
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS

PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA PURA E APLICADA

Raul Tintaya Marcavillaca

On relative-error inertial-relaxed inexact proximal

algorithms for monotone inclusion problems

Florianópolis
2020

Raul Tintaya Marcavillaca

On relative-error inertial-relaxed inexact proximal

algorithms for monotone inclusion problems

Tese apresentada ao Curso de Pós- Graduação
em Matemática Pura e Aplicada do Centro de
Ciências Físicas e Matemáticas da Universidade
Federal de Santa Catarina, para a obtenção do
grau de Doutor em Matemática, com Área Con-
centração em Matemática Aplicada.
Orientador. Prof. Maicon Marques Alves, Dr.

Florianópolis
2020

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Tintaya Marcavillaca, Raul
 On relative-error inertial-relaxed inexact proximal
algorithms for monotone inclusion problems / Raul Tintaya
Marcavillaca ; orientador, Maicon Marques Alves, 2021.
 104 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro de Ciências Físicas e Matemáticas,
Programa de Pós-Graduação em Matemática Pura e Aplicada,
Florianópolis, 2021.

 Inclui referências.

 1. Matemática Pura e Aplicada. 2. Otimização convexa.
Operadores monótonos maximais. 3. Método ponto proximal
inexato. 4. Métodos projectivos de decomposição. 5. Inercia
e relaxação. I. Marques Alves, Maicon. II. Universidade
Federal de Santa Catarina. Programa de Pós-Graduação em
Matemática Pura e Aplicada. III. Título.

Raul Tintaya Marcavillaca

On relative-error inertial-relaxed inexact proximal

algorithms for monotone inclusion problems

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca examinadora com-
posta pelos seguintes membros:

Prof. Alfredo Noel Iusem, Dr.
Instituto de Matemática Pura e Aplicada - IMPA

Prof. Paulo José da Silva e Silva, Dr.
Universidade Estadual de Campinas - UNICAMP

Prof. Antonio Carlos Gardel Leitão, Dr.
Universidade Federal de Santa Catarina - UFSC

Prof. Douglas Soares Gonçalves, Dr.
Universidade Federal de Santa Catarina - UFSC

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado
adequado para obtenção do título de doutor em Matemática, com área de concentração em
Matemática Aplicada.

Prof. Daniel Gonçalves, Dr.
Coordenador do Programa de Pós-Graduação

Prof. Maicon Marques Alves, Dr.
Orientador

Florianópolis, 2020

“Faça as coisas o mais simples que puder,
porém não as mais simples”.

Albert Einstein.

Agradecimentos

Foram muitas pessoas que contribuiram para eu chegar até aqui:

Esta tese é dedicada à minha família: meus pais, Eusebio e Gerarda; irmãos, Eber, Yackelin,
Charmely e Lisbeth; minha tia Plácida e prima Miriam. Obrigado por me motivar e incentivar
a continuar crescendo acadêmica e profissionalmente, por todo o apoio emocional, e por todos os
momentos que passamos juntos.

O meu mais profundo agradecimento ao meu orientador Prof. Dr. Maicon Marques Alves, pelo
seu tempo e paciência; sem ele, esta tese não teria sido possível. Seu valioso feedback contribuiu
muito para desenvolvimento de este trabalho. Agradeço a ele pela amizade, por suas percepções
e sugestões que ajudaram a moldar minhas habilidades de pesquisa.

Agradeço aos professores membros da comissão examinadora: Alfredo Iusem, Antonio Gardel
Leitão, Paulo José da Silva e Douglas Soares Gonçalves. Obrigado pelos comentários úteis e
sugestões que ajudaram a melhorar esta tese. Meu especial agradecimento ao Professor Alfredo
por todo o apoio e as recomendações.

Agradeço aos meus colegas da sala 107: Marina, Joel, Javi e Rubens pelas boas conversas e
momentos de descontração nas horas do café. Em especial à minha irmã acadêmica Marina, pela
amizade e por todas as boas e agradavéis conversas durante esse período de doutorado.

Agradeço a todos os amigos colombianos que conheci em Florianópolis: Cindy, Sebastian,
Paula (catalã - colombiana), Felipe e Alex "Pelucas" por me fazerem sentir como em casa apesar
de estar longe dela. Em especial, sou grato à minha namorada Marduk, por todo o amor, incentivo
e companheirismo durante esses anos.

Agradeço aos meus amigos e professores da facultade da UNSAAC no Perú, Guido Alvarez,
Alejandro Tito, José Moso, Ignacio Velasques e Patricio Choque pelos primeiros ensinamentos
em matemática e pela acolhida atenciosa que sempre me mostram cada vez que volto lá. Não
posso deixar mecionar aos meus queridos amigos e colegas Alain, Gino, Carmen, Lisbeth, Shirley
e Edison Niño, obrigado pela amistade e momentos agradáveis.

Por fim, gostaria de agradecer a todos os professores e funcionários do departamento de
matemática da UFSC. Em particular, gostaria de agradecer ao Professor Ruy Charão pela amizade
e motivação para superar as adversidades e continuar estudando. Agradeço também a Elisa e Erica
pela forma amável e competente com que sempre me receberam na secretaria da pos-graduação.

A todos aqueles que de alguma forma contribuíram para para o desenvolvimento de este
trabalho, que por algum motivo não foram mencionados aqui, meus sinceros agradecimentos.

Agradeço à CAPES pelo apoio financeiro.

Resumo

Neste trabalho, propomos e estudamos uma versão inercial subrelaxada e com erro relativo do
método proximal extragradiente (HPE) de Sodolov e Svaiter para resolver problemas de inclusão
monótono. Estudamos a convergência assintótica do método, bem como suas taxas de convergên-
cia não-assintótica global em termos de complexidade computacional em número de iterações.
Analisamos o novo método sob condições mais flexíveis do que as existentes na literatura, tanto
nos parâmetros de extrapolação quanto de erro relativo. A nova abordagem é aplicada a dois
tipos de métodos do tipo "forward-backward" para resolver inclusões monótonas com determinada
estrutura.

Além disso, para resolver problemas de inclusão monótono envolvendo soma finita de oper-
adores monótonos maximais, propomos e estudamos uma versão inercial relaxada om erro relativo
do método "projective splitting method (PSM)" de Eckstein e Svaiter. O algoritmo proposto se
beneficia de uma combinação de efeitos inerciais e de relaxação, controlada por parâmetros dentro
de uma determinada faixa. Propomos condições suficientes sobre esses parâmetros (também estu-
damos a interação entre eles) para garantir a convergência fraca das sequências geradas por nosso
algoritmo. Como uma aplicação do algoritmo proposto, derivamos um algoritmo inercial semel-
hante ao método "alternating direction method of multipliers method (ADMM)" com multiplos
blocos.

Palavras-chaves:Métodos inerciais e relaxados. Método de ponto proximal inexato. Método
HPE. Algoritmos de decomposição. Algoritmos projetivos de decomposição. Algoritmos do tipo
"forward-backward". ADMM multibloco. Erro-relativo. Complexidade em iteração. Taxas de
convergência.

i

Resumo Expandido

Introdução

Seja H um espaço de Hilbert com produto interno 〈·, ·〉 e ‖ · ‖ =
√
〈·, ·〉 a norma induzida

pelo produto interno. Um problema de inclusão Monótona (MIP) consiste em encontrar z ∈ H

tal que
0 ∈ T (z) (1)

onde T : H ⇒ H é um operador monótono maximal. Devido à generalidade matemática dos
operadores monótonos maximais, o problema (1) é muito inclusivo e serve como um modelo
unificado para muitos problemas de importância fundamental, tais como, problemas de ponto
fixo, problemas de desigualdade variacional problemas de minimização convexa, e suas extensões.

O método iterativo mais popular para resolver (1) aproximadamente é o método de ponto
proximal (PP), proposto inicialmente por Martinet(1970) no contexto de otimização convexa, e
posteriormente generalizado por Rockafellar(1976) para um contexto mais geral de operadores
monótonos maximais. Os métodos PP com erro-relativo são variantes inexactas do método PP
que permite uma tolerância de erro-relativo na solução aproximada de subproblemas proximais.
O Método Híbrido Proximal Extragradiente (HPE) proposto por Solodov e Svaiter (1999) cor-
responde a essa família de métodos. Monteiro e Svaiter (2010) estabeleceram a complexidade
computacional para o método HPE. Em muitas aplicações, os métodos PP na forma clássica
não são muito eficientes. Os avanços que visam acelerar a convergência de métodos proximais
enfocam, entre outras abordagens, as formas de incorporar informações de segunda ordem para
alcançar uma convergência mais rápida. Para esse fim, Álvarez e Attouch (2001) propuseram
o método PP inercial obtido pela discretização no tempo de um sistema dinâmico dissipativo
de segunda ordem. A partir desse trabalho, os métodos inerciais têm sido um foco de estudo
explorado por muitos pesquisadores.

Neste trabalho também consideramos problemas de inclusão monótono da forma

0 ∈ G∗
1T1(G1z) + . . .+G∗

nTn(Gnz) (2)

onde (para cada i = 1, . . . , n), Ti : H ⇒ H são operadores monótonos maximais e Gi : H → H

são operadores lineares e contínuos. Problemas do tipo (2) aparece em diferentes campos da
matemática aplicada e otimização, incluindo aprendizado de máquinas, problemas inversos e
processamento de imagens. Uma estratégia muito popular para encontrar soluções aproximadas
de (2) são os métodos de decomposição (ou de divisão) que remonta ao desenvolvimento de alguns
esquemas numéricos bem conhecidos como o método de Douglas-Rachord, método das inversas
parciais e entre outras. A principal característica desta abordagem é que em cada iteração é
usado a informação individual de cada operador Ti e Gi. A família de métodos projetivos de
decomposição (SPM) que foi introduzida recentemente por Eckstein e Svaiter (2009) tem ganhado

ii

notoriedade nos últimos anos, devido a sua flexibilidade comparado com outro tipo de métodos
de decomposição, no que diz respeito aos parâmetros e à ativação de cada operador Ti (usando
o resolvente de cada uma de elas) e Gi durante o processo iterativo. O método proposto é
baseado na reformulação de (2) como um problema de viabilidade convexo definido por um
convexo fechado (conjunto de soluções estendidas do problema (2)) para o qual um hiperplano
separador é construído por avaliação individual do resolvente de cada operador.

Objetivos

• Propor uma versão inercial relaxada do método HPE para resolver (1); estudar sua con-
vergência assintótica e não assintótica(taxas de convergência não assintótica e termos da
complexidade computacional) sobre certas condições nos parámetros de inercia e relaxação.
Como uma aplicação, se busca usar a nova abordagem para estudar dois tipos de métodos do
tipo forward-backward para quando T é considerado como soma de um monótono ponto-
ponto cocoercivo (ou Lipschitz contínuo) com outro operador ponto-conjunto monótono
maximal.

• Propor uma versão inercial relaxada do método projetivo de decomposição (SPM) para
resolver um problema de inclusão monótono do tipo (2); propor condições suficientes sobre
os parâmetros de inercia e relaxação, assim como também estudar a interação entre eles,
para analisar a convergência fraca do novo método proposto. Como uma aplicação se busca
derivar um algoritmo inercial semelhante ao método de direção alternada de multiplicadores
(ADMM) com múltiplos blocos.

Metodologia

Através de uma revisão bibliográfica, observamos que: (i) A combinação de efeitos de inércia e
relaxação que é uma estratégia puramente algébrico tem sido bastante estudado nos últimos anos,
pois fornecem uma forma de aceleração de métodos numéricos para problemas de minimização
convexa e problemas de inclusão monótono. Mais precisamente, as técnicas de relaxação combinan
a saída da operação(por exemplo, o operador (etapa) proximal ou gradiente para o caso de
minimização convexa) com a iteração anterior controlado por um parâmetro de relaxação, em que
a sobre-relaxação é conhecido por melhorar a convergência do algoritmo; enquanto a estratégia
inercial é dado antes da operação mediante um passo de extrapolação usando como informação os
últimos dois iterados. (ii) A solução de sub-problemas de forma inexacta usando critérios de erro-
relativo podem melhorar substancialmente o desempenho do método comparado com a solução
de forma exacta. Cabe mencionar que o método HPE se caracteriza por usar esse tipo de critérios
na solução aproximada de subproblemas internos, e ganharam notoriedade devido à sua robustez
como um framework para o projeto e análise de vários algoritmos concretos de inclusão monótona,
desigualdades variacionais, ponto de sela e problemas de otimização convexa. Motivado pela
discussão acima, neste trabalho buscamos combinar esses três ingredientes, inércia, relaxação
e erro-relativo para propor métodos iterativos inexatos con inércia e relaxação na procura de
soluções aproximadas para problemas do tipo (1) e (2).

iii

Resultados e Considerações Finais

Como resultado de nossa pesquisa, propomos e estudamos a convergência do método HPE in-
ercial e sub-relaxado para encontrar soluções aproximadas de (1). Estabelecemos a complexidade
computacional em termos do número de iterações(número de iterações necessárias para alcançar
tolerâncias prescritas) para nosso método proposto. Além disso, desde que o problema (2) pode
ser visto como um problema de viabilidade convexa como mencionamos anteriormente, propomos
um método iterativo inercial que resolve este problema de viabilidade convexa, e estudamos sua
convergência; como aplicação de este último, propusemos um método inercial com relaxação e
erro-relativo que resolve (2). Finalmente como subproducto derivamos um método com inércia
e relaxação parecido ao método de direção alternada de multiplicadores (ADM) com múltiplos
blocos. Também foram estabelecidas condições suficientes sobre os parâmetros para garantir a
convergência de esses algoritmos propostos. Cabe mencionar que todos os resultados mostrados
neste trabalho com a excepção de aquelas citados, são originais e contribuem ao desenvolvimento
de novos métodos que sejam rápidos no sentido de acelerar a convergência, flexíveis, e de fácil
implementação.

Palavras-chave: Métodos inerciais e relaxados. Método de ponto proximal inexato. Método
HPE. Algoritmos de decomposição. Algoritmos projetivos de decomposião. Algoritmos de tipo
forward-backward. ADMM multibloco. Erro-relativo. Complexidade em iteração. Taxas de
convergência.

iv

Abstract

We propose and study an inertial under-relaxed version of the relative-error hybrid proximal
extragradient (HPE) method of Sodolov and Svaiter for solving monotone inclusion problems. We
study the asymptotic convergence of the method, as well as its nonasymptotic global convergence
rates in terms of iteration-complexity. We analyze the new method under more flexible assump-
tions than existing ones, both on the extrapolation and on the relative-error parameters. The
approach is applied to two types of forward-backward methods for solving structured monotone
inclusions.

For solving structured monotone inclusion problems involving the sum of finitely many maxi-
mal monotone operators, we propose and study an inertial-relaxed version of Eckstein and Svaiter
projective splitting method. The proposed algorithm benefits from a combination of inertial and
relaxation effects, which are both controlled by parameters within a certain range. We propose
sufficient conditions on these parameters (as well as we study the interplay between them) to
ensure weak convergence of sequences generated by our algorithm. As an application of the pro-
posed algorithm we derive an inertial algorithm resembling the multi-block alternating direction
method of multipliers (ADMM).

Keywords: Inertial and relaxed methods. Inexact proximal point methods. HPE method.
Splitting algorithms. Projective splitting method. Forward-backward type algorithms. Multi-
block ADMM. Relative-error. Iteration-complexity. Convergence rates.

v

vi

Table of contents

Introduction 1

1 Preliminaries 7
1.1 Notation and basic results . 7
1.2 Monotone operators and convex analysis . 8
1.3 Monotone inclusion problems . 11
1.4 Proximal Point and operator splitting methods 12

1.4.1 Proximal Point algorithm . 12
1.4.2 Forward-backward and Tseng’s forward-backward algorithms 13
1.4.3 Projective splitting method (PSM) . 15

1.5 Inertial methods . 17

2 On inexact relative-error hybrid proximal extragradient, forward-backward
and Tseng’s modified forward-backward methods with inertial effects 20
2.1 Preliminaries, basic results and general notation 20

2.1.1 Problem statement . 20
2.1.2 The Alvarez–Attouch’s inertial proximal point method 21
2.1.3 The hybrid proximal extragradient (HPE) method of Solodov and Svaiter . 21
2.1.4 Forward-backward and Tseng’s modified forward-backward methods 23

2.2 An inertial under-relaxed hybrid proximal extragradient (HPE) method 23
2.2.1 Convergence analysis . 25
2.2.2 Complexity analysis . 31
2.2.3 On the under-relaxed inertial proximal point method 34

2.3 Inertial under-relaxed forward-backward and Tseng’s modified forward-backward
methods . 36
2.3.1 An inertial under-relaxed Tseng’s modified forward-backward method . . . 36
2.3.2 On the inertial under-relaxed forward-backward method 39

3 A relative-error inertial-relaxed inexact projective splitting algorithm for struc-
tured monotone inclusion problems 41
3.1 Problem statement . 41
3.2 An inertial-relaxed separator-projection method 42
3.3 A relative-error inertial-relaxed inexact projective splitting algorithm 51

3.3.1 Our main Algorithm . 52
3.3.2 Convergence of Algorithm 7 . 57

3.4 An inertial algorithm resembling the multi-block ADMM method 64

vii

4 Final considerations and future perspectives 73
4.1 Main results . 73
4.2 Future research . 74

A Basic results 76
A.1 Basic results in R . 76
A.2 Some auxiliary results . 78

References 80

viii

Basic notation and terminology

H,H0, . . . ,Hn: real Hilbert spaces

H := H0 × . . .×Hn−1: product space

〈·, ·〉 : inner product

‖ · ‖: norm induced by the inner product 〈·, ·〉

R
n: the n-dimensional Euclidian space

T : H ⇒ H: set-valued or point-to-set operator

domT : the domain of T

imT : the image or range of T (rangeT)

G(T): the graph of T

f : H→ (−∞,+∞]: extended-real valued function

dom(f): the domain of f

∂f : the subdifferential of a convex function f

f ∗: Fenchel-Legendre conjugate of f

∇f : gradient of a differentiable function f

NC(x): the normal cone of a set C at a point x

ιC(x): the indicator function of a set C

ri(D): relative interior of a set D

L∗: the adjoint operator of a linear and bounded operator L

MT : the transpose of a matrix M

PC : the projection operator onto a nonempty subset C of H.

1

Introduction

Maximal monotone operators appear in several branches of applied mathematics such as op-
timization, partial differential equations, control theory, mathematical economics and variational
analysis. These operators have been object of intense research between 1960s and 1980s, when
Kachurovskii, Brezis, Browder, Minty and Rockafellar established the fundamental results about
them. The notion of monotone operator was first formulated and studied in [72, 86]. Much of
the initial work was done in the context of functional analysis and partial differential equations
(see e.g., [28, 29, 73]), but it was soon noticed the relevance of the theory in convex analysis and
convex optimization (see [87, 108, 110]).

A monotone inclusion problem (MIP) consists in finding the root of a maximal monotone
operator, i.e., 0 ∈ T (z) where T is maximal monotone. The MIP is motivated by the fact
that optimality conditions for convex optimization problems that meet a regularity condition
can be expressed as monotone inclusion problems. Furthermore, the investigations performed in
this more general setting of (maximal) monotone operators bring new insights when considering
the problem of solving complicated nondifferentiable convex optimization problems involving
finite sums, compositions with linear operators or infimal convolutions. Moreover, due to its
applications in the theory of nonlinear partial differential equations, variational inequalities and
specially in optimization theory (see e.g., [20, 26, 55, 73]), the study of monotone inclusion
problems continues to attract a large group from the mathematical community.

One of the most popular algorithms for finding approximate solution for monotone inclusion
problems is the proximal point algorithm (PPA) (or proximal point (PP) method), proposed by
Martinet [84] (1970) in the context of monotone variational inequalities(with point-to-point op-
erators) and then popularized by Rockafellar in [112] for general maximal monotone operators
(1976). Actually, the term “proximal point” was originally coined early by Moreau in 1962 (see
[94]), but it gained notoriety after Rockafellar’s work. Although the PPA has good global con-
vergence properties [112], the major drawback is that it requires the evaluation of the resolvent
mapping (λT + I)−1. The difficulty lies in the fact that inverting the operator λT + I, which
can be as difficult as solving the original problem. One alternative to attenuate this drawback is
to decompose the operator as a sum of two or more maximal monotone operators in such a way
that their resolvents are relatively easier to calculate. Thereby, one can create methods that use
independently these proximal mappings.

Among other results, Rockafellar in [112] proposed an inexact version of the PPA based on
a summable absolute error criterion. The error criterion considered by Rockafellar involves a
sequence of errors whose sum is finite, which can present some practical disadvantages in specific
problems, as were pointed in [33, 39, 106] because this error criterion does not indicate how they
are chosen. Hence, it turns out to be relevant to develop error conditions for approximating
proximal subproblems that can be computable during the progress of the iterates. In the last two
decades, as an alternative to inexact Rockafellar’s PPA, relative-error methods have deserved the

2

attention of several researchers (see, e.g., [7, 22, 34, 92, 120, 121]). This type of inexact PPA,
which started with the pioneering works of Solodov and Svaiter [118, 117], is widely used both
in the theory and practice of numerical optimization (see, e.g., [34, 60, 64, 91, 92]). The first
method proposed by Solodov and Svaiter is the hybrid projection proximal point (HPP) method
[118]. The main characteristic of the HPP method is the combination of a relative-error criterion
and projective steps. Indeed, at each iteration, a hyperplane is constructed that strictly sepa-
rates the current iterate from the solution set (which is assumed to be nonempty) and then the
current iterate is projected onto this hyperplane (that is constructed using points in the graph of
the operator). The second type of inexact PPA proposed by Solodov and Svaiter is the hybrid
proximal extragradient (HPE) method [117]. This general framework has a different mechanism
of iteration than the HPP method and combines steps of the proximal and Korpolevich’s extra-
gradient [74] methods. One of the most important characteristics of these two approaches is that
they allow a significant relaxation of tolerance requirements imposed on the solution of proximal
subproblems. This yields a more practical framework based on the proximal algorithms.

We mention now that if the MIP consists in finding zeros of a sum with more than two maximal
monotone operators, since in general there exists no closed formula for the resolvent of the sum of
operators in terms of their resolvents, then it follows that the PPA applied directly to this sum is
not suitable from an implementation point of view. The operator splitting algorithms overcome
this drawback, where the term “splitting” is used in order to stress out that in the iterative scheme
the operators involved are evaluated separately. In particular, if we consider a MIP as a sum of
two maximal monotone operators, we mention the Peaceman-Rachford [101], Douglas-Rachford
[67, 76, 49], forward-backward [76, 100] and Tseng’s forward-backward-forward [128] methods as
the most popular algorithms to solve this type of problems. We also mention that very recently,
David and Yin proposed a three-operator splitting method in [46]. For any arbitrary sum of
maximal monotone operators, we mention the operator splitting method proposed by Spingarn
[123], where at each iteration, the solution of subproblems is performed in parallel.

The primal-dual splitting methods are also splitting methods that deal with inclusion prob-
lems where some complex structure of monotone operators is involved, such as mixtures of linearly
composed and parallel-sums. The main difficulties in applying directly these methods are due to
the fact that the resolvent of such compositions cannot be expressed in a closed manner (except
in some very restrictive cases), see [24, 27, 35, 44, 45] for further considerations concerning this
class of algorithms. The key feature of these algorithms is that they are fully decomposable, in
the sense that each of the operators is evaluated separately in the algorithm, either via forward or
via backward steps. It is also worth mentioning that primal-dual algorithms solve simultaneously
a (primal) monotone inclusion problem and its dual monotone inclusion problem in the sense of
Attouch-Thera [18]. For instance, [27] deals with monotone inclusion problems involving sums of
compositions with bounded linear operators by rewriting the original monotone inclusion prob-
lem as the sum of a maximal monotone operator and a linear and skew-adjoint operator in an
appropriate product space, and then applies Tseng’s splitting algorithm [128] to develop a new
algorithmic framework.

Recently, a new family of operator splitting methods for solving MIPs involving sums of
maximal monotone operators was introduced in [51, 52] by Eckstein and Svaiter. The proposed
method is based on reformulating the MIP as a convex feasibility problem defined by a closed
convex (extended solution set) for which a separating hyperplane is constructed by individual
evaluation of the resolvent of each operator. The resulting algorithm is essentially a projective
method, in the sense that in each iteration a hyperplane is constructed separating the currently

3

iterate to the extended solution set (defined in an appropriate product space) and then the next
iterate is calculated by projecting the current iterate onto this hyperplane. Nowadays this family
of operator splitting methods is known as projective splitting methods (PSM). We refer the reader
to [2, 42, 48, 68, 71, 70, 69, 79, 80] for some recent contributions on this subject.

Inertial methods for solving monotone inclusion and optimization problems, with roots in
(time) implicit discretization of second-order differential equations, gained a lot of attention in
nowadays research (see, e.g., [3, 9, 11, 13, 16] and the references therein). After discretizing the
second-order dynamical system one obtains an iterative scheme where the next iterate depends
of the two previous iterates. The early example of such methods is due to Polyak [105], who
introduced the so-called heavy ball method for minimizing a strongly convex quadratic function
which can greatly improve upon the convergence speed of the gradient method (see also [104], p.
65). In [5], Alvarez and Attouch translated the idea of the heavy ball method to the general setting
of a maximal monotone operators using the scheme of the PPA, resulting in an algorithmic scheme
named inertial proximal point algorithm (IPPA). Since then, we notice an increasing interest of
the optimization community in the class of first-order proximal algorithms with inertial effects,
including inertial versions of ADMM, Douglas-Rachford, forward-backward and Tseng’s modified
forward-backward methods (see, [10, 36, 38, 77, 96]), as well as inexact versions of them (see, e.g.,
[4, 6, 8, 22]). The intense research activity on inertial methods in the last years is in part due
to its links with fast first-order methods for convex (also for non-convex) optimization problems
(see, e.g., [13, 17, 21, 99]). Let us mention also the fast gradient method of Nesterov [97, 98] and
the FISTA [21] of Beck and Teboulle, which are iterative schemes involving inertial steps and
have fast convergence rates in function values (in the worst case).

Motivation and goals

In the theory of monotone operators, an important topic is the study of iterative methods for
solving monotone inclusion problems

0 ∈ T (z). (3)

In this thesis, we are concerned with the monotone inclusion problem (3). We are also interested
in the case where T can be written as a sum of maximal monotone operators composed with
bounded linear operators

0 ∈
n∑

i=1

G∗
iTi(Giz). (4)

It is known that a way to speed up the convergence rate of algorithms in optimization and
monotone inclusions consists in constructing the next iterate by combining the information of the
previous iterations by introducing relaxation and inertia.
Relaxation and Inertia. Relaxation techniques have proven to be an essential ingredient in the
formulation of algorithms for monotone inclusions, as they provide more flexibility to the iterative
scheme (see [20, 49]) and have the property of speeding up the algorithm similar to the inertia.
An important issue is the study of the interplay between relaxation and inertia, which will be
one of the main topics of this thesis. Without using inertia, over-relaxation provides a natural
way to speed up algorithms. By contrast, for the solution of monotone inclusions by inertial

4

methods, we will see that under-relaxation allows to balance inertial and relaxation effects (see
also [4, 11, 10, 12, 16, 81, 66]).

Motivated by the above discussion, our main goal in this thesis is to propose inexact methods
with inertial and relaxation effects for finding zeros of the inclusion problems (3) and (4). We
will focus our attention in the HPE method [92] and the PSM [51, 52], for solving (3) and (4)
respectively, by introducing a new and extra step, named extrapolated or inertial step at each
iteration of such algorithms. The proposed algorithmic frameworks unify the basic ideas of the
IPPA with the HPE method and PSM, respectively.

Main contributions. We summarize the main contributions of this thesis are as follows.

(a) Contributions in Chapter 2. We propose and study an inertial and relaxed version of
the HPE method of Sodolov and Svaiter [117] for solving the inclusion monotone problem
(3).We also study the asymptotic convergence and nonasymptotic global O(1/

√
k) point-

wise and O(1/k) ergodic convergence rates (iteration-complexity) of the proposed algo-
rithm (Algorithm 2). As applications, we established asymptotic convergence and pointwise
and ergodic iteration-complexity of inertial under-relaxed versions of the Tseng’s modified
forward-backward method (Algorithm 4) and forward-backward method (Algorithm 5) for
find zeros of sum of two maximal monotone, i.e., 0 ∈ F (z)+B(z) under the assumption that
F is monotone and either Lipschitz continuous or cocoercive and B is maximal monotone
operator.

(b) Contributions in chapter 3. We propose an inertial-relaxed and inexact version of the
projective splitting method introduced by Eckstein and Svaiter in [51, 52] for solving (4).
We establish asymptotic convergence and nonasymptotic pointwise global convergence rates
for the proposed algorithm (Algorithm 7). The analysis is established by viewing Algorithm
7 within a general framework (Algorithm 6) for solving the (feasibility) problem of finding
points in closed convex subsets of Hilbert spaces, where the joint adjustment of inertia
and relaxation parameters plays a central role. We propose sufficient conditions on these
parameters (as well as we study the interplay between them) to ensure weak convergence of
sequences generated by the framework. Finally, as an application of Algorithm 7 we derive
an inertial algorithm (Algorithm 8) resembling the multi-block ADMM.

Outline of the thesis. This thesis is organized in four chapters as follows. Chapter 1 contains
five sections. In Section 1.1, we present notations and basis results. Section 1.2 reviews some
definitions and facts on maximal monotone operators and convex analysis that will be used along
this work. In Section 1.3, we briefly review monotone inclusions, proximal point and splitting
methods, and in Section 1.5 we give a brief overview on inertial methods. Chapter 2 is devoted
to the HPE method with inertial effects for solving monotone inclusion problems. It contains
three sections as follows. In Section 2.1, we present some preliminaries and basic results, review
some existing algorithms and discuss in detail the main contributions of this chapter. The inertial
under-relaxed HPE method (Algorithm 2) is presented in Section 2.2; asymptotic convergence
and iteration-complexity analysis are discussed in this section. Sections 2.3 is devoted to present
and study the inertial versions of the Tseng’s modified forward-backward and forward-backward
algorithms; convergence results are also presented. Chapter 3 presents an inertial and inexact
version of the PSM for solving structured monotone inclusion problems involving the sum of (fi-
nite) many maximal monotone operators. It is divided into four sections. Section 3.1 reviews
some important facts on such problems and provides a brief motivation for the projective splitting

5

method. In section 3.2, it is stated an inertial-relaxed separator-projector method for solving the
(feasibility) problem of finding points in closed convex subsets of a Hilbert space (Algorithm 6)
and its weak convergence is analyzed. In Section 3.3, it is presented the main contribution of this
chapter, the inertial-relaxed (inexact) projective splitting method (Algorithm 7) as a specializa-
tion of Algorithm 6. We also prove weak convergence, exploiting the analysis in the preceding
section. Finally, in Section 8, we state an application of the preceding section; we derived an
inertial multi-block ADMM-like method (Algorithm 8) for a structured and constrained convex
optimization problem. Finally, in Chapter 4, we will discuss the main results and contributions
of this thesis to (inexact) inertial-relaxed methods for solving monotone inclusion problems and
we will present some proposals for future works. More details on goals, results achieved and
contributions will be also discussed in each chapter.

6

Chapter 1

Preliminaries

In this chapter, we present some basic results. First, we review some important facts and
definitions of convex analysis, maximal monotone operators and ε–enlargements. We also address
iterative methods for solving structured monotone inclusions problems, as well as its motivations,
and finally we give an overview of the inertial methods. We also refer the reader to the literature
on these topics [10, 20, 51, 52, 103, 129] and references therein.

1.1 Notation and basic results

Throughout this thesis we will denote by H0,H1, . . . ,Hn real Hilbert spaces and let 〈·, ·〉i and
‖ · ‖i =

√
〈·, ·〉i be the inner product and its induced norm, for i = 0, 1, . . . , n. For simplicity we

will write ‖ · ‖ := ‖ · ‖i and 〈·, ·〉 := 〈·, ·〉i, for all i = 0, . . . , n. Assume that H0 = Hn and let
H := H0 × . . . × Hn−1 be endowed with the inner product and norm defined, respectively, as
follows (for some γ > 0):

〈(z, w), (z′, w′)〉γ = γ〈z, z′〉+
n−1∑

i=1

〈wi, w
′
i〉, ‖(z, w)‖2γ = γ‖z‖2 +

n−1∑

i=1

‖wi‖2,

where z, z′ ∈ H0 and w := (w1, . . . , wn−1), w
′ := (w′

1, . . . , w
′
n−1) ∈ H1 × . . .×Hn−1.

The symbols ⇀ and → denote weak and strong convergence, respectively. For a bounded
linear operator L : H → G, where H and G are real Hilbert spaces, the operator L∗ : G → H

denotes the adjoint operator of L. The norm of L is given by

‖L‖ = sup
x 6=0

‖Lx‖G
‖x‖H

.

For C a nonempty, convex and closed subset of H, we define the orthogonal projection PC(x)
of x onto C as the unique point PC(x) in C such that

‖PC(x)− x‖ ≤ ‖x− y‖ for all y ∈ C,

i.e.,
PC(x) = argmin{‖x− y‖ : y ∈ C}.

The following is a well-known fact on the orthogonal projection:

z = PC(x)⇔ z ∈ C and 〈x− z, y − z〉 ≤ 0, ∀y ∈ C. (1.1)

7

1.2 Monotone operators and convex analysis

An operator (or mapping) T : H ⇒ H is called set-valued operator or point-to-set operator,
if T maps every point x ∈ H to a subset of H, i.e.

T : H ⇒ H : x 7→ T (x) ⊂ H.

The graph of T is defined by

G(T) := {(x, v) ∈ H ×H | v ∈ T (x)}.

The domain and range (or image) of T are defined respectively, as

domT := {x ∈ H | T (x) 6= ∅} and imT := {v ∈ H | ∃ x ∈ H : v ∈ T (x)}.

The inverse of T is T−1 : H ⇒ H such that v ∈ T (x) if and only if x ∈ T−1(v), i.e.,

T−1(v) := {x ∈ H | v ∈ T (x)}.

For any γ > 0, the operator γT : H ⇒ H is defined by

(γT)x := γT (x) := {γv | v ∈ T (x)}.

The resolvent of T : H ⇒ H is defined as

JλT := (I + λT)−1 λ > 0,

where I : H→ H is the identity operator in H.

Definition 1.2.1. A Set-valued operator T : H ⇒ H is said to be

(i) monotone if, for any (x, v), (x′, v′) ∈ G(T),

〈x− x′, v − v′〉 ≥ 0;

(ii) maximal monotone if it is monotone and maximal in the family of monotone operators in
H, with respect to the partial order of the inclusion, that is, if S : H ⇒ H is monotone and
G(T) ⊆ G(S), then T = S.

If T is maximal monotone, then JλT : H → H is single-value and maximal monotone, [20,
Proposition 23.8, Corollary 23.11].

Definition 1.2.2. Let f : H→ (−∞,+∞] be an extended-real valued function.

(a) the domain and epigraph of f are defined, respectively, as

dom f := {x ∈ H | f(x) < +∞}

and

epi f := {(x, µ) ∈ H × R | µ ≥ f(x)}.

8

(b) f is proper if dom f 6= ∅.

(c) f is convex, if for all x, y ∈ H and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

(d) f is lower-semicontinuos (or closed) if epi(f) is closed in H × R.

The set of proper, lower-semicontinuous and convex functions from H to (−∞,+∞] is denoted
by Γ0(H).

The subdifferential of a proper function f : H→ (−∞,+∞] is the set-valued (or point-to-set)
operator ∂f : H ⇒ H defined as

∂f(x) :=

{
{v : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ H} if x ∈ dom f

∅ otherwise.

The vector v ∈ H is called a subgradient of f at x ∈ H if v ∈ ∂f(x). Let us mention that if
f is proper, convex, and Gâteaux differentiable at x ∈ H, then ∂f(x) = {∇f(x)} (see e.g. [20,
Proposition 17.31]). The operator ∂f is trivially monotone if f is convex and proper. In addition,
if f ∈ Γ0(H) then ∂f is maximal monotone (see [110] or [20, Theorem 20.25]).

Given ǫ ≥ 0, the ǫ−subdifferential of f : H→ (−∞,+∞] is defined at every z ∈ H as

∂ǫf(z) := {v ∈ H | f(z′) ≥ f(z) + 〈v, z′ − z〉 − ǫ ∀z ∈ H}.
The Fenchel-Legendre conjugate (or Fenchel conjugate, or Legendre–Fenchel transform) of a

convex function f , denoted by f ∗ : H→ (−∞,+∞], is defined as

f ∗(u) = sup
z∈H
{〈u, z〉 − f(z)} .

It is simple to see that f ∗ is convex and closed function. Furthermore. if f is proper, closed and
convex, f ∗ is a proper function and holds the property:

u ∈ ∂f(x)⇔ x ∈ ∂f ∗(u).

The Fermat’s rule in the nonsmooth case underlines the usefulness of the subdifferential: if f is
proper, then for x ∈ dom f one have

x ∈ argmin f if and only if 0 ∈ ∂f(x). (1.2)

The proximal mapping proxλf : H→ H is defined as follows:

proxλf (x) := argmin
ξ∈H

{
f(ξ) +

1

2λ
‖x− ξ‖2

}
λ > 0. (1.3)

Writing the optimality condition (1.2)(Fermat’s rule) for (1.3), we have that

proxλf (x) + λ∂f
(
proxλf (x)

)
∋ x,

i.e.,

proxλf (x) = (I + λ∂f)−1 (x). (1.4)

Thus, proxλf is the resolvent of index λ > 0 of the maximal monotone operator ∂f .

9

Example 1. The normality operator of a convex and closed set C, denoted by NC , is defined as
follows

NC(x) :=

{
{w ∈ H : 〈w, x− z〉 ≥ 0, ∀z ∈ C} ,if x ∈ C

∅ ,if x 6∈ C.

It can be checked that NC(x) = ∂ιC(x) (see e.g. [20, Example 16.13]), where ιC is the indicator
function of C, which is defined as

ιC(x) :=

{
0 if x ∈ C

+∞ otherwise.

Thus, NC is a maximal monotone operator (see [20, Example 20.26]). Observe that from definition
of NC : for x∗ ∈ C and w∗ ∈ H, one has

0 ∈ w∗ +NC(x
∗) if and only if 〈w∗, x− x∗〉 ≥ 0 for all x ∈ C. (1.5)

Definition 1.2.3 (Cocoercive operator). An operator T : H → H is cocoercive with constant
β > 0 if

〈x− x′, T (x)− T (x′)〉 ≥ β‖T (x)− T (x′)‖2 ∀x, x′ ∈ H.

The above inequality implies that T is 1
β
-Lipschitz continuous.

The ε-enlargement of a maximal monotone operator was introduced in [30] by Burachik, Iusem
and Svaiter.

Definition 1.2.4. Let T : H ⇒ H be a maximal monotone operator and ε ≥ 0. The ε-
enlargement of T is the operator T ε : H ⇒ H defined by

T ε(z) := {v ∈ H | 〈z − z′, v − v′〉 ≥ −ε ∀(z′, v′) ∈ G(T)} z ∈ H. (1.6)

It is clear that T (z) ⊂ T ε(z) for all z ∈ H.

The following summarizes some useful properties of T ε (see, e.g., [32, Lemma 3.1 and Propo-
sition 3.4(b)]).

Proposition 1.2.5. Let T, S : H ⇒ H be set-valued maps. Then,

(a) If ε ≤ ε′, then T ε(z) ⊆ T ε′(z) for every z ∈ H.

(b) T ε(z) + S ε′(z) ⊆ (T + S)ε+ε′(z) for every z ∈ H and ε, ε′ ≥ 0.

(c) T is monotone, if and only if T ⊆ T 0.

(d) T is maximal monotone, if and only if T = T 0.

(e) If T is maximal monotone, {(z̃k, vk, εk)} is such that vk ∈ T εk(z̃k), for all k ≥ 1, w −
limk→∞ z̃k = z, limk→∞ vk = v and limk→∞ εk = ε, then v ∈ T ε(z)1.

1w − lim denotes weak limit.

10

We now state the weak transportation formula [31] for computing points in the graph of T ε.
This formula will be useful in the complexity analysis of some ergodic iterates generated by the
algorithms studied in the Chapter 2.

Theorem 1.2.6. ([31, Theorem 2.3]) Suppose T : H ⇒ H is maximal monotone and let z̃ℓ, vℓ ∈
H, εℓ, αℓ ∈ R+, for ℓ = 1, . . . , k, be such that

vℓ ∈ T εℓ(z̃ℓ), ℓ = 1, . . . , k,
k∑

ℓ=1

αℓ = 1,

and define

z̃ak :=
k∑

ℓ=1

αℓ z̃ℓ , vak :=
k∑

ℓ=1

αℓ vℓ , εak :=
k∑

ℓ=1

αℓ (εℓ + 〈zℓ − z̃ak , vℓ − vak〉) .

Then, the following hold:

(a) εak ≥ 0 and vak ∈ T εa
k(z̃ak).

(b) If, in addition, T = ∂f for some proper, convex and closed function f and vℓ ∈ ∂εℓf(z̃ℓ) for
ℓ = 1, . . . , k, then vak ∈ ∂εa

k
f(z̃ak).

1.3 Monotone inclusion problems

Let T : H ⇒ H be a maximal monotone operator. A monotone inclusion problem (MIP)
consists in

find z ∈ H such that 0 ∈ T (z). (1.7)

A zero of the monotone operator T : H ⇒ H is any point z ∈ H satisfying (1.7). We denote the
set of all zeros of T or the solution set of the MIP by T−1(0) or zer(T).

Due to the mathematical generality of maximal monotone operators, problem (1.7) is very
inclusive and serves as an unified model for many problems such as optimization, variational
inequalities, saddle-point, equilibrium problems, etc.

Example 2 (Minimization problem). A basic example of monotone inclusion is the convex min-
imization problem:

min
z∈H

f(z). (1.8)

Solving (1.8) is equivalent to ∇f(z) = 0 if f is a differentiable function, or 0 ∈ ∂f(z) in the
nondifferentiable case (see the Fermat’s rule (1.2)). Therefore, the minimizing problem (1.8) is
equivalent to MIP (1.7).

Example 3 (Variational inequality problem). Let C be a nonempty closed and convex subset
of a real Hilbert space H and T : H → H a single value operator. The variational inequality
problem for T and C, denoted by VIP(T,C) is as follows: Find x∗ ∈ C such that there exist
w∗ ∈ T (x∗) satisfying

〈w∗, x− x∗〉 ≥ 0 ∀x ∈ C.

Observe that, the last relation and (1.5) immediately yields that 0 ∈ T (x∗) +NC(x
∗). Therefore,

any VIP can be viewed as a MIP.

11

Other important instance of the MIP is the saddle-point problem, see e.g., [114] (see also [111]
and references therein for other special instances).

1.4 Proximal Point and operator splitting methods

In this subsection, we provide a brief overview of some operator splitting methods. These
methods include the proximal point, forward–backward, Tseng’s forward–backward and projective
primal–dual splitting methods.

1.4.1 Proximal Point algorithm

The proximal point algorithm (PPA) (or proximal point (PP) method) is the iterative scheme,
which can be described as follows

zk+1 = (λkT + I)−1(zk), ∀ k ≥ 0 (1.9)

where {λk} ⊂ R++ is a sequence of regularization parameters (or step size parameters) and
(λT + I)−1 is the resolvent of T , see Section 1.2. When considering numerical schemes of this
type, the usual terminology is that we perform a backward step, meaning that the set-valued
operator is evaluated via its resolvent. The PPA was primarily proposed by Martinet in [84]
inspired in the earlier work of Moreau [95] and a few years later popularized and generalized for
general maximal monotone operators by Rockafellar in [112].

The resolvent map is a nonexpansive mapping (see [26, Proposition 2.2]) and furthermore

JλT (z) = z if and only if 0 ∈ T (z).

The asymptotic analysis concerning PPA reveals that the sequence generated by (1.9) converges
weakly to a solution of (1.7), provided the set of solutions T−1(0) 6= ∅ and the step size parameter
λk is bounded away from zero (see [84] in the context of variational inequalities on bounded sets
and [112] in the general case).

The proximal point algorithm can be viewed as an implicit one-step discretization method for
the evolution differential inclusion problem

ż(t) + T (z(t)) ∋ 0 t > 0. (1.10)

As examples let us consider two particular cases for T in the above differential inclusion:

• T = ∇f as the gradient of a differentiable function f : H → R whose gradient is Lipschitz
continuous. Then, for each z0 ∈ H,

{
ż(t) = −∇f(z(t)) t > 0

z(0) = z0,
(1.11)

is the so-called steepest descent differential equation. The Cauchy-Lipschitz-Picard Theorem
(see for example [122, Theorem 54]) ensures that (1.11) has a unique solution. Observe also

12

that the stationary points of (1.11) are exactly the critical points of f (zeroes of ∇f).
Moreover, it was proved in [103, Section 6.1] that

z(t) ⇀ z∗ ∈ S and lim
t→+∞

f(z(t)) = inf f,

whenever S := argmin f 6= ∅ and f is convex. It is worth to mention that the properties of
the trajectories (solution) of (1.11) are expected to continue inheriting the same properties
when it is discretized at the time. An implicit finite-difference scheme for (1.11) gives

zk+1 − zk
λk

= −∇f(zk+1)⇐⇒ zk+1 − zk + λk∇f(zk+1) = 0.

Since f is convex, the latter relation is equivalent to the following variational problem:

zk+1 = argmin
z∈H

{
f(z) +

1

2λk

‖z − zk‖2
}

= proxλkf
(zk), (1.12)

which is exactly the proximal point algorithm for convex minimizing problem (see (1.4)).
In contrast, considering an explicit discretization of (1.11):

zk+1 − zk
λk

= −∇f(zk)⇐⇒ zk+1 = zk − λk ∇f(zk). (1.13)

We recover the gradient method (or forward step method) for the unconstrained minimizing
problem, originally devised by Cauchy in 1847.

• If T = ∂f , with f ∈ Γ0(H), it is possible to prove that the steepest descent differential
inclusion

{
ż(t) + ∂f(z(t)) ∋ 0, t > 0

z(0) = z0,
(1.14)

has similar properties of (1.11): for each z0 ∈ dom f , the steepest descent differential
inclusion (1.14) has a unique absolutely continuous solution z : [0,+∞) → H and satisfies
limt→∞ f(z(t)) = inf f . Further, if S = argmin f 6= ∅, then z(t) converges weakly to a point
in S (see [26, 115]). Similar implicit and explicit finite-difference discretization in (1.11) can
be applied to the nonsmooth case in (1.14), resulting (1.12) for implicit discretization and
the so-called subgradient method [116] for explicit discretization in (1.14).

Despite the difficulty inherent to the implementation of the implicit rule, the proximal point
method (1.12) has remarkable stability properties (compared with the explicit method (1.13), see
e.g., [103, Sections 6.1 and 6.2] for a more detailed explanation).

1.4.2 Forward-backward and Tseng’s forward-backward algorithms

We now assume that we are interested in solving the problem

0 ∈ F (z) + B(z) (1.15)

where B and F are maximal monotone operators, and F is assumed to be point-to-point.

13

An important special case is when B = NC , the normal cone of a nonempty closed convex
subset C of H. In this case, (1.15) reduces to a variational inequality problem (see Example 3).

Firstly, we assume that F : H → H is a (single-valued) β-cocoercive operator (β > 0). The
forward-backward algorithm, proposed by Lions and Mercier [76] and Passty [100] and whose its
roots is in the projected gradient algorithm for convex optimization, is one of the most popular
numerical algorithms for solving the structured monotone inclusion problem (1.15), having nu-
merous applications in modern applied mathematics (see, e.g., [20, 107]). It can be described as
follows: for all k ≥ 0,

zk+1 := (λkB + I)−1(zk − λkF (zk)), (1.16)

where λk > 0 is a stepsize parameter and zk is the current iterate. The sequence {zk} generated
in (1.16) is weakly convergent to a solution of (1.15) whenever the set of solutions to (1.15) is
not empty set and λk < 2β (see, e.g., [20]). The terminology forward-backward is justified by the
fact that the set-valued operator is evaluated through a backward step and the single-valued one
via a forward step. The eqref eq: fb.mth iterative scheme can be understood as an explicit time
discretization of step size equal to 1 of the first order dynamic system

{
ż(t) + z(t) = JλB(I − λF)z(t), t > 0,

z(0) = z0.

For more about dynamical systems of implicit type associated to monotone inclusions and convex
optimization problems, see e.g. [1, 9].

Let us suppose now that the cocoercivity of F is relaxed to monotonicity and Lipschitz-
continuity. In the seminal paper [128], Tseng proposed and studied the following modification
of (1.16) - known as the Tseng’s modified forward-backward method or as the forward-backward-
forward method : for all k ≥ 0,

{
z̃k := (λkB + I)−1(zk − λkF (zk)),

zk+1 := z̃k − λk(F (z̃k)− F (zk)).
(1.17)

It is clear that (1.17) generalizes (1.16) by performing an additional forward step to define the
next iterate zk+1. This is crucial to obtain convergence under the (weaker than cocoercivity)
assumption of Lipschitz continuity on F (see, e.g., [20, 128]). If we assume that the set of solutions
to (1.17) is nonempty and λk < 1/L (with L being the Lipschitz constant of F), the sequences
generated by (1.17) converges to a solution of (1.15). Despite the fact that the Tseng’s modified
forward-backward method requires an additional sequence to be computed, this numerical scheme
opened the gate towards the development of the primal-dual algorithms that are able to solve
highly structured monotone inclusion problems (see [27]). Like the forward-backward method,
the forwad-backward-forward method can be seen as a (implicit) discretization of the following
dynamical systems governed by maximally monotone operators:

z̃(t) = JλB (I − λF) z(t),

ż(t) + z(t) = z̃(t)− λ (F z̃(t)− Fz(t)) ,

z(0) = z0.

Asymptotic analysis of the dynamical system above can be found in [19].

14

1.4.3 Projective splitting method (PSM)

We consider the monotone inclusion problem of finding z ∈ H0 such that

0 ∈
n∑

i=1

G∗
iTiGi(z) (1.18)

where n ≥ 2, and for each i = 1, . . . , n, the operator Ti : Hi ⇒ Hi is (set-valued) maximal
monotone and Gi : H0 → Hi is a bounded linear operator. Moreover it is assumed that (1.18)
has at least one solution.

A very popular strategy to find approximate solutions of (1.18) is that of (monotone) operator
splitting algorithms, which traces back to the development and analysis of well-known numerical
algorithms like the forward-backward, Douglas/Paceman-Rachford and many others [46, 76, 85,
128]. These operator splitting techniques are, in turn a special instance of the Krasnoselskii-Mann
iteration for finding fix points of nonexpansive operators [75, 82].

A different class of operator splitting algorithms is the family of projective splitting algo-
rithms(PSM), which has deserved a lot of attention in nowadays research, mainly due to its
flexibility (when compared to other classes of operator splitting algorithms) regarding parameters
and the activation of Ti and Gi separately during the iterative process. This class of algorithms
has a different convergence mechanism based on projection on separating sets and does not re-
duces to the Krasnoselskii-Mann iteration. The first instances of projective splitting algorithms
appeared in two papers by Eckstein and Svaiter, namely [51, 52]: in the first one, the authors
addressed the problem of find zeros of the sum of two operators based on the pioneering works
[65, 118, 119], and in the second paper, they generalized their first paper to more than two op-
erators (with Gi being the identity operator for i = 1, . . . , n in (1.18)). We mention some recent
developments on the projective splitting algorithms:

• In [2], Alotaibi, Combettes and Shahzad introduced a technique that combines proximal
and projective steps for handling compositions of linear and monotone operators for solving
systems of composite monotone inclusions, i.e., n = 2 with G1 being equal to the identity
operator in (1.18). This approach served to propose new primal-dual splitting algorithms
for solving systems of inclusions involving sums of linearly composed maximally monotone
operators.

• In [42], Combettes and Eckstein extended the approaches taken in the earlier works [2,
52] incorporating block-iterative and asynchronous features. The block-iterative operation
means that not all operators are activated at every iteration but only a subset of them, and
asynchronous if, at any iteration, it has the ability to incorporate the result of calculations
initiated at earlier iterations, allowing lags in the operator processing (this approach is
called "incremental" in the optimization literature).

• Recently, Jonhstone and Eckstein (see [68, 71]) showed that it is possible to process Lipschitz-
continuous operators using forward steps rather than the customary resolvent or backward
step, i.e., there exist a subset IF ⊂ {1, . . . , n} such that for each i ∈ IF , Ti is Lipschitz-
continuous and for each of these operators are processed forward type steps. The same
authors, in [70], studied the case where Ti = Ai +Bi in (1.18) with Ai maximal and Bi co-
coercive (for i = 1, . . . , n), where in order to construct a semispace containing the "extended
solution", Bi and Ai are processed by forward and backward steps, respectively.

15

In order to motivate the projective splitting algorithms, for simplicity, we consider (3.1) with-
out the linear operators Gi, i.e., find z ∈ H0

0 ∈ T1(z) + · · ·+ Tn(z), (1.19)

which in turn is clearly equivalent to find a point in the extended solution set of (1.19):

S :=

{
(z, w1, . . . , wn−1) ∈ H0 × · · · ×Hn−1 | wi ∈ Ti(z), i = 1, . . . , n− 1, −

n−1∑

i=1

wi ∈ Tn(z)

}
.

(1.20)

Since S is nonempty (by the initial assumption), closed and convex in H (see [68, Lemma 3]
for a more general case), it follows that problem (1.18) reduces to the task of finding a point
in S. Hence the family of splitting projective algorithms can be seen as a particular case of the
separator-projector method for finding points in convex closed sets.

Note now that, if we pick yki ∈ Ti(x
k
i) (i = 1, . . . , n), then from the monotoncity of Ti and the

inclusions in (1.20) we have

〈z − xk
i , wi − yki 〉 ≥ 0 i = 1, . . . , n,

where wn := −∑n−1
i=1 wi. This mean that

n∑

i=1

〈z − xk
i , y

k
i − wi〉 ≤ 0 ∀(z, w1, . . . , wn−1) ∈ S. (1.21)

The latter inequality means, in particular, that the set {(xk
i , y

k
i)}ni=1 defines a function of p =

(z, w1, . . . , wn−1) which is negative in S, namely

ϕk(z, w1, . . . , wn−1) :=
n∑

i=1

〈z − xk
i , y

k
i − wi〉.

It can be proved that this function is actually affine and, as a consequence, we conclude
from (1.21) that it defines a semispace containing the extended solution set S, say Hk := {p ∈
H | ϕk(p) ≤ 0} ⊃ S, see Figure 1.1.

Based on the exposed above, it follows that the main mechanism behind the idea of projective
splitting algorithms is basically: at the iteration pk := (zk, wk

1 , . . . , w
k
n−1), pick, for each i =

1, . . . , n, pairs (xk
i , y

k
i) in the graph of Ti in such a way that ϕk(p

k) is positive if pk 6∈ S, then update
the current iterate to pk+1 := (zk+1, wk+1

1 , . . . , wk+1
n−1) by projecting pk onto the semispace Hk. In

fact, since the extended solution is entirely on the other side of this semispace, then the projection
of the current point makes progress towards the solution. Computation of (xk

i , y
k
i) are in general

performed by activating the (approximate) resolvent (ρTi + I)−1 (ρ > 0) operator of each Ti to
guarantee, in particular, that the current iterate (zk, wk

1 , . . . , w
k
n−1) belongs to the positive side of

the corresponding hyperplane Ĥk := {p ∈ H | ϕk(p) = 0}, i.e. ϕk(p
k) =

∑n

i=1 〈zk−xk
i , y

k
i−wk

i 〉 > 0
(see Figure 1.1).

16

pk ∈ H

ϕk(p
k) > 0

ϕk(p
k) ≤ 0 Ĥk := {p ∈ H | ϕk(p) = 0}

S

Figure 1.1: Geometrical interpretation of the splitting projective method.

The decomposition properties of the PSM appear from the particular way in which the sep-
arating hyperplanes are constructed (affine function ϕk) through individual calculations on each
operator Ti, which we will discuss in more details in Chapter 3.

1.5 Inertial methods

In [105], Polyak introduced the so-called heavy ball method, in order to speed-up the gradient
algorithm. It is a two-step iterative method for minimizing a differentiable (convex) function
f : H→ R, which has the following form:

{
wk := zk + αk(zk − zk−1),

zk+1 := wk − λk∇f(zk).
(1.22)

where αk ∈ [0, 1) is an extrapolation factor and λk > 0 is a step-size parameter that has to be
sufficiently small. The difference when compared to the gradient method (1.13) is that, in each
iteration, the extrapolate term wk := zk +αk(zk − zk−1) is used instead of zk. The acceleration is
explained by the fact that the next iterate is computed by taking a step which is a combination
of the direction zk − zk−1 and the current anti-gradient direction −∇f(zk). This modification
increases the speed of gradient descent, especially when the objective is strongly convex (see [104]).
The heavy ball method can also be interpreted as an explicit finite differences discretization of
the so-called heavy ball with friction (HBF) second order dynamical system

z̈(t) + γż(t) +∇f(z(t)) = 0, (1.23)

which is a nonlinear oscillator with damping γ > 0 and potential f : H → R. When H = R
2,

this system is a simplified version of a differential equation describing the motion of a heavy ball
that keeps rolling over the graph of the function f under its own inertia until friction stops it at
a stationary point of f . The three terms in (1.23) can be interpreted, respectively, as inertial,
friction and gravity forces. We also mention that the dynamical system (1.23) has been considered
by several authors in the context of minimizing the function f , these investigations being either
concerned with the asymptotic convergence of the generated trajectories to a critical point of f

17

as well as the convergence of the function value along the trajectories to its global minimum value
(see e.g., [3, 9, 14, 61] and references therein).

In 1983, in the seminal paper [97], Nesterov proposed a modification of the heavy ball method
in other to improved the convergence rate for differentiable convex functions with L-Lipschitz
gradient as follows: for all k ≥ 0

{
wk := zk + αk(zk − zk−1),

zk+1 := wk − λk∇f(wk).
(1.24)

where λk = 1/L and the inertial parameter {αk} behaves like 1 − 3
k

as k → ∞. Currently, the
resulting method is known in the literature as Nesterov’s fast gradient method. The difference
to the method proposed by Polyak is that the gradient is evaluated in the extrapolated term
wk instead to zk. This iterative scheme exhibits (in the worst case) the convergence rate in
functional values f(zk) − min f = O(1

k2
), which for first order methods is known to be optimal.

It is important to mention that when γ(t) = 3
t
, Su, Boyd and Candes, in [124], have shown that

HBF can be seen as a continuous version of the above Nesterov’s fast gradient method. Observe
also that αk → 1, as k → ∞. This is a key property for obtaining fast convergent methods,
in line of Nesterov’s method (1.24). This motivated the development of iterative schemes with
extrapolation steps for general maximal monotone operators for obtaining fast methods (in the
line of Nesterov’s methods) which was also one of the motivations of this thesis. We mention
some contributions on this subject [6, 8, 10, 11, 16, 43, 83].

In [5], Alvarez and Attouch translated the idea of the heavy ball method to the setting of a
general maximal monotone operators using the framework of the PP method (1.9). The resulting
algorithm is called the inertial proximal point algorithm (IPPA). To motivated it, we consider
the implicit discretization of (HBF) as follows:

zk+1 − 2zk + zk−1

h2
+ γ

zk+1 − zk
h

+∇f(zk+1) = 0.

Rearranging the above equality one has
(
1 + γh

h2

)
zk+1 −

(
1 + γh

h2

)
zk +

1

h2
(zk − zk−1) +∇f(zk+1) = 0.

Setting λ := h2

1+γh
and α := 1

1+γh
, the preceding equality becomes

zk+1 = zk + α(zk − zk−1)− λ∇f(zk+1).

Note that 0 < α < 1 and λ > 0. In terms of resolvents, Jλ∇f = (I + λ∇f)−1, the latter relation
can be written as

zk+1 = (λ∇f + I)−1 (zk + α(zk − zk−1)) ,

or equivalently (whenever f convex, see (1.3)),

zk+1 = argmin
z∈H

{
f(z)− 1

2λ
‖z − (zk − α(zk + zk−1))‖2

}
. (1.25)

18

Note that (1.25) is nothing but a proximal point step applied to the extrapolated point wk =
zk + α(zk − zk−1), rather than zk as in the classical PP method (1.12). Convergence analysis of
(1.25) in a more general context, f ∈ Γ0(H) (not necessarily differentiable) was established by
Alvarez in [3]. For the general maximal monotone operator T instead of ∇f , (1.25) is written as
follows: ∀k ≥ 0,

{
wk := zk + αk(zk − zk−1),

zk+1 := (λkT + I)−1(wk).
(1.26)

where {αk} is the extrapolation parameters (or inertial parameter) and {λk} is the step size
parameter. As we already mentioned, the iterative scheme (1.26) is called Inertial Proximal Point
Algorithm (IPPA), or Inertial PP method. Note that if αk ≡ 0, then it follows that (1.26) reduces
to the Rockafellar’s PPA (1.9). Inertial PP-type methods deserve a lot of attention in nowadays
research due the possibility of extending this methodology to different practical algorithms and,
in part, as we mentioned earlier, due to its connections with fast first-order methods in convex
programming. Asymptotic (weak) convergence of {zk} generated in (1.26) to a solution of (1.7)
was first obtained by Alvarez and Attouch in [5, Theorem 2.1] under the conditions

λ := inf
k≥0

λk > 0,

∀k ≥ 0, αk ∈ [0, 1) and α := sup
k≥0

αk < 1, (1.27)

∞∑

k=0

αk‖zk − zk−1‖2 < +∞.

One way to ensure the third condition in (1.27) in practice is to determine {αk} adaptively, or in
particular as in ([5, Proposition 2.1]):

0 ≤ αk ≤ αk+1 ≤ α < 1/3, ∀k ≥ 0. (1.28)

The above upper bound 1/3 on {αk} has become standard in the analysis of inertial-like proximal
algorithms (see, e.g., [36, 38, 77, 96]). It seems that (1.28) was first improved by Alvarez in [4,
Proposition 2.5] in the setting of projective-proximal point-type methods and, more recently, by
Attouch-Cabot in [11] and our contributions [8], with relaxation playing a central role.

19

Chapter 2

On inexact relative-error hybrid proximal

extragradient, forward-backward and

Tseng’s modified forward-backward

methods with inertial effects

This chapter is dedicated to the formulation of an inertial under-relaxed version of the relative-
error hybrid proximal extragradient (HPE) method. We study its asymptotic convergence as well
as nonasymptotic global convergence rates in terms of iteration-complexity. We analyze the
new method under more flexible assumptions than the existing ones, both on the extrapolation
and relative-error parameters. As special instances of the proposed inertial HPE method, we
derive two types of forward-backward methods for solving structured monotone inclusions, namely
inertial under-relaxed versions of the Forward-Backward (FB) and Tseng’s modified FB methods.

This chapter is organized as follows. In Section 2.1, we present some preliminaries and basic
results, and review some algorithms previously stated in Section 1.4 . Section 2.2, presents
our inertial under-relaxed HPE method (Algorithm 2), being the main results: Theorems 2.2.8
(asymptotic convergence), and 2.2.11 and 2.2.13 (iteration-complexity). Finally, Section 2.3 is
devoted to present and study the inertial versions of the Tseng’s modified forward-backward and
forward-backward algorithms; the main results are Theorems 2.3.3 and 2.3.7.

The material presented in this chapter is published in [8].

2.1 Preliminaries, basic results and general notation

Notation: Throughout this chapter H denotes a real Hilbert space with inner product 〈·, ·〉
and induced norm ‖ · ‖ =

√
〈·, ·〉.

2.1.1 Problem statement

Consider the general monotone inclusion problem (MIP) of finding z ∈ H such that

0 ∈ T (z) (2.1)

as well as the structured MIP

0 ∈ F (z) + B(z) (2.2)

20

where T and B are (set-valued) maximal monotone operators on H and F : dom(F) ⊂ H → H

is a (point-to-point) monotone operator which is either Lipschitz continuous or cocoercive (see
Subsections 2.3.1 and 2.3.2 for the precise statement). Problems (2.1) and (2.2) appear in different
fields of applied mathematics and optimization including convex optimization, signal processing,
PDEs, inverse problems, among others (see, e.g.,[20, 59]). It is worth mentioning that under mild
conditions on the operators F and B, problem (2.2) becomes a special instance of (2.1) with
T := F +B.

2.1.2 The Alvarez–Attouch’s inertial proximal point method

As we mentioned earlier, the proximal point (PP) method is an iterative scheme for seeking
approximate solutions of (2.1). In its exact formulation, an iteration of the PP method can be
described by

zk := (λkT + I)−1(zk−1) ∀k ≥ 1, (2.3)

where λk > 0 is known as a stepsize parameter (or proximal parameter) and zk−1 is the current
iterate.

The inertial PP method is a modification of (2.3) proposed and studied by Alvarez and
Attouch in [5] as follows: for all k ≥ 1,

wk−1 := zk−1 + αk−1(zk−1 − zk−2),

zk := (λkT + I)−1(wk−1),
(2.4)

where {αk} is a sequence of extrapolation parameters and wk is the inertial term.
One of the main goals of this chapter is the analysis of an inertial under-relaxed HPE-type

method under the assumption (actually more general than) (1.28) on {αk}; see Assumption (A).

2.1.3 The hybrid proximal extragradient (HPE) method of Solodov and
Svaiter

Since the exact computation of zk = (λkT + I)−1(zk−1) can be difficult or even impossible in
practice, the use of approximate solutions is essential for devising implementable algorithms. This
motivated Rockafellar [112] to propose and analyze an inexact version of the PP method (2.3)
based on a summable error criterion. More precisely if, at each iteration k ≥ 1, zk is computed
satisfying

‖zk − (λkT + I)−1(zk−1)‖ ≤ ek,
∞∑

k=1

ek <∞, (2.5)

and {λk} is bounded away from zero, then {zk} converges (weakly) to a solution of (2.1). This
result has found important applications in the design and analysis of many practical algorithms for
solving challenging problems in optimization and related fields. Many modern inexact versions
of the PP method (2.3), as opposed to the summable error criterion (2.5), use relative-error
tolerances for solving the associated subproblems. The first methods of this type were proposed

21

by Solodov and Svaiter in [117, 118] and subsequently studied in [91, 92, 93, 120, 121]. The key
idea consists of observing that (2.3) can be decoupled as

vk ∈ T (zk), λkvk + zk − zk−1 = 0, (2.6)

and then relaxing (2.6) within relative-error tolerance criteria. Among these new methods, the
hybrid proximal extragradient (HPE) method [117] has been shown to be very effective as a
framework for the design and analysis of many concrete algorithms (see, e.g., [22, 34, 50, 62, 64,
78, 88, 89, 90, 93, 117, 120, 121]).

It can be described as follows:

Algorithm 1. HPE method

Input: z0 ∈ H and σ ∈ [0, 1).

1: for k = 1, 2, . . . , do

2: Find (z̃k, vk, εk) ∈ H ×H × R+ and λk > 0 such that

vk ∈ T εk(z̃k), ‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ σ2‖z̃k − zk−1‖2. (2.7)

3: Define

zk := zk−1 − λkvk. (2.8)

Here, T ε(·) is the ε-enlargement of T .
Note that if σ = 0, then (2.7) and (2.8) imply that zk = z̃k and εk = 0, which combined with

the fact that T 0 = T (see Proposition 1.2.5(d)) implies that the HPE method reduces to the exact
PP method (2.3).

Recently, Bot and Csetnek proposed an inertial version of the HPE method in [22]. We
emphasize that the proposed method (Algorithm 2) in this chapter differs from the inertial HPE
type method of Bot and Csetnek since it is based on a different mechanism of iteration. They
have proved asymptotic convergence of their method under the assumption: α(5+4σ2)+σ2 < 1,
where σ ∈ [0, 1[is as in (2.7), and 0 ≤ αk−1 ≤ αk ≤ α < 1 for all k ≥ 1 (cf. (1.28)). The
condition α(5 + 4σ2) + σ2 < 1 enforces α ≈ 0 whenever σ ≈ 1. This would, in particular,
degenerate the desired inertial effect in many important applications of HPE-type methods for
which σ = 0.99 is known (experimentally) to be the best choice among all possible σ ∈ [0, 1[(see,
e.g., [50, 54, 88, 89]).

In the next section, we propose an inertial under-relaxed HPE-type method (Algorithm 2)
with guarantee of asymptotic convergence and iteration-complexity (both pointwise and ergodic)
under the assumption (actually more general than) (1.28) on {αk}; see Assumption (A). The
price to pay is to perform, in addition to inertial, under-relaxed steps.

22

2.1.4 Forward-backward and Tseng’s modified forward-backward meth-
ods

We will briefly summarize (in the notation of this chapter) the forward-backward and Tseng’s
modified forward-backward splitting methods for solving (2.2). The forward-backward method
(see, e.g., [76, 100]) can be described as follows: for all k ≥ 1,

zk := (λkB + I)−1(zk−1 − λkF (zk−1)), (2.9)

where λk > 0 is a stepsize parameter and zk−1 is the current iterate and F : H→ H is a cocoercive
operator.

The Tseng’s modified forward-backward splitting method can be described as: for all k ≥ 1,
{

z̃k := (λkB + I)−1(zk−1 − λkF (zk−1)),

zk := z̃k − λk(F (z̃k)− F (zk−1)),
(2.10)

where F : H→ H is Lipschitz continuos.
Since both forward-backward and Tseng’s modified forward-backward methods are known to

be special instances of the HPE method (Algorithm 1) for solving (2.2) (see, e.g., [92, 117, 125]),
we have managed to propose and study inertial under-relaxed versions of (2.9) and (2.10) –
namely, Algorithms 4 and 5 , respectively – as special instances of the proposed inertial under-
relaxed HPE method (Algorithm 2). We discuss some existing inertial/relaxed variants of (2.9)
and (2.10) as well as how they are related to Algorithms 4 and 5 (see the remarks following them).

2.2 An inertial under-relaxed hybrid proximal extragradient

(HPE) method

Consider the monotone inclusion problem (2.1), i.e., the problem of finding z ∈ H such that

0 ∈ T (z) (2.11)

where T is a maximal monotone operator on H for which T−1(0) 6= ∅.
In this section, we propose and study the asymptotic convergence and nonasymptotic global

convergence rates (iteration-complexity) of an inertial under-relaxed hybrid proximal extragradi-
ent (HPE) method (Algorithm 2) for solving (2.11).

Regarding the iteration-complexity analysis, we consider the following notion of approximate
solution for (2.11): given tolerances ρ, ǫ > 0, find z, v ∈ H and ε ≥ 0 such that

v ∈ T ε(z), ‖v‖ ≤ ρ, ε ≤ ǫ. (2.12)

Note that ρ = ǫ = 0 in (2.12) gives 0 ∈ T (z), i.e., in this case z ∈ H is a solution of (2.11) (for a
more detailed discussion on (2.12), see, e.g., [92]).

We now present one of the first contributions of this chapter: a relaxed and inertial version of
the HPE method, which combines the ideas of Alvarez-Attouch [5] and Sodolov-Svaiter [118].

23

Algorithm 2. An inertial under-relaxed HPE method for solving (2.11)

Input: z0 = z−1 ∈ H and 0 ≤ α, σ < 1 and 0 < τ ≤ 1.

1: for k = 1, 2, . . . , do

2: Choose αk−1 ∈ [0, α] and define

wk−1 := zk−1 + αk−1(zk−1 − zk−2). (2.13)

3: Find (z̃k, vk, εk) ∈ H ×H × R+ and λk > 0 such that

vk ∈ T εk(z̃k), ‖λkvk + z̃k − wk−1‖2 + 2λkεk ≤ σ2‖z̃k − wk−1‖2. (2.14)

4: Define

zk := wk−1 − τλkvk. (2.15)

Remark 2.2.1. We now make some remaks regarding Algorithm 2.

(i) Algorithm 2 clearly combines the inertial PP and the HPE methods (2.4) and (2.7)-(2.8),
respectively. It reduces to (2.4) when σ = 0 and τ = 1. Indeed, in this case, using (2.14),
(2.15) and Proposition 1.2.5(d), we find 0 ∈ λkT (zk) + zk −wk−1 for all k ≥ 1 (cf. iteration
(A0)–(A2) in [5]), i.e., zk = (λkT + I)−1(wk−1), which is exactly (2.4).

(ii) A similar inertial relaxed relative-error PP algorithm was proposed and analyzed by Alvarez
in [4]. We emphasize that in contrast to Algorithm 2, the algorithm proposed by Alvarez
is a projective-type algorithm (see, e.g., [118]) and it is based on a different mechanism of
iteration.

(iii) Algorithm 2 generalizes the HPE method of Solodov and Svaiter [92] and (a special instance
of) the under-relaxed HPE method of Svaiter [126]. Indeed, the HPE method (2.7) is
obtained by letting α = 0 and τ = 1, in which case wk−1 = zk−1, while the under-relaxed
HPE method (with tk ≡ τ , in the notation of the latter reference) appears whenever α = 0
in Algorithm 2.

(iv) As we mentioned in Subsection 2.1.3, an inertial HPE-type method was recently proposed
and studied by Bot and Csetnek in [22]. We refer the reader to Subsection 2.1.3 for a
discussion of the contributions of this paper in the light of the latter reference, regarding
the HPE-type methods.

(v) We emphasize that, in contrast to the analysis presented in this work (see Theorems 2.2.11
and 2.2.13), in all cases of inertial-type algorithms which were mentioned in remarks (i)-(iv)
no iteration-complexity analysis has been obtained.

(vi) Step 3 of Algorithm 2 does not specify how to compute λk > 0 and the triple (z̃k, vk, εk)
satisfying (2.14), their computation depending on the instance of the method under con-

24

sideration. In this regard, Proposition 2.3.6 shows, in particular, how the evaluation of a
cocoercive (monotone) point-to-point operator naturally produces such triples.

2.2.1 Convergence analysis

In this subsection we establish our main convergence result of Algorithm 2, see Theorem 2.2.6
and Theorem 2.2.8. The next four results, especially Proposition 2.2.5, will be useful for proving
the main results on the convergence and iteration-complexity of Algorithm 2. The following lemma
was proved in [126, Lemma 2.1]. Here, we present a short and direct proof for the convenience of
the reader.

Lemma 2.2.2. ([126, Lemma 2.1]) Let z̃, v, w ∈ H and λ > 0, ε ≥ 0 and σ ∈ [0, 1[be such that

v ∈ T ε(z̃), ‖λv + z̃ − w‖2 + 2λε ≤ σ2‖z̃ − w‖2. (2.16)

Let τ ∈ [0, 1] and define z+ := w − τλv. Then, the following hold:

(a) For any z ∈ H,

‖w − z‖2 − ‖z+ − z‖2 ≥ (1− σ)2τ‖z̃ − w‖2 + 2τλ (ε+ 〈z̃ − z, v〉) + τ(1− τ)‖λv‖2.

(b) For any z∗ ∈ T−1(0),

‖w − z∗‖2 − ‖z+ − z∗‖2 ≥ (1− σ2)τ‖z̃ − w‖2 + τ(1− τ)‖λv‖2.

Proof. (a) Using the inequality in (2.16) and some algebraic manipulations we find, for any z ∈ H,

‖w − z‖2 − ‖(w − λv)− z‖2 = ‖z̃ − w‖2 − ‖λv + z̃ − w‖2 + 2λ〈z̃ − z, v〉
≥ (1− σ2)‖z̃ − w‖2 + 2λ (ε+ 〈z̃ − z, v〉) . (2.17)

The fact that z+ = (1− τ)w + τ(w − λv) and (A.7) (see Lemma A.2.1) yield

‖z+ − z‖2 = (1− τ)‖w − z‖2 + τ‖(w − λv)− z‖2 − τ(1− τ)‖λv‖2

= ‖w − z‖2 − τ
(
‖w − z‖2 − ‖(w − λv)− z‖2

)
− τ(1− τ)‖λv‖2.

Multiplying (2.17) by τ ∈ [0, 1] and using the latter identity we obtain the desired inequality in
(a).

(b) This is a direct consequence of item (a), (1.6), the inclusion in (2.16) and the fact that
0 ∈ T (z∗).

Proposition 2.2.3. Let {zk}, {z̃k} and {wk} be generated by Algorithm 2 and define, for all
k ≥ 1,

sk := max
{
η‖zk − wk−1‖2, (1− σ2)τ‖z̃k − wk−1‖2

}
(2.18)

where

η := η(σ, τ) :=
2

(1 + σ)τ
− 1 > 0. (2.19)

Then, for any z∗ ∈ T−1(0),

‖zk − z∗‖2 + sk ≤ ‖wk−1 − z∗‖2 ∀k ≥ 1. (2.20)

25

Proof. Using (2.14), (2.15) and Lemma 2.2.2(b) we obtain

‖zk − z∗‖2 + (1− σ2)τ‖z̃k − wk−1‖2 + τ(1− τ)‖λkvk‖2 ≤ ‖wk−1 − z∗‖2. (2.21)

Note now that from (2.15) and (2.14) we have

τ−1‖zk − wk−1‖ = ‖λkvk‖ ≤ ‖λkvk + z̃k − wk−1‖+ ‖z̃k − wk−1‖
≤ (1 + σ)‖z̃k − wk−1‖,

which, in turn, gives

(1− σ2)τ‖z̃k − wk−1‖2 ≥
(1− σ)

τ(1 + σ)
‖zk − wk−1‖2. (2.22)

On the other hand, (2.15) yields

τ(1− τ)‖λkvk‖2 = τ−1(1− τ)‖τλkvk‖2 = τ−1(1− τ)‖zk − wk−1‖2. (2.23)

To finish the proof, note that (2.20) is a direct consequence of (2.18), (2.21)–(2.23) and (2.19).

Lemma 2.2.4. Let {zk}, {wk} and {αk} be generated by Algorithm 2 and let z ∈ H. Then, for
all k ≥ 1,

‖wk−1 − z‖2 = (1 + αk−1)‖zk−1 − z‖2 − αk−1‖zk−2 − z‖2 + αk−1(1 + αk−1)‖zk−1 − zk−2‖2.

Proof. From (2.13) we have

zk−1 − z =
1

1 + αk−1

(wk−1 − z) +
αk−1

1 + αk−1

(zk−2 − z),

and wk−1 − zk−2 = (1 + αk−1)(zk−1 − zk−2), which combined with Lemma A.2.1 in Appendix A.1
yields the desired identity.

Proposition 2.2.5. Let {zk}, {wk} and {αk} be generated by Algorithm 2 and let {sk} be as in
(2.18). Let also z∗ ∈ T−1(0) and define

(∀k ≥ −1) hk := ‖zk − z∗‖2 and (∀k ≥ 1) δk := αk−1(1 + αk−1)‖zk−1 − zk−2‖2. (2.24)

Then, h0 = h−1 and

hk − hk−1 + sk ≤ αk−1(hk−1 − hk−2) + δk ∀k ≥ 1, (2.25)

i.e., the sequences {hk}, {sk}, {αk} and {δk} satisfy the assumptions of Lemma A.1.1 below.

Proof. Using Lemma 2.2.4 with z = z∗ and (2.24) we obtain, for all k ≥ 1,

‖wk−1 − z∗‖2 = (1 + αk−1)hk−1 − αk−1hk−2 + δk,

which combined with Proposition 2.2.3 and the definition of hk in (2.24) yields (2.25). The
identity h0 = h−1 follows from the fact that z0 = z−1 and the first definition in (2.24).

26

Next we present the first result on the asymptotic convergence of Algorithm 2.

Theorem 2.2.6 (First result on the weak convergence of Algorithm 2). Let {zk}, {λk} and {αk}
be generated by Algorithm 2. If the following holds

∞∑

k=0

αk‖zk − zk−1‖2 < +∞ (2.26)

and, additionally, λk ≥ λ > 0, for all k ≥ 1, then the sequence {zk} converges weakly to a solution
of the monotone inclusion problem (2.11).

Proof. Using Proposition 2.2.5, (2.26), the fact that αk ≤ α for all k ≥ 1 and Lemma A.1.1 below,
one concludes that

(i) limk→∞ ‖zk − z∗‖ exist for every z∗ ∈ S := T−1(0). In particular, {zk} is bounded;

(ii)
∑∞

k=1 sk < +∞, and therefore limk→∞ sk = 0, where {sk} is as in (2.18).

Using (ii), (2.14)–(2.18) and the assumption λk ≥ λ > 0 for all k ≥ 1, we find

lim
k→∞

‖zk − wk−1‖ = lim
k→∞

‖z̃k − wk−1‖ = lim
k→∞

‖vk‖ = lim
k→∞

εk = 0. (2.27)

Now let z∞ ∈ H be a weak cluster point of {zk} (recall that it is bounded by (i)) and let {zkj}
be such that zkj ⇀ z∞. Using (2.27) and the inclusion in (2.14) we obtain

(∀j ≥ 1) vkj ∈ T εkj (z̃kj), lim
j→∞

vkj = 0, lim
j→∞

εkj = 0 and w − lim
j→∞

z̃kj = z∞, (2.28)

which, in turn, combined with Proposition 1.2.5(e) yields z∞ ∈ S = T−1(0). We have proved that
all sequential cluster point of {zk} belong to S = T−1(0). Since the two assumptions of Lemma
A.2.2 are verified, it follows that {zk} converges weakly to a point in S, i.e., {zk} converges weakly
to a solution of the monotone inclusion problem (2.11).

Remark. Condition (2.26) appeared for the first time in [5], and since then it has become a stan-
dard assumption in the asymptotic convergence analysis of different inertial PP-type algorithms.

Next, we present a sufficient condition on the input parameters (α, σ, τ) in Algorithm 2 to
ensure that (2.26) holds (see Theorems 2.2.8, 2.2.11 and 2.2.13).

Assumption (A): (α, σ, τ) ∈ [0, 1[×[0, 1[×]0, 1] and {αk} satisfy the following (for some β > 0):

0 ≤ αk−1 ≤ αk ≤ α < β < 1 ∀k ≥ 1 (2.29)

and

τ = τ(σ, β′) :=
2(β′ − 1)2

(1 + σ) [2(β′ − 1)2 + 3β′ − 1]
, (2.30)

where

β′ := max

{
β,

2(1− σ)

3− σ +
√
9 + 2σ − 7σ2

}
∈
[

2(1− σ)

3− σ +
√
9 + 2σ − 7σ2

, 1

[
. (2.31)

27

Remark 2.2.7. We make some remarks regarding Assumption (A).

(i) Conditions (2.29)–(2.31) will be crucial to prove convergence and iteration-complexity of
the algorithms presented and studied in this chapter; see, e.g., Theorems 2.2.8, 2.2.11 and
2.2.13, and Section 2.3.

(ii) Note that by letting σ = 0, which by Remark 2.2.1(i) means that it reduces to an under-
relaxed version of the (exact) Alvarez–Attouch’s inertial PP method, we obtain that (2.29)–
(2.31) are now simply given by: 0 ≤ αk−1 ≤ αk ≤ α < β < 1, for all k ≥ 1, and

τ = τ(β′) :=
2(β′ − 1)2

2(β′ − 1)2 + 3β′ − 1
, β′ := max {β, 1/3} ∈ [1/3, 1[. (2.32)

In particular, in this case, we have τ = τ(0, 1/3) = 1 whenever β = 1/3 in (2.29), which
corresponds to the standard upper bound on {αk} which has been used in different works
in the current literature (see Subsection 2.1.2 and Section 1.5 for a discussion). Hence, even
in the setting of exact inertial PP methods, conditions (2.29)–(2.31) generalize the usual
assumption (1.28). See Figure 2.1.

(iii) As we mentioned earlier, an inertial HPE-type method was proposed and studied by Bot
and Csetnek in [22], where asymptotic convergence is proved under the assumption α(5 +
4σ2)+σ2 < 1 on α, σ ∈ [0, 1[. Note that, in this case, α ≈ 0 whenever σ ≈ 1. This contrasts
to the conditions (2.29)–(2.31), which, in particular yield τ = τ(σ, 1/3) = 1/(1 + σ) > 0.5
(uniformly on σ) when β = 1/3 in (2.29). This may become especially useful in numerical
implementations of Algorithm 2, since σ = 0.99 has been usually employed in the recent
literature on HPE-type methods (see, e.g., [50, 54, 88, 89]). Further, (2.29)–(2.31) allow
the upper bound α on {αk} to be chosen arbitrarily close to 1, at the price of performing
under-relaxed steps with the explicitly computed τ = τ(σ, β) as in (2.30). See Figure 2.1.

β

0 0.2 1/3 0.4 0.6 0.8 1

τ
 (
σ

,·
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
σ = 0

σ = 0.25

σ = 0.5

σ = 0.75

σ = 0.99

Figure 2.1: Function]0, 1[∋ β 7→ τ(σ, β) ∈]0, 1[as in (2.30) for σ ∈ {0, 0.25, 0.5, 0.75.0.99}.

28

Theorem 2.2.8 (Second result on the weak convergence of Algorithm 2). Under the Assumption
(A) on Algorithm 2, let η > 0 be as in (2.19) and define the quadratic real function:

q(α′) := (η − 1)α′ 2 − (1 + 2η)α′ + η ∀α′ ∈ R. (2.33)

Then, q(α) > 0 and, for every z∗ ∈ T−1(0),

k∑

j=1

‖zj − zj−1‖2 ≤
2 ‖z0 − z∗‖2
(1− α)q(α)

∀k ≥ 1. (2.34)

As a consequence, it follows that under the assumption (A) the sequence {zk} generated by
Algorithm 2 converges weakly to a solution of the monotone inclusion problem (2.11) whenever
λk ≥ λ > 0 for all k ≥ 1.

Proof. Using (2.13), the Cauchy-Schwarz inequality and the Young inequality 2ab ≤ a2 + b2 with
a := ‖zk − zk−1‖ and b := ‖zk−1 − zk−2‖ we find

‖zk − wk−1‖2 = ‖zk − zk−1‖2 + α2
k−1‖zk−1 − zk−2‖2 − 2αk−1〈zk − zk−1, zk−1 − zk−2〉

≥ ‖zk − zk−1‖2 + α2
k−1‖zk−1 − zk−2‖2 − αk−1 (2‖zk − zk−1‖‖zk−1 − zk−2‖)

≥ (1− αk−1)‖zk − zk−1‖2 − αk−1(1− αk−1)‖zk−1 − zk−2‖2,

which combined with (2.25), and after some algebraic manipulations, yields

hk − hk−1 − αk−1(hk−1 − hk−2)− γk−1‖zk−1 − zk−2‖2 ≤ −η(1− αk−1)‖zk − zk−1‖2 ∀k ≥ 1,
(2.35)

where

γk := (1− η)α2
k + (1 + η)αk ≥ 0 ∀k ≥ 0. (2.36)

Define,

µ0 := (1− α0)h0 ≥ 0, µk := hk − αk−1hk−1 + γk‖zk − zk−1‖2 ∀k ≥ 1, (2.37)

where hk is as in (2.24). Using (2.33), the assumption that {αk} is nondecreasing (see (2.29))
and (2.35)–(2.37) we obtain, for all k ≥ 1,

µk − µk−1 ≤
[
hk − hk−1 − αk−1(hk−1 − hk−2)− γk−1‖zk−1 − zk−2‖2

]
+ γk‖zk − zk−1‖2

≤ [γk − η(1− αk)] ‖zk − zk−1‖2

= −
[
(η − 1)α2

k − (1 + 2η)αk + η
]
‖zk − zk−1‖2

= −q(αk)‖zk − zk−1‖2. (2.38)

Note now that from (2.30) and Lemma A.1.2 we have

β′ =
4− 2(1 + σ)τ

4− (1 + σ)τ +
√

(1 + σ)τ [16− 7(1 + σ)τ]
,

which, in turn, combined with the definition of η > 0 in (2.19), and after some algebraic calcula-
tions, gives

β′ =
2η

2η + 1 +
√
8η + 1

.

29

The latter identity implies, in particular, that β′ is either the smallest or the largest root of the
quadratic function q(·). Hence, from (2.29) and the fact that β′ ≥ β (see (2.31)) we obtain

q(αk) ≥ q(α) > q(β′) = 0.

The above inequalities combined with (2.38) yield

‖zk − zk−1‖2 ≤
1

q(α)
(µk−1 − µk), ∀k ≥ 1, (2.39)

which, in turn, combined with (2.29) and the definition of µk in (2.37), gives

k∑

j=1

‖zj − zj−1‖2 ≤
1

q(α)
(µ0 − µk),

≤ 1

q(α)
(µ0 + αhk−1) ∀k ≥ 1. (2.40)

Note now that (2.39), (2.29) and (2.37) also yield

µ0 ≥ . . . ≥ µk =hk − αk−1hk−1 + γk‖zk − zk−1‖2
≥hk − αhk−1, ∀k ≥ 1,

and so,
hk ≤ αkh0 +

µ0

1− α
≤ h0 +

µ0

1− α
∀k ≥ 0. (2.41)

Hence, (2.34) follows directly from (2.40), (2.41), the definition of µ0 in (2.37) and the definition
of h0 in (2.24). On the other hand, the second statement of the theorem follows from (2.34) and
Theorem 2.2.6 (recall that αk ≤ α < 1 for all k ≥ 0).

Remark 2.2.9.

i) A quadratic function similar to q(·), as defined in (2.33), was also considered by Alvarez
in [4]. As we mentioned in Remark 2.2.1(ii), the algorithm studied in the later reference
is different of the corresponding algorithm presented in this work, namely Algorithm 2.
Moreover, note that if η = 1, then q(α′) = 1− 3α′ (cf. [5]).

ii) The assumption z−1 = z0 in the input of Algorithm 2 was imposed to ensure the inequality
µ0 ≥ 0, which is used in the proof of Theorem 2.2.8. An alternative to the latter assumption
on z0 is to choose α0 = 0 (see Step 2 of Algorithm 2), in which case the assumption z−1 = z0
is not necessary.

Corollary 2.2.10. Under the Assumption (A) on Algorithm 2, let η > 0 and q(·) be as in (2.19)
and (2.33), respectively, and let z∗ ∈ T−1(0). Then, for all k ≥ 1,

‖zk − z∗‖2 +
k∑

j=1

τ
(
max

{
ητ‖λjvj‖2, (1− σ2)‖z̃j − wj−1‖2

})
≤
(
1 +

2α(1 + α)

(1− α)2q(α)

)
‖z0 − z∗‖2.

Proof. Using Proposition 2.2.5 and Lemma A.1.1(a) we conclude that (A.2) in Appendix A.1
holds, with {sk}, {hk} and {δk} as in (2.18) and (2.24), which gives that the desired result follows
from (A.2) and (2.34).

30

2.2.2 Complexity analysis

We now study the pointwise and ergodic iteration-complexity of Algorithm 2. In order to
study the ergodic iteration-complexity of Algorithm 2, we need to define the aggregate stepsize
sequence {Λk} and the ergodic sequences {z̃ak}, {ṽak}, {εak} associated to {λk} and {z̃k}, {vk}, and
{εk}, respectively, as follows: For k ≥ 1,

Λk :=
k∑

j=1

λj, z̃ a
k :=

1

Λk

k∑

j=1

λj z̃j v a
k :=

1

Λk

k∑

j=1

λj vj,

ε a
k :=

1

Λk

k∑

j=1

λj(εj + 〈z̃j − z̃ a
k , vj − v a

k 〉) =
1

Λk

k∑

j=1

λj(εj + 〈z̃j − z̃ a
k , vj〉).

(2.42)

In what follows we present the first result on nonasymptotic global convergence rates/iteration-
complexity of Algorithm 2.

Theorem 2.2.11 (global O(1/
√
k) pointwise convergence rate of Algorithm 2). Under the As-

sumption (A) on Algorithm 2, let η > 0 and q(·) be as in (2.19) and (2.33), respectively, and let
d0 denote the distance of z0 to T−1(0). Assume that λk ≥ λ > 0 for all k ≥ 1. Then, for every
k ≥ 1, there exists i ∈ {1, . . . , k} such that

vi ∈ T εi(z̃i), (2.43)

‖vi‖ ≤
d0

λτ
√
k

√
η−1

(
1 +

2α(1 + α)

(1− α)2q(α)

)
, (2.44)

εi ≤
σd20

2(1− σ2)λτ k

(
1 +

2α(1 + α)

(1− α)2q(α)

)
. (2.45)

Proof. Let z∗ ∈ T−1(0) be such that d0 = ‖z0 − z∗‖. It follows from Corollary 2.2.10 that, for
every k ≥ 1, there exists i ∈ {1, . . . , k} such that

τ k
(
max

{
ητ‖λivi‖2, (1− σ2)‖z̃i − wi−1‖2

})
≤
(
1 +

2α(1 + α)

(1− α)2q(α)

)
d20,

which combined with the assumption λi ≥ λ > 0 and (2.14), and after some simple algebraic
manipulations, yields the desired result.

Remark 2.2.12. We now make some comments regarding the pontwise convergence rate of
Algorithm 2.

(i) Theorem 2.2.11 provides a global O(1/
√
k) pontwise convergence rate and ensures, in par-

ticular, that for given tolerances ρ, ǫ > 0, Algorithm 2 finds a triple (z, v, ε) satisfying (2.12)
after performing at most

O

(
max

{⌈
d20
λ2ρ2

⌉
,

⌈
d20
λǫ

⌉})

iterations.

31

(ii) If α = 0 and τ = 1, in which case Algorithm 2 reduces to the HPE method of Solodov and
Svaiter, then it follows that Theorem 2.2.11 reduces to [92, Theorem 4.4(a)].

(iii) Analogous global O(1/
√
k) pontwise convergence rates were also obtained in [36, 38] for

inertial-type algorithms for variational inequality and convex optimization problems.

Next we study the ergodic iteration-complexity of Algorithm 2 under the assumption that
αk ≡ α in (2.13).

Theorem 2.2.13 (global O(1/k) ergodic convergence rate of Algorithm 2). Under the Assumption
(A) on Algorithm 2 and, additionally, the assumption that αk ≡ α, let {z̃ak}, {vak} and {εak} be as
in (2.42) and let d0 denote the distance of z0 to T−1(0). Let also η > 0 and q(·) be as in (2.19)
and (2.33), respectively, and assume that λk ≥ λ > 0 for all k ≥ 1.

Then, for all k ≥ 1,

vak ∈ T εa
k(z̃ak), (2.46)

‖vak‖ ≤
2(1 + α)d0

λτ k

√
1 +

2α(1 + α)

(1− α)2q(α)
, (2.47)

εak ≤
2
√
2d20

λτ k

(
1 +

2α(1 + α)

(1− α)2q(α)

)
1 +

σ√
(1− σ2)τ

+

√
4 +

(1− τ)2

ητ 2

 . (2.48)

Proof. Let z∗ ∈ T−1(0) be such that d0 = ‖z0 − z∗‖. Using Algorithm 2’s definition and Lemma
2.2.2(a) with z = z̃ak we find, for all j ≥ 1,

‖wj−1 − z̃ak‖2 − ‖zj − z̃ak‖2 ≥ 2τλj (εj + 〈z̃j − z̃ak , vj〉) . (2.49)

On the other hand, Lemma 2.2.4 yields

‖wj−1 − z̃ak‖2 = (1 + αj−1)‖zj−1 − z̃ak‖2 − αj−1‖zj−2 − z̃ak‖2 + αj−1(1 + αj−1)‖zj−1 − zj−2‖2,

which, in turn, combined with (2.49) gives, for all j ≥ 1,

‖zj − z̃ak‖2 − ‖zj−1 − z̃ak‖2 + 2τλj (εj + 〈z̃j − z̃ak , vj〉) ≤ αj−1

(
‖zj−1 − z̃ak‖2 − ‖zj−2 − z̃ak‖2

)
+ δj,

where the sequence {δj} is as in (2.24). Summing the latter inequality over all j = 1, . . . , k and
using (2.42) as well as the assumption αk ≡ α, we obtain

‖zk − z̃ak‖2 − ‖z0 − z̃ak‖2 + 2τΛkε
a
k ≤ α

(
‖zk−1 − z̃ak‖2 − ‖z−1 − z̃ak‖2

)
+

k∑

j=1

δj,

which combined with the definition of {δj} and (2.34) yields (recall that z0 = z−1)

2τΛkε
a
k −

2α(1 + α)d20
(1− α)q(α)

≤ (1− α)
(
‖z0 − z̃ak‖2 − ‖zk − z̃ak‖2

)

+ α
(
‖zk−1 − z̃ak‖2 − ‖zk − z̃ak‖2

)

32

≤ 2max {‖z0 − z̃ak‖‖z0 − zk‖, ‖zk−1 − z̃ak‖‖zk−1 − zk‖} , (2.50)

where we have also used the inequality ‖a‖2 − ‖b‖2 ≤ 2‖a‖‖a− b‖ for all a, b ∈ H. Now, define

(∀j ≥ 1) ẑj := wj−1 − λjvj and ẑak :=
1

Λk

k∑

j=1

λj ẑj. (2.51)

From Corollary 2.2.10, the first definition in (2.51), (2.42), (2.15) and the convexity of ‖·‖2 we
find

‖zℓ − zj‖ ≤ ‖zℓ − z∗‖+ ‖zj − z∗‖ ≤ 2d0

√
1 +

2α(1 + α)

(1− α)2q(α)
∀ℓ, j ≥ 0, (2.52)

(1− τ)−2

k∑

j=1

‖zj − ẑj‖2 =
k∑

j=1

‖λjvj‖2 ≤
d20
ητ 2

(
1 +

2α(1 + α)

(1− α)2q(α)

)
(2.53)

and

‖z̃ak − ẑak‖2 ≤
1

Λk

k∑

j=1

λj‖z̃j − ẑj‖2 ≤
k∑

j=1

‖λjvj + z̃j − wj−1‖2

≤ σ2

k∑

j=1

‖z̃j − wj−1‖2

≤ σ2d20
(1− σ2)τ

(
1 +

2α(1 + α)

(1− α)2q(α)

)
. (2.54)

From (2.52), (2.53), the convexity of ‖ · ‖2 and the inequality ‖a− b‖2 ≤ 2 (‖a‖2 + ‖b‖2) (for all
a, b ∈ H), we find

‖zℓ − ẑak‖2 ≤
1

Λk

k∑

j=1

λj‖zℓ − ẑj‖2

≤ 2

(
1

Λk

k∑

j=1

λj‖zℓ − zj‖2 +
k∑

j=1

‖zj − ẑj‖2
)

≤ 2d20

(
1 +

2α(1 + α)

(1− α)2q(α)

)(
4 +

(1− τ)2

ητ 2

)
∀ℓ ≥ 0.

Using the above inequality and (2.54) we obtain, for all ℓ ≥ 0,

‖zℓ − z̃ak‖ ≤ ‖zℓ − ẑak‖+ ‖z̃ak − ẑak‖

≤
√
2d0

√
1 +

2α(1 + α)

(1− α)2q(α)

 σ√

(1− σ2)τ
+

√
4 +

(1− τ)2

ητ 2

 . (2.55)

33

Hence, (2.50), (2.52) with ℓ = 0, k − 1 and j = k, and (2.55) with ℓ = 0, k − 1 yield

2τΛkε
a
k ≤ 4

√
2d20

(
1 +

2α(1 + α)

(1− α)2q(α)

)
 σ√

(1− σ2)τ
+

√
4 +

(1− τ)2

ητ 2

+
2α(1 + α)d20
(1− α)q(α)

≤ 4
√
2d20

(
1 +

2α(1 + α)

(1− α)2q(α)

)
1 +

σ√
(1− σ2)τ

+

√
4 +

(1− τ)2

ητ 2

 ,

which, combined with the assumption λk ≥ λ > 0 for all k ≥ 1, clearly finishes the proof of
(2.48).

Now note that using (2.15), (2.13) and the assumption αk ≡ α we find

τλjvj = zj−1 − zj + α(zj−1 − zj−2) ∀j ≥ 1.

Summing the above identity over j = 1, . . . , k and using (2.42) and (2.52) with ℓ = 0 and
j = k − 1, k we find (recall that z0 = z−1)

τΛk‖vak‖ ≤ ‖z0 − zk‖+ α‖z0 − zk−1‖

≤ 2(1 + α)d0

√
1 +

2α(1 + α)

(1− α)2q(α)
,

which, combined with the assumption λk ≥ λ > 0 for all k ≥ 1, yields (2.47). To finish the proof
of the theorem, note that (2.46) is a direct consequence of the inclusion in (2.14) and Theorem
1.2.6(a).

2.2.3 On the under-relaxed inertial proximal point method

In this subsection we analyze the convergence and iteration-complexity of the under-relaxed
inertial proximal point (PP) method (see, e.g., [4, 11]) with constant under-relaxation (Algorithm
3) for solving (2.11). The analysis is performed by viewing Algorithm 3 within the framework
of Algorithm 2, for which asymptotic convergence and iteration-complexity were obtained in
Theorems 2.2.8, 2.2.11 and 2.2.13.

34

Algorithm 3. Under-relaxed inertial proximal point method for solving (2.11)

Input: z0 = z−1 ∈ H and 0 ≤ α < 1 and 0 < τ ≤ 1.

1: for k = 1, 2, . . . , do

2: Choose αk−1 ∈ [0, α] and define

wk−1 := zk−1 + αk−1(zk−1 − zk−2). (2.56)

3: Compute

z̃k = (λkT + I)−1(wk−1). (2.57)

4: Define

zk := τ z̃k + (1− τ)(wk−1). (2.58)

Next proposition shows that Algorithm 3 is a special instance of Algorithm 2.

Proposition 2.2.14. Algorithm 3 is a special instance of Algorithm 2 with σ = 0 in the Input,
in which case εk = 0 and vk = (wk−1 − z̃k)/λk ∈ T (z̃k) for all k ≥ 1.

Proof. The proof follows from the well-known fact that z̃ = (λT + I)−1w if and only if v :=
(w − z̃)/λ ∈ T (z̃) and Algorithms 3 and 2’s definitions.

Theorem 2.2.15 (convergence and iteration-complexity of Algorithm 3). Under the Assumption
(A) with σ = 0 on Algorithm 3, let {zk}, {vk}, {z̃k} and {λk} be generated by Algorithm 3 and
let the ergodic sequences {z̃ak}, {vak} and {εak} be as in (2.42). Let also q(·) be as in (2.33) and
let d0 denote the distance of z0 to T−1(0). Assume that λk ≥ λ > 0 for all k ≥ 1. Then, the
following statements hold:

(a) The sequence {zk} converges weakly to a solution of the monotone inclusion problem (2.11).

(b) For all k ≥ 1, there exists i ∈ {1, . . . , k} such that

vi ∈ T (z̃i), ‖vi‖ ≤
d0

λτ
√
k

√
η−1

(
1 +

2α(1 + α)

(1− α)2q(α)

)
. (2.59)

(c) If, additionally, αk ≡ α, then, for all k ≥ 1,

vak ∈ T εa
k(z̃ak), (2.60)

‖vak‖ ≤
2(1 + α)d0

λτ k

√
1 +

2α(1 + α)

(1− α)2q(α)
, (2.61)

εak ≤
2
√
2d20

λτ k

(
1 +

2α(1 + α)

(1− α)2q(α)

)(
1 +

√
4 +

(1− τ)2

τ(2− τ)

)
. (2.62)

35

Proof. The results in (a), (b) and (c) follow directly from Proposition 2.2.14 and Theorems 2.2.8,
2.2.11 and 2.2.13.

2.3 Inertial under-relaxed forward-backward and Tseng’s mod-

ified forward-backward methods

Consider the structured monotone inclusion problem (2.2), i.e., the problem of finding z ∈ H

such that

0 ∈ F (z) + B(z) =: T (z) (2.63)

where F : dom(F) ⊂ H → H is point-to-point monotone and B : H ⇒ H is a (set-valued)
maximal monotone operator for which T−1(0) 6= ∅ (precise assumption on F and B will be stated
later).

In this section, we study the convergence and iteration-complexity of inertial (under-relaxed)
versions of the forward-backward and Tseng’s modified forward-backward methods (2.9) and
(2.10), respectively, for solving (2.63), by viewing them within the framework of Algorithm 2, for
which asymptotic convergence and iteration-complexity were studied in Section 2.2.

2.3.1 An inertial under-relaxed Tseng’s modified forward-backward method

In this subsection, we consider the monotone inclusion problem (2.63) where the following
assumptions are assumed to hold:

(C1) F : dom(F) ⊂ H → H is monotone and L-Lipschitz continuous on a (nonempty) closed
convex set Ω such that dom(B) ⊂ Ω ⊂ dom(F), i.e., F is monotone on Ω and there exists
L ≥ 0 such that

‖F (z)− F (z′)‖ ≤ L‖z − z′‖ ∀z, z′ ∈ Ω.

(C2) B is a (set-valued) maximal monotone operators on H.

(C3) The solution set of (2.63) is nonempty.

It was proved in [91, Proposition A.1] that under assumptions (C1)–(C3) the operator T (·)
defined in (2.63) is maximal monotone, which guarantee that (2.63) is a special instance of (2.11).
In particular, it follows that Algorithm 2 can be used to solving the structured monotone inclusion
(2.63).

As we mentioned above, in this subsection, we shall study the convergence and iteration-
complexity of the following inertial under-relaxed version of the Tseng’s modified forward-backward
method for solving (2.63).

36

Algorithm 4. An inertial under-relaxed Tseng’s modified forward-backward method
for solving (2.63)

Input: z0 = z−1 ∈ H, 0 ≤ α < 1, 0 < σ < 1 and 0 < τ ≤ 1.

1: for k = 1, 2, . . . , do

2: Choose αk−1 ∈ [0, α] and define

wk−1 := zk−1 + αk−1(zk−1 − zk−2).

3: Choose λk ∈]0, σ/L], let w′
k−1 = PΩ(wk−1) and compute

z̃k = (λkB + I)−1(wk−1 − λkF (w′
k−1)),

ẑk = z̃k − λk

(
F (z̃k)− F (w′

k−1)
)
.

4: Define

zk := (1− τ)wk−1 + τ ẑk.

Remark 2.3.1.

(i) Algorithm 4 reduces to the Tseng’s modified forward-backward method [128] for solving
(2.63) if α = 0 and τ = 1, in which case wk−1 = zk−1 and zk = ẑk.

(ii) An inertial Tseng’s modified forward-backward-type method (based on a different mecha-
nism of iteration) was proposed and studied in [22]. The proposed Tseng’s modified forward-
backward type method in the latter reference tends to suffer from similar limitations as the
inertial HPE-type method proposed in [22], as we discussed in Remark 2.2.7. Moreover, in
contrast to the contributions of this chapter which performs the iteration-complexity anal-
ysis of Algorithm 4 (see Theorem 2.3.3), [22] focused only on the asymptotic convergence.

Since the proof of the next proposition follows the same outline of [92, Proposition 6.1], we
omit it here.

Proposition 2.3.2. Let {wk}, {w′
k}, {zk}, {αk}, {z̃k} and {λk} be generated by Algorithm 4

and define

εk := 0 and vk := F (z̃k)− F (w′
k−1) +

1

λk

(wk−1 − z̃k) ∀k ≥ 1. (2.64)

Then, the sequences {wk}, {zk}, {αk}, {z̃k}, {vk}, {εk} and {λk} satisfy the conditions (2.13)–
(2.15) in Algorithm 2. As a consequence, it follows that Algorithm 4 is a special instance of
Algorithm 2 for solving (2.63).

Next we present the convergence and iteration-complexity of Algorithm 4 under the Assump-
tion (A) on the Input (α, σ, τ) ∈ [0, 1[×]0, 1[×]0, 1] and on the sequence {αk}. We also mention
that the observations regarding the parameter τ in Remark 2.2.7(iii) obviously apply to Algorithm
4.

37

Theorem 2.3.3 (convergence and iteration-complexity of Algorithm 4). Under the Assumption
(A) on (α, σ, τ) ∈ [0, 1[×]0, 1[×]0, 1] and {αk}, let {zk}, {z̃k} and {λk} be generated by Algorithm
4, let {vk} and {εk} be as in (2.64) and let the ergodic sequences {z̃ak}, {vak} and {εak} be as in
(2.42). Let also η > 0 and q(·) be as in (2.19) and (2.33), respectively, let d0 denote the distance
of z0 to (F + B)−1(0) and assume that λk ≥ λ > 0 for all k ≥ 1. Then, the following statements
hold:

(a) The sequence {zk} converges weakly to a solution of the monotone inclusion problem (2.63).

(b) For all k ≥ 1, there exists i ∈ {1, . . . , k} such that

vi ∈ (F +B)(z̃i), ‖vi‖ ≤
d0

λτ
√
k

√
η−1

(
1 +

2α(1 + α)

(1− α)2q(α)

)
. (2.65)

(c) If, additionally, αk ≡ α, then, for all k ≥ 1,

vak ∈ (F +B)ε
a
k(z̃ak),

‖vak‖ ≤
2(1 + α)d0

λτ k

√
1 +

2α(1 + α)

(1− α)2q(α)
,

εak ≤
2
√
2d20

λτ k

(
1 +

2α(1 + α)

(1− α)2q(α)

)
1 +

σ√
(1− σ2)τ

+

√
4 +

(1− τ)2

ητ 2

 .

(2.66)

Proof. The proof follows directly from Proposition 2.3.2 and Theorems 2.2.8, 2.2.11 and 2.2.13.

Remark 2.3.4.

(i) Items (b) and (c) ensure, respectively, global pointwise O(1/
√
k) and ergodic O(1/k) con-

vergence rates for Algorithm 4. On the other hand, note that the inclusion in (2.66) is
potentially weaker than the corresponding one in (2.65).

(ii) If λk ≡ σ/L in Step 3 of Algorithm 4, in which case λ = σ/L, then d0/λ in (2.65) and (2.66)
can be replaced by d0L/σ. In this case, Item (b) gives that for a given tolerance ρ > 0,
Algorithm 4 finds a pair (z, v) such that (cf. (2.12))

v ∈ (F +B)(z), ‖v‖ ≤ ρ

in at most

O

(⌈
d20L

2

ρ2

⌉)

iterations, an analogous remark also holding for Item (c).

38

2.3.2 On the inertial under-relaxed forward-backward method

Similarly to Subsection 2.3.1, in this subsection, we consider the monotone inclusion problem
(2.63) but now we assume the following: (C2) and (C3) as in Subsection 2.3.1 and instead of
(C1):

(C1′) F : H→ H is (1/L)−cocoercive, i.e., there exists L > 0 such that

〈z − z′, F (z)− F (z′)〉 ≥ 1

L
‖F (z)− F (z′)‖2 ∀z, z′ ∈ H. (2.67)

We observe that it follows from (2.67) that F is, in particular, L–Lipschitz continuous.

Algorithm 5. Inertial under-relaxed forward-backward method for solving (2.63)

Input: z0 = z−1 ∈ H, 0 ≤ α < 1, 0 < σ < 1 and 0 < τ ≤ 1.

1: for k = 1, 2, . . . , do

2: Choose αk−1 ∈ [0, α] and define

wk−1 := zk−1 + αk−1(zk−1 − zk−2).

3: Choose λk ∈]0, 2σ2/L] and compute

z̃k = (λkB + I)−1(wk−1 − λkF (wk−1)).

4: Define

zk := (1− τ)wk−1 + τ z̃k.

Remark 2.3.5.

(i) If α = 0 and τ = 1, then it follows that Algorithm 5 reduces to the forward-backward
[76, 100] method for solving (2.63).

(ii) Inertial versions of the forward-backward method were previously proposed and studied in
[96], [77] and [10]. Asymptotic convergence of the forward-backward method proposed in
[77] was proved in the latter reference, in particular, under the assumption: 0 ≤ αk−1 ≤
αk ≤ α < 1, for all k ≥ 1, and

α = α(γ) := 1 +

√
9− 4γ − 2εγ − 3

γ
,

for some ε ∈]0, (9− 4γ)/(2γ)[, where γ ∈ (0, 2) and λk ≡ λ := γ/L (γ = 2σ2 in the notation
of this chapter). The apparent limitation of this approach is that α→ 0 if γ → 2, i.e., the
inertial effect degenerates for large values of the stepsize (see Fig. 1 in [77]). This contrasts
to the approach proposed in this chapter, where the under-relaxation parameter τ ∈ [0, 1[
is crucial to allowing α sufficiently close to 1, even for large stepsize values, i.e., when σ ≈ 1
(see Assumption (A) and part of the discussion in Remark 2.2.7(iii)).

39

(iii) Algorithm 5 is a special instance (with constant relaxation) of the RIFB algorithm in [10].
We refer the reader to [10] (see, e.g., Theorems 3.8 and 3.15, and Remark 3.13) for a
comprehensive discussion of the interplay and benefits of inertia and relaxation.

Next proposition shows that Algorithm 5 is also a special instance of Algorithm 2 for solving
(2.63). Since the proof follows the same outline of [125, Proposition 5.3], we omit it here too.

Proposition 2.3.6. Let {z̃k}, {zk}, {wk} and {λk} be generated by Algorithm 5, let T = F +B
be as in (2.63) and define, for all k ≥ 1,

εk :=
‖z̃k − wk−1‖2

4L−1
and vk :=

wk−1 − z̃k
λk

. (2.68)

Then, the following hold for all k ≥ 1:

vk ∈ (F εk +B)(z̃k) ⊂ T εk(z̃k),

λkvk + z̃k − wk−1 = 0, 2λkεk ≤ σ2‖z̃k − wk−1‖2, zk = wk−1 − τλkvk.
(2.69)

As a consequence of (2.69) and Algorithm 5’s definition, it follows that Algorithm 5 is a special
instance of Algorithm 2 for solving (2.63).

We finish this section by presenting the convergence and iteration-complexity of Algorithm 5,
which are a direct consequence of Proposition 2.3.6 and Theorems 2.2.8, 2.2.11 and 2.2.13. We
also mention that analogous remarks to those made in the Remark 2.3.4 also apply here.

Theorem 2.3.7 (convergence and iteration-complexity of Algorithm 5). Under the Assumption
(A) on (α, σ, τ) ∈ [0, 1[×]0, 1[×]0, 1] and {αk}, let {zk}, {z̃k} and {λk} be generated by Algorithm
5, let {vk} and {εk} be as in (2.68) and let the ergodic sequences {z̃ak}, {vak} and {εak} be as in
(2.42). Let also η > 0 and q(·) be as in (2.19) and (2.33), respectively, let d0 denote the distance
of z0 to (F + B)−1(0) and assume that λk ≥ λ > 0 for all k ≥ 1. Then, the following statements
hold:

(a) The sequence {zk} converges weakly to a solution of the monotone inclusion problem (2.63).

(b) For all k ≥ 1, there exists i ∈ {1, . . . , k} such that

vi ∈ (F εi +B)(z̃i),

‖vi‖ ≤
d0

λτ
√
k

√
η−1

(
1 +

2α(1 + α)

(1− α)2q(α)

)
,

εi ≤
σd20

2(1− σ2)λτ k

(
1 +

2α(1 + α)

(1− α)2q(α)

)
.

(2.70)

(c) If, additionally, αk ≡ α, then, for all k ≥ 1,

vak ∈ (F +B)ε
a
k(z̃ak),

‖vak‖ ≤
2(1 + α)d0

λτ k

√
1 +

2α(1 + α)

(1− α)2q(α)
,

εak ≤
2
√
2d20

λτ k

(
1 +

2α(1 + α)

(1− α)2q(α)

)
1 +

σ√
(1− σ2)τ

+

√
4 +

(1− τ)2

ητ 2

 .

(2.71)

40

Chapter 3

A relative-error inertial-relaxed inexact

projective splitting algorithm for

structured monotone inclusion problems

In this chapter, we present an inertial and inexact variant of projective splitting method
for solving structured monotone inclusion problems involving a sum of finitely many maximal
monotone operators, which we will refer to as relative-error inertial-relaxed inexact projective
splitting algorithm (Algorithm 7). The proposed algorithm benefits from a combination of inertial
and relaxation effects, which are both controlled by parameters within a certain range. We
propose sufficient conditions on these parameters (as well as we study the interplay between
them) to ensure weak convergence of sequences generated by our algorithm. As an application of
the proposed algorithm, we derive an inertial algorithm resembling the multi-block ADMM.

We mention that the content of this chapter is partially contained in the manuscript [83].

3.1 Problem statement

We consider the monotone inclusion problem of finding z ∈ H0 such that

0 ∈
n∑

i=1

G∗
iTiGi(z) (3.1)

where n ≥ 2 and the following assumptions hold:

(D1) For each i = 1, . . . , n, the operator Ti : Hi ⇒ Hi is (set-valued) maximal monotone and
Gi : H0 → Hi is a bounded linear operator.

(D2) The linear operator Gn is equal to the identity map in H0 = Hn, i.e., Gn : z 7→ z for all
z ∈ H0.

(D3) The solution set of (3.1) is nonempty, i.e., there exists at least one z ∈ H0 satisfying the
inclusion in (3.1).

41

Let H := H0×H1×. . .×Hn−1 be endowed with the inner product and norm defined, respectively,
as follows (for some γ > 0):

〈(z, w), (z′, w′)〉γ = γ〈z, z′〉+
n−1∑

i=1

〈wi, w
′
i〉, ‖(z, w)‖2γ = γ‖z‖2 +

n−1∑

i=1

‖wi‖2, (3.2)

where z, z′ ∈ H0 and w := (w1, . . . , wn−1), w
′ := (w′

1, . . . , w
′
n−1) ∈ H1 × . . .×Hn−1.

Note that using Assumption (D2) above, we obtain that (3.1) can equivalently be written as

0 ∈
n−1∑

i=1

G∗
iTiGi(z) + Tn(z). (3.3)

Consider the extend solution set (or generalized Kuhn-Tucker set) for the problem (3.1) (or (3.3)):

S :=

{
(z, w1, . . . , wn−1) ∈H | wi ∈ Ti(Giz), i = 1, . . . , n− 1, −

n−1∑

i=1

G∗
iwi ∈ Tn(z)

}
. (3.4)

Problem (3.1) appears in different fields of applied mathematics and optimization, including
machine learning, inverse problems and image processing (see e.g. [25, 44, 45] and references
therein), especially in connection with the composed convex optimization problem

min
z∈H0

n∑

i=1

fi(Giz) (3.5)

where, for i = 1, . . . , n, each fi : Hi → (−∞,+∞] is proper, convex and lower semicontinuos.
Indeed, under mild assumptions on fi and Gi, the minimization problem (3.5) is equivalent to
the monotone inclusion problem (3.1) with Ti = ∂fi (i = 1, . . . , n).

As we already pointed out, one of the main goals of this chapter is to develop a projective
splitting type-algorithm algorithm for solving (3.1) with both inertial and relaxation effects and,
additionally, with inexact subproblems solution within relative-error criteria. We emphasize that,
up to our knowledge, this is the first time in the literature that inertial effects are considered in
projective splitting algorithms. Our main algorithm is Algorithm 7, for which the convergence
is studied in Theorems 3.3.8 and 3.3.9, under flexible assumptions on the inertial and relaxation
parameters. Motivated by the above discussion and the fact that (3.1) is equivalent to the problem
of finding a point in the closed and convex set S (see Subsection 1.4.3), we first introduce in Section
3.2 an inertial-relaxed separator-projector method for solving the (feasibility) problem of finding
points in closed convex subsets of Hilbert spaces, which unifies the ideas of the classical inertial
PPM [15] and the separator-projector algorithm [40].

3.2 An inertial-relaxed separator-projection method

In this section, we propose and study a general separator-projection framework (Algorithm
6) for finding a point in a given closed and convex subset of a real Hilbert space. The main
motivation for doing so is the reformulation of the monotone inclusion problem (3.1) (see Section
3.3) as the problem of finding a point in the extended solution set S in (3.4). Algorithm 6 will

42

be used in Section 3.3 to analyze the convergence of the main algorithm proposed in this chapter
(namely Algorithm 7) for solving (3.1).

Now, we present our first framework which combines inertia and relaxation, related to the
method of finding a point in a convex and closed subset S of an arbitrary Hilbert space H with
inner product 〈·, ·〉 whose norm is ‖ · ‖ =

√
〈·, ·〉. We denote the gradient of an affine function

ϕ : H → R by the usual notation ∇ϕ and, in this case, we also write ϕ(z) = 〈∇ϕ, z〉 + ϕ(0) for
all z ∈ H. The main results in this section are Propositions 3.2.3 and 3.2.4.

Algorithm 6. An inertial-relaxed linear separator-projection method for finding a
point in a nonempty closed convex set S ⊂ H

(0) Let p0 = p−1 ∈ H, α ∈ [0, 1) and 0 < β < β < 2 be given and let k ← 0.

(1) Choose αk ∈ [0, α] and define

p̂ k = pk + αk(p
k − pk−1). (3.6)

(2) Find an affine function ϕk such that ∇ϕk 6= 0 and ϕk(p) ≤ 0 for all p ∈ S. Choose
βk ∈ [β, β] and set

pk+1 = p̂ k − βk max{0, ϕk(p̂
k)}

‖∇ϕk‖2
∇ϕk. (3.7)

(3) Let k ← k + 1 and go to step 1.

Remark 3.2.1. We now make some remarks regarding Algorithm 6.

(i) Denoting by p̃ k+1 the (orthogonal) projection of p̂ k onto the semispace

Hk := {p ∈ H |ϕk(p) ≤ 0}

which is a convex and closed subset of H, by a straightforward calculation one obtains

p̃ k+1 = p̂ k − max{0, ϕk(p̂
k)}

‖∇ϕk‖2
∇ϕk (3.8)

and using (3.7) we conclude that

pk+1 = p̂ k + βk(p̃
k+1 − p̂ k). (3.9)

From now on, let us refer to the step 1 and step 2 as inertial step and projection step,
respectively.

(ii) Note that (3.6) and (3.9) illustrate the different effects promoted in Algorithm 6 by inertia
and relaxation parameters, which are respectively controlled by αk and βk, see Figure 3.1.
The relaxation parameter βk determines the position of the update pk+1 in the closed seg-
ment between the current iterate (the inertial term) p̂k and its reflection 2p̃ k+1 − p̂k with
respect to hyperplane Ĥk := {p ∈ H |ϕk(p) = 0}, see Figure 3.1.

43

(iii) When α = 0, in which case αk ≡ 0 and hence p̂ k = pk in (3.6), then Algorithm 6 reduces
to the generic separator-projection method of [40] (see also [68]). Conditions on {αk},
α ∈ [0, 1) and β ∈ (0, 2) to guarantee overall convergence of Algorithm 6 are given in
Proposition 3.2.4; see (3.22), (3.23) and Figure 3.2.

(iv) As we mentioned early, Algorithm 6 will be used in the next section for analyzing the
convergence of Algorithm 7.

Ĥk = {p ∈ H | ϕk(p) = 0}

S

pk+1 = p̂ k + βk(p̃
k+1 − p̂ k)

pk−1

pk

p̂ k = pk + αk(p
k − pk−1)

p̃ k+1 = PHk
(p̂ k)

p̂ k+1

Ĥk+1

pk+2

Figure 3.1: Geometric interpretation of steps (3.6) and (3.7) in Algorithm 6. The (overrelaxed)
projection step (3.7) is orthogonal to the separating hyperplane Ĥk = {p ∈ H | ϕk(p) = 0}, which
can differ from the direction between pk−1, pk and p̂k when αk > 0.

It is well known that the standard convergence analysis of Algorithm 6 without inertial steps
is based on the Fejér monotonicity of the iterate with respect to S (see [40]). However, the inertial
case needs a special treatment, because in this case {pk} is no longer Fejér monotone 1; see (3.14)
below.

Given p ∈ H and a sequence {pk} generated by Algorithm 6, let us consider the sequence
{hk} as hk = ‖pk − p‖2. The difference hk+1 − [hk + αk (hk − hk−1)] plays an important role in
the study of the asymptotic behavior as k →∞ of the sequence {pk} generated by Algorithm 6.

In what follows we show a technical lemma which will be crucial for the proof of the main
results in this section (see Propositions 3.2.3 and 3.2.4).

1A sequence {pk} in H is Fejér monotone with respect to set S, if for any p∗ ∈ S,

‖pk+1 − p∗‖ ≤ ‖pk − p∗‖ ∀k ≥ 1.

44

Lemma 3.2.2. Consider the sequences evolved by Algorithm 6 and let p̃ k+1 be as in (3.8). For
an arbritary p ∈ S, define

hk = ‖pk − p‖2 ∀k ≥ −1. (3.10)

Then, the following statements hold:

(a) For all k ≥ 0,

hk+1 − hk − αk(hk − hk−1) + sk+1 ≤ αk(1 + αk)‖pk − pk−1‖2,

where

sk+1 := βk(2− βk)‖p̂ k − p̃ k+1‖2 ∀k ≥ 0. (3.11)

(b) For all k ≥ 0,

hk+1 − hk − αk(hk − hk−1) ≤ γk‖pk − pk−1‖2 − (2− β)β
−1
(1− αk)‖pk+1 − pk‖2, (3.12)

where

γk := 2
(
1− β

−1
)
α2
k + 2β

−1
αk ∀k ≥ 0. (3.13)

Proof. (a) We shall first prove that

‖pk+1 − p‖2 + βk(2− βk)‖p̂ k − p̃ k+1‖2 ≤ ‖p̂ k − p‖2 ∀p ∈ S, (3.14)

where p̃ k+1 is as in (3.8), i.e., it is the projection of p̂k onto the semispace Hk = {p ∈ H | ϕk(p) ≤
0}. To this end, note first that, for all p ∈ S,

‖p̂ k − p‖2 − ‖p̃ k+1 − p‖2 = ‖p̂ k − p̃ k+1‖2 + 2〈p̂ k − p̃ k+1, p̃ k+1 − p〉
≥ ‖p̂ k − p̃ k+1‖2 (3.15)

where we have used (3.8) and the fact that S ⊂ Hk (see Step 2 of Algorithm 6 and the property
(1.1) of the projection operator) to obtain the inequality 〈p̂ k − p̃ k+1, p̃ k+1 − p〉 ≥ 0. Note now
that (3.9) is trivially equivalent to

pk+1 = (1− βk)p̂
k + βkp̃

k+1,

which in turn combined with (A.7) in Lemma A.2.1 yields

‖pk+1 − p‖2 = (1− βk)‖p̂ k − p‖2 + βk‖p̃ k+1 − p‖2 − βk(1− βk)‖p̂ k − p̃ k+1‖2

or, equivalently,

βk

(
‖p̂ k − p‖2 − ‖p̃ k+1 − p‖2

)
= ‖p̂ k − p‖2 − βk(1− βk)‖p̂ k − p̃ k+1‖2 − ‖pk+1 − p‖2. (3.16)

The desired inequality (3.14) now follows by multiplying the inequality in (3.15) by βk ≥ 0, by
combining the resulting inequality with (3.16) and by using some simple algebraic manipulations.

45

Now, from (3.6) we have

pk − p =
1

1 + αk

(p̂ k − p) +
αk

1 + αk

(pk−1 − p) and p̂ k − pk−1 = (1 + αk)(p
k − pk−1). (3.17)

Using (A.7) (Lemma A.2.1) and the first identity in (3.17) we obtain

‖pk − p‖2 = 1

1 + αk

‖p̂ k − p‖2 + αk

1 + αk

‖pk−1 − p‖2 − αk

(1 + αk)2
‖p̂ k − pk−1‖2,

which combined with the second identity in (3.17) and some algebraic manipulations gives

‖p̂ k − p‖2 = (1 + αk)‖pk − p‖2 − αk‖pk−1 − p‖2 + αk(1 + αk)‖pk − pk−1‖2. (3.18)

Hence, (a) follows directly from (3.14), (3.18) and the definitions of hk and sk+1 in (3.10) and
(3.11), respectively.

(b) Note that (3.9) is also trivially equivalent to p̂k − p̃k+1 = β−1
k (p̂k − pk+1), which in turn

combined with the definition of sk+1 in (3.11) and the fact that βk ≤ β for all k ≥ 0 (see Step 2
of Algorithm 6) yields

sk+1 = βk(2− βk)‖p̂ k − p̃ k+1‖2 =
(
2β−1

k − 1
)
‖p̂ k − pk+1‖2 ≥

(
2β

−1 − 1
)
‖p̂ k − pk+1‖2. (3.19)

Using (3.6), the Cauchy-Schwarz inequality, the Young inequality (2ab ≤ a2 + b2 with a =
‖pk+1 − pk‖ and b = ‖pk − pk−1‖) and some algebraic manipulations, we find

‖p̂ k − pk+1‖2 =‖pk+1 − pk‖2 + α2
k‖pk − pk−1‖2 − 2αk〈pk+1 − pk, pk − pk−1〉

≥‖pk+1 − pk‖2 + α2
k‖pk − pk−1‖2 − 2αk‖pk+1 − pk‖‖pk − pk−1‖

≥‖pk+1 − pk‖2 + α2
k‖pk − pk−1‖2 − αk

(
‖pk+1 − pk‖2 + ‖pk − pk−1‖2

)

=(1− αk)
(
‖pk+1 − pk‖2 − αk‖pk − pk−1‖2

)
. (3.20)

From (3.19) and (3.20) we obtain

sk+1 ≥
(
2β

−1 − 1
)
(1− αk)

(
‖pk+1 − pk‖2 − αk‖pk − pk−1‖2

)
,

which in turn combined with the inequality in (a) and (3.13), and after some simple manipulations,
gives exactly the desired inequality in (b).

Next is our first result on the (asymptotic) convergence of Algorithm 6. The key assumption
is the summability condition (3.21), for which a sufficient condition, only depending on the
parameters αk and βk will be given in Proposition 3.2.4 (see conditions (3.22), (3.23) and Figure
3.2).

Proposition 3.2.3 (First result on the convergence of Algorithm 6). Let {pk}, {p̂ k}, {ϕk} and
{αk} be generated by Algorithm 6 and assume that

∞∑

k=0

αk‖pk − pk−1‖2 < +∞. (3.21)

Then, the following holds:

46

(a) limk→∞ ‖pk − p‖ exists for all p ∈ S, and hence {pk} and {p̂k} are bounded.

(b) If every weak cluster point of {pk} belongs to S, then {pk} converges weakly to some element
in S.

(c) We have,
max{0, ϕk(p̂

k)}
‖∇ϕk‖

→ 0 k → +∞.

Proof. (a) Defining δk = αk(1 + αk)‖pk − pk−1‖2 and using Lemma 3.2.2(a) we conclude that
condition (A.1) in Lemma A.1.1 (Appendix A.1) holds with hk and sk+1 is as in (3.10) and (3.11),
respectively. Hence, using the assumption (3.21), Lemma A.1.1(b) and (3.10) we conclude that

lim
k→∞

‖pk − p‖ exists for all p ∈ S.

Further, this show the first part of Opial’s lemma (Lemma A.2.2), and in particular {pk} and
{p̂k} are bounded (see (3.6)).

(b) The conclusion of this item follows immediately from item (a) (first part) and Opial’s
lemma (Lemma A.2.2).

(c) Note first that from (3.8) we have

max{0, ϕk(p̂
k)}

‖∇ϕk‖
= ‖p̃ k+1 − p̂ k‖.

Hence, to conclude the proof of this item, it suffices to prove that ‖p̃ k+1 − p̂ k‖ → 0, as k → ∞.
To this end, note that (3.21) combined with the definition of δk above, the fact that α2

k ≤ αk

(because αk ∈ [0, 1[) and Lemma A.1.1(a) gives
∑+∞

k=0 sk+1 < +∞, where sk+1 (for all k ≥ 0) is
as in (3.11), and so sk+1 → 0, as k → ∞. The desired result now follows form this fact, (3.11)
and the fact that 0 < β ≤ βk ≤ β < 2 (see Step 2 in Algorithm 6).

Next we present sufficient conditions on {αk} and {βk} to ensure condition (3.21) in Propo-
sition 3.2.3.

Proposition 3.2.4 (Second result on the convergence of Algorithm 6). Let {pk} and {αk} be
generated by Algorithm 6. Assume that α ∈ [0, 1), β ∈ (0, 2) and {αk} satisfy the following (for
some α > 0):

0 ≤ αk ≤ αk+1 ≤ α < α < 1 ∀k ≥ 0 (3.22)

and

β = β(α) :=
2(α− 1)2

2(α− 1)2 + 3α− 1
. (3.23)

Then, the following holds:

(a) We have

∞∑

k=0

‖pk − pk−1‖2 <∞. (3.24)

47

(b) Under the assumptions (3.22) and (3.23), if every weak cluster point of {pk} belongs to S,
then {pk} converges weakly to some element in S.

Proof. (a) Define, for all k ≥ 0,

µk = hk − αkhk−1 + γk‖pk − pk−1‖2 (3.25)

where hk is as in (3.10) (for some p ∈ S) and γk is as in (3.13). Using the assumption (3.22) and
Lemma 3.2.2(b), we obtain, for all k ≥ 0,

µk+1 − µk ≤ hk+1 − αkhk + γk+1‖pk+1 − pk‖2 − hk + αkhk−1 − γk‖pk − pk−1‖2 [by (3.22)]

= hk+1 − hk − αk(hk − hk−1) + γk+1‖pk+1 − pk‖2 − γk‖pk − pk−1‖2

≤
[
−
(
2− β

)
β

−1
(1− αk) + γk+1

]
‖pk+1 − pk‖2 [by Lemma 3.2.2(b)]

≤
[
−
(
2− β

)
β

−1
(1− αk+1) + γk+1

]
‖pk+1 − pk‖2 [by (3.22)]

= −q(αk+1)‖pk+1 − pk‖2 [by (3.13) and (3.27)] (3.26)

where

q(ν) := 2
(
β

−1 − 1
)
ν2 −

(
4β

−1 − 1
)
ν + 2β

−1 − 1, ν ∈ R. (3.27)

Next we will show that q(αk+1) admits an uniform lower bound. To this end, note first that (3.23)
and Lemma A.1.3 yield

α =
2(2− β)

4− β +

√
16β − 7β

2
,

which in turn combined with Lemma A.1.4 below implies that q(α) = 0 and q(·) is decreasing in
[0, α]. Thus, in view of (3.22), we obtain

q(αk+1) ≥ q(α) > q(α) = 0

and so, in view of (3.26), it follows that

µk+1 − µk ≤ −q(αk+1)‖pk+1 − pk‖2 ≤ −q(α)‖pk+1 − pk‖2 ≤ 0, (3.28)

and

‖pk+1 − pk‖2 ≤ 1

q(α)
(µk − µk+1) ∀k ≥ 0.

Hence, for all k ≥ 0,

k∑

j=0

‖pj+1 − pj‖2 ≤ 1

q(α)
(µ0 − µk+1) ≤

1

q(α)
(µ0 + αhk) (3.29)

where in the second inequality above we also used the fact that µk+1 ≥ −αhk (in view of (3.25)
and (3.22)). Therefore, to finish the proof of (a) it is enough to find an upper bound on hk and

48

use (3.29). To this end, note that from (3.28), (3.25), (3.22) and the fact that γk ≥ 0 (see (3.13))
we have, for all k ≥ −1,

µ0 ≥ µ1 ≥ . . . ≥ µk+1 = hk+1 − αk+1hk + γk+1‖pk+1 − pk‖2
≥ hk+1 − αhk

and so, for all k ≥ −1,

hk+1 ≤ αk+1h0 +

(
k∑

i=0

αi

)
µ0

≤ h0 +
µ0

1− α
(3.30)

where in the second inequality we also used the fact – from (3.25) – that µ0 = (1− α0)h0 ≥ 0.
(b) The result follows trivially from (a), the fact that 0 ≤ αk < 1 for all k ≥ 0 and Proposition

3.2.3(b).

α

β(α)

0

1

α = 1
3

1

2

Figure 3.2: Relaxation parameter upper bound β(α) defined as in (3.23) as a function of inertial
step upper bound α > 0 of (3.22).

Next proposition will be useful to obtain convergence rates for Algorithm 7 in the next section.

Proposition 3.2.5. Let {pk}, {p̂k} and {αk} be generated by Algorithm 6 and assume that
(3.22) and (3.23) hold. Then, for any p ∈ S,

k∑

j=0

‖p̃ j+1 − p̂ j‖2 ≤ β−1
(
2− β

)−1
(
1 +

α(1 + 2α− α3)

(1− α)2q(α)

)
‖p0 − p‖2, (3.31)

where

q(α) := 2
(
β

−1 − 1
)
α2 −

(
4β

−1 − 1
)
α + 2β

−1 − 1, α ∈ R. (3.32)

49

Proof. Let, for all k ≥ 0,

µk = hk − αkhk−1 + γk‖pk − pk−1‖2.

Using the fact that p0 = p−1 and αk ∈ [0, 1), one has

µ0 = h0 − α0h−1 = (1− α0)h0 ≤ h0 = ‖p0 − p‖2.

Now, in view of (3.29), (3.30) (inside the proof of Proposition 3.2.4) and the latter inequality, we
get

k∑

j=0

‖pj+1 − pj‖2 ≤ 1

q(α)
(µ0 + αhk) ≤

1

q(α)

(
µ0 + αh0 + α

µ0

1− α

)

≤ 1 + α− α2

q(α)(1− α)
‖p0 − p‖2. (3.33)

On the other hand, from Lemma 3.2.2(a) and Lemma A.1.1 (a) with δk = αk(1+αk)‖pk − pk−1‖2
and sk+1 as in (3.11) and using (3.22) and (3.33) we have

k−1∑

j=0

sj+1 ≤ h0 − hk +
1

1− α

k−1∑

j=1

δj ≤ h0 +
α(1 + α)

1− α

k∑

j=1

‖pj − pj−1‖2

≤
(
1 +

α(1 + 2α− α3)

(1− α)2q(α)

)
‖p0 − p‖2. (3.34)

In the second "≤" we used the fact that hk ≥ 0, for all k ≥ 0. By using the definition of sk+1 in
(3.11) and then adding on j = 0, . . . , k − 1 and taking into account that 0 < β ≤ βk ≤ β < 2,
one gets

k−1∑

j=0

sj+1 =
k−1∑

j=0

βj(2− βj)‖p̃ j+1 − p̂ j‖2 ≥ β
(
2− β

) k−1∑

j=0

‖p̃ j+1 − p̂ j‖2. (3.35)

The desired conclusion follows directly by combining (3.34) and (3.35).

To close this section, we state some further remarks about the analysis of Algorithm 6:

Remark 3.2.6.

(i) Conditions (3.22) and (3.23) on {αk}, α and β guarantee that the summability condition
(3.21) in Theorem 6 is satisfied, thus guaranteeing the convergence of Algorithm 6. Similar
conditions appear in the convergence analysis of inertial proximal point methods, see e.g.,
[8, 10, 6]. Since Algorithm 6 is the basis of the projective splitting method developed
in the next section, conditions (3.22) and (3.23) will also play an important role in their
convergence analysis.

(ii) If we set α = 1/3 in (3.22), one gets directly from (3.23) that β = 1. On the other hand, we
observe that β > 1 whenever α < 1/3 (see Figure 3.2 above). A standard strategy in the
literature of proximal point methods is to set α = 1/3, see e.g. [4, 36]. We also emphasize
that the interplay between inertial and relaxation effects has also been investigated, e.g., in
[6, 10, 11, 43].

50

(iii) Algorithm 6 is a general and abstract template. However, this template by itself does not
guarantee the weak convergence of its iterates {pk} to a point of S, because the separator
function ϕk might not be chosen to actually separate the extrapolated term p̂k from S.
To ensure overall convergence, we assumed that every weak sequential cluster point of the
sequence {pk} belong to S (see Propositionss 3.2.3 and 3.2.4). However, in concrete problems
this assumption can be verified. For instance, the analysis of the projective splitting methods
in [51, 52](without inertia) ensures weak convergence of the iterates under the condition
ϕk(p

k) ≥ ξ‖∇ϕk‖2 for all k ≥ 0, where ξ > 0 is a constant (see e.g. [52, Proposition 3.2]).
In the next section, we will see that this condition is also verified in the inertial case (see
Lemma 3.3.6(c)).

3.3 A relative-error inertial-relaxed inexact projective split-

ting algorithm

In this section, we present a specialization of the general separator-projector methods (Al-
gorithm 6) to problem (3.36) below. We propose and study the asymptotic convergence of a
relative-error inertial-relaxed inexact projective splitting algorithm (Algorithm 7). The main
convergence results are stated in Theorems 3.3.8, 3.3.9 and 3.3.10.

We recall the monotone inclusion problem (3.1), i.e., the problem of finding z ∈ H0 such that

0 ∈
n∑

i=1

G∗
iTiGi(z) (3.36)

where n ≥ 2 and assumptions (D1)-(D3) in Section 3.1 are assumed to hold.
Since Step 2 of Algorithm 6 demands the construction of an (non constant) affine function ϕk

such that ϕk(p) ≤ 0 for all p ∈ S, next we discuss the construction of such ϕk satisfying the latter
inequality for S defined as in (3.4).

Let p := (z, w1, . . . , wn−1) be a generic point in H, for yki ∈ Ti(x
k
i) (i = 1, . . . , n). We define

ϕk : H→ R by

ϕk(z, w1, . . . , wn−1︸ ︷︷ ︸
p

) =
n−1∑

i=1

〈Giz − xk
i , y

k
i − wi〉+ 〈Gnz − xk

n, y
k
n +

n−1∑

i=1

G∗
iwi〉. (3.37)

To facilitate the mathematical presentation, we use the following notation in the rest of the
chapter:

wn := −
n−1∑

i=1

G∗
iwi. (3.38)

Hence, the separator function (3.37) may be written more brielfy as:

ϕk(p) =
n∑

i=1

〈Giz − xk
i , y

k
i − wi〉. (3.39)

51

Note that ϕk depends on the computation of pairs (xk
i , y

k
i) in the graph of Ti, for each i = 1, . . . , n,

which can be computed by inexact evaluation (with relative-error tolerance) of the resolvent
JTi

= (Ti + I)−1 of Ti (see Step 2 of Algorithm 7).

The following lemma presents some properties of ϕk which will be useful in the remainder of
this chapter.

Lemma 3.3.1. [68, Lemma 4] Let ϕk and S be as in (3.37) and (3.4), respectively. The following
hold:

(a) ϕk is an affine function on H.

(b) ϕk(p) ≤ 0 for all p ∈ S.

(c) The gradient of ϕk with respect to the inner product 〈·, ·〉γ as in (3.2) is

∇ϕk =

(
1

γ

(
n−1∑

i=1

G∗
i y

k
i + ykn

)
, xk

1 −G1x
k
n, . . . , x

k
n−1 −Gn−1x

k
n

)
, (3.40)

and

‖∇ϕk‖2γ = γ−1

∥∥∥∥∥

n−1∑

i=1

G∗
i y

k
i + ykn

∥∥∥∥∥

2

+
n−1∑

i=1

‖xk
i −Gix

k
n‖2. (3.41)

(d) If ∇ϕk = 0, then (xk
n, y

k
1 , . . . , y

k
n−1) ∈ S and in particular xk

n is a solution of the problem
(3.36).

3.3.1 Our main Algorithm

In this subsection we present the main algorithm of this chapter. As we mentioned before, it
consists of a relative-error inertial-relaxed inexact projective splitting method for solving (3.36).

52

Algorithm 7. A relative-error inertial-relaxed inexact projective splitting algorithm

(0) Let (z−1, w−1
1 , . . . , w−1

n−1) = (z0, w0
1, . . . , w

0
n−1) ∈H, α, σ ∈ [0, 1), 0 < β ≤ β < 2 and γ > 0

be given and let k ← 0.

(1) Choose αk ∈ [0, α] and let

ẑ k = zk + αk(z
k − zk−1), (3.42)

ŵ k
i = wk

i + αk(w
k
i − wk−1

i), i = 1, . . . , n− 1, (3.43)

ŵ k
n = −

n−1∑

i=1

G∗
i ŵ

k
i . (3.44)

(2) Choose scalars ρki > 0 and compute (xk
i , y

k
i), for i = 1, . . . , n satisfying

yki ∈ Ti(x
k
i), xk

i + ρki y
k
i = Giẑ

k + ρki ŵ
k
i + eki (3.45)

and

‖eki ‖2 ≤ σ2
(
‖Giẑ

k − xk
i ‖2 + ‖ρki (yki − ŵk

i)‖2
)
. (3.46)

(3) (3.a) If xk
i = Gix

k
n, i = 1, . . . , n− 1 and

n−1∑

i=1

G∗
i y

k
i + ykn = 0, then STOP and set

zk+1 = xk
n and wk+1

i = y k
i , i = 1, . . . , n− 1. (3.47)

(3.b) Else, define

ϕk(z, w1, . . . , wn−1︸ ︷︷ ︸
p

) =
n−1∑

i=1

〈Giz − xk
i , y

k
i − wi〉+ 〈Gnz − xk

n, y
n
k +

n−1∑

i=1

G∗
iwi〉, (3.48)

θk =
max{0, ϕk(p̂

k)}
γ−1‖∑n−1

i=1 G∗
i y

k
i + ykn‖2 +

∑n−1
i=1 ‖xk

i −Gixk
n‖2

. (3.49)

(4) Choose some relaxation parameter βk ∈ [β, β] and define

zk+1 = ẑ k − γ−1βkθk

(
n−1∑

i=1

G∗
i y

k
i + ykn

)
, (3.50)

wk+1
i = ŵ k

i − βkθk
(
xk
i −Gix

k
n

)
, i = 1, . . . , n− 1. (3.51)

(5) Let k ← k + 1 and go to step 1.

Let us adopt a similar nomenclature to that of [68] for the parameters:

• For each k ≥ 0 and each i = 1, . . . , n, ρki is a positive scalar parameter.

53

• For each k ≥ 0, βk ∈ [β, β] is a relaxation parameter with 0 < β ≤ β ≤ 2.

• For each k ≥ 0, αk ∈ [0, α), for some α ∈ [0, 1) is the inertial(extrapolation) parameter.

• The parameter γ > 0 controls the relative emphasis on the primal and dual variables in the
projection step (3.50) and (3.51) (see (3.2) for more details on the parameter γ).

• The parameter of relative-error tolerance σ ∈ [0, 1) and the sequence of errors {eki } models
the inexact computations of resolvent step in (3.45).

Moreover, we adopt the following assumption on the step-size parameter ρki in the (approxi-
mate) proximal step (3.45):

(D4) Stepsize condition for convergence of Algorithm 7:

0 < ρ ≤ ρki ≤ ρ < +∞, (3.52)

where

ρ := min
i=1,...,n

{
inf
k≥0

ρki

}
and ρ := max

i=1,...,n

{
sup
k≥0

ρki

}
.

Before discussing the convergence analysis of Algorithm 7, we make some remarks concerning
it.

Remark 3.3.2.

(i) Notice that if xk
i = Gix

k
n, for i = 1, . . . , n − 1 and

n−1∑

i=1

G∗
i y

k
i + ykn = 0, for some k, that is,

∇ϕk = 0, then (xk
n, y

k
1 , . . . , y

k
n−1) ∈ S by Lemma 3.3.1(d). Therefore, when Algorithm 7

stops at step (3.a), it stops at a point in the extended solution set S. Even more, the test
in step (3.a) guarantees that the denominator in (3.49) cannot be zero.

(ii) Similarly to Algorithm 6 of Section 3.2, Algorithm 7 also promotes inertial and relaxation
effects, controlled by the parameters αk and βk, respectively. The inertial (extrapolation)
step is performed in (3.42) and (3.43), while the relaxed projective step is given in (3.50)
and (3.51) (in the context of Algorithm 6, see Figure 3.1 of Section 3.2). Conditions on the
choice of the upper bounds α and β, as well as on the sequence of extrapolation parameters
{αk}, to guarantee the convergence of Algorithm 7 will be given in Theorem 3.3.9.

(iii) We also emphasize that if αk = 0 in Algorithm 7, then it reduces to the projective splitting
algorithm (or some of its variants), see e.g. [68, Algorithm 2] with IF = ∅, d(i, k) = k
and Ik = {1, . . . , n} (in the notation of the latter reference). In particular, when n = 2,
Algorithm 7 results in an inertial and inexact variant of the primal-dual splitting algorithm
in [2, Proposition 3.2].

(iv) The computation of (xk
i , y

k
i) in (3.45) can be performed inexactly within a relative-error

tolerance controlled by the parameter σ ∈ [0, 1). In practice, the error condition in (3.45) can

54

be used as a stopping-criterion for some computational procedure (e.g., conjugate gradient
algorithm) applied to (inexactly) solving the related inclusion (for i = 1, . . . , n)

0 ∈ ρki Ti(x) + x− (Giẑ
k + ρki ŵ

k
i)

until the error-condition in (3.46) is satisfied for the first time. Note also that (xk
i , y

k
i) is

given explicitly by

xk
i = Jρki Ti

(
Giẑ

k + ρki ŵ
k
i

)
and yki =

Giẑ
k − xk

i

ρki
+ ŵ k

i ,

whenever the resolvent Jρki Ti
= (ρki T + I)−1 is assumed to be easily computed and σ = 0 in

(3.45). In the particular case of the minimization problem (3.5), the computation of (xk
i , y

k
i)

reduces to the (inexact) computation of the proximity operator proxρki f (x) (see (1.3)), i.e.,
in this case

xk
i ≈ argmin

z∈H0

{
fi(z) +

1

2ρki
‖z − (Giẑ

k + ρki ŵ
k
i)‖2

}
.

(vi) By setting pk := (zk, wk
1 , . . . , w

k
n−1) for all k ≥ −1, and defining p̂ k as in (3.6), after some al-

gebraic manipulations, and using (3.42) and (3.43) one can check that p̂ k = (ẑk, ŵk
i , . . . , ŵ

k
n−1).

Indeed,

p̂ k =pk + αk(p
k − pk−1)

=(zk, wk
1 , . . . , w

k
n−1) + αk

(
(zk, wk

1 , . . . , w
k
n−1) + (zk−1, wk−1

1 , . . . , wk−1
n−1)

)

=
(
zk + αk(z

k − zk−1), wk
1 + αk(w

k
1 − wk−1

1), . . . , wk
n−1 + αk(w

k
n−1 − wk−1

n−1)
)

=(ẑk, ŵk
i , . . . , ŵ

k
n−1).

(vii) Direct substitution of (3.43) into (3.44) gives that, similarly to ŵk
i (i = 1, . . . , n − 1), ŵk

n

also satisfies

ŵ k
n = wk

n + αn(w
k
n − wk−1

n),

where

wk
n := −

n−1∑

i=1

G∗
iw

k
i ∀k ≥ 0. (3.53)

(viii) The assumption on relative-error condition in (3.46) adopted in this chapter is more flexible
in terms of computational implementation when compared to the error criterion considered
in the existent projective splitting methods (see e.g., [42, 52, 70, 68]).

Next, we deal with the situation when Algorithm 7 terminates at step (3.a).

Lemma 3.3.3. If Algorithm 7 stops at step (3.a), then (zk+1, wk+1
1 , . . . , wk+1

n−1) as in (3.47) belongs
to the extended solution set S defined in (3.4). In particular, zk+1 is a solution of (3.36).

55

Proof. Let ϕk defined as in (3.37). First, note that if Algorithm 7 stop at step (3.a), we have the
following

xk
i −Gix

k
n = 0, i = 1, . . . , n− 1 and

n−1∑

i=1

G∗
i y

k
i + ykn = 0

where yki ∈ Tix
k
i , for i = 1, . . . , n. The last equality and Lemma 3.3.1(c) implies that ∇ϕk = 0.

Thus, by invoking Lemma 3.3.1(d) and thanks to (3.47) we conclude that (zk+1, wk+1
1 , . . . , wk+1

n−1) =
(xk

n, y
k
1 , . . . , y

k
n−1) ∈ S, and as a consequence zk+1 solve (3.36).

Remark 3.3.4. Lemma 3.3.3 asserts that if Algorithm 7 terminate finitely (Algorithm 7 stops at
step 3(a)), then the final iterate is a solution of (3.36). From now on, we assume that Algorithm
does not stop at step (3.a), i.e., we assume that Algorithm 7 generates infinite sequences.

Next we show that Algorithm 7 (under the assumption that it never stops at Step 3) is a
special instance of Algorithm 6 for finding a point in S as in (3.4) in the Hilbert space H endowed
with the inner product and norm as in (3.2).

Proposition 3.3.5. Assume that Algorithm 7 does not stop at step (3.a), let {zk}, {wk
1}, . . . , {wk

n−1}
be generated by Algorithm 7, let {ϕk} be as in (3.48) and define

pk = (zk, wk
1 , . . . , w

k
n−1) ∀k ≥ −1. (3.54)

Then, the following statement hold:

(i) For all k ≥ 0, ∇ϕk 6= 0 and ϕk(p) ≤ 0 for all p ∈ S.

(ii) For all k ≥ 0,

p̂ k = (ẑk, ŵk
i , . . . , ŵ

k
n−1) and pk+1 = p̂ k − βk max{0, ϕk(p̂

k)}
‖∇ϕk‖2γ

∇ϕk (3.55)

where p̂ k is as in (3.6) and S is as in (3.4).

As a consequence of the above statement, it follows that Algorithm 7 is a special instance of
Algorithm 6 for finding a point in the extended solution set S as in (3.4).

Proof. (i) Note first, from Lemma 3.3.1(a)-(c) and the inclusion in (3.45), that ϕk defined as in
(3.48) is an affine function and ϕk(p) ≤ 0 for all p ∈ S. Moreover, its gradient is given by (3.40).
The fact that ∇ϕk 6= 0, for all k ≥ 0, follows from the assumption that Algorithm 7 does not
stop at step (3.a) and Lemma 3.3.1(b).

(ii) The first equality in (3.55) follows from Remark (3.3.2)(iv). On the other hand, using
definition of pk in (3.55), p̂k (as we shown previously) and the update (3.50)-(3.51) in Algorithm
7, after some algebraic manipulations, we have

pk+1 − p̂ k = (zk+1 − ẑk, wk+1
1 − ŵk

1 , . . . , w
k+1
n−1 − ŵk

n−1)

= −βkθk

(
γ−1

(
n−1∑

i=1

G∗
i y

k
i + ykn

)
, xk

1 −G1x
k
n, . . . , x

k
n−1 −Gn−1x

k
n

)

= −βkθk∇ϕk,

in the last equality we used definition of ∇ϕk (see (3.40)), where θk is given as in (3.49). This
establish the second equality in (3.55). To finalize the proof, the last statement of the proposition
is a consequence of items (i) and (ii) as well as of Algorithm 6’s definition.

56

3.3.2 Convergence of Algorithm 7

We now state a technical lemma which will be useful for the convergence analysis of Algorithm
7.

Lemma 3.3.6. Consider the sequences evolved by Algorithm 7, let p̂k = (ẑk, ŵk
i , . . . , ŵ

k
n−1) and

ŵk
n is as in (3.42). Assume that, for i = 1 . . . , n, the assumption (D4) hold, i.e.,

0 < ρ ≤ ρki ≤ ρ < +∞, ∀k ≥ 0. (3.56)

Then the following hold:

(a) For all k ≥ 0,

2ϕk(p̂
k) ≥

(
1− σ2

)
min{ρ−1, ρ}

n∑

i=1

(
‖Giẑ

k − xk
i ‖2 + ‖yki − ŵk

i ‖2
)
. (3.57)

(b) For all k ≥ 0,

‖∇ϕk‖2γ ≤ E

n∑

i=1

(
‖Giẑ

k − xk
i ‖2 + ‖yki − ŵ k

i ‖2
)
, (3.58)

where

E = max

{
2max{1, (n− 1) max

1≤i≤n−1
{‖Gi‖2}}, nγ−1

(
max

1≤i≤n−1
‖G∗

i ‖2
)}

> 0. (3.59)

(c) There exist ξ > 0 such that, for all k ≥ 0,

ϕk(p̂
k)2

ξ‖∇ϕk‖2γ
≥ ϕk(p̂

k) ≥ ξ‖∇ϕk‖2γ, (3.60)

Proof. (a) From (3.45) and (3.46), using the basic identity ‖a+ b‖2 = ‖a‖2 + ‖b‖2 + 2〈a, b〉 with
a = xk

i −Giẑ
k and b = yki − ŵk

i , we have

σ2
(
‖Giẑ

k − xk
i ‖2 + ‖ρki (yki − ŵk

i)‖2
)
≥ ‖eki ‖2

= ‖xk
i −Giẑ

k + ρki (y
k
i − ŵ k

i)‖2

= ‖xk
i −Giẑ

k‖2 + ‖ρki (yki − ŵ k
i)‖2 − 2ρki 〈Giẑ

k − xk
i , y

k
i − ŵ k

i 〉,

which in turn, it is equivalent to

2ρki 〈Giẑ
k − xk

i , y
k
i − ŵ k

i 〉 ≥ (1− σ2)
(
‖xk

i −Giẑ
k‖2 + ‖ρki (yki − ŵ k

i)‖2
)
> 0.

Note now that the desired result follows by dividing the latter inequality by ρki , summing it on i
and taking into account assumption (3.56) and the characterization of ϕk in (3.39).

57

(b) Recall from (3.41) (Lemma 3.3.1 (c))and the fact Gn = I,

‖∇ϕk‖2γ = γ−1‖
n∑

i=1

G∗
i y

k
i ‖2 +

n−1∑

i=1

‖xk
i −Gix

k
n‖2. (3.61)

We star by writing the second term on the right side in the above equality as:

n−1∑

i=1

‖xk
i −Gix

k
n‖2 =

n−1∑

i=1

‖xk
i −Giẑ

k +Gi(ẑ
k − xk

n)‖2 (3.62)

≤ 2
n−1∑

i=1

(
‖xk

i −Giẑ
k‖2 + ‖Gi(ẑ

k − xk
n)‖2

)

≤ 2
n−1∑

i=1

‖xk
i −Giẑ

k‖2 + 2(n− 1) max
1≤i≤n−1

‖Gi‖2‖ẑ k − xk
n‖2

≤ 2max

{
1, (n− 1) max

1≤i≤n−1
{‖Gi‖2}

} n∑

i=1

‖Giẑ
k − xk

i)‖2, (3.63)

where in the first inequality we used (A.8)(Lemma A.2.1 (ii)) and second inequality used the fact
that for each i = 1, . . . , n − 1, Gi is linear and bounded. Similarly, for the first term in (3.61),
using (A.8) (Lemma A.2.1), (3.53) and the assumption that Gn = I, we obtain

∥∥∥∥∥

n∑

i=1

G∗
i y

k
i

∥∥∥∥∥

2

=

∥∥∥∥∥

n∑

i=1

G∗
i

(
yki − wk

i

)
∥∥∥∥∥

2

≤ n

(
max

1≤i≤n−1
‖G∗

i ‖2
) n∑

i=1

‖yki − ŵ k
i ‖2. (3.64)

Setting E as in (3.59) and combining (3.62), (3.64) and (3.61) we get the inequality in (3.58).
(c) Note that from (3.57) and (3.58), we obtain the second inequality in (3.60) with

ξ =
(1− σ2)min{ρ−1, ρ}

2E
> 0. (3.65)

The first inequality in (3.60) is a direct consequence of the second one. This ends the proof of
Lemma.

Proposition 3.3.7. Consider the sequences evolved by Algorithm 7 and let {wk
n} and {pk} be as

in (3.53) and (3.54), respectively. Assume that

∞∑

k=0

αk‖pk − pk−1‖2γ < +∞ (3.66)

and assumption (D4) hold, i.e., for i = 1 . . . , n

0 < ρ ≤ ρki ≤ ρ <∞ ∀k ≥ 0. (3.67)

Then, the following hold

58

(a) We have, ϕk(p̂
k)→ 0 and ‖∇ϕk‖γ → 0 as k → +∞.

(b) We have,
∑n−1

i=1 G∗
i y

k
i + ykn → 0 and for each i = 1, . . . , n− 1, xk

i − xk
n → 0, as k → +∞.

(c) For each i = 1, . . . , n, we have ‖Giz
k − xk

i ‖ → 0 and ‖yki − wk
i ‖ → 0 as k →∞.

(d) Every weak cluster point of {pk} belongs to S, where S is as in (3.4).

Proof. (a) Using the last statement in Proposition 3.3.5 (that Algorithm 7 is a particular instance
of Algorithm 6), Proposition 3.2.3(c) and the fact that ϕk(p̂

k) ≥ 0 by (3.57), we obtain

ϕk(p̂
k)

‖∇ϕk‖γ
→ 0 as k → +∞,

which after taking limit in (3.60) (Lemma 3.3.6(c)) gives the desired result in item (a).
(b) This follows directly from the second limit in item (a) combined with (3.41) (and the fact

that Gn = I).
(c) Note first that, (3.57) (Lemma 3.3.6(a)) and first limit in (a) yields that

‖yki − ŵk
i ‖ → 0 and ‖Giẑ

k − xk
i ‖ → 0 as k →∞ (i = 1, . . . , n). (3.68)

Using the triangle inequality, the identity (3.42), (3.54) and definition of ‖.‖γ, we find

‖Giz
k − xk

i ‖ ≤ ‖zk − ẑ k‖‖Gi‖+ ‖Giẑ
k − xk

i ‖
= αk‖zk − zk−1‖‖Gi‖+ ‖Giẑ

k − xk
i ‖

≤ γ−1√αk ‖pk − pk−1‖γ‖Gi‖+ ‖Giẑ
k − xk

i ‖, i = 1, . . . , n, (3.69)

where we also used the fact that, since αk ∈ [0, 1), then αk ≤
√
αk. Using a similar reasoning, we

also find

‖yki − wk
i ‖ ≤

√
αk ‖pk − pk−1‖γ + ‖yki − ŵk

i ‖, i = 1, . . . , n− 1. (3.70)

Note also that, using (3.43), (3.105) (3.53), Lemma A.2.1 (ii), the fact that α2
k ≤ αk and definition

of ‖.‖γ, we obtain

1

2
‖ykn − wk

n‖2 ≤ ‖ŵk
n − wk

n‖2 + ‖ykn − ŵk
n‖2

≤ (n− 1) max
i=1,...,n−1

{‖G∗
i ‖2}

(
n−1∑

i=1

‖ŵk
i − wk

i ‖2
)

+ ‖ykn − ŵk
n‖2

= (n− 1) max
i=1,...,n−1

{‖G∗
i ‖2}

(
n−1∑

i=1

α2
k‖wk−1

i − wk
i ‖2
)

+ ‖ykn − ŵk
n‖2

≤ (n− 1) max
i=1,...,n−1

{‖G∗
i ‖2}

(
n−1∑

i=1

αk‖wk−1
i − wk

i ‖2
)

+ ‖ykn − ŵk
n‖2

≤ (n− 1) max
i=1,...,n−1

{‖G∗
i ‖2}αk‖pk − pk−1‖2γ + ‖ykn − ŵk

n‖2, (3.71)

To finish the proof of (c), combine (3.69)–(3.71) with (3.68) and (3.66).

59

(d) Let p∞ := (z∞, w∞
1 , · · · , w∞

n−1) ∈ H be a weak cluster point of {pk} (since that {pk} is
bounded by Proposition 3.3.5 and Proposition 3.2.3(a)) and let {pkj} be a subsequence of {pk}
such that pkj ⇀ p∞, i.e.,

zkj ⇀ z∞ and w
kj
i ⇀ w∞

i , i = 1, . . . , n− 1. (3.72)

Using (c), (3.72) and the fact that Gn = I(see Assumption (D2)), we obtain

xkj
n ⇀ z∞ and y

kj
i ⇀ w∞

i , i = 1, . . . , n− 1. (3.73)

For the other hand, item (b) applied to subsequence, yields

n−1∑

i=1

G∗
i y

kj
i + ykjn → 0 and x

kj
i −Gix

kj
n → 0 (i = 1, . . . , n− 1). (3.74)

Now, we define the operators A : H0 ⇒ H0, B : H1 × · · · × Hn−1 ⇒ H1 × · · · × Hn−1 and
G : H0 ⇒ H1 × · · · ×Hn−1 as

A :z 7→ Tn(z)

B :(w1, . . . , wn−1) 7→ T1(w1)× · · · × Tn−1(wn−1) (3.75)

G :z 7→ (G1z, . . . , Gn−1z).

Since {Ti}ni=1 are maximal monotone operators, A and B are maximal monotone operators [20,
Proposition 20.27] and G is linear and bounded operator due to Gi are linear and bounded for
all i = 1, . . . , n− 1.

Using the above definitions of A and B and the inclusions in (3.45), we have

aj ∈ A(rj) and bj ∈ B(sj), (3.76)

where

rj := xkj
n , aj := ykjn , bj := (y

kj
1 , . . . , y

kj
n−1) and sj := (x

kj
1 , . . . , x

kj
n−1). (3.77)

Moreover, (3.77) and (3.73) yield

rj → r∞ and bj → b∞ as j →∞, (3.78)

where,

r∞ := z∞ and b∞ := (w∞
1 , . . . , w∞

n−1) (3.79)

Note now that using (3.77), the fact that G∗(w1, . . . , wn−1) =
∑n−1

i=1 G∗
iwi, for all (w1, . . . , wn−1) ∈

H1 × · · · ×Hn−1, the fact that Gn = I and the first limit in (3.74), we find

aj +G∗bj =
n−1∑

i=1

G∗
i y

kj
i + ykjn → 0 as j →∞. (3.80)

Using now the second limit in (3.74) combined with (3.77) and the definition of G in (3.75), we
obtain

Grj − sj =
(
G1x

kj
n − x

kj
1 , . . . , Gn−1x

kj
n − x

kj
n−1

)
→ 0 as j →∞. (3.81)

60

Using Lemma A.2.3 combined with (3.76), (3.78) (3.80) and (3.81) we conclude that

−G∗b∞ ∈ A(r∞) and b∞ ∈ B(Gr∞),

which, in turn, combined with (3.75) and (3.79) implies that

w∞
i ∈ Ti(Giz

∞), i = 1, . . . , n− 1, −
n−1∑

i=1

G∗
iw

∞
i ∈ Tn(z

∞)

from which we conclude that p∞ = (z∞, w∞
1 , . . . , w∞

n−1) ∈ S. Since p∞ was chosen arbitrarily,
then every weak cluster point of {pk} belongs to S.

The following is the first result on the asymptotic convergence of Algorithm 7.

Theorem 3.3.8 (First result on the convergence of Algorithm 7). Consider the sequences evolved
by Algorithm 7 and let {wk

n} and {pk} be as in (3.53) and (3.54), respectively. Assume that
conditions (3.66) and (3.67) of Proposition 3.3.7 hold, i.e., assume that

∞∑

k=0

αk‖pk − pk−1‖2γ < +∞ (3.82)

and, for i = 1 . . . , n

0 < ρ ≤ ρki ≤ ρ <∞ ∀ k ≥ 0. (3.83)

Then, there exist (z∞, w∞
1 , . . . , w∞

n−1) ∈ S such that zk ⇀ z∞ and, wk
i ⇀ w∞

i , for i = 1, . . . , n− 1
as k →∞. Furthermore, xk

i ⇀ Giz
∞ and yki ⇀ w∞

i , for i = 1, . . . , n.

Proof. Since Algorithm 7 is a particular instance of Algorithm 6 (see Proposition 3.3.5), then in
view of Proposition 3.3.7(d) and Proposition 3.2.3(b) we conclude that {pk = (zk, wk

1 , . . . , w
k
k−1)}

converges weakly to some point in S as in (3.4), i.e., there exist (z∞, w∞
1 , . . . , w∞

n−1) ∈ S, such that,
zk ⇀ z∞ and wk

i ⇀ w∞
i , for i = 1, . . . , n− 1, which in turn combined with Proposition (3.3.7)(c)

implies that xk
i ⇀ Giz

∞ and yki ⇀ w∞
i , for i = 1, . . . , n. In particular, z∞ solve (3.36).

Next theorem shows the convergence of Algorithm 7 under certain assumptions on α, βk and
the sequence {αk} (see the remarks below).

Theorem 3.3.9 ((Second result on the convergence of Algorithm 7). Consider the sequences
evolved by Algorithm 7 and assume moreover that α ∈ [0, 1), β ∈ (0, 2) and {αk} satisfy (for
some α > 0) the conditions (3.22) and (3.23) of Proposition 3.2.4, i.e.,

0 ≤ αk ≤ αk+1 ≤ α < α < 1 ∀k ≥ 0 (3.84)

and

β = β(α) :=
2(α− 1)2

2(α− 1)2 + 3α− 1
. (3.85)

61

Assume also that condition (3.83) hold, i.e., for i = 1, . . . , n,

0 < ρ ≤ ρki ≤ ρ <∞ ∀ k ≥ 0. (3.86)

Then, the same conclusions of Theorem 3.3.8 hold, i.e., there exist p∞ := (z∞, w∞
1 , . . . , w∞

n−1) ∈ S

such that zk ⇀ z∞ and for i = 1, . . . , n − 1, wk
i ⇀ w∞

i (weakly) as k → ∞. Furthermore,
xk
i ⇀ Giz

∞, yki ⇀ w∞
i , for i = 1, . . . , n.

Proof. In view of Propositions 3.3.5 and 3.3.7(d) and Proposition 3.2.4(b) one concludes that
that {pk} converges weakly to some p∞ := (z∞, w∞

1 , . . . , w∞
n−1) in S as in (3.4). The rest of the

proof follows the same argument used in Theorem 3.3.8’s proof.

In view of Remark 3.3.2 (i) and Lemma 3.3.1(c) if ∇ϕk = 0, then the algorithm stops and finds
a solution for the monotone inclusion problem (3.36). Therefore, we can consider the following
stopping criterion for algorithm 7: Given arbitrary scalars ǫ, δ > 0, Algorithm 7 stops when it
finds points (xi, yi) ∈ Hi ×Hi, for i = 1, . . . , n, such that

yi ∈ Ti(xi), i = 1, . . . , n,

‖
n∑

i=1

G∗yi‖ ≤ ǫ, (3.87)

‖xi −G∗
ixn‖ ≤ δ, i = 1, . . . , n− 1.

We observe that if ǫ = δ = 0, in view of Lemma 3.3.1(d) and the above criterion we have
xi = Gixn, for i = 1, . . . , n− 1 and (xn, y1, . . . , yn−1) ∈ S and in particular z = xn solves (3.36).

Next we present a result on nonasymptotic global convergence rates/iteration-complexity for
Algorithm 7

Theorem 3.3.10 (Nonasymptotic convergence rate of Algorithm 7). Consider the sequences
evolved by Algorithm 7 and assume that α ∈ [0, 1), β ∈ (0, 2) and {αk} satisfies (for some α > 0)
the conditions (3.84)-(3.86) of Theorem 3.3.9. Let d0 be the distance of p0 = (z0, w0

1, . . . , w
0
n−1)

to the set S defined in (3.4), then for all k ≥ 0, we have

yki ∈ Ti(x
k
i) ∀ i = 1, . . . , n,

and there exists j ∈ {0, . . . , k} such that

‖∑n

i=1 G
∗
i y

j
i ‖ ≤ d0

ξ
√
k

√
γβ−1

(
2− β

)−1
(
1 + α(1+2α−α3)

(1−α)2q(α)

)
,

‖xj
i −G∗

ix
j
n‖ ≤ d0

ξ
√
k

√
β−1

(
2− β

)−1
(
1 + α(1+2α−α3)

(1−α)2q(α)

)
i = 1, . . . , n− 1

(3.88)

where ξ > 0 is as in (3.65) and

q(α) := 2
(
β

−1 − 1
)
α2 −

(
4β

−1 − 1
)
α + 2β

−1 − 1, α ∈ R. (3.89)

62

Proof. Since Algorithm 7 is a particular instance of Algorithm 6, by Proposition 3.3.5 and
ϕk(p̂

k) ≥ 0 by Lemma 3.3.6(a)), the equality in (3.8) (see Remark 3.2.1(i)) combined with (3.60)
in Lemma 3.3.6(c) yields

‖p̃ k+1 − p̂ k‖2γ =
ϕk(p̂

k)2

‖∇ϕk‖2γ
≥ ξ2‖∇ϕk‖2γ.

Hence, summing on k in the above inequality an then using (3.31) (in Proposition 3.2.5) we obtain

ξ2
k∑

j=0

‖∇ϕj‖2γ ≤
k∑

j=0

‖p̃ j+1 − p̂ j‖2γ ≤ β−1
(
2− β

)−1
(
1 +

α(1 + 2α− α3)

(1− α)2q(α)

)
‖p0 − p‖2γ. (3.90)

The desired conclusion following from the last inequality and Lemma 3.3.1(c)-(3.40).

Remark 3.3.11. (i) Theorem 3.3.10 provides a global O(1/
√
k) pointwise convergence rate

and ensures, in particular, that for given tolerances ǫ, δ > 0, Algorithm 7 finds the points
(xi, yi) in H2

i (i = 1, . . . , n) satisfying (3.87) after performing at most

O

(
max

{⌈
d20
ǫ2

⌉
,

⌈
d20
δ2

⌉})

iterations.

(ii) A similar global O(1/
√
k) pointwise convergence rate for projective splitting (without iner-

tial case) algorithm also was obtained in [79] with for n = 2 and Gi = I (see Theorem 4.2
in the latter reference).

The special case n = 1

We consider the special case n = 1. In this case, we have by assumption that G1 = I, wk
1 = 0

for all k ≥ 0, and we are solving the problem

0 ∈ T (z). (3.91)

Then, the affine function defined in (3.48) becomes

ϕk(z) = 〈z − xk, yk〉,

where we dropped the unnecessary index, by writing xk
1 = xk and yk1 = yk. Then the update

carried out by the algorithm is as follows: choose αk ∈ [0, α] such that

ẑ k = zk + αk(z
k − zk−1). (3.92)

Next choose ρk > 0 and find (xk, yk) ∈ G(T) such that

ρkyk + xk = ẑk + ek (3.93)

and

‖ρkyk + xk − ẑk‖2 ≤ σ2(‖xk − ẑk‖2 + ‖ρkyk‖2), (3.94)

63

and update

zk+1 = ẑk − βkϕk

‖∇ϕk‖2
∇ϕk. (3.95)

Summarizing, when n = 1, Algorithm 7 reduces to the hybrid projection proximal point
method of Solodov and Svaiter [118, Algorithm 1.1] with inertial effects. It is worth mentioning
that relative-error condition considered in ([118] eq. (1.7)) is less restrictive than relative-error
condition (3.94) considered here. See also [4] for an another development of inertial hybrid
projection-proximal point method (see iteration (Aρ

0)–(A
ρ
2)).

Observe that, σ = 0 implies ek = 0, see (3.94). This together with (3.93) yields ϕk(ẑ
k) =

ρk‖yk‖2. Furthermore, ∇zϕk = γ−1y k and so, ‖∇zϕk‖2 = γ.γ−2‖yk‖2 = γ−1‖yk‖2. Hence, using
(3.95), (3.93) and the last equality, we have for all k ≥ 0,

zk+1 = ẑ k − βkρ
kyk

= (1− βk)ẑ
k + βkx

k

= (1− βk)ẑ
k + βkJρkT (ẑ

k).

Thus, when n = 1 and σ = 0, the inertial splitting projective method proposed in this chapter
reduces to the relaxed inertial proximal point method analyzed in [11]. Hence, the Algorithm
7 proposed in this chapter extends the inertial and relaxed projection method for solving single
operator monotone inclusion to more general structured and composed inclusion problem.

To end this chapter, in the next section we will develop a specific instance of the splitting-
projective framework of Section 3.3.

3.4 An inertial algorithm resembling the multi-block ADMM

method

Throughout this section, we will assume that for each i = 1, . . . , n, Hi ≡ R
ni . We now consider

the convex optimization problem of the form

min
n∑

i=1

fi(ui) s.t.
n∑

i=1

Miui = b, (3.96)

where n ≥ 2, fi : Rni → R∪{+∞} is proper, convex and lower semicontinuos and Mi is a m×ni

matrix for i = 1, . . . , n, and b ∈ R
m. For the case n = 2 the well-know decomposition method

for such problems is the Alternating Direction Method of Multipliers (ADMM), which goes back
to the work of Glowinski and Marroco [58] and of Gabay and Mercier [57]. ADMM can also be
viewed as an instance of the Douglas-Rachford splitting method applied to the dual problem of
(3.96) as was shown by Gabay in [56](see also [49]).

The dual problem associate to the primal problem (3.96) is obtained by applying the Fenchel
duality and it is given by

min
z∈Rm

(
n∑

i=1

f ∗
i (−MT

i z)

)
+ 〈b, z〉, (3.97)

64

where f ∗
i denotes the convex conjugate of fi. By choosing any b1, . . . , bn ∈ R

m such that
∑n

i=1 bi =
b, the dual problem (3.97) may also be written as

min
z∈Rm

n∑

i=1

(
f ∗
i (−MT

i z) + 〈bi, z〉
)
. (3.98)

In the last years, there has also been considerable interest in a class of methods similar to
ADMM for case n > 2, although the direct generalization of the two block ADMM to n > 2 does
not converges in general convex case [37]. Some works related to such subject can be found for
instance in [47, 48, 63, 127] and references therein.

The main goal of this section is to propose an inertial algorithm resembling the ADMM that
can accommodate any number of blocks in a parallel environment to solve a class of linearly con-
strained optimization problem, which we will refer to as inertial multi-block ADMM-like method
(Algorithm 8). Specifically, based in the Eckstein’s work [48] we propose an algorithmic scheme
for solving (3.96) by applying the Algorithm 7 to its dual problem (3.98), similar to what Gabay
[56] developed.

Let us make the following standard assumption:

(B1) The Problem (3.96) possesses at least one Karush-Kuhn-Tucker (KKT) point, i.e., there
exist z∞ ∈ R

m and u∞
i ∈ R

ni , for i = 1, . . . , n such that

n∑

i=1

Miu
∞
i = b and −MT

i z
∞ ∈ ∂fi(u

∞
i) (∀i = 1, . . . , n). (3.99)

(B2) ∂[f ∗
i (−Mi)] = −Mi∂f

∗
i (−MT

i), for all i = 1, . . . , n.

Remark 3.4.1. (a) The Assumption (B1) guarantees that the optimal values of (3.96) and
(3.98) are equal.

(b) In the finite-dimensional setting, a sufficient condition for Assumption (B2) to hold is

range dom ∂f ∗
i ∩ range(−MT

i) 6= ∅ or equivalently ri range ∂fi ∩ (ker Mi)
⊥ 6= ∅,

see, [109, theorem 23.9].

By defining

(∀i = 1, · · · , n) hi := f ∗
i (−MT

i) + 〈·, bi〉, (3.100)

the dual problem (3.98) may be expressed as

min
z∈Rm

n∑

i=1

hi(z). (3.101)

Since f ∗
i is necessarily convex and lower semicontinuos function, f ∗

i (−MT
i) is also convex and lower

semicontinuos, so ∂
[
f ∗
i ◦ (−MT

i)
]

must be a maximal monotne operator. Therefore, in view of

65

the assumption (B2), the operators(necessary monotone) −Mi∂f
∗
i (−MT

i) are also maximal, and
consequently

Ti := ∂hi = −Mi∂f
∗
i (−MT

i) + bi, i = 1, . . . , n (3.102)

are maximal monotone operators.
Now, we are ready to solve (3.101) by applying Algorithm 7 with H0 = Hi = R

m, Ti = ∂hi

and Gi = I for i = 1, . . . , n. For this purpose, we recall the extended solution (or kuhn-Tucker
set)

S =

{
(z, w1, . . . , wn−1) ∈ (Rm)n | wi ∈ Ti(z), i = 1, . . . , n− 1,−

n−1∑

i=1

wi ∈ Tn(z)

}
. (3.103)

It is clear that (3.99) and (3.103) are equivalents, so it is natural to think that the problem (3.96)
can be reformulate as an particular case of Algorithm 7.

The next result, proved in [80, Lemma 3.2], shows how we can invert operators ρ∂hi + I (for
i = 1, . . . , n).

Lemma 3.4.2. Let b ∈ R
m, f : Rm → (−∞,+∞] a proper lower semicontinuos and convex

function and M : Rm → R
n a linear and bounded operator such that the assumption (B2) holds.

Consider any z ∈ R
m and ρ > 0. If û is a solution to the problem

min
u∈Rn

{
f(u) + 〈z,Mu− b〉+ ρ

2
‖Mu− b‖2

}
. (3.104)

Then
b−Mû ∈ ∂h(z̃),

where h := f ∗(−MT) + 〈·, b〉 and z̃ = z + ρ(Mû− b), and as a consequence z̃ = (ρ∂h + I)−1(z).
Furthermore, the set of optimal solutions of (3.104) is nonempty.

In what follows we suppose that assumptions (B1) and (B2) holds.

66

Algorithm 8. An inertial Multi-Block ADMM-Like Method (IM-ADMM)

(0) Let (z−1, w−1
1 , . . . , w−1

n−1) = (z0, w0
1, . . . , w

0
n−1) ∈ (Rm)n, u0

i ∈ R
ni , i = 1, . . . , n, α ∈ [0, 1),

0 < β ≤ β < 2 and γ > 0 be given and let k ← 0.

(1) Choose αk ∈ [0, α] and let

ẑ k = zk + αk(z
k − zk−1),

ŵ k
i = wk

i + αk(w
k
i − wk−1

i), i = 1, . . . , n− 1, (3.105)

ŵ k
n = −

n−1∑

i=1

ŵ k
i .

(2) Choose scalars ρki > 0, for i = 1, . . . , n find uk
i ∈ R

ni and xk
i , y

k
i ∈ R

m as

uk
i = argminui∈Rni{fi(ui) + 〈Miui, ẑ

k〉+ ρki
2
‖Miui − bi + ŵk

i ‖2},
yki = bi −Miu

k
i ,

xk
i = ẑk + ρki (ŵ

k
i − yki).

(3.106)

(3) (3.a) If ‖∑n

i=1 y
k
i ‖+

∑n−1
i=1 ‖xk

i − xk
n‖ = 0, STOP and set

zk+1 = xk
n and wk+1

i = yki , i = 1, . . . , n− 1. (3.107)

(3.b) Else, define

θk :=
max{0,∑n

i=1〈ẑk − xk
i , y

k
i − ŵk

i 〉}
γ−1‖∑n

i=1 y
k
i ‖2 +

∑n−1
i=1 ‖xk

i − xk
n‖2

. (3.108)

(4) Choose some relaxation parameter βk ∈ [β, β] and define

zk+1 = z̃k − γ−1βkθk
(∑n

i=1 y
k
i

)
,

wk+1
i = ŵk

i − βkθk
(
xk
i − xk

n

)
, i = 1, . . . , n− 1.

(3.109)

Our first result is to show that Algorithm 8 is in fact a particular instance of Algorithm 7.

Proposition 3.4.3. Algorithm 8 is an especial instance of Algorithm 7 with σ = 0, for Ti =
Mi∂f

∗
i (−MT

i) + bi and Gi = I, with

(∀i = 1, . . . , n) xk
i = ẑ k + ρki

(
Miu

k
i − (bi − ŵ k

i)
)

and yki = bi −Miu
k
i (3.110)

Proof. Both inertial and projection steps (steps (1) and (4)) of Algorithms 8 and 7 are identical,
with the only exception that Gi = I for every i = 1, . . . , n. So, it only remains to show that
yki ∈ Ti(x

k
i) and xk

i + ρki y
k
i = ẑk + ρki ŵ

k
i , with xk

i and yki are defined as in (3.110). In fact, note
that the optimality condition of the minimization problem in (3.106) implies that for each k ≥ 0,

0 ∈ ∂fi(u
k
i) +MT

i ẑ
k + ρkiM

T
i (Miu

k
i − (bi − ŵk

i))

67

or,

0 ∈ ∂fi(u
k
i) +MT

i (ẑ
k + ρki ŵ

k
i) + ρkiM

T
i (Miu

k
i − bi),

which is equivalent to,

uk
i ∈ argmin

u∈Rm

{
fi(u) + 〈ẑk + ρki ŵ

k
i ,Miu− bi〉+

ρki
2
‖Miu− bi‖2

}
,

i.e., uk
i is solution to the minimization problem

min
u∈Rm

{
fi(u) + 〈ẑk + ρki ŵ

k
i ,Miu− bi〉+

ρki
2
‖Miu− bi‖2

}
. (3.111)

Hence, from (3.111), (3.104) and applying Lemma 3.4.2 with ρ = ρki , f = fi, h = hi, M = Mi,
b = bi, û = uk

i and z = ẑk + ρki ŵ
k
i we conclude that xk

i and yki defined as in (3.110) satisfies

yki = bi −Miu
k
i ∈ ∂hi(ẑ

k + ρki ŵ
k
i + ρki (Miu

k
i − bi)) = Ti(x

k
i).

Finally, as direct consequence of (3.110) one gets

xk
i + ρki y

k
i = ẑk + ρki ŵ

k
i .

This completes the proof.

Remark 3.4.4. We now present some remarks regarding Algorithm 8:

(i) If Algorithm 8 stop at step (3.b), we have

b−
n∑

i=1

Miu
k
i =

n∑

i=1

yki = 0 and xk
i − xk

n = 0, ∀i = 1, . . . , n− 1. (3.112)

Furthermore, from definitions of xk
i and yki , and optimality condition in (3.106), we have

for all k ≥ 0

0 ∈MT
i x

k
i + ∂fi(u

k
i) ∀i = 1, . . . , n. (3.113)

Hence, from (3.112) and (3.113) we conclude that, if Algorithm 8 stop at step (3.a), then
(xk

n, u
k
1, . . . , u

k
n) satisfies the KKT conditions (3.99), and consequently (uk

1, . . . , u
k
n) is a so-

lution of the primal problem (3.96) and xk
n is a solution of dual problem (3.98).

(ii) Because Algorithm 8 is based on a iterative projective splitting framework of Algorithm 7,
the penalty parameter ρki need not be fixed with respect to either the subsystem i or the
iteration k, but only bounded, see (3.116) below.

(iii) Since yki = bi−Miu
k
i for all k ≥ 0, and for every i = 1, . . . , n, then the update to the (dual)

solution (with respect to problem (3.96)) can be rewritten

zk+1 = z̃k − γ−1βkθk

(
n∑

i=1

yki

)
= ẑk + γ−1θkβk

(
n∑

i=1

Miu
k
i − b

)

which is the standard multiplier update of the augmented Lagrangian method and ADMM,
but with τk := γ−1θkβk playing the role of the stepszise. The role of wk

i and the associate
step directions xk

i − xk
n has a less familiar character as was pointed in [48].

68

(iv) If αk = 0, Algorithm 8 reduces to a variant of the n-block ADMM-like Algorithm
in [48], (synchronous and without block-iterate feature, see Algorithms 6 and 7 in such
a reference). Also, it is worth mentioning that the convergence analysis for the proposed
algorithm is based on the results of convergence in Section 3.3, by viewing them within the
framework of Algorithm 7.

Next, we state a convergence result for Algorithm 8, which follows essentially from the analysis
in section 3.3.

Theorem 3.4.5 (convergence result). Consider {uk
1} . . . , {uk

n}, {zk}, {wk
1}, . . . , {wk

n} sequences
generated by Algorithm8. Suppose that Assumptions (B1) and (B2) hold and let α ∈ [0, 1),
β ∈ (0, 2), {αk} and {ρk} satisfying the conditions (3.84)–(3.86) of Theorem 3.3.9, i.e.,

0 ≤ αk ≤ αk+1 ≤ α < α < 1 ∀k ≥ 0, (3.114)

β = β(α) :=
2(α− 1)2

2(α− 1)2 + 3α− 1
, (3.115)

and

0 < ρ ≤ ρki ≤ ρ <∞ ∀k ≥ 0. (3.116)

Then,

(a) The sequences {zk}, {xk
1}, . . . , {xk

n} converge all to the same limit z∗, which is the optimal
solution of the dual problem (3.98) of the problem (3.96).

(b) The primal sequences {uk
i }ni=1 generate by Algorithm 8 are asymptotically feasible for (3.96),

in the sense that

lim
k→∞

n∑

i=1

Miu
k
i − b = 0.

(c) The primal sequences {uk
i }ni=1 generate by Algorithm 8 are optimal for (3.96), i.e.,

lim
k→∞

n∑

i=1

fi(u
k
i) = ζ∗

where ζ∗ denotes the optimal solution of Problem (3.96). Moreover, all limit point of {uk
i }ni=1

are optimal solutions.

Proof. (a) According to Proposition 3.4.3, Algorithm 8 is a particular instance of Algorithm 7 for
H = (Rm)n, Gi = I and Ti = ∂hi, for i = 1, . . . , n, where hi is defined as in (3.100). Moreover,
Assumption (B1) implies that the dual problem (3.98) has at least one solution, and hence, there
exist a solution to the monotone inclusion (3.1). The above considerations, (3.114)-(3.116) and
Theorem 3.3.9 implies that {(zk, wk

1 , . . . , w
k
n−1)} converges to some point (z∗, w∗

1, . . . , w
∗
n−1) in S

defined in (3.103) and that {xk
1}, . . . , {xk

n} all converge also to the same limit z∗ (the convergence
is strong because weak and strong convergence coincide in the finite dimension setting).

69

(b) Likewise, Proposition 3.4.3 and Theorem 3.3.9 also ensure that bi −Miu
k
i = yki → w∗

i , as
k →∞ for each i = 1 . . . , n, which implies that

n∑

i=1

Miu
k
i − b→ −

n∑

i=1

w∗
i = 0, as k →∞.

(c) Since we have assumed that Assumption (B2) holds, then using item (a) and (3.102) we
have:

w∗
i ∈ Ti(z

∗) = −Mi∂f
∗
i (−MT

i z
∗) + bi and

n∑

i=1

w∗
i = 0.

Therefore, there must exist some u∗
i ∈ ∂f ∗

i (−MT
i z

∗) such that w∗
i = bi −Miu

∗
i , for i = 1, . . . , n.

Since for each i = 1, . . . , n, fi is a closed proper and convex function, u∗
i ∈ ∂f ∗

i (−MT
i z

∗) is
equivalent to −MT

i z
∗ ∈ ∂f(u∗

i). From which, and the last relation yields

0 =
n∑

i=1

w∗
i = b−

n∑

i=1

Miu
∗
i and 0 ∈MT

i z
∗ + ∂fi(u

∗
i), for i = 1, . . . , n. (3.117)

It follows that (z∗, u∗
1, . . . , u

∗
n) satisfy the KKT conditions (3.99), (u∗

1, . . . , u
∗
n) is an optimal solu-

tion of the primal problem (3.96) and
∑n

i=1 fi(u
∗
i) := ζ∗.

Now, for each i = 1, . . . , n and all k ≥ 0 sufficiently large, the first equality in (3.106) yields

fi(u
k
i) + 〈ẑk,Miu

k
i 〉+

ρki
2
‖Miu

k
i − bi + ŵk

i ‖2 ≤ fi(u
∗
i) + 〈ẑk,Miu

∗
i 〉+

ρki
2
‖Miu

∗
i − bi + ŵk

i ‖2.
(3.118)

Moreover, since for each i = 1, . . . , n, limk→∞ ŵk
i = limk→∞ wk

i = w∗
i and limk→∞{bi −Miu

k
i } =

limk→∞ yki = w∗
i , we have

Miu
k
i − bi + ŵk

i → −w∗
i + w∗

i = 0,

Miu
∗
i − bi + ŵk

i = −w∗
i + wk

i → −w∗
i + w∗

i = 0,

Miu
k
i = bi − yki → bi − w∗

i = Miu
∗
i .

(3.119)

Taking limit in (3.118), using the fact that limit limk→∞ ẑk = limk→∞ zk = z∗, (3.119) and (3.116),
we conclude that

lim sup
k→∞

fi(u
k
i) + 〈z∗,Miu

∗
i 〉 ≤ fi(u

∗
i) + 〈z∗,Miu

∗
i 〉.

Cancelling the identical terms 〈z∗,Miu
∗
i 〉 from both sides and then summing over i = 1, . . . , n,

we obtain

lim sup
k→∞

n∑

i=1

fi(u
k
i) ≤

n∑

i=1

lim sup
k→∞

fi(u
k
i) ≤

n∑

i=1

fi(u
∗
i) = ζ. (3.120)

On the other hand, for each k ≥ 0 and each i = 1, . . . , n, using (3.117) and definition of subdif-
ferential of fi, we have

70

fi(u
∗
i) ≤ fi(u

k
i)− 〈MT

i z
∗, u∗

i − uk
i 〉 = fi(u

k
i)− 〈z∗,Miu

∗
i −Miu

k
i 〉.

Summing over i = 1, . . . , n in the above equation, we obtain

ζ∗ =
n∑

i=1

fi(u
∗
i) ≤

n∑

i=1

fi(u
k
i)− 〈z∗,

n∑

i=1

Miu
∗
i −

n∑

i=1

Miu
k
i 〉

=
n∑

i=1

fi(u
k
i) + 〈z∗, b−

n∑

i=1

Miu
k
i 〉,

where in the second equality we used the fact that (z∗, u∗
1, . . . , u

∗
n) satisfy the KKT condition.

Hence, the above inequality together with item (b) yields

ζ∗ ≤ lim inf
k→∞

n∑

i=1

fi(u
k
i). (3.121)

The first part of (c) follows from (3.120) and (3.121). To end the proof, let (u∞
1 , . . . , u∞

n) be any
limit point of {(uk

1, . . . , u
k
n)}, then there exist a subsequence {(ukj

1 , . . . , u
kj
n)} such that ukj

i → u∞
i

as j →∞, for each i = 1, . . . , n. It follows that

n∑

i=1

fi(u
∞
i) ≤ lim inf

j→∞

{
n∑

i=1

fi(u
kj
i)

}

≤ lim sup
j→∞

{
n∑

i=1

fi(u
kj
i)

}
≤ lim sup

k→∞

{
n∑

i=1

fi(u
k
i)

}
≤ ζ∗,

where, the first inequality follows due to that fi is closed and thus lower semicontinuous, and the
last inequality comes from (3.120). On the other hand, since by item (b)

∑n

i=1 Miu
k
i − b→ 0, as

k →∞, we have
∑n

i=1 Miu
∞
i = b, which means that (u∞

1 , . . . , u∞
n) is a feasible point for (3.96) and

also that
∑n

i=1 fi(u
∞
i) ≥ ζ∗, due to ζ∗ is the optimal value of (3.96). Therefore,

∑n

i=1 fi(u
∞
i) = ζ∗

and (u∞
1 , . . . , u∞

n) is a optimal solution of (3.96).

In order to develop global convergence bounds for our method we will examine how well its
iterates satisfy the KKT conditions (3.99). Observe that the inclusions in (3.113) indicates that
the quantities ‖∑n

i=1 Miu
k
i − b‖ and ‖xk

i − xk
n‖, for i = 1, . . . , n − 1 can be used to measure

the accuracy of an iterate (uk
1, . . . , u

k
n, z

k) to a saddle point of the Lagrangian function 2. More

2The Lagrangian function L : Rn1 × · · · × R
nn × R

m → (−∞,+∞] for problem (3.96) is defined as

L(u1, . . . , un, z) =

n∑

i=1

fi(ui) +

〈
n∑

i=1

Miui − b, z

〉
.

A point (u∗, z∗) := (u∗

1, . . . , u
∗

n, z
∗) such that L(u∗

1, . . . , u
∗

n, z
∗) < +∞ and it satisfies

min
ui,...,un

L(u1, . . . , un, z
∗) = L(u∗

1, . . . , u
∗

n, z
∗) = max

z
L(u∗

1, . . . , u
∗

n, z)

is called a saddle point of the Lagrangian function L.

71

specifically, if we define the primal and dual residuals, associated with (uk
1, . . . , u

k
n, z

k), by

rkp =
n∑

i=1

Miu
k
i − b,

rkd = (xk
1 − xk

n, · · · , xk
n−1 − xk

n).

Thus, the inclusion (3.122) and the KKT conditions follows that (uk
1, . . . , u

k
n, z

k) is a saddle point
of L, if ‖rkp‖ = ‖rkd‖ = 0. Therefore, the size of the these residuals indicates how far the iterates
are from a saddle point, and it can be viewed as an error measurement of the Algortihm 8.

Theorem 3.4.6 (nonasymptotic convergence rate). Consider the sequences evolved by Algorithm
8 and suppose that Assumptions (B1) and (B2) hold. Assume moreover that α ∈ [0, 1), β ∈ (0, 2)
and {αk} satisfies (for some α > 0) the conditions (3.84)-(3.86) of Theorem 3.3.9. Let d0 be the
distance of p0 = (z0, w0

1, . . . , w
0
n−1) to the set S defined in (3.103), then for all k ≥ 0, we have

0 ∈MT
i x

k
i + ∂fi(u

k
i) ∀ i = 1, . . . , n (3.122)

and there exists j ∈ {0, . . . , k} such that

‖b−∑n

i=1 Miu
j
i‖ ≤ d0

ξ
√
k

√
γβ−1

(
2− β

)−1
(
1 + α(1+2α−α3)

(1−α)2q(α)

)
,

‖xj
i − xj

n‖ ≤ d0
ξ
√
k

√
β−1

(
2− β

)−1
(
1 + α(1+2α−α3)

(1−α)2q(α)

)
i = 1, . . . , n− 1;

(3.123)

where

ξ =
(1− σ2)min{ρ, ρ−1}
2max{2(n− 1), γ−1n} (3.124)

and

q(α) := 2
(
β

−1 − 1
)
α2 −

(
4β

−1 − 1
)
α + 2β

−1 − 1, α ∈ R. (3.125)

Proof. In view of Proposition 3.4.3, Theorem 3.3.10 (with Ti defined in (3.102) and Gi = I, for
all i = 1, . . . , n) and the fact that

∑n

i=1 y
k
i = b−∑n

i=1 Miu
k
i , one obtain (3.123), where the scalar

ξ > 0 in (3.124) is exactly the same that in (3.65) (into the proof of Lemma 3.3.6) with Gi = I
forall i = 1 . . . , n. The assertion in (3.122) follow immediately from the optimally condition in
(3.106) and definitions of xk

i and yki in (3.110).

Remark 3.4.7. (i) Since Algorithm 8 is based on a projective splitting framework (Algorithm
7), the penalty parameter ρki need not be fixed with respect to either the subsystems i or
the iterations k, but only the boundeness (see Assumption (D4) in Section 3.3). Unlike
the most ADMM-like algorithms, Algorithm 8 allows that the proximal parameters to vary
from iteration to iteration.

(ii) Analogous remarks to those made in the Remark 3.3.11(i) also apply here, for given toler-
ances ǫ, δ > 0 on the primal and dual residuals, i.e., ‖rkp‖ ≤ δ and ‖rkd‖ ≤ ǫ, Algorithm 8
finds a KKT point (u1, . . . , un, z) after performing at most

O

(
max

{⌈
d20
ǫ2

⌉
,

⌈
d20
δ2

⌉})

iterations.

72

Chapter 4

Final considerations and future

perspectives

In this thesis, we presented some contributions to inexact methods for solving monotone inclu-
sion problems combining inertial and relaxation effects, which can help us to better understand
acceleration notion in numerical methods for solving general monotone inclusion problems.

The main contributions of this thesis were stated in Chapters 2 and 3 and, as already pointed
out, we emphasize that the content of the Chapter 2 resulted in a published article [8], and part
of our contributions in the chapter 3 is contained in the manuscript [83].

4.1 Main results

Summarizing the main contributions of this thesis.

• In Chapter 2, we proposed and studied the asymptotic convergence and iteration-complexity
of an inertial under-relaxed HPE-type method. As applications, we proposed and studied
inertial (under-relaxed) versions of the Tseng’s modified forward-backward and forward-
backward methods for solving structured monotone inclusion problems with either Lipschitz
continuous or cocoercive operators. All the proposed and/or studied algorithms, namely
Algorithms 2, 3, 4 and 5 potentially benefit from a specific policy for choosing the upper
bound on the sequence of extrapolation parameters, in which case (under) relaxation plays
a central role (see Assumption (A) and Theorems 2.2.11, 2.2.13, 2.3.3 and 2.3.7). We
provided nonasymptotic global convergence rates (iteration-complexity) for inertial HPE-
type methods, in particular for the proposed inertial forward-backward and Tseng’s modified
forward-backward methods.

• In Chapter 3, we have proposed and studied a relative-error inertial-relaxed inexact projec-
tive splitting algorithm for solving structured monotone inclusion problems involving the
sum of finitely many maximal monotone operators, namely Algorithm 7. The proposed
algorithm is a inertial variant of the projective splitting method introduced in [52, 68] for
problem 3.1, which can be seen as a feasibility problem of finding a point in a convex and
closed subset. So, we proposed a general framework for the feasible problem of finding points
in a convex and closed subset with inertial effects for which we established weak conver-
gence (see Propositions 3.2.3 and 3.2.4). Based in these last two results we established weak
convergence for Algorithm 7, see Theorems 3.3.8 and 3.3.9. Furthermore, convergence rate

73

and iteration-complexity for Algorithm 7 were also studied; see Theorem 3.3.10. Finally as
an application of Algorithm 7 we derived an inertial algorithm resembling the multi block
ADMM for linearly constrained optimization problem (Algorithm 8), among other contri-
butions we stabilished a convergence result and convergence rate for this latest algorithm;
see Theorems 3.4.5 and 3.4.6.

4.2 Future research

During our study, we encountered many problems whose treatment was not considered in this
work and we mention only a few among the ones that we consider relevant, challenging and closely
related to our work.

• The algorithms proposed and discussed in Chapters 2 and 3 are two-step iterative schemes,
inspired from classical multi-step methods in numerical analysis, it remains as a topic for
future research to construct methods that generalize the inertial methods (two step) to
multi-step algorithms for inclusion problems. See [43, 102, 105] for some contributions in
this direction.

• As we mentioned early, projective splitting methods involving inertial steps is fresh in the
literature. It would be interesting to explore more a general procedure than Algorithm 7,
allowing forward steps, asynchronous and block iterative implementation combining relax-
ation and inertial steps. Another interesting challenge in this line is to explore the pro-
gressive hedging method for stochastic programming of Rockefellar and Wets [113] within
a projective splitting environment (see [53]) and inertial effects.

• Regarding to the primal-dual splitting algorithms, we consider a systems of monotone in-
clusions of the following general form: Let m and K be positives numbers, let {Hi}mi=1 and
{Gk}Ki=1 be a family of real Hilbert spaces, and for every i = 1, . . . ,m and k = 1, . . . , K let
Ai : Hi ⇒ Hi and Bk : Gk ⇒ Gk be maximal monotone operators.

Find x1 ∈ H1, . . . , xm ∈ Hm such that

(∀i = 1, . . . ,m) zi ∈ Aixi +
m∑

i=1

L∗
ki

(
Bk

(
m∑

j=1

Lkjxj − rj

))
, (4.1)

and, its dual problem in the sense of Attouch-Théra [18]: find w1 ∈ G1, . . . , wK ∈ GK such
that

(∀k = 1, . . . , K) − rk ∈
m∑

i=1

L∗
ki

(
A−1

i

(
zi −

K∑

l=1

L∗
ljwl

))
+B−1

k w∗
k. (4.2)

The associated extended solution (or Kuhn-Tucker) set

Z = {(x1, . . . , xm, w1, . . . , wK) | (∀i ∈ {1, . . . ,m}) zi −
K∑

k=1

L∗
kiwk ∈ Aixi

and (∀k ∈ {1, . . . , K})
m∑

k=1

Lkixi − rk ∈ B−1
k xk}.

74

The problem (4.1) is equivalent to find a point (x̄, w̄) := (x̄1, . . . , x̄m, w̄1, . . . , w̄K) in the
convex and closed set Z, where x̄ solve the primal problem (4.1) and w̄ solve the dual problem
(4.2). The importance of Problem (4.1) is due to the fact that it models a wide range of
problems arising in game theory, image recovery, evolution equations, machine learning,
signal processing, and domain decomposition methods in partial differential equations, as
discussed in [2, 41, 42] and references therein.

In [42, Proposition 2], it was shown that the problem (4.1) can be seen as an inclusion
problem of the type: 0 ∈ T1z +G∗T2Gz, where T1 and T2 are maximal monotone operators
defined on the product spaces H = H1 × . . . ×Hm and G = G1 × . . . × GK , respectively,
and G : H→ G is a linear and bounded operator, for which a projective splitting algorithm
was developed by the same authors. Following the study done in Chapter 2, a more general
method can be developed by adding inertial steps and permitting asynchronous and block-
iterative implementation.

An important special case of (4.1) is the optimization problem below, in which the monotone
operators {Ai}mi=1 and {Bk}Kk=1 are taken to be subdifferentials of convex functions: Consider
the primal minimization problem

min
x1∈Hi,...,xm∈Hm

m∑

i=1

(fi(xi)− 〈xi, zi〉) +
K∑

k=1

gk (Lkixi − rk) (4.3)

and its dual problem

min
w1∈G1,...,wK∈GK

m∑

i=1

f ∗
i

(
zi −

K∑

k=1

L∗
kiwk

)
+

K∑

k=1

(gk(wk) + 〈wk, rk〉) ,

where fi ∈ Γ0(Hi) for all i ∈ {1, . . . ,m} and gk ∈ Γ0(Gk) forl all k ∈ {1, . . . , K} and
Lki : Hi → Gk as be linear and bounded operators. It would also be interesting to build an
inertial and implementable method for solving (4.3), moreover, to compare its computational
performance with other existing primal dual splitting type methods (see e.g., [23, 24]).

75

Appendix A

Basic results

A.1 Basic results in R

The following lemma was essentially proved by Alvarez and Attouch in [5, Theorem 2.1] but
we present here for completeness to the work.

Lemma A.1.1. Let the sequences {hk}, {sk}, {αk} and {δk} in [0,+∞[and α ∈ R be such that
h0 = h−1, 0 ≤ αk−1 ≤ α < 1 and

hk − hk−1 + sk ≤ αk−1(hk−1 − hk−2) + δk ∀k ≥ 1. (A.1)

The following hold:

(a) For all k ≥ 1,

hk +
k∑

j=1

sj ≤ h0 +
1

1− α

k∑

j=1

δj. (A.2)

(b) If
∑∞

k=1 δk < +∞, then limk→∞ hk exist, i.e., the sequence {hk} converges to some element
in [0,∞[.

Proof. (a) For each k ≥ 0 set θk := hk − hk−1. Since sk ≥ 0 and 0 ≤ αk ≤ α for all k ≥ 0, it
follows from (A.1) that

θk ≤ αk−1θk−1 + δk ≤ α[θk−1]+ + δk,

where [t]+ := max{t, 0} for t ∈ R. Therefore, we have

[θk]+ ≤ α[θk−1]+ + δk ≤ αk[θ0]+ +
k−1∑

i=0

αiδk−i. (A.3)

Note that assumption h0 = h−1, implies that [θ0]+ = θ0 = 0. Hence, it follows from (A.3) that

k∑

j=1

[θj]+ ≤
k∑

j=1

j−1∑

i=0

αiδj−i =
k∑

j=1

(
k−j∑

i=0

αi

)
δj =

k∑

j=1

δj

(
1− αk−j+1

1− α

)
≤ 1

1− α

k∑

j=1

δj. (A.4)

76

Moreover, from (A.1) we have

sk ≤ hk−1 − hk + α[θk−1]+ + δk.

Summing the latter inequality over all j = 1, . . . , k and taking into account (A.4) we obtain

k∑

j=1

sj ≤h0 − hk + α

k−1∑

j=1

[θj]+ +
k∑

j=1

δj ≤ h0 − hk +
1

1− α

k∑

j=1

δj,

which shows the desired conclusion in (a).
(b) First note that (A.4) and the assumption

∑∞
k=1 δk < +∞ implies

∞∑

k=1

[θj]+ ≤
1

1− α

∞∑

j=1

δj <∞. (A.5)

Now, consider the sequence {γk} defined by γk = hk −
∑k

j=1[θj]+. Since hk ≥ 0 for all k ≥ 0 and∑∞
j=1[θj]+ <∞, it follows that {γk} is bounded below. On the other hand,

γk+1 = hk+1 − [θk+1]+ −
k∑

j=1

[θj]+ ≤ hk+1 − θk+1 −
k∑

j=1

[θj]+ = hk −
k∑

j=1

[θj]+ = γk,

and so, {γk} is nonincreasing. As a consequence, {γk} converges as k → ∞, it and (A.5) ensure
that the following limit

lim
k→∞

hk = lim
k→∞

(
γk +

k∑

j=1

[θj]+

)
= lim

k→∞
γk +

∞∑

j=1

[θj]+

exist. This completes the proof of the lemma.

Lemma A.1.2. For any σ ∈ [0, 1[, the inverse function of the scalar map

A :=]0, 1 + σ] ∋ t 7→ 4− 2t

4− t+
√
16t− 7t2

∈
[

2(1− σ)

3− σ +
√
9 + 2σ − 7σ2

, 1

[
=: B

is given by

B ∋ β 7→ 2(β − 1)2

2(β − 1)2 + 3β − 1
∈ A.

Lemma A.1.3. [6, Lemma A.2] The inverse function of the scalar map

(0, 2) ∋ β 7→ 2(2− β)

4− β +
√
16β − 7β2

∈ (0, 1)

is given by

(0, 1) ∋ α 7→ 2(α− 1)2

2(α− 1)2 + 3α− 1
∈ (0, 2).

77

Lemma A.1.4. [6, Lemma A.3] Let R ∋ ν 7→ q(ν) := aν2− bν+ c be a real function and assume
that b, c > 0 and b2 − 4ac > 0. Define

α :=
2c

b+
√
b2 − 4ac

> 0. (A.6)

(i) If a = 0, then q(·) is a decreasing affine function and α > 0 as in (A.6) is its unique root
(see Figure A.1(a)).

(ii) If a > 0 (resp. a < 0), then q(·) is a convex (resp. concave) quadratic function and α > 0
as in (A.6) is its smallest (resp. largest) root (see Figure A.1(b) and Figure A.1(c), resp.).

In both cases (i) and (ii), α > 0 as in (A.6) is a root of q(·), and q(·) is decreasing in the interval
[0, α] (see Figure A.1).

ν

q(ν)

0

c

α

(a) a = 0

ν

q(ν)

0

c

α

(b) a > 0

ν

q(ν)

0

c

α

(c) a < 0

Figure A.1: Possible cases for the real function q(·) in Lemma A.1.4.

A.2 Some auxiliary results

Lemma A.2.1. Let H a real Hilbert space, the following statement holds

(i) For any x, y ∈ H and t ∈ R, we have

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖x‖2 − t(1− t)‖x− y‖2. (A.7)

(ii) For any x1, x2, . . . , xn ∈ H, we have

‖x1 + . . .+ xn‖2 ≤ n
(
‖x1‖2 + . . .+ ‖xn‖2

)
. (A.8)

Lemma A.2.2 (Opial). Let H be a real Hilbert space, ∅ 6= S ⊂ H and let {pk} be any sequence
in H such that

(a) limk→∞ ‖pk − p‖ exists for every p ∈ S;

(b) every weak cluster point of {pk}, as k →∞ belongs to S.

Then {pk} converges weakly as k →∞ to a point in S.

78

The lemma below was proved (with a different notation) in [2, Proposition 2.4].

Lemma A.2.3. Let H and G be real Hilbert spaces, let A : H ⇒ H and B : G ⇒ G be maximal
monotone operators and let G : H → G be a bounded linear operator. Let also ak ∈ A(rk) and
bk ∈ B(sk) be such that rk ⇀ r∞ and bk ⇀ b∞, for some r∞ ∈ H and b∞ ∈ G. If, ak +G∗bk → 0
and Grk − sk → 0, then b∞ ∈ B(Gr∞) and −L∗b∞ ∈ A(r∞).

79

Bibliography

[1] B. Abbas and H. Attouch. Dynamical systems and forward-backward algorithms associated
with the sum of a convex subdifferential and a monotone cocoercive operator. Optimization,
64(10):2223–2252, 2015.

[2] A. Alotaibi, P. L. Combettes, and N. Shahzad. Solving coupled composite monotone in-
clusions by successive fejér approximations of their Kuhn-Tucker set. SIAM J. Optim.,
24(8):2076–2095, 2014.

[3] F. Alvarez. On minimization property of a second order dissipative system in Hilber spaces.
SIAM J. Control Optim., 38(4):1102–1119, 2000.

[4] F. Alvarez. Weak convergence of a relaxed and inertial hybrid projection-proximal point
algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim., 14(3):773–
782, 2003.

[5] F. Alvarez and H. Attouch. An inertial proximal method for maximal monotone operators
via discretization of a nonlinear oscillator with damping. Set-Valued Anal., 9(1-2):3–11,
2001. Wellposedness in optimization and related topics (Gargnano, 1999).

[6] M. Marques Alves, J. Eckstein, M. Geremia, and J.G. Melo. Relative-error inertial-relaxed
inexact versions of Douglas-Rachford and ADMM splitting algorithms. Comput. Optim.
Appl., 75(2):389–422, 2020.

[7] M. Marques Alves and S. C. Lima. An inexact Spingarn’s partial inverse method with
applications to operator splitting and composite optimization. J. Optim. Theory Appl.,
175(3):818–847, 2017.

[8] M. Marques Alves and R.T. Marcavillaca. On inexact relative-error hybrid proximal extra-
gradient, forward-backward and Tseng’s modified forward-backward methods with inertial
effects. Set-Valued Var. Anal., 28:301–325, 2019.

[9] A. S. Antipin. Minimization of convex functions on convex sets by means of differential
equations. Differential Equations, 30(9):1365–1375, 1994.

[10] H. Attouch and A. Cabot. Convergence of a relaxed inertial forward-backward algorithm
for structured monotone inclusions. Appl. Math. Optim., 80(3):547–598, 2019.

[11] H. Attouch and A. Cabot. Convergence of a relaxed inertial proximal algorithm for maxi-
mally monotone operators. Math. Program., 2019.

80

[12] H. Attouch and A. Cabot. Convergence rate of a relaxed inertial proximal algorithm for
convex minimization. Optimization, 69(6):1281–1312, 2020.

[13] H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont. Fast convergence of inertial dynamics
and algorithms with asymptotic vanishing viscosity. Math. Program., 168(1-2, Ser. B):123–
175, 2018.

[14] H. Attouch, X. Goudou, and P. Redont. The heavy ball with friction I. the continuous
dynamical system. Comm. Contemp. Math., 2(1):1–34, 2000.

[15] H. Attouch, M. Marques Alves, and B.F. Svaiter. A dynamic approach to a proximal-Newton
method for monotone inclusions in Hilbert spaces, with complexity O(1/n2). Journal of
Convex Analysis, 23(1):139–180, 2016.

[16] H. Attouch and J. Peypouquet. Convergence of inertial dynamics and proximal algorithms
governed by maximally monotone operators. Math. Program., 174:391–432, 2019.

[17] H. Attouch, J. Peypouquet, and P. Redont. Fast convex optimization via inertial dynamics
with Hessian driven damping. J. Differential Equations, 261(10):5734–5783, 2016.

[18] H. Attouch and M. Thera. A general duality principle for the sum of two operators. Journal
of Convex Analysis, 3:1–24, 1996.

[19] B. Banert and R. I. Boţ. A forward-backward-forward differential equation and its asymp-
totic properties. Journal of Convex Analysis, 25(2):371–388, 2018.

[20] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in
Hilbert spaces, second edition. Springer, New York, 2017.

[21] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[22] R. I. Boţ and E. R. Csetnek. A hybrid proximal-extragradient algorithm with inertial effects.
Numer. Funct. Anal. Optim., 36(8):951–963, 2015.

[23] R. I. Boţ and E. R. Csetnek. An inertial forward-backward-forward primal-dual splitting
algorithm for solving monotone inclusion problems. Numerical Algorithms, 3(71):519–540,
2016.

[24] R. I. Boţ, E. R. Csetnek, and C. Hendrich. Inertial Douglas-Rachford splitting for monotone
inclusion problems. Appl. Math. Comput., 256:472–487, 2015.

[25] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011.

[26] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert. North-Holland Mathematics Studies. 5. Amsterdam-London: North-Holland
Publishing Comp.; New York: American Elsevier Publishing Comp., 1973.

[27] L. M. Briceño-Arias and P. L. Combettes. A monotone + skew splitting model for composite
monotone inclusions in duality. SIAM J. Optim., 21(4):1230–1250, 2011.

81

[28] F. E. Browder. Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc.,
69(6):862–874, 1963.

[29] F. E. Browder. The solvability of non-linear functional equations. Duke Math. J., 30(4):557–
566, 1963.

[30] R. S. Burachik, A. N. Iusem, and B. F. Svaiter. Enlargement of monotone operators with
applications to variational inequalities. Set-Valued Var. Anal., 5(2):159–180, 1997.

[31] R. S. Burachik, C. A. Sagastizábal, and B. F. Svaiter. ǫ-enlargements of maximal mono-
tone operators: theory and applications. In Reformulation: nonsmooth, piecewise smooth,
semismooth and smoothing methods (Lausanne, 1997), volume 22 of Appl. Optim., pages
25–43. Kluwer Acad. Publ., Dordrecht, 1999.

[32] R. S. Burachik and B. F. Svaiter. ǫ-enlargements of maximal monotone operators in Banach
spaces. Set-Valued Anal., 7(2):117–132, 1999.

[33] J. V. Burke and Maijian Qian. A variable metric proximal point algorithm for monotone
operators. SIAM J. Control Optim., 37(2):353–375, 1999.

[34] L. C. Ceng, B. S. Mordukhovich, and J. C. Yao. Hybrid approximate proximal method with
auxiliary variational inequality for vector optimization. J. Optim. Theory Appl., 146(2):267–
303, 2010.

[35] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vision, 40(1):120–145, 2011.

[36] C. Chen, R. H. Chan, S. Ma, and J. Yang. Inertial proximal ADMM for linearly constrained
separable convex optimization. SIAM J. Imaging Sci., 8(4):2239–2267, 2015.

[37] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent. Mathematical Programming,
155(1):57–79, 2016.

[38] C. Chen, S. Ma, and J. Yang. A general inertial proximal point algorithm for mixed
variational inequality problem. SIAM J. Optim., 25(4):2120–2142, 2015.

[39] X. Chen and M. Fukushima. Proximal quasi-Newton methods for nondifferentiable convex
optimization. Math. Program., 85(2):313–334, 1999.

[40] P. L. Combettes. Fejér monotonicity in convex optimization, volume 2 of In: Encyclopedia
of optimization. Springer Science Business Media, 2001.

[41] P. L. Combettes. Systems of structured monotone inclusions: duality, algorithms, and
applications. SIAM J. Optim., 4(23):2420–2447, 2013.

[42] P. L. Combettes and J. Eckstein. Asynchronous block-iterative primal-dual decomposition
methods for monotone inclusions. Math. Program., 1-2(168):645–672, 2018.

[43] P. L. Combettes and L.E. Glaudin. Quasi-nonexpansive iterations on the affine hull of orbits:
From Mann’s mean value algorithm to inertial methods. SIAM J. Optim., 27(4):2356–2380,
2017.

82

[44] P. L. Combettes and J.C. Pesquet. Proximal splitting methods in signal processing. Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212, 2011.

[45] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling Simulation, 4(4):1168–1200, 2005.

[46] D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications.
Set-Valued Var. Anal., 25(4):829–858, 2017.

[47] W. Deng, M. Lai, Z. Peng, and O. Yin. Parallel multi-block admm with o(1/k) convergence.
J. Sci. Comput., 71:712–736, 2017.

[48] J. Eckstein. A simplified form of block-iterative operator splitting and an asynchronous
algorithm resembling the multi-block alternating direction method of multipliers. J. Optim.
Theory Appl., 1(173):155–182, 2017.

[49] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and the prox-
imal point algorithm for maximal monotone operators. Math. Program., 55(3):293–318,
1992.

[50] J. Eckstein and P. J. S. Silva. A practical relative-error criterion for augmented Lagrangians.
Math. Program., 141(1-2, Ser. A):319–348, 2013.

[51] J. Eckstein and B. F. Svaiter. A family of projective splitting methods for the sum of two
maximal monotone operators. Math. Program., 111(1-2, Ser. B):173–199, 2008.

[52] J. Eckstein and B. F. Svaiter. General projective splitting methods for sums of maximal
monotone operators. SIAM J. Control Optim., 48(2):787–811, 2009.

[53] J. Eckstein, J. P. Watson, and D. L. Woodruf. Asynchronous projective hedging for stochas-
tic programming. Preprint, http://www.optimization-online.org/DB-FILE/2018/10/6895,
2018.

[54] J. Eckstein and W. Yao. Relative-error approximate versions of Douglas-Rachford splitting
and special cases of the ADMM. Math. Program., 170:417–444, 2018.

[55] F. Facchinei and J. S. Pang. Finite-dimensional variational inequalities and complementar-
ity problems. Vol. I. Springer Series in Operations Research. Springer-Verlag, New York,
2003.

[56] M. Fortin and R. Glowinski. Chapter ix applications of the method of multipliers to vari-
ational inequalities. In Augmented Lagrangian Methods: Applications to the Numerical
Solution of Boundary-Value Problems, volume 15 of Studies in Mathematics and Its Appli-
cations, pages 299–331. Elsevier, Dordrecht, 1983.

[57] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Computers and Mathematics with Applications, 2(1):17–
40, 1976.

83

[58] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et
Analyse Numérique, 9(R2):41–76, 1975.

[59] R. Glowinski, S. J. Osher, and W. Yin, editors. Splitting methods in communication, imag-
ing, science, and engineering. Scientific Computation. Springer, Cham, 2016.

[60] M.L.N. Goncalves, J.G. Melo, and R.D.C. Monteiro. Improved pointwise iteration-
complexity of a regularized ADMM and of a regularized non-euclidean HPE framework.
Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA 30332-0205, USA, January 2016.

[61] J. Haraux and N. A. Jendoubi. Convergence of solutions of second order gradient like
systems with analytic nonlinearities. J. Differential Equations, 144(2):313–320, 1998.

[62] Y. He and R. D. C. Monteiro. An accelerated HPE-type algorithm for a class of composite
convex-concave saddle-point problems. SIAM J. Optim., 26(1):29–56, 2016.

[63] M. Hong and Z. Q. Luo. On the linear convergence of the alternating direction method of
multipliers. Mathematical Programming, 162:165–199, 2017.

[64] A. N. Iusem and W. Sosa. On the proximal point method for equilibrium problems in
Hilbert spaces. Optimization, 59(8):1259–1274, 2010.

[65] A. N. Iusem and B. F. Svaiter. A variant of Korpelevich’s method for variational inequalities
with a new search strategy. Optimization, 42(4):309–321, 1999.

[66] F. Iutzeler and Hendrickx J. M. A generic online acceleration scheme for optimization
algorithms via relaxation and inertia. Optimization Methods and Software, pages 383–405,
2017.

[67] Jr. Jim Douglas and H. H. Rachford Jr. On the numerical solution of heat conduction
problems in two and three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

[68] P. R. Johnstone and J. Eckstein. Projective splitting with forward steps: Asynchronous
and block-iterative operator splitting. Preprint, arXiv:1803.07043v5, 2018.

[69] P. R. Johnstone and J. Eckstein. Convergence rates for projective splitting. SIAM J.
Optim., 29(3):1931–1957, 2019.

[70] P. R. Johnstone and J. Eckstein. Single-forward-step splitting: Explointing cocoercivity.
Preprint, arXiv:1902.09025v2, 2019.

[71] P. R. Johnstone and J. Eckstein. Projective splitting with forward steps only requires
continuity. Optimization Letters, 14:229–247, 2020.

[72] R. I. Kachurovskii. Monotone operators and convex functionals. Usp. Mat. Nauk, 15(4):213–
215, 1960.

[73] R. I. Kachurovskii. Non-linear monotone operators in Banach spaces. Uspekhi Mat. Nauk,
23(2):121–168, 1968.

84

[74] G. M. Korpelevič. An extragradient method for finding saddle points and for other problems.
Èkonom. i Mat. Metody, 12(4):747–756, 1976.

[75] M.A. Krasnosel’skii. Two remarks on the method of successive aproximations. Uspekhi
Matematicheskikh Nauk, 10(1):123–127, 1955.

[76] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM J. Numer. Anal., 16(6):964–979, 1979.

[77] D. A. Lorenz and T. Pock. An inertial forward-backward algorithm for monotone inclusions.
J. Math. Imaging Vision, 51(2):311–325, 2015.

[78] P. A. Lotito, L. A. Parente, and M. V. Solodov. A class of variable metric decomposition
methods for monotone variational inclusions. Journal of Convex Analysis, 16(3-4):857–880,
2009.

[79] M. P. Machado. On the complexity of the projective splitting and Spingarn’s methods for
the sum of two maximal monotone operators. J Optim. Theory Appl., 178:153–190, 2018.

[80] M. P. Machado. Projective method of multipliers for linearly constrained convex minimiza-
tion. Comput. Optim. and Appl., 73:237–273, 2019.

[81] P. E. Maingé and N. Merabet. A new inertial-type hybrid projection-proximal algorithm
for monotone inclusions. Appl. Math. Comput., 215(9):3149–3162, 2010.

[82] W. R. Mann. Mean value methods in iterations proximal. Proc. Amer. Math., 4(3):506–510,
1953.

[83] M. Marques Alves, M. Geremia, and R.T. Marcavillaca. A relative-error inertial-relaxed
inexact projective splitting algorithm. Preprint, https://arxiv.org/abs/2002.07878v1, 2020.

[84] B. Martinet. Régularisation d’inéquations variationnelles par approximations successives.
Rev. Française Informat. Recherche Opérationnelle, 4(Ser. R-3):154–158, 1970.

[85] B. Mercier and G. Vijayasundaram. Lectures on topics in finite element solution of elliptic
problems. Tata Institute on Mathematics and Phisics. Springer, New York, 1979.

[86] G. J. Minty. Monotone networks. roc. R. Soc. Lond. A: Math. Phys. Eng. Sci,
257(1289):194–212, 1960.

[87] G. J. Minty. On the monotonicity of the gradient of a convex function. Pac. J. Math.,
14(1):243–247, 1964.

[88] R. D. C. Monteiro, C. Ortiz, and B. F. Svaiter. A first-order block-decomposition method
for solving two-easy-block structured semidefinite programs. Math. Program. Comput.,
6(2):103–150, 2014.

[89] R. D. C. Monteiro, C. Ortiz, and B. F. Svaiter. Implementation of a block-decomposition
algorithm for solving large-scale conic semidefinite programming problems. Comput. Optim.
Appl., 57(1):45–69, 2014.

85

[90] R. D. C. Monteiro, C. Ortiz, and B. F. F. Svaiter. An adaptive accelerated first-order
method for convex optimization. Comput. Optim. Appl., 64(1):31–73, 2016.

[91] R. D. C. Monteiro and B. F. Svaiter. Complexity of variants of Tseng’s modified F-B
splitting and Korpelevich’s methods for hemivariational inequalities with applications to
saddle point and convex optimization problems. SIAM J. Optim., 21:1688–1720, 2010.

[92] R. D. C. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal extragradient
method for the iterates and the ergodic mean. SIAM J. Optim., 20:2755–2787, 2010.

[93] R. D. C. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition algorithms
and the alternating direction method of multipliers. SIAM J. Optim., 23(1):475–507, 2013.

[94] J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. C.
R. Acad. Sc. Paris, 255:2897–2899, 1962.

[95] J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France, 93:273–
299, 1965.

[96] A. Moudafi and M. Oliny. Convergence of a splitting inertial proximal method for monotone
operators. J. Comput. Appl. Math., 155(2):447–454, 2003.

[97] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Doklady AN SSSR (transalated as Soviet Math. Docl.), 269:543–547,
1983.

[98] Y.E. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied Opti-
mization. Kluwer Academic Publishers, Boston, MA, 2004. A basic course.

[99] P. Ochs, Y. Chen, T. Brox, and Pock T. ipiano: Inertial proximal algorithm for nonconvex
optimization. SIAM J. Imaging Sciences, 7(2):1388–1419, 2014.

[100] G. B. Passty. Ergodic convergence to a zero of the sum of monotone operators in Hilbert
space. J. Math. Anal. Appl., 72(2):383–390, 1979.

[101] D. W. Peaceman and Jr. H. H. Rachford. The numerical solution of parabolic and elliptic
differential equations. J. Soc. Indust. Appl. Math., 3:28–41, 1955.

[102] T. Pennanen and B. F. Svaiter. Solving monotone inclusions with linear multi-step methods.
Math. Program., Ser. A(96):469–487, 2003.

[103] J. Peypouquet. Convex Optimization in Normed Spaces: Theory, Methods and Examples.
Springer Monographs in Mathematics. Springer Briefs in Optimization, Valparaıso, Chile,
2015.

[104] B. T. Polyak. Introduction to Optimization. Translations Series in Mathematics and Engi-
neering. Optimization Software, 1987.

[105] B.T. Polyak. Some methods of speeding up the convergence of iteration methods. U.S.S.R.
Comput. Math. Phys., 4(5):1–17, 1964.

86

[106] L. Qi and X. Chen. A preconditioning proximal newton method for nondifferentiable convex
optimization. Math. Program., 76(3):411–429, 1997.

[107] J. Raguet, H. Fadili and G. Peyré. A generalized forward-backward splitting. SIAM J.
Imaging Sci., 6(3):1199–1226, 2013.

[108] R. T. Rockafellar. Characterization of the subdifferentials of convex functions. Pac. J.
Math., 17(3):497–510, 1966.

[109] R. T. Rockafellar. Convex Analysis, volume 28 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Princeten University Press,
Princeton, 1970.

[110] R. T. Rockafellar. On the maximal monotonicity of subdifferential mappings. Pacific J.
Math., 33:209–216, 1970.

[111] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm
in convex programming. Math. Oper. Res., 1(2):97–116, 1976.

[112] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Optimization, 14(5):877–898, 1976.

[113] R. T. Rockafellar and R. J. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Math. Oper. Res., 1(16):119–147, 1991.

[114] T.R. Rockafellar and R. Rockajellm. Monotone operators associates with sadle functions
and minimax problems. American Math. Soc., 1970.

[115] E. Ronald and Jr. Bruck. Asymptotic convergence of nonlinear contraction semigroups in
Hilbert space. Journal of Functional Analysis, 18(1):15–26, 1975.

[116] N.Z. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in
Computational Mathematics. Springer, 1985.

[117] M. V. Solodov and B. F. Svaiter. A hybrid approximate extragradient-proximal point algo-
rithm using the enlargement of a maximal monotone operator. Set-Valued Anal., 7(4):323–
345, 1999.

[118] M. V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algorithm. J. Convex
Anal., 6(1):59–70, 1999.

[119] M. V. Solodov and B. F. Svaiter. A new projection method for variational inequality
problems. SIAM J. Control Optim., 37(3):765–776 (electronic), 1999.

[120] M. V. Solodov and B. F. Svaiter. An inexact hybrid generalized proximal point algorithm
and some new results on the theory of Bregman functions. Math. Oper. Res., 25(2):214–230,
2000.

[121] M. V. Solodov and B. F. Svaiter. A unified framework for some inexact proximal point
algorithms. Numer. Funct. Anal. Optim., 22(7-8):1013–1035, 2001.

87

[122] Eduardo D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Sys-
tems. Texts in Applied Mathematics. Springer-Verlag New York, 1998.

[123] J. E. Spingarn. Partial inverse of a monotone operator. Appl. Math. Optim., 10(3):247–265,
1983.

[124] W. Su, S. Boyd, and E. J. Candès. A differential equation for modeling Nesterov’s ac-
celerated gradient method: Theory and insights. Journal of Machine Learning Research,
17(153):1–43, 2016.

[125] B. F. Svaiter. A class of Fejér convergent algorithms, approximate resolvents and the hybrid
proximal-extragradient method. J. Optim. Theory Appl., 162(1):133–153, 2014.

[126] B. F. Svaiter. Complexity of the relaxed hybrid proximal-extragradient method under the
large-step condition. Preprint A766/2015, IMPA - Instituto Nacional de Matemática Pura
e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, RJ Brasil 22460-320, 2015.

[127] L. Tianyi, M. Shiqian, and Z. Shuzhong. On the global linear convergence of the ADMM
with multiblock variables. SIAM Journal on Optimization, 25(3):1478–1497, 2015.

[128] P. Tseng. A modified forward-backward splitting method for maximal monotone mappings.
SIAM J. Control Optim., 38(2):431–446 (electronic), 2000.

[129] C. Zalinescu. Convex Analysis in General Vector Spaces. World Scientific. Singapore, 2002.

88

		2021-02-12T11:29:59-0300

		2021-02-14T14:33:50-0300

