
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Johann Westphall

Blockchain privacy and scalability in a decentralized validated energy

trading context with Hyperledger Fabric

Florianópolis

2021

Johann Westphall

Blockchain privacy and scalability in a decentralized validated energy

trading context with Hyperledger Fabric

Dissertação submetida ao Programa de Pós-Graduação
em Ciência da Computação da Universidade Fed-
eral de Santa Catarina para a obtenção do título de mestre
em Ciências da Computação.
Supervisor: Prof. Jean Everson Martina, Dr.

Florianópolis

2021

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Westphall, Johann
 Blockchain privacy and scalability in a decentralized
validated energy trading context with Hyperledger Fabric /
Johann Westphall ; orientador, Jean Everson Martina, 2021.
 142 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2021.

 Inclui referências.

 1. Ciência da Computação. 2. Energia. 3. Blockchain. 4.
Performance. 5. Escalabilidade. I. Martina, Jean Everson.
II. Universidade Federal de Santa Catarina. Programa de Pós
Graduação em Ciência da Computação. III. Título.

Johann Westphall

Blockchain privacy and scalability in a decentralized validated energy

trading context with Hyperledger Fabric

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Prof. Antônio Augusto Medeiros Fröhlich, Dr.

Universidade Federal De Santa Catarina

Prof. Luis Carlos Erpen De Bona, Dr.

Universidade Federal do Paraná

Prof. Wilson De Souza Melo Junior, Dr.

Instituto Nacional de Metrologia, Qualidade e Tecnologia

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de mestre em Ciências da Computação.

Vania Bogorny

Coordenação do Programa de

Pós-Graduação

Prof. Jean Everson Martina, Dr.

Supervisor:

Florianópolis, 2021.

This work is dedicated to my parents, Carlos and Carla,

and anyone who positively impacted my life.

ACKNOWLEDGEMENTS

I thank my father, Carlos, and my mother, Carla, for the constant support

in my life and during my Master’s period. I also thank Professor Jean Martina for

advising this work and bringing relevant discussions to improve this work. Every

member of LabSEC’s blockchain research group also contributed in some way to our

accomplishments, and I appreciate their help. I thank the contributions of Professor

Prof. Antônio Augusto Medeiros Fröhlich, Prof. Luis Carlos Erpen De Bona, and Prof.

Wilson De Souza Melo Junior while integrating my dissertation committee. Lastly, I

thank CAPES for financially supporting this research.

RESUMO

O uso de energia renovável vem aumentando devido à preocupação com preserva-
ção do ambiente ameaçada por fontes energéticas como carvão e petróleo. Apersar
do alto custo de fontes renováveis em relação às fontes sujas, essa diferença tem
diminuido. Com preços mais baixos, pessoas instalam painéis solares para reduzir o
custo da conta de eletricidade ou até vender o excesso produzido à empresa transmis-
sora. Quando pessoas vendem energia à rede elétrica, elas são classificadas como
prosumers. Geralmente, prosumers podem vender a energia gerada exclusivamente
à companhia de eletricidade, que determina o preço de compra. Mercados de ener-
gia decentralizados podem aumentar tanto a competitividade quanto a adoção de
fontes energéticas limpas. Ao mesmo tempo, mercados centralizados apresentam
vulnerabildades de segurança e carecem de resiliência. Neste contexto, blockchain
é estudada como uma tecnologia para possiblitar a decentralização de mercados de
energia, principalmente por ser um banco de dados resiliente, imutável, transparente
e seguro. A literatura apresenta diversas soluções envolvendo blockchain e mercados
energéticos, todavia mais pesquisa é fundamental para tal implantação. Escalabili-
dade, privacidade, arquitetura de mercado e segurança do usuário são alguns dos
problemas ainda não resolvidos neste tipo de aplicação. Hyperledger Fabric predomi-
na na literatura acerca de mercados de energia e também é usado na implementação
do modelo deste trabalho. Este trabalho revisa a literatura a respeito de blockchain
em mercados de energia, propõe um modelo, implementa-o, realiza experimentos e
analisa a escalabilidade da rede junto com a proporção da sua geração de dados. O
modelo permite que energia limpa e validada seja comercializada por compradores
anônimos, evitando a exposição dos seus padrões de consumo. O contrato inteli-
gente do Hyperledger Fabric recebe dados proveninentes de sensores e julga se as
alegações de geração energética são válidas. Por exemplo, sensores capturadores da
velocidade do vento podem evitar que vendedores de energia eólica comercializem
quantidades de energia acima da sua capacidade de geração. Depois de validada, a
energia é comercializada entre participantes da rede. Modificações no Hyperledger
Fabric foram necessárias para implementar o modelo definido. O desenvolvimento
da proposta é dividido em três partes: desenvolvimento da rede, desenvolvimento do
contrato e desenvolvimento da aplicação. Este trabalho adaptou a implementação do
Fabric para realizar os experimentos planejados. Os experimentos foram executados
em três fases com configurações distintas para testar a capacidade da rede. A capaci-
dade máxima de transferência foi atingida em uma configuração com 5000 sensores,
5000 compradores e 5000 vendedores. Tanto o ritmo de geração de dados quanto o
custo de implantação foram analisados para julgar a viabildade da rede. Este trabalho
complementa com resultados empíricos a literatura, a qual carece destes resultados.
Além disso, a estrutura do experimento serve como base para pesquisas futuras com
Hyperledger Fabric. Ademais, a participação de pesquisadores com formação em
engenharia de energia é necessária para o aprimoramento do processo de validação
de energia. Este trabalho explorou um conjunto limitado de configurações e trabalhos
futuros podem realizar diversos aperfeiçoamentos neste modelo.

Palavras-chave: Energia. Blockchain. Performance. Escalabilidade. Anonimidade.

Hyperledger.

RESUMO EXPANDIDO

Introdução

Blockchain é uma tecnologia que suporta um banco de dados decentralizado no

contexto Peer-to-Peer (P2P) e é amplamente conhecida por causa da cripto moe-

da Bitcoin (RAHOUTI et al., 2018), com uma estrutura segura contra adulterações.

Blockchain permite a ocorrência de transações seguras entre nodos, sem a necessi-

dade de uma terceira parte confiável. Também é reconhecido como uma tecnologia

com potencial parar aprimorar o papel de consumidores em um mercado de energia,

aumentando segurança e reduzindo custos (WANG, N. et al., 2019).

Na maioria dos sistemas de distribuição energética, residências com fontes de e-

nergia renováveis podem vendê-la apenas para a companhia de transmissão, o que

impede ampla negociação de preço entre múltiplos compradores. Pesquisadores têm

avaliado blockchain como um facilitador para a implantação de um mercado energé-

tico decentralizado, onde residências poderiam negociar energia entre elas.

A adoção de energia renovável, como solar e eólica, é considerada uma importante

medida para reduzir a emissão de gases relacionados ao efeito estufa. No final de

2018, o estado da Califórnia tornou obrigatória a instalação de painéis solares em

novas construções. A queda abrupta dos custos de instalação também impulsiona a

adoção de fontes renováveis (ORSINI et al., 2019). Mesmo que a lei da Califórnia não

tenha sido totalmente aplicada, ela representa um movimento em direção à energia

limpa e decentralizada.

Medidores inteligentes são uma outra tecnologia necessária em um mercado ener-

gético decentralizado. Eles medem a quantidade de energia comprada e vendida na

rede de energia. Medidores inteligentes, aliados a blockchain, permitem que com-

panhias de energia e prosumers - residências que eventualmente vendem energia

à rede - participem em um mercado de energia decentralizado em tempo real, sem

pagar nenhuma taxa (JOGUNOLA et al., 2019).

(ALAM, Asraful et al., 2019) defende que um mercado de energia em um microgrid

poderia aumentar a receita dos prosumers, reduzir o custo de energia e impor efici-

ência energética. Um microgrid é uma fonte alternativa quando os grandes sistemas

de transmissão sofrem algum apagão. Condições de tempo severas que causaram

apagões motivaram a criação do Brooklyn Microgrid em Nova Iorque (MENGELKAMP

et al., 2018). Lá, o microgrid pode operar em modo “ilha” independente das grandes

linhas de transmissão, obtendo maior resiliêcia.

Além de melhorar o sistema energético, o crescimento de fontes energéticas reno-

váveis trazem benefícios ao meio ambiente. Considerando essas vantangens e que

blockchain é visto como uma possível ferramenta para viabilzar um mercado de ener-

gia decentralizado, pesquisa neste tema pode conduzir a conclusões mais firmes a

respeito da aplicação de blockchain a mercados de energia.

(JOHANNING; BRUCKNER, 2019) avaliou projetos envolvendo blockchain e energia.

Apesar de reconhecer o potencial de se usar blockchain para comercializar energia,

os autores criticaram a documentação rasa dos projetos existentes. Também argu-

mentaram que trabalhos futuros devem trazer contribuições com mais profundidade

científica para convencer de que o risco de aderir a blockchain compensa.

(WANG, N. et al., 2019) também analisou soluções com blockchain nos mercados de

energia. O artigo deles indica a demanda por aperfeiçoamentos no incentivo do sis-

tema, consenso, regulação, testes com camada física e o impacto da escalabilidade.

(BLOM, 2018) apontou que medidores inteligentes talvez não possuam capacidade

de processamento para participar na blockchian, dependendo da complexidade do

mercado. Os dados provenientes de sensores levantam um outro problema lidado na

literatura: como um ambiente blockchain suportaria sensores Internet of Things (IoT)

enviando grandes quantidades de dados.

Um exemplo de trabalho que lida com o problema mencionado dos sensores é o

de (LE-DANG; LE-NGOC, 2019), que utiliza REST Application Programming Interfaces

(APIs) em dispositivos IoT para previnir uma alta utilização de recursos na blockchain.

Considerando estes problemas apresentados, é notavel que pesquisa na aplicação

de blockchain com IoT para viabilizar um mercado de energia decentralizado pode

contribuir significativamente na área de segurança computacional, visto a relevância

do tópico.

Objetivos

O objetivo principal deste trabalho é propor e analisar um mercado de energia P2P

que usa blockchain, considerando os modelos de mercados de energia já presentes

na literatura. Os objetivos específicos são:

• Propor um novo modelo de comercialização energética P2P em blockchain, con-

ciliando as ideias propostas na literatura e trazer a adoção de tal sistema mais

perto da realidade.

• Descobrir e propor uma solução razoável de privacidade para proteger os dados

dos participantes e, ao mesmo tempo, não esconder seus atos maliciosos na

rede.

• Descobrir e propor um mecanismo razoável para lidar com a quantidade de

dados gerada por medidores inteligentes, mantendo a integridade da rede e

permitindo escalabildade.

• Avaliar a performance de um sistema de comercialização de energia P2P em

blockchain, com soluções de privacidade e escalabilidade para verificar a possi-

bilidade da sua implantação.

Metodologia

Este trabalho foi realizado através de uma metodologia quantitativa, de natureza

aplicada, desenvolvida através de uma pesquisa exploratória contendo revisão da

bibliografia e experimentação em um estudo de caso. Para isso, foram levantadas

soluções da literatura envolvendo blockchain e mercados de energia. Esses trabalhos

foram avaliados em termos de detalhamento nas soluções de privacidade, escalabi-

lidade, arquitetura de mercado, implementação e tecnologia utilizada. Em seguida,

um modelo de comercialização de energia em blockchain foi projetado, com ano-

nimização dos compradores e processos de validação da energia ali transacionada.

Uma análise acerca da performance de tal sistema foi realizada com o prósito de

investigar a escala de suporte de participantes, em uma sequência de três rodadas

de experimento contendo um ordenador, um peer e um ou dois simuladores de sen-

sores, em uma rede Hyperledger Fabric. O experimento foi executado na estrutura de

computação em núvem da Amazon Web Services (AWS) para testes com diferentes

capacidades computacionais. Com base nos dados proveninentes dos experimentos,

discussões e conclusões foram elaboradas sobre o modelo proposto.

Resultados e Discussão

Os principais resultados decorridos da realização dos experimentos e análises estão

descritos a seguir:

• A implementação e execução do modelo proposto foram analisados em termos

de performance. Primeiramente, os dois possíveis bancos de dados suportados

pelo Hyperledger Fabric foram comparados considerando as demandas no mo-

delo desenvolvido e o LevelDB demonstra melhor performance, respondendo a

consultas mais rapidamente que o CouchDB.

• Explorando diferentes configurações da rede Hyperledger Fabric e variando a

capacidade do hardware que executava o modelo implementado nas três fases

experimentais, a rodada mais bem-sucedida suportou 5000 sensores, 5000 com-

pradores e 5000 vendedores transacionando na rede, o que indica a viabilidade

do modelo em um contexto de bairro.

• A utilização de armazenamento foi medida e avaliada, levando à conclusão

de que o modelo proposto deveria ser complementado com alguma solução

de resumo dos dados após determinado tempo, visto que os mesmos perdem

a importância com o passar do tempo e em um ano um peer e um orderer

gerariam 22.7 Terabyte (TB).

• Com base na demanda por processamento, armazenamento e os custos da estru-

tura de computação em núvem da AWS, uma estimativa de custo foi calculada e

comparada com o custo de transação da rede Ethereum, que apesar de distinta

do Hyperledger Fabric, é uma tecnologia relevante e presente em muitos traba-

lhos. O custo estimado foi de 9.92 ∗ 10–6 United States dollars (USD)/transação,

enquanto o custo considerado na rede Ethereum foi de 0.5 USD/transação.

• Comparando aos trabalhos relacionados, o modelo proposto trouxe mais clareza

e detalhamento sobre a relação entre blockchain e mercados de energia, co-

brindo aspectos como privacidade, escalabilidade, profundidade experimental

e dados empíricos. A comparação mais pertitente foi com o trabalho de (BLOM,

2018) que utilizou Ethereum para implementar um mercado de energia com 600

participantes, enquanto o protótipo deste trabalho suportou 15000, somando o

número de sensores, compradores e vendedores. O custo da rede aqui analisada

também foi significativamente mais baixo.

Considerações Finais

Este trabalho propôs, implementou e analisou um merdcado de energia em block-

chain com validação a partir de dados provenientes de sensores IoT. Isso é garantido

por um contrato inteligente executado por múltiplas organizações e que requer um

quroum mínimo delas para considerar uma geração de energia válida. A implemen-

tação protege o padrão de consumo dos compradores de energia por meio de um

algoritmo de k-Times Anonymous Authentication (k-TAA). A performance e o custo do

modelo foram avaliados e comparados com outro trabalho relevante que utilizou Ethe-

reum como plataforma de implementação. Tal comparação indicou que este trabalho

obteve melhores métricas. Como contribuições secundárias, métodos de pesquisa

diversamente configuráveis envolvendo Hyperledger Fabric foram apresentados. Mo-

dificações na implementação do Hyperldger Fabric também foram realizadas, visando

ampliar o suporte a domínios de aplicações diversos. Além disso, análises dos ban-

cos de dados no contexto do modelo foram apresentadas, podendo contribuir para

escolhas adequadas em trabalhos futuros.

Pesquisas futuras devem aprimorar a estimativa de geração energética renovável

com base nos dados meteorológicos originados em sensores IoT. Junto a isso, este

trabalho não explorou amplamente configurações da rede Hyperledger Fabric, adicio-

nando mais peers e orderers para avaliação de desempenho, o que pode ser realizado

também. Pesquisa com o acoplamento de um banco de dados georreferenciado ao

blockchain pode contribuir para a performance do modelo proposto. A participação

de sensores precisa ser estudada mais profundamente, visto que neste trabalho e-

les foram apenas simulados e nenhuma análise a respeito da sua capacidade de

participar em uma rede blockchain foi feita.

Palavras-chave: Energia. Blockchain. Performance. Escalabilidade. Anonimidade.

Hyperledger.

ABSTRACT

Renewable energy use has increased with environmental concerns due to the pollu-
tion generated by energy sources like coal and oil. Even though the cost of renewable
energy was initially much higher than power from dirty sources, the gap in cost
has been decreasing. With lower prices, people install solar panels to reduce their
electricity bill or, in some cases, even sell the surplus generated energy to the grid
and earn credits from the grid operator. When people sell power to the grid, they
are named prosumers. Generally, prosumers are limited to trade the energy they
generate with the grid company, dominant in price determination. Decentralized en-
ergy markets might increase both market competitiveness and incentive to further
people’s adoption of renewable energy. Also, a centralized energy market presents
security vulnerabilities and a lack of resiliency. In this context, blockchain is a widely
studied technology to provide decentralization for energy markets, mainly because
of blockchain‘s capabilities of being a cyber-resilient, immutable, transparent, and se-
cure distributed database. The literature shows many solutions to coupling blockchain
and energy markets, but much research is still needed to enable it. Scalability, pri-
vacy, market design, and user security are some of the open research topics of this
kind of application. Hyperledger Fabric predominantly appears in literature propos-
als of blockchain solutions in the energy markets context, and it is the tool used for
the model implementation. This work analyzes the literature related to blockchain
and energy markets, proposes a model, implements it, performs experiments, and
analyzes network scalability and data generation. The model enables validated clean
energy trading with anonymized buyers to prevent consumption pattern exposure.
The Hyperledger Fabric chaincode constantly receives sensors data and judges sell-
ers’ energy generation claims to be valid or not. For example, sensors capturing wind
speed might help prevent dishonest wind power sellers from selling more than they
could generate. Once the energy is validated, it can be exchanged among partici-
pants. Modifications on Hyperledger Fabric were necessary to implement the defined
model. The proposal development is sectioned into three parts: network deployment,
chaincode development, and applications development. This work adapted Fabric’s
implementation to perform scalability experiments with an increasing number of
buyers, sellers, and sensors. The experiments consist of three phases with configu-
rations changes aiming to increase the network capacity. The maximum transaction
throughput was achieved with 5000 sensors, 5000 buyers, and 5000 sellers. The data
generation rate by the network and the baseline deploy costs were also analyzed to
judge the network viability. This work brings empirical results on a topic which the
literature lacks. Furthermore, the experiment structure serves as a guideline for new
research with Hyperledger Fabric, regardless of the application field. Energy engineer-
ing researchers’ participation is required for enhancing the proposed models’ energy
validation process. This work explored a limited set of configuration variables, and
future works have countless different settings to analyze.

Keywords: Energy. Blockchain. Performance. Scalability. Anonymity. Hyperledger.

LIST OF FIGURES

Figure 1 – Grid/Microgrid actors . 26

Figure 2 – Blockchain general structure . 29

Figure 3 – SmartData unit field semantics . 35

Figure 4 – SmartData unit field example . 36

Figure 5 – Hyperledger Fabric network . 37

Figure 6 – Hyperledger Fabric network with a single channel 41

Figure 7 – Raft election example . 43

Figure 8 – Model entities and their actions . 52

Figure 9 – Considered physical topology . 54

Figure 10 – Sequence diagram (continues in Figure 11) 57

Figure 11 – Sequence diagram continuation . 58

Figure 12 – Membership Service Provider (MSP) folder structure 68

Figure 13 – Organization MSP folder structure - x509 in the left and idemix in the

right . 69

Figure 14 – Resulting network in docker . 73

Figure 15 – Possible ways to fetch a SellerInfo from World State 79

Figure 16 – Double auction in an alternative energy market 82

Figure 17 – Phantom read conflict in sequential blocks 84

Figure 18 – Phantom read conflict in non-sequential blocks 85

Figure 19 – Software Development Kit (SDK) vs. Gateway comparison 88

Figure 20 – AWS Regions and Availability Zones 97

Figure 21 – AWS deploy high-level sequence . 99

Figure 22 – Chaincode memory data in failure round (round 4) 120

Figure 23 – Chaincode memory usage post increase 121

LIST OF FRAMES

Quadro 1 – Research query . 45

LIST OF TABLES

Table 1 – Related work comparison . 50

Table 2 – Time and settings to fetch SmartData in a timestamp range by differ-

ent methods . 114

Table 3 – Time and settings to fetch SellerInfo by different methods 115

Table 4 – Time and settings to perform auctions, executing different methods

to fetch sorted SellBids and sorted validated BuyBids 117

Table 5 – Configurations that lead to failure in Phase 1 118

Table 6 – Configurations that lead to failure in Phase 2 119

Table 7 – Round configurations in Phase 3 . 122

Table 8 – Orderer data generation in Phase 3 123

Table 9 – Peer data generation in Phase 3 . 123

Table 10 – Orderer data generation in successful Phase 2 round 123

Table 11 – Peer data generation in successful Phase 2 round 124

Table 12 – Data generation and transaction estimates based on the successful

Phase 2 round . 125

Table 13 – Cost estimate based on round 4 of Phase 3 execution, but Phase 2

data generation and transaction rate 126

LIST OF ABBREVIATIONS AND ACRONYMS

AMI Amazon Machine Image

API Application Programming Interface

APIs Application Programming Interfaces

AWS Amazon Web Services

BRP Balance Responsible Party

CA Certificate Authority

CLI Command-Line Interface

CoAP Constrained Application Protocol

CPU Central Process Unit

DLL Dynamic-link Library

DNS Domain Name System

DRBG Deterministic Random Bit Generator

DSO Distribution system operator

DTLS Datagram Transport Layer Security

EBS Elastic Block Store

EC2 Elastic Compute Cloud

GB Gigabyte

Gbps Gigabits per second

GiB Gibibyte

gRPC Remote Procedure Calls

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

KB Kilobyte

k-TAA k-Times Anonymous Authentication

kWh Kilowatt-hour

MPC Multiparty Computation

MSP Membership Service Provider

OU Organizational Unit

P2P Peer-to-Peer

PoA Proof-of-Authority

PoS Proof-of-Stake

PoW Proof-of-Work

protobuf Protocol Buffers

RAM Random Access Memories

SDK Software Development Kit

SDKs Software Development Kits

SI International System

SSD Solid-State Drive

SSH Secure Shell

TB Terabyte

TCP Transmission Control Protocol

TiB Tebibyte

TLS Transport Layer Security

TSO Transmission system operator

UDP User Datagram Protocol

USD United States dollars

YAML YAML Ain’t Markup Language

LIST OF SYMBOLS

Ysc Yearly storage cost (USD)

GBMc AWS charge for monthly gigabyte storage allocation (USD)

Yg Monthly data generation (GB)

CONTENTS

Contents . 19

1 INTRODUCTION . 23

1.1 MOTIVATION . 23

1.2 JUSTIFICATION . 24

1.3 RESEARCH QUESTIONS . 25

1.4 OBJECTIVES . 25

1.4.1 Main objective . 25

1.4.2 Specific objectives . 25

1.5 WORK STRUCTURE . 25

2 THEORETICAL FRAMEWORK . 26

2.1 GRIDS AND MICROGRIDS . 26

2.1.1 Grid/Microgrid actors . 26

2.1.2 Energy markets . 27

2.1.3 Benefits of decentralization . 28

2.1.4 Challenges of decentralization 28

2.2 BLOCKCHAIN . 28

2.2.1 Categorization . 29

2.2.2 Consensus . 29

2.2.3 Smart contracts . 30

2.2.4 Tools . 30

2.2.4.1 Ethereum . 31

2.2.4.2 Hyperledger . 31

2.2.5 Side-chains . 32

2.2.6 Privacy . 33

2.3 SMART METERS . 33

2.3.1 Smart meter usage and security concerns on decentralized

energy markets . 34

2.4 SMARTDATA . 34

2.5 HYPERLEDGER FABRIC . 36

2.5.1 Main differences between Ethereum and Bitcoin 36

2.5.2 Network architecture . 37

2.5.3 Organizations . 38

2.5.4 Network administration and configuration 38

2.5.5 Peers . 38

2.5.6 Orderers . 39

2.5.7 Consortium . 39

2.5.8 Channel . 39

2.5.8.1 Smart Contracts (Chaincode) . 40

2.5.8.2 Transactions and Policies . 40

2.5.8.3 Private data collection . 41

2.5.9 Consensus . 41

2.5.9.1 Consensus general idea . 42

2.5.9.2 Raft . 42

2.5.10 Summarizing . 43

2.5.11 Idemix - identity mixing . 44

3 LITERATURE REVIEW . 45

4 BLOCKCHAIN ENERGY TRADING AND VALIDATION MODEL . . . 51

4.1 MODEL’S LITERATURE MOTIVATION 51

4.2 ENTITIES AND THEIR ACTIONS . 51

4.2.1 Sensors . 51

4.2.2 Energy sellers . 52

4.2.3 Energy buyers . 53

4.2.4 Validators and validation . 53

4.2.5 Payment companies . 54

4.3 ACTIONS FULL SEQUENCE . 55

4.4 MODEL MAIN CHARACTERISTICS . 59

4.5 FURTHER MODEL DETAIL . 59

5 PROPOSAL DEVELOPMENT . 60

5.1 NETWORK LOCAL DEPLOYMENT . 60

5.1.1 Hyperledger Fabric general creation steps 60

5.1.2 Environment with docker images 61

5.1.3 Network configuration files . 62

5.1.3.1 fabric-ca-server-config.yaml . 63

5.1.3.2 fabric-ca-client-config.yaml . 63

5.1.3.3 configtx.yaml . 64

5.1.3.4 core.yaml . 64

5.1.3.5 orderer.yaml . 65

5.1.3.6 Overriding configuration files . 65

5.1.4 Automated network creation script 66

5.1.4.1 Network created . 72

5.2 CHAINCODE DEPLOYMENT . 72

5.2.1 World State keys and values . 74

5.2.2 Choosing the most appropriate database 74

5.2.3 Identifying chaincode function callers 74

5.2.4 Main data structs . 75

5.2.4.1 ActiveSensor struct . 76

5.2.4.2 SmartData struct . 76

5.2.4.3 SellerInfo struct . 78

5.2.4.4 MeterSeller struct . 79

5.2.4.5 SellBid struct . 80

5.2.4.6 BuyBid struct . 80

5.2.4.7 EnergyTransaction struct . 81

5.2.5 Energy validation . 82

5.2.6 Auction chaincode events . 83

5.2.7 Avoiding transaction invalidation due to changes in Read-

/Write key set (Phantom reads) 83

5.3 APPLICATION DEPLOYMENT . 86

5.3.1 Fabric Software Development Kits (SDKs) 86

5.3.2 Fabric gateways . 87

5.3.3 Applications implementation . 90

5.3.3.1 Sensor’s application . 91

5.3.3.2 Buyer’s application . 91

5.3.3.2.1 Random generation configuration . 92

5.3.3.3 Seller’s application . 93

5.3.3.4 Utility’s application . 93

5.3.3.5 Payment company’s application . 94

5.3.4 Fabric-sdk-java logging and configurations 95

5.3.5 Service Discovery x Network file description 95

5.4 NETWORK AWS DEPLOYMENT . 96

5.4.1 Elastic Compute Cloud . 96

5.4.2 ARM vs. x86-64 deploy and costs 97

5.4.3 EnergyNetwork deploy steps in AWS 98

6 EXPERIMENTS . 100

6.1 EXPERIMENT DESIGN GOALS . 100

6.2 EXPERIMENT ADAPTATIONS . 100

6.2.1 Test applications . 100

6.2.2 Bypassing entities identification from certificates’ common

names . 101

6.2.3 One gateway per multiple entities of the same type to im-

prove thread efficiency . 101

6.2.4 Sensor application without block event 102

6.2.5 Discarding HTTP servers to improve experiment reliability . 103

6.2.6 Measuring chaincode execution 103

6.2.7 Limiting the number of sensors during validation 104

6.3 EXPERIMENT ROUNDS . 104

6.3.1 Experiment round configuration 105

6.3.2 Experiment round results . 106

6.4 EXPERIMENTS WITH DIFFERENT AWS INSTANCES 106

6.4.1 Phase 1 experiment . 107

6.4.2 Phase 2 experiment . 107

6.4.3 Phase 3 experiment . 108

6.5 DATA GENERATION RATE EXPERIMENTS 109

7 RESULTS AND DISCUSSION . 110

7.1 PRELIMINARY METRICS . 110

7.1.1 CouchDB vs. Go LevelDB . 110

7.1.1.1 Querying SmartData by timestamp range 111

7.1.1.2 Querying SellerInfo . 114

7.1.1.3 Querying sorted buy/sell bids to perform the auction 116

7.2 EXPERIMENT RESULTS . 117

7.2.1 Phase 1 experiment results . 117

7.2.2 Phase 2 experiment results . 118

7.2.3 Phase 3 experiment results . 119

7.3 DATA GENERATION RATE . 122

7.4 ENERGY NETWORK BASELINE COST ANALYSIS 125

7.5 ENERGY NETWORK VIABILITY . 127

7.6 RELATED WORK COMPARISON . 127

8 CONCLUSION . 130

8.1 CONCLUSION AND CONTRIBUTIONS 130

8.2 FUTURE WORK . 131

REFERENCES . 133

APPENDIX A – ENERGY VALIDATION CODE 141

*

23

1 INTRODUCTION

This Chapter presents our work motivation on the blockchain energy markets

theme, our research questions, and our work objectives. It briefly introduces the

concepts, tools, and problems which we deal with during the text.

1.1 MOTIVATION

Blockchain is a technology that enables a decentralized database in a P2P

context. It is widely known because of Bitcoin cryptocurrency (RAHOUTI et al., 2018),

and its structure is secure against tampering. Blockchain allows transactions between

nodes in a safe manner, without a TTP (Trusted Third-Party). It is considered as having

the potential to enhance the role of consumers in the energy trading system by

increasing security and reducing costs (WANG, N. et al., 2019).

In most energy distribution systems, residences with renewable energy sources

can only sell their excess produced energy to the utility company, which impedes

broader price negotiation with multiple bidders. Researchers have explored blockchain

as an enabler of a decentralized energy trading market, where residences could trade

electricity with each other.

Renewable energy adoption, e.g., solar and wind, is considered a relevant

action to reduce greenhouse gas emissions. In late 2018, the state of California made

installing solar panels mandatory on newly constructed buildings. Another driving

factor for its adoption is that renewable energy costs have steeply declined (ORSINI

et al., 2019). Even though the California 2018 law was not 100% applied, it represents

an upcoming move towards clean and decentralized power.

One relevant experiment with renewable energy is the Brooklyn Microgrid

(MENGELKAMP et al., 2018). In this project, the company LO3 Energy installed a

microgrid on top of the existing distribution grid and implemented a peer-to-peer

energy market on a small scale using blockchain. Until May 2021, the regulations for

peer-to-peer energy trading in New York still do not exist, which prevents a broader

adoption of the system.

Smart meters are another necessary technology for a decentralized energy

system operation. They measure the amount of energy bought and the amount of

energy that is sold to the grid. Smart meters, alongside blockchain, allow energy

companies and prosumers - residences that eventually sell electricity to the grid -

to adopt business-to-business or prosumer-to-prosumer energy trading in real-time

with, potentially, no fees (JOGUNOLA et al., 2019).

There are still open research topics on the blockchain energy trading schemes

in terms of system design, privacy methods to protect user data, and scalable solu-

tions to deal with the amount of data collected through the smart meters (WANG, N.

Chapter 1. Introduction 24

et al., 2019). (ANDONI et al., 2019) argues that consumers might resist blockchain

use in the energy markets due to lack of privacy and that this context requires a

blockchain with low latency and delay. These topics must be addressed to bring

this type of system closer to adoption. We focus on analyzing the scalability of our

blockchain energy trading model with privacy-preserving tools.

1.2 JUSTIFICATION

(ALAM, Asraful et al., 2019) argue that a power market in a microgrid could

increase the prosumer revenue, reduce energy cost, and enforce efficient energy

utilization. A microgrid is an alternative power source when the main grid systems

blacks out. Severe weather events that caused blackouts in New York City motivated

the implementation of the Brooklyn Microgrid project (MENGELKAMP et al., 2018). In

Brooklyn, the microgrid can operate in island mode, even when the primary grid does

not provide power, which improves power resilience.

Beyond energy system improvement, the growth in renewable energy produc-

tion brings environmental benefits. Considering the mentioned advantages and that

blockchain is seen as a possible tool for achieving a decentralized energy market in

a microgrid, research on the theme can lead to firmer conclusions on the viability of

coupling blockchain with energy markets.

(JOHANNING; BRUCKNER, 2019) surveyed blockchain-based energy projects.

Even though they recognized the potential of utilizing blockchain to trade energy,

they also found how barely documented the existing schemes were. Authors argued

that future work must provide scientific depth to convince taking the risk of using

blockchain in the energy system.

In (WANG, N. et al., 2019), blockchain-based energy trading solutions were

also analyzed. The paper indicates the need for improvements in system incentive,

consensus, regulation, tests with the physical layer, and scalability impact. (BLOM,

2018) considered that smart meters might not have enough processing capacity to

join the blockchain, depending on the market system’s complexity. The sensors data

raises another problem currently researched: how does the blockchain environment

fit with constrained IoT sensors sending a high load of data to the network.

An example of work that deals with the previously presented problem is (LE-

DANG; LE-NGOC, 2019), which uses REST APIs on IoT devices to prevent the issue

of high resource utilization by blockchains. Thus, it is notable that research on the

blockchain application with IoT to enable decentralized energy trading systems can

also lead to significant contributions in the computer security field, since it is a rele-

vant topic.

Chapter 1. Introduction 25

1.3 RESEARCH QUESTIONS

The research questions of our work are the following:

• At what scale blockchain supports an energy trading scheme?

• How can users’ consuming data be protected while still keeping them account-

able for misbehaving?

• How can the network guarantee that consumers buy the requested type of

energy (e.g, solar and wind)?

1.4 OBJECTIVES

1.4.1 Main objective

The main objective of this work is to propose and analyze a P2P energy market

system using blockchain, considering the already proposed decentralized energy

market models in the literature.

1.4.2 Specific objectives

The specific objectives are:

• Propose a new blockchain P2P energy trading model, conciliating different ideas

proposed in the literature and bring the adoption of such a system closer to

reality.

• Find and propose a reasonable blockchain privacy solution that protects user

data and, at the same time, does not cover malicious actions in the network.

• Find and propose a reasonable mechanism to deal with the data amount gener-

ated by smart meters, keeping network integrity and allowing scalability.

• Evaluate performance metrics of a blockchain P2P energy trading system with

privacy and scalability solutions to verify how feasible they are.

1.5 WORK STRUCTURE

The rest of this master’s thesis is structured as follows: our theoretical frame-

work is placed in Chapter 2. In Chapter 3, we present our systematic literature review.

Chapter 4 shows the proposed model architecture, while Chapter 5 presents how we

implemented and deployed it. Performed experiments and their objectives are de-

scribed in Chapter 6, and their results are discussed in Chapter 7. Chapter 8 concludes

our work and indicates possible future work.

26

2 THEORETICAL FRAMEWORK

In this Chapter, we will elucidate three key concepts that are part of our work

environment. We are going to explain the essential characteristics of microgrids,

blockchain, and smart meters.

2.1 GRIDS AND MICROGRIDS

“Microgrids are stand-alone power networks within small communities using

renewable energy and energy storage systems” (KANG et al., 2018). They are also

defined by (ALAM, Asraful et al., 2019) as “a cluster of distributed resources, loads

and energy storage devices within clearly defined electrical boundaries, which offers

higher local reliability and flexibility through the integration of energy resources.”

Figure 1 presents the main stakeholders of microgrids.

When microgrids/grids have smart meters as part of their structure, they be-

come smart grids (AVANCINI et al., 2019). Smart meters favor energy automation and

reliable power distribution control. They are elucidated in section 2.3.

Figure 1 – Grid/Microgrid actors

Source: (ENERGY, n.d.)

2.1.1 Grid/Microgrid actors

Different actors from the power structure ensure that the energy can flow from

the generating companies to the consumers. The main ones are described below.

Chapter 2. Theoretical framework 27

• Generating company: Responsible for generating power through coal, wind,

sun, water, nuclear and other types of resources.

• Ancillary Services: Generating companies with a fast start and responsible for

keeping frequency stability. They can be required by the Transmission system

operator (TSO) or Distribution system operator (DSO).

• TSO (Transmission System Operator): It is a company responsible for trans-

mission lines on a country scale, using ultra-high voltage lines.

• DSO (Distribution System Operator): Actor who receives energy from the

TSO and distributes it to consumers.

• Consumer: Residence, business, or industry that consumes energy.

• Prosumers: A type of consumer that also generates energy and sells it to the

grid. The most usual form is by installing solar panels on a rooftop of a building.

• Batteries: A tool to store generated energy to be consumed in the future.

• ESS (Energy Store System): Entity with the role of storing energy on a large

scale. Usually, it works with batteries or storing water in the high ground in the

form of potential energy.

2.1.2 Energy markets

Energy markets enable energy trading and help suppliers sell their energy and

consumers buy power. Usually, not all consumers are allowed to negotiate in energy

markets because they must meet some criteria. Nordpool is a relevant example of

the energy market and covers nine European countries. Austria, Belgium, Denmark,

France, and Germany participate in this network (POOL, 2020). There are generally

three types of energy markets, each one with different purposes. They are defined

below based on (PINSON, 2018).

• Day-ahead market: Supply and demand offers are negotiated for the following

day. Offers are matched through an auction.

• Intra-day market: Supply and demand offers are negotiated for the following

hours of the day. It closes at least 5 minutes before the hour of the scheduled

supply. For example, if consumer A desires to buy 20 MWh for the 15:00-16:00

period, they must close the deal until 14:55. Offers are not auctioned but con-

solidated by a bilateral contract.

• Balancing market: System operators (TSO or DSO) negotiate with ancillary

Chapter 2. Theoretical framework 28

services to keep power stability close to real-time. It is used for sudden im-

balances or when the imbalances could not be resolved through the intra-day

market.

Market clearing is a crucial energy trading concept. It represents the process

for matching the supply and demand offers, maximizing social welfare. Linear Pro-

gram is referenced by (PINSON, 2018) as a possible algorithm for market clearing.

After this process, a system price is found. Supply offers below the system price, and

demand offers above the system price are matched.

2.1.3 Benefits of decentralization

Unlike a centralized distribution, characterized by large power plants gener-

ating energy in a centralized, monopolistic way, the decentralized energy schemes

propose a fairer system. The traditional centralized energy model is not efficient, has

high costs, presents problems with security/privacy, and its development has met a

bottleneck (WANG, N. et al., 2019).

The first advantage of a decentralized scheme is that energy is produced near

the consumers, implying less power loss due to transmission distance. Decentralized

grids also enable trading between small producers like prosumers. Otherwise, the

prosumers could only trade with the DSO, usually by a price or credit established by

the DSO, in a centralized way.

In a market with more players, prosumers are more likely to receive a better

value for their produced energy, which raises the incentive for adopting clean energy

and reducing greenhouse gas emissions. Lastly, a decentralized energy system im-

proves power resilience because any generation problem at a large power plant can

be mitigated by the local prosumers supplying energy.

2.1.4 Challenges of decentralization

The increasing number of energy market participants due to energy market

decentralization escalates the trading complexity because instead of only trading

with the DSO, prosumers can trade with each other. The intermittence of solar and

wind generation by prosumers also represents a challenge since it makes it harder

for the energy system, as a whole, to keep stability. Clouds suddenly covering the

solar panels or wind stoping are typical examples of instability causes. The author of

(KAUR et al., 2016) deals with this problem by designing a forecast model.

2.2 BLOCKCHAIN

Blockchains are distributed ledgers, usually without a central authority, with a

tamper-resistant and tamper-evident structure (YAGA et al., 2018), enabled through

Chapter 2. Theoretical framework 29

public-key cryptography. This technology became well known for being part of Bitcoin

currency. Figure 2 shows how blockchains are formed. Each block is formed by a

header and a data segment. The transaction list is part of the data segment, while

the block’s cryptographic hash, the previous block’s cryptographic hash reference,

and a timestamp are parts of the header segment. The nonce represented in the

figure is not always essential but depends on the consensus mechanism, which will

be further explained. Each transaction performed by a node is digitally signed and

can be verified by all nodes using the public key.

Figure 2 – Blockchain general structure

Source: (YAGA et al., 2018)

2.2.1 Categorization

There are two main categories of blockchain: permissionless and permissioned.

Permissionless blockchains allow anyone to join the network, reading, and writing to

the ledger as wished. Permissionless blockchains are usually open source. Their con-

sensus rewards publishing protocol-conforming blocks and requires some expense -

work or stake - to validate blocks. These consensus constraints exist in permissionless

blockchains due to unknown user participation, who might act maliciously without

possible accountability (YAGA et al., 2018).

Permissioned blockchains have some restrictions on who can take certain ac-

tions in the network. The level of restrictions can vary according to the permissioned

blockchain policy. The ledger might be public for reading, but it may have access

control for transacting. These settings depend on the context where the network

is applied. With known users, the network consensus algorithm can be lighter than

permissionless ledgers (YAGA et al., 2018).

2.2.2 Consensus

Every node of the blockchain network stores the public ledger locally. There-

fore they must agree on the state of the ledger. Otherwise, each node would form new

Chapter 2. Theoretical framework 30

blocks following different criteria, and the network would become inconsistent. Con-

sensus algorithms are mechanisms to ensure that all nodes on the network (or most

of them) agree on the state of the legder. As an example, Bitcoin uses Proof-of-Work

(PoW) consensus algorithm.

Generally, in PoW networks, each newly created block’s hash H must meet

determined criteria to be considered valid. The criteria might be that H is less than

a number X, or H must start with a number of zeros (YAGA et al., 2018). The nonce

plays an essential role in the process of meeting the criteria. Miners, nodes that try

to find the next valid block, calculate the block’s hash following the formula H =

hash(transaction list + nonce). The nonce is changed until H meets the criteria. The

miner that finds a valid hash for the block is usually rewarded.

PoW consensus takes time and resources from nodes. This is good in a sense

because once a miner finds the valid block number Y, the smartest decision for the

other miners is to immediately try to mine the next block Y+1 since most likely they

will not earn rewards for the block Y.

However, this approach has limitations, like high energy consumption and low

throughput of transactions/second (WANG, S. et al., 2019). Proof-of-Stake avoids high

energy consumption because instead of requiring work, it requires a stake (coins)

"deposit," which can be taken away if the block validator behaves against the network

protocol.

2.2.3 Smart contracts

At first glance, blockchains might seem to be only a ledger to record data,

but smart contracts allowed the technology to go beyond that. Smart contracts are

a collection of code and data deployed on the blockchain ledger with deterministic

execution capabilities, enabling distributed applications.

A participant node deploys a contract in the network, and other nodes might

call functions from this contract. The deployer programs the contract’s logic as wished

and might impose restrictions on who can call and execute the contract’s functions.

The contract’s programming language is highly attached to the blockchain tool

(e.g., Ethereum, Hyperledger), and will be discussed more deeply in subsection 2.2.4.

In terms of cost, the contract can be charged by the miners/executors based on its

complexity, which also will be discussed below.

2.2.4 Tools

There are different blockchain implementations with different architectures.

The most cited by the related work in our literature review are Ethereum and Hyper-

ledger. Both will be explained below.

Chapter 2. Theoretical framework 31

2.2.4.1 Ethereum

Ethereum is a blockchain platform with a native cryptocurrency called Ether

and supports smart contracts, which are programmed in the Solidity programming

language. This language was designed to target the Ethereum Virtual Machine (EVM).

The main goal of Ethereum creation was to overcome Bitcoin’s scripting language

limitations and enable Turing-complete applications in a blockchain (VUJIČIĆ et al.,

2018). PoW is the consensus algorithm in Ethereum main net, and users pay miners

transaction fees using Ether to encourage the transaction execution.

Accounts represent users and smart contracts identities in the Ethereum net-

work. Externally owned accounts identify users, and contract accounts identify con-

tracts. The network uses public-key cryptography to create accounts. Creating an

account is equivalent to generating a key pair: a private key and a public key. The

account address is derived from the public key. Each account has a balance, while

contract accounts also have contract data storage. The network saves this data -

the current ledger state - and updates it every time a new block is mined (TRÓN;

JAMESON, 2020).

Deployed smart contracts might be programmed maliciously to harm the

blockchain. Programming an infinite loop on a smart contract could potentially halt

the network. Ethereum uses the gas mechanisms to prevent this type of attack. Gas is

the fundamental unit of computation. Usually, one gas represents one computational

step.

When a peer wants to perform a transaction calling a smart contract function,

they must explicitly inform the maximum transaction gas, limiting the number of

the computational operations taken by the miner. Also, the peer must tell in the

transaction how much they will pay for each gas (GASPRICE parameter). This tool

discourages malicious behavior from peers since they must pay miners to execute

each computational step (VUJIČIĆ et al., 2018).

2.2.4.2 Hyperledger

A set of blockchain frameworks forms Hyperledger. Burrow, Fabric, Indy, Iroha,

and Sawtooth are among those frameworks. Each of them has its purpose and design

goals, and we will focus on the Hyperledger Fabric, considering its adaptability for a

wide application range (BLUMMER et al., 2018).

Linux Foundation guides the development of Hyperledger Fabric to improve

prior permissioned blockchains limitations. Some of those limitations are related to

the consensus protocol, contract language inflexibility, denial-of-service prevention

from malicious contracts, and smart contract confidentiality (ANDROULAKI et al.,

2018).

Chapter 2. Theoretical framework 32

Hyperledger Fabric introduces a blockchain architecture to achieve resiliency,

flexibility, scalability, and confidentiality, enabling applications written in a standard

programming language. In 2020, Fabric was supporting smart contracts written in Go,

Java, and JavaScript programming languages.

The major differences between Fabric and Ethereum are the lack of built-in

cryptocurrency (e.g. Ether) and the execute-order-validate approach instead of order-

execute in Ethereum. Hyperledger provides a very modular architecture.

In Ethereum, the smart contracts are public and, to validate a new ordered

block created by a miner, all nodes execute the contracts’ called functions (order-

execute). Whereas, Fabric consensus protocol follows a different structure. There are

three types of peers: endorser, orderer, and validator.

First, a client submits a transaction proposal for endorsers. The endorsers

execute the transaction and send back the transaction with the result to the client,

digitally signed by them. Then, the client sends the signed transaction to the orderers.

The orderers follow a protocol to agree on which transactions will form the next

new block. When they achieve agreement, orderers propagate the new block through

the network, and all peers validate it. The validation process follows three sequential

steps.

• Validators check if all transactions followed the endorsement policy, requesting

that at least X endorsers sign each transaction.

• Validators check if there is any conflict on the ledger state version used by the

transactions.

• If the transaction meets the two mentioned criteria, the ledger is updated with

the transaction result.

Hyperledger Fabric form ensures more smart contract confidentiality and trans-

action throughput than Ethereum since only some endorsers know and execute a

specific contract. This represents an advantage over Ethereum, mainly due to the

permissioned architecture of Fabric.

In Section 2.5, we will present a more in-depth view of Hyperledger Fabric. This

tool deserves an exclusive section because it is the one in which we perform our

experiments.

2.2.5 Side-chains

The side-chains structure allows transactions occurring off the main chain,

like Ethereum’s main chain, and improves the scalability of blockchains, which is

fundamental in scenarios where IoT devices are part of the network (JEON; HONG,

2019). The efficiency can be obtained because the side-chain might have its design

Chapter 2. Theoretical framework 33

in terms of block structure, consensus, block time, or other characteristics. Plasma

is a framework for using side-chains in the Ethereum environment. Periodically, the

Plasma chain can send the Merkle roots of the transactions to the main chain.

Ethereum’s main net uses Proof-Of-Work consensus, which is costly and slow.

A Plasma side-chain can achieve much higher transaction throughput by adopting a

more efficient consensus algorithm, like Proof-of-Authority (Proof-of-Authority (PoA))

or Delegated Proof-of-Stake, thus providing a faster blockchain network (ZIEGLER

et al., 2019).

2.2.6 Privacy

A Blockchain’s important characteristic is the immutability and the possibility

to verify performed transactions on the ledger. However, blockchains face challenges

for ensuring the privacy of network users’ data and complying with privacy regula-

tions. Solutions like SMPC (Secure Multiparty Computation), Zero-Knowledge Proofs,

mixing services, ring signatures, commitment schemes, homomorphic encryption,

attribute-based encryption, and secret sharing are possible tools that might be used

to improve blockchains’ privacy (BERNAL BERNABE et al., 2019).

2.3 SMART METERS

General meters have the primary function of regularly and precisely measuring

the power flow into buildings. Their most common and old type is the electromechani-

cal analogical meter. The more modern ones are integrated with digital microtechnol-

ogy and are called smart energy meters, without mechanical moving parts (AVANCINI

et al., 2019).

The first generation of smart meters’ main characteristic was to report con-

sumption remotely to the power provider, which helped load-leveling the power net-

work and reduce the human labor necessary to bill consumers. Different from analog-

ical meters, smart meters can send information in short time intervals, like 15 min.

Analogical meters only display the total consumption.

A smart meter must have at least one communication interface but might have

more than one to ensure communication reliability. It might use Ethernet, power line,

ZigBee, Wi-Fi, mesh, cellular, and other types of communication networks (AVANCINI

et al., 2019).

A large number of smart meters must be efficiently handled since they gener-

ate large loads of data in the order of terabytes (AVANCINI et al., 2019). Because of

that, smart grids need an infrastructure with data centers, servers, storage, database,

and virtualization systems to handle these data.

Chapter 2. Theoretical framework 34

2.3.1 Smart meter usage and security concerns on decentralized energy

markets

The (AVANCINI et al., 2019) authors consider it feasible to estimate household

characteristics from the information captured by smart meters. How many occupants,

how long each occupant stays at home, how many electronic devices are there, and

the presence of security systems are some of the information that can be estimated

by analyzing data sent from smart meters.

This possible inferring on people’s behavior represents a security vulnerability

that must be considered when dealing with smart meter data. Otherwise, instead of

helping energy consumers and producers, they could potentially cause harm.

Smart meters are part of many energy market types and indispensable on a

decentralized one. They collect energy flow data, which is used to track the consump-

tion/generation of each consumer/prosumer at a specific time interval.

The authors of (KAMAL; TARIQ, 2019) researched how to provide security solu-

tions on a smart meter infrastructure. They treated light-weight security algorithms

as a requirement for this type of device, considering its low computational capabili-

ties.

Those smart meter characteristics must be considered when conceiving an

energy market design. If their role on the network overcomes their capacity, the

decentralized market will not work.

2.4 SMARTDATA

SmartData is a standardized high-level Application Programming Interface (API)

that facilitates IoT-related application development. It gathers a set of relevant at-

tributes regarding data measured by sensors as the unit, spatial location, timestamp,

and reliability (MEDEIROS FRÖHLICH, 2018).

Code 2.1 demonstrate how SmartData is represented in JavaScript Object Nota-

tion (JSON) format. The field version determines if the device is stationary, in version

"1.1", or moving, version "1.2". The metric is sensed by the device of identification

dev and has a value related to a unit. An uncertainty degree about the data might

be declared. The coordinates x, y, z express the measure absolute spatial location

associated with a specific instant represented by timestamp t. Version "1.2" also

supports the SmartData cryptographic signature (LISHA, 2020a).

Code 2.1 – Smart Data fields

1 {

2 "version" : unsigned char

3 "unit" : unsigned long

Chapter 2. Theoretical framework 35

4 "value" : double

5 "uncertainty" : unsigned long

6 "x" : long

7 "y" : long

8 "z" : long

9 "t" : unsigned long long

10 "dev" : unsigned long

11 "signature": string

12 }

Figure 3 presents the organization of the unit field. The unit bit 31 indicates

whether the value is digital data - images, audio, switches, and buttons - or an

International System (SI) physical measure like temperature, acceleration, electric

current, fluid flow, and others. Even though Code 2.1 displays value as double, the

bytes in it might store a 32-bit integer, a 64-bit integer, or a 32-bit float IEEE 754

(COMMITTEE, 2019). The correct interpretation is indicated by the two NUM field bits.

The MOD field determines whether the unit is directly described, represents the ratio

of units, is in logarithmic scale, or represents a logarithmic ratio.

Figure 3 – SmartData unit field semantics

Source: (LISHA, 2020b)

The bits 26 to 0 are divided into unsigned three-bit fields, each representing

a SI unit exponent that determines the SmartData unit as a whole (LISHA, 2020b).

The exponent ranges from -4 to 3 and can be calculated by Equation (1). Figure

4 provides an example of an encoded unit, with the first line showing this unit is

represented as hexadecimal. The following lines have the unit binary representation

and the discrimination of each field value.

exponent + 4 = unitThreeBitField (1)

Chapter 2. Theoretical framework 36

The bits 31 to 27 indicate that the example measured data is from the SI,

encoded as a double IEEE 754, and the unit is directly described. In the interval of

bits 26 to 0, all the exponents with the binary value ‘100’ indicate the absence of that

SI unit since their value is equivalent to 4 in base ten arithmetic. Therefore, based on

Equation (1), their exponent is 0. In Figure 4, only the exponents m+4 (meter) and

s+4 (second) are different from ‘100’, with exponents of, respectively, 1 and -1. This

leads to the conclusion that the SmartData unit is a meter per second (m1 ∗ s–1).

Figure 4 – SmartData unit field example

Designed by author

2.5 HYPERLEDGER FABRIC

In this Section, we explain the key concepts of the Hyperledger Fabric network.

We intend to give a solid idea about how the network works without bringing all

the details, which can be found in Hyperledger Fabric’s documentation (TEAM, F. D.,

2020a). We first present the network elements separately. Then in Section 2.5.10, we

summarize how all those elements work together.

For more practical information on the tools used to implement Hyperledger

Fabric and how to start a Fabric network refer to Chapter 5. In this Chapter, we focus

on the theoretical architecture and principles.

2.5.1 Main differences between Ethereum and Bitcoin

Hyperledger Fabric’s main differences to platforms like Ethereum and Bitcoin

are the permissioned structure and distributed transaction execution. In Hyper-

ledger Fabric, the transaction can be validated by only some peers, whereas in

Ethereum, all peers validate the transactions.

At first glance, this validation process might seem insecure, but we must re-

member that in Hyperledger’s model, there is some implicit trust among network

participants. Also, the workload of validating transactions can be distributed more

efficiently, increasing the network’s throughput, because only a subset of peers can

Chapter 2. Theoretical framework 37

be required to validate each transaction.

Another difference is the way Fabric stores data. For this purpose, Fabric has

two components: the ledger and the World State. The ledger is simply the log of

all transactions performed in the network. For example, if an asset was first owned

by User1, transferred to User2, and finally sent to User3, all these transactions are

registered in the ledger.

The World State only stores the current valid network state. Considering our

asset transfer example, the only information present in the World State would be that

User3 owns the asset. No information about previous owners would be stored in the

World State.

2.5.2 Network architecture

Figure 5 displays a complete Hyperledger Fabric version 2.3 network containing

the main stakeholders. The blockchain core elements are inside the N frame, with

peers, orderers, smart contracts, and configurations. Outside the blockchain core,

applications and certificate authorities participate in the network.

Figure 5 – Hyperledger Fabric network

Source: (TEAM, F. D., 2020a)

• N: Network

• R1, R2, R3, R4: Organizations represented by different colors

• CA1, CA2, CA3, CA4: Certificate authorities

• NC4: Network configuration

• O4: Orderer

• C1, C2: Channels

Chapter 2. Theoretical framework 38

• CC1, CC2: Channels’ configuration

• P1, P2, P3: Peers

• L1, L2: ledgers

• S5, S6: Smart contracts

• A1, A2, A3: Applications

2.5.3 Organizations

Organizations represent a company, a group of people, or a set of machines.

Each member of an organization has their membership validated by Certificate Au-

thorities. In Figure 5, there are four Certificate Authorities (CA1, CA2, CA3, CA4), one

for each organization, even though different organizations may use the same Certifi-

cate Authority. We must remember that Hyperledger Fabric enables a permissioned

network in which different members have different roles and permissions. The Cer-

tificate Authorities have a key role in helping the permission identification of each

network user.

2.5.4 Network administration and configuration

The network can be configured to have multiple administrators since creation.

However, in Figure 5, only the R4 organization created the network, and it can add

other nodes to manage the network and participate in network policies definition.

We can see that just above the NC4, there are the organizations R4 and R1. In

this scenario, R4 was the initial network creator and added R1 as an administrator

afterward.

2.5.5 Peers

Peers are members of organizations that can interact with the network and

might host ledgers and smart contracts. In Figure 5, they are represented by P1, P2,

and P3. Applications (A1, A2, A3) hosted outside the network must interact with

the network ledger and contracts through a peer. A peer can participate in multiple

channels, which will be explained in Section 2.5.8.

Information is transmitted among peers through a gossip protocol that con-

tinuously discovers other peers, keeps block synchronism, and updates ledger data

while maintaining speed. Every organization has a gossip leader that communicates

to the ordering service to pull blocks (PROJECT, 2020). The leadership can be static

or dynamically established through elections. If the current leader stops sending

heartbeats, a new election starts.

Chapter 2. Theoretical framework 39

Every organization also has at least one anchor peer declared in the channel

configuration. Anchor peers have information about all peers from the same organiza-

tion and are responsible for passing it to other organizations. For example, assuming

that Figure 5 omits a peer P4 from organization R3 and P3 is an R3 anchor peer, P3

will inform P2 about P4’s existence if they gossip. Otherwise, peers from different

organizations would never gossip or know about one another’s existence.

A Hyperledger Fabric peer can have two types of assignments in the network:

• Committing peer: A node that receives blocks from the orderer validates and

commits them to its local ledger. Every peer is a committing peer.

• Endorsing peer: A node that hosts a smart contract and endorses transactions

sent by client applications (This type of peer is further explained in Sections

2.5.8.1 and 2.5.8.2).

2.5.6 Orderers

Orderers are responsible for enforcing the consensus on the network. They

receive transactions from applications and form blocks sent to peers, resulting in the

network consensus since the same block will be replicated in every peer. The ordering

service acts according to the NC (Network Configuration) file.

The orderers participate in one common channel, called syschannel, to order

the blocks. Before each orderer is initialized, they usually receive a genesis block file

built based on the NC (Network Configuration) file. The information about certificates,

organizations, consortiums, and orderers’ hosts is in the genesis block.

2.5.7 Consortium

A consortium is defined as a set of network members who need to transact

with one another. In Figure 5, it is possible to see two consortiums. One is formed

by R1 and R2, while R2 and R3 form the other consortium. All consortiums must be

defined by network admins in the Network Configuration file, represented by NC4 in

Figure 5.

2.5.8 Channel

After the consortium’s creation, it is possible to set up a channel for its mem-

bers. The channel serves as a private communications mean among the consortium’s

participants. There is one individual ledger to each channel. Only peers from the

channel’s organizations can host and execute smart contracts.

We can verify these characteristics in Figure 5 by looking at the organizations’

and peers’ colors. In channel C1, peer P1 is a member of organization R1, and peer

Chapter 2. Theoretical framework 40

P2 is a member of organization R2, as they match colors.

Only channel members can define the channel configurations through the

Channel Configuration file, represented by CC1 and CC2 in Figure 5. Channel admins

can decide dynamically what ordering nodes can participate or must abandon the

channel blocks’ ordering.

2.5.8.1 Smart Contracts (Chaincode)

Smart contracts are programs that enforce rules and business models while

members transact in the network. These contracts receive transaction requests with

inputs and may reply to the requester or modify the ledger. In Hyperledger Fabric

version 2.3, each smart contract might be programmed in Go, JavaScript, and Java

programming languages.

The chaincode is formed by a set of smart contracts. A peer can host multiple

chaincodes, such as one for channel C1 and another for channel C2. It is also possible

that the same chaincode can modify multiple ledgers, if multiple channels host it.

The smart contracts within the same chaincode share the same State, or, for

better understanding, the same “memory space.” Suppose a smart contract A within

the same chaincode as smart contract B writes to the variable C. In that case, the

smart contract B can also access variable C. Even though it is possible to have two or

more smart contracts in a chaincode, the most common practice is to put only one

smart contract for each chaincode.

2.5.8.2 Transactions and Policies

Hyperledger Fabric does not require that every peer validate every transaction.

Instead, the validation process follows the endorsement policy. Let us consider the

following scenario in Figure 6. An external application, A1, wants to call a smart

contract function that performs a simple change in the World State. The C1 channel’s

endorsement policy states, “every transaction must be signed by at least two peers

to be considered valid.”

To effectively call the smart contract function, the external application will have

to send the transaction proposal to two different peers (P1 and P2). The peers will

receive the proposal, simulate the transaction, and sign a response with the resulting

World State change.

After collecting all signatures, the application sends the transaction to the

ordering service O4. When O4 decides to form a new block for channel C1, O4 will

propagate the block for P1 and P2. Then, finally, the peers will modify their local

ledgers and the World States, after checking the transaction validity.

Every transaction has a Read/Write key set, informing the read and modified

states. A transaction might be invalidated because some read state was modified by

Chapter 2. Theoretical framework 41

another transaction ordered before. As an example, consider that transaction A reads

state X and writes to state Y. Simultaneously, transaction B modifies X. If transaction

B reaches the orderer before transaction A, then transaction A will not be validated

because it read the old X value. We elaborate on the ordering service block creation

in Section 2.5.9.

Figure 6 – Hyperledger Fabric network with a single channel

Source: (TEAM, F. D., 2020a)

2.5.8.3 Private data collection

Private data collection allows private transactions among members of the

same channel without creating a new one. The transaction flow for private data is

different from regular transactions. First, the client application sends the proposal for

the endorsing peers (private data collection peers), which endorse the transaction,

save the transaction result in a temporary data store and respond with a signed

proposal. The proposal only contains hashes about private data keys and private data

values.

The client application forwards the endorsed proposal to the orderer. When a

new block is created, the private data collection peers will either apply the change

saved in the temporary data store or fetch the data from another peer.

2.5.9 Consensus

The PoW consensus, used by Bitcoin and Ethereum, is not deterministic due to

the lack of guarantee that a mined block will be accepted as the next block by the

whole network. In other words, there is the possibility of chain forks happening. A

fork occurs when two miners generate two different valid blocks simultaneously, and

the network’s nodes are not clear on which one should be considered the next block.

Usually, forks are resolved by waiting for further blocks to be added to the chain. The

longest chain is considered the correct one.

In Hyperledger Fabric, there is no such complexity since the consensus process

is deterministic. This is achieved through tools like Raft and Kafka, executed by

Chapter 2. Theoretical framework 42

the orderers. Both tools are crash fault-tolerant and meant for environments with

certain trust among stakeholders.

Raft is the recommended consensus in Hyperledger Fabric version 2.0, as

Kafka is deprecated. Both tools have a leader and follower architecture. In section

2.5.9.1, we describe the consensus idea, and in section 2.5.9.2, we describe how Raft

enables this consensus idea.

2.5.9.1 Consensus general idea

Considering a network with four orderers, each orderer receives endorsed

transactions from applications, and the received transactions set will probably vary

among the orderers. Because of that, they must have a process to agree on the

transaction sequence of the next block.

To ensure consensus, Hyperledger Fabric orderers follow a leader/follower pro-

tocol. The four orderers must elect a leader, and the remaining three orderers are

classified as followers. The followers send their received transactions to the leader,

and the leader decides on the transaction order of the next block. After that, the

followers receive the next block from the leader and send it to peers.

When peers receive the new block, they validate each transaction following

the endorsement policy and considering the World State modifications. Every peer

follows the same validation process, which ensures that the ledger changes are the

same.

All Hyperledger Fabric current consensus implementations are crash fault-

tolerant (CFT) but not Byzantine fault-tolerant (BFT). A CFT consensus guarantee

that the network will function even if some nodes crash, while a BFT consensus guar-

antee network normal function even if some nodes act maliciously (PODGORELEC

et al., 2019)

2.5.9.2 Raft

Raft is also a crash fault-tolerant consensus tool for the Hyperledger Fabric, and,

different from Kafka, which Apache implements, Fabric has its native implementation

of Raft. It follows the leader/follower architecture, and it is embedded into each

orderer.

All nodes start as followers. If a node does not receive a heartbeat or blocks

from the leader after some time, it enters the candidate state when a node asks other

nodes for votes. If the candidate collects enough votes to satisfy the channel quorum,

it is considered a leader. In the case of a leader crash, another leader is elected by

the same steps.

Figure 7 shows the raft election beginning with four nodes. Each Raft node

represents a single orderer. Node D and Node C have the timeout expired at the same

Chapter 2. Theoretical framework 43

moment. The green circles represent vote requests sent to other nodes.

Figure 7 – Raft election example

Source: (DATA, 2020)

After the election, all transactions received from client applications by followers

are routed to the leader. After some time or after a collected transaction quantity,

the leader orders transactions, forms a block and sends the block to followers. The

followers and the leader forward the new block to the peers.

Each channel selects a consenter set of orderers. There is one instance of the

Raft protocol for each channel, which implies one different election, one different

leader, and a separate consensus. Even though this design choice might seem unnec-

essarily expensive, the designers claim that it represents the first step for achieving a

future Byzantine fault-tolerant consensus in Hyperledger Fabric (TEAM, F. D., 2020d).

2.5.10 Summarizing

First, a node creates the network by defining a Network Configuration file

and instantiating an ordering service. Other nodes are added following the Network

policies and are always associated with a Certificate Authority. When already in

the network, two or more organizations are free to create a consortium associated

with a channel. Only the members of the channel define its policies in the Channel

Configuration file. They decide who can interact with the ledger by reading and

writing. Also, they decide policies for administration, ordering, and endorsement.

For example, the channel’s administrators might decide that each transaction

will require at least half of the peers’ signatures. Peers in the network can install

a chaincode, which serves as a container for related smart contracts. Nodes can

communicate privately using Private Data Collection within the same channel, and

Chapter 2. Theoretical framework 44

only private data hash is published publicly to the channel.

When channels begin to generate transactions and data, the orderers group

them and assemble blocks. The orderers know nothing about the transaction seman-

tics, as they only verify the endorsement policy and assemble blocks for each channel

to achieve consensus.

We presented the most common action flow in a Hyperledger Fabric network,

but many other configurations are possible since the network is very modular. For

example, in Fabric’s version 2.3, the channel admins can decide what orderers partic-

ipate in the channel, even though Figure 5 shows only a single orderer.

2.5.11 Idemix - identity mixing

Hyperledger Fabric supports zero-knowledge proof transactions with idemix.

Zero-knowledge proof lets a prover P convince a verifier V that P knows a secret

without explicitly exposing the secret (CAO; WAN, 2020). V makes random requests

with some parameters for P to perform calculations and reply with the result. After

some rounds of successful requests and answers between P and V, V decides that it

is highly probable that P knows the secret.

Idemix, briefly mentioned by (CAMENISCH; LYSYANSKAYA, 2004) and specified

by (AU et al., 2006), allows that applications transact anonymously in the network.

Each organization must define whether it signs with default x509 or idemix. However,

the downside of using idemix is that organizations cannot endorse transactions or

approve chaincode definitions. Therefore, idemix organizations also cannot have

active peers or orderers.

Ideally, a network should have as few idemix organizations as possible be-

cause some policies require that most organizations sign a change. If half of the

organizations have idemix, changes will be hindered. Idemix provides a way to make

all transactions by the same entity unlinkable to one another. To accomplish that,

Hyperledger generates a new pseudonym to sign every new transaction. Overall, it

is a useful tool if the network requires anonymous transactions from applications.

45

3 LITERATURE REVIEW

The following questions drove this literature review:

• What are the current solutions presented in the literature about blockchain

energy trading?

• What are the limitations of the current schemes?

We performed a search on IEEE (Institute of Electrical and Electronics Engi-

neers) through the query in Frame 1. We selected the 18 most relevant papers to

be analyzed through abstract and full-text reading. Two papers were immediately

rejected. One of them was rejected due to having a publication date before 2018,

and the other because its main focus was vehicular energy trading. We read the re-

maining 16 papers, plus the other eight relevant works cited by these 16 since their

content complemented some aspects not covered by the ones found by query results.

We assessed the full text of these 24 papers and selected the most related to our

proposal.

Quadro 1 – Research query

"All Metadata":"Blockchain" AND "All Metadata":"energy" AND
("All Metadata": "trade" OR "All Metadata":"trading")

The authors of (PEE et al., 2019) propose a decentralized energy trading

scheme enabled by an ESS (Energy Store System), with the price set by the DSO

(Distribution System Operator). Sellers and buyers inform the energy amount to be

sold or bought, and an Ethereum smart contract performs the matching. The work

provides a general idea of a blockchain energy trading system. However, it is far from

meeting the real world’s needs due to its simplicity and not mentioning scalability

and privacy.

(KANG et al., 2018) also proposes a blockchain energy trading solution using

Ethereum. A contract is created and deployed on the blockchain for each energy

transaction between consumer and prosumer. The consumer calls a function from the

deployed contract offering a bid to the prosumer. When there is a match between

bids, the energy is transferred, and the payment is performed. Even though the

last cited work admits to being only a starting idea, it is interesting to mention its

weaknesses. There is no market clearing process, and each transaction requires a

new contract, which is unnecessary in terms of storage usage. The solution uses

a consensus method like PoW in a private Ethereum network, whereas the authors

could have taken advantage of the privacy and use a lighter consensus algorithm.

In (LU et al., 2019), a blockchain-based energy trading scheme is designed with

Chapter 3. Literature review 46

two layers. The first layer consists of a private blockchain to support local energy trad-

ing in a community context. In the second layer, regional energy aggregators trade

energy cross-regionally. The energy aggregators are also responsible for coordinating

the transactions locally, acting as a third-party manager.

The work proposes a Proof-of-Stake consensus method based on each node’s

credit score, and tokens signed by aggregators serve as energy credits to be con-

sumed. The authors performed a mathematical analysis of their system performance,

and they did not mention any blockchain tool. Payment off-chain and mixing private

and consortium blockchains are considered as solutions to protect user privacy. They

suggest improving scalability and performance as to future work.

The proposal in (HUSSAIN et al., 2019) describes a blockchain solution for en-

ergy trading between the DSO/Ancillary Services and their clients only. It does not

enable P2P energy trading, while it recognizes that P2P trading’s complete implemen-

tation still faces challenges. The authors advocate using permissioned blockchain

tools like Enterprise Ethereum and Hyperledger Fabric in energy schemes, as they

allow more efficient consensus algorithms like PoA and Proof-of-Stake (PoS). Lighter

consensus methods are more suitable for constrained smart meters.

An Ethereum smart contract is presented. Each new block is added by autho-

rized nodes using PoS consensus with grades calculated from past network behavior.

The authors argue that blockchain can mitigate smart meters’ communication secu-

rity vulnerabilities. As a future direction, the work indicates the implementation of a

fully decentralized energy trading system.

The authors of (ALAM, A. et al., 2019) suggest a double-chained blockchain en-

ergy trading scheme. One chain stores smart contracts that report the power status

of a user, and the other chain enables energy negotiation. The work argues that a

decentralized blockchain energy trading scheme provides cyber resilience, eliminates

monopoly, is transparent, and provides security. Research on optimizing the consen-

sus and protecting the network against DoS (Denial of Service) is mentioned as future

work. The paper describes only a generic blockchain energy trading scheme.

On (DORRI et al., 2019) proposes a P2P energy trading scheme through an

Ethereum private blockchain. On the scheme, the producer pays or requests for the

network authorities to join the network. Once in the network, the producer deploys

a smart contract to keep their price and available energy amount updated. The

consumer performs a Commit to Pay transaction, putting the money on hold until the

producer releases the energy. When energy is delivered, the consumer/buyer informs

the network through an Energy Receipt Confirmation, and the funds are transferred

to the producer. Transaction fees reward the block miners and serve as an incentive.

The authors present a proof-of-concept with two Raspberry Pi, using a Python

extension to interact with the Ethereum blockchain and using Ether cryptocurrency

Chapter 3. Literature review 47

as a payment method. They evaluated the system behavior with reliable and unreli-

able nodes. The authors also presented performance metrics like end-to-end delay,

monetary cost, transaction throughput, and blockchain size.

The work of (KODALI et al., 2018) presents a blockchain P2P energy trading

scheme implemented with Hyperledger Fabric. It considers three main stakeholders:

energy nodes, energy aggregators, and smart meters. Residents can trade with the

utility (DSO) or with other residents. The architecture has its own coin that can be

converted to fiat money. The energy aggregator acts as a broker and manages the

trades. Even though the scheme is not very detailed, the work describes and classifies

different Hyperledger services. Fabric, Iroha, and Sawtooth are compared with each

other in consensus algorithm, consensus approach, and advantages.

The paper (WANG, S. et al., 2019) brings a more detailed description and a

more in-depth analysis of blockchain decentralized energy markets if compared to

the previously described papers. It shows a market structure closer to real centralized

solutions like Nordpool (POOL, 2020). The market is split into two phases: the day-

ahead and the real-time market, explained in Section 2.1.2.

In their system, prosumers are classified as Type 1 or Type 2. Type 1 prosumers

submit entirely to the power operator (DSO), and negotiations between them occur

in the day-ahead market. Type 2 prosumers can trade with the DSO and between

each other, but only in the real-time market. Since the authors’ predominant areas

are electrical and electronic engineering, the scheme focuses on Optimization Power

Flow (OPF) solution and energy distribution.

They chose Hyperledger Fabric as an implementation tool because it met their

requirements. The authors wanted a permissioned chain restricted to consumers/pro-

sumers within the distribution area, efficient smart contract execution, practical con-

sensus, and a model that protected users’ privacy. It is essential to highlight that

they did not consider any other privacy protection mechanism beyond simply using

Hyperledger Fabric. Even though they propose a decentralized market system, the

DSO still plays a central authority role.

In (JEON; HONG, 2019), the blockchain energy trading model introduces side-

chains (Plasma and Plasma Cash) on Ethereum to solve scalability problems and

address smart meter computational constraints. Smart meters act as automated

agents to trade energy. The energy trading process between microgrid’s participants

happens on the side-chain, and the Merkle root of each block on the side chain is

published in the main chain (Ethereum main net).

There is a centralized operator responsible for managing the side-chain. The

authors cite higher throughput, reducing main net use, and the reliance on the main

net as major advantages for their model. They claim that future research should

design real use cases of microgrid energy trading.

Chapter 3. Literature review 48

The authors of (HUANG et al., 2019) focus on the blockchain energy trading

system’s IoT part. They propose a proof-of-concept with Sigfox for smart meter com-

munication and Ethereum as the blockchain tool. On their solution, smart meters

send information and requests directly to the Sigfox Cloud, and blockchain miners

are responsible for retrieving the data and publishing it on the chain.

The main contribution of (HUANG et al., 2019) is on IoT communication. They

tested the Sigfox technology communication range and concluded that in a 1 km

range, the Sigfox delivery success rate was 100%. The integration with the blockchain

part of the system is mentioned as future work.

The Master thesis presented by (BLOM, 2018) evaluates the feasibility of a

blockchain energy trading system. It covers aspects like motivations for adopting

such a system, (Norwegian) regulation, required infrastructure, challenges, desired

blockchain characteristics, and implementation. The market design was divided into

three parts: day-ahead, real-time, and load curtailment. The market clearing is per-

formed off-chain by a node and verified on-chain.

The three market parts were simulated with Ethereum smart contracts, which

are published on Github. The day-ahead simulation and real-time markets were sim-

ulated with 600 nodes, while the load curtailment market was simulated with 25

nodes. The author analyzed the cost of the system based on the gas spent by all

transactions.

Finally, the author classifies eight statements about the proposed scheme fea-

sibility as true, false, or probable. The conclusion briefing was that the feasibility could

not be proven, but some good evidence indicates that decentralized P2P blockchain

energy trading is feasible. The work gives explicit and implicit future directions. Some

are listed below.

• Perform tests on blockchain platforms other than Ethereum.

• Test the proposed system with real computers and smart meters.

• Propose privacy-preserving schemes for the blockchain energy market.

• Improve network scalability.

A privacy scheme with Multiparty Computation (MPC) is presented in (ABIDIN

et al., 2018). Their algorithm design is based on blockchain energy trading models,

but the solution was implemented in C++ and was never tested in a blockchain

environment. The authors affirm that the simulation performed with real energy data

from Belgium indicates that the solution is feasible in a blockchain tool. The authors

also present performance metrics regarding CPU operations, and their protocol was

analyzed in security aspects with the Universal Composability framework. Optimizing

the MPC implementation is mentioned as future work.

Chapter 3. Literature review 49

The work (AHL et al., 2020) analyzes blockchain use in the energy sector re-

garding technology, economy, society, environment, and institutions in the Japanese

context. The authors mention blockchain’s technological challenges when applied

to energy markets. Throughput, latency, storage, security are some of those chal-

lenges. Multi-chain communication, side chains, and off-chain storage are considered

solutions for scalability problems.

A case pilot project in Misono, Japan, is presented with ten consumers, five

prosumers, and one mall. The stakeholders exchange energy through a blockchain

network and three possible power lines. They are equipped with solar panels, bat-

teries, smart meters, and communications systems to interact with smart meters

and the blockchain energy market. The chosen platform was Ethereum, with a PoA

consensus.

The authors also affirm that privacy measures, such as pseudonymity, are

critical next steps in the blockchain and energy integration context. Other research

opportunities are enumerated: consensus mechanisms development, sharding, state

channels, smart meter blockchain integration (via light clients), and privacy mea-

sures.

Our work proposes, implements, and validates an energy trading scheme in

Hyperleder Fabric. We ensure the buyers’ privacy through identity mixing and analyze

the implementation throughput and data generation rate to elucidate the proposal’s

scalability. Buyers and sellers can exchange only validated energy generated in the

past. The chaincode judges the energy generations as valid based on sensors mea-

sures periodically published to the chain. Our model considers the participation of

utility companies and payment companies to settle the payment of anonymous buy-

ers.

In table 1, we compare the related work characteristics. Cells filled with an X

represent that the work has such characteristics. In the case of (BLOM, 2018), the X

in the Hyperledger column indicates that Hyperledger was widely discussed, even

though the solution was implemented using Ethereum.

The columns with a symbol like " " indicate how deeply the work addressed

such topics and the quality of their solution for each topic. The symbol " " represents

maximum depth and quality, while " " represents the lowest depth and quality. For

example, (KANG et al., 2018) propose a simple blockchain energy market model and

do not cover some stakeholders, like the utility company. They do cover a context

with only prosumers and consumers. However, the model of (BLOM, 2018) supports

three types of energy markets and considers the utility company. Therefore, in the

Depth of market design topic, (KANG et al., 2018) is rated " ", while (BLOM, 2018)

is rated " ".

Chapter 3. Literature review 50

Related work
Characteristics

Pe
rm

is
si

o
n
e
d

D
e
a
ls

w
it

h
p
ri

v
a
cy

D
e
a
ls

w
it

h
sc

a
la

b
ili

ty

Im
p
le

m
e
n
te

d

E
th

e
re

u
m

H
y
p
e
rl

e
d
g
e
r

D
e
p
th

o
f

m
a
rk

e
t

d
e
si

g
n

(PEE et al., 2019) X X
(KANG et al., 2018) X X X

(LU et al., 2019) X
(HUSSAIN et al., 2019) X X
(ALAM, A. et al., 2019)
(DORRI et al., 2019) X X X
(KODALI et al., 2018) X X

(WANG, S. et al., 2019) X X X
(JEON; HONG, 2019) X X
(HUANG et al., 2019) X

(BLOM, 2018) X X X X
(ABIDIN et al., 2018)

(AHL et al., 2020) X X
This work X X X

Table 1 – Related work comparison

The work (AHL et al., 2020) was included based on the relevance of its exper-

iments, and it did not come from the review process. Thus, we decided to add the

work in this section to serve for further base and comparison with our model.

51

4 BLOCKCHAIN ENERGY TRADING AND VALIDATION MODEL

We defined a blockchain energy trading model to perform experiments regard-

ing scalability, privacy, and traceability - which are the topics of our research ques-

tions. The model is implemented using Hyperledger Fabric, and it will be presented

in this Chapter.

4.1 MODEL’S LITERATURE MOTIVATION

The work presented in (WANG, N. et al., 2019) surveyed blockchain energy

trading schemes and listed the main challenges of those systems. Among the chal-

lenges are low efficiency, privacy protection, and scalability issues. The authors claim

that avoiding statistical predictions and behavior model analysis while preserving

nodes’ rights and interests in the network may be a severe challenge.

On (JOHANNING; BRUCKNER, 2019), the authors evaluate the whitepapers of

blockchain-based peer-to-peer energy trading projects. They analyzed the projects’

characteristics, transaction elements, and energy ecosystem. The conclusion was

that most of the evaluated projects were described too macroscopically and that

future research must address this topic with more scientific depth.

Table 1 shows that there is still much improvement room in the blockchain

energy trading schemes in terms of privacy, scalability, and market design based, on

our literature review. In our model, we address these three research gaps: privacy,

scalability, and market design.

4.2 ENTITIES AND THEIR ACTIONS

Our model consists of a blockchain network that aggregates five entities:

sensors, energy sellers, energy buyers, validators, and payment companies.

Each one is entitled to perform their actions by calling different functions on a chain-

code (smart contract) related to their roles. Figure 8 presents the main actions of

each network entity. Their actions will be described and explained in Sections 4.2.1,

4.2.2, 4.2.3, 4.2.4, and 4.2.5, introducing their behavior in our model.

4.2.1 Sensors

The sensors capture environment metrics and publish them to the blockchain

network - action 1 in Figure 8. They can measure temperature, luminosity, humid-

ity, wind speed, air pressure, electric current, and other relevant energy generation

metrics. The sensors data is used to validate the energy sellers’ generation claims -

action 3.2 in Figure 8. This process is described in further detail in section 4.2.4.

Each sensor is registered to network with their spatial coordinates, which en-

Chapter 4. Blockchain energy trading and validation model 52

Figure 8 – Model entities and their actions

Designed by the author

able the network to infer an environment metric in a specific location in a specific time

window. With data coming from many different sensors around a location, the network

mitigates the attack of a sensor, intentionally or not, sending incorrect measurements

to induce improper behavior.

4.2.2 Energy sellers

Energy sellers generate a specific energy type - solar, wind, hydroelectric or

other - and publish their energy generation in the blockchain by invoking a chaincode

function - action 3.1 in Figure 8. They might be prosumers or local energy generation

companies. The energy generation claims are validated before the energy amount is

available for selling.

After the validation, sellers might publish sell bids so that buyers can match it

- action 3.3 in Figure 8. The buyer’s payment company is responsible for paying the

seller after the auction - actions 6 and 9 in Figure 8.

Chapter 4. Blockchain energy trading and validation model 53

Observation: our model does not define the organization responsible for reg-

istering buyers and sellers. We assume that the registering role could be done by

regulators or utility companies.

4.2.3 Energy buyers

Energy buyers use the network to buy a desired type of energy. For example,

they might be concerned about pollution and want to buy only solar or wind energy.

Since the network validates each energy bid, buyers have assurance about the origin

of the energy they buy. The energy buyers prove to their energy distribution company

that they bought energy in the network and receive discounts on electricity bills.

For example, if the buyer acquires 10 Kilowatt-hour (kWh) on Energy Network

and their meter registers the total consumption of 50 kWh, the utility company might

charge only 40 kWh. This is possible because the utility company trusts the blockchain

network to verify the energy generation since the buyer proves to have bought energy

through the network. Therefore, when a buyer proves ownership of the transaction

that bought energy, the company accepts it.

The buyer’s utility company knows that the buyer consumed 50 kWh based on

their smart meter reads. However, when the buyer presents the acquirement proof of

10 kWh in the blockchain market to the utility company, it is only entitled to charge

for the difference: 40 kWh.

Buyers publish an anonymous buy bid with a token from a payment company

- action 7 in Figure 8. With this token, only the payment company might know the

buyer’s identity while guaranteeing to the seller that they will be paid.

4.2.4 Validators and validation

Every time an energy seller publishes their energy generation to the blockchain

network, validators use the sensors’ data to judge whether the generation is legiti-

mate. For example, a prosumer might have a solar panel that produces the maximum

amount of 85 kWh on a sunny day. If this prosumer publishes an 85 kWh generation

claim, but luminosity sensors near the prosumer indicate a cloudy wheater, the val-

idators must reject the bid and not endorse it. Even if the prosumer’s smart meter

indicates that they are feeding the grid with 85 kWh, they might try to trick the energy

network by selling dirty energy as clean energy.

State regulators, transmission line owners, private regulators, big energy sell-

ers, or others can perform the validator role. Validators indicate to the network the

sensors they trust - action 2 in Figure 8. When an energy seller publishes an energy

generation claim, the near trusted sensors help the claim validation - action 3.2 in Fig-

ure 8. A minimum number of validators are needed to endorse the energy generation

claim.

Chapter 4. Blockchain energy trading and validation model 54

Figure 9 shows how sensors are selected in terms of location. Sensors have

spatial coordinates and a relevance radius that indicates the area where the sensor’s

captured environment metric is equal or closely similar. The metric sensor unit must

be related to the seller’s energy type. For example, to validate a solar energy gener-

ation claim, sensors that measure wind speed should not be selected, but luminosity

sensors should.

Our model does not define the precise rules and criteria for validating the

energy based on the environment metrics captured by sensors, as it would require

knowledge from the electrical engineering field. We only assume that such calculation

is possible, and we represent it symbolically by averaging the sensors’ data near

the seller and multiplying it to a constant.

Figure 9 – Considered physical topology

Designed by the author

4.2.5 Payment companies

Payment companies are organizations in the network responsible for settling

the payments, off-chain, between buyers and sellers. They receive funds from the

buyers to send a token to compose the buy bid - actions 4 and 5 in Figure 8. This

token represents a payment guarantee for the seller, who can withdraw the funds

presenting proof of transaction.

Chapter 4. Blockchain energy trading and validation model 55

As soon as the buyer publishes their buy bid, they must request the validation

of their bid by the payment company. After the request, the payment company vali-

dates the buy bid - action 8 in Figure 8 - by informing the network how much funds

the token covers in the buy bid. If a buyer tries to publish a buy bid offering more

funds than the payment company claims to cover, the network will not let the bid

validation.

The validation avoids token theft and usage by a malicious user since there

is no ownership information on the token. Without validation, a peer could read the

token, reject the original buyer’s transaction, and utilize the token to buy energy for

a third party.

Even though the token could be digitally signed by the payment company and

reference the buyer credential to avoid the validation step, we opted not to add

cryptography. A cryptographic token would create other problems, increasing the

processing time due to cryptographic operations and decaying the model scalability.

In these conditions, the token would need standardization across payment compa-

nies so that the chaincode could process it, increasing the chaincode’s complexity

unnecessarily.

4.3 ACTIONS FULL SEQUENCE

The sequence diagram presented in Figures 10 and 11 shows a possible action

sequence performed by entities. All these actions would happen in a real deployed

network, simultaneously with multiple sellers, buyers’ payment companies, utility

companies, and validators. However, the diagram clarifies the usual action sequence

by each entity type.

First, each sensor declares itself active to the network and starts publishing its

captured data. Following that, energy validators can define the sensor set they trust

to be considered in their validation policy. As soon as the seller is registered, they

or their automated gateway can publish energy generation claims. The chaincode

judges the claims as valid or invalid based on the seller’s location and the sensors’

published data.

In case the energy generated is ruled valid, the seller publishes a sell bid. A

buyer desires to match this sell bid, and they request a token from the payment

company before sending a buy bid. The buyer sends the buy bid to the network and

requests the bid validation to the payment company, which validates it. After that,

the buy bid participates in the network double-auction and matches the sell bid.

The buy bids and the sell bids are matched, and the energy transactions are

registered to the ledger. Proving the bids issuance, buyers and sellers might request,

respectively, energy bill discounts and payment for the sold energy. The utility com-

pany and the payment company respond accordingly after verifying the proofs.

Chapter 4. Blockchain energy trading and validation model 56

The utility company tries to charge the energy customer for the consumption

amount indicated on their smart meter. Nevertheless, if the consumer bought some

energy on the blockchain network, they require a discount on their bill after providing

the necessary evidence. In the seller’s case, they inform the payment token received

after selling energy. The payment company verifies if the seller is the designated part

of receiving the funds, and then the seller is paid.

Chapter 4. Blockchain energy trading and validation model 57

Figure 10 – Sequence diagram (continues in Figure 11)

Designed by the author

Chapter 4. Blockchain energy trading and validation model 58

Figure 11 – Sequence diagram continuation

Designed by the author

Chapter 4. Blockchain energy trading and validation model 59

4.4 MODEL MAIN CHARACTERISTICS

The proposed model increases trust in the energy sellers because their en-

ergy generation claim is verified by multiple regulators, utility companies, or other

validators, based on many sensors’ collected data. Buyers can have significant assur-

ance on the bought energy origin. Every kWh exchanged through the network can be

mapped to the sensors that validated the generation.

Buyers can keep their anonymity while performing energy transactions to such

an extent that network participants cannot infer the buyers’ energy consumption

patterns. Even though our model does not specify if the energy bought is consumed

instantly, it might be, depending on the deployment context. In such a scenario

anonymizing the buyer becomes essential.

In our model, energy sold has to be generated in the past to simplify and avoid

energy delivery verification complexity. Thus, sellers do not correspond to a Balance

Responsible Party (BRP), and they are not obliged to generate during a specific time

window. This lack of responsibility might difficult for the utility companies to work to

solve power imbalances. However, the vast amount of sensor data can serve as a

counterbalance and, from another perspective, help to predict power imbalances.

Sell bids and buy bids can be partially matched, always generating energy

transactions registering the energy quantity and settlement price. With that, buyers

prove their ownership of the bought energy and request discounts on their energy

bills. Sellers contact the payment company to receive the funds related to their

transactions.

4.5 FURTHER MODEL DETAIL

Blockchains are heterogeneous and suit problems distinctly. Therefore, mod-

els’ specificities depend on the selected technology. (CALDARELLI, 2020) considers

proposals that explicitly define the blockchain technology to be more grounded and

realistic. Furthermore, they argue that building a hypotheses without defining the

blockchain technology may hardly provide a concrete contribution.

For example, our model was designed based on the Hyperledger Fabric blockchain,

which has an organization oriented architecture. Thus, the same model would not fit

the Ethereum straightforwardly. For that reason, some further details of our model

are described in Chapter 5, where we elaborate on the model implementation.

60

5 PROPOSAL DEVELOPMENT

In this chapter, we will explain the development of our proposal, which we

separated into four main sections. Section 5.1 presents the necessary steps and

configurations to locally deploy a basic Hyperledger Fabric production network with a

chaincode installed. Section 5.2 focuses on our chaincode design by explaining the

main data structs, some important design principles, and the reason for modifying

Hyperledger Fabric.

Section 5.3 explains how we utilized the adapted versions of fabric-sdk-java

and fabric-gateway-java to implement applications for buyers, sellers, sensors, utility,

and payment companies. Our experiments were performed fully inside the AWS cloud

infrastructure, and Section 5.4 describes how we performed such deployment after

adapting our local deploy scripts.

5.1 NETWORK LOCAL DEPLOYMENT

To develop and test our proposal, we had to deploy a Hyperledger Fabric net-

work with organizations, peers, orderers, and applications. The Hyperledger Fabric

network can be constructed in different ways (TEAM, F. D., 2020a). This section de-

scribes the general steps in network creation to provide enough understanding of our

network development.

Hyperledger Fabric provides two alternatives for network deployment and test-

ing: the testnet and production networks. The testnet is designed to run locally

in a pre-defined network structure, with a couple of peers and a single orderer. It

provides a simple and easy deployable environment so application designers can

execute tests without deploying a production network, which is more complex.

The production network is the one used network in real environments. It allows

the creation of as many peers, orderers, admins, and clients as defined. All of our

tests are performed in a production network so that the results are closer to real

applications.

5.1.1 Hyperledger Fabric general creation steps

When we mention the term client, we refer to an application outside the

network, as presented in Chapter 2. The organization member represents the gener-

alization of organization admin, client, orderer, or peer. The general steps for network

creation are:

1. (Optional) Create one root Certificate Authority (CA) for each organization using

the fabric-ca-server tool.

Chapter 5. Proposal development 61

2. (Optional) Create one Transport Layer Security (TLS) CA for all organizations

using the fabric-ca-server tool.

3. Generate two certificates for each organization member. One certificate only

to handle for TLS communication purposes and the other as identification of

organization Membership Service Provider (MSP).

4. Set the desired initial configuration for the network in a configuration file con-

figtx.

5. Generate the System Channel genesis block with information about the organi-

zations in the network, the certificates of all CAs involved, and the certificates

of organization administrators.

6. Initialize the orderers with the genesis block created in step 5.

7. Initialize peers.

8. Organizations’ admins create channels for the consortiums defined in the con-

figuration file configtx.

9. Organizations’ admins command their peers to join channels.

10. Organizations’ admins install the desired chaincodes on peers.

11. Channel admins approve the chaincodes for the channel by collecting at least

N signatures, defined in the network configuration file.

12. After enough approvals are collected, the chaincode is committed by a single

channel admin.

13. (Optional) A channel admin calls the init (initialization) function on the chain-

codes.

Steps 1 and 2 are optional as they do not necessarily need to be created be-

cause existing CAs could be used. Not all chaincodes require an initialization function.

That is why step 13 is optional.

5.1.2 Environment with docker images

In a production network context, Fabric CAs, peers, and orderers are docker

containers with images available to be downloaded in Docker Hub (INC., 2020). A

typical deployment procedure consists of defining all CAs, peers, and orderers in a

docker-compose file, where the image version and environment variables are defined.

Since we performed modifications on Hyperledger Fabric, the docker images

had to be recompiled locally. Thus, the docker images mentioned in this chapter

Chapter 5. Proposal development 62

were not fetched from the docker hub, and nothing in our implementations can be

replicated with the default Hyperledger Fabric docker images.

Code 5.1 shows an example of how to set the orderer configurations in a docker-

compose file. After properly setting the docker-compose.yml, calling the command in

Code 5.2 starts an orderer. Every chaincode is also a docker container, but they are

started by the peers with chaincodes installed. These containers can be deployed in

the same physical machine or multiple machines across different networks. Our initial

tests were performed by deploying all containers in the same physical machine.

Code 5.1 – Example docker-compose.yml

1 orderer:

2 container_name: orderer1-org1

3 image: hyperledger/fabric-orderer:2.3.0

4 environment:

5 - ENV_VARIABLE_1=one

6 - ENV_VARIABLE_2=two

7 volumes:

8 - a/local/machine/path:a/orderer1/virtual/environment/path

9 networks:

10 - fabric-network

11 ports:

12 - a-local-machine-port-binded-to:a-orderer1-virtual-environment-port

Code 5.2 – Starting an orderer

1 $ docker-compose -f docker-compose.yml up -d orderer

5.1.3 Network configuration files

This section will explain the purpose of each configuration file and how they

change network behavior. All configurations are formatted in file format YAML Ain’t

Markup Language (YAML) (BEN-KIKI et al., 2020), which has useful features for con-

figuration files, like referencing previous definitions and avoiding the need to repeat

entire equal definitions. The main configuration files are:

• fabric-ca-server-config.yaml - configurations related to the Fabric CA server.

• fabric-ca-client-config.yaml - configurations related to the commands fabric-ca-

client enroll and fabric-ca-client register.

• configtx.yaml - main configuration file. Most of the network topology is defined

in this file.

• core.yaml - configuration file related to the peers.

• orderer.yaml - configuration file related to the orderers.

Chapter 5. Proposal development 63

5.1.3.1 fabric-ca-server-config.yaml

In this file, some of the following parameters and characteristics about the

Fabric CA server are set:

• Server port;

• Server in debug mode;

• TLS enabled for communication when members are enrolling;

• Certificates and keys for the CA (if they already exist);

• The maximum number that a member can enroll - ask for certificate signature;

• Pre-registered identities (usually for CA admins);

• Database parameters;

• Ldap parameters (if enabled);

• Allowed affiliations for registering;

• Signing parameters, expiry times, signing algorithm, etc;

• Idemix parameters;

• Crypto library;

• Intermediate CAs; and,

• Operation and metrics server endpoints parameters.

5.1.3.2 fabric-ca-client-config.yaml

The command fabric-ca-client enroll will look for this file to perform the en-

rollment. In this file, parameters related to the organization member enrollment are

set:

• CA url;

• TLS files for secure communication;

• CSR (certificate signing request) parameters: common name, signing algorithm,

country, state, location, organization unit, and others;

• Configurations related to the registration process;

• Enrollment type; and,

• Crypto library configuration.

Chapter 5. Proposal development 64

5.1.3.3 configtx.yaml

This is the main configuration file, as it contains the organizations’ information,

the default configurations for channel policies, the anchor peers, and orderers. The

main parameters defined in this file are:

• Organizations definitions

- Organization name

- Organization membership ID

- Organization MSP type (idemix or x509)

- Organization policies

- Organization orderers address

- Organization anchor peers

• Default access control policies

• Network ordering configuration

- Ordering tool: kafka or raft

- Ordering policies

• Default channel configurations

• Profiles

- System channel definitions

- Consortiums definitions

- Specific channels definitions

5.1.3.4 core.yaml

Each peer has its core.yaml file from where its configuration is fetched. The

main parameters defined in this file are:

• Peer id;

• Listen address and port;

• Gossip protocol configuration - for communication among peers;

• Private data configurations;

Chapter 5. Proposal development 65

• Chaincode configurations;

• Database and ledger configurations; and,

• Operation and metrics server endpoints parameters.

5.1.3.5 orderer.yaml

Similar to the peer, each orderer has its orderer.yaml file to fetch the configu-

rations. The main orderer parameters are:

• Listen address and port;

• TLS certificates and keys;

• Bootstrap method;

• Crypto library;

• Kafka settings; and,

• Operation, metrics, and administrative server endpoints parameters.

5.1.3.6 Overriding configuration files

Hyperledger Fabric peers, orderers, and CAs are developed in Golang, and all

configuration files are parsed using the viper library (FRANCIA, 2020). This library

loads configuration from YAML files, environment variables, and command flags when

calling a command. As an example, consider the orderer configuration field ListenAd-

dress in orderer.yaml presented in Code 5.3.

Code 5.3 – Piece of orderer.yaml

1 #key1

2 General:

3 # Listen address: The IP on which to bind to listen.

4 #key2-inside-key1

5 ListenAddress: 127.0.0.1

After parsing the orderer.yaml file, viper tries to read environment variables

based on the orderer.yaml key names. The expected environment variable names’

follow the general pattern: filename_key1_key2-inside-key1. The ListenAddress

could be overridden by setting the environment variable ORDERER_GENERAL_LISTE-

NADDRESS in the orderer docker-compose settings, as shown in Code 5.4.

Code 5.4 – Overriding configuration files

1 orderer:

2 container_name: orderer1-org1

3 image: hyperledger/fabric-orderer:2.3.0

Chapter 5. Proposal development 66

4 environment:

5 - ORDERER_GENERAL_LISTENADDRESS=180.180.180.180

6 ...

Observation: if a configuration field is formed by a list of attributes, it cannot

be overridden by environment variables. The viper priority order for parsing configu-

ration values is:

1. Command flags

- Ex: fabric-ca-client enroll ... –enrollment.profile idemix

2. Environment variables

3. Configuration file values

5.1.4 Automated network creation script

We developed a bash script and some python scripts for creating different net-

works easily. With these tools, we could deploy a network with as many organizations

as necessary. Each organization can have as many admins, clients, orderers, and

peers as wished. The script code is available on Github (WESTPHALL, 2021). In this

section, the created scripts are explained.

The first configuration file to be set is presented in Code 5.5. In this file, we

define a list of organizations in the network, describing their names, the admins,

clients, peers, and orderers quantity, followed by the membership service provider

type: idemix or x509 certificates.

Code 5.5 – Our initial configuration file CONFIG-ME-FIRST.yaml

1 organizations:

2 - name: ufsc

3 admin-quantity: 1

4 client-quantity: 0

5 peer-quantity: 1

6 orderer-quantity: 1

7 buyer-quantity: 0

8 seller-quantity: 2

9 sensor-quantity: 2

10 msptype: x509

11

12 - name: parma

13 admin-quantity: 1

14 client-quantity: 0

15 peer-quantity: 1

16 orderer-quantity: 1

17 buyer-quantity: 0

18 seller-quantity: 2

19 sensor-quantity: 2

20 msptype: x509

21

22 - name: idemixorg

Chapter 5. Proposal development 67

23 admin-quantity: 1

24 client-quantity: 1

25 peer-quantity: 0

26 orderer-quantity: 0

27 buyer-quantity: 1

28 seller-quantity: 0

29 sensor-quantity: 0

30 msptype: idemix

Then, we call a python script named partialConfigtxGenerator.py to parse the

file presented in Code 5.5 and generate the configtx.yaml file with the organizations’

full definitions. The python script also adds all orderers to the raft configurations

section in configtx.yaml. This leaves only the profiles section or policy changes for

manual configuration. Every other field is set according to the organizations described

in the file presented in Code 5.5.

The next step is to create a single TLS CA for all organizations and one root CA

for each organization’s MSP. For this, we use the docker-compose command to turn

on the CA services defined in our docker-compose.yml file, with the names ca-tls and

rca. Even though only one service named rca is defined in the docker-compose.yml

file, Code 5.6 shows how we create multiple root CAs from a single definition.

The docker-compose command reads environment variables and substitutes

them with their value if any variable is referenced in the docker-compose.yml. With

this tool, every time we create a root CA for an organization, we simply export the

ORG_NAME environment variable with the organization name.

Code 5.6 – Root CA docker-compose.yml

1 rca:

2 container_name: rca-${ORG_NAME}

3 image: hyperledger/fabric-ca:latest

4 command: bin/bash -c ’fabric-ca-server start -d -b rca-${ORG_NAME}-admin:rca-${ORG_NAME}-adminpw --

port 7053’

5 environment:

6 - FABRIC_CA_SERVER_HOME=/tmp/hyperledger/fabric-ca/crypto

7 - FABRIC_CA_SERVER_TLS_ENABLED=true

8 - FABRIC_CA_SERVER_CSR_CN=rca-${ORG_NAME}

9 - FABRIC_CA_SERVER_CSR_HOSTS=0.0.0.0

10 - FABRIC_CA_SERVER_DEBUG=true

11 volumes:

12 - ${BASE_DIR}/hyperledger/${ORG_NAME}/ca:/tmp/hyperledger/fabric-ca

13 networks:

14 - fabric-network

15 ports:

16 - ${BINDABLE_PORT}:7053

There is still one problem: docker does not allow multiple services with the

same name in a project. Therefore, docker would only allow the creation of a single

service called rca, and it is forbidden to have environment variables references in

services names. To get around that, we change the service name before creating a

new root CA using perl. Code 5.7 explicitly shows how we perform this change.

Chapter 5. Proposal development 68

Code 5.7 – Changing service name and starting the service

1 perl -pi -e ’s/rca:/rca-’$ORG_NAME’:/g’ docker-compose.yml

2 docker-compose -f docker-compose.yml up -d rca-$ORG_NAME

Observation: changing the service name will create orphan services, and it

will trigger warnings from docker. This is not the best practice for creating multiple

services with the same docker image, but it is quick and easy. The proper way to

do that would be to generate a docker-compose.yml with all services definitions.

Generating a complete docker-compose.yml could be another action performed by

the python script partialConfigtxGenerator.py. We apply the same principle to create

multiple peers and orderers.

After the CAs creation, we register and enroll every admin, client, peer, orderer,

buyer, seller, and sensor, calling the fabric-ca-client command. The generated MSP

credentials are stored in the host machine folders mounted to the virtual docker

containers, as shown in lines 11 and 12 of Code 5.6. The volume mounting allows

the docker containers to use the generated MSP credentials. Figure 12 shows the

structure of an MSP folder on every orderer, peer, or any other enrolled entity.

Figure 12 – MSP folder structure

Source: (TEAM, F. D., 2020a)

Following all MSP credentials creation, the next step is to make an MSP folder

for each organization. The organizational MSP folder must have three folders and one

config.yaml file. One folder with organization admin certificates, one folder contain-

ing the root CA certificate, and another folder with the TLS CA certificate. The file

config.yaml maps the Organizational Unit (OU) field in the MSP certificates to admin,

client, orderer, or peer roles. In our network case, all sellers, buyers, and sensors are

registered as clients.

Chapter 5. Proposal development 69

If the organization uses idemix, the admin certificates folder is substituted by a

folder named msp with the idemix issuer public key and revocation public key. Figure

13 shows the organization MSP folder structure in two different cases. Organizations

with x509 MSP have the folder structure presented in the left part of Figure 13. The

folders on the right are required for an idemix MSP.

Figure 13 – Organization MSP folder structure - x509 in the left and idemix in the
right

Designed by the author

Before the genesis block is generated, our script requires that the system

channel, the consortiums, and the application channels are manually declared in

the configtx.yaml. Code 5.8 present a definition for the system channel called “Sam-

pleMultiMSPRaft” and a definition for an application channel called “SampleMultiM-

SPRaftAppChannel.”

It is worth noticing that orderer configurations are only declared in the system

channel profile, with the organizations responsible for the network ordering process.

Also, the application channel belongs to the consortium “SampleConsortium,” which

corresponds to the consortium declared in the system channel profile.

Code 5.8 – System channel and application channel definitions

1 Profiles:

2 # SampleMultiMSPRaft is a profile to the syschannel.

3 # Remeber to add the organizations and the consortiums

4 SampleMultiMSPRaft:

5 <<: *ChannelDefaults

6 Orderer:

7 <<: *OrdererDefaults

8 OrdererType: etcdraft

9 Organizations:

10 - *UFSC

11 - *PARMA

12 Consortiums:

13 SampleConsortium:

14 Organizations:

15 - *UFSC

16 - *PARMA

17 - *IDEMIXORG

18

19 # SampleMultiMSPRaftAppChannel is a profile to application channels.

20 # Remeber to add the organizations and the consortium name

Chapter 5. Proposal development 70

21 SampleMultiMSPRaftAppChannel:

22 <<: *ChannelDefaults

23 Consortium: SampleConsortium

24 Application:

25 <<: *ApplicationDefaults

26 Organizations:

27 - <<: *UFSC

28 - <<: *PARMA

29 - <<: *IDEMIXORG

For the genesis block generation, the command configtxgen is called as shown

in Code 5.9 and outputs the genesis block from reading the previously generated and

edited configtx.yaml as input. Then, the genesis block is copied to every orderer MSP

directory.

Code 5.9 – Generating the genesis block

1 configtxgen -configPath $BASE_DIR/generated-config -profile

SampleMultiMSPRaft -outputBlock

${BASE_DIR}/hyperledger/tempgenesis.block -channelID syschannel

With genesis block present in every orderer file system, the orderers are

started. The path to the genesis block is set in an environment variable, as shown

in Code 5.10. As they start, the orderers will fetch information about other orderers

from the genesis block and communicate with them via the system channel.

Code 5.10 – Setting the path to the genesis block

1 orderer:

2 container_name: orderer${ORDERER_NUMBER}-${ORG_NAME}

3 image: hyperledger/fabric-orderer:2.3.0

4 environment:

5 ...

6 - ORDERER_GENERAL_BOOTSTRAPFILE=/tmp/hyperledger/${ORG_NAME}/orderer${ORDERER_NUMBER}/

genesis.block

7 ...

The next step is peer initialization. As soon as each peer is started, they look

for other peers’ endpoints in the same organization to start communicating. The

environment variable CORE_PEER_GOSSIP_BOOTSTRAP defines the list of possible

peers to start communicating with on bootstrap. We make every peer communicate

to “peer1” of their organization on initialization, as demonstrated in Code 5.11.

Code 5.11 – Peer bootstrap configuration

1 peer:

2 container_name: peer${PEER_NUMBER}-${ORG_NAME}

3 image: hyperledger/fabric-peer:2.3.0

4 environment:

5 ...

6 - CORE_PEER_GOSSIP_BOOTSTRAP=peer1-${ORG_NAME}:7051

7 ...

Chapter 5. Proposal development 71

To configure the peers, we use the Hyperledger Fabric Command-Line Interface

(CLI) container to interact with peers using administrators’ credentials. We instantiate

a single CLI container to manage all organizations’ entities. All commands executed

via CLI could be called from any machine. However, it is easier to utilize the CLI since

it is inside the virtual docker network, and commands can reference names of the

virtual network Domain Name System (DNS).

Code 5.12 presents an example of a command executed with a CLI. Notice

how the CLI allows us to reference the name “peer1-ufsc”, which is only available

inside the virtual docker network. If this same command were called outside the

virtual docker network, it would not work since the name “peer1-ufsc” would not be

resolved.

Code 5.12 – Cli command example

1 docker exec -e CORE_PEER_LOCALMSPID=UFSC -e

CORE_PEER_ADDRESS=peer1-ufsc:7051 -e

CORE_PEER_MSPCONFIGPATH=/tmp/hyperledger/ufsc/admin1 /msp -e

CORE_PEER_TLS_ENABLED=true -e

CORE_PEER_TLS_ROOTCERT_FILE=/tmp/hyperledger/ufsc/

admin1/tls-msp/tlscacerts/tls-0-0-0-0-7052.pem cli-ufsc peer lifecycle

chaincode install energy.tar.gz

We create the genesis block for the application channel definition “Sample-

MultiMSPRaftAppChannel” presented in Code 5.8 and use the CLI container to make

all peers join the channel. Code 5.13 demonstrates the command that creates the

channel genesis block for the consortium “SampleConsortium.”

Code 5.13 – Cli command example

1 configtxgen -configPath $BASE_DIR/generated-config -profile

SampleMultiMSPRaftAppChannel -outputCreateChannelTx

${BASE_DIR}/hyperledger/$firstOrgInChannelLower/ admin1/$channelID.tx

-channelID $channelID --asOrg $orgName

The application channel requires a definition for organizations’ anchor peers

to allow peers from different organizations to gossip. We set the organization’s first

peer as an anchor by altering the application channel configuration. A single anchor

peer per organization is enough to enable all organization’s peers to be discovered

from outside of it. This definition is also required to enable that applications perform

Service Discovery on the channel to know the endorsing peers for a transaction,

explained in Section 5.3.5.

After all the peers are in the channel, we install our developed smart contract

called “energy,” presented in section 5.2. The contract installation goes through

Chapter 5. Proposal development 72

the steps of packing, installing, approving, and committing. Code 5.14 presents the

commands related to the steps to install the contract. We omit the command flags

and environment variables settings, but they are available in our Github (WESTPHALL,

2021).

Code 5.14 – Cli command example

1 cli-$orgNameLower peer lifecycle chaincode package #each organization admin

package each chaincode once

2 cli-$orgNameLower peer lifecycle chaincode install #each organization admin

install the chaincode in every peer of their organization

3 cli-$orgNameLower peer lifecycle chaincode approveformyorg #each

organization admin approves each chaincode definition once

4 cli-$committerOrgLower peer lifecycle chaincode commit #only one admin on

the channel needs to commit the chaincode, after most organizations

approved the chaincode definition

Finally, some chaincodes might require the admin to call the initialization func-

tion before they are available for normal use. Depending on the chaincode, calling

the initialization function is the last required step to have it all ready for use. The

“energy” smart contract, as an example, requires initialization.

The applications that transact with the “energy” smart contract are executed

in an ubuntu container, called cli-applications, within the same network as peers and

orderers. Deploying applications in this container avoids problems with endpoints’

names (DNS) and ports found by the discovery service, which is a tool that can

increase transaction throughput.

5.1.4.1 Network created

Figure 14 shows the resulting docker private network after executing our local

deploy script. The first two containers are the chaincodes for the two peers. The ca-tls

generates x509 certificates to support TLS communication, while each organizations’

rcas provide the membership x509 certificates.

The parma and ufsc organizations have each one peer and one orderer. The CLI

container helps the deployment process for chaincode installation, and cli-application-

1 executes applications that interact with the blockchain.

5.2 CHAINCODE DEPLOYMENT

In this section, we present the developed chaincode that executes in every

peer of the network. It contains functions to execute the actions displayed by the

sequence diagram in Figures 10 and 11.

Chapter 5. Proposal development 73

Figure 14 – Resulting network in docker

Designed by author

Go was the chosen language to implement our model since this is a general

recommendation for developers because it matches the Hyperledger Fabric imple-

mentation language. Usually, the new chaincode features become available first in

Go, besides generating smaller docker images. Also, the authors of (FOSCHINI et al.,

2020) analyzed each chaincode language - Go, Java and Javascript - and identified a

better performance on contracts written in Go.

Chapter 5. Proposal development 74

5.2.1 World State keys and values

Hyperledger Fabric transactions interact with the ledger and World State, usu-

ally reading or writing to a State. Fabric’s State database stores key-value pairs repre-

senting different states, with the key as a string and the value stored as bytes. In our

chaincode, we store Go structs after serializing them to Protocol Buffers (protobuf).

A key can be simple with a single name identification with only utf-8 charac-

ters. Another possibility is the composite one, when the goal is to form the key with

an object type and many attributes. The object type and the attributes are placed

in sequence and separated by the minimum Unicode character (\u0000), aiming to

avoid collisions with simple keys.

Hyperledger Fabric enables fetching State values by providing the full key or a

key prefix. Code 5.15 exhibits the GetState functions and their appropriate context.

Deletions and insertions are also possible by providing the full State key.

Code 5.15 – ActiveSensor struct

1 //get state by its full key

2 GetState(key string) ([]byte, error)

3

4 //get SIMPLE key states within the range [startKey, endKey[- alphabetic

order

5 GetStateByRange(startKey, endKey string) (StateQueryIteratorInterface,

error)

6

7 //get COMPOSITE key states formed by:

objectType|U+0000|attr1|u+0000|attr2...

8 GetStateByPartialCompositeKey(objectType string, keys []string)

(StateQueryIteratorInterface, error)

5.2.2 Choosing the most appropriate database

Hyperledger Fabric supports two databases to store the ledger and World State.

Go LevelDB has a simple key-value architecture and only supports key, key range, and

composite key queries (TEAM, F. D., 2020b). On the other hand, CouchDB supports

more diverse queries, as long as the data is modeled in JSON format. After some tests

presented and discussed in Section 7.1, we opted for LevelDB due to significantly

better performance results.

5.2.3 Identifying chaincode function callers

Fabric-chaincode-go provides a Client Identity Chaincode Library to read cer-

tificate attributes and ensure attribute-based access control (TEAM, F., 2021). Code

Chapter 5. Proposal development 75

5.16 exemplifies how to restrict access to a chaincode function by testing the value

of an attribute on the caller x509 certificate.

Code 5.16 – Ensuring that only callers with the attribute "energy.seller" execute a

function execution

1 ...

2 //only sellers can execute this function

3 err := cid.AssertAttributeValue(stub, "energy.seller", "true")

4 if err != nil {

5 return shim.Error(err.Error())

6 }

7 ...

Every network participant can be uniquely identified by the concatenation of

their MspID and CertificateID. The MspID is equivalent to the participant’s organiza-

tion name, and the CertificateID, unique within the same organization, derives from

the x509 certificate Distinguished Names (DN) as displayed in Code 5.17. We resort

to this identification technique in many of our chaincode structs, described in Section

5.2.4.

Code 5.17 – How IDs are generated from the x509 certificate (from

https://github.com/hyperledger/fabric-chaincode-go/)

1 func (c *ClientID) GetID() (string, error) {

2 ...

3 // The leading "x509::" distinguishes this as an X509 certificate, and

4 // the subject and issuer DNs uniquely identify the X509 certificate.

5 // The resulting ID will remain the same if the certificate is renewed.

6 id := fmt.Sprintf("x509::%s::%s", getDN(&c.cert.Subject),

getDN(&c.cert.Issuer))

7 return base64.StdEncoding.EncodeToString([]byte(id)), nil

8 }

5.2.4 Main data structs

To provide a general view of our chaincode, in the following subsections, we

explain the main structs defined in it. The struct name is always used as a prefix to

the World State key, together with other fields. Almost all fields containing “ID” in the

name refer to the identification ways presented in Section 5.2.3.

Chapter 5. Proposal development 76

5.2.4.1 ActiveSensor struct

The ActiveSensor struct, displayed in Code 5.18, gathers the sensor’s MspID,

SensorID, and the indication if the sensor is active or not. In our implementation, we

assume that the sensors are stationary. Therefore, they have the fixed coordinates X,

Y, Z. The Radius represents the maximum distance from the coordinates with similar

environmental characteristics as measured by the sensor. The coordinates and the

radius are fetched from the sensor’s x509 certificate attributes.

This struct has two main purposes, with the first being to enable or disable

the sensor by changing the IsActive value. The other purpose involves identifying the

sensors near a seller and fetching these sensors’ SmartData to validate an energy

generation claim. The ActiveSensor World State key is in line 1 of Code 5.18.

Code 5.18 – ActiveSensor struct

1 //key in the World State = stub.CreateCompositeKey("ActiveSensor",

[]string{MspID, SensorID}

2 type ActiveSensor struct {

3 MspID string ‘protobuf:"..." json:"..."‘

4 SensorID string ‘protobuf:"..." json:"..."‘

5 IsActive bool ‘protobuf:"..." json:"..."‘

6 X int32 ‘protobuf:"..." json:"..."‘

7 Y int32 ‘protobuf:"..." json:"..."‘

8 Z int32 ‘protobuf:"..." json:"..."‘

9 Radius float64 ‘protobuf:"..." json:"..."‘

10 }

5.2.4.2 SmartData struct

Every time a sensor publishes an observed metric to the ledger, the chaincode

stores the corresponding SmartData. Each SmartData field is explained in Section

2.4, but the AssetID, which is composed of the smart meter’s MspID and the SensorID

from the x509 certificate. This struct plays an essential role in the energy validation

process when the chaincode fetches near sensors’ SmartData to evaluate the energy

generation claim trustworthiness.

The coordinates fields are not in this struct because they are already set in

ActiveSensor. Considering that the coordinates are always fetched from the x509 cer-

tificate, duplicating the coordinates in the SmartData struct only increases memory

usage unnecessarily. If our chaincode accepted data from moving sensors, this struct

would require redesign.

Its World State key is presented by Code 5.19 in lines 1 and 2. Different from

the ActiveSensor struct, the SmartData key is not a composite key but a simple

Chapter 5. Proposal development 77

one. This design choice enables efficient queries when requesting a set of Smart-

Data from a specific sensor within a timestamp range. The Hyperledger chaincode

function shim.ChaincodeStubInterface.GetStateByRange(startKey, endKey string) ex-

ecutes these queries efficiently, but it works only with simple keys. We discuss these

SmartData queries’ performance further in Section 7.1.1.1.

Code 5.19 – SmartData struct

1 //AssetID = SensorMspID + SensorID

2 //key in the World State = "SmartData" + AssetID +

getMaxUint64CharsStrTimestamp(Timestamp)

3 type SmartData struct {

4 AssetID string ‘protobuf:"..." json:"..."‘

5 Version int32 ‘protobuf:"..." json:"..."‘

6 Unit uint32 ‘protobuf:"..." json:"..."‘

7 Timestamp uint64 ‘protobuf:"..." json:"..."‘

8 Value float64 ‘protobuf:"..." json:"..."‘

9 Error uint32 ‘protobuf:"..." json:"..."‘

10 Confidence uint32 ‘protobuf:"..." json:"..."‘

11 Dev uint32 ‘protobuf:"..." json:"..."‘

12 }

Since the GetStateByRange() checks if a key is within the desired range based

on the alphabetical order, the function getMaxUint64CharsStrTimestamp, shown in

Code 5.20, forces every timestamp string representation to have the same length. For

example, two SmartData from a sensor, one published in timestamp 2 and the other

in timestamp 10, without a correction, would have the keys, respectively, AssetID|2

and AssetID|10.

In this context, if the chaincode tried to retrieve the SmartDatas with times-

tamp between 1 and 15, the SmartData of key AssetID|2 would not be fetched

because, considering the alphabetic order, the string AssetID|2 is greater than As-

setID|15. To avoid this failure type, the function getMaxUint64CharsStrTimestamp

generates an equivalent timestamp string representation as lengthy as the greatest

uint64 by adding zeros in the beginning to fill the difference.

Code 5.20 – getMaxUint64CharsStrTimestamp function

1 func getMaxUint64CharsStrTimestamp(timestamp uint64) string {

2 timestampStr := strconv.FormatUint(timestamp, 10)

3 for i := len(timestampStr); i < maxUint64Chars; i++ {

4 timestampStr = "0" + timestampStr

5 }

6 return timestampStr

Chapter 5. Proposal development 78

7 }

5.2.4.3 SellerInfo struct

When the chaincode receives a seller registration request, it stores their re-

lated information with the struct SellerInfo, with the seller’s and their smart meter’s

certificate identification. This struct also contains the owned wind turbines and so-

lar panels quantity so that the chaincode might have parameters to calculate the

maximum possible energy generation amount.

After validating the energy generated, the chaincode increments the map En-

ergyToSellByType, which stores the seller’s salable energy quantity, in kWh, per type

- solar, wind, or other. The seller can only request energy validation for a certain

time interval [start time, end time[if the start time is greater than the LastGenera-

tionTimestamp value. Otherwise, the chaincode will deny the request.

When the seller desires to liquidate the validated energy, they publish a SellBid,

described in Section 5.2.4.5, partly identified by the value of LastBidID added to one.

Subsequently, the fields LastBidID and the EnergyToSellByType are updated in the

SellerInfo struct.

Observation: WindTurbinesNumber and SolarPanelsNumber merely repre-

sent the needed information to achieve a reasonable maximum energy generation

estimation. More information could be required in a real application, but this speci-

ficity is out of our scope.

Code 5.21 – SellerInfo struct

1 //key in the World State = stub.CreateCompositeKey("SellerInfo",

[]string{MspIDSeller, SellerID})

2 type SellerInfo struct {

3 MspIDSeller string ‘protobuf:"..." json:"..."‘

4 SellerID string ‘protobuf:"..." json:"..."‘

5 MspIDSmartMeter string ‘protobuf:"..." json:"..."‘

6 SmartMeterID string ‘protobuf:"..." json:"..."‘

7 WindTurbinesNumber uint64 ‘protobuf:"..." json:"..."‘

8 SolarPanelsNumber uint64 ‘protobuf:"..." json:"..."‘

9 EnergyToSellByType map[string]float64 ‘protobuf:"..." json:"..."‘

10 LastGenerationTimestamp uint64 ‘protobuf:"..." json:"..."‘

11 LastBidID uint64 ‘protobuf:"..." json:"..."‘

12 }

Chapter 5. Proposal development 79

5.2.4.4 MeterSeller struct

The MeterSeller struct, displayed in Code 5.22, serves as a pointer for the

chaincode to find a SellerInfo by the smart meter credentials. Figure 15 elucidates

two possible queries to retrieve a SellerInfo, one by directly informing the key and

the other by using the MeterSeller struct as a pointer.

We created this auxiliary struct after our preliminary metrics findings described

in Section 7.1 when we concluded that LevelDB performs outstandingly faster than

CouchDB. However, LevelDB has the downside of only supporting full or partial key

state queries, whereas CouchDB allows more specific JSON ones. Opting for CouchDB

would imply in the MeterSeller struct unnecessity, at a performance cost.

Code 5.22 – MeterSeller struct

1 //key in the World State = stub.CreateCompositeKey(objectType,

[]string{mspIDSmartMeter, smartMeterID})

2 type MeterSeller struct {

3 MspIDSeller string ‘protobuf:"..." json:"..."‘

4 SellerID string ‘protobuf:"..." json:"..."‘

5 }

Figure 15 – Possible ways to fetch a SellerInfo from World State

Designed by the author

Chapter 5. Proposal development 80

5.2.4.5 SellBid struct

Once a seller’s energy is validated, they can offer it to buyers by publishing a

SellBid to the chaincode. This struct saves the seller’s identification, the sequential

sell bid number, the energy quantity in kWh to be sold, the price per kWh, and the

energy type - wind, solar or other. The chaincode collects all SellBids in the World

State to execute the auction from time to time.

After the auction, all satisfied SellBids are deleted from the World State to

avoid complexities when retrieving SellBids for the following auctions. Still, the Ener-

gyTransaction struct, explained in Section 5.2.4.7, stores the satisfied SellBids fields.

Code 5.23 – SellBid struct

1 //SellBid aprox. memory size = 10 + 177 + 4 + 8 + 8 + 10 = 217 bytes

2 //key in the World State = stub.CreateCompositeKey("SellBid",

[]string{MspIDSeller, SellerID, SellerBidNumber})

3 type SellBid struct {

4 MspIDSeller string ‘protobuf:"..." json:"..."‘

5 SellerID string ‘protobuf:"..." json:"..."‘

6 SellerBidNumber uint64 ‘protobuf:"..." json:"..."‘

7 EnergyQuantityKWH float64 ‘protobuf:"..." json:"..."‘

8 PricePerKWH float64 ‘protobuf:"..." json:"..."‘

9 EnergyType string ‘protobuf:"..." json:"..."‘

10 }

5.2.4.6 BuyBid struct

Unlike the SellBid, the BuyBid does not contain any buyer information because

it is published by a buyer with idemix credentials, ensuring pseudonymity. The fields

MspIDPaymentCompany, which is the payment company organizational name, and

the payment Token uniquely identify the BuyBid. To avoid possible attacks on dif-

ferent utility companies, the field UtilityMspID specifies the buyer’s utility company.

Otherwise, they could maliciously lend their credentials to a client of a different utility

company, enabling two bill discounts for the same BuyBid.

EnergyQuantityKWH, PricePerKWH, and EnergyType have the same function

as in the SellBid. Every BuyBid needs to be validated by the payment company before

it can participate in an auction, confirming to the seller that they will get paid in case

of matching a BuyBid. Code 5.24 lines 1 and 2 present the two possible keys for a

BuyBid struct.

We also identify the validity in the key, true for validated and false otherwise.

This design pattern allows efficient validated BuyBids fetching by the partial key

“BuyBid|U+0000|true”, increasing the auction speed. The satisfied BuyBids are also

Chapter 5. Proposal development 81

deleted from the World State after the auction.

Code 5.24 – BuyBid struct

1 //keys in the World State = stub.CreateCompositeKey("BuyBid",

[]string{"false", mspIDPaymentCompany, token})

2 // or = stub.CreateCompositeKey("BuyBid", []string{"true",

mspIDPaymentCompany, token})

3 type BuyBid struct {

4 MspIDPaymentCompany string ‘protobuf:"..." json:"..."‘

5 Token string ‘protobuf:"..." json:"..."‘

6 UtilityMspID string ‘protobuf:"..." json:"..."‘

7 EnergyQuantityKWH float64 ‘protobuf:"..." json:"..."‘

8 PricePerKWH float64 ‘protobuf:"..." json:"..."‘

9 EnergyType string ‘protobuf:"..." json:"..."‘

10 }

5.2.4.7 EnergyTransaction struct

The EnergyTransaction struct, presented in Code 5.25, results from matching a

BuyBid and a SellBid, created during the auction process. It joins the main fields of the

two structs, enabling that the seller requests their payment and that the buyer asks

for a bill discount. EnergyQuantityKWH and PricePerKWH probably differ from the

bids because the auction might only partially satisfy a bid or need multiple SellBids

to satisfy a single BuyBid. To uniquely identify an EnergyTransaction, we form the key

as displayed in line 1 of Code 5.25.

Code 5.25 – EnergyTransaction struct

1 //key in the World State = stub.CreateCompositeKey("EnergyTransaction",

[]string{MspIDPaymentCompany, Token, MspIDSeller, SellerID,

SellerBidNumberStr})

2 type EnergyTransaction struct {

3 MspIDSeller string ‘protobuf:"..." json:"..."‘

4 SellerID string ‘protobuf:"..." json:"..."‘

5 SellerBidNumber uint64 ‘protobuf:"..." json:"..."‘

6 MspIDPaymentCompany string ‘protobuf:"..." json:"..."‘

7 Token string ‘protobuf:"..." json:"..."‘

8 BuyerUtilityMspID string ‘protobuf:"..." json:"..."‘

9 EnergyQuantityKWH float64 ‘protobuf:"..." json:"..."‘

10 PricePerKWH float64 ‘protobuf:"..." json:"..."‘

11 EnergyType string ‘protobuf:"..." json:"..."‘

12 }

Chapter 5. Proposal development 82

Figure 16 illustrates how our chaincode executes the auction process, plus

presents the conditions when transacting energy in an alternative energy market is

ideal. If the prices are better than with the main grid, people transact in the alternative

market. The chaincode sorts the BuyBids in price-descending order and the SellBids

in the ascending. The bids are sequentially matched while the BuyBid price exceeds

the SellBid price. When this condition changes, the matching stops, and the Clearing

Price is calculated from the average price of the last matched BuyBid and SellBid.

Everyone receives or pays this specific price for the energy transacted, maximizing

the participants’ welfare.

Figure 16 – Double auction in an alternative energy market

Source: (ALABDULLATIF et al., 2020)

5.2.5 Energy validation

As soon as a seller invokes the publishEnergyGeneration chaincode function,

the network tries to validate the claim against the SmartData published by sensors.

We implemented two representative functions to check the validity of wind and

solar energy generation claims.

The chaincode considers the seller’s location and lists all the near sensors

trusted by validators. After that, it fetches the sensors’ published SmartData within

the generation claim interval. As an example, if the seller declares that the energy

was generated between 1:00 PM to 2:00 PM, only SmartData within this period will

be retrieved from the World State.

Chapter 5. Proposal development 83

After receiving a solar energy generation claim, the chaincode calls getMax-

PossibleGeneratedSolarEnergyInInterval, displayed in Code A.1. This function loops

through the SmartData list and selects only the ones with Candela (luminosity) unit.

First, the function calculates each sensor SmartData average, assuming they were

published with constant frequency. Then, it uses these averages to calculate the

average of all sensors. Finally, the maximum possible energy generation is returned

based on this last average and the sellers’ solar panels quantity.

It is important to reinforce that this function was not designed to accurately

calculate the maximum energy amount on a real deploy environment, which would

require more expertise. However, the function applies a database load equivalent to

a real application when fetching SmartData, satisfying our experiment needs.

5.2.6 Auction chaincode events

Chaincode functions can trigger events to applications after the transaction

with the function call is published in a block. Regardless of the transaction being ruled

valid or invalid, the event is sent to applications that subscribed to it. This tool avoids

that applications constantly poll the chaincode to find out about state changes.

Our developed chaincode generates an event when an auction transaction

is published to the channel block. Then, buyers and sellers can query the channel

to verify if their bids were matched, resulting in an EnergyTransaction. We show

eventing examples in Section 5.3.3.2.

5.2.7 Avoiding transaction invalidation due to changes in Read/Write key

set (Phantom reads)

In the Hyperledger Fabric execute-order-validate transaction flow, deliver-

ing the transaction to the orderer guarantees that it will be published in a block.

However, it does not imply anything on its validity. A modification on a read value by

another transaction might cause invalidation, depending on how they are ordered. In

our chaincode, this could happen if a BuyBid is validated or a new SellBid is published

before the auction transaction is committed. Even though no bids were modified but

only added, the auction can be invalidated due to a phantom read.

A phantom read happens when a transaction queries states using the function

GetStateByRange(startKey, endKey) and the query result in the simulation phase is

different than in the validation phase (TEAM, F. D., 2020c). Figure 17 illustrates the

problem in our chaincode context. The auction reads all Buy and Sell bids present in

the World State of Block m during the simulation phase. Then, the auction transaction

is ordered in the Block m+1, just after a sell bid registration transaction that created

Sell Bid N+1.

Chapter 5. Proposal development 84

At validation time, the peers notice that the auction read all sell bids, but the

Sell Bid N+1 was not read. By default, peers will invalidate the auction transaction,

assuming that missing the new Sell Bid N+1 could cause an error. However, this does

not lead to an error in our application, as the new sell bid would be processed in the

next auction.

Initially, we thought adding a priority to the auction transaction - to force the

orderer to place it as the first transaction of a block - would solve the problem. After

modifying fabric’s source code to let different transactions having distinct priorities,

we realized it only solved phantom reads in sequential blocks. Figure 18 shows how

our first solution fails when phantom read conflicts happen in a non-sequential block

context.

Figure 17 – Phantom read conflict in sequential blocks

Designed by author

The auction simulation takes more time than a sell bid registry transaction,

possibly causing the auction simulated with Block m’s World State to be ordered in

Block m+2. By principle, blockchains do not allow modifications on previous blocks,

so, to permanently avoid phantom read conflicts, we enabled chaincode functions to

define if this type of check should be executed at validation time.

We chose to keep the first solution modifications, regarding transaction pri-

Chapter 5. Proposal development 85

orities, in our patched Hyperledger Fabric because, although we did not need it,

blockchain researchers discuss solutions related to transaction ordering methods

to avoid invalidations, like the authors of (GOEL et al., 2018) and (XU et al., 2021).

As presented in Code 5.26, our solution lets the more costly transaction functions

publishEnergyGeneration and auction to bypass the phantom read check and not be

invalidated by other recurring functions that alter or add SellBids, BuyBids, ActiveSen-

sors, and SmartData.

With our modification, at validation time, the peers will check the transaction

response. If it returned with the function SuccessWithPriorityBypassPhantomRead-

Check, they will not perform the phantom read check and validate the transaction.

The full modification patch is available in our Github (WESTPHALL, 2021).

Figure 18 – Phantom read conflict in non-sequential blocks

Designed by author

Code 5.26 – Enabling chaincode function return setting a priority, preventing the

transaction invalidation due to the reads on lines 3, 10 and 12

1 func (chaincode *EnergyChaincode) publishEnergyGeneration(stub

shim.ChaincodeStubInterface, t0 uint64, t1 uint64,

Chapter 5. Proposal development 86

energyByTypeGeneratedKWH map[string]float64) pb.Response {

2 ...

3 stub.GetStateByPartialCompositeKey("ActiveSensor", []string{}) //called

indirectly by getActiveSensorsList()

4 ...

5 return shim.SuccessWithPriorityBypassPhantomReadCheck(

6 []byte(successMessage), pb.Priority_MEDIUM)

7

8 }

9 func (chaincode *EnergyChaincode) auction(stub shim.ChaincodeStubInterface)

pb.Response {

10 stub.GetStateByPartialCompositeKey("SellBid", []string{})

11 ...

12 stub.GetStateByPartialCompositeKey("BuyBid", []string{"true"})

13 ...

14 return shim.SuccessWithPriorityBypassPhantomReadCheck(nil,

15 pb.Priority_HIGH)

16 }

5.3 APPLICATION DEPLOYMENT

After the network is deployed, applications can interact with it through chain-

codes. The peer commands are a tool to transact in the network, but calling terminal

commands and storing their return from applications developed in a general-purpose

programming language is impractical. For that reason, Hyperledger Fabric provides

SDKs.

This Section describes how Fabric’s Java SDK and Java Gateway served as tools

to build applications related to our chaincode. Some modifications on the SDK and

Gateway were required to satisfy our model and experiment needs. We implemented

one application for each stakeholder in our network: buyer, seller, sensor, utility

company, and payment company.

5.3.1 Fabric SDKs

Hyperledger Fabric documentation defines the SDKs as “a layer of abstraction

on top of the wire-level protobuf based communication protocol used by client appli-

cations to interact with a Hyperledger Fabric blockchain network” (TEAM, F., 2020b).

Until Fabric version 2.3, there were Fabric SDKs in four programming languages: Java,

Javascript, Go, and Python. All actions and commands performed in Section 5.1 could

have been done with SDK functions, as they possess similar resources.

SDKs have some differences from one another. As an example, the Python SDK

Chapter 5. Proposal development 87

supports mainly 1.4.x Fabric versions, while the others support the 1.4.x and 2.x.x.

The Java SDK is the only one with Idemix support. In our case, since we deal with

Idemix MSP, we write our applications using the Java SDK. More specifically, we work

with the Fabric Java Gateway.

The fabric-sdk-java had to be adapted to allow our required needs when dealing

with idemix credentials. The modifications, highlighted in red, presented in Codes 5.27

and 5.28 enabled calling serializing methods outside the fabric-sdk-java package.

After signing a transaction, we desired to store the used idemix pseudonym to later

transaction authorship prooving. Codes 5.29 and 5.30 display the necessary changes

to achieve that. The whole fabric-sdk-java was recompiled and used as a dependency

to recompile the fabric-gateway-java.

Code 5.27 – Allowing outside package access to the serialization method of Idemix-

Credential class

1 public Idemix.Credential toProto();

Code 5.28 – Allowing outside package access to the serialization method of texti-

tIdemixIssuerPublicKey class

1 public Idemix.IssuerPublicKey toProto();

Code 5.29 – Adding a method to retrieve the SigningIdentity from the Transaction-

Context class

1 public SigningIdentity getSigningIdentity() {

2 return signingIdentity;

3 }

Code 5.30 – Allowing outside package access to the random part of the Idemix-

Pseudonym class

1 public BIG getRandNym() {

2 return RandNym;

3 }

5.3.2 Fabric gateways

Fabric gateways provide minimal necessary functions to applications submit

transactions and query ledger contents (TEAM, F., 2020a). It is built from a subset of

Fabric SDKs methods. Figure 19 present the relation between SDKs and gateways.

We chose fabric-gateway-java as the tool to interact with our Fabric network.

Fabric-gateway-java currently supports only identities with x509 certificates, even

Chapter 5. Proposal development 88

Figure 19 – SDK vs. Gateway comparison

Designed by the author

though the fabric-sdk-java supports x509 and Idemix. Since we intended to test our

model’s privacy solutions, we followed the x509 identity example and implemented

the required Identity interfaces to provide Idemix support.

We implemented the classes IdemixIdentity, IdemixIdentityImpl, and Idemix-

IdentityProvider to support Idemix (WESTPHALL, 2021). We also modified the Iden-

tities, GatewayImpl, and WalletImpl classes. Codes 5.31, 5.32, and 5.33 present the

signature of the added/modified methods highlighted in red.

Code 5.31 – Added methods to the gateway class Identities

1 public static IdemixIdentity newIdemixIdentity(final String mspId, Path

ipkPath, Path revocationPkpath,

2 Path signerConfigPath);

3

4 public static IdemixIdentity newIdemixIdentity(final String mspId, final

IdemixEnrollment enrollment);

5

6 public static IdemixIdentity newIdemixIdentity(final String mspId, final

IdemixIssuerPublicKey idemixIpk, final PublicKey revocationPublicKey,

final JsonObject signerConfigJson));

7

8 public static PublicKey readPublicKey(final String pem);

9

10 public static PublicKey readPublicKey(final Reader pemReader);

11

12 private static SubjectPublicKeyInfo asSubjectPublicKeyInfo(final Object

Chapter 5. Proposal development 89

pemObject);

13

14 public static String toPemString(final PublicKey publicKey);

Code 5.32 – Modifications on methods in the GatewayImpl class

1 @Override

2 public Builder identity(final Identity identity) {

3 if (null == identity) {

4 throw new IllegalArgumentException("Identity must not be null");

5 }

6 if (!(identity instanceof X509Identity || identity instanceof

IdemixIdentity)) {

7 throw new IllegalArgumentException("No provider for identity type:

" + identity.getClass().getName());

8 }

9 this.identity = identity;

10 return this;

11 }

12

13 private HFClient createClient() {

14 HFClient client = HFClient.createNewInstance();

15 // Hard-coded type for now but needs to get appropriate provider from

wallet (or registry)

16 if (identity instanceof X509Identity)

17 X509IdentityProvider.INSTANCE.setUserContext(

18 client, identity, "gateway");

19 else if (identity instanceof IdemixIdentity)

20 IdemixIdentityProvider.INSTANCE.setUserContext(

21 client, identity, "gateway");

22 return client;

23 }

Code 5.33 – Modifications on map declaration in the WalletImpl class

1 public final class WalletImpl implements Wallet {

2 private final WalletStore store;

3 private final Map<String, IdentityProvider<?>> providers = Stream

4 .of(new IdentityProvider<?>[]

5 {X509IdentityProvider.INSTANCE,

6 IdemixIdentityProvider.INSTANCE})

7 .collect(Collectors.toMap(IdentityProvider::

8 getTypeId, provider -> provider));

Chapter 5. Proposal development 90

9 }

Furthermore, we enabled access to the TransactionContext instance of a trans-

action, as presented in Codes 5.34 and 5.35. After our fabric-sdk-java modifications,

the transaction context has a public method to retrieve the SiginingIdentity of any

message. With that, a buyer application can store the IdemixPseudonym to prove

the credentials ownership to a utility company by signing a message with the same

IdemixPseudonym as the BuyBid transaction.

Code 5.34 – Adding the getTransactionContext() method declaration to the fabric-

gateway-java class Transaction class

1 TransactionContext getTransactionContext();

Code 5.35 – Adding the getTransactionContext() method implementation to the fabric-

gateway-java class TransactionImpl class

1 @Override

2 public TransactionContext getTransactionContext() {

3 return transactionContext;

4 }

5.3.3 Applications implementation

The applications were implemented with our modified fabric-gateway-java ver-

sion, even though only the buyer’s and utility’s applications had this unavoidable

requirement due to idemix utilization. The other entities’ applications could have

been implemented in any other fabric-sdk supported language.

Before transacting with the network, we provide three ways to load the cer-

tificates or idemix credentials. They can be fetched by enrolling with the MSP’s CA,

loading from the file system, or loading from a fabric-gateway-java wallet. The only

difference between the file system and wallet loading is the storage format. The first

loads the x509 certificate and the private key directly, while the other loads a JSON

formatted file containing both the certificate and private key.

Peers, orderers, and CAs are defined in a configuration file describing their

addresses and some network characteristics. Because our network secures commu-

nication with TLS, the configuration file also has the path to the entities’ TLS CAs

certificate. We did not enable the TLS mutual authentication. Therefore the applica-

tions are not authenticated to the orderers and peers.

Chapter 5. Proposal development 91

5.3.3.1 Sensor’s application

A sensor with a valid MSP certificate reads an environment metric, and the data

is stored in the blockchain after a call to the chaincode function publishSmartData.

The coordinates considered by the chaincode are present in the sensor’s certificate

attributes. Depending on the sensor’s processing constraints, the blockchain inter-

action and the certificate management would probably be performed by a gateway

device. Code 5.36 exhibits the described sensor’s action and, since it is a testing

source, we deal with random smart data instead of a real measure.

Code 5.36 – How sensors publish SmartData to the blockchain

1 SmartData smartData = getRandomSmartData(unit, threadNum, publish);

2 Transactiontransaction = contract.createTransaction("publishSensorData");

3 byte[] transactionResult =

transaction.submit(Byte.toString(smartData.version),

4 Long.toString(smartData.unit), Long.toString(smartData.timestamp),

5 Double.toString(smartData.value), Byte.toString(smartData.error),

6 Byte.toString(smartData.confidence), Integer.toString(smartData.dev));

5.3.3.2 Buyer’s application

As displayed in Code 5.37, before the buyer can publish BuyBids to the net-

work, they need to put funds in their payment account and request a token from their

payment company. We establish a representative Hypertext Transfer Protocol (HTTP)

connection between the buyer and the payment company, even though a real deploy-

ment would require secure communication. After the registerBuyBid call carrying the

BuyBid information, the buyer requests that the payment company validates it.

When the auction occurs, and the BuyBid is effectively matched to a SellBid,

the buyer requests a nonce to their utility company. Then, they sign the transaction

ID concatenated to the nonce and add the bid information to a list. The energy bill

discount request is performed by the auction event listener presented in Code 5.38,

which communicates with the utility through HTTP.

Code 5.37 – Buyer’s application main function calls

1 putFundsOnPaymentAccount(1000);

2

3 String token = requestPaymentToken();

4

5 Transaction transaction = contract.createTransaction("registerBuyBid");

6 byte[] transactionResult =

transaction.submit(cmd.getOptionValue("paymentcompanyid"), token, "UFSC",

Chapter 5. Proposal development 92

7 cmd.getOptionValue("energyamountkwh"),

cmd.getOptionValue("priceperkwh"), cmd.getOptionValue("energytype"));

8

9 requestBuyBidValidation(token);

10 ...

11 publishedBids.add(new PublishedBuyBid(paymentCompanyId, token,

transactionID, ipk, signingId, Double.parseDouble(energyQuantity)));

Code 5.38 – Piece of auction event listener code

1 Consumer<ContractEvent> auctionPerfomedListener = new

Consumer<ContractEvent>() {

2 @Override

3 public void accept(ContractEvent t) {

4 if (t.getName().equals("auctionPerformed")) {

5 int utilityNonce = getUtilityCompanyNonce();

6 ...

7 requestEnergyDiscount(buyerFullName,

publishedBid.transactionID, publishedBid.ipk,

ipkOwnershipSignatureProof);

8 ...

9 }

10 }

11 };

12 contract.addContractListener(auctionPerfomedListener, "auctionPerformed");

5.3.3.2.1 Random generation configuration

By Hyperledger design, each new transaction signed with idemix requires a

new pseudonym. The pseudonym creation uses java SecureRandom and, in Linux, the

secure random default algorithm is NativePRNG. In this method, seeds are fetched

from /dev/random, consuming much time in an operating system lacking entropy

sources. In a test context, buyer applications simulating multiple buyers will recur-

rently block and wait for the /dev/random to print entropy.

To surpass this restriction, in our tests, we execute the buyer applications

with the flag in red displayed in Code 5.3.3.2.1. This forces SecureRandom to use a

Deterministic Random Bit Generator (DRBG) algorithm, which does not block for that

long, with default configuration displayed in Code 5.39.

1 mvn exec:java@buyer-test -Dexec.mainClass="applications.AppBuyerForTest"

2 -Djava.security.egd=file:/dev/./urandom

Chapter 5. Proposal development 93

Code 5.39 – java.security default configuration for DRBG algorithms

1 # The default value is an empty string, which is equivalent to

2 # securerandom.drbg.config=Hash_DRBG,SHA-256,128,none

5.3.3.3 Seller’s application

The seller’s application, in Code 5.40, follows the same principles of the buyer

one, but with a few extra function calls. For testing purposes, we configured the

seller’s application to publish energy generation transactions and then create a sell

bid for the generated energy. However, in a real deployed network, the role of pub-

lishing energy generation claims could be performed by a gateway connected to the

seller’s smart meter.

Like the buyer’s application, there is also an auction event listener in this one,

as demonstrated by line 1 of Code 5.40. The only difference being that in this case,

the event handler deals with requesting funds for the payment company due to the

energy sold.

Code 5.40 – Seller’s application main function calls

1 registerAuctionEventListener(contract, (X509Identity) identity,

publishedBids, sellerFullName);

2 ...

3 transaction =

contract.createTransaction("publishEnergyGenerationTestContext");

4 transaction.submit(generationBeginningTime, generationEndTime, "solar",

randomGeneratedEnergy);

5 ...

6 Transaction transaction = contract.createTransaction("registerSellBid");

7 byte[] transactionResult =

transaction.submit(cmd.getOptionValue("energyamountkwh"),

8 cmd.getOptionValue("priceperkwh"), cmd.getOptionValue("energytype"));

9 ...

5.3.3.4 Utility’s application

The utility company application consists of a representative HTTP server re-

ceiving nonce and discount requests from buyers, as presented in Code 5.41. The

nonce is solicited by clients who bought energy anonymously in the blockchain and

increases the security of the discount request. The utility application performs the

following steps before granting bill discounts to clients:

1. Receive a discount request containing the client name, the ID of the transaction

Chapter 5. Proposal development 94

that published their BuyBid, the idemix issuer public key, and the ID concate-

nated to the retrieved nonce.

2. Verify if the transaction stored a BuyBid in the blockchain.

3. Retrieve the idemix pseudonym that signed the BuyBid publishing transaction.

4. Verify if the same pseudonym generated the signature described in step 1.

5. Verify if the BuyBid was partially or fully matched in an auction.

Code 5.41 – Utility application HTTP server resources and start

1 HttpServer server = HttpServer.create(new InetSocketAddress(80), 0);

2 server.createContext("/noncerequest", new NonceRequestHandler());

3 server.createContext("/discountrequest", new DiscountRequestHandler());

4 ExecutorService executor = Executors.newCachedThreadPool();

5 server.setExecutor(executor);

6 server.start();

5.3.3.5 Payment company’s application

The payment company is also a representative HTTP that receives four types

of requests displayed in Code 5.42. A buyer can put funds in their account by posting

to the resource “/putfunds” and request a payment token to compose the BuyBid

by posting to “/gettoken.” After the BuyBid is published, the buyer will post to the

“/validatebuybid” resource to require the payment company validation. After the auc-

tion, the seller will post to “/requestpayment” to get paid for the sold energy. At the

execution beginning, the application retrieves all CA MSP’s certificates to attest later

that a seller trying to request payment for an EnergyTransaction is the designated

receiver.

Code 5.42 – Payment company application HTTP server resources and start

1 HttpServer server = HttpServer.create(new InetSocketAddress(81), 0);

2 server.createContext("/putfunds", new PutFundsHandler());

3 server.createContext("/gettoken", new GetTokenHandler());

4 server.createContext("/validatebuybid", new ValidateBuyBidHandler());

5 server.createContext("/requestpayment", new RequestPaymentHandler());

6 ExecutorService executor = Executors.newCachedThreadPool();

7 server.setExecutor(executor);

8 server.start();

Chapter 5. Proposal development 95

5.3.4 Fabric-sdk-java logging and configurations

It is possible to activate the fabric-sdk-java logging so the application execution

might be tracked. Even though the instructions in the repository (TEAM, F., 2020b)

claim that logging is enabled through environment variable settings, we achieve it by

passing the flags in red presented in Code 5.3.4 when we run an application. These

two flags point to files that contain the logging configurations.

1 mvn exec:java@auction -Dexec.mainClass="applications.AppPeriodicAuction"

-Dexec.args="..." -Djava.util.logging.config.file=commons-logging.

2 properties -Dlog4j.configuration=log4j.properties

The SDK’s Config class defines all default configurations regarding wait times,

security parameters, maximum thread numbers, and other configurations. A “con-

fig.properties” file in the root of the maven project directory is necessary to override

the default parameters. In this file, we only change the Service Discovery period to

avoid frequent discovery requests and increase performance. We also change the

orderer default response timeout.

5.3.5 Service Discovery x Network file description

Fabric’s java SDK lets applications know the network topology, with peers,

orderers, channels, and CAs, by performing a Service Discovery or reading a network

description file. When an application starts, the network description file is always

read to contact peers and orderers. Then, it can perform a Service Discovery to find

out about all known peers, orderers, policies, and settings in the channel. After that,

the next transactions are sent only to the needed number of endorsers based on the

discovered channel policy.

Nothing prevents the network description file is solely used, but this practice

can impact the overall channel transaction performance. Since the endorsement poli-

cies are unknown to the applications without Service Discovery, they will request

endorsements for all known peers, even if the number of requests exceeds the quan-

tity required by the endorsement policies.

A network with two organizations O1 and O2, running two peers each, with

the endorsement policy determining that all organizations must sign every transac-

tion clarifies the performance problem. An application transacting with the network,

which uses a network description file containing all four peers, would request an

endorsement for each one, even though only two peers would be needed. This does

not represent a significant performance impact in a small-scale channel, while the

opposite is true for large-scale channels dealing with multiple application instances.

Solving this problem is not as simple as describing the sufficient peers’ quantity

because the channel topology might change as a peer or orderer goes offline. That

Chapter 5. Proposal development 96

is why we opted for enabling the Service Discovery after analyzing both behaviors

through logging and debugging. Its main performance advantage consists of alternat-

ing the endorsing peers, avoiding a bottleneck on a specific peer while making the

least requests.

In our experiments with a private docker network, the Service Discovery worked

properly when the applications were executed from an ubuntu docker container inside

the network. Otherwise, despite the fabric-sdk-java overriding the hostname to local-

host, it does not support port binding as configured with docker. We also changed the

default Service Discovery period of 2 minutes to 20, as we considered it a reasonable

time interval for preserving performance.

5.4 NETWORK AWS DEPLOYMENT

In the previous sections of this chapter, we explained the steps to deploy a

localhost containerized blockchain network with a single chaincode and some ap-

plications. Experiments in a local context are difficult to scale and are not always

representative of a real environment. For this reason, we created the necessary

scripts and architecture to adapt the local deployment to an AWS one.

AWS offers vast cloud solutions with products and services related to many

different knowledge areas, from databases to robotics. It counts on hosts located in

the world’s main regions and allows that customers choose where to applications

are deployed. The users have a variety of machine configurations at their disposal,

depending on resource requirements and budget.

5.4.1 Elastic Compute Cloud

We selected the Elastic Compute Cloud (EC2), a virtual configurable com-

puting environment, to deploy our cloud blockchain network. The general steps to

set up a network go through selecting an operational system image (AMI), choosing

the hardware configurations for each virtual machine (instance), and defining their

storage type (SSD, IOPS SSD, Hard disk).

An Amazon Machine Image (AMI) stores an operating system snapshot with

configurations and applications and can be used by multiple instances. AWS lists the

available AMIs and, if they are public, anyone can start an instance, modify the system

as wished, and store the changed AMI. The supported architectures for images are

i386, amd64, and arm64.

Instances are virtual servers with specific hardware configurations and launch

from an AMI. Each instance type runs in a specific processor architecture with de-

termined virtual Central Process Unit (CPU), Random Access Memories (RAM), local

storage, and network throughput quantities. For example, the instance type t2.micro

Chapter 5. Proposal development 97

runs with a single intel virtual CPU, 1 Gibibyte (GiB) of RAM, and low network per-

formance. Meanwhile, the r6gd.metal type has 64 physical cores of an AWS Arm

Gravitron2 Processor, containing 512 GiB of physical RAM and network bandwidth up

to 25 Gigabits per second (Gbps).

The machines are instantiated in a Region, and more specifically, in an Avail-

ability Zone inside a Region. As an example, AWS has the South America East Region,

located in Sao Paulo. Availability Zones represent different data centers within the

Region bounds and reduce the single point of failure risk. If an application resides in

multiple Availability Zones, a power shortage in one of them could be mitigated, as

presented in Figure 20.

Figure 20 – AWS Regions and Availability Zones

Source: (AUTHORS, 2021)

5.4.2 ARM vs. x86-64 deploy and costs

Powerful compute instances were required to run our experiments as close

as possible to a real blockchain network for energy transactions - with many sellers,

buyers, and sensors. We analyzed the costs to run instances with at least 32 cores

and realized the cost disparity between arm and intel instances for budgeting the

Chapter 5. Proposal development 98

experiments. The on-demand Linux pricing for the type m5.16xlarge (intel) was 3.232

USD per hour, while the arm equivalent m6g.16xlarge cost 1.6191 USD per hour.

This 50% difference motivated us to deploy our experiments fully on arm

instances, but the peer docker image had a hard-to-diagnose linking segmentation

fault. We could solve the linking problem by forcing the docker images responsible

for compiling the peer to link statically, with the changes displayed in Code 5.43.

Besides, we changed the fabric-sdk-java dependency netty-tcnative-boringssl-static

from version 2.0.34.Final to 2.0.35.Final due to a bad arm64 Dynamic-link Library

(DLL) naming.

Code 5.43 – Modification on Fabric’s images/peer/Dockerfile to allow compilation in

arm64 and static linking

1 ...

2 RUN apk add --no-cache \

3 binutils-gold \

4 ...

5 # peer must be built STATICALLY to run in arm64 docker

6 ENV CGO_ENABLED=0

7 RUN make peer GO_TAGS=${GO_TAGS}

8 ...

The deployment location also affects costs because AWS charges different

prices for different Regions. Since our experiment is executed fully on the cloud, we

could choose the cheapest location, Mumbai. As a reference, the same instance that

cost 1.6191 USD in Mumbai could cost up to 3.9168 USD in Sao Paulo.

5.4.3 EnergyNetwork deploy steps in AWS

The first step involved creating modified AMIs from the quick start Ubuntu

Server 20.04 LTS (HVM) image (ami-0a6638920f7143fb2) for arm architecture. We

started an instance with this quick start image and installed all required packages, in-

cluding our patched fabric docker images, the fabric-sdk-java, and the fabric-gateway-

java. The script “create-ami-arm.sh” in our Github repository (WESTPHALL, 2021) was

executed to generate our custom Ubuntu AMI.

Next, we adapted the local docker deploy script to the “automated-aws-creatio-

n.sh” script, which receives the instance types as arguments, reads the configuration

files and deploys the network in AWS. Figure 21 shows the high-level operations of the

deployment with peers, orderers, a chaincode, and application instances. Localhost

CAs generate the certificates for the hostnames, or Internet Protocol (IP) addresses

allocated by AWS to each instance.

Chapter 5. Proposal development 99

Figure 21 – AWS deploy high-level sequence

Designed by the author

100

6 EXPERIMENTS

This chapter describes the experiments performed locally, in a single machine,

and in the AWS cloud with multiple Cloud machines. Also, we define the experiments’

objectives and explain some applied techniques to increase the network load in terms

of scalability efficiently. In AWS, we performed three phases of experiments with

continuous load increases and instance upgrades to measure the network capacity.

The data generation rate by the network referent to the experiment phases was also

analyzed.

6.1 EXPERIMENT DESIGN GOALS

We designed our experiments to reach answers to our research questions

about the scalability of blockchain energy trading with a guarantee of origin. The

focus is on how a Hyperledger Fabric network running a chaincode to validate and

transact energy, handling vast amounts of transactions. For that, we test different

network configurations, varying the quantities of organizations, buyers, sellers, and

sensors.

The frequency of transactions - energy validation, auction, buying, and selling -

is also configurable. With these settings, we can discover how a specific configuration

change impacts the performance of the network. For example, the increase in the

frequency of the sensors data publication might require more peers to keep the

network operational.

6.2 EXPERIMENT ADAPTATIONS

Our applications and chaincode functions had to be adapted to support larger-

scale experiments. HTTP servers and creating a certificate for each buyer, seller, and

sensor had to be eliminated. Chaincode execution averages had to be calculated with-

out affecting performance. In this section, we enumerate the required adaptations

and briefly explain them.

6.2.1 Test applications

The applications described in Section 5.3.3 were adapted to simulate a higher

number of buyers, sellers, and sensors. Each one has a specific purpose of simulating

only one type of entity - buyer, seller, or sensor. These applications receive arguments

about the transaction period, the number of transactions, path to certificates, or

idemix credentials. The quantity of simulated sellers, buyers, or sensors is also passed

as an argument and implies creating one thread per buyer, seller, or sensor.

To ensure that the auction happens periodically, we developed a specific appli-

Chapter 6. Experiments 101

cation that only calls the auction chaincode function and sleeps after that. The auction

period is passed as an argument and is kept the same in an experiment round.

6.2.2 Bypassing entities identification from certificates’ common names

In our initial network deployment, the chaincode identified transactions’ au-

thors by the common names in the certificates. However, if we kept this design in

our experiments, the required number of certificates would be proportional to the

number of buyers, sellers, and sensors. This is not a problem in small tests, but it can

be in larger experiments like ours.

Therefore, we enabled that the transaction author identified themselves by

passing their names in the chaincode function parameter. For that, we added chain-

code test functions that receive the author’s name in order to identify them. Code

6.1 displays an example of an adapted test function. The sellerID is informed by the

chaincode caller, as presented in Code 6.2.

Code 6.1 – Chaincode function adapted to fetch ID from parameter

1 func (chaincode *EnergyChaincode) registerSellBidTestContext(stub

shim.ChaincodeStubInterface, sellerID string, quantityKWH float64,

pricePerKWH float64, energyType string) {...}

2 }

Code 6.2 – Application function that calls the chaincode function and passes the sell-

erFullName as parameter

1 transaction = contract.createTransaction("registerSellBidTestContext");

2 transaction.submit("seller1-organization", ...);

6.2.3 One gateway per multiple entities of the same type to improve thread

efficiency

We utilize a single gateway to handle all the transaction submissions of a

specific - buyer, seller, or sensor - simulated application. This avoids redundant con-

nection thread creations to serve each simulated buyer, sensor, or seller. Code 6.3

presents an example with the buyer’s application. All threads simulating a buyer in-

teract with the network through the same gateway instantiated, in line 1 of Code 6.3.

Otherwise, the capacity to simulate entities would decrease since more CPU power

would be allocated to the Remote Procedure Calls (gRPC) threads.

Observation: On some rare occasions, the gRPC java library shows exceptions

logging messages - without actually throwing the exceptions - warning about channels

previously open that were not properly shut down. This does not affect the delivery of

Chapter 6. Experiments 102

transactions, and it is caused by dereferenced objects being finalized by the garbage

collector instead of being explicitly shut down.

Code 6.3 – Same gateway for all buyer threads

1 try (Gateway gateway = builder.connect()) {

2 Network network = gateway.getNetwork("canal");

3 Contract contract = network.getContract("energy");

4 ...

5 for (int i = 1; i <= THREAD_NUM; i++) {

6 threads[i] = new Thread() {

7 ...

8 public void run() {

9 ...

10 contract.createTransaction("registerBuyBid");

11 ...

12 }

13 }

14 }

6.2.4 Sensor application without block event

By default, the fabric-java-gateway always waits for the transaction commit-

ment event after a submission. Unlike a buyer, which needs to wait for the BuyBid

publication commitment to request the BuyBid validation, sensors simply push data

to the chain and do not require knowing when the data is committed. Also, con-

sidering that the sensors’ gateways might have processing constraints, listening to

events should be disabled. We achieve this behavior by creating a specific network

file description in which all peers are not set as event sources, as presented in Code

6.4.

Code 6.4 – Non-blocking conection-tls.json

1 "peers": {

2 "peer1-org1": {

3 ...

4 "eventSource": false,

5 },

6 "peer1-org2": {

7 ...

8 "eventSource": false,

9 }

10 }

Chapter 6. Experiments 103

6.2.5 Discarding HTTP servers to improve experiment reliability

The applications simulating the utility company’s and payment company’s

HTTP server were discarded in our experiments. As we intended to focus on measuring

the blockchain performance, the risk of the HTTP servers becoming the network

bottleneck had to be eliminated. It is true that the discards also free some blockchain

resources which would be required to respond to the companies’ queries, making our

experiments divert a little from a real deployed network. Nevertheless, we are sure

that Hyperledger Fabric is the only one responsible for the measured performance

limits.

The initially used Java HTTP library (com.sun.net.httpserver.HttpServer) is not

very scalable, as it blocks threads to perform chaincode calls. Considering this be-

havior, we did not want to increase this work’s complexity by finding and analyzing

another Java HTTP library. However, we address joining back properly configured

scalable HTTP servers as future work.

Instead of the payment company validating the buy bid, the buyer application

validates its published buy bids in our tests to bypass the companies’ absence. Also,

all sensors are considered trusted by all organizations to avoid the necessity of setting

the trusted sensors for each organization in the experiment context.

Observation: even without the companies, we maintained the buyers and

sellers auction event listeners that normally would trigger discount and payment

requests. Since there are no companies in our tests, the buyers and sellers only

query the chaincode to check if their bids were fully matched after receiving the

auction event notification. Therefore, auction events and bid queries still represent a

chaincode load.

6.2.6 Measuring chaincode execution

When a chaincode function is called, the execution time is measured and sent

to a goroutine exclusively responsible for incrementally calculating the average time

of each function to avoid overflow. Due to the same function being called simultane-

ously by multiple endorsing requests, this approach using a goroutine ensures that

the writes to the averages are coordinated and prevents the endorsing requests from

blocking until the average calculation.

Code 6.5 shows the thread responsible for executing the transaction simula-

tion. After the return, the defer function calculates the execution time and sends it

to the goroutine (“thread”) presented in Code 6.6. The calculation goroutine continu-

ously listens to the channel channelAverageCalculator and recalculates the function

Chapter 6. Experiments 104

execution time average when a new FunctionAndDuration is published.

Code 6.5 – Main execution “thread”

1 now := time.Now()

2 defer func() {

3 elapsed := time.Since(now)

4 channelAverageCalculator <- &FunctionAndDuration{functionName, elapsed}

5 }()

6 return functionPointer(stub, args)

Code 6.6 – Average calculation goroutine (“thread”)

1 for {

2 functionNameAndDuration := <-channelAverageCalculator

3 /* recalculate the average */

4 }

6.2.7 Limiting the number of sensors during validation

In some cases, we increase the number of sensors to more than 1000. Since,

in our experiments, we keep all sellers within an influence radius of the sensors, we

established a maximum limit of 5 sensors per organization to validate an energy

generation claim. This avoids the validation complexity to grow proportionally to

the number of sellers times the number of sensors, which would be unrealistic in a

real-life scenario.

At the first experiments, every sensor participated in the validation of every

energy generation claim. However, we noticed that such settings started requiring

increasingly powerful instances in tests with more than 1000 buyers, 1000 sellers,

and 1000 sensors. Therefore, scalability tests containing more than 10000 seemed

infeasible. The 5 sensor maximum made our experiments closer to a real-life scenario

while keeping the sensors’ load related to SmartData publishing and allowing further

scalability tests.

6.3 EXPERIMENT ROUNDS

We structured our scripts to execute experiments in rounds, which are defined

by a set of configurations and results. The configurations encompass blockchain

configurations, like the number of orderers, and application configurations, like the

sensors quantity. Results describe metrics and statistics within a single experiment

round.

Chapter 6. Experiments 105

6.3.1 Experiment round configuration

Each experiment round has its own set of configurations regarding the blockchain

- peers, orderers, organizations - and the applications - buyers, sellers, sensors, trans-

action frequency. The following configurations are determined before network cre-

ation:

1. Organizations.

2. Number of peers.

3. Number of orderers.

4. Number of application instances.

5. Peer concurrency limits.

6. Peers AWS instance type.

7. Orderers AWS instance type.

8. Applications AWS instance type.

9. Batch size.

10. Batch timeout.

After the network creation, multiple experiments might be performed, but

the only possible configuration changes are related to the applications, displayed in

Code 6.7. Experiments with different blockchain configurations require full network

recreation.

Code 6.7 – Application test configuration

1 #quantity per cli-application

2 sensors:

3 quantity: 1000

4 unit: 3834792229

5 #Interval in ms

6 publishinterval: 5000

7 publishquantity: 20

8 msp: UFSC

9

10 sellers:

11 quantity: 1000

12 #Interval in ms

13 publishinterval: 5000

14 publishquantity: 5

15 msp: UFSC

16

17

18 buyers:

Chapter 6. Experiments 106

19 quantity: 1000

20 #Interval in ms

21 publishinterval: 5000

22 publishquantity: 10

23 msp: IDEMIXORG

24

25 #Interval in ms

26 auctioninterval: 30000

6.3.2 Experiment round results

During an experiment round, the peers’, chaincodes’, orderers’, and applica-

tions’ metrics are continuously fetched through Secure Shell (SSH) and dumped into

files. Code 6.8 displays an example of how we do that. The sshCmdBg function con-

nects to an instance and executes the “docker stats” command in the background

until all applications finish their transactions. These CPU, memory, network, and disk

stats are later processed by a python script that generates plots from the data.

Code 6.8 – Fetching orderers’ stats

1 sshCmdBg ${hosts[orderer$i-$orgName]} docker stats --format

"{{.CPUPerc}}:{{.MemUsage}}:{{.NetIO}}:{{.BlockIO}}" orderer$i-$orgName

> $testFolder/stats-orderer$i-$orgName.txt

The initial and final file system sizes of peers and orderers are also measured

to identify how much data an experiment round generated. We periodically get the

average execution time of each chaincode function. In the end, we retrieve the peers’,

orderers’, and applications’ logs to verify if any abnormal behavior happened. Even-

tually, when stress testing the network, some transactions might be rejected, or

connection timeouts might appear in the logging files.

6.4 EXPERIMENTS WITH DIFFERENT AWS INSTANCES

We evaluated the AWS instances’ performance in a context with one orderer,

one peer, and one or two application instances. Algorithm 1 provides a high-

level idea about how we performed these experiment tests. We started with the

limited arm instance t4g.micro for the peer, orderer, and application. The test load

was constantly increased by growing the number of sellers, buyers, and sensors until

the log indicated failures.

When the logs presented failures, we interpreted the test result to find what

instance - peer, orderer, or application - needed upgrade to support the test load

or if some Hyperledger Fabric’s configuration should be changed. After the instance

upgrade or configuration change, the experiment round was run again with the same

load and was expected to work.

Chapter 6. Experiments 107

Algorithm 1 Experiment tests

1: procedure TestInstancesLimit
2: peerInstance← “t4g.micro”
3: ordererInstance← “t4g.micro”
4: applicationsInstance← “t4g.micro”
5: testConfiguration← getSmallLoadConfiguration
6: while weWantToPerformAnotherRound do
7: logs ← runExperimentRound(testConfiguration)
8: if logsPresentsErrors(logs) then
9: configurationNeedsChange← identifyConfigChangeNeed(logs)

10: if configurationNeedsChange then
11: testConfiguration← changeSomeFabricConfig(testConfiguration)
12: continue
13: end if
14: entityToBeUpgraded ← identifyWhoNeedsUpgrade(logs)
15: if entityToBeUpgraded = “peer” then
16: peerInstance← upgradeInstance(peerInstance)
17: else if entityToBeUpgraded = “orderer” then
18: ordererInstance← upgradeInstance(ordererInstance)
19: else
20: applicationsInstance← upgradeInstance(applicationsInstance)
21: end if
22: else
23: testConfiguration← increaseLoad(testConfiguration)
24: end if
25: end while
26: end procedure

6.4.1 Phase 1 experiment

The first phase of the experiments ran with all sensors participating in all

energy validations. It raised our awareness about limiting the number of sensors, as

discussed in Section 6.2.7 after analyzing the steep average time increase of the

energy validation function execution. This phase’s results are discussed in Section

7.2.1.

In Phase 1, the transaction publication quantities and intervals of each en-

tity type were equivalent to the displayed in Code 6.7. Nevertheless, the numbers

of sellers, sensors, and buyers were varied. This phase ended with a very specific

failure regarding the peer endorsing concurrency limit, set by default to 2500

concurrent endorsing requests.

6.4.2 Phase 2 experiment

In the Phase 2 experiments, we increased the peer’s concurrency limit and

avoid this failure, provided that the peer instance has the required computing power.

Chapter 6. Experiments 108

The limit was set to 1 million concurrent requests to practically eliminate any con-

currency restrictions, even though we never experiment with 1 million concurrent

transactions. As in Phase 1, besides the number of buyers, sellers, and sensors, the

Phase 2 configuration was the same as presented by Code 6.7.

We also increased the chaincode container RAM allocation since the chain-

code started to respond to more simultaneous requests after the concurrency limit

increase. The number of sensors participating in each energy generation validation

was limited to 5 to represent a more realistic scenario. This phase’s results are pre-

sented in Table 6 in Section 7.2.2.

6.4.3 Phase 3 experiment

The authors of (MOON et al., 2019) recommend a larger block size in Hyper-

ledger Fabric environments with high throughput and lower latency demands. Consid-

ering that, in Phase 3, we performed tests with different block sizes and block timeout

values. The results are presented in Table 7 and discussed in Chapter 7.

These configurations are set in the “configtx.yaml” file of the network being

deployed. Code 6.9 presents the parameters that deal with block configurations,

containing brief documentation explaining each field. The term “batch” can be con-

sidered equivalent to “block.” The results of this phase are presented and discussed

in Section 7.2.3

Code 6.9 – Hyperledger block configuration parameters in “configtx.yaml”

1 Orderer: &OrdererDefaults

2 #...

3 BatchTimeout: 2s

4 BatchSize:

5

6 # Max Message Count: The maximum number of messages to permit in a

7 # batch. No block will contain more than this number of messages.

8 MaxMessageCount: 500

9

10 # Absolute Max Bytes: The absolute maximum number of bytes allowed for

11 # the serialized messages in a batch. The maximum block size is this value

12 # plus the size of the associated metadata (usually a few KB depending

13 # upon the size of the signing identities). Any transaction larger than

14 # this value will be rejected by ordering...

15 AbsoluteMaxBytes: 10 MB

16

17 # Preferred Max Bytes: The preferred maximum number of bytes allowed

18 # for the serialized messages in a batch. Roughly, this field may be considered

19 # the best effort maximum size of a batch. A batch will fill with messages

20 # until this size is reached (or the max message count, or batch timeout is

21 # exceeded). If adding a new message to the batch would cause the batch to

22 # exceed the preferred max bytes, then the current batch is closed and written

23 # to a block, and a new batch containing the new message is created. If a

24 # message larger than the preferred max bytes is received, then its batch

25 # will contain only that message. Because messages may be larger than

26 # preferred max bytes (up to AbsoluteMaxBytes), some batches may exceed

Chapter 6. Experiments 109

27 # the preferred max bytes, but will always contain exactly one transaction.

28 PreferredMaxBytes: 2 MB

6.5 DATA GENERATION RATE EXPERIMENTS

Sensors continuously sending SmartData to the blockchain coupled with en-

ergy bid submissions might generate a huge amount of data, and knowing this data

generation rate can point to network limitations. For that reason, we evaluated the

data quantity generated in Phases 2 and 3 - with sensors, buyers, and sellers.

The peer’s and orderer’s root (“/”) file systems’ sizes were measured before

and after the experiment rounds. We intended to draw conclusions discussing whether

or not the data rate could be considered a problem with the results.

110

7 RESULTS AND DISCUSSION

In this Chapter, we present the results of our experiments. The preliminary met-

rics were taken during the chaincode development to maximize the database queries

speed. We compare CouchDB and LevelDB after running some of our chaincode’s

functions with each one of them. LevelDB presented an overall better performance

for the queries executed. The results from the three experiment phases are displayed,

discussed, and compared with the related work solutions and proposals. We estimate

the data generation rate and the cost of our implementation.

7.1 PRELIMINARY METRICS

The preliminary metrics provided base metrics to decide on the best perfor-

mance chaincode design. We compared the time to retrieve a set of ledger States

between CouchDB and LevelDB queries. The time measures were taken in a single

machine with two orderers, two peers, and two CouchDBs for each peer, all running in

docker containers. The preliminary metrics’ intent is not to estimate the World State’s

access time in a real deployment context but to find the differences between the two

databases, which will likely be proportional in a real deployment.

Our chaincode final version serializes the structs using gRPC to take advantage

of more efficient storage. However, at the time of these preliminary experiments, the

chaincode serialized structs to JSON format, which is required for using CouchDB

with Hyperledger Fabric.

7.1.1 CouchDB vs. Go LevelDB

Hyperledger Fabric supports CouchDB and LevelDB as database solutions to

the ledger and World State. In this context, we measured some preliminary database

query times to decide the most appropriate database. Our initial metrics involved

querying SmartData in a determined timestamp range from the World State. The

other two queries regarded retrieving SellerInfo by its SmartMeter ID and fetching

SellBids/BuyBids to perform the double auction. Based on the metrics, LevelDB was

considered more appropriate for our chaincode than CouchDB.

At first sight, it might seem obvious that a CouchDB running as an extra docker

container, communicating with the peer using the network, and performing JSON

queries would be slower than a LevelDB peer-local with only Key-Value queries. How-

ever, we considered that JSON queries could filter more data at the database, optimize

network usage, and avoid data filtering on the chaincode. Also, we created indexes

for the JSON queries, as recommended in Hyperledger Fabric’s documentation, for

optimization (TEAM, F. D., 2020b).

Chapter 7. Results and discussion 111

Since we performed these preliminary experiments in a single machine, the

network delay effect was almost irrelevant on the communications between peers

and its CouchDB instance and between the peer and its chaincode instance. Code

7.1 presents how the network delay was calculated by performing near 100 round

trips with the Linux ping command. The CouchDB settings in our experiments are

presented in Code 7.2.

Code 7.1 – Round trip peer to CouchDB and peer to chaincode

1 $ ping "couchdb-address"

2 ...

3 round-trip peer<-->couchdb min/avg/max = 0.063/0.077/0.156 ms

4

5 $ ping "chaincode-address"

6 ...

7 round-trip peer<-->chaincode min/avg/max = 0.050/0.073/0.165 ms

Code 7.2 – CouchDB configuration in each peer configuration file core.yaml

1 ledger:

2 . . .

3 state:

4 . . .

5 totalQueryLimit: 100000

6

7 couchDBConfig:

8 . . .

9 maxRetries: 3

10 maxRetriesOnStartup: 10

11 requestTimeout: 35s

12 internalQueryLimit: 1000

13 maxBatchUpdateSize: 1000

14 . . .

7.1.1.1 Querying SmartData by timestamp range

The SmartData by timestamp query is part of the energy validation process.

The trusted near sensors are selected, and their published SmartData serve as ref-

erences to validate the alleged energy production. The seller informs a timestamp

range, representing the period when they generated the energy. We evaluated the

performance of three ways to retrieve the smart data:

Chapter 7. Results and discussion 112

1. Using CouchDB, with a JSON query and function shim.ChaincodeStubInterface.-

GetQueryResult() with the operator $in

2. Using CouchDB, with a JSON query and function shim.ChaincodeStubInterface.-

GetQueryResult() without the operator $in

3. Using CouchDB, with the function shim.ChaincodeStubInterface.GetStateBy-

Range()

4. Using LevelDB, with the function shim.ChaincodeStubInterface.GetStateBy-

Range()

Codes 7.3 and 7.4 contain the measured queries available only with CouchDB,

one with the $in operator, which requires only one query, including all sensors IDs.

The other query is performed per near trusted sensor. Code 7.5 shows the index for

the SmartData stored in the World State, containing the fields timestamp and assetid,

corresponding to the same fields in our JSON query.

Code 7.3 – Query with GetQueryResult() using the $in operator, possible only with

CouchDB

1 assetsIDs := "["

2 for _, nearTrustedActiveSensor := range *nearTrustedActiveSensors {

3 assetsIDs += ‘"‘ + nearTrustedActiveSensor.MspID +

nearTrustedActiveSensor.SensorID + ‘",‘

4 }

5 assetsIDs = assetsIDs[:len(assetsIDs)-1] + "]"

6

7 queryString := fmt.Sprintf(‘{"selector":{"timestamp":{"$gt":

%d},"timestamp":{"$lt": %d},"assetid":{ "$in": %s }}}‘, t0, t1,

assetsIDs)

8 queryIterator, err := stub.GetQueryResult(queryString)

9 ...

10 }

Code 7.4 – Query with GetQueryResult() for each near trusted sensor, possible only

with CouchDB

1 for _, nearTrustedActiveSensor := range *nearTrustedActiveSensors {

2 assetID := nearTrustedActiveSensor.MspID +

nearTrustedActiveSensor.SensorID

3 queryString := fmt.Sprintf(‘{"selector":{"timestamp":{"$gt":

%d},"timestamp":{"$lt": %d},"assetid":"%s"}}‘, t0, t1, assetID)

4

Chapter 7. Results and discussion 113

5 queryIterator, err := stub.GetQueryResult(queryString)

6 ...

7 }

Code 7.5 – SmartData CouchDB index

1 {

2 "index":{

3 "fields":["timestamp","assetid"]

4 },

5 "ddoc":"indexSmartDataDoc",

6 "name":"indexSmartData",

7 "type":"json"

8 }

The queries performed with the function GetStateByRange(), as shown in Code

7.6, return all states with keys in the range [startKey, endKey[, considering the lexi-

cographical order. Since the SmartData keys end with a 20 character timestamp, it is

possible to use this function to fetch the sensor published SmartData in the interval

[t0, t1[.

Code 7.6 – Query with GetStateByRange(), possible with both CouchDB and LevelDB

1 objectType := "SmartData"

2 for _, nearTrustedActiveSensor := range *nearTrustedActiveSensors {

3 startKey := objectType + nearTrustedActiveSensor.MspID +

nearTrustedActiveSensor.SensorID + getMaxUint64CharsStrTimestamp(t0)

4 endKey := objectType + nearTrustedActiveSensor.MspID +

nearTrustedActiveSensor.SensorID + getMaxUint64CharsStrTimestamp(t1)

5 queryIterator, err := stub.GetStateByRange(startKey, endKey)

6 ...

7 }

We repeated the queries 100 times for each of the two near trusted sensors.

There were 2000 SmartData stored in the World State, all of them sent by one sensor.

Table 2 exhibits the settings and time to perform a query quantity for each query

presented in Codes 7.3, 7.4, and 7.6. In the specific case of Table 2 first line, we

performed 100 queries total because both sensor IDs were placed in the same query.

Chapter 7. Results and discussion 114

Database - query method
Settings and time

#
N

e
a
r

tr
u
st

e
d

se
n
so

rs

#
S
m

a
rt

D
a
ta

in
W

o
rl

d
S
ta

te

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

T
im

e
to

p
e
rf

o
rm

a
ll

q
u
e
ri

e
s

A
v
a
ra

g
e

ti
m

e
/q

u
e
ry

CouchDB-JSON GetQueryResult with ($in) 2 2000 100 5m23.6821498s 3.23s
CouchDB-JSON GetQueryResult without ($in) 2 2000 200 15m19.0253594s 4.59s

CouchDB-GetStateByRange 2 2000 200 1m23.1892231s 0.41s
LevelDB-GetStateByRange 2 2000 200 606.9276ms 0.003s

Table 2 – Time and settings to fetch SmartData in a timestamp range by different
methods

7.1.1.2 Querying SellerInfo

Every time a new seller is registered, the chaincode checks if their Smart-

MeterID is not already associated with another seller. When a smart meter or its

gateway publishes an energy generation claim, the SellerInfo related to that smart

meter must be fetched so that the energy generated can be linked to the seller. There

are two possible ways to accomplish both searches, one is presented in Code 7.7, with

a JSON query, and the other is presented in Code 7.8, with the GetState() function.

Code 7.7 – Query with GetQueryResult(), possible only with CouchDB

1 queryString :=

fmt.Sprintf(‘{"selector":{"mspsmartmeter":"%s","smartmeterid":"%s"}}‘,

meterMspID, meterID)

2 queryIterator, err := stub.GetQueryResult(queryString)

3 ...

4 if queryIterator.HasNext() {

5 queryResult, _ := queryIterator.Next()

6 sellerInfoBytes = queryResult.Value

7 }

Code 7.8 – Query with GetState(), possible with both CouchDB and LevelDB

1 objectType := "MeterSeller"

2 key, err := stub.CreateCompositeKey(objectType, []string{meterMspID,

meterID})

3 meterSellerBytes, err := stub.GetState(key)

4 if meterSellerBytes == nil {

Chapter 7. Results and discussion 115

5 return sellerInfo, fmt.Errorf("No meter of MSP %s and ID %s",

meterMspID, meterID)

6 }

7 err = json.Unmarshal(meterSellerBytes, &meterSeller)

8

9 objectType = "SellerInfo"

10 key, err = stub.CreateCompositeKey(objectType,

[]string{meterSeller.MspIDSeller, meterSeller.SellerID})

11 sellerInfoBytes, err = stub.GetState(key)

12 if sellerInfoBytes == nil {

13 return sellerInfo, fmt.Errorf("No seller related to the meter of

MSP %s and of Smart Meter ID %s", meterMspID, meterID)

14 }

Table 3 presents the time to perform 100 queries, presents the time to perform

100 queries, given a certain query method and SellerInfo quantity stored in the World

State. Based on the time column, it is possible to conclude that, besides LevelDB

having the best performance, the SellerInfo quantity stored in the World State does

not significantly influence when its full key fetches speed.

Database - query method
Settings and time

#
S
e
lle

rI
n
fo

in
W

o
rl

d
S
ta

te

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

T
im

e
to

p
e
rf

o
rm

a
ll

q
u
e
ri

e
s

CouchDB-JSON GetQueryResult 1 100 1.3593487s
CouchDB-JSON GetQueryResult 2000 100 1.1544551s

CouchDB-GetState 1 100 233.0843ms
CouchDB-GetState 2000 100 220.8931ms
LevelDB-GetState 1 100 235.5689ms
LevelDB-GetState 2000 100 212.9267ms

Table 3 – Time and settings to fetch SellerInfo by different methods

Chapter 7. Results and discussion 116

7.1.1.3 Querying sorted buy/sell bids to perform the auction

During the auction, the validated BuyBids and the SellBids must be sorted

in the, respectively, descending order and ascending order. CouchDB JSON queries

provide a mechanism to request the sorted list of a struct, requiring the declaration

about what field should determine the order. Code 7.9 displays an example of this

type of query, showing a query to fetch the SellBids in the ascending ("asc") order

and the BuyBids in the descending ("desc") order, based on the field priceperkwh.

Another possible form to obtain the sorted lists is presented in Code 7.10. The

SellBids and validated BuyBids are fetched by their partial key and sorted using a

golang sort library during the chaincode execution. The sort.Slice() function calls

quicksort.

Code 7.9 – Querying price-sorted SellBids and validated BuyBids to CouchDB through

a JSON query

1 //get SellBids

2 queryString := fmt.Sprintf(‘{"selector":{"issellbid":true}, "sort":

[{"priceperkwh": "asc"}]}‘)

3 sellBidsIterator, err := stub.GetQueryResult(queryString)

4

5 //get VALIDATED BuyBids

6 queryString = fmt.Sprintf(‘{"selector":{"validated":true}, "sort":

[{"priceperkwh": "desc"}]}‘)

7 buyBidsIterator, err := stub.GetQueryResult(queryString)

Code 7.10 – Querying SellBids and validated BuyBids using the function GetState-

ByPartialCompositeKey() and sorting them. Possible with both CouchDB

and LevelDB

1 //get SellBids

2 objectType := "SellBid"

3 sellBidsIterator, err := stub.GetStateByPartialCompositeKey(objectType,

[]string{})

4 //get VALIDATED BuyBids

5 objectType = "BuyBid"

6 buyBidsIterator, err := stub.GetStateByPartialCompositeKey(objectType,

[]string{"true"})

7

8 ...

9 // Sorting part (Quicksort)

10 //sort SellBids in ASCENDING order

11 sort.Slice(sellBids[:], func(i, j int) bool {

Chapter 7. Results and discussion 117

12 return sellBids[i].PricePerKWH < sellBids[j].PricePerKWH

13 })

14 //sort BuyBids in DESCENDING order

15 sort.Slice(buyBids[:], func(i, j int) bool {

16 return buyBids[i].PricePerKWH > buyBids[j].PricePerKWH

17 })

We measured the times to perform a single auction and a hundred auctions

sequence for the solutions presented in Codes 7.9 and 7.10 - exhibited in Table 4. We

captured the single auction measure to have a clean time reference since the 100

auction sequence was performed in a single transaction, which we considered could

suffer some optimization due to the query repetition.

Database - query method
Settings and time

N
u
m

b
e
r

o
f

S
e
llB

id
s

N
u
m

b
e
r

o
f

B
u
y
B

id
s

N
u
m

b
e
r

o
f

a
u
ct

io
n
s

T
im

e
to

p
e
rf

o
rm

th
e

a
u
ct

io
n

A
v
a
ra

g
e

ti
m

e
/a

u
ct

io
n

CouchDB-JSON GetQueryResult sorted by CouchDB 5000 1000 1 22.36s 22.36s
CouchDB-JSON GetQueryResult sorted by CouchDB 5000 1000 100 39m52.44s 23.92s

CouchDB-GetStateByPartialCompositeKey sorted in chaincode 5000 1000 1 8.65s 8.65s
CouchDB-GetStateByPartialCompositeKey sorted in chaincode 5000 1000 100 12m20.06s 7.4s
LevelDB-GetStateByPartialCompositeKey sorted in chaincode 5000 1000 1 2.56s 2.56s
LevelDB-GetStateByPartialCompositeKey sorted in chaincode 5000 1000 100 3m26.04s 2.06s

Table 4 – Time and settings to perform auctions, executing different methods to fetch
sorted SellBids and sorted validated BuyBids

7.2 EXPERIMENT RESULTS

This section presents and discusses our main 3-phase experiments with our

proposal’s implementation. With the experiment metrics we analyze the transaction

throughput, data generation rate, and estimated deployment costs. Then, the model’s

viability is addressed, followed by a comparison with the related work solutions.

7.2.1 Phase 1 experiment results

The first phase of the experiments ran with all sensors participating in all en-

ergy validations. It raised our awareness about limiting the number of sensors, as

discussed in Section 6.2.7. Some configurations and results of the first phase are

Chapter 7. Results and discussion 118

presented in Table 5. Each row represents a configuration that failed in an experi-

ment round. The first column contains which entity - application, orderer, or peer

- indicated failure, with the AWS instance name highlighted in red. An instance up-

grade happened after every failure, usually related to not properly supporting the

experiment processing demands.

The rightmost columns of Table 5 present the numbers of sellers, sensors, and

buyers for each round that presented a failure. We had to upgrade the instances

to continuously increase the network participant capacity and go from 600 to 3000

sellers, sensors, and buyers.

Table 5 last line shows a very specific failure regarding the peer endorsing

concurrency limit, which is set by default to 2500 concurrent endorsing requests.

In the Phase 2 experiments described in Section 7.2.2, we increase this limit and avoid

such failure, provided that the peer instance has the required computing power.

Who failed
Settings

R
o
u
n
d

n
u
m

b
e
r

A
p
p

in
st

a
n
ce

O
rd

e
re

r
in

st
a
n
ce

Pe
e
r

in
st

a
n
ce

N
u
m

b
e
r

o
f

se
lle

rs

N
u
m

b
e
r

o
f

se
n
so

rs

N
u
m

b
e
r

o
f

b
u
y
e
rs

application 1 t4g.micro t4g.micro t4g.micro 200 200 200
peer 2 t4g.xlarge t4g.micro t4g.micro 400 400 400

orderer 3 t4g.xlarge t4g.micro t4g.xlarge 600 600 600
peer 4 t4g.xlarge t4g.xlarge t4g.xlarge 600 600 600

application 5 t4g.xlarge t4g.xlarge t4g.2xlarge 600 600 600
orderer 6 t4g.2xlarge t4g.xlarge t4g.2xlarge 800 800 800

peer (concurrency limit) 7 t4g.xlarge t4g.2xlarge t4g.2xlarge 1000 1000 1000

Table 5 – Configurations that lead to failure in Phase 1

7.2.2 Phase 2 experiment results

Table 6 presents the results of the Phase 2 experiment. We could scale the

network capacity from 2000 sellers, 2000 sensors, and 2000 buyers, in the first

round, to 3500 sellers, 3500 sensors, and 3500 buyers in the last one. The orderer

had to be upgraded up to c6g.4xlarge AWS instance, with 8 cores, 32 GiB, and 10

Gbps network capacity. The peer had to be scaled to the c6g.8xlarge instance, with

16 cores, 64 GiB of RAM, and up to 25 Gbps network.

Only 5 sensors were selected to validate energy generation claims in this

phase, different from Phase 1. This was probably the main reason for the increase

Chapter 7. Results and discussion 119

in the network participant capacity. In round 4, the chaincode had a memory limit

failure, as demonstrated by Figures 22 and 23.

Both figures are graphs of chaincode container instantaneous memory usage in

GiB. In the failure round, corresponding to Figure 22, the chaincode memory abruptly

increased to 1.75 GiB and then went negative - indicating container failure. The

memory allocated for the chaincode was 2 GiB.

After the chaincode container memory was upgraded to 4 GiB, the chaincode

presented a memory usage of a little over 2 GiB, in Figure 23, indicating that the

chaincode crashed before due to lack of available memory. We even allocated 12 GiB

to the chaincode to prevent this failure from happening in the following experiment

rounds.

The last three experiment rounds demonstrate the difficulty of increasing sell-

ers, sensors, and buyers. Despite three consecutive upgrades, the logs always pre-

sented some type of failure indication regarding network capacity. These results

made us end Phase 2 and start Phase 3.

Who failed
Settings

R
o
u
n
d

n
u
m

b
e
r

A
p
p

in
st

a
n
ce

O
rd

e
re

r
in

st
a
n
ce

Pe
e
r

in
st

a
n
ce

N
u
m

b
e
r

o
f

se
lle

rs

N
u
m

b
e
r

o
f

se
n
so

rs

N
u
m

b
e
r

o
f

b
u
y
e
rs

application 1 t4g.2xlarge t4g.2xlarge t4g.2xlarge 2000 2000 2000
orderer 2 c6g.4xlarge t4g.2xlarge t4g.2xlarge 2000 2000 2000

peer 3 c6g.4xlarge c6g.4xlarge t4g.2xlarge 2700 2700 2700

mem limit 2 GiB)
peer (chaincode

4 c6g.4xlarge c6g.4xlarge c6g.4xlarge 3000 3000 3000

application/peer 5 c6g.4xlarge c6g.4xlarge c6g.4xlarge 3500 3500 3500
application 6 c6g.8xlarge c6g.4xlarge c6g.8xlarge 3500 3500 3500

orderer 7 c6g.16xlarge c6g.4xlarge c6g.8xlarge 3500 3500 3500

Table 6 – Configurations that lead to failure in Phase 2

7.2.3 Phase 3 experiment results

The two previous experiment phases had the default maximum block interval

of 2s, with at most 500 transactions in a block or the maximum block preferred size

of 2MB. The last three lines of Table 6 indicate difficulties in scaling beyond 3500

sellers, 3500 sensors, and 3500 buyers. We tested different block intervals, maximum

transaction numbers, and maximum preferred block sizes in this phase, expecting to

increase the scalability limits achieved in Phase 2.

Chapter 7. Results and discussion 120

Figure 22 – Chaincode memory data in failure round (round 4)

Designed by the author

We considered the average transaction size of 4 Kilobyte (KB) to keep always a

Block preferred size with the capacity to fit Block transaction limit transactions. Oth-

erwise, the blocks’ creation would be triggered by the surpass of the Block preferred

size and would never group Block transaction limit transactions.

Round 1 of this phase, in Table 7, presented failures in the application’s in-

stance, indicating resource exhaustion. Thus, after round 1, we added a second appli-

cation instance to divide the sensors, sellers, and buyers simulation load. For example,

instead of making a single application instance simulate 3500 buyers, two instances

simulate 1750 buyers each.

Unlike the previous phases, in this one, we decided to include the successful

experiment rounds to explicit the network configurations that worked properly. In

round 2, all logs indicated a successful execution when dealing with 3500 sensors,

3500 sellers, and 3500 buyers simultaneously.

In the third round, we tried to increase the quantity of each entity type to

5000 and failed, but round 4 made clear that the Block transaction limit should be

increased from 2000 to 10000 maximum transactions in a single block to run without

errors. After performing tests with 6000 sellers, 6000 sensors, and 6000 buyers in

round 5, the chaincode container ran out of memory, and we allocated 12 GiB for the

following rounds.

Rounds 6 through 8 failed due to excessive reporting of orderer timeout in the

Chapter 7. Results and discussion 121

Figure 23 – Chaincode memory usage post increase

Designed by the author

applications’ logs, which was 60 seconds. This means that after sending transactions

to the orderer, the applications repeatedly did not receive a response after 60 seconds.

Thus, the Hyperledger Fabric network could not absorb such high throughput with the

configurations displayed in Table 7.

In round 7, we upgraded the orderer instance to a c6g.16xlarge AWS instance

and increased the Block transaction limit to 20000. After it failed, our final experiment

round had a 20 second Block interval and 30000 maximum messages per block.

However, the final round also presented excessive orderer timeouts and was classified

as a failure.

It is important to emphasize that if the applications’ orderer timeout limit was

set to a value greater than 60 seconds, rounds like the 7th would probably run

without error indications. Still, that was our criteria for an acceptable orderer timeout,

even though we recognize that it depends on the application scenario.

Chapter 7. Results and discussion 122

Who failed
Settings

R
o
u
n
d

n
u
m

b
e
r

A
p
p

in
st

a
n
ce

O
rd

e
re

r
in

st
a
n
ce

Pe
e
r

in
st

a
n
ce

N
u
m

b
e
r

o
f

se
lle

rs

N
u
m

b
e
r

o
f

se
n
so

rs

N
u
m

b
e
r

o
f

b
u
y
e
rs

B
lo

ck
in

te
rv

a
l

B
lo

ck
tr

a
n
sa

ct
io

n
lim

it

B
lo

ck
p
re

fe
rr

e
d

si
ze

(add new app instance)
application

1 c6g.16xlarge c6g.8xlarge c6g.8xlarge 3500 3500 3500 10s 2000 60 MB

success 2 c6g.16xlarge c6g.8xlarge c6g.8xlarge 3500 3500 3500 10s 2000 60 MB

transaction limit)
(Low block

orderer
3 c6g.16xlarge c6g.8xlarge c6g.8xlarge 5000 5000 5000 10s 2000 60 MB

success 4 c6g.16xlarge c6g.8xlarge c6g.8xlarge 5000 5000 5000 10s 10000 60 MB

mem limit 8 GiB)
peer (chaincode

5 c6g.16xlarge c6g.8xlarge c6g.8xlarge 6000 6000 6000 10s 10000 60 MB

orderer 6 c6g.16xlarge c6g.8xlarge c6g.8xlarge 6000 6000 6000 10s 10000 60 MB
orderer 7 c6g.16xlarge c6g.16xlarge c6g.8xlarge 6000 6000 6000 10s 20000 90 MB
orderer 8 c6g.16xlarge c6g.16xlarge c6g.8xlarge 6000 6000 6000 20s 30000 150 MB

Table 7 – Round configurations in Phase 3

Observation: We identified that the peer auction events were not sent to

the applications in this phase. This prevented the auction transactions from being

called, and that sell bids were matched to buy bids. However, the auction transactions

represent an irrelevant share of all transactions in a throughput perspective - lower

than 0.02%. The cause of such failure was not identified. It could have been caused by

the higher peer demand or by the larger batch interval. Thus, regardless of this small

failure, the orderer could handle the transaction throughput indicated as “success”

by Table 7.

7.3 DATA GENERATION RATE

Every experiment round in Phases 1, 2, and 3 measured the orderer’s and

peer’s file system size to identify the proportion of data generation rate. The file sys-

tems were measured at two distinct moments. First, at the round beginning before any

application issued any transaction to the network. Second, after all the applications

published all their transactions.

Tables 8 and 9 present, respectively, the orderer’s and peer’s file system sizes

corresponding to the experiment rounds performed in Phase 3. The file systems’

sizes presented in Tables 8 and 9 are proportional to the number of sellers, sensors,

and buyers. Tables 10 and 11 present the data generated in a successful round of

experiment Phase 2.

Chapter 7. Results and discussion 123

Phase 3 round
Settings

N
u
m

b
e
r

o
f

se
lle

rs

N
u
m

b
e
r

o
f

se
n
so

rs

N
u
m

b
e
r

o
f

b
u
y
e
rs

In
it

ia
ls

iz
e

Fi
n
a
ls

iz
e

D
a
ta

g
e
n
e
ra

te
d

2 (success) 3500 3500 3500 289 MB 897 MB 608 MB
4 (success) 5000 5000 5000 289 MB 1178 MB 889 MB

Table 8 – Orderer data generation in Phase 3

Phase 3 round
Settings

N
u
m

b
e
r

o
f

se
lle

rs

N
u
m

b
e
r

o
f

se
n
so

rs

N
u
m

b
e
r

o
f

b
u
y
e
rs

In
it

ia
ls

iz
e

Fi
n
a
ls

iz
e

D
a
ta

g
e
n
e
ra

te
d

2 (success) 3500 3500 3500 53 MB 597 MB 544 MB
4 (success) 5000 5000 5000 53 MB 833 MB 780 MB

Table 9 – Peer data generation in Phase 3

Phase 2 round
Settings

N
u
m

b
e
r

o
f

se
lle

rs

N
u
m

b
e
r

o
f

se
n
so

rs

N
u
m

b
e
r

o
f

b
u
y
e
rs

In
it

ia
ls

iz
e

Fi
n
a
ls

iz
e

D
a
ta

g
e
n
e
ra

te
d

success 3000 3000 3000 1564 MB 2146 MB 582 MB

Table 10 – Orderer data generation in successful Phase 2 round

Chapter 7. Results and discussion 124

Phase 2 round
Settings

N
u
m

b
e
r

o
f

se
lle

rs

N
u
m

b
e
r

o
f

se
n
so

rs

N
u
m

b
e
r

o
f

b
u
y
e
rs

In
it

ia
ls

iz
e

Fi
n
a
ls

iz
e

D
a
ta

g
e
n
e
ra

te
d

success 3000 3000 3000 1318 MB 1928 MB 610 MB

Table 11 – Peer data generation in successful Phase 2 round

Different from Phase 3, in Phase 2, the auction happened periodically, generat-

ing proportionally more data. This becomes evident comparing the data generation

in round 2 of Phase 3 (Tables 8 and 9) with the successful round of Phase 2 (Tables

10 and 11). Even with fewer network participants, the round in Phase 2 generated

just 26 MB less in the orderer and 76 MB more in the peer.

Therefore, to achieve better precision, we utilize the Phase 2 data generation

and execution time to make estimates for longer periods. As stated in Code 6.7,

each sensor published 20 transactions plus one declaring itself active. Each seller

performed 5 energy generation and 5 sell bid publication transactions, while the

buyers submitted 10 buy bids and 10 buy bid validation transactions. Twenty-nine

auctions were executed in the successful Phase 2 round.

Considering that the round took 27 minutes to complete and generate the

data quantity presented by Tables 10 and 11, we could estimate how much storage

would be required to support the network execution with the same configurations for

longer periods. The estimates for the data generated in a day, month, and year are

presented in Table 12. Such estimates were calculated lineary, as the applications

and the chaincode generate data linearly.

The estimated transaction numbers are also presented in the Table’s 12 right-

most column, excluding the first row, since it consists of a measure and not an esti-

mate. Even though the Ethereum blockchain has a quite different concept, it serves

as a good anchor for comparing data generation and transaction quantity. In the first

half of 2021, the Ethereum main network grew approximately 1 Gigabyte (GB) per

day, with around 1.2 million transactions and the rate of 1 GB per million transactions.

Chapter 7. Results and discussion 125

Generation period

O
rd

e
re

r
g
e
n
e
ra

te
d

Pe
e
r

g
e
n
e
ra

te
d

O
rd

e
re

r
+

Pe
e
r

Tr
a
n
sa

ct
io

n
s

27 minutes 582 MB 610 MB 1192 MB 150 K
1 day 31 GB 32.5 GB 63.5 GB 8 M

1 month 930 GB 975 GB 1.8 TB 240 M
1 year 11 TB 11.7 TB 22.7 TB 2.8 B

Table 12 – Data generation and transaction estimates based on the successful Phase
2 round

Meanwhile, our network generated data at the rate of 8 GB per million transac-

tions. Only a single endorser signed the transactions on our experiments. Therefore,

this rate could increase proportionally to the endorsers’ quantity in other scenarios.

Solutions to deal with such characteristics would enhance the proposed model and

increase its adoption chance.

We consider the idea of multi-layer chains (or channels) as a possible solution.

The upper-level chains could perform some digest on the lower chains’ transactions

and store it. The raw data could last for a specific time interval and, after that, be

digested, referenced in the upper chain, and erased from the lower chain.

In our experiments’ context, the lower chain is equivalent to the network pro-

posed and implemented by this work. The upper chain could be developed by future

work. This architecture fits well with an energy trading scenario that does not re-

quire high granularity for long periods. As a result, the data generation rate could be

lowered.

7.4 ENERGY NETWORK BASELINE COST ANALYSIS

Evaluating the costs of a proposal is crucial for judging its feasibility. For that

reason, we estimate the cost to deploy our model. Based on the c6g.8xlarge AWS

instances costs, we estimate the funds needed to run a network equivalent to the 4th

round of Phase 3 in terms of execution cost. Nevertheless, since we focused our data

generation analysis on the Phase 2 round, it will serve as a reference to estimate the

storage costs.

Chapter 7. Results and discussion 126

The c6g.8xlarge instance on-demand costs 0.6816 USD hourly. Regarding stor-

age, we consider the pricing for an AWS General Purpose Solid-State Drive (SSD) (gp2)

Elastic Block Store (EBS), which is 0.114 USD per GB-Month. All costs are related to

the Mumbai region and displayed in Table 13. In the first three rows, we assumed that

the storage space was fully provisioned at the beginning. However, we considered

that the storage increases on a month-by-month demand basis for the year cost row.

Equation 2 expresses the formula to calculate it as a 12 term sum of the monthly cost

arithmetic progression.

Ysc =
(GBMc ∗ Yg ∗ 12 + GBMc ∗ Yg) ∗ 12

2
(2)

Execution period

si
n
g
le

in
st

a
n
ce

co
st

(U
S
D

)
O

rd
e
re

r/
Pe

e
r

to
ta

lc
o
st

(U
S
D

)
In

st
a
n
ce

s

g
e
n
e
ra

te
d

d
a
ta

U
S
D

E
B

S
co

st
fo

r

To
ta

lc
o
st

(U
S
D

)

Tr
a
n
sa

ct
io

n
s

27 minutes 0.3 0.6 0.114 0.714 150 K
1 day 16.35 32.70 7.24 39.94 8 M

1 month 490.5 981 205.2 1186.2 240 M
1 year 5886 11772 16005 27777 2.8 B

Table 13 – Cost estimate based on round 4 of Phase 3 execution, but Phase 2 data
generation and transaction rate

Based on the yearly total cost and transaction rates, our model with one peer

and one orderer has a cost (USD) per transaction ratio of 9.92 ∗ 10–6. Considering an

average Ethereum transaction fee of 5 USD while disregarding the 2021 transaction

fee volatility (YCHARTS, 2021), our network presents significantly lower costs. Even

if compared against Ethereum’s lowest historical transaction fee of 0.5 USD, the

comparison holds.

Chapter 7. Results and discussion 127

Unlike our experiments, a real Hyperledger Fabric network would have more

than one peer and one orderer. Presuming that the real network would have 20 peers

and 20 orderers to process the same 2.8 B, the cost per transaction would be around

the value of 1.94 ∗ 10–4, which still surpasses Ethereum (this is a rough estimate

without considering that the transaction size and performance would be affected with

more peers and orderers).

If the solution mentioned in Section 7.3 about reducing the data generation

rate is implemented, the costs could drop. Furthermore, other storage solutions like

AWS S3 or EFS should be analyzed in our model’s context. The EBS has a maximum

capacity of 16 Tebibyte (TiB) per volume, and changing the storage tools would

change network prices.

7.5 ENERGY NETWORK VIABILITY

We achieved a successful throughput of 5000 sellers, 5000 sensors, and 5000

buyers simultaneously. At these metrics, our proposed model suits a small neigh-

borhood. The proportion between sensors and buyers/sellers in our experiments

may differ in a real environment since much more buyers/sellers are expected than

sensors.

The energy validation transactions consume a considerable amount of chain-

code processing. For that reason, blockchain trading models without energy valida-

tion based on sensors’ data might attain greater performance. However, this decision

depends on the network architect’s objectives of applying blockchain in the energy

context.

We assumed that validating energy before the sale would prevent frauds and

increase the trust in the energy generation type, serving as a useful feature. Buyers

anonymization might be a regulators requirement to protect users according to data

privacy laws, and our implementation covers it.

Our analysis’ intent consists in providing computational and cost perspec-

tives of blockchain use in energy trading. Energy engineering researchers might con-

sider our findings and judge if blockchain fits this area due to their greater knowledge

in the field.

7.6 RELATED WORK COMPARISON

The related work’s proposals are heterogeneous, with different market designs,

experiment complexity, and focus. However, this work contributed to the research

done by their authors in many diverse aspects like privacy, scalability, experiment

depth, experiment procedure, and empirical data. We compare our work’s implemen-

tation and results with the related work based on their proposals, experiments, and

Chapter 7. Results and discussion 128

future directions.

The authors of (PEE et al., 2019), (HUSSAIN et al., 2019), (KODALI et al., 2018)

only proposed or implemented simple models regarding blockchain in energy markets,

and we brought clarity to a topic that lacks experimental data. As suggested by

(HUSSAIN et al., 2019), our work did not use PoW consensus. Even though our model

was implemented with a single chain, different from (LU et al., 2019) and (PEE et al.,

2019), we consider a multi-chain approach for dealing with the data quantity due to

our model’s data generation rate.

We implemented a solution with pseudonymity, as suggested by (AHL et al.,

2020) future directions, and with off-chain payment to enable the pseudonymity,

guaranteeing the funds, as mentioned by (LU et al., 2019). We did not implement day-

ahead and real-time market similar to (WANG, S. et al., 2019) because we focused on

validating the energy before exchanging.

The most interesting comparison is with the thesis of (BLOM, 2018). They im-

plemented an energy market with an Ethereum smart contract using PoW consensus,

which consumes more power than the alternatives and should be avoided in a clean

energy context. Furthermore, the authors implemented a model with off-chain market

clearing. With these characteristics, they simulated their implementation with 600

entities transacting simultaneously.

Our implementation keeps the market clearing in the chain and adds the en-

ergy validation process based on sensors’ data. Despite these smart contract pro-

cessing increases, we could handle 15000 entities transacting simultaneously. Unlike

(BLOM, 2018) - with day-ahead, real-time, and load curtailment markets - our model

only lets energy generated in the past be exchanged. Therefore, our exchange op-

tions implied a lower chaincode complexity in this aspect, perhaps helping with the

higher throughput.

In terms of cost, the (BLOM, 2018) required 8 billion Ethereum gas for a network

with 600 entities and a 15-minute market clearing. Considering a gas price of 15.8

Gwei and an Ether price of 2031 USD, their proposal would cost around 250 000

USD per day if it ran in the Ethereum main net. Meanwhile, if the yearly costs of our

experiment are divided by the days in a year, our model costs can be estimated to

76 USD per day for each pair of peers and orderers.

Accomplishing the (BLOM, 2018) future directions, our model could achieve

higher scalability and better privacy. It was tested with real computers, even though

we did not use real smart meters. The data in Table 13 points to the best throughput

of 93 transactions per second by our implementation. (DORRI et al., 2019) had a

throughput of 6 transactions per minute, while (BLOM, 2018) mentions the need for

52 transactions per second throughput, both in an Ethereum energy trading scenario.

While (HUANG et al., 2019) focused on the IoT part of blockchain energy trad-

Chapter 7. Results and discussion 129

ing, we did not take our model and experiments that far. Future work could research

lighter interactions between restricted IoT devices and blockchain networks. The

Hyperledger communication stack, including the Fabric SDKs, seems too heavy for

lightweight devices.

130

8 CONCLUSION

8.1 CONCLUSION AND CONTRIBUTIONS

In this work, we proposed, implemented, and analyzed a blockchain-based

energy trading scheme with validation using IoT sensors data. The negotiated energy

must have been generated in the past and has a significant guarantee of origin. This

is accomplished by a decentralized multi-organizational chaincode which requires a

minimum organizations quorum to validate energy generation claims.

In our implementation, to protect buyers’ energy consumption patterns, they

transact with the network through a k-TAA algorithm (idemix). Even though the energy

cannot be bought on-demand in our model, the buyer anonymization facilitates the

implementation of a future secure real-time blockchain energy market.

We analyzed our solution’s performance, scalability, and costs, considering

different quantities of sensors, buyers, sellers, and different hardware configurations

for peers and orderers. Some Hyperledger configurations like the peer concurrency

limit, the memory allocated for the chaincode, block size, and block interval also were

changed and analyzed. Considering our results, our solution fits a small neighborhood

context.

Hyperledger Fabric is more efficient computationally and monetarily than the

Ethereum solutions presented by the related work, based on our solution’s better

throughput and estimated cost. With a single peer and a single orderer, we measured

a cost per transaction outstandingly lower than the one charged by the Ethereum

main net.

As secondary contributions, we developed scripts that easily deploy config-

urable Hyperledger networks, enabling that parameters like organizations, peer quan-

tity, orderer quantity, chaincodes are easily defined. The certificates host fields are

set according to the hosts attributed by the cloud service. These scripts contribute to

future work that depends on deploying a Hyperledger network on a cloud infrastruc-

ture similar to AWS.

Our Fabric modifications contribute to previous and future research. We en-

abled idemix in the fabric-gateway-java by implementing the required interfaces

and performing small alterations on the fabric-sdk-java. The transactions, with our

modifications, have priorities that are set by the chaincode function return.

It is now possible to bypass the phantom read checks by setting the proper

chaincode function return method. Future work with Hyperledger chaincodes might

take advantage of this modification to avoid that time-costly transactions are wrong-

fully invalidated due to the phantom read conflicts. Thus, the support for more com-

plex chaincodes is increased.

At last, we analyzed the impact of the Hyperledger Fabric database type choice.

Chapter 8. Conclusion 131

With our chaincode, Go LevelDB presented a significantly better performance than

CouchDB. While CouchDB supports enhanced queries, it is quicker to retrieve data

and implement the sorting in the chaincode using LevelDB. However, the more limited

key queries with LevelDB require the proper design of data keys, or it might not be

easy to perform attribute-based queries.

8.2 FUTURE WORK

Since knowing the precise function to calculate the maximum possible energy

generated by a specific solar panel type, or wind turbine, was out of our scope,

we leave it as future work for researchers in electrical engineering. The network

consensus on how much a specific solar panel model can generate given environment

metrics could also be designed and implemented.

Hyperledger Fabric allows the change on multiple configuration parameters,

and we did not explore the full extent of them. Further analysis on enhancing per-

formance through better Fabric configuration would add more reliability to our work.

Also, there is space for experiments with more organizations, peers, orderers, sen-

sors, buyers, which might require model modifications to handle higher transaction

throughput.

In our experiments, the utility and payment companies’ HTTP servers were

removed to increase the reliability of the blockchain performance metrics. To fully

validate our solution, new experiments, including the HTTP servers, would be required.

However, some challenges come with bringing them back.

Golang HTTP servers would fit much better in terms of scalability and concur-

rent requests handling. Still, at the moment, only fabric-java-sdk provides idemix sup-

port, and the utility company server performs idemix signature verifications. Idemix

support for the fabric-sdk-go would facilitate setting scalable HTTP servers.

All sensors are retrieved from the database as possible participants of an

energy validation claim process in our implementation. Then the chaincode calculates

the sensor distance to the seller and judges if the sensor will participate or not.

Instead, a geospatial database could take the seller’s location as query input and only

return the near sensors more efficiently, as we suppose.

The SmartData provides the confidence and error fields, but we do not evaluate

them in our chaincode. Future work could consider these fields and give more weight

to SmartData with bigger confidence and discard the SmartData with error. Such

verification would increase the energy validation reliability.

Furthermore, SmartData version 1.2 supports data from moving sensors. At the

current implementation, our chaincode considers all sensors as static data sources.

However, extending it to moving ones could enhance the energy validation process,

but it also would require more analysis.

Chapter 8. Conclusion 132

The energy sold through our chaincode has to be generated in the past. Yet,

the following work could use our current work as a base to experiment with a futures

energy market with energy delivery verification. This would bring blockchains closer

to the current energy markets, as discussed in Section 2.1.2.

In our previous work (WESTPHALL et al., 2020), we analyzed Constrained Ap-

plication Protocol (CoAP) and Datagram Transport Layer Security (DTLS) on an IoT

gateway, both using User Datagram Protocol (UDP), which is considered more efficient

for constrained devices. Meanwhile, Hyperledger Fabric communicates through gRPC,

which uses Transmission Control Protocol (TCP). An examination on sensors gateways

running gRPC would be relevant. Perhaps, a solution considering IoT-friendly protocols

could enhance the interaction between gateways and blockchains.

In the chaincode, sellers, sensors, and companies are uniquely identified by

the Base64 encoding of the certificate Distinguished Names, usually generate a string

sized around 176 bytes. A smaller unique identification would promote more efficient

stores in Fabric’s database, considering that, as an example, every SmartData record

stores the sensor’s identification string.

We could not find any energy consumption per instance type in AWS EC2 doc-

umentation. The energy spent on our models’ execution would be an interesting

metric to decide if our model is efficient from an energetic and environmental stand-

point. The clean energy amount negotiated and incentivized by the blockchain market

should be worth the energy spent on executing the market’s infrastructure.

The authors of (GORENFLO et al., 2019) present some adaptations on Hyper-

ledger Fabric source code that scale up its throughput to a rate of 20000 transactions

per second. Since some of our chaincode’s transactions require considerably more

processing than regular Hyperledger Fabric transactions, future work could run our

experiments with (GORENFLO et al., 2019) adaptations to verify if the throughput

would increase.

133

REFERENCES

ABIDIN, Aysajan; ALY, Abdelrahaman; CLEEMPUT, Sara; MUSTAFA, Mustafa A. Secure

and Privacy-Friendly Local Electricity Trading and Billing in Smart Grid.

[S.l.: s.n.], 2018. arXiv: 1801.08354 [cs.CR].

AHL, A.; YARIME, M.; GOTO, M.; CHOPRA, Shauhrat S.; KUMAR, Nallapaneni Manoj.;

TANAKA, K.; SAGAWA, D. Exploring blockchain for the energy transition:

Opportunities and challenges based on a case study in Japan. Renewable and

Sustainable Energy Reviews, v. 117, p. 109488, 2020. ISSN 1364-0321. DOI:

https://doi.org/10.1016/j.rser.2019.109488. Available from:

http://www.sciencedirect.com/science/article/pii/S1364032119306963.

ALABDULLATIF, Abdullah M.; GERDING, Enrico H.; PEREZ-DIAZ, Alvaro. Market Design

and Trading Strategies for Community Energy Markets with Storage and Renewable

Supply. Energies, v. 13, n. 4, 2020. ISSN 1996-1073. DOI: 10.3390/en13040972.

Available from: https://www.mdpi.com/1996-1073/13/4/972.

ALAM, A.; ISLAM, M. T.; FERDOUS, A. Towards Blockchain-based Electricity Trading

System and Cyber Resilient Microgrids. In: 2019 International Conference on

Electrical, Computer and Communication Engineering (ECCE). [S.l.: s.n.], 2019.

P. 1–5.

ALAM, Asraful; FERDOUS, Arafa; ISLAM, Mohammad. Towards Blockchain-based

Electricity Trading System and Cyber Resilient Microgrids. In: DOI:

10.1109/ECACE.2019.8679442.

ANDONI, Merlinda; ROBU, Valentin; FLYNN, David; ABRAM, Simone; GEACH, Dale;

JENKINS, David; MCCALLUM, Peter; PEACOCK, Andrew. Blockchain technology in the

energy sector: A systematic review of challenges and opportunities. Renewable

and Sustainable Energy Reviews, v. 100, p. 143–174, 2019. ISSN 1364-0321.

DOI: https://doi.org/10.1016/j.rser.2018.10.014. Available from:

http://www.sciencedirect.com/science/article/pii/S1364032118307184.

ANDROULAKI, Elli et al. Hyperledger fabric. Proceedings of the Thirteenth

EuroSys Conference, ACM, Apr. 2018. DOI: 10.1145/3190508.3190538. Available

from: http://dx.doi.org/10.1145/3190508.3190538.

https://arxiv.org/abs/1801.08354
https://doi.org/https://doi.org/10.1016/j.rser.2019.109488
http://www.sciencedirect.com/science/article/pii/S1364032119306963
https://doi.org/10.3390/en13040972
https://www.mdpi.com/1996-1073/13/4/972
https://doi.org/10.1109/ECACE.2019.8679442
https://doi.org/https://doi.org/10.1016/j.rser.2018.10.014
http://www.sciencedirect.com/science/article/pii/S1364032118307184
https://doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1145/3190508.3190538

REFERENCES 134

AU, Man Ho; SUSILO, Willy; MU, Yi. Constant-Size Dynamic k-TAA. In:

DE PRISCO, Roberto; YUNG, Moti (Eds.). Security and Cryptography for

Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. P. 111–125.

AUTHORS, Amazon. User Guide for Linux Instances. [S.l.: s.n.], 2021. Online;

accessed April, 2021. Available from:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.

AVANCINI, Danielly B.; RODRIGUES, Joel J.P.C.; MARTINS, Simion G.B.;

RABÊLO, Ricardo A.L.; AL-MUHTADI, Jalal; SOLIC, Petar. Energy meters evolution in

smart grids: A review. Journal of Cleaner Production, v. 217, p. 702–715, 2019.

ISSN 0959-6526. DOI: https://doi.org/10.1016/j.jclepro.2019.01.229.

Available from:

http://www.sciencedirect.com/science/article/pii/S0959652619302501.

BEN-KIKI, O.; EVANS, C; DÖT NET, I. YAML: YAML Ain’t Markup Language.

[S.l.: s.n.], 2020. Online; accessed December, 2020. Available from:

https://yaml.org/.

BERNAL BERNABE, J.; CANOVAS, J. L.; HERNANDEZ-RAMOS, J. L.; TORRES

MORENO, R.; SKARMETA, A. Privacy-Preserving Solutions for Blockchain: Review and

Challenges. IEEE Access, v. 7, p. 164908–164940, 2019.

BLOM, Frederik. A Feasibility Study of Blockchain Technology As Local

Energy Market Infrastructure. 2018. Available from:

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2502356.

BLUMMER, Tamas et al. An Introduction to Hyperledger. [S.l.: s.n.], 2018. Online;

accessed May, 2020. Available from: https://www.hyperledger.org/wp-

content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf.

CALDARELLI, Giulio. Real-world blockchain applications under the lens of the oracle

problem. A systematic literature review. In: 2020 IEEE International Conference on

Technology Management, Operations and Decisions (ICTMOD). [S.l.: s.n.], 2020.

P. 1–6. DOI: 10.1109/ICTMOD49425.2020.9380598.

CAMENISCH, Jan; LYSYANSKAYA, Anna. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In: FRANKLIN, Matt (Ed.). Advances in Cryptology

– CRYPTO 2004. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. P. 56–72.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.229
http://www.sciencedirect.com/science/article/pii/S0959652619302501
https://yaml.org/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2502356
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://doi.org/10.1109/ICTMOD49425.2020.9380598

REFERENCES 135

CAO, Ling; WAN, Zheyi. Anonymous scheme for blockchain atomic swap based on

zero-knowledge proof. In: 2020 IEEE International Conference on Artificial

Intelligence and Computer Applications (ICAICA). [S.l.: s.n.], 2020. P. 371–374. DOI:

10.1109/ICAICA50127.2020.9181875.

COMMITTEE, Microprocessor Standards. IEEE Standard for Floating-Point Arithmetic.

IEEE Std 754-2019 (Revision of IEEE 754-2008), p. 1–84, 2019. DOI:

10.1109/IEEESTD.2019.8766229.

LE-DANG, Q.; LE-NGOC, T. Scalable Blockchain-based Architecture for Massive IoT

Reconfiguration. In: 2019 IEEE Canadian Conference of Electrical and Computer

Engineering (CCECE). [S.l.: s.n.], 2019. P. 1–4.

DATA, The Secret Lives of. Raft Understandable Distributed Consensus.

[S.l.: s.n.], 2020. Online; accessed October, 2020. Available from:

http://thesecretlivesofdata.com/raft/.

DORRI, A.; HILL, A.; KANHERE, S.; JURDAK, R.; LUO, F.; DONG, Z. Y. Peer-to-Peer

EnergyTrade: A Distributed Private Energy Trading Platform. In: 2019 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC). [S.l.: s.n.], 2019.

P. 61–64.

ENERGY, Leaders in. Utilities of the future. [S.l.: s.n.]. Online; accessed May, 2020.

Available from:

https://leadersinenergy.org/wp-content/uploads/2018/10/Caldwell-2018-

Utilities-of-the-Future-Slide-Deck_FINAL-FOR-DISTRIBUTION.pdf.

FOSCHINI, L.; GAVAGNA, A.; MARTUSCELLI, G.; MONTANARI, R. Hyperledger Fabric

Blockchain: Chaincode Performance Analysis. In: ICC 2020 - 2020 IEEE International

Conference on Communications (ICC). [S.l.: s.n.], 2020. P. 1–6. DOI:

10.1109/ICC40277.2020.9149080.

FRANCIA, Steve. Viper github. [S.l.: s.n.], 2020. Online; accessed December, 2020.

Available from: https://github.com/spf13/viper.

GOEL, Seep; SINGH, Abhishek; GARG, Rachit; VERMA, Mudit;

JAYACHANDRAN, Praveen. Resource Fairness and Prioritization of Transactions in

Permissioned Blockchain Systems (Industry Track). In: (Middleware ’18), p. 46–53.

https://doi.org/10.1109/ICAICA50127.2020.9181875
https://doi.org/10.1109/IEEESTD.2019.8766229
http://thesecretlivesofdata.com/raft/
https://leadersinenergy.org/wp-content/uploads/2018/10/Caldwell-2018-Utilities-of-the-Future-Slide-Deck_FINAL-FOR-DISTRIBUTION.pdf
https://leadersinenergy.org/wp-content/uploads/2018/10/Caldwell-2018-Utilities-of-the-Future-Slide-Deck_FINAL-FOR-DISTRIBUTION.pdf
https://doi.org/10.1109/ICC40277.2020.9149080
https://github.com/spf13/viper

REFERENCES 136

DOI: 10.1145/3284028.3284035. Available from:

https://doi.org/10.1145/3284028.3284035.

GORENFLO, Christian; LEE, Stephen; GOLAB, Lukasz; KESHAV, S. FastFabric:

Scaling Hyperledger Fabric to 20,000 Transactions per Second. [S.l.: s.n.],

2019. arXiv: 1901.00910 [cs.DC].

HUANG, Z.; SUANKAEWMANEE, K.; KANG, J.; NIYATO, D.; SIN, N. P. Development of

Reliable Wireless Communication System for Secure Blockchain-based Energy

Trading. In: 2019 16th International Joint Conference on Computer Science and

Software Engineering (JCSSE). [S.l.: s.n.], 2019. P. 126–130.

HUSSAIN, S. M. S.; FAROOQ, S. M.; USTUN, T. S. Implementation of Blockchain

technology for Energy Trading with Smart Meters. In: 2019 Innovations in Power and

Advanced Computing Technologies (i-PACT). [S.l.: s.n.], 2019. P. 1–5.

INC., Docker. Welcome to Docker Hub. [S.l.: s.n.], 2020. Online; accessed

December, 2020. Available from: https://hub.docker.com/.

JEON, J. M.; HONG, C. S. A Study on Utilization of Hybrid Blockchain for Energy

Sharing in Micro-Grid. In: 2019 20th Asia-Pacific Network Operations and

Management Symposium (APNOMS). [S.l.: s.n.], 2019. P. 1–4.

JOGUNOLA, O.; HAMMOUDEH, M.; ADEBISI, B.; ANOH, K. Demonstrating

Blockchain-Enabled Peer-to-Peer Energy Trading and Sharing. In: 2019 IEEE Canadian

Conference of Electrical and Computer Engineering (CCECE). [S.l.: s.n.], 2019. P. 1–4.

JOHANNING, S.; BRUCKNER, T. Blockchain-based Peer-to-Peer Energy Trade: A Critical

Review of Disruptive Potential. In: 2019 16th International Conference on the

European Energy Market (EEM). [S.l.: s.n.], 2019. P. 1–8.

KAMAL, M.; TARIQ, M. Light-Weight Security and Blockchain Based Provenance for

Advanced Metering Infrastructure. IEEE Access, v. 7, p. 87345–87356, 2019.

KANG, E. S.; PEE, S. J.; SONG, J. G.; JANG, J. W. A Blockchain-Based Energy Trading

Platform for Smart Homes in a Microgrid. In: 2018 3rd International Conference on

Computer and Communication Systems (ICCCS). [S.l.: s.n.], 2018. P. 472–476.

https://doi.org/10.1145/3284028.3284035
https://doi.org/10.1145/3284028.3284035
https://arxiv.org/abs/1901.00910
https://hub.docker.com/

REFERENCES 137

KAUR, Amanpreet; NONNENMACHER, Lukas; PEDRO, Hugo T.C.; COIMBRA, Carlos F.M.

Benefits of solar forecasting for energy imbalance markets. Renewable Energy,

v. 86, p. 819–830, 2016. ISSN 0960-1481. DOI:

https://doi.org/10.1016/j.renene.2015.09.011. Available from:

http://www.sciencedirect.com/science/article/pii/S0960148115302901.

KODALI, R. K.; YERROJU, S.; YOGI, B. Y. K. Blockchain Based Energy Trading. In:

TENCON 2018 - 2018 IEEE Region 10 Conference. [S.l.: s.n.], 2018. P. 1778–1783.

LISHA. EPOS 2 User Guide. [S.l.: s.n.], 2020a. Online; accessed February, 2021.

Available from: https://epos.lisha.ufsc.br/IoT+Platform#SmartData.

LISHA. EPOS 2 User Guide. [S.l.: s.n.], 2020b. Online; accessed February, 2021.

Available from: https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData.

LU, X.; GUAN, Z.; ZHOU, X.; DU, X.; WU, L.; GUIZANI, M. A Secure and Efficient

Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. In: 2019 IEEE

21st International Conference on High Performance Computing and Communications;

IEEE 17th International Conference on Smart City; IEEE 5th International Conference

on Data Science and Systems (HPCC/SmartCity/DSS). [S.l.: s.n.], 2019. P. 1839–1844.

MEDEIROS FRÖHLICH, A. A. SmartData: an IoT-ready API for sensor networks.

International Journal of Sensor Networks (IJSNET), v. 28, p. 202–210, 2018.

ISSN 0959-6526. DOI: https://doi.org/10.1504/IJSNET.2018.096264. Available

from:

https://www.inderscienceonline.com/doi/abs/10.1504/IJSNET.2018.096264.

MENGELKAMP, Esther; GÄRTTNER, Johannes; ROCK, Kerstin; KESSLER, Scott;

ORSINI, Lawrence; WEINHARDT, Christof. Designing microgrid energy markets: A

case study: The Brooklyn Microgrid. Applied Energy, v. 210, p. 870–880, 2018. ISSN

0306-2619. DOI: https://doi.org/10.1016/j.apenergy.2017.06.054. Available

from:

http://www.sciencedirect.com/science/article/pii/S030626191730805X.

MOON, Sung Jun; PARK, In Hwan; LEE, Beom Suk; JU WOOK, Jang. A

Hyperledger-based P2P Energy Trading Scheme using Cloud Computing with Low

Capabillity Devices. In: 2019 IEEE International Conference on Smart Cloud

(SmartCloud). [S.l.: s.n.], 2019. P. 190–192. DOI: 10.1109/SmartCloud.2019.00039.

https://doi.org/https://doi.org/10.1016/j.renene.2015.09.011
http://www.sciencedirect.com/science/article/pii/S0960148115302901
https://epos.lisha.ufsc.br/IoT+Platform#SmartData
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://doi.org/https://doi.org/10.1504/IJSNET.2018.096264
https://www.inderscienceonline.com/doi/abs/10.1504/IJSNET.2018.096264
https://doi.org/https://doi.org/10.1016/j.apenergy.2017.06.054
http://www.sciencedirect.com/science/article/pii/S030626191730805X
https://doi.org/10.1109/SmartCloud.2019.00039

REFERENCES 138

ORSINI, L.; KEMENADE, C.; WEB, M.; HEITMANN, P. Transactive Energy, 2019.

Unavailable; accessed May, 2020. Available from: https://exergy.energy/wp-

content/uploads/2019/03/TransactiveEnergy-PolicyPaper-v2-2.pdf.

PEE, S. J.; KANG, E. S.; SONG, J. G.; JANG, J. W. Blockchain based smart energy trading

platform using smart contract. In: 2019 International Conference on Artificial

Intelligence in Information and Communication (ICAIIC). [S.l.: s.n.], 2019. P. 322–325.

PINSON, Pierre. Renewables in Electricity Markets. [S.l.]: Technical University of

Denmark, 2018. Online; accessed May, 2020. Available from:

http://pierrepinson.com/index.php/teaching/.

PODGORELEC, B.; KERŠIČ, V.; TURKANOVIĆ, M. Analysis of Fault Tolerance in

Permissioned Blockchain Networks. In: 2019 XXVII International Conference on

Information, Communication and Automation Technologies (ICAT). [S.l.: s.n.], 2019.

P. 1–6. DOI: 10.1109/ICAT47117.2019.8938836.

POOL, Nord. See what Nord Pool can offer you. [S.l.: s.n.], 2020. Online;

accessed May, 2020. Available from: https://www.nordpoolgroup.com/.

PROJECT, Hyperledger. Gossip data dissemination protocol. [S.l.: s.n.], 2020.

Online; accessed March, 2021. Available from:

https://hyperledger-fabric.readthedocs.io/en/release-2.3/gossip.html.

RAHOUTI, M.; XIONG, K.; GHANI, N. Bitcoin Concepts, Threats, and Machine-Learning

Security Solutions. IEEE Access, v. 6, p. 67189–67205, 2018.

TEAM, Fabric. Client Identity Chaincode Library. [S.l.: s.n.], 2021. Online;

accessed February, 2021. Available from: https:

//github.com/hyperledger/fabric-chaincode-go/tree/master/pkg/cid.

TEAM, Fabric. Hyperledger Fabric Gateway SDK for Java. [S.l.: s.n.], 2020a.

Online; accessed December, 2020. Available from:

https://github.com/hyperledger/fabric-gateway-java.

TEAM, Fabric. Hyperledger Fabric SDK for Java. [S.l.: s.n.], 2020b. Online;

accessed December, 2020. Available from:

https://github.com/hyperledger/fabric-sdk-java.

https://exergy.energy/wp-content/uploads/2019/03/TransactiveEnergy-PolicyPaper-v2-2.pdf
https://exergy.energy/wp-content/uploads/2019/03/TransactiveEnergy-PolicyPaper-v2-2.pdf
http://pierrepinson.com/index.php/teaching/
https://doi.org/10.1109/ICAT47117.2019.8938836
https://www.nordpoolgroup.com/
https://hyperledger-fabric.readthedocs.io/en/release-2.3/gossip.html
https://github.com/hyperledger/fabric-chaincode-go/tree/master/pkg/cid
https://github.com/hyperledger/fabric-chaincode-go/tree/master/pkg/cid
https://github.com/hyperledger/fabric-gateway-java
https://github.com/hyperledger/fabric-sdk-java

REFERENCES 139

TEAM, Fabric Doc. A Blockchain Platform for the Enterprise. [S.l.: s.n.], 2020a.

Online; accessed September, 2020. Available from:

https://hyperledger-fabric.readthedocs.io/en/release-2.3/.

TEAM, Fabric Doc. CouchDB as the State Database. [S.l.: s.n.], 2020b. Online;

accessed February, 2021. Available from: https://hyperledger-

fabric.readthedocs.io/en/latest/couchdb_as_state_database.html.

TEAM, Fabric Doc. Read-Write set semantics. [S.l.: s.n.], 2020c. Online; accessed

April, 2021. Available from: https://hyperledger-

fabric.readthedocs.io/en/release-2.3/readwrite.html.

TEAM, Fabric Doc. The Ordering Service. [S.l.: s.n.], 2020d. Online; accessed

September, 2020. Available from: https://hyperledger-

fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html.

TRÓN, Viktor; JAMESON, Hydson. Ethereum Homestead Documentation.

[S.l.: s.n.], 2020. Online; accessed May, 2020. Available from:

https://ethdocs.org/en/latest/.

VUJIČIĆ, D.; JAGODIĆ, D.; RANÐIĆ, S. Blockchain technology, bitcoin, and Ethereum: A

brief overview. In: 2018 17th International Symposium INFOTEH-JAHORINA

(INFOTEH). [S.l.: s.n.], 2018. P. 1–6.

WANG, Naiyu; ZHOU, Xiao; LU, Xin; GUAN, Zhitao; WU, Longfei; DU, Xiaojiang;

GUIZANI, Mohsen. When Energy Trading Meets Blockchain in Electrical Power

System: The State of the Art. Applied Sciences, v. 9, p. 1561, Apr. 2019. DOI:

10.3390/app9081561.

WANG, S.; TAHA, A. F.; WANG, J.; KVATERNIK, K.; HAHN, A. Energy Crowdsourcing and

Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, v. 49, n. 8, p. 1612–1623, 2019.

WESTPHALL, Johann. Energy Network - Developed in Hyperledger Fabric.

[S.l.: s.n.], 2021. Online; accessed April, 2021. Available from:

https://github.com/johannww/EnergyNetwork.

WESTPHALL, Johann; LOFFI, Leandro; WESTPHALL, Carla Merkle;

EVERSON MARTINA, Jean. CoAP + DTLS: A Comprehensive Overview of

https://hyperledger-fabric.readthedocs.io/en/release-2.3/
https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_as_state_database.html
https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_as_state_database.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/readwrite.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/readwrite.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://ethdocs.org/en/latest/
https://doi.org/10.3390/app9081561
https://github.com/johannww/EnergyNetwork

REFERENCES 140

Cryptographic Performance on an IOT Scenario. In: 2020 IEEE Sensors Applications

Symposium (SAS). [S.l.: s.n.], 2020. P. 1–6. DOI: 10.1109/SAS48726.2020.9220033.

XU, X.; WANG, X.; LI, Z.; YU, H.; SUN, G.; MAHARJAN, S.; ZHANG, Y. Mitigating

Conflicting Transactions in Hyperledger Fabric Permissioned Blockchain for

Delay-sensitive IoT Applications. IEEE Internet of Things Journal, p. 1–1, 2021.

DOI: 10.1109/JIOT.2021.3050244.

YAGA, Dylan; MELL, Peter; ROBY, Nik; SCARFONE, Karen. Blockchain technology

overview. National Institute of Standards and Technology, Oct. 2018. DOI:

10.6028/nist.ir.8202. Available from:

https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf.

YCHARTS. Ethereum Average Transaction Fee. [S.l.: s.n.], 2021. Online;

accessed July, 2021. Available from:

https://ycharts.com/indicators/ethereum_average_transaction_fee.

ZIEGLER, M. H.; GROBMANN, M.; KRIEGER, U. R. Integration of Fog Computing and

Blockchain Technology Using the Plasma Framework. In: 2019 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC). [S.l.: s.n.], 2019. P. 120–123.

https://doi.org/10.1109/SAS48726.2020.9220033
https://doi.org/10.1109/JIOT.2021.3050244
https://doi.org/10.6028/nist.ir.8202
https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8202.pdf
https://ycharts.com/indicators/ethereum_average_transaction_fee

141

APPENDIX A – ENERGY VALIDATION CODE

Code A.1 – Solar energy validation function based on Candela SmartData

1 func getMaxPossibleGeneratedSolarEnergyInInterval(stub

shim.ChaincodeStubInterface, nearTrustedSensorsSmartData

*[]st.SmartData, solarPanelsNumber uint64) float64 {

2 sensorSmartDataQuantity := make(map[string]int)

3 sensorSmartDataSum := make(map[string]float64)

4 sensorSmartDataMean := make(map[string]float64)

5

6 for _, smartData := range *nearTrustedSensorsSmartData {

7 si := smartData.Unit >> 31

8 num := smartData.Unit >> 29 & 3

9 mod := smartData.Unit >> 27 & 3

10 if si == 1 && mod == 0 {

11 isCandelaUnit := (smartData.Unit & smartDataUnitMask) ==

smartDataCandelaUnitPart

12 if isCandelaUnit {

13 sensorSmartDataQuantity[smartData.AssetID]++

14 if num < 2 {

15 //consider float64 bytes as int

16 sensorSmartDataSum[smartData.AssetID] +=

float64(math.Float64bits(smartData.Value))

17 } else {

18 sensorSmartDataSum[smartData.AssetID] += smartData.Value

19 }

20 ...

21 }

22 for sensorID, sum := range sensorSmartDataSum {

23 sensorSmartDataMean[sensorID] = sum /

float64(sensorSmartDataQuantity[sensorID])

24 }

25 luminosityMean := 0.0

26 nSensors := 0.0

27 for _, sensorLuminosityMean := range sensorSmartDataMean {

28 luminosityMean = (luminosityMean*nSensors + sensorLuminosityMean) /

(nSensors + 1)

29 nSensors++

30 }

31 return luminosityMean * float64(solarPanelsNumber) * 10000000

32 }

	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Resumo expandido
	Abstract
	List of Figures
	List of frames
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Contents
	Introduction
	Motivation
	Justification
	Research questions
	Objectives
	Main objective
	Specific objectives

	Work structure

	Theoretical framework
	Grids and Microgrids
	Grid/Microgrid actors
	Energy markets
	Benefits of decentralization
	Challenges of decentralization

	Blockchain
	Categorization
	Consensus
	Smart contracts
	Tools
	Ethereum
	Hyperledger

	Side-chains
	Privacy

	Smart Meters
	Smart meter usage and security concerns on decentralized energy markets

	SmartData
	Hyperledger Fabric
	Main differences between Ethereum and Bitcoin
	Network architecture
	Organizations
	Network administration and configuration
	Peers
	Orderers
	Consortium
	Channel
	Smart Contracts (Chaincode)
	Transactions and Policies
	Private data collection

	Consensus
	Consensus general idea
	Raft

	Summarizing
	Idemix - identity mixing

	Literature review
	Blockchain energy trading and validation model
	Model's literature motivation
	Entities and their actions
	Sensors
	Energy sellers
	Energy buyers
	Validators and validation
	Payment companies

	Actions full sequence
	Model main characteristics
	Further model detail

	Proposal development
	Network local deployment
	Hyperledger Fabric general creation steps
	Environment with docker images
	Network configuration files
	fabric-ca-server-config.yaml
	fabric-ca-client-config.yaml
	configtx.yaml
	core.yaml
	orderer.yaml
	Overriding configuration files

	Automated network creation script
	Network created

	Chaincode deployment
	World State keys and values
	Choosing the most appropriate database
	Identifying chaincode function callers
	Main data structs
	ActiveSensor struct
	SmartData struct
	SellerInfo struct
	MeterSeller struct
	SellBid struct
	BuyBid struct
	EnergyTransaction struct

	Energy validation
	Auction chaincode events
	Avoiding transaction invalidation due to changes in Read/Write key set (Phantom reads)

	Application deployment
	Fabric SDKs
	Fabric gateways
	Applications implementation
	Sensor's application
	Buyer's application
	Random generation configuration

	Seller's application
	Utility's application
	Payment company's application

	Fabric-sdk-java logging and configurations
	Service Discovery x Network file description

	Network AWS deployment
	Elastic Compute Cloud
	ARM vs. x86-64 deploy and costs
	EnergyNetwork deploy steps in AWS

	Experiments
	Experiment design goals
	Experiment adaptations
	Test applications
	Bypassing entities identification from certificates' common names
	One gateway per multiple entities of the same type to improve thread efficiency
	Sensor application without block event
	Discarding HTTP servers to improve experiment reliability
	Measuring chaincode execution
	Limiting the number of sensors during validation

	Experiment rounds
	Experiment round configuration
	Experiment round results

	Experiments with different AWS instances
	Phase 1 experiment
	Phase 2 experiment
	Phase 3 experiment

	Data generation rate experiments

	Results and discussion
	Preliminary metrics
	CouchDB vs. Go LevelDB
	Querying SmartData by timestamp range
	Querying SellerInfo
	Querying sorted buy/sell bids to perform the auction

	Experiment results
	Phase 1 experiment results
	Phase 2 experiment results
	Phase 3 experiment results

	Data generation rate
	Energy network baseline cost analysis
	Energy network viability
	Related work comparison

	Conclusion
	Conclusion and contributions
	Future work

	REFERENCES
	Energy validation code

		2021-10-15T17:24:48-0300

		2021-10-16T06:44:03-0300

