

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E SISTEMAS

Jessica Junia Santillo Costa

Emprego de Medição na Estimação do Tempo de Execução no Pior Caso para Sistemas de Tempo Real

> Florianópolis 2021

Jessica Junia Santillo Costa

Emprego de Medição na Estimação do Tempo de Execução no Pior Caso para Sistemas de Tempo Real

Dissertação submetida ao Programa de Pós-Graduação em Engenharia de Automação e Sistemas da Universidade Federal de Santa Catarina para a obtenção do título de mestre em Engenharia de Automação e Sistemas. Orientador: Prof. Rômulo Silva de Oliveira, Dr. Coorientador: Luís Fernando Arcaro, Dr. Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Costa, Jessica Junia Santillo Emprego de Medição na Estimação do Tempo de Execução no Pior Caso para Sistemas de Tempo Real / Jessica Junia Santillo Costa ; orientador, Rômulo Silva de Oliveira, coorientador, Luís Fernando Arcaro, 2021. 201 p.

Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2021.

Inclui referências.

1. Engenharia de Automação e Sistemas. 2. MBPTA. 3. WCET. 4. Tempo Real. I. Oliveira, Rômulo Silva de. II. Arcaro, Luís Fernando. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia de Automação e Sistemas. IV. Título. Jessica Junia Santillo Costa

Emprego de Medição na Estimação do Tempo de Execução no Pior Caso para Sistemas de Tempo Real

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca examinadora composta pelos seguintes membros:

Prof. Rodrigo Lange, Dr. Instituto Federal do Rio Grande do Sul

Prof. Rafael Rodrigues Obelheiro, Dr. Universidade do Estado de Santa Catarina

Prof. Cristian Koliver, Dr. Universidade Federal de Santa Catarina

Certificamos que esta é a **versão original e final** do trabalho de conclusão que foi julgado adequado para obtenção do título de mestre em Engenharia de Automação e Sistemas.

Coordenação do Programa de Pós-Graduação

Prof. Rômulo Silva de Oliveira, Dr. Orientador

Florianópolis, 2021.

À Sônia.

"Não se deve compreender muito rápido." (LACAN, 1973)

RESUMO

O objetivo deste trabalho é a avaliação de métodos e técnicas para estimar o tempo de execução no pior caso (WCET), em aplicações de tempo real executadas em hardware com recursos de aceleração complexos. Busca-se avaliar a aplicação da Análise de Tempo Probabilística Baseada em Medições (MBPTA) para estimação do WCET, utilizando como estudo de caso um sistema operacional que busca atender aos aspectos funcionais e temporais exigidos pela especificação ARINC 653 executado sobre uma plataforma BeagleBone. Testes foram feitos com a inserção de Benchmarks em diferentes partições do sistema operacional. Os Benchmarks implementados foram o fibcall, o bsort e o lms do projeto Mälardalen e o dijkstra do projeto TACLeBench. Diversos testes foram realizados para avaliar se o comportamento temporal da aplicação estava sujeito a variações. Os testes realizados comprovaram que o isolamento temporal, que deveria ser estabelecido por meio do particionamento do SO segundo a especificação ARINC 653, não é, por vezes, respeitado em função das características do hardware utilizado. Dois cenários foram usados nos testes em que foram coletadas 10 amostras com 50.000 medições. Apesar da existência de fatores que podem afetar o comportamento temporal da aplicação, o comportamento em regime se apresentou estável e, de maneira geral, a técnica MBPTA baseada na Teoria de Valores Extremos usando a abordagem Máximos de Blocos pôde ser aplicada e os resultados obtidos foram satisfatórios. Para cada cenário, foram usados 3 diferentes tamanhos de blocos e 3 diferentes quantidades de blocos. Foram gerados pWCETs (probabilistic WCETs) para 4 diferentes probabilidades de excedência. No caso da probabilidade de excedência de 10⁻⁸, ainda que 50 valores distintos de pWCET tenham sido obtidos, a diferença entre o maior e o menor valor obtido foi menor do que 1%, mostrando que o método, apesar de sua variabilidade inerente, fornece resultados consistentes. Em todos os casos, a mediana dos pWCETs (10^{-8}) obtidos foi maior do que o maior valor observado.

Palavras-chave: MBPTA. WCET. Sistemas de Tempo Real.

ABSTRACT

The objective of this work is the evaluation of methods and techniques to estimate the worst-case execution time (WCET) in real-time applications running on hardware with complex acceleration resources. The aim is to evaluate the application of Measurement-Based Probabilistic Timing Analysis (MBPTA) to estimate WCET, using as a case study an operating system that seeks to meet the functional and temporal aspects required by the ARINC 653 specification implemented on a BeagleBone platform. Tests were made by inserting Benchmarks on different operating system partitions. The implemented Benchmarks were fibcall, bsort and lms from the Mälardalen project and the dijkstra from the TACLeBench project. Several tests were performed to assess whether the application's temporal behavior was subject to variations. The tests carried out proved that the temporal isolation, which should be established by means of OS partitioning according to the ARINC 653 specification, is sometimes not respected due to the characteristics of the hardware used. Two scenarios were used in the tests where 10 samples with 50,000 measurements were collected. Despite the existence of factors that can affect the temporal behavior of the application, the behavior in regime was stable and, in general, the MBPTA technique using Block Maxima was possible to be applied and the results obtained were satisfactory. For each scenario, 3 different block sizes and 3 different block amounts were used. The pWCETs (probabilistic WCETs) were generated for 4 different exceedance probabilities. In the case of an exceedance probability of 10^{-8} , even though 50 distinct pWCET values were obtained, the difference between the highest and the lowest value obtained was smaller than 1%, showing that the method, despite its inherent variability, provides consistent results. In all cases, the median of pWCETs (10^{-8}) obtained was higher than the highest observed value.

Keywords: MBPTA. WCET. Real-Time Systems.

LISTA DE FIGURAS

Figura 1 – Exemplo de aplicação do método BM	26
Figura 2 – Exemplo de aplicação do método PoT	27
Figura 3 – Exemplo do processo de obtenção do pWCET	28
Figura 4 – Exemplo de escala temporal de partições	35
Figura 5 – Diagrama de estado dos processos	39
Figura 6 – Plataforma BeagleBone	41
Figura 7 – Escala temporal das partições do RTOS	44
Figura 8 – Exemplo de código para coleta de medição temporal: Modo Contido na Partição	45
Figura 9 – Exemplo de código para coleta de medição temporal: Modo Contínuo	46
Figura 10 – Amostra 50000 valores	49
Figura 11 – Faixa 1: Bloco inferior	49
Figura 12 – Histograma da Subfaixa 1_1: Bloco inferior	50
Figura 13 – Histograma da Subfaixa 1_2: Bloco inferior	50
Figura 14 – Faixa 2: Bloco do meio	51
Figura 15 – Faixa 3: Bloco superior	51
Figura 16 – Amostra de 50000 valores: Comparação do Caso 1 com e sem supressão	52
Figura 17 – Histograma: Comparação do Caso 1 com e sem supressão	53
Figura 18 – Amostra de 50000 valores: Bsort em P1 (Caso 1)	54
Figura 19 – Histograma: Bsort em P1 (Caso 1)	54
Figura 20 – Amostra de 50000 valores: Bsort em P1 com vetor de tamanho 50	55
Figura 21 – Histograma: Bsort em P1 com vetor de tamanho 50	55
Figura 22 – Amostra de 50000 valores: Comparação do Caso 3A com Caso 1	57
Figura 23 – Histograma: Comparação do Caso 3A com Caso 1	57
Figura 24 – Amostra de 50000 valores: Comparação do Caso 3B com Caso 1	58
Figura 25 – Histograma: Comparação do Caso 3B com Caso 1	58
Figura 26 – Amostra 1: Tarefa Bsort	62
Figura 27 – Resultados com variação do tamanho do bloco: Amostra 1 - Tarefa Bsort	63
Figura 28 – Resultados com variação do número de blocos: Amostra 1 - Tarefa Bsort	66
Figura 29 – Valores estimados por tamanho do bloco com probabilidade de excedência	
$= 10^{-8} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	68
Figura 30 – Valores estimados por quantidade de blocos com probabilidade de excedên-	
$cia = 10^{-8}$	69
Figura 31 – Amostra 1 - Tarefa lms	70
Figura 32 – Resultados com variação do tamanho do bloco: Amostra 1 - Tarefa lms	71
Figura 33 – Resultados com variação do número de blocos: Amostra 1 - Tarefa lms	74
Figura 34 – Amostra 10 - Tarefa lms	76
Figura 35 – Resultados com variação do tamanho do bloco: Amostra 10 - Tarefa lms	77

Figura 36 – Resultados com variação do número de blocos: Amostra 10 - Tarefa lms	80
Figura 37 – Valores estimados por tamanho do bloco com probabilidade de excedência	
$= 10^{-8} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	82
Figura 38 – Valores estimados por quantidade de blocos com probabilidade de excedên-	
$cia = 10^{-8}$	83
Figura 39 – Amostra 1 - Tarefa Bsort	101
Figura 40 – Resultados com variação do tamanho do bloco: Amostra 1 - Tarefa Bsort	102
Figura 41 – Resultados com variação do número de blocos: Amostra 1 - Tarefa Bsort	103
Figura 42 – Amostra 2 - Tarefa Bsort	106
Figura 43 – Resultados com variação do tamanho do bloco: Amostra 2 - Tarefa Bsort	107
Figura 44 – Resultados com variação do número de blocos: Amostra 2 - Tarefa Bsort	108
Figura 45 – Amostra 3 - Tarefa Bsort	111
Figura 46 – Resultados com variação do tamanho do bloco: Amostra 3 - Tarefa Bsort	112
Figura 47 – Resultados com variação do número de blocos: Amostra 3 - Tarefa Bsort	113
Figura 48 – Amostra 4 - Tarefa Bsort	116
Figura 49 – Resultados com variação do tamanho do bloco: Amostra 4 - Tarefa Bsort	117
Figura 50 – Resultados com variação do número de blocos: Amostra 4 - Tarefa Bsort	118
Figura 51 – Amostra 5 - Tarefa Bsort	121
Figura 52 – Resultados com variação do tamanho do bloco: Amostra 5 - Tarefa Bsort	122
Figura 53 – Resultados com variação do número de blocos: Amostra 5 - Tarefa Bsort	123
Figura 54 – Amostra 6 - Tarefa Bsort	126
Figura 55 – Resultados com variação do tamanho do bloco: Amostra 6 - Tarefa Bsort	127
Figura 56 – Resultados com variação do número de blocos: Amostra 6 - Tarefa Bsort	128
Figura 57 – Amostra 7 - Tarefa Bsort	131
Figura 58 – Resultados com variação do tamanho do bloco: Amostra 7 - Tarefa Bsort	132
Figura 59 – Resultados com variação do número de blocos: Amostra 7 - Tarefa Bsort	133
Figura 60 – Amostra 8 - Tarefa Bsort	136
Figura 61 – Resultados com variação do tamanho do bloco: Amostra 8 - Tarefa Bsort	137
Figura 62 – Resultados com variação do número de blocos: Amostra 8 - Tarefa Bsort	138
Figura 63 – Amostra 9 - Tarefa Bsort	141
Figura 64 – Resultados com variação do tamanho do bloco: Amostra 9 - Tarefa Bsort	142
Figura 65 – Resultados com variação do número de blocos: Amostra 9 - Tarefa Bsort	143
Figura 66 – Amostra 10 - Tarefa Bsort	146
Figura 67 – Resultados com variação do tamanho do bloco: Amostra 10 - Tarefa Bsort .	147
Figura 68 – Resultados com variação do número de blocos: Amostra 10 - Tarefa Bsort .	148
Figura 69 – Amostra 1 - Tarefa lms	152
Figura 70 – Resultados com variação do tamanho do bloco: Amostra 1 - Tarefa lms	153
Figura 71 – Resultados com variação do número de blocos: Amostra 1 - Tarefa lms	154
Figura 72 – Amostra 2 - Tarefa lms	157

Figura 73 - Resultados com variação do tamanho do bloco: Amostra 2 - Tarefa lms	158
Figura 74 – Resultados com variação do número de blocos: Amostra 2 - Tarefa lms	159
Figura 75 – Amostra 3 - Tarefa lms	162
Figura 76 – Resultados com variação do tamanho do bloco: Amostra 3 - Tarefa lms	163
Figura 77 – Resultados com variação do número de blocos: Amostra 3 - Tarefa lms	164
Figura 78 – Amostra 4 - Tarefa lms	167
Figura 79 – Resultados com variação do tamanho do bloco: Amostra 4 - Tarefa lms	168
Figura 80 - Resultados com variação do número de blocos: Amostra 4 - Tarefa lms	169
Figura 81 – Amostra 5 - Tarefa lms	172
Figura 82 - Resultados com variação do tamanho do bloco: Amostra 5 - Tarefa lms	173
Figura 83 - Resultados com variação do número de blocos: Amostra 5 - Tarefa lms	174
Figura 84 – Amostra 6 - Tarefa lms	177
Figura 85 – Resultados com variação do tamanho do bloco: Amostra 6 - Tarefa lms	178
Figura 86 – Resultados com variação do número de blocos: Amostra 6 - Tarefa lms	179
Figura 87 – Amostra 7 - Tarefa lms	182
Figura 88 - Resultados com variação do tamanho do bloco: Amostra 7 - Tarefa lms	183
Figura 89 – Resultados com variação do número de blocos: Amostra 7 - Tarefa lms	184
Figura 90 – Amostra 8 - Tarefa lms	187
Figura 91 – Resultados com variação do tamanho do bloco: Amostra 8 - Tarefa lms	188
Figura 92 - Resultados com variação do número de blocos: Amostra 8 - Tarefa lms	189
Figura 93 – Amostra 9 - Tarefa lms	192
Figura 94 – Resultados com variação do tamanho do bloco: Amostra 9 - Tarefa lms	193
Figura 95 – Resultados com variação do número de blocos: Amostra 9 - Tarefa lms	194
Figura 96 – Amostra 10 - Tarefa lms	197
Figura 97 – Resultados com variação do tamanho do bloco: Amostra 10 - Tarefa lms	198
Figura 98 – Resultados com variação do número de blocos: Amostra 10 - Tarefa lms	199

LISTA DE TABELAS

Tabela 1 – Amostra 1 - Tarefa Bsort: Análise dos dados	62
Tabela 2 – Amostra 1 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e	
100)	64
Tabela 3 – Amostra 1 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100)	65
Tabela 4 – Amostra 1 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)	67
Tabela 5 – Amostra 1 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)	67
Tabela 6 – Amostra 1 - Tarefa lms: Análise dos dados	70
Tabela 7 – Amostra 1 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	72
Tabela 8 – Amostra 1 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	73
Tabela 9 – Amostra 1 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	75
Tabela 10 – Amostra 1 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	75
Tabela 11 – Amostra 10 - Tarefa lms: Análise dos dados	77
Tabela 12 – Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	78
Tabela 13 – Amostra 10 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	79
Tabela 14 – Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	81
Tabela 15 – Amostra 10 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	81
Tabela 16 – Amostra 1 - Tarefa Bsort: Análise dos dados 1	104
Tabela 17 – Amostra 1 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e	
100)	104
Tabela 18 – Amostra 1 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 1	104
Tabela 19 – Amostra 1 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)1	105
Tabela 20 – Amostra 1 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500) 1	105
Tabela 21 – Amostra 2 - Tarefa Bsort: Análise dos dados 1	109
Tabela 22 – Amostra 2 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e	
100)	109
Tabela 23 – Amostra 2 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 1	109
Tabela 24 – Amostra 2 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)1	110
Tabela 25 – Amostra 2 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500) 1	110
Tabela 26 – Amostra 3 - Tarefa Bsort: Análise dos dados 1	114
Tabela 27 – Amostra 3 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e	
100)	114
Tabela 28 – Amostra 3 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 1	114
Tabela 29 – Amostra 3 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)1	115
Tabela 30 – Amostra 3 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500) 1	115
Tabela 31 – Amostra 4 - Tarefa Bsort: Análise dos dados 1	119
Tabela 32 – Amostra 4 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e	
100)	119

Tabela 33 – Amostra 4 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 119
Tabela 34 – Amostra 4 - Tarefa Bsort: Parâmetros usados para o ajuste ((N: 100, 250 e 500)120
Tabela 35 – Amostra 4 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500) 120
Tabela 36 – Amostra 5 - Tarefa Bsort: Análise dos dados 124
Tabela 37 – Amostra 5 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e
100)
Tabela 38 – Amostra 5 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 124
Tabela 39 – Amostra 5 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)125
Tabela 40 - Amostra 5 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)125
Tabela 41 – Amostra 6 - Tarefa Bsort: Análise dos dados 129
Tabela 42 – Amostra 6 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e
100)
Tabela 43 – Amostra 6 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 129
Tabela 44 – Amostra 6 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)130
Tabela 45 - Amostra 6 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)130
Tabela 46 – Amostra 7 - Tarefa Bsort: Análise dos dados 134
Tabela 47 – Amostra 7 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e
100)
Tabela 48 – Amostra 7 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 134
Tabela 49 – Amostra 7 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)135
Tabela 50 - Amostra 7 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)135
Tabela 51 – Amostra 8 - Tarefa Bsort: Análise dos dados 139
Tabela 52 – Amostra 8 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e
100)
Tabela 53 – Amostra 8 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 139
Tabela 54 – Amostra 8 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)140
Tabela 55 - Amostra 8 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)140
Tabela 56 – Amostra 9 - Tarefa Bsort: Análise dos dados 144
Tabela 57 – Amostra 9 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e
100)
Tabela 58 – Amostra 9 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100) 144
Tabela 59 – Amostra 9 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)145
Tabela 60 - Amostra 9 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)145
Tabela 61 – Amostra 10 - Tarefa Bsort: Análise dos dados 11
Tabela 62 – Amostra 10 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e
100)
Tabela 63 – Amostra 10 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100)149
Tabela 64 – Amostra 10 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e
500)

Tabela 65 – Amostra 10 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)	150
Tabela 66 – Amostra 1 - Tarefa lms: Análise dos dados	155
Tabela 67 – Amostra 1 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	155
Tabela 68 – Amostra 1 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	155
Tabela 69 – Amostra 1 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	156
Tabela 70 – Amostra 1 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	156
Tabela 71 – Amostra 2 - Tarefa lms: Análise dos dados	160
Tabela 72 – Amostra 2 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	160
Tabela 73 – Amostra 2 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	160
Tabela 74 – Amostra 2 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	161
Tabela 75 – Amostra 2 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	161
Tabela 76 – Amostra 3 - Tarefa lms: Análise dos dados	165
Tabela 77 – Amostra 3 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	165
Tabela 78 – Amostra 3 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	165
Tabela 79 – Amostra 3 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	166
Tabela 80 – Amostra 3 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	166
Tabela 81 – Amostra 4 - Tarefa lms: Análise dos dados	170
Tabela 82 – Amostra 4 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	170
Tabela 83 – Amostra 4 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	170
Tabela 84 – Amostra 4 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	171
Tabela 85 – Amostra 4 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	171
Tabela 86 – Amostra 5 - Tarefa lms: Análise dos dados	175
Tabela 87 – Amostra 5 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	175
Tabela 88 – Amostra 5 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	175
Tabela 89 – Amostra 5 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	176
Tabela 90 – Amostra 5 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	176
Tabela 91 – Amostra 6 - Tarefa lms: Análise dos dados	180
Tabela 92 – Amostra 6 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	180
Tabela 93 – Amostra 6 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	180
Tabela 94 – Amostra 6 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	181
Tabela 95 – Amostra 6 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	181
Tabela 96 – Amostra 7 - Tarefa lms: Análise dos dados	185
Tabela 97 – Amostra 7 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	185
Tabela 98 – Amostra 7 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	185
Tabela 99 – Amostra 7 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	186
Tabela 100–Amostra 7 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	186
Tabela 101 – Amostra 8 - Tarefa lms: Análise dos dados	190
Tabela 102-Amostra 8 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	190
Tabela 103–Amostra 8 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	190

Tabela 104 – Amostra 8 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	191
Tabela 105 – Amostra 8 - Tarefa Ims: Probabilidade de Excedência (N: 100, 250 e 500)	191
Tabela 106 – Amostra 9 - Tarefa lms: Análise dos dados	195
Tabela 107–Amostra 9 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)	195
Tabela 108 – Amostra 9 - Tarefa Ims: Probabilidade de Excedência (Bloco: 30, 50 e 100)	195
Tabela 109–Amostra 9 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	196
Tabela 110-Amostra 9 - Tarefa Ims: Probabilidade de Excedência (N: 100, 250 e 500)	196
Tabela 111 – Amostra 10 - Tarefa lms: Análise dos dados	200
Tabela 112-Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)2	200
Tabela 113 – Amostra 10 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)	200
Tabela 114–Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)	201
Tabela 115 – Amostra 10 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500) .	201

LISTA DE ABREVIATURAS E SIGLAS

Teste Anderson-Darling
Analog-to-Digital Converter
Arithmetic Logic Unit
Coefficient of Variation
Floating-Point Unit
Group Estimator
Generalized Extreme Value
Generalized Maximum-Likelihood Estimation
Generalized Pareto Distribution
General Purpose Input/Output
Health Monitoring
High Water Mark
independente e identicamente distribuída
Integrated Development Environment
Integrated Modular Avionics
Interrupt Requests
Teste Kolmogorov-Smirnov
Teste Ljung-Box
Measurement-Based Probabilistic Timing Analysis
Measurement-Based Timing Analysis
Maximum-Likelihood Estimation
Memory Management Unit
Protected Memory System Architecture
Peaks-over-Threshold
Programmable Real-time Units
Probabilistic Worst-Case Execution Times
Pulse-Width Modulation
Ratio Max Sum
Real-Time Operating System
Secure Digital
Memória de acesso aleatório dinâmica síncrona
Sistema Operacional
Serial Peripheral Interface
Static Random Access Memory
Static Timing Analysis
Sistemas de Tempo Real
Size, Weight and Power
Texas Instruments

TLBs	Translation Lookaside Buffers
ТР	Teste Turning Point
TVCA	Thrust Vector Control Application
TVE	Teoria dos Valores Extremos
USB	Universal Serial Bus
VMSA	Virtual Memory System Architecture
WCET	Worst-Case Execution Time
WCRT	Worst-Case Response Time
WW	Teste Wald-Wolfowitz runs
XML	Extensible Markup Language

SUMÁRIO

1	INTRODUÇÃO	19
1.1	OBJETIVOS	20
1.1.1	Objetivo Geral	20
1.1.2	Objetivos Específicos	20
1.2	ORGANIZAÇÃO DO TRABALHO	21
2	TEMPO REAL	22
2.1	ANÁLISE DO TEMPO DE EXECUÇÃO	22
2.2	MEASUREMENT-BASED PROBABILISTIC TIMING ANALYSIS	23
2.2.1	Amostragem	24
2.2.2	Avaliação da Adequação da Amostra	24
2.2.3	Métodos de Seleção de Valores da Amostra	25
2.2.3.1	Máximos de Blocos	25
2.2.3.2	Picos acima do Limiar	26
2.2.4	Estimação de Parâmetros	27
2.2.5	Teste de Qualidade do Ajuste	28
2.2.6	Obtenção do pWCET	28
2.3	TRABALHOS RELACIONADOS	29
2.3.1	Discussão sobre o emprego da TVE	29
2.3.2	Avaliação de técnicas e mecanismos	30
2.3.3	Avaliação empírica e uso de estudos de caso	30
2.4	CONSIDERAÇÕES FINAIS	32
3	PLATAFORMA EXPERIMENTAL	33
3.1	ARINC 653	33
3.1.1	Gerenciamento de Partições	34
3.1.2	Gerenciamento de Processos	37
3.1.3	Gerenciamento de Tempo	39
3.2	BEAGLEBONE	40
3.3	RECURSOS DE SOFTWARE	44
3.4	COLETA DE MEDIÇÕES	44
3.5	CONSIDERAÇÕES FINAIS	47
4	CENÁRIOS DE TESTE	48
4.1	COMPORTAMENTO TEMPORAL DO SISTEMA OPERACIONAL	48
4.2	CASO 1: TAREFA DE INTERESSE	52
4.3	CASO 2: VARIAÇÃO DOS DADOS DE ENTRADA	53
4.4	CASO 3: INTERFERÊNCIA INDIRETA ENTRE PARTIÇÕES	56
4.5	CONSIDERAÇÕES FINAIS	57
5	MEDIÇÕES E ANÁLISES	60

5.1	CENÁRIO 1
5.1.1	Análise variando o tamanho do bloco
5.1.2	Análise variando a quantidade de blocos
5.1.3	Análise da dispersão das amostras
5.2	CENÁRIO 2
5.2.1	Análise preliminar da Amostra 1
5.2.2	Análise variando o tamanho do bloco (Amostra 1)
5.2.3	Análise variando a quantidade de blocos (Amostra 1)
5.2.4	Análise preliminar da Amostra 10
5.2.5	Análise variando o tamanho do bloco (Amostra 10)
5.2.6	Análise variando a quantidade de blocos (Amostra 10)
5.2.7	Análise da dispersão das amostras
5.3	CONSIDERAÇÕES FINAIS
6	CONCLUSÃO 85
6.1	RECONHECIMENTO
	REFERÊNCIAS
	APÊNDICE A – SCRIPT R 93
	APÊNDICE B – RESULTADOS DO CENÁRIO 1
	APÊNDICE C – RESULTADOS DO CENÁRIO 2

1 INTRODUÇÃO

Sistemas de tempo real são sistemas computacionais que estão sujeitos a requisitos de natureza temporal em resposta à ocorrência de eventos no ambiente. Assim, além do seu valor intrínseco de computação, a corretude do comportamento desses sistemas depende do tempo em que os resultados são produzidos. Uma reação que ocorre após o prazo estabelecido (*deadline*) pode perder seu valor ou ter consequências catastróficas, dependendo da criticalidade do sistema (BUTTAZZO, 2011).

Quanto ao caráter de criticalidade, os sistemas podem ser classificados em não críticos (*soft real-time*) e críticos (*hard real-time*). Em sistemas não críticos, o não cumprimento dos requisitos temporais das tarefas implica apenas na redução de utilidade da aplicação. Já em sistemas críticos, o descumprimento pode ter consequências graves e perigosas no sentido econômico e de colocar em risco vidas humanas (OLIVEIRA, 2018).

Um número cada vez maior de aplicações depende do controle por computador, por conseguinte, a computação em tempo real se tornou um aspecto relevante na sociedade contemporânea (BUTTAZZO, 2011). Exemplos de aplicações que requerem computação em tempo real incluem: controle de usinas químicas e nucleares (KWAK *et al.*, 2006), aplicações automotivas (VRACHKOV; TODOROV, 2018), sistemas aviônicos (SHIN *et al.*, 2017), entre outros.

Dentre as aplicações citadas, várias se enquadram na categoria de sistemas críticos. Nesse tipo de sistema é necessário que exista uma garantia de que os requisitos temporais serão cumpridos. Para que isso seja possível, a abordagem de desenvolvimento utilizada também deve fornecer um mecanismo para análise de escalonabilidade (*schedulability analysis*) das tarefas do sistema, que deve considerar como premissa a carga computacional da aplicação (hipótese de carga) e as faltas que podem ocorrer sem comprometer a garantia (hipótese de faltas) (OLIVEIRA, 2018).

Para que seja possível garantir o cumprimento dos *deadlines*, também é preciso estudar o comportamento do sistema no pior caso. Ou seja, é necessário que sejam conhecidos os piores comportamentos de *hardware* e *software* para garantir que os prazos sejam cumpridos nessas situações. São analisados no sistema, portanto: o pior fluxo de controle para cada tarefa, os piores dados de entrada e combinação de eventos externos, o pior caso de sincronização de tarefas, o pior comportamento de memórias *cache*, *pipeline*, barramentos, etc. A partir disso, é necessário considerar todas as combinações possíveis dos elementos envolvidos, buscando o pior caso absoluto, ou seja, o pior caso global. O tempo de execução no pior caso (*Worst-Case Execution Time*, WCET) para cada tarefa (individual, sem interrupções) deve ser estimado nesse cenário de pior caso global. A partir dessa informação, o tempo de resposta no pior caso (*Worst-Case Response Time*, WCRT) é obtido para cada tarefa, combinando a execução das várias tarefas (OLIVEIRA, 2018).

Em se tratando do projeto dos sistemas de tempo real, as soluções em certos setores de aplicação, tais como as indústrias automobilística e aeroespacial, passaram a almejar que

o *hardware* utilizado tenha capacidade de processamento com tamanho, peso e potência (*Size, Weight and Power*, SWaP) minimizados (OTTERNESS *et al.*, 2017; KOSMIDIS *et al.*, 2016a). Nesse sentido, o aumento nas necessidades de integração das unidades de processamento e de eficiência criou a demanda pelo uso de processadores de maior desempenho. Esse tipo de processador geralmente apresenta elementos computacionais modernos, tais como memórias *cache, pipelines* superescalares e mecanismos de predição de fluxo (*branch prediction*). O uso dessas arquiteturas torna complexa a determinação do tempo máximo de execução de uma tarefa, em razão da variabilidade temporal que é gerada. Nesse contexto, os métodos probabilísticos/estatísticos de análise de tempo de execução emergiram como um paradigma promissor para superar as limitações das abordagens tradicionais de análise determinística de tempo, através do fornecimento de estimativas de WCET probabilisticamente seguras (CAZORLA *et al.*, 2019).

1.1 OBJETIVOS

Nas seções abaixo estão descritos o objetivo geral e os objetivos específicos deste trabalho.

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é avaliar a aplicabilidade da Análise de Tempo Probabilística Baseada em Medições (*Measurement-Based Probabilistic Timing Analysis*, MBPTA), baseada na Teoria dos Valores Extremos, para estimar o WCET, no caso específico de um sistema operacional relevante para sistemas de tempo real. Foi escolhida a especificação ARINC 653, a qual define uma interface de sistema operacional de tempo real que é usada em sistemas aviônicos.

Este trabalho tem enfoque na questão da estimativa do WCET, não sendo, portanto, tratada a obtenção do WCRT a partir do WCET das tarefas individuais.

1.1.2 Objetivos Específicos

Neste trabalho, busca-se avaliar a aplicabilidade da MBPTA no contexto de arquiteturas complexas, ou seja, processadores com vários recursos de aceleração implementados no *hard-ware (cache, pipeline* superescalar, etc.). Para tanto, os experimentos foram realizados em um processador equipado com recursos desse tipo.

Deseja-se que os métodos e técnicas avaliados possibilitem obter estimativas confiáveis para os tempos de execução no pior caso e, consequentemente, garantir a segurança operacional e fornecer a previsibilidade do sistema, equilibrando esforços entre confiabilidade e custo. Ou seja, deseja-se reduzir o custo testando o mínimo possível e garantir a confiabilidade maximizando a confiança de que os requisitos temporais são cumpridos.

A principal contribuição deste trabalho é a avaliação experimental da aplicação da MBPTA para estimação do WCET em um *hardware* com recursos de aceleração complexos,

executando um sistema operacional que atende aos aspectos funcionais e temporais exigidos pela especificação ARINC 653.

1.2 ORGANIZAÇÃO DO TRABALHO

O Capítulo 2 apresenta os tipos dominantes de análise de tempo de execução na literatura de tempo real e o caso específico da Análise Probabilística de Tempo Baseada em Medições. O Capítulo 3 contém as características principais acerca da especificação e da plataforma experimental adotadas e também apresenta os recursos de *software* utilizados para realizar a amostragem de tempos de execução. O Capítulo 4, por sua vez, apresenta casos de teste que buscam avaliar o comportamento temporal da aplicação e fatores observados que podem causar variabilidade. Cenários foram escolhidos para aplicação da técnica no Capítulo 5 e os resultados das medições e análises realizadas sobre eles são apresentados. Por fim, as conclusões deste trabalho são apresentadas no Capítulo 6.

2 TEMPO REAL

Em se tratando de sistemas de tempo real, há uma necessidade intrínseca de que se analise o comportamento temporal da aplicação no intuito de garantir que os requisitos temporais serão cumpridos. É por meio dessa análise que se almeja predizer uma estimativa do pior tempo de execução da tarefa, todavia, muitos são os fatores que dificultam a obtenção de uma estimativa segura, como, por exemplo, a complexidade do *hardware* e *software* adotados e também a complexa tarefa para o desenvolvedor em precisar quais seriam as condições que levariam ao pior estado de execução da tarefa (BUTTAZZO, 2011; OLIVEIRA, 2018). As seções a seguir apresentam as diversas abordagens encontradas na literatura acerca do tema, com enfoque específico na análise probabilística de tempo baseada em medições, bem como uma seleção dos trabalhos relacionados mais relevantes.

2.1 ANÁLISE DO TEMPO DE EXECUÇÃO

Existem na literatura dois tipos dominantes de análise do tempo de execução:

1. Métodos Estáticos (Static Timing Analysis, STA)

Nessa abordagem, a estimativa do valor do WCET não é obtida através da execução do programa em um *hardware* real ou através de uma simulação. Em vez disso, é feita uma análise com o código do programa e informações sobre valores de entrada, usando um modelo abstrato do *hardware* (DAVIS; CUCU-GROSJEAN, 2019). Para garantir um resultado seguro por meio dessa análise, é preciso obter informações detalhadas e em quantidade suficiente sobre os principais recursos internos e externos do sistema (CAZORLA *et al.*, 2019).

2. Métodos baseados em Medição (Measurement-Based Timing Analysis, MBTA)

Já no caso dos métodos baseados em medição, o programa é executado em um *hardware* real ou executado através de uma simulação, sendo possível obter uma estimativa do WCET. São selecionados para a medição conjuntos de valores de entrada e configurações iniciais de *hardware* que geram o pior comportamento temporal da aplicação, seja por caminhos executados ou estados de *hardware* atingidos. Na sua forma mais simples, uma amostragem dos tempos de execução do programa é coletada e o tempo máximo de execução observado (*High Water Mark*, HWM) é utilizado como a aproximação para o WCET, podendo ser também usado com uma multiplicação por um fator de segurança (e.g. 20%) (DAVIS; CUCU-GROSJEAN, 2019).

Com o surgimento de elementos de *hardware* de alto desempenho, dificuldades foram apresentadas aos métodos de análise STA e MBTA. A STA necessita de modelos de tempo precisos para calcular o tempo de execução das instruções individuais do processador e dos blocos básicos dos programas. Com esse tipo de *hardware*, pode ocorrer que informações de

tempo imprecisas ou incompletas sejam consideradas (CAZORLA *et al.*, 2019). Já a MBTA é a técnica mais usada na indústria, devido à sua boa relação custo-benefício (CAZORLA *et al.*, 2019). No entanto, não é garantido que o HWM medido seja o verdadeiro tempo de execução no pior caso, uma vez que não são conhecidas as condições para que o WCET aconteça, nem a frequência com que ele ocorre, podendo ser raro seu acontecimento (OLIVEIRA, 2018).

Em face das dificuldades apresentadas aos métodos determinísticos supracitados, um novo paradigma de análise de tempo foi recentemente proposto: a análise temporal probabilística. Esse tipo de análise emprega métodos estatísticos à análise de temporização, visando mitigar algumas das limitações das técnicas existentes para fornecer estimativas de WCET. Para tanto, a análise não se detém sobre uma execução única da aplicação, porém acerca de um conjunto de execuções consecutivas, que permitem que a estimação do WCET passe a ser feita através de uma distribuição de probabilidades, ao invés de um valor único escalar (DAVIS; CUCU-GROSJEAN, 2019).

Este trabalho tem enfoque na técnica de Análise Probabilística de Tempo Baseada em Medições (MBPTA - *Measurement-Based Probabilistic Timing Analysis*). A MBPTA determina limites probabilísticos para o WCET das tarefas. Os chamados Tempos Probabilísticos de Execução de Pior Caso (pWCETs, *Probabilistic Worst-Case Execution Times*) são compostos de um valor limite e uma probabilidade associada de que esse seja excedido em qualquer execução individual da tarefa (CAZORLA *et al.*, 2019).

2.2 MEASUREMENT-BASED PROBABILISTIC TIMING ANALYSIS

A principal ferramenta atualmente empregada pela MBPTA é a Teoria dos Valores Extremos (TVE) (DAVIS; CUCU-GROSJEAN, 2019), um ramo da estatística projetado para estimar a probabilidade de eventos extremos ou eventos com baixa probabilidade de ocorrência (CO-LES, 2001). Uma estimativa do WCET de uma tarefa pode ser obtida a um determinado nível de confiança estatística, por meio do uso de medição para obter dados e da TVE para modelar o formato da distribuição dos tempos extremos de execução. A TVE pode prever a probabilidade de ocorrência de valores de tempo de execução que excedam os que foram observados, deduzindo a ocorrência de eventos cujas probabilidades são menores do que as probabilidades dos eventos já observados (DAVIS; CUCU-GROSJEAN, 2019).

A aplicação da TVE pela MBPTA pode ser usualmente dividida em seis etapas. A primeira delas consiste em coletar uma amostra representativa de tempos de execução que seja suficientemente grande. Em seguida, é verificada a adequação da amostra obtida. A terceira etapa consiste em utilizar um método específico para selecionar valores da amostra. A partir dessa seleção, é feita a estimativa dos parâmetros da curva de distribuição. A quinta etapa consiste em verificar se o modelo gerado é adequado, em caso afirmativo, a sexta e última etapa consiste na obtenção do pWCET com base na probabilidade de excedência desejada a partir do modelo gerado (CAZORLA *et al.*, 2019; DAVIS; CUCU-GROSJEAN, 2019; SILVA *et al.*, 2018). As etapas serão explicadas em mais detalhes nas seções a seguir.

2.2.1 Amostragem

Para realizar a amostragem, compete inicialmente ao desenvolvedor a tarefa de definir cenários para execução do programa. Diversas são as variantes que podem ser empregadas, dentre elas, pode-se citar a própria natureza do programa usado para validação. Usualmente para fins de pesquisa, o programa utilizado faz parte de pacotes de *Benchmarks* usados no meio científico para aplicações de tempo real, tais como os do projeto Mäladarlen (GUSTAFSSON *et al.*, 2010), TACLeBench (FALK *et al.*, 2016), conjunto automobilístico EEMBC AutoBench (EEMBC, s.d.), entre outros.

Outro quesito importante é a escolha dos dados de entrada a serem empregados, que podem ser fixos ou variáveis, escalares ou compostos de um conjunto de valores, mas, sobremaneira, escolhidos de forma que possivelmente o caminho de execução do programa seja o mais extenso ou, em outras palavras, torne propensa a ocorrência do WCET. Essa é uma escolha difícil, pois geralmente as condições para que o WCET ocorra são desconhecidas (GRIFFIN; BURNS, 2010; ABELLA *et al.*, 2014).

Além do mais, outro aspecto do cenário está relacionado às configurações de *hardware*, que podem ser alteradas de forma a habilitar ou não certos recursos que afetam o comportamento temporal, tais como memórias *cache* e *branch prediction*. Mas não apenas isso, o estado do *hardware* previamente à execução do programa pode afetar os resultados obtidos. Uma possível solução para o problema levantado versa que entre os testes sejam redefinidos, i.e. restaurados ao estado inicial padrão, os recursos do processador compartilhados, no entanto, perde-se a característica cenário real de execução, no qual redefinições dessa natureza não são realizadas (GRIFFIN; BURNS, 2010).

Após definir o cenário de teste, outra questão em aberto na literatura da MBPTA é a definição do tamanho da amostra que deve ser coletada. É importante que a amostra seja grande o suficiente para coletar tempos de execução grandes e de baixa probabilidade de ocorrência, o que contribui para que a amostra seja representativa do comportamento temporal da aplicação (GRIFFIN; BURNS, 2010; ABELLA *et al.*, 2014). Todavia, amostras muito grandes acarretam em grande esforços, sendo, portanto, necessário um balanço entre as duas premissas. Uma sugestão para calcular um valor mínimo de tamanho de amostra foi feita por (CUCU-GROSJEAN *et al.*, 2012). A abordagem propõe que sejam feitas $N_{(current)} + N_{(delta)}$ observações, para em seguida aumentar $N_{(current)}$ de $N_{(delta)}$ a cada iteração. Para cada uma delas é feita a projeção da cauda com a TVE, e se a diferença entre as duas distribuições for inferior a um limiar definido, o processo é interrompido.

2.2.2 Avaliação da Adequação da Amostra

Os primeiros resultados na teoria dos valores extremos exigiram que a amostra de observações fosse independente e identicamente distribuída (i.i.d.). Trabalhos posteriores mostraram que a TVE também pode ser usada no caso de uma série de observações estacionárias, mas não necessariamente independentes (DAVIS; CUCU-GROSJEAN, 2019). Além disso, os tempos de execução devem ser produzidos por um processo aleatório e estacionário, e é necessário que a distribuição dos tempos de execução máximos possa ser ajustada a uma distribuição assintótica de valores extremos (DAVIS; CUCU-GROSJEAN, 2019). Evidências de que essas propriedades são atendidas podem ser produzidas usando testes estatísticos apropriados:

- Teste Anderson-Darling (AD): testa se os valores da amostra pertencem a uma mesma distribuição (ARCARO *et al.*, 2018; SILVA *et al.*, 2017; REGHENZANI *et al.*, 2019c).
- Teste Kolmogorov-Smirnov (KS): avalia se duas amostras são oriundas de uma mesma distribuição (HERNANDEZ *et al.*, 2016; FERNANDEZ *et al.*, 2017; KOSMIDIS *et al.*, 2016b; SILVA *et al.*, 2017; REGHENZANI *et al.*, 2019c).
- Teste Ljung-Box (LB): testa a independência nas observações (FERNANDEZ *et al.*, 2017; KOSMIDIS *et al.*, 2016b; SILVA *et al.*, 2017; CIVIT *et al.*, 2018).
- **Teste Turning Point (TP)**: testa a existência de correlação entre observações vizinhas (OLIVEIRA, 2018).
- Teste Wald-Wolfowitz *runs* (WW): testa a aleatoriedade da amostra e se os eventos são amostrados de uma população estacionária (HERNANDEZ *et al.*, 2016; ARCARO *et al.*, 2018; SILVA *et al.*, 2017).

2.2.3 Métodos de Seleção de Valores da Amostra

Dois teoremas da TVE e métodos associados foram empregados na literatura sobre MBPTA:

- Máximos de Blocos (BM, *Block Maxima*), baseado no teorema de Fisher-Tippett-Gnedenko (COLES, 2001).
- **Picos acima do Limiar** (PoT, *Peaks-over-Threshold*), baseado no teorema de Pickands-Balkema-de Haan (COLES, 2001).

Os teoremas nos quais a TVE se baseia mostram que a distribuição assintótica da cauda de uma amostra de variáveis aleatórias, independentes e identicamente distribuídas converge para famílias de distribuições conhecidas como Valor Extremo Generalizado (GEV - *Generalized Extreme Value*) e Distribuição de Pareto Generalizada (GPD - *Generalized Pareto Distribution*), no caso do uso dos métodos BM e PoT respectivamente (CAZORLA *et al.*, 2019; COLES, 2001).

2.2.3.1 Máximos de Blocos

O método Máximos de Blocos divide a amostra em blocos de tamanho fixo e obtém o valor máximo para cada bloco. A TVE tenta então ajustar uma distribuição da família GEV

sobre o conjunto de valores resultante. Essa será uma distribuição invertida de Weibull, Gumbel ou Fréchet, dependendo do parâmetro de forma. A forma paramétrica da GEV é mostrada na Equação (1). Os parâmetros ξ , $\sigma \in \mu$ são conhecidos como forma, escala e local, respectivamente. A forma ξ determina se a distribuição resultante é a Gumbel (conhecida por exponencial ou de cauda leve), quando $\xi = 0$, ou a Weibull (conhecida por cauda curta), quando $\xi < 0$, ou Fréchet (conhecida por cauda pesada), quando $\xi > 0$ (CAZORLA *et al.*, 2019; COLES, 2001). Uma representação da aplicação do método pode ser observada na Figura 1.

$$G(x; \mu, \sigma, \xi) = \begin{cases} \exp\left[-\left(1 + \xi \frac{x - \mu}{\sigma}\right)^{\frac{-1}{\xi}}\right] & \xi \neq 0\\ \exp\left[-\exp\left(-\frac{x - \mu}{\sigma}\right)\right] & \xi = 0. \end{cases}$$
(1)

Figura 1 - Exemplo de aplicação do método BM

Fonte – Do autor.

Uma questão fundamental e em aberto acerca da aplicação do método é a escolha do tamanho do bloco a ser usado. Sabe-se que quanto maior o tamanho do bloco adotado, há uma maior possibilidade de aderência do modelo gerado à cauda da distribuição do valores amostrados. Todavia, o tamanho dos blocos define a quantidade de valores da amostra original que será utilizada no modelo, isto é, quanto maior o tamanho do bloco, menos blocos são gerados, o que implica em menos valores da amostra original na análise (CUCU-GROSJEAN *et al.*, 2012).

2.2.3.2 Picos acima do Limiar

O método Picos acima do Limiar utiliza um valor escolhido como limite para desempenhar o papel de filtro, em que apenas observações que excedam o valor limite são selecionadas. A TVE, por sua vez, busca ajustar uma distribuição da família GPD sobre o conjunto de valores filtrados. Os parâmetros ξ , σ * e μ são conhecidos como forma, escala e local, respectivamente. A notação $\sigma * \acute{e}$ para denotar que, apesar de mesmo nome, o parâmetro não é o mesmo que o da distribuição GEV. A forma ξ , de maneira análoga à GEV, determina qual a distribuição resultante, podendo ser Exponencial ($\xi = 0$), Beta ($\xi < 0$) ou Pareto ($\xi > 0$), cuja forma paramétrica é mostrada na Equação (2), onde $\sigma * > 0$, $x \ge 0$ quando $\xi \ge 0$ e $0 \le x \le -\sigma */\xi$ quando $\xi < 0$ (CAZORLA *et al.*, 2019; COLES, 2001). Uma representação da aplicação do método pode ser observada na Figura 2.

$$H(x; \mu, \sigma^*, \xi) = \begin{cases} 1 - \left[1 + \xi \left(\frac{x - \mu}{\sigma^*}\right)\right]^{\frac{-1}{\xi}} & \xi \neq 0\\ 1 - \exp\left(-\frac{x - \mu}{\sigma^*}\right) & \xi = 0. \end{cases}$$
(2)

Figura 2 – Exemplo de aplicação do método PoT

Fonte – Do autor.

De maneira análoga ao método Máximos de Blocos, uma questão fundamental e em aberto acerca da aplicação do PoT é a escolha do limiar a ser adotado. Quanto maior o valor do limiar, menos dados da amostra original são considerados no modelo, podendo incorrer que o pWCET estimado seja muito grande (DAVIS; CUCU-GROSJEAN, 2019).

2.2.4 Estimação de Parâmetros

Depois que os valores da amostra são selecionados por meio de Máximos de Blocos ou Picos acima do Limiar, é necessário que os parâmetros que definem a curva GEV ou GPD sejam estimados. Os parâmetros são selecionados de forma que a curva se ajuste aos valores observados nas medições (COLES, 2001). Os métodos mais usuais para estimar os parâmetros da distribuição de valores extremos são:

- Maximum-likelihood estimation (MLE) (COLES, 2001);
- Generalized maximum-likelihood estimation (GMLE) (MARTINS; STEDINGER, 2000);
- L-moments (HOSKING, 1990);

• Bayesian Inference (COLES, 2001).

2.2.5 Teste de Qualidade do Ajuste

Após o ajuste dos parâmetros do modelo, são efetuados testes de qualidade de ajuste (*goodness-of-fit*) para verificar a adequação do modelo obtido (curva GEV ou GPD) às medições amostradas (COLES, 2001). A verificação pode ser:

- Visual (e.g. gráficos Quantil-Quantil) (COLES, 2001);
- Avaliação numérica (LAIO, 2004).

2.2.6 Obtenção do pWCET

Tendo o modelo sido verificado adequado, a obtenção do pWCET e sua respectiva probabilidade de excedência é feita a partir do modelo ajustado (OLIVEIRA, 2018). Isso é possível, uma vez que o modelo gerado representa uma função de densidade de probabilidade dos pWCETs estimados. Desta maneira, para encontrar a probabilidade de excedência de um determinado valor t, basta que seja calculada a área contida no intervalo [t, ∞ [e abaixo da curva da função de densidade (COLES, 2001; DEVORE, 2010).

Em outras palavras, utiliza-se a integral da função f(x) de densidade (Equação 3) para inferir o quantil associado à probabilidade p de ocorrência de valores superiores a t (COLES, 2001; DEVORE, 2010). Um exemplo do processo de obtenção do pWCET pode ser observado na Figura 3.

$$\int_{t}^{\infty} f(x)dx = p \tag{3}$$

Figura 3 – Exemplo do processo de obtenção do pWCET

Fonte - Do autor.

2.3 TRABALHOS RELACIONADOS

O uso de métodos estatísticos para fornecer estimativas de WCET é um tema que ainda está sendo estudado, não havendo pleno consenso na literatura acerca de certos aspectos de sua aplicação. Por isso, foi realizada uma pesquisa exploratória do estado da arte acerca do tema.

São vastos os estudos relacionados à MBPTA na literatura, sendo possível destacar três áreas relevantes a esta pesquisa:

- Discussão sobre o emprego da técnica da TVE, incluindo análise de dependência, i.i.d. e representatividade das observações, podendo também abordar boas práticas na aplicação da técnica;
- 2. Avaliação de técnicas e mecanismos que tornem propício o uso da MBPTA;
- 3. Avaliação empírica e uso de estudos de caso.

Apresenta-se a seguir uma breve revisão dos trabalhos relacionados mais relevantes a este trabalho.

2.3.1 Discussão sobre o emprego da TVE

Dentre os trabalhos recentes nessa área e relevantes a esta dissertação, destacamos:

- (DAVIS; CUCU-GROSJEAN, 2019) abrange técnicas probabilísticas de análise temporal para sistemas em tempo real. O trabalho é um *survey* que fornece uma taxonomia dos diferentes métodos utilizados e uma classificação das pesquisas existentes. É fornecida uma revisão detalhada cobrindo as principais áreas temáticas, mecanismos e estudos de caso.
- (ABELLA *et al.*, 2017) apresenta uma discussão sobre representatividade na aplicação da MBPTA para estimar a distribuição pWCET de um programa, analisando o tempo de resposta de diferentes recursos de *hardware* e identificando aqueles que podem levar a tipos radicalmente diferentes de distribuição.
- (CAZORLA *et al.*, 2019) apresenta um *survey* que propõe uma taxonomia das principais técnicas empregadas na análise temporal probabilística, abordando suas respectivas limitações e desafios.
- (REGHENZANI *et al.*, 2019a) discute o uso do limite superior da distribuição do pWCET, quando a distribuição é Weibull (também conhecida como cauda leve) e é usada a sua versão exponencial (Gumbel), podendo ocorrer que o valor do pWCET seja subestimado.
- (REGHENZANI *et al.*, 2019b) aborda a análise sistemática na validação dos testes de hipótese da TVE, destacando erros comuns no uso da técnica.

2.3.2 Avaliação de técnicas e mecanismos

Duas abordagens são consideradas nesse sentido: alteração de *hardware* para ter comportamento temporal aleatório e uso de mecanismos de *software* que ocasionem randomização. Apesar desta dissertação de mestrado não abordar o emprego desse tipo de ferramenta, os trabalhos são relevantes acerca dos tipos de testes estatísticos utilizados e suas respectivas significâncias, bem como *benchmarks* e arquiteturas de processador empregados. Sendo assim, podemos citar:

- (HERNANDEZ et al., 2016) propõe um novo tipo de design de cache, chamado Random Modulo (RM), que possui comportamento probabilístico. Para validação da proposta, foi utilizado um processador LEON3 implementado sobre FPGA e ASIC. O Benchmark adotado foi o conjunto automotivo EEMBC. Os testes de hipótese usados para validar a amostra foram Wald-Wolfowitz e Kolmogorov-Smirnov com 5% de significância.
- (FERNANDEZ et al., 2017) apresenta uma plataforma de hardware aleatorizado, com alterações na cache e na FPU. Para validação da proposta, foi utilizado o hardware 4-core LEON3. O Benchmark adotado foi o Thrust Vector Control Application (TVCA) com 3000 execuções. Os testes de hipótese usados para validar a amostra foram Ljung-Box e Kolmogorov-Smirnov com 5% de significância.
- (KOSMIDIS *et al.*, 2016b) apresenta uma ferramenta para randomização de *software* chamada TASA. Para tanto, foi utilizado *hardware* FPGA, utilizando a arquitetura SPARC V8 LEON3. O *Benchmark* adotado foi o conjunto automotivo EEMBC com 1000 execuções. Os testes de hipótese usados para validar a amostra foram Ljung-Box e Kolmogorov-Smirnov com 5% de significância.
- (KOSMIDIS *et al.*, 2018) apresenta uma ampla discussão acerca de métodos para randomização de *software* no contexto da especificação ARINC653. A estimação do pWCET foi realizada utilizando o *software* de análise temporal RVS (RAPITA SYSTEMS LTD, s.d.).
- (LIMA; BATE, 2017) propõe uma nova abordagem de *software* para a randomização da medição temporal, denominada IESTA. Dois estudos foram feitos, adotando como *benchmark* o algoritmo *binary search* do projeto Mälardalen e também os dados de um controlador de motor de aeronave. A técnica adotada foi Picos acima do Limiar, em que os limiares foram escolhidos por tentativa e erro. A verificação de qualidade de ajuste foi feita por meio de gráficos Quantil-Quantil.

2.3.3 Avaliação empírica e uso de estudos de caso

O enfoque desta dissertação de mestrado se encontra nessa vertente da literatura sobre MBPTA. Artigos relacionados relevantes são citados a seguir:

- (ARCARO *et al.*, 2018) aborda a questão da confiabilidade e aperto das estimativas de pWCET produzidas pelos modelos GP e Exponencial ao aplicar a MBPTA através da abordagem PoT. Os testes de hipóteses adotados foram Anderson-Darling, Kolmogorov-Smirnov, Ljung-Box e Wald-Wolfowitz, apresentados na forma de gráficos *box and whisker*. Para estimação dos parâmetros foram considerados três diferentes métodos: MLE, GMLE e L-moments.
- (WARTEL *et al.*, 2015) discute a aplicação da MBPTA a um sistema aviônico real no contexto de soluções de núcleo único de *software* e soluções *multicore* de *hardware* com um sistema operacional ARINC 653.
- (SILVA et al., 2018) realiza uma análise empírica de adequação da MBPTA para estimar o pWCET usando um hardware de arquitetura complexa e sistema operacional Linux. Os testes de hipóteses adotados foram Anderson-Darling, Kolmogorov-Smirnov, Ljung-Box e Wald-Wolfowitz, apresentados na forma de gráficos box and whisker. Para estimação dos parâmetros foram considerados três diferentes métodos: MLE, GMLE e L-moments. A abordagem adotada foi BM. O benchmark utilizado faz parte do projeto Mälardalen algoritmo bsort. Resultados da implementação demonstraram que o aumento do tamanho da amostra produziu estimativas com maior confiabilidade e aperto limitado.
- (SILVA et al., 2017) aborda a questão da confiabilidade e aperto das estimativas de pW-CET produzidas pelos modelos GEV e Gumbel ao aplicar a MBPTA através da abordagem BM. O trabalho também avalia o uso da métrica CRPS para definir o tamanho da amostra considerado suficiente. Os testes de hipóteses adotados foram Anderson-Darling, Kolmogorov-Smirnov, Ljung-Box e Wald-Wolfowitz. Para estimação dos parâmetros foram considerados três diferentes métodos: MLE, GMLE e L-moments. Nos experimentos, foram adotados blocos de tamanho 50 e amostras de 50000 valores. Os *benchmarks* utilizados fazem parte do projeto Mälardalen - algoritmos *bsort, insertsort* e *bs*.
- (CIVIT *et al.*, 2018) apresenta três métodos alternativos para modelar a distribuição de pWCET através do número finito de momentos de execução: *Group Estimator* (GE), *Ratio Max Sum* (RMS), *Coefficient of Variation* (CV). Para avaliação experimental, foi utilizado um processador LEON3, os *benchmarks* EEMBC AutoBench e Mälardalen e um estudo de caso de uma ferrovia (ETCS). O teste de adequação da amostra foi feito com o teste Ljung-Box.
- (VILARDELL *et al.*, 2019) considera como equivalentes análises de risco e sobrevivência. Para tanto, avaliam o aperto do pWCET, utilizando modelos de cauda Weibull com um subconjunto de distribuições log-côncavo (β ≥1). Para avaliação experimental, foi utilizado um processador LEON3 e um estudo de caso de uma ferrovia (ETCS).
- (REGHENZANI *et al.*, 2019c) realiza uma análise quantitativa do poder estatístico de estimação para validação de testes de qualidade de ajuste para distribuições da TVE. São

usados os testes Kolmogorov-Smirnov, Anderson-Darling e Modified Anderson-Darling, usando a abordagem de Monte Carlo.

• (ALCON *et al.*, 2020) utiliza a MBPTA para avaliar características de variabilidade temporal de tempos de execução no contexto de uma estrutura de *software* para condução autônoma, denominada Apollo.

Podemos comparar o trabalho de Wartel *et al.* (2015) com o trabalho apresentado nesta dissertação em termos da abordagem adotada, uma vez que em ambos há um estudo de caso da aplicação da técnica MBPTA num contexto de SO compatível com a especificação ARINC 653 e *hardware* com recursos complexos. A análise da MBPTA no contexto de *hardware* de arquitetura complexa também é vista em Silva *et al.* (2018), Civit *et al.* (2018) e Alcon *et al.* (2020).

Em relação aos testes estatísticos empregados neste trabalho, Silva *et al.* (2018), Silva *et al.* (2017) e Arcaro *et al.* (2018) empregaram os mesmos testes de hipóteses. Alguns dos testes empregados também foram utilizados em Reghenzani *et al.* (2019c) e Civit *et al.* (2018).

Acerca dos métodos de seleção da amostra, a abordagem BM adotada nesta dissertação também está presente nos trabalhos de Silva *et al.* (2018) e Silva *et al.* (2017). Já o método para estimação dos parâmetros MLE empregado neste trabalho também foi utilizado em Silva *et al.* (2018), Silva *et al.* (2017) e Arcaro *et al.* (2018).

2.4 CONSIDERAÇÕES FINAIS

A Seção 2 mostra que existem muitas variantes na aplicação da técnica MBPTA. Em diversos momentos, o desenvolvedor precisa fazer escolhas complexas para a aplicação da técnica acerca de temas que não possuem consenso na literatura. A representatividade e ajuste do modelo são questões recorrentes nos trabalhos relacionados, denotando sua significativa relevância para a MBPTA.

Dado que na literatura em geral os métodos Máximos de Blocos e Picos acima do Limiar são considerados equivalentes, não ocorrendo prevalência de um sobre o outro, o escopo desta dissertação de mestrado é limitado à aplicação do método Máximos de Blocos.

3 PLATAFORMA EXPERIMENTAL

As escolhas feitas para a plataforma experimental buscaram atender às questões básicas elencadas nos objetivos deste trabalho. A primeira delas é que o método de medição fosse empregado em um sistema experimental representativo em relação a Sistemas de Tempo Real (STRs). Já a segunda questão é que a plataforma utilizada tivesse recursos de *hardware* modernos para que fosse possível realizar análise de viabilidade da MBPTA nesse contexto.

Para tanto, adotou-se como estudo de caso um sistema operacional compatível com a ARINC 653 (uma especificação de sistema operacional para sistemas aviônicos) implementado sobre uma plataforma BeagleBone anteriormente (ARCARO, 2015). Essa plataforma foi escolhida por ser um computador de placa única, *open source* e de baixo custo, que possui recursos de aceleração por *hardware* (COLEY, 2013). Além do mais, é uma plataforma já utilizada no grupo de pesquisa em que este trabalho se insere.

Nas próximas seções serão apresentadas as características principais da especificação e da plataforma adotadas, além da configuração de suas partições e respectiva escala temporal, sendo também abordados os recursos de *software* utilizados para realizar a amostragem de tempos de execução e sua subsequente análise estatística.

3.1 ARINC 653

A ARINC 653 é uma especificação de *software* que define as características necessárias para sistemas operacionais utilizados em sistemas aviônicos modulares e integrados (*Integrated Modular Avionics*, IMA). Esse tipo de sistema permite que em um mesmo *hardware* sejam executados diversos aplicativos aviônicos de forma particionada. Para isso, a ARINC 653 descreve os requisitos de interface entre a aplicação de *software* e o Sistema Operacional (SO), e o esquema de particionamento que precisa ser atendido por ele. A especificação é dividida em três partes: a primeira contém os serviços mínimos necessários para implementação, a segunda aborda serviços opcionais que podem ser adicionados e, por fim, a terceira abrange testes de conformidade para verificar se o SO atende o padrão proposto (ARINC, 2006; ARCARO, 2015).

De acordo com a especificação ARINC 653, o sistema deve conter um módulo de execução que possui partições escalonadas de forma periódica. Os processos referentes ao *software* da aplicação, por sua vez, são executados nas partições. Um módulo pode possuir uma ou mais partições, porém cada partição deve estar contida em um único núcleo de processamento, isto é, todos os processos referentes a determinada partição são executados em um mesmo núcleo isolado de outras partições. Cada partição possui um conjunto de janelas de tempo específicas para execução de seus processos e regiões de memória protegidas das demais partições (ARINC, 2006; ARCARO, 2015).

Assim, as partições são usadas como separações funcionais dos aplicativos, cada uma delas devendo possuir sua própria memória e intervalos de tempo de processamento agendados. Dessa maneira, almeja-se que possa ser minimizada a interferência entre partições mesmo

que recursos sejam compartilhados entre elas. Se ocorrer um erro em uma partição, apenas a partição em questão será afetada; as demais partições permanecerão inalteradas (ARINC, 2006; ARCARO, 2015).

Vale ressaltar que, segundo a especificação, os processos de uma partição podem ser tanto periódicos como aperiódicos, podendo incorrer dentro de uma mesma partição tipos diferentes de processos de forma concorrente. Já quando se trata das partições em si, essas possuem escalonamento periódico (ARINC, 2006; ARCARO, 2015).

Um arquivo de configuração no formato XML (*Extensible Markup Language*) contém as principais características do módulo. É nele que é feita a declaração de partições e processos, bem como da escala temporal das partições, o mapeamento de erros e ações decorrentes de erros mapeados, entre outras informações. O integrador do sistema é responsável pela criação e manutenção do arquivo de configuração (ARINC, 2006; ARCARO, 2015).

A especificação ARINC 653 classifica os serviços que o SO deve fornecer, sendo eles divididos em serviços relacionados ao: gerenciamento de partições; gerenciamento de processos; gerenciamento de tempo; comunicação interpartição; comunicação intrapartição e monitoramento da saúde do sistema em diversos níveis (ARINC, 2006; ARCARO, 2015).

Um processador usado para sistemas operacionais ARINC 653 deve ter capacidade de processamento suficiente e acesso às entradas e saídas necessárias, mas também recursos de gerenciamento de memória e de tempo. Além disso, o processador deve permitir isolar uma partição das outras em caso de ocorrência de falhas, contando assim com recursos, como por exemplo unidades de gerenciamento de memória. Todavia, é a implementação do SO que garante a configuração e uso devido desses recursos, de maneira a garantir o isolamento temporal, espacial e de faltas (ARINC, 2006; ARCARO, 2015).

A seguir serão apresentadas características específicas no que tange aos serviços relacionados ao Gerenciamento de partições, Gerenciamento de processos e Gerenciamento de tempo.

3.1.1 Gerenciamento de Partições

O conceito de particionamento consiste em um modelo abstrato de divisões das atividades a serem desempenhadas por um módulo central, em que faixas de tempo (particionamento temporal) e recursos de memória (particionamento de memória) são distribuídos para cada partição. Uma partição possui, assim, restrições temporais, referentes ao momento em que pode ser executada, e espaciais, referentes às regiões de memória que pode acessar (ARINC, 2006; ARCARO, 2015).

O escalonamento das partições é feito sobre uma base fixa e cíclica, isto é, existe um período de tempo principal, denominado *major frame*, que possui duração fixa e se repete periodicamente. As partições, por sua vez, estão escalonadas em janelas de tempo dentro do *major frame*, que possuem seu respectivo valor de início e duração esperada na escala temporal do módulo central (ARINC, 2006; ARCARO, 2015).

É importante salientar que, apesar do escalonamento das partições ser feito sobre uma base fixa e periódica, as partições dentro do módulo central podem executar em períodos distintos. Sendo assim, o *major frame* é definido através do mínimo múltiplo comum de todos os períodos de partição no módulo. Isso é feito para que se torne viável que cada *major frame* possua o mesmo escalonamento de janelas de tempo e os requisitos de frequência e tamanho das partições sejam respeitados (ARINC, 2006; ARCARO, 2015).

A Figura 4 demonstra um exemplo de escalonamento temporal de três partições, representadas por P1, P2 e P3. O espaço ocioso presente na escala temporal representa a partição padrão do módulo, que é a partição que é executada durante as janelas de tempo que não foram alocadas a nenhuma outra partição, isto é, trata-se da partição que apenas é executada no tempo ocioso do módulo.

Figura 4 - Exemplo de escala temporal de partições

Para garantir o particionamento de memória, cada partição possui acesso a regiões de memória exclusivas e que foram alocadas a ela previamente, incorrendo a proibição de acesso a regiões fora desse conjunto pré-definido. A definição dos recursos de memória que são adequados para cada partição é feita em função dos requisitos de cada partição, que influenciam na escolha de tamanho e de direitos de acesso (ARINC, 2006; ARCARO, 2015).

Uma série de atributos são utilizados para controlar e manter a operação das partições. São eles (ARINC, 2006):

1. Atributos fixos das partições

Identificador

Utilizado para facilitar a identificação da partição ao ser ativada e durante troca de mensagens.

• Requisitos de Memória

Denotam os limites de memória da partição.

Período

Denota o período de ativação da partição.
• Duração

Denota a quantidade de tempo do processador que a partição possui.

• Nível de Criticalidade

Denota o nível de criticalidade da partição.

• Requisitos de Comunicação

Abrangem as partições e/ou dispositivos com quem a partição comunica.

- Tabela para Monitoramento de Saúde (*Health Monitoring*, HM)
 Denota as instruções para ações necessárias referentes ao HM.
- Ponto de Inicialização

Denota o endereço de (re)inicialização da partição.

Partição de Sistema

Indica que a partição é uma partição de sistema, ou seja, uma partição que executa em modo privilegiado e, portanto, tem acesso a recursos de hardware que são inacessíveis a outras partições.

2. Atributos variáveis das partições

• Nível de Bloqueio

Denota o valor atual do nível de bloqueio da partição.

Modo de Operação

Denota o modo de operação da partição.

Condição de Inicialização

Denota o motivo que levou à (re)inicialização da partição.

As partições podem assumir diversos modos de operação enquanto são executadas, são eles (ARINC, 2006; ARCARO, 2015):

1. *IDLE*

Nesse modo, a partição não é inicializada e não há processos em execução, mas não há alteração nas janelas de tempo a ela alocadas.

2. COLD_START

Nesse modo, a partição está em fase de progresso para a inicialização e, sendo assim, o escalonador de processos ainda não está habilitado.

3. NORMAL

Nesse modo, o escalonador de processos está habilitado, a partição já foi inicializada e o sistema está no modo de operação.

4. WARM_START

Nesse modo, a partição está em fase de progresso para a inicialização, e, sendo assim, o escalonador de processos ainda não está habilitado. Apesar de análogo ao modo *COLD_START*, o contexto de *hardware* em que a partição inicializa pode ser diferente, como, por exemplo, no caso de uma interrupção de energia, existir conteúdo salvo na memória que pode ser reutilizado quando a energia é restabelecida.

3.1.2 Gerenciamento de Processos

Os processos são conjuntos de instruções de código que visam atender às funcionalidades da partição em que residem. Dentro de uma mesma partição, podem existir diversos processos que são executados de forma concorrente. O comportamento dos processos é de responsabilidade da partição, não estando eles visíveis fora do seu escopo (ARINC, 2006).

Todos os recursos relacionados às partições são definidos na inicialização do sistema. Sendo assim, a criação dos processos e respectiva inicialização ocorre durante a inicialização da partição. Isso implica que a divisão dos recursos a serem usados para cada processo seja feita previamente, conferindo ao sistema um grau maior de determinismo, podendo também fornecer proteção dos recursos no nível de processo (ARINC, 2006).

Os processos de uma partição são classificados segundo seu nível de prioridade. Durante a execução da partição, qualquer processo pode sofrer preempção por outro processo de prioridade maior. Dessa forma, o processo em execução sempre será o de maior prioridade que encontra-se pronto para execução no momento (ARINC, 2006).

Uma série de atributos são utilizados para que os processos sejam suportados. Esses atributos denotam as características de cada processo e os requisitos de alocação de recursos. Os atributos podem ser fixos, quando determinados previamente à inicialização da partição e de maneira estática, ou variáveis, que podem mudar durante a execução do sistema. São eles (ARINC, 2006):

- 1. Atributos fixos dos processos
 - Nome

Define um valor único para cada processo na partição.

Ponto de Inicialização

Denota o endereço de inicialização do processo.

• Tamanho da Pilha

Denota o tamanho total da pilha de execução do processo.

Prioridade Básica

Denota a prioridade do processo no momento de criação e capacidade de preemptar outros processos.

Período

Denota o período de ativação para um processo periódico.

• Capacidade Temporal

Define a faixa de tempo de que dispõe o processo para concluir a execução.

• Deadline

Especifica o tipo de deadline do processo: hard (crítico) ou soft (não crítico).

- 2. Atributos variáveis dos processos
 - Prioridade Atual

Denota a prioridade atual do processo, que pode variar dinamicamente durante a execução da partição.

• Horário de Deadline

Avaliado periodicamente para saber se a quantidade de tempo alocado é suficiente para o processo.

• Estado do Processo

Estado atual de operação do processo.

Os processos podem assumir diversos estados de operação enquanto são executados, são eles (ARINC, 2006; ARCARO, 2015):

1. Dormente

Nesse estado, o processo ainda não foi inicializado ou foi finalizado, não sendo capaz de receber recursos.

2. Pronto

Nesse estado, o processo está pronto para ser escalonado e executado.

3. Em execução

Nesse estado, o processo está em execução.

4. Em espera

Nesse estado, o processo está em espera da ocorrência de algum evento específico, que pode ser um recurso do sistema (atraso, semáforo, período, evento, mensagem, modo normal da partição ser inicializado) ou que seja suspenso e retorne ao estado dormente.

O diagrama de estado dos processos pode ser observado na Figura 5 a seguir.

Fonte - Do autor.

3.1.3 Gerenciamento de Tempo

Em sistemas de tempo real, o tempo e seu respectivo gerenciamento são fundamentais para o funcionamento do sistema. O valor do tempo é único e universal para todas as partições e tarefas executadas dentro do módulo, assim, todos os recursos temporais são derivados ou relacionados a ele (ARINC, 2006; ARCARO, 2015).

Cada processo possui uma capacidade de tempo determinada, que é relativa ao seu tempo de resposta. A partir dessa capacidade, é possível calcular o *deadline* do processo no momento de sua inicialização, este será a capacidade somada ao valor do tempo atual. É possível que o *deadline* seja prorrogado, por meio de um serviço chamado *REPLENISH*, desde que o processo seja executado dentro da faixa de capacidade de tempo, o *deadline* não será perdido (ARINC, 2006; ARCARO, 2015).

Os serviços que devem ser fornecidos para o gerenciamento de tempo são (ARINC, 2006; ARCARO, 2015):

• GET_TIME

Obtém o valor atual do tempo do módulo.

• TIMED_WAIT

Bloqueia o processo atual por um período definido.

• PERIODIC_WAIT

Suspende processos periódicos até o próximo momento de liberação.

• REPLENISH

Permite adiar o deadline do processo.

3.2 BEAGLEBONE

Para atender completamente aos supracitados requisitos de um Sistema Operacional de Tempo Real (*Real-Time Operating System* - RTOS) compatível com a especificação ARINC 653 seria necessário utilizar uma plataforma de comportamento determinístico no que tange aos mecanismos de temporização e processamento. Todavia, em função da tendência e interesse crescentes em se utilizar *hardware* moderno em aplicações de tempo real críticas, optou-se pela plataforma BeagleBone (Figura 6). Escolha essa que se baseou também no custo-benefício, uma vez que recursos empregados em aviônica são robustos e de alto valor agregado, a plataforma BeagleBone se destaca como uma alternativa de baixo custo e que serve aos propósitos acadêmicos deste trabalho, isto é, explorar a aplicação da MBPTA no contexto de *hardware* com recursos de comportamento temporal sujeito a variações.

A plataforma BeagleBone é um computador de placa única e baixo custo, oriundo de projeto *open-source* da fundação Beagleboard.org (BEAGLEBOARD.ORG, 2016). Utilizando um microprocessador da Texas Instruments de baixo consumo, com núcleo da série ARM Cortex-A, a plataforma possui a capacidade de expansão de máquinas *desktop*, mas ocupando menos espaço e acarretando redução de despesas (COLEY, 2013). A seguir estão algumas das especificações técnicas da BeagleBone (COLEY, 2013):

- Microprocessador Texas Instruments (TI) AM335X (AM3358/AM3359);
- Núcleo superescalar ARM Cortex-A8 executando a 720MHz;
- Memória de acesso aleatório dinâmica síncrona (SDRAM) DDR2 de 256MB;
- 2 Unidades de Tempo Real Programáveis (Programmable Real-time Units, PRUs);
- 92 pinos externos;
- Conexão USB (Universal Serial Bus);
- Porta Ethernet;
- Entrada para cartão SD (Secure Digital);
- Oscilador (cristal) do núcleo do processador de 24MHz.

A Conexão USB disponibilizada pode ser usada como fonte de alimentação, comunicação via porta serial, interface de depuração e USB *device* (COLEY, 2013). Já os 92 pinos externos presentes na plataforma podem ser utilizados como GPIO (*General Purpose Input/Output*),

Figura 6 – Plataforma BeagleBone

Fonte - Do autor.

PWM (*Pulse-Width Modulation*), ADC (*Analog-to-Digital Converter*), fonte de alimentação, SPI (*Serial Peripheral Interface*), entre outros (COLEY, 2013).

No que tange ao processador AM335X, cabe destacar que o seu núcleo ARM Cortex-A8 é baseado na arquitetura ARM versão 7, denotado por ARMv7. A arquitetura ARMv7 possui três perfis (ARM, 2014; TEXAS INSTRUMENTS, 2011):

1. ARMv7-A: Perfil de Aplicação

Esse tipo de perfil emprega uma arquitetura voltada para processadores de alto desempenho, cujo sistema de memória virtual (*Virtual Memory System Architecture*, VMSA) utiliza uma unidade de gerenciamento de memória (*Memory Management Unit*, MMU).

2. ARMv7-R: Perfil de Tempo-Real

Esse tipo de perfil emprega uma arquitetura voltada para sistemas de tempo real, cujo sistema de memória empregado suporta a chamada *Protected Memory System Architecture* (PMSA), que oferece maior determinismo temporal se comparado à VMSA ao utilizar a unidade de gerenciamento de memória (MMU).

3. ARMv7-M: Perfil de Microcontrolador

Esse tipo de perfil utiliza uma variação da ARMv7 PMSA e é destinado ao processamento embarcado de baixo consumo e máximo determinismo.

O perfil ARM utilizado no processador da BeagleBone é o perfil de aplicação ARMv7-A. A seguir estão algumas das especificações técnicas do processador AM335X (ARM, 2014; TEXAS INSTRUMENTS, 2011):

 Memória de acesso aleatório (*Static Random Access Memory*, SRAM) de 64KB interna ao processador;

- Pipeline superescalar de 13 estágios dual-issue com execução em ordem;
- MMU com suporte a páginas de 4KB, 64KB, 1MB e 16MB e Translation Lookaside Buffers (TLBs) separadas para dados e instruções de 32 entradas cada;
- *Cache* L1 de instruções e de dados de 32KB com linhas de 16 palavras e interface de 128 bits;
- Cache L2 de 256KB com linhas de 16 palavras e interface com a cache L1 de 128 bits;
- Controlador de interrupções com até 128 diferentes requisições de interrupção (*Interrupt Requests*, IRQs).
- Extensão de arquitetura VFPv3 que implementa aritmética de ponto flutuante em conformidade com o padrão ANSI/IEEE.

Versando um pouco mais sobre as características do processador, a arquitetura oferece suporte a dois níveis de privilégio de execução de *software*, sendo eles (ARM, 2014):

• PL0: Sem privilégios

Esse é o nível de privilégio adotado para *software* da aplicação executado no modo usuário (*User Mode*). Há limitação de acesso a certos recursos da arquitetura, não sendo também permitido ao *software* fazer alterações de configurações pré-definidas e os acessos à memória só são possíveis em trechos não privilegiados.

• PL1: Privilegiado

Nesse modo de execução, é permitido ao *software* da aplicação acessar todos os recursos da arquitetura, bem como realizar alterações das configurações dos mesmos recursos.

É papel do *software* do sistema determinar o nível de privilégio do *software* da aplicação, dessa maneira, os recursos são alocados em função do nível de privilégio, garantindo um grau de proteção à ocorrência de falhas e interferência de outros processos e tarefas (ARM, 2014; TEXAS INSTRUMENTS, 2011).

Sobre recursos modernos de memória presentes no processador, cabe ressaltar a presença de memórias *cache*. A memória *cache* é uma memória de acesso rápido que contém cópias de valores presentes na memória principal. O uso de memórias *cache* permite o aumento do desempenho do sistema e redução do consumo de energia, uma vez que, ao invés de sempre precisar realizar uma busca demorada na memória principal, o núcleo pode utilizar os subconjuntos de dados presentes na memória *cache*. No caso do processador AM335X, existem dois níveis de memórias *cache*, L1 e L2. As *caches* de nível 1 (L1) são conectadas diretamente ao núcleo, existindo *caches* separadas para instruções e para dados. Já a *cache* de nível 2 (L2) é maior que a *cache* L1 e está localizada entre a *cache* L1 e a memória principal (ARM, 2014; TEXAS INSTRUMENTS, 2011).

Quanto à MMU empregada no processador, cabe dizer que ela tem a função de traduzir endereços de código e dados da visão virtual da memória (utilizada por programas) para os endereços físicos no sistema real (endereços eletronicamente acessados na memória). Além disso, a MMU também é responsável pelo controle de permissões de acesso à memória, ordenação de acessos e políticas de *cache* para cada região da memória. Para atingir esses objetivos, a MMU do perfil ARMv7-A utiliza tabelas de tradução, que, na arquitetura ARM, representam tabelas de páginas em vários níveis (ARM, 2014; TEXAS INSTRUMENTS, 2011).

Além do mais, a MMU conta com *Translation Lookaside Buffers* (TLBs), independentes para memória e dados, que são memórias *cache* para acelerar o acesso às tabelas de tradução. Isto é, as traduções recentes são armazenadas na TLB e é o primeiro recurso de memória a ser acessado pela MMU em uma consulta; apenas se a tradução requisitada não estiver na TLB, a MMU recorre à tabela de tradução na memória principal (ARM, 2014; TEXAS INSTRUMENTS, 2011).

Outro recurso que visa o aumento de desempenho presente na plataforma é o *pipeline* superescalar do núcleo Cortex-A8. O papel do *pipeline* é permitir a execução de múltiplas instruções de maneira concomitante, que é realizada através da divisão da execução das instruções em etapas que podem ser executadas em paralelo com as etapas de outras instruções. O núcleo de processamento é então implementado em múltiplos estágios, cada um responsável pela execução de uma (ou mais) etapas da execução das instruções. O Cortex-A8 é um processador superescalar *dual-issue* de execução em ordem, isto implica que o processador seleciona as instruções a serem processadas de forma dinâmica, a fim de maximizar o desempenho, mas sem alterar a ordem na qual as instruções são executadas (ARM, 2014; TEXAS INSTRUMENTS, 2011; JOHN; RUBIO, 2018).

O *pipeline* principal do processador conta com 13 estágios, que são divididos em três classes: buscar (*FETCH*), decodificar (*DECODE*), e executar (*EXECUTE*). Dois estágios são usados para busca e são responsáveis por buscar instruções na memória e as armazenar em um *buffer*, que será, posteriormente, consumido nos estágios de decodificação. Cinco estágios são usados para decodificação, que além de decodificar as instruções, são responsáveis pela seu escalonamento e emissão. Por fim, seis estágios são responsáveis pela execução, que é dividida em dois *pipelines* de unidade lógica aritmética (*Arithmetic logic unit*, ALU), um para armazenamento e outro para multiplicação (ARM, 2014; TEXAS INSTRUMENTS, 2011; JOHN; RUBIO, 2018).

Cabe ressaltar que o processador conta com recursos adicionais de *pipeline* além do *pipeline* principal já mencionado. O mecanismo de execução NEON SIMD utiliza um *pipeline* de 10 estágios, o sistema de memória de nível 2 utiliza um *pipeline* de 8 estágios e o sistema de rastreamento e depuração utiliza um *pipeline* de 13 estágios (ARM, 2014; TEXAS INSTRUMENTS, 2011; JOHN; RUBIO, 2018).

O processador AM335X também inclui mecanismo de predição de fluxo (*branch prediction*), que é uma técnica utilizada para prever os próximos ramos ou estados a serem alcançados durante a execução de uma estrutura condicional. Nas primeiras execuções das instruções, o preditor de fluxo (*branch predictor*) não possui muitas informações, mas, à medida que as condições ocorrem com maior frequência, mais precisa se torna a suposição feita. Se a suposição estiver correta, a velocidade de execução aumenta significativamente, uma vez que as informações necessárias para o próximo estágio de execução já foram previamente processadas, reduzindo ciclos de *clock* necessários para sua conclusão e evitando liberações (*flushes*) do *pipeline* (ARM, 2014; TEXAS INSTRUMENTS, 2011; JOHN; RUBIO, 2018).

Apesar das memórias *cache* e *buffers* presentes no processador apresentarem enormes vantagens em face do desempenho do sistema como um todo, em sistemas de tempo real sua presença pode ser um problema, uma vez que inserem variabilidade temporal e, portanto, tornam mais difícil analisar o tempo de execução de pior caso do programa (ARM, 2014; TEXAS INSTRUMENTS, 2011).

3.3 RECURSOS DE SOFTWARE

O principal recurso de *software* utilizado foi o ambiente de desenvolvimento integrado (*Integrated Development Environment*, IDE) suportado pela interface da BeagleBone, *Code Composer Studio*, que é fornecido gratuitamente pela Texas Instruments. Já para realizar a amostragem de dados via comunicação por porta serial, também foi necessário utilizar um *software* específico para tal finalidade, optando-se pelo *software Putty*. Quanto à parte estatística do trabalho, *scripts* na linguagem R foram criados, fazendo uso da IDE RStudio.

3.4 COLETA DE MEDIÇÕES

O SO adotado foi configurado para o escalonamento de três partições. A Figura 7 ilustra o escalonamento temporal das partições do RTOS:

Figura 7 - Escala temporal das partições do RTOS


```
Fonte - (ARCARO, 2015)
```

Testes foram feitos com a inserção de *Benchmarks* na primeira e na segunda partição. Os *Benchmarks* implementados foram o *fibcall*, o *bsort* e o *lms* do projeto Mälardalen (GUS-TAFSSON *et al.*, 2010) e o *dijkstra* do projeto TACLeBench (FALK *et al.*, 2016). No caso do algoritmo *fibcall*, foi utilizada a entrada fixa sugerida na documentação. No caso do algoritmo *dijkstra*, a matriz adjunta sugerida na documentação foi utilizada como parâmetro para gerar uma matriz de menor dimensão para ser adotada como entrada fixa. Já quando do uso do algoritmo *bsort*, optou-se pelo uso de um vetor de números inteiros com ordenação reversa, pois é sabido que leva a um caminho longo de execução em relação ao número de instruções executadas (ARCARO, 2019). Em se tratando do algoritmo *lms*, o sinal de entrada utilizado é gerado pelo próprio algoritmo e não foi alterado.

A implementação dos *Benchmarks* foi feita de forma a evitar a ocorrência de erros e interferência entre partições no caso de uso do mesmo *benchmark* em diferentes partições. Para tanto, implementou-se funções duplicadas com identificação e variáveis diferentes, por exemplo, quando do uso do algoritmo *bsort* em duas partições, teríamos a função *bsort1* e a função *bsort2*, utilizadas em partições distintas.

O programa de medição temporal já presente no RTOS (ARCARO, 2015) foi usado juntamente com comunicação via porta serial para realizar a amostragem dos tempos de execução de *Benchmarks* adotados. Esse programa é executado na partição padrão do módulo, dessa forma, para que a medição funcione, é preciso que exista uma janela de tempo ocioso na escala das partições, que, no caso, localiza-se na janela [0.225s, 0.25s] (Figura 7).

Dois modos de coleta de medições foram adotados nos experimentos, referenciados neste trabalho como (A) Modo Contido na Partição e (B) Modo Contínuo.

A Figura 8 ilustra um exemplo de trecho de código usado para coleta de medição temporal no denominado modo contido na partição. Antes do início da medição, todas as condições de inicialização do *benchmark* adotado são carregadas por meio do método ALGORITHM_INITI-ALIZE. A medição é feita utilizando um *timer*, que é habilitado pelo método MEASURE_START. O algoritmo do *benchmark* adotado é, em seguida, executado, através do método ALGORITHM_ EXECUTE. O método MEASURE_STOP, por sua vez, finaliza a medição. Enfim, o método MEASURE_READ é usado para ler o valor medido e esse valor é enviado ao console via porta serial. Um arquivo texto armazena todos os dados medidos e enviados ao console durante a execução dos testes.

Figura 8 – Exemplo de código para coleta de medição temporal: Modo Contido na Partição

```
// Measures task
ALGORITHM_INITIALIZE();
if (CORE_MODULE_INFORMATION[0].MAJOR_FRAME_TIME == 0 * 1000000) {
    MEASURE_START(_CORE_CURRENT_CONTEXT->IDENTIFIER);
    ALGORITHM_EXECUTE();
    MEASURE_STOP();
    ConsoleUtilsPrintf("%d\n", MEASURE_READ());
}
```

Fonte – Do autor.

No exemplo mostrado (Figura 8), a medição temporal e a execução do algoritmo se dão apenas dentro da janela de tempo da própria partição, o que é garantido pela condição de ocorrência do instante MAJOR_FRAME_TIME. Como o valor adotado no exemplo é nulo,

os métodos são executados a partir do momento em que a Partição 1 é inicializada na escala temporal (Figura 7), dessa forma, se assegurado que o tempo de execução da tarefa é inferior ao alocado para a primeira ocorrência da Partição 1, a execução da tarefa estará contida dentro da partição em questão sem ser afetada por preempções de outras partições.

O Modo Contínuo de medição é exemplificado na Figura 9. De maneira análoga, os mesmos métodos aplicados no modo anterior são utilizados, a única diferença está na condição de ocorrência do instante MAJOR_FRAME_TIME, que não é mais definida por condição de igualdade, mas atribuída a qualquer instante maior ou igual ao instante referente ao início da partição. Dessa forma, a partir do momento em que a condição é satisfeita, a execução do algoritmo e dos métodos atrelados à medição ocorrem de forma contínua, em *loop*, dentro de qualquer ocorrência da Partição 1 na escala temporal (Figura 7), podendo a execução da tarefa ser afetada ou não por preempções de outras partições.

Figura 9 – Exemplo de código para coleta de medição temporal: Modo Contínuo

```
// Measures task
ALGORITHM_INITIALIZE();
if (CORE_MODULE_INFORMATION[0].MAJOR_FRAME_TIME >= 0 * 1000000) {
    MEASURE_START(_CORE_CURRENT_CONTEXT->IDENTIFIER);
    ALGORITHM_EXECUTE();
    MEASURE_STOP();
    ConsoleUtilsPrintf("%d\n", MEASURE_READ());
}
```

Fonte - Do autor.

Outro fator considerado nas medições é a habilitação ou não de recursos de supressão temporal presentes no SO adotado, são eles: MEASURE_SUPPRESSTICK e MEASURE_SU-PPRESSOTHERCONTEXTS. No primeiro caso, o contador não contabiliza o tempo gasto com a interrupção do *Tick* do SO, interrompendo a contagem e continuando após sua ocorrência e retomada da execução. Já no segundo caso, não é contabilizado o tempo decorrido quando há ocorrência de preempção de outra partição, a contagem é interrompida e só é continuada quando o contexto de execução da tarefa medida é retomado. Em suma, os mecanismos de supressão supracitados são úteis quando se pretende medir o tempo de execução de fato e não o tempo de resposta, que é o caso neste trabalho. Ao longo dos testes efetuados, foram usados os mecanismos de supressão habilitados e desabilitados para inicialmente observar o seu possível impacto nas medições e definir qual a melhor configuração a ser adotada posteriormente nos demais cenários de teste.

Um *script* na linguagem R realiza a análise estatística da amostra (Apêndice A), criando um histograma dos tempos medidos, fazendo testes que verificam a adequação da amostra à técnica escolhida e gerando a curva GEV, por meio do método Máximos de Blocos (CAZORLA *et al.*, 2019). Isso é possível graças a diversas bibliotecas disponíveis na linguagem usada, mas em especial à biblioteca extRemes (GILLELAND, 2020), que é dedicada à TVE.

3.5 CONSIDERAÇÕES FINAIS

Neste capítulo foram apresentadas as principais características da especificação ARINC 653, adotada neste trabalho como um sistema representativo de sistemas de tempo real crítico. Também foram apresentados recursos e características relevantes acerca da plataforma de *hardware* BeagleBone. Acerca da maneira a ser feita a coleta de amostras, foram detalhados os recursos de *software* adotados e a metodologia de amostragem através de um exemplo de aplicação.

É possível notar que o processador da plataforma adotada possui recursos que inserem variabilidade temporal em sua utilização, tais como *pipeline* superescalar, *branch prediction* e memória *cache*. Como já abordado na Seção 3.1, esse não é um comportamento desejável para aplicações com a especificação ARINC 653, uma vez que se almeja o isolamento temporal e de faltas, sendo essas premissas indispensáveis em um cenário de determinismo temporal (ARINC, 2006; ARM, 2014; TEXAS INSTRUMENTS, 2011). Todavia, é objetivo deste trabalho analisar a viabilidade da aplicação da MBPTA no contexto de arquiteturas modernas de *hardware*, sendo, portanto, a plataforma escolhida adequada para tais fins.

4 CENÁRIOS DE TESTE

Nas próximas seções serão apresentados uma aplicação exemplo para demonstrar o comportamento temporal do SO e casos de teste que evidenciam efeitos de interferência temporal a que o *hardware* adotado está suscetível. Por fim, também é apresentada a configuração de teste a ser adotada para realizar a amostragem dos tempos de execução, no intuito de se obter uma amostra para a subsequente análise de viabilidade da aplicação da técnica MBPTA.

4.1 COMPORTAMENTO TEMPORAL DO SISTEMA OPERACIONAL

Para demonstrar o comportamento temporal do SO, foi utilizado o algoritmo *fibcall* executando na Partição 1. As demais partições permaneceram sem qualquer tarefa, executando portanto um laço de espera permanente. O algoritmo *fibcall* foi escolhido para demonstração por ser um algoritmo simples que realiza o cálculo iterativo dos elementos da série de Fibonacci, sendo esse de caminho único e com apenas um laço em sua execução.

O procedimento de medição do tempo de resposta do *benchmark* foi feito de maneira semelhante ao já mostrado na Seção 3.4, com os recursos de supressão temporal desabilitados e de acordo com o Modo Contínuo, isto é, não se fixou a coleta sob a condição de ocorrência de um instante dentro do *major frame*, sendo o algoritmo executado repetidamente durante as janelas de tempo alocadas para a Partição 1. Foram coletadas 50000 medições de forma contínua.

A Figura 10 mostra a plotagem dos 50000 valores obtidos, em ciclos de *clock*, ao longo da coleta. É possível notar a presença de 3 blocos distintos de valores no eixo Y. Temos uma distância de aproximadamente 1.200.000 ciclos de *clock* entre o bloco inferior e o bloco central, e uma distância de aproximadamente 2.400.000 ciclos de *clock* entre o bloco de inferior e o bloco superior. Levando em conta a informação contida na Seção 3.2 acerca da frequência do núcleo do processador, essas distâncias correspondem, respectivamente, a 0,05s e 0,1s.

Assim, ao se observar o calendário das partições (Seção 3.4), podemos compreender que:

- 1. No bloco inferior, temos o tempo de resposta "típico" da tarefa quando ela não é preemptada para a execução de outras partições;
- 2. No bloco central, temos execuções que são atrasadas pela Partição 2;
- No bloco superior, temos execuções que são atrasadas pelas Partições 2 e 3 e pela partição padrão do módulo.

Observando em maior detalhe os tempos de resposta para cada bloco, a Figura 11 apresenta a plotagem da amostra e o histograma referentes apenas ao bloco inferior. É possível notar a presença de dois blocos em que a densidade das observações se concentram: entre 3163 a 3203 ciclos (Figura 12) e 4844 a 4989 ciclos (Figura 13). Como o algoritmo adotado possui entrada fixa e caminho único de execução, descarta-se qualquer possibilidade de atraso por

Figura 10 – Amostra 50000 valores

Fonte - Do Autor.

motivo intrínseco à execução do *benchmark*. Alguma interferência do próprio *hardware* ou do sistema de escalonamento do SO pode ter ocasionado essa dispersão dos tempos de execução.

Figura 11 – Faixa 1: Bloco inferior

De maneira análoga, os histogramas dos blocos do meio (Figura 14) e superior (Figura 15) ilustram blocos de observações espaçados, indicando possível ocorrência de interferências que ocasionem pequenos atrasos na execução da tarefa. Não faz parte do escopo do trabalho precisar com exatidão qual a origem da interferência, porém, dada a complexidade do *hardware* adotado, cabe citar que existem diversos efeitos subjacentes e oriundos da própria plataforma adotada, tais como o emprego da memória *cache*, os estágios do *pipeline*, o próprio barramento de memória (KOTABA *et al.*, 2013). Já no que tange aos efeitos de origem de *software*, uma possível causa seria a ocorrência do *Tick* do SO, o evento usado para escalonamento das tarefas, que verifica a necessidade de se realizar trocas de contexto e pode causar pequenos atrasos

(ARCARO, 2015).

Figura 12 – Histograma da Subfaixa 1_1: Bloco inferior

Fonte - Do Autor.

Figura 13 - Histograma da Subfaixa 1_2: Bloco inferior

Fonte - Do Autor.

Pode-se inferir, portanto, que o tempo de resposta típico da tarefa está na faixa entre 3163 a 3203 ciclos, havendo ocorrência de interferências implícitas que ocasionam tempos aumentados em relação ao valor típico. Já os blocos espaçados em intervalos maiores e que estão representados em faixas na Figura 10 denotam a ocorrência de preempção de outras partições, isto é, tempos de resposta com interferência explícita. Sendo assim, os dados amostrados são consistentes com o particionamento temporal do SO (Figura 7).

Uma vez comprovado que a amostragem está condizente com o modelo proposto, a seguir serão apresentados casos de teste escolhidos para demonstrar diversos efeitos que causam interferência temporal na aplicação.

Fonte – Do Autor.

Figura 15 – Faixa 3: Bloco superior

4.2 CASO 1: TAREFA DE INTERESSE

No primeiro caso de teste, foi escolhido o algoritmo *Bsort* do projeto Mälardalen (GUS-TAFSSON *et al.*, 2010) como tarefa de interesse a ser medida. O algoritmo *Bsort* é um algoritmo de ordenação, conhecido por *bubblesort*, que atua comparando elementos adjacentes e realizando trocas se estiverem na ordem errada. Este é um algoritmo mais complexo do que o utilizado no cenário de demonstração do comportamento temporal (Seção 4.1) e seu código possui laços aninhados.

Para efeito de teste, o algoritmo foi inserido na Partição 1, enquanto as demais partições permaneceram sem qualquer tarefa executando. Foi utilizado como entrada um vetor de números inteiros com ordenação reversa de tamanho 25. No intuito de se observar o efeito do uso dos recursos de supressão temporal presentes no SO (Seção 3.4), a medição foi feita tanto sem as supressões habilitadas como com as supressões habilitadas, utilizando o Modo Contido na Partição (Seção 3.4), isto é, os tempos de execução amostrados estão contidos apenas na primeira ocorrência da Partição 1 no calendário a cada *major frame*.

As Figuras 16 e 17 apresentam os valores e os histogramas das amostras, respectivamente. É possível notar que, quando os recursos de supressão estão desabilitados, o tempo de execução típico da tarefa varia entre 90094 e 90407, apresentando uma média de 90238,24, desvio padrão de 37,928 e coeficiente de variação de 0,042%. Já quando os recursos de supressão estão habilitados, o tempo de execução típico da tarefa varia entre 87724 e 87972, apresentando uma média de 87849,38, desvio padrão de 30,206 e coeficiente de variação de 0,034%. Sendo assim, a habilitação da supressão temporal na medição provocou redução em média de aproximadamente 2389 ciclos de *clock* no tempo de execução da tarefa.

Figura 16 - Amostra de 50000 valores: Comparação do Caso 1 com e sem supressão

Fonte - Do Autor.

Como o tempo de execução é muito inferior ao tempo alocado para a primeira ocorrência da Partição 1 no calendário do *major frame* e o modo de medição adotado foi o modo contido na partição, não há que se falar sobre trocas de contexto oriundas de preempção de outras partições. Dessa maneira, a ocorrência da redução do tempo de execução medido está diretamente relacionada à interrupção de *Tick* do SO, o evento usado para escalonamento das tarefas, que verifica a necessidade de se realizar trocas de contexto e pode causar pequenos atrasos (ARCARO, 2015). Com a habilitação dos recursos de supressão, o tempo gasto com o *Tick* deixa de ser contabilizado.

4.3 CASO 2: VARIAÇÃO DOS DADOS DE ENTRADA

No segundo caso de teste, foi escolhido novamente o algoritmo *Bsort* do projeto Mälardalen (GUSTAFSSON *et al.*, 2010) como tarefa de interesse a ser medida. Para efeito de teste, o algoritmo foi inserido na Partição 1, enquanto as demais partições permaneceram sem qualquer tarefa executando. Foi utilizado como entrada, inicialmente, um vetor de números inteiros com ordenação reversa de tamanho 25. A medição foi feita com os recursos de supressão habilitados e utilizando o Modo Contido na Partição (Seção 3.4), sendo os tempos de execução amostrados contidos apenas na primeira ocorrência da Partição 1 no calendário a cada *major frame*. Cabe ressaltar que esse caso inicial de teste é idêntico ao Caso 1, utilizando recursos de supressão temporal habilitados.

As Figuras 18 e 19 apresentam os valores e o histograma da amostra, respectivamente. É possível notar que o tempo de execução típico da tarefa varia entre 87724 e 87972, apresentando uma média de 87849,38 e desvio padrão de 30,206. Também foram feitos testes com esse mesmo cenário nas outras partições, todavia, não foram observadas diferenças significativas nos resultados obtidos ao se trocar de partição, os valores amostrados foram análogos aos da execução na Partição 1.

Figura 18 – Amostra de 50000 valores: Bsort em P1 (Caso 1)

Fonte – Do Autor.

Figura 19 – Histograma: Bsort em P1 (Caso 1)

Fonte - Do Autor.

Para observar possíveis efeitos temporais oriundos do *benchmark*, variou-se a entrada adotada, utilizando um vetor maior de números inteiros com ordenação reversa. O tamanho 50 foi escolhido como referência, isto é, o dobro do tamanho utilizado anteriormente. Uma vez que a complexidade do algoritmo *Bsort* é $O(n^2)$, espera-se que ao dobrar o tamanho da entrada, o tempo de execução deva quadruplicar. A medição foi feita com os recursos de supressão habilitados e utilizando o Modo Contido na Partição (Seção 3.4), sendo amostrado um tempo de execução a cada *major frame*, ocorrendo a partir da inicialização da Partição 1 no calendário.

As Figuras 20 e 21 apresentam os valores e o histograma da amostra, respectivamente. É possível notar que há um aumento considerável do tempo de execução da tarefa em relação ao primeiro teste. O tempo de execução típico da tarefa varia entre 352397 e 352646, apresentando uma média de 352512,6 e desvio padrão de 30,801. Sendo assim, os valores amostrados em média são mais de quatro vezes os valores amostrados no primeiro teste, o que condiz com o comportamento esperado para esse experimento.

Figura 20 – Amostra de 50000 valores: Bsort em P1 com vetor de tamanho 50

Fonte – Do Autor.

Figura 21 – Histograma: Bsort em P1 com vetor de tamanho 50

Fonte - Do Autor.

4.4 CASO 3: INTERFERÊNCIA INDIRETA ENTRE PARTIÇÕES

No intuito de avaliar possíveis efeitos de interferência indireta entre partições, foram escolhidos os algoritmos *Bsort* (GUSTAFSSON *et al.*, 2010), *Dijkstra (FALK* et al., 2016) e *lms* (GUSTAFSSON *et al.*, 2010). O algoritmo *Dijkstra* é um algoritmo de busca, que visa encontrar o menor caminho entre dois vértices de um grafo, e foi escolhido para o teste por necessitar de memória considerável para a sua execução. Já o algoritmo *lms* é um filtro adaptativo LMS (*Least Mean Squares*), cujo sinal de entrada é uma onda senoidal com ruído branco adicionado, sendo esse escolhido para o teste por possuir muitos cálculos com ponto flutuante.

Assim, no primeiro cenário, foi alocado o algoritmo *Bsort* na Partição 1 como tarefa de interesse a ser medida e o algoritmo *Dijkstra* na Partição 2. Para o algoritmo *Bsort*, foi utilizado como entrada um vetor de números inteiros com ordenação reversa de tamanho 25. Já quanto ao algoritmo *Dijkstra*, uma matriz de números inteiros de dimensão 50x50 foi usada como entrada. A medição foi feita com os recursos de supressão habilitados e utilizando o Modo Contido na Partição (Seção 3.4), sendo os tempos de execução de *Bsort* amostrados contidos na primeira ocorrência da Partição 1 no calendário.

As Figuras 22 e 23 apresentam os valores e o histograma da amostra, respectivamente. É possível notar o efeito causado pelo uso do algoritmo Dijkstra na Partição 2 sobre a Partição 1. O tempo de execução da tarefa nesse cenário varia entre 87546 e 87862, apresentando uma média de 87704,15 e desvio padrão de 37,829. Comparado com a execução típica da tarefa (Figura 22b), é possível perceber a diminuição do tempo médio de execução da tarefa em aproximadamente 145 ciclos de *clock*. O experimento foi repetido diversas vezes e, em todas elas, o efeito contraintuitivo permaneceu, isto é, a inserção do algoritmo Dijkstra na Partição 2, não só não resultou em atrasos na execução da tarefa de interesse, mas também tornou o tempo de execução da tarefa de interesse discretamente mais rápido do que quando estava executando sozinha no *hardware*. A ocorrência desse efeito está possivelmente relacionada a aspectos de arquitetura da plataforma adotada, os quais não foram identificados em detalhe, uma vez que tal investigação foge ao escopo do trabalho.

Utilizando-se do mesmo cenário do teste anterior, adicionou-se o algoritmo *lms* (GUS-TAFSSON *et al.*, 2010) na Partição 3 e uma nova amostragem do tempo de execução de *Bsort* na Partição 1 foi realizada com os recursos de supressão habilitados e utilizando o Modo Contido na Partição (Seção 3.4), sendo amostrado um tempo de execução a cada *major frame*, ocorrendo a partir da inicialização da Partição 1 no calendário.

As Figuras 24 e 25 apresentam os valores e o histograma da amostra, respectivamente. É possível notar o efeito causado pelo uso do algoritmo *lms* na Partição 3 sobre a Partição 1. O tempo de execução da tarefa nesse cenário varia entre 88989 e 89164, apresentando uma média de 89071,27 e desvio padrão de 20,349. Comparado com a execução típica da tarefa (Figura 16), é notável o aumento do tempo médio de execução da tarefa em aproximadamente 1222 ciclos de *clock*. De maneira similar ao caso anterior, o experimento foi repetido diversas vezes e, em todas elas, o efeito de pertubação e anomalia permaneceu, isto é, a inserção do

Figura 22 – Amostra de 50000 valores: Comparação do Caso 3A com Caso 1

Fonte – Do Autor.

Figura 23 - Histograma: Comparação do Caso 3A com Caso 1

algoritmo lms na Partição 3 resultou em atrasos na execução da tarefa de interesse. A ocorrência desse segundo efeito também está possivelmente relacionada com aspectos de arquitetura da plataforma adotada, os quais não foram investigados em detalhe, uma vez que tal investigação foge do escopo do trabalho.

4.5 CONSIDERAÇÕES FINAIS

Diante do observado no Capítulo 4, está claro que diversos fatores podem alterar o comportamento temporal da aplicação, desde a variação dos dados de entrada da tarefa a questões intrínsecas ao *hardware* adotado. Não é escopo deste trabalho precisar com exatidão todas as possíveis origens e causas das interferências, uma vez que tal tarefa exigiria aprofundamento em questões de arquitetura e organização de computadores, e também de engenharia eletrônica, em

Figura 24 - Amostra de 50000 valores: Comparação do Caso 3B com Caso 1

Fonte – Do Autor.

Figura 25 - Histograma: Comparação do Caso 3B com Caso 1

função, por exemplo, do possível impacto da variação de temperatura nos componentes eletrônicos. Todavia, cabe salientar que os testes realizados comprovam que o isolamento temporal, que deveria ser estabelecido por meio do particionamento do SO segundo a especificação ARINC 653, não é, por vezes, respeitado em função das características do *hardware* utilizado.

Conclui-se que, no que tange ao uso da plataforma BeagleBone, as medições só são válidas para análise se for utilizada a configuração que de fato será aplicada no campo, uma vez que o que é alocado em uma partição pode afetar o comportamento temporal de uma tarefa em outra partição. Além disso, em função das possíveis variações oriundas do *hardware*, é interessante que sejam realizadas coletas em cenários de longo prazo, isto é, decorrido certo tempo de atividade da plataforma. Sendo assim, compete ao desenvolvedor colocar nas partições o que realmente será utilizado em campo, de forma que a amostra escolhida para a aplicação da

técnica MBPTA seja representativa do cenário real, sob o risco de se obter estimativas demasiado otimistas caso a premissa não seja atendida. Para fins de análise, recomenda-se que sejam usados os dados que são representativos das piores condições que se espera encontrar com o produto final, executando nas condições reais de operação.

5 MEDIÇÕES E ANÁLISES

Para efetuar a análise da aplicação da MBPTA, foi escolhido o Caso 3B, abordado no capítulo 4, isto é, algoritmo *Bsort* alocado na Partição 1, algoritmo *Djikstra* na Partição 2 e algoritmo *lms* na Partição 3. As amostragens, todavia, foram realizadas apenas após decorrer 24h de atividade ininterrupta da plataforma BeagleBone para observar o comportamento do sistema em condições o mais próximas quanto possível do cenário real de execução. A medição, por sua vez, foi feita com os recursos de supressão temporal habilitados e utilizando o Modo Contido na Partição (Seção 3.4), sendo os tempos de execução amostrados contidos na primeira ocorrência da partição, em que se encontra a tarefa de interesse, no calendário.

Dois cenários de testes foram escolhidos, em que se variou a tarefa de interesse cujo tempo de execução foi medido. No primeiro cenário, o algoritmo *Bsort*, alocado na Partição 1, foi escolhido como tarefa de interesse, já no segundo cenário, o algoritmo *lms*, alocado na Partição 3. Para cada tarefa foram coletadas 10 amostras diferentes de 50.000 medições. No intuito de garantir a independência entre as amostras, o código do SO foi recompilado e regravado antes de cada sessão de medições. Ao todo, foram coletadas 500.000 medições para cada tarefa.

O tempo gasto em cada sessão de coleta de 50.000 medições varia em função da tarefa de interesse e do modo adotado para medição. No caso do primeiro cenário, o tempo médio gasto por sessão de coleta foi de aproximadamente 5,5 horas. Já no caso do segundo cenário, o tempo médio gasto por sessão de coleta foi de aproximadamente 7 horas.

Após realizar a amostragem, foi necessário verificar a aplicabilidade da TVE em relação às amostras produzidas, isto é, verificar se as amostras cumprem com os requisitos de apresentar evidências de independência e distribuição idêntica. Para tanto, foram empregados os testes de hipótese estatística descritos no Capítulo 2. Esse tipo de teste utiliza uma hipótese nula, denominada H_0 , e uma hipótese oposta, denominada H_1 . A hipótese H_0 é tida como verdadeira, sendo apenas refutada se surgirem evidências estatísticas apropriadas que corroborem o contrário. Já H_1 é tida como verdadeira apenas se H_0 for refutada. Os resultados desses testes são dados em valores p, que sumarizam a probabilidade dos valores amostrados terem ocorrido no caso de a hipótese nula ser verdadeira (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017).

Para obter um certo controle sobre a ocorrência de falsos negativos e falsos positivos em relação à hipótese nula, utiliza-se um valor conhecido como nível de significância, denominado α . Geralmente α é definido com valores entre 0,05 e 0,01. Ao comparar o valor p de um teste com α , pode-se rejeitar a hipótese nula ($p < \alpha$) ou não ($p \ge \alpha$), com um nível de confiança dado por $\gamma = 1 - \alpha$ (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017). Ao longo deste capítulo, empregamos estimativas de pWCET com probabilidade de excedência igual a 10⁻⁵, 10⁻⁶, 10⁻⁷ e 10⁻⁸, e também amostras de validação com n = 50.000 medições e $\alpha = 0,05$.

Após ter sido verificada a adequação das amostras, foram realizados seis ajustes para cada amostra, através da abordagem Máximos de Blocos com uma distribuição GEV ajustada aos máximos das medidas selecionadas por meio de blocos de tamanho 30, 50 e 100. Embora

haja um debate em andamento sobre qual método usar ao aplicar a TVE, o método e o tamanho da amostra usados neste trabalho são semelhantes a outros trabalhos na literatura. O uso de blocos de tamanho 50 e 100 é comum na literatura (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017) bem como o uso de tamanhos diversos para efeito comparativo (SANTINELLI *et al.*, 2014; CUCU-GROSJEAN *et al.*, 2012), abordagem essa que optamos por adotar.

Duas análises da aplicação do método foram feitas. Na primeira delas, variou-se o tamanho dos blocos (30, 50 e 100), mas foi mantida fixa a quantidade de blocos utilizada na análise em 500 blocos. Na segunda análise, fixou-se o tamanho do bloco em 100 e a variação se deu na quantidade de blocos utilizados (100, 250 e 500).

Quanto ao método para estimação dos parâmetros de ajuste, cabe ressaltar que não há prevalência de um método sobre outro na literatura, sendo todos os métodos apresentados no Capítulo 2 amplamente usados. Para restringir o escopo, optou-se por usar o método MLE, também empregado em diversos trabalhos (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017).

5.1 CENÁRIO 1

Nesta seção serão apresentados os resultados obtidos para o algoritmo *Bsort* como tarefa de interesse. Uma vez que o comportamento temporal é semelhante para todas as dez amostras coletadas, por uma questão de simplicidade, apresentamos resultados detalhados apenas para a amostra 1. Todos os resultados das demais amostras podem ser verificados no Apêndice B.

As Figuras 26a e 26b apresentam os valores e o histograma da amostra, respectivamente. O tempo de execução da tarefa nesse cenário varia entre 88993 e 89160, apresentando uma média de 89070 e desvio padrão de 20,39062 (Tabela 1). Para validar a adequação da amostra através dos testes estatísticos supramencionados, a amostra foi dividida em 10 segmentos, cada um com 5000 medições, sobre os quais os testes foram aplicados. Essa divisão em segmentos foi realizada para controlar os erros dos testes de hipótese que foram empregados, uma vez que com a replicação dos testes a probabilidade de ocorrência de resultados falsos é reduzida, aumentando a confiança nos resultados obtidos (ARCARO *et al.*, 2018).

A Figura 26c mostra os gráficos *box and whisker* dos resultados dos testes estatísticos aplicados, ilustrando sobre os valores *p* obtidos: o mínimo, a mediana, o máximo e os quantis de 5% e 95%. Levando em consideração o fato de que os testes que empregamos são conhecidos por produzir valores *p* que são uniformemente distribuídos no intervalo [0, 1] quando H_0 é verdadeira (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017), os valores de *p* são aceitáveis, pois estão distribuídos no intervalo [0, 1] e não apresentam tendência para valores baixos (<5%).

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância	
88993	89056	89070	89070	89084	89160	20,39062	415,7776	
Fonte – Do Autor.								

ľa	bel	a 1	L —	Amostra	l -	Taref	a E	Sort:	Anál	ise	dos	dad	los
----	-----	-----	-----	---------	-----	-------	-----	-------	------	-----	-----	-----	-----

b Histograma da Amostra 1

Fonte - Do Autor.

5.1.1 Análise variando o tamanho do bloco

A Figura 27 apresenta os resultados da aplicação do método da TVE, valendo-se da variação do tamanho dos blocos em 30, 50 e 100 e mantendo a quantidade de blocos fixa em 500 blocos. Na área esquerda da Figura 27 (Figuras 27a, 27c e 27e), temos os gráficos Quantil-Quantil, que representam a ordenação dos quantis da amostra em ordem crescente no eixo Y e

dos quantis do modelo gerado no eixo X, os valores dos quantis do modelo são traçados como pontos no gráfico, no qual existe também uma reta 1:1.

Fonte – Do Autor.

O bom ajuste em gráficos Quantil-Quantil se evidencia pela disposição próxima da linha 1:1, demonstrando que os valores do modelo se aproximam dos valores empíricos amostrados (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017). Já na área direita da Figura 27 (Figuras 27b, 27d e 27f), encontram-se os gráficos da curva de distribuição GEV obtida, em que se compara a curva empírica e a curva modelada, havendo no eixo X os dados da amostra em ordem crescente e no eixo Y a densidade da distribuição. De maneira análoga aos gráficos Quantil-Quantil, o bom ajuste em gráfico da curva de distribuição GEV se dá pela aproximação dos traçados das curvas modeladas às empíricas, em especial, em relação ao ajuste dos traçados da cauda das curvas, uma vez que estamos analisando a probabilidade de ocorrência de valores extremos (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017).

Em relação aos resultados obtidos e apresentados na Figura 27, é possível observar algumas discrepâncias das curvas modeladas em relação às empíricas e distanciamentos dos valores modelados em relação à reta 1:1. Todavia, apesar dessas ocorrências não serem favoráveis, não há definição na literatura acerca do critério de aceitação em relação aos deslocamentos e, haja vista os resultados frequentemente obtidos em outros trabalhos na literatura, os resultados de todos os testes apresentaram ajustes razoáveis. No caso específico do presente experimento, os resultados obtidos com bloco de tamanho 30 apresentaram ajustes, na cauda da curva GEV e na aproximação dos pontos modelados à reta 1:1, um pouco melhores do que os demais.

A Tabela 2 apresenta os parâmetros usados para o ajuste da curva GEV no caso do uso de blocos com tamanho 30, 50 e 100, sendo eles local (μ), escala (σ) e forma (ξ).

Tabela 2 – Amostra 1 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89108,1805	89109,0276	89109,8747
30	σ	8,1854	8,7759	9,3664
	ξ	-0,2053	-0,1532	-0,1012
	μ	89112,7036	89113,4934	89114,2831
50	σ	7,6822	8,2293	8,7764
	ξ	-0,1416	-0,0939	-0,0461
	μ	89116,4891	89117,2611	89118,0332
100	σ	7,4375	7,9783	8,5190
	ξ	-0,1356	-0,0824	-0,0293

Fonte – Do Autor.

A Tabela 3 apresenta os valores estimados de pWCET com probabilidade de excedência igual a 10^{-5} , 10^{-6} , 10^{-7} e 10^{-8} no caso do uso de blocos com tamanho 30, 50 e 100.

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵	89147,4115	89156,4907	89165,5699
30	10-6	89148,5388	89159,4087	89170,2787
	10-7	89149,0860	89161,4593	89173,8325
	10 ⁻⁸	89149,2990	89162,9002	89176,5015
	10 ⁻⁵	89159,1746	89171,4149	89183,6552
50	10-6	89161,6360	89177,1989	89192,7618
	10-7	89163,1056	89181,8587	89200,6118
	10 ⁻⁸	89163,8769	89185,6129	89207,3489
	10 ⁻⁵	89162,2937	89176,5786	89190,8635
100	10-6	89164,6080	89183,0556	89201,5032
	10-7	89165,8655	89188,4128	89210,9601
	10 ⁻⁸	89166,3632	89192,8438	89219,3244

Tabela 3 – Amostra 1 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Fonte - Do Autor.

5.1.2 Análise variando a quantidade de blocos

A Figura 28 apresenta os resultados da aplicação do método da TVE, valendo-se da variação da quantidade dos blocos em 100, 250 e 500 e mantendo o tamanho do bloco fixo em 100. Na área esquerda da Figura 28 (Figuras 28a, 28c e 28e), temos os gráficos Quantil-Quantil, que representam a ordenação dos quantis da amostra em ordem crescente no eixo Y e dos quantis do modelo gerado no eixo X, os valores dos quantis do modelo são traçados como pontos no gráfico, no qual existe também uma reta 1:1.

Já na área direita da Figura 28 (Figuras 28b, 28d e 28f), encontram-se os gráficos da curva de distribuição GEV obtida, em que se compara a curva empírica e a curva modelada, havendo no eixo X os dados da amostra em ordem crescente e no eixo Y a densidade da distribuição.

Em relação aos resultados obtidos e apresentados na Figura 28, é possível observar discrepâncias mais significativas do que as observadas na Figura 27. Todavia, os resultados de todos os testes apresentaram ajustes razoáveis. No caso específico do presente experimento, os resultados obtidos com maior quantidade de blocos (Figuras 28e e 28f) apresentaram ajustes, na cauda da curva GEV e na aproximação dos pontos modelados à reta 1:1, melhores do que os demais, possivelmente em face da maior quantidade de valores usados para o ajuste.

Figura 28 - Resultados com variação do número de blocos: Amostra 1 - Tarefa Bsort

A Tabela 4 apresenta os parâmetros usados para o ajuste da curva GEV no caso do uso da quantidade de 100, 250 e 500 blocos, sendo eles local (μ), escala (σ) e forma (ξ).

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89116,6194	89118,2431	89119,8667
100	σ	6,2709	7,4200	8,5691
	ξ	-0,2572	-0,1230	0,0112
	μ	89117,7521	89118,7913	89119,8305
250	σ	6,9479	7,6645	8,3811
	ξ	-0,1457	-0,0783	-0,0109
	μ	89116,4891	89117,2611	89118,0332
500	σ	7,4375	7,9783	8,5190
	ξ	-0,1356	-0,0824	-0,0293

Tabela 4 – Amostra 1 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Fonte – Do Autor.

A Tabela 5 apresenta os valores estimados de pWCET com probabilidade de excedência igual a 10^{-5} , 10^{-6} , 10^{-7} e 10^{-8} no caso do uso da quantidade de 100, 250 e 500 blocos.

Tabela 5 – Amostra 1	- Tarefa E	Bsort: Probabilidade	e de Exce	dência (I	N: 100,	250 e 500)
----------------------	------------	----------------------	-----------	-----------	---------	------------

Quantidade (Blocos)	Probabilidade d excedência	le Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89139,4028	89163,9298	89188,4569
100	10-6	89137,2119	89167,5404	89197,8689
	10-7	89134,7209	89170,2604	89205,8000
	10 ⁻⁸	89132,2123	89172,3096	89212,4068
	10 ⁻⁵	89158,7195	89176,9325	89195,1454
250	10-6	89159,9201	89183,4869	89207,0537
	10-7	89160,0716	89188,9597	89217,8478
	10 ⁻⁸	89159,4889	89193,5295	89227,5701
	10 ⁻⁵	89162,2937	89176,5786	89190,8635
500	10-6	89164,6080	89183,0556	89201,5032
	10 ⁻⁷	89165,8655	89188,4128	89210,9601
	10-8	89166,3632	89192,8438	89219,3244

Fonte – Do Autor.

5.1.3 Análise da dispersão das amostras

Para avaliar os resultados obtidos das 10 amostras coletadas (Apêndice B), criou-se gráficos *box and whisker* dos resultados dos pWCETs estimados com probabilidade de excedência igual a 10^{-8} e também dos 10 maiores valores observados (HWM), isto é, o HWM de cada amostra, ilustrando sobre os valores obtidos: o mínimo, a mediana, o máximo e os quantis de 5% e 95%. A Figura 29 compara os valores estimados por tamanho do bloco com o HWM observado. É possível notar que, sob as condições específicas do presente experimento, a mediana varia com o aumento do tamanho do bloco, muito embora esse não seja de fato um aumento significativo, uma vez que, ao se observar a escala, a diferença dos valores das medianas é de poucas unidades de ciclos de *clock*. As medianas obtidas para cada tamanho de bloco são, respectivamente, 89176, 89179 e 89186, implicando em variações inferiores a 0,012%. Em todos os casos, as medianas e valores máximos obtidos distam dos HWMs observados, sendo escolhas aceitáveis para o pWCET a ser adotado pelo desenvolvedor.

Já a Figura 30, por sua vez, compara os valores estimados por quantidade de blocos com o HWM observado. É possível notar que, sob as condições específicas do presente experimento, a mediana se mantém em valores próximos, não havendo variação significativa com a quantidade de blocos, todavia, a variância dos valores estimados diminuiu à medida que mais blocos foram empregados, possivelmente, isto ocorre devido ao aumento da quantidade de dados usados para a análise. Em todos os casos, as medianas e valores máximos obtidos distam dos HWMs observados, sendo escolhas aceitáveis para o pWCET a ser adotado pelo desenvolvedor.

Figura 29 – Valores estimados por tamanho do bloco com probabilidade de excedência = 10^{-8}

Fonte - Do Autor.

Figura 30 – Valores estimados por quantidade de blocos com probabilidade de excedência = 10^{-8}

Fonte - Do Autor.

5.2 CENÁRIO 2

Nesta seção serão apresentados os resultados obtidos para o algoritmo *lms* como tarefa de interesse. A tarefa *lms* apresentou comportamento em regime semelhante nas 10 amostras, todavia, em 2 amostras foi observada a ocorrência de um *outlier* localizado entre as primeiras 5 execuções da tarefa (Apêndice C - Amostra 2 e Amostra 10). Sendo assim, por uma questão de simplicidade, apresentamos resultados detalhados apenas para as amostras 1 e 10, que apresentam, respectivamente, o comportamento típico em regime e a presença do maior *outlier* observado. Todos os resultados das demais amostras podem ser verificados no Apêndice C.

5.2.1 Análise preliminar da Amostra 1

As Figuras 31a e 31b apresentam os valores da amostra 1 e o histograma da amostra respectivamente. O tempo de execução da tarefa neste cenário varia entre 698085 e 707590, apresentando uma média de 702387 e desvio padrão de 1269,557 (Tabela 6). Para validar a adequação da amostra através dos testes estatísticos supramencionados, a amostra foi dividida em 10 segmentos, cada um com 5000 medições, sobre os quais os testes foram aplicados.

A Figura 31c mostra os gráficos *box and whisker* dos resultados dos testes estatísticos aplicados, ilustrando sobre os valores p obtidos: o mínimo, a mediana, o máximo e os quantis de 5% e 95%. Levando em consideração o fato de que os testes que empregamos são conhecidos por produzir valores p que são uniformemente distribuídos no intervalo [0, 1] quando H_0 é

verdadeiro (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017), os valores de p são aceitáveis, pois estão distribuídos no intervalo [0, 1] e não apresentam tendência para valores baixos (<5%).

Figura 31 – Amostra 1 - Tarefa lms

c Testes i.i.d Fonte – Do Autor.

Testes i.i.d.

Tabela 6 - Amostra 1 - Tarefa lms: Análise dos dados

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância	
698085	701469	702367	702387	703268	707590	1269,557	1611776	
Fonte – Do Autor.								

5.2.2 Análise variando o tamanho do bloco (Amostra 1)

A Figura 32 apresenta os resultados da aplicação do método da TVE, valendo-se da variação do tamanho dos blocos em 30, 50 e 100 e mantendo a quantidade de blocos fixa em 500 blocos. Na área esquerda da Figura 32 (Figuras 32a, 32c e 32e), temos os gráficos Quantil-Quantil, que representam a ordenação dos quantis da amostra em ordem crescente no eixo Y e dos quantis do modelo gerado no eixo X, os valores dos quantis do modelo são traçados como pontos no gráfico, em que existe também uma reta 1:1.

Já na área direita da Figura 32 (Figuras 32b, 32d e 32f), encontram-se os gráficos da curva de distribuição GEV obtida, em que se compara a curva empírica e a curva modelada, havendo no eixo X os dados da amostra em ordem crescente e no eixo Y a densidade da distribuição.

c Gráfico Quantil-Quantil com bloco 50

d Curva GEV com bloco 50

Em relação aos resultados obtidos e apresentados na Figura 32, é possível observar algumas discrepâncias das curvas modeladas em relação às empíricas e distanciamentos dos valores modelados em relação à reta 1:1. Todavia, os resultados de todos os testes apresentaram ajustes razoáveis. No caso específico do presente experimento, os resultados obtidos com bloco de tamanho 100 apresentaram ajustes, na cauda da curva GEV e na aproximação dos pontos modelados à reta 1:1, um pouco melhores do que os demais.

A Tabela 7 apresenta os parâmetros usados para o ajuste da curva GEV no caso do uso de blocos com tamanho 30, 50 e 100, sendo eles local (μ), escala (σ) e forma (ξ).

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704707,3480	704760,9581	704814,5682
30	σ	514,6232	551,9631	589,3031
	ξ	-0,1234	-0,0688	-0,0142
	μ	704974,1004	705022,2556	705070,4108
50	σ	460,2099	494,0222	527,8344
	ξ	-0,1187	-0,0618	-0,0048
	μ	705292,9968	705336,3449	705379,6931
100	σ	410,1698	441,2936	472,4174
	ξ	-0,1060	-0,0433	0,0194

Tabela 7 – Amostra 1 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Fonte – Do Autor.

A Tabela 8 apresenta os valores estimados de pWCET com probabilidade de excedência igual a 10^{-5} , 10^{-6} , 10^{-7} e 10^{-8} no caso do uso de blocos com tamanho 30, 50 e 100.

Tamanho (Bloco)	Probabilidade de excedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵	708021,5538	709150,1881	710278,8223
30	10 ⁻⁶	708200,0363	709682,5122	711164,9881
	10-7	708295,0748	710136,8454	711978,6159
	10 ⁻⁸	708327,3538	710524,6148	712721,8758
	10 ⁻⁵	707985,9888	709092,5679	710199,1470
50	10 ⁻⁶	708145,5287	709613,2976	711081,0665
	10 ⁻⁷	708224,5666	710064,9921	711905,4176
	10 ⁻⁸	708241,7057	710456,8044	712671,9031
	10 ⁻⁵	708090,8182	709336,7917	710582,7652
100	10 ⁻⁶	708227,9480	709924,1087	711620,2694
	10 ⁻⁷	708275,1504	710455,6699	712636,1894
	10 ⁻⁸	708248,3308	710936,7691	713625,2075

Tabela 8 – Amostra 1 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Fonte - Do Autor.

5.2.3 Análise variando a quantidade de blocos (Amostra 1)

A Figura 33 apresenta os resultados da aplicação do método da TVE, valendo-se da variação da quantidade dos blocos em 100, 250 e 500 e mantendo o tamanho do bloco fixo em 100. Na área esquerda da Figura 33 (Figuras 33a, 33c e 33e), temos os gráficos Quantil-Quantil. Já na área direita da Figura 33 (Figuras 33b, 33d e 33f), encontram-se os gráficos da curva de distribuição GEV obtida, em que se compara a curva empírica e a curva modelada.

Em relação aos resultados obtidos e apresentados na Figura 33, é possível observar discrepâncias mais significativas do que observadas na Figura 32. Todavia, os resultados de todos os testes apresentaram ajustes razoáveis. No caso específico do presente experimento, os resultados obtidos com maior quantidade de blocos (Figuras 33e e 33f) apresentaram ajustes, na cauda da curva GEV e na aproximação dos pontos modelados à reta 1:1, melhores do que os demais, possivelmente em face da maior quantidade de valores usados para o ajuste.

Figura 33 - Resultados com variação do número de blocos: Amostra 1 - Tarefa lms

A Tabela 9 apresenta os parâmetros usados para o ajuste da curva GEV no caso do uso da quantidade de 100, 250 e 500 blocos, sendo eles local (μ), escala (σ) e forma (ξ).

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705231,2341	705347,7404	705464,2468
100	σ	437,5943	523,3411	609,0878
	ξ	-0,1641	-0,0051	0,1540
	μ	705252,5725	705317,2191	705381,8656
250	σ	413,8116	460,7074	507,6033
	ξ	-0,1159	-0,0209	0,0740
	μ	705292,9968	705336,3449	705379,6931
500	σ	410,1698	441,2936	472,4174
	ξ	-0,1060	-0,0433	0,0194

Tabela 9 – Amostra 1 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Fonte – Do Autor.

A Tabela 10 apresenta os valores estimados de pWCET com probabilidade de excedência igual a 10^{-5} , 10^{-6} , 10^{-7} e 10^{-8} no caso do uso da quantidade de 100, 250 e 500 blocos.

Tabela 10 – Amostra 1 - Tarefa lms: Probabilidade de Excedência (N: 100, 250 e 500)

Quantidade (Blocos)	Probabilidade d excedência	e Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵	706174,5978	711200,3677	716226,1376
100	10-6	705093,9355	712330,4375	719566,9394
	10 ⁻⁷	703616,0318	713447,3830	723278,7343
	10 ⁻⁸	701750,5205	714551,3586	727352,1967
	10 ⁻⁵	707694,2967	710030,4212	712366,5457
250	10-6	707559,7354	710844,2317	714128,7280
	10 ⁻⁷	707261,5797	711619,7360	715977,8923
	10 ⁻⁸	706815,6556	712358,7385	717901,8213
	10 ⁻⁵	708090,8182	709336,7917	710582,7652
500	10-6	708227,9480	709924,1087	711620,2694
	10 ⁻⁷	708275,1504	710455,6699	712636,1894
	10 ⁻⁸	708248,3308	710936,7691	713625,2075

Fonte – Do Autor.

5.2.4 Análise preliminar da Amostra 10

As Figuras 34a e 34b apresentam os valores da amostra 10 e o histograma da amostra respectivamente. O tempo de execução da tarefa neste cenário varia entre 698213 e 709820, apresentando uma média de 702434 e desvio padrão de 1271,216 (Tabela 11). É possível notar o valor máximo observado como *outlier* nas primeiras execuções na Figura 34a. Para validar a

adequação da amostra através dos testes estatísticos supramencionados, a amostra foi dividida em 10 segmentos, cada um com 5000 medições, sobre os quais os testes foram aplicados.

Figura 34 - Amostra 10 - Tarefa lms

A Figura 34c mostra os gráficos *box and whisker* dos resultados dos testes estatísticos aplicados, ilustrando sobre os valores p obtidos: o mínimo, a mediana, o máximo e os quantis de 5% e 95%. Levando em consideração o fato de que os testes que empregamos são conhecidos por produzir valores p que são uniformemente distribuídos no intervalo [0, 1] quando H_0 é válido (ARCARO *et al.*, 2018; SILVA *et al.*, 2018, 2017), os valores de p são aceitáveis, pois estão distribuídos no intervalo [0, 1] e não apresentam tendência para valores baixos (<5%).

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
698213	701510	702419	702434	703313	709820	1271,216	1615989
			Fonte –	- Do Autor.			

Tal	bela	11	—	Amostra	1() -	Taref	a	lms:	Aná	lise	dos	dad	los
-----	------	----	---	---------	----	-----	-------	---	------	-----	------	-----	-----	-----

5.2.5 Análise variando o tamanho do bloco (Amostra 10)

A Figura 35 apresenta os resultados da aplicação do método da TVE, valendo-se da variação do tamanho dos blocos em 30, 50 e 100 e mantendo a quantidade de blocos fixa em 500 blocos. Na área esquerda da Figura 35 (Figuras 35a, 35c e 35e), temos os gráficos Quantil-Quantil. Já na área direita da Figura 35 (Figuras 35b, 35d e 35f), encontram-se os gráficos da curva de distribuição GEV obtida, em que se compara a curva empírica e a curva modelada.

Figura 35 - Resultados com variação do tamanho do bloco: Amostra 10 - Tarefa lms

c Gráfico Quantil-Quantil com bloco 50

d Curva GEV com bloco 50

Em relação aos resultados obtidos e apresentados na Figura 35, é possível observar algumas discrepâncias das curvas modeladas em relação às empíricas e distanciamentos dos valores modelados em relação à reta 1:1. Todavia, apesar dessas ocorrências não serem favoráveis, não há definição na literatura acerca do critério de aceitação em relação aos deslocamentos e, haja vista os resultados frequentemente obtidos em outros trabalhos na literatura, os resultados de todos os testes apresentaram ajustes razoáveis. No caso específico do presente experimento, os resultados obtidos com bloco de tamanho 30 apresentaram ajustes, na cauda da curva GEV e na aproximação dos pontos modelados à reta 1:1, um pouco melhores do que os demais.

A Tabela 12 apresenta os parâmetros usados para o ajuste da curva GEV no caso do uso de blocos com tamanho 30, 50 e 100, sendo eles local (μ), escala (σ) e forma (ξ).

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704722,4338	704775,4439	704828,4540
30	σ	511,4667	549,1533	586,8400
	ξ	-0,0661	-0,0146	0,0369
	μ	705005,4051	705053,7017	705101,9982
50	σ	470,0475	504,1627	538,2780
	ξ	-0,0748	-0,0285	0,0178
	μ	705338,5942	705383,3280	705428,0617
100	σ	431,4646	463,3479	495,2313
	ξ	-0,0741	-0,0240	0,0260

Tabela 12 – Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Fonte – Do Autor.

A Tabela 13 apresenta os valores estimados de pWCET com probabilidade de excedência igual a 10^{-5} , 10^{-6} , 10^{-7} e 10^{-8} no caso do uso de blocos com tamanho 30, 50 e 100.

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵	708971,4382	710595,2493	712219,0604
30	10-6	709354,9749	711646,4164	713937,8579
	10-7	709604,9523	712662,8486	715720,7450
	10 ⁻⁸	709729,8935	713645,6955	717561,4974
	10 ⁻⁵	708791,8917	710001,2829	711210,6740
50	10-6	709140,8751	710810,3344	712479,7937
	10-7	709386,6367	711567,9521	713749,2675
	10 ⁻⁸	709540,9816	712277,4069	715013,8321
	10 ⁻⁵	708812,6948	710043,0575	711273,4203
100	10-6	709116,6300	710829,9571	712543,2843
	10-7	709318,1624	711574,4684	713830,7744
	10 ⁻⁸	709427,5369	712278,8758	715130,2148

Tabela 13 – Amostra 10 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Fonte - Do Autor.

5.2.6 Análise variando a quantidade de blocos (Amostra 10)

A Figura 36 apresenta os resultados da aplicação do método da TVE, valendo-se da variação da quantidade dos blocos em 100, 250 e 500 e mantendo o tamanho do bloco fixo em 100. Na área esquerda da Figura 36 (Figuras 36a, 36c e 36e), temos os gráficos Quantil-Quantil. Já na área direita da Figura 36 (Figuras 36b, 36d e 36f), encontram-se os gráficos da curva de distribuição GEV obtida, em que se compara a curva empírica e a curva modelada.

Em relação aos resultados obtidos e apresentados na Figura 36, é possível observar discrepâncias mais significativas do que observadas na Figura 35. Todavia, os resultados de todos os testes apresentaram ajustes razoáveis. No caso específico do presente experimento, os resultados obtidos com maior quantidade de blocos (Figuras 36e e 36f) apresentaram ajustes, na cauda da curva GEV e na aproximação dos pontos modelados à reta 1:1, melhores do que os demais, possivelmente em face da maior quantidade de valores usados para o ajuste.

Figura 36 - Resultados com variação do número de blocos: Amostra 10 - Tarefa lms

A Tabela 14 apresenta os parâmetros usados para o ajuste da curva GEV no caso do uso da quantidade de 100, 250 e 500 blocos, sendo eles local (μ), escala (σ) e forma (ξ).

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705267,4934	705382,2210	705496,9487
100	σ	432,8841	519,9850	607,0859
	ξ	-0,0551	0,0941	0,2433
	μ	705296,6129	705361,9958	705427,3786
250	σ	428,2320	475,3014	522,3707
	ξ	-0,0604	0,0172	0,0947
	μ	705338,5942	705383,3280	705428,0617
500	σ	431,4646	463,3479	495,2313
	ξ	-0,0741	-0,0240	0,0260

Tabela 14 – Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Fonte – Do Autor.

A Tabela 15 apresenta os valores estimados de pWCET com probabilidade de excedência igual a 10^{-5} , 10^{-6} , 10^{-7} e 10^{-8} no caso do uso da quantidade de 100, 250 e 500 blocos.

Tabela 15 – Amostra 10	- Tarefa lms:	Probabilidade d	le Excedência (1	N: 100, 250 e 500))
------------------------	---------------	-----------------	------------------	-------------------	----

Quantidade (Blocos)	Probabilidade d excedência	e Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵	705472,3625	716182,7560	726893,1494
100	10-6	702041,4497	720132,5771	738223,7045
	10-7	696095,2105	725037,9441	753980,6778
	10 ⁻⁸	686618,0130	731130,0323	775642,0516
	10 ⁻⁵	708696,2218	711412,7452	714129,2686
250	10-6	708747,7856	712773,2415	716798,6973
	10-7	708548,1529	714188,6292	719829,1054
	10 ⁻⁸	708077,1731	715661,1252	723245,0773
	10 ⁻⁵	708812,6948	710043,0575	711273,4203
500	10-6	709116,6300	710829,9571	712543,2843
	10 ⁻⁷	709318,1624	711574,4684	713830,7744
	10-8	709427,5369	712278,8758	715130,2148

Fonte – Do Autor.

5.2.7 Análise da dispersão das amostras

Para avaliar os resultados obtidos das 10 amostras coletadas (Apêndice C), criou-se gráficos *box and whisker* dos resultados dos pWCETs estimados com probabilidade de excedência igual a 10^{-8} e também dos 10 maiores valores observados (HWM), isto é, o HWM de cada amostra, ilustrando sobre os valores obtidos: o mínimo, a mediana, o máximo e os quantis de 5% e 95%. A Figura 37 compara os valores estimados por tamanho do bloco com o HWM observado. É possível notar que, sob as condições específicas do presente experimento, a mediana de maior valor foi identificada no cenário dos resultados para o bloco igual a 30, enquanto os demais tamanho de blocos possuem medianas com valores que se aproximam. As medianas obtidas para cada tamanho de bloco são, respectivamente, 711602, 710697 e 710592, implicando em variações inferiores a 0,142%. Em todos os casos, as medianas e valores máximos obtidos distam dos HWMs observados, inclusive em relação aos dois *outliers* observados em duas das amostras coletadas (Amostras 2 e 10).

Figura 37 – Valores estimados por tamanho do bloco com probabilidade de excedência = 10^{-8}

Fonte – Do Autor.

Já a Figura 38, por sua vez, compara os valores estimados por quantidade de blocos com o HWM observado. É possível notar que, sob as condições específicas do presente experimento, tanto a mediana quanto a variância dos valores estimados diminuíram à medida que mais blocos foram empregados, possivelmente, isso ocorre devido ao aumento da quantidade de dados usados para a análise. As medianas obtidas para cada tamanho de bloco são, respectivamente, 714851, 712539 e 710592, implicando em variações inferiores a 0,6%. Em todos os casos, as medianas e valores máximos obtidos distam dos HWMs observados, inclusive em relação aos dois *outliers* observados em duas das amostras coletadas.

Figura 38 – Valores estimados por quantidade de blocos com probabilidade de excedência = 10^{-8}

Fonte - Do Autor.

5.3 CONSIDERAÇÕES FINAIS

A partir dos resultados obtidos, sob as condições dos experimentos realizados, é possível concluir que, em ambos os cenários, quando mais blocos são utilizados, há menor dispersão dos dados dos valores estimados. Todavia, a variabilidade, por sua vez, é inerente ao método. Há variações nos resultados, mas apesar de visualmente perceptível devido à escala dos gráficos utilizados na análise, o espalhamento é de fato relativamente pequeno. Para cada cenário e probabilidade de excedência considerada, foram obtidos 50 valores de pWCET e as variações encontradas foram sempre menores que 1%.

Em relação ao cenário 1, a aplicação da TVE se mostrou uma alternativa adequada, com resultados satisfatórios em todos os casos. Todavia, na condição deste experimento, segundo os resultados obtidos, variando o tamanho dos blocos, o uso do tamanho de bloco 30 gerou resultados com melhor adequação ao modelo. Já segundo os resultados obtidos, variando a quantidade de blocos, o uso da quantidade de 500 blocos, gerou os resultados com melhor adequação ao modelo.

Quanto ao cenário 2, em duas das dez amostras com 50.000 medições foram observados *outliers* muito discrepantes do restante dos valores da amostra, isto é, em cada uma foi observado um *outlier*. A rigor, a presença desses *outliers* demonstraria pouca confiança nos resultados obtidos quando da aplicação da técnica MBPTA. Porém os dois valores de pico observados foram encontrados entre as cinco primeiras execuções de cada amostra, respectivamente, demonstrando que sua ocorrência está possivelmente relacionada ao período de inicialização do sistema, durante o qual ocorre, por exemplo, o preenchimento das memórias *cache*. Cabe, portanto, ao desenvolvedor a decisão de adotar ou não a análise a depender da criticalidade do sistema e seu contexto de inicialização, optando por considerar a análise do comportamento em regime ou descartar por completo a análise.

Sobre a variação do tamanho dos blocos e quantidade de blocos utilizados nos experimentos, cabe ressaltar que apesar de nossas medições por vezes apresentarem tendências com respeito ao número de blocos e ao tamanho dos blocos, não é possível generalizar o que observamos neste sentido, face ao que é reportado na literatura de MBPTA em geral.

Em relação à totalidade dos experimentos realizados, o desenvolvedor pode usar duas abordagens frente aos resultados obtidos: observar os 50 ajustes (10 amostras com 5 combinações de tamanho de bloco e quantidade de blocos) e escolher o que melhor se adequa ou escolher a maior estimativa entre os 50 pWCETs. Em ambos os casos, o resultado será entre 1% a 2% superior ao HWM, considerando-se uma probabilidade de excedência de 10⁻⁸. Por sua vez, a abordagem mais usual na indústria utiliza um fator de segurança de 20% em relação ao HWM, sendo assim, a MBPTA se posiciona como mais uma ferramenta de estimação que pode ser utilizada, capaz de prover resultados potencialmente bem menos pessimistas.

6 CONCLUSÃO

Ao longo deste trabalho, avaliou-se a aplicabilidade da Análise de Tempo Probabilística Baseada em Medições (*Measurement-Based Probabilistic Timing Analysis*, MBPTA), baseada na Teoria dos Valores Extremos. A avaliação foi realizada no caso específico de um sistema operacional relevante para sistemas de tempo real no contexto de arquiteturas complexas, ou seja, usando processadores com vários recursos de aceleração implementados em *hardware*.

Inicialmente foi realizado um levantamento sobre as diversas abordagens encontradas na literatura acerca do tema e dos trabalhos relacionados mais relevantes. O Capítulo 2 mostrou que existem muitas variantes na aplicação da MBPTA e diversas questões em aberto acerca do tema e que não possuem consenso na literatura, tais como a definição do tamanho da amostra, qual o melhor método a ser utilizado, tamanho de bloco ou valor limiar, método para ajuste do modelo, etc. Nesse sentido, limitou-se o escopo do trabalho à aplicação do método Máximos de Blocos.

Como estudo de caso, foi escolhido um SO compatível com a ARINC 653, uma especificação de sistema operacional para sistemas aviônicos, implementado sobre uma plataforma BeagleBone anteriormente (ARCARO, 2015). O Capítulo 3 apresentou as características principais da especificação e da plataforma adotadas, além da configuração de suas partições e respectiva escala temporal, sendo também abordados os recursos de *software* utilizados para realizar a amostragem de tempos de execução e sua subsequente análise estatística.

Diversos testes foram realizados para avaliar se o comportamento temporal da aplicação estava sujeito a variações. No Capítulo 4, foram abordados aspectos que resultaram em alterações no valor médio dos tempos de execução amostrados, tais como a variação dos dados de entrada e questões intrínsecas ao *hardware* adotado. Os testes realizados comprovaram que o isolamento temporal, que deveria ser estabelecido por meio do particionamento do SO segundo a especificação ARINC 653, não é, por vezes, respeitado em função das características do *hardware* utilizado. No entanto, cabe ressaltar que a implementação do SO na plataforma adotada não foi certificada, podendo haver também aspectos de *software* que causam impacto na condução dos experimentos.

Os testes realizados com os cenários escolhidos no Capítulo 5 demonstraram que, apesar da existência de fatores que podem afetar o comportamento temporal da aplicação, o comportamento em regime se apresentou estável e, de maneira geral, foi possível aplicar a técnica MBPTA e os resultados dos ajustes obtidos foram satisfatórios. O Capítulo 5 descreve dois cenários em que foram coletadas 10 amostras com 50.000 medições. Para cada cenário, foram usados 3 diferentes tamanhos de blocos e 3 diferentes quantidades de blocos. Foram gerados pWCETs para 4 diferentes probabilidades de excedência. No caso da probabilidade de excedência de 10⁻⁸, ainda que 50 valores distintos de pWCET tenham sido obtidos, a diferença entre eles resultou em valores relativos menores do que 1%, mostrando que o método, apesar de sua variabilidade inerente, fornece resultados consistentes. Em todos os casos considerados, a mediana dos pWCETs (10⁻⁸)

obtidos foi maior do que o HWM observado.

Sendo assim, a principal contribuição deste trabalho foi demonstrar que, sob as condições dos experimentos realizados, os resultados são favoráveis em relação à aplicação da técnica MBPTA sobre tarefas executadas na plataforma BeagleBone. Plataforma essa que é de baixo custo e que possui recursos modernos de aceleração de *hardware*, tornando financeiramente acessível o desenvolvimento de outros trabalhos nesse segmento. Além do mais, a possibilidade de uso da técnica MBPTA se mostrou uma alternativa bem menos pessimista para estimar o pWCET em comparação com fatores usuais de segurança empregados na indústria (e.g. 20%).

Todavia, há que se ressaltar que o estudo realizado possui limitações, tais como os algoritmos adotados, uma vez que, muito embora *Benchmarks* sejam de uso comum na literatura, em uma aplicação real algoritmos mais complexos seriam utilizados e geralmente as variáveis de entrada não possuiriam valores fixos, como ocorre neste trabalho. Os resultados obtidos são válidos para os *Benchmarks* usados, mas não são necessariamente representativos para qualquer tarefa que possa vir a ser executada no futuro. Essa questão, por sua vez, abre margem para trabalhos futuros em que se utilize dados de aplicações reais e que sejam feitos experimentos com tarefas representativas de aplicações específicas.

Outra possibilidade de trabalho futuro seria investigar em detalhe as possíveis origens e causas de interferências no comportamento temporal da aplicação oriundas do *hardware*, aprofundando em questões de arquitetura e organização de computadores e de engenharia ele-trônica, considerando, por exemplo, o possível impacto da variação de temperatura nos tempos de execução medidos.

Em suma, apesar de existirem grandes questões em aberto acerca da técnica, os resultados obtidos neste trabalho são promissores e abrem caminhos para possíveis novos trabalhos de aprofundamento acerca de aplicações em um contexto real desde que sejam observadas algumas particularidades, tais como: A) utilizar a configuração que de fato será aplicada em campo para efetuar as medições; B) realizar coletas após decorrido certo tempo de atividade da plataforma; C) utilizar os dados que são representativos das piores condições que se espera encontrar com o produto final, executando nas condições reais de operação.

6.1 RECONHECIMENTO

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

REFERÊNCIAS

ABELLA, Jaume; PADILLA, Maria; CASTILLO, Joan Del; CAZORLA, Francisco J. Measurement-Based Worst-Case Execution Time Estimation Using the Coefficient of Variation. **ACM Trans. Des. Autom. Electron. Syst.**, Association for Computing Machinery, New York, NY, USA, v. 22, n. 4, jun. 2017. ISSN 1084-4309. DOI: 10.1145/3065924. Disponível em: https://doi.org/10.1145/3065924.

ABELLA, Jaume; QUIÑONES, Eduardo; WARTEL, Franck; VARDANEGA, Tullio; CAZORLA, Francisco J. Heart of Gold: Making the Improbable Happen to Increase Confidence in MBPTA. *In*: 2014 26TH EUROMICRO CONFERENCE ON REAL-TIME SYSTEMS. [*S.l.*: *s.n.*], 2014. P. 255–265. DOI: 10.1109/ECRTS.2014.33.

ALCON, Miguel; TABANI, Hamid; KOSMIDIS, Leonidas; MEZZETTI, Enrico; ABELLA, Jaume; CAZORLA, Francisco J. Timing of Autonomous Driving Software: Problem Analysis and Prospects for Future Solutions. *In*: 2020 IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS). [*S.l.*: *s.n.*], 2020. P. 267–280. DOI: 10.1109/RTAS48715.2020.000-1.

ARCARO, Luís Fernando. **Implementação de um sistema operacional compatível com a a especificação ARINC 653. Dissertação (Mestrado)**. 2015. F. 324. Diss. (Mestrado) – Universidade Federal de Santa Catarina, Florianópolis.

ARCARO, Luís Fernando. **Increasing the Reliability and Applicability of Measurement-Based Probabilistic Timing Analysis**. 2019. F. 245. Tese (Doutorado) – Universidade Federal de Santa Catarina, Florianópolis.

ARCARO, Luís Fernando; SILVA, Karila Palma; OLIVEIRA, Rômulo Silva De. On the Reliability and Tightness of GP and Exponential Models for Probabilistic WCET Estimation. **ACM Transactions on Design Automation of Electronic Systems**, v. 23, n. 3, p. 1–27, 2018. ISSN 1084-4309. DOI: 10.1145/3185154.

ARINC. Avionics application software standard interface Part 1-Required services (ARINC Specification 653P1-2). [*S.l.*]: 2551 Riva Road, Annapolis, Maryland 21401-7435, 2006.

ARM. ARM Cortex-A Series Programmer's Guide. [S.l.: s.n.], jan. 2014. version 4.0, issue D, ARM DEN0013D (ID012214). Disponível em: https://developer.arm.com/documentation/den0013/d/.

BEAGLEBOARD.ORG. **BeagleBone**. [*S.l.*: *s.n.*], nov. 2016. Disponível em: http://beagleboard.org/bone-original.

BUTTAZZO, Giorgio C. **Hard Real-Time Computing Systems**. Edição: John A. Stankovic (University of Virginia, Virginia, USA). 3. ed. [*S.l.*]: Springer, 2011. P. 538. ISBN 978-1-4614-0675-4. DOI: 10.1007/978-1-4614-0676-1.

CAZORLA, Francisco J.; KOSMIDIS, Leonidas; MEZZETTI, Enrico; HERNANDEZ, Carles; ABELLA, Jaume; VARDANEGA, Tullio. Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey. **ACM Comput. Surv.**, Association for Computing Machinery, New York, NY, USA, v. 52, n. 1, fev. 2019. ISSN 0360-0300. DOI: 10.1145/3301283. Disponível em: https://doi.org/10.1145/3301283.

CIVIT, Xavier; CASTILLO, Joan del; ABELLA, Jaume. A Reliable Statistical Analysis of the Best-Fit Distribution for High Execution Times. *In*: 2018 21ST EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD). [*S.l.*: *s.n.*], 2018. P. 727–734. DOI: 10.1109/DSD.2018.00012.

COLES, Stuart. An Introduction to Statistical Modeling of Extreme Values. London, United Kingdom: Springer-Verlag, 2001. ISBN 1852334592.

COLEY, Gerald. **BeagleBone Black System Reference Manual**. Versão Revision C.1. Dallas, Texas, USA: Texas Instruments, 2013.

CUCU-GROSJEAN, Liliana *et al.* Measurement-Based Probabilistic Timing Analysis for Multi-path Programs. *In*: 2012 24TH EUROMICRO CONFERENCE ON REAL-TIME SYSTEMS. [*S.l.*: *s.n.*], 2012. P. 91–101. DOI: 10.1109/ECRTS.2012.31.

DAVIS, Robert; CUCU-GROSJEAN, Liliana. A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems. LITES: Leibniz Transactions on Embedded Systems, p. 1–53, 2019. ISSN 2199-2002. DOI: 10.4230/LITES-v006-i001-a004.

DEVORE, Jay L. **Probabilidade e estatística para engenharia e ciências**. [*S.l.*]: Cengage Learning Edições Ltda., 2010. P. 704. ISBN 9788522109241. Disponível em: https://books.google.com.br/books?id=0dojnQAACAAJ.

EEMBC. AutoBench 1.1 software benchmark data book. [S.l.]. Disponível em: https://www.eembc.org/techlit/datasheets/autobench_db.pdf.

FALK, Heiko *et al.* TACLeBench: A benchmark collection to support worst-case execution time research. *In*: 16TH INTERNATIONAL WORKSHOP ON WORST-CASE EXECUTION TIME ANALYSIS (WCET 2016). Toulose, France: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. (OpenAccess Series in Informatics), p. 2.1–2.10. DOI: 10.4230/OASIcs.WCET.2016.2.

FERNANDEZ, Mikel *et al.* Probabilistic timing analysis on time-randomized platforms for the space domain. *In*: PROCEEDINGS OF THE 2017 DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION 2017 (DATE'17). [*S.l.*]: IEEE, 2017. P. 738–739. DOI: 10.23919/DATE.2017.7927087.

GILLELAND, Eric. ExtRemes package: functions for performing extreme value analysis, 2020. Disponível em: http://www.rdocumentation.org/packages/extRemes.

GRIFFIN, David; BURNS, Alan. Realism in Statistical Analysis of Worst Case Execution Times. *In*: 10TH INTERNATIONAL WORKSHOP ON WORST-CASE EXECUTION TIME ANALYSIS (WCET 2010). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010. (OpenAccess Series in Informatics), p. 44–53. DOI: 10.4230/DASIcs.WCET.2010.44.

GUSTAFSSON, Jan; BETTS, Adam; ERMEDAHL, Andreas; LISPER, Björn. The Mälardalen WCET Benchmarks: Past, Present And Future. *In*: 10TH INTERNATIONAL WORKSHOP ON WORST-CASE EXECUTION TIME ANALYSIS (WCET 2010). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010. P. 136–146. DOI: 10.4230/OASIcs.WCET.2010.136. Disponível em: http://drops.dagstuhl.de/opus/volltexte/2010/2833.

HERNANDEZ, Carles; ABELLA, Jaume; GIANARRO, Andrea; ANDERSSON, Jan; CAZORLA, Francisco J. Random Modulo: A New Processor Cache Design for Real-Time Critical Systems. *In*: 2016 53ND ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC). Austin, TX, USA: IEEE Press, 2016. P. 1–6. DOI: 10.1145/2897937.2898076. Disponível em: https://doi.org/10.1145/2897937.2898076.

HOSKING, Jonathan R. M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society. Series B (Methodological), [Royal Statistical Society, Wiley], v. 52, p. 105–124, 1990.

JOHN, Eugene; RUBIO, Juan. Unique chips and systems. [S.l.]: CRC Press, 2018.

KOSMIDIS, Leonidas; MAXIM, Cristian; JEGU, Victor; VATRINET, Francis; CAZORLA, Francisco J. Industrial Experiences with Resource Management under Software Randomization in ARINC653 Avionics Environments. *In*: 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD). [*S.l.*: *s.n.*], 2018. P. 1–7. DOI: 10.1145/3240765.3240818.

KOSMIDIS, Leonidas; QUIÑONES, Eduardo; ABELLA, Jaume; VARDANEGA, Tullio; HERNANDEZ, Carles; GIANARRO, Andrea; BROSTER, Ian; CAZORLA, Francisco J. Fitting processor architectures for measurement-based probabilistic timing analysis. **Microprocessors and Microsystems**, v. 47, p. 287–302, 2016a. ISSN 0141-9331. DOI: https://doi.org/10.1016/j.micpro.2016.07.014. Disponível em: http://www.sciencedirect.com/science/article/pii/S0141933116300977.

KOSMIDIS, Leonidas; VARGAS, Roberto; MORALES, David; QUIÑONES, Eduardo; ABELLA, Jaume; CAZORLA, Francisco J. TASA: Toolchain-Agnostic Static Software Randomisation for Critical Real-Time Systems. *In*: PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN. Austin, Texas: Association for Computing Machinery, 2016b. (ICCAD '16). DOI: 10.1145/2966986.2967078. Disponível em: https://doi.org/10.1145/2966986.2967078.

KOTABA, Ondrej; NOWOTSCH, Jan; PAULITSCH, Michael; PETTERS, Stefan M; THEILING, Henrik. Multicore in real-time systems–temporal isolation challenges due to shared resources. *In*: 16TH DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE AND EXHIBITION. [*S.l.*: *s.n.*], 2013.

KWAK, Sung-Woo; YOO, Ho-Sik; SHIM, Hye-Won; LEE, Ho-Jin; LEE, Jong-Uk; KIM, Jae-kwang; KIM, Jung-Soo. Development of Real-Time Monitoring System for Nuclear Material in Transport. *In*: 2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD. [*S.l.*: *s.n.*], 2006. P. 3718–3720. DOI: 10.1109/NSSMIC.2006.353801.

LAIO, Francesco. Cramer-von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters. **Water Resources Research**, v. 40, n. 9, p. 1–10, 2004. ISSN 00431397. DOI: 10.1029/2004WR003204.

LIMA, George; BATE, Iain. Valid Application of EVT in Timing Analysis by Randomising Execution Time Measurements. *In*: 2017 IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS). [*S.l.*: *s.n.*], 2017. P. 187–198. DOI: 10.1109/RTAS.2017.17.

MARTINS, Eduardo S.; STEDINGER, Jery R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. **Water Resources Research**, Wiley, v. 36, p. 737–744, 2000. DOI: 10.1029/1999WR900330.

OLIVEIRA, Rômulo Silva de. **Fundamentos dos Sistemas de Tempo Real**. Ed. do Autor. [*S.l.*: *s.n.*], 2018.

OTTERNESS, Nathan; YANG, Ming; RUST, Sarah; PARK, Eunbyung; ANDERSON, James H.; SMITH, F. Donelson; BERG, Alex; WANG, Shige. An Evaluation of the NVIDIA TX1 for Supporting Real-Time Computer-Vision Workloads. *In*: 2017 IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS). [*S.l.*: *s.n.*], 2017. P. 353–364. DOI: 10.1109/RTAS.2017.3.

RAPITA SYSTEMS LTD. **Rapita Verification Suite** (**RVS**). [*S.l.*: *s.n.*]. Disponível em: http://www.rapitasystems.com/products/rvs.

REGHENZANI, Federico; MASSARI, Giuseppe; FORNACIARI, William. The Misconception of Exponential Tail Upper-Bounding in Probabilistic Real Time. **IEEE Embedded Systems Letters**, v. 11, n. 3, p. 77–80, 2019a. DOI: 10.1109/LES.2018.2889114.

REGHENZANI, Federico; MASSARI, Giuseppe; FORNACIARI, William; GALIMBERTI, Andrea. Probabilistic-WCET Reliability: On the Experimental Validation of EVT Hypotheses. *In*: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS. Crete, Greece: Association for Computing Machinery, 2019b. (COINS '19), p. 229–234. DOI: 10.1145/3312614.3312660. Disponível em: https://doi.org/10.1145/3312614.3312660.

REGHENZANI, Federico; MASSARI, Giuseppe; SANTINELLI, Luca; FORNACIARI, William. Statistical power estimation dataset for external validation GoF tests on EVT distribution. **Data in Brief**, v. 25, p. 104071, 2019c. ISSN 2352-3409. DOI: https://doi.org/10.1016/j.dib.2019.104071. Disponível em: https://www.sciencedirect.com/science/article/pii/S2352340919304251.

SANTINELLI, Luca; MORIO, Jérôme; DUFOUR, Guillaume; JACQUEMART, Damien. On the Sustainability of the Extreme Value Theory for WCET Estimation. *In*: 14TH INTERNATIONAL WORKSHOP ON WORST-CASE EXECUTION TIME ANALYSIS. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014. (OpenAccess Series in Informatics (OASIcs)), p. 21–30. DOI: 10.4230/OASIcs.WCET.2014.21.

SHIN, Changmin; LIM, Chaedeok; KIM, Joongheon; ROH, Heejun; LEE, Wonjun. A Software-Based Monitoring Framework for Time-Space Partitioned Avionics Systems. **IEEE Access**, v. 5, p. 19132–19143, 2017. DOI: 10.1109/ACCESS.2017.2755638.

SILVA, Karila Palma; ARCARO, Luis Fernando; SILVA DE OLIVEIRA, Romulo. On Using GEV or Gumbel Models When Applying EVT for Probabilistic WCET Estimation. *In*: 2017 IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS). [*S.l.*: *s.n.*], 2017. P. 220–230. DOI: 10.1109/RTSS.2017.00028.

SILVA, Karila Palma; ARCARO, Luís Fernando; OLIVEIRA, Daniel Bristot de; OLIVEIRA, Romulo Silva de. An Empirical Study on the Adequacy of MBPTA for Tasks Executed on a Complex Computer Architecture with Linux. *In*: 2018 IEEE 23RD INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA). [*S.l.*: *s.n.*], 2018. P. 321–328. DOI: 10.1109/ETFA.2018.8502513.

TEXAS INSTRUMENTS. AM335x Sitara[™] Processors: Technical Reference Manual. [S.l.], out. 2011. Rev. 2019, literature number SPRUH73Q. Disponível em: https://www.ti.com/lit/ds/symlink/am3352.pdf.

VILARDELL, Sergi; SERRA, Isabel; ABELLA, Jaume; DEL CASTILLO, Joan; CAZORLA, Francisco J. Software Timing Analysis for Complex Hardware with Survivability and Risk Analysis. *In*: 2019 IEEE 37TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD). [*S.l.*: *s.n.*], 2019. P. 227–236. DOI: 10.1109/ICCD46524.2019.00036.

VRACHKOV, Dimitar Georgiev; TODOROV, Dimitar Georgiev. Real Time Diagnostics in the Automotive Industry over the Internet. *In*: 2018 IX NATIONAL CONFERENCE WITH INTERNATIONAL PARTICIPATION (ELECTRONICA). [*S.l.*: *s.n.*], 2018. P. 1–3. DOI: 10.1109/ELECTRONICA.2018.8439608.

WARTEL, Franck *et al.* Timing analysis of an avionics case study on complex hardware/software platforms. *In*: 2015 DESIGN, AUTOMATION TEST IN EUROPE CONFERENCE EXHIBITION (DATE). [*S.l.*: *s.n.*], 2015. P. 397–402. DOI: 10.7873/DATE.2015.0189.

```
1 #install.packages("extRemes")
2 #install.packages("tidyverse")
3 library (tidyverse)
4 library (extRemes)
5 options (digits = 6)
6
7 #variables
8 num <- 0
9 i <- 0
10
11 pwcet_lm_B30 = c()
12 pwcet_lm_B50 = c()
13 pwcet_lm_B100 = c()
14 pwcet_lm_N100 = c()
15 | pwcet_lm_N250 = c()
16 | pwcet_lm_N500 = c()
17
18
19
20 while (num < 10)
21 {
      num = num + 1
22
       i = i + 1
23
24
25
       #loader
       filedir <- str_c("C:.../Lms/", num)
26
       setwd(filedir)
27
       files <- list.files()
28
       filename2 <- files [grep(".dat", files, fixed=T)]
29
       teste <- read.delim(filename2, header = TRUE, sep = "\t", as.is = TRUE
30
          )
       head(teste)
31
       tempo = (teste[,1])
32
       head(tempo)
33
34
       setwd(str_c(filedir, "/Testes"))
35
       txtFile = "bs1.txt"
36
37
       cat("jessica-analises\n\n\n", file=txtFile, append=FALSE)
38
       # functions
39
40
       catcat = function ( zz )
41
       {
           cat(zz, "\n")
42
           cat( zz, "\n", file=txtFile , append=TRUE)
43
       }
44
```

```
45
      comecaTabela = function(label, Nome)
46
47
      {
           cat("\\begin{table}[H]\n", file=txtFile, append=TRUE)
48
           cat("\\ABNTEXfontereduzida\n", file=txtFile, append=TRUE)
49
           cat("\\caption {\\label{tab:", file=txtFile, append=TRUE)
50
           cat(label, file=txtFile, append=TRUE)
51
           cat("} ", file=txtFile , append=TRUE)
52
           cat(Nome, file=txtFile, append=TRUE)
53
           cat("}\n", file=txtFile , append=TRUE)
54
           cat("\\begin{center}\n", file=txtFile, append=TRUE)
55
      }
56
57
      tab_amostra = function()
58
      {
59
           cat(" \ begin{tabular}{@{p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}}
60
              \{1.5 \text{ cm}\}p\{1.5 \text{ cm}\}p\{1.5 \text{ cm}\}@\{\}\}\n\n", file=txtFile, append=TRUE
           cat("\\toprule\n\n", file=txtFile, append=TRUE)
61
      }
62
63
      tab_param = function()
64
65
      {
           66
               file=txtFile , append=TRUE)
           cat("\\toprule\n", file=txtFile, append=TRUE)
67
           cat("\n\n", file=txtFile, append=TRUE)
68
      }
69
70
      terminaTabela = function()
71
72
      {
           cat("\n\n", file=txtFile, append=TRUE)
73
           cat("\\bottomrule\n", file=txtFile, append=TRUE)
74
           cat("\\end{tabular}\n", file=txtFile, append=TRUE)
75
           cat("\\fonte{Do Autor.}\n", file=txtFile, append=TRUE)
76
           cat("\\end{center}\n", file=txtFile, append=TRUE)
77
           cat("\\end{table}\n", file=txtFile, append=TRUE)
78
           cat("\n\n\n", file=txtFile, append=TRUE)
79
80
      }
81
      cria_figura = function (nome, w, h)
82
83
      {
           png(nome, width = w, height = h, pointsize = 16)
84
      }
85
86
87
      specify_decimal <- function(x, k) trimws(format(round(x, k), nsmall=k))
88
89
```

```
90
       dados_amostra = function(faixa, bloco, nome)
91
       {
           comecaTabela("ch5_1_1", str_c("Amostra ", num," - Tarefa LMS:
92
               An lise dos dados (Bloco = ",bloco,")") )
           tab_amostra()
93
94
           catcat("\\textbf{M nimo} & \\textbf{Primeiro Quartil} & \\textbf{
               Mediana} & \\textbf{M dia} & \\textbf{Terceiro Quartil} & \\
               textbf{M ximo} & \\textbf{Desvio Padr o} & \\textbf{Vari ncia
               }\\\\ \\midrule")
           cat("\n", file=txtFile, append=TRUE)
95
           cat(paste("\\",min(faixa), "&", quantile(faixa, 0.25), "&",
96
               median(faixa), " & ", specify_decimal(mean(faixa),2), " & ",
               quantile (faixa, 0.75), "&", max(faixa), "&", specify_decimal
               (sd(faixa),4), "& ", specify_decimal(var(faixa),4), " \\\\"),
               file=txtFile , append=TRUE)
           terminaTabela()
97
98
           cria_figura(str_c(nome, "_c2_", num, ".png"), 1229, 950)
99
           plot(faixa, main="Amostragem do tempo")
100
           dev.off()
101
102
           cria_figura(str_c(nome, "hist_c2_", num, ".png"), 970, 750)
103
           hist (faixa, xlim = c(696000, 710000), nclass=100, main="Histogram of
104
                Time")
           dev.off()
105
106
       }
107
       blockmaxima = function(pop, blocksize)
108
       {
109
           popsize <- length(pop)</pre>
110
111
           sample <- numeric(popsize/blocksize)</pre>
           b=1
112
113
           while (b<=length (sample))
114
           {
           sample[b] < -max(pop[(1+(b-1)*blocksize) : (b*blocksize)])
115
116
           b=b+1
117
118
           }
           return (sample)
119
       }
120
121
       fitting = function (faixa, bloco, nome)
122
       {
123
           maximos = blockmaxima(faixa, bloco)
124
125
           print("Ajustando faixa para a GEV com MLE\n")
126
127
```

```
# maximum-likelihood fitting of the GEV distribution
128
           fit_gev_mle <- fevd(as.vector(maximos), units="MReais", period.
129
               basis = "bloco", method="MLE", type="GEV")
130
           cria_figura(str_c(nome, "_GEV_c2_", num, ".png"), 970, 750)
131
           plot(fit_gev_mle)
132
133
           dev.off()
134
           cria_figura(str_c(nome, "_qq_c2_", num, ".png"), 970, 750)
135
           plot(fit_gev_mle, type="qq", main="Empirical Quantiles x Model
136
               Quantiles")
           dev.off()
137
138
           cria_figura(str_c(nome, "_curva_c2_", num, ".png"), 970, 750)
139
           plot(fit_gev_mle, type="density", main="GEV distribution model
140
               compared to empirical data")
141
           dev.off()
142
           cat("\n\n", file=txtFile, append=TRUE)
143
           catcat ("Intervalos de confianca associados com os parametros do
144
               ajuste \n")
           comecaTabela ("ch5_1_2", str_c ("Amostra ", num," - Tarefa LMS:
145
               Par metros usados para o ajuste (Bloco = ",bloco,")") )
           tab_param()
146
           a <- formatC(ci(fit_gev_mle, type="parameter"), format ="f", digits
147
                = 4)
           write.table(a, file=txtFile, sep=" & ", eol="\n", append=TRUE, row.
148
               names=FALSE, col.names=FALSE, quote =FALSE)
           terminaTabela()
149
150
151
           cat("\n\n", file=txtFile, append=TRUE)
           catcat("Probabilidade de excedencia a cada 'return period '\n\n")
152
           comecaTabela("ch5_1_3", str_c("Amostra ", num," - Tarefa LMS:
153
               Probabilidade de Exced ncia (Bloco = ",bloco,")"))
154
           tab_param()
           write.table(formatC(ci(fit_gev_mle,type="return.level",return.
155
               period = c(100000,1000000,10000000,10000000)), format ="f".
               digits = 4), file=txtFile, sep=" & ", eol="\n", append=TRUE, row
               .names=FALSE, col.names=FALSE, quote =FALSE)
           terminaTabela()
156
157
       }
158
159
       # variando o block size, numero de blocos fixo (500)
160
       catcat("Variando o block size, numero de blocos fixo (500)\n")
161
162
       faixa30 = tempo[1:15000]
163
```

```
faixa50 = tempo[1:25000]
164
       faixa100 = tempo[1:50000]
165
166
       # B30
167
       catcat("\n\n\Bloco 30\n")
168
169
       dados_amostra(faixa30, 30, "amostra_b30")
       fitting (faixa30, 30, "amostra_b30")
170
171
       maximos = blockmaxima(faixa30, 30)
172
       fit_gev_mle <- fevd(as.vector(maximos), units="MReais", period.basis =
173
           "bloco", method="MLE", type="GEV")
       pwcet_lm_B30[i] = return.level(fit_gev_mle, conf = 0.05, return.period
174
           =100000000)
175
176
       # B50
177
       catcat("\n\n\nBloco 50\n")
178
       dados_amostra(faixa50, 50, "amostra_b50")
179
       fitting(faixa50, 50, "amostra_b50")
180
181
       maximos = blockmaxima(faixa50, 50)
182
       fit_gev_mle <- fevd(as.vector(maximos), units="MReais", period.basis =
183
           "bloco", method="MLE", type="GEV")
       pwcet_lm_B50[i] = return.level(fit_gev_mle, conf = 0.05, return.period
184
           =100000000)
185
       # B100
186
       catcat("\n\n\nBloco 100\n")
187
       dados_amostra(faixa100, 100, "amostra_b100")
188
       fitting (faixa100, 100, "amostra_b100")
189
190
       maximos = blockmaxima(faixa100, 100)
191
192
       fit_gev_mle <- fevd(as.vector(maximos), units="MReais", period.basis =
           "bloco", method="MLE", type="GEV")
       pwcet_lm_B100[i] = return.level(fit_gev_mle, conf = 0.05, return.period
193
          =100000000)
194
195
       # variando o numero de blocos, block size fixo (100)
196
       faixan100 = tempo[1:10000]
197
       faixan250 = tempo[1:25000]
198
       faixan500 = tempo[1:50000]
199
200
       # N100
201
       catcat("\n\n\n N mero de blocos: 100\n")
202
       dados_amostra(faixan100, 100, "amostra_n100")
203
       fitting (faixan100, 100, "amostra_n100")
204
```

```
205
       maximos = blockmaxima(faixan100, 100)
206
       fit_gev_mle <- fevd(as.vector(maximos), units="MReais", period.basis =
207
           "bloco", method="MLE", type="GEV")
       pwcet_lm_N100[i] = return.level(fit_gev_mle, conf = 0.05, return.period
208
          =100000000)
209
       # N250
210
       catcat("\n\n N mero de blocos: 250\n")
211
       dados_amostra(faixan250, 100, "amostra_n250")
212
       fitting (faixan250, 100, "amostra_n250")
213
214
       maximos = blockmaxima(faixan250, 100)
215
       fit_gev_mle <- fevd(as.vector(maximos), units="MReais", period.basis =
216
          "bloco", method="MLE", type="GEV")
       pwcet_lm_N250[i] = return.level(fit_gev_mle, conf = 0.05, return.period
217
          =100000000)
218
       # N500
219
       catcat("\n\n N mero de blocos: 500\n")
220
       dados_amostra(faixan500, 100, "amostra_n500")
221
       fitting (faixan500, 100, "amostra_n500")
2.2.2
223
       maximos = blockmaxima(faixan500, 100)
224
       fit_gev_mle <- fevd(as.vector(maximos), units="MReais", period.basis =
225
          "bloco", method="MLE", type="GEV")
       pwcet_lm_N500[i] = return.level(fit_gev_mle, conf = 0.05, return.period
226
          =100000000)
227
228 }
229
230 hwm 1 <- c(707590, 709700, 707477, 707696, 707563, 707626, 707732, 707683,
      707791, 709820)
231
232 boxplot ( pwcet_lm_B30, pwcet_lm_B50, pwcet_lm_B100, hwm_1,
            main= expression (paste ("Estimated Values per Block Size with ", "
233
                10"^"-8", " exceedance probability")),
            xlab="Block size",
234
            ylab="Estimated Values",
235
            names = c("30", "50", "100", "HWM")
236
237)
238
239
240 boxplot ( pwcet_lm_N100, pwcet_lm_N250, pwcet_lm_N500, hwm_1,
            main= expression (paste ("Estimated Values per Number of Blocks with
241
                 ", "10"^"-8", " exceedance probability")),
            xlab="Number of Blocks (Block size = 100)",
242
```

```
243 ylab="Estimated Values",

244 names = c("100", "250", "500", "HWM")

245 )

246

247 summary(pwcet_lm_B30)

248 summary(pwcet_lm_B50)

249 summary(pwcet_lm_B100)

250

251

252 summary(pwcet_lm_N100)

253 summary(pwcet_lm_N250)

254 summary(pwcet_lm_N500)
```

Listing A.1 – Código fonte em R

APÊNDICE B – RESULTADOS DO CENÁRIO 1

Resultados da aplicação do método, utilizando o algoritmo Bsort como tarefa de interesse.

Figura 39 – Amostra 1 - Tarefa Bsort

Tempo de execução

Figura 40 - Resultados com variação do tamanho do bloco: Amostra 1 - Tarefa Bsort

Figura 41 - Resultados com variação do número de blocos: Amostra 1 - Tarefa Bsort

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88993	89056	89070	89070	89084	89160	20,39062	415,7776
			Fonte -	- Do Autor.			

Tabela 17 – Amostra 1 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89108,1805	89109,0276	89109,8747
30	σ	8,1854	8,7759	9,3664
	ξ	-0,2053	-0,1532	-0,1012
	μ	89112,7036	89113,4934	89114,2831
50	σ	7,6822	8,2293	8,7764
	ξ	-0,1416	-0,0939	-0,0461
	μ	89116,4891	89117,2611	89118,0332
100	σ	7,4375	7,9783	8,5190
	ξ	-0,1356	-0,0824	-0,0293

Fonte – Do Autor.

Tabela 18 – Amostra 1 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89147,4115	89156,4907	89165,5699
30	10 ⁻⁶	89148,5388	89159,4087	89170,2787
	10 ⁻⁷	89149,0860	89161,4593	89173,8325
	10 ⁻⁸	89149,2990	89162,9002	89176,5015
	10-5	89159,1746	89171,4149	89183,6552
50	10 ⁻⁶	89161,6360	89177,1989	89192,7618
	10 ⁻⁷	89163,1056	89181,8587	89200,6118
	10 ⁻⁸	89163,8769	89185,6129	89207,3489
	10-5	89162,2937	89176,5786	89190,8635
100	10 ⁻⁶	89164,6080	89183,0556	89201,5032
	10 ⁻⁷	89165,8655	89188,4128	89210,9601
	10 ⁻⁸	89166,3632	89192,8438	89219,3244

Fonte – Do Autor.

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89116,6194	89118,2431	89119,8667
100	σ	6,2709	7,4200	8,5691
	ξ	-0,2572	-0,1230	0,0112
	μ	89117,7521	89118,7913	89119,8305
250	σ	6,9479	7,6645	8,3811
	ξ	-0,1457	-0,0783	-0,0109
	μ	89116,4891	89117,2611	89118,0332
500	σ	7,4375	7,9783	8,5190
	ξ	-0,1356	-0,0824	-0,0293

Tabela 19 – Amostra 1	- Tarefa Bsort: Parâmetros usados para	o ajuste (N: 100, 250 e 500)
-----------------------	--	------------------------------

Fonte – Do Autor.

Tabela 20 – Amostra 1	- Tarefa B	ort: Probabilidade o	de Excedência	(N: 100,	, 250 e 500)
-----------------------	------------	----------------------	---------------	----------	--------------

Quantidade (Blocos)	Probabilidade o excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89139,4028	89163,9298	89188,4569
100	10 ⁻⁶		89137,2119	89167,5404	89197,8689
	10-7		89134,7209	89170,2604	89205,8000
	10 ⁻⁸		89132,2123	89172,3096	89212,4068
	10 ⁻⁵		89158,7195	89176,9325	89195,1454
250	10 ⁻⁶		89159,9201	89183,4869	89207,0537
	10-7		89160,0716	89188,9597	89217,8478
	10 ⁻⁸		89159,4889	89193,5295	89227,5701
	10-5		89162,2937	89176,5786	89190,8635
500	10 ⁻⁶		89164,6080	89183,0556	89201,5032
	10-7		89165,8655	89188,4128	89210,9601
	10 ⁻⁸		89166,3632	89192,8438	89219,3244

Fonte – Do Autor.

Figura 42 – Amostra 2 - Tarefa Bsort

b Histograma

c Testes i.i.d

Figura 43 - Resultados com variação do tamanho do bloco: Amostra 2 - Tarefa Bsort

Figura 44 - Resultados com variação do número de blocos: Amostra 2 - Tarefa Bsort

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88988	89057	89070	89070	89084	89167	20,27389	411,0307
			Fonte -	- Do Autor.			

Tabela 22 – Amostra 2 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89106,8235	89107,6819	89108,5403
30	σ	8,3475	8,9392	9,5308
	ξ	-0,1526	-0,1042	-0,0558
	μ	89111,0866	89111,8649	89112,6433
50	σ	7,4642	8,0161	8,5680
	ξ	-0,0986	-0,0437	0,0111
	μ	89117,0985	89117,8285	89118,5585
100	σ	7,0219	7,5366	8,0512
	ξ	-0,1101	-0,0561	-0,0021

Tabela 23 – Amostra 2 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89155,1471	89167,6259	89180,1047
30	10-6	89157,4595	89173,1406	89188,8217
	10 ⁻⁷	89158,7949	89177,4791	89196,1633
	10 ⁻⁸	89159,4657	89180,8922	89202,3188
	10-5	89164,4703	89184,3847	89204,2991
50	10-6	89167,9683	89195,0012	89222,0342
	10 ⁻⁷	89169,9155	89204,6013	89239,2871
	10 ⁻⁸	89170,5783	89213,2823	89255,9864
	10-5	89164,9655	89181,7600	89198,5545
100	10-6	89167,8818	89190,2979	89212,7139
	10 ⁻⁷	89169,5097	89197,8017	89226,0938
	10 ⁻⁸	89170,1195	89204,3968	89238,6742

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89115,9432	89117,5912	89119,2392
100	σ	6,4527	7,6109	8,7691
	ξ	-0,1667	-0,0437	0,0793
	μ	89116,4446	89117,4783	89118,5119
250	σ	6,7829	7,5202	8,2574
	ξ	-0,0975	-0,0177	0,0621
	μ	89117,0985	89117,8285	89118,5585
500	σ	7,0219	7,5366	8,0512
	ξ	-0,1101	-0,0561	-0,0021

Tabela 24 – Amostra 2 - Tarefa Bsort: Parâmetros usados para o ajuste (N	: 100, 250 e 500))
--	------------------	----

Tabela 25 – Amostra 2 - Tarefa Bsort: Probabilidade de Excedência (N: 100	, 250 e 500)
---	--------------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89143,6937	89186,4533	89229,2130
100	10 ⁻⁶		89138,5574	89196,5361	89254,5148
	10-7		89131,3234	89205,6540	89279,9845
	10 ⁻⁸		89122,4428	89213,8994	89305,3559
	10 ⁻⁵		89162,3798	89195,7934	89229,2070
250	10 ⁻⁶		89162,6129	89209,6281	89256,6432
	10-7		89160,3906	89222,9093	89285,4281
	10 ⁻⁸		89155,9110	89235,6594	89315,4078
	10 ⁻⁵		89164,9655	89181,7600	89198,5545
500	10 ⁻⁶		89167,8818	89190,2979	89212,7139
	10 ⁻⁷		89169,5097	89197,8017	89226,0938
	10 ⁻⁸		89170,1195	89204,3968	89238,6742

Figura 46 - Resultados com variação do tamanho do bloco: Amostra 3 - Tarefa Bsort

Figura 47 - Resultados com variação do número de blocos: Amostra 3 - Tarefa Bsort

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88995	89057	89071	89071	89084	89155	20,36963	414,9217
			Fonte -	- Do Autor.			

Tabela 27 – Amostra 3 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89107,9324	89108,8539	89109,7755
30	σ	8,9844	9,6169	10,2493
	ξ	-0,1780	-0,1308	-0,0837
	μ	89112,0046	89112,8477	89113,6907
50	σ	8,1652	8,7483	9,3314
	ξ	-0,1687	-0,1178	-0,0669
	μ	89117,5489	89118,2993	89119,0498
100	σ	7,1375	7,6688	8,2002
	ξ	-0,1422	-0,0819	-0,0216

Tabela 28 – Amostra 5 - Tarela Bsort: Probabilidade de Excedencia (Bioco: 50, 50 e 10	: Probabilidade de Excedência (Bloco: 30, 50 e 100)
---	---

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89155,3275	89166,0591	89176,7907
30	10 ⁻⁶	89157,1954	89170,2983	89183,4012
	10 ⁻⁷	89158,2373	89173,4348	89188,6323
	10 ⁻⁸	89158,7573	89175,7555	89192,7536
	10-5	89156,4092	89167,9738	89179,5384
50	10 ⁻⁶	89158,1857	89172,5181	89186,8504
	10 ⁻⁷	89159,1339	89175,9825	89192,8312
	10 ⁻⁸	89159,5477	89178,6239	89197,7000
	10-5	89159,9268	89175,4624	89190,9980
100	10-6	89161,6128	89181,7298	89201,8469
	10 ⁻⁷	89162,2871	89186,92	89211,5529
	10 ⁻⁸	89162,2484	89191,218	89220,1876

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89116,4069	89117,9429	89119,4789
100	σ	5,8735	6,9812	8,0889
	ξ	-0,1502	-0,0082	0,1338
	μ	89117,3565	89118,4231	89119,4896
250	σ	6,9713	7,7252	8,4792
	ξ	-0,1521	-0,0684	0,0153
	μ	89117,5489	89118,2993	89119,0498
500	σ	7,1375	7,6688	8,2002
	ξ	-0,1422	-0,0819	-0,0216

Tabela 29 –	Amostra 3 -	Tarefa Bsort	Parâmetros	usados para	o ajuste (N: 100,	250 e 500)

Tabela 30 – Amostra 3 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 2	250 e 500)
--	------------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89135,6655	89194,6456	89253,6256
100	10-6		89124,7978	89209,1376	89293,4774
	10-7		89109,4747	89223,359	89337,2433
	10 ⁻⁸		89089,8699	89237,3149	89384,7598
	10 ⁻⁵		89155,8149	89179,9783	89204,1417
250	10-6		89155,6715	89187,4666	89219,2618
	10-7		89154,3129	89193,8638	89233,4147
	10 ⁻⁸		89152,0976	89199,3287	89246,5599
	10 ⁻⁵		89159,9268	89175,4624	89190,9980
500	10-6		89161,6128	89181,7298	89201,8469
	10-7		89162,2871	89186,92	89211,5529
	10 ⁻⁸		89162,2484	89191,218	89220,1876

Fonte – Do Autor.

Figura 49 - Resultados com variação do tamanho do bloco: Amostra 4 - Tarefa Bsort

Figura 50 - Resultados com variação do número de blocos: Amostra 4 - Tarefa Bsort

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88989	89060	89073	89074	89087	89154	20,38297	415,4656
			Fonte -	- Do Autor.			

Tabela 32 – Amostra 4 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89110,0471	89110,9742	89111,9012
30	σ	8,9564	9,6019	10,2474
	ξ	-0,2138	-0,161	-0,1082
	μ	89114,4229	89115,2660	89116,1091
50	σ	8,1866	8,7698	9,3530
	ξ	-0,2035	-0,1537	-0,1038
	μ	89120,4997	89121,276	89122,0522
100	σ	7,4984	8,0369	8,5753
	ξ	-0,2033	-0,1501	-0,0970

Tubble 15 Thioble Tubble Tubbl	Tabela 33 –	Amostra 4 -	Tarefa Bsort:	Probabilidade d	le Excedência	(Bloco: 30,	50 e 1	100
--	-------------	-------------	---------------	-----------------	---------------	-------------	--------	-----

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89151,7185	89161,2695	89170,8205
30	10 ⁻⁶	89152,8127	89164,1639	89175,5152
	10 ⁻⁷	89153,3261	89166,1618	89178,9975
	10 ⁻⁸	89153,5140	89167,5408	89181,5676
	10-5	89153,8946	89162,6048	89171,3150
50	10 ⁻⁶	89155,0914	89165,5037	89175,9161
	10 ⁻⁷	89155,6987	89167,5387	89179,3787
	10 ⁻⁸	89155,9622	89168,9672	89181,9722
	10-5	89156,5754	89165,3071	89174,0388
100	10-6	89157,6050	89168,0859	89178,5668
	10 ⁻⁷	89158,0938	89170,0527	89182,0116
	10 ⁻⁸	89158,2704	89171,4447	89184,6190

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89120,4858	89122,0655	89123,6452
100	σ	6,2104	7,3100	8,4095
	ξ	-0,2704	-0,1530	-0,0355
	μ	89119,6270	89120,7276	89121,8282
250	σ	7,3692	8,1241	8,8789
	ξ	-0,2328	-0,1656	-0,0984
	μ	89120,4997	89121,2760	89122,0522
500	σ	7,4984	8,0369	8,5753
	ξ	-0,2033	-0,1501	-0,0970

Tabela 34 – Amostra 4 - Tarefa Bsort: Parâmetros usados para o ajuste ((N: 100, 250 e 500)

Tabela 35 – Amostra 4 - Taref	fa Bsort: Probabilidade de	Excedência (N: 10	00,250 e 500
-------------------------------	----------------------------	-------------------	--------------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89144,5377	89161,6410	89178,7442
100	10 ⁻⁶		89143,5957	89164,0791	89184,5626
	10-7		89142,4710	89165,7935	89189,1159
	10 ⁻⁸		89141,3563	89166,9989	89192,6415
	10 ⁻⁵		89152,4812	89162,4930	89172,5047
250	10 ⁻⁶		89152,9767	89164,8035	89176,6303
	10-7		89153,0725	89166,3815	89179,6904
	10 ⁻⁸		89152,9729	89167,4591	89181,9453
	10 ⁻⁵		89156,5754	89165,3071	89174,0388
500	10 ⁻⁶		89157,6050	89168,0859	89178,5668
	10-7		89158,0938	89170,0527	89182,0116
	10 ⁻⁸		89158,2704	89171,4447	89184,6190

Figura 51 – Amostra 5 - Tarefa Bsort

c Testes i.i.d

Figura 52 - Resultados com variação do tamanho do bloco: Amostra 5 - Tarefa Bsort

Figura 53 - Resultados com variação do número de blocos: Amostra 5 - Tarefa Bsort

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88994	89057	89071	89071	89085	89157	20,37273	415,0483
			Fonte -	– Do Autor.			

Tabela 37 – Amostra 5 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89105,4953	89106,3362	89107,1772
30	σ	8,1430	8,7263	9,3097
	ξ	-0,2075	-0,1561	-0,1047
	μ	89109,9741	89110,7787	89111,5833
50	σ	7,8022	8,3654	8,9286
	ξ	-0,1681	-0,1187	-0,0693
	μ	89117,3624	89118,1200	89118,8775
100	σ	7,2989	7,8287	8,3584
	ξ	-0,1705	-0,1172	-0,0638

|--|

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89144,2145	89152,9744	89161,7344
30	10-6	89145,3189	89155,7729	89166,2269
	10 ⁻⁷	89145,8597	89157,7265	89169,5932
	10 ⁻⁸	89146,0771	89159,0902	89172,1034
	10-5	89152,7028	89163,2795	89173,8563
50	10-6	89154,4750	89167,5758	89180,6766
	10 ⁻⁷	89155,4516	89170,8445	89186,2374
	10 ⁻⁸	89155,9125	89173,3314	89190,7503
	10-5	89156,7768	89167,5993	89178,4218
100	10-6	89158,2605	89171,7001	89185,1397
	10 ⁻⁷	89159,0086	89174,8314	89190,6542
	10 ⁻⁸	89159,2866	89177,2223	89195,1580

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89114,2853	89115,8601	89117,4349
100	σ	6,1786	7,2717	8,3647
	ξ	-0,2773	-0,1561	-0,0350
	μ	89115,1084	89116,1378	89117,1673
250	σ	6,7810	7,5088	8,2365
	ξ	-0,1718	-0,0957	-0,0196
	μ	89117,3624	89118,1200	89118,8775
500	σ	7,2989	7,8287	8,3584
	ξ	-0,1705	-0,1172	-0,0638

Tabela 39 – Amostra 5 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Tabela 40 – Amostra 5 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89137,5237	89154,7137	89171,9037
100	10 ⁻⁶		89136,5165	89157,0438	89177,571
	10-7		89135,3616	89158,6702	89181,9787
	10 ⁻⁸		89134,2409	89159,8054	89185,3698
	10 ⁻⁵		89151,2323	89168,5324	89185,8326
250	10 ⁻⁶		89151,6705	89173,6895	89195,7085
	10-7		89151,2957	89177,8269	89204,3580
	10 ⁻⁸		89150,4132	89181,1461	89211,8789
	10-5		89156,7768	89167,5993	89178,4218
500	10 ⁻⁶		89158,2605	89171,7001	89185,1397
	10-7		89159,0086	89174,8314	89190,6542
	10 ⁻⁸		89159,2866	89177,2223	89195,1580

Figura 54 – Amostra 6 - Tarefa Bsort

c Testes i.i.d

Figura 55 - Resultados com variação do tamanho do bloco: Amostra 6 - Tarefa Bsort

Figura 56 - Resultados com variação do número de blocos: Amostra 6 - Tarefa Bsort

Fonte – Do Autor.

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88995	89059	89072	89072	89086	89158	20,22701	409,1318
			Fonte -	- Do Autor.			

Tabela 42 – Amostra 6 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89108,0469	89108,9349	89109,8230
30	σ	8,6787	9,2893	9,8999
	ξ	-0,1648	-0,1193	-0,0739
	μ	89112,8011	89113,6403	89114,4795
50	σ	8,1668	8,7471	9,3274
	ξ	-0,1644	-0,1165	-0,0686
	μ	89118,0359	89118,7638	89119,4918
100	σ	7,0189	7,5283	8,0378
	ξ	-0,1514	-0,0989	-0,0464

|--|

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89156,1923	89167,0708	89177,9493
30	10-6	89158,3703	89171,8041	89185,2378
	10 ⁻⁷	89159,6491	89175,4000	89191,1509
	10 ⁻⁸	89160,3358	89178,1320	89195,9281
	10-5	89158,1038	89169,0884	89180,0731
50	10 ⁻⁶	89160,0875	89173,7086	89187,3297
	10 ⁻⁷	89161,2151	89177,2417	89193,2684
	10 ⁻⁸	89161,7803	89179,9436	89198,1069
	10-5	89158,7649	89170,5089	89182,2530
100	10-6	89160,5964	89175,4744	89190,3524
	10 ⁻⁷	89161,5763	89179,4287	89197,2812
	10 ⁻⁸	89161,9761	89182,5778	89203,1795

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89114,8238	89116,5061	89118,1884
100	σ	6,4626	7,6669	8,8712
	ξ	-0,1793	-0,0431	0,0931
	μ	89117,684	89118,8121	89119,9401
250	σ	7,4499	8,2391	9,0283
	ξ	-0,1752	-0,1002	-0,0252
	μ	89118,0359	89118,7638	89119,4918
500	σ	7,0189	7,5283	8,0378
	ξ	-0,1514	-0,0989	-0,0464

Tabela 44 – Amostra 6 - Tareta Bsort: Parametros usados para o ajuste (N: 100, 250 e 500)	Tabela 44 –	Amostra 6 -	Tarefa Bsort:	Parâmetros	usados para	o ajuste ((N: 100,	250 e 500)
---	-------------	-------------	---------------	------------	-------------	------------	----------	------------

Tabela 45 – Amos	tra 6 - Tarefa Bso	rt: Probabilidade de	e Excedência (N:	100, 250 e 500)
------------------	--------------------	----------------------	------------------	-----------------

Quantidade (Blocos)	Probabilidade d excedência	e Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵	89138,9597	89186,0884	89233,2171
100	10 ⁻⁶	89132,1589	89196,3203	89260,4818
	10 ⁻⁷	89123,0873	89205,5855	89288,0838
	10 ⁻⁸	89112,2374	89213,9754	89315,7134
	10 ⁻⁵	89156,9233	89175,0983	89193,2732
250	10 ⁻⁶	89157,4477	89180,4439	89203,4402
	10 ⁻⁷	89157,1298	89184,6883	89212,2468
	10 ⁻⁸	89156,2954	89188,0582	89219,8209
	10 ⁻⁵	89158,7649	89170,5089	89182,2530
500	10 ⁻⁶	89160,5964	89175,4744	89190,3524
	10 ⁻⁷	89161,5763	89179,4287	89197,2812
	10 ⁻⁸	89161,9761	89182,5778	89203,1795

Figura 57 – Amostra 7 - Tarefa Bsort

Figura 58 - Resultados com variação do tamanho do bloco: Amostra 7 - Tarefa Bsort

Figura 59 - Resultados com variação do número de blocos: Amostra 7 - Tarefa Bsort

Fonte – Do Autor.

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância	
88986	89056	89069	89069	89083	89151	20,19869	407,9871	
Fonte – Do Autor.								

Tabela 47 – Amostra 7 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89106,3813	89107,2313	89108,0813
30	σ	8,1717	8,7701	9,3686
	ξ	-0,1653	-0,1110	-0,0567
	μ	89110,5052	89111,2988	89112,0924
50	σ	7,5912	8,1529	8,7147
	ξ	-0,1713	-0,1144	-0,0575
	μ	89115,8138	89116,5674	89117,3210
100	σ	7,2391	7,7684	8,2978
	ξ	-0,1958	-0,1404	-0,0851

Tabela 48 – Amostra 7 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89151,3524	89164,2239	89177,0955
30	10-6	89153,0881	89169,1877	89185,2873
	10 ⁻⁷	89153,9513	89173,0318	89192,1122
	10 ⁻⁸	89154,2482	89176,0088	89197,7693
	10-5	89151,2846	89163,4702	89175,6558
50	10 ⁻⁶	89152,6931	89167,8914	89183,0898
	10 ⁻⁷	89153,3299	89171,2888	89189,2476
	10 ⁻⁸	89153,4778	89173,8993	89194,3208
	10-5	89151,5368	89160,9012	89170,2655
100	10-6	89152,5748	89163,9352	89175,2956
	10 ⁻⁷	89153,0464	89166,1309	89179,2154
	10 ⁻⁸	89153,1860	89167,7200	89182,2539

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89116,1644	89117,7217	89119,2790
100	σ	6,1283	7,2126	8,2969
	ξ	-0,1844	-0,0684	0,0476
	μ	89115,6754	89116,6761	89117,6768
250	σ	6,5193	7,2321	7,9449
	ξ	-0,1771	-0,0929	-0,0088
	μ	89115,8138	89116,5674	89117,3210
500	σ	7,2391	7,7684	8,2978
	ξ	-0,1958	-0,1404	-0,0851

Tabela 49 – Amostra 7 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Tabela 50 - Amostra 7 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89143,6311	89175,1972	89206,7632
100	10-6		89140,7580	89182,1901	89223,6221
	10-7		89136,7043	89188,1642	89239,6241
	10 ⁻⁸		89131,8768	89193,2680	89254,6592
	10 ⁻⁵		89149,0656	89167,7975	89186,5295
250	10 ⁻⁶		89148,9861	89172,9390	89196,8918
	10 ⁻⁷		89148,1158	89177,0898	89206,0638
	10 ⁻⁸		89146,7634	89180,4409	89214,1184
	10 ⁻⁵		89151,5368	89160,9012	89170,2655
500	10 ⁻⁶		89152,5748	89163,9352	89175,2956
	10-7		89153,0464	89166,1309	89179,2154
	10 ⁻⁸		89153,1860	89167,7200	89182,2539

c Testes i.i.d

Figura 61 - Resultados com variação do tamanho do bloco: Amostra 8 - Tarefa Bsort

Figura 62 - Resultados com variação do número de blocos: Amostra 8 - Tarefa Bsort

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88989	89056	89069	89070	89083	89163	20,3582	414,4565
			Fonte -	- Do Autor.			

Tabela 52 – Amostra 8 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89104,7907	89105,6184	89106,4461
30	σ	8,1321	8,7022	9,2723
	ξ	-0,1362	-0,0953	-0,0543
	μ	89109,2139	89110,0092	89110,8045
50	σ	7,6857	8,2429	8,8001
	ξ	-0,1149	-0,0634	-0,0119
	μ	89115,6211	89116,3852	89117,1492
100	σ	7,2403	7,7884	8,3365
	ξ	-0,1010	-0,0393	0,0224

	Tabela 53 – Amostra 8 -	Tarefa Bsort: Probabilidade de Excedência	(Bloco: 30.	, 50 e 100)
--	-------------------------	---	-------------	-------------

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89155,4066	89166,4626	89177,5185
30	10-6	89158,4789	89172,4714	89186,4640
	10 ⁻⁷	89160,4902	89177,2969	89194,1035
	10 ⁻⁸	89161,7402	89181,1719	89200,6036
	10-5	89160,7382	89177,3609	89193,9836
50	10-6	89163,9138	89185,8712	89207,8285
	10 ⁻⁷	89165,7836	89193,2254	89220,6672
	10 ⁻⁸	89166,6447	89199,5806	89232,5164
	10-5	89166,1415	89188,5033	89210,8650
100	10-6	89168,8111	89199,4070	89230,0029
	10 ⁻⁷	89169,8312	89209,3669	89248,9026
	10 ⁻⁸	89169,4687	89218,4647	89267,4607

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89112,5172	89114,0977	89115,6781
100	σ	6,2381	7,3373	8,4364
	ξ	-0,2018	-0,0892	0,0234
	μ	89114,3373	89115,3652	89116,3931
250	σ	6,7682	7,4979	8,2276
	ξ	-0,1024	-0,0245	0,0535
	μ	89115,6211	89116,3852	89117,1492
500	σ	7,2403	7,7884	8,3365
	ξ	-0,1010	-0,0393	0,0224

Tabela 54 – Amostra 8 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 50)0)
---	-----

Tabela 55 – Amostra	8 - Tarefa	a Bsort: Probabilidade	de Excedência	(N: 100,	, 250 e 500)
---------------------	------------	------------------------	---------------	----------	--------------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89140,3145	89166,8914	89193,4683
100	10 ⁻⁶		89138,3525	89172,3586	89206,3646
	10 ⁻⁷		89135,5984	89176,8104	89218,0223
	10 ⁻⁸		89132,4157	89180,4353	89228,4550
	10 ⁻⁵		89159,6575	89190,5973	89221,5371
250	10 ⁻⁶		89160,1716	89203,2641	89246,3566
	10-7		89158,5037	89215,2372	89271,9707
	10 ⁻⁸		89154,8931	89226,5545	89298,2158
	10 ⁻⁵		89166,1415	89188,5033	89210,8650
500	10 ⁻⁶		89168,8111	89199,4070	89230,0029
	10 ⁻⁷		89169,8312	89209,3669	89248,9026
	10 ⁻⁸		89169,4687	89218,4647	89267,4607

Figura 63 – Amostra 9 - Tarefa Bsort

Figura 64 - Resultados com variação do tamanho do bloco: Amostra 9 - Tarefa Bsort

Figura 65 - Resultados com variação do número de blocos: Amostra 9 - Tarefa Bsort
Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88987	89056	89070	89070	89084	89161	20,4021	416,2472
			Fonte -	- Do Autor.			

Tabela 57 – Amostra 9 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89106,1640	89107,0426	89107,9213
30	σ	8,5602	9,1708	9,7814
	ξ	-0,1964	-0,1489	-0,1014
	μ	89111,0035	89111,8125	89112,6215
50	σ	7,9008	8,4606	9,0203
	ξ	-0,1983	-0,1526	-0,1070
	μ	89117,1400	89117,8605	89118,5810
100	σ	6,9315	7,4378	7,9440
	ξ	-0,1344	-0,0808	-0,0272

Tabela 58 – Amostra 9	Tarefa Bsort: Probabilidade de Excedê	ncia (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89148,5955	89157,5426	89166,4897
30	10 ⁻⁶	89150,0217	89160,7625	89171,5033
	10 ⁻⁷	89150,7851	89163,0478	89175,3106
	10 ⁻⁸	89151,1508	89164,6699	89178,1889
	10-5	89149,9621	89157,6857	89165,4093
50	10 ⁻⁶	89151,2861	89160,5205	89169,7549
	10 ⁻⁷	89152,0091	89162,5153	89173,0215
	10 ⁻⁸	89152,3715	89163,9191	89175,4666
	10-5	89160,0216	89173,5967	89187,1718
100	10-6	89162,1885	89179,7596	89197,3308
	10 ⁻⁷	89163,3546	89184,8760	89206,3975
	10 ⁻⁸	89163,7981	89189,1237	89214,4493

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89116,0493	89117,6838	89119,3183
100	σ	6,3964	7,5429	8,6893
	ξ	-0,3234	-0,1986	-0,0739
	μ	89116,6212	89117,5930	89118,5647
250	σ	6,4879	7,1598	7,8317
	ξ	-0,1912	-0,1237	-0,0562
	μ	89117,1400	89117,8605	89118,5810
500	σ	6,9315	7,4378	7,9440
	ξ	-0,1344	-0,0808	-0,0272

Tabela 59 – Amostra 9 - Tarefa Bsort: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Tabela 60 – Amostra 9	Tarefa Bsort: Probabilidade de F	Excedência (N: 100, 250 e 500)
-----------------------	----------------------------------	--------------------------------

Quantidade (Blocos)	Probabilidade o excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89138,2615	89151,8018	89165,3420
100	10 ⁻⁶		89137,6206	89153,2180	89168,8153
	10-7		89136,9601	89154,1144	89171,2687
	10 ⁻⁸		89136,3814	89154,6818	89172,9821
	10 ⁻⁵		89149,5486	89161,5375	89173,5265
250	10 ⁻⁶		89150,2339	89164,9901	89179,7464
	10-7		89150,3460	89167,5869	89184,8277
	10 ⁻⁸		89150,1279	89169,5399	89188,9520
	10-5		89160,0216	89173,5967	89187,1718
500	10 ⁻⁶		89162,1885	89179,7596	89197,3308
	10-7		89163,3546	89184,8760	89206,3975
	10 ⁻⁸		89163,7981	89189,1237	89214,4493

Figura 66 – Amostra 10 - Tarefa Bsort

b Histograma

c Testes i.i.d

Figura 67 - Resultados com variação do tamanho do bloco: Amostra 10 - Tarefa Bsort

Figura 68 - Resultados com variação do número de blocos: Amostra 10 - Tarefa Bsort

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
88984	89058	89072	89071	89085	89152	20,25008	410,0658
			Fonte -	- Do Autor.			

Bsort: Análise dos o	lados
	Bsort: Análise dos c

Tabela 62 – Amostra 10 - Tarefa Bsort: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89105,3725	89106,2926	89107,2128
30	σ	8,8585	9,5002	10,1419
	ξ	-0,1580	-0,1039	-0,0498
	μ	89110,7729	89111,5909	89112,4089
50	σ	7,8138	8,3904	8,9670
	ξ	-0,1441	-0,0864	-0,0287
	μ	89117,1753	89117,9379	89118,7004
100	σ	7,2642	7,8025	8,3408
	ξ	-0,1651	-0,1060	-0,0468

Tabela 63 – Amostra 10 - Tarefa Bsort: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	89155,3555	89170,0884	89184,8213
30	10 ⁻⁶	89157,4112	89175,9717	89194,5323
	10 ⁻⁷	89158,4523	89180,6034	89202,7545
	10 ⁻⁸	89158,8183	89184,2498	89209,6812
	10-5	89157,0527	89172,7917	89188,5308
50	10 ⁻⁶	89159,0119	89179,272	89199,5321
	10 ⁻⁷	89159,9111	89184,5833	89209,2556
	10 ⁻⁸	89160,0699	89188,9367	89217,8035
	10-5	89156,9012	89169,8253	89182,7495
100	10 ⁻⁶	89158,2570	89174,5306	89190,8041
	10 ⁻⁷	89158,8167	89178,2169	89197,6170
	10 ⁻⁸	89158,8620	89181,1049	89203,3477

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	89113,5445	89115,36	89117,1755
100	σ	6,8009	8,1328	9,4647
	ξ	-0,1511	0,0070	0,1651
	μ	89115,7804	89116,8578	89117,9351
250	σ	6,9805	7,7486	8,5168
	ξ	-0,1472	-0,0585	0,0303
	μ	89117,1753	89117,9379	89118,7004
500	σ	7,2642	7,8025	8,3408
	ξ	-0,1651	-0,1060	-0,0468

Tabela 64 –	Amostra 1	10 - 7	Tarefa	Bsort:	Parâmetros	usados	para	o ajuste	e (N: 10	00, 25	50 e :	500)
-------------	-----------	--------	--------	--------	------------	--------	------	----------	----------	--------	--------	------

Tabela 65 – Amostra 10 - Tarefa Bsort: Probabilidade de Excedência (N: 100, 250 e 500)

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		89127,3096	89212,8522	89298,3948
100	10 ⁻⁶		89107,9054	89233,3074	89358,7095
	10 ⁻⁷		89080,6081	89254,0936	89427,5791
	10 ⁻⁸		89045,1722	89275,2162	89505,2601
	10 ⁻⁵		89154,2112	89181,7869	89209,3626
250	10 ⁻⁶		89153,5103	89190,3036	89227,0970
	10 ⁻⁷		89151,3728	89197,7478	89244,1229
	10 ⁻⁸		89148,1730	89204,2546	89260,3362
	10-5		89156,9012	89169,8253	89182,7495
500	10 ⁻⁶		89158,2570	89174,5306	89190,8041
	10 ⁻⁷		89158,8167	89178,2169	89197,6170
	10 ⁻⁸		89158,8620	89181,1049	89203,3477

APÊNDICE C – RESULTADOS DO CENÁRIO 2

Resultados da aplicação do método, utilizando o algoritmo lms como tarefa de interesse.

b Histograma

Figura 70 - Resultados com variação do tamanho do bloco: Amostra 1 - Tarefa lms

Figura 71 - Resultados com variação do número de blocos: Amostra 1 - Tarefa lms

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância						
698085 701469 702367 702387 703268 707590 1269,557 1611776													
	Fonte – Do Autor.												

Tabela 67 – Amostra 1 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704707,3480	704760,9581	704814,5682
30	σ	514,6232	551,9631	589,3031
	ξ	-0,1234	-0,0688	-0,0142
	μ	704974,1004	705022,2556	705070,4108
50	σ	460,2099	494,0222	527,8344
	ξ	-0,1187	-0,0618	-0,0048
	μ	705292,9968	705336,3449	705379,6931
100	σ	410,1698	441,2936	472,4174
	ξ	-0,1060	-0,0433	0,0194

Tabela 68 – Amostra 1 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		708021,5538	709150,1881	710278,8223
30	10-6		708200,0363	709682,5122	711164,9881
	10-7		708295,0748	710136,8454	711978,6159
	10 ⁻⁸		708327,3538	710524,6148	712721,8758
	10 ⁻⁵		707985,9888	709092,5679	710199,1470
50	10-6		708145,5287	709613,2976	711081,0665
	10-7		708224,5666	710064,9921	711905,4176
	10 ⁻⁸		708241,7057	710456,8044	712671,9031
	10 ⁻⁵		708090,8182	709336,7917	710582,7652
100	10-6		708227,9480	709924,1087	711620,2694
	10-7		708275,1504	710455,6699	712636,1894
	10 ⁻⁸		708248,3308	710936,7691	713625,2075

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)		
	μ	705231,2341	705347,7404	705464,2468		
100	σ	437,5943	523,3411	609,0878		
	ξ	-0,1641	-0,0051	0,1540		
	μ	705252,5725	705317,2191	705381,8656		
250	σ	413,8116	460,7074	507,6033		
	ξ	-0,1159	-0,0209	0,0740		
	μ	705292,9968	705336,3449	705379,6931		
500	σ	410,1698	441,2936	472,4174		
	ξ	-0,1060	-0,0433	0,0194		

Tabela 69 – Amostra 1 - Tarefa lms: Parâmetros usados	para o ajuste (N: 100, 250 e 500)
---	-----------------------------------

	Tabela 70 –	Amostra 1	- Tarefa lms	: Probabilidade	de Excedência	(N:	100.	250 e 50)0)
--	-------------	-----------	--------------	-----------------	---------------	-----	------	----------	-----

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706174,5978	711200,3677	716226,1376
100	10 ⁻⁶		705093,9355	712330,4375	719566,9394
	10 ⁻⁷		703616,0318	713447,3830	723278,7343
	10 ⁻⁸		701750,5205	714551,3586	727352,1967
	10 ⁻⁵		707694,2967	710030,4212	712366,5457
250	10 ⁻⁶		707559,7354	710844,2317	714128,7280
	10 ⁻⁷		707261,5797	711619,7360	715977,8923
	10 ⁻⁸		706815,6556	712358,7385	717901,8213
	10 ⁻⁵		708090,8182	709336,7917	710582,7652
500	10 ⁻⁶		708227,9480	709924,1087	711620,2694
	10 ⁻⁷		708275,1504	710455,6699	712636,1894
	10 ⁻⁸		708248,3308	710936,7691	713625,2075

LB2

0.4

0.2

ww

TP

LB10

ĸs

AD1

AD2

Figura 73 - Resultados com variação do tamanho do bloco: Amostra 2 - Tarefa lms

Figura 74 - Resultados com variação do número de blocos: Amostra 2 - Tarefa lms

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância						
698246 701469 702360 702385 703267 709700 1271,271 161613													
	Fonte – Do Autor.												

Tabela 72 – Amostra 2 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)	
	μ	704708,3507	704762,4337	704816,5166	
30	σ	524,4674	562,6099	600,7524	
	ξ	-0,0783	-0,0298	0,0187	
	μ	704973,0391	705020,9033	705068,7675	
50	σ	465,9216	499,4619	533,0022	
	ξ	-0,0732	-0,0272	0,0187	
	μ	705274,7003	705319,8542	705365,0080	
100	σ	437,4578	469,6199	501,7819	
	ξ	-0,0769	-0,0283	0,0202	

Tabela 73 – Amostra 2 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade d excedência	le Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	708850,0858	710244,8157	711639,5457
30	10-6	709209,0779	711132,9714	713056,8649
	10 ⁻⁷	709451,3307	711962,1851	714473,0395
	10 ⁻⁸	709590,8582	712736,3697	715881,8812
	10-5	708752,9295	709957,2301	711161,5306
50	10-6	709107,2225	710772,0423	712436,8621
	10 ⁻⁷	709358,7546	711537,3440	713715,9334
	10 ⁻⁸	709518,7959	712256,1447	714993,4935
	10-5	708759,2943	709933,2477	711107,2012
100	10-6	709065,0975	710688,6916	712312,2856
	10-7	709272,2193	711396,4209	713520,6226
	10 ⁻⁸	709391,9941	712059,4506	714726,9071

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705253,4994	705368,3664	705483,2333
100	σ	439,7591	523,4381	607,1170
	ξ	-0,0648	0,0687	0,2023
	μ	705253,4830	705320,8530	705388,2230
250	σ	445,6727	493,3567	541,0407
	ξ	-0,0747	-0,0040	0,0666
	μ	705274,7003	705319,8542	705365,0080
500	σ	437,4578	469,6199	501,7819
	ξ	-0,0769	-0,0283	0,0202

Tabela 74 – Amostra 2 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)

	Tabela 75 –	Amostra 2 -	Tarefa lms:	Probabilidade de	Excedência	(N: 1	100, 250 e	e 500)
--	-------------	-------------	-------------	------------------	------------	-------	------------	--------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706707,0224	714555,6730	722404,3237
100	10 ⁻⁶		704773,3349	717437,2455	730101,1560
	10-7		701469,6055	720813,0190	740156,4324
	10 ⁻⁸		696383,3053	724767,7567	753152,2081
	10 ⁻⁵		708688,8866	710871,0236	713053,1606
250	10 ⁻⁶		708825,2241	711950,4795	715075,7348
	10 ⁻⁷		708785,8391	713019,9589	717254,0787
	10 ⁻⁸		708574,1338	714079,5558	719584,9778
	10 ⁻⁵		708759,2943	709933,2477	711107,2012
500	10 ⁻⁶		709065,0975	710688,6916	712312,2856
	10 ⁻⁷		709272,2193	711396,4209	713520,6226
	10-8		709391,9941	712059,4506	714726,9071

b Histograma

c Testes i.i.d

Figura 76 - Resultados com variação do tamanho do bloco: Amostra 3 - Tarefa lms

Figura 77 - Resultados com variação do número de blocos: Amostra 3 - Tarefa lms

Fonte - Do Autor.

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância	
698301	701478	702378	702397	703278	707477	1269,693	1612121	
Fonte – Do Autor.								

Tabela 76 – .	Amostra 3 -	- Tarefa	lms:	Análise	dos	dados
100010 / 0						

Tabela 77 – Amostra 3 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704695,0754	704748,7298	704802,3842
30	σ	514,8390	552,6452	590,4513
	ξ	-0,1184	-0,0621	-0,0059
	μ	704986,6494	705036,5288	705086,4083
50	σ	478,3002	513,3724	548,4445
	ξ	-0,1395	-0,0830	-0,0266
	μ	705344,6228	705389,5000	705434,3773
100	σ	429,9542	461,5005	493,0468
	ξ	-0,1552	-0,0981	-0,0411

Tabela 78 – Amostra 3 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho Probabilidade (Bloco) excedência		de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)	
	10 ⁻⁵		708069,5544	709293,2413	710516,9282	
30	10-6		708251,5838	709872,9644	711494,3451	
	10-7		708344,0897	710375,3903	712406,6910	
	10 ⁻⁸		708367,7768	710810,8262	713253,8755	
	10-5		707871,4904	708842,1693	709812,8482	
50	10-6		708002,1544	709255,7652	710509,3759	
	10-7		708065,5852	709597,3768	711129,1685	
	10 ⁻⁸		708081,2805	709879,5333	711677,7862	
	10 ⁻⁵		707786,7583	708572,8145	709358,8706	
100	10-6		707882,4825	708880,1219	709877,7612	
	10-7		707926,5925	709125,2751	710323,9577	
	10 ⁻⁸		707936,0921	709320,8456	710705,5990	

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705284,3493	705397,2373	705510,1253
100	σ	425,9711	508,9398	591,9086
	ξ	-0,1738	-0,0167	0,1404
	μ	705306,9841	705371,8495	705436,7150
250	σ	422,1195	468,4508	514,7821
	ξ	-0,1420	-0,0549	0,0322
	μ	705344,6228	705389,5	705434,3773
500	σ	429,9542	461,5005	493,0468
	ξ	-0,1552	-0,0981	-0,0411

Tabela 79 – Amostra 3 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Tabela 80 – Amostra	3 - Tarefa lms	: Probabilidade de	Excedência	(N: 100,	, 250 e 500)
---------------------	----------------	--------------------	------------	----------	--------------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706324,0232	710728,6392	715133,2552
100	10 ⁻⁶		705443,2126	711677,5392	717911,8658
	10 ⁻⁷		704264,7092	712590,7034	720916,6976
	10 ⁻⁵		707685,0146	709368,9829	711052,9512
250	10-6		707651,1864	709907,3542	712163,5220
	10-7		707526,0373	710381,7666	713237,4958
	10 ⁻⁸		707331,8295	710799,8190	714267,8086
	10 ⁻⁵		707786,7583	708572,8145	709358,8706
500	10-6		707882,4825	708880,1219	709877,7612
	10-7		707926,5925	709125,2751	710323,9577
	10 ⁻⁸		707936,0921	709320,8456	710705,5990

b Histograma

167

Figura 79 - Resultados com variação do tamanho do bloco: Amostra 4 - Tarefa lms

Figura 80 - Resultados com variação do número de blocos: Amostra 4 - Tarefa lms

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância	
698337	701467	702365	702385	703269	707696	1270,116	1613194	
Fonte – Do Autor.								

Tabela 82 – Amostra 4 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704705,2938	704759,7230	704814,1522
30	σ	515,5339	554,4526	593,3713
	ξ	-0,1055	-0,0439	0,0177
	μ	704979,4956	705028,0266	705076,5576
50	σ	462,1220	496,5172	530,9123
	ξ	-0,1103	-0,0515	0,0073
	μ	705321,1451	705366,3339	705411,5227
100	σ	431,1934	463,0357	494,8780
	ξ	-0,1348	-0,0769	-0,0190

Tabela 83 – Amostra 4 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		708235,7760	709770,2781	711304,7802
30	10 ⁻⁶		708416,1974	710502,6837	712589,1699
	10-7		708485,1073	711164,6549	713844,2025
	10 ⁻⁸		708462,3694	711762,9664	715063,5633
	10 ⁻⁵		708101,2242	709340,9946	710580,7649
50	10-6		708269,4493	709937,0818	711604,7143
	10-7		708347,0229	710466,5466	712586,0704
	10 ⁻⁸		708352,1773	710936,8360	713521,4948
	10 ⁻⁵		707965,9516	708902,7009	709839,4503
100	10-6		708085,8658	709305,6309	710525,3961
	10-7		708141,2128	709643,1427	711145,0726
	10 ⁻⁸		708149,8484	709925,8578	711701,8671

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705323,1107	705441,2954	705559,4801
100	σ	447,6292	533,1178	618,6063
	ξ	-0,1915	-0,0396	0,1124
	μ	705293,7832	705357,8646	705421,9461
250	σ	412,9511	459,1445	505,3378
	ξ	-0,1068	-0,0154	0,0759
	μ	705321,1451	705366,3339	705411,5227
500	σ	431,1934	463,0357	494,8780
	ξ	-0,1348	-0,0769	-0,0190

Tabela 84 –	Amostra 4 -	Tarefa lms:	Parâmetros	usados	para c	o ajuste	(N:	100,	250	e 500))

	Tabela 85 – Amostra 4	- Tarefa lms:	: Probabilidade de	Excedência	(N: 100)). 250 e 500))
--	-----------------------	---------------	--------------------	------------	----------	--------------	----

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706638,5637	710371,0293	714103,4948
100	10 ⁻⁶		706000,5472	711114,9605	716229,3738
	10 ⁻⁷		705180,0504	711794,0983	718408,1463
	10 ⁻⁸		704213,8801	712414,0871	720614,2941
	10 ⁻⁵		707853,9094	710200,5304	712547,1515
250	10 ⁻⁶		707747,1902	711069,9290	714392,6677
	10-7		707467,4127	711908,9427	716350,4726
	10 ⁻⁸		707026,9361	712718,6348	718410,3334
	10-5		707965,9516	708902,7009	709839,4503
500	10 ⁻⁶		708085,8658	709305,6309	710525,3961
	10 ⁻⁷		708141,2128	709643,1427	711145,0726
	10 ⁻⁸		708149,8484	709925,8578	711701,8671

172

Fonte – Do Autor.

Figura 82 - Resultados com variação do tamanho do bloco: Amostra 5 - Tarefa lms

Figura 83 - Resultados com variação do número de blocos: Amostra 5 - Tarefa lms

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância	
698190	701487	702384	702405	703282	707563	1266,454	1603905	
Fonte – Do Autor.								

Tabela 87 – Amostra 5 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704744,2727	704797,2049	704850,1371
30	σ	510,8559	547,4918	584,1276
	ξ	-0,1436	-0,0921	-0,0406
	μ	705022,7341	705069,4846	705116,2351
50	σ	448,6143	481,4516	514,2889
	ξ	-0,1234	-0,0683	-0,0131
	μ	705341,2377	705385,8262	705430,4147
100	σ	429,5173	460,6400	491,7626
	ξ	-0,1560	-0,1020	-0,0480

Tabela 88 – Amostra 5 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		707797,2217	708682,5254	709567,8291
30	10-6		707946,2454	709075,8400	710205,4347
	10-7		708028,9976	709393,9797	710758,9618
	10 ⁻⁸		708065,4217	709651,3132	711237,2046
	10-5		707913,0395	708908,5136	709903,9878
50	10-6		708067,2264	709376,0577	710684,8890
	10-7		708148,1531	709775,6051	711403,0571
	10 ⁻⁸		708173,9250	710117,0455	712060,1659
	10-5		707782,6992	708506,2709	709229,8427
100	10 ⁻⁶		707884,9668	708798,3929	709711,8191
	10-7		707937,0868	709029,3660	710121,6451
	10 ⁻⁸		707955,6131	709211,9905	710468,3678

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705282,2513	705386,0642	705489,8771
100	σ	396,4111	470,8207	545,2303
	ξ	-0,1387	0,0038	0,1462
	μ	705332,7660	705394,1777	705455,5893
250	σ	399,3819	443,4848	487,5876
	ξ	-0,1238	-0,0375	0,0488
	μ	705341,2377	705385,8262	705430,4147
500	σ	429,5173	460,6400	491,7626
	ξ	-0,1560	-0,1020	-0,0480

Tabela 89 –	Amostra 5 -	Tarefa lms	: Parâmetros	usados par	ra o ajuste (N: 100	, 250 e 50	0)

$10010 \ \text{J} = 10000 \ \text{m}$	Tab	ela 90 –	Amostra 5 -	Tarefa lms:	Probabilidade de	e Excedência	(N:	100, 250	e 500)
---------------------------------------	-----	----------	-------------	-------------	------------------	--------------	-----	----------	--------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706536,8471	710926,6172	715316,3874
100	10 ⁻⁶		705672,8786	712064,0459	718455,2132
	10 ⁻⁷		704424,3541	713211,4449	721998,5358
	10 ⁻⁸		702784,8560	714368,9034	725952,9509
	10 ⁻⁵		707732,5320	709540,1754	711347,8188
250	10 ⁻⁶		707696,4895	710175,2943	712654,0991
	10 ⁻⁷		707547,3894	710757,8419	713968,2944
	10 ⁻⁸		707304,2969	711292,1706	715280,0443
	10 ⁻⁵		707782,6992	708506,2709	709229,8427
500	10 ⁻⁶		707884,9668	708798,3929	709711,8191
	10 ⁻⁷		707937,0868	709029,3660	710121,6451
	10-8		707955,6131	709211,9905	710468,3678

b Histograma

Figura 85 - Resultados com variação do tamanho do bloco: Amostra 6 - Tarefa lms

Figura 86 - Resultados com variação do número de blocos: Amostra 6 - Tarefa lms

Fonte – Do Autor.
Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
698269	701489	702385	702408	703291	707626	1269,731	1612218
Fonte – Do Autor.							

Tabela 92 – Amostra 6 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704699,0894	704751,6998	704804,3102
30	σ	500,5120	537,8101	575,1082
	ξ	-0,1063	-0,0473	0,0118
	μ	704999,0795	705047,2188	705095,3581
50	σ	459,5677	493,8442	528,1208
	ξ	-0,1251	-0,0667	-0,0083
	μ	705350,7840	705394,0216	705437,2591
100	σ	412,4945	442,8531	473,2116
	ξ	-0,1317	-0,0741	-0,0165

Tabela 93 – Amostra 6 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		708133,3241	709526,9084	710920,4927
30	10-6		708322,6676	710207,8203	712092,9729
	10-7		708409,2173	710818,5134	713227,8094
	10 ⁻⁸		708412,2401	711366,2298	714320,2196
	10 ⁻⁵		707926,3287	709015,4440	710104,5592
50	10-6		708068,0137	709504,3918	710940,7698
	10-7		708132,9886	709923,7060	711714,4235
	10 ⁻⁸		708140,2890	710283,3043	712426,3195
	10 ⁻⁵		707912,1660	708823,9900	709735,8140
100	10-6		708032,1044	709223,4407	710414,7771
	10-7		708088,4363	709560,2346	711032,0329
	10 ⁻⁸		708098,2150	709844,2003	711590,1857

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705289,9579	705394,5994	705499,2409
100	σ	394,1486	471,3282	548,5077
	ξ	-0,1431	0,0124	0,1679
	μ	705318,5578	705379,9358	705441,3139
250	σ	397,7191	442,4940	487,2689
	ξ	-0,1190	-0,0289	0,0613
	μ	705350,7840	705394,0216	705437,2591
500	σ	412,4945	442,8531	473,2116
	ξ	-0,1317	-0,0741	-0,0165

Tabela 94 – Amostra 6 - Tarefa lms: Parâmetros usados para o	o ajuste (N:	100, 250 e 500)
--	--------------	-----------------

Tabela 95 –	Amostra 6 -	Tarefa lms:	Probabilidade de	e Excedência ((N: 1	100. 250 e	500)
					(,

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706124,5081	711228,0296	716331,5512
100	10 ⁻⁶		704957,0812	712498,1777	720039,2743
	10-7		703287,0763	713805,1661	724323,2559
	10 ⁻⁸		701086,6103	715150,0654	729213,5205
	10 ⁻⁵		707704,7896	709714,2234	711723,6573
250	10 ⁻⁶		707630,4944	710421,2323	713211,9701
	10 ⁻⁷		707423,3514	711082,7708	714742,1901
	10 ⁻⁸		707100,8666	711701,7643	716302,6621
	10 ⁻⁵		707912,1660	708823,9900	709735,8140
500	10 ⁻⁶		708032,1044	709223,4407	710414,7771
	10 ⁻⁷		708088,4363	709560,2346	711032,0329
	10 ⁻⁸		708098,2150	709844,2003	711590,1857

Figura 87 – Amostra 7 - Tarefa lms

b Histograma

Tempo de execução

704000

702000

708000

706000

710000

. 698000

700000

Fonte – Do Autor.

Figura 88 - Resultados com variação do tamanho do bloco: Amostra 7 - Tarefa lms

Figura 89 - Resultados com variação do número de blocos: Amostra 7 - Tarefa lms

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
698137	701506	702410	702430	703314	707732	1270,781	1614885
Fonte – Do Autor.							

dos	dados
	dos

Tabela 97 – Amostra 7 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704696,3985	704750,2374	704804,0763
30	σ	513,7110	552,0092	590,3073
	ξ	-0,1015	-0,0430	0,0156
	μ	704985,6572	705033,7636	705081,8701
50	σ	455,0148	489,5596	524,1044
	ξ	-0,1024	-0,0404	0,0217
	μ	705338,1289	705383,6515	705429,1742
100	σ	430,6727	463,2597	495,8467
	ξ	-0,1276	-0,0652	-0,0029

Tabela 98 – Amostra 7 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade d excedência	le Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	708294,1931	709763,6791	711233,1651
30	10 ⁻⁶	708503,1188	710501,6302	712500,1416
	10-7	708601,9923	711170,0678	713738,1433
	10 ⁻⁸	708609,7771	711775,5410	714941,3048
	10-5	708141,9706	709541,0527	710940,1349
50	10 ⁻⁶	708305,1057	710217,1640	712129,2223
	10-7	708365,5367	710833,2263	713300,9158
	10 ⁻⁸	708340,2987	711394,5736	714448,8485
	10-5	708037,0367	709134,0588	710231,0809
100	10 ⁻⁶	708149,9944	709601,4144	711052,8343
	10-7	708189,3237	710003,5845	711817,8452
	10 ⁻⁸	708173,4231	710349,6617	712525,9003

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705249,6150	705364,9182	705480,2215
100	σ	435,3982	520,3081	605,2181
	ξ	-0,1346	0,0198	0,1742
	μ	705282,9433	705347,2383	705411,5334
250	σ	414,0457	460,4968	506,9479
	ξ	-0,1060	-0,0144	0,0772
	μ	705338,1289	705383,6515	705429,1742
500	σ	430,6727	463,2597	495,8467
	ξ	-0,1276	-0,0652	-0,0029

Tabela 99 – Amostra 7 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 50)0)
---	-----

	Tabela 100 – Amostra	7 - Tarefa lms	: Probabilidade d	e Excedência	(N: 100.	, 250 e 500)
--	----------------------	----------------	-------------------	--------------	----------	--------------

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706147,7037	712092,5857	718037,4676
100	10 ⁻⁶		704748,6430	713632,0483	722515,4536
	10-7		702710,6248	715243,2879	727775,9510
	10 ⁻⁸		699977,4454	716929,6536	733881,8618
	10 ⁻⁵		707853,1610	710232,6783	712612,1957
250	10 ⁻⁶		707741,8354	711116,2672	714490,6990
	10-7		707453,5432	711971,0330	716488,5227
	10 ⁻⁸		707000,0840	712797,9172	718595,7504
	10 ⁻⁵		708037,0367	709134,0588	710231,0809
500	10 ⁻⁶		708149,9944	709601,4144	711052,8343
	10-7		708189,3237	710003,5845	711817,8452
	10 ⁻⁸		708173,4231	710349,6617	712525,9003

b Histograma

Fonte – Do Autor.

Figura 91 - Resultados com variação do tamanho do bloco: Amostra 8 - Tarefa lms

Fonte – Do Autor.

Figura 92 - Resultados com variação do número de blocos: Amostra 8 - Tarefa lms

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância		
698321	701480	702378	702398	703279	707683	1268,328	1608656		
Fonte – Do Autor.									

Tabela 102 – Amostra 8 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704730,1525	704783,224	704836,2955
30	σ	505,1196	542,5567	579,9938
	ξ	-0,1063	-0,0475	0,0112
	μ	704995,5629	705045,2558	705094,9488
50	σ	475,4947	510,4351	545,3754
	ξ	-0,1340	-0,0775	-0,0211
	μ	705304,6219	705347,4631	705390,3043
100	σ	405,6669	436,4290	467,1911
	ξ	-0,1067	-0,0445	0,0177

Tabela 103 – Amostra 8 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade d excedência	le Intervalo de confi inferior (95%)	ança Valor estimado	Intervalo de confiança superior (95%)	
	10-5	708197,4293	709593,5047	710989,5801	
30	10 ⁻⁶	708390,5391	710277,9930	712165,4469	
	10-7	708480,4753	710891,4972	713302,5191	
	10 ⁻⁸	708486,6390	711441,3794	714396,1199	
	10-5	707928,1731	708932,3254	709936,4777	
50	10 ⁻⁶	708067,2653	709373,1996	710679,1340	
	10-7	708135,5751	709741,9930	711348,4110	
	10 ⁻⁸	708152,5860	710050,4910	711948,3961	
	10-5	708067,3197	709279,2886	710491,2575	
100	10 ⁻⁶	708204,3526	709851,5362	711498,7197	
	10-7	708253,8539	710368,0544	712482,2548	
	10 ⁻⁸	708231,6387	710834,2714	713436,9041	

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705268,6392	705382,3515	705496,0637
100	σ	433,3619	516,1251	598,8883
	ξ	-0,1843	-0,0364	0,1115
	μ	705277,1046	705341,9261	705406,7477
250	σ	420,8988	467,3096	513,7205
	ξ	-0,1324	-0,0454	0,0416
	μ	705304,6219	705347,4631	705390,3043
500	σ	405,6669	436,429	467,1911
	ξ	-0,1067	-0,0445	0,0177

Tabela 104 – Amostra 8 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706622,9616	710236,4288	713849,8960
100	10 ⁻⁶		706016,0404	710986,1190	715956,1975
	10-7		705222,6732	711675,5295	718128,3857
	10 ⁻⁸		704276,9493	712309,5083	720342,0674
	10 ⁻⁵		707729,1607	709532,8179	711336,4751
250	10 ⁻⁶		707690,9066	710138,8843	712586,8619
	10 ⁻⁷		707546,8272	710684,8382	713822,8492
	10 ⁻⁸		707318,3896	711176,6427	715034,8958
	10 ⁻⁵		708067,3197	709279,2886	710491,2575
500	10 ⁻⁶		708204,3526	709851,5362	711498,7197
	10 ⁻⁷		708253,8539	710368,0544	712482,2548
	10 ⁻⁸		708231,6387	710834,2714	713436,9041

b Histograma

Fonte – Do Autor.

Figura 94 - Resultados com variação do tamanho do bloco: Amostra 9 - Tarefa lms

Figura 95 - Resultados com variação do número de blocos: Amostra 9 - Tarefa lms

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância		
698150	701483	702381	702399	703284	707791	1270,845	1615048		
Fonte – Do Autor.									

Tabela 107 – Amostra 9 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704695,7799	704748,9745	704802,1690
Tamanho Bloco)Par par30 σ ξ 30 σ ξ 50 σ ξ 100 σ ξ	σ	507,3517	544,8629	582,3741
	ξ	-0,0967	-0,0391	0,0185
	μ	704976,4045	705024,3569	705072,3092
$ \begin{array}{c} $	σ	457,6024	491,6735	525,7446
	ξ	-0,1035	-0,0455	0,0125
	μ	705303,4047	705348,0796	705392,7545
100	σ	421,1308	453,4194	485,7080
	ξ	-0,1020	-0,0380	0,0261

Tabela 108 – Amostra 9 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade o excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5		708328,0773	709800,1053	711272,1334
30	10 ⁻⁶		708553,0221	710565,0194	712577,0167
Tamanho (Bloco) 30 50 100	10 ⁻⁷		708665,6370	711264,0787	713862,5204
	10 ⁻⁸		708683,6832	711902,9541	715122,2250
	10-5		708160,1309	709430,4614	710700,7919
50	10 ⁻⁶		708345,2212	710066,9836	711788,7460
30 30 50 100	10-7		708435,1501	710640,1855	712845,2208
$ \begin{array}{c} \text{(Bloco)} & \mathbf{c} \\ \hline \text{(Bloco)} & \mathbf$	10 ⁻⁸		708447,0928	711156,3668	713865,6408
	10-5		708216,6966	709576,4139	710936,1312
100	10 ⁻⁶		708356,5519	710221,9435	712087,3350
100	10-7		708397,2754	710813,4048	713229,5343
	10 ⁻⁸		708354,5663	711355,3276	714356,0890

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705265,0583	705377,7965	705490,5346
100	σ	429,2672	510,5838	591,9005
Quantidade (Blocos) 100 250 500	ξ	-0,1305	0,0146	0,1598
	μ	705269,1360	705332,9535	705396,7710
(Blocos) 100 250 500	σ	411,0804	457,6174	504,1544
	ξ	-0,0910	0,0014	0,0939
	μ	705303,4047	705348,0796	705392,7545
500	σ	421,1308	453,4194	485,7080
	ξ	-0,1020	-0,0380	0,0261

Tabela 109 – Amostra 9 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)

|--|

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		706492,8168	711780,6719	717068,5269
100	10-6		705366,6308	713195,9521	721025,2734
	10-7		703711,9031	714659,7631	725607,6230
	10 ⁻⁸		701494,0234	716173,7714	730853,5194
	10 ⁻⁵		707937,0188	710644,7932	713352,5675
250	10 ⁻⁶		707786,9466	711717,6304	715648,3141
	10-7		707406,8722	712793,9813	718181,0904
	10 ⁻⁸		706795,4492	713873,8592	720952,2692
	10 ⁻⁵		708216,6966	709576,4139	710936,1312
500	10 ⁻⁶		708356,5519	710221,9435	712087,3350
	10-7		708397,2754	710813,4048	713229,5343
	10 ⁻⁸		708354,5663	711355,3276	714356,0890

c Testes i.i.d

Fonte – Do Autor.

Figura 97 - Resultados com variação do tamanho do bloco: Amostra 10 - Tarefa lms

Figura 98 - Resultados com variação do número de blocos: Amostra 10 - Tarefa lms

Fonte - Do Autor.

Mínimo	Primeiro Quartil	Mediana	Média	Terceiro Quartil	Máximo	Desvio Padrão	Variância
698213	701510	702419	702434	703313	709820	1271,216	1615989
			Fonte -	- Do Autor.			

Tabela 112 - Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	704722,4338	704775,4439	704828,4540
Tamanho P (Bloco) pa 30 σ 50 σ 100 σ	σ	511,4667	549,1533	586,8400
	ξ	-0,0661	-0,0146	0,0369
	μ	705005,4051	705053,7017	705101,9982
$(Bloco) \qquad para o ajus$ $(Bloco) \qquad \mu$ $30 \qquad \sigma$ ξ $50 \qquad \sigma$ ξ $100 \qquad \sigma$ ξ	σ	470,0475	504,1627	538,2780
	ξ	-0,0748	-0,0285	0,0178
	μ	705338,5942	705383,3280	705428,0617
100	σ	431,4646	463,3479	495,2313
	ξ	-0,0741	-0,0240	0,0260

Tabela 113 – Amostra 10 - Tarefa lms: Probabilidade de Excedência (Bloco: 30, 50 e 100)

Tamanho (Bloco)	Probabilidade de ex- cedência	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10-5	708971,4382	710595,2493	712219,0604
Tamanho Probabilidad (Bloco) $cedência$ 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-5} 10^{-5} 50 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-7} 10^{-8} 10^{-7} 100 10^{-5} 100^{-8} 10^{-7} 100^{-8} 10^{-8}	10 ⁻⁶	709354,9749	711646,4164	713937,8579
	10 ⁻⁷	709604,9523	712662,8486	715720,7450
	10 ⁻⁸	709729,8935	713645,6955	717561,4974
	10-5	708791,8917	710001,2829	711210,6740
50 1 100 1	10 ⁻⁶	709140,8751	710810,3344	712479,7937
	10 ⁻⁷	709386,6367	711567,9521	713749,2675
	10 ⁻⁸	709540,9816	712277,4069	715013,8321
	10-5	708812,6948	710043,0575	711273,4203
100	10 ⁻⁶	709116,6300	710829,9571	712543,2843
	10 ⁻⁷	709318,1624	711574,4684	713830,7744
	10 ⁻⁸	709427,5369	712278,8758	715130,2148

Quantidade (Blocos)	Parâmetros usados para o ajuste	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	μ	705267,4934	705382,2210	705496,9487
100	σ	432,8841	519,9850	607,0859
Quantidade (Blocos) 100 250 500	ξ	-0,0551	0,0941	0,2433
	μ	705296,6129	705361,9958	705427,3786
(Blocos) 100 250 500	σ	428,2320	475,3014	522,3707
	ξ	-0,0604	0,0172	0,0947
	μ	705338,5942	705383,3280	705428,0617
500	σ	431,4646	463,3479	495,2313
	ξ	-0,0741	-0,0240	0,0260

Tabela 114 – Amostra 10 - Tarefa lms: Parâmetros usados para o ajuste (N: 100, 250 e 500)

Tabela 115 – Amostra 10 -	Tarefa lms:	Probabilidade de	Excedência (N: 100,	250 e 50	0)
---------------------------	-------------	------------------	--------------	---------	----------	----

Quantidade (Blocos)	Probabilidade excedência	de	Intervalo de confiança inferior (95%)	Valor estimado	Intervalo de confiança superior (95%)
	10 ⁻⁵		705472,3625	716182,7560	726893,1494
100	10 ⁻⁶		702041,4497	720132,5771	738223,7045
	10 ⁻⁷		696095,2105	725037,9441	753980,6778
	10 ⁻⁸		686618,0130	731130,0323	775642,0516
	10 ⁻⁵		708696,2218	711412,7452	714129,2686
250	10 ⁻⁶		708747,7856	712773,2415	716798,6973
	10 ⁻⁷		708548,1529	714188,6292	719829,1054
	10 ⁻⁸		708077,1731	715661,1252	723245,0773
	10 ⁻⁵		708812,6948	710043,0575	711273,4203
500	10 ⁻⁶		709116,6300	710829,9571	712543,2843
	10 ⁻⁷		709318,1624	711574,4684	713830,7744
	10 ⁻⁸		709427,5369	712278,8758	715130,2148