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RESUMO

Considerando um determinado conjunto de parâmetros para o esquema de assinatura única de
Winternitz (Wots), a complexidade total da geração e verificação de uma assinatura é constante
e independente do documento a ser assinado. Esses custos são devidos ao número de iterações
de uma função 5 , executados sobre elementos de uma chave privada. No entanto, o custo
de geração de assinatura por si só pode ser diferente do custo da verificação de assinatura,
dependendo diretamente do documento de entrada. Este trabalho apresenta uma nova variante
do esquema Wots, permitindo o ajuste desses custos. Ou seja, aumenta-se o tempo de geração de
assinatura em favor de uma verificação mais rápida ou vice-versa. O número total de repetições
de 5 para parâmetros específicos do esquema podem ser reduzidos, ocasionando também uma
redução do custo de geração de chaves. Na contribuição principal deste trabalho, permite-se
escolher um custo fixo de execuções de 5 , inalterado para qualquer mensagem de entrada.
Experimentos mostram que as propostas têm impacto substancial em esquemas de assinatura
baseados em árvores de Merkle, como Xmss. Além disso, se 5 for uma função de direção
única, resistente à segunda pré-imagem e indetectável, prova-se formalmente que o esquema é
Existentially Unforgeable under a Chosen Message Attack (EU-CMA).

Palavras-chave: Assinaturas baseadas em funções Hash. Winternitz. Criptografia. Criptogra-

fia Pós-Quântica. Análise Combinatória.





RESUMO ESTENDIDO

Introdução

A criptografia clássica atingiu seu ápice com o desenvolvimento de máquinas de rotor, como a
famosa máquina enigma, recentemente retratada no filme "O Jogo da Imitação". Diante disto,
testemunhou-se uma mudança de paradigma com o advento dos computadores pessoais, então
nasceu a criptografia moderna. O Data Encryption Standard (DES), desenvolvido no início dos
anos 70, é um marco importante no história da criptografia. No entanto, e talvez mais impor-
tante, a forma como usamos criptografia no mundo moderno mudou completamente em 1976
quando a Criptografia de Chaves Públicas (CCP) foi proposta pela primeira vez por Whitfield
Diffie e Martin Hellman em seu artigo intitulado “New directions in cryptography" (DIFFIE;
HELLMAN, 1976).
Possivelmente vivemos um momento de recorrência da história, pois estamos prestes a teste-
munhar a criação de computadores quânticos; computadores com tal poder que ameaça quebrar
a maioria dos sistemas criptográficos usados por bilhões de usuários na Internet diariamente.
Muitas perguntas sem resposta ainda estão em jogo: Algum dia teremos um computador quân-
tico prático e de grande escala? Se for assim, teria ele a capacidade computacional comparável
às expectativas teóricas? Ou talvez, para aqueles em favor das teorias da conspiração: e se
um computador quântico já existir e não estivermos cientes dele? Essas questões têm atraído
a atenção da comunidade internacional, clamando por soluções à medida que entramos nessa
nova era de criptografia.
Nesta tese, estuda-se um dos candidatos mais antigos do que hoje chamamos de Criptografia
Pós-Quântica (CPQ). Ou seja, sistemas criptográficos que podem ser utilizados por computa-
dores que temos disponíveis hoje e que são considerados seguros mesmo contra adversários
quânticos. É o caso de Assinaturas Baseadas em Hash (ABH), os quais são esquemas com
reduções de segurança bem conhecidas e considerados seguros contra computadores quânticos.
Esses esquemas usam apenas criptografia simétrica, mais especificamente funções de Hash crip-
tográfico, que tem sido estudadas há décadas. Por esse motivo, há pouca preocupação quanto ao
amadurecimento do seu atual estado da arte. No entanto, tem seus desafios, já que ABH resolve
o problema de assinaturas digitais no cenário quântico introduzindo suas próprias limitações.
Um dos pilares de ABH é o esquema de assinatura única de Winternitz Wots (MERKLE,
1989). Como seu nome sugere, ele tem a capacidade de realizar uma única assinatura. No
entanto, instâncias distintas do mesmo esquema de ABH podem ser agrupadas em esquemas
mais complexos para se obter esquemas de múltiplas assinaturas. Por exemplo, os esquemas
de assinaturas múltiplas xmss e lms, com padrões públicos RFC 8391 (HÜLSING et al., 2018)
e RFC 8554 (MCGREW; CURCIO; FLUHRER, 2019), respectivamente. Infelizmente, essas
soluções introduzem uma condição de estado, isto é, o estado das chaves privadas agregadas
a uma árvore Merkle deve ser mantido com segurança. Consequentemente, concluiu-se que
o uso de padrões de ABH com estado só deve ser considerado para certas aplicações onde a
integridade do estado da chave privada pode ser garantida (COOPER et al., 2020). Ademais, um
esquema de ABH mais complexo, que remove a restrição de estado das chaves, foi submetido à
“competição1” de padronização de CPQ da instituição Americana National Institute of Standards
and Technology (NIST) atualmente em andamento (ALAGIC et al., 2020). Este esquema é
conhecido como Sphincs+ (BERNSTEIN et al., 2019; AUMASSON et al., 2020) e está sendo
considerado como candidato alternativo na terceira rodada do processo de submissão.
Um aspecto interessante de ABH é como a distribuição de bits da mensagem a ser assinada pode

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization



afetar o desempenho de alguns esquemas. Por exemplo, o número de operações hash executadas
nas etapas de assinatura e verificação do Wots é determinado diretamente pela mensagem de
entrada. Durante essas etapas, o esquema usa um algoritmo de codificação que gera uma tupla
de elementos que representam exclusivamente a mensagem. Os elementos dessa tupla são então
usados para determinar o número de operações hash em cada etapa. Esta característica foi
explorada por (STEINWANDT; VILLÁNYI, 2008) e mais recentemente por (CRUZ; YATANI;
KAJI, 2016; KAJI; CRUZ; YATANI, 2018) e (ROH; JUNG; KWON, 2018). Esses trabalhos
propõem diferentes maneiras de codificar uma mensagem, de forma que o processo de assinatura
ou o processo de verificação (não ambos) utilizem uma quantidade menor de execuções de uma
função hash. Ao fazer isso, outros desafios surgem. Em geral, espera-se que, ao reduzir o
número de funções hash executadas na etapa de verificação, mais funções hash tenham que ser
executadas na etapa de assinatura ou vice-versa. De fato, todos os trabalhos relacionados na
literatura propõem tal compensação, além de um custo geral aumentado para todo o esquema.
Ou seja, a geração de chaves também é afetada e, portanto, mais operações de hash também
devem ser realizadas nesta etapa.
Neste trabalho levantam-se as seguintes questões: será possível explorar funções de codificação
alternativas que não aumentem o custo de geração de chaves e, ao mesmo tempo, permitam tal
compensação? Existem algoritmos de codificação que podem reduzir o custo de geração de
chaves, ou seja, reduzir todo o custo do esquema, diminuindo o número de funções hash neces-
sárias para gerar chaves, assinar e verificar assinaturas, ao mesmo tempo? É possível realizar
isso com eficiência? Por último, e talvez mais importante, é possível fazer isso preservando a
segurança, em comparação com os esquemas de estado da arte na literatura?

Objetivos

O esquema de assinatura de Winternitz utiliza um parâmetro denominado F, que permite uma
compensação clara entre desempenho e tamanho de assinatura. No entanto, o desempenho
relacionado ao número de funções hash necessárias para produzir ou verificar uma assinatura
Winternitz também é afetado pela mensagem a ser assinada. O principal objetivo desta tese é
ampliar nosso conhecimento sobre como as mensagens impactam o desempenho do esquema
de assinatura única de Winternitz e como podemos usar isso em nossa vantagem para diferentes
cenários de aplicação. Neste trabalho, serão avaliados os diferentes tipos de codificação de
mensagens que podem ser usados com Winternitz One Time Signature (Wots) e como eles o
afetam. Como resultado, pretende-se desenvolver e melhorar novas técnicas que possam ser
utilizadas para reduzir o custo associado à geração de assinaturas, verificação de assinaturas e
geração de chaves do esquema baseado em Wots. Como principal objetivo, serão desenvol-
vidos algoritmos eficientes e com tais propriedades. Também serão feitas avaliações de seu
desempenho na prática, assim como a prova de segurança do esquema proposto, a fim obter-se
níveis de segurança comparáveis ao estado da arte.

Motivação

Recentemente, NIST publicou uma chamada para candidatos à padronização de algoritmo de
criptografia pós-quântica (NIST, 2016). Ademais, nota-se que fabricantes de chips já alcan-
çaram grandes avanços no que poderia ser o próximo passo para a revolução da informática,
com os Computadores Quânticos. Enquanto isso, a criptografia pós-quântica ainda está em
seus primeiros estágios de desenvolvimento, onde as discussões sobre segurança e melhorias
de desempenho ainda são constantemente debatidas em fóruns públicos. Portanto, há muita
motivação e interesse na comunidade acadêmica internacional para pesquisas neste escopo,
tornando o momento para contribuir com um tema dessa envergadura bastante oportuno.



Considerando o estado atual de CPQ, os candidatos à ABH são possivelmente as alternativas
mais proeminentes quando se considera a implantação imediata de esquemas de assinatura pós-
quânticos no mundo real. Embora a maturidade e a segurança desses esquemas já sejam bem
conhecidas, deseja-se buscar novas alternativas que ainda não foram exaustivamente analisadas
na literatura.

Limitações do trabalho

Existem diversas alternativas para esquemas ABH no estado atual da literatura. Além disso,
parece que um caso de uso comum para esquemas assinatura única é agregação de múltiplas
instâncias destes em Árvores Merkle, afim de construir esquemas de múltiplas assinaturas,
sob a mesma chave pública. Outros aplicativos interessantes que são comumente referidos no
processo de padronização da instituição NIST são implementações para dispositivos restritos,
como o Cortex-M4.
Portanto, propõe-se um estreitamento do escopo, para que se possa avaliar as contribuições
dentro deste trabalho. Serão abordados apenas os algoritmos de codificação para esquemas
baseados em Wots. Como cenário de aplicação, serão avaliados experimentos usando o código
de referência do esquema EXtended Merkle Signature Scheme (Xmss), que se ajusta bem para
demonstrar a capacidade das contribuições aqui propostas, mas sem fornecer resultados para
outros esquemas de múltiplas assinatura.
O desempenho dos algoritmos propostos serão abordados, assim como novas técnicas para
reduzir seu tempo de execução. No entanto, não serão discutidas em detalhes otimizações
de código, pois espera-se que os tetes de desempenho já demonstrem as limitações existente
e sugeridas para trabalhos futuros. Além disso, existem inúmeros desafios para implementar
algumas das contribuições em dispositivos embarcados. Portanto, embora não serão discutidos
meios de implementar os algoritmos propostos em tais plataformas, serão abordadas alternativas
de como contornar essas limitações para um conjunto específico de cenários de aplicativos.

Método

Para esta tese, não serão utilizados métodos de pesquisa qualitativa ou quantitativa com o
objetivo de reunir e filtrar trabalhos relacionados da literatura. Pode-se facilmente resumir o
estado da literatura, abordando cada trabalho individualmente, visto que poucos trabalhos na
abordam o tema discutido. O problema da codificação de inteiros, por outro lado, está em um
nível diferente. Esse é um problema clássico em Ciência da Computação e Matemática, e não
pretende-se fazer um levantamento e revisão deste tema no escopo de desse trabalho.
A pesquisa será conduzida investigando a literatura e enumerando propriedades distintas que são
interessantes para ABH. Serão avaliados principalmente os ganhos de compensação do uso de
diferentes algoritmos de codificação em relação ao número de funções hash que são executadas
no esquema de assinatura. Ou seja, o número médio ou exato de funções hash executadas
para assinar ou verificar uma mensagem ao usar funções de codificação distintas será a principal
métrica de avaliação. Para fornecer comparação justa, serão considerados tamanho de assinatura
semelhante ou igual para cada esquema proposto e no mesmo nível de segurança apresentado
pelo estado da arte.
Finalmente, a base matemática necessária para construir adequadamente as propostas é forne-
cida. Para validar o trabalho, são detalhadas estimativas e/ou resultados exatos dos custos e
que podem ser usados para comparação com outros métodos. Além disso, serão conduzidos
experimentos que comparam o tempo de execução das propostas da tese com as alternativas de
codificação em relação a trabalhos anteriores, afim de abordar com mais detalhe a questão da
eficiência.



Principais Contribuições

As principais contribuições deste trabalho estão relacionadas diretamente à ABH e publicadas
em (PERIN et al., 2018) e (PERIN et al., 2021). O primeiro trabalho é o resultado de um
estudo preliminar de ABH. Analisa-se como mensagens afetam o número de operações de hash
avaliadas nas etapas de assinatura e verificação do esquema Wots e, em seguida, é proposto
uma técnica para aleatorizar essa mensagem, de modo que a assinatura ou a verificação (não
ambos) possam ser realizadas com menos iterações de hash.
O último é o resultado do objetivo principal desta tese. Observa-se propriedades interessantes
em uma função de codificação de soma constante e proposta em (CRUZ; YATANI; KAJI, 2016;
KAJI; CRUZ; YATANI, 2018). O esquema é atualizado para que seu nível de segurança fique
no mesmo patamar que o esquema Winternitz One Time Signature Plus (Wots+), para o qual
uma prova completa e formal é dada. Além disso, são propostas diversas melhorias relacionadas
à função de codificação, um algoritmo determinístico e parâmetros que apresentam melhor
desempenho geral, diminuindo o custo de geração de chaves do nosso esquema.

Outras contribuições

Durante o curso de desenvolvimento deste trabalho, também foram abordados outras temas de
pesquisa acadêmicas. Embora esses temas não estejam exatamente alinhados com o escopo
desta tese, segue um breve resumo desses trabalhos. A menção destas contribuições é relevante
para transmitir as atividades de colaboração com pesquisadores renomados e internacionais em
assuntos multidisciplinares.
É interessante compreender as permutações geradas pela avaliação da função 68 (mod ?), para
8 = 1, . . . ? − 1, com ? primo e onde 6 é um elemento primitivo de um grupo multiplicativo
inteiros módulo ?. Em outras palavras, 68 gera o conjunto {1, . . . , ?−1} e escolhas distintas de
6 para um ? fixo produzem permutações distintas do mesmo conjunto.
Este é um problema interessante, dado que a exponenciação de elementos primitivos de grupos
multiplicativos de ordem prima desempenha um papel importante em primitivas criptográficas
como, por exemplo, no esquema de assinatura ElGamal (ELGAMAL, 1985). Foram estudadas
e publicadas evidências (NIEHUES et al., 2020) de que essa função gera permutações que
preservam propriedades esperadas de permutações aleatórias.
Além disso, deu-se continuidade a este estudo através de uma abordagem diferente, produzindo
sequências a partir dessas permutações. São chamadas de Sequências ElGamal (PANARIO;
PERIN; STEVENS, N.D.). A sequência é bastante simples, para alguma permutação c = {c8 : 68

(mod ?), 1 ≤ 8 < ?}, denota-se uma Sequência ElGamal para algum E | ?−1 como f = {f8 : c8
(mod E)}.
Neste artigo, são detalhados limites teóricos e experimentais do número de ocorreências con-
secutivas e tuplas em sequências ElGamal. Também são detalhados os limites para sequências
geradas a partir de uma permutação aleatória, seguido por uma discussão entre a relação entre
ambos.

Resultados e Considerações Finais

Nesta tese, foram revisadas as alternativas de codificação que foram propostas para substituir
a codificação base-w originalmente utilizada em Wots e sua variante estado da arte Wots+.
Propôs-se duas contribuições principais, a saber Wots-br e Wots-cs+. O primeiro é uma
composição de duas técnicas simples que produzem resultados notáveis para melhorar o tempo
de execução de verificação de assinatura com uma compensação em que o tempo de execução
de geração de assinatura é aumentado. O segundo é uma melhoria da alternativa de codificação
de soma constante, que minimiza o custo de geração de chave para esquemas baseados em



Winternitz, reduzindo assim a assinatura e verificação também dos tempos de execução.
Para Wots-br, foi apresentado um preenchimento (padding) na codificação base-w que permite
uma verificação mais rápida para Wots+ e, consequentemente, Xmss. Esta proposta não é
compatível com RFC 8391, mas espera-se que seja considerada em caso de futuras revisões de
padrões de assinatura baseados em hash. Além disso, uma técnica para aleatorizar a mensagem a
ser assinada que pode aumentar consideravelmente o desempenho da verificação de assinatura foi
proposta. Esta técnica foi posteriormente adaptada para ser compatível com RFC 8391 e mostrou
reduzir o custo médio de verificação de uma única assinatura Wots+ em até 55,5% (BOS et
al., 2020, Tabela 7.2). Os mesmos autores utilizam nossa contribuição, juntamente com outras
modificações presentes na literatura, para atingir a verificação de Xmss do tempo de execução
em dispositivos Cortex-M4 na metade do tempo médio esperado.
Para o caso de Wots-cs+, foram apresentados novos algoritmos de codificação determinística
para a variante de soma constante do esquema de assinatura de tempo único de Winternitz,
Wots-cs. Esses métodos reduziram os custos associados à função de codificação, empregando
técnicas distintas, como programação dinâmica e busca binária. Não apenas alcançou-se uma
codificação mais rápida do que a alternativa probabilística da literatura, mas também foram
expandidos os conjuntos de parâmetros que podem ser usados com Wots-cs+, visando reduzir
o custo de geração de chaves para assinaturas baseadas em hash.
Como resultado, a abordagem de soma constante permite um trade-off flexível entre os custos de
geração de chave, geração e verificação de assinatura, aceitando ambas as estratégias de seleção
de parâmetros: MinVer ou MinGen. Essa abordagem permite reduzir o número de aplicações
da função de encadeamento para a etapa de geração de chaves, alcançando custos melhores
e mais competitivos aos obtidos com Wots+. Observa-se que reduzir o custo de geração de
chave é particularmente interessante, pois diminui o custo geral de todas as etapas relacionadas à
assinatura e não é possível por outros trabalhos relacionados à soma constante (CRUZ; YATANI;
KAJI, 2016; KAJI; CRUZ; YATANI, 2018).
Alternativamente, são propostos parâmetros distintos que podem ser usados com aplicações
específicas, reduzindo o custo de geração de assinatura em vez de verificação. Este é um cenário
relevante para muitos casos relacionados à assinatura de documentos eletrônicos. Dispositivos
de assinatura podem tirar vantagem do custo fixo, previsível e reduzido de assinatura sem ter
que lidar com o custo de codificação.
Outra contribuição significativa é o estudo abrangente das tuplas de soma constante. São
provadas propriedades interessantes e fundamentais para a análise de segurança do esquema. Sob
uma ampla gama de parâmetros aceitáveis, é provado que Wots-cs+ é Existentially Unforgeable
under a Chosen Message Attack (EU-CMA) desde que F_ seja uma família de função de direção
única, indetectável e resistente à segunda pré-imagem. Esta é uma grande melhoria sobre (KAJI;
CRUZ; YATANI, 2018), colocando Wots-cs+ no mesmo patamar que Wots+ para os mesmos
tamanhos de assinatura. Anteriormente, o esquema de segurança de soma constante dependia
de suposições mais fortes, como resistência à colisão.

Palavras-chave: Assinaturas baseadas em funções Hash. Winternitz. Criptografia. Criptogra-

fia Pós-Quântica. Análise Combinatória.





ABSTRACT

It is known that, for a given set of parameters, the overall complexity for generating and verifying
a signature is constant and independent of the document being signed, for the Winternitz one-
time signature scheme (Wots). These costs are due to the number of chained iterations of a
function 5 . However, the cost for signature generation alone is slightly different from signature
verification, and these depend on the message to be signed. We introduce a new variant for
Wots, which allows the adjustment of these costs, i.e. increase the overall signature generation
time in favor of faster verification or vice-versa. We decrease the total number of iterations of 5

for some parameters, reducing the cost of key generation as well. Our main contribution allows
one to choose a fixed cost with respect to the number of evaluations of 5 , unchanged for any
input message. Our experiments show that these proposals substantially impact Merkle Tree
based signature schemes, such as Xmss. Additionally, we give a formal proof that our scheme is
Existentially Unforgeable under a Chosen Message Attack (EU-CMA), assuming that 5 is one
way, second preimage resistant and undetectable function.

Keywords: Hash-based Signatures. Winternitz Signatures. Cryptography. Post-Quantum

Cryptography. Combinatorics.
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1 INTRODUCTION

Classical cryptography had reached its best with the development of rotor machines,

such as the famous enigma machine recently portrayed in the Hollywood motion picture “The

Imitation Game". Henceforth we have witnessed a shift of paradigm with the advent of personal

computers; modern cryptography was born. The Data Encryption Standard (DES), developed

in the early 70s, is a major milestone in the history of cryptography. However, and perhaps

more importantly, in 1976 Public Key Cryptography (PKC) was first proposed by Whitfield

Diffie and Martin Hellman in their paper entitled “New Directions in Cryptography" (DIFFIE;

HELLMAN, 1976), which changed the way we use cryptography over the years.

Perhaps this is a moment of history recurrence, as we are at the brink of witnessing

the creation of Quantum Computers. A computer with such power that threatens to break

the majority of the cryptosystems used by billions of users over the internet. There are many

unanswered questions in play: Will we ever have a practical quantum computer? If so, will it

have computational capability comparable to theoretical expectations? Or maybe, for those in

favor of conspiracy theories, what if a quantum computer already exists and we are not aware

of it? Such questions have attracted the attention of the international community, calling out for

solutions as we enter this new era of cryptography.

In this thesis, we study one of the oldest candidates of what we call today Post-Quantum

Cryptography (PQC). That is, cryptography that can be deployed in ordinary computers that we

have available today and considered safe against quantum adversaries. It is the case for Hash

Based Signatures (HBS), schemes with well-known security reductions and considered safe

against quantum computers. These schemes only use symmetric cryptography, more specifically

cryptographic hash functions, which have been studied for decades. In addition, high security

level hash function algorithms are believed to remain safe against quantum-computers. For this

reason, there is little concern regarding the maturity and security of the current HBS state of

the art. Nonetheless, it is not without its challenges, as HBS solves the signature problem in the

quantum scenario by introducing its own limitations.

A cornerstone of HBS is the Winternitz One Time Signature (Wots) scheme (MERKLE,

1989). As its name suggests, it has the capability of performing a single signature. However,

distinct instances of the same One Time Signature (OTS) scheme can be grouped together

into more complex schemes to achieve many-time signatures schemes; for example, the HBS

many-time signature schemes EXtended Merkle Signature Scheme (Xmss) and Leighton-Micali

Hash-Based Signatures (LMS), with public standards RFC 8391 (HÜLSING et al., 2018) and

RFC 8554 (MCGREW; CURCIO; FLUHRER, 2019), respectively. Unfortunately, these solu-

tions introduce a stateful condition, where the state of the private keys aggregated with a Merkle

Tree has to be maintained safely. Hence, it followed from National Institute of Standards and

Technology (NIST) that the use of stateful HBS standards is only to be considered for certain

applications where the private key state integrity can be assured (COOPER et al., 2020). Finally,

a more complex HBS scheme that removes the stateful constraint has been submitted to the on-
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going NIST PQC standardization “competition1” (ALAGIC et al., 2020). This scheme is known

as Sphincs+ (BERNSTEIN et al., 2019; AUMASSON et al., 2020) and is CONSIDERED as

alternative candidate in the third round of the submission process.

An interesting aspect of HBS is how the bit distribution of the message to be signed

can impact the performance of some schemes. For example, the number of hash operations

performed in the signature and verification steps of Wots is directly determined by the input

message. During these steps, the scheme uses an encoding algorithm that outputs a C-tuple

of elements that uniquely represents the message. The elements of this tuple are then used to

determine the number of hash operations in each step. This fact has been explored by (STEIN-

WANDT; VILLÁNYI, 2008) and more recently by (CRUZ; YATANI; KAJI, 2016; KAJI;

CRUZ; YATANI, 2018) and (ROH; JUNG; KWON, 2018). These works propose different

ways to encode a message such that either the signing process or the verification process can

be performed using fewer hash functions. By doing so, other challenges arise. In general, we

expect that by reducing the number of hash functions performed in the verification step entails

that more hash functions have to be performed in the signature step, and vice versa. Indeed,

it is the case that all the related work in the literature propose such trade-off in addition to an

increased overall cost to the entire scheme. That is, key generation is also affected, and thus

more hash operations are required to be performed in this step as well.

In this thesis, we raise the question: can we explore alternative encoding functions

that do not increase key generation cost and allow such a trade-off at the same time? Are there

encoding algorithms that may reduce the key generation cost, that is, reduce the entire cost of

the scheme by decreasing the number of hash functions required for generating keys, signing

and verifying signatures at the same time? Can we do all this efficiently? Finally, and perhaps

the most important aspect of all, can we do this while preserving security, compared to the state

of the art schemes in the literature?

OBJECTIVES

The Winternitz signature scheme utilizes a so called F parameter that introduces a

clear trade-off between performance and signature length. However, the performance related

to the number of hash functions required to produce or verify a Winternitz signature is also

impacted by the message to be signed. The main goal of this thesis is to extend our knowledge

about how do messages impact the performance of the Winternitz scheme and how we can use

this to our advantage for different application scenarios. We evaluate different types of message

encodings that can be used with the Winternitz scheme and how they affect it. As a result,

we aim to develop and improve new techniques that may be used to lower the cost associated

with the signature generation, the signature verification and the key generation of the Wots

based scheme. Our goal is to propose efficient algorithms with such properties, evaluate their

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
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performance in practice and prove that the security of our scheme conforms to the latest state of

the art.

MOTIVATION

Recently, NIST has published a call for candidates for post-quantum cryptography

algorithm standards (NIST, 2016) . Furthermore, we have seen that chip manufactures have

already achieved great advances in what could be the next step for the revolution of informatics,

with Quantum Computers. Meanwhile, post-quantum cryptography is still in its early years,

where security discussions and performance improvements are still constantly debated in public

forums. While the international community is interested, it seems to be the right moment to

contribute with a topic of such scale.

Considering the current state of PQC, the HBS candidates are possibly the most

prominent alternatives when considering the immediate deployment of post-quantum signa-

ture schemes in the real world. While the maturity and security of these schemes are already

well understood, we wish to push towards new alternatives that have not yet been thoroughly

analyzed.

LIMITATIONS

There are plenty of alternatives to HBS schemes in the current state of the literature.

Furthermore, it appears that a common use case for OTS schemes is their aggregation in Merkle

Trees, to construct many-time signature schemes, under the same public key. Other interesting

applications that are commonly referred to in the ongoing NIST standardization process are

implementations for constrained devices, such as the Cortex-M4.

Therefore, we propose a narrowing of the scope, to be able to evaluate our contributions

within this work. In this thesis, we address the encoding algorithms for Wots based schemes.

We consider its applications with experiments using Xmss reference code, which fits well to

demonstrate the capability of our contributions, but do not provide results for other many-time

signature schemes.

We address the performance of our algorithms and propose distinct techniques to

reduce their running time. However, we do not discuss code optimizations, as we believe

that our benchmark already demonstrates the limitations that we put forward for future works.

Additionally, as we will see further on, there are numerous challenges to implement some of our

contributions in embedded devices. Hence, while we do not discuss means to implement our

algorithms in such platforms, we discuss how to get around these limitations for a specific set

of application scenarios.
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RESEARCH METHOD

For this thesis, we do not implement qualitative or quantitative research methods to

gather and filter related works. We have found that very few works in the literature address the

problem that we aim to investigate. Hence, we can easily summarize the state of the literature

by addressing each work individually. The problem of integer encoding, on the other hand, is

on a different level as it is a classical problem in Computer Science and Mathematics. However,

we do not aim to survey the integer encoding problem in the scope of our work.

We will conduct our research by investigating the literature and enumerating distinct

properties that are interesting for HBS. Mainly, we evaluate the trade-off gains of using different

encoding algorithms with respect to the number of hash functions that are called in the signature

scheme. Namely, we compare the average or the exact number of hash functions called for

signing or verifying a message using distinct encoding functions. To provide a fair evaluation,

we analyze these results considering similar or equal signature sizes for each alternative scheme,

at the same security level.

Finally, we provide the necessary mathematical background to properly construct our

proposals. To validate our work, we give estimates and/or exact results that can be used to

compare with other methods. Furthermore, to address efficiency, we will conduct experiments

that benchmark running time of our encoding alternative against previous works.

ACADEMIC CONTRIBUTIONS

In this thesis ,we explain our main contributions related to HBS, published in (PERIN

et al., 2018) and (PERIN et al., 2021). The former is the result of a preliminary study of HBS.

We analyze how messages affect the number of hash operations evaluated in the signature and

verification steps of Wots, then propose a technique to randomize this message, such that either

signing or verifying can be performed with fewer hash iterations. The latter is the result of

our main goal of this thesis. We found interesting properties in an encoding function called

constant-sum as proposed by (CRUZ; YATANI; KAJI, 2016; KAJI; CRUZ; YATANI, 2018).

We updated the scheme so that its security level stands on the same ground as Winternitz One

Time Signature Plus (Wots+), for which we give a full and formal proof. In addition, we

propose several improvements related to the encoding function, a deterministic algorithm and

parameters that perform better overall, by decreasing the cost of key generation of our scheme.

Relevant mentions

During the development of this thesis, we have also engaged in other academic pursuits.

Although the topic is not exactly aligned with the scope of this work, we include a summary of

these contributions. We believe this to be relevant to convey our collaboration with distinguished

and international researchers in multidisciplinary goals.
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We are interested in understanding permutations generated by the evaluation of 68

(mod ?), for 8 = 1, . . . ? − 1, ? prime and where 6 is a primitive element of a multiplicative

group of integers modulo ?. Namely, 68 spans the set {1, . . . , ?−1} and distinct choices of 6 for

a fixed ? produce distinct permutation sets.

This is an interesting problem as exponentiation of primitive elements of multiplicative

groups of prime order plays a major role in several cryptographic primitives. This is the case, for

example, in the ElGamal Signature scheme (ELGAMAL, 1985). We have studied and published

evidence (NIEHUES et al., 2020) that these permutations preserve properties expected from

random permutations.

Moreover, we continue this study with a different approach, producing E-ary sequences

from these permutations. We call these sequences ElGamal Sequences (PANARIO; PERIN;

STEVENS, N.D.). The sequence is quite simple, for some permutation c = {c8 : 68 (mod ?), 1 ≤
8 < ?}, we denote an ElGamal sequence for some E | ?−1 as f = {f8 : c8 (mod E)}.

Example. Let 6 = 2 and ? = 5, then we have that c = (2,4,1,3). Since 2 | 5− 1, we have that

f = (0,0,1,1) for E = 2.

In this paper, we give theoretical and experimental bounds of the number of runs and

tuples of ElGamal Sequences in line with Golomb randomness postulates (GOLOMB; GONG,

2005). We also give bounds to sequences generated from random permutations and compare

them to ElGamal Sequences.

ORGANIZATION

In Chapter 2, we give a brief introduction to basic concepts that are essential for most of

our definitions and formal proofs. In Chapter 3, we explain the required background of HBS and

OTS, describing Wots+ scheme and the Xmss scheme. In Chapter 4, we review the alternative

encoding algorithms that are used with Wots in the literature. In Chapter 5 and Chapter 6, we

present our main contributions as they are published in the literature. We keep the original work

as published, with minor modifications to preserve the same notation throughout the thesis,

and avoid repetition of background definitions. We conclude in Chapter 7 with final remarks,

providing a discussion of the applicability of our work and our final thoughts considering both

contributions.
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2 PRELIMINARIES

2.1 FORMAL DEFINITIONS AND NOTATION

In this section, we introduce security concepts and notations that are required throughout

this thesis. There is plenty of literature available for references, but we have opted to follow

material that is publicly available and widely accepted by the international community, such as

the work from Goldwasser & Bellare (2008) and Boneh & Shoup (2020).

2.1.1 General Notation

Definition 2.1.1 (Negligible ). A function E is negligible if for every constant 2 ≥ 0, there exists

an integer :2 such that E(:) < :−2 for all : ≥ :2. For short we write “E is negligible in :” as

negl(:).

Definition 2.1.2 (Little-o). For functions 5 , 6 if 0 ≤ 5 (=) < 2 · 6(=) for all 2 > 0 and for all

= > : > 0, then we say that 5 (=) = >(6(=)). The notation reads as “ 5 (=) is little-oh of 6(=)”
or “ 5 (=) is ultimately smaller than 6(=)”.

Definition 2.1.3 (Advantage). Given two distributions X and Y, the advantage AdvX,Y (A) of

an adversary A in distinguishing between these two distributions is defined as:

AdvX,Y (A) = |Pr[A(X) = 1] −Pr[A(Y) = 1] |.

For simplicity, we consider thatA is a probabilistic polynomial time algorithm. Infor-

mally, the advantage is a measurement of how well can A distinguish X from Y, when given

values of both distributions. It is commonly used in security proofs, where the goal is to show

that A has negligible advantage distinguishing two distributions.

Definition 2.1.4 (Statistical distance). Suppose X and Y are probability distributions on a

finite set R. Then their statistical distance is defined as

Δ(X,Y) = 1

2

∑
U∈R
|Pr[U = X] −Pr[U =Y]|.

We use the statistical distance of two distributions as another measurement of similarity

of X andY. We are interested in showing that for some set R of size : then Δ(X,Y) = negl(:).
That is, the distributions X and Y are statistically indistinguishable.

We use the notation D←$ {0,1}ℓ to denote sampling a ℓ-bit string uniformly at random.

We also use the notationU_ to denote the uniform distribution over _-bit strings or the notation

D ∼U_ to denote that D follows theU_ distribution. The repeated evaluation of a function 5 on

some input G is recursively defined as 5 0(G) = G and 5 8 (G) = 5 ( 5 8−1(G)) for any non-negative

integer 8. In Table 1, we summarize some notations that we frequently use throughout the
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Table 1 – Common notation

" Input message to be signed
ℓ Length of the input message (in number of bits)
M A message space
_ Security parameter
←$ Sampling uniformly at random
?
= Compare and return if both sides are equal
‖G‖ Denotes the norm of G
G | |H The concatenation of two strings G and H

H A cryptographic hash function.
Hℓ A cryptographic hash function with output length ℓ.
|S| The cardinality of a set of integers S
min(S) The minimum element of a set of integers S
max(S) The maximum element of a set of integers S

Source: The author.

thesis. Namely, unless specified otherwise, the following notation should always serve the same

purpose.

Let " = (<1, . . . ,<ℓ) be a binary string of length ℓ. We denote "0:1, for 0, 1 non-

negative integers where 0 ≤ 1, as the sub-string (<0, . . . ,<1). In the particular case where 1 = ℓ,

we omit 1 by simply stating "0:. In the case 0 > 1, then "0:1 is an empty string. Lastly, we

use the vector notation such as r = (A1, . . . , Aℓ) with bold fonts to properly distinguish the vector

from its elements.

2.1.2 Hash function families

In this section, we closely follow (HÜLSING, 2013a; HÜLSING, 2013b; ROGAWAY;

SHRIMPTON, 2004) due to our security proof being strongly aligned with these works.

Let F_ : { 5: :M → {0,1}_ | : ∈ K_} be a family of functions with message space

M = {0,1}ℓ and key space K_ = {0,1}_. For simplicity, we always consider that sampling

:←$K_ and evaluating functions from F_ can be done efficiently in polynomial time. Moreover,

if ℓ > _ we call F_ a hash function family. Then we can define the success probability of an

adversary A against the One-Wayness (OW) of F_ as:

SuccOW
F_ (A) = Pr[:←$K_, G←$M, H← 5: (G), G′←$A(:, H) : H = 5: (G′)],

against the Second preimage resistance (SPR) of F_ as:

SuccSPR
F_ (A) = Pr[:←$K_, G←$M, G′←A(:, G) : (G ≠ G′) ∧ ( 5: (G) = 5: (G′))],

and against the Collision Resistance (COL) of F_ as:

SuccCOL
F_ (A) = Pr[:←$K_, (G, G′) ← A(:) : (G ≠ G′) ∧ ( 5: (G) = 5: (G′))] .
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Now let InSec denote the maximum success probability of all possible probabilistic

adversariesA running in time less than or equal to I. We define one-wayness, second preimage

resistance and collision resistance as follows.

Definition 2.1.5 (OW). Let _ be the security parameter, then F_ is one-way if

InSecOW(F_; I) = max
A
(SuccOW

F_ (A)) = negl(_).

Definition 2.1.6 (SPR). Let _ be the security parameter, then F_ is second preimage resistant if

InSecSPR(F_; I) = max
A
(SuccSPR

F_ (A)) = negl(_).

Definition 2.1.7 (COL). Let _ be the security parameter, then F_ is collision resistant if

InSecCOL(F_; I) = max
A
(SuccCOL

F_ (A)) = negl(_).

In short, we assume that A always has access to 5: . In the case of OW, the adversary

obtains H and outputs a message G′ such that H = 5: (G′). This message G′ may be equal to the

original value used to obtain H or a different one, either case break OW. In the case that A has

access to the original message G, then SPR is related to the hardness of finding G′ ≠ G such that

5: (G′) = H. Lastly, for COL, the adversary has the capability of choosing both G and G′ such that

5: (G) = 5: (G′) and G ≠ G′. We say that COL is a stronger security assumption for the function

family F_ due to the birthday paradox. Namely, it is usually easier forA to break COL than it is

for OW or SPR. We remark that COL implies SPR which consequently implies OW, however,

the reciprocal does not hold (BONEH; SHOUP, 2020, Definition 8.6).

Now we define the undetectability (UD) property of F_. For distributions over {0,1}_×
K_, we let a sample (D, :) from distribution DUD,U be obtained by choosing D←$U_ and

:←$K_ uniformly at random. Otherwise, we let a sample (D, :) be obtained from distribution

DUD,F by letting D as the evaluation of 5: on a uniformly distributed _-bit string, where :←$K_.

In other words, by allowing a slight abuse of notation, we write D← 5: (U_). From this, we

define the distinguishing advantage of an adversary, followed by the undetectability of F_.

Definition 2.1.8 (UD). Let _ be the security parameter, then F_ is undetectable if

InSecUD(F_; I) = max
A
(AdvDUD,U ,DUD,F (A)) = negl(_).

The existence of function families with such properties is still an open problem. How-

ever, it is known that SPR hash function families can be obtained with OW functions, and that

OW implies the existence of secure signature schemes (ROMPEL, 1990). A similar result exists

for UD showing that the existence of OW is equivalent to the existence of pseudorandom bit

generator (HÅSTAD et al., 1999). Therefore, following the rationale in (HÜLSING, 2013a), it

seems reasonable to assume that one can achieve SPR, OW and UD. Similar implications are

not known for COL hash function families, so their existence is a stronger assumption.
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2.1.3 Digital Signatures Schemes

In one of the contributions of our work, we describe and propose a one-time signature

scheme and prove its security. Hence, we aim to give the necessary definitions that we follow

for better description and understanding of the content. First, we give the classic definition of

signature schemes.

Definition 2.1.9 ((HÜLSING, 2013b, p. 3)). LetM be the message space. A digital signature

scheme S = (Gen,Sig,Ver) is a triple of probabilistic polynomial time algorithms:

Gen (1_). On input of a security parameter 1_ outputs a secret key sk and public key pk;

Sig (", sk). Outputs a signature 2 under sk for the message " ∈M;

Ver (",f,pk). Outputs 1 if and only if 2 is a valid signature on " under pk;

such that

∀(pk, sk) ← Gen(1_),∀(" ∈M) : Ver(pk,Sig(sk, "), ") = 1.

Now we introduce the definition by Boneh et al. (BONEH; SHEN; WATERS, 2006)

of a digital signature scheme being existentially unforgeable under an adaptive chosen-message

attack (EU-CMA). This is based on a game with three phases, given below.

Setup. The challenger runs Gen(1_), obtains (sk,pk), provides the adversary A with pk and

keeps sk to itself.

Query. The adversaryA submits signature queries of messages "1, . . . , "@ of its choice to the

challenger, who replies with 21 = Sig("1, sk), . . . ,2@ = Sig("@, sk). These queries can

be made adaptively by A.

Output. The adversary outputs a pair ("′,f′) and wins the game if Ver("′,f′,pk) is true

and "′ ∉ {"1, . . . , "@}.

We observe thatA is always considered to be a probabilistic polynomial time algorithm.

The formal definition of EU-CMA is given below.

Definition 2.1.10 (EU-CMA (BONEH; SHEN; WATERS, 2006, Def. 1)). A signature scheme is

(I, @, n)-existentially unforgeable under an adaptive chosen-message attack if no I-time adversary

A making at most @ signature queries has advantage at least n in the above game.

Remark. In Section 6.5.2 we give a formal proof of our scheme using Definition 2.1.10. Since

the main object of this thesis are one-time signature schemes, we use @ = 1.
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2.2 SECURITY LEVELS AND ATTACK BOUNDS

A common approach to evaluate security levels of signature schemes is the “_-bit

security” term, compatible with the security evaluation of symmetric cryptosystems such as

the Advanced Encryption Standard (AES). For example, this has been a requirement for all

submissions to the ongoing PQC standardization process held by NIST, to evaluate classical

and quantum security (NIST, 2016). In this section, we describe the security level of F_ with

respect to OW, SPR and UD properties.

According to Lenstra (2004), we say that a symmetric cryptosystem with _-bit keys has

_-bit security if it does not allow a generic attack to be faster than an exhaustive key search of

2_ keys — or 2_−1 in the average case. Then, by following (HÜLSING, 2013b) and (DODS;

SMART; STAM, 2005), we can assume for classical generic attacks

InSecOW(F_; I) = InSecSPR(F_; I) = InSecUD(F_; I) = I

2_
.

Regarding the recent scenario and motivation of our work, we also give bounds for

quantum attacks against F_. For a conservative approach, we consider that the security levels of

symmetric cryptosystems are reduced from _ bits to _/2 bits, due to Grover (1996). However,

as it turns out, it seems that Grover’s quantum attack fails to achieve theory in practice. For

example, the latest security bounds for AES with 256-bit classical security places it at approxi-

mately 163-bit security level against quantum adversaries (GHEORGHIU; MOSCA, 2021). For

cryptographic hash functions, the same research claims that a lower bound for the security level

of Secure Hash Algorithm 2 (SHA-2) and Secure Hash Algorithm 3 (SHA-3) of 256-bit output

length stands at approximately 165 bits. The point of interest in such a claim is that HBS is

commonly instantiated with these hash functions. Nonetheless, for the sake of comparability,

we will use the conservative approach and assume that

InSecOW(F_; I) = InSecSPR(F_; I) = InSecUD(F_; I) = I

2
_
2

versus quantum adversaries. With this, we hope to avoid any misinterpretation claiming that we

present schemes with higher security levels than those available in the literature.
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3 HASH BASED SIGNATURES

3.1 ONE-TIME SIGNATURE SCHEMES

As the main contribution of this thesis is a novel hash-based OTS, we give a brief

introduction to HBS in this Chapter. The main reason why HBS has become so important

recently, is due to the common belief that such schemes can be deployed safely, in a scenario

where a quantum computer attack against current cryptographic protocols becomes practical.

As we have seen previously, symmetric cryptosystems are expected to remain secure, even in

the aftermath of a full fledged quantum computer. However, as this possibility only gained

momentum throughout the last decade, an early adoption of such schemes was not a common

concern among cryptographers and the international communities.

The schemes detailed in this chapter contain several limitations that are still being

worked and improved in the literature. To name a few, most HBS schemes can usually be used

one time and need to be combined by using Merkle Trees to allow additional signatures to

be verified against a common public key. Furthermore, the introduction of a Merkle Tree to

aggregate OTS public keys introduces a new challenge, which is that of the statefulness of the

resulting set of secret keys. In other words, the security of the scheme also relies on mechanisms

that can guarantee that the state of the key is preserved: no two distinct signatures may be

published under the same secret key.

We will not tackle the problem of stateful and stateless schemes in this thesis. Our

goal lies within the encoding algorithms that are used to sign messages. In the following, we

explain the Lamport OTS as an introductory contextualization to the more advanced schemes.

Following up, we give Wots+, which will be the building block for our main contribution. We

finalize by giving a brief introduction to Merkle Signature Scheme (MSS) and variants, as it will

be useful to understand the main case of application scenarios and the performance experiments

we conduct further on.

3.1.1 Lamport one-time signature scheme

In 1979, Leslie Lamport designed a signature scheme that today is widely known as

Lamport Signatures (LAMPORT, 1979). This scheme is the fundamental construction used by

many modern HBS schemes. To define the scheme, we start by letting 5 = 5: ∈ F_ denote any

one-way function as defined in the previous section. Let " be a message of length ℓ, namely

" ∈ {0,1}ℓ, then the scheme is defined as follows:

Gen (1_). Pick at random 2ℓ strings of _ bits to create the secret key

sk = (sk1,0, sk1,1, . . . , skℓ,0, skℓ,1).
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The public key is obtained by applying 5 to each element of the secret key:

pk = (pk1,0,pk1,1, . . . ,pkℓ,0,pkℓ,0) = ( 5 (sk1,0), 5 (sk1,1), . . . , 5 (skℓ,0), 5 (skℓ,0)).

Sig (", sk). A signature for a message " = (<1, . . .<ℓ) ∈ {0,1}ℓ consists making public the

elements of the private key, corresponding to the position and binary value of the input

message:

2 = (f1, . . . ,fℓ) = (sk1,<1
, . . . skℓ,<ℓ

).

Ver (",2,pk). A signature 2 is verified by comparing the evaluation using 5 of each element

of the signature with the corresponding element of the public key:

( 5 (f1), . . . , 5 (fℓ)
?
= (pk1,<1

, . . . ,pkℓ,<ℓ
).

This short description gives an idea of how the Lamport OTS scheme is a quite

simple construction. Indeed, the scheme can be proven Existentially Unforgeable under a

Chosen Message Attack (EU-CMA) solely on the assumption that 5 is OW (BERNSTEIN;

BUCHMANN; DAHMEN, 2008).

3.1.2 Winternitz one-time signature scheme

The Winternitz One-Time Signature scheme, named hereon by its popular acronym

Wots, is a specialization of Lamport Signatures (LAMPORT, 1979). We can see the latter

as signing individual bits of a binary input string, whereas the former signs multiple bits at a

time. As we will see in the coming definitions, a clear advantage of this is the reduced signature

length. Moreover, to avoid repetition, we will only give the definition of the state of the art

variant Wots+. The main difference of this scheme is the introduction of a random vector r

in the chaining function, which reduces the original security assumption on 5: from collision

resistance to second preimage resistance (HÜLSING, 2013b; BUCHMANN et al., 2011).

First, consider the following definitions that we use throughout the paper. We denote

F as the Winternitz parameter, where F and ℓ are positive non-zero integers with 1 ≤ F ≤ 2ℓ.

Let _ be the security parameter and message spaceM = {0,1}ℓ, then we have

C1 =

⌈
ℓ

log2F

⌉
, C2 =

⌊
log2 C1(F−1)

log2F

⌋
+1

and C = C1 + C2.

Definition 3.1.1. Let 28
:
(G,r) be denoted as the Winternitz chaining function, where 8 ∈ N,

: ∈ K_, 5: ∈ F_, G ∈ {0,1}_ and r = (A1, . . . , A 9 ) ∈ {0,1}_× 9 with 9 ≥ 8. This function is defined

recursively as

28: (G,r) =


G if 8 = 0,

5: (28−1
:
(G,r) ⊕ A8) otherwise.
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Remark. As a common way of instantiating the Winternitz chaining function is by letting 5: be

a cryptographic hash function (such as SHA-2 or SHA-3), we sometimes refer to the Winternitz

chaining function as hash chains.

With these definitions, we can now define Wots+ scheme:

Gen (1_). Sample C strings of _ bits uniformly at random to compose the secret key

sk = (sk1, . . . , skC) = (G1, . . . , GC).

By choosing :←$K_ and r = (A1, . . . , AF−1) ←$ {0,1}_×F−1, compute the public key

pk = (pk0,pk1, . . . ,pkC) =
(
(r, :), 2F−1

: (G1,r), . . . , 2F−1
: (GC ,r)

)
.

Sig (", sk). Take an ℓ-bit message " ∈ M and represent it as a C1-tuple of base-F words,

i.e., B1 = (11, . . . , 1C1). The generic version of this encoding is referred to as base-w

in RFC 8391 (HÜLSING et al., 2018) and described in Section 3.1.3. A checksum

is computed by considering the integer representation of each element in B1 as Q =∑C1
9=1
(F−1− 1 9 ). Finally, applying base-w to Q analogously yields B2 = (1C1+1, . . . , 1C).

Let B = (11, . . . , 1C), the concatenated base-w representation of " and Q. The signature

is generated as

2 = (f1, . . . ,fC)
= (211

:
(G1,r), . . . , 21C: (GC ,r)).

Ver (",2,pk). Obtain the C-tuple B as described in Sig. The correctness of 2 is asserted by

evaluating the remaining iterations over signature blocks and comparing the results with

the public key:

pk
?
= ((r, :), 2F−1−11

:
(f1,r11+1:), . . . , 2F−1−1C

:
(fC ,r1C+1:)).

Figure 1 illustrates Wots+ and how the keys are obtained through the hash chains. We

also give a short example to demonstrate how the indexing of r is used to produce the correct

public key from each corresponding signature element.

Example. Let F = 8 and consider the signature and verification of a single position 8 where

18 = 3 from B, for the sake of the example. Then sign with the sk8 = G by evaluating f8 = 23
:
(G,r)

and verify the signature by asserting that pk8
?
= 28−1−3

:
(f8,r3+1:) = 24

:
(f8,r4:). Observe that the

notation of the sub-vector of r guarantees that 2: starts at the correct position of r, completing

the entire hash chain, and thus ensuring the signature verification.

r = (A1, A2, A3︸   ︷︷   ︸
Sig

, A4, A5, A6, A7︸       ︷︷       ︸
Ver

).
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Figure 1 – Example of Wots+ with ℓ = 10 and F = 4.

2 01 3 2 1 3ℬ:

10 0001 11 10𝛭: 01 11Q:

𝛔:

𝐬𝐤:

p𝐤:

sk sksk sk sk sksk

pk pkpk pk pk pkpk

t

w
Source: The author.

There are significant improvements achieved by Wots+ over Lamport signatures. The

first one is that the public key can be compacted into a short digest, using what is referred to

in the literature as an !-tree. In summary, it consists of a tree-like structure that hashes pairs

of public key elements with bitmasks, producing a short unique output. The verification of

the signature can be performed comparing the root of the !-tree obtained from the public key

obtained in Ver. One can verify that this is not possible in the case of Lamport signatures,

as we need all elements of the public key to be able to compare to the signature. Another

interesting characteristic is the ability to significantly decrease the size of the signature ‖2‖ = C_

by selecting larger F. This comes as a trade-off choice, since the number of iterations of the

Winternitz chaining function will increase with F. In Table 2, we show these values where ‖2‖
is the size of the signature in bytes and � (Gen) is the total cost of generating the public key

with C (F−1) evaluations of 5: . We discuss costs related to Sig and Ver in Section 5.4.

3.1.3 Domination Free Functions and the base-w encoding

In this thesis, we investigate encoding functions with certain properties. We find that

such functions are clearly defined in (BONEH; SHOUP, 2020) generically to be used with HBS.

Let I(C,=) = {(11, . . . , 1C) : 0 ≤ 18 ≤ =} denote the set of C-tuples of positive integers not larger

than =. We denote B = (11, . . . , 1C) ∈ I(C,=) with 0 ≤ 18 ≤ = for 8 = 1, . . . , C. Then we introduce

the following definition.
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Table 2 – Parameters of Wots+ for ℓ = _ ∈ {256,512}.

ℓ C F ‖2‖ in bytes � (Gen)

256
67 16 2144 1005

45 64 1440 2835

34 256 1088 8670

512
131 16 8384 1965

89 64 5696 5607

66 256 4224 16830

Source: The author.

Definition 3.1.2 ((BONEH; SHOUP, 2020, Def. 14.4)). Let B,B′ ∈ I(C,=) , then B′ dominates

B if 1′8 ≥ 18 for all 8 = 1, . . . , =. Moreover, we say that a function % :M→I(C,=) is domination

free if for all distinct messages ","′ ∈M the vector %("′) does not dominate %(").

Let = = F−1 and E : {0,1}ℓ→I(C,=) denote the base-w encoding of " and Q defined

in the previous section. To help visualize the properties of the base-w encoding, we first give an

example with small parameters containing all evaluations of E(") with " ∈ {0,1}ℓ in Table 3.

We observe that the checksum B2 guarantees that if any element of B1 is increased, then B1 is

decreased. With this, we give a short proof showing that E is domination free.

Table 3 – base-w encoding example for ℓ = 4 and F = 4, we get C1 = 2 and C2 = 2,

" E(") = (11, 12, 13, 14) " E(") = (11, 12, 13, 14)
0000 (0, 0, 1, 2) 1000 (2, 0, 1, 0)
0001 (0, 1, 1, 1) 1001 (2, 1, 0, 3)
0010 (0, 2, 1, 0) 1010 (2, 2, 0, 2)
0011 (0, 3, 0, 3) 1011 (2, 3, 0, 1)
0100 (1, 0, 1, 1) 1100 (3, 0, 0, 3)
0101 (1, 1, 1, 0) 1101 (3, 1, 0, 2)
0110 (1, 2, 0, 3) 1110 (3, 2, 0, 1)
0111 (1, 3, 0, 2) 1111 (3, 3, 0, 0)

Source: The author.

Lemma 3.1.1 ((BONEH; SHOUP, 2020, Lem. 14.5)). For every distinct ","′ ∈ {0,1}ℓ we

have that E(") does not dominate E("′).

Proof. Let B = E("), B′ = E("′) and assume B′ dominates B. Because E is injective, it

follows that B ≠ B′. Therefore, there exists an 8 where 1 ≤ 8 ≤ C such that 1′8 > 18. If 8 ≤ C1, we

must have that B′
2

does not dominate B2. Otherwise, if 8 > C1, we must have that B′
1

does not

dominate B1. �

Remark. The previous lemma and proof have been slightly modified from the original version,

to incorporate our distinct notation, but following the same rationale.
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3.1.4 Estimated costs of Winternitz signatures

Let the number of iterations of 5: for Gen be denoted as � (Gen) and analogously

for Sig and Ver. Evidently, � (Gen) = � (Sig) +� (Ver). In the case of Wots+, we have that

� (Gen) = C (F − 1). For now, we assume that all elements of B are uniformly distributed at

random, under the same assumption for "; that is, " ∼ Uℓ. This allows us to estimate costs,

on average, of � (Sig) ≈ � (Ver) ≈ 1
2� (Gen). Hence parameters for Wots+ from (HÜLSING

et al., 2018) are presented in Table 4, associated with their respective average costs. Moreover,

we give more information on the distribution of B1 and B2 in Chapter 5, providing evidence to

how these tuples behave in practice. We also give a more elaborate discussion in Section 5.4.

Table 4 – Number of iterations of 2: for usual parameters of Wots+.

< C F � (Gen) ≈ � (Sig) | � (Ver)

256

67 16 1005 502.5

45 64 2835 1417.5

34 256 8670 4335.0

512

131 16 1965 982.5

89 64 5607 2803.5

66 256 16830 8415.0

Source: The author.

Henceforth, we use these estimates to be able to compare the cost associated with the

base-w encoding to other encoding alternatives. For this, we always assume that " is uniform

and random and costs are taken on average, unless stated otherwise. Then, for simplicity, we

proceed by considering the interpretation of (signature, verification or generation) “costs” as the

definitions given in this subsection.

3.2 MERKLE TREE SIGNATURE SCHEMES

A clear limitation of OTS, in general, is that only one signature may be performed under

the same key pair. To avoid this issue, it was proposed by Ralph Merkle in (MERKLE, 1989)

that many OTS public keys could be aggregated into one single and short public key. This was

a revolutionary step towards many-time HBS schemes, solving the problem with distributing

numerous public keys efficiently. The goal of the tree structure is to set all leaf nodes as the

hash of the public keys of multiple instances of an OTS scheme. Then proceed by hashing

concatenated pairs of child nodes, recursively, until a single node is obtained. Namely, the root

node. Now, instead of returning public keys of the many underlying OTS, the scheme returns the

root of the tree as a unique public key to all OTS that generated the leaves; See Figure 2. This
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is mainly due to the signatures that link each layer of the tree being part of the finally generated

signature. In other words, to verify a signature with a multi-tree, the verifier must verify the

signature linking all the layers of the multi-tree, in addition to verifying the OTS signature of the

message in the leaf of the bottom tree. See Figure 4, where the authentication path is marked in

blue and the nodes computed by the verifier is marked in yellow.

Lastly, we remark that Sphincs+ (BERNSTEIN et al., 2019) is also an interesting vari-

ation and that it is currently under consideration in the NIST standardization process (ALAGIC

et al., 2020). This scheme is also a multi-tree scheme, similar to Xmss. However, the leaf nodes

use different HBS that allow the same key pair to be used more than once (few times). With

this, the main idea is that the leaf node used for the signature is determined pseudo-randomly.

The main goal is to eliminate the state condition inherent in HBS, allowing it to be deployed as

a general use signature scheme.

In this thesis, we have selected Xmss as a use case, due to its wide acceptability and

simplicity in the tree structure. The concept of multi-trees is discussed in our results, as we also

aim to reduce key generation. However, we do not include multi-tree benchmarks experiments,

since we believe that the increased complexity in the tree structure is unnecessary for the analysis

of our results.
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4 MESSAGE ENCODING FOR WINTERNITZ ONE-TIME SIGNATURES

In this chapter, we review three variants of the Wots scheme proposed in the literature,

with a different approach to compute the encoding of a message " into the C-tuple B repre-

sentation. First, we give an overview of the encoding techniques and how the C-tuple may be

obtained.

For the last variant, we include a more detailed description of the scheme. This is

mainly due to Chapter 6, where we give our main contribution that is heavily based on this

alternative. Finally, we give a brief discussion of the different methods here presented and our

decision to explore some of these contributions further.

4.1 RUN-LENGTH ENCODING WINTERNITZ

For an arbitrary sequence of binary digits, a run of 0’s is the occurrence of one or

multiple consecutive 0’s enclosed by 1’s. Similarly, runs of 1 are enclosed by 0’s. For example,

let ! be a function that returns all the run lengths of a binary string and ' be a function

that returns the number of runs of the binary string. Then we have that for " = 00011001,

! (") = (11, 12, 13, 14) = (3,2,2,1) and '(") = 4. However, we observe that the number of

runs of " depends on " . Take "′ = 01010101, then it is easy to see that '(") < '("′) = 8.

This approach has been explored by Steinwandt & VillÁnyi (2008) to build a variant

of Wots, which we call Wots-l. The main idea is to use ! as the encoding function and ' as

the checksum. To overcome the issue that '(") is not fixed, the scheme introduces two new

parameters '<8= and '<0G , to determine the minimum e maximum number of runs accepted in

" . Then we set = to be the largest run-length accepted in " ∈M∗ such that

M∗ = {" : " ∈ {0,1}ℓ ∧'<8= ≤ '(") ≤ '<0G ∧max(! (")) ≤ =}.

With this, we can build an encoding function E to obtain B ∈ I(C,=) by letting

E(") = (11, . . . , 1'(") , . . . , 1'<0G
, '("))

where C = '<0G + 1, (11, . . . , 1'(")) ← ! (") and 18 = 1 when '(") < 8 ≤ '<0G . The first

clear difference of this encoding function is that the message space M∗ does not contain all

possible binary strings in {0,1}_. Hence, we cannot sign any binary message. A second

drawback is that the encoding is not a domination free function, that is, any message "

and its complement "′ produce the same encoding. We can briefly show this with a short

example by letting " = 00011001 and "′ = 11100110. Then E is not domination free since

! (") = ! ("′) = (3,2,2,1) and '(") = '("′) = 4.

Perhaps the most notable limitation of this proposal comes with the output of ! and '.

Given that " behaves uniformly at random, we expect '(") = ℓ/2 and = = log2 ℓ. Therefore,

one cannot select parameters similar to the description of C and F for Wots+ in Section 3.1.2.

On the other hand, ! is expected to output tuples with small elements, according to Golomb’s
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postulates of randomness (HELLESETH, 2011; GOLOMB; GONG, 2005). That is, we can

expect '(")/2 runs to be of length 1, '(")/4 runs of length 2 and so on. This entails that

values in B are also expected to be small. Hence, the run-length encoding can be used to reduce

signature cost by decreasing the number of hash iterations required in the signature step of

Wots+, increasing the verification cost as a trade-off. However, (STEINWANDT; VILLÁNYI,

2008) propose to swap the number of iterations that are evaluated following from B in Sig with

Ver, so that the verification cost is decreased instead. That is, instead of computing signatures

as

2 = (f1, . . . ,fC) = (211

:
(G1,r), . . . , 21C: (GC ,r)).

we can compute them as

2 = (f1, . . . ,fC) = (2F−1−11

:
(G1,r), . . . , 2F−1−1C

:
(GC ,r)).

The same applies to the verification step. With this, authors claim 33% faster signature verifi-

cation if compared to the original base-w encoding algorithm with the same signature length.

To conclude, we observe an important technique that inspired one of our contributions in

Section 5. To avoid the limitation ofM∗, it is proposed to accept any input message " ∈ {0,1}ℓ

to the signature algorithm by the inclusion of a randomization step. The idea is to compute

"′ =Hℓ (" | |2CA), where 2CA is a counter variable. The randomization is repeated by iteratively

setting 2CA ← 2CA + 1 and recomputing "′ until "′ ∈ M∗ are satisfied, then proceed with the

encoding and signature generation.

4.2 NON-ADJACENT FORM ENCODING WINTERNITZ

We discuss in this section, the Non-Adjacent Form (NAF) encoding Winternitz vari-

ant (ROH; JUNG; KWON, 2018) called Wots-n.

Definition 4.2.1. Let " be an integer. A signed binary representation of " is an equation of

the form

<8 =

ℓ−1∑
8=0

<82
8,

where "8 ∈ {−1,0,1} for all 8. A signed binary representation (<ℓ−1, . . . ,<0) of an integer "

is said to be in NAF representation provided no two consecutive <8’s are nonzero.

The main idea proposed in this variant is a base-w encoding that takes into account

the signed digits of the NAF representation to build B, using the same checksum technique

as Wots+. We do not provide the encoding algorithm, as it is quite extensive. However, the

authors claim that the encoding with the checksum results in a domination free function similar to

base-w. We also remark that a specific algorithm to compute the NAF form of an input message

is not given, but as it turns out, there exist different alternatives in the literature (PRODINGER,

2000; OKEYA et al., 2004) that provide different methods to achieve this.
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The NAF representation of an integer is unique and similar to that of the binary

representation, where <8 ∈ {0,1}. The main advantage of using the NAF representation over

the binary representation for Wots based schemes is its low hamming weight. That is, the

number of nonzero digits in the NAF representation of an integer is small. For example, the

number 3 is represented as (0011) in binary and its NAF representation is (010−1). However

for the case of the number 7, its binary representation is (0111) while its NAF representation is

(100−1). Additionally, the largest integer represented with 4 digits in NAF form is 10 = (1010),
and therefore NAF form requires more digits to represent the same range than the binary

representation. Hence, the NAF representation can be used to exploit this low hamming

weight and produce C-tuples B with small elements. Then, following the Wots+ definition

in Section 3.1.2, signing messages requires less hash iterations. However, as a drawback, the

length of the hash chains in the proposed variant are longer than the ones obtained with the

original base-w. This entails that key generation requires more hash iterations than Wots+.

This is also reflected in the signature verification.

In (ROH; JUNG; KWON, 2018), authors achieve 8.5% reduction cost in � (Sig) at an

exchange of increased 60.9% increase to � (Ver). The results are presented with benchmark

and security proof under the same assumption as Wots+, which gives a fair comparison under

the same security levels and signature size. Lastly, expected costs as well as the benchmarks are

only given for F = 16, but authors claim that � (Sig) can be expected to be lower than Wots+

when ℓ ≥ 15log2F and F ≥ 4

Remark. Authors in (ROH; JUNG; KWON, 2018) proposed their scheme only considering

the case where signature cost is decreased. However, it seems that a similar approach to the

run-length encoding is viable. If the number of hash iterations in the signature and verification

steps are swapped, then the NAF representation could be used to decrease the number of hash

iterations in the verification step instead.

4.3 CONSTANT-SUM ENCODING WINTERNITZ

In this section, we review a proposal by Cruz, Kaji, and Yatani (CKY) (KAJI; CRUZ;

YATANI, 2018), which is a Wots variant with an alternative encoding to base-w. Similar to the

run-length variant, the number of signature blocks C is no longer determined by the parameter F

for this variant. Hence, to avoid confusion, we reintroduce the parameter = that serves a similar

purpose as the “chain” length and corresponds to F − 1 in the Wots+ scheme. Furthermore,

most of our contributions are related to this particular scheme. Hence, we provide a more

extensive background for this variant.

Let C, =, B ∈ N where = ≤ B such that

g(C,=,B) =
{
(11, . . . , 1C) : 0 ≤ 18 ≤ = and

∑C
8=1 18 = B

}
,

that is, the set of C-tuples whose elements are individually bounded by = and their sum is exactly

equal to B. We also define the set ](C,=,B) = {0, . . . , |g(C,=,B) | − 1}. Then, define a constant-sum
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encoding function E : ](C,=,B) → g(C,=,B) , i.e. a bĳective map with integer representations of the

message spaceM = {0,1}ℓ in the domain. Notice that it is required that messages are in ](C,=,B) ,

i.e., 2ℓ ≤ |g(C,=,B) |. Similar to the base-w encoding, we prove that the constant-sum encoding is

a domination free function in the following lemma.

Lemma 4.3.1. Let E : ](C,=,B)→ g(C,=,B) be a constant-sum encoding, for ℓ, C, =, B positive integers,

= ≤ B and 2ℓ ≤ |g(C,=,B) |. For every ","′ ∈ {0,1}ℓ we have that E(") does not dominate E("′).

Proof. By definition, we have that g(C,=,B) ∈ I(C,=) . Let B = E(") and B′ = E("′) and assume

that B dominates B′. Because � is bĳective, it follows that B ≠ B′. Therefore, there exists a

1 ≤ 8 ≤ C such that 18 > 1′8. However, since the sum of the vector must be B, then there must be

some 1 ≤ 9 ≤ C where 9 ≠ 8 and 1 9 < 1′9 . Therefore, B does not dominate B′. �

Let 5 be some one-way hash function, then we define the variant scheme Wots-cs as

follows:

Gen(1_). Randomly choose C strings of _ bits to create the secret key sk = (G1, . . . , GC). The

public key is obtained by computing pk =
(
5 = (G1), . . . , 5 = (GC)

)
.

Sig(", sk). Consider an ℓ-bit message " ∈M and its unique constant-sum encoding E(") =
(11, . . . , 1C). Then, the signature is generated as:

f = (f1, . . . ,fC) = ( 5 =−11 (G1), . . . , 5 =−1C (GC)).

Ver(",f,pk). Obtain E(") = (11, . . . , 1C). The correctness of f is asserted by computing

the remaining iterations over signature blocks and comparing the results with the public

key, namely

pk
?
= ( 5 11 (f1), . . . , 5 1C (fC)).

Remark. The original proposal in (KAJI; CRUZ; YATANI, 2018) and (CRUZ; YATANI; KAJI,

2016) does not use Wots+ construction with 2: function and the r vector. This is a main

drawback to the security of the scheme, as we will discuss further on.

We point out that a checksum calculation in Sig and Ver is not needed for E("). By

letting E′(") be the base-w encoding defined in Section 3.1.3, then E(") is analogous to

E′(") in the sense that tampering with intermediate 18 values while maintaining the constant-

sum limitation implies in decreasing a 18 value. Consequently, a malicious party would need

to obtain a preimage on iterates of 5: . This occurs naturally as we have proven that E is a

domination free function.

In this variant, the main advantage is that the number of hash iterations performed in

Sig and Ver is independent of the signed message. Indeed, the Wots-cs costs � (Gen) = C=,

� (Sig) = C=− B and� (Ver) = B are precisely determined. As we will see further on, this property

can be exploited to choose parameters that always yield reduced cost for the signature-related

steps.
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4.3.1 CKY constant-sum encoding algorithms and parameters

The original method to compute a constant-sum encoding from an ℓ-bit message (CRUZ;

YATANI; KAJI, 2016), which is called cky-o hereafter, works specifically for the case that

“chain” lengths are bounded by B. Thus, = = B and |g(C,B,B) | =
(B+C−1

B

)
. The main idea behind

the algorithm is to consider the message as an integer � ∈ ](C,B,B) = {0, . . . , |g(C,B,B) | − 1} and to

compute its unique representation by unranking it to g(C,B,B) . In other words, finding B ∈ g(C,B,B)
such that the rank of B corresponds to �.

A direct improvement by the same authors (KAJI; CRUZ; YATANI, 2018), which we

call cky-i, explores the fact that tuples in g(C,B,B) usually have all 18 distant from their maximum

value B. Indeed, if there exists an integer = << B such that 0 ≤ 18 ≤ = and 2< ≤ |g(C,=,B) | < |g(C,B,B) |,
then costs of signature operations are substantially reduced. Before we can elaborate more on

this, we first introduce the required background. The following theorem gives details on the

number of such tuples.

Theorem 4.3.2 ((BOLLINGER; BURCHARD, 1990, Item 1d)). Consider the set of C-tuples

with elements bounded by = whose sum is B. The cardinality of this set is given by

|g(C,=,B) | =
:∑
8=0

(−1)8
(
C

8

) (
B− (=+1)8 + C −1

C −1

)
,

where : = min
(
C,

⌊
B

=+1
⌋ )

.

Proof. Let B be any non-negative integer. The number of ways that C non-negative integers,

smaller or equal to =, can be arranged and sum exactly to B, denoted by |g(C,=,B) |, is given by the

coefficient of the term GB from the polynomial

6(G) = (1+ G1 + · · · + G=)C .

We can represent the same polynomial in terms of the sum of the inner geometric series as

6(G) =
(
1− G=+1

1− G

) C
= (1− G=+1)C 1

(1− G)C ,

and from this we expand the binomials such that

6(G) =
(

C∑
8=0

(−1)8
(
C

8

)
G (=+1)8

) ( ∞∑
ℎ=0

(
ℎ+ C −1

C −1

)
Gℎ

)
.

However, we are only interested in the coefficient of GB, which can be expressed as follows:

|g(C,=,B) | =
C∑

8=0

(−1)8
(
C

8

) (
B− (=+1)8 + C −1

C −1

)
.

Finally, the maximum value of 8 must satisfy B− (=+1)8+ C−1 ≥ C−1 ≥ 0 and C ≥ 8. Then, since

C is a positive integer, we must have that B− (= + 1)8 ≥ 0 only when 8 ≤ B
=+1 and = ≥ 0. Thus,
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: = min
(
C,

⌊
B

=+1
⌋ )

and

|g(C,=,B) | =
:∑
8=0

(−1)8
(
C

8

) (
B− (=+1)8 + C −1

C −1

)
.

�

For some input � taken uniformly at random from ](C,B,B) , the cky-i algorithm uses

the result above observing that g(C,=,B) ⊆ g(C,B,B) , and that E(�) ∈ g(C,B,B) is also in g(C,=,B) with

probability Pr4=2 =
|g(C ,=,B) |
|g(C ,B,B) | . Thus, after = is fixed, the algorithm proceeds with a trial-and-error

procedure to obtain an encoding in g(C,=,B) . To ensure that it eventually succeeds, for each attempt,

the input message is concatenated against a nonce, e.g., 3 =H(" | | q), until E(3) ∈ g(C,=,B) .
Recall that this is similar to the run-length encoding approach in Section 4.1 and that q can be

a counter variable. Algorithm 1 shows the method used in each trial, which degenerates to the

deterministic cky-o when = = B.

Algorithm 1 Probabilistic encoding cky-i

Input: C, =, B ∈ N, � ∈ ](C,B,B)
Output: (1C−1, . . . , 10) ∈ g(C,=,B)

1: if C = 1 then

2: return (B)
3: 1← 0

4: ℎ; ← 0

5: ℎA ← 1

6: 0← 1 ⊲ 0← |g(C−1,0,0) |
7: while not ℎ; ≤ � < ℎA do

8: 1← 1 +1

9: 0← 0(1+C−2)
1

⊲ 0← |g(C−1,1,1) |
10: ℎ; ← ℎA
11: ℎA ← ℎA + 0
12: if B− 1 > = then

13: abort

14: return (B− 1) | | cky-i(C −1, =, 1, � − ℎ;)

We now discuss choices of parameters that reduce the cost � (Ver) of Wots-cs when

compared to Wots+. For this task, we search for the appropriate parameters = and B, for a fixed

C. The first approach consists of finding the smallest B such that |g(C,B−1,B−1) | < 2< ≤ |g(C,B,B) |,
and subsequently choosing the smallest = ≤ B such that 2< ≤ |g(C,=,B) |. We call this approach

MinVer, since it achieves the smallest � (Ver) for Wots-cs.

This is evidenced in Table 5, where we compare cky-o and cky-i using values of C

taken from Table 4. For example, when < = 256 and C = 34, � (Ver) is reduced by 34% if

compared to the equivalent case for Wots+ in Table 4. Also, we observe that the case = < B

(cky-i) yields reduced key generation and signature generation costs when compared to the case

= = B (cky-o). This is a great improvement by the authors, however, still more than doubling the

cost of signature and key generation in the best case.
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Table 5 – Number of iterations of 5: for Wots-cs using MinVer, and success probability of cky-i given as Pr4=2 .
Recall that � (Ver) = B.

ℓ C = � (Gen) � (Sig) � (Ver) Pr4=2

256

67
341 22847 22506

341
1.00

42 2814 2473 ∼ 0.9792

45
952 42840 41888

952
1.00

145 6525 5573 ∼ 0.9646

34
2832 96288 93456

2832
1.00

661 22474 19642 ∼ 0.9945

512

131
688 90128 89440

688
1.00

47 6157 5469 ∼ 0.9756

89
1849 164561 162712

1849
1.00

240 21360 19511 ∼ 0.9994

66
5855 386430 380575

5855
1.00

750 49500 43645 ∼ 0.9907

Source: The author.

4.4 OVERVIEW

We proceed by summarizing the Wots based schemes in Table 6 by their properties,

with respect to the choice of parameters, deterministic encoding, domination free encoding

function, costs related to the chaining function, and the portability of the encoding function. We

observe that the evaluation of portability of the encoding function refers to the practical aspects

of implementing it in multiple platforms, including constrained devices with low computation

capabilities. We also include our main contribution Wots-cs+ which is presented in Chapter 6,

denoted as Wots-cs+. The columns in Table 6 are marked with “✗” to indicate if a property is

absent int for each scheme or “✓” otherwise. For cases where the property is not relevant, we

have marked with “—”.

All variants presented so far propose some improvement to either cost of � (Sig) or

� (Ver), by increasing the total length of the hash chains of the scheme, and thus increasing

� (Gen). As we have observed previously, the main drawback is that by reducing costs of

either � (Sig) or � (Ver), increases the cost of the other in addition to the increased cost to

key generation. Moreover, with the exception of Wots-cs and Wots-cs+, whose costs are

predetermined and fixed, all variants have costs variations directly related to the bit distribution

of the message to be signed.

Another aspect to be evaluated is if the encoding function is domination free. Observe

that Wots-l is the only scheme that does not have this property, which gives more credibility

to the scheme by avoiding encoding collisions such as the trivial one explained for this same
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Table 6 – Properties of different Wots variants. Costs reduction properties are considered as a comparison to
Wots+.

Property Wots+ Wots-l Wots-n Wots-cs Wots-cs+

Reduces � (Sig) or � (Ver) — ✓ ✓ ✓ ✓

Fixed � (Sig) and � (Ver) ✗ ✗ ✗ ✓ ✓

Domination Free Encoding ✓ ✗ ✓ ✓ ✓

Deterministic Encoding ✓ ✗ ✓ ★ ✓

Flexible Parameters ✓ ✗ ✓ ✓ ✓

Portability & Efficiency ✓ ✓ ✓ ✗ ✗

Reduces � (Gen) — ✗ ✗ ✗ ✓

Security Assumption SPR COL SPR COL SPR

Source: The author.

scheme. Moreover, it is the case for Wots-l and Wots-cs, that other collisions might appear

with the introduction of the randomization technique. Observe that we have marked Wots-cs

with “★” for this property as it allows a deterministic and injective algorithm, at the cost of

greatly increasing key and signature generation; see Table 5.

With respect to the parameter selection criteria, Wots-l seems to be the only variant

to have C constrained to the length of the input message ℓ. This is a major drawback, as the

run-length encoding function can only be used for large C, and thus limiting its capabilities of

reducing signature sizes. For Wots-n, it is compatible with Wots+ parameter selections, but

it is unclear what are the advantages of this variant for larger F. Notwithstanding, the authors

claim that Wots-n reduces � (Sig) for all parameters described for Wots+ in Table 2, and thus

we consider it flexible enough. The Wots-cs variant is perhaps the most flexible alternative

with respect to parameter flexibility. The MinVer criterion allows to choose any pair (=, B) for

fixed C ≤ 1.

For most distinct application scenarios, it is the case that we are interested in performing

the entire signing procedure, with the computation of the encoding, in the same device. This

is an issue that was not addressed in any of the papers and discuss further in our work. The

portability of the encoding function is essential for the general use case of the scheme. However,

the constant-sum encoding fails to meet this criterion. Due to the computation of large integer

numbers in the encoding process, the algorithm might be impractical when implemented in

constrained devices. Nonetheless, considering the case where it can be implemented, the

efficiency of the algorithm is questionable. In fact, it is hard to beat base-w in this case, as it

can be trivially implemented in any platform.

Finally, we address the two last properties that highlight our main contributions with

Wots-cs+. The first novelty we will present in our work is the capability of reducing the overall

length of the Winternitz chaining function. That is, for a range of parameters, Wots-cs+ can

decrease � (Gen) when compared to Wots+, and consequently obtain reduced � (Sig) and
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� (Ver) at the same time. For other parameter choices, we show that Wots-cs+ does not

increase � (Gen), and still allows to reduce either � (Ver) at the exchange of increasing the cost

of the other, or vice versa. Furthermore, we point out that the original papers of the run-length

encoding and the constant-sum encoding do not use Wots+ as a framework for their proposals.

Their security proofs rely on stronger assumptions, making it hard to fairly compare the cost

trade-offs against other variants, if taking security level into consideration. With the updated

description of Wots-cs, we will show that using our novel deterministic algorithms, we are able

to prove security of Wots-cs+ under SPR assumption. This enables us to give fair comparison

to Wots+, by selecting correct parameters that match signature length and security level.

To conclude, we find that the property of the constant sum is perhaps the most interesting

to develop further. The ability to have constant costs for each step seems interesting and the lack

of checksum indicates the possibility of reducing the overall cost of the scheme, as we already

anticipate here. In the rest of this work, we give our contributions based on two of the variants

described in this section. For the first, we take advantage of the randomization idea of Wots-l

to find “better” base-w encodings, therefore compensating for the absence of a domination

free function in the original work. For the second, we propose different constant-sum encoding

algorithms that accept better parameters and even faster encoding speeds, compared to Wots-cs.
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5 TUNING THE WINTERNITZ HASH-BASED DIGITAL SIGNATURE SCHEME

We have seen that both the run-length and constant-sum (CKY-I) use a rehashing tech-

nique to achieve faster verification speed, obtaining a message "′ that satisfies some require-

ments. The main drawback is that either the encoding function requires massive computations

or the encoding is not a domination free function. In this chapter, we evaluate this technique and

its application to the base-w encoding, which is an efficient domination free encoding function.

In the following we present our contributions in (PERIN et al., 2018) as published, with some

modifications to follow a different notation used in this thesis.

We observe that the original publication was proposed on top of classic Wots. We

present it here as a technique to be used with Wots+. This is more convenient, since the

actual implementations from the paper were extended from the Xmss reference code, which uses

Wots+ and not Wots. Indeed, our proposals can be extended to either scheme without any

modification.

5.1 CHECKSUM PADDING

In this section, we propose to pad unused bits in the Winternitz base-w encoding,

reserved for the checksum, with 1. The main goal of this padding is to obtain some performance

trade-off, making signature verification faster.

Recall that Q =
∑C1

8=1
(F −1− 18) from Section 3.1.2, line 2. Define Q<0G and Q<8= as

the greatest and smallest possible values of Q. These situations happen when, ∀1 ∈ B1, 1 = 0 or

1 = F−1, respectively. Hence,

Q<0G =

C1∑
8=1

(F−1−0) = C1(F−1) and Q<8= =

C1∑
8=1

(F−1−F−1) = 0.

Additionally, the number of bits needed to represent all possible values of Q is given by

NQ =
⌈
log2Q<0G

⌉
=

⌈
log2 C1(F−1)

⌉
and the number of blocks to accommodate Q is given by C2, defined in Section 3.1.2.

In general, the number of bits reserved for Q, that is, C2 log2F bits, is greater than

the number of bits actually required for their representation. This difference occurs because an

integer number of blocks of size log2F is used to accommodate Q. The number of unused bits

is defined as ND = C2 log2F−NQ .

We note that F and ND grow together, as seen in Table 7. This table groups several

parameters for Wots+, how they affect ND, and presents how these parameter groups benefit

from this optimization. Odd powers of 2 for F show no abnormal behavior and are suppressed

for simplicity, although there are some combinations where no padding is needed, such as

F = 8, ℓ = 128 and F = 128, ℓ = 512. Finally, we redefine Q to

Q?
= Q + (2ND −1)2NQ = Q +2C2 log2 F −2NQ .
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In other words, during the signature generation step, we fill the unused ND bits with ones. We

call the modified scheme Wots-b.

Table 7 – Unused bits on B2 for various combinations of F and ℓ.

F ℓ NQ ND C2 log2F

4

128 8 0 8
192 9 1 10
256 9 1 10
512 10 0 10

16

128 9 3 12
192 10 2 12
256 10 2 12
512 11 1 12

64

128 11 1 12
192 11 1 12
256 12 0 12
512 13 5 18

256

128 12 4 16
192 13 3 16
256 13 3 16
512 14 2 16

F ℓ NQ ND C2 log2F

210

128 14 6 20
192 15 5 20
256 15 5 20
512 16 4 20

212

128 16 8 24
192 16 8 24
256 17 7 24
512 18 6 24

214

128 18 10 28
192 18 10 28
256 19 9 28
512 20 8 28

216

128 19 13 32
192 20 12 32
256 20 12 32
512 21 11 32

Source: The author.

5.1.1 Security Considerations

We remark that classic Wots uses a padding of zeroes in the signature generation

algorithm (MERKLE, 1989). Our proposal based on flipping the padding bits from zeroes to

ones moves this fixed amount of iterations of 5: from the verification process to the signature

generation. Despite the fact that Wots+ in RFC 8391 does not take the padding option into

consideration, these computations have no impact in security, since they have no checksum

purpose, but must be calculated nevertheless.

5.2 TUNING B1

We propose a method to speed up the Wots+ signature generation or verification

without any modification to the original scheme. Our idea is to append a cryptographic nonce

to the message to be signed, before generating a signature. We show in Section 5.3 that, by

repeating this process and searching for a suitable nonce, we can significantly reduce the cost of

the signature verification, in exchange of an increased cost of the signature generation, or vice-

versa. In the following, we explain the method and give statistical thresholds for the searching

process.
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Let "′ be a binary message of arbitrary length, ' a positive integer and Φ an '-tuple

of nonces. We compute values "q such that "q = Hℓ ("′ | | q) where q ∈ Φ and Hℓ is a

cryptographic hash function with output length ℓ. By applying base-w encoding to "q, we are

interested in the B1 vector of the encoding now defined as Bq,1 = (1q,1, . . . , 1q,C1). Then let the

set of summations of the integer representations of the elements in these tuples be defined by

S = {∑1∈Bq,1
: q ∈Φ}. Finally, we choose q from min(S) to obtain a faster signature generation

or from max(S) for a faster signature verification. Then, we proceed with Wots+ signature

generation Sig described in 3.1.2 by letting " = "q and B1 = Bq,1.

We call the method Wots-r. Furthermore, this proposal is inspired by (STEIN-

WANDT; VILLÁNYI, 2008), and therefore we observe that Φ could be replaced by the trivial

set {1, . . . , '}.

5.2.1 Finding a threshold for '

Figure 5 – Normalized histogram of `(Bq,1), with 50 bins and F = ' = 216.
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In this proposal, we consider ' as a statistical parameter that represents the sufficient

number of hashes Hℓ needed to find an adequate summation in S. Intuitively, larger ' should

produce better results. However, this choice translates to a higher cost for signature generation.

We show that there is a suitable threshold for ', depending on the required optimization.

Consider ` as the function that calculates the arithmetic mean of a set of integers.

If we assume that ∀1 ∈ Bq,1,0 ≤ 1 ≤ F − 1 follows a uniform distribution, then by repeatedly

calculating `(Bq,1), we expect the average `′ = `(`(Bq,1)) = (F − 1)/2, with q ∈ Φ. Hence,
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by the central limit theorem, the distribution of the averages `(Bq,1) should follow a normal

distribution.

We experiment with F = 216, < = 256 andH = SHA-256. By computing `(Bq,1) with

' = 216, indeed we verify that the distribution of the averages follows a normal distribution.

Figure 5 is a graphical representation of this behavior. Then, by using the standard normal table

(Z-table) with standard deviation U, we have

%(`(Bq,1) > `′+U) = 0.1587,

%(`(Bq,1) > `′+2U) = 0.0228,

%(`(Bq,1) > `′+3U) = 0.0013.

In Figure 6, we plot the chance of finding `(Bq,1) inside these three intervals, for

' ≤ 200. We use the binomial distribution and distinguish three thresholds as suggestions for

values of R: {25, 200, 3500}. Each value yields a probability of 99.9% of finding `(Bq,1) in

the intervals previously mentioned, respectively.

Figure 6 – Thresholds for '.
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5.2.2 Security Considerations

Our proposal makes no attempt to modify the underlying classical Wots+ mechanisms.

Hence, we discuss the impact of appending a cryptographic nonce q to the message "′ before

hashing it. Recall that we must find a suitable hash "q =Hℓ (" | | q) such that it produces a

maximized or minimized sum of Bq,1. In other words, this introduces a bias, where high-order

bits of various blocks in Bq,1 have a higher probability of being fixed, making partial hash

collision attacks more susceptible.
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This behavior may be exploited through differential cryptanalysis on the fixed bits

for the Merkle-Damgård construction, recently put in practice to generate the first practical

collision for SHA-1 (STEVENS et al., 2017). Such an attack could present a threat to our

proposal, thus requiring the use of cryptographic hash functions which are second preimage

resilient, such as SHA-256. We leave the remaining security considerations for the scheme to

be taken from (HÜLSING, 2013b).

5.3 EXPERIMENTS

As a proof-of-concept, we compare the number of iterations of the Winternitz chaining

function throughout the entire execution of the digital signature schemes. Again, we denote the

four variants tested, Wots+ for the scheme described in Section 3.1.2, Wots-b for the variant

described on Section 5.1, Wots-r is the scheme described on Section 5.2 and Wots-br merges

the characteristics of the latter two. Considering the discussion on Subsection 5.2.1, sufficient

values of ' were chosen according to the usual values of the Winternitz parameter F, in addition

to F = 216.

In Table 8 we give the average number of iterations of the Winternitz chaining function

2: needed to verify a signature. We experiment with 214 executions of the verification step for

the proposed schemes, withH = SHA-256, ℓ = 256 and binary messages of 210 bytes generated

through /dev/urandom. To better understand the effect of each proposal individually, we also

compute the average of �1 and �2 separately.

Note that `(B2) is affected “negatively” by Wots-r, since maximizing the sum of

elements in B1 has a direct impact on the calculation of the checksum, minimizing elements

in B2. However, this difference does not heavily impact the overall gains achieved in `(B1).
Furthermore, by using Wots-br, this behavior is mitigated, speeding up the signature generation

or verification steps up to a factor of half in a best-case scenario.

In general, we observe a reduction of roughly F iterations of 2: with Wots-b alone. In

the case of Wots-r, we obtain a reduction of up to 25% for F = 16, 33% for F = 256 and 42%

for F = 216. By merging both schemes together, we improve these results to 28%,39 and 52%,

respectively.

The aforementioned reductions translate to an increase of similar magnitude on the

signature generation. For example, according to Section 3.1.2 and by letting F = 16, then

C = 67 and the total number of iterations of 2: for signature generation and verification is equal

to C (F − 1) = 1005. Our results show that, when ' = 25 with Wots-br, we can decrease the

number of iterations of 2: during the signature verification from approximately 506 to 421 on

average.

Avoiding these 85 iterations of 2: during the signature verification means that we must

now calculate these on the signature generation. In other words, this amounts to a 16.8% speedup

for the verification step at the cost of a 15% slowdown during the signature generation, without

taking the computation of "q into account. This trade-off is depicted in Figure 7 and Figure 8
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Table 8 – Number of iterations of 2: on the verification step for the proposed schemes when max(S) is chosen.

F ' Scheme `(B1) `(B2) `(B)

16

-
Wots+

479.93
25.88 505.80

Wots-b 12.25 492.18

25
Wots-r

407.81
27.49 435.29

Wots-br 13.49 421.29

200
Wots-r

379.08
29.23 408.31

Wots-br 15.23 394.31

3500
Wots-r

348.88
31.14 380.02

Wots-br 17.14 366.02

256

-
Wots+

4081.84
368.43 4450.27

Wots-b 136.25 4218.08

25
Wots-r

3262.39
370.56 3632.95

Wots-br 130.56 3392.95

200
Wots-r

2940.63
372.13 3312.76

Wots-br 132.13 3072.76

3500
Wots-r

2604.49
374.75 2979.24

Wots-br 134.75 2739.24

216

-
Wots+

525120.63
98231.81 623352.44

Wots-b 32707.82 557828.45

25
Wots-r

376550.24
98225.54 474775.78

Wots-br 32697.52 409247.76

200
Wots-r

319490.02
98850.06 418340.08

Wots-br 33321.91 352811.94

3500
Wots-r

262301.92
101022.36 363324.28

Wots-br 35492.57 297794.48

Source: The author.

Figure 7 – Comparing trade-off for current proposals and Wots+ with F = 16 and ' = 25 and max(S).
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Figure 8 – Comparing trade-off for current proposals and Wots+ with F = 256 and ' = 3500 and max(S).
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We can substantially increase this trade-off by letting ' = 200 or ' = 3500, when

signature generation time is not constrained. Otherwise, for small values of F, the number of

hashes used for Wots-r might not be an attractive choice. Hence, such values can be better used

with greater values of F, where computing hundreds of hash functions is negligible compared

to C (F−1).

5.3.1 Impact on Merkle signature schemes

Our proposal has significant results for hash-based schemes that make use of Merkle

tree structures. We test Wots-b, Wots-r and Wots-br with the public domain1 reference

implementation of RFC 8391 Xmss (HÜLSING et al., 2018).

We patch the reference implementation by modifying the padding process inside the

Wots+ signing algorithm, according to Section 5.1, denoting this modification as Xmss-b.

Furthermore, by choosing ' with the method described in Section 5.2, we achieve up to 32%

of speedup when benchmarking the verification step for Xmss. We call this variant Xmss-r.

Additionally, when these optimizations are used together, we call the resulting scheme Xmss-br.

Table 9 shows the average run time of 214 signatures for each scheme, including the

computation of ' for Xmss-r. We use the recommended value of F = 16, and additionally,

F = 256. For greater values of F (e.g. 216), it is widely known that the Xmss key generation

algorithm is too slow and unpractical. Hence, this value is omitted from the results. Furthermore,

we experiment with both max(S) and min(S) to demonstrate the impact of our schemes when

choosing to optimize signature verification or generation, respectively. In the case of min(S),
Xmss-b and Xmss-br are not considered, since the default padding of Wots+ already optimizes

signature generation.

Our results in Table 9 show that, for max(S), any value of ' improves the signature

verification run time, with the associated cost on signature generation. Evidently, this behavior is

1 https://github.com/joostrijneveld/xmss-reference/
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Table 9 – Signature generation and verification run times (in ms) for the proposed schemes.

F ' Scheme Sig. time Ver. time

<
0
G
((
)

16

-
Xmss 0.953 0.734
Xmss-b 0.975 0.724

25
Xmss-r 1.059 0.652
Xmss-br 1.073 0.637

200
Xmss-r 1.222 0.620
Xmss-br 1.240 0.616

3500
Xmss-r 3.724 0.588
Xmss-br 3.730 0.573

256

-
Xmss 7.709 5.676
Xmss-b 7.908 5.361

25
Xmss-r 8.597 4.637
Xmss-br 8.992 4.415

200
Xmss-r 9.045 4.245
Xmss-br 9.460 4.052

3500
Xmss-r 11.760 3.861
Xmss-br 12.193 3.664

<
8=
((
)

16

- Xmss 0.971 0.746
25

Xmss-r

0.879 0.832
200 1.006 0.885
3500 3.393 0.898

256

- Xmss 7.819 5.731
25

Xmss-r

6.672 6.553
200 6.472 6.982
3500 8.488 7.435

Source: The author.

Relevant computer specifications are as follows: 8 GB of DDR3 RAM @ 1333MHz, Intel
Core i5-4570 @ 3.2GHz and gcc 7.3.0. Base commit for the modifications:

05dac989c40349ad5f4dfee3b563b85131b95332.

suppressed with greater values of F. However, for min(S), not every value of ' may be chosen.

In the case of F = 16 and ' = 25, we obtain a speedup of 9.4% for the signature generation

process, while when ' = 200 or ' = 3500, both processes present a slower run time. The same

reasoning applies to F = 256, where one should only choose ' = 25 or ' = 200.

5.4 DISCUSSION AND FURTHER DEVELOPMENTS

Based on our experimental results, it seems straightforward to assume that the best

use case for Wots-br are signature verification. This is mainly because we expect to verify a

single signature multiple times, whereas we only compute it once. Also, when signing, run-time

is not constrained and thus it is possible to use much greater values for ' than 3500 that can

further increase verification performance — this is not true if one uses Wots-r to produce faster
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signatures. More specifically, it might be interesting to use our proposal to produce signatures

that are verified more efficiently for IoT devices. Indeed, such are the claims of (BOS et al.,

2020), that improved on top of our work to produce Xmss signatures that can be efficiently

verified in embedded devices. They give remarkable results using a combination of techniques,

including Wots-r to obtain over a factor of two speed up for signature verification in ARM

Cortex-M4 devices. In addition, the same authors propose a better way to integrate Wots-r into

Xmss, and show that the bias introduced in " does not affect the security of Xmss. Furthermore,

we observe that the results in (BOS et al., 2020) do not include the Wots-b variant, as it would

break compatibility with RFC 8391.

Another contribution of (BOS et al., 2020) is the analysis of the statistical distribution

of B1 estimated cost of the verification cost for any ' that is a power of 2. In the following, we

show how B1 and B2 behave assuming " is uniform and random, not taking into account the

case of Wots-b or Wots-r. That is, we describe the expected values of B for Wots+, that we

find useful to compare expected costs in the coming chapters.

Lemma 5.4.1 (Distribution ofB1 (BOS et al., 2020, Lemma 4)). Fix F and ℓ as positive integers

which define C1 =
⌈
ℓ/log2F

⌉
, and let - = (11 + . . .+ 1C1)/C1 be a random variable; i.e. the mean

of the integer values of B1 where 0 ≤ 18 < F for 8 = 0, . . . , C1. If " ∼ Uℓ, then the mean of - ,

denoted by `(-), is equal (F−1)/2 and the variance is equal to (F2−1)/12C1.

Proof. It follows that if " ∼ Uℓ, then 18 ∼ Ulog2 F
for 8 = 1, . . . , C1, given that C1 =

⌈
ℓ/log2F

⌉
.

Therefore � [18] = (F − 1)/2 and Var[18] = (F2 − 1)/12. Furthermore the values 18 are inde-

pendent and identically distributed. Then we have that

� [-] = �

[∑C1
8=1

18

C1

]
=

∑C1
8=1

� [18]
C1

=
C1

F−1
2

C1
=
F−1

2

and

Var[-] = Var

[∑C1
8=1

18

C2
1

]
=

∑C1
8=1

Var[18]
C2
1

=
C1

F2−1
12

C2
1

=
F2−1

12C1
.

�

Indeed, one can verify that our experiment in Figure 5 yield results remarkably close

to the expectations in Lemma 5.4.1, thus we can make the following assumption:

Assumption 5.4.2. The random variable - in Lemma 5.4.1 behaves close to the Normal distri-

bution with mean F−1
2 and standard deviation

√
F2−1
12C1

.

The hardest claim is to precisely determine the expected value for the checksum values

B2, since they are not independent from B1. However, since we have that C2 << C1 for common

Wots+ parameters, we can estimate values forB2 assuming their expected values are independent

as in (BOS et al., 2020; BRUINDERINK; HÜLSING, 2017).

Assumption 5.4.3. Given " ∼Uℓ, the checksum B2 of its base-w encoding behaves indepen-

dently and the elements of B2 follow the uniform distribution.
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This motivates the following lemma:

Lemma 5.4.4 ((BOS et al., 2020, Lemma 5)). Let . = 1C1+1 + · · · + 1C be a random variable, i.e.

the sum of the checksum values of " . Then if " ∼ Uℓ, the mean `(. ) is equal to C2(F −1)/2
and the variance is equal to C2(F2−1)/12.

Proof. The proof follows similar to Lemma 5.4.1. �

We conclude by observing that with these results, we can give approximated average

cost of signature generation and signature verification for Wots+. We have that the average

cost of signing � (Sig) is approximately equal to the cost of verifying � (Ver) for " uniform

random. That is,

� (Sig) ≈ � (Ver) ≈ C (F−1)
2

and the cost for key generation is

� (Gen) = C (F−1).

In practice, we have that " is usually the output of some cryptographic function H . If we

assume H behaves like a random function, we obtain the costs for usual parameters of Wots+

previously described in Table 4.

5.4.1 Errata

It turns out that the equation for C2 in the original paper could be off for some specific

parameters. This caused a miss-calculated result in Table 7 of the paper, when F = 4. This has

been fixed using of the correct equation of C2 in Section 3.1.2. The other values for different F

remain the same. We thank Antonio Unias for pointing out this issue.
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6 IMPROVED CONSTANT-SUM ENCODINGS

In this chapter, we propose improved constant-sum encoding algorithms (PERIN et al.,

2021) named Wots-cs+. Our proposal is motivated by the previous work of CKY in (KAJI;

CRUZ; YATANI, 2018; CRUZ; YATANI; KAJI, 2016). Some constant-sum definitions and

algorithms have already been presented in Section 4.3. In the following, we define the variant

scheme Wots-cs(_,ℓ, C, =, B), as follows:

Gen(1_). Randomly choose C + = strings of _ bits to create the secret key sk = (G1, . . . , GC)
and r = (A1, . . . , A=). The public key is obtained by choosing :←$K_ and by computing

pk =
(
(r, :), 2=

:
(G1,r), . . . , 2=: (GC ,r)

)
.

Sig(", sk). Consider an ℓ-bit message " ∈M and its unique constant-sum encoding E(") =
(11, . . . , 1C). Then, the signature is generated as:

f = (f1, . . . ,fC)
= (2=−11

:
(G1,r) . . . , 2=−1C:

(GC ,r)).

Ver(",f,pk). Obtain E(") = (11, . . . , 1C). The correctness of f is asserted by computing

the remaining iterations over signature blocks and comparing the results with the public

key, namely

pk
?
= ((A, :), 211

:
(f1,r=−11+1:), . . . , 21C: (fC ,r=−1C+1:)).

We repeat a previous example given for Wots+ to illustrate how r is used to produce

the correct public key, now considering the reversed order of the chaining function indexes.

Example. Let = = 8 and consider the signature and verification of a single position 8 where

1 = 3 from B. Then sign with the sk8 = G by evaluating f8 = 28−3
:
(G,r) = 25

:
(G,r) and verify the

signature by asserting that pk
?
= 23

:
(f8,r8−3+1:) = 23

:
(f8,r6:). Observe that the notation of the

sub-vector of r guarantees that 2: starts at the correct position of r, completing the entire hash

chain, and thus ensuring the signature verification.

r = (A1, A2, A3, A4, A5︸           ︷︷           ︸
Sig

, A6, A7, A8︸   ︷︷   ︸
Ver

).

In the remaining of the section, we present the results as closely as possible to the

original paper. We make some adjustments to preserve the thesis notation.

6.1 PRELIMINARY REMARKS

With the exception of Wots-r, all encoding alternatives that we have seen so far attempt

to reduce � (Ver) exclusively. We present an interesting property of the constant-sum encoding

that allows flexibility of the encoding parameters and has not been mentioned in previous works.
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the thesis, we choose to keep the Wots-cs+ notation to preserve the notation in (PERIN et al.,

2018).

6.2 PARAMETER SELECTION STRATEGY MINGEN

We have discussed how CKY proposed parameters using MinVer to obtain Wots-

cs signatures that can be verified more efficiently when compared to Wots+. However, as

a drawback, these parameters entail a massive increase to � (Gen) and � (Sig). The cky-i

algorithm significantly improves on this, but parameters selected with MinVer appear to be

non-optimal. We solve these issues by proposing a new approach for parameter selection we

call MinGen.

First we give a known binomial identity used in (CRUZ; YATANI; KAJI, 2016) to

compute ℎA , in Algorithm 1, with = = B. The general case where = ≤ B is given in the next

proposition. This result is mentioned in (FAHSSI, 2012, Table 1), for which we give a short

proof.

Proposition 6.2.1. The cardinality of the set g(C,=,B) satisfies

|g(C,=,B) | =
=∑
9=0

|g(C−1,=,B− 9) |. (6.1)

Proof. A C-tuple b = (11, . . . , 1C) ∈ g(C,=,B) if and only if there exists a (C −1)-tuple (12, . . . , 1C) ∈
g(C−1,=,B−11) . Then we must have that

|g(C,=,B) | = |g(C−1,=,B) | + |g(C−1,=,B−1) | + · · · + |g(C−1,=,B−=) |

by considering all possible values of 11, 0 ≤ 11 ≤ =. �

Now we can provide the result below, which states that for fixed C and =, the largest

cardinality of g(C,=,B) occurs when B =
⌈
C=
2

⌉
or B =

⌊
C=
2

⌋
. We note that |g(C,1,B) | =

(B
C

)
, and the case

where |g(C,=,B) | with = ≥ 1 is a type of generalization of the binomial coefficients that has been

well studied (BOLLINGER; BURCHARD, 1990; EGER, 2014; FAHSSI, 2012). For any fixed

= ≥ 1, together with Proposition 6.1.1, the following theorem implies the unimodality property

of |g(C,=,B) |, for a fixed C. We do not claim the result is new, but in the absence of locating a proof

of the exact result, we give an inductive proof.

Theorem 6.2.2. Let = ≥ 1, C ≥ 1 and 0 ≤ B ≤
⌈
C=
2

⌉
. For any 0 ≤ 9 ≤ B we have

|g(C,=, 9) | ≤ |g(C,=,B) |.

Proof. We prove the proposition by induction on C. To simplify calculations, we extend the

definition of g such that |g(C,=,B) | = 0 for B < 0 and B > C=. We prove the result for 9 ∈ Z, 9 ≤ B.

To improve readability, we set E = =
2 .
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The base case is C = 1. For any 0 ≤ 9 < B ≤ ⌈CE⌉, we have |g(1,=,B) | = |g(1,=, 9) | = 1, and

whenever 9 < 0 we have |g(C,=, 9) | = 0, so the inequality holds for C = 1.

For the inductive step, we let C ≥ 2, B ≤ ⌈CE⌉ and assume the main statement holds for

C′ = C −1, and any 9 ′ and B′ such that 0 ≤ B′ ≤ ⌈(C −1)E⌉ and 9 ′ < B′. It is enough to show that

|g(C,=,B−1) | ≤ |g(C,=,B) |, (6.2)

since the repeated application of this equation extends the result for any 9 < B. Recalling that

|g(C,=,B) | =
∑=

9=0 |g(C−1,=,B− 9) | by Eq. (6.1), and letting j = ⌈CE⌉ − B, we rewrite this equation in

terms of j, which gives

|g(C,=,B) | = |g(C,=,⌈CE⌉−j) | =
⌈E⌉∑

8=−⌊E⌋
|g(C−1,=,⌊(C−1)E⌋−j+8) |.

The above equality can be verified by carefully analyzing the four cases where = and C assume

even or odd values. Now, we write the above equation with B−1 in place of B

|g(C,=,B−1) | = |g(C,=,⌈CE⌉−j−1) | =
⌈E⌉∑

8=−⌊E⌋
|g(C−1,=,⌊(C−1)E⌋−j+8−1) |.

Thus, we get that |g(C,=,B−1) | ≤ |g(C,=,B) | if and only if

|g(C−1,=,⌊(C−1)E⌋−j−⌊E⌋−1) | ≤ |g(C−1,=,⌊(C−1)E⌋−j+⌈E⌉) |. (6.3)

If j ≥ ⌈E⌉ then ⌊(C −1)E⌋ − j+ ⌈E⌉ ≤ ⌈(C −1)E⌉ and by the induction hypothesis Eq. (6.3) holds.

If j < ⌈E⌉ we apply Proposition 6.1.1 to find that

|g(C−1,=,⌊(C−1)E⌋−j+⌈E⌉) | = |g(C−1,=,⌈(C−1)E⌉+j−⌈E⌉) |,

and thus ⌊(C −1)E⌋ − j − ⌊E⌋ − 1 ≤ ⌈(C −1)E⌉ + j − ⌈E⌉ ≤ ⌈(C −1)E⌉. From this, we apply the

induction hypothesis so that

|g(C−1,=,⌊(C−1)E⌋−j−⌊E⌋−1) | ≤ |g(C−1,=,⌊(C−1)E⌋−j+⌈E⌉) |
= |g(C−1,=,⌈(C−1)E⌉+j−⌈E⌉) |.

This completes the proof of Eq. (6.3), that implies Eq. (6.2) and concludes the proof. �

Finally, we describe the MinGen strategy: for fixed C, we let B =
⌈
C=
2

⌉
and choose the

smallest = satisfying 2ℓ ≤ |g(C,=,⌈ C=2 ⌉) |. This first step guarantees that we have the smallest =

possible for fixed C using Theorem 6.2.2. As a result, the parameter B is no longer constrained to

|g(C,B−1,B−1) | < 2ℓ, and can be substantially larger than the B obtained with MinVer. With C and

= fixed, we can now decrease B starting from
⌈
C=
2

⌉
, choosing the smallest value that preserves

the condition that 2ℓ ≤ |g(C,=,B) |. Even though � (Ver) is not minimal, a clear advantage of this

method is that it obtains minimum� (Gen) that consequently reduces� (Sig) and� (Ver) at the

same time. In addition, if follows from the symmetry of g(C,=,B) described in Proposition 6.1.1 that
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Table 10 – Parameters (C, =, B) using MinGen with 30 ≤ C ≤ 70.

C = B � (Gen) � (Sig) � (Ver)
70 13 375 910 535 375
69 13 427 897 470 427
68 14 402 952 550 402
67 15 400 1005 605 400
66 15 442 990 548 442
65 16 439 1040 601 439
64 17 445 1088 643 445
63 17 531 1071 540 531
62 18 519 1116 597 519
61 19 532 1159 627 532
60 20 556 1200 644 556
59 21 596 1239 643 596
58 23 562 1334 772 562
57 24 603 1368 765 603
56 25 681 1400 719 681
55 27 666 1485 819 666
54 29 687 1566 879 687
53 31 722 1643 921 722
52 33 772 1716 944 772
51 35 862 1785 923 862
50 38 876 1900 1024 876
49 41 935 2009 1074 935
48 45 958 2160 1202 958
47 49 1018 2303 1285 1018
46 53 1117 2438 1321 1117
45 58 1205 2610 1405 1205
44 64 1286 2816 1530 1286
43 70 1474 3010 1536 1474
42 78 1556 3276 1720 1556
41 87 1707 3567 1860 1707
40 98 1835 3920 2085 1835
39 110 2127 4290 2163 2127
38 126 2221 4788 2567 2221
37 144 2490 5328 2838 2490
36 165 2955 5940 2985 2955
35 192 3283 6720 3437 3283
34 226 3643 7684 4041 3643
33 267 4285 8811 4526 4285
32 320 4945 10240 5295 4945
31 388 5790 12028 6238 5790
30 476 6953 14280 7327 6953

Source: The author.
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the interchangeability of � (Sig) and � (Ver) from the previous section preserves the properties

of MinGen. In Table 10, we give parameters obtained with MinGen where C is in the range

[30,79] minimizing � (Ver).
Lastly, we remark that there are limitations in cky-i that prevent the algorithm from

taking full advantage of MinGen. As we have discussed, cky-i encodes {0,1}ℓ to g(C,=,B) by trial-

and-error via a mapping to g(C,B,B) . If 2ℓ ∼ |g(C,=,B) | but 2ℓ is much smaller than |g(C,B,B) |, Algorithm 1

is bound to fail with a probability far greater than Pr4=2. This happens since Algorithm 1 orders

tuples in non-increasing 1C−1, so the first 2ℓ elements of g(C,B,B) very likely have 1C−1 > =, and

thus, they are not valid tuples in g(C,=,B) . For example, let (C, =, B) = (34,226,3643) with ℓ = 256,

where |g(C,B,B) | ≈ 2267 > 2256. Since � < 2256 and
∑B−(=+1)

9=0
|g(C−1, 9 , 9) | ≈ 2264 > 2256 at the end of

the while loop, we have that 1 < B− (=+1) which gives B−1 > =+1 > =, and thus, Algorithm 1

always aborts.

In the next section, we solve these shortcomings by changing the ordering of tuples

in Algorithm 1 and providing a deterministic encoding directly into g(C,=,B) . Moreover, we

further explore the MinGen approach in Section 6.4, where we suggest optimal parameters for

Wots-cs+.

6.3 DETERMINISTIC ENCODING WITH MINIMAL PARAMETERS

In this section, we propose distinct mapping algorithms that eliminate the probabilistic

approach used in cky-i. While our methods are interoperable, they do not produce the same

outcome as previous works. Going forward, we show how our algorithms allow for a better

choice of parameters regarding costs � (Gen), � (Sig), and � (Ver), by using the MinGen

method.

In the following subsections, we present each of our encoding algorithms, but refrain

from discussing their relative performance. This is addressed in Section 6.4, in which we

give experimental results showing that Algorithms 2 and 3 are considerably faster than both

techniques from (CRUZ; YATANI; KAJI, 2016; KAJI; CRUZ; YATANI, 2018), for various

choices of C, = and B.

6.3.1 Deterministic encoding with minimal parameters

In order to remove the trial-and-error strategy of cky-i, we work on mapping inputs

directly to g(C,=,B) . Our proposal, which is called dcs, is shown in Algorithm 2, and has a total

number of iterations bounded by C (=+1).
The correctness of dcs is assured directly from Proposition 6.2.1. Let g

(ℎ)
(C,=,B) ={

( 9 , 12, . . . , 1C) ∈ g(C,=,B) : 0 ≤ 9 ≤ ℎ
}

for 0 ≤ ℎ ≤ =. Then, |g(ℎ)(C,=,B) | =
∑ℎ

9=0 |g(C−1,=,B− 9) |, i.e. the

partial sum up to ℎ from Eq. (6.1). We give a simplified explanation next. Any value � ∈ ](C,=,B)
is bounded by |g(ℎ

′)
(C,=,B) | ≤ � < |g(ℎ

′+1)
(C,=,B) | with −1 ≤ ℎ′ < = and |g(−1)

(C,=,B) | = 0. Hence, 11 = ℎ′+1 and
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Algorithm 2 Deterministic constant-sum encoding dcs

Input: C, =, B ∈ N, � ∈ ](C,=,B)
Output: (11, . . . , 1C) ∈ g(C,=,B)

1: if C = 1 then

2: return (B)
3: 1← 0

4: ℎ; ← 0

5: ℎA ← |g(C−1,=,B) |
6: while not ℎ; ≤ � < ℎA do

7: 1← 1 +1

8: ℎ; ← ℎA
9: ℎA ← ℎA + |g(C−1,=,B−1) |

10: return (1) | | dcs(C −1, =, B− 1, � − ℎ;)

the algorithm continues recursively with new parameters (� − |g(ℎ
′)

(C,=,B) |) ∈ ](C −1, =, B− ℎ′+1),
until all elements of the tuple are determined.

Example. Let � = 15 and (C, =, B) = (4,2,3). Then it follows that |g(1)(4,2,3) | = 13 and |g(2)(C,=,B) | = 16.

Hence, we must have that 11 = 2, since 13 ≤ � < 16.

(
11=0

0,1,2,3,4,5,6,︸            ︷︷            ︸
|g(3,2,3) |=7

11=1

7,8,9,10,11,12,︸               ︷︷               ︸
|g(3,2,2) |=6

11=2

13,14,15︸     ︷︷     ︸
|g(3,2,1) |=3

).

The recursive step takes � = 2 and (C, =, B) = (3,2,1).

(
12=0

0,1,︸︷︷︸
|g(2,2,1) |=2

12=1

2︸︷︷︸
|g(2,2,0) |=1

)

Since we haveB = (2,1, 13, 14) and the sum already equals B, the following steps return

13 and 14 equal to zero, thus E(�) = (2,1,0,0).

Our method allows for the same parameter space as exemplified in Table 5. However,

there is a significant improvement when comparing cky-i and dcs with regard to a different

parameter strategy. Since Algorithm 2 does not use |g(C,B,B) | to compute ℎ; , we can search for

parameters that yield minimal � (Gen) by drastically decreasing =, using the MinGen method.

These parameters and associated costs are discussed in Section 6.4 and detailed in Table 11.

Nevertheless, this advantage comes at a price, as we are now challenged with the task of

computing large binomials given from Proposition 6.2.1, which uses Theorem 4.3.2 repeatedly

for every iteration of the while loop. This elevated complexity was avoided in cky-i by reusing

values previously assigned to ℎA ; see line 11 of Algorithm 1.

6.3.2 Binary search encoding

Due to the differences between Algorithm 1 and Algorithm 2 described previously, the

latter is relatively more complex to compute as a result of repeated large binomial calculations. It
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is desirable to perform the underlying unranking algorithm more efficiently since constant-sum

encodings are calculated in every signature generation and verification.

The task of searching for the aforementioned boundary ℎ by individually computing

and summing terms of Eq. (6.1) constrains previous algorithms to a linear number of iterations.

To efficiently compute |g(ℎ)(C,=,B) |, we manipulate the binomial coefficients used to evaluate |g(C,=,B) |
through Proposition 6.2.1 by expanding the technique from Theorem 4.3.2.

Proposition 6.3.1. For any 0 ≤ ℎ ≤ =,

|g(ℎ)(C,=,B) | =
:∑
8=0

(−1)8
(
C −1

8

)
×

[(
B− (=+1)8 + C −1

C −1

)
−

(
B− (=+1)8 + C −2− ℎ

C −1

)]
,

where : = min
(
C,

⌊
B

=+1
⌋ )

.

Remark. In the proof below, we use the Column-sum property of the pascal’s triangle that

yields the following identity
U∑
9=0

(
9

V

)
=

(
U+1

V+1

)
.

Proof. We recall that the summation in Theorem 4.3.2 has an upper bound : due to the first

binomial coefficient evaluating to zero for values 8 > : . Then, from Proposition 6.2.1 and by

letting

: = max
9∈{0,...,=}

(
min

(
C,

⌊
B− 9
=+1

⌋ ))
= min

(
C,

⌊
B

=+1
⌋ )
,

we can express the cardinality |g(ℎ)(C,=,B) | as

ℎ∑
9=0

:∑
8=0

(−1)8
(
C −1

8

) (
B− (=+1)8 + C −2− 9

C −2

)
.

By exchanging the order of the summations, we have

|g(ℎ)(C,=,B) | =
:∑
8=0

(−1)8
(
C −1

8

) 
ℎ∑
9=0

(
B− (=+1)8 + C −2− 9

C −2

)
.

For any 0 ≤ 9 ≤ ℎ, we let U = B − (= + 1)8 and V = C − 2. Then, the inner summation can be

simplified as:

ℎ∑
9=0

(
U+ V− 9

V

)
=

U+V∑
9=0

(
9

V

)
−

U+V−ℎ−1∑
9=0

(
9

V

)

=

(
U+ V+1

V+1

)
−

(
U+ V− ℎ
V+1

)
.

Substituting the values of U and V yields the proof. �

Proposition 6.3.1 allows us to compute |g(ℎ)(C,=,B) | directly, for any ℎ. From this, we main-

tain the rationale of the previous algorithm, but remove its recursive approach and additionally

employ a binary search strategy to determine the boundary ℎ. Our new method, called dbcs, is

given in Algorithm 3, with the total number of iterations at most C log2(=+1).
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Algorithm 3 Binary search constant-sum encoding dbcs

Input: C, =, B ∈ N, � ∈ ](C,=,B)
Output: B = (11, . . . , 1C) ∈ g(C,=,B)

1: B ← (0, . . . ,0)
2: for 1 ≤ 8 ≤ C do

3: 2←min(=, B)
4: 1← 0

5: while 2 > 0 do

6: BC4?←
⌊
2
2

⌋
7: 9 ← 1 + BC4?
8: if |g( 9)(C−8,=,B) | ≥ � then

9: 9 ← 9 +1

10: 1← 9

11: 2← 2− BC4? +1

12: else

13: 2← BC4?

14: 18← 1

15: if 1 > 0 then

16: �← � − |g(1−1)
(C−8,=,B) |

17: B← B− 1
18: return B

6.3.3 Encoding as part of the signature

As seen in the previous sections, the tuples resulting from our deterministic algorithms

are not trivially computable. This impacts the performance of operations with signatures. With

the intent of reducing such costs, we propose a modification to Wots-cs+ which replaces the

encoding calculation in Ver, increasing its performance even further, at the expense of increased

signature sizes.

We suggest two adjustments to the underlying scheme. In Sig, the encodingB is sent as

part of f. This requires the signature size to be incremented by C ⌈log2(=+1)⌉ bits. In Ver, we

propose to use Algorithm 4, hereafter denoted as vcs, to assert the correspondence of � and B
without searching for boundaries, which could be costly due to the large binomial calculations.

Algorithm 4 Constant-sum encoding verification vcs

Input: C, =, B ∈ N, � ∈ ](C,=,B) , B ∈ g(C,=,B)
Output: E(�) ?

= B
1: for 1 ≤ 8 ≤ C do

2: if not |g(18−1)
(C−8,=,B) | ≤ � < |g(18)(C−8,=,B) | then

3: return false

4: �← � − |g(18−1)
(C−8,=,B) |

5: B← B− 18
6: return true
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Remark. As Proposition 6.3.1 requires 0 ≤ ℎ ≤ =, we observe that in the case that 18 = 0, we

admit |g(18−1)
(C−8,=,B) | = 0.

The method vcs is essentially a simplified version of Algorithm 3, since it only checks

that the boundary conditions calculated in Sig are correct. If any of the C elements in the tuple B
does not lie in the correct interval given by the implementation of E, the signature verification

fails. We note that the modifications in the signature structure proposed to use vcs do not make

it easier for a malicious party to create a forgery since the encoding is a bĳective map, and thus

a unique representation of the original message. The detailed security claims of the scheme,

however, are presented in Section 6.5.2.

6.3.4 Memoization of intermediate sums

A common technique of dynamic programming may be employed in the methods above,

namely dcs, dbcs and vcs, in the form of a lookup table containing intermediate values |g(·,·,·) |.
This creates a memory trade-off that hinders the portability of the algorithm to constrained

devices, but other situations may benefit from the sharp performance increase. We denote these

variant encodings as dcs-m, dbcs-m and vcs-m, respectively.

Storage requirements are in the order of B(C − 1) integers with up to ℓ bits each for

dcs-m. This comes directly from Eq. (6.1), in which every value from the range |g(W,=,X) | with

1 ≤ W ≤ C − 1 and 1 ≤ X ≤ B may be needed, and thus stored. The resulting lookup table is

partially shaped like an upper triangular matrix. For 0 < 8 <
⌊
B
=

⌋
, the 8-th row has exactly =× 8

integers, and other rows are completely filled with B values.

In the case of dbcs-m and vcs-m, a three-dimensional matrix of order B(C − 1) (=+ 1)
is needed, composed of ℓ-bit integers. In this case, we have access to all partial sums from the

range |g(Z)(W,=,X) | with 0 ≤ Z ≤ =. The resulting matrix is also partially upper triangular. We note

that these requirements may be optimized to reduce storage demands and be used as typical

implementation strategies. However, depending on the choice of parameters and encoding

algorithms, the storage requirement may become impractical.

For instance, we estimate the worst case scenario without optimization for parameters

given in Table 11. We assume that each stored value is an arbitrary precision integer with at

most ℓ-bits. Then, if we consider ℓ = 256 and C = 67, we require roughly 0.8 MB for dcs-m and

13.5 MB for dbcs-m and vcs-m. Now, if we let C = 34 for the same ℓ, the memory requirement

increases to 3.8 MB and 870 MB, respectively. We discuss the trade-off associated with these

estimates in Section 6.4, along with our benchmark results.

6.4 PARAMETER CHOICE AND BENCHMARKING

This section shows how the choice of parameters and techniques for the constant-sum

encoding impacts the efficiency of Wots-cs+. The performance of such algorithms is measured
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via the number of applications of 5: needed for the entire scheme, as well as their running

time. Additionally, previous work in the literature (CRUZ; YATANI; KAJI, 2016) shows results

computed with cryptographic hash functions that are currently considered insecure, such as

SHA-1 (LEURENT; PEYRIN, 2020). We thus consider updated security parameters in our

results.

For ℓ = 256 and ℓ = 512, we search combinations of parameters bounded by 30 ≤ C ≤ 80

and 60 ≤ C ≤ 140, respectively, such that ℓ . log2 |g(C,=,B) |. From this space, according to the

MinGen approach, we select values of = and B that minimize costs of Gen for each value of C.

Table 11 shows the results of the search grouped into usual values of C, where the cost prepended

with a Δ represents changes in relation to Wots+.

Table 11 – Suggested parameters for Wots-cs+ using MinGen for a given C as compared to Wots+.

ℓ C = � (Gen) � (Sig) � (Ver) Δ� (Gen)

256
67 15 1005 605 400 +0.00%

45 58 2610 1405 1205 −7.94%

34 226 7684 4041 3643 −11.37%

512
131 15 1965 1120 845 +0.00%

89 57 5073 2695 2378 −9.52%

66 241 15906 8227 7679 −5.49%

Source: The author.

The dominant term C in the signature size has direct implications on the number of

iterations of 5: . A trade-off happens if C is increased, to the extent that the values = and B may be

reduced. In the literature, parameters are given to obtain an efficient signature verification. For

sufficiently small values of C, e.g. C = 34 for ℓ = 256 and C = 66 for ℓ = 512, we highlight that, by

applying the MinGen approach, we minimize � (Gen) and obtain at the same time increased

performance of Gen, Sig and Ver, when compared to Wots+.

Figure 10 – Comparison of running time between distinct constant-sum encoding techniques, in microseconds, for
ℓ = 256.
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Source: The author.
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It is also fundamental to discuss the cost of encoding algorithms. In order to perform

a fair comparison with the original methods, we give running time results of each algorithm

performing encodings in the context of the aforementioned parameter space. We implement

cky-i, dcs, dbcs, vcs and memoized variants using the GMP C++ library. The resulting software

is available at github.com/zambonin/wots-cs and compiled using clang 11.0.0 with -O3

optimization level. Times are measured considering an AMD Ryzen™ 3300X, running at

3.8GHz.

Figure 10 shows the running time of the different methods considered. The H-axis

is presented in a logarithmic scale for better readability. We give a twofold discussion as

follows, remarking that the base-w computation is absent from the comparisons due to its

negligible running time. Figure 11a depicts a comparison of the different techniques proposed

in Section 6.3 and Section 4.3, with sets of parameters as calculated in Table 11. The relative

performance of Algorithms dcs and dbcs changes with the size of the target encoding tuples.

The lower complexity of the binary search is more evident when the search space =

is large. Such behavior is expected due to the higher cost of computing |g(ℎ)(C,=,B) | defined in

Proposition 6.3.1. Algorithm dbcs outperforms dcs when C < 58, that is, it is much faster for

smaller values of C. For example, encoding into tuples of the set g(34,226,3643) is ≈ 82.7% faster

when compared with dcs

We also give remarks on the running time of vcs. Recalling that B must be available

during Ver, then this algorithm can be used to verify the correspondence of the signed message

with B. We refrain from showing it in Fig. 10, since it is significantly faster to use this approach,

instead of repeatedly encoding the signed message with any of the other proposed algorithms.

Indeed, it essentially removes the cost associated with the encoding.

Figure 11b shows the average time to encode a digest into a tuple with fixed C and B for

different values of =. For this experiment, we also consider the original probabilistic encoding

cky-i, which fails to yield encodings for lower values of =, the most interesting cases due to

savings in � (Gen). This is expected, due to its limitation when |g(C,B,B) | is much larger than 2ℓ,

as seen in Section 6.2. Disregarding these sets of parameters, we find that dcs and dbcs are, on

average, ≈ 46% and ≈ 87% faster than cky-i, respectively. We also experimentally find that for

sets of parameters in Table 11, at least dbcs is again consistently faster.

6.4.1 Results in Merkle signature schemes

We now demonstrate how Wots-cs+ performs in the context of a Merkle-based signa-

ture scheme, observing the cost related to all variations of the encoding algorithms that we have

proposed so far. We compare instantiations of Xmss with Wots+ in the leaf nodes, in contrast

to the usage of Wots-cs+. We modify the existing Xmss reference implementation from RFC

8391 (HÜLSING et al., 2018) to use our algorithms in consonance with this goal.

Table 12 and Table 13 shows running times of distinct combinations of the encoding

algorithms for all steps of the signature scheme, called �G (Gen), �G (Sig) and �G (Ver) for
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Table 12 – Performance of different encoding algorithms in the context of XMSS_SHA2_10_256, in tens of millions
of CPU cycles (×107), for C = 67. Values in square brackets are the percentage of the cost dedicated
solely to encoding.

Encoding
algorithm(s)

C = 67

�G (Gen) �G (Sig) �G (Ver)
base-w 155 0.53 [0.006%] 0.08 [0.029%]

dcs 158 0.79 [29.86%] 0.31 [76.78%]

dbcs 155 0.86 [36.08%] 0.38 [81.32%]

dcs + vcs 157 0.79 [30.28%] 0.20 [65.77%]

dbcs + vcs 161 0.88 [35.15%] 0.20 [64.89%]

dcs-m 153 0.60 [7.122%] 0.11 [37.52%]

dbcs-m 148 0.60 [10.67%] 0.13 [48.07%]

dcs-m + vcs-m 151 0.59 [7.250%] 0.07 [5.028%]

dbcs-m + vcs-m 152 0.62 [10.78%] 0.07 [2.967%]

Source: The author.

Table 13 – Performance of different encoding algorithms in the context of XMSS_SHA2_10_256, in tens of millions
of CPU cycles (×107), for t = 34. Values in square brackets are the percentage of the cost dedicated
solely to encoding.

Encoding
algorithm(s)

C = 34

�G (Gen) �G (Sig) �G (Ver)
base-w 1163 4.12 [0.001%] 0.58 [0.005%]

dcs 1061 4.62 [18.10%] 1.35 [62.34%]

dbcs 1027 3.83 [3.448%] 0.61 [21.08%]

dcs + vcs 1039 4.55 [18.41%] 0.52 [6.288%]

dbcs + vcs 1075 3.99 [3.318%] 0.53 [5.916%]

dcs-m 1051 3.81 [1.055%] 0.53 [6.789%]

dbcs-m 1032 3.77 [0.754%] 0.51 [5.040%]

dcs-m + vcs-m 1059 3.82 [1.065%] 0.49 [0.716%]

dbcs-m + vcs-m 1038 3.75 [0.712%] 0.49 [0.653%]

Source: The author.

brevity, and additionally highlights the encoding cost for signature operations. The underlying

Xmss tree has been configured with a height parameter of ℎ = 10 and SHA-256 as the chaining

function, i.e. the RFC parameter XMSS_SHA2_10_256. Measurements are done in the same

CPU specification as in the previous section and were repeated 23 times for �G (Gen) and 23+ℎ

for �G (Sig) and �G (Ver), with the average running time shown in the respective columns. We

focus on the parameters ℓ = 256 with C = 67 and C = 34, as given by Tables 4 and 11, with the

goal of minimizing �G (Gen).
In the case of C = 67, the behavior shown in Fig. 11a is evidenced with dcs being

slightly faster than dbcs. Minimal differences between all algorithms are observed with regard

to�G (Gen), due to the fact that F−1 = = from Table 11 and Table 4. The most interesting claim,

in this case, is the effect of encoding execution times. Gains to �G (Ver) are only observed for
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two cases: dcs-m + vcs-m and dbcs-m + vcs-m. Fortunately, for these parameters, the memory

requirement for the memoization is significantly lower when compared to the next case, thus

viable for implementations that are not memory constrained.

We recall that the use of vcs entails an increased signature size. When C = 67, |f | is
increased by 34 bytes, i.e., 67 four-bit integers. To make a fair comparison with Wots+, we

would need to use C = 66, which implies a similar signature size and ≈ 1.5% improvement on

�G (Gen), as per Table 10. However, since �G (Ver) is also increased, we do not find this an

interesting avenue to pursue. With regard to C = 34, we achieve significantly reduced �G (Gen).
In fact, with the exception of dcs, all other combinations of algorithms provide faster overall

running time execution. For this case, it is important to evaluate two distinct aspects.

The memory cost for the algorithms dbcs-m or vcs-m may reach roughly 870 MB in the

worst case, limiting their usefulness only for very specific devices where memory is abundant.

When using dcs-m, the memory cost reaches nearly 4 MB, which is tolerable in exchange for the

extra performance gain in a wider range of platforms. Moreover, we cannot provide a reasonable

parameter set if C = 33, to make up for the 34 extra bytes in the signature when using vcs.

Therefore, we highlight that algorithm dbcs still achieves better overall costs, with no extra

memory cost and no increment to the signature size.

Overall, we show that there exist sets of parameters where the constant-sum encoding

complexity is counterbalanced so that the scheme is efficient. It should also be noted that

C = 34 is not the most commonly used parameter for Wots+ instances. However, it is useful to

demonstrate our results, and it has applications in the case of smaller signature requirements

that we will discuss in Section 7.1.

Finally, the experiment shows that some practical limitations restrain us from reaching

theoretical improvement estimates. For example, we observe that both dcs and dbcs use a large

portion of the verification running time. In fact, this fraction may even increase if we consider

implementations that are more optimized for verification running time than the Xmss reference

code. For this reason, we believe that more extensive research of constant-sum encoding could

provide optimizations that may compensate for this encoding cost, making the scheme more

competitive. Alternatively, we discuss, in the following subsection, some applications that can

avoid the impact of the encoding costs.

6.4.2 Alternative parameter choices

To show the benefit of reduced chain lengths for signature generation, in spite of higher

encoding costs, it is interesting to point out that not every application will require the message

encoding to be performed by the same device that produces the signature. It is common, for

signature applications, to perform all cost-intensive computations outside the secure platform

that holds the private key. One clear example of this is the analogous case where large documents

are digested into small hash outputs before being sent to a secure device in order to be signed,

e.g., a smart card, a trusted platform module (TPM) or a hardware security module (HSM).
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Some of these applications might benefit from a signature scheme that can be configured

to have a small key generation cost and a small signature generation cost. For such cases, the

cost of the signature verification may be less critical. Hence, we propose the use of the

same parameters in Table 11, but exchanging the costs of signature and verification using

Proposition 6.1.1. In Table 14, we display the alternative parameters with the changes in

relation to Wots+ regarding the cost of signature generation.

Table 14 – Suggested parameters for Wots-cs+ using MinGen for a given C as compared to Wots+.

ℓ C = � (Gen) � (Sig) � (Ver) Δ� (Sig)

256

67 15 1005 400 605 −20.39%

45 58 2610 1205 1405 −14.99%

34 226 7684 3643 4041 −15.96%

512

131 15 1965 845 1120 −13.99%

89 57 5073 2378 2695 −15.17%

66 241 15906 7679 8227 −8.74%

Source: The author.

If we carefully examine Wots-cs+, there is a clear advantage on the number of hash

operations performed during the signing process for all parameter choices. We highlight the

20.39% reduced cost for a signature generation when C = 67. For this particular case, there is a

balanced trade-off in the verification time, with 20.39% more hash functions in the verification,

when compared to Wots+. For the other cases, all costs related to Gen, Sig and Ver are reduced

(compare Table 4 with Table 14).

We note that this performance gain may be less effective when used with Xmss. For

the same parameters used in the previous benchmark, we obtain Xmss signature costs reduced

by only 2–3% when C = 67 (excluding the encoding cost). This is mainly attributed to the

predominant cost of key generation, necessary to build the Merkle tree verification path during

the signature. In fact, depending on the application, it is possible to optimize the verification

path construction by caching tree nodes, such that the key generation cost is mitigated, thus

achieving greater performance gains closer to the ones stated in Table 14.

For C = 34, the improvements are more noticeable. We can use the same parameters in

Table 13 and obtain a 15% improvement that is closer to the 15.96% described in Table 14, since

there is an additional 11.37% improvement for every key generated during the construction of the

verification path. In addition, this parameter selection also presents 11% faster key generation

and roughly 13% faster key verification (excluding the encoding cost).

Last, we find that it would be more interesting to study the practical results of our im-

provements with experiments that are tailored for each application. There are several different

ways to combine our parameters with different optimization strategies available for Xmss, con-

sidering distinct computation and memory capabilities. We leave such studies for consideration
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in future works.

6.5 SECURITY PROOF OF WOTS-CS+

In (KAJI; CRUZ; YATANI, 2018), the authors claim to have proved that Wots-cs is

existentially unforgeable under an adaptive chosen-message attack (EU-CMA), assuming that

the constant-sum encoding function is collision resistant and 5: is one-way collision resistant.

However, we find that their estimation of certain probabilities is incorrect. More specifically, the

authors make incorrect implicit assumptions about the uniformity of the probability distribution

of tuples controlled by the adversary.

In order to avoid such assumptions, we provide a security proof that Wots-cs+ is

EU-CMA by closely following the argument in (HÜLSING, 2013b) and a recent revision of the

same security proof in (KUDINOV; KIKTENKO; FEDOROV, 2020). Several results on the

behavior of |g(C,=,B) | are needed to obtain the correct probability bounds of our proof.

In this section, we provide brief security definitions, necessary properties of the distri-

bution of g(C,=,B) and a detailed proof of Wots-cs+ under the assumption that F_ is undetectable

and second-preimage resistant one-way function. This result is a major improvement on the

previous works by CKY, since the proof does not require collision resistance. In particular, we

can instantiate Wots-cs+ with signatures about half the size when compared to (KAJI; CRUZ;

YATANI, 2018). Moreover, we give a concrete bound of the security level of our scheme,

showing that its security level is comparable with Wots+.

6.5.1 Properties of g(C,=,B)

We briefly introduce two properties of g(C,=,B) in the form of Proposition 6.5.1 and

Proposition 6.5.2. These results are imperative for the characterization of the probability

assertions we make in Theorem 6.5.3, providing the security bounds of Wots-cs+.

We recall the definition of the constant-sum encoding and address its distribution

probability with respect to the choice of parameters and the size of the signed message. Remark

that E : ](C,=,B) → g(C,=,B) , as introduced in Section 4.3, with ](C,=,B) = {0, . . . , |g(C,=,B) | − 1} and

2ℓ ≤ |g(C,=,B) |. Let us call gℓ(C,=,B) the image of {0,1}ℓ under E, namely the evaluation of E("),
allowing a slight abuse of notation as we naturally identify {0, . . . ,2ℓ −1} with {0,1}ℓ. Because

the image of E(") is gℓ(C,=,B) instead of g(C,=,B) , we must ensure that 2ℓ is very close to |g(C,=,B) |, so

that we can use results about distribution of tuples in g(C,=,B) , when considering such a distribution

in gℓ(C,=,B) .

Proposition 6.5.1. Let ℓ and C be integers such that C = >(ℓ), and let = be such that

|g(C,=−1,⌊ (=−1)C
2 ⌋) | < 2ℓ ≤ |g(C,=,⌊ =C2 ⌋) |.

Let gℓ(C,=,⌊ =C2 ⌋)
be the image of the encoding E({0,1}ℓ) ⊆ g(C,=,⌊ =C2 ⌋) . Consider the sequence

of independent and uniformly distributed random variables - = -ℓ from g(C,=,⌊ =C2 ⌋) , and the
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sequence of independent and uniformly distributed random variables . = .ℓ from gℓ(C,=,⌊ =C2 ⌋)
.

Then, - and . are statistically indistinguishable.

Proof. We need to prove that for every � > 0 there exists ℓ0, such that:
1
2

∑
U∈g(C ,=, ⌊ =C

2
⌋)
|Pr[-ℓ = U] −Pr[.ℓ = U] | < 1

ℓ�
, for all ℓ ≥ ℓ0.

The left-hand side of the inequality is equal to

1
2

©­­­«
∑

U∈gℓ
(C ,=, ⌊ =C

2
⌋)

����� 1

2ℓ
− 1

|g(C,=,⌊ =C2 ⌋) |

����� +
∑

U∈(g(C ,=, ⌊ =C
2
⌋)\gℓ(C ,=, ⌊ =C

2
⌋)
)

����� 1

|g(C,=,⌊ =C2 ⌋) |
−0

�����
ª®®®¬

= 1− 2ℓ

|g(C,=,⌊ =C2 ⌋) |
=
|g(C,=,⌊ =C2 ⌋) | −2ℓ

|g(C,=,⌊ =C2 ⌋) |
. (6.4)

From (EGER, 2014, Eq. (5)), we know that |g(C,=,⌊ =C2 ⌋) | ∼
1√
cC
2

(=+1)C√
(=+1)2−1

. So, for ℓ, = large enough,

our hypothesis translates to

1√
cC
6

=C
√
=2−1

< 2ℓ ≤ 1√
cC
6

(=+1)C√
(=+1)2−1

,

Therefore,

2ℓ ≤ |g(C,=,⌊ =C2 ⌋) | ≤
1√
cC
6

(=+1)C√
(=+1)2−1

=
1√
cC
6

=C
√
=2−1

(=+1)C
=C

√
=2−1√
(=+1)2−1

≤ 2ℓ
(
1+ 1

=

) C √
=2−1
√
=2 +2=

.

Using |g(C,=,⌊ =C2 ⌋) | ≤ 2ℓ
(
1+ 1

=

) C √
=2−1√
=2+2=

to bound the numerator and using 2ℓ ≤ |g(C,=,⌊ =C2 ⌋) | to bound

the denominator of the left-hand side of (6.4), we obtain

|g(C,=,⌊ =C2 ⌋) | −2ℓ

|g(C,=,⌊ =C2 ⌋) |
≤

2ℓ
((

1+ 1
=

) C √
=2−1√
=2+2=

−1

)
2ℓ

<

(
1+ 1

=

) C
−1.

Expanding the binomial in the right-hand side, we obtain

|g(C,=,⌊ =C2 ⌋) | −2ℓ

|g(C,=,⌊ =C2 ⌋) |
< 1+ C

=
+

( C
2

)
=2
+ · · · + 1

=C
−1.

Since 2ℓ ≤ 1√
cC
6

(=+1)C√
(=+1)2−1

, we have 2ℓ/C ≤ 1
( cC6 )1/(2C)

(=+1)
(=2+2=)1/(2C) . Thus, we get (

C
8)
=8
≤

(C8)
2ℓ/C

=+1
=8

1
( cC6 )1/(2C) (=2+2=)1/(2C) . Since C = >(ℓ), then (

C
8)

2ℓ/C
approaches zero faster than any polyno-

mial in ℓ. In particular, for a given positive constant �, there exists ℓ
(8)
0

such that (
C
8)
=8
≤

(C8)
2ℓ/C

=+1
=8

1
( cC6 )1/(2C) (=2+2=)1/(2C) <

1
Cℓ�

, for all ℓ ≥ ℓ
(8)
0

. Now, considering ℓ0 = max{ℓ(1)
0

, ℓ
(2)
0

, . . . , ℓ
(C)
0
},

we get
|g(C ,=, ⌊ =C

2
⌋) |−2ℓ

|g(C ,=, ⌊ =C
2
⌋) |

< 1+ C
=
+ (

C
2)
=2 + . . .+ 1

=C
−1 ≤ 1

ℓ�
, for all ℓ ≥ ℓ0. �
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Proposition 6.5.1 guarantees that taking (_,ℓ, C, =, B) such that ℓ = poly(_), C = >(ℓ),
B = C=

2 and = such that

|g(C,=−1,
(=−1)C

2 ) | < 2ℓ ≤ |g(C,=, =C2 ) |

yields acceptable parameters, as defined in Definition 6.5.1 in Section 6.5.2, since - = -ℓ and

. =.ℓ are statistically indistinguishable. This ensures that parameters chosen in our experiments

using MinGen are acceptable and satisfy the requirements for the security of the scheme.

The following proposition gives a probability bound used in the security proof given in

Theorem 6.5.3.

Proposition 6.5.2. Let C, = ≥ 2, 0 ≤ [ ≤ = and B ≤ C=
2 . Let (1C−1, . . . , 10) be chosen uniformly at

random from g(C,=,B) . Then, for any 0 ≤ 9 ≤ [ and for any 0 ≤ 8 ≤ C −1,

|g(C−1,=,B−[) |
|g(C,=,B) |

≤ Pr[18 = 9] ≤
|g(C−1,=,B) |
|g(C,=,B) |

.

Proof. We observe that 18 follows the same distribution as 10 for any 8. This holds since for

any C-tuple in g(C,=,B) , each possible index permutation of the tuple is in g(C,=,B) . Furthermore, we

know that |g(C−1,=,B− 9) | is the cardinality of the set of all C-tuples in g(C,=,B) where 10 = 9 . Hence,

Pr[18 = 9] = Pr[10 = 9] =
|g(C−1,=,B− 9) |
|g(C,=,B) |

.

Applying Theorem 6.2.2, we get the bounds

|g(C−1,=,B−[) |
|g(C,=,B) |

≤ Pr[18 = 9] ≤
|g(C−1,=,B) |
|g(C,=,B) |

.

�

6.5.2 Security proof

We now prove the security of Wots-cs+ through the following theorem, which closely

follows the arguments in (HÜLSING, 2013b) and a more recent revision of the same proof

framework (KUDINOV; KIKTENKO; FEDOROV, 2020). We remark that the proof is given

only for constant-sum encoding algorithms compatible with parameters given in Definition 6.5.1.

Definition 6.5.1. For (growing) security parameter _ the parameters (_,ℓ, C, =, B) are acceptable

if ℓ = poly(_), C ≥ 2, = ≥ 2, 2=−1 ≤ B ≤ C=
2 , 2ℓ ≤ |g(C,=,B) | and the uniform distribution - = -ℓ on

g(C,=,B) is computationally indistinguishable from the uniform distribution . = .ℓ on gℓ(C,=,B) .

Theorem 6.5.3. Let (_,ℓ, C, =, B) be acceptable Wots-cs+ parameters where _ is the security

parameter. Let F_ = { 5: : {0,1}_→ {0,1}_, : ∈ K_} be a one-way, second preimage resistant

and undetectable function family. The insecurity of Wots-cs+ scheme against an EU-CMA
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attack satisfies

InSecEU-CMA(Wots-cs+(_,ℓ, C, =, B); I,1)

≤
C · |g(C,=,B) |

|g(C−1,=,B−(=−1)) |
(
= · InSecUD(F_; Ĩ)

+ InSecOW(F_; I′) += · InSecSPR(F_; I′)
)
,

with Ĩ = I + 3C= + = and I′ = I + 3C= and where time is given in number of evaluations of the

function 5: in F_.

Proof. Assume, for the sake of contradiction, that there exists an adversaryA that can produce

existential forgeries for Wots-cs+(_,ℓ, C, =, B) by running an adaptive chosen message attack in

time at most I and with success probability nA ≡ SuccEU-CMA
Wots-cs+(_,ℓ,C,=,B) (A) that is greater than

the insecurity bound claimed by the theorem. Then, we construct an oracle machine CA that

either breaks OW or SPR properties of F_ using A.

We let ñA be the probability that CA (given in Algorithm 5) arrives at line 22 by calling

A. That is

ñA = Pr[1U ≤ V∧ “Forgery is valid”∧ 1′U > V],

where “Forgery is valid” is 1 if and only if Ver("′,f′,pk) succeeds and "′ ≠" , or 0 otherwise.

From line 22 and forward, there are two possibilities:

1. either V = 0 or the intermediate steps of the verification of f′U contains a preimage of H2.

Then, CA returns preimage G with probability 1.

2. V > 0 and the intermediate steps of the verification of f′U do not contain a preimage of H2.

Then, CA returns a second preimage for G2, if the chaining function over f′U collides with

the chaining function of H2 at position =−W. Since we have picked W uniformly at random

in {0, . . . , V−1}, this event occurs with probability 1
V

lower bounded by 1
=
.

Then, by considering that the first case occurs with probability ? and the other with

probability 1− ?, we use the OW and SPR assumptions to upper bound ñA as

? · ñA ≤ InSecOW(F_; I′)

for the first case, and

(1− ?) ñA
=
≤ InSecSPR(F_; I′)

for the second. The new I′ = I +3C= is an upper bound of the time CA takes to setup, sign and

call A. Finally, we sum both equations and obtain

ñA ≤ InSecOW(F_; I′) += · InSecSPR(F_; I′). (6.5)

In the remainder of the proof, we derive a lower bound on ñA as a function of nA ,

considering the possibility that A might be able to distinguish the challenges inserted by CA .
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Algorithm 5 CA
Input: _, : ∈ K and challenges H2, G2 ∈ {0,1}_.
Output: A value G that is either a preimage of 5: (H2) or a second preimage of 5: (G2) or fail.

1: (sk,pk) ← Gen(1_).
2: U←$ {1, . . . , C}
3: "0←$ {! ∈ {0,1}ℓ : (01, . . . , 0C) = E(!) ∧ 0U ≠ =}
4: 0 = (01, . . . , 0C) ← E("0)
5: V = 0U ⊲ Note that V ≠ =

6: if V = 0 then

7: r′← r

8: else

9: W←$ {0, . . . , V−1}
10: r′ = r and replace A′W = 2

V−W−1

:
(H2,r=−V+1:) ⊕ G2 .

11: Obtain pk′ where pk′
i
= 2=

:
(ski,r

′) for 1 ≤ 8 ≤ C, 8 ≠ U and pk′U = 2
V

:
(H2,r′=−V+1:

).
12: Receive " from A in the query phase and (11 . . . , 1C) ← E(")
13: if 1U > V then

14: return fail
15: f = Sig(", sk,r′)
16: Replace fU = 2

V−1U

:
(H2,r′=−V+1:

)
17: Reply to query with f and obtain ("′,f′) from A
18: if ("′,f′) is a valid signature then

19: Let (1′
1
, . . . , 1′C) ← E("′)

20: if 1′U ≤ V then

21: return fail
22: else if V = 0 or 2

1′U−V
:
(f′U,r′=−1′U+1:

) = H2 then

23: return preimage G = 2
1′U−V−1

:
(f′U,r′=−1′U+1:

) ⊕ r=−V

24: else if G = 2
1′U−W−1

:
(f′U,r′=−1′U+1:

) ⊕ r=−W ≠ G2

and 2
1′U−W
:
(f′U,r′=−1′U+1:

) = 2
V−W
:
(H2,r′=−V+1:

) then

25: return second preimage G
26: return fail

In this case, A may intentionally provide a message " such that 1U > V or a forgery where

1′U ≤ V, thus making the probability ñA much smaller than nA .

Let two distributions DC and DGen over {0, . . . , =− 1} × {0,1}_ × {0,1}_×= ×K_. A

sample {V,D,A, :} ∈ DC is equivalent to choosing V as described in lines 2–5 of CA , and D,A, :

uniformly at random. A sample {V,D,A, :} ∈ DGen corresponds to choosing V as described in

lines 2–5 of CA , choosing A, : uniformly at random and D = 2
=−V
:
(G,A) with G←$ {0,1}ℓ. That

is, DC corresponds to the elements generated by CA , while DGen corresponds to the elements

generated in one Wots-cs+ signature chain up to =− V.

Let C′A be a new algorithm that is similar to CA , but takes input from DC or DGen

where H2 = D, see Algorithm 6. Then, C′A behaves as CA up until line 20, where if condition

1′U ≤ V is not satisfied, returns 1, and otherwise returns 0. Hence, given inputs from DC ,

C′A outputs 1 with probability ñA , identical to CA . However, given inputs from DGen, the
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Algorithm 6 C′A
Input: _, sample (V,D,r, :)
Output: 0 or 1

1: (sk,pk) ← Gen(1_). ⊲ A and : are taken from sample instead
2: U←$ {1, . . . , C}
3: Obtain pk′ where pk′

i
= 2=

:
(ski,r

′) for 1 ≤ 8 ≤ C, 8 ≠ U and pk′U = 2
V

:
(H2,r′=−V+1:

).
4: Receive " from A in the query phase and (11 . . . , 1C) ← E(")
5: if 1U > V then

6: return 0
7: f = Sign(", sk,r′)
8: Replace fU = 2

V−1U

:
(H2,r′=−V+1:

)
9: Reply to query with f and obtain ("′,f′) from A

10: if ("′,f′) is a valid signature then

11: Let (1′
1
, . . . , 1′C) ← E("′)

12: if 1′U ≤ V then

13: return 0
14: else

15: return 1
16: return 0

probability that C′A outputs 1 is

n̂A ≡ %A [1U ≤ V∧ “Forgery is valid”∧ 1′U > V]

with %A [“Forgery is valid”] = nA . This holds, since, in this case,A receives information from a

legitimate Wots-cs+ signature, whereas in the previous case A receives tampered data. Then,

we can rewrite the previous equation as

nA ·Pr[1U ≤ V∧ 1′U > V | “Forgery is valid”]
≥ nA ·Pr[1U = V∧ 1′U > 1U | “Forgery is valid”] .

Now we may evaluate each probability of the right-hand side of the inequality individually.

Let us consider a random variable - = |{8 : 1 ≤ 8 ≤ C, 18 < =}| under the condition “Forgery is

valid”. That is, the number of elements in E(") at the query phase of C′A that are not equal

to = and produce a valid forgery if f is sent to A. Then, recalling that U←$ {1, . . . , C}, by

Proposition 6.5.2 taking 9 = V and [ = =−1, we have

%A [1U = V | “Forgery is valid”] ≥ -

C
·
|g(C−1,=,B−(=−1)) |
|g(C,=,B) |

.

Furthermore, due to the properties of the constant-sum encoding, we must have that at least one

element in E("′) has increased when compared to E("). These elements then must be at least

one among all - elements, and thus by picking U uniformly at random we have that

%A [1′U > 1U | 1U = V∧ “Forgery is valid”] ≥ 1

-
.
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By putting together both evaluations we obtain

n̂A ≥
nA
C
·
|g(C−1,=,B−(=−1)) |
|g(C,=,B) |

For the final part of the proof, we observe that distinguishing distributions DC and

DGen with C′A is given by

AdvDC ,DGen
(C′A) = |n̂�− ñA |.

It also follows from C′A that n̂A is an upper bound of ñA . Hence, since n̂A ≥ ñA , using the

previous two equations, we get

nA ≤
C · |g(C,=,B) |

|g(C−1,=,B−(=−1)) |
(
AdvDC ,DGen

(C′A) + ñA
)
. (6.6)

Now we employ the hybrid argument method to bound this advantage by the undetectability of

F_. Let

AdvDC ,DGen
(C′A) =

=−1∑
V′=0

Pr[V = V′] ·AdvDV=V′
C ,DV=V′

Gen

(C′A)

whereDV=V′

C andDV=V′

Gen
denote the distributionsDC andDGen with element V fixed to V′. This

implies that there must exist at least one V★ such that

AdvDV=V★

C ,DV=V★

Gen

(C′A) ≥ AdvDC ,DGen
(C′A).

Then, we define hybrids �8 =
(
V★, 2

=−V★−8
:

(G,r8+1:), A, :
)

with 0 ≤ 8 ≤ =− V★, A and : uniformly at

random from their corresponding spaces and G←$ {0,1}_. Hence, we can rewrite the previous

inequality as

Adv�=−V★ ,�0
(C′A) ≥ AdvDC ,DGen

(C′A).

since �=−V★ and �0 coincide with DV=V★

C and DV=V★

Gen
, respectively. The hybrid argument states

that there must exist two consecutive distributions �8★ and �8★+1 with 0 ≤ 8★ < =− V★ such that

Adv�8★ ,�8★+1 (C
′A) ≥ 1

=− V★ AdvDC ,DGen
(C′A)

≥1

=
AdvDC ,DGen

(C′A).

Algorithm 7 C′′A
Input: _, sample (D, :)
Output: 0 or 1

1: Generate r←$ {0,1}_×=
2: Call C′A with inputs _ and

(
V★, 2

=−V★−(8★+1)
:

(D,r8★+2:),r, :
)

3: return Output of C′A

Finally, assuming that A can distinguish �0 and �=−V★, we construct a machine C′′A

that uses C′A to break the undetectability of F_, see Algorithm 7. Machine C′′A takes security



95

parameter _ and a distinguishing challenge (D, :). Then, C′′A chooses r uniformly at random

and calls C′A with
(
V★, 2

=−V★−(8★+1)
:

(D,r8★+2:),r, :
)

as input and returns its result. Denote a

sample from distribution DUD,U as taking D←$U_ and :←$K_ and a sample from DUD,F

as choosing :←$K_ and D ← 5: (U_). Then, a sample (D, :) taken from DUD,U entails

that 2=−V
★−(8★+1)

:
(U_,r8★+2:) is distributed exactly like the second element of the tuple �8★+1.

Furthermore, a sample (D, :) from DUD,F implies that

2
=−V★−(8★+1)
:

( 5: (U_),r8★+2:)

= 2
=−V★−(8★+1)+1
:

(U_ ⊕ r8★+1,r8★+1:)

= 2
=−V★−8★
:

(U_,r8★+1:)

is distributed exactly like the second element of the tuple �8★, where we use the fact that the

⊕ operator of a uniformly distributed value with some other value with arbitrary distribution

results in a uniformly distributed value. From this we have that

AdvDUD,U ,DUD,F (C′′
A) = Adv�8★ ,�8★+1 (C

′A)

and furthermore

AdvDUD,U ,DUD,F (C′′
A) ≤ InSecUD(F_; Ĩ)

with bounded running time Ĩ = I+3C=+=. This bound is obtained from the running time cost of

running C′A that is the same as the previously calculated running time I′ = I +3C=, in addition

to at most =−1 calls to 5: for C′′A to initialize the input before calling C′A . Lastly, by joining

these last results, we have

AdvDC ,DGen
(C′A) ≤ = · InSecUD(F_; Ĩ).

that yields

nA ≤
C · |g(C,=,B) |

|g(C−1,=,B−(=−1)) |
(
= · InSecUD(F_; Ĩ) + ñA

)
by using (6.6). Finally, by applying (6.5) we obtain the bound on nA that leads to the contradic-

tion. �

6.5.3 Security level

We now follow the same argument as in (HÜLSING, 2013b; KUDINOV; KIKTENKO;

FEDOROV, 2020) to compute the security level of our variant signature scheme, as previously

defined in Section 2.2. Wots-cs+ has a security level @ if a successful attack is expected to

undertake, on average, 2@−1 evaluations of the one-way function from the family F_. Hence, we

derive a lower bound for I by considering

InSecEU-CMA(Wots-cs+(_,ℓ, C, =, B); I,1) ≥ 1

2
.
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We now use the same assumptions as related works (HÜLSING, 2013b; KUDINOV; KIK-

TENKO; FEDOROV, 2020) regarding the insecurity of F_, following that

InSecUD(F_; I) = InSecOW(F_; I) = InSecSPR(F_; I) = I

2_
.

Furthermore, since I≫ 4C= for practical attacks, we can use the fact that I ≈ Ĩ ≈ I′with negligible

difference. We solve the security level bound for I as

C · |g(C,=,B) |
|g(C−1,=,B−(=−1)) |

(
=
I

2_
+ I

2_
+= I

2_

)
≥ 1

2

C · |g(C,=,B) |
|g(C−1,=,B−(=−1)) |

(2=+1) I
2_
≥ 1

2
.

Finally, we have that

I ≥ 2_ · 1
2
· 1

(2=+1) ·
|g(C−1,=,B−(=−1)) |

C · |g(C,=,B) |
I ≥ 2_−1+log2 ( |g(C−1,=,B−(=−1)) |)−log2 (C (2=+1) |g(C ,=,B) |)

yields the security bound

@ ≥ 2_+log2 ( |g(C−1,=,B−(=−1)) |)−log2 (C (2=+1) |g(C ,=,B) |)

against classical adversaries and

@ ≥ 2
_
2 +log2 ( |g(C−1,=,B−(=−1)) |)−log2 (C (2=+1) |g(C ,=,B) |)

against quantum adversaries.

Table 15 – Security level @ for Wots+ and Wots-cs+ and _ = ℓ = 256.

Adversary C F = B Wots+ Wots-cs+

Classical
34 256 226 3643 233.91 233.99

67 16 15 400 240.89 240.19

Quantum
34 256 226 3643 105.91 105.99

67 16 15 400 112.89 112.19

Source: The author.

To give a better idea of the security level, we compare our bound to the ones given

in (KUDINOV; KIKTENKO; FEDOROV, 2020) for classical and quantum attacks. We observe

that we consider _
2 for quantum attackers using Grover’s algorithm, as also presented in previous

works. The parameters in Table 15 match those of Table 4 and Table 5 with ℓ = 256 for the

respective value of C. The Wots+ security level against classical and quantum attacks, according

to (KUDINOV; KIKTENKO; FEDOROV, 2020), are given respectively by

@ > _− log2(CF) − log2(2F +1),

@ >
_

2
− log2(CF) − log2(2F +1).
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6.6 FURTHER DEVELOPMENTS

Algorithm 8 Deterministic constant-sum encoding dcs for alternate parameters
Input: C, =, B ∈ N, � ∈ ](C,=,B)
Output: (11, . . . , 1C) ∈ g(C,=,B)

1: if C = 1 then

2: return (B)
3: 1← 0

4: ℎ; ← 0

5: ℎA ← |g(C−1,=,B) |
6: while not ℎ; ≤ � < ℎA do

7: 1← 1 +1

8: ℎ; ← ℎA
9: ℎA ← ℎA + |g(C−1,=,B−1) |

10: return (=− 1) | | dcs(C −1, =, B− 1, � − ℎ;)

During the submission process of (PERIN et al., 2021), it was noted that there are

application scenarios for the alternative parameters, suggested in Section 6.4.2. The results for

these parameters are given without considering the running time of the encoding algorithm,

justified by the application scenario. However, it turns out that the running times of the dcs

and dbcs may take a huge hit in performance, due to the increased value B of the alternate

parameters. This motivated us to include a slight modification to Algorithm 2 that completely

avoids this performance issue. Recall from Proposition 6.1.1 that |g(C,=,B) | = |g(C,=,C=−B) | and if

(G1, . . . , GC) ∈ g(C,=,B) , then we must have that (=− G1, . . . , =− GC) ∈ g(C,=,C=−B) . We restate dcs in

Algorithm 8 with the modification highlighted in red for completion, and remark that the same

change can be trivially implemented for dbcs.

Another contribution that was not included in the constant-sum paper, was later inves-

tigated by (ZAMBONIN, 2021). Two key observations that are made in the report: the first is

that the particular case of the encoding benchmarks of Figure 10 is implemented in C++ and

uses techniques such as object oriented and templates to instantiate each parameter set of the

test. By using the C implementation, similar to the one used for the Xmss experiment, it is

possible to remove the overhead caused by these techniques and improve the performance of the

encoding function by up to 2.19 and 2.49 for dcs and dbcs respectively, when < = 256. Similar

performance gains are also reported for < = 512.

The main contribution of (ZAMBONIN, 2021) is the improved dcs+. This modified

algorithm reuses values that are computed in each iteration of the dcs algorithm, to avoid heavy

and repeated computations of large binomials. We show in Figure 11 the ratio of the running

time of dcs and dbcs divided by the respective implementation in C. The figure also shows the

ratio of the running time of dcs divided by dcs+. Considering the latter and for parameters

C = 34 and ℓ = 256, the encoding dcs+ algorithm outperforms our implementation running 4.42

times faster. Moreover, the author also provide further investigations of memory consumption

of the recursive algorithms, compared to an iterative version.
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Figure 11 – Running time ratio of dcs and dbcs implemented in C++ divided by the respective implementation in
C and dcs+.
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(b) ℓ = 512 and 60 ≤ C ≤ 140.

Source: Zambonin (2021)

It is interesting to observe, despite the achievements in (ZAMBONIN, 2021), that

the discussion of the performance of the constant-sum encoding algorithms in 6.4 still holds.

Unfortunately, it seems that for the general applicability of our algorithms one would have to

reduce running time by at least two or three orders of magnitude.
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7 FINAL REMARKS

In this chapter, we discuss the results we have achieved with our contributions. As

we have discussed on each respective chapter, there are several improvements that we have

found for each of our proposals. However, there are implications regarding trade-off costs or

increased complexity to the encoding algorithm that prevent our techniques to be considered a

general purpose drop in solution. For this reason, we provide a summary of scenarios where

we think we can implement our proposals successfully. We finalize with an overview of our

accomplishments and relevant open problems that we leave for future work.

7.1 APPLICATIONS

7.1.1 Relevant application cases for Wots-br

As it was originally intended, Wots-br was proposed as a general case solution for

digital signatures. This is mainly due to the particular case where we expect to verify documents

many times, but the signature occurs only once. We show that with a few iterations, i.e. ' = 25,

we can already have faster verification speeds in average. As we increase ', this becomes more

noticeable, but signature costs thus are increased. Unfortunately, for the case of improving

signature speeds, there is only a few scenarios where Wots-r can produce positive results. This

is mainly due to the fact that the ' iterations have to be performed by the signer. Hence, we

believe that Wots-cs+ performs better in this scenario. We give more details on this in the next

section.

The main case where Wots-br might play its part today was pointed out in (BOS et al.,

2020). As an example, the authors mention firmware updates and secure boot for IoT devices.

In such cases, signatures can be generated using high-end and powerful processors, much more

efficiently. The verification is performed several times, by devices with limited computational

capabilities. Hence, Wots-br can be successfully deployed in such cases to reduce the cost for

these devices to assert the integrity and authenticity of a firmware update. Indeed, if time is

also not a constraint, authors in (BOS et al., 2020, Table 7.2) give performance estimates when

committing to minimize signature verification costs with Wots-r for minutes, hours, days and

even a week.

7.1.2 Relevant application cases for Wots-cs+

The main applications that can benefit from our contributions with Wots-cs+ are those

that require predictability of the costs associated with the generation of keys and signatures,

and the subsequent signature verification. These applications are most commonly found on

computing devices with limited resources. However, the benefit of predictability leads to an
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increased encoding cost. Therefore, through examples, we present applications where the

encoding costs can be adequately treated, clarifying the benefits of this alternative.

A case of interest is a typical scenario in which devices such as smart cards are used to

sign electronic documents. In general, these devices generate private keys with minimal memory

and processing capabilities, without ever exposing them to the outside world. For a document

to be signed, it is necessary to determine its hash externally to the smart card. In practice, this

step is done by computers with higher computational power, and the hash is then sent to the

smart card to be signed. Upon receiving the signature, the external computer proceeds with

the assembly of the representation structure of the signed document (RANKL; EFFING, 2010,

Chapter 23). Considering this scenario, the constant-sum encoding can be previously computed

and sent to the signing device. We can also choose the exact number of hash operations that

we want to perform during the signature by observing the parameters proposed in this work.

We show in Section 6.4.2 that we can improve the generation of signatures for this case, using

parameters compatible to the standard ones for Wots+ (HÜLSING et al., 2018).

The second scenario of considerable practical importance is the preservation of the

long-term authenticity of data. For example, consider large signature databases that need to be

updated to be resistant against quantum attacks. Such applications might require a substantial

volume of signatures to be generated over time. Since hash-based signatures are most likely

going to be deployed in secure platforms that can guarantee state integrity (COOPER et al.,

2020), it is also likely that the signing device will be provided only with the necessary data

to perform the signature, despite its CPU capabilities. Hence, a trusted party can perform the

document digest and its encoding, and place it in a queue. In this case, the signing device may

benefit from our parameter selection, with a smaller and fixed number of hash operations to

perform for each signature, increasing its throughput. Furthermore, to decrease storage space

requirements, less traditional parameters can be used to output Wots-cs+ signatures that are

close to half of the size required by using standard parameters (e.g., C = 34 in Table 11). We

also obtain significant improvements to key generation costs for these new parameter selections,

which may also impact signature performance, further decreasing the number of required hash

operations.

Finally, in some other situations, it is interesting to focus on verifying signatures more

efficiently, as discussed in the case of Wots-r. Considering this scenario, Wots-cs+ can

control and reduce the number of hash operations needed to be performed in the verification

process. This case is more challenging to implement, as we have seen that the costs related to

the encoding may substantially diminish the gains with the reduced verification cost, as well

as being impractical for some devices. We recall that, whenever possible, the encoding can be

included in the signed message, which the verifier can either trust or use to reduce the encoding

cost with vcs, before verifying the signature.
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7.2 ACHIEVEMENTS AND CONCLUSION

In this thesis, we have reviewed encoding alternatives that were proposed to replace the

base-w encoding originally in Wots and its state of the art variant Wots+. We have proposed

two major contributions, namely Wots-br and Wots-cs+. The first is a composition of two

simple techniques that produce remarkable results for improving signature verification running

time with a trade-off where signature generation running time is increased. The second is an

improvement of the constant-sum encoding alternative, that minimizes the cost of key generation

for Winternitz-based schemes, thus reducing signing and verifying running times as well.

For Wots-br, we have introduced a padding to the base-w encoding that enables faster

verification for Wots+ and consequently Xmss. This proposal is not compatible with RFC 8391,

but we hope it is considered for future revisions of hash-based signature standards. Furthermore,

we have proposed a technique to randomize the message to be signed that can greatly increase

verification performance. This technique was later adapted to be compatible with RFC 8391 and

shown to reduce the average verification cost of a single Wots+ signature by up to 55.5% (BOS

et al., 2020, Table 7.2). The same authors use our contribution, along with other modifications

proposed in the literature, to achieve Xmss verification running time in Cortex-M4 devices at

half the expected average time.

For the case of Wots-cs+, we introduce new deterministic encoding algorithms for

the constant-sum variant of the Winternitz one-time signature scheme, Wots-cs. Our methods

have reduced costs associated with the encoding function by employing distinct techniques such

as dynamic programming and binary search. Not only do we achieve faster encoding than the

probabilistic alternative in the literature, but we expand the sets of parameters that can be used

with Wots-cs, by aiming to reduce the cost of key generation for hash-based signatures.

As a result, our approach allows for a flexible trade-off between costs of key genera-

tion, signature generation and signature verification, by accepting both strategies for selecting

parameters: MinVer or MinGen. Our approach allows us to reduce the number of applications

of the chaining function for the key generation step, achieving better costs that are more com-

petitive to those obtained with Wots+. We emphasize that reducing the cost of key generation

is particularly interesting, since it decreases the overall cost for all signature-related steps and is

not covered by other constant-sum-related works (CRUZ; YATANI; KAJI, 2016; KAJI; CRUZ;

YATANI, 2018).

For specific sets of parameters, our parameter selection can yield faster key generation,

signature generation and signature verification simultaneously, when compared to Wots+; see

Table 11. Indeed, these results are reflected in other hash-based signature schemes, such as

Xmss; see C = 34 in Table 12. We also observe that the reduction factor in the key generation cost

is invariant to the height of the Xmss tree, that is, the number of leaves containing a Winternitz

scheme instance. Experiments in Table 12 show the potential improvements of Wots-cs+ for

all sets of parameters, if better encoding algorithms are discovered.

Alternatively, we propose distinct parameters that can be used with specific applications,
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reducing the cost of signature generation instead of verification. This is a relevant scenario for

many cases related to the signature of electronic documents. We argue that signing devices can

take advantage of the predictable and reduced cost for signing without having to deal with the

encoding cost (Section 6.4.2).

Another significant contribution of our work is the comprehensive study of the constant-

sum tuples. We prove several interesting and fundamental properties that are crucial for the

security analysis of the scheme. Under a wide range of acceptable parameters, we prove that

Wots-cs+ is EU-CMA provided thatF_ is a one-way, second preimage resistant and undetectable

function family. This is a major improvement over Wots-cs (KAJI; CRUZ; YATANI, 2018),

placing Wots-cs+ on pair with the security of Wots+ for the same signature sizes. Previously,

the constant-sum scheme security relied on stronger assumptions such as collision resistance.

7.2.1 Open problems and future work

At the end of Section 6.4.2, we have indicated that alternative parameter combinations

that reduce Sig in the context of Xmss could be tailored for specific applications. Such studies

are an interesting avenue for further research.

While we believe that several applications may benefit from our contributions, we

acknowledge that the encoding performance of Wots-cs+ needs to be improved for widespread

applicability. This obstacle could be overcome by future research on more efficient encoding

algorithms for the constant-sum tuples. It may be possible to adapt combinatorial algorithms that

apply to classic problems, such as unranking a generalized composition of a number (KNUTH,

2011). The constant-sum encoding functions studied so far use a lexicographical order of

tuples in g(C,=,B) . Future work could improve encoding performance for this ordering or perhaps

they could use a different ordering of tuples in g(C,=,B) that may lead to more efficient encoding

algorithms. We hope that this could potentially make Wots-cs+ more widely applicable.

Lastly, we also believe that by reducing costs related to some part of the signature

algorithms might also produce interesting power consumption studies. For example, it might be

interesting to understand better how Wots-r power consumption is affected as ' is increased,

when verifying signature with IoT devices.
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