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“Some men see things as they are, and say ‘Why?’

I dream of things that never were and say ‘Why not?’.”

George Bernard Shaw



ABSTRACT

This work proposes control laws for the regional stabilization of two classes of discrete-
time linear parameter-varying (LPV) systems under input constraints. The first one
consists of systems subject to time-varying delay in the states, saturating actuators,
and energy bounded disturbances. For such a class, we establish convex conditions to
design static state-feedback controllers as well as dynamic output-feedback controllers
ensuring the regional input-to-state stability (ISS) of the control loop. The proposed con-
ditions take into account the variation of the delay between two consecutive instants,
which leads to better estimates of the region of attraction supporting higher levels of
disturbances. The approach is based on rewriting the time-delay system with input
saturation as an augmented delay-free switched system with a dead-zone nonlinearity.
The second class comprises the systems with saturating actuators inserted in commu-
nication networks with limited bandwidth. In this case, we formulate convex conditions
to synthesize event-triggering state-feedback controllers as well as event-triggering
dynamic output feedback controllers ensuring the regional asymptotic stability of the
closed-loop system while indirectly reducing the number of data transmissions over the
communication channels. The proposed event-triggering policies indicate, for instance,
whether the states or the output should be transmitted over the network or not. The
use of the Lyapunov theory in all cases leads to conditions in the form of linear matrix
inequalities (LMIs), which can be efficiently solved by computational packages. Some
numerical examples are provided to testify the validity and the effectiveness of our
approach and to make comparisons with similar ones in the literature.
Keywords: Linear parameter-varying systems. Saturating actuators. Time-varying de-
lays. Event-triggering control. Lyapunov based approach.



RESUMO EXPANDIDO

Controle de classes de sistemas lineares a parâmetros variantes (LPV)

discretos no tempo sob restrições na entrada

Palavras-chave: Sistemas lineares a parâmetros variantes. Atuadores saturantes. Atra-

sos variantes no tempo. Controle a eventos. Abordagem baseada em Lyapunov.

Introdução

Com os avanços tecnológicos que ocorreram principalmente nas últimas dé-

cadas, o uso das redes de comunicação tornou-se comum nas malhas de controle

industriais. Isso porque elas trazem uma série de benefícios quando comparadas

as conexões ponto-a-ponto, como, por exemplo, redução dos custos, facilidade de

reconfiguração, implementação e manutenção. No entanto, como a capacidade de

transmissão das redes (largura de banda) é geralmente limitada, alguns problemas

surgem com a utilização delas, como, por exemplo, congestionamento e elevado con-

sumo de energia em sistemas de rede sem fio. Neste contexto, com o objetivo de

melhorar o uso dos recursos das redes, estratégias de controle aperiódicas tem sido

estudas, no qual a tarefa de controle é executada somente quando certa condição

é verificada. Entre essas estratégias, o paradigma de controle acionado por eventos

se destaca. Em tal técnica, um gerador de eventos monitora determinada variável do

sistema, estado ou saída, e gera um evento (transmite a informação) apenas quando

algum critério baseado nessa variável monitorada é verificado. Desse modo, o cont-

role acionado por eventos é capaz de reduzir a taxa de transmissão de informações

enquanto garante a estabilidade e certo índice de desempenho da malha-fechada. Por-

tanto, a introdução de um mecanismo de disparo de eventos que reduz o desperdício

de recursos e computação de forma eficiente, torna-se significativo em tal cenário.

Além disso, é notório que os sistemas de controle práticos podem ter seus com-

portamentos dinâmicos afetados por atrasos, incertezas, distúrbios externos, não lin-

earidades como a saturação, entre outras características que podem gerar transtornos

à malha de controle. O atraso, por exemplo, pode causar oscilação, baixo desempenho

e até mesmo instabilidade. Para contornar tais problemas, diversas técnicas têm sido

propostas na literatura (FRIDMAN, 2014). Ainda assim, a análise e o projeto de contro-

ladores de sistemas com atraso podem se tornar teoricamente mais complicados na

presença de atuadores saturantes, pois mesmo que o sistema seja estável na ausên-

cia de restrições de controle, ele pode desestabilizar, caso contrário, para algumas

condições iniciais. Assim, uma tarefa fundamental, neste caso, é determinar o con-



junto de todas as condições iniciais cujas trajetórias convergem garantidamente para a

origem, o que é reconhecidamente desafiador (TARBOURIECH et al., 2011). No caso

de sinais de distúrbio afetando o sistema, também é importante caracterizar o conjunto

de sinais de distúrbio admissíveis para os quais as trajetórias são garantidamente limi-

tadas. Portanto, o desenvolvimento de melhores técnicas de controle que lidem com

todas essas dificuldades tornou-se um dos grandes desafios dos últimos tempos.

Este trabalho se enquadra em ambos contextos, no qual novas metodologias

são propostas para a análise e o controle de duas classes de sistemas LPV discretos

no tempo sob restrições na entrada. A primeira consiste em sistemas sujeitos a atraso

variante no tempo nos estados, saturação de atuadores e distúrbios limitados em en-

ergia. A segunda compreende os sistemas com saturação de atuadores inseridos em

redes de comunicação com largura de banda limitada.

Objetivos

O principal objetivo desta tese é desenvolver condições convexas para análise

e síntese de controladores, que garantam a estabilidade e certo desempenho de duas

classes de sistemas: i) sistemas LPV discretos no tempo com atraso variante no tempo

nos estados sujeitos a saturação de atuadores e distúrbios limitados em energia e ii)

sistemas LPV discretos no tempo sujeitos a saturação de atuadores inseridos em uma

rede de comunicação com largura de banda limitada.

Como objetivos específicos, pode-se enumerar:

1. Desenvolver um método para o projeto de controladores dependente de parâmet-

ros do tipo realimentação de estados para a classe de sistemas i), explorando a

modelagem aumentada e chaveada pelo valor do atraso (HETEL et al., 2008);

2. Desenvolver um método para o projeto de controladores dependente de parâmet-

ros do tipo realimentação dinâmica da saída para a classe de sistemas i), explo-

rando a modelagem aumentada e chaveada pelo valor do atraso (HETEL et al.,

2008);

3. Desenvolver um método para o projeto simultâneo de um controlador dependente

de parâmetros do tipo realimentação dinâmica da saída e dois mecanismos de

disparo de eventos, os quais transmitem as saídas da planta e do controlador,

para a classe de sistemas ii);

4. Desenvolver um método para o projeto simultâneo de um controlador dependente

de parâmetros do tipo realimentação dos estados e dois mecanismos de disparo



de eventos, os quais transmitem o estado e o parâmetro variante, para a classe

de sistemas ii;

5. Implementar computacionalmente os métodos propostos e compará-los com out-

ras abordagens simulares na literatura;

Contribuições da tese

Dentre as contribuições da pesquisa realizada, nos capítulos 2 e 3 é investigado

o problema de estabilização regional de sistems LPV discretos no tempo com atraso

variante no tempo nos estados sujeitos a saturação de atuadores e distúrbios limitados

em energia. No Capítulo 2, são propostas condições convexas para a síntese de

controladores dependente de parâmetros do tipo realimentação dos estados, cuja

estrutura pode incluir estados atrasados, sem requerer o conhecimento do atraso.

Em contrapartida, no Capítulo 3 são propostas condições convexas para a síntese de

controladores dependente de parâmetros do tipo realimentação da saída. O controlador

proposto, neste último caso, possue as seguintes características: sua ordem pode ser

escolhida como um múltiplo inteiro da ordem do sistema original; sua estrutura permite

que o usuário realimente não apenas a saída atual mas também as saídas atrasadas;

e um ganho de anti-windup é incluido como uma tentativa de atenuar os efeitos da

saturação. Ambas abordagens são baseadas na reescrita do sistema com atraso sob

saturação de atuadores em um sistema aumentado e chaveado pelo valor do atraso

com uma não-linearidade do tipo zona-morta. Para lidar com os distúrbios limitados

em energia, é empregado o conceito de estabilidade entrada-estado. Com o auxílio de

uma função de Lyapunov mais geral e da condição de setor generalizada, as condições

propostas são estabelecidas na forma de desigualdades matriciais lineares. Quando

factíveis, elas garantem a estabilidade entrado-estado regional das malhas de controle,

e estimam as regiões de atração da origem. Além disso, é importante mencionar que

as condições levam em conta a variação do atraso entre dois instantes consecutivos,

o que permite alcançar resultados menos conservadores.

Em adição, nos capítulos 3 e 4 é investigado o problema de controle acionado

por eventos de sistemas LPV discretos no tempo sujeito a saturação de atuadores.

No Capítulo 3, são propostas condições convexas para a síntese simultânea de um

controlador dependente de parâmetros do tipo realimentação dinâmica da saída com

ação anti-windup e dois mecanismos de disparo de eventos. Tais mecanismos são

responsáveis por transmitir as saídas da planta e do controlador através dos canais de

comunicação. Em contrapartida, no Capítulo 4 são propostas condições convexas para

a síntese simultânea de um controlador dependente de parâmetros do tipo realimen-



tação dos estados e dois mecanismos de disparo de eventos. Neste caso, os mecan-

ismos gerenciam de forma independente a transmissão dos estados e do parâmetro

variante através do canal de comunicação entre o sensor e o controlador. Tal fato per-

mite que os parâmetros variantes do controlador e da planta possam diferir um do outro,

o que confere certo grau de robustez quanto aos desvios dos parâmetros. Ambas as

abordagens são formuladas com o auxílio de uma função de Lyapunov dependente

de parâmetros e da condição generalizada do setor, o que leva a um conjunto de de-

sigualdades matriciais lineares que, se factíveis, garantem a estabilidade assintótica

regional do sistema em malha-fechada e fornece uma estimativa da região de atração

da origem.

Conclusão

Esta tese propõe leis de controle para a estabilização regional de duas classes

de sistemas LPV discretos no tempo sob restrições na entrada. A primeira consiste em

sistemas sujeitos a atraso variante no tempo nos estados, atuadores saturantes e sinais

de distúrbio com energia limitada. Para tal classe, são projetados controladores do tipo

realimentação de estado bem como controladores do tipo realimentação dinâmica da

saída, que garantem a estabilidade entrada-estado regional da malha de controle. A

abordagem é baseada na reescrita do sistema com atraso sob saturação de atuadores

em termos de um sistema aumentado e chaveado pelo valor do atraso com uma não

linearidade do tipo zona morta, o que confere características particulares aos contro-

ladores. A segunda classe compreende os sistemas LPV discretos no tempo sujeitos

a atuadores saturantes inseridos em uma rede de comunicação com largura de banda

limitada. Neste caso, são sintetizados controladores do tipo realimentação de estados

bem como controladores do tipo realimentação dinâmica da saída, ambos com mecan-

ismos de acionamento de eventos, que garantem a estabilidade regional assintótica da

malha fechada enquanto reduzem indiretamente o número de dados transmitidos nos

canais de comunicação. As políticas de acionamento de eventos propostas indicam,

por exemplo, se os estados ou a saída devem ser transmitidos através da rede ou não.

O uso da teoria de Lyapunov em todos os casos conduz a condições na forma de

desigualdades matriciais lineares, que podem ser eficientemente resolvidas por meio

de pacotes computacionais. Além disso, alguns procedimentos de otimização são for-

mulados para atingir diferentes obejtivos de controle, como, por exemplo, maximizar

a estimativa de região de atração, melhorar a tolerância ao distúrbio, e minimizar a

taxa de transmissão das informações. Alguns exemplos numéricos são fornecidos para

atestar a validade e eficiência dessas abordagens e também para fazer comparações

com trabalhos similares encontrados na literatura.
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1 INTRODUCTION

1.1 CONTEXTUALIZATION

With the technological advances that occurred mainly in the last few decades,

the use of communication networks has become common in industrial control loops

(ZHANG, W. et al., 2001; TIPSUWAN; CHOW, 2003). This can be explained by the

several advantages that this configuration offers compared to dedicated point-to-point

connections, such as lower cost, ease of maintenance, and flexibility. However, as the

network is often limited, some problems arise with its introduction, such as network

congestion and elevated energy consumption on wireless systems. In this context, aim-

ing at better use of network resources, aperiodic control strategies have been studied,

where a control task is executed only when some condition is met. Among these strate-

gies, the event-triggered control (ETC) (TABUADA, 2007) paradigm stands out. In such

a technique, an event generator monitors some system variable (state or output) and

generates an event only when a criterion based on this monitored variable is verified.

Consequently, the ETC is capable of reducing the transmission activity while guar-

anteeing stability and some performance index of the control system. Therefore, the

introduction of an efficient event-triggering mechanism to reduce unnecessary waste of

resources and computation becomes meaningful in such a scenario.

Moreover, it is well-known that the practical control systems can have their dy-

namic behaviors affected by time delay, uncertainties, external disturbances, nonlinear-

ities such as saturation, among other characteristics that can generate inconveniences

to the control loop. The time delay, for instance, can cause oscillation, poor perfor-

mance, and even instability. To overcome such issues, several techniques have been

proposed in the literature (FRIDMAN, 2014). Still, the analysis and control design of

time-delay systems can become theoretically more involved in the presence of saturat-

ing actuators because even if the system is stable in the absence of control constraints,

it can destabilize otherwise for some initial conditions. So, a fundamental task, in such

a case, is to determine a set of all initial conditions such that the trajectories are guaran-

teed to converge to the origin, which is admittedly challenging (TARBOURIECH et al.,

2011). In the case of exogenous signals affecting the system, it is also important to

characterize a set of admissible signals for which the trajectories are guaranteed to

be bounded. Therefore, the development of better control techniques that deal with all

these difficulties has become one of the significant challenges in recent times.

This work fits in both scenarios, in which new methodologies are proposed for

the control of two classes of discrete-time linear parameter varying systems under input

constraints. The first one considers that the system is also affected by time-varying de-

lays in the states and external energy-bounded disturbances, and the second assumes

that the system is inserted into a communication network with limited bandwidth. In
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sequence, the main topics related to this work are described and their main objectives

are enumerated.

1.1.1 LPV systems

Linear parameter-varying (LPV) systems concern a class of linear dynamical

systems whose state-space matrices depend linearly on parameters that change over

time (BRIAT, 2015). These parameters are usually unknown but supposed to be mea-

sured or estimated in real-time. Such a feature allows us to model a wide variety of

time-varying and nonlinear plants. As a consequence, the analysis and control design

of LPV systems has been extensively studied and employed in various engineering ap-

plications in the last decades as nonholonomic mobile robotic (HUANG, J. et al., 2014),

missile autopilots (WHITE, B. A. et al., 2007), semi-active vehicle suspension design

(POUSSOT-VASSAL et al., 2008), turbofan engines (GILBERT et al., 2007), among

others (see (WHITE, A. P. et al., 2013) and the references therein).

The paradigm of LPV systems was first introduced by Shamma (1988) in his

Ph.D. thesis for systematic analysis and synthesis of “gain-scheduled” controllers. In

broad terms, the design of a gain-scheduled controller for a nonlinear plant can be

described as a four-step procedure. First, determine a family of Linear time-invariant

(LTI) models by selecting several operating conditions that cover the range of the plant’s

dynamics. Then, design a linear controller for each linearized model. Next, based on the

current value of the parameter-varying (measured or estimated online), schedule the

local controller using some interpolation or switching method. The final step consists of

verifying the closed-loop stability and performance using extensive simulation. Although

the system performance can be improved by increasing the number of local models

(at the price of increasing the computational burden), this approach may be unreliable,

since the closed-loop stability and performance are only verified through simulation. In

contrast, the modern control approaches start from an LPV representation and derive

conditions for the synthesis of parameter-dependent controllers with a guarantee of

stability, performance, and robustness for the closed-loop system. The computational

tools of the convex optimization are usually employed in this case (MOHAMMADPOUR;

SCHERER, C. W., 2012).

The scheduling parameters that govern the variation of the system dynamics can

be classified into two types: i) exogenous, if they are a function of internal plant variables

and exogenous signals, or ii) endogenous, if they are a function of the state variables.

This latter case comes from the approximation of nonlinear systems as LPV systems,

in which the nonlinear terms are used as scheduling variables. The resulting model is

better known as quasi–LPV systems (RUGH; SHAMMA, 2000). A similar framework

is based on Takagi-Sugeno systems where nonlinear systems can be represented in

terms of a state-dependent convex combination of LTI systems (TAKAGI; SUGENO,
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1985).

In the last decades, many approaches addressing stability analysis and control

design of LPV systems have been proposed. The Lyapunov theory has been fundamen-

tal in both cases, mainly because it leads to convex optimization conditions involving

Linear matrix inequality (LMI), which can be solved efficiently using specialized pack-

ages as the Matlab toolbox YALMIP (LOFBERG, 2004). The first works used the notion

of quadratic stability, where the Lyapunov matrix is assumed constant and independent

of the scheduling parameters. However, it is well known that the use of these functions,

although appealing from a computation point of view, can lead to conservative results.

This occurs because of the absence of restrictions on how fast the parameters may

vary. To improve accuracy and precision, the parameter-dependent Lyapunov functions

have been introduced with linear (polytopic) and affine structures by, amongst oth-

ers, (DAAFOUZ; BERNUSSOU, 2001; MONTAGNER et al., 2005; OLIVEIRA; PERES,

2008; DE CAIGNY et al., 2010), and homogeneous polynomial parameter-dependent

matrices in, for instance, (OLIVEIRA; PERES, 2009; DE CAIGNY et al., 2009; WANG,

L.; LIU, X., 2011; DE CAIGNY et al., 2012; RODRIGUES et al., 2018).

Despite the theoretical advances in the LPV control field, the implementation

of LPV controllers in physical hardware often meets significant difficulties, as the

continuous-time control design approaches are commonly preferred in the literature

over the discrete-time ones. In these cases, an efficient discretization of such a system

representation is required, which is not an easy task (TÓTH et al., 2008). On the other

hand, LPV identification methods are almost exclusively developed for discrete-time

(VERDULT, 2002; TÓTH, 2010), as in this setting it is much easier to handle the estima-

tion of parameter-varying dynamics (LAURAIN et al., 2011). Such facts have motivated

the research on discrete-time LPV control design methods (HEEMELS et al., 2010; DE

CAIGNY et al., 2012; EMEDI; KARIMI, 2016; PANDEY; DE OLIVEIRA, 2017; PEIXOTO

et al., 2020).

1.1.2 Delayed systems

A characteristic that can be found in a variety of dynamic systems, among them,

chemical, mechanical, biological, and economic, is the time-delay (GU et al., 2003;

NICULESCU, 2001). Its presence in control loops usually induces complex behaviors

such as oscillations, instability, and poor performance. Due to its unavoidable existence

and adverse effects, the time-delay systems have been a frequent topic of studies in

control systems (see (RICHARD, 2003) for an interesting overview). Usually, stability

conditions for time-delay systems can be classified into two types: delay-independent or

delay-dependent. In the former, the stability is guaranteed regardless of the size of the

delay, while in the latter, the size of the delay is directly taken into account. In general,

delay-dependent stability conditions are less conservative than delay-independent ones
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especially when the time-delay is small. As a consequence, great attention has been

paid to the study of delay-dependent stability conditions to obtain increasingly less

conservative results (ZHANG, X. M. et al., 2019). Most of the existing approaches are

formulated, by using Lyapunov-Krasovskii functionals, in terms of LMIs, which can be

efficiently solved by numerical algorithms.

Although the continuous-time systems with time-delay have been further investi-

gated in the literature, the discrete-time ones have received considerable attention in

the last decades. In the mid-1980s, (ASTRÖM; WITTENMARK, 1984) proposed the

rewriting of discrete-time systems with time-delay, characterized via delay difference

equations, in higher-order delay-free systems. This system augmentation approach has

been extensively used in practice, however, to characterize delay-independent stability

and deal with time-varying delays, it is not applicable (KAPILA; HADDAD, 1998). Such

cases were later treated, for instance, by (SONG, S. H. et al., 1999; CHEN, W. H. et al.,

2003; HETEL et al., 2008; MIRANDA; LEITE, V., 2011). In particular, Hetel et al. (2008)

proposed to rewrite discrete-time systems with time-varying delay as augmented delay-

free switched systems, where the switched law is given by the delay value itself. That is,

by considering the augmented state vector x̄k =
[

x>
k x>

k–1 . . . x>
k–τ̄

]>
, the dynamics

of the following discrete-time system

xk+1 = Axk + Adxk–τk
, (1)

with time-varying delay τk ∈ I[0, τ̄], can be represented by the augmented delay-free

switched system given by

x̄k+1 = A(τk )x̄k (2)

where

A(τk ) =

[

A(τk ) Γ1(τk ) Γ2(τk ) . . . Γτ̄–1(τk ) Γτ̄(τk )

Inτ̄ 0nτ̄×n

]

with

Γi (τk ) =

{

Ad , if i = τk ,

0n×n, otherwise,
∀i ∈ I[1, τ̄].

Note that the block Ad changes its position according to i . The asymptotic stability, in

this case, can be checked by using the most general form of the Lyapunov-Krasovskii

functional, obtained through the sum of all the possible combinations of quadratic forms,

V (k , x̄k , τk ) = x̄>
k Pτk x̄k =

τ̄∑

i=0

τ̄∑

j=0

x>
k–iP

i ,j
τk xk–j , i , j ∈ I[0, τ̄]. (3)

Thus, the approach proposed by Hetel et al. (2008) may lead to less conservative

results than the works based on a Lyapunov-Krasovskii theory. On the other hand,

the size of the delay imposes a limitation on applying such an approach, due to the

dimensional explosion when dealing with large delays. In view of the above, for NCS
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applications, the delays induced by the network are relatively small and fits well to the

proposed methodology.

Although Hetel et al. (2008) have presented an innovative method of representing

the systems with time-varying delay, this method has still been little explored in the

literature (see, for instance, the discussion in (DE SOUZA, 2017)).

The LPV systems with time-delay have also been the subject of studies in the

past years with a greater focus on continuous-time setup (see (WU, F.; GRIGORI-

ADIS, 2001; BRIAT et al., 2011; ZOPE et al., 2012; JING et al., 2015; NEJEM et al.,

2017)) than discrete-time one. In (JUNLING et al., 2008), a new delay-dependent and

parameter-dependent H∞ performance criterion to design gain-scheduled controllers

and state observers is proposed. The problem of H∞ static output-feedback control is

addressed in (ROSA et al., 2018), in which new synthesis conditions capable of syn-

thesizing either robust or gain-scheduled controllers are provided in terms of sufficient

parameter-dependent LMIs with a scalar parameter. In (LEITE, V. J. S. et al., 2010),

a partially parameter-dependent dynamic output-feedback controller, which output is

based on the current and delayed outputs of the system, is derived through convex con-

ditions. In all the above cases, the systems are affected by time-varying delays and the

parameter-dependent Lyapunov approach is used in their formulations. In (MAHMOUD,

2000), conditions for stability analysis (employing the notions of quadratic stability and

affine quadratic stability) and synthesis of state-feedback controllers which guarantee

quadratic stability and an induced `2-norm bounded are developed for systems with

unknown but bounded delay. For the same system, Zhou and Zheng (2008) applied

a parameter-dependent Lyapunov function to establish a new delay-dependent H∞
performance condition to design gain-scheduled controllers.

1.1.3 Saturating systems

The saturation is a nonlinearity widely encountered in practical systems. It is

related, in general, to the physical/technical and/or safety limits imposed by actuators.

Several undesirable problems can arise in a control loop due to its presence such as

performance degradation, the occurrence of limit cycles or multiple equilibrium points,

and even instability. From the stability point of view, the consequence of saturating

actuators is that even if a linear control law stabilizes a system, the origin of the closed-

loop system can become unstable for certain initial conditions. Therefore, a fundamental

task to be considered in this case refers to the determination of a region of admissible

initial conditions, better known as the region of attraction of the origin for the system. As

the exact numerical characterization of this region is, generally, a hard task, estimates

with a well-fitted analytical representation are then investigated (see, for instance, (HU;

LIN, 2001; TARBOURIECH et al., 2011) for more details). However, it is important to

point out that the presence of delays and/or parameters-varying in a system makes the
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estimation of this region even more challenging.

The saturation effects are perceptible when the controller has slow, critically

stable, or unstable modes (DOYLE et al., 1987; TARBOURIECH et al., 2011). This is

always the case for a controller with integral action. It is observed that, due to input

saturation, the integrator state “winds up” to excessively large values, leading to a

large overshoot and a high settling time. To overcome this, an additional control loop,

called “anti-windup” compensation can be added to the closed-loop system. The basic

principle of anti-windup strategies consists of determining the difference between the

signal computed by the controller and the signal effectively applied to the plant and

then feed back this amount to the controller using a static or a dynamic structure. From

this, acceptable performance is achieved when the actuators saturate, and when they

do not, the closed-loop performance remains unchanged. Besides being related to

performance improvement, anti-windup compensation can also be used to increase the

region of attraction of the origin (or its estimate) for the system (TARBOURIECH et al.,

2011).

The presence of disturbance signals is also a challenge when dealing with sys-

tems subject to saturating actuators since it makes it impossible to ensure the confine-

ment of the state trajectories within the region of attraction. In this case, it is necessary

to determine sets of admissible disturbance signals, besides those of initial conditions,

for which the state trajectories are bounded. Furthermore, if the disturbance vanishes,

the convergence of the state trajectories to the origin (equilibrium point) must be guaran-

teed. These admissible sets are in general characterized with bounds on the amplitude

(`∞–norm) or on the energy (`2–norm) of the disturbance signal. This problem is re-

ferred to as Input-to-state stability (ISS) analysis (TARBOURIECH et al., 2011).

During the past years, the class of LPV systems subject to saturating actuators

has been investigated with a greater focus on continuous-time systems, (see, for in-

stance, (CAO et al., 2002; MONTAGNER et al., 2007; DO et al., 2011; NGUYEN et al.,

2018; RUIZ et al., 2019)) than on the discrete-time ones. An algorithm to design a gain-

scheduled state feedback controller that minimizes the worst-case performance of LPV

systems with input saturation represented in the polytopic form is proposed in (WANG,

L.; LIU, X., 2011) with the aid of homogeneous polynomially parameter-dependent

Lyapunov functions. A synthesis approach of dynamic output feedback robust model

predictive control for LPV systems with unknown scheduling parameters subject to

input saturation and bounded disturbances is investigated in (PING et al., 2017). A

nonlinear time-varying parameter-dependent system under input saturation is stud-

ied in (JUNGERS; CASTELAN, 2011; CORSO et al., 2009; CASTELAN et al., 2010),

where conditions to design a dynamic output feedback (CASTELAN et al., 2010) and a

gain-scheduled feedback (of the measured output and the nonlinearity) (CORSO et al.,

2009; JUNGERS; CASTELAN, 2011) controllers are formulated based on parameter-
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dependent Lyapunov functions.

With respect to the LPV systems with time-delay subject to saturating actuators,

some robust approaches have been proposed for both continuous-time (EL HAOUSSI;

TISSIR, 2006; LIU, P. L., 2011; DOU et al., 2014; WEI et al., 2015) and discrete-time

frameworks (XU et al., 2012; ZHANG, L. et al., 2014; SONG, G. et al., 2015; PAL;

NEGI, 2018). However, considering the design of parameter-varying controllers, this

number is much smaller. A scheduled controller design method, developed to avoid

saturation and to guarantee the locally ISS of the continuous-time closed-loop system is

proposed in (LI, P. et al., 2018). A delay partitioning approach was used in (SONG, G.;

WANG, Z., 2013) to solve the problem of designing a dynamic output feedback controller

that ensures that all trajectories of the discrete-time closed-loop system converge to a

smaller ellipsoid for every initial condition from an admissible domain.

1.1.4 Networked Control Systems

Networked control systems (NCS), as its name suggests, are systems in which

the control loop is closed through a communication network. This structure allows

the information (reference input, plant output, control input, etc.) of the system to be

exchanged among all their components (sensors, controllers, actuators, etc.), which

are usually geographically distributed. Thus, the NCS connect cyberspace to physical

space so that the execution of several tasks is remotely allowed (ZHANG, W. et al.,

2001).

In contrast to point-to-point connections, NCS have several advantages as low

cost, reduced weight and power requirements, simple installation and maintenance,

and high-reliability (ZHANG, W. et al., 2001). As a consequence, NCS have been

employed in a variety of fields such as industrial control, aerospace systems, intelligent

systems, teleoperation, among others. However, the insertion of a network in a control

loop may also cause undesired effects on the account of limited network bandwidth

and computing capacity, such as time-varying delays, unequal sampling intervals, and

packet dropouts, which usually leads to performance degradation or ever unstable

behavior of NCS (MAHMOUD; HAMDAN, 2018; BEMPORAD et al., 2010). Therefore,

how to effectively allocate restricted transmission resources while ensuring the desired

system performance becomes an essential task.

1.1.4.1 Event-triggered control

In traditional networked control setups, the transmission instants are determined

purely based on time. Such a Time-triggered control (TTC) approach is predictable and

easy to implement. However, it often results in redundant transmissions, as many of

them occur at times when they are not necessary to achieve the desired stability and

performance properties. As an alternative, the Event-triggered control (ETC) approach



Chapter 1. Introduction 25

adapts the transmission instants based on the current state, input and/or output mea-

surement of the plant (HEEMELS et al., 2012). The main idea of ETC is to use the

network only when is needed by generated transmissions whenever a state-, input-,

and/or output-dependent condition is satisfied. In this way, ETC can significantly reduce

the number of data transmissions while maintaining satisfactory control performance.

In the context of ETC, two objectives can be pursued: i) Emulation: the event-triggering

rules have to be designed for a given controller (EQTAMI et al., 2010; HEEMELS et al.,

2012) and ii) Co-design: the joint design of the control law and the event-triggering

rules has to be performed (PENG; YANG, T. C., 2013; ABDELRAHIM et al., 2014; LI, S.

et al., 2015).

One of the fundamental challenges of ETC paradigm lies in choosing appropriate

functions so that system stability and satisfactory performance are guaranteed and, at

the same time, the communication resources are saved. In the last years, different kinds

of event-triggering schemes have been proposed in the literature. Among them, the

most classical form, the so-called static Event-triggering mechanism (ETM), is proposed

on absolute error in (LUNZE; LEHMANN, 2010; ZHANG, J.; FENG, 2014) or relative

error in (TABUADA, 2007; MENG; CHEN, T., 2014; MOREIRA et al., 2019) of the

sampled value. By adding an internal dynamic variable into the static ETM, (GIRARD,

2014; BORGERS et al., 2017) investigate a dynamic ETM. Lyapunov functions have

also been used for the trigger, as presented in (VELASCO et al., 2009; WANG, X.;

LEMMON, 2008). Some of these event-triggering rules are shown in Table 1. It is

important to point out that, there are several variations of these rules in the literature,

which take into account, for instance, the output or the control input instead of the states.

Table 1 – Some types of ETMs employed in the literature.

Static ETM

Absolute error
‖x(t) – x(tk )‖ ≥ σ (LUNZE; LEHMANN, 2010)

‖x(t) – x(tk )‖ ≥ σ(t) (ZHANG, J.; FENG, 2014)

Relative error
‖x(t) – x(tk )‖ > σ‖x(t)‖ (TABUADA, 2007)

‖x(t) – x(tk )‖Q∆
> ‖x(t)‖Qx

(MOREIRA et al., 2019)

Dynamic ETM η(t) + θ(σ‖x(t)‖ – ‖x(t) – x(tk )‖) > 0 (GIRARD, 2014)

Lyapunov ETM V (tk+1) > σV (tk ) (VELASCO et al., 2009)

Speaking of the ETC research for LPV systems, only a few results are available

in the literature. (LI, S. et al., 2019) study the event-triggered fault detection problem for

a class of continuous-time LPV systems with signal transmission delays. (LI, S. et al.,
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2015) proposes the event-triggered H∞ control for discrete polytopic LPV systems by

jointly designing a mixed event-triggering mechanism and a state-feedback controller.

For the same class of systems, (SAADABADI; WERNER, 2020) present a co-design

condition for an event generator and a dynamic output feedback controller with bounds

on the `2-performance. Considering the influence of network-induced delays and ex-

ternal disturbances, (HUANG, J. J. et al., 2020) addresses the event-triggered and

self-triggered H∞ output tracking control for the same class of systems. However, in

these works, the information about the scheduling parameters is assumed available

for the controller all the time, which does not occur in practice. In contrast, (SHANBIN;

BUGONG, 2013) proposes the co-design of an event generator and a state-feedback

controller for discrete polytopic LPV systems, where the parameters are not exactly

known, but their estimated values satisfy a known uncertainty level. With the same

assumption about the scheduling parameters, (XIE et al., 2018) establish a co-design

condition in a sense of input-to-state practically stable (ISpS) of a general mixed ETM

and a static output-feedback controller. The problem of discretization and event-based

digital static output feedback control design for continuous polytopic LPV systems with

networked-induced delay is addressed in (BRAGA et al., 2015), where the event mech-

anism is based on a significant change of the scheduling parameter. (GOLABI et al.,

2017) investigate an event-based reference tracking control for discrete polytopic LPV

systems by simultaneously designing a state feedback controller and ETMs for the

output, the control input, and the scheduling variables.

The ETC research has also been extended to consider saturating actuators, both

in the continuous-time (see, for example, (ZHANG, L. et al., 2014; KIENER et al., 2014;

NI et al., 2015; SEURET et al., 2016; LIU, D.; YANG, G. H., 2017; LI, L. et al., 2017))

and in the discrete-time setting. (WU, W. et al., 2014) propose a procedure to design

a state-feedback controller that maximizes the domain of attraction of a discrete-time

system under input saturation for a given event-triggering condition. Another approach

to maximize the domain of attraction concerns discrete-time piecewise affine saturated

systems under event-based state-feedback controllers. However, the co-design is not

addressed in these cases, which may lead to conservative results. The main difficulty in

obtaining co-design approaches lies in the nonlinear relations among the optimization

variables involved. To overcome such an issue, authors in (ZUO et al., 2016) suggest a

cone complementary linearization algorithm for solving a non-convex optimization prob-

lem yielding a method to co-design an event-triggering strategy and a state-feedback

controller for a discrete-time system under input saturation. (GROFF et al., 2016; DING

et al., 2020) address the simultaneous design of a static state-feedback controller and

an event-triggered mechanism, using similarity transformations, ensuring the regional

stability of saturating discrete-time systems. Also, (DING et al., 2020) considers the

co-design based on a dynamic state stabilizing controller.
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However, up to now, no ETC research has been reported to discrete-time LPV

systems subject to saturating actuators. This also aroused us to investigate this inter-

esting and challenging problem because of its great potential in practical applications.

1.2 OBJECTIVES

Based on the above discussions, the main objective of this thesis is to develop

convex conditions for analysis and synthesis of controllers ensuring stability and some

performance index for two classes of systems: i) discrete-time LPV systems with time-

varying delayed states subject to saturating actuators and energy bounded disturbances

and ii) discrete-time LPV systems subject to saturating actuators inserted into a com-

munication network with limited bandwidth. As specific objectives, we can enumerate:

1. To develop a parameter-dependent state-feedback controller design method for

the class of systems i), by exploring the augmented delay-free switched modeling

given in (2);

2. To develop a parameter-dependent dynamic output-feedback controller design

method for the class of systems i), by exploring the augmented delay-free switched

modeling given in (2);

3. To develop a co-design method of a parameter-dependent dynamic output-feedback

controller and two independent event-triggering mechanisms, that transmit the

output and the control input, for the class of systems ii).

4. To develop a co-design method of a parameter-dependent state-feedback con-

troller and two independent event-triggering mechanisms that transmit the states

and the scheduling parameter for the class of systems ii).

5. To implement computationally the developed conditions and compare them with

other approaches found in the literature.

1.3 STRUCTURE OF THE THESIS

This thesis is organized into five chapters, as follows:

This chapter presents a brief introduction and a review of the state of the art of the

main themes related to the subject of study of this thesis, namely: LPV systems, time-

delay, input saturation, and event-triggered control. In addition, the main and specific

objectives of the work are delimited in it.

Chapters 2 and 3 address the problem of regional stabilization of discrete-time

LPV systems with time-varying delayed states subject to saturating actuators and

`2–energy disturbances. Chapter 2 provides convex conditions for the synthesis of
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parameter-dependent state-feedback controllers, while Chapter 3 presents convex con-

ditions for the synthesis of parameter-dependent dynamic output-feedback controllers

with anti-windup action. The proposed controllers have characteristics that differenti-

ate them from those normally investigated in the literature, as will be evidenced in the

chapters. Both approaches are based on rewriting the delayed system under saturating

actuators in an augmented delay-free switched system with a dead-zone nonlinearity.

Also, they employ the input-to-state stability concept to handle the energy bounded

disturbances. Finally, with the aid of a more generalized Lyapunov function jointly with

the generalized sector condition, they provide linear matrix inequalities (LMIs) based

formulations. Such a fact also implies a characterization of estimates for the domain

of attraction in an augmented space. It is important to highlight that such a methodol-

ogy presented relevant results in the student’s previous works (DE SOUZA, 2017; DE

SOUZA et al., 2019b).

Chapters 3 and 4 concern the event-triggered control of discrete-time LPV sys-

tems subject to saturating actuators. Chapter 3 provides convex conditions for the co-

design of two event generators and a parameter-dependent dynamic output-feedback

controller with anti-windup action. The event-triggering mechanisms are responsible for

independently transmitting the sensor measurements and the controller output through

communication channels. On the other hand, Chapter 4 presents convex conditions

for the co-design of two event-generators and a parameter-dependent state-feedback

controller. In this case, the event-triggering mechanisms independently manage the

transmission of the states and the scheduling parameter from the sensor to the con-

troller. Such a fact allows the controller scheduling parameter to be different from that

of the plant, which yields a certain degree of robustness concerning parameter devia-

tions. Both approaches are formulated with the aid of a parameter-dependent Lyapunov

function along with the generalized sector condition, which leads to a set of linear ma-

trix inequalities (LMIs) that, if feasible, ensure the regional asymptotic stability of the

closed-loop system and provides an estimate of the domain of attraction.

Chapter 5 presents some conclusions and recommendations for future research.

The appendices complement the thesis by introducing some additional information

useful in understating it.
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2 SYNTHESIS OF PARAMETER-DEPENDENT STATE-FEEDBACK CON-

TROLLERS

This chapter addresses the regional stabilization problem of discrete-time LPV

systems with time-varying delayed states subject to saturating actuators and exogenous

signals. The proposed controller consists of a parameter-dependent state-feedback one,

whose structure may include delayed states, without requiring the online knowledge of

the delay. In this sense, convex conditions are established to regionally ensure the input-

to-state stability of the closed-loop system for a set of initial conditions and admissible

`2-energy bounded exogenous signals. They take into account the maximum variation

of delay between two consecutive instants.

To derive the convex formulation, the Lyapunov theory is used yielding a set

of LMI conditions. Additionally, the delayed system with input saturation is rewritten

in terms of an augmented delay-free switched system with a dead-zone nonlinearity,

which enables the application of the generalized sector condition. Some convex opti-

mization procedures are also proposed allowing to enlarge the set of initial conditions

or the maximum allowable disturbance energy. Finally, a numerical example is used

to illustrate the effectiveness of the methodology developed. The results presented

are based on the work (DE SOUZA et al., 2018). Moreover, they can be seen as an

extension of the works (DE SOUZA, 2017; DE SOUZA et al., 2018), in which robust

state-feedback controllers are designed. Also, a similar approach can be found in (DE

SOUZA et al., 2019c).

2.1 PROBLEM STATEMENT

Consider the class of discrete-time LPV systems with time-varying delay in the

states subject to saturating actuators and energy bounded disturbances represented

by:

xk+1 = A(αk )xk + Ad (αk )xk–τk
+ B(αk )sat(uk ) + Bω(αk )ωk , (4)

with a sequence of initial condition ϕτ̄,0 = {x–τ̄, x–τ̄+1, . . . , x0}, where xk ∈ R
n is the

state vector, uk ∈ R
nu is the control signal and ωk ∈ R

nω is the disturbance input vector

belonging to

W(δ) =






ωk ∈ R

nω :
∞∑

k=0

ω>
k ωk ≤ δ–1






, (5)

with δ–1 ∈ R
+ representing the energy bound of the disturbance. The symmetric decen-

tralized vectorial saturation function, sat(uk ), is defined as

sat(uk (`)) = sign(uk (`)) min(|uk (`)|, ū(`)), (6)

with ū(`) > 0, ` ∈ I[1, nu], denoting the symmetric amplitude bound relative to the

`th control input. The vector of time-varying parameters, αk ∈ R
N , which is assumed
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measured and available on-line (BRIAT, 2015), lies in the unitary simplex given by

Λ ,






αk ∈ R

N :
N∑

i=1

αk (i) = 1, αk (i) ≥ 0, i ∈ I[1, N]






. (7)

Thus, the parameter-dependent matrices A(αk ) ∈ R
n×n, Ad (αk ) ∈ R

n×n, B(αk ) ∈
R

n×nu and Bω(αk ) ∈ R
n×nω can be written in the polytopic form, that is, as a convex

combination of N known vertices according to

[

A(αk ) Ad (αk ) B(αk ) Bω(αk )
]

=
N∑

i=1

αk (i)

[

Ai Adi Bi Bωi

]

. (8)

The time-varying delay, τk ∈ Z
+, satisfies

τk ∈ I[τ, τ̄], subject to |τk+1 – τk | ≤ ∆τmax ≤ (τ̄ – τ), (9)

where τ, τ̄ ∈ Z are the minimum and the maximum known delay limits, respectively, and

∆τmax ∈ Z is the maximum delay variation between two consecutive instants. According

to (DE SOUZA et al., 2018), we can define a set C(τk ) that contains all possible values

that the delay can assume at the next instant given its value at the current instant:

C(τk ) =
{
τ+ ∈ I[max(τ, τk – ∆τmax), min(τ̄, τk + ∆τmax)]

}
,

where τ+ is a shorthand for τk+1. To exemplify, consider τ = 0, τ̄ = 5, ∆τmax = 1 and

τk = 2, then we have τ+ ∈ {1, 2, 3} = C(2). In particular, the delay is time-invariant if

∆τmax = 0.

To regionally stabilize system (4), we propose the following parameter-dependent

state-feedback control law

uk = K(αk )x̄k , (10)

where the augmented state x̄k ∈ R
(τ̄+1)n is defined by

x̄k =
[

x>
k x>

k–1 · · · x>
k–τ̄

]>
(11)

and the control gain matrix K(αk ) is described as

K(αk ) =
N∑

i=1

αk (i)Ki , (12)

with αk ∈ Λ and Ki ∈ R
nu×(τ̄+1)n assuming the full structure Ki =

[

Ki ,0 Ki ,1 · · · Ki ,τ̄

]

for all i ∈ I[1, N]. As a consequence of the definition of the augmented vector x̄k , we

have that the sequence of initial conditions ensuring the uniqueness of the solution of

(4) can be represented by ϕτ̄,0 = x̄0 =
[

x>
0 x>

–1 . . . x>
–τ̄

]>
.
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Remark 2.1 We can refer to (10), as a complete state-feedback control law, since the

whole state-feedback trajectory from k – τ̄ to k are fed back. In this case, the controller

depends only on the maximum value of the delay τ̄, and not on its current value τk ,

which makes it independent of the delay. Note that control laws that dispense knowl-

edge of the current value of the delay are easier to implement than those that need this

information as, for instance, uk = K0(αk )xk +Kτk (αk )xk–τk
(SILVA et al., 2014). Besides,

it is interesting to highlight that more specialized forms can be generated from the struc-

ture of (10) as, for instance, uk = K0(αk )xk and uk = K0(αk )xk +Kτ̄(αk )xk–τ̄, in which the

following structures are imposed on matrix K(αk ): Kc1(αk ) =
[

K0(αk ) 0 · · · 0

]

and

Kc2(αk ) =
[

K0(αk ) 0 · · · Kτ̄(αk )
]

, respectively.

Because of saturating actuators, the closed-loop stability must be studied in

the context of regional stability (TARBOURIECH et al., 2011). Thus, it is necessary to

consider the existence of a region of attraction of the origin for the LPV system (4),

RA ⊆ R
(τ̄+1)n, which characterization is not an easy task in general. Furthermore,

we need to take into account the energy of ωk such that all the trajectories remain

inside RA. Let us denote R0 the set of all initial states such that for a given δ > 0

and ωk ∈ W(δ) the respective trajectories of the closed-loop system remain in RA, by

noting that R0 ⊆ RA. Therefore, we are interested in computing the estimates of RA
and R0, called here RE ⊆ RA and RE0 ⊆ R0, respectively. For this purpose, consider

the following definition.

Definition 2.1 The LPV system (4) in closed-loop with the parameter-dependent state-

feedback controller (10) is referred to input-to-state stable (ISS), if for all ωk ∈ W(δ),

for all x̄0 ∈ RE0 ⊆ R0, and for all αk ∈ Λ, its trajectories are bounded in RE ⊆ RA and

if the disturbance vanishes, then limk→∞ x̄k = 0.

This definition is depicted in Figure 1. It is supposed that at the instant k0 the

disturbance signal ωk starts to act on the system, whose initial condition belongs to

RE0. In this case, the trajectories of the states evolve within the estimated attraction

region RE , which is contained in the attraction region RA. From the instant k > k1,

when the disturbance signal ωk vanishes, the states asymptotically converge to the

origin.

Thus, the problem we intend to solve in this chapter can be stated as follows.

Problem 2.1 For the saturating LPV system (4), determine the parameter-dependent

state-feedback controller (10) and the sets RE0 ⊆ R0 and RE ⊆ RA, such that for all

ωk ∈ W(δ), for all x̄0 ∈ RE0, and for all αk ∈ Λ, the resulting closed-loop system is

regionally input-to-state stable (ISS).
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2.2.2 Auxiliary Results

To handle the saturation phenomenon, we consider the (symmetric) dead-zone

nonlinearity

Ψ(uk ) = uk – sat(uk ), (16)

which verifies

Ψ(uk )>T(αk )(Ψ(uk ) – υk ) ≤ 0, (17)

for any positive definite diagonal matrix T(αk ) ∈ R
nu×nu and for all uk ,υk ∈ R

nu belong-

ing to the polyhedral set

S(ū) =
{

uk ∈ R
nu ,υk ∈ R

nu : |uk (`) – υk (`)| ≤ ū(`), ∀` ∈ I[1, nu]
}

. (18)

As we can see, the set S(ū) does not directly consider the bounds ū over uk , but instead

over the difference between uk and υk . In this sense, the auxiliary signal υk becomes

an extra degree of freedom for the control signal uk , allowing uk to enlarge beyond

its bounds (see (TARBOURIECH et al., 2011) for more details). Figure 2 shows the

graphic description of saturation and dead-zone functions.

sat(uk(`))

uk(`)

u(`)

u(`)

u(`)

u(`)

Ψ(uk(`))

uk(`)
u(`)

u(`)

Figure 2 – Saturation and dead-zone functions.

Such a result can be specialized to handle Problem 2.1. Thus, by considering

uk given by (10) and υk = G(αk )x̄k , we have the following lemma directly derived from

(TARBOURIECH et al., 2011, Lemma 1.6).

Lema 2.1 Consider uk given by (10), ū ∈ R
nu , ū > 0, and a matrix G(αk ) =

∑N
i=1 αk (i)Gi ,

Gi ∈ R
nu×(τ̄+1)n, i ∈ I[1, N], αk ∈ Λ, such that

S(ū) ,
{

x̄k ∈ R
(τ̄+1)n : |(K(`)(αk ) – G(`)(αk ))x̄k | ≤ ū(`), ` ∈ I[1, nu]

}

. (19)

If x̄k ∈ S(ū), then for any positive definite diagonal matrix T(αk ) =
∑N

i=1 αk (i)Ti , Ti ∈
R

nu×nu , i ∈ I[1, N], αk ∈ Λ, the following inequality holds

Ψ(K(αk )x̄k )>T(αk )(Ψ(K(αk )x̄k ) – G(αk )x̄k ) ≤ 0. (20)
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The regional input-to-state stability of the closed-loop LPV system (13) is inves-

tigated with the aid of the Lyapunov theory. Thus, we adopt the candidate Lyapunov

function V (x̄k ,αk , τk ) : R(τ̄+1)n ×Λ× I[τ, τ̄] −→ R
+ with V (x̄0,α0, τ0) = 0 given by

V (x̄k ,αk , τk ) = x̄>
k W –1(αk , τk )x̄k , (21)

where

W (αk , τk ) =
N∑

i=1

αk (i)Wi ,τk
, αk ∈ Λ, τk ∈ [τ, τ̄]. (22)

with 0 < Wi ,τk
= W>

i ,τk
∈ R

(τ̄+1)n×(τ̄+1)n. Associated to V (x̄k ,αk , τk ), there exist a level

set defined as

LV (µ) =
{

x̄k ∈ R
(τ̄+1)n : V (x̄k ,αk , τk ) ≤ µ–1, ∀αk ∈ Λ, ∀τk ∈ I[τ, τ̄]

}

, (23)

for some real scalar 0 < µ < ∞. In the theorem and corollaries that will be presented

later, sufficient conditions are provided to ensure that the level set LV (µ) is an invariant

and contractive set with respect to the trajectories of the closed-loop system (13).

Therefore, LV (µ) constitutes an estimate of the region of attraction of the origin for the

system, i.e. LV (µ) = RE ⊆ RA (TARBOURIECH et al., 2011). By taking inspiration from

(JUNGERS; CASTELAN, 2011), we can state the following lemma demonstrating how

to compute LV (µ) from matrices W (αk , τk )–1.

Lema 2.2 The level set LV (µ) associated with V (x̄k ,αk , τk ) defined in (21) is computed

as

LV (µ) =
⋂

∀τk ∈ I[τ, τ̄]

∀αk ∈ Λ

E(W (αk , τk )–1,µ) =
⋂

∀τk ∈ I[τ, τ̄]

∀i ∈ I[1, N]

E(W –1
i ,τk

,µ), (24)

where E(W –1
i ,τk

,µ) denotes the ellipsoidal sets represented by

E(W –1
i ,τk

,µ) =
{

x̄k ∈ R
(τ̄+1)n; x̄>

k W –1
i ,τk

x̄k ≤ µ–1, ∀i ∈ I[1, N], ∀τk ∈ I[τ, τ̄]
}

. (25)

The next lemma allows us to show the confinement of trajectories of the closed-

loop system (13) in the level set LV (µ).

Lema 2.3 Assume that V (x̄k ,αk , τk ) in (21) is a Lyapunov function, αk ∈ Λ, τk ∈
I[τ, τ̄], ωk ∈ W(δ) for a given δ, and some β > 0 such that LV (β) ⊆ R0 ⊆ RA. If

∆V (x̄k ,αk , τk ) – ω>
k ωk < 0 (26)

is verified along the trajectories of system (15) emerging from LV (β), then for all k > 0,

V (x̄k ,αk , τk ) – V (x̄0,α0, τ0) –
k∑

i=0

ω>
i ωi < 0. (27)
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Hence, ∀x̄0 ∈ LV (β) and ∀ωk ∈ W(δ), it follows that

1. V (x̄k ,αk , τk ) < V (x̄0,α0, τ0) + ‖ωk‖2
2 ≤ β–1 + δ–1 = µ–1, for all k ≥ 0 and thus the

trajectories of the system remain bounded in LV (µ) ⊆ RA;

2. If ωk = 0 for all k ≥ k̄ ≥ 0 as k → ∞, then x̄k → 0 without leaving LV (µ) ⊆ RA.

Proof: Firstly, from (5) we have that
∑∞

k=0 ω
>
k ωk ≤ δ–1, consequently, V (x̄k ,αk , τk ) ≤

V (x̄0,α0, τ0) + δ–1 for all k > 0. Moreover, by considering that x̄0 ∈ LV (β), it follows

that V (x̄0,α0, τ0) ≤ β–1. Therefore, V (x̄k ,αk , τk ) ≤ β–1 + δ–1 = µ–1 for some µ > 0,

which ensures that the trajectories starting in LV (β) remains in the set LV (µ) ⊆ RA,

according to statement 1. On the other hand, if the disturbance vanishes in an instant

k = k̄ , i.e. ωk = 0 for all k > k̄ , statement 1 implies that V (x̄k̄ ,αk̄ , τk̄ ) < µ–1, as a result

x̄k̄ ∈ LV (µ). Finally, from (26), we have that ∆V (x̄k ,αk , τk ) < 0, which in conformity with

Lyapunov theory arguments, means that x̄k asymptotically goes to the origin without

leaving LV (µ) ensuring statement 2.

2.3 MAIN RESULTS

The following theorem solves Problem 2.1 by providing convex conditions to

synthesize control gains ensuring the regional asymptotic stability for the closed-loop

system (13).

Theorem 2.1 Suppose that there exist symmetric positive definite matrices Wi ,τk
∈

R
(τ̄+1)n×(τ̄+1)n, positive definite diagonal matrices Si ∈ R

nu×nu , matrices Yi ∈ R
nu×(τ̄+1)n,

Zi ∈ R
nu×(τ̄+1)n and U ∈ R

(τ̄+1)n×(τ̄+1)n, for all i ∈ I[1, N] and τk ∈ I[τ, τ̄], and positive

scalars µ and δ, such that the following LMIs are feasible.








–Wr ,τ+ 0.5((Ai ,τk
+ Aj ,τk

)U + BiYj + BjYi ) –0.5(BiSj + BjSi ) 0.5(Bωi + Bωj )

? 0.5(Wi ,τk
+ Wj ,τk

) – U – U> 0.5(Zi + Zj )
>

0

? ? –(Si + Sj ) 0

? ? ? –Inω









< 0,

r , i ∈ I[1, N]; j ∈ I[i , N]; τ+ ∈ C(τk ); τk ∈ I[τ, τ̄],
(28)

[

Wi ,τk
– U – U> Y>

i(`) – Z>
i(`)

? –µū2
(`)

]

< 0,

` ∈ I[1, m]; i ∈ I[1, N]; τk ∈ I[τ, τ̄],

(29)

and

µ – δ < 0. (30)

Then, the parameter-dependent control gain

K(αk ) =
N∑

i=1

αk (i)YiU
–1, (31)
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employed in the control law (10), ensures that:

1. for all ωk 6= 0, with ωk ∈ W(δ), and for all x̄0 belonging to the set RE0 = LV (β) ⊆
R0, with β = (µ–1 – δ–1)–1, the trajectories of the closed-loop LPV system (13) do

not leave the set RE = LV (µ) ⊆ RA, for all k > 0;

2. for all ωk = 0, the set RE is a region of asymptotic stability for the closed-loop

LPV system (13), for all k > 0.

Proof: First, by supposing the feasibility of (29), multiply it by αk (i) and sum it up to

i ∈ I[1, N]. Then, replace Y (αk ) and Z (αk ) by K(αk )U and G(αk )U, respectively, and

use the fact that [W (αk , τk ) – U]>W –1(αk , τk )[W (αk , τk ) – U] ≥ 0 to replace the block

(1, 1) by –U>W –1(αk , τk )U, thus obtaining
[

–U>W –1(αk , τk )U (K(αk )(`)U – G(αk )(`)U)>

? –µū(`)
2

]

< 0. (32)

The feasibility of (29) implies Wi ,τk
– U – U> < 0 and, since Wi ,τk

> 0, U + U> >

Wi ,τk
and U is nonsingular. With the regularity of U, we can pre- and post- multiply (32)

by diag{U–>, 1} and its transpose, respectively, to get
[

–W –1(αk , τk ) (K(αk )(`) – G(αk )(`))
>

? –µū(`)
2

]

< 0. (33)

Finally, by applying Schur’s complement and pre- and post-multiplying the result-

ing inequality by x̄>
k and x̄k , respectively, we have that

– x̄>
k W –1(αk , τk )x̄k + x̄>

k (K(αk )(`) – G(αk )(`))
>

× (µū(`)
2)–1(K(αk )(`) – G(αk )(`))x̄k ≤ 0, (34)

which, from (21) and (19), ensures the inclusion RE = LV (µ) ⊆ S(ū) and, consequently,

Lemma 2.1 applies. Therefore, any trajectory of the closed-loop system (13) starting in

RE remains in S(ū).

Moreover, if (28) is also satisfied, multiply its left-hand side by αk+1(r ), αk (i),αk (j)

and sum it up to r , i ∈ I[1, N] and j ∈ I[i , N]. Then, replace Y (αk ) and Z (αk ) by

K(αk )U and G(αk )U, respectively, and use again the fact that –U>W –1(αk , τk )U ≤
W (αk , τk ) – U> – U to obtain









–W (α+, τ+) A(αk , τk )U + B(αk )K(αk )U –B(αk )S Bω(αk )

? –U>W –1(αk , τk )U U>
G(αk )> 0

? ? –2S(αk ) 0

? ? ? –Inω









< 0, (35)
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where α+ represents αk+1. With the regularity of U, we can pre- and post-multiply (35)

by diag{I(τ̄+1)n, U–>, S(αk )–>, Inω
} and its transpose, respectively, to get









–W (α+, τ+) A(αk , τk ) + B(αk )K(αk ) –B(αk ) Bω(αk )

? –W –1(αk , τk ) G(αk )>S(αk )–1
0

? ? –2S(αk )–1
0

? ? ? –Inω









< 0. (36)

Next, replacing A(αk , τk ) + B(αk )K(αk ) by Ā(αk , τk ) and applying Schur’s com-

plement, we have that





–W –1(αk , τk ) G(αk )>S(αk )–1
0

? –2S(αk )–1
0

? ? –Inω




 +






Ã(αk , τk )>

–B(αk )>

Bω(αk )>




W –1(α+, τ+)

×
[

Ã(αk , τk ) –B(αk ) Bω(αk )
]

< 0. (37)

Then, pre- and post-multiplying (37) by the augmented vector
[

x̄>
k Ψ(Kx̄k )> ω>

k

]

and its transpose, respectively, and replacing Ā(αk , τk )x̄k –B(αk )Ψ(K(αk )x̄k ) +Bω(αk )ωk

by x̄k+1, according to (15), results in

x̄>
k+1W –1(α+, τ+)x̄k+1 – x̄>

k W –1(αk , τk )x̄k

– 2Ψ(K(αk )x̄k )>S(αk )–1(Ψ(K(αk )x̄k ) – G(αk )x̄k ) – ω>
k ωk < 0. (38)

From (21), we have that x̄>
k+1W –1(α+, τ+)x̄k+1 – x̄>

k W –1(αk , τk )x̄k

= V (x̄k+1,αk+1, τk+1) – V (x̄k ,αk , τk ) = ∆V (x̄k ,αk , τk ). By taking this into account and

denoting T(αk ) = S(αk )–1, we conclude that

∆V (x̄k ,αk , τk ) – 2Ψ(K(αk )x̄k )>T(αk )(Ψ(K(αk )x̄k ) – G(αk )x̄k ) – ω>
k ωk ≤ 0. (39)

By supposing that x̄k ∈ S(ū), the generalized sector condition presented in

Lemma 2.1 ensures the non-positivity of 2Ψ(K(αk )x̄k )>T(αk )(Ψ(K(αk )x̄k ) – G(αk )x̄k ),

which implies ∆V (x̄k ,αk , τk ) – ω>
k ωk ≤ 0. Because of the positivity of W (αk , τk ), we

can assume that there exist a sufficiently small ε0 > 0 such that

ε0‖x̄k‖2 ≤ V (x̄k ,αk , τk ) ≤ ε1‖x̄k‖2, with ε–1
1 = min

i∈I[1,N]
λmin

τk∈I[τ,τ̄]
Wi ,τk

> 0. (40)

Additionally, from (39) with ωk = 0, we have that

∆V (x̄k ,αk , τk ) < 2Ψ(K(αk )x̄k )>T(αk )(Ψ(K(αk )x̄k ) – G(αk )x̄k ) ≤ –ε2‖x̄k‖2 < 0 (41)

for some ε2 > 0. Therefore, V (x̄k ,αk , τk ) given in (21) is a Lyapunov function and

RE = LV (µ) is an estimate of the region of attraction of the origin for the closed-loop

system (13).

Now, consider that the LPV system (13) is not subject to any external pertur-

bation, i.e. ωk = 0 for all k ≥ 0. In this case, the stabilization can be handled by the

following corollary, which is a consequence of statement 2 of Theorem 2.1.
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Corollary 2.1 Suppose that there exist symmetric positive definite matrices Wi ,τk
∈

R
(τ̄+1)n×(τ̄+1)n, positive definite diagonal matrices Si ∈ R

nu×nu , and matrices Yi ∈
R

nu×(τ̄+1)n, Zi ∈ R
nu×(τ̄+1)n and U ∈ R

(τ̄+1)n×(τ̄+1)n, for all i ∈ I[1, N] and τk ∈ I[τ, τ̄],

such that the following LMI and (29) with µ = 1 are feasible.






–Wr ,τ+ 0.5((Ai ,τk
+ Aj ,τk

)U + BiYj + BjYi ) –0.5(BiSj + BjSi )

? 0.5(Wi ,τk
+ Wj ,τk

) – U – U> 0.5(Zi + Zj )
>

? ? –(Si + Sj )




 < 0.

r , i ∈ I[1, N]; j ∈ I[i , N]; τ+ ∈ C(τk ); τk ∈ I[τ, τ̄]

(42)

Then, the parameter-dependent state-feedback controller with gain computed as in (31)

ensures that regional asymptotic stability of the closed-loop LPV system (13) for every

initial condition x̄0 belonging to RE = LV (1) ⊆ RA. That concludes the proof.

Proof: The proof follows the same steps as in Theorem 2.1 by disregarding the terms

referring to the disturbance.

Remark 2.2 Theorem 2.1 and Corollary 2.1 can also be adapted to treat both LTI and

non-saturating systems. In the first case (LTI systems), it is necessary to set r = i = j = 1,

which leads to fixed matrices. In the second case (non-saturation), one has to impose:

i) the row and column 3 are deleted in the LMIs (28) and (42), and (ii) the LMI (29) is

discarded.

Remark 2.3 The conditions in Theorem 2.1 and Corollary 2.1 yield a full gain matrix

K(αk ) =
[

K0(αk ) K1(αk ) . . . Kτ̄(αk )
]

. The special forms assumed by K(αk ), as

discussed in Remark 2.1, can be recovered from (31) by imposing certain structures on

the matrices U and Y (αk ). For Kc1(αk ) =
[

K0(αk ) 0 . . . 0

]

, it is required to impose

Y (αk ) =
[

Y (αk )1,nu×n 0

]

and U =

[

U1,n×n 0

U2,τ̄n×n U3,τ̄n×τ̄n

]

.

Similarly, for Kc2(αk ) =
[

K0(αk ) 0 Kτ̄(αk )
]

, it is necessary to consider

Y (αk ) =
[

Y (αk )1,nu×n 0 Y (αk )2,nu×n

]

and

U =






U1,n×n 0 U2,n×n

U3,(τ̄–1)n×n U4,(τ̄–1)n×(τ̄–1)n U5,(τ̄–1)n×n

U6,n×n 0 U7,n×n




 .

Remark 2.4 The numerical complexity of the proposed LMI conditions is related with

the number of scalar variables, K, and the number of rows, R. By denoting τ̂ = τ̄ – τ + 1,

we can compute these quantities as follows: for Theorem 2.1, we have that: K1 =
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(0.5((τ̄ + 1)n + 1)N τ̂ + (τ̄ + 1)n)(τ̄ + 1)n + (nu + 2(τ̄ + 1)n)nuN + 2 and R1 = 0.5(2(τ̄ + 1)n +

nu + nω)(τ̂2 – (τ̂ – 1 –∆τmax)(τ̂ –∆τmax))N2(N + 1) + ((τ̄ + 1)n + 1)nuN τ̂ + 1. On the other

hand, for Corollary 2.1, we have that: K2 = K1 – 2 and R2 = 0.5(2(τ̄ + 1)n + nu)(τ̂2 –

(τ̂ – 1 – ∆τmax)(τ̂ – ∆τmax))N2(N + 1) + ((τ̄ + 1)n + 1)nuN τ̂ + 1. Thus, observe that the

number of LMI rows reduce with lower values of ∆τmax, i.e., with slower delay variations.

Therefore, the worst case is achieved with ∆τmax = τ̄ – τ, which is the condition usually

handled in the literature.

2.3.1 Optimization design procedures

The proposed convex conditions can be exploited to optimize some interest

characteristics of the closed-loop system as presented in the sequence.

2.3.1.1 Maximization of the disturbance tolerance (δ–1)

The maximization of the disturbance tolerance (δ–1) consists of designing a

state-feedback control gain K(αk ) given in (10), such that, for a given set of admissible

initial states R0, the set of admissible disturbances W(δ) is maximized, that is, δ–1 is

as big as possible. In particular, if the system is in equilibrium, i.e., x̄0 = 0, it follows that

δ–1 = µ–1 and the problem of maximization of the set W(δ) can be addressed as (see

also page 73 of (TARBOURIECH et al., 2011)):

O1 :

{

min µ,

subject to LMIs (28) and (29).
(43)

2.3.1.2 Maximization of the estimate of the region of attraction (RE )

Suppose that the closed-loop LPV system (4) is not subject to disturbance input,

i.e. ωk = 0, for all k > 0. In this case, the objective is to design a state-feedback control

gain given in (10), that maximizes the estimate of the region of attraction, RE . One

possibility is to maximize the volume of an ellipsoidal set E(R–1, 1), defined similarly as

in (24), such that E(R–1, 1) ⊆ LV (µ), which can be ensured by

µ – 1 ≤ 0 and

[

R R

? Wi ,τk

]

> 0.

i ∈ I[1, N]; τk ∈ I[τ, τ̄]

(44)

Since the volume of E(R–1, 1) is proportional to
√

det(R) (see (BOYD et al., 1994)),

such a maximization of RE can be done through max ln(det(R)), or equivalently by:

O2 :

{

min – ln(det(R)),

subject to LMIs (29), (28), and (44).
(45)

Other possibilities are i) to maximize the volume of an ellipsoidal set E(R, 1),

defined similarly as in (25), such that E(R, 1) ⊆ LV (µ), and ii) to maximize the volume
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of the intersection of W –1
i ,τk

for all i ∈ I[1, N] and τk ∈ I[τ, τ̄]. Furthermore, we can be

interested in, for example, to maximize the set of admissible initial conditions RE0 for a

given set of admissible exogenous signals W(δ). All these cases can be found in (DE

SOUZA, 2017).

2.4 NUMERICAL EXAMPLES

Consider LPV system (4) with the following data:

A1 =

[

–1.1 0.4

–0.2 1.1

]

, A2 =

[

–0.2 0.7

0.6 1.3

]

, Ad1 =

[

0.06 0.04

0 –0.05

]

, Ad2 =

[

0.02 0.06

0 –0.07

]

,

B1 =

[

0

1.2

]

, B2 =

[

0

1.3

]

, Bω1 =

[

0

0.12

]

, Bω2 =

[

0

0.13

]

, (46)

time-varying delay τk ∈ I[0, 2] and symmetric saturation limit ū = 0.7.

Maximization of the disturbance tolerance: First of all, we compare the amount

of admissible disturbance to system (46) when a parameter-dependent gain, K(αk ),

is used instead of a constant (robust) gain, K. In this last case, to compute the gain

matrices K, we impose i = j = 1 on matrices Y , S and Z in LMIs (28) and (29).

By solving the optimization procedure O1 given in (43), we designed control

gains that maximize the tolerable energy of the disturbance signals ωk . For a parameter-

dependent control gain, we got δ–1 = 36.1011, i.e. ‖ωk‖2 ≤ 6.0084 and, for a fixed con-

trol gain, δ–1 = 30.6748, i.e. ‖ωk‖2 ≤ 5.5384. Therefore, when a parameter-dependent

gain is assumed instead of a fixed one there is an increase of 7.82% in the tolerable

energy of the disturbance signals.

In particular, for the time-varying case, we use the gain K(αk ) in (12) with

K1 =
[

–0.5526 –0.3960 0.0110 0.0674 0.0149 0.0008
]

, and

K2 =
[

–0.2582 –0.5938 –0.0021 0.0157 –0.0014 0.0226
]

,

to close the loop and to simulate the system response to a set of disturbance signals

with the form ωk =
[

ω1 ω2 01,18

]

, with ω1 swept from –6.0084 up to 6.0084 and

ω2 = ±
√

6.00842 – ω2
1. For each sequence ωk , ten simulations were performed with

αk and τk randomly chosen. The projections of E(Wi ,τk
,µ) (cyan lines), for all i ∈ I[1, N]

and τk ∈ I[τ, τ̄], and RE (blue lines) on the plan xk jointly with the current states’

trajectories (colored lines) are shown on the left-hand side of Figure 3 and, on its right-

hand side, the projection of RE on the planes xk (blue lines), xk–1 (magenta dashed

lines) and xk–2 (green dash-dotted lines). Note that the trajectories do not go beyond RE
and do not touch their bounds, which indicates a certain conservatism of the approach.
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Figure 3 – On the left: projections of E(Wi ,τk
,µ) (–), for all i ∈ I[1, N] and τk ∈ I[τ, τ̄],

and RE on the plane xk jointly with the current states’ trajectories (colored
lines); On the right: projections of RE = LV (µ) on the planes xk (–), xk–1 (– –)
and xk–2 (–.).

Then, we consider the design of the other possible structures assumed by

the parameter-dependent control gain (see Remark 2.3). For Kc2(αk ), we got δ–1 =

31.1526, i.e. ‖ωk‖2 ≤ 5.5814, and for Kc1(αk ), δ–1 = 31.9489, i.e. ‖ωk‖2 ≤ 5.6523.

In these cases, we have a reduction in the system tolerance to disturbance signals

of 7.65% and 6.30% when we consider the design of gains Kc2(αk ) and Kc1(αk ), re-

spectively, w.r.t the full gain K(αk ). Therefore, the feedback of delayed states is clearly

justified by higher tolerances obtained in such a case. It is also interesting to note that

even considering non-complete parameter-dependent gains, whose structures corre-

sponds to feedback only part of the system’s states, a greater tolerance is still achieved

than when it is considered a complete robust (invariant) gain, whose structure corre-

spond to feedback all the states.

Still assuming parameter-dependent gains, we evaluate the influence of the

limitation on the maximum rate of variation of the delay in the size of the set of admis-

sible disturbances W(δ) considering different maximum delay values. Thus, for each

τ̄ ∈ I[2, 7], we have varied ∆τmax from 0 up to τ̄ and computed the maximum dis-

turbance tolerance δ–1 through optimization procedure O1 given in (43). The results

are shown in Figure 4, where R% is the percentage of augmentation in the values of

δ–1 in relation to the case of maximum rate of variation of the delay (∆τmax = τ̄), i.e

R% = (δ–1
∆τmax

/δ–1
∆τmax=τ̄ – 1)× 100%. This clearly shows the relevance of considering the

bounds on the delay variation to get higher energy tolerances of exogenous signals.

Finally, by assuming that the system (46) is not subject to any restriction on input

signals, we compare our approach with that proposed by (SILVA et al., 2016). From

(SILVA et al., 2016), we have that δ–1 = 0.1368, i.e. ‖ωk‖2 ≤ 0.3698. In this case,

the designed fuzzy control law guarantees the input-to-state stability of the closed-loop
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exogenous disturbances. The main contributions can be summarized as i) a convex

delay-dependent condition to design parameter-dependent state feedback controllers

ii) the proposed controller structure may include delayed states, without requiring the

online knowledge of the delay, which facilitates its implementation; iii) the proposed

procedure allows estimating the region of attraction of the origin on an augmented

space vi) the control design takes into account the maximum delay variation between

two consecutive instants, yielding less conservative results; v) the provided method-

ology allows the design considering optimization problems aiming at maximizing the

admissible disturbance energy and enlarging the region of attraction.

To illustrate the effectiveness of the proposal, a numerical example has been

explored in several aspects. As it can be seen, the parameter-dependent gains led

to better results than the robust ones (those proposed in (DE SOUZA et al., 2019b)).

Additionally, the configuration that feeds back all states, current and delayed, proved

to be more advantageous than those that consider less delayed states. Furthermore, it

was evident that the limitation of the maximum variation of the delay results in higher

tolerances to disturbance signals. Although the simulation results may seem conser-

vative in some points, for example i) the state trajectories did not reach the borders of

the estimate of the region of attraction, even for disturbance signals with the maximum

allowed energy; and ii) in the absence of disturbance signals, the control signal did not

saturate for initial conditions in the edges of the estimate of the region of attraction, it is

important to point out that the conditions hold for any αk and τk sequences. Finding the

worst sequences to be used in such cases is not a simple task. Finally, it is relevant to

mention that, this method becomes impracticable for systems where the states are not

fully available. In the next chapter, an approach considering dynamic output-feedback

controllers is proposed.
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3 SYNTHESIS OF PARAMETER-DEPENDENT DYNAMIC OUTPUT CON-

TROLLERS

This chapter presents a control design technique for discrete-time LPV systems

with time-varying delayed states subject to saturating actuators and exogenous signals.

The control law considered is a parameter-dependent dynamic output-feedback with

some particularities. First, the controller’s order can be set as an integer multiple of the

original system’s order. Second, its structure enables the user feeds back not only the

current output but also the delayed ones. Lastly, anti-windup gains are added as an

attempt to mitigate the undesired effects of saturation.

Basically, LMI conditions are proposed to regionally ensure the input-to-state

stability of the closed-loop system in the `2-sense. Such conditions take into account

the maximum variation of delay between two consecutive instants. As in the previous

chapter, the approach is based on the Lyapunov theory and on rewriting the LPV

delayed system as an augmented delay-free one switched by the delay. Also, a dead-

zone linearity is used to handle the saturation through the generalized sector condition.

Furthermore, some (convex) optimization problems are formulated to both maximize the

domain of attraction and improve the disturbance tolerance. Finally, numerical examples

are considered to demonstrate the effectiveness of the proposal. The results presented

here are based on the works (DE SOUZA et al., 2021a, 2019a).

3.1 PROBLEM STATEMENT

Consider the class of system in (4) with the addition of the measured output

signal yk ∈ R
ny represented by

xk+1 = A(αk )xk + Ad (αk )xk–τk
+ B(αk )sat(uk ) + Bω(αk )ωk ,

yk = Cxk ,
(47)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal, ωk ∈ R
nω is the

disturbance input vector, τk ∈ I[τ, τ̄] is the time-varying delay and αk ∈ R
N is the

vector of time-varying parameters belonging to the unitary simplex

Λ ,






αk ∈ R

N :
N∑

i=1

αk (i) = 1, αk (i) ≥ 0, i ∈ I[1, N]






. (48)

Thus, the parameter-dependent matrices A(αk ) ∈ R
n×n, Ad (αk ) ∈ R

n×n, B(αk ) ∈
R

n×nu and Bω(αk ) ∈ R
n×nω can be written as a convex combination of N known

vertices according to

[

A(αk ) Ad (αk ) B(αk ) Bω(αk )
]

=
N∑

i=1

αk (i)

[

Ai Adi Bi Bωi

]

. (49)
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The saturation function, sat(uk ), is defined as

sat(uk (`)) = sign(uk (`)) min(|uk (`)|, ū(`)), (50)

with ū(`) > 0, ` ∈ I[1, nu], denoting the symmetric amplitude bound of the `th control

input. As in the previous chapter, the disturbance input is supposed to belong to

W(δ) =






ωk ∈ R

nω :
∞∑

k=0

ω>
k ωk ≤ δ–1






, (51)

with δ–1 ∈ R
+ representing the energy bound of the disturbance. Also, the maximum

variation of the delay between two consecutive instants, ∆τmax, is assumed bounded,

i.e. |τk+1 – τk | ≤ ∆τmax ≤ (τ̄ – τ), where τ and τ̄ are the minimum and the maximum

known delay limits, respectively. To deal with this, we define the following set C(τk ) that

contains all possible values assumed by the delay at the next instant given its value at

the current one,

C(τk ) =
{
τ+ ∈ I[max(τ, τk – ∆τmax), min(τ̄, τk + ∆τmax)]

}
. (52)

To regionally stabilize system (47), we propose the following parameter-dependent

dynamic output feedback controller with anti-windup action:

xc,k+1 = Ac(αk , τk )xc,k +
τ̄∑

j=0

Bcj (αk )yk–j – Ec(αk )Ψ(uk ),

uk = Cc(αk )xc,k +
τ̄∑

j=0

Dcj (αk )yk–j ,

(53)

where xc,k ∈ R
σn, with σ ∈ I[1, (τ̄ + 1)], is the controller state vector, yk–j is the

measured output signal delayed by j ∈ I[0, τ̄] samples, and Ψ(uk ) is the dead-zone

nonlinearity described in (16). The controller’s matrices Ac(αk , τk ) ∈ R
σn×σn, Bcj (αk ) ∈

R
σn×ny , Ec(αk ) ∈ R

σn×nu , Cc(αk ) ∈ R
nu×σn and Dcj (αk ) ∈ R

nu×ny , in the same way

as those of the system, are represented in the polytopic form, as will be shown later.

Due to the controller structure adopted, we are assuming here that the time-varying

delay τk is known a priori.

Note that, unlike the works in the literature, the choice of σ determines the

controller’s order as an integer multiple of the system’s order. Thus, the controller’s

order can be chosen from the system’s actual order, n, up to the augmented delay-free

system’s order, n(τ̄ + 1). Another feature is that the current and the (already available)

delayed outputs of the system are fed back into the controller, providing an enlarged

set of information about the system’s behavior. Also, the anti-windup gain matrix Ec(αk )

is added to the compensator’s dynamics to help the mitigation of the saturating effects,

and it acts only when saturation occurs, i.e., when Ψ(uk ) 6= 0.

Thus, the problem we intend to solve in this chapter can be stated as follows.
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Problem 3.1 For the saturating LPV system (47), determine the parameter-dependent

dynamic controller (53) and the sets RE0 ⊆ R0 and RE ⊆ RA, such that for all ωk ∈
W(δ), for all ξ0 =

[

x̄>
0 x>

c,0

]>
∈ RE0, and for all αk ∈ Λ, the resulting closed-loop

system is regionally ISS (see Definition 2.1).

3.2 PRELIMINARY RESULTS

In this section, we present the augmented model representation of the closed-

loop system and an auxiliary result useful on the formulation of the stabilization condi-

tion.

3.2.1 Augmented model description

Let us start introducing some matrix notations

Bc(αk ) =
[

Bc0(αk ) Bc1(αk ) · · · Bcσ–1(αk )
]

,

B̄c(αk ) =
[

Bcσ(αk ) Bcσ+1(αk ) · · · Bcτ̄(αk )
]

,

Dc(αk ) =
[

Dc0(αk ) Dc1(αk ) · · · Dcσ–1(αk )
]

,

D̄c(αk ) =
[

Dcσ(αk ) Dcσ+1(αk ) · · · Dcτ̄(αk )
]

.

From this, we can establish the following assumption regarding the controller

matrices.

Assumption 3.1 The controller matrices (53) are supposed to have the following struc-

ture:

[

Ac(αk , τk ) Bc(αk ) B̄c(αk )
]

= 0.5
N∑

i=1

N∑

j=i

(1 + ρij )αk (i)αk (j)

[

Acij ,τk
Bcij B̄cij

]

,

[

Cc(αk ) Dc(αk ) D̄c(αk )
]

=
N∑

i=1

αk (i)

[

Cci Dci D̄ci

]

, Ec(αk ) =
N∑

i=1

αk (i)Eci , (54)

with αk ∈ Λ and ρij satisfying

ρij =

{

1, if i 6= j ,

0, otherwise.

These matrices are assumed to satisfy this particular form due to the appear-

ance of matrix products with indexes i and j in the formulation of the conditions. How-

ever, let us stress that any dynamic controller in the standard polytopic form can be

easily described according to Assumption 3.1, by using the following equivalence:
(
∑N

i=1 αk (i)

)(
∑N

i=1 αk (i)Mi

)

= 0.5
∑N

i=1
∑N

j=i (1 + ρij )αk (i)αk (j)Mij , with αk ∈ Λ and



Chapter 3. Synthesis of parameter-dependent dynamic output controllers 48

ρij = 1 if i 6= j and ρij = 0 otherwise. To illustrate this, consider a dynamic con-

troller with matrices Ac(αk , τk ), Bc(αk ) and B̄c(αk ) in linear form with N = 2, i.e.

M(αk ) =
∑2

i=1 αk (i)Mi = αk (1)M1 + αk (2)M2, where M represents Ac , Bc and B̄c . In

such a case, the matrices M11, M12 and M22 of Assumption 3.1 are computed from M1

and M2 as: M11 = 2M1, M12 = (M1 + M2) and M22 = 2M2. Indeed, we have that

(αk (1)M1 + αk (2)M2) = 0.5α2
k (1)M11 + αk (1)αk (2)M12 + 0.5α2

k (2)M22

= α2
k (1)M1 + αk (1)α(2)(M1 + M2) + α2

k (2)M2

= (αk (1) + αk (2))
︸ ︷︷ ︸

=1

(αk (1)M1 + αk (2)M2)
(55)

However, as the structure proposed in Assumption 3.1 is more general than the poly-

topic one, the converse is not always possible. Moreover, a similar but simpler devel-

opment could be performed assuming Ac(αk , τk ), Bc(αk ) and B̄c(αk ) with polytopic

description while matrices Cc , Dc and D̄c do not depend on αk , i.e., they would be

time-invariant (see, for instance, (CASTELAN et al., 2010)).

Now, consider the following augmented state vector

ξk =
[

x>
k x>

k–1 · · · x>
k–τ̄ x>

c,k

]>
∈ R

(τ̄+1+σ)n. (56)

Thus, the closed-loop system can be described as:

ξk+1 = A(αk , τk )ξk – B(αk )Ψ(K(αk )ξk ) + Bω(αk )ωk ,

uk = K(αk )ξk ,
(57)

where

A(αk , τk ) = 0.5
N∑

i=1

N∑

j=i

(1 + ρij )αk (i)αk (j)Aij ,τk
,

[

B(αk ) Bω(αk ) K(αk )>
]

=
N∑

i=1

αk (i)

[

Bi Bωi K
>
i

]

,

with

Aij ,τk
=



















Ai ,τk
+ Aj ,τk

+

[

(BiDcj + BjDci )C

0

]
Āi ,τk

+ Āj ,τk

+

[

(BiD̄cj + BjD̄ci )C̄

0

]
[

BiCcj + BjCci

0

]

[

0 In

0 0

] [

0 0

I(τ̄–σ)n 0

] [

0

0

]

BcijC B̄cij C̄ Acij ,τk



















,
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Ai ,τk
=

[

Ai + Γ0i · · · Γ(σ–2)i Γ(σ–1)i

I(σ–1)n 0

]

, Āi ,τk
=

[

Γσi Γ(σ+1)i · · · Γτ̄i

0

]

,

Bi =






Bi

0

Eci




, Bωi =






Bωi

0

0




, Ki =

[

DciC D̄ci C̄ Cc

]

, C = Iσn ⊗ C, C̄ = I(τ̄+1–σ)n ⊗ C,

Γsi =

{

Adi , if s = τk ,

0, otherwise,
ρij =

{

1, if i 6= j ,

0, otherwise.

Note that, in matrices Aij ,τk
, the blocks (2, 1), (2, 2), and (2, 3), with dimensions

(τ̄+ 1 –σ)n×σn, (τ̄+ 1 –σ)n× (τ̄+ 1 –σ)n, and (τ̄+ 1 –σ)n×σn, respectively, disappear

with σ = τ̄+1, i.e., when the controller has full order, xc,k ∈ R
(τ̄+1)n. A similar fact occurs

with blocks (2, 1) of matrices Bi and Bωi and block (1, 2) of Ki , thus matching the fact

that matrices Ā, B̄c , C̄, and D̄c also disappear in this case.

3.2.2 Regional stability analysis

The following lemma can be used to analyze the regional stability of the closed-

loop system (57). The LMI conditions are based on the Lyapunov theory and, more

specifically, on the use of the following candidate Lyapunov function

V (ξk ,αk , τk ) = ξ>k W –1(αk , τk )ξk , W (αk , τk ) =
N∑

i=1

αk (i)Wi ,τk
, (58)

with 0 < Wi ,τk
= W>

i ,τk
∈ R

(τ̄+1+σ)n×(τ̄+1+σ)n, αk ∈ Λ and τk ∈ I[τ, τ̄].

We also use Lemma 2.2 to guarantee the confinement of the trajectories of the

closed-loop system (57) in the level set LV (µ) associated to (58) and Lemma 2.1 to

deal with the saturation effects.

Lema 3.1 Consider the closed-loop system (57) with given controller matrices Acij ,τk
,

Bcij , B̄cij Cci , Dci , D̄ci , and Eci . Suppose that there exist symmetric positive definite

matrices Wi ,τk
∈ R

(τ̄+1+σ)n×(τ̄+1+σ)n, positive definite diagonal matrix S ∈ R
nu×nu ,

matrices Hi ∈ R
nu×(τ̄+1+σ)n and U ∈ R

(τ̄+1+σ)n×(τ̄+1+σ)n, with i ∈ I[1, N] and τk ∈
I[τ, τ̄], and positive scalars δ and µ, such that the following LMIs are feasible.








–Wr ,τ+ 0.5Aij ,τk
U –0.5BiS 0.5(Bωi + Bωj )

? 0.5(Wi ,τk
+ Wj ,τk

) – U – U> 0.5(Hi + Hj )
>

0

? ? –2S 0

? ? ? –Inω









< 0,

r , i ∈ I[1, N]; j ∈ I[i , N]; τ+ ∈ C(τk ); τk ∈ I[τ, τ̄],

(59)
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[

Wi ,τk
– U> – U U>

K
>
i(`) – H>

i(`)

? –µū2
(`)

]

< 0,

` ∈ I[1, m]; i ∈ I[1, N]; τk ∈ I[τ, τ̄],

(60)

and

µ – δ < 0. (61)

Then,

1. for all ωk 6= 0, with ωk ∈ W(δ), and for all ξ0 belonging to the set RE0 = LV (β) ⊆
R0, with β–1 = µ–1 – δ–1, the trajectories of the closed-loop system (57) do not

leave the set RE = LV (µ) ⊆ RA, for all k > 0;

2. for all ωk = 0, the set RE is a region of asymptotic stability for the closed-loop

system (57), for all k > 0.

Proof: First, by supposing the feasibility of (60), multiply its left-hand side by αk (i)

and sum it up to i ∈ I[1, N]. Then, replace H(αk ) by G(αk )U and use the fact that

[W (αk , τk ) – U]>W –1(αk , τk )[W (αk , τk ) – U] ≥ 0 to replace the block (1, 1) by

–U>W –1(αk , τk )U, thus obtaining
[

–U>W –1(αk , τk )U (K(αk )(`)U – G(αk )(`)U)>

? –µū(`)
2

]

< 0. (62)

With the regularity of U, we can pre- and post-multiply (62) by diag{U–>, 1} and

its transpose, respectively, to get
[

–W –1(αk , τk ) (K(αk )(`) – G(αk )(`))
>

? –µū(`)
2

]

< 0. (63)

Finally, applying Schur’s complement and pre- and post-multiplying the resulting

inequality by ξ>k and ξk , we have that

– ξ>k W –1(αk , τk )ξk – ξ>k (K(αk )(`) – G(αk )(`))
>

× (µū(`)
2)–1(K(αk )(`) – G(αk )(`))ξk ≤ 0, (64)

which, from (58) and (19), ensures the inclusion RE = LV (µ) ⊆ S(ū) and, consequently,

Lemma 2.1 applies. Therefore, any trajectory of the closed-loop system (57) starting in

RE remains in S(ū).

Moreover, if (59) is also satisfied, multiply its left-hand side by αk+1(r ), αk (i),

αk (j) and ρij with ρij = 1 if i 6= j and ρij = 0 otherwise, and sum it up to r , i ∈
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I[1, N] and j ∈ I[i , N]. Then, replace H(αk ) by G(αk )U and use again the fact that

–U>W –1(αk , τk )U ≤ W (αk , τk ) – U> – U to obtain








–W (α+, τ+) A(αk , τk )U –B(αk )S Bω(αk )

? –U>W –1(αk , τk )U U>
G(αk )> 0

? ? –2S 0

? ? ? –Inω









< 0, (65)

where α+ represents αk+1. With the regularity of U, we can pre- and post-multiply (65)

by diag{I(τ̄+1+σ)n, U–>, S–>, Inω
} and its transpose, respectively, to get









–W (α+, τ+) A(αk , τk ) –B(αk ) Bω(αk )

? –W –1(αk , τk ) G(αk )>S–1
0

? ? –2S–1
0

? ? ? –Inω









< 0. (66)

Next, applying Schur’s complement, we have that






–W –1(αk , τk ) G(αk )>S–1
0

? –2S–1
0

? ? –Inω




 +






A(αk , τk )>

–B(αk )>

Bω(αk )>




W –1(α+, τ+)

×
[

A(αk , τk ) –B(αk ) Bω(αk )
]

< 0. (67)

Then, pre- and post-multiplying (67) by the augmented vector
[

ξ>k Ψ(K(αk )ξk )> ω>
k

]

and its transpose, respectively, and replacing A(αk , τk )ξk –

B(αk )Ψ(K(αk )ξk ) + Bω(αk )ωk by ξk+1, according to (57), results in

ξ>k+1W –1(α+, τ+)ξk+1 – ξ>k W –1(αk , τk )ξk

– 2Ψ(K(αk )ξk )>S–1(Ψ(K(αk )ξk ) – G(αk )ξk ) – ω>
k ωk < 0. (68)

From (21), we have that ξ>k+1W –1(α+, τ+)ξk+1 – ξ>k W –1(αk , τk )ξk

= V (ξk+1,αk+1, τk+1) – V (ξk ,αk , τk ) = ∆V (ξk ,αk , τk ). By taking this into account and

denoting T = S–1, we conclude that

∆V (ξk ,αk , τk ) – 2Ψ(K(αk )ξk )>T(Ψ(K(αk )ξk ) – G(αk )ξk ) – ω>
k ωk ≤ 0. (69)

By supposing that ξk ∈ S(ū), the generalized sector condition presented in

Lemma 2.1 ensures the non-positivity of 2Ψ(K(αk )ξk )>T(Ψ(K(αk )ξk )–G(αk )ξk ), which

implies ∆V (ξk ,αk , τk ) – ω>
k ωk ≤ 0. Because of the positivity of W (αk , τk ), we can

assume that there exist a sufficiently small ε0 > 0 such that

ε0‖ξk‖2 ≤ V (ξk ,αk , τk ) ≤ ε1‖ξk‖2, with ε–1
1 = min

i∈I[1,N]
λmin

τk∈I[τ,τ̄]
Wi ,τk

> 0. (70)
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Moreover, from (69) with ωk = 0, we have that

∆V (ξk ,αk , τk ) < 2Ψ(K(αk )ξk )>T(αk )(Ψ(K(αk )ξk ) – G(αk )ξk ) ≤ –ε2‖ξk‖2 < 0 (71)

for some ε2 > 0. Therefore, V (ξk ,αk , τk ) given in (58) is a Lyapunov function and

RE = LV (µ) is an estimate of the region of attraction of the origin for the closed-loop

system (57). That concludes the proof.

3.3 MAIN RESULTS

Before presenting the conditions for the synthesis of the dynamic controller

(53), we introduce some matrices that are useful in the development of the results.

Based on the approach proposed by (SCHERER, C. et al., 1997), let us define the real

matrices X , Y ∈ R
(τ̄+1)n×(τ̄+1)n, Z , P ∈ R

σn×(τ̄+1)n, X1, X3, Y1, Y3 ∈ R
n×σn, X2, Y2 ∈

R
(σ–1)n×σn, X4, Y4 ∈ R

(τ̄–σ)n×σn, and Z1, P1 ∈ R
σn×σn with the following structures

X =









X1

X2
0

X3

X4
I(τ̄+1–σ)n









, Y =









Y1

Y2
0

Y3

Y4
I(τ̄+1–σ)n









, Z =
[

Z1 0

]

, and P =
[

P1 0

]

,

such that,

U =

[

X •
Z •

]

, U–1 =

[

Y •
P •

]

and Θ =











Y1

Y2
0 Iσn

Y3

Y4
I(τ̄+1–σ)n 0

P1 0 0











. (72)

Therefore, we have

UΘ =











Iσn 0
X1

X2

0 I(τ̄+1–σ)n
X3

X4

0σn 0 Z1











and Û = Θ
>UΘ =






Y> F>
[

Iσn 0

] X1

X2




, (73)

where, by construction

F =
[

X>
1 X>

2 X>
3 X>

4

]

Y + Z>
1 P1. (74)

Furthermore, using the partitioning

Wi ,j =

[

W1 W2

? W3

]

i ,j

with W1i ,j =

[

W1A W1B

? W1C

]

i ,j

and W2i ,j =

[

W2A

W2B

]

i ,j

,
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we obtain

Ŵi ,j = Θ
>Wi ,jΘ =






Y>W1i ,jY + P>W>
2i ,jY

+Y>W2i ,jP + P>W3i ,jP
Y>

[

W1Ai ,j

W>
1Bi ,j

]

+ P>W>
1Ci ,j

? W1Ai ,j




,

=

[

Ŵ1 Ŵ2

? Ŵ3

]

i ,j

.

(75)

With the aid of these matrices, we can provide a solution to Problem 3.1 through

the next theorem.

Theorem 3.1 Suppose that there exist symmetric positive definite matrices Ŵi ,τk
, pos-

itive definite diagonal matrix S, matrices Âcij ,τk
, B̂cij ,

ˆ̄
Bcij Ĉci , D̂ci ,

ˆ̄
Dci , Êci , X , Y , F

of appropriate dimensions, Ĥ1i ∈ R
nu×σn, Ĥ2i ∈ R

nu×(τ̄+1–σ)n, and Ĥ3i ∈ R
nu×σn, with

i ∈ I[1, N], j ∈ I[i , N] and τk ∈ I[τ, τ̄], and positive scalars δ and µ, such that the

following LMIs are feasible.


















–Ŵr ,τ+ 0.5Π1ij 0.5Π2ij 0.5Π3ij

? 0.5(Ŵi ,τk
+ Ŵj ,τk

) – Û – Û> 0.5Π4ij 0

? ? –2S 0

? ? ? –Inω



















< 0,

r , i ∈ I[1, N]; j ∈ I[i , N]; τ+ ∈ C(τk ); τk ∈ I[τ, τ̄],

(76)
















Ŵi ,τk
– Û> – Û

(

D̂ci(`)C – Ĥ1i(`)

)>

(
ˆ̄
Dci(`)C̄ – Ĥ2i(`)

)>

(

Ĉci(`) – Ĥ3i(`)

)>

? –µū(`)
2
















< 0,

` ∈ I[1, m]; i ∈ I[1, N]; τk ∈ I[τ, τ̄],

(77)

and

µ – δ < 0, (78)
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where

Π1ij =






























[

Y>
1 Y>

2

] (

Ai ,τk
+ Aj ,τk

)

+ 2Y>
3

[

0 In

]

+ B̂cijC

[

Y>
1 Y>

2

] (

Āi ,τk
+ Āj ,τk

)

+Y>
4

[

2I(τ̄–σ)n 0

]

+ ˆ̄
Bcij C̄

Âcij ,τk

[

0 2In

0 0

] [

0 0

2I(τ̄–σ)n 0

]

[

0 2In

0 0

][

X1

X2

]

+

[

0 0

2I(τ̄–σ)n 0

][

X3

X4

]

Ai ,τk
+ Aj ,τk

+

[(

BiD̂cj + BjD̂ci

)

C

0

]
Āi ,τk

+ Āj ,τk

+

[(

Bi
ˆ̄
Dcj + Bj

ˆ̄
Dci

)

C̄

0

]

(

Ai ,τk
+ Aj ,τk

) [

X>
1 X>

2

]>

+
(

Āi ,τk
+ Āj ,τk

) [

X>
3 X>

4

]>

+

[

Bi Ĉcj + Bj Ĉci

0

]































,

Π2i =














–
(

Êci + Êcj

)

0

[

–
(

Bi + Bj

)

S

0

]














, Π3i =














Y>
1

(

Bωi + Bωj

)

0

[

Bωi + Bωj

0

]














, Π4i =














(

Ĥ1i + Ĥ1j

)>

(

Ĥ2i + Ĥ2j

)>

(

Ĥ3i + Ĥ3j

)>














, and

Û =






Y> F>
[

Iσn 0

] X1

X2




.

Then, by choosing non-singular matrices P1 and Z1 such that (74) holds, we have that

the saturating LPV system (47) under the dynamic output-feedback controller (53) with
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matrices defined by

Dci = D̂ci , D̄ci = ˆ̄
Dci ,

Cci =
(

Ĉci – D̂cjC

[

X1

X2

]

– ˆ̄
Dcj C̄

[

X3

X4

])

Z –1
1 ,

Bcij = P–>
1

(

B̂cij – Y>
1

(

BiD̂cj + BjD̂ci

))

, B̄cij = P–>
1

(
ˆ̄
Bcij – Y>

1

(

Bi
ˆ̄
Dcj + Bj

ˆ̄
Dci

))

,

Acij ,τk
= P–>

1

(

Âcij ,τk
–
([

Y>
1 Y>

2

] (

Ai ,τk
+ Aj ,τk

)

+ Y>
3

[

0 In

]

+ B̂cijC

)[

X1

X2

]

(79)

+
([

Y>
1 Y>

2

] (

Āi ,τk
+ Āj ,τk

)

+ Y>
4

[

I(τ̄–σ)n 0

]

+ ˆ̄
Bcij C̄

)[

X3

X4

]

+ Y>
1

(

BiCcj + BjCci

)

Z1

)

Z –1
1 ,

Eci = P–>
1

(

ÊciS
–1 – Y>

1 Bi

)

,

is ISS, verifying:

1. for all ωk 6= 0, with ωk ∈ W(δ), and for all ξ0 belonging to the set RE0 = LV (β) ⊆
R0, with β–1 = µ–1 – δ–1, the trajectories of the closed-loop system (57) do not

leave the set RE = LV (µ) ⊆ RA, for all k > 0;

2. for all ωk = 0, the set RE is a region of asymptotic stability for the closed-loop

system (57), for all k > 0.

Proof: By supposing the feasibility of (76), from block (2, 2), it follows that Û + Û> > 0,

consequently, Û is non-singular. Therefore, from (74), we have X and Y non-singular

and we can write Û as

Û =






Y> F>

Iσn 0
X1

X2




 ,

=









I(τ̄+1)n Y>

0 Iσn 0

















0 F> – Y>
[

X>
1 X>

2 X>
3 X>

4

]>

I(τ̄+1)n

[

X>
1 X>

2 X>
3 X>

4

]>









,

(80)

which allows us to conclude that
(

F –
[

X>
1 X>

2 X>
3 X>

4

]

Y
)

is also non-singular. As

a result, it is always possible to choose non-singular matrices P1 and Z1, such that (74)

is satisfied. This shows that the gains (79) are well-defined.

Moreover, by considering Hi =
[

Ĥ1i Ĥ2i Ĥ3i

]

, the matrices (72)-(75) and the

change of variables Âcij ,τk
, B̂cij ,

ˆ̄
Bcij Ĉci , D̂ci ,

ˆ̄
Dci , Êci according to (79), pre- and post-

multiply (76) by diag{Θ–>,Θ–>, Inu , Inω
} and its transpose, respectively, to obtain (59)



Chapter 3. Synthesis of parameter-dependent dynamic output controllers 56

and, likewise, pre- and post-multiply (77) by diag{Θ–>, 1} and its transpose, respectively,

to obtain (60). Thus, from Theorem 3.1, these two equivalences allow to conclude the

proof.

Remark 3.1 The design of the dynamic controller (53) through Theorem 3.1 imposes

for given X, Y and F, to compute non-singular matrices P1 and Z1 satisfying (74)

or, equivalently, Z>
1 P1 = F –

[

X>
1 X>

2 X>
3 X>

4

]

Y. However, the choice of these

matrices can be performed in different ways, for instance, we can set P1 = φIσn, for any

scalar φ, and compute Z>
1 =

(

F –
[

X>
1 X>

2 X>
3 X>

4

]

Y
)

φ–1, or even use a matrix

decomposition, such as LU and QR to determine them.

Remark 3.2 Equation (57) allows understanding the closed-loop system as equivalent

to an augmented delay-free LPV system controlled by a parameter-dependent state-

feedback controller. Thus, we can impose some structures on K(αk ) such that the

respective control law uses only a subset of the augmented state ξk . For instance, one

may choose Kc1(αk ) =
[

K0(αk ) 0 · · · 0 0

]

, that feeds back only xk , or Kc2(αk ) =
[

K0(αk ) 0 · · · 0 Kτ̄(αk ) 0

]

, where xk and xk–τ̄ are feedback. Such a constraint

on the gain K(αk ) can be done by imposing null matrices on C, C̄, Bc , B̄c , Dc , and D̄c

in the positions corresponding to the delayed states that are not feedback.

Remark 3.3 The numerical complexity of the proposed LMI conditions are related

with their number of scalar variables, K, and their number of rows, R. By denoting

τ̂ = τ̄ – τ + 1, we have that K = (0.5((τ̄ + 1 + σ)n + 1)τ̂ + nu)(τ̄ + 1 + σ)nN + ((2n +

0.5nyN(N + 1))(τ̄+ 1) + (0.5N(N + 1)τ̂+ 1)σn + 2nuN)σn + (nu + nyN(τ̄+ 1))nu + 2 and R =

0.5(2(τ̄+1+σ)n+nu+nω)(τ̂2–(τ̂–1–∆τmax)(τ̂–∆τmax))N2(N+1)+((τ̄+1+σ)n+1)nuN τ̂+1.

Thus, observe that the number of rows is reduced as the maximal variation rate of the

delay, ∆τmax, is reduced.

3.3.1 Optimization design procedures

In this section, some convex optimization procedures are defined to match differ-

ent control objectives for the closed-loop system.

3.3.1.1 Maximization of disturbance tolerance (δ–1)

Suppose that the closed-loop LPV system (47) is in equilibrium, i.e ξ0 = 0, which

implies that δ–1 = µ–1. Thus, the problem of maximization of the disturbance tolerance

can be stated as:

O3 :

{

min µ,

subject to LMIs (76) and (77).
(81)
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3.3.1.2 Maximization of the estimate of the region of attraction RE

Consider that the closed-loop LPV system (47) is not subject to disturbance

input, i.e. ωk = 0, ∀k > 0. To ensure an estimate of the region of attraction for the

system as big as possible, we can minimize a scalar η such that η – tr

(

W –1
i ,τk

)

≥ 0 for

all i ∈ I[1, N] and τk ∈ I[τ, τ̄]. By rewriting W –1
i ,τk

in terms of Ŵ –1
i ,τk

conforming to (75)

and setting xc,k = 0, we have similarly

η – tr

([

Y
[

Iσn 0

]>
]

Ŵ –1
i ,τk

[

Y
[

Iσn 0

]>
]>)

≥ 0, (82)

for all i ∈ I[1, N] and τk ∈ I[τ, τ̄]. With the aid of the Schur complement, the previous

condition can be expressed in the form of LMIs as follows:








ηI(τ̄+1)n Y
[

Iσn 0

]>

? Ŵi ,τk









≥ 0,

i ∈ I[1, N]; τk ∈ I[τ, τ̄].

(83)

Therefore, the optimization procedure can be summarized as:

O4 :

{

min η,

subject to LMIs (76), (77), and (83).
(84)

3.4 NUMERICAL EXAMPLES

In this section, we present two examples to illustrate our proposal and also to

compare it with similar approaches in the literature. In the first example, we focus on the

problem of designing a controller such that the set of admissible disturbance signals

is maximized. In the second one, we exploit the problem of designing a controller that

maximizes the estimate of the region of attraction.

3.4.1 Example 1

Initially, we propose to investigate the scalar system (47) with matrices A =

2(1 + ϑk ), Ad = –0.1(1 + ϑk ), B = 1(1 + ϑk ), Bω = 0.1(1 + ϑk ) and C = 0.1, parameter

varying |ϑk | ≤ 0.1, time-varying delay τk ∈ I[0, 7] and symmetric saturation limit ū = 0.7

to make clear our approach.

Maximization of disturbance tolerance: The objective is to design a dynamic

output feedback controller that maximizes the allowed energy disturbance, δ–1, thus,

ensuring that the trajectories of the closed-loop system remain in the estimated region

of attraction. We have run the optimization procedure O3 given in (81) for maximum
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Next, the time-domain behavior of the closed-loop system is illustrated by a set

of simulations performed with τ̄ = 1, σ = 1 (that is, controller order equal to 1). By using

the optimization procedure O3 given in (81), we get the controller data
[

Ac11,0 Ac12,0 Ac21,0 Ac22,0

Ac11,1 Ac12,1 Ac21,1 Ac22,1

]

=

[

0.0315 0.0378 0.0378 0.0718

0.0124 0.0249 0.0248 0.0264

]

and

[

Bc11 Bc12 Bc21 Bc22

B̄c11 B̄c12 B̄c21 B̄c22

]

=

[

–297.9333 –250.2424 –250.2424 –155.8974

3.7075 1.1032 1.1032 –2.4359

]

that replaced in (54) yields Ac(αk , τk ), Bc0(αk ), and Bc1(αk ), and
[

Cc1

Cc2

]

=

[

–2.5982

–3.6269

]

× 10–4,

[

Dc1 Dc2

D̄c1 D̄c2

]

=

[

–14.5418 –17.5271

0.4183 0.5261

]

,

and Ec1 = Ec2 = –69.7898, that replaced in (54) yields Cc(αk ), Dc0(αk ), Dc1(αk ) and

Ec(αk ). Such a controller allows a maximum energy disturbance of δ–1 = 12.4069, i.e.

‖ωk‖2 = 3.5223. Thus, we generate a set of disturbance signals of structure ωk =
[

ω1 ω2 ω3 01,17

]

, where ω1, ω2, and ω3 were determined from a straight line

in the plan k × ωk that touches the ordinate axis in the points corresponding to 5%

to 70% of the maximum admissible energy, and the abscissa at k = 4, which ensures

a worst case perturbation with energy bounded by
√
δ–1. For each sequence ωk , we

have run ten simulations with αk and τk randomly chosen. The state response in the

augmented space xk × xk–1 × xc,k can be seen in Figure 8, where we can see the

confinement of the trajectories in the estimate of the region of attraction, which is given

by the intersection of the ellipsoidal sets defined from the matrices W –1
1,0, W –1

2,0, W –1
1,1

and W –1
2,1. In addition, we plot in Figure 9 the closed-loop temporal response of some of

these cases. Note that although the control signals assume values close to saturation,

none of them saturates.

The maximization of the energy allowed for disturbance signals can also be

investigated under differently structured gains K(αk ), by following Remark 3.2. The

computed bounds are presented through a radar graphic in Figure 10, in which different

controller orders and maximum delays were also considered. Note that each gain

structure is represented by a line-type: solid lines correspond to the gain that feeds

back the current and all delayed outputs, K(αk ); dashed lines correspond to the gain

that feeds back both the current output and the most delayed output, Kc2(αk ); and dash-

dotted lines correspond to the gain that feeds back only the current output, Kc1(αk ).

The colors of the lines indicate the controller order: blue for σ = 1, red for σ = 2, and

green for σ = 3. And, the axis are associated with the maximum delays in the list

τ̄ ∈ {2, 4, 6}. In all cases, we fixed ∆τmax = 1.

From these experiments, we note that the disturbance tolerance is improved

whenever the gain feeds back more delayed outputs (solid lines), for a same controller
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Figure 8 – Top: Ellipsoidal regions achieved by ξ>k W –1
i ,j ξk , i , j ∈ I[1, 2]. Bottom: Inter-

section of the ellipsoids presented in the top, yielding the estimate of the
region of attraction, RE , of LPV system under exogenous signals ωk .

order. For instance, considering σ = 2 (red lines) and τ̄ = 4 axis, we have improved the

admissible disturbance energy by 11.3% when the outputs yk , . . . , yk–4 are used (solid

red lines, gain K(αk )) instead only yk (dash-dotted lines, gain Kc1(αk )).

Moreover, Figure 10 illustrates that increasing the controller order or the number

of delayed outputs used in the feedback, results in an improvement on the robustness,

allowing higher values of energy disturbance signals. Indeed, our synthesis proposal

improves the robustness of the closed-loop system while ensures its local input-to-state

stability.

3.4.2 Example 2

Consider the system (4) with null input disturbance, matrices

A1 =

[

–1.04 0.52

0.21 0.31

]

, A2 =

[

–1.08 0.48

0.19 0.29

]

, Ad1 =

[

0.10 –0.08

0 0.21

]

,

Ad2 =

[

0.10 –0.12

0 0.19

]

, B1 =

[

2.02

1.01

]

, B2 =

[

1.98

0.99

]

, C =
[

–0.5 1
]

, (85)

symmetric saturation limit ū = 10, τ = 1, and τ̄ ∈ I[1, 6].

Maximization of the estimate of the region of attraction RE : We have estimated

the regions of attraction, by using the optimization procedure O4 given in (84), for

maximum delay values τ̄ ∈ I[1, 6] and order of the dynamic output-feedback controller
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Table 2 – Measures of the axes of the ellipses (cuts) and the radius of the circles (µmax) of the estimates of the regions of attraction.

τ̄
(SONG, G.; WANG, Z., 2013) Theorem 3.1 ( Sxk

Sµmax
– 1
)

× 100%
µmax xk xk–1 xk–2 xk–3 xk–4 xk–5 xk–6

1 0.9672
a 1.2792 1.3010

- - - - - 64.9
b 1.2062 1.2836

2 0.7946
a 1.0893 1.1712 1.3515

- - - - 78.9
b 1.0375 1.1320 1.3366

3 0.6794
a 0.9645 1.0750 1.1541 1.3131

- - - 95.4
b 0.9353 1.0339 1.1297 1.2978

4 0.5613
a 0.9210 1.0469 1.1096 1.1661 1.3598

- - 155.2
b 0.8732 1.0055 1.0649 1.1442 1.3369

5 0.5077
a 0.8996 1.0032 1.0700 1.1074 1.1848 1.3754

- 194.0
b 0.8424 0.9799 1.0230 1.0607 1.1447 1.3293

6 0.4714
a 0.8856 0.9631 1.0485 1.0777 1.1160 1.1894 1.3713

225.4
b 0.8165 0.9586 1.0008 1.0246 1.0726 1.1542 1.3408
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conditions in (SONG, G.; WANG, Z., 2013) do not apply in such a case.

3.5 CONCLUDING REMARKS

This chapter has investigated the regional stabilization in the input-to-state sense

of discrete-time LPV systems with time-varying delays subject to saturating actua-

tors and exogenous signals. The main contributions can be listed as i) convex delay-

dependent conditions to design parameter-dependent dynamic output-feedback con-

trollers with anti-windup action; ii) the proposed procedure allows setting the dynamic

controller order as an integer multiple of the original system’s one; iii) the proposed

controller enables the user feeds back not only the current output but also the delayed

ones; iv) the control design is performed by taking into account the maximum variation

of the delay between two consecutive instants, yielding less conservative conditions;

v) the provided methodology allows the design considering optimization problems aim-

ing at increasing the energy bound of the admissible disturbances and the size of the

estimate of attraction region.

Through numerical examples, the efficiency of the design method has been

illustrated. The novelty of choosing the controller order, for example, allowed achieving

better estimates of the region of attraction and higher tolerances to disturbances signals.

Similar behavior was also verified whenever the delayed outputs were included in the

feedback control action. As in the last chapter, it was also possible to observe a certain

conservatism in the simulation results, since even for disturbance signals with the

maximum allowed energy, the state trajectories did not reach the edges of the estimate

of the region of attraction. Also, in the absence of disturbance signals, the control

signal did not saturate for initial conditions in the edges of the estimate of the region of

attraction. However, it is worth emphasizing again that the conditions hold for any αk

and τk sequences, and finding the worst ones to be used in the simulations is not that

simple.
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4 EVENT-TRIGGERED DYNAMIC OUTPUT-FEEDBACK CONTROL CO-DESIGN

In this chapter, an event-triggered dynamic output-feedback control design method-

ology is proposed for discrete-time LPV systems subject to saturating actuators inserted

into a communication network with limited bandwidth. Two independent event triggering

schemes are designed to determine whether the current signals should be transmitted

a) from the sensor to the controller and b) from the controller to the actuator. As a

result, the communication resources can be significantly saved. Both emulation-based

approach and co-design of the event-triggering parameters and the controller matrices

are addressed.

Based on the Lyapunov stability theory, the proposed conditions stated in the

form of linear matrix inequalities (LMIs) ensure the regional asymptotic stability of the

closed-loop system for every initial condition belonging to the estimate of the region

of attraction. Some optimization procedures are also formulated to effectively reduce

the update rate of the output and control signals through communication channels,

considering or not a given region of admissible initial conditions. Finally, numerical

examples are employed to testify to the validity of the proposal. The results presented

here are based on the work (DE SOUZA et al., 2020b). Also, similar approaches can

be found in (DE SOUZA et al., 2020c, 2020a, 2020d).

4.1 PROBLEM STATEMENT

Consider the class of discrete-time LPV systems subject to saturating actuators

inserted into a communication network represented by

xk+1 = A(αk )xk + B(αk )sat(ûk ),

yk = Cxk ,
(86)

where xk ∈ R
n is the state vector, ûk ∈ R

nu is the most recent transmitted value of

the control input uk , yk ∈ R
np is the measured output, and sat(uk ) is the standard

symmetric saturation function defined as

sat(uk (`)) = sign(uk (`)) min(|uk (`)|, ū(`)), (87)

with ū(`) > 0, ` ∈ I[1, nu], denoting the symmetric level relative to the `th control input.

The vector of time-varying parameters αk ∈ R
N , which is assumed measured and

available on-line (BRIAT, 2015), lies in the unitary simplex given by

Λ ,






αk ∈ R

N :
N∑

i=1

αk (i) = 1, αk (i) ≥ 0, i ∈ I[1, N]






. (88)
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Thus, the parameter-dependent matrices A(αk ) ∈ R
n×n, B(αk ) ∈ R

n×nu can be written

as a convex combination of N known vertices according to

[

A(αk ) B(αk )
]

=
N∑

i=1

αk (i)

[

Ai Bi

]

. (89)

To regionally stabilize system (86), we propose the following event-triggered

parameter-dependent dynamic output-feedback controller with anti-windup action:

xc,k+1 = Ac(αk )xc,k + Bc(αk )ŷk – Ec(αk )Ψ(ûk ),

uk = Cc(αk )xc,k + Dc(αk )ŷk ,
(90)

where xc,k ∈ R
n is the controller state vector, ŷk ∈ R

ny is the most recent transmitted

value of the measured output yk and Ψ(ûk ) is the dead-zone nonlinearity applied over

the transmitted control signal ûk , i.e. Ψ(ûk ) = ûk – sat(ûk ). The controller matrices

Ac(αk ) ∈ R
n×n, Bc(αk ) ∈ R

n×ny , Ec(αk ) ∈ R
n×nu , Cc(αk ) ∈ R

nu×n, and Dc(αk ) ∈
R

nu×ny , in the same way as those of the system, are represented in the polytopic form

according to the following assumption:

Assumption 4.1 The controller matrices (90) are supposed to have the following struc-

ture:

[

Ac(αk ) Bc(αk )
]

= 0.5
N∑

i=1

N∑

j=i

(1 + ρij )αk (i)αk (j)

[

Acij Bcij

]

,

[

Cc(αk ) Dc(αk )
]

=
N∑

i=1

αk (i)

[

Cci Dci

]

, Ec(αk )=
N∑

i=1

αk (i)Eci ,

with αk ∈ Λ and ρij satisfying

ρij =

{

1, if i 6= j ,

0, otherwise.

By admitting a communication network with limited bandwidth, two independent

ETMs are introduced on the sensor-to-controller and controller-to-actuator channels to

reduce the transmission activity while preserving the stability and certain performance

index for the closed-loop system, as shown in Figure 13. Periodically, they make the

decision, based on event-triggering rules, whether the current output and the current

control input should be transmitted through the network or not. Note that, in this case, we

are assuming a perfect matching between the scheduling parameters of the controller

and plant.

Output-based ETM: The decision for output updates is made according to the following

rule:

ŷk :=

{

yk , if ‖ŷk–1 – yk‖2
Q∆y

> ‖yk‖2
Qy

,

ŷk–1, otherwise,
(91)
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in the triggering function. The idea behind this more elaborated triggering function is to

use more information about the system’s behavior to decide whether or not to transmit

the signals. By using the same idea, (DE SOUZA et al., 2020d) expands the results for

the case with two ETMs, as in this chapter, however, due to the increased complexity

of the problem addressed, only the emulation-based approach is developed.

Thus, the problems we intend to solve in this chapter can be stated as follows.

Problem 4.1 (Emulation problem) Given the dynamic output feedback controller (90),

which regionally stabilizes the saturating LPV system (86) in the absence of communi-

cation networks, design the two independent event-triggering conditions (91) and (92)

to reduce the number of data transmissions on the sensor-to-controller and controller-to-

actuator channels, respectively, while preserving the stability of the closed-loop system.

Problem 4.2 (Co-design problem) For the saturating LPV system (86), co-design the

parameter-dependent dynamic output-feedback controller (90) and the two independent

event-triggering conditions (91) and (92) ensuring the regional asymptotic stability of

the closed-loop system, while reducing the number of data transmissions on the sensor-

to-controller and controller-to-actuator channels.

An implicit objective in solving problems 4.1 and 4.2 is to characterize an esti-

mate of the basin of attraction of the origin of the closed-loop system RE ⊆ RA.

4.2 PRELIMINARY RESULTS

The saturating LPV system (86) in closed-loop with the dynamic output-feedback

controller (90) can be represented by the following model:

ζk+1 = A(αk )ζk – B(αk )Ψ(ûk ) + Ey (αk )ey ,k + Eu(αk )eu,k ,

uk = K(αk )ζk + Dc(αk )ey ,k ,

yk = Cζk , (93)

where ζk =
[

x>
k x>

c,k

]>
∈ R

2n is the augmented state, ey ,k ∈ R
ny is the error between

the latest transmission ŷk and the latest sampling yk , i.e. ey ,k = ŷk – yk , and eu,k ∈ R
nu

is the error between the latest transmission ûk and the latest sampling uk , i.e. eu,k =

ûk – uk . The parameter-dependent matrices A(αk ), B(αk ), Ey (αk ), Eu(αk ), and K(αk )

verify from Assumption 4.1:

[

A(αk ) Ey (αk )
]

=0.5
N∑

i=1

N∑

j=i

(1 + ρij )αk (i)αk (j)

[

Aij Eyij

]

,

[

B(αk ) Eu(αk ) K(αk )>
]

=
N∑

i=1

αk (i)

[

Bi Eui K
>
i

]

,
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with αk ∈ Λ, ρij = 1 if i 6= j and ρij = 0 otherwise, and

Aij =

[

Ai + Aj + (BiDcj + BjDci )C BiCcj + BjCci

BcijC Acij

]

, Bi =

[

Bi

Eci

]

, Eui =

[

Bi

0

]

,

Eyij =

[

BiDcj + BjDci

Bcij

]

, Ki =
[

DciC Cci

]

, and C =
[

C 0

]

.

Note that if yk is updated at instant k , then from (91) it follows that ey ,k =

ŷk – yk = yk – yk = 0, and if yk is not updated at instant k , then from (91) we have that

ey ,k = ŷk – yk = ŷk–1 – yk . In other words, the following inequality is always satisfied:

‖ey ,k‖2
Q∆y

≤ ‖yk‖2
Qy

. (94)

Similarly, if uk is updated at instant k , then from (92) it follows that eu,k = ûk –

uk = uk – uk = 0, and if uk is not updated at instant k , then from (92) we have that

eu,k = ûk – uk = ûk–1 – uk . Consequently, the following condition always holds

‖eu,k‖2
Q∆u

≤ ‖uk‖2
Qu

. (95)

To investigate the regional asymptotic stability of the closed-loop system (93),

we use the following candidate Lyapunov function

V (ζk ,αk ) = ζ>k W –1(αk )ζk , W (αk ) =
N∑

i=1

αk (i)Wi , (96)

with 0 < Wi = W>
i ∈ R

2n×2n and αk ∈ Λ. In this case, the level set associated to

V (ζk ,αk ) is defined as RE = LV (1) = {ζk ∈ R
2n : V (ζk ,αk ) ≤ 1} and its calculation is

done in a similar way to the one presented in Lemma 2.2, that is

RE = LV (1) =
⋂

∀αk∈Λ
E(W (αk )–1, 1) =

⋂

i∈I[1,N]

E(W –1
i , 1), (97)

where E(W (αk )–1, 1) denotes the ellipsoidal sets represented by

E(W –1
i , 1) =

{

ζk ∈ R
2n : ζ>k W –1

i ζk ≤ 1, i ∈ I[1, N]
}

. (98)

In addition, to deal with the saturation effects, we use the following lemma directly

derived from (TARBOURIECH et al., 2011, Lemma 1.6) by considering uk given in (90)

and νk = ûk – G(αk )ζk .

Lema 4.1 Consider uk given by (90), ū ∈ R
nu , ū > 0, and a matrix G(αk ) =

∑N
i=1 αk (i)Gi ,

Gi ∈ R
nu×2n, I[1, N], αk ∈ Λ, such that

S(ū) ,
{

xk ∈ R
2n : |G(`)(αk )ζk | ≤ ū(`), ` ∈ I[1, nu]

}

. (99)

If xk ∈ S(ū), then for any diagonal positive definite matrix T ∈ R
nu×nu , αk ∈ Λ, the

following inequality is verified

Ψ(ûk )>T(Ψ(ûk ) – (K(αk ) – G(αk ))ζk – Dc(αk )ey ,k – eu,k ) ≤ 0. (100)
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4.3 EMULATION-BASED APPROACH

In this section, we provide a solution to Problem 4.1. In this case, we assume

that the dynamic output-feedback controller (90), which can regionally stabilize the

system (86) in the absence of communication networks, is available and we design the

parameters of the event-triggering rules (91) and (92) that minimize the transmission

activity on the communication channels.

Theorem 4.1 Consider the closed-loop system (93) with given controller matrices Acij ,

Bcij , Cci , Dci , and Eci . Suppose that there exist symmetric positive definite matrices

Wi ∈ R
2n×2n, Q∆u, Q̂u ∈ R

nu×nu , Q∆y , Q̂y ∈ R
ny×ny , a positive definite diagonal matrix

S ∈ R
nu×nu , matrices Hi ∈ R

nu×2n and U ∈ R
2n×2n, with i ∈ I[1, N] and j ∈ I[i , N],

such that the following LMIs are feasible.





















U + U>
? ? ? ? ? ?

–0.5(Wi + Wj )

0 Q∆u ? ? ? ? ?

0 0 Q∆y ? ? ? ?

0.5(Hi + Hj –Inu –0.5(Dci + Dcj ) 2S ? ? ?
–KiU – KjU)

0.5AijU 0.5(Euj + Euj ) 0.5Eyij –0.5(Bi + Bj )S P̂r ? ?

0.5(Ki + Kj )U 0 0.5(Dci + Dcj ) 0 0 Q̂u ?

CU 0 0 0 0 0 Q̂y






















> 0,

r , i ∈ I[1, N], j ∈ I[i , N], (101)

[

U + U> – Wi ?

Hi(`) ū2
(`)

]

> 0,

i ∈ I[1, N], ` ∈ I[1, nu].

(102)

Then, the closed-loop system (93) subject to the ETMs (91) and (92) with matrices Q∆u,

Qu = Q̂–1
u , Q∆y , and Qy = Q̂–1

y is regionally asymptotically stable. Moreover, the region

RE = LV (1) ⊆ RA, computed in (97)-(98), is an estimate of the region of attraction of

the origin for the closed-loop system.

Proof: First, by supposing the feasibility of (102), multiply its left-hand side by αk (i) and

sum it up to i ∈ I[1, N]. Then, replace H(αk ) by G(αk )U, use the fact that [W (αk ) –

U]>W –1(αk )[W (αk ) – U] ≥ 0 to replace block (1,1) by U>W –1(αk )U, thus obtaining
[

U>W –1(αk )U ?

G(αk )(`)U ū2
(`)

]

> 0. (103)
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With the regularity of U, we can pre- and post-multiply (103) by diag{U–>, 1} and

its transpose, respectively, to get
[

W –1(αk ) ?

G(αk )(`) ū2
(`)

]

> 0. (104)

Finally, applying Schur’s complement and pre- and post-multiplying the resulting

inequality by ζ>k and ζk , respectively, we have that

–ζ>k W (αk )–1ζk + ζ>k G(αk )>(`)(ū
2
(`))

–1
G(αk )(`)ζk ≤ 0, (105)

which, from (96) and (99), ensures the inclusion RE = LV (1) ⊆ S(ū) and, consequently,

Lemma 4.1 applies. Therefore, any trajectory of the closed-loop system (93) starting in

RE remains in S(ū).

Moreover, if (101) is also satisfied, multiply its left-hand side by αk+1(r ), αk (i), and

αk (j), and sum it up to r , i ∈ I[1, N] and j ∈ I[i , N]. Then, replace H(αk ), Q̂y , and Q̂u

by G(αk )U, Q–1
y , and Q–1

u , respectively, and use again the fact that U> + U – W (αk ) ≤
U>W –1(αk )U to obtain
















U>W –1(αk )U ? ? ? ? ? ?

0 Q∆u ? ? ? ? ?

0 0 Q∆y ? ? ? ?

–(K(αk ) – G(αk ))U –Inu –Dc(αk ) 2S ? ? ?

A(αk )U Eu(αk ) Ey (αk ) –B(αk )S W (αk+1) ? ?

K(αk )U 0 Dc(αk ) 0 0 Q–1
u ?

CU 0 0 0 0 0 Q–1
y
















> 0.

(106)

With the regularity of U, we can pre- and post-multiply (106) by

diag{U–>, Inu , Iny , S–1, I2n, Inu , Iny } and its transpose, respectively, to get
















W –1(αk ) ? ? ? ? ? ?

0 Q∆u ? ? ? ? ?

0 0 Q∆y ? ? ? ?

–S–1(K(αk ) – G(αk )) –S–1 –S–1Dc(αk ) 2S–1
? ? ?

A(αk ) Eu(αk ) Ey (αk ) –B(αk ) W (αk+1) ? ?

K(αk ) 0 Dc(αk ) 0 0 Q–1
u ?

C 0 0 0 0 0 Q–1
y
















> 0.

(107)
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Next, applying Schur’s complement, we have that











W –1(αk ) + C
>QyC

? ? ?
+K(αk )>QuK(αk )

0 Q∆u ? ?

0 0 Q∆y ?

–S–1(K(αk ) – G(αk )) –S–1 –S–1Dc(αk ) 2S–1











+









A(αk )>

Eu(αk )>

Ey (αk )>

–B(αk )>









W –1(αk+1)

×
[

A(αk ) Eu(αk ) Ey (αk ) –B(αk )
]

> 0. (108)

Then, pre- and post-multiplying (108) by the augmented vector
[

ζ>k e>u,k e>y ,k Ψ(ûk )>
]

and its transpose, respectively, and replacing A(αk )xk +

Eu(αk )eu,k + Ey (αk )ey ,k – B(αk )Ψ(ûk ) by ζk+1 according to (93), results in

ζ>k+1W –1(αk+1)ζk+1 – ζ>k W –1(αk )ζk – 2Ψ(ûk )>T(Ψ(ûk ) – (K(αk ) – G(αk ))ζk

– Dc(αk )ey ,k – eu,k ) – eT
u,kQ∆ueu,k + uT

k Quuk – eT
y ,kQ∆yey ,k + yT

k Qyyk ≤ 0. (109)

From (96), we have that ζ>k+1W –1(αk+1)ζk+1 – ζ>k W –1(αk )ζk = V (ζk+1,αk+1) –

V (ζk ,αk ) = ∆V (ζk ,αk ). By taking this into account and denoting S–1 = T, we conclude

that

∆V (ζk ,αk ) < 2Ψ(ûk )>T(Ψ(ûk ) – (K(αk ) – G(αk ))xk – Dc(αk )ey ,k – eu,k )

< e>u,kQ∆ueu,k – u>
k Quuk + e>y ,kQ∆yey ,k – y>

k Qyyk ≤ 0. (110)

By supposing that ζk ∈ S(ū), the generalized sector condition presented in

Lemma 4.1 ensures the non-positivity of 2Ψ(ûk )>T(Ψ(ûk )–(K(αk )–G(αk ))ζk–Dc(αk )ey ,k

–eu,k ). Also, by inequalities (94) and (95), we have that e>u,kQ∆ueu,k – u>
k Quuk ≤ 0 and

e>y ,kQ∆yey ,k – y>
k Qyyk ≤ 0 are always satisfied, respectively. Because of the positivity

of W (αk ), we can assume that there exist a sufficiently small ε0 > 0 such that

ε0‖ζk‖2 ≤ V (ζk ,αk ) ≤ ε1‖ζk‖2, with ε–1
1 = min

i∈I[1,N]
λminWi > 0. (111)

Moreover, we have that

∆V (ζk ,αk ) ≤ –ε2‖ζk‖2 < 0. (112)

for some ε2 > 0. Therefore, V (ζk ,αk ) given in (96) is a Lyapunov function and RE =

LV (1) is an estimate of the region of attraction of the origin for the closed-loop system

(93).

Remark 4.1 Theorem 4.1 can be adapted to treat particular cases usually found in

the literature, in which there is an event generator in only one of the communication

channels (see, for example, (ZHANG, X. M.; HAN, 2014; DE SOUZA et al., 2020c,

2020d; DING et al., 2020)). To consider an event generator only in the channel between
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the sensor and the controller, it is necessary to delete the second and the sixth lines

and columns of the LMI (101). On the other hand, to admit an event generator only in

the channel between the controller and the actuator, we have to delete the third and

the seventh lines and columns of the LMI (101).

4.4 CO-DESIGN APPROACH

In the previous section, the dynamic output-feedback controller is supposed to

be known and capable to regionally stabilize the system (86) without communication

networks. Therefore, only the ETMs are designed by Theorem 4.1. The disadvantage

is that the control performance of the closed-loop system may be constrained by the

previously selected controller. To overcome such a restriction, a co-design of the dy-

namic controller and the ETMs is proposed in this section, thus providing a solution to

Problem 4.2.

Let us start by introducing some matrices useful to the developments. Thus, as

in the previous chapter, we use matrices X , Y , P, and Z ∈ R
n×n to define

U =

[

X •
Z •

]

, U–1 =

[

Y •
P •

]

, Θ =

[

Y In

P 0

]

, (113)

which yield

UΘ =

[

In X

0 Z

]

and Û = Θ>UΘ =

[

Y> F>

In X

]

, (114)

where, by construction, we have

F> = Y>X + P>Z . (115)

By partitioning matrix Wi =

[

W11i ?

W21i W22i

]

, one obtains:

Ŵi = Θ>WiΘ =

[

Ŵ11i ?

Ŵ21i Ŵ22i

]

, (116)

with Ŵ11i = Y>W11iY + P>W21iY + Y>W>
21iP + P>W22iP, Ŵ21i = W>

11iY + W12iP,

and Ŵ22i = W11i .

With the aid of these matrices, we can provide a solution to Problem 4.2 through

the next theorem.

Theorem 4.2 Consider there exist symmetric positive definite matrices Ŵi ∈ R
2n×2n,

Q∆u, Q̂u ∈ R
nu×nu , Q∆y , Q̂y ∈ R

ny×p, a positive definite diagonal matrix S ∈ R
nu×nu ,

and matrices Âcij , B̂cij , Ĉci , D̂ci , Êci , X , Y and M of appropriate dimensions, with
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i ∈ I[1, N] and j ∈ I[i , N], such that the following LMIs are feasible.



















Û + Û>
? ? ? ? ? ?

–0.5(Ŵi + Ŵj )

0 Q∆u ? ? ? ? ?

0 0 Q∆y ? ? ? ?

0.5(Hi + Hj – Π1ij ) –Inu –0.5(D̂ci + D̂cj ) 2S ? ? ?

0.5Π2ij 0.5Π3ij 0.5Π4ij 0.5Π5ij Ŵr ? ?

0.5Π1ij 0 0.5(D̂ci + D̂cj ) 0 0 Q̂u ?
[

C CX
]

0 0 0 0 0 Q̂y




















> 0,

r , i ∈ I[1, N], j ∈ I[i , N]

(117)

[

Û + Û> – Ŵi ?

Hi(`) ū2
(`)

]

> 0,

i ∈ I[1, N], ` ∈ I[1, nu],

(118)

with

Π1ij =
[

(D̂ci + D̂cj )C Ĉci + Ĉcj

]

,

Π2ij =

[

Y>(Ai + Aj ) + B̂cijC Âcij

Ai + Aj + (Bi D̂cj + Bj D̂cj )C (Ai + Aj )X + (Bi Ĉcj + Bj Ĉci )

]

,

Π3ij =

[

Y>(Bi + Bj )

Bi + Bj

]

, Π4ij =

[

B̂cij

Bi D̂cj + Bj D̂ci

]

, Π5ij =

[

–(Êci + Êcj )

–(Bj + Bi )S

]

, Û =

[

Y> F>

In X

]

.

Then, by choosing non-singular matrices P and Z such that (115) holds, we have that

the saturating LPV system (86) under the dynamic output-feedback compensator (90)

with matrices defined by

Dci = D̂ci

Cci = (Ĉci – DciCX )Z –1,

Bcij = (P–1)>(B̂cij – Y>(BiDcj + BjDci ),

Acij = (P–1)>(Âcij – Y>(Ai + Aj + (BiDcj + BjDci )C)X – P>BcijCX

–Y>(BiCcj + BjCci )Z )Z –1.

Eci = (P–1)>(ÊciS
–1 – Y>Bi )

(119)

subject to the ETMs (91) and (92) with matrices Q∆u, Qu = Q̂–1
u , Q∆y , and Qy = Q̂–1

y is

regionally asymptotically stable. Moreover, the region RE , computed in (97)-(98), is an

estimate of the region of attraction of the origin for the closed-loop system.

Proof: By supposing the feasibility of (117), from block (1,1), we have that Û + Û> > 0,

and consequently, Û is non-singular. Therefore, from (114), we have X and Y non-

singular and we can write Û as
[

Y> F>

In X

]

=

[

In Y>

0 In

][

0 F> – Y T X

In X

]

, (120)
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which allows us to conclude that (F> – Y>X ) is also non-singular. As a result, it is

always possible to choose non-singular matrices P and Z , such that (115) is satisfied.

This shows that the gains (119) are well-defined.

Moreover, by considering the matrices (113)-(116) and the change of variables

Âcij , B̂cij , Ĉi , D̂i , and Êci according to (119), pre- and post-multiply (117) by

diag{Θ–>, Inu , Iny ,Θ–>, Inu , Iny } and its transpose, respectively, to obtain (101) and,

likewise, pre- and post-multiply (118) by diag{Θ–>, 1} and its transpose, respectively, to

obtain (102). Thus, from Theorem 4.1, these two equivalences allow to conclude the

proof.

Note that the Remark 3.1 also applies to Theorem 4.2.

Remark 4.2 The LMI-conditions proposed in Theorems 4.1 and 4.2 also allow to have

triggering parameters dependent on αk . In this case, it is necessary to replace Q∆u,

Q∆y , Q̂u and Q̂y by Q∆ui , Q∆yi , Q̂ui , and Q̂yi , respectively.

Remark 4.3 Theorems 4.1 and 4.2 can be simplified to deal with LTI and non-saturated

systems. In the LTI case, it is required to set r = i = j = 1, which results in fixed matrices.

Notice that, the dynamic and input matrices of the controller, Ac and Bc , are retrieved

by setting Ac11 = 0.5Ac11 and Bc = 0.5Bc11, according to Assumption 4.1, with Ac11

and Bc11 calculated as in (119). In the non-saturated case, the third line and column of

the LMIs (101) and (117) must be deleted, and the LMIs (102) and (118) discarded.

4.4.1 Optimization design procedures

In this section, some optimization procedures are formulated to improve the

closed-loop operation.

4.4.1.1 Minimization of the update rate

The main objective here is to reduce the number of data transmissions on the

sensor-to-controller and the controller-to-actuator channels. Let us remark that if
(

ŷk–1 – yk

)>(
ŷk–1 – yk

)

λmax(Q∆y ) – y>
k ykλmin(Qy ) ≤0, (121a)

(

ûk–1 – uk

)>(
ûk–1 – uk

)

λmax(Q∆u) – u>
k ukλmin(Qy ) ≤0, (121b)

then, the triggering conditions (91) and (92) hold, respectively. Note that, in the worst

case, that is, when the conditions become equalities, one gets:
(

ŷk–1 – yk

)> (
ŷk–1 – yk

)

λmax(Q∆y )

y>
k ykλmin(Qy )

≤ 1 and (122a)

(

ŷk–1 – yk

)> (
ûk–1 – uk

)

λmax(Q∆y )

u>
k ukλmin(Qu)

≤ 1, (122b)
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respectively. Since λmin(Qy )–1 = λmax(Q–1
y ) and λmin(Qu)–1 = λmax(Q–1

u ), we can

rewrite (122a) and (122b) as
(

ŷk–1 – yk

)> (
ŷk–1 – yk

)

y>
k yk

γ(Q∆y , Q–1
y ) ≤ 1 and (123a)

(

ûk–1 – uk

)> (
ûk–1 – uk

)

u>
k uk

γ(Q∆u, Q–1
u ) ≤ 1, (123b)

respectively, with γ(Q∆y , Q–1
y ) = λmax(Q∆y )λmax(Q–1

y ) and γ(Q∆u, Q–1
u ) = λmax(Q∆u)

λmax(Q–1
u ). Thus, the idea is to minimize γ(Q∆y , Q̂y ) and γ(Q∆u, Q̂u) with Q̂y = Q–1

y

and Q̂u = Q–1
u , respectively, so that the minimum time required for the expressions

on the left hand-side of (122a) and (122b) to evolve from 0 to 1 is enlarged. However,

γ(Q∆y , Q̂y ), and γ(Q∆u, Q̂u) are not convex functions and, therefore, it can be difficult

to optimize them. Nevertheless, one can observe that the event-triggering functions

depend on all the eigenvalues of Q∆y , Q̂y , Q∆y and Q̂y . So, to formulate a convex

objective function, we can minimize the sum of all these eigenvalues, which leads to

the following convex optimization procedure:

O5 :







min tr(Q∆y + Q̂y ) + tr(Q∆u + Q̂u),

subject to







(101) and (102),

or

(117) and (118),

(124)

Therefore, using the optimization procedure O5, the transmission activity is indi-

rectly reduced.

4.4.1.2 Minimization of the update rate for a given region of admissible initial condi-

tions X0:

Another objective of optimization consists in considering a given region of ad-

missible initial states X0 for which we can reduce the update rate on the sensor-to-

controller and the controller-to-sensor channels. In this case, we should ensure that X0

is included in the region of attraction of the closed-loop systems, i.e. X0 ⊆ RE ⊆ RA. If

X0 is specified as an ellipsoid E(R, 1), defined similarly to (98), then we have that
[

R ?

I2n Wi

]

> 0, or equivalently (125a)

[

R ?

Θ> Ŵi

]

> 0, (125b)

with Θ given in (113), for all i ∈ I[1, N]. However, the LMI (125b) is non-convex due to

the presence of the matrix P in Θ. To make it convex, we can consider the partitioning
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R =

[

R11 ?

R21 R22

]

and xc,0 = 0, which allows us to dismiss the rows concerning the

position of P in Θ. With that, the inequality (125b) can be rewritten as






R11 ?

Y

In
Ŵi




 > 0, (126)

for all i ∈ I[1, N]. Thus, we have

O6 :







min tr(Q∆y + Q̂y ) + tr(Q∆u + Q̂u),

subject to







(101), (102) and (125a),

or

(117), (118) and (126),

(127)

with Q̂y = Q–1
y and Q̂u = Q–1

u .

Although both optimization procedures aim at minimizing the data transmission,

the optimization procedure O6 differs from the optimization procedure O5 by the inclu-

sion of the restrictions (125a) and (126) to take into account a specific region of initial

conditions. It is important to point out that, the use of the optimization procedure O6

leads to deal with a classical trade-off between the size of the estimate of the basin of

attraction and the transmission saving. Indeed, it results that the smaller the estimate

of the basin of attraction, the greater the transmission saving.

4.5 NUMERICAL EXAMPLES

In this section, we present three examples to illustrate our proposal and also to

compare it with other results in the literature. Both the LPV and the LTI cases, with and

without saturating actuators, are addressed.

4.5.1 Example 1

Consider the inverted pendulum shown in Figure 14. This system has been

extensively investigated in the literature (see, for example, (WU, W. et al., 2014; GROFF

et al., 2016; DING et al., 2020)), but without taking into account possible variations in

the system parameters. Let us then consider such variations by adding the parameter-

varying αk to the system model, as follows

xk+1 =

[

1.0018 0.01

0.04αk + 0.36 1.0018

]

xk +

[

–0.001

0.025αk – 0.184

]

sat(ûk ),

yk =
[

1 0
]

xk

(128)
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tively. Notice that, as required, RE contains X0, i.e. X0 ⊂ RE . In particular, for the con-

vergent trajectory (––) starting in the initial condition x0 =
[

–0.1480 –0.4735 0 0
]>

marked with ‘•’, we plot in the Figure 16 the states, the control input, the events of

the sensor and the controller, and the parameter-varying as a function of the sampling

instants. In the inter-events graph, the events that occur asynchronously in the sensor

and in the controller are represented by ‘◦’ and ‘◦’, respectively, and synchronous by

‘◦’. Thus, we can see the asymptotic stability of the system despite the saturation in

the first instant of the simulation. For this case, the update rate between the sensor

and controller and between the controller and actuator was 50.33% and 43%, respec-

tively, thus, saving a significant amount of samples to be transmitted. However, the

inclusion of X0 yielded an ETM behavior that appears to have some periodicity despite

the asynchronous updates of sensor and control ETMs. Moreover, the asynchronous

ETMs save transmissions because only one ETM is active over the network.

Figure 15 – RE and X0 = E(R, 1) with R11 = diag{76, 2}.

Then, for the second case, we carried out the co-design for a region of admissible

initial conditions less stringent, given by X0 = E(R, 1) with R11 = diag{26.60, 0.70}

derived from the partitioning of R. For this case, we obtained the ETM matrices Q∆y =

29.5663, Qy = 0.0881, Q∆u = 5.8971, and Qu = 0.0221 and the dynamic controller
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there was a slightly worse performance than the more restrictive (on the plane defined

by the plant states) X0 specification. The ETMs seem to present a more pronounced

periodic behavior in this case, which may be connected to the higher transmission rate

achieved due to the inclusion of a larger region of initial condition considered here

(with respect to that in the previous case). Another effect of including a larger X0 is the

reduction on the asynchronous transmission, supporting the hypothesis of the bigger

the region of initial conditions, the smaller the transmissions saving.

Figure 17 – RE and X0 = E(R, 1) with R11 = diag{26.60, 0.70}.

The inverted pendulum is also investigated in (DING et al., 2020), where the

design of event-triggering static and dynamic state stabilizing controllers for discrete-

time linear systems with saturating actuators is addressed. The number of updates

obtained by (DING et al., 2020) are showed in Table 3, where the initial conditions x0 =
[

0.2 0.8
]>

and xc,0 =
[

0 0
]>

were taken to simulate the closed-loop response of

the system. Observe that since (DING et al., 2020) does not consider a communication

network between the controller and actuator channel, then the system updates the

control at all sampling times.
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and the following dynamic controller matrices

Ac =

[

–6.3069 –29.0632

1.5869 7.3118

]

, Bc =

[

–0.0264 –0.0186

0.0067 0.0047

]

,

Ec =

[

–0.1133

0.0288

]

, Cc =

[

–6.6853

–3.1688

]>
, and Dc =

[

1.3583

0.9577

]>
.

For the same initial condition, we simulate the closed-loop response of the sys-

tem and found the updates rates showed in Table 3. Although in the first channel, the

update rates obtained by (DING et al., 2020) with Theorem 3.1 and Theorem 4.1 are

21.18% and 17.65% smaller than ours, respectively, in the second channel, they are in

both cases 331.03% higher than ours.

4.5.2 Example 2

Consider the following discretized version, with sampling time Ts = 0.05 seconds,

of the system investigated in (MA et al., 2015).

xk+1 =

[

1 0.05

0.1 0.85

]

xk +

[

0.11

0.11

]

ûk ,

yk =
[

–1 4
]

xk .

(129)

Our objective here is to compare our co-design and emulation proposals with

the one in (MA et al., 2015). The authors in (MA et al., 2015) address the co-design

event-triggered dynamic output-feedback control problem for continuous linear time-

invariant (LTI) system. The two independent ETMs are based on a condition that de-

pends on the plant output and the controller output taken at different times. The results

obtained by (MA et al., 2015) are presented in Table 4, where the initial conditions

x0 = xc,0 =
[

40 –20
]>

were taken to simulate the closed-loop response of the system.

Observe that, in the first channel, (MA et al., 2015) got an average sampling time that

corresponds to 3 times the sampling time of the system without ETM; and, in the sec-

ond channel, the average sampling time found corresponds to 3.6 times the sampling

time of the system without ETM.

Table 4 – Comparison of the average sampling time - Example (129).

Design average sampling time [sec]
method output control

Theorem 2 in (MA et al., 2015) 0.15 0.18
Theorem 4.1 0.2303 0.25
Theorem 4.2 0.2303 0.375

First, to compare the co-design approach, we solve the optimization procedure

O5 given in (124) with conditions of Theorem 4.2, and obtain the ETM matrices Q∆y =
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1.5489, Qy = 0.7091, Q∆u = 1.4102, and Qu = 0.6456 and the following dynamic

controller matrices

Ac =

[

6.1903 3.8725

–8.3910 –5.2462

]

, Bc =

[

–17.4254

23.6933

]

,

Cc =
[

0.1654 0.1180
]

, and Dc = –1.2314.

By simulating the closed-loop response of the system for the same initial condi-

tions, we got the average sampling times presented in Table 4. Note that, in the first

channel, we obtained an average sampling time that corresponds to almost 5 times the

sampling time of the system without ETM, and in the second channel, the average sam-

pling time found corresponds to 7.5 times the sampling time of the system without ETM.

Therefore, we increased the average sampling by 53.87% on the sensor-to-controller

channel, and 108.33% on the controller-to-actuator channel, with respect to (MA et al.,

2015).

Then, to compare the emulation-approach, we design the ETMs (91) and (92)

for both the controller obtained in the co-design and the one obtained by (MA et al.,

2015) using the optimization procedure O5 given in (124) with conditions of Theorem

4.1. For the first case, we have found the same results, and for the second, we got the

ETM matrices Q∆y = 1.8588, Qy = 0.2646, Q∆u = 3.7788 and Qu = 0.5380. By using

these matrices to simulate the closed-loop response of the system, we find the average

sampling times presented in Table 4. Thus, using our controller, the sampling average

in the control ETM improved 50% in relation to the controller of (MA et al., 2015).

4.5.3 Example 3

Consider the following discretized version, with sampling time Ts = 0.05 seconds,

of the system investigated in (LIU, D.; YANG, G.-H., 2018)

xk+1 =

[

1 0.05

–0.25 1

]

xk +

[

0

0.05

]

ûk ,

yk =
[

1 0
]

xk .

(130)

Our objective is to compare our co-design approach with the one in (LIU, D.;

YANG, G.-H., 2018), where a novel exponential stability criterion is applied to provide

an algorithm to co-design a dynamic output-feedback controllers and two independent

ETMs for continuous linear time-invariant systems with communication delays. The

results obtained by (LIU, D.; YANG, G.-H., 2018) are showed in Table 5, where the initial

states condition x0 =
[

1 0.2
]>

and xc,0 = 01,2 were taken to simulated the closed-loop

response. By taking into account the procedures described in Remark 4.3 to deal with

LTI (αk = 0) and non-saturated system, we run the optimization procedure O5 given
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in (124) with conditions of Theorem 4.2, and got the ETM matrices Q∆y = 2.6910,

Qy = 0.6063, Q∆u = 1.6493, and Qu = 0.3716 and the following dynamic controller

matrices

Ac =

[

1.0819 0.5297

–0.4837 –0.2445

]

, Bc =

[

–5.9799

2.6499

]

,

Cc =
[

0.4254 1.1925
]

, and Dc = –2.3619.

Table 5 – Comparison of the updates rates - Example (130).

Design
Method

Updates rates (%)
output control

(LIU, D.; YANG, G.-H., 2018, Th. 2) 34.50% 38.25%
Theorem 4.2 30.50% 36.25%

For the same initial conditions, we simulated the system’s closed-loop response

and got the transmission rates showed in Table 5. In this case, we reduced the update

rate in 6.15% and 5.23% on the sensor-to-controller and controller-to-actuator channels,

respectively, in relation to (LIU, D.; YANG, G.-H., 2018).

4.6 CONCLUDING REMARKS

This chapter has investigated an event-triggering control design method that

regionally stabilizes discrete-time LPV systems subject to saturating actuators inserted

into a communication network with limited bandwidth. The main contributions can be

summarized as: i) a convex procedure to design both a parameter-dependent dynamic

output-feedback controller with anti-windup action and two event generators; ii) the

proposed event-triggering policies allows to reduce the transmission of the output

measurements and the control input over the communication channels; iii) the convex

methodology can be simplified to design only an event generator for a given parameter-

dependent dynamic output-feedback controller with anti-windup action; iv) Some convex

optimization problems incorporating the main conditions as constraints permit to mini-

mize the transmission activity over the network by considering or not a given region of

admissible initial conditions.

Through numerical examples, the efficacy of the proposal in saving commu-

nication resources has been proved. Moreover, it was evident the classical trade-off

between the size of the domain of attraction and the transmission reduction, in which

the smaller the estimate of the domain of attraction, the higher the transmission reduc-

tion. The event-triggering schemes have shown a periodic behavior during certain time

intervals, mainly for larger domains of attraction, but still with lower update rates than

other approaches in the literature. Finally, it is important to re-emphasize that, the pro-

posed approach requires a perfect matching between the scheduling parameters of the



Chapter 4. Event-triggered dynamic output-feedback control co-design 87

controller and plant, which can be a conservative assumption in the sense of data trans-

mission economy. To overcome such an issue, in the next chapter, an event-triggering

mechanism to transmit the scheduling parameter over the network is introduced.
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5 EVENT-TRIGGERED CO-DESIGN UNDER PARAMETER-ERROR

This chapter examines the event-triggered state-feedback control problem of

discrete-time LPV systems subject to saturating actuators inserted into a communica-

tion network with limited bandwidth. Two independent event-triggering schemes are

proposed to economize the communication resources. They indicate whether the cur-

rent state or the current scheduling parameters should be transmitted from the sensor to

the controller or not. In this sense, the controller scheduling parameters can differ from

those of the system, which yields a certain degree of robustness concerning parameter

deviations.

The convex conditions, given in terms of linear matrix inequalities (LMIs) thanks

to the use of the Lyapunov theory, ensure the regional asymptotic stability of the closed-

loop system for every initial condition within the estimate of the region of attraction.

A convex optimization scheme incorporating these conditions as constraints is also

proposed to reduce the amount of data transmission over the network. Finally, through

numerical examples, the usefulness of the method is illustrated. The results presented

are based on the work (DE SOUZA et al., 2021b).

5.1 PROBLEM STATEMENT

Consider the class of discrete-time LPV systems subject to saturating actuators

inserted into a communication network represented by

xk+1 = A(αk )xk + B(αk )sat(uk ). (131)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control signal and sat(uk ) is the

standard symmetric saturation function defined as

sat(uk (`)) = sign(uk (`)) min(|uk (`)|, ū(`)), (132)

with ū(`) > 0, ` ∈ I[1, nu], denoting the symmetric amplitude bound relative to the

`th control input. The vector of time-varying parameters αk ∈ R
N , which is assumed

measured and available on-line (BRIAT, 2015), belongs to the unitary simplex given by

Λ ,






αk ∈ R

N :
N∑

i=1

αk (i) = 1, αk (i) ≥ 0, i ∈ I[1, N]






. (133)

Thus, the parameter-dependent matrices A(αk ) ∈ R
n×n, B(αk ) ∈ R

n×nu can be written

as a convex combination of N known vertices according to

[

A(αk ) B(αk )
]

=
N∑

i=1

αk (i)

[

Ai Bi

]

. (134)
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event-triggering condition, their computation has a direct impact on the event-triggering

policy and, consequently, on the way of reducing the data transmissions.

Note that if (137) holds at step k , then x̂k is updated to xk , because the error

‖x̂k–1 – xk‖2
Q∆(α̂k ) is too big to guarantee stability and a certain performance index for

the closed-loop system. On the other hand, if (137) does not hold at step k , then x̂k

keeps its value from the previous instant x̂k–1, that is, x̂k is not updated, because the

error ‖x̂k–1 –xk‖2
Q∆(α̂k ) is small enough to guarantee stability and a certain performance

index for the closed-loop system.

Scheduling-parameter based ETM: Additionally, we consider that whenever the differ-

ence between the last transmitted scheduling parameter α̂k and the current one αk

multiplied by a given scalar 0 ≤ g ≤ 1 reaches the lower bound 0 or the upper bound

1 – g, then the current sample of αk is transmitted through the network. Therefore,

the policy of the scheduling parameter transmission is based on the violation of the

condition

0 < α̂k (i) – gαk (i) < 1 – g, (138)

for a given 0 ≤ g ≤ 1. Following (DA CUNHA et al., 2020, Lemma 2), we note that the

last transmitted scheduling parameter, α̂k , can be written as

α̂k (i) = gαk (i) + (1 – g)ϕk (i), (139)

for a vector ϕk ∈ R
N verifying

∑N
i=1 ϕk (i) = 1 and ϕk (i) ≥ 0. Therefore, once both sides

of inequality (138) are satisfied, equation (139) is ensured. Such a fact can be noted by

summing (139) up for i ∈ I[1, N] and considering αk , α̂k ∈ Λ, to obtain

N∑

i=1

ϕk (i) =

∑N
i=1 α̂k (i) – g

∑N
i=1 αk (i)

1 – g
= 1. (140)

Moreover, taking into account the positivity of α̂k (i) – gαk (i), one has ϕk (i) ≥ 0.

Observe that the value of g has a direct influence on the size of the error allowed

between the plant and controller parameters, and consequently, on the transmission

rate. For g close to 0, the greater the error, the lower the transmission rate. On the other

hand, for g close to 1, the lower the error, the greater the transmission rate. In the worst

case, when g = 1, there is a transmission rate of 100%, where the plant and controller

share the same scheduling parameter, then recovering the assumption of parameter

sharing in (DE SOUZA et al., 2020d, 2020b; LI, S. et al., 2015; SAADABADI; WERNER,

2020).

The proposed ETM policy (138) differs from the usually found in the literature

such as those in (SHANBIN; BUGONG, 2013; LI, S. et al., 2014; GOLABI et al., 2016,

2017). In our approach, the transmission policy depends directly on the scheduling

parameters, while in the previous works the decision policy depends on the norm of
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the dynamic matrices variations, which is an indirect parameter-based decision, or on

some prescribed (small) deviation of the parameter.

In view of this, the problem we intend to solve in this chapter can be stated as

follows.

Problem 5.1 Consider the saturating LPV system (131). For a given scalar 0 ≤ g ≤ 1,

co-design the parameter-dependent state-feedback controller (135) and the two inde-

pendent event-triggering conditions (137) and (138) that ensure the regional asymptotic

stability of the closed-loop system, while reducing the data transmission on the com-

munication network.

An implicit objective in solving Problem 5.1 is to characterize an estimate of the

domain of attraction of the origin, RE , for the closed-loop system.

5.2 PRELIMINARY RESULTS

The saturating LPV system (131) in closed-loop with the state-feedback con-

troller (135) can be represented by the following model:

xk+1 = (A(αk ) + B(αk )K (α̂k ))xk + B(αk )K (α̂k )ex ,k – B(αk )Ψ(K (α̂k )x̂k ), (141)

where ex ,k ∈ R
n×n is the error between the latest transmission x̂k and the latest

sampling xk , i.e. ex ,k = x̂k – xk . By considering the polytopic form of the matrices, the

system (141) can also be described as:

xk+1 =
N∑

i=1

αk (i)
(
(Ai + Bi

N∑

j=1

α̂k (j)Kj )xk + Bi

N∑

j=1

α̂k (j)Kjex ,k – BiΨ(K (α̂k )x̂k )
)
. (142)

Also, by using (139) and doing some manipulations, we have that:

xk+1 =
N∑

i=1

N∑

j=1

ρijαk (i)αk (j)0.5
(
(Ai + Aj )xk – (Bi + Bj )Ψ(uk ) + g(BiKj + BjKi )(xk + ex ,k )

)

+
N∑

q=1

N∑

i=1

N∑

j=i

ρijαk (i)αk (j)ϕk (q)0.5(1 – g)(BiKq + BjKq)(xk + ex ,k ). (143)

with ρij = 1 when i = j and ρij = 2 otherwise.

Note that if xk is updated at instant k , then from (137), it follows that ex ,k =

x̂k – xk = xk – xk = 0, and if xk is not updated at instant k , then from (137), we have

that ex ,k = x̂k – xk = x̂k–1 – xk . Thus, the following inequality is always satisfied:

‖ex ,k‖2
Q∆(α̂k ) ≤ ‖xk‖2

Qx (α̂k ). (144)
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To investigate the regional asymptotic stability of the closed-loop system (141),

we use the following candidate Lyapunov function

V (xk , α̂k ) = x>
k P(α̂k )xk , P(α̂k ) =

N∑

i=1

α̂k (i)Pi , (145)

with 0 < Pi = P>
i ∈ R

2n×2n and α̂k ∈ Λ. The level set associated to V (xk , α̂k ) is defined

as RE = LV (1) = {xk ∈ R
n : V (xk , α̂k ) ≤ 1} and its calculation can be done as follows

RE = LV (1) =
⋂

∀α̂k∈Λ
E(P(α̂k ), 1) =

⋂

i∈I[1,N]

E(Pi , 1), (146)

where E(P(α̂k ), 1) denotes the ellipsoidal sets represented by

E(Pi , 1) =
{

xk ∈ R
n : x>

k Pixk ≤ 1, i ∈ I[1, N]
}

. (147)

In addition, to deal with the saturation effects, we use the following Lemma

directly derived from (TARBOURIECH et al., 2011, Lemma 1.6) by considering uk given

in (135) and νk = uk – G(α̂k )xk .

Lema 5.1 Consider uk given by (135), ū ∈ R
nu , ū > 0, and a matrix G(α̂k ) =

∑N
i=1 α̂k (i)Gi ,

Gi ∈ R
nu×n, i ∈ I[1, N], α̂k ∈ Λ, such that

S(ū) , {xk ∈ R
n : |G(`)(α̂k )xk | ≤ ū(`), ` ∈ I[1, nu]}. (148)

If xk ∈ S(ū), then for any positive definite diagonal matrix T (α̂k ) =
∑N

i=1 α̂k (i)Ti , Ti ∈
R

nu×nu , i ∈ I[1, N], α̂k ∈ Λ, the following inequality is verified.

Ψ(K (α̂k )x̂k )>T (α̂k )
(
Ψ(K (α̂k )x̂k ) – (K (α̂k ) – G(α̂k ))xk – K (α̂k )ex ,k

)
≤ 0. (149)

5.3 MAIN RESULTS

The following theorem solves Problem 5.1 by providing convex conditions to

design the state-feedback controller (135) and the two event-triggering mechanisms

(137) and (138) that ensure the regional asymptotic stability of the closed-loop system

with a reduced number of data transmission on the communication network.

Theorem 5.1 Suppose there exist symmetric positive definite matrices Wi ∈ R
n×n,

Q̄∆i ∈ R
n×n and Q̄xi ∈ R

n×n, a positive definite diagonal matrices Si ∈ R
m×m, matrices

Zi ∈ R
m×n, Yi ∈ R

m×n and U ∈ R
n×n, with i ∈ I[1, N], and a given scalar 0 ≤ g ≤ 1,
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such that the following LMIs are feasible.

































0.5g(Wi + Wj + Q̄xi + Q̄xj )
? ? ?

+g̃(Wq + Q̄xq) – U – U>

0
–0.5g(Q̄∆i + Q̄∆j )

? ?

–g̃Q̄xq

0.5g(Yi + Yj – Zi – Zj ) 0.5g(Yi + Yj ) –g(Si + Sj )
?

+g̃(Yq – Zq) +g̃Yq –2g̃Sq

0.5(Ai + Aj )U 0.5g(BiYj + BjYi ) –0.5g(BiSj + BjSi ) –gWr

+0.5g(BiYj + BjYi ) +0.5g̃(Bi + Bj )Yq –0.5g̃(Bi + Bj )Sq –g̃Ws

+0.5g̃(Bi + Bj )Yq


































< 0,

i , q, r , s ∈ I[1, N], j ∈ I[i , N], (150)

and 







gWi + g̃Wq – U – U>
?

gZi(`) + g̃Zq(`) –ū(`)
2









< 0,

i , q ∈ I[1, N], ` ∈ I[1, m].
.

(151)

with g̃ = (1 – g). Then, the saturating LPV system (131) under the state-feedback

controller (135) with gain matrix defined by

Ki = YiU
–1 (152)

subject to the ETMs (137) and (138) with matrices Q∆i = U–>Q̄∆iU
–1 and Qxi =

U–>Q̄xiU
–1, is regionally asymptotically stable. Moreover, the region RE = LV (1) ⊆ RA

is an estimate of the region of attraction of the origin for the closed-loop system.

Proof: First, by supposing the feasibility of (151), multiply its left-hand side by αk (i) and

ϕk (q), sum it up to i , q ∈ I[1, N], and replace Zi by GiU, to obtain









∑N
i=1 αk (i)gWi +

∑N
q=1 ϕk (q)(1 – g)Wq – U – U>

?

(
∑N

i=1 αk (i)gGi(`) +
∑N

q=1 ϕk (q)(1 – g)Gq(`)

)

U –ū(`)
2









< 0. (153)
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Then, replace
∑N

q=1 ϕk (q)(1–g) by
∑N

q=1 α̂k (q)–
∑N

q=1 αk (q)g, according to (139).

Note that, in this step, the matrices W and G become function only of the parameter

α̂k . By assuming that W (α̂k ) = P–1(α̂k ) and using the fact that
[

P–1(α̂k ) – U
]>

P(α̂k )

×
[

P–1(α̂k ) – U
]

≥ 0 to replace block (1,1) of the resulting inequality by –U>P(α̂k )U,

we have that 







–U>P(α̂k )U ?

G(`)(α̂k )U –ū(`)
2









< 0. (154)

With the regularity of U, we can pre- and post multiply (154) by diag{U–>, 1} and

its transpose, respectively, to get








–P(α̂k ) ?

G(`)(α̂k ) –ū(`)
2









< 0. (155)

Finally, applying Schur complement and pre- and post multiplying the resulting

inequality by x>
k and xk , respectively, we have that

–x>
k P(α̂k )xk + x>

k G(α̂k )>(`)ū
2
(`)G(α̂k )(`)xk < 0, (156)

which ensures the inclusion RE ⊆ S(ū) and, consequently, Lemma 5.1 applies. There-

fore, any trajectory of the closed-loop system stating inside RE remains in S(ū).

Moreover, by supposing the feasibility of (150), multiply its left-hand side by

αk+1(r ), αk (i), αk (j), ϕk+1(s) and ϕk (q), sum it up to r , s, q, i ∈ I[1, N] and j ∈ I[i , N],

and replace Yi , Zi , Q̄∆i and Q̄xi by KiU
–1, GiU, U>Q∆iU and U>QxiU, respectively, to

obtain (157), which can be rewritten, after some algebraic manipulations, as (158).
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




























0.5
∑N

i=1
∑N

j=i ρijαk (i)αk (j)g(Wi + Wj + U>(Qxi + Qxj )U) ?

+
∑N

q=1 ϕk (q)(1 – g)(Wq + U>QxqU) – U – U>

0
–0.5

∑N
i=1
∑N

j=i ρijαk (i)αk (j)gU>(Q∆i + Q∆j )U

–
∑N

q=1 ϕk (q)(1 – g)U>Q∆qU

0.5
∑N

i=1
∑N

j=i ρijαk (i)αk (j)g(Ki + Kj – Gi – Gj )U 0.5
∑N

i=1
∑N

j=i ρijαk (i)αk (j)g(Ki + Kj )U

+
∑N

q=1 ϕk (q)(1 – g)(Kq – Gq)U +
∑N

q=1 ϕk (q)(1 – g)KqU

0.5
∑N

i=1
∑N

j=i σijαk (i)αk (j)(Ai + Aj + g(BiKj + BjKi ))U 0.5
∑N

i=1
∑N

j=i ρijαk (i)αk (j)g(BiKj + BjKi )U

+0.5
∑N

i=1
∑N

j=i
∑N

q=1 ρijαk (i)αk (j)ϕk (q)(1 – g)(Bi + Bj )KqU +0.5
∑N

i=1
∑N

j=i
∑N

q=1 ρijαk (i)αk (j)ϕk (q)(1 – g)(Bi + Bj )KqU

? ?

? ?

–
∑N

i=1
∑N

j=i ρijαk (i)αk (j)g(Si + Sj ) ?

–2
∑N

q=1 ϕk (q)(1 – g)Sq

–0.5
∑N

i=1
∑N

j=i ρijαk (i)αk (j)g(BiSj + BjSi ) –
∑N

r=1 αk+1(r )gWr

–0.5
∑N

i=1
∑N

j=i
∑N

q=1 ρijαk (i)αk (j)ϕk (q)(1 – g)(Bi + Bj )Sq –
∑N

r=i ϕk+1(s)(1 – g)Ws






























< 0. (157)
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



























∑N
j=1 αk (j)g(Wj + U>QxjU) ?

+
∑N

q=1 ϕk (q)(1 – g)(Wq + U>QxqU) – U – U>

0
–
∑N

j=1 αk (j)g(U>Q∆jU)

–
∑N

q=1 ϕk (q)(1 – g)U>Q∆qU

∑N
j=1 αk (j)g(Kj – Gj )U 0.5

∑N
j=1 αk (j)gKiU

+
∑N

q=1 ϕk (q)(1 – g)(Kq – Gq)U +
∑N

q=1 ϕk (q)(1 – g)KqU

∑N
i=1
∑N

j=1 αk (i)αk (j)(Ai + gBiKj )U
∑N

i=1
∑N

j=1 αk (i)αk (j)gBiKjU

+
∑N

i=1
∑N

q=1 αk (i)ϕk (q)(1 – g)BiKqU +
∑N

i=1
∑N

q=1 αk (i)ϕk (q)(1 – g)BiKqU

? ?

? ?

–2
∑N

j=1 αk (j)gSj ?

–2
∑N

q=1 ϕk (q)(1 – g)Sq

–
∑N

i=1
∑N

j=1 αk (i)αk (j)gBiSj –
∑N

r=1 αk+1(r )gWr

–
∑N

i=1
∑N

q=1 αk (i)ϕk (q)(1 – g)BiSq –
∑N

r=i ϕk+1(s)(1 – g)Ws





























< 0. (158)

Then, replace
∑N

q=1 ϕk (q)(1 – g) by
∑N

q=1 α̂k (q) –
∑N

q=1 αk (q)g, according to

(139). Note that, in this step, the matrices W , Qx , Q∆, G, S, and K become function

only of the parameter α̂k . By assuming that W (α̂k ) = P–1(α̂k ) and using the fact that

–U>P(α̂k )U ≤ P–1(α̂k ) – U – U>, we have that


















–U>(P(α̂k ) – Qx (α̂k )
)
U ? ? ?

0 –U>Q∆(α̂k )U ? ?

(K (α̂k ) – G(α̂k ))U K (α̂k ) –2S(α̂k ) ?

(
A(αk ) + B(αk )K (α̂k )

)
U B(αk )K (α̂k )U –B(αk )S(α̂k ) –P–1(α̂k+1)



















< 0. (159)
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With the regularity of U, we can pre- and post multiply (159) by

diag{U–>, U–>, S–1(α̂k ), In} and its transpose, respectively, to get


















–P(α̂k ) + Qx (α̂k ) ? ? ?

0 –Q∆(α̂k ) ? ?

S–1(α̂k )(K (α̂k ) – G(α̂k )) S–1(α̂k )K (α̂k ) –2S–1(α̂k ) ?

(A(αk ) + B(αk )K (α̂k )) B(αk )K (α̂k ) –B(αk ) –P–1(α̂k+1)



















< 0. (160)

Next, applying Schur complement, we have that













–P(α̂k ) + Qx (α̂k ) ? ?

0 –Q∆(α̂k ) ?

S–1(α̂k )(K (α̂k ) – G(α̂k )) S–1(α̂k )K (α̂k ) –2S–1(α̂k )














+






(A(αk ) + B(αk )K (α̂k ))>

(B(αk )K (α̂k ))>

–B(αk )>






× P(α̂k+1)
[

(A(αk ) + B(αk )K (α̂k )) B(αk )K (α̂k ) –B(αk )
]

< 0. (161)

Then, pre- and post multiplying (161) by the augmented vector
[

x>
k e>x ,k Ψ(K (α̂k )x̂k )>

]

and its transpose, respectively, and replacing
(
A(αk )

+B(αk )K (α̂k )
)
xk + B(αk )K (α̂k ))ex ,k – B(αk )Ψ(K (α̂k ))xk ) by xk+1, according to (141),

results in

x>
k+1P(α̂k+1)xk+1 –x>

k P(α̂k )xk –2Ψ(K (α̂k )x̂k )>T (α̂k )(Ψ(K (α̂k )x̂k )– (K (α̂k )–G(α̂k ))xk

– K (α̂k )ex ,k ) – e>x ,kQ∆(α̂k )ex ,k + x>
k Qx (α̂k )xk ≤ 0. (162)

From (145), we have that x>
k+1P(α̂k+1)xk+1 – x>

k P(α̂k )xk = V (xk+1, α̂k+1) –

V (xk , α̂k ) = ∆V (xk , α̂k ). By taking this into account and denoting S–1(α̂k ) = T (α̂k ),

we conclude that

∆V (xk , α̂k ) < 2Ψ(K (α̂k )x̂k )>T (α̂k )(Ψ(K (α̂k )x̂k ) – (K (α̂k ) – G(α̂k ))xk

– K (α̂k )ex ,k ) < e>x ,kQ∆(α̂k )ex ,k – x>
k Qx (α̂k )xk ≤ 0. (163)

By supposing that xk ∈ S(ū), the generalized sector condition presented in

Lemma 5.1 ensures the non-positivity of 2Ψ(K (α̂k )x̂k )>T (α̂k )(Ψ(K (α̂k )x̂k ) – (K (α̂k ) –

G(α̂k ))xk – K (α̂k )ex ,k ). Also, from inequality (144), we have that e>x ,kQ∆(α̂k )ex ,k

–x>k Qx (α̂k )xk ≤ 0 is always satisfied. Because of the positivity of P(α̂k ), we can assume

that there exist a sufficiently small ε0 > 0 such that

ε0‖xk‖2 ≤ V (xk , α̂k ) ≤ ε1‖xk‖2, with ε1 = max
i∈I[1,N]

λmaxPi > 0. (164)
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Moreover, we have that

∆V (xk , α̂k ) ≤ –ε2‖xk‖2 < 0. (165)

for some ε2 > 0. Therefore, V (xk , α̂k ) given in (145) is a Lyapunov function and RE =

LV (1) is an estimate of the region of attraction of the origin for the closed-loop system

(141). That concludes the proof.

Observe that g parameter may affect the feasibility of the LMIs condition in

Theorem 5.1 and a search on this parameter over the interval 0 ≤ g ≤ 1 can be used

to improve the ETM performance. In general, the feasibility of condition (150) and (151)

is easier to verify for g = 1, since this case corresponds to consider a full transmission

rate and no parameter error. Examples presented later illustrate such a possibility.

5.3.1 Optimization design procedure

This section aims to propose an optimization procedure that indirectly reduces

the number of state signal updates. By looking at the event-triggering condition (137),

we can see that it is a relative measure of the deviation between the last sampled

state and the current state with Q∆i and Qxi acting as weights on this measure. Thus,

we have that the “smaller” Q∆i and the “larger” Qxi are, the more the current state

is allowed to deviate from the last sampled one and the fewer transmissions events

are expected. However, the matrices Q∆i and Qxi do not appear as decision variables

in the conditions of Theorem 5.1, due to the congruence transformation required to

formulate them in terms of LMIs. To overcome such an issue, we propose the following

restrictions: 







gQ̄xi + (1 – g)Q̄xq ?

U gQ̂xi + (1 – g)Q̄xq









> 0, (166)











gQ̂∆i + (1 – g)Q̄xq ?

In
U + U> – gQ̄∆i

–(1 – g)Q̄∆q











> 0. (167)

i , q ∈ I[1, N]; j ∈ I[i , N].

The first one enforces the lower bound Qxi > Q̂–1
xi through the direct application of

the Schur’s complement, and the second enforces the upper bound Q∆i < Q̂∆i through

the direct application of Lemma 1 in (SEURET; GOMES DA SILVA JR, 2012). In this

case, the fact to minimize the pair (Q̂∆i , Q̂xi ) effectively minimizes the pair (Q∆i , Qxi ).
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Therefore, we have the following optimization procedure:

O7 :







min
∑N

i=1 tr(Q̂∆i + Q̂xi ),

subject to (150), (151), (166) and (167).

(168)

It is important to highlight that the transmission activity of the scheduling param-

eter is associated with the choice of the scalar g. As discussed earlier, the closer g is

to zero, the smaller the transmission activity. This will be evident in the examples that

follow.

5.4 NUMERICAL EXAMPLES

In this section, we present illustrative examples, borrowed from the literature

(HEEMELS et al., 2010; LI, S. et al., 2014, 2015), to show the effectiveness of our

proposal.

5.4.1 Example 1

Consider the saturating LPV system

xk+1 =






0.25 1 0

0 0.1 0

0 0 0.6 + ϑk




 xk +






1 – 0.8ϑk

0

1 – ϑk




 sat(uk ), (169)

where the time-varying parameter 0 ≤ ϑk0.5 and the symmetric saturation limit is

ū = 0.5. In this case, we can take αk (1) = 1 – 2ϑk and αk (2) = 2ϑk with A1 = A(0),

B1 = B(0), A2 = A(0.5) and B2 = B(0.5).

First, we are interested in investigating the influence of parameter g (see (138))

in the update rate of the scheduling parameter and the state. With this purpose, for

g = 0.1, 0.2, . . . , 1, we use the optimization procedure O7 given in (168) to design

the control gains and the event-triggering parameters. For each case, we simulate

the closed-loop response for 1000 initial conditions belonging to RE and αk chosen

randomly. The average update rate (%) of the scheduling parameter, marked with ×,

and the state, marked with �, as a function of g are illustrated in Figure 20. We can see

that as g approaches to 1, the update rate increases until it reaches 100% for g = 1, i.e.

α̂k = αk . In such a case, we also have the smallest update rate of the states, which is

expected as the controller is better adjusted to the conditions of the plant.

For one of these cases, g = 0.8, we plot in Figure 21, the estimate of the region of

attraction RE (light purple line) along with all the trajectories of the states (colored dots).

One can see that the trajectories do not leave the domain of attraction, as expected.
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Table 6 – Percentage of transmission rate achieved by the proposed method and those
from 1-(GOLABI et al., 2017) and 2-(GOLABI et al., 2016).

1 2
Theorem 5.1

g
0.2 0.4 0.6 0.8 1.0

αk (%) 78.33 66.66 8.02 14.42 38.22 57.56 100
xk (%) 100 66.66 49.05 49.05 55.41 47.50 42.68
uk (%) 98.4 - - - - - -

5.4.3 Example 3

By assuming that the LPV system (169) is not subject to any restriction on the

input signal, and has a fixed matrix of control i.e. B1 = B2 = B(0), we compare our

approach with (SHANBIN; BUGONG, 2013). The authors in (SHANBIN; BUGONG,

2013) propose the co-design of an ETM and a state-feedback controller for LPV sys-

tems where the parameters are not exactly known, but estimated parameters satisfying

certain level are known. The robustness of the proposed event-triggered control sys-

tem w.r.t the uncertainty of the parameter is indicated by the scalar δ0 according to

the inequality ‖∆A(αk , α̂k )xk‖2 ≤ δ2
0‖xk‖2, with ∆A(αk , α̂k ) = A(αk ) – A(α̂k ). Thus,

we solve Theorem 1 in (SHANBIN; BUGONG, 2013) with δ0 = 0.1 and the trigger-

ing parameter η = 1, obtaining the control gains K1 =
[

–0.095 –0.354 –0.414
]

and K2 =
[

–0.091 –0.335 –0.768
]

. By using the ETM and the controller designed,

we simulated the closed-loop response for x0 =
[

1 –1 –0.5
]>

and 1000 values of

∆A(αk , α̂k ), generated randomly within the allowed range, obtaining an average up-

date rate of xk equal to 84.11, as indicated in Table 7. Note that, from the values of

∆A(αk , α̂k ) and α̂k , we can determine αk . We used these values of αk to establish a

fair comparison with (SHANBIN; BUGONG, 2013).

To compare our approach with that proposed by (SHANBIN; BUGONG, 2013),

we measured, for some values of 0 ≤ g ≤ 1, the robustness of our event-triggered

control system and computed the average update rate of both xk and αk . The ro-

bustness of our method was determined by computing the following scalar δ : δ =

max
k

{
√

‖∆A(αk , α̂k )xk‖2/‖xk‖2
}

among the instants of simulation. The results are

shown in Table 7. As we can see, for values of g smaller than 0.8, our approach is

more robust to the variation of parameters than (SHANBIN; BUGONG, 2013), almost

4 times for g = 0.2. In addition, we found an average update rate of xk smaller than

(SHANBIN; BUGONG, 2013) in all cases. For g = 0.8, for instance, we obtained a rate

35% smaller, approximately. As (SHANBIN; BUGONG, 2013) does not consider an

ETM to sent the information about the scheduling parameter over the network, these

data are not comparable.
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Table 7 – Relative robustness (δ/δ0) achieved by the proposed method and that from
(SHANBIN; BUGONG, 2013) and the percentage of transmission rate.

(SHANBIN; BUGONG, 2013)
Theorem 5.1

g
0.2 0.4 0.6 0.8 1.0

δ/δ0 1 3.86 2.87 1.95 0.96 0
αk (%) - 4.80 10.90 44.40 74.75 100
xk (%) 84.11 55.63 55.61 55.59 53.86 40.21

5.5 CONCLUDING REMARKS

This chapter has presented a methodology to design an event-triggered state-

feedback control for discrete-time LPV systems subject to saturating actuators inserted

in a communication network with limited bandwidth. The main contributions can be

listed as i) a convex procedure to design both a state-feedback controller and two event-

generators; ii) the proposed event-triggering policies permit to reduce the transmission

of states and scheduling variables in the sensor-to-controller channel; iii) the proposed

controller depends on scheduling parameters that may differ from those of the plant,

yielding a certain degree of robustness concerning parameter deviations iv) Some opti-

mization problems incorporating the main conditions as constraints allow to effectively

reduce the update rate of the states through the communication network.

By using numerical examples, the effectiveness of the approach in reducing the

transmission activity over the network has been demonstrated. In particular, for the

transmission of the scheduling parameters, very small update rates were achieved,

thanks to the new methodology presented.
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6 CONCLUSION

This thesis has presented new approaches for the problem of regional stabi-

lization of two classes of discrete-time linear parameter varying systems with input

constraints. The first class consisted of systems with time-varying delay in the states

subject to saturating actuators and exogenous signals. The second one concerned

the systems with saturating actuators inserted into a communication network with lim-

ited bandwidth. The proposed convex conditions were based on parameter-dependent

Lyapunov functions, which yielded linear matrix inequality (LMI) based formulations.

Convex optimizations procedures incorporating these conditions were also established

to achieve different control objectives, such as maximization of the estimate of the re-

gion of attraction, minimization of the disturbance tolerance, and minimization of the

transmission activity on the communication channels. Numerical examples borrowed

from the literature allowed us to describe the effectiveness of our approach compared

to other literature methods.

At first, in Chapter 2, we depicted some results related to the first class of sys-

tems. As one of the contributions of this thesis, we designed in this chapter parameter-

dependent state-feedback controllers ensuring the input-to-state stability of the closed-

loop for a set of admissible initial conditions and a set of admissible disturbance signals.

The approach permits, with the use of the augmented delay-free switched representa-

tion of the closed-loop system, to design one of three possible control gain structures,

which are: i) the one that feeds all states, ii) the one that feeds only the current state

and iii) the one that feeds both the current and the most delayed state. Comparisons, in

terms of the size of the domain of attraction and the maximum energy allowed for the

disturbance signals, between such gains and also the robust one were performed at the

end of the chapter. It was evident that the full parameter-dependent gain achieved the

best results in all cases, which was expected. Although the other parameter-dependent

gains feed back less delayed states, they still got better results compared to the robust

one. For the design of these controllers, limited delay variation rates were considered,

which resulted in higher tolerances to disturbances signals.

Chapter 3 also presented some results regarding the first class of systems.

The contribution reported in the chapter followed as an extension of the previous one,

where the augmented delay-free switched representation was used in the synthesis of

parameter-dependent dynamic output-feedback controllers with an anti-windup term.

One of the relevant characteristics of the proposed dynamic controller is that its order

can vary from the actual system’s order to the augmented delay-free switched system’s.

Such a characteristic proved to be relevant in obtaining bigger domains of attraction

and higher tolerances to disturbances signals for higher order controllers. Although it is

the designer’s choice, it is important to stress that the higher the controller’s order, the
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higher the numerical complexity, consequently, computational effort, then establishing

a trade-off between these variables.

In Chapters 4, we focused on the second class of systems. The contribution

stated in the chapter consisted of designing two event-triggering mechanisms and

a dynamic output-feedback controller with anti-windup action ensuring the regional

asymptotic stability of the closed-loop system. The transmission activity on the sensor-

to-controller and controller-to-actuator channels was indirectly reduced thanks to the

proposed optimization procedures. One of them even allowed the minimization of the

update rate for a given admissible initial conditions region. Through numerical examples,

the update rates for two different admissible initial conditions regions were evaluated.

It was evident the existing trade-off between the size of the domain of attraction and

the transmission saving, in which the smaller the domain of attraction, the higher the

transmission saving.

Finally, Chapter 5 was also dedicated to the second class of systems. The con-

tribution of the chapter is related to the synthesis of two event-triggering mechanisms

and a state-feedback controller ensuring the regional asymptotic stability of the closed-

loop system. The proposed ETMs were specified to reduce the data transmission of

the states and scheduling parameters at the sensor node. Thus, unlike the last chap-

ter, we assumed that the controller scheduling parameter can differ from that of the

system, which is more realistic, yielding a certain degree of robustness concerning

the parameter deviations. Through numerical examples, we have shown the efficiency

of our approach in saving the limited network resources, mainly with regard to the

transmission of the scheduling parameters.

6.1 PERSPECTIVES

Among some possible extensions to the work presented in this thesis, the follow-

ing directions can be mentioned:

• Study a more general parameter dependence, for instance, the polynomial one.

Such a direction should impose to consider other methods as those based on

sum-of-squares (WU, F.; PRAJNA, 2005).

• Expand the approach to introduce discretization errors in the system modeling.

As the present work considers a discrete-time framework for analysis and control,

discretization issues are not addressed. Thus, it would be interesting to investi-

gate discretization procedures to present a more general formulation, like that

proposed by (BRAGA et al., 2015).

• Study more involving event-triggering mechanisms, such as dynamic ones. Ac-

cording to (GIRARD, 2014), the guaranteed lower bound on inter-execution times
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using a dynamic event generator cannot be smaller than that obtained for a classi-

cal static event generator. So, the use of a dynamic event-generator could further

improve the results obtained in this work, eliminating, for instance, the periodic

behavior seen in the examples in Chapter 4.

• Consider other imperfections typical of networked control systems such as network-

induced delays. In the present work, it was considered that the communication

channel can transmit information quickly enough that this problem can be disre-

garded. However, that is not always the case, and tools to consider the effect of

this delay in such context are an important open topic.
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