperture size, b grows, meaning that the temperature
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of each distribution tends to decrease. This behavior is in line with the expectation that
a smaller diameter aperture will exclude modes with larger OAM.

We are now performing a partial trace of the signal by selecting some modes
according to their sizes. The distributions are still thermal, making this method an
exciting choice to decrease the temperature and, consequently, the average energy’s
distribution for the desired applications.

2.4 CONCLUSIONS

This work demonstrates that it is possible to implement remote preparation of
thermal states in OAM using the quantum spiral bandwidth that comes naturally from
spontaneous parametric down-conversion. We show how to control the distribution’s
temperature by changing the beam diameter and the detector’s aperture at the signal
beam. We demonstrate that a Fresnel lens at the SLM is not a suitable tool for tem-
perature control even with its easy application. We studied how turbulence affects the
thermal distribution, making it a hotter distribution.

The remote preparation of a thermal state is relevant as it aids in preparing
systems that can study quantum thermodynamics out of equilibrium using Jarzynski
fluctuation relations (eq. 2.45), as they require the initial state of the system to be
thermal. As parametric down-conversion allows creating these distributions in the single-
photon regime, it can be applied in a range of applications in photonic systems. Since
they are relatively well-controlled and their manipulation is not as complicated as other
systems, such as neutrons, atoms, and ions, they require complicated apparatus to trap
and control them.

This field is being a vital line of research at GIQSUL (Grupo de informação
quântica do Sul do Brasil - Southern Quantum Information Group), where in the last
years Araújo et al. published the Work Distribution for Optical Vortices Using the Two-
Measurement Protocol [20] (which was described in section 2.2.3), a review of quantum
thermodynamics with linear optics by G. L. Zanin et al. [19] and, an experimental study
of the generalized Jarzynski fluctuation relation using entangled photons by P.H. Souto
Ribeiro et al. [21].
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3 FIBER-BASED PHOTONIC FEED-FORWARD

In the 2000s, Knill, Laflamme, and Milburn (KLM) [74, 75] showed that it is
possible to implement quantum computation with linear optics, nowadays know as
Linear optical quantum computing (LOQC), by using only beam splitters, phase shifters,
single-photon sources and photo-detectors, optical elements that are widely available
for more straightforward implementation. This proposal eliminated the need for non-
linear coupling between photons. However, for a universal quantum computing protocol,
it needs to be able to perform all quantum gates, and the CNOT gate in this proposal is
non-deterministic, having a probability of success of 1/16 [76]. An alternative proposal
is the ’one-way’ [77–79] or ‘measurement-based’ quantum computation (MBQC) [80],
where this scheme uses entangled states to create the "cluster-states" [81, 82], in
which allows the implementation of any unitary quantum logic operation.The interest
and applications of LOQC by the community is significant as it can be implemented in
an extensive range of applications as quantum network [83], quantum teleportation [36,
84, 85], remote state preparation [86], quantum error correction [87], improving photon
sources [88, 89], quantum metrology [90], quantum data compression [91], experiments
that require an outcome of an earlier measurement to apply conditioned a quantum
operation [92–94].

The usual approach for MBQC and feed-forward is by the use of Pockels cells
[36–39], which are devices that act as waveplates that you can control it by applying
the appropriate electric field, i.e., voltage. However, the calibration is quite complicated,
and usually, it requires high voltages (kV) to operate, besides the fact that we need
three Pockels cells to transform an initial state in polarization to any other desired one
inside the Bloch sphere, making the calibration and control even more complicated.

In order to solve this problem, we developed a method using ultrafast optical
(electro-optic) switches (UFOS) in a fiber-based proposal that applies to the existing
telecom network. The UFOS are wave-guide components with two inputs/outputs in op-
tical fibers conditioned on a triggering signal, can switch between parallel and crossed
input/output paths, allowing us to route the photons in a multi-path setup for imple-
menting different unitary operations using standard and stable optics as waveplates. It
allows us, for example, to implement a linear cluster where the state will be prepared
conditioned to the heralded signal.

To characterize our fiber-based feed-forward technique, we choose the remote
state preparation of a single-photon using polarization as a degree of freedom. We
perform the remote state preparation using a maximally entangled state in polarization,
i.e., a Bell state, as the initial state, and the idler is projected onto a given polarization
state. This projection prepares the state of the signal remotely. However, we are on a
two-dimensional basis, meaning that we have two possibilities of projection, the desired
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one and an orthogonal one, consequently the same two options for the remote state.
As a result, the remote state preparation is a probabilistic process leading to fidelities
of 50% concerning the target state. Furthermore, we route the wrong photons to be
corrected with our method, allowing us to arrive at fidelities higher than 90% when
we do not correct the imperfections of the entangled state generation, i.e., when we
compare with the theoretical Bell state. When we calculate the fidelities using the two-
photon state that we generate experimentally, we obtain an average of (99 ± 1)% of
fidelities.

In this chapter in section 3.1, we describe the theory behind the Bell states
generation, the theory of remote state preparation, a complete description of the real
and complex families of states, and the relative unitary transformation used in the
correction procedure, the theoretical and experimental method for partial projection
of the two-photon state, and a description of the UFOS as they are the core of the
technique. In section 3.2 we present the experimental results. In section 3.3 we present
the conclusions of our work. All the results that we present here are published in G.
Zanin et. al [95].

3.1 FUNDAMENTAL CONCEPTS

This section discuss some fundamental aspects of SPDC using polarization as
a degree of freedom. We discuss the theory between our feed-forward protocol, the
theoretical description of every family of states, and it is relative unitary operation for
state correction. We describe the methodology that we use to project our theoretical
and experimental states to calculate the fidelities to certify the quality of the states we
produce.

3.1.1 Spontaneous Parametric Down Conversion using polarization as Degree of
Freedom

In Chapter 2, we describe the SPDC focusing on the transverse degrees of
freedom. However, now we choose polarization as the degree of freedom and develop
the theory of SPDC for the maximally entangled states, know as a Bell states. In our
development of the theory, we follow the same procedure as [96].

To our description, we will assume that the pump field is quantized and we are at
the nondegenerate case. In this regime, we can write the interaction Hamiltonian (ĤI)
of our system:

ĤI ⇡ �2âpâ†sâ†i + h.c., (3.1)

where �2 is the second-order nonlinear susceptibility, âp is the annihilator operator for
the pump and â†s (â†i ) is the creator operator for the signal (idler) and the h.c. is the
hermitian conjugate. We will focus on the case when the signal and idler are initially at
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a vacuum state |0i. In this situation, the signal and idler photons are created when the
pump annihilates a photon:

|1ip |0is |0ii ! âpâ†sâ†i |1ip |0is |0ii = |0ip |1is |1ii . (3.2)

This process is spontaneous and the signal and idler photons are created at the same
time, this is why they are commonly know as twin-photons.

Because of the energy conservation we have:

!p = !s +!i (3.3)

and the momentum conservation:

kp = ks + k i . (3.4)

These equations are known as "phase matching" conditions, and they occur inside
nonlinear media where the non-linear coefficient �2 is big enough to not be negligible,
like the BBO (Barium Borate) crystal. There exist three types of crystal: (i) type-0,
where the pair have the same polarization as the pump, (ii) type-I, where the pair have
orthogonal polarization concerning the pump and (iii) type-II, the pair have orthogonal
polarization between each other. Here in our description, we work with a type-2 crystal.

The BBO crystal is a birefringent media, which means that the refractive index
depends on the polarization of the light. The usual nomenclature for these refractive
indexes is the ordinary (o) and the extraordinary (e). For type-II, every refractive index
produces a different cone of light. Figure 16 (a) shows a diagram that represent this
emission. In this case, each cone is related to one polarization, i.e., horizontal and
vertical ones.

If we choose to filter the intersection region, as represented by the small circles
at the intersections in Figure 16 (b), we are at one regime where we have no knowledge
from which cone the photon came from, it prevents us from having previous knowledge
about the polarization of each photon. It is a crucial part of the alignment as our goal is
to obtain a Bell state. Otherwise, we would be in a situation where we have an entangled
pair of photons where the signal and idler have fixed polarization. At the intersection
point, the interaction Hamiltonian (ĤI) becomes:

ĤI = h̄⌘
⇣

â†Vsâ†Hi + â†Hsâ†Vi

⌘
+ h.c., (3.5)

where â†Xy is the creator operator for the X (horizontal/vertical) polarization and for the
y (signal/idler) beam. In this Hamiltonian, we implement the parametric approximation.
It consists of a situation where the SPDC process has a low probability, so we can
consider the pump beam classical, and the fact that it is depletion can be ignored. In
the parametric approximation, we take ⌘ / �2✏p, where ✏p is the classical coherent
field of the pump.
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Figure 16 – Figure (a) represent the cones of light emitted by a type-II crystal. Figure
(b) is a perpendicular representation of the cone where the signal and idler
photons are chosen to be at the intersection.

As mentioned before, we focus our attention on the situation where the signal
and idler initial state is the vacuum:

| 0i = |0iVs |0iHs |0iVi |0iHi . (3.6)

The evolution of this state is:

| (t)i = exp

(
–iĤI t

h̄

)
| 0i . (3.7)

The interaction Hamiltonian from equation 3.5 have no temporal dependence. In this
case, we can perform the Taylor expansion of the exponential:

| (t)i ⇡

2

41 –
–iĤI t

h̄
+

1
2

 
–iĤI t

h̄

!2

+ · · ·

3

5 | 0i (3.8)

This expansion is necessary to perform the calculation of how this Hamiltonian operates
into | i0.

We will do the calculation of every order separately using the following notation:

|0is = |0iVs |0iHs

|V is = |1iVs |0iHs

|His = |0iVs |1iHs ,

(3.9)

and µ = t⌘. The first therm is just the vacuum state | 0i. The first order is:

–iĤI t
h̄

| 0i = –iµ
�
|V is |Hii + |His |V ii

�
. (3.10)
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The therms related to the h.c part of equation 3.5 are zero. The second term of the
expansion is:

1
2

 
–iĤI t

h̄

!2

| 0i = –
1
2
µĤI t

h̄
�
|V is |Hii + |His |V ii

�

=
–µ2

2
�
|2V is |2Hii + |2His |2V ii + 2 |V is |His |V ii |Hii + |0is |0ii

�

=
–µ2

2
|0is |0ii .

(3.11)

Here we drop all terms with orders higher than µ2 except the vacuum therm that
represents the situation where the photon is created and annihilated again by the
media, creating a higher-order process. This part came by the h.c. part of equation 3.5.
However, it is a process with a low probability.

Substituting equations 3.10 and 3.11 into equation 3.8 we obtain:

| (t)i =

 
1 –

µ2

2

!
|0is |0ii – iµ

�
|V is |Hii + |His |V ii

�
. (3.12)

By analyzing equation 3.12, we can see that the first therm represents the situation
where the signal and idler are still at a vacuum state. The second term is the important
one, as it represents the state that came by SPDC for a type-II crystal where we are
working at the intersection points of the cones. Normalizing this therm, we then obtain
one of the Bell states that are maximally entangled:

�� +↵ =
1p
2

�
|V is |Hii + |His |V ii

�
. (3.13)

The four bell states are:

�� ±
↵

=
1p
2

�
|V is |Hii ± |His |V ii

�
, (3.14)

and ���±↵ =
1p
2

�
|His |Hii ± |V is |V ii

�
. (3.15)

This Type-II source is capable of produce all four Bell states by using additional
wave plates. To go from a | i to a |�i state, we can set a half waveplate at 45°at one
of the arms. By doing it we transform the photons from |Hi (|V i) to |V i (|Hi). Using a
quarter waveplate, we can set the relative phase at the pump and tune the ± signal at
equations 3.14 and 3.15. It is also possible to produce these states using two type-I
crystals by adjusting the relative configuration between both crystals (their ordinary axis
need to be at 90°) and by using additional wave plates.
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3.1.2 Remote state preparation

This work aims to produce a post-selection-free remote state preparation in the
single-photon regime. Our task is to produce a single-photon state at the signal. For this
purpose, we project the idler into a polarization state to remotely produce the signal’s
state. However, as our degree of freedom has two dimensions, we have two possibilities
of states for the idler, and consequently, two for the signal. It means if we do not post-
select, our results are right 50% of the time. This section describes the procedure for
the state correction to have all photons at the desired state.

When we perform a projective measurement in polarization at the idler we have
these two possible states:

| ii = ↵ |Hii + � |V ii (3.16)

or ��� ?
E

i
= ↵ |V ii – �⇤ |Hii , (3.17)

where:

↵ = cos
✓

2

� = sin
✓

2
ei�.

(3.18)

To obtain these states, we project one of the sides of the bi-photon state into an-
other polarization state using a half waveplate (HWP) and a quarter waveplate (QWP),
and we split the projections into the states | i and

��� ?
E

using a polarization beam-
splitter (PBS), where they are related to the vertical and horizontal ports respectively.
Although we chose the initial state of our system to be a singlet Bell state  –, because
of the entanglement, when we project the idler into one polarization state, we remotely
prepare the signal state as:

| is =
D
 ?
���
i
| –i = ↵ |His + � |V is (3.19)

or ��� ?
E

s
= h |i | 

–i = ↵ |V is – �⇤ |His (3.20)

As our initial state is a | –i, by projecting the idler into a know polarization
state and detecting it, we know the signal state without the need to measure it. With
the knowledge of the actual state, we can decide to do nothing if we already have
the correct state, mathematically represented by the identity operation UA = 1, or we
correct the state by implementing a unitary operation UB. By doing that, we guarantee
that our photons are always at the state | is:

if

8
><

>:

| ii =
��� ?

E

i
! 1 | is = | is ,

| ii = | ii ! UB

��� ?
E

s
= | is .

(3.21)



Chapter 3. Fiber-based photonic feed-forward 59

It is essential to mention that there is no universal operation UB that would correct any
unknown state [97]. Because of this reason, we chose two families of states to work
with. The first family is the one that we call "real projection", where we focus on states
at the meridian plane (HDVA) of the Bloch Sphere. The second one is the "complex
projection", where the states are at the sphere’s equatorial plane (DRAL) plane. We
provide better details of every family, and it is respective UB in the following subsections.

3.1.2.1 Real projection - meridian plane

We create the "real states" using an HWP and removing the QWP at the idler
projection station. With these configurations of waveplates, we obtain the following
states:

| ii = cos
✓

2
|Hii + sin

✓

2
|V ii . (3.22)

and ��� ?
E

i
= cos

✓

2
|V ii – sin

✓

2
|Hii . (3.23)

The ✓ here is the angle of the projection. However, we can relate the angle of the state
✓ with the angle the HWP ✓0 as:

✓ = 4✓0, (3.24)

by setting the HWP from 0°to 90°, we perform a complete round at the Bloch sphere
at the HDVR plane.

We need find the UB that transforms the equation 3.22 into equation 3.23⇣
| i = UB

��� ?
E⌘

. First we need to do the following transformation |Hi , |V i at
��� ?

E
,

it can be done by implementing �x , as:
��� ?

E
= cos

✓

2
|Hi – sin

✓

2
|V i . (3.25)

We still have a wrong sign for the |V i state. The way of changing it without changing
|Hi is implementing �z , then we have:

�z�x
��� ?

E
= cos

✓

2
|Hi + sin

✓

2
|V i = | i . (3.26)

For the real states we found the UB that fix the orthogonal state. We can write UB as:

�z�x =

"
1 0
0 –1

#"
0 1
1 0

#
=

"
0 1
–1 0

#
= i�y . (3.27)

We then obtain UB = i�y . With a QWP, HWP, and another QWP, it is possible to
implement a unitary operation that transforms one state to another arbitrary point inside
the Bloch sphere. In the experimental section, we provide details about the experimental
implementation of this unitary operation.
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3.1.2.2 Complex projection - equatorial plane

For the complex states at the equatorial plane of the Bloch sphere, we have
✓ = 90°. With ↵ and � from equation 3.18 we have the following states:

| ii =
1p
2

h
|Hii + ei� |V ii

i
(3.28)

and ��� ?
E

i
=

1p
2

h
|V ii – e–i� |Hii

i
. (3.29)

We can prepare these states by setting the QWP at 45°and, vary the HWP from 22.5°
to 90°, where we perform a complete round at the DRAL plane. Here we can relate the
angle for the HWP ✓0 and � as:

� = 4(✓0 – 22.5°) (3.30)

The algorithm to correct the state is similar to the one for the real projections.
However, we need to take care that now we have a phase on |V i. First we implement a
�x to |Hi , |V i:

�x
��� ?

E
=

1p
2

h
|Hi – e–i� |V i

i
. (3.31)

Here we have two problems now: (i) the negative sign of |V i and, (ii) the relative phase
is with a opposite signal in relation to | i. In order to solve both problems we implement
�y :

�y�x
��� ?

E
=

ip
2

h
|V i + e–i� |V i

i
. (3.32)

Now we have a global phase i = e
⇡
2 and the phase at |Hi, still with the opposite sign.

For our work, a global phase is not a problem, so we can isolate the e–i� at |Hi. We
also multiplied both sides by –i , then we obtain:

i�y�x
��� ?

E
= –

e–i�
p

2

h
|Hi + e+i� |V i

i
= e–i(�–⇡) | i . (3.33)

We wrote the negative signal in a polar form to sum with the previous phase, and then
we found the global phase e–i(�–⇡). We can write the product of �y�x as:

i�y�x = i

"
0 –i
i 0

#"
0 1
1 0

#
=

"
1 0
0 –1

#
= �z . (3.34)

We then obtain UB = �z as the unitary operation that corrects the perpendicular states
at the equator line of the Bloch sphere.
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3.1.3 Projecting a two-photon state

This section describes the algorithm we used to predict the single-photon state,
considering that the initial state is a theoretical Bell or a two-photon experimental state.
First, nevertheless, we need to write the density matrix of our state:

⇢– = | –i h –| =

2

66664

0 0 0 0
0 0.5 –0.5 0
0 –0.5 0.5 0
0 0 0 0

3

77775
. (3.35)

Using the Jones formalism, we can write the operator that rotates our initial state at the
idler project station:

Roti = HWP(✓0)QWP(�), (3.36)

where the matrix that represents an HWP that is rotated ✓°from the horizontal axis is:

HWP(✓) =

"
cos2(✓) – sin2(✓) 2cos(✓)sin(✓)

2cos(✓)sin(✓) sin2(✓) – cos2(✓)

#
(3.37)

and for the QWP we have:

QWP(✓) =

"
cos2(✓) + isin2(✓) (1 – i)cos(✓)sin(✓)
(1 – i)cos(✓)sin(✓) sin2(✓) + icos2(✓)

#
. (3.38)

Here we omit the phases that the waveplates create as they do not disturb our system.
The projection operators are for a single-photon state, so we need to increase its rank
as:

Rot2D = 1 ⌦ Roti . (3.39)

This procedure is necessary for all-optical elements in the Jones formalism. We will use
2D as a notation when we increase the matrix operator’s rank.

We perform the density matrix projection as:

⇢rot = Rot2D ⇢ Rot†2D. (3.40)

Now we need to split the polarization components as in a PBS. It can be done mathe-
matically by using the H and V polarizers for a single photon state as:

PolH =

"
1 0
0 0

#
; PolV =

"
0 0
0 1

#
. (3.41)

We use ⇢H as notation for the state remotely prepared at the signal when the idler
leaves the horizontal output at the PBS, and ⇢V if it leaves the vertical output. To
perform this calculation, we need first project ⇢proj at PolH2D and PolV2D to splits its
polarization components as:

⇢X = Tridler (⇢rot PolX2D) , (3.42)
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Figure 17 – In this figure, we show a schematic version of the UFOS operation. It has
two inputs(1/2) and outputs (1/2), and at the ground state configuration,
it operates, in what we call bar-state, where the photons are sent to the
respective output (1 ! 1). When we send a pulse to the UFOS, it switches
and goes to the cross-state where we have the input/outputs crossed (1 !
2), i.e., the photons that arrive from one leave on two and vice-versa.

where X is H\V and Tridler is the partial trace over the idler subsystem. The resulting
state is a single-photon state for the signal. Therefore we need to normalize both single-
photons density matrices as:

⇢X
norm =

⇢X

Tr (⇢X )
. (3.43)

We can now relate the H\V clicks at the idler projective station as | ii \
��� ?

E

i
.

Comparing it to equation 3.21 we can see that when the detector at the V output clicks
we already have the right state at the signal side (⇢V

norm), meaning it need no corrections.
However, if we have an H click we need to implement UB to correct ⇢H , as:

⇢H
corrected = UB ⇢

H
norm U†

B. (3.44)

The final state at the signal arm is the sum of both components as:

⇢final =
1
2

⇣
⇢H

corrected + ⇢V
norm

⌘
. (3.45)

3.1.4 Ultrafast Optical switches

In this section, we describe the functioning of the Ultrafast optical switches
(UFOS). This device is the core of our feed-forward technique that allows us to efficiently
rout the photons through the path that implement the desired unitary transformation.
They are a wave-guide device that has two inputs/outputs of mono-mode optical fibers
and, depending on the voltage applied it can cross the paths as shown in Figure 17.

The device we choose is the 2x2 in-fiber ultrafast optical switches from the
BATi 2x2 Nanona switch, developed for � = 1550 nm. It can operate with a maximum
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Figure 18 – Here we show one of the tests made to characterize the UFOS functioning.
We couple a � = 1550 nm laser into Input 1 (yellow curve), where we
detect the light at one photodiode on input 1. It means we are maintaining
the UFOS at bar-state. Then a single-photon detector clicks, generating a
pulse that is the purple curve. The FPGA (field-programmable gate array)
reads the pulse, and then it generates a TTL pulse (green curve) sent to
UFOS to switch to the cross-state. The whole light is now at the blue curve
at the cross-state, the signal from a photodiode in output 2.

repetition rate of 1 MHz and has a response time of approximately ⇡ 60 ns, and
across-channel of 20 dB for polarization. However, it has unbalanced losses that are
approximately ⇡ 1.3 dB. This unbalanced loss appears from the fact that the fiber-
splices and fiber coupling at the waveguide. We perform this characterization with
classical light and photodiodes.

Figure 18 demonstrates a tests with classical beam. However, they operate
well in the single-photon regime. The limitations that we found are that they are not
developed to have intense beams at the two inputs simultaneously, and the 1 MHZ
repetition rate is a limitation for higher statistics. They have shown to be suitable to our
or purposes, that is, the remote state preparation of the single-photon level, presented
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in this chapter, and the photonic Maxwell’s Demon that we describe in chapter 4.

3.2 EXPERIMENTAL RESULTS

This section describes the experimental methodology for the remote state prepa-
ration at the single-photon level using the UFOS. When we project to any desired basis,
we have the projection we want and an orthogonal one, as we have a bi-dimensional
system. To archive this goal, we have two possibilities available: first, post-select the
events we want, ignoring the others, losing a big part of our photons with this option.
The second one is to correct the wrong states using the method described theoretically
at section 3.1.2. We choose the second option, where we implement it using the setup
from Figure 19.

Here we produced our initial state | –i, as in figure 19 (b), using a ppKPT Sagnac
source with polarization as a degree of freedom. For this type of source, we send a
laser beam with � = 775 nm through the polarization Sagnac interferometer, where
the initial polarization of the pump is at 45°. The beam is focused, and a PBS splits
the polarization components of the pump, where the horizontal component (clock-wise)
transmits and passes through the type-II ppKPT crystal. It produces a pair of photons
in a colinear regime, and we rotate the polarization of the pair in 90°, then the PBS
divides the photons through a deterministic path in polarization. The pump’s vertical
component (anticlockwise) is rotated into a horizontal polarization before it shines the
crystal. However, we do not rotate the polarization of the pairs of photons. By rotating
the polarization of the pairs in one direction of the interferometer and not in the other
creates the pairs as |HV i ± |VHi and makes them indistinguishable. The pump will
always hit the crystal with a horizontal component and leave the interferometer in the
upper output of the PBS, and then a dichroic mirror reflects it is wavelength but leaves
the photons at 1550 pass. The pump is a CW laser where we use it with an average
power of ⇡ 80 mw . After the PBS, we filter the single-photons with bandpass filters with
a full width half maximum bandwidth of 3.2 nm. We then couple the photons into single-
mode optical fibers (SMF28). This configuration generates around 85 kHz singles with
a 17 kHz coincidence rate, being approximately 20% of efficiency.

We send the pair of photons to the setup as in Figure 19 (a). First, the idler goes
to the projective measurement station (orange box) to remotely prepare the signal’s
state, where we implement the projection collimating the photons in free-space inside
a Thorlabs fiber u-beach, where we chose the projections by using a QWP and an
HWP to them split | ii and

��� ?
E

i
at the PBS. We couple the photons again at the

single-mode fibers to be detected by two superconducting nanowire single-photon
detectors (SNSPD) from PhotonSpot Inc, where they have ⇡ 90% efficiency and 50
ns deadtime for � =1550 nm. The pulses produced by the SNSPD are then sent
to a commercial time tagging module (TTM) from UQDevices to record the single
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Figure 19 – Figure (a) shows the setup for the remote state preparation at the single-
photon level using the UFOS. We prepare a | –i state in (b), then we
sent the idler through the projective measurement station (orange box),
where using a QWP and an HWP, we project it into the desired state. The
coincidence logic receives the signals from the photons detected at |Hi
or |V i output of the PBS, conditioned to who clicks the coincidence-logic
send the signal for the UFOS to route the photons through path A or B,
depending on if it needs or not to be corrected. The signal photons pass
through a delay line, and then the UFOS1 route it to UA or UB, UFOS2
routes the photons to the quantum state tomography (purple box), where
we measure the single-photon density matrix to verify if all photons are
arriving at the same state. In (b) we use a laser with � = 775 nm through a
ppKPT Sagnac source [98] to produce the | –i state at � = 1550 nm.

pulses and analyze the coincidence counts. As a result, we record around 50 kHz
singles at the projective measurement station and 30 kHz singles at the quantum state
tomography with approximately 3 kHz coincidence rate. This decay of the numbers is
mainly because of the losses present at the two switches, the u-benches for the unitary
operations and the u-bench for the projective and quantum state tomography station.

Here the clicks at the detector in the vertical output of the projective measure-
ment station (idler) mean that we already prepared the signal photons at the desired
state | is, as the theory in section 3.1.2, and the unitary operation UA that we imple-
ment is identity 1. However, if we have a click at the horizontal output, it means that
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the state of the signal needs to be corrected using UB. The TTM is the device that
implements the logic to deterministic decide when the state of the signal needs to be
corrected or not. However, for this operation, we need to delay the signal photons to
guarantee that the UFOS are ready every time that the photon from the signal beams
arrives. The delay line we used is with 162 m of optical fibers. The physical delay is big-
ger than we need, but we can easily delay the pulse to control the UFOS electronically.
It helps us to be more precise when we synchronize the whole experiment.

Here we need to be able to choose between the unitary operation UA or UB
conditioned to the prepared state. There are two usual ways of doing it, or we can use
Pockels cells [36–39, 79] to implement the operations leaving the path fixed. On the
other hand, we take another path to implement our feedforward scheme, leaving the
unitary operations UA and UB fixed and routing the photons to the correct one. We take
this path as our system is fiber-based with SMF28 fibers allowing this technique can be
applied to the existent telecom infrastructure. However, we use a free-space component
in our setup for the unitary’s transformation implementation inside the u-bench system.
We choose it by its stability, which creates losses around 0.7 dB, smaller than those
present at the UFOS ⇡ 1.3 dB. Using two UFOS, we implement this re-routing logic,
where the photons arrive and leave at the correct input/output independently of the
state of the idler. If the signal is at the right state (V click), we leave the UFOS at bar-
state, and the photon passes through the upper path where we implement UA = 1 by
removing the waveplates and then sent to the quantum state tomography. However, if
the H detector clicks, the TTM sends a TTL pulse (square pulse of 5V high) of 700 ns to
the UFOS1 and 2 to switch then to the cross-state. The UFOS1 sends the photon to UB,
where it is corrected, and UFOS2 returns the photon to the quantum state tomography.
By implementing the correct UB, by our detection scheme, it is not possible to know
if the signal state was initially at | is or

��� ?
E

s
. This is the core of our fiber-based

technique to implement the feedforward for the single-photon state preparation.
Figure 20 illustrates how the protocol works reconstructing the single-photon

density matrix [99] of the signal state. Initially the idler state is measured in the (|Hi ±
|V i)/

p
2 basis. All plots from figure 20 illustrates the same projected state. However,

for (a) and (d), we post-select the results with the clicks at the horizontal output of the
PBS at the projection state, for (b) and (e) we post-select with the reflected port at the
PBS and, (c) and (f) is the complete single-photon tomography. For the results without
feed-forward (a) to (c), we can see that at (a) (H - click for the idler) the signal state
collapses to (|Hi– |V i)/

p
2 and at (b) (V - click for the idler) it collapses to (|Hi+ |V i)/

p
2.

As we perform no feed-forward, the result at (c) is when we consider both contributions,
result in a mixed state. However, with feed-forward active, we can see that we have the
same state, besides experimental imperfections for the corrected state (d), (e), and the
complete state at (f).
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Figure 20 – Here we have the real part of the single-photon density matrices without
(a) to (c) and with (d) - (f) feed-forward. The imaginary part was omitted as
it is close to zero for all cases. H (V) tomography is the case when we post-
select the coincidences at the projective measurement station. Complete
tomography is when no post-selection is performed.

To perform the data analysis of all experimental results, we first reconstruct the
two-photon density matrix as [99], where we perform all combinations of measurements
(36) between the two photons on a linear, diagonal and circular basis. For the single-
photon density matrix reconstitution, we also perform the measurements in these three
bases. The table 2 shows the angles of the QWP and HWP for all measurement sets,
and it is combinations.

We then project the | –i state using the method of section 3.1.3 to obtain the
single-photon state that we measure at the end. We then calculate the fidelity of the
theoretical and the experimental state to evaluate how similar our state is to the desired
one. The definition of the fidelity between two arbitrary density matrices ⇢ and � is [100]
:

F (⇢�) ⌘ Tr
qp

⇢�
p
⇢. (3.46)

One important property of the fidelity is that it is symmetric.
We first compare the results of both families of states with the measurements

when no feed-forward is applied, as in figure 20 (c), as discussed before, if we implement
no feed-forward, we have a mixed state, then we found an average fidelity of (49 ±
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Single-Photon
Measurement Set

Two-Photon
State Tomography

(1) 0°HWP , 0°QWP QST PM
(2) 0°HWP , 45°QWP (1) 0°HWP , 0°QWP 0°HWP , 0°QWP

(3) 22.5°HWP , 45°QWP (2) 0°HWP , 0°QWP 22.5°HWP , 45°QWP
(3) 0°HWP , 0°QWP 0°HWP , 45°QWP

(4) 22.5°HWP , 45°QWP 0°HWP , 45°QWP
(5) 22.5°HWP , 45°QWP 22.5°HWP , 45°QWP
(6) 22.5°HWP , 45°QWP 0°HWP , 45°QWP

(7) 0°HWP , 45°QWP 0°HWP , 0°QWP
(8) 0°HWP , 45°QWP 22.5°HWP , 45°QWP
(9) 0°HWP , 45°QWP 0°HWP , 45°QWP

Table 2 – Set of waveplate angles used to perform the single-photon and two-photon
quantum state tomography. Here PM means projective measurement and
station and QST quantum state tomography station.

2)% for both measurements. We then calculated the fidelities of the theoretical and
experimental states obtaining an average fidelity of (91 ± 1)% and (92 ± 1)% for
the real and complex states, respectively. These fidelities came from the fact that the
fidelities of our two-photon state and the | –i is around (92 ± 1)% and its purity it is (89
± 2)%, this error came by the fact that the polarization compensation was complicated
for this setup as we have several paths and specific points where we need to have the
polarization corrected, making the final two-photon state, not a "perfect" Bell state.

However, our main objective is to characterize our fiber-based feed-forward tech-
nique using the UFOS to see if it is suitable for the task and not create a perfect Bell
state. For this reason, we projected the experimental two-photons density matrices into
the states, as in section 3.1.3, to predict the projected state. With this prediction, we
calculate the fidelity of this state compared to the single-photon experimental states
with our feed-forward protocol. By doing that, we remove the errors relate to state gen-
eration. As a result, we increased our fidelities to (99.0 ± 1)% for both measurement
sets.

In the following two subsections, we present the results for the two families of
states described in section 3.1.2. Then, in section 3.2.1 we show the results for the real
states, where the states are at the meridian of the Bloch sphere, and in section 3.2.2
we present the results for the complex states, the ones at the equator line of the Bloch
sphere.

3.2.1 Results for the Real projection

Here we present the results for the projection under real states, the meridian of
the Bloch sphere, where we have the following states:

| ii = cos
✓

2
|Hi + sin

✓

2
|V i

��� ?
E

i
= cos

✓

2
|V i – sin

✓

2
|Hi .

(3.47)
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Figure 21 – In (a) we have the real part of the density matrix of equation 3.49 , and in
(b) is the imaginary part.

Experimentally we obtain these states by removing the QWP and varying the HWP
from 0°to 90°at the projective measurement station. Here is essential to note that as
the projection is the product of a QWP and an HWP, just setting the QWP as 0°has a
different effect as removing it. The unitary operation is UB = i�y , where we implement
it with the following waveplate angles:

i�y = QWP(90°)HWP(45°)QWP(0°) = ei ⇡4

"
i 0
0 1

#
e–i ⇡2

"
0 1
1 0

#
ei ⇡4

"
1 0
0 i

#

=

"
0 –1
1 0

#
,

(3.48)

where the fast axis of the waveplates is at H.
The measurements of both sets were performed on different days. Because of

that, the polarization compensation needs to be done again. For this measurement set,
the two-photons density matrix is:

⇢real =

2

66664

0.037 + 0.000i 0.031 + 0.032i 0.007 – 0.039i –0.009 – 0.006i
0.031 – 0.032i 0.442 + 0.000i –0.432 – 0.081i 0.034 + 0.047i
0.007 + 0.039i –0.432 + 0.081i 0.497 + 0.000i –0.059 – 0.038i
–0.009 + 0.006i 0.034 – 0.047i –0.059 + 0.038i 0.024 + 0.000i

3

77775

(3.49)
This is the density matrix that we use for the predictions in this measurement set. This
density matrix is plotted at Figure 21, where (a) represent it’s real, and (b) imaginary
components. We can see that the imaginary part is considerably smaller than the real
one. If we have a perfect bell state, all imaginary components would be zero. As we
mentioned before, this state has a fidelity of (91 ± 1)%, and its purity is (89 ± 2)%.
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Figure 22 – Here we have the Theory (a), predicted (b) and, experiment (c) single-
photon states at the Bloch sphere. Theory means the theoretical state
predicted by the | –i state, predicted is the state that we expect to have
after measuring the actual two-photon state we produce and, experiment
is the experimental points for this measurement set. For this family states,
the relation between the angle of the waveplates ✓0 and the angle of the
states ✓ at the sphere is ✓ = 4✓0.

From now on, we use the following notation, Theory for the theoretical states
from | –i, Predicted that are the states projected from the two-photon experimental
density matrices and Experiment that is the experimental data after the feed-forward
protocol. In figure 22 we have our states in the Bloch sphere, where (a) is the theory,
(b) is the predicted states, and (c) is the experiment. We can observe that they have a
quite good agreement.

In figure 23, we show the fidelities where we vary ✓0 from 0°to 90°in steps of 5°.
We first reconstruct the experimental density matrix of each measurement to calculate
the relative fidelities then. First, we start with the measurements with no feed-forward,
as is the case of figure 20 (c). Comparing the experimental states with the theoretical
predictions we show in figure 23 (a) that we have in average (49 ± 2)%. These low
fidelities happen as we apply no feed-forward to the single-photon states, making it a
mixed state. We repeat the measurements now with the protocol On. In this case, we
then obtain the fidelities of 23 (b), wherein average we have (91 ± 1)%. This fidelity
average shows that our state is in good agreement with the theoretical predictions,
but they do not consider the experimental errors in preparing the initial state, which
can be explained by the fidelity of our initial state (92 ± 1)%. Figure 23 (c) now takes
into account these errors as we are now comparing the results with the two-photon
experimental state. In this situation, we increase the average fidelities to (99.0 ± 1)%,
a big improvement, showing that our technique produces the highest fidelities to our
knowledge on the data of our work publication [95].

The straight lines in figure 23 (b) (green line) and (c) (blue line) are simulations,
where we include 1% polarization loss, which is consistent with the UFOS specifications
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Figure 23 – Here we show the fidelities for no feed-forward (a), fidelities where the feed-
forward protocol is on with the theoretical states (b), and the last one is the
fidelities between the predicted and the experimental states (c).

(< 0.2 dB). We also include a residual birefringence of 0.5 rad related to polarization
compensation. We consider the purity of 0.89 for our Bell state. It was sufficient to show
the oscillations that we found in our experimental data. The error bars are generated
by a Monte Carlo simulation that starts with the experimental data and considers un-
certainties of 0.5°in waveplate setting plus adding Poissinian fluctuations from 40, 000
counts.

3.2.2 Results for the Complex projection

Here we present the results for the projection under complex states, the equato-
rial line of the Bloch sphere. These states have the following form:

| ii =
1p
2

h
|Hi + ei� |V i

i

��� ?
E

i
=

1p
2

h
|V i – e–i� |Hi

i
.

(3.50)
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Figure 24 – In (a) we have the real part of the density matrix of equation 3.52 , and in
(b) is the imaginary part.

To experimentally create these states, we leave the QWP at 45°and varying the
HWP from 22.5°to 112.5°at the projective measurement station. The unitary operation
is UB = �z , where we implement it with the following waveplate angles:

�z = QWP(90°)HWP(0°)QWP(0°) = ei ⇡4

"
i 0
0 1

#
e–i ⇡2

"
1 0
0 –1

#
ei ⇡4

"
1 0
0 i

#

=

"
1 0
0 –1

#
,

(3.51)

where the fast axis of the waveplates is at H.
As we perform the measurement sets on different days, we did a new polarization

compensation in our system. By doing that we have a new two-photon density matrix as
in equation 3.52 which is plotted at figure 24. It has a fidelity of (92 ± 1)% and the purity
of (89 ± 2)%. This slightly higher fidelity can be explained by comparing the two density
matrices and the plots, as for a perfect Bell state, we have no imaginary components,
and for this state they are smaller.

⇢complex =

2

66664

0.027 + 0.000i –0.008 + 0.014i 0.051 – 0.007i 0.003 + 0.001i
–0.008 – 0.014i 0.441 + 0.000i –0.434 – 0.118i 0.011 + 0.014i
0.051 + 0.007i –0.434 + 0.118i 0.528 + 0.000i –0.007 – 0.009i
0.003 – 0.001i 0.011 – 0.014i –0.007 + 0.009i 0.005 + 0.000i

3

77775

(3.52)

The protocol here is the same. We first reconstruct the experimental density
matrix, and then we project the theoretical and two-photon (predicted states into the



Chapter 3. Fiber-based photonic feed-forward 73

Figure 25 – Here we have the Theory (a), predicted (b) and, experiment (c) single-
photon states at the Bloch sphere. For this family states, the relation be-
tween the angle of the waveplates ✓0 and the angle of the states � at the
sphere is � = 4(✓0 – 22.5°).

complex states. All these states are in figure 25 where (a) is the theoretical, (b) pre-
dicted, and (c) experimental states at the Bloch sphere. Every point (HWP angle) has
the same color for its representation in all figures.

We calculated the fidelity of our experimental states with no feed-forward, the
results in figure 26 (a), where we find an average fidelity of (51 ± 1)%. This value is
consistent with the expected 50% for the protocol without feed-forward. With the feed-
forward on, the results in figure 26 (b), we find an average fidelity of (92 ± 1 )%. Here
the fidelity with the theoretical state is slightly higher. This improvement can be because
the polarization compensation could be slightly better for this set. However, when we
calculate the fidelity between the projected and experimental state, we again find an
average fidelity of (99 ± 1)%. The straight curves are simulations in the same way as
for real states, but for these states, we need to consider a smaller residual birefringence
of 0.25. It supports the idea that for this measurement set, we have a slightly better
polarization compensation. The error bars are predicted in the same way as the real
family of states.

3.3 CONCLUSIONS

This fiber-based feed-forward approach using UFOS shows to be a promising
technique for single-photon remote state preparation. The main advantage of this tech-
nique is the use of just passive polarization optics, and everything is compatible with
the telecom technology that is applied around the world for classical communication.
Another advantage of our proposal is, as the full implementation uses just commercial
devices and standard optics, this technique is not expensive and can be easily imple-
mented outside the research laboratory. We also have shown that our feed-forward
operation introduces errors around 1%, being the state-of-the-art for single-photon
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Figure 26 – Here we show the fidelities for no feed-forward (a), fidelities where the feed-
forward protocol is on with the theoretical states (b), and the last one is the
fidelities between the predicted and the experimental states (c).

remote state preparation using polarization as a degree of freedom.
Even with these promising results, our technique could be improved if we imple-

ment faster switches [101] that also have losses below 1 dB, which could allow us to
go to higher statistics of photons. We could reduce the errors by motorized polarization
optics that could increase the precision in setting the waveplate angles for the state
preparation, unitary operations, and measurements.

Our method applies to various experiments such as measurement-based quan-
tum computation [94], quantum foundations experiments [102–104], neuromorphic com-
puting [105], photonic simulations in quantum information [106], photon counting [107],
and a quantum internet protocol [83]. Another possible application is to implement an
indefinite causal order [108] experiment with the UFOS, which is currently being imple-
mented at the University of Vienna in Philip’s Walther group. This implementation can
be done by connecting the output 2 of UFOS2 at the input2 of UFOS 1, by controlling
the UFOS separately we could select which unitary transformation is performed first.
Here the main advantage is that the UFOS could allow scaling the experiment in an
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easier way comparing the free-space interferometer [108].
We obtained these results during the period I was a visitor Ph.D. student (Sand-

wich) at Philip Walther group, and the results are published in Optics Express [95].
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4 PHOTONIC MAXWELL’S DEMON WITH ENHANCED BATHS

Since the first mention of the thought experiment, by J. C. Maxwell [22], to test
the limits of the second law of thermodynamics and the nomination as "Maxwell’s
Demon" by J. Thompson [109], it attracted the interest of the scientific community as
it could be the first situation where the validity of the second law was in check. As a
result, L. Szilard [110] proposed a pressure Demon to show that the Demon cannot
operate outside the limitations of the second law. However, Szilard identified the pillars
that constitute what we now know as Maxwell’s Demon, measurement, information,
and memory. Dealing with binary decisions, he also established the first notion of what
we know as a bit today, creating the first connection between information theory and
physics.

Nowadays, Maxwell’s Demon experiments are related to the amount of informa-
tion obtained that can be converted into work using feed-forward. For example, in this
line of thinking, T. Sagawa and M. Ueda [111] created a modified version of the second
law of thermodynamics, including feed-forward, where it shows the maximum work "W"
that can be extracted given the information "I" obtained by the Demon:

hW i � �F – kBT hIi , (4.1)

where �F is the free energy of the system.
Several approaches of Maxwell’s Demon experiments were implemented [23–

34]. However, we focus on the implementations with light as it is easy to produce
different statistics and implement them using the same setup. In the CW regime Araújo
et al. [20], conducted a study of quantum thermodynamics using optical vortices, where
they implemented a Maxwell’s Demon, as described in details in section 2.2.3. M. D.
Vidrighin et al. [35] did a proof-of-principle of an implementation of a photonic Maxwell’s
Demon experiment, where they send two thermal beams at the same temperature to
two photodiodes at opposite polarities which are connected to a capacitor. If the beams
are at the same temperature, they will charge and discharge the capacitor creating
a zero net charge. However, because thermal-light has bunching statistics, they set
two beam-splitters with low reflectivity that provides the information of which beam
has more photons for the Demon. With this knowledge, they propose a feed-forward
protocol, where they would flip the capacitor to be at the configuration where it is
charging, creating a positive voltage that could be stored as energy in a battery and
used to implement work in the system later. Despite that, the feed-forward (capacitor
flipping) is replaced by a logical operation where they measured the capacitor charge
conditionally to the Demon’s information (APD outputs). They have shown by data
processing the possibility of implementing (proof of principle) a photonic Maxwell’s
Demon.
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Here in this thesis, we present the next step, implementing a photonic Maxwell’s
Demon with active feed-forward at the single-photon regime using ultra-fast optical
switches (UFOS) in a fiber-based setup, where we measured the difference at the
photon number between both beams with and without the Demon’s information. In this
study, we were able to vary several parameters as the expected photon number hni,
the reflectivity of the directional couplers meaning the different amount of information
for the Demon, where we could try explore the parameters for the most efficient Demon
in our regime of study. Furthermore, this setup also allows us to implement other
photon-number correlations rather than the usual uncorrelated thermal bath, as in the
theoretical study by A. Shu et al. [112] where they compare the usual Demon with split
thermal beam, correlated thermal bath, and anti-correlated thermal bath to determine
which would be the most efficient optical Demon.

In the thermal baths with correlations, the Demon’s information provides more
trustable knowledge about the system comparing thermal states. This fact came from
the correlations in the photon number between both paths, as with a perfect state,
the Demon’s information can tell how many photons we have and make it easier to
decide when to switch. It also happens because we work at a low photon regime where
the terms with more than two photons are rare enough to be negligible. This extra
information also increases the Demon’s efficiency as we need fewer photons for a more
significant effect.

The results presented here are submitted for publication and are under review.
We included the draft in the arXiv [113], under the reference arXiv:2107.09686.

We divide the chapter as follows. The first section describes the analogy between
the optical Demon and the usual particles in a box. This section develops the theory
in the low photon number that describes our experimental data. We then show the
experimental implementation of every thermal bath. In the section results, we provide
more experimental details about the measurement sets and the final results of this
study. In the last section, we present our conclusions.

4.0.1 Theory

In the original proposal, Maxwell’s Demon experiment consists of a box full of
particles, where we simplify it by considering they are hot or cold. The box has a wall
with a door that divides them. In this door, there is a Demon that knows the temperature
of the particles. With this knowledge, the Demon could split the particles leaving the
hot ones on one side and the cold ones on another, and by doing that, he could use
this temperature difference to extract work. However, in the way the thought experiment
is proposed, the Demon expends no energy to obtain the information and sort the
particles, so he reduces the system’s entropy with no energetic cost. It would be a
violation of the 2nd law of thermodynamics. This thought experiment is represented in
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Figure 27 – In this figure, we present the analogy between Maxwell’s thought experi-
ment (a) to (d) and its relative photonic version (e) to (h). The lower box is
the photonic version for every thermal bath, and the box above represents
the particle version of the same bath. In (e), we have two uncorrelated
thermal baths, in (f) a split thermal bath, in (g) correlated thermal bath, and
in (h) anti-correlated thermal bath. The analogy between the photonic and
particle version for every thermal bath is explained in the text.

figure 27 (a). The photonic version, figure 27 (e), consists of two uncorrelated thermal
beams where the information for the Demon is provided from a photon subtraction of
the modes and the fact that thermal beams have a bunching effect. With the information
of his detectors (DemA or DemB), he decides to switch the direction of the modes
("open the door") to create an imbalance in the particle number between both modes.
We can use this imbalance to extract work. In this case, the hot particle is related to the
mode with instantaneously higher photon number and the cold one with the lower one.

In the Split thermal bath, we have a thermal state divided into a beam-splitter.
It creates correlations in the photon number in both beams, even if the resulting state
is still thermal. For the particle case, in figure 27 (b), we perform the following analogy
as the Demon’s action is useless because the correlations that the split thermal baths
share is the same as controlling the door in a wall that has a hole where the particles
can pass freely. In (f), the photonic analogy shows that the Demon’s action in any of the
modes provides the same photon number in both sides [114].

In Figure 27 (c) and (d) it’s the situation where the thermal baths have corre-
lations. In both cases, a hot particle is correlated with a cold one. In (c), when the
Demon detects a hot (cold) particle going in the direction of the door, he automatically
obtains the knowledge that from the other side, a cold (hot) one is coming from the
opposite direction. The analogy in (g) represents that the fact if the Demon detects a
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photon in DemA (DemB) it signalizes the presence of a photon in the other mode. For
the anti-correlated thermal bath (d), the particles, hot and cold, travel in pairs, so if the
Demon detects a hot (cold) particle, he knows that the cold (hot) one is going in the
same direction. The analogy in (h) is that the Demon’s detectors provide information of
another particle in the same mode as the relative Demon clicked before. In both cases,
by the information about one photon (particle), the Demon has complete information
about the bath, making it easier to decide when it switches (open the door) properly.

4.0.1.1 Thermal light

It is well known that thermal light has a bunching behavior, meaning that the
photons propagate in groups. We can use this fact to signalize the presence of a thermal
beam. To implement it, we can use a beam-splitter in both paths, and its reflectivity
a priory it needs to be small. We implement it by setting a single-photon detector to
obtain the information of photons in the reflected arm that we refer to as the Demon’s
information. By comparing the Demon’s information in both arms, we can implement the
feed-forward to the system, selecting the mode to send to the primary detector using
the UFOS. As pointed by M. D. Vidrighin et al. [35], flip the capacitor or leave it fixed
and flip the modes is equivalent. We choose the second one by implementing it with
the UFOS, in a similar way to the single-photon remote state preparation in chapter 3.
However, in this work, we focus on measuring the photon number difference between
the detectors in path A (DA) and B (DB). Here we choose DA to be the detector where
we send the mode with a higher photon number. It means that when the protocol is
active, we will have �NAB = NA – NB > 0.

Another way to see how this idea work is to look at how a photon subtraction in
a thermal beam works. To perform this analysis, we start with the density matrix of a
thermal state, a mono-frequency state with a frequency !, on the photon number basis
we have:

⇢t =
⇣

1 – e�h̄!
⌘ 1X

n=0
|ni hn| , (4.2)

where � is the inverse of the temperature (1/kbT ), the expected photon number hni for
the state thermal state is:

hni =
1

exp(�h̄!) – 1
. (4.3)

We can imagine the situation where we extract a single photon per thermal beam. For
this purposes, we use the "one-count" operator, from which we obtain the following
state:

⇢sub =
a⇢ta†

tr (a⇢ta†)
=

a⇢ta†

hni , (4.4)
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where a (a†) is the annihilation (creation) operator. After the subtraction, the expected
photon number hnsubi is:

hnsubi =
2

exp(�h̄!) – 1
= 2 hni . (4.5)

It means the expected photon number is double the initial one after extracting a photon
from a thermal beam. It’s a counter-intuitive result [115]. We know which beam has
more photons by using this information, making it possible to send this mode to the
desired detector. For example, if the Demon knows that we have a photon in DemA and
no photon in DemB, he knows that we have 2 hni photons in A and hni in B creating a
difference in the photon number as �NAB = hni. When the Demon detects the opposite
situation, the UFOS will switch the modes A and B. In this situation, we flip the photons
from mode A and B as NA () NB, meaning that we have �NAB = hni. The last case
is when we have no clicks or simultaneous clicks between DemA and DemB, we have
on average the same photon number in each beam, meaning a �NAB = 0.

For our results, we work in two different regimes. First, we focus on two uncorre-
lated thermal beams at the same temperature in a higher photon number. This is the
regime in which use to show that we have a working photonic Maxwell’s Demon. The
second regime is the low photon number that we choose a region where we compare
uncorrelated, split, correlated, and anti-correlated thermal baths in a similar regime. We
need to work on this regime as we produce correlated thermal baths using SPDC and
anti-correlated thermal baths by producing NOON states with SPDC states as input,
and these states naturally have a low photon number given it is short coherence time
(⇡ 2 ps). Experimentally we would need high intensities to increase the probability of
creating states with more than two photons, which is negligible in our experimental con-
ditions. In the following sub-sections, we describe the theory at the low photon number
regime. The theory is consistent with the setup from figure 28. A collaborator developed
this theory, and as it is crucial for the data analysis, this text has included it.

4.0.1.1.1 Uncorrelated Thermal Baths

In this sub-section we develop the theory for the low photon number. For this
task, first we rewrite the thermal state as:

⇢T =
1X

n=0
Pn |ni hn| , (4.6)

where

P(n) =
hnin

(1 + hni)n+1 . (4.7)
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We can then obtain the probability of detecting m photons by DemA and n photons at
detector DA as [116]:

P(n, m) =
(n + m)!

n!m!
hnin+m

(1 + hni)n+m+1 R2n(1 – R2)m, (4.8)

where R is the reflection amplitude of the beam-splitter, we wrote this in terms of R as
it is a parameter to quantify the amount of information available for the Demon.

Here the information for the Demon is provided by inserting a beam splitter in
both modes. With the photons detected in the reflected arm, the Demon can decide
how to operate. After the beam-splitter, we obtain the following state for mode A:

�A = P(0, 0) |0, 0i h0, 0|DemA,A + P(1, 0) |0, 1i h0, 1|DemA,A + (4.9)

P(0, 1) |1, 0i h1, 0|DemA,A + P(1, 1) |1, 1i h1, 1|DemA,A + . . . ,

where we have cut the terms of higher orders as P(2, 0) << P(1, 0) in our regime. Here
�A is the state for the path A. However, the complete state is �A ⌦ �B:

�A ⌦ �B = P(0, 0)2 |0, 0, 0, 0i h0, 0, 0, 0| + P(0, 0)P(1, 0) |0, 1, 0, 0i h0, 1, 0, 0|

+ P(0, 0)P(0, 1) |0, 0, 0, 1i h0, 0, 0, 1| + P(0, 0)P(1, 1) |0, 1, 0, 1i h0, 1, 0, 1|

+ P(0, 0)P(1, 0) |1, 0, 0, 0i h1, 0, 0, 0| + P(1, 0)2 |1, 1, 0, 0i h1, 1, 0, 0|

+ P(1, 0)P(0, 1) |1, 0, 0, 1i h1, 0, 0, 1| + P(1, 0)P(1, 1) |1, 1, 0, 1i h1, 1, 0, 1|

+ P(0, 1)P(0, 0) |0, 0, 1, 0i h0, 0, 1, 0| + P(0, 1)P(1, 0) |0, 1, 1, 0i h0, 1, 1, 0|

+ P(0, 1)2 |0, 0, 1, 1i h0, 0, 1, 1| + P(0, 1)P(1, 1) |0, 1, 1, 1i h0, 1, 1, 1|

+ P(1, 1)P(0, 0) |1, 0, 1, 0i h1, 0, 1, 0| + P(1, 1)P(1, 0) |1, 1, 1, 0i h1, 1, 1, 0|

+ P(1, 1)P(0, 1) |1, 0, 1, 1i h1, 0, 1, 1| + P(1, 1)2 |1, 1, 1, 1i h1, 1, 1, 1| .

(4.10)

We re-arranged the terms to use the following notation |i , j , k , l , miDA,DB,DemA,DemB
,

where we omit the indices for the sake of notation. When the Demon extracts a photon in
a thermal state, its expected photon number doubles, meaning that with the knowledge
of which Demon’s detectors (DemA or DemB) clicked, we know which is the mode with
a higher photon number. By this knowledge, we conclude that if we choose the detector
A (DA) to be the central detector, the switch needs to operate when DemB clicks, and
then swap the modes as:

|m, n, 0, 1i ! |n, m, 0, 1i . (4.11)

It is essential to mention that since our detectors do not have photon number resolution,
we cant distinguish the situations with more than one photon in the same Demon’s arm.
By implementing the Demon’s feed-forward in equation 4.10, we arrive at the final state
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that describes our system:

⇢out = P2(0, 0) |0000i h0000| + P(0, 0)P(0, 1) |0001i h0001|

+ P(0, 0)P(1, 0) |0100i h0100| + P(0, 0)P(1, 1) |1001i h1001|

+ P(0, 1)P(0, 0) |0010i h0010| + P2(0, 1) |0011i h0011|

+ P(0, 1)P(1, 0) |0110i h0110| + P(0, 1)P(1, 1) |0111i h0111|

+ P(1, 0)P(0, 0) |1000i h1000| + P(1, 0)P(0, 1) |0101i h0101|

+ P2(1, 0) |1100i h1100| + P(0, 1)P(1, 1) |1101i h1101|

+ P(1, 1)P(0, 0) |1010i h1010| + P(1, 1)P(0, 1) |1011i h1011|

+ P(1, 1)P(1, 0) |1110i h1110| + P2(1, 1) |1111i h1111|

(4.12)

In the experimental configuration, we are not able to run it in a single shot.
So, let us assume that we run our experiment � times, we have the Demon’s power
as �N = � (PA – PB), where PA and PB are probabilities of detecting a photon in its
respective modes. Using equation 4.12 we can find PA and PB:

PA = 2P(0, 0)P(1, 1) + 2P(1, 0)P(1, 1) + P(0, 0)P(1, 0) +

P(0, 1)P(1, 1) + P2(1, 0) + P2(1, 1) (4.13)

PB = P(0, 0)P(1, 0) + 2P(1, 0)P(0, 1) + 2P(1, 0)P(1, 1) +

P(0, 1)P(1, 1) + P2(1, 0) + P2(1, 1). (4.14)

From which we obtain �N:

�N = (2P(0, 0)P(1, 1) – 2P(0, 1)P(1, 0))�

=
2 hni2

(1 – hni)4
R2(1 – R2)� . (4.15)

The figure of merit that we develop for our work is to normalize �N by the total singles
rates as �N/N because it is impossible to create precisely the same experimental
conditions for all other baths that we discuss during this thesis. We desire to make a
fair comparison between all photon statistics. So, we need to normalize by the total
photon number in A or B, as they are equal. It allows us to compare all statistics in the
same way. In this case, we normalize the Demon’s power by the respective total photon
number in one of the modes. In the low photon regime, we have a probability P(1) (from
equation 4.7) to detect a photon in mode A. After � rounds of the experiment, we have:

N = �
hni

(1 + hni) . (4.16)

We can then obtain:
�N
N

=
2 hni

(1 – hni)2
R2(1 – R2), (4.17)
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where its effects depend on the expected photon number hni of the input beam and the
Demon’s information, given by the reflectivity R of the beam-splitter, this expression is
valid only at the low photon regime.

4.0.1.1.2 Split Thermal Bath

The procedure for a Split thermal bath is essentially the same as Uncorrelated.
However, our initial state is a single uncorrelated thermal state in a balanced beam-
splitter, where it essentially divides the beam. Thus, the state in modes A and B is:

⇢split =
1X

n,m=0
P(n, m) |n, mi hn, m|A,B , (4.18)

where P(n, m) is the probability defined in equation 4.8, with R = 1/
p

2.
Considering the terms up to two-photon we obtain:

⇢split ⇡ P(0, 0) |0, 0i h0, 0|A,B + P(0, 1) |0, 1i h0, 1|A,B

+ P(1, 0) |1, 0i h1, 0|A,B + P(2, 0) |2, 0i h2, 0|A,B

+ P(0, 2) |0, 2i h0, 2|A,B + P(1, 1) |1, 1i h1, 1|A,B , (4.19)

where we already considered the fact that for R = 1/
p

2 P(n, m) is symmetric. We need
to add the beam-splitter transformation. Let us perform the analysis term by term as:

|0, 1i h0, 1|A,B ! (1 – R2) |0100i h0100|A,B,DemA,DemB

+R2 |0001i h0001|A,B,DemA,DemB

|1, 0i h1, 0|A,B ! (1 – R2) |1000i h1000|A,B,DemA,DemB

+R2 |0010i h0010|A,B,DemA,DemB

|1, 1i h1, 1|A,B ! (1 – R2)2 |1100i h1100|A,B,DemA,DemB

+R2(1 – R2) |1001i h1001|A,B,DemA,DemB

+R2(1 – R2) |0110i h0110|A,B,DemA,DemB

+R4 |0011i h0011|A,B,DemA,DemB

|0, 2i h0, 2|A,B ! (1 – R2)2 |0200i h0200|A,B,DemA,DemB

+2R2(1 – R2) |0101i h0101|A,B,DemA,DemB

+R4 |0002i h0002|A,B,DemA,DemB

|2, 0i h2, 0|A,B ! (1 – R2)2 |2000i h2000|A,B,DemA,DemB

+2R2(1 – R2) |1010i h1010|A,B,DemA,DemB

+R4 |0020i h0020|A,B,DemA,DemB
. (4.20)
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The notation is simplified, omitting the labels. We can then apply the feed-forward as in
equation 4.11 and obtain the final state:

⇢out = P(0, 0) |0000i h0000| + P(0, 1)
h
(1 – R2)(|0100i h0100| + |1000i h1000|)

+ R2(|0001i h0001| + |0010i h0010|)
i

+ P(1, 1)
h
(1 – R2)2 |1100i h1100|

+ R2(1 – R2)(|0101i h0101| + |0110i h0110|) + R4 |0011i h0011|
i

+ P(0, 2)
h
(1 – R2)2(|2000i h2000| + |0200i h0200|)

+ R4(|0020i h0020| + |0002i h0002|)

+ 2R2(1 – R2)(|1010i h1010| + |1001i h1001|)
i

. (4.21)

The probabilities PA and PB are:

PA = P(0, 1)(1 – R2) + P(1, 1)(1 – R2)2 (4.22)

+P(0, 2)(1 – R2)2 + 4P(0, 2)R2(1 – R2)

PB = P(0, 1)(1 – R2) + P(1, 1)(1 – R2)2

+P(0, 2)(1 – R2)2 + 2P(1, 1)R2(1 – R2),

from which we obtain �N:

�N = � (PA – PB) = 2�R2(1 – R2)(2P(0, 2) – P(1, 1)) = 0.

Hence,
�N
N

= 0 (4.23)

for all reflectivities. It is important to mention that in ref [112] they have shown that it is
zero even for higher hni. This configuration is similar to the one where Katamadze et al.
[114] used to show that the effect known as "quantum vampire", is in reality, a classical
effect based on photon-number correlations. In their setup, they produce A thermal
beam and send it to a balanced beam-splitter. Then, they extract a photon from one
of the arms, and by Homodyne detection, reconstruct the photon number distributions
from each arm separately. By doing that, they conclude that the resulting state was
the same for the arm that they have extracted a photon and the untouched one. In our
case, we can also explain that because both beams have photon-number correlations,
extract a photon does not provide any valuable information for the Demon to feed the
system and extract work, meaning that we have the same photon number in both arms
of the experiment even if we extract a photon or not. It means that if the Demon acts,
he switches beams with the same photon number all the time.

4.0.1.2 Thermal Baths with Correlations

In this section, We discuss the theory for the thermal baths with correlations.
In this case, we need quantum states to produce the thermal baths. However, the
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correlations that we explore in the experiment are classical ones. With this in mind,
we want to investigate if these correlations can provide better information helping the
Demon to make better decisions about when he needs to switch. We explore thermal
baths with correlations that we implement using an SPDC state and thermal baths with
anti-correlations that we can implement using a two-photon NOON state. We focus on
developing the figure of merit �N/N for our states in the following subsections. However,
here we have an extra ingredient to take into account, the classical correlations. We
then develop a second figure of merit where we normalize the Demon’s effect by the
correlations of the baths �N/C. It is essential to mention that for SPDC when doing
the partial trace in one of the photons, the other it is in a thermal state [117, 118]. For
the NOON state, a theoretical approach [112] used a state where it is a perfect NOON
state for every desired N-Photons, and by doing the partial trace, it is thermal. However,
experimentally we are not able to perform the same state. Our state is close and results
in a superposition of a two-photon NOON state [119, 120], where we generate it by a
Hong-Ou-Mandel (HOM) interference between the photons from the SPDC.

4.0.1.2.1 Correlated Thermal Bath

The general state for the SPDC is:

| i =
1

cosh s

1X

n=0
(tanh s)n |n, niA,B , (4.24)

as we are in the low photon regime, we are only considering the terms up to two-photon,
as:

| i ⇡ 1
1 – s2

2
|0, 0iA,B +

s
1 – s2

2
|1, 1iA,B , (4.25)

where s is the squeezing parameter. However, at equation 4.25 we are considering a
perfect source where we have just the pairs. Here we need to consider the losses that
degrade the correlations. The losses are related to the source efficiency, optical fibers
coupling, and everything that can affect our system. We can model the loss as a beam-
splitter where the lost photons are "reflected" outside our experiment. We implement
the following transformation:

|1iA ! ✏ |1, 0iA,lA +
p

1 – ✏2 |0, 1iA,lA . (4.26)

It means that the photon has a probability ✏2 to remain in the desired mode. Considering
that the error is symmetric for modes A and B, we obtain the following state:

| i ⇡ 1 + s(1 – ✏2)
1 – s2

2
|0, 0, 0, 0iA,B,lA,lB +

s✏
p

1 – ✏2

1 – s2

2
(|1, 0, 0, 1iA,B,lA,lB

+ |0, 1, 1, 0iA,B,lA,lB ) +
s✏2

1 – s2

2
|1, 1, 0, 0iA,B,lA,lB . (4.27)
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We need to apply the Demon’s beam-splitter as |1, 0i !=
p

1 – R2 |1, 0iA,DemA
+

R |0, 1iA,DemA
for modes A and B, respectively. We then obtain:

| i ⇡ 1 + s(1 – ✏2)
1 – s2

2
|0, 0, 0, 0, 0, 0i

+
s✏

p
1 – ✏2

1 – s2

2
R (|0, 0, 1, 0, 0, 1i + |0, 0, 0, 1, 1, 0i)

+
s✏

p
1 – ✏2

1 – s2

2

p
1 – R2 (|1, 0, 0, 0, 0, 1i + |0, 1, 0, 0, 1, 0i)

+
s✏2

1 – s2

2
R
p

1 – R2 (|0, 1, 1, 0, 0, 0i + |1, 0, 0, 1, 0, 0i)

+
s✏2

1 – s2

2

⇣
(1 – R2) |1, 1, 0, 0, 0, 0i + R2 |0, 0, 1, 1, 0, 0i

⌘
, (4.28)

We are using the following notation |i , j , k , l , m, niA,B,DemA,DemB,lA,lB that we are not
showing to simplify the visualization. The next step is to implement the Demon’s feed-
forward, which is different comparing the thermal states without correlations. If we
analyze the equation 4.28, we can see that when the Demon DemA or DemB clicks, it
provide the information that the other mode has a photon. This is the power of using
the correlations, just detecting the photon from one mode allows the Demon to acquire
a complete knowledge of both modes allowing him to feed the system with the right
decision. The algorithm for a correlated thermal bath is the following:

|i , j , 1, 0, 0, 0i ! |j , i , 1, 0, 0, 0i . (4.29)

We then obtain the final state for correlated thermal baths:

| i ⇡
 

1 + s(1 – ✏2)
1 – s2

2
|0, 0, 0, 0, 0, 0i + (4.30)

s✏
p

1 – ✏2

1 – s2

2
R (|0, 0, 1, 0, 0, 1i + |0, 0, 0, 1, 1, 0i) +

s✏
p

1 – ✏2

1 – s2

2

p
1 – R2 (|1, 0, 0, 0, 0, 1i + |0, 1, 0, 0, 1, 0i) +

s✏2

1 – s2

2
R
p

1 – R2 (|1, 0, 1, 0, 0, 0i + |1, 0, 0, 1, 0, 0i) +

s✏2

1 – s2

2

⇣
(1 – R2) |1, 1, 0, 0, 0, 0i + R2 |0, 0, 1, 1, 0, 0i

⌘!
.

We are able now to calculate the probabilities for the detectors DA and DB to click as:
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PA =
s2

(1 – s2

2 )2

⇣
✏2(1 – ✏2)(1 – R2) + ✏4(1 – R2)2+

2✏4R2(1 – R2)
⌘

PB =
s2

(1 – s2

2 )2

⇣
✏2(1 – ✏2)(1 – R2) + ✏4(1 – R2)2

⌘
.

(4.31)

From which we can calculate �N:

�N = � (PA – PB) = �
s2

(1 – s2

2 )2
2✏4R2(1 – R2). (4.32)

Here we can calculate N, as the chance of detector A or B to click after �
repetitions of the experiment, and the coincidence rate as C = �PAB, from equation
4.27. We have then:

N = �PA = �
s2

(1 – s2

2 )2
✏2

C = �PAB = �
s2

(1 – s2

2 )2
✏4. (4.33)

With equations 4.32 and 4.33 we can calculate the figure of merits of our com-
parison. First is the �N normalized by the singles rate, which considers the total photon
number, efficiency of the source, and every other experimental error that reduces the
number of pairs. However, it is a good way to compare uncorrelated and split thermal
baths as they do not have this correlation. The second figure of merit is related to the
classical correlations that are an extra ingredient here. In this regime, we can normalize
�N by the coincidence rate quantifying the correlations, even if they are classical. We
obtain then:

�N
N

= 2✏2R2(1 – R2), (4.34)

and
�N
C

= 2R2(1 – R2). (4.35)

Here there are two important points that we need to pay attention to. First, in the low
photon number, the Demon’s effect for correlated thermal baths have no dependence
on the expected photon number hni, differently from thermal states. It depends just
on how much information is available for the Demon by setting the reflectivity rate.
The second important point is that when we normalize by the correlations, the therm
that represents the efficiency of the source and errors is not present anymore. Just by
comparing equations 4.34 and 4.35 we can conclude that the correlations provide a
higher effect for the Demon’s action, as 0  ✏  1, and �N/C is the case for just perfect
pairs, with ✏2 = 1 in �N/N.
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4.0.1.2.2 Anti-correlated Thermal Bath

This section develops the figure of merit �N/N and �N/C for thermal baths with
anti-correlations. The way of producing such thermal baths is by using a two-photon
NOON state. These states are produced by a HOM interference using an SPDC state
as input. The resulting state for two-photon is:

| i =
1

1 – s2

2
|0, 0iA,B +

s
1 – s2

2

✓
vp
2

(|2, 0iA,B + |0, 2iA,B) +
p

1 – v2 |1, 1iA,B

◆
,

(4.36)

where s the squeezing parameter and ⌫2 is the visibility of the source that modulates
the probability of the photon pairs bunch to a NOON state. The protocol is similar to the
previous one, where we need first to modulate the losses at the source as:

|1, 0i ! ✏ |1, 0iA,lA +
p

1 – ✏2 |0, 1iA,lA

|2, 0i ! ✏2 |2, 0iA,lA +
p

2✏
p

1 – ✏2 |1, 1iA,lA + (1 – ✏2) |0, 2iA,lA . (4.37)

The resulting state is:

| i =
1

1 – s2

2
|0, 0, 0, 0i +

s
1 – s2

2

⇢
⌫p
2

h
✏2(|2, 0, 0, 0i + |0, 2, 0, 0i)

+
p

2✏
q

(1 – ✏2(|1, 0, 1, 0i + |0, 1, 0, 1i) + (1 – ✏2)(|0, 0, 2, 0i + |0, 0, 0, 2i)
�

+
p

1 – ⌫2
h
✏2 |1, 1, 0, 0i + ✏

p
1 – ✏2(|0, 1, 1, 0i + |1, 0, 0, 1i)

+(1 – ✏2) |0, 0, 1, 1i
io

, (4.38)

where the notation is |i , j , k , liA,B,lA,lB . The Demon’s Beam splitter is applied according
to:

|1, 0i !
p

1 – R2 |1, 0iA,DemA
+ R |0, 1iA,DemA

|2, 0i ! (1 – R2) |2, 0iA,DemA
+
p

2R(1 – R2) |1, 1iA,DemA
+ R2 |0, 2iA,DemA

.

(4.39)
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The state after the beam-splitter action is:

| i =
1

1 – s2

2
|0, 0, 0, 0, 0, 0i

+
s

1 – s2

2

⇢
⌫p
2

h
✏2
⇣

(1 – R2)(|2, 0, 0, 0, 0, 0i + |0, 2, 0, 0, 0, 0i)

+
p

2R
p

1 – R2(|1, 0, 1, 0, 0, 0i + |0, 1, 0, 1, 0, 0i)

+ R2(|0, 0, 2, 0, 0, 0i + |0, 0, 0, 2, 0, 0i)
⌘

+
p

2✏
p

1 – ✏2
⇣p

1 – R2(|1, 0, 0, 0, 1, 0i + |0, 1, 0, 0, 0, 1i)

+R(|0, 0, 1, 0, 1, 0i + |0, 0, 0, 1, 0, 1i)
⌘

+ ✏
p

1 – ✏2(|0, 0, 0, 0, 2, 0i + |0, 0, 0, 0, 0, 2i)
i

+
p

1 – ⌫2
h
✏2
⇣

(1 – R2) |1, 1, 0, 0, 0, 0i + R2 |0, 0, 1, 1, 0, 0i

+
p

R
p

1 – R2(|1, 0, 0, 1, 0, 0i + |0, 1, 1, 0, 0, 0i)
⌘

+✏
p

1 – ✏2
⇣p

1 – R2(|0, 1, 0, 0, 1, 0i + |1, 0, 0, 0, 0, 1i)

+R(|0, 0, 0, 1, 1, 0i + |0, 0, 1, 0, 0, 1i)
⌘

+ (1 – ✏2) |0, 0, 0, 0, 1, 1i
i�

, (4.40)

where |i , j , k , l , m, niA,B,DemA,DemB,lA,lB .
The last step is to include the Demon’s action. For the NOON state, the clicks on

DemA and DemB provide a complete description of the photon number in both modes.
However, a click in A (B) tells the Demon that the mode with more photons is A (B). In
this case, the switch occurs when DemB clicks as:

|i , j , 0, 1, x , yi ! |j , i , 0, 1, x , yi

|i , j , 0, 2, x , yi ! |j , i , 0, 2, x , yi . (4.41)

Here we include the terms where more than one photon is detected, as our detectors
have no photon resolution. Thus, including the Demon’s action, the final state for anti-
correlated thermal baths is:
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| i =
1

1 – s2

2
|0, 0, 0, 0, 0, 0i

+
s

1 – s2

2

⇢
⌫p
2

h
✏2
⇣

(1 – R2)(|2, 0, 0, 0, 0, 0i + |0, 2, 0, 0, 0, 0i)

+
p

2R
p

1 – R2(|1, 0, 1, 0, 0, 0i + |1, 0, 0, 1, 0, 0i)

+ R2(|0, 0, 2, 0, 0, 0i + |0, 0, 0, 2, 0, 0i)
⌘

+
p

2✏
p

1 – ✏2
⇣p

1 – R2(|1, 0, 0, 0, 1, 0i + |0, 1, 0, 0, 0, 1i)

+R(|0, 0, 1, 0, 1, 0i + |0, 0, 0, 1, 0, 1i)
⌘

+ ✏
p

1 – ✏2(|0, 0, 0, 0, 2, 0i + |0, 0, 0, 0, 0, 2i)
i

+
p

1 – ⌫2
h
✏2
⇣

(1 – R2) |1, 1, 0, 0, 0, 0i + R2 |0, 0, 1, 1, 0, 0i

+
p

R
p

1 – R2(|0, 1, 0, 1, 0, 0i + |0, 1, 1, 0, 0, 0i)
⌘

+✏
p

1 – ✏2
⇣p

1 – R2(|0, 1, 0, 0, 1, 0i + |1, 0, 0, 0, 0, 1i)

+R(|0, 0, 0, 1, 1, 0i + |0, 0, 1, 0, 0, 1i)
⌘

+ (1 – ✏2) |0, 0, 0, 0, 1, 1i
i)

. (4.42)

The resulting probabilities are:

PA =
s2

(1 – s2

2 )2

(
⌫2

2

h
✏4(1 – R2)2 + 4✏4R2(1 – R2) + 2✏2(1 – ✏2)(1 – R2)

i

+(1 – ⌫2)
h
✏4(1 – R2)2 + ✏2(1 – ✏2)(1 – R2)

i)

PB =
s2

(1 – s2

2 )2

(
⌫2

2

h
✏4(1 – R2)2 + 2✏2(1 – ✏2)(1 – R2)

i

+(1 – ⌫2)
h
✏4(1 – R2)2 + 2✏4R2(1 – R2) + ✏2(1 – ✏2)(1 – R2)

i)
. (4.43)

The difference in the photon number after � rounds of the experiment is:

�N = � (PA – PB) = �
s2

(1 – s2

2 )2
2(2⌫2 – 1)✏4R2(1 – R2). (4.44)

With equations 4.44 and 4.33 we obtain the Demon’s power normalized by the
singles and coincidences as:

�N
N

= 2✏2(2v2 – 1)R2(1 – R2) (4.45)

and
�N
C

= 2(2v2 – 1)R2(1 – R2). (4.46)
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In comparison with correlated-thermal baths, here we have the extra therm related
to the visibility of the HOM interferometer. This term is related to the probability of
the photons bunch at the beam-splitter. In a theoretical approach for higher hni [112],
the anti-correlated baths overpass the efficiency of the correlated ones. Nevertheless,
here in our regime, with perfect visibility, they would have precisely the same efficiency.
Another point is that our figure of merits depends just on the source efficiency, visibility
of the source, and the reflectivity of the Demon, in the opposite way of uncorrelated
thermal baths that has a dependence on the temperature (hni).

4.1 EXPERIMENTAL IMPLEMENTATION

In this section, we present the setup and the protocol of our photonic Maxwell’s
Demon. First, we describe the experimental implementation and the generation of each
thermal bath. Then, in figure 28 (a) to (c), we show the sources that generate the baths,
and in (d) is the setup for the protocol.

The protocol is the following: we first couple the thermal baths to single-mode
optical fibers and connect them to one of the ports of the tunable directional couplers
(TDC). The TDC is a device that acts as a beam-splitter where we can set the de-
sired reflectivity. In each mode, one output of the TDC is connected to the fiber-delay
that represents the central part of the setup, and the second one goes directly to the
Demon’s detectors, named DemA or DemB. The fiber delay is necessary as the elec-
tronics require some time between the Demon’s click, the pulse generation, and the
time for UFOS to switch, and here we set it as 162 m. It is more than necessary, but it
makes it easier to synchronize everything as we can delay the pulse that controls the
UFOS electronically. After the delay, the fibers from each mode are connected to the
UFOS inputs and the outputs to the detectors DA and DB. All detectors that we use in
this experiment are superconducting nanowire single-photon detectors (SNSPD) from
PhotonSpot Inc, with a detection efficiency of ⇡ 95% for 1550 nm.

The TTM evaluates the logic of the Demon as in chapter 3. When the right
Demon’s detector click, we send the pulse for the switch. The logic in the TTM cannot
discriminate if we are in the situation where both Demon’s detectors click. Nevertheless,
this case is negligible in our statistics, and this is not a problem as the temperatures are
balanced for the switching configuration. However, the optimal switching time is related
to the coherence time of the thermal beams, which is ⇡ 5µs, but by the technical
limitations of our TTM we are limited at 2.5µs. It means that we could be cutting our
beam.

The UFOS have unbalanced losses between the input/outputs. To compensate
for this problem, we perform three measurements in our protocol. In the first one, we
force the switch to be constantly in the cross configuration. In this configuration we set
the temperature of the beams making then balanced as possible to have �Ncross =
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Figure 28 – Figures (a) to (c) are the setup to generate the thermal baths. In (a) we
generate the uncorrelated thermal baths, where each thermal beam is
produced on a different spot at the ground glass, (b) the correlated thermal
baths using an SPDC source, and in (c) we produce the anti-correlated
thermal baths by using an SPDC source (setup (b)) as input in a HOM
interferometer to produce a NOON state. Figure (d) is the setup for the
photonic Maxwell’s Demon. Better details of the functioning of the setups
are provided in the text.

NA – NB ! 0, where NA (NB) is the counts at DA (DB) in one second. We choose
this configuration to set the temperature because the UFOS switches with the Demon’s
signal, preventing us from creating any imbalanced by wrong switching. Choosing this
configuration to balance the temperatures prevents us from creating an imbalance when
both Demon’s detectors click simultaneously, as, in this situation, the photon number
is balanced. We then turn the UFOS ON without sending any signal. In this case, the
UFOS will remain in the bar configuration. This measurement �Nbar = NA – NB will
help us to evaluate which is the natural unbalance in between the counts because
of the asymmetric losses. The last measurement is with the feed-forward protocol on
�NFF = NA – NB, from which we can calculate the unnormalized Demon’s power as:

�Nexp = �NFF – �Nbar . (4.47)

4.1.1 Uncorrelated Thermal Baths

The first studies with thermal sources with stronger intensities started in the
60’s [121–123] where they shine different light sources at spinning ground glass, the
technique became knows as the Arecchi wheel, to produce monochromatic beams with
thermal statistics, know as pseudo-thermal light. This name was given as this beam is
monochromatic, opposite to thermal radiation with a distribution over the frequencies.
The methodology utilized to characterize the thermal beams is the Hanbury Brown
and Twiss (HTB) interferometer [124] that allows the measurement of the second-order



Chapter 4. Photonic Maxwell’s Demon with enhanced baths 93

Figure 29 – Measurement of the g2(⌧) of our thermal light source with g2(0) ⇡ 1.95
and a coherence time of of ⌧c ⇡ 5.42 µs.

correlation g2(⌧) of a light source. It consists of dividing the beam in two by a balanced
beam-splitter and vary the path size in one of the beams to measure the correlations
between them. For thermal light is know that g2(0) = 2.

We wish to produce thermal light in our experiment with � =1550 nm, as the
UFOS are designed to work in this wavelength. For this purpose, we use the setup as
in figure 28 (a) where we connect a CW laser to a fiber-based beam-splitter to divide
the beam equally, where each output is collimated and focused at different spots in
the ground glass by a 75 mm lens. The ground glass has 220 grit/size, and it rotates
with 20 Hz. We then collect the light with two single-mode Sm-28 fibers at 225 mm
of the disk. It is important to mention that we collect the thermal light directly at the
fibers connectors without fiber couplers. It was important for a high g2(⌧). Using the
HTB interferometer, we perform the measurements of the g2(⌧) as in figure 29. After
several repetitions, we obtained a g2(0) ⇡ 1.95 and by assuming a Gaussian thermal
beam of a form:

g2(⌧) = 1 + e–⇡( ⌧
⌧c

)2
(4.48)

we find a coherence time of ⌧c ⇡ 5.42 µs.

4.1.2 Split Thermal Baths

For split thermal baths, the procedure is even more straightforward. As the im-
plementation of two uncorrelated thermal beams was already done, we can take one of
the beams and connect it to a balanced fiber-based beam-splitter where each output is
connected to one mode in the setup of figure 28 (d). We characterized this light source
to verify if it loses the thermal characteristics after the beam is divided. Figure 30 shows
that the beam still has a high g2(⌧), showing that the thermal statistics are not affected
in the same way as the baths with correlations. Another reason to characterize this
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Figure 30 – Measurement of the g2(⌧) of for a split thermal beam.

source is that we want to guarantee that �N = 0 is not because of the degradation of
the light source after it’s division, but because of the correlations between the modes.

4.1.3 Correlated Thermal Baths

An SPDC source produces correlated thermal baths as in figure 28 (b). It consist
in a CW laser with � = 775 nm that is focused, using a a less (L2) with f=400 nm,
into a ppKTP Crystal inside a polarization-based Sagnac interferometer [125]. This is
the same source described in section 3.2, and it generates a singlet state | –i with
� = 1550 nm. However, here we are just using the classical correlations, neglecting
the polarization of the photons. Here we sent the signal/idler to modes A/B to use the
correlations in the photon number as a resource for the Demon.

4.1.4 Anti-correlated Thermal Baths

A two-photon NOON state produces Anti-correlated thermal baths. Here we
connect the SPDC source from figure 28 (b) to a HOM interferometer as in figure 28
(c) that uses two delay lines to guarantee the spatial and temporal overlap between
the signal and idler at the fiber beam-splitter. In this configuration, we produce the
two-photon NOON state, as the dominating therm in our SPDC source is |1, 1i. It is
essential to mention that this state is not a perfect thermal state. However, we are
operating in the low photon number, making our state close to the one theoretically
studied in [112]. For this state, we have the same situation as correlated thermal baths.
Even if the states are quantum, the Demon operates just by classical correlations.

We characterized our two-photon NOON state by measuring a visibility ⌫2 =
0.87 ± 0.02. It means that there is a probability of 0.87 that the pairs of photons from
SPDC will bunch into a NOON state. This visibility was obtained in the HOM dip as in
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Figure 31 – This figure presents the measurement of the HOM dip for the two-photon
NOON state. We obtained visibility of ⌫2 = 0.87 ± 0.02 and a coherence
shorter than 2 ps for this state.

figure 31. The coherence time of this state is shorter than 2 ps.

4.2 RESULTS

In this section, we present the results for our photonic Maxwell’s Demon. In our
experiment, we set the temperature of the thermal beams by using linear filters in the
cross-state of the UFOS. After we set the temperature, we adjust the reflectivity of
the tunable directional couplers. After the temperature and the reflectivity are adjusted,
we perform the three measurements discussed before (cross, bar, and feed-forward),
where we take measurements of 300 seconds for all sets, saving the single counts
every second. We vary the reflectivity starting in 1% and then from 5% to 50% in steps
of 5%.

We perform measurements with uncorrelated thermal baths in a higher photon
number where the effect is more significant to guarantee that our photonic Maxwell’s
Demon is working. The figure 32 shows the first measurement where we have hni =
2.71, 2.17, and 1.09, where we normalized the Demon’s effect �Nexp by the coherence
time. We can see that there is a clear effect that grows as hni grows. The Demon’s
power grows as R grows until a limit where the Demon has a significant amount of
information but no photons to deal with it, and it is power starts to decrease.

In the results from figure 32, we normalize the data by the coherence time to
evaluate on average how many photons per bunch the Demon can transfer to mode A.
Unfortunately, hni is too high to be applied in theory from section 4.0.1.1.

For Uncorrelated thermal baths, considering the 5.42 µs, we measured the De-
mon effect for hni = 0.151 ± 0.002, where it corresponds to an average photon number
at DA and DB of 28, 800±500 Hz, where the error bars came by the standard deviation
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Figure 32 – First measurements of the photonic Maxwell’s Demon with Uncorrelated
thermal baths, where we vary the reflectivity, meaning the Demon’s infor-
mation, for a given hni.

of the measured single rates for the measurement set. The Demon’s effect normalized
by the single rate is shown in figure 33 represented by the red stars. The red line is the
theory from equation 4.17, where the best parameter that fit’s the experimental result is
hni = 0.05. It can be due to our limited switching time in which we may cut some events,
reducing the efficiency, and because of the experimental imperfections. These results
are also plotted in figure 4.3 for the comparison with the results of thermal baths with
correlation normalized by its correlations.

In the Split thermal state, we generate a state with hni ⇡ 0.7 after the division. To
guarantee that the beam is still thermal, we measured the g2(0) in figure 30, showing
that it tends to 2, allowing us to guarantee that the beam is still thermal. Each mode has
an average photon number of 293, 000 ± 3000 Hz. Thus, we have shown theoretically
that the Demon’s effect should be null. However, in the experimental results, presented
as violet diamonds in figure 33, we can see the result is not precisely zero. The slight
variation came from the difficulty to measure something around the noise of the system
and the fact that after splitting the thermal beam, the singles are not perfectly balanced
as before. It came by the fact that the fiber-based beam-splitter does not allow us to
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equalize the counts using linear filters. For uncorrelated thermal baths, the linear filters
are set before we couple the thermal state into the fiber. Nevertheless, we can see that
the result is considerably smaller than the other baths.

For the correlated thermal bath, we first measure the coupling efficiency of
the source as ✏2 = 0.14. We then balance the single rates in the modes obtaining
168, 00 ± 1000 Hz, where we have a hni ⇡ 10–7. The small hni is due to the short
coherence time of the source (around ⇡ 2 ps), measured at the HOM interference in
figure 31. The result of the Demon’s efficiency normalized by the singles is shown in
figure 33 as green circles. The solid green line is the theory from equation 4.34 where
it agrees with the experimental data using the experimental parameters of the SPDC
source.

We measure the correlations for correlated thermal bath, as the sum of the
coincidence rates between DemADA and DemBDA. With these coincidence rates, we
can then obtain the experimental Demon’s effect normalized by the correlations that
we show in figure 34 as green circles. Thus, the theory from equation 4.35 and the
experimental data have a good agreement.

The last measurement set is the Anti-correlated thermal bath, where we first
characterized the visibility of our two-photon NOON state as ⌫2 = 0.87 ± 0.02 in figure
31. We have approximately 141, 00±3000 Hz singles in DA/DB, resulting in hni ⇡ 10–7

due to the ⇡ 2 ps coherence time. The experimental results normalized by the singles
are shown in figure 33 as blue pentagons, and the the theory for the same regime
as in equation 4.45 is the blue line. The theory with experimental parameters and the
experimental results have a good agreement.

The correlations for anti-correlated baths are measured in the same way as
correlated thermal baths. The only difference is that we change the term that is resulted
by switching the modes. The experimental results normalized by the correlations, blue
pentagons, and the theoretical results from equation 4.46, blue solid line, are shown in
figure 34. As shown theoretically, the anti and correlated baths should have the same
effect in the low photon regime for a perfect NOON state. However, as expected by our
visibility, the Demon’s power is reduced.

In figure 33 we can observe that the Demon’s effect is more significant when the
correlations come into consideration, even having a considerably smaller hni. Another
essential point to mention is that when we normalize by the single rates, we are con-
sidering the imperfections in the pair generation. When these imperfections disappear,
normalizing by the correlations, the effect grows almost two orders of magnitude. Thus,
we became near to the theoretical regime where the Demon can extract 0.5 photons
per bunch in the correlated thermal bath.
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Figure 33 – Here we present the experimental results for the Demon’s effect normalized
by the singles rate. The experimental errors are calculated by the standard
deviation of the singles in every measurement set. Better details of the
experimental parameters and theoretical curve are given during the text.

4.3 CONCLUSIONS

Here we presented a photonic Maxwell’s Demon that allows measuring the
Demon’s efficiency with no post-selection, where our feed-forward scheme acts in real-
time. Another critical point of our setup is the versatility that allows us to implement
various statistics using the same setup, where the only modification that needs to be
done is to adapt the switching logic according to the different ways each bath provides
the information for the Demon.

We can see that the experimental results for thermal baths with correlations
agree with our theory without any adjustment of the parameters for the theory. Moreover,
the theory has an excellent agreement for uncorrelated thermal baths when we fit the
hni. However, our experimental limitations for uncorrelated thermal baths related to the
switching time that is approximately half of the coherence time of our thermal beams
could be the reason for the reduction in the Demon’s efficiency in compassion with
theory. Another possible explanation is that our theory is simplified without considering
any losses or detection efficiencies that are present in the experimental scenario.
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Figure 34 – Here we present the experimental results for the Demon’s effect normalized
by the singles rate. The experimental errors are calculated by the standard
deviation of the singles in every measurement set. We also presented the
result for Uncorrelated thermal baths normalized by the singles rates to
make it easier the comparison between the baths with and without correla-
tions. Better details of the experimental parameters and theoretical curve
are given during the text.

We have shown that the Demon’s efficiency of thermal baths with correlations
overpass the efficiency with uncorrelated thermal baths when we are normalizing by
the single counts, even when the hni is smaller by several orders of magnitude. When
we normalize with the correlations, the anti-correlated thermal bath have a factor of
approximately 16 times bigger than the Uncorrelated. By comparing with the corre-
lated thermal baths this factors grows to 28 times, showing the power of the classical
correlations on the Maxwell’s Demon protocol.

Here we show the first photonic Maxwell’s Demon with active feed-forward and
how these correlations could enhance the Demon’s efficiency. For the low photon
regime, the Correlated thermal baths are the most efficient one. However, for higher
photon numbers, we expect that the anti-correlated thermal baths would be even more
efficient [112]. In higher photon numbers, this protocol is applicable in fluctuation re-
lations [111], where it is possible to extract how much information the Demon uses to
extract work. This analysis is a future work where we are starting to implementing this
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protocol.
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5 CONCLUSIONS

In this thesis, we have described experiments using optical systems aiming at
building experimental platforms for the study of Quantum Thermodynamics. Optical
systems allow a high degree of control over several degrees of freedom, as well as
the ability of making use of quantum properties of the light like entanglement. The
experiments described in the thesis deal with the orbital angular momentum of the light,
photon number statistics and the polarization degres of freedom.

In chapter 2 we demonstrate the production and manipulation of thermal states
using the OAM as a degree of freedom. We also study how to control the temperature
of the distributions in a very simple fashion by controlling the detection area of one of
the detectors. Our results show that it is possible to prepare single photons in OAM
thermal states, which can be used for several purposes in Quantum Thermodynamics
ranging from experimental tests of fluctuation relations to Thermodynamic cycles like
thermal engines.

In chapter 3 we have demonstrated a feed-forward technique that allowed us to
perform the remote state preparation at the single-photon level with the highest fidelity
reported to date, to the best of our knowledge. It also demonstrates that UFOS are
suitable devices to implement feed-forward protocols, as they are very fast, present
low losses and easy electronic control. Another important point of this device is the
possibility of application integrated to existing fiber networks. It can also be used in
other applications like measurement-based quantum computation and causal order
experiments.

In chapter 4, we have described the implementation of the first photonic Maxwell’s
Demon with active feed-forward. We have used an approach similar to the one de-
scribed in chapter 3 for the feed-forward protocol, allowing us to realize the action
of the demon and to measure the its power per second without post-selection. We
also demonstrate how the classical correlations present in thermal baths with correla-
tions and anti-correlation can overpass the Demon’s power with uncorrelated thermal
baths. We have also developed a theory for the low photon number regime, which is
appropriated for our experimental conditions and agrees well with experimental results.

The perspective for futures work is to use OAM single-photon thermal states in
thermodynamic processes and heat engines. This step is challenging because photons
do not interact with each other and thermalization is still an issue.

The fact that we can use the UFOS to efficiently manipulate light degrees of free-
dom like polarization and photon number opens several perspectives for experiments
on Quantum Thermodynamics that might explore the study about classical and quan-
tum thermalization and the realization of processes to extract work efficiently from the
heat. Another possibility concerns the study of the connections between informational
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and thermodynamic entropies, which is also related to the problem of the arrow of time.
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