

Nícolas Pfeifer

A Reinforcement Learning Approach to Directed Test Generation for

Shared Memory Verification

Dissertação submetida ao Programa de Pós-
Graduação em Ciência da Computação para a
obtenção do título de Mestre em Ciência da
Computação.
Orientador: Prof. Luiz Cláudio Villar dos San-
tos, Dr.

Florianópolis

2021

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Pfeifer, Nícolas
 A reinforcement learning approach to directed test
generation for shared memory verification / Nícolas Pfeifer
; orientador, Luiz Cláudio Villar dos Santos, 2022.
 72 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2022.

 Inclui referências.

 1. Ciência da Computação. 2. Verificação. 3. Memória
compartilhada. 4. Geração aleatória de testes. 5.
Aprendizado por reforço. I. Santos, Luiz Cláudio Villar
dos. II. Universidade Federal de Santa Catarina. Programa
de Pós-Graduação em Ciência da Computação. III. Título.

Nícolas Pfeifer

A Reinforcement Learning Approach to Directed Test Generation for Shared Memory

Verification

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca examinadora

composta pelos seguintes membros:

Prof.a Cristina Meinhardt, Dr.a

Universidade Federal de Santa Catarina

Prof. Márcio Bastos Castro, Dr.

Universidade Federal de Santa Catarina

Prof. Sandro Rigo, Dr.

Universidade Estadual de Campinas

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado

adequado para obtenção do título de Mestre em Ciência da Computação.

Prof.a Patricia Della Méa Plentz, Dr.a

Coordenadora do Programa

Prof. Luiz Cláudio Villar dos Santos, Dr.

Orientador

Florianópolis, 2021.

ACKNOWLEDGEMENTS

I would first like to thank my supervisor, Luiz C. V. dos Santos, whose expertise helped

shape this dissertation. I would like to thank Gabriel A. G. Andrade, Marleson Graf, Bruno V.

Zimpel, and Rafael P. Alevato for conceptual discussions and technical help at our research

group. I would also like to thank my colleagues at Embedded Computing Laboratory for great

conversations during coffee breaks. In addition, I would like to thank my friends and family for

their companionship during difficult times. Finally, I could not have completed this dissertation

without the unwavering support of my wonderful wife, Ana Paula.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

RESUMO

É esperado que multicore chips continuem a utilizar memória compartilhada coerente. Apesar
do hardware de coerência escalar elegantemente, o espaço de estados do protocolo de coerên-
cia aumenta exponencialmente com o aumento do número de cores. É por isso que verificação
de hardware requer geração de testes dirigida (DTG), para o controle dinâmico de cobertura
no limite curto de tempo proveniente de lenta simulação e curto tempo disponível para a ve-
rificação. É esperado que a próxima geração de ferramentas de Electronic Design Automation

utilizem aprendizado de máquina para obter valores mais altos de cobertura em menos tempo.
Esta dissertação propõe uma técnica que modela DTG como um processo de decisão e busca
encontrar uma política de decisão que maximiza a cobertura acumulada como resultado da exe-
cução de ações sucessivas por um agente. A técnica proposta utiliza conhecimento consolidado
de geração aleatória de testes (RTG), em vez de somente utilizar aprendizado. Ela modela DTG
como RTG dirigida por cobertura e explora mecanismos de RTG distintos, sujeitos a limitações
progressivamente mais restritivas. Quatro geradores de aprendizado por reforço foram compa-
rados com dois geradores estado da arte baseados em geração híbrida e programação genética.
Os resultados experimentais mostram que a aplicação de restrições apropriadas é mais eficiente
para guiar o aprendizado para atingir coberturas maiores, do que somente permitir que o gerador
aprenda como selecionar os eventos de memória mais promissores para o aumento de cobertura.
Para um projeto com 32 núcleos e o protocolo MOESI com dois níveis, a abordagem proposta
obteve a cobertura mais alta (94.06%) observada (p < 0.05), e foi duas vezes mais rápida para
alcançar a maior cobertura obtida pelo gerador híbrido, assim como foi sete vezes mais rápida
para alcançar a cobertura máxima obtida pelo gerador baseado em programação genética.

Palavras-chave: Multicore. Memória compartilhada. Verificação. Geração aleatória de testes.

Aprendizado por reforço. Processo de decisão.

RESUMO EXPANDIDO

Introdução

Multiprocessadores estão presentes em dispositivos pessoais (como, por exemplo, os smartpho-

nes), em computadores e em servidores usados em data centers. Os processadores que compõe
um multiprocessador comunicam-se através de memória compartilhada e adotam uma hierar-
quia de cache para diminuir o tempo de acesso à memória. Multiprocessadores em um único
chip são conhecidos como multicores. O uso de caches privadas dá origem ao problema de
coerência de cache: para o mesmo endereço de memória, poderiam ser observados valores di-
ferentes em caches privadas distintas. Este problema é geralmente resolvido através do uso
de protocolos de coerência, que oferecem ao programador uma visão coerente da memória. O
comportamento de um sistema de memória compartilhada coerente é formalmente descrito por
um modelo de consistência de memória. Como modelos de consistência de memória mais res-
tritivos limitam muitas otimizações de hardware, arquiteturas sofisticadas (como ARMv8, IBM
Power9 e RISC-V) utilizam modelos de consistência de memória relaxados. Entretanto, mode-
los de memória relaxados aumentam o número de execuções válidas de um programa paralelo,
tornando mais difícil a validação do projeto de um multicore. Apesar de existirem multicores

com caches não coerentes, espera-se que multicores de uso geral continuem a utilizar memória
compartilhada coerente. Felizmente, a complexidade do hardware que implementa a coerência
aumenta moderadamente com o crescimento do número de núcleos de um multicore, o que vi-
abiliza o projeto. Infelizmente, o número de estados induzidos por um protocolo de coerência
aumenta exponencialmente com o crescimento do número de núcleos, o que desafia a verifi-

cação do projeto. Devido à limitação imposta pela potência térmica, ocorre uma subutilização
dos transistores disponíveis para a fabricação de multicore chips, um efeito conhecido como
dark silicon, que limita o aumento do número de núcleos. Entretanto, apesar dessa limitação,
o aumento esperado para o número de núcleos ainda representa um grande desafio para a veri-
ficação. Assim, a combinação de consistência relaxada e coerência de cache torna a validação
do comportamento de memória compartilhada uma tarefa muito desafiante, a qual requer abor-
dagens específicas. A abordagem utilizada para a validação do protótipo de um multicore chip

consiste em usar um gerador aleatório de testes para induzir eventos de memória, os quais são
então monitorados e analisados por um checker independente que verifica os axiomas do mo-
delo de memória. Porém, quando essa abordagem é aplicada em tempo de projeto, a baixa
velocidade de simulação e o curto tempo disponível para verificação tornam necessária uma
nova abordagem: a geração dirigida de testes. Esta dissertação formula a geração dirigida de
testes como geração aleatória de testes dirigida por cobertura.

Objetivos

A geração aleatória de testes dirigida por cobertura é formulada como um problema de otimi-
zação restringido por tempo da seguinte maneira. Problema: Dado um conjunto de compor-
tamentos de memória válidos, encontrar uma sequência de testes aleatórios que maximize a
cobertura obtida no tempo disponível. Entretanto, este trabalho não aborda esse problema dire-
tamente. Em vez disso, o problema é modelado como um processo de decisão e o objetivo se
torna encontrar uma política de decisão que maximize a recompensa acumulada obtida a partir
da execução de ações sucessivas por um agente. Como a probabilidade de transição de estados
pela execução de ações é desconhecida, o problema se torna um problema de aprendizado por
reforço. As contribuições desta dissertação são as seguintes: (1) Uma nova técnica de geração
dirigida de testes baseada em aprendizado por reforço, denominada Reinforcement Learning

Generator (RLG). Essa técnica é reutilizável, pois é independente da métrica de cobertura e do
protocolo de coerência utilizados. Ela também conta com ações customizáveis que dependem
do gerador aleatório de testes escolhido; (2) Uma avaliação de como informações específicas do
domínio de aplicação (normalmente modeladas como restrições à geração) podem ser utilizadas
para aprimorar o aprendizado.

Metodologia

O ambiente no qual o processo de decisão ocorre contém um gerador aleatório de testes, um
simulador de multicore, um cronômetro e um analisador de cobertura. O agente que executa
ações no ambiente é denominado Directing Engine. O analisador de cobertura e o cronômetro
criam um estado que representa o ambiente e atribuem uma recompensa a cada ação executada
em um dado estado. Como a verificação é restringida por tempo para alcançar objetivos de co-
bertura, uma representação adequada do ambiente pode ser definida como o par (c, t), em que
c representa o valor de cobertura acumulada (quantificada pela métrica de cobertura adotada
em cada ambiente) e t representa o tempo necessário para atingir essa cobertura. Para limitar a
quantidade de estados possíveis, esses valores são quantizados. Uma vez que o agente interage
com o ambiente através do gerador aleatório de testes, as ações são formuladas em termos dos
parâmetros do gerador, que são usados para restringir o gerador aleatório de testes. Uma ação
deve obter uma melhor recompensa, caso ela produza um maior aumento na cobertura em me-
nos tempo. Portanto, uma função de recompensa adequada pode ser definida como a diferença
na cobertura acumulada dividida pelo tempo necessário para executar o teste definido pela ação.
Utilizando essa formulação, o objetivo do agente é encontrar uma política de decisão para che-
gar ao máximo de cobertura no tempo disponível. Foram construídos quatro geradores a partir
da técnica proposta (RLG-, RLG+, RLG* e RLG**). Cada gerador foi construído a partir do
mesmo Directing Engine, mas utilizando um gerador aleatório de testes distinto. As variantes
do gerador proposto utilizaram quatro geradores aleatórios de testes, cada um sujeito a restri-
ções progressivamente mais limitantes. O RLG- utiliza um gerador que restringe a quantidade
de operações e de variáveis compartilhadas utilizadas nos testes. O RLG+ utiliza um gerador
que também restringe a quantidade de operações e de variáveis compartilhadas, porém, utiliza
restrições de biasing para controlar a ocorrência de cache eviction. O RLG* utiliza um gerador
com as mesmas restrições dos geradores anteriores, mas emprega restrições extras de chaining.
E, por fim, o RLG**, além de todas as restrições anteriores, também controla sharing, impondo
true sharing ou habilitando false sharing. Os geradores propostos foram comparados com dois
geradores dirigidos de teste do estado da arte: McVerSi Test Generator (MTG) e Hybrid Test

Generator (HTG). O simulador utilizado para a representação de multicores foi o gem5, com
32 núcleos. Para que os resultados não dependessem do protocolo de coerência utilizado, em-
pregamos dois protocolos distintos: MESI e MOESI. Tomando como base os objetivos usuais
da verificação de hardware, os geradores foram analisados sob os seguintes critérios: aumento
da descoberta de erros e da cobertura obtida, bem como a redução do esforço necessário para
descobrir erros e alcançar valores de cobertura. Para a averiguação da evolução de cobertura,
foram utilizadas duas métricas complementares: estrutural e funcional. Para os experimentos
de esforço, foram injetados erros artificiais na máquina de estados do controlador da cache
(mudando o próximo estado de uma transição ou impedindo sua ação correspondente).

Resultados e Discussão

Foram executados experimentos em quatro ambientes de verificação distintos. Cada um dos
ambientes utilizou um protocolo de coerência (MESI ou MOESI) e uma métrica de cobertura
(estrutural ou funcional). Nos experimentos de cobertura, os geradores foram comparados tanto

pela evolução de cobertura quanto pela cobertura final alcançada. A técnica proposta alcançou
a maior cobertura em todos os quatro ambientes estudados, além de mostrar uma evolução de
cobertura comparável com os outros geradores (MTG e HTG) na maioria dos casos. No ambi-
ente de verificação mais desafiador estudado (MOESI com métrica de cobertura funcional), o
RLG+ atingiu uma cobertura de 94,09%, enquanto o HTG atingiu 93,13% e o MTG, 92,54%.
Além disso, o RLG+ foi mais de duas vezes mais rápido para atingir a cobertura final do HTG e
7 vezes mais rápido para atingir a cobertura final do MTG. Nos experimentos de esforço de des-
coberta de erros, o RLG também se mostrou superior ou competitivo com os outros geradores
em todos os casos. Para o protocolo MESI, o gerador proposto conseguiu expor todos os erros
estudados em 21 minutos, enquanto o HTG precisou de 27 minutos e o MTG, de 3 horas. Para
o protocolo MOESI e a métrica funcional, nosso ambiente mais complexo, o RLG+ necessitou
de 8 minutos para expor todos os erros (menos um), enquanto o HTG necessitou de 21 minutos
e o MTG, 80 minutos. Concluiu-se então que o gerador proposto foi superior na maioria dos
casos estudados, especialmente nos ambientes de verificação mais desafiadores. Isso indica que
uma técnica de geração dirigida de testes baseada em aprendizado por reforço, quando aliada a
restrições de geração apropriadas, tem alta probabilidade de lidar bem com as necessidades de
verificação de novos projetos de multicores. Além disso, os experimentos indicaram que existe
uma relação entre a evolução de cobertura e a velocidade de aprendizado da técnica proposta.
Restrições de geração podem influenciar o aprendizado, especialmente quando as restrições
afetam o tamanho do espaço de geração. Pois, se por um lado, restrições que levam a espaços
de tamanho pequeno podem limitar o agente ao não fornecer a ele uma quantidade suficiente
de testes para alcança altos valores de cobertura. Por outro, espaços de geração também podem
ser grandes demais, dificultando a evolução de cobertura ao sobrecarregar o agente com uma
quantidade de testes muito grande, tornando a tarefa de encontrar bons testes mais difícil. Por-
tanto, a escolha de restrições de geração deve ser feita cautelosamente, especialmente quando
se tratando de métodos que utilizam aprendizado.

Considerações Finais

A lenta simulação de multicores e o curto tempo disponível para a validação requerem o uso de
geração dirigida de testes para o controle eficiente de cobertura. Esta dissertação propõe mode-
lar geração dirigida de testes como geração aleatória de testes dirigida por cobertura. Com base
na estimativa de cobertura e no tempo decorrido, a técnica proposta seleciona alguns parâme-
tros de geração, de forma que maximiza a cobertura no tempo disponível. O gerador proposto
utiliza aprendizado por reforço para aprender como selecionar os parâmetros de geração, de
maneira a maximizar a evolução de cobertura. Os parâmetros dos testes são selecionados atra-
vés do uso de ações customizáveis, o que torna o agente adaptável a geradores aleatórios de
testes distintos. O agente também é reutilizável para diferentes protocolos de coerência, pois
ele somente tem acesso ao percentual da cobertura alcançada através de uma métrica de cober-
tura. Foram propostas quatro variantes do gerador, cada uma utilizando restrições de geração
mais limitantes baseadas em informações específicas do domínio de aplicação. Experimentos
foram realizados para comparar o gerador proposto com dois geradores do estado da arte sob
três diferentes aspectos: evolução de cobertura, detecção de erros e esforço. Os geradores fo-
ram analisados sob dois protocolos de coerência (MESI e MOESI) e duas métricas de cobertura
(estrutural e funcional). No ambiente de verificação mais desafiador estudado, o gerador pro-
posto conseguiu atingir uma cobertura final mais alta do que os geradores comparados, assim
como foi de 2 a 7 vezes mais rápido para atingir a cobertura final desses geradores. O RLG+
precisou de 8 minutos para descobrir todos os erros (menos um) neste ambiente, enquanto os
outros geradores necessitaram de 21 a 80 minutos. Os resultados experimentais mostram que
aprendizado por reforço pode gerar uma técnica de geração dirigida de testes efetiva quando ela

utiliza informações específicas do domínio de geração aleatória de testes. Os experimentos tam-
bém mostraram que a utilização de aprendizado por reforço é altamente aperfeiçoada quando
restrições adequadas são utilizadas na geração. O particionamento de tarefas complementares
em módulos independentes (um utilizando o conhecido, outro explorando o desconhecido) pa-
rece ter a sinergia necessária para a nova geração de ferramentas de verificação. Como trabalho
futuro, pretendemos conduzir uma análise sobre o impacto de novas ações, realizar um estudo
sobre o impacto do treinamento online e propor um novo agente generalizado que tenha um
controle mais refinado sobre o processo de geração.

Palavras-chave: Multicore. Memória compartilhada. Verificação. Geração aleatória de testes.

Aprendizado por reforço. Processo de decisão.

ABSTRACT

Multicore chips are expected to continue to rely on coherent shared memory. Albeit the co-
herence hardware can scale gracefully, the protocol state space grows exponentially with core
count. That is why design verification requires directed test generation (DTG) for dynamic
coverage control under the tight time constraints resulting from slow simulation and short ver-
ification budgets. Next generation Electronic Design Automation tools are expected to exploit
Machine Learning for reaching high coverage in less time. This dissertation proposes a tech-
nique that addresses DTG as a decision process and tries to find a decision-making policy for
maximizing the cumulative coverage, as a result of successive actions taken by an agent. In-
stead of simply relying on learning, the proposed technique builds upon the legacy from con-
strained random test generation (RTG). It casts DTG as coverage-driven RTG, and it explores
distinct RTG engines subject to progressively tighter constraints. Four Reinforcement Learn-
ing generators were compared with two state-of-the-art generators based on hybrid generation
and Genetic Programming. The experimental results show that the proper enforcement of con-
straints is more efficient for guiding learning towards higher coverage than simply letting the
generator learn how to select the most promising memory events for increasing coverage. For
a 2-level MOESI 32-core design, the proposed approach led to the highest observed (p < 0.05)
coverage (94.09%), and it was 2 times faster than the hybrid generation method to reach the
latter’s maximal coverage, as well as 7 times faster than the Genetic Programming technique to
achieve its maximal coverage.

Keywords: Multicore Chips. Shared Memory. Design Verification. Random test generation.

Reinforcement Learning. Decision process.

LIST OF FIGURES

Figure 1 – A coverage-driven RTG approach to DTG. 27

Figure 2 – FSM of the MESI coherence protocol . 32

Figure 3 – Example of false sharing occurring in a 2-core processor 33

Figure 4 – An example of a recurrent neural network 35

Figure 5 – Coverage evolution for 3-level MESI using the structural coverage metric . . 50

Figure 6 – Coverage evolution for 2-level MOESI and the structural coverage metric . . 52

Figure 7 – Coverage evolution for 3-level MESI using the functional coverage metric . 53

Figure 8 – Coverage evolution for 2-level MOESI using the functional coverage metric 54

Figure 9 – Impact of constraints on learning for 3-level MESI and given coverage metric 56

Figure 10 – Impact of constraints on learning for 2-level MOESI and given coverage metric 57

Figure 11 – Coverage evolution for 2-level MOESI using the functional coverage metric

with extra random seeds . 63

Figure 12 – Impact of test size granularity on coverage evolution for 3-level MESI . . . 64

Figure 13 – Impact of time quantization on coverage evolution of 3-level MESI 65

LIST OF TABLES

Table 1 – An illustrative example for the coherence problem 30

Table 2 – RTG Related Work . 39

Table 3 – DTG Related Work . 40

Table 4 – RL for DTG Related Work . 41

Table 5 – Comparison between DTG techniques being evaluated 48

Table 6 – Studied errors for MESI 3-level designs . 49

Table 7 – Studied errors for MOESI 2-level designs 49

Table 8 – Effort for finding errors in MESI 3-level designs with both structural and

functional coverage metric . 58

Table 9 – Effort for finding errors in MOESI 2-level designs with both structural and

functional coverage metric . 60

LIST OF ABBREVIATIONS AND ACRONYMS

CPU Central Processing Unit

RTG Random Test Generator

DTG Directed Test Generator

MCM Memory Consistency Model

RL Reinforcement Learning

LRU Least Recently Used

FSM Finite State Machine

GA Genetic Algorithms

MDP Markov Decision Process

RNN Recurrent Neural Network

RLG Reinforcement Learning Generator

MTG McVerSi Test Generator

HTG Hybrid Test Generator

MESI Modified Exclusive Shared Invalid

MOESI Modified Owned Exclusive Shared Invalid

mult f (i) = 2i test size induction function

sqrt f ′(i) = ⌈2i/2⌉ test size induction function

LIST OF SYMBOLS

t Elapsed time

c Cumulative coverage value

C Coverage quantization levels

T Time quantization levels

γ Quantized cumulative coverage value

τ Quantized elapsed time value

E Environment state space

p j j-th random test generator parameter

Vj Set of allowed values for parameter p j

V Generation space

v Allowable setting for RTG parameters

a Agent action

Ra Reward for executing action a

n Number of memory operations

s Number of shared locations

k Number of distinct cache sets to which locations can be mapped

f Enforce true sharing or enable false sharing

N Set of allowed values for the number of memory operations

S Set of allowed values for the number of shared location

K Set of allowed values for parameter k

CONTENTS

1 INTRODUCTION . 25

1.1 TARGET PROBLEM AND PROPOSED APPROACH 27

1.2 CONTRIBUTIONS . 27

1.3 ORGANIZATION OF THIS DISSERTATION 28

2 BACKGROUND . 29

2.1 COHERENT SHARED MEMORY CONCEPTS 29

2.1.1 Cache basics . 29

2.1.2 The cache coherence problem . 30

2.1.3 Coherence invariants . 30

2.1.4 How to maintain cache coherence . 31

2.1.5 An example of coherence protocol . 31

2.1.6 False Sharing . 32

2.2 MACHINE LEARNING CONCEPTS . 33

2.2.1 Genetic Algorithms . 33

2.2.2 Recurrent Neural Networks . 35

2.2.3 Reinforcement Learning . 36

3 RELATED WORK . 39

3.1 CONSTRAINED RTG LEGACY . 39

3.2 DTG FOR SHARED MEMORY VERIFICATION 40

3.3 REINFORCEMENT LEARNING FOR DTG 41

4 THE REINFORCEMENT LEARNING GENERATOR 43

4.1 FORMULATION OF THE DECISION PROCESS 43

4.2 PROPOSED ACTIONS . 44

4.2.1 Two-parameter actions . 44

4.2.2 Three-parameter actions . 44

4.2.3 Four-parameter actions . 45

4.3 THE UNDERLYING MODEL . 46

5 EXPERIMENTAL VALIDATION . 47

5.1 EXPERIMENTAL SET UP . 47

5.2 IMPACT OF LEARNING ON COVERAGE EVOLUTION 50

5.3 IMPACT OF PROBLEM-SPECIFIC INFORMATION ON LEARNING . . 55

5.4 ERROR DISCOVERY RATE AND EFFORT 58

5.5 STATISTICAL SIGNIFICANCE OF FINAL COVERAGE VALUES 62

5.6 IMPACT OF TEST SIZE STEP ON COVERAGE EVOLUTION 63

5.7 IMPACT OF TIME QUANTIZATION ON COVERAGE EVOLUTION . . 64

6 CONCLUSIONS AND PERSPECTIVES 67

6.1 FUTURE WORK . 68

6.2 PUBLICATIONS . 69

BIBLIOGRAPHY . 71

25

1 INTRODUCTION

Since the dawn of the microprocessor, its advancement is expected at a rapid pace.

This belief was synthesized into Moore’s law (MOORE, 1965). However, this trend began to

die out in the beginning of the 21st century with the end of Dennard scaling (DENNARD et

al., 1974) and the thermal design power of CPUs exceeding the dissipation capacity of usual

cooling systems. Chip manufacturers, unable to obtain increased performance from higher

clock frequencies, changed focus to adding extra processing cores to new projects, adopting

multiprocessor designs.

Multiprocessors can be defined as computers consisting of tightly coupled processors

whose coordination and usage are typically controlled by a single operating system and that

share memory through a shared address space (HENNESSY; PATTERSON, 2017). Multipro-

cessors are very common, present from personal devices, such as smartphones and personal

computers, to servers in data centers. A single-chip multiprocessor is known as a multicore

chip.

Most multicore chips adopt cache hierarchies to decrease memory access time. Such

hierarchies are usually comprised of one or more levels of private caches, only accessible by

a single core, and one last level that is shared among all cores. Private caches give rise to the

cache coherence problem: the same memory address may contain different values in distinct

private caches. This problem is usually addressed by coherence protocols, which allow the

programmer to be provided with a coherent view of memory.

The memory consistency model (MCM) formally describes the behavior of the mem-

ory system. It effectively limits the value reads can return (ADVE; GHARACHORLOO, 1996).

MCMs define rules regarding the program order requirement (ordering of accesses to distinct

addresses), coherence requirement (ordering of writes to the same address), and write atomicity

requirement (when a written value can be observed by the issuing core and other cores). The

simplest MCM is called sequential consistency (LAMPORT, 1979). It fully enforces program

order and leads to behavior that works as if every written value becomes available to all cores

simultaneously.

Sequential consistency, however, limits many hardware optimizations. Therefore, mul-

tiple sophisticated architectures (e.g. ARMv8, IBM Power9, RISC-V) relax sequential consis-

tency in pursuit of faster performance. Relaxed memory models, however, largely increase the

amount of valid behaviors of a parallel program execution, making the design validation more

difficult.

Even though certain processors used in high performance computing have non-coherent

caches (DINECHIN et al., 2013; FRANCESQUINI et al., 2015), most general purpose mul-

ticore chips are expected to rely on coherent shared memory (DEVADAS, 2013). Multicore

scaling is power limited (ESMAEILZADEH et al., 2011) because of transistor under-utilization

(i.e. dark silicon). Despite that and the fact that coherence hardware can scale gracefully with

increasing core counts (MARTIN; HILL; SORIN, 2012), projected scaling still poses major

26

challenges to verification because of how the coherence protocol state space grows exponen-

tially with core count.

Multicore functional verification can be divided into three stages: pre-silicon, post-

silicon and runtime verification solutions (WAGNER; BERTACCO, 2010). Pre-silicon tech-

niques are employed before any prototype has been made and their major drawback is time,

since simulation is very slow. After being sufficiently tested in the pre-silicon phase, a prototype

of the processor is created and post-silicon techniques can be applied. Post-silicon techniques

can exploit the much higher speed of physical hardware and deliver better correctness guaran-

tees. However, the observability of real hardware is very limited, which leads to only detecting

bugs when they generate severe problems (e.g. a hang) and time consuming debugging sessions.

The last phase is comprised of novel methods which deal with detecting and fixing errors after

production. This dissertation focuses on methods regarding pre-silicon verification.

Pre-silicon techniques can be classified into two categories: formal and simulation-

based techniques. Formal verification techniques use an abstract model of the hardware and

mathematical derivations to prove that certain erroneous behaviors cannot happen. The limi-

tation of formal methods is that they can only be applied to a few small components within

the processor, those that can be described using mathematical formulas (ZHANG et al., 2015).

Simulation-based verification techniques execute instructions in a simulation of the design and

its behavior is checked for correctness. Although these techniques are effective in detecting

design errors, they take time, since simulations are orders of magnitude slower than the actual

processor. Therefore, only relatively short test sequences can be used.

The combination of coherence and relaxed consistency makes the validation of shared

memory behavior a very challenging task that has deserved specific techniques. Most of the

pre-silicon generation-based techniques fall into two main approaches: litmus test generation

(ALGLAVE et al., 2010; LUSTIG; PELLAUER; MARTONOSI, 2014) and random test gen-

eration (RTG) combined with memory model checking (HANGAL et al., 2004; MANOVIT;

HANGAL, 2006; HU et al., 2012). The first approach exploits a memory model for synthesiz-

ing small programs able to expose invalid execution witnesses. Albeit quite efficient to find er-

rors, its coverage control is limited. The second approach exploits RTG for raising the coverage

of memory events and lets an independent checker verify the axioms of a memory consistency

model. When applied at design time, however, such approach requires directed test genera-

tion (DTG) for efficient coverage control under the tight time constraints resulting from slow

simulation and short verification budgets. Coverage control can be obtained statically (QIN;

MISHRA, 2012) or dynamically (FINE; ZIV, 2003; WAGNER; BERTACCO, 2008; ELVER;

NAGARAJAN, 2016; ANDRADE et al., 2020). A pragmatic approach to dynamic coverage

control is the casting of DTG as coverage-driven RTG (FINE; FOURNIER; ZIV, 2009). This

dissertation’s proposal adopts a similar casting.

28

1. A novel technique for DTG that exploits Reinforcement Learning for reaching higher cov-

erage in less time, as a result of successive actions taken by an agent that influences RTG.

The agent was designed to be reusable (regardless of different coverage metrics adopted

in distinct verification environments), and its actions are customizable (depending on the

choice of random test generator)1.

2. An evaluation of how domain-specific information (properties of shared memory and par-

allel programs), usually captured as constraints on RTG, can be exploited for improving

learning.

This dissertation reuses text of an article by the same author (PFEIFER et al., 2020),

however, we present a much expanded experimental validation section and analysis.

1.3 ORGANIZATION OF THIS DISSERTATION

This dissertation presents a novel approach for directed test generation for multicore

verification based on reinforcement learning. The rest of this dissertation is organized as fol-

lows. Chapter 2 discusses related work and shows how our approach differs from related ones.

Chapter 3 describes the proposed technique, RLG, a reinforcement learning directed test genera-

tor for multicore verification. Chapter 4 presents experimental validation of our technique when

compared to other state-of-the-art generators in multiple verification environments. Chapter 5

puts our conclusions in perspective.

1 The specific contribution of this dissertation lies in the Directing Engine module. All remaining modules were
either created by others (BINKERT et al., 2011; FREITAS; RAMBO; SANTOS, 2013; HANGAL et al., 2004;
ANDRADE; GRAF; SANTOS, 2016) or developed in collaboration.

29

2 BACKGROUND

This chapter explains a few notions required to better understand the scope and the

contribution of this dissertation. We first review basic notions required to deal with shared

memory events. Then we summarize the concepts related to Machine Learning that are directly

used in this dissertation.

2.1 COHERENT SHARED MEMORY CONCEPTS

This section first reviews cache basics, before explaining cache coherence. Then it

presents an example of a coherence protocol. Finally, it describes the notion of false sharing,

which is widely used in following chapters1.

2.1.1 Cache basics

Caches have been used for hiding memory latency long before the rise of multicore

chips. They are specified by the quantum of data (the number of bytes within a block), by their

structure (direct-mapped, set-associative or fully associative), by their replacement policy (e.g.

LRU), and by their memory update policy (write through or write back).

A memory location lies in some memory block, which is mapped to a cache block (in

direct-mapped caches) or to a set of cache blocks (in set-associative caches). Let us consider

the general case of a set-associative cache, the others being corner cases (a directed-mapped

cache holds a single block in every set and fully-associative cache holds all blocks in a single

set). From the point of view of cache controllers, a memory address is seen as split into three

fields: tag, index, and offset. The offset is used to select the location within a given block. The

index is used to find to which cache set the memory block is mapped to. Given an index, the tag

is used for an associative search of the block within that cache set. In other words, the address

of a memory block corresponds to the fields tag and index of a given memory address.

Assume an n-way set-associative cache, and consider the set corresponding to a given

index. Suppose that each of the n blocks of that set is holding a valid copy of some memory

block. In such scenario, suppose that a processor makes a reference to a memory block mapping

to that same set. If no cache block inside that set corresponds to the referenced block, one

of them is replaced by the new block. We say that a replacement event takes place. Each

replacement requires a criterion: which cache block of a given set will be replaced?

Replacement policies adopt different criteria to select a block for eviction. The most

commonly used policy is called Least Recently Used (LRU), and it chooses to replace the block

which has been unused the longest, that is, it tries to keep recently used blocks in the cache.

LRU seeks to take advantage of temporal locality: items that have been recently accessed tend

1 For this review, the author relied on two classic textbooks (PATTERSON; HENNESSY, 2013; SORIN; HILL;
WOOD, 2011), and adapted the original text and focus to the needs of this section.

30

to be accessed again soon. Other replacement policies include first-in/first-out, least frequently

used, and random replacement.

2.1.2 The cache coherence problem

When caches are used in multicore chips they usually employ one or more levels of

private caches, and a shared last level cache. Since multiple cores may have the same memory

block stored in their private caches, they might end up observing different values for the same

memory location, as illustrated in the following example.

Table 1 shows an example of the coherence problem for a 2-core chip where each core

has its own private cache. Consider the initial in memory value of location X is 0. If core C0

reads location X from memory, its value (0) gets loaded into C0’s cache. Then core C1 also

reads the same location, so 0 is loaded into its cache as well. Currently, both private caches

agree on the value for location X . However, if C0 writes 1 to X , now its cache and the memory

(consider a write-through cache) will have a new value for X , where the same location in the

cache of C1 will still have the value 0 stored. Future reads to location X made by C1 will return

0, the old value. The memory system is now in an incoherent state.

Table 1 – An illustrative example for the coherence problem

Time step Event
Cache contents Memory contents
C0 C1 Location X

0 0
1 C0 reads X 0 0
2 C1 reads X 0 0 0
3 C0 stores 1 into X 1 0 1

Source – adapted from Patterson & Hennessy (2013)

2.1.3 Coherence invariants

A memory system is considered coherent if it maintains the following two invariants:

Single-Writer, Multiple-Reader (SWMR) and Data-Value. The Single-Writer, Multiple-Reader

invariant can be defined as follows "For any given memory location, at any given moment in

time, there is either a single core that may write to it (and also read from it) or some number

of cores that may read from it" (SORIN; HILL; WOOD, 2011). Therefore, there should be no

moment in time where a core could write a new value to a memory location and another core

could read from it (or also write to it) simultaneously. Another way of looking at the SWMR

invariant is to divide a memory location’s lifetime into epochs. Each epoch could have, either, a

single core with permission to write to the memory location (and also read from it, a read-write

epoch), or a number or cores with permission to read from it (read-only epoch).

31

However, the SWMR invariant does not seem to be enough to keep the system coher-

ent. If, during a read-only epoch, different cores read distinct values for the same location, the

system is not coherent. Likewise, the system is incoherent if any core fails to read the last value

written to a location in the last read-write epoch. This indicates the need for an extra invariant

which governs the propagation of written values between epochs, this invariant is called the

Data-Value invariant. The Data-Value invariant can be defined as follows "The value of a mem-

ory location at the start of an epoch is the same as the value of the memory location at the end

of its last read-write epoch" (SORIN; HILL; WOOD, 2011).

2.1.4 How to maintain cache coherence

To enforce the invariants and provide the multicore with a coherent view of memory,

cache coherence protocols are implemented in hardware. They govern the interactions between

cores, dictating how they need to communicate in order to access a location. If a core wants to

read from a location, it sends a message to other cores in order to obtain its current value, as

well as to make sure no other core has a read-write permission to that location. These messages

effectively end any active read-write epoch and start a read-only epoch. If a core wants to

write to a location, it sends a message to other cores in order to obtain its current value, as

well as to make sure no other cores have read-only or read-write permission to this location.

These messages end any active read-only or read-write epoch and start a new read-write epoch.

Protocols that work like this are called invalidate protocols.

Processors usually have distinct instructions for accessing memory at various granu-

larities, typically ranging from 1 to 64 bytes. However, coherence is commonly maintained at

the granularity of cache blocks. In other words, the coherence invariants are enforced on the

basis of cache blocks instead of individual locations.

2.1.5 An example of coherence protocol

This section illustrates how a protocol can be used to maintain the coherence invari-

ants. Figure 2 represents a simplified FSM for the MESI coherence protocol. Cache coherence

protocols can be specified by a Finite State Machine (FSM) where each transition is associated

with output actions. A state of a FSM tracks whether the content of a cache block is valid or

not and whether it has read-write or read-only permissions. The FSM controls the interaction

between caches of distinct cores and different hierarchical levels.

The MESI protocol contains four states: Modified (M), Exclusive (E), Shared (S), and

Invalid (I). Each state controls the access permission a given core has for a memory block, as

follows:

• Invalid: no permission (this memory block is not present in this core’s cache);

• Shared: read-only (this memory block is present in multiple caches);

32

Figure 2 – FSM of the MESI coherence protocol

ISEM

Other-GetS

Other-GetM, Replacement

h
i
t

Other-GetM,

Replacement

Other-GetS

Own-GetM

h
i
t

Other-GetM,

Replacement

Own-GetM

h
i
t

Own-GetS

(Dir ̸=I)

Own-GetM

Own-GetS

(Dir=I)

Source – adapted from Andrade et al. (2018)

• Exclusive: read-only (this memory block is present in only a single cache);

• Modified: read-write (this memory block is present in only a single cache)

When a cache block is written by a core, a status bit called dirty bit is set. A cache

block in states I, E or S has not been modified (its dirty bit is not set). A cache block in state M

has been modified (its dirty bit is set). Thus, when write-back caches are used, only transitions

leaving state M require update of main memory. A block in state M must be written to main

memory when it is about to be replaced or invalidated (transition from M to I) or when it is about

to become shared (transition from M to S). Write back actions take place at those transitions.

The FSM in Figure 2 tracks the state of a block in the private cache of a local core.

Transitions marked with the Own prefix result from accesses generated by that local core, while

transitions with the Other prefix are induced by accesses from remote cores. GetM represents

a permission request to write to a memory block, while GetS represents a permission request to

read from a memory block. A hit event represents a successful read or write access to a cached

block. Replacement events happen after an attempt to access an uncached memory block that

maps to an already full cache set, as explained in Section 2.1.1.

2.1.6 False Sharing

This section discusses a side effect of the block granularity, which is used to maintain

coherence. It significantly affects the effectiveness of test generation.

Cache blocks are usually purposefully made bigger than a single variable size in order

to exploit spacial locality. Since variables that are allocated closely in memory are usually

used together, fetching a whole block from the memory is advantageous because it reduces

34

to solve problems without being explicitly programmed. This goal is achieved by emulating

Darwinian evolution and natural genetic operations on chromosomes (KOZA, 1992). GA hap-

pens in generations, where each generation is comprised of a population of individuals. The

next generation is created from the last generation through the use of operations influenced

by the Darwinian principle of reproduction and survival of the fittest as well as by naturally

occurring genetic operations (e.g. genetic mutation and sexual recombination).

Individuals represent possible solutions to the objective problem. Each distinct prob-

lem requires a specific way to codify solutions. Solutions are generally represented by a fixed-

size string (i.e. the chromosome) composed of characters from an alphabet, where each charac-

ter represents a value for a characteristic of the solution. For example, in the traveling salesman

problem (FLOOD, 1956) with 5 cities (A, B, C, D, and E), a solution to this problem might

be ABCDE, representing the route that starts at city A, goes to B, C, D and finally to E before

going back to A. In this example, the string size is 5 and the alphabet size is also 5.

In order to evaluate how well an individual is at solving the objective problem, a fitness

function is needed. Fitness functions generally assign a number to individuals and allow us to

produce a strict order out of all individuals in a population, this is important so that we can

prioritize individuals which represent better solutions to our problem. In the example of the

traveling salesman problem, a possible fitness function is the distance of the route the individual

represents.

A mutation operation can be used to increase and restore genetic diversity lost from

exploitation steps in GA. This operation acts upon a single individual and modifies it to cre-

ate a new individual. Mutations generally randomly select a character from the chromosome

and change it. Mutations should be used sparingly, otherwise they risk interfering with the

improvement of fitness.

Genetic algorithms require a termination criterion. This function is evaluated at every

generation and determines if the algorithm should continue executing or if the result found is

considered adequate by the user. For example, in the traveling salesman problem, a possible

termination criterion could be to find an individual with fitness less than or equal to 50 or to

reach 100 generations.

The crossover operation represents sexual recombination and is used to generate two

new individuals by combining the genetic material of a pair of individuals (parents). This

operation is usually comprised of an initial random step, where a cutoff point is determine.

Using this point to divide the chromosome of the parents, each child receives a part from each

parent, generating two new genetic materials.

A few steps of GAs require the proportional selection of individuals based on their

fitness. This step is important in order to prioritize high fitness individual but still not totally

exclude low fitness individuals because they might have genetic material that is part of the

optimal (or near optimal) solution. The selection of individuals takes into consideration if the

problem requires us to minimize or maximize fitness.

The population of individuals for the first generation is generated randomly. The cre-

36

that allow them to relate the whole history of previous inputs to the output. An example of

a simple recurrent neural network is presented in Figure 4. It contains a 2 neuron input layer

totally connected to a single self connected hidden layer containing 4 neurons, which is also

totally connected to the output layer, with 5 neurons. Other varieties of RNNs have been pro-

posed, such as time delay neural networks (LANG; WAIBEL; HINTON, 1990) and echo state

networks (JAEGER, 2001).

2.2.3 Reinforcement Learning

Reinforcement learning is a technique that learns how to maximize a reward obtained

by interacting with an environment (SUTTON; BARTO, 2018). Reinforcement learning is a

method to solve finite Markov Decision Processes (MDPs).

Markov Decision Processes are comprised of an agent (the learner and decision maker)

and an environment (everything that surrounds the agent). The agent selects actions to be ex-

ecuted in the environment, affecting the environment’s state. The execution of actions in the

environment also presents the agent with a reward signal, a numerical value that represents how

well the agent performed according to the goal. This is the value the agent is trying to maximize

over time.

Let S be the set of environment states, let A be the set of available actions, and let

R be the set of valid reward values. The interactions between agent and environment happen

in a sequence of discrete time steps, t = 0,1,2, At each time step t, the agent receives a

representation of the environment’s state St ∈ S and, based on it, selects an action At ∈ A. In the

next time step, the agent receives the new state St+1 and a numerical reward Rt+1 ∈ R⊂ R.

When the sets of environment states (S), available actions (A), and reward (R) are finite,

we have a finite MDP. In this setting, the relation between states, actions and rewards can be

defined by a discrete probability function, as follows:

p(s′,r | s,a)
.
= Pr(St = s′,Rt = r | St−1 = s,At−1 = a), ∀s′,s ∈ S,r ∈ R,a ∈ A

3

The function p : S×R×S×A→ [0,1] denotes the probability of arriving at state s′ and receive

reward r given the environment is in state s and action a is selected.

The value function of a state represents the reward the agent can expect to obtain over

the future when starting from this state. This function represents the long term effect of selecting

actions that lead to states and is the function the agent is trying to learn, so that it can obtain the

maximum amount of reward in the long run.

States should represent all needed information to predict the environment’s behavior.

If they do, then the states are said to have the Markov property. If they do not, it leads to a

partial observability problem. Multiple methods have been devised to handle partial observ-

3 Pr(X = x | Y = y) is used to denote the probability that a random variable X is equal to a particular value x

given that the variable Y is equal to the value y.

37

ability such as partially observable MDPs (ÅSTRÖM, 1965) and predictive state representation

(LITTMAN; SUTTON, 2002).

One interesting aspect of reinforcement learning is the trade-off between exploration

and exploitation. In order to get reward, the agent has to favor actions that have been shown to

produce high reward values. That is, exploit the knowledge learned from previous experience.

However, in order to find actions that produce high reward, the agent needs to try new actions.

That is, the agent needs to explore the unknown. In order to succeed, it is key that the agent

finds a balance between exploiting its prior knowledge and exploring new possibilities.

39

3 RELATED WORK

This chapter introduces some related work and discusses their methods, achievements,

and limitations. We first start by analyzing constrained Random Test Generation legacy meth-

ods and which constraints they enforce to improve generation. Then we consider different

approaches regarding Directed Test Generation and examine their techniques and drawbacks.

Finally, we conclude the chapter by presenting some uses of reinforcement learning for DTG in

scopes other than shared memory functional verification and how related work influenced the

proposed technique.

3.1 CONSTRAINED RTG LEGACY

Table 2 – RTG Related Work

Exploits:

Work
Generation Structural properties Functional hardware Functional properties
technique of parallel programs properties of parallel programs

(HANGAL et al., 2004) Random X

(ADIR et al., 2004) CSP solver X X

(ANDRADE; GRAF; SANTOS, 2016) Canonical chains X X X

Source – the author

RTG has been used for synthesizing parallel programs for shared memory validation of

prototype multicore chips (HANGAL et al., 2004; MANOVIT; HANGAL, 2006). Constraints

usually enforce structural properties of parallel programs. They are formulated as generation

parameters, such as the number of operations, the number of shared locations, and the number

of threads (assuming that each test thread is bound to a different core).

RTG has also been used for validation at design time. For instance, Genesys-Pro

(ADIR et al., 2004) is an approach to functional processor verification that is based on con-

strained RTG. The handling of constraints is formulated as follows. The approach casts test

generation into a constraint satisfaction problem and uses a generic solver customized for RTG

to improve test program quality. Albeit part of the constraints capture design-specific testing-

knowledge information from a database, the approach also provides generic biasing constraints

that are applicable to any processor. Biasing constraints do not capture program properties, but

try to enforce functional hardware properties (e.g. address alignment, cache eviction, etc) for

improving test quality.

A recent technique proposed a complementary way of constraining RTG. It enforces

canonical multiprocessor chains of operations across different threads (ANDRADE; GRAF;

SANTOS, 2016). Since canonical chains consist of operations colliding at the same location in

different threads and at least one of them is a store, a chaining constraint has the potential to

raise the number of data races among threads, which is a known mechanism to expose design

40

errors faster (HANGAL et al., 2004). In other words, a chaining constraint enforces functional

properties of parallel programs for improving test quality.

3.2 DTG FOR SHARED MEMORY VERIFICATION

Table 3 – DTG Related Work

Work Generation technique

(FINE; ZIV, 2003) Bayesian network
(WAGNER; BERTACCO, 2008) Distributed agents
(ELVER; NAGARAJAN, 2016) Genetic programming
(ANDRADE et al., 2020) Hybrid generation
This work Reinforcement learning

Source – the author

An early learning approach to DTG proposed the exploitation of statistical inference to

build a Bayesian network for defining the most probable generator settings that would achieve

a certain coverage goal (FINE; ZIV, 2003). The Bayesian network was used as a centralized

directing engine for dynamic coverage control, thereby casting DTG as coverage-directed con-

strained RTG. This technique required an offline training phase (to establish the basis for future

online decision making), which might become a drawback, unless its contribution to the overall

effort can be kept negligible. To ensure fast and proper training, however, test expertise may be

required (FINE; FOURNIER; ZIV, 2009).

Instead of a centralized directing engine, a later learning-based approach relied on

distributed intelligent agents, each working at a distinct core domain, which cooperate to im-

prove the overall transition coverage. MCjammer (WAGNER; BERTACCO, 2008) is a scalable

scheme that avoids the enumeration of the full protocol space. Each agent formulates its cover-

age goals according to a dichotomic finite state machine, which captures the protocol behavior

from the perspective of each core domain. Given a core domain, a state in its dichotomic FSM

captures the state of a block in the local cache and an aggregation of the state of that block

in the caches from other domains. The agents exploit the insufficiently verified transitions to

formulate their goals towards higher transition coverage. The generator is reusable only for

derivative designs that comply with the same protocol, because the dichotomic FSM must be

modified for porting the generator to a protocol variant.

A more recent approach relied on Genetic Programming for learning how to build

new tests from old ones. McVerSi (ELVER; NAGARAJAN, 2016) tailors the fitness function

to the target verification scope. To obtain a new population from the fittest tests, it employs

a selective crossover function that favors the selection of memory operations contributing to

higher non-determinism. In McVerSi, the RTG engine is largely unconstrained, while its cen-

tralized directing engine exploits non-determinism. As opposed to MCjammer (WAGNER;

BERTACCO, 2008), whose mechanism is tied to its inner coverage metric, McVerSi’s directing

41

engine distinguishes the externally measured coverage from the inner mechanism for fostering

coverage improvement. In other words, McVerSi is reusable across verification environments,

as opposed to MCjammer.

The most recently reported method relied on hybrid generation, being both a data-

driven and model-based approach. HTG (ANDRADE et al., 2020) consists of a data-driven

generation space explorer and a model-based test generation driver. The explorer generates

test neighborhoods by selecting tests that contribute to coverage and applying a perturbation

function to their parameters. The driver orders the execution of the neighborhood tests so at

to favor faster coverage evolution. It was able to both find errors and achieve coverage values

faster than McVerSi. As opposed to McVersi, HTG is not limited by a fixed test size and can

exploit multiple test sizes to achieve higher coverage values faster.

3.3 REINFORCEMENT LEARNING FOR DTG

Table 4 – RL for DTG Related Work

Work Scope

(SHAKERI et al., 2010) Logic level hardware verification
(GROCE, 2011) Test synthesis in software validation
(KIM; KWON; YOO, 2018) Data generation in software validation
This work Shared memory verification

Source – the author

RL has already been used for hardware verification, but at the logic level. It was

exploited, for instance, to influence the generation of random tests so as to raise the probability

of design error discovery (SHAKERI et al., 2010). On average, as compared to a conventional

technique, that approach led to a 15.3% improvement on fault coverage.

Besides, RL has been used for software validation. The validation of software modules

requires the laborious work of generating data for a given set of tests. That is why validation

techniques usually focus on relevant data generation (not in test generation). In contrast, an

approach proposed a change of focus: the use of RL not to generate relevant data, but to synthe-

size new tests (GROCE, 2011). In this case, the agent was rewarded only if a newly synthesized

test led to some software behavior not yet observed. As compared to software test based on

random generation, the technique was clearly superior only when targeting modules requiring

complex input sequences (e.g. heaps). In general, however, albeit competitive, the technique

was slightly inferior to random testing.

A more recent approach (KIM; KWON; YOO, 2018) exploited RL under the conven-

tional data generation focus. It proposed a framework that casts the software under test as the

environment and relies on it for training a neural network. After training, the agent learned how

to mimic the behavior of meta-heuristic techniques that had shown good results on the creation

42

of new data for the tests. As a result, even when faced with unseen environments, the approach

was able to achieve a considerable coverage value. However, random search still required less

time to reach higher coverage values.

In short, such early uses of RL for DTG (SHAKERI et al., 2010; GROCE, 2011;

KIM; KWON; YOO, 2018) led to small improvements over random generation/search. RTG

approaches that exhibited good results relied on domain-specific properties (HANGAL et al.,

2004; MANOVIT; HANGAL, 2006; ADIR et al., 2014; ANDRADE; GRAF; SANTOS, 2016).

This indicates that RL should rely on the same types of properties for improving test quality,

as did previous learning approaches (FINE; ZIV, 2003; WAGNER; BERTACCO, 2008; FINE;

FOURNIER; ZIV, 2009; ELVER; NAGARAJAN, 2016). The next section shows how our

proposal bridges that gap.

43

4 THE REINFORCEMENT LEARNING GENERATOR

This chapter describes our proposed method, the Reinforcement Learning Generator

(RLG). First, we present the verification environment the RLG is a part of, followed by the

decision process it wants to optimize. Then we report four sets of proposed actions which define

how the agent can interact with the parameters in order to control test generation. Finally, we

detail the learning technique used for the underlying model and list a few of the hyperparameters

used.

4.1 FORMULATION OF THE DECISION PROCESS

The environment includes an RTG engine, the simulator, a Timer, and the Coverage

Analyzer. The Directing Engine is formulated as an agent that takes actions in such environ-

ment. The Coverage Analyzer and the Timer interpret the environment into a state representa-

tion and a reward value assigned to each action taken in a given state.

As verification is constrained by a time limit for reaching coverage goals, a suitable

representation for an environment state would be a pair (c, t), where c denotes the cumulative

coverage value (quantified by some metric adopted by the verification framework) and t denotes

the time when that value was reached. However, to bound the number of states, we apply

quantization on the values of coverage and time.

Coverage is quantized in C levels, and time is quantized into T levels1. As a result,

when a pair (c, t) is observed from the environment, it is interpreted into the state representa-

tion e = (γ,τ), where γ ∈ {1,2, · · ·C} and τ ∈ {1,2, · · ·T} denote, respectively, values of c and

t rounded to the nearest quantization levels. Therefore, under such interpretation, the environ-

ment state space is E =C×T .

Since the agent interacts with the environment through the RTG engine’s interface,

we formulate actions in terms of the parameters of a given constrained random test gener-

ator adopted as RTG engine. Let p1, p2, · · · , p j, · · · , pM be the parameters that command a

given RTG engine. Let Vj denote the collection of allowed values for parameter p j. There-

fore, V = V1 ×V2 × ·· · ×Vj × ·· ·VM is the generation space for the RTG engine. Let v =

(v1,v2, · · · ,v j, · · · ,vm) and v′ = (v′1,v
′
2, · · · ,v

′
j, · · · ,v

′
M) denote allowable settings for the RTG

parameters. Let a be an action that changes the RTG parameters from v to v′. Let (c, t) and

(c′, t ′) denote the cumulative coverage and the elapsed time observed after the execution of the

tests generated with the settings v and v′, respectively. An action should be better rewarded

than another when the former induces a higher coverage increment in less time. Therefore,

a suitable reward can be defined as the difference in the cumulative coverage divided by the

time needed to execute the test defined by the action. That is, the reward for an action a is

Ra(v,v
′) = (c′− c)/(t ′− t).

1 Without loss of generality, but for simplicity, this disseration assumes uniform quantizers.

44

With this formulation, we want to find a policy (sequence of actions) for reaching the

maximal coverage (maxc) within the available time (t < at).

4.2 PROPOSED ACTIONS

The set of actions is largely dependent on the adopted RTG engine. For instance,

conventional RTG engines (HANGAL et al., 2004; MANOVIT; HANGAL, 2006) use two

main parameters: the number of memory operations (n) and the number of shared locations

(s). On the other hand, the RTG engines proposed in (ANDRADE; GRAF; SANTOS, 2016)

employ a third parameter: the number of distinct cache sets to which locations can be mapped

(k). Finally, a fourth parameter (f) is employed to either enforce true sharing or enable false

sharing, similarly to what is supported in biased generators (ADIR et al., 2004; ANDRADE

et al., 2018). Without loss of generality, this dissertation defines actions involving only the

parameters mentioned above2, which cover the majority of reported RTG engines.

We assume that the verification engineer defines bounds on the allowed test sizes (nmin

and nmax) and on the allowed amount of shared locations (smin and smax).

4.2.1 Two-parameter actions

Let N and S be the sets of allowed values for the parameters n and s (respectively) that

are within user-defined bounds, and are induced by the function3 f (i) = 2i, as follows:

N = {n : nmin ≤ n ≤ nmax ∧n = 2i f or some i ∈ N},

S = {s : smin ≤ s ≤ smax ∧ s = 2i f or some i ∈ N}.

We define the following actions:

• a1(n,s) = (2n,s)

• a2(n,s) = (n/2,s)

• a3(n,s) = (n,2s)

• a4(n,s) = (n,s/2)

4.2.2 Three-parameter actions

The first two parameters are n and s, whose sets of allowable values are defined above.

Let us now consider the third parameter. The values allowed for the parameter k are bounded

2 We define actions that only modify a single parameter at a time in order to limit the combinatory aspect of
having multiple parameters, which could hinder learning if a large number of actions was used.

3 This could be replaced by other functions without loss of generality, as far as actions are accordingly adjusted.

45

for each allowed value of s, and are constrained to be multiples4 of that value, as follows:

K = {k : (1 ≤ k ≤ s)∧ (s ∈ S)∧ (s modk = 0)}.

We define the following actions:

• a1(n,s,k) = (2n,s,k)

• a2(n,s,k) = (n/2,s,k)

• a3(n,s,k) = (n,2s,k)

• a4(n,s,k) = (n,s/2,k)

• a5(n,s,k) = (n,s,2k)

• a6(n,s,k) = (n,s,k/2)

4.2.3 Four-parameter actions

In addition to the three parameters in the previous defined actions, these actions also

control the occurrence of false sharing. False sharing occurs when processors in a shared-

memory system make references to different locations within the same memory block, thereby

inducing unnecessary coherence operations (BOLOSKY; SCOTT, 1993).

False sharing is controlled by the use of a new parameter: f ∈ {True,False}. If f =

False, false sharing is activated and the maximum amount of locations is allocated in the same

cache block. If f = True, no two shared variables address will belong to the same cache block,

enforcing true sharing. In order to allow the agent control over sharing, a single new action is

added to the previously proposed 6-action model. This new action toggles the value of f while

keeping all the other parameters unaltered.

We define the following actions:

• a1(n,s,k, f) = (2n,s,k, f)

• a2(n,s,k, f) = (n/2,s,k, f)

• a3(n,s,k, f) = (n,2s,k, f)

• a4(n,s,k, f) = (n,s/2,k, f)

• a5(n,s,k, f) = (n,s,2k, f)

• a6(n,s,k, f) = (n,s,k/2, f)

• a7(n,s,k, f) = (n,s,k,¬ f)

4 This is a constraint leading to a uniform distribution of locations competing for cache sets, which tends to foster
higher coverage.

46

Such control over false sharing could expose new behaviors from the coherence proto-

col, since this property is not being exploited in any other variant.

4.3 THE UNDERLYING MODEL

In order to build a directed test generator that could be reused for distinct coverage

metrics adopted in different design environments, we do not give the agent direct access to

coverage events. As a result, it needs to be able to handle partial observation of the state in

order to learn in the environment.

Recurrent neural networks are a viable option for partially observable Markov Decision

Processes, because their ability to handle time and memory makes them suitable for modeling

any type of dynamical system (DUELL; UDLUFT; STERZING, 2012).

After comparing multiple network topologies and hyperparameters based on loss evo-

lution (similar to Figure 9), we opted for an RNN with a single 10-neuron recurrent layer be-

tween fully-connected input and output layers, and 11 distributional RL atoms5. Since an RNN

is trained with sequences, we used subsequent RL transitions6 for training7. We relied on se-

quences of length 8 and learning rate of 0.01.

As the tests used for training would not impair coverage, but actually contribute to its

cumulative effect, the nature of the problem allowed us to opt for online training. At the start

of every test-suite execution, we used a new set of random weights for the network, and trained

them during its execution.

Our implementation8 is an adaptation of the Rainbow agent (HESSEL et al., 2018),

but the original deep neural network was replaced by our RNN.

5 Distributional RL is an optimization where the agent learns to approximate a distribution of the rewards, instead
of the expected reward. These distributions are modeled as probability masses placed on a discrete support
defined as a vector, where each component is called an atom (HESSEL et al., 2018).

6 An RL transition is essentially a transition between environment states that was induced by a given action and
was assigned a given reward (HESSEL et al., 2018).

7 Since RNNs employ hidden states to implement recurrence, it is convenient to correlate such states with envi-
ronment states for the sake of training. We exploit this feature during our online training.

8 The Directing Engine used in the proposed generator was implemented using Python 3 and PyTorch.

47

5 EXPERIMENTAL VALIDATION

This chapter describes the experiments performed in order to validate the proposed

technique by comparing it with other state-of-the-art generators. We begin by describing the

experimental set up which is comprised of the ranges of generation parameters, compared gen-

erators, processor simulator, coherence protocols, coverage metrics, and definition of the stud-

ied errors used in the detection and effort experiments. Then we compare the generators under

coverage evolution, error detection and effort in four different combinations of coherence pro-

tocols and coverage metrics. Next, we discuss the impact of test generation constraints in the

learning process by analyzing the loss (prediction error) of all four of the proposed generator

variants. Finally, we present experiments on the statistical significance of the final coverage val-

ues, in addition to an analysis of the impact of test size step and time quantization on coverage

evolution.

5.1 EXPERIMENTAL SET UP

Four generators were built under the proposed approach. To build each Reinforcement

Learning Generator, we used the same Directing Engine and selected a distinct RTG engine1.

We selected four RTG engines subject to progressively tighter constraints, which are denoted as

follows. RLG- relies on an RTG engine that constrains the numbers of operations and locations

only, similarly to (HANGAL et al., 2004; MANOVIT; HANGAL, 2006). RLG+ relies on

an RTG engine that not only constrains operations and locations, but also employs biasing

constraints for controlling cache evictions, similarly to (FINE; ZIV, 2003). RLG* relies on an

RTG engine that enforces the same constraints as the previous ones, but imposes extra chaining

constraints, similarly to (ANDRADE; GRAF; SANTOS, 2016). RLG** relies on an RTG

engine that enforces the same constraints as RLG*’s, but controls sharing, either enforcing

true sharing or enabling false sharing. We set the same ranges for their common parameters:

nmin = 1Ki, nmax = 64Ki, smin = 4, and smax = 128. The parameter f is always True for all

generators, except for RLG**.

We compared the proposed RLGs with two state-of-the-art directed test generators,

McVerSi (ELVER; NAGARAJAN, 2016) Test Generator (MTG), which is available in the pub-

lic domain (ELVER, 2016) and the Hybrid Test Generator (ANDRADE et al., 2020) (HTG).

We preserved all MTG’s genetic parameters exactly as they were originally set in (ELVER;

NAGARAJAN, 2016). Since the MTG can only generate fixed-size tests (as opposed to our

generators), we launched experiments for test sizes at the extremes of the range adopted for our

generators (i.e. n=1Ki and n=64Ki). To ensure that the MTG operated in a similar range of

shared locations as our generators, we adopted the test memory constraint of 8KB, as defined

1 The Directing Engine and RTG Engine modules are defined in the verification framework depicted in Figure 1

48

in (ELVER; NAGARAJAN, 2016)2. HTG was executed using the same generation space and

RTG as RLG*, which has 3 generating parameters and imposes chaining constraints, as HTG’s

original RTG3. Table 5 compares the selected DTG techniques being evaluated.

Table 5 – Comparison between DTG techniques being evaluated

Dynamically exploits:

DTG Test size Location amount Biasing Chaining False sharing

MTG X

HTG X X X X

RLG- X X

RLG+ X X X

RLG* X X X X

RLG** X X X X X

Source – the author

We relied on gem5’s infrastructure (BINKERT et al., 2011) for simulation and design

representation of 32-core designs (O3 processor model) under coherent shared memory (Ruby

model). To reduce a possible dependence of the results on protocol variant, we adopted either

a 2-level (L1, L2) MOESI or a 3-level (L0, L1, L2) MESI directory protocol with 4KB (direct-

mapped) private caches at L0, 64KB (2-way) private caches at L1, and a 2MB (8-way) shared

L2 cache, all with the same block size (64 bytes). We relied on a checker similar to (FREITAS;

RAMBO; SANTOS, 2013).

Since the usual goals of functional hardware verification are to improve error discovery

and achieved coverage, as well as reducing the effort needed to detect errors and reach coverage

values, we evaluated the generators under these criteria.

To capture coverage evolution, we relied on two complementary coverage metrics:

structural and functional. The structural metric is defined in (ELVER; NAGARAJAN, 2016), it

tracks the state transitions of the cache controller’s FSMs at all hierarchical levels and in every

core domain. However, to reflect the hardware structure and not the protocol state space, the

metric does not distinguish between transitions from different core domains. The functional

coverage metric (defined in (ANDRADE et al., 2020)), on the other hand, tracks each transition

with respect to the core that executed the instruction that covered it. It avoids counting the

whole exponential state space by correlating FSM transitions and cores, limiting the amount of

total tracked events but still allowing representation of interactions between distinct cores. We

report a coverage value as the fraction of events (FSM transitions for structural and transition

core pairs for functional) covered after the execution of a sequence of tests. The agent relies on

2 The MTG was built by replacing both components of the DTG module (the Directing and the RTG engines)
within the verification framework depicted in Figure 1, all other components remained the same.

3 The HTG was built by replacing both components of the Directing Engine within the verification framework
depicted in Figure 1, all other components remained the same.

49

the cumulative coverage up to a given test to decide on the most adequate setting of parameters

for the next test.

Without loss of generality but for experimental convenience, we let each generator run

until it stopped or a time limit of 10 hours (emulating a verification budget) was reached. In

order to establish the most appropriate amount of time quantization levels, we performed an

experimental comparison (reported in section 5.7) and concluded that using T=5000 was most

appropriate for our setup. We arbitrarily selected C=100 levels for coverage quantization.

Table 6 – Studied errors for MESI 3-level designs

ID State Input event Next state Precluded output action

e1 IS_I Data_all_Acks I writeDataFromL2Response

e2
IS Inv IS instead of IS_I (preserved)
SM Data_all_Acks M (preserved as in (IM, M))
SM Data SM (preserved as in (IM, SM))

e3 IS_I DataS_fromL1 I writeDataFromL2Response

e4 S L0_Invalidate_Own SS instead of S_IL0 forward_eviction_to_L0

e5 E_IL0 WriteBack MM_IL0 writeDataFromL0Request
Source – adapted from Andrade et al. (2020)

Table 7 – Studied errors for MOESI 2-level designs

ID State Input event Next state Precluded output action

E1 SI Writeback_Ack_Data I Data block in sendData

E2 ILXW L1_WBDIRTYDATA M writeDataToCache

E3 OM Fwd_GETS OM Data block in sendData

E4 ILOXW L1_WBCLEANDATA M writeDataToCache

E5 SM Fwd_GETS S Data block in sendData

E6 M Fwd_GETX I Data block in sendDataExclusive
Source – adapted from Andrade et al. (2020)

For effort experiments, we injected artificial errors into the cache controller’s FSM

(either changing the next state of a transition or precluding an output action). The faulty designs

are described in Tables 6 and 7. To determine the effort each generator needs to expose each

error, we ran the generators in designs with a single injected error until the error was exposed,

the generation space was exhausted or a 10-hour time limit was reached. Each generated test

was executed 5 times under different simulation states (not related to the test itself) in such a way

that the distinct executions of each test are all perturbed differently (ELVER; NAGARAJAN,

2016). To obtain the reported coverage values, we executed each generator with 10 distinct

51

plained by how adding an extra parameter expanded the generation space. RLG**’s generation

space has two valid parameters settings for each setting in the 3-parameter space: one with false

sharing enabled, another with true sharing enforced. The expanded generation space makes the

decision process harder to solve because of the higher amount of possibilities available. This

indicates that, although more parameters gives the agent more control over generation, it also

makes the task of finding better tests harder. Albeit this experiment might suggest that true

sharing should always be enforced, this can preclude the detection of design errors that require

false sharing to be detected, as can be seen in section 5.4.

Note that the behavior of RLG* and RLG+ is similar up to around the 2-hour mark.

From around 2 hours to 6 hours into the experiment, the tighter constraints exploited by RLG*

allowed it to obtain a higher coverage than all the other RLG variants. However, after that

period, their behavior was again similar up to 9 hours, when RLG+ was able to achieve a final

coverage higher than RLG*’s, 96.28% against RLG*’s 95.81%. This indicates that, even though

the tighter constraints helped to increase RLG*’s efficiency, they did not enable the discovery

of new transitions in this verification environment.

Observe that, for 64Ki, MTG is better than its 1Ki counterpart until around the 3-hour

mark. After that point, the shortest test size started to pay off, because the higher test throughput

allowed the genetic algorithm to create a larger number of tests in the same interval to cover

new transitions. Although shorter tests allowed a higher efficiency for some time, both MTG

variants achieved the same final coverage of 94.88% for 3-level MESI and structural coverage.

RLG*’s final coverage was 95.81%, while MTG’s was 94.88%. However, MTG (with

n=1Ki) took around 30.500 seconds to reach its highest coverage, while RLG* took around

8400 seconds to reach that same coverage, i.e. 3.6 times faster. Thus, as far as the RTG engine is

properly constrained with biasing and chaining constraints, the use of RL for dynamic coverage

control is not only competitive with MTG, but may allow the RLG to achieve a higher final

coverage4.

HTG achieved its final coverage 60% faster than RLG+, however, they still achieved

the same final value. Therefore, HTG’s hibrid generation approach did not allow it to discover

coverage events that were not discovered by RLG.

Figure 6 represents the coverage evolution of the selected generators for a design using

a 2-level MOESI coherence protocol and the structural coverage metric. When comparing to

3-level MESI, the generators behaved very differently. The difference of evolution speed among

generators is more noticeable, as well as more distinct final coverage values.

Let us first consider the RLG variants. RLG-, for instance, reached the lowest final

coverage value (46.35%) and does not appear in the zoomed-in plot. This can be attributed

to the same aspect that led it to also achieve the lowest coverage in 3-level MESI, namely,

unsuitable generation constraints. Additionally, as MOESI is a more complex protocol, it is

even harder to cover events. This indicates that generators that only exploit structural properties

4 The MTG and the RLG* covered, respectively, 204 and 206 transitions. Thus, their difference in the final cov-
erage corresponds to 2 hard-to-stimulate transitions that RLG* covered due to chaining and biasing constraints.

55

age evolution of the selected generators for a design using 2-level MOESI and the functional

coverage metric. Among the selected coherence protocols and coverage metrics, this combi-

nation is the hardest to cover, since it uses the most complex protocol with the most detailed

metric. Surprisingly, the maximum coverage achieved with this combination was higher than

the one obtained using the same metric with MESI 3. This happens because of the lower amount

of transitions used to implement MOESI in Gem5, due to its fewer amount of cache levels. This

difference is amplified by the way functional tracks the transitions from private cache levels in

relation to each processor, multiplying their total amount. MESI 3 with the functional metric

has about 10 times more coverage events than MOESI using the same metric.

When comparing this environment with MOESI 2 using structural coverage, two main

differences can be noted: final coverage and coverage evolution. The final coverage value ob-

tained by all generators was lower and the coverage evolution was smoother when the functional

metric was used. Both of these effects can be explained by the higher amount of coverage events

tracked by this metric.

For this environment, RLG- achieved a final coverage of 60.04%. RLG*, RLG** and

HTG tied at around 93.13%. MTG’s final coverage with n = 64Ki was 92.60%, while it was

89.79% with n = 1Ki. RLG+ achieved the highest coverage (94.09%) and needed 3 times less

time than HTG to achieve the latter’s maximal coverage, as well as 6 times less time to achieve

MTG’s. This indicates that RLG was better able to use the more detailed information provided

by the functional coverage metric and achieve higher coverage values faster in MOESI.

MTG with n = 1Ki in all previous environments surpassed its longer test counterpart

at some point. In this environment, however, it was never able to. This confirms our previous

conclusion that more complicated environments require control over test size and longer tests

to be able to be verified and even advanced techniques cannot surpass this hindrance.

By comparing the generators in all four verification environment, two coherence pro-

tocols (MESI and MOESI) and two coverage metrics (structural and functional), we conclude

that RLG is a viable approach to directed test generation. RLG was able to outperform other

generators in most cases, especially when paired with properly constrained RTGs, even when

verifying designs with complex coherence protocols, such as MOESI.

5.3 IMPACT OF PROBLEM-SPECIFIC INFORMATION ON LEARNING

RLG learning and its performance may be correlated. An RLG variant that quickly

learns how to better predict the reward obtained from executing a test may perform better than

a slower-learning variant. Even though RLG variants employ the same learning agent, their

underlying RTGs differ. The goal of this section is to analyze how the underlying RTGs impact

learning performance, more specifically, how distinct test generation constraints can influence

learning.

Figures 9, and 10 show the learning evolution of all RLG variants for MESI and

MOESI designs using structural and functional coverage metrics. They plot the loss as a func-

58

Figure 10b shows how a complex protocol, such as MOESI, requires a more descriptive

coverage metric, such as functional, to better inform the agents in the learning process and

visualize the difference between the RLG variants.

Figure 10b shows learning evolution for a MOESI design and functional coverage

metric. In this verification environment, learning speed seems to be correlated with coverage

evolution for RLG+, RLG*, and RLG**. RLG** learned slower throughout the whole exper-

iment and was also the slowest variant to increase coverage. Therefore, the extra constraint

exploited by RLG**’s RTG hindered learning. Even though the chaining constraint did not

hamper RLG*’s learning significantly, its more frequent use of barriers slowed coverage evolu-

tion.

Experiments seem to indicate that there is a correlation between coverage evolution

and learning speed. Test generation constraints can influence learning, especially when they

influence generation space size. On the one hand, constraints that lead to small space size can

limit the agent by not providing it enough tests to achieve high coverage values. On the other

hand, generation spaces can also be too big, hindering coverage evolution by overburdening the

agent with too many tests, making the task of finding good tests harder. Therefore, the selection

of test generation constraints should be done carefully in order to create suitable next generation

directed test generators, especially regarding methods that rely on learning.

5.4 ERROR DISCOVERY RATE AND EFFORT

Table 8 – Effort for finding errors in MESI 3-level designs with both structural and functional
coverage metric

MTG HTG RLG** RLG* RLG+ RLG-

Error Metric 1Ki 64Ki {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki}

e1
structural 98(10) 59(10) 29(10) 12(10) 14(10) 11(10) 11(10)
functional 101(10) 60(10) 20(10) 12(10) 14(10) 11(10) 12(10)

e2
structural 959(10) 154(10) 69(10) 36(10) 31(10) 12(10) 13(10)
functional 604(10) 162(10) 75(10) 36(10) 31(10) 12(10) 12(10)

e3
structural 994(10) 355(10) 43(10) 59(10) 29(10) 18(10) 1893(10)
functional 525(10) 358(10) 61(10) 59(10) 30(10) 18(10) 1579(10)

e4
structural 9022(10) 34146 (5) 821(10) 2335(10) 1371(10) 1482(10) 530(10)
functional 7457(10) 26822 (7) 851(10) 2039(10) 1071(10) 1031(10) 609(10)

e5
structural 5434 (9) 2628(10) 665(10) 2846(10) 678(10) 2858(10) 5586 (1)
functional 7429 (8) 2741(10) 1204(10) 2198(10) 677(10) 2552 (9) 5606 (1)

Source – the author

Table 8 reports the effort required by each generator to expose errors in MESI 3-level

32-core designs using both coverage metrics. Each value represents the median time in seconds

the generator needed to expose the error, and, between parentheses, the amount of times it

succeeded (out of ten). Values in bold represent the best values achieved.

59

RLG**, RLG*, RLG+, and HTG were almost always able to expose all errors, while

MTG and RLG- failed to expose errors in some trials. RLG required the least effort in all errors,

when it was from 5 to 80 times faster than MTG and up to 6 times faster than HTG. HTG also

needed the least effort to expose one error for one metric, needing as much time as RLG.

As RLG- got the worst coverage evolution of all evaluated generators, it was expected

that it needed the most time to expose all errors. Indeed, it required the most time to expose

e3 and e5. Errors e3 and e5 were the two errors RLG- had the most difficulty exposing. It was

only able to expose e5 in 1 of the 10 trials. This can be explained by how these errors requires

an L0 replacement to happen while an invalidation is being treated by the L1. Since there is a

very narrow time window for this to happen, RLG-’s effectiveness was low for e5.

Surprisingly, RLG- was the best at exposing e4, an error the other generators needed

from 1.4 to 64 times more time to expose. The error e4 changes L1 behavior so that it does

not invalidate its L0 counterpart when the L1 is invalidating or replacing a shared block. This

leaves the L0 block in state S while L1 is in state I, breaking the inclusion property. This error

can only be exposed if a read to the affected block occurs after the error is set and the block

has been written by another core. However, if the affected block is replaced or written, the

error disappears. Since L0 is directly mapped, RLG**, RLG*, RLG+, and MTG easily cause

L0 replacements. Even though RLG* and RLG+ can also disable replacements, their initial

parameter k=1, maximizes replacements. Besides, L1 is two-way, a low associativity level, so

RLG- is able to cause replacements in this level, even if fewer than other generators. The lower

amount of L0 replacement causes RLG- to not clear e4 as it happens and, as a result, reduces

the effort RLG- needs to expose it.

RLG**’s efficiency was inferior to RLG*’s and RLG+’s for most errors. This can be

explained by its coverage evolution, which was also inferior to RLG*’s and RLG+’s. RLG* and

RLG+ required similar effort to expose errors. The most notable exception is e5, when RLG*

required from 3 to 4 times less time than RLG+. Even though RLG+ was able to achieve higher

final coverage values, it was not able to detect e5 faster than RLG*. This indicates that tighter

generation constraints can help detect harder errors, even when they don’t seem to improve

coverage evolution. In general, harder-to-find errors require higher coverage to be exposed.

Even though these generators behaved similarly regarding coverage evolution, error detection

depends not only on how much coverage is reached, but on reaching the transition actually

exposing the error. That is, even if two generators have reached the same coverage level at a

given time, they could have stimulated different sets of transitions with the same cardinality.

The average effort to find an error depends on which transitions are able to expose that error,

and on how many of them were covered on average.

Let us now compare MTG effort with both test sizes. MTG with n = 64Ki was faster

to expose errors e1, e2, e3, and e5 than with n = 1Ki. This is not surprising, since MTG with

longer tests was usually faster to attain higher coverage values than its shorter-test counterpart.

For e5, MTG with n = 64Ki was not only about 2 faster to detect the error, but was also able

to detect it in all trials, while MTG with n = 1Ki was unable to detect it in some of the trials.

60

MTG with n = 1Ki, however, was able to detect e4 about 3.6 faster and was able to detect it in

all trials.

Regarding HTG and RLG, HTG was slower than RLG for all errors and metrics except

e5 and structural, where it tied with RLG*. This indicates that a better coverage evolution does

not always correlates with faster error detection.

Let us now analyze how the coverage metrics affected generators effort. The effort

needed by the generators changed with distinct coverage metrics. It was expected that a gener-

ator would need less time to detect an error while using a more detailed coverage metric. This

effect can be seen in our effort experiments, but it was not always the case. HTG was the gen-

erator that better exploited the more detailed data provided by the functional metric. It was up

to 2 times faster when using this metric. MTG and RLG were also able to exploit this effect, to

a lesser extent, achieving up to 89% and 43% improvement over their structural metric effort,

respectively. MTG needed 36% more time to detect e5 with the functional metric. This in-

dicates that advanced DTG techniques may exploit more detailed coverage metrics to not only

improve covearge evolution, but also to detect errors faster.

RLG was able to expose all errors in 21 minutes while MTG took as much as 3 hours

and HTG, 27 minutes. This indicates that constrained random generation combined with re-

inforcement learning can be made more efficient in error discovery than genetic programming

and at least as efficient as hybrid generation.

Table 9 – Effort for finding errors in MOESI 2-level designs with both structural and functional
coverage metric

MTG HTG RLG** RLG* RLG+ RLG-

Error Metric 1Ki 64Ki {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki} {1Ki, ..., 64Ki}

E1
structural 8(10) 47(10) 7(10) 17(10) 17(10) 17(10) 886(10)
functional 8(10) 46(10) 7(10) 17(10) 18(10) 17(10) 1320(10)

E2
structural 9(10) 47(10) 7(10) 18(10) 19(10) 20(10) 912(10)
functional 8(10) 46(10) 7(10) 18(10) 19(10) 22(10) 1359(10)

E3
structural 21(10) 49(10) 35(10) 13(10) 11(10) 10(10) 8(10)
functional 42(10) 48(10) 25(10) 13(10) 11(10) 10(10) 7(10)

E4
structural 36000 (0) 36000 (0) 641(10) 4509(10) 590(10) 147(10) 4407 (0)
functional 3962 (8) 3170(10) 1073(10) 6127(10) 349(10) 173(10) 4547 (0)

E5
structural 36000 (1) 4680(10) 586(10) 4262(10) 1359(10) 291(10) 4432 (0)
functional 36000 (1) 1478(10) 1044(10) 3739(10) 2348 (9) 365(10) 4562 (0)

E6
structural 481(10) 5267(10) 25486 (0) 105(10) 34434 (0) 35446 (0) 4332 (1)
functional 758(10) 5304(10) 25634 (0) 107(10) 36000 (0) 36000 (0) 4430 (1)

Source – the author

Table 9 reports the median effort to detect errors for all the selected generators in

MOESI 2-level 32-core designs using both coverage metrics. An entry filled in black indicates

the error was never found.

RLG** was the only generator able to expose all the errors in every trial, while all the

other generators failed to detect an error in one or more trials. MTG was the fastest at exposing

61

E1 and E2, tied with HTG. RLG-, at exposing E3, RLG+, at exposing E4 and E5, and RLG**

at exposing E6. RLG was best at exposing errors E4, E5, and E6, the harder to expose errors

among the selected ones.

Let us now analyze how MTG fared. MTG was the best at exposing errors E1 and

E2. These errors, however, were detected on the first tests executed by all generators, except

by RLG-. This also explains why MTG with tests of size 1Ki instructions was almost 6 times

faster than its longer test counterpart. However, MTG with the longer tests was able to always

detect E5, while its shorter-test counterpart could only detect it in 10% of the trials.

Most generators were not able to improve detection time when using the functional

coverage metric, as opposed to when using the structural one. RLG** and RLG* were able to

detect E5 faster (14% and 69% faster, respectively). HTG and RLG- were only able to improve

the detection time of E3, an easy error. MTG was not able to detect E4 using the structural

coverage, an error the other generators (except RLG-) needed from 2 to 75 minutes to detect.

MTG, however, was able to detect E4 in most tries when using the functional metric. This

indicates that the more detailed information provided by the functional coverage metric enabled

MTG to detect E4, while the structural metric did not provide enough information to enable the

detection of the error. Therefore, this indicates that some errors, especially the ones that involve

processor interaction, require the use of more detailed coverage metrics to be detected by some

techniques.

Let us now analyze HTG. The advantages observed for HTG in coverage evolution did

not translate completely to effort for MOESI 2-level designs. HTG was the best at detecting E1

and E2, the easiest errors, while taking longer to detect all other errors. HTG needed from 2 to

6 times more time do detect E4 and E5, two of the harder to detect errors, and it was not able to

detect E6.

Now, let us look at the effort needed by the RLG variants. RLG was the best at ex-

posing E3, E4, E5 and E6. RLG- needed the most time to detect all errors, except E3. RLG-

could not, however, detect E4 and E5. RLG*, exploiting its tighter generation constraints, could

detect E4 and E5, even though it was not the best at exposing them. RLG+ needed the least

time, among all generators, to expose E4 and E5, two of the harder to detect errors.

Regarding E6, the error that requires false sharing to be detected, only 4 generators

were able to detect it: RLG**, MTG (with n = 1Ki and n = 64Ki), and RLG-. RLG** and

MTG were able to reliably detect it in all tries, while RLG- only detected it in one try. RLG- was

able to detect E6 because of how its unconstrained test generator can create a situation where

false sharing is possible with a low probability of occurrence. MTG needed from 4 to 50 times

more time to detect E6 than RLG**, but it was still able to detect this error. This was possible

because, even though the initial tests generated by MTG allocate one shared variable per cache

block, new tests created by the genetic algorithm can create variables in new addresses, enabling

false sharing. This also explains why MTG with n = 1Ki needed from 7 to 11 times less time

than its longer-test counterpart to detect this error. Since it has a higher test throughput, it is

quicker to create a mutation that enables false sharing. RLG** could easily detect E6 because

62

of its control over sharing. This indicates that, even though the addition of a sharing constraint

hindered coverage evolution for RLG** and increased the effort needed to expose other errors,

a control over sharing is needed to detect some challenging errors.

RLG+ needed 8 minutes to expose all errors (except E6) under MOESI and the func-

tional metric, while HTG needed 21 and MTG (n = 64Ki), 80 minutes. Therefore, we conclude

that the proposed generator was superior in most cases, especially in our most challenging

verification environment. This indicates that a reinforcement learning based approach, allied

with proper constraints, is likely to cope with the verification needs of new, highly complex,

multicore processors, especially when paired with more detailed coverage metrics.

5.5 STATISTICAL SIGNIFICANCE OF FINAL COVERAGE VALUES

In this section, we executed extra experiments and employed statistical significance

testing in order to have better confidence in the results presented in section 5.2, especially

regarding final coverages. Since time restrictions limited the amount of seeds used in prior

experiments to 10, it was not feasible to use statistical methods to analyze the data. Such

methods require a higher amount of samples to express meaningful results. In order to make

this experiment feasible but still obtain useful results, we limited the generators to those which

achieved the highest coverages observed in the prior experiments, (RLG*, RLG+, HTG, and

MTG with n = 64Ki), and tested them in the most challenging environment available to us:

MOESI coherence protocol and functional coverage metric. The experiments presented in this

section were executed 50 times, each with a distinct random seed.

Figure 11 shows the coverage evolution for the selected generators using extra random

seeds. Each data point represents the median value among 50 random seeds. It is remarkable

how this figure resembles Figure 8, albeit smoother from the higher amount of data samples used

to generate it. The final coverage obtained by the generators was very similar to when using

fewer seeds, only differing by at most 0.06 percentage points. This indicates that the amount of

seeds used in the previous experiments was enough to accurately represent the behavior of the

generators, even though insufficient to be strictly statistically significant.

RLG+ achieved the highest final coverage of 94.09%, while HTG, RLG* and MTG

achieve 93.13%, 93.10%, and 92.54%, respectively. RLG+ was more than 2 times faster than

HTG to achieve its final coverage and 7 times faster than MTG to achieve its final coverage.

In order to make sure the final coverage obtained by the generators was indeed sta-

tistically significantly distinct we used statistical hypothesis testing. We selected significance

level α = 0.05. First, we tested our data, the final coverage obtained for each generator and

seed, for normality using 3 normality tests, since each is better at categorizing different types

of distributions (YAZICI; YOLACAN, 2007): the Shapiro-Wilk test, D’Agostino’s K² test, and

Anderson-Darling test. All 3 tests were unanimous in their responses, under the same α . RLG+

and RLG* final coverage values do not seem to be normally distributed, while HTG and MTG

do. So, since not all our data is normally distributed, we had to opt for a non-parametric hy-

67

6 CONCLUSIONS AND PERSPECTIVES

Slow multicore simulation and short verification budgets require the use of Directed

Test Generation for efficient coverage control during pre-silicon verification. This dissertation

proposes casting DTG as coverage-driven RTG. Based on estimated coverage and elapsed time,

our directing engine selects a few RTG parameters in order to maximize coverage under a time

constraint.

Our generator harnesses the power of reinforcement learning to learn how to select

RTG’s parameters in order to maximize coverage evolution. The next test parameters are se-

lected through the use of customizable actions, making the agent adaptable to distinct RTGs.

Since the agent only uses the percentage of total coverage through a coverage metric, it is also

reusable across distinct coherence protocols. We proposed four variants of our agent, each with

tighter constraints based on test generation legacy constraints.

Experiments were performed to evaluate how our generator fared against two state-

of-the-art generators under three aspects: coverage evolution, error detection, and effort. The

generators were analyzed under two coherence protocols, MESI and MOESI, and under two

complementary coverage metrics, structural and functional. Under the most challenging envi-

ronment available to us (MOESI and functional), our generator was capable of achieving a final

coverage of 94.09%, while HTG was able to achieve 93.13% and MTG, 92.54%. RLG was also

more than 2 times faster to achieve HTG’s max coverage and 7 times faster to achieve MTG’s.

The final coverage exhibited by the proposed generator was also shown to be statistically sig-

nificantly (for α = 0.05) greater than the compared generators. Regarding error detection, the

proposed generator needed 8 minutes to expose all errors (except one) under the most challeng-

ing environment, while the other generators needed from 21 to 80 minutes.

We also analyzed the agent prediction error (loss) of the four variants of the proposed

generator in order to establish how test constraints impact learning. Experiments seem to in-

dicate that there is a correlation between coverage evolution and learning speed, however, this

may be difficult to identify because of the noisy aspect of the loss function. They also seem to

indicate that test generation constraints can influence learning, especially when they influence

generation space size. Generation space can be too small, leading to a low final coverage, as

well as too big, leading to poorer coverage evolution because of how it makes the task of finding

good tests harder. Therefore, the selection of test generation constraints should be done care-

fully in order to create suitable next generation directed test generators, especially regarding

methods that rely on learning.

The experimental results show that Reinforcement Learning leads to an effective tech-

nique for directed test generation when it builds upon the legacy from random test generation.

They show that Reinforcement Learning for shared memory verification is largely improved

when shared memory and parallel program properties are exploited by an RTG engine.

The partitioning of complementary tasks into different modules (one exploiting what

is known, another exploring what is unknown) seems to have the synergy required by next

68

generation tools for verification.

We believe that the proposed technique could be easily adapted for usage in industrial

verification environments. The tailoring of the Directing Engine to a new framework seems

straightforward. However, such tailoring would be insufficient to obtain the same impact ob-

served in the results reported in this dissertation. The effectiveness of reinforcement learning

actions largely depends on properly constraining RTG. To produce the results reported in this

thesis, we have relied on two techniques that exploit non-conventional constraints, which are

called chaining and biasing (ANDRADE et al., 2018). That is why we advise their use (or of

similar techniques) in combination with the Directing Engine proposed in this dissertation.

6.1 FUTURE WORK

Limited time prevented us from further investigating a few research aspects. To better

assess extra aspects of this research, the experimental evaluation could be extended as follows:

• Impact of composed actions: All the actions proposed in this work were limited to mod-

ifying a single parameter at a time. Composed actions (those simultaneously modifying

multiple parameters), could be exploited by the agent in order to increase the number of

distinct test in sequence, which would probably lead to better coverage evolution, since

they are likely to expose different coverage events.

• Impact of online training: This work employed online training, that is, the RNN training

was done between test executions. There is a trade-off between training time and coverage

evolution: more training can lead to better decision making, but it takes time from test

execution. Extra experiments could pave the way towards a technique able to dynamically

find the best trade-off.

Finally, we envisage a couple of new artifacts:

• A new constraint-oriented directing engine based on genetic programming: The

McVerSi technique (ELVER; NAGARAJAN, 2016), which we encapsulated in our frame-

work as MTG, has shown that genetic programming can lead to an adequate DTG tech-

nique. However, it is unable to exploit generation constraints explicitly. Since chaining

and biasing (ANDRADE et al., 2018) were beneficial to RLG, they are likely to be ben-

eficial to a new generator where the Directing Engine would use genetic programming to

select parameters for an RTG engine based on chaining and biasing.

• A generalized agent: The proposed agent could be generalized so as to have a more fine-

grained control over the generation process as perhaps rely on alternative network types

and architectures that could be better targeted to the application domain of test generation.

69

6.2 PUBLICATIONS

The work described in this dissertation was partially reported in the proceedings of

the IEEE/ACM Design, Automation and Test in Europe Conference (DATE). The author also

contributed to the publication of an article in the journal IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD) and of a paper in the proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

• ICCAD 2018 paper (ANDRADE et al., 2018)

• DATE 2020 paper (PFEIFER et al., 2020)

• TCAD 2020 article (ANDRADE et al., 2020)

71

BIBLIOGRAPHY

ADIR, A. et al. Genesys-pro: innovations in test program generation for functional processor
verification. IEEE Design Test of Computers, v. 21, n. 2, p. 84–93, Mar 2004. ISSN
0740-7475.

ADIR, A. et al. Verification of transactional memory in power8. In: 2014 51st

ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2014. p. 1–
6. ISSN 0738-100X.

ADVE, S. V.; GHARACHORLOO, K. Shared memory consistency models: a tutorial.
Computer, IEEE, v. 29, n. 12, p. 66–76, Dec 1996. ISSN 0018-9162.

ALGLAVE, J. et al. Fences in weak memory models. In: TOUILI, T.; COOK, B.; JACKSON,
P. (Ed.). Computer Aided Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
p. 258–272. ISBN 978-3-642-14295-6.

ANDRADE, G. A. G. et al. Steep Coverage-ascent Directed Test Generation for Shared-
memory Verification of Multicore Chips. In: Proceedings of the International Conference

on Computer-Aided Design. [S.l.]: ACM, 2018. p. 29:1–29:8. ISBN 978-1-4503-5950-4.

ANDRADE, G. A. G. et al. A Directed Test Generator for Shared-Memory Verification of
Multicore Chip Designs. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, IEEE, 2020.

ANDRADE, G. A. G.; GRAF, M.; SANTOS, L. C. V. dos. Chain-Based Pseudorandom
Tests for Pre-Silicon Verification of CMP Memory Systems. In: 34th IEEE International

Conference on Computer Design (ICCD). [S.l.: s.n.], 2016. p. 552–559.

BINKERT, N. et al. The Gem5 Simulator. SIGARCH Computer Architecture News,
Association for Computing Machinery, New York, NY, USA, v. 39, n. 2, p. 1–7, aug. 2011.
ISSN 0163-5964.

BOLOSKY, W. J.; SCOTT, M. L. False sharing and its effect on shared memory performance.
In: USENIX Systems on USENIX Experiences with Distributed and Multiprocessor

Systems - Volume 4. Berkeley, CA, USA: USENIX Association, 1993. (Sedms’93), p. 3–3.
Disponível em: http://dl.acm.org/citation.cfm?id=1295480.1295483.

DENNARD, R. H. et al. Design of Ion-Implanted MOSFET’s with Very Small Physical
Dimensions. IEEE Journal of Solid-State Circuits, v. 9, n. 5, p. 256–268, oct. 1974. ISSN
1558-173X.

DEVADAS, S. Toward a coherent multicore memory model. Computer, IEEE, v. 46, n. 10, p.
30–31, 2013.

DINECHIN, B. D. de et al. A clustered manycore processor architecture for embedded
and accelerated applications. In: 2013 IEEE High Performance Extreme Computing

Conference (HPEC). [S.l.: s.n.], 2013. p. 1–6.

DUELL, S.; UDLUFT, S.; STERZING, V. Solving partially observable reinforcement learning
problems with recurrent neural networks. In: Neural Networks: Tricks of the Trade.
Springer, Berlin, Heidelberg, 2012. p. 709–733. Disponível em: https://doi.org/10.1007/978-3-
642-35289-8_38.

72

ELVER, M. McVerSi Framework. [S.l.]: GitHub, 2016. https://github.com/melver/mc2lib.

ELVER, M.; NAGARAJAN, V. McVerSi: A test generation framework for fast memory
consistency verification in simulation. In: IEEE Int. Symp. on High Performance Computer

Architecture (HPCA). [S.l.: s.n.], 2016. p. 618–630.

ESMAEILZADEH, H. et al. Dark silicon and the end of multicore scaling. In: . [S.l.: s.n.],
2011. v. 32, p. 365–376.

FINE, S.; FOURNIER, L.; ZIV, A. Using bayesian networks and virtual coverage to hit
hard-to-reach events. International Journal on Software Tools for Technology Transfer,
v. 11, n. 4, p. 291–305, 10 2009. ISSN 1433-2787.

FINE, S.; ZIV, A. Coverage directed test generation for functional verification using bayesian
networks. In: Proceedings of the 40th Annual Design Automation Conference. New York,
NY, USA: ACM, 2003. (DAC ’03), p. 286–291. ISBN 1-58113-688-9.

FLOOD, M. M. The traveling-salesman problem. Operations Research, v. 4, n. 1, p. 61–75,
1956.

FRANCESQUINI, E. et al. On the energy efficiency and performance of irregular
application executions on multicore, numa and manycore platforms. Journal of

Parallel and Distributed Computing, v. 76, p. 32–48, 2015. ISSN 0743-7315. Special
Issue on Architecture and Algorithms for Irregular Applications. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0743731514002093.

FREITAS, L. S.; RAMBO, E. A.; SANTOS, L. C. V. dos. On-the-fly verification of memory
consistency with concurrent relaxed scoreboards. In: Design, Automation, and Test in

Europe (DATE). [S.l.: s.n.], 2013. p. 631–636. ISBN 978-1-4503-2153-2.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
http://www.deeplearningbook.org.

GRAVES, A. Supervised Sequence Labelling with Recurrent Neural Networks. [S.l.]:
Springer, 2012. v. 385. 1-131 p. (Studies in Computational Intelligence, v. 385). ISBN
978-3-642-24796-5.

GROCE, A. Coverage rewarded: Test input generation via adaptation-based programming. In:
2011 26th IEEE/ACM International Conference on Automated Software Engineering

(ASE 2011). [S.l.: s.n.], 2011. p. 380–383. ISSN 1938-4300.

HANGAL, S. et al. TSOtool: A program for verifying memory systems using the memory
consistency model. ACM SIGARCH Comp. Arch. News, ACM, New York, NY, USA, v. 32,
n. 2, p. 114–123, Mar 2004. ISSN 0163-5964.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture: A Quantitative Approach.
6th. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2017. ISBN 0128119055.

HESSEL, M. et al. Rainbow: Combining improvements in deep reinforcement learn-
ing. In: AAAI Conference on Artificial Intelligence. [s.n.], 2018. Disponível em:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204/16680.

HU, W. et al. Linear Time Memory Consistency Verification. IEEE Transactions on

Computers, v. 61, n. 4, p. 502–516, Apr 2012. ISSN 0018-9340.

73

JAEGER, H. The" echo state" approach to analysing and training recurrent neural
networks-with an erratum note’. Bonn, Germany: German National Research Center for

Information Technology GMD Technical Report, v. 148, 01 2001.

KIM, J.; KWON, M.; YOO, S. Generating test input with deep reinforcement learning. In:
Proceedings of the 11th International Workshop on Search-Based Software Testing. New
York, NY, USA: ACM, 2018. (SBST ’18), p. 51–58. ISBN 978-1-4503-5741-8. Disponível
em: http://doi.acm.org/10.1145/3194718.3194720.

KOZA, J. R. Genetic programming: on the programming of computers by means

of natural selection. 1. ed. [S.l.]: MIT Press, 1992. (Complex adaptive systems). ISBN
0262111705,9780262111706.

LAMPORT, L. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers, IEEE Computer Society, Washington, DC,
USA, v. 28, n. 9, p. 690–691, sep. 1979. ISSN 0018-9340.

LANG, K. J.; WAIBEL, A. H.; HINTON, G. E. A time-delay neural network architecture for
isolated word recognition. Neural Networks, v. 3, n. 1, p. 23–43, 1990. ISSN 0893-6080.

LITTMAN, M.; SUTTON, R. S. Predictive representations of state. In: Advances in Neural

Information Processing Systems. [S.l.]: MIT Press, 2002. v. 14.

LUSTIG, D.; PELLAUER, M.; MARTONOSI, M. Pipe check: Specifying and verifying
microarchitectural enforcement of memory consistency models. In: Proceedings of the 47th

Annual IEEE/ACM International Symposium on Microarchitecture. Washington, DC,
USA: IEEE Computer Society, 2014. (MICRO-47), p. 635–646. ISBN 978-1-4799-6998-2.

MANOVIT, C.; HANGAL, S. Completely verifying memory consistency of test program
executions. In: IEEE Int. Symposium on High-Performance Computer Architecture

(HPCA). [S.l.: s.n.], 2006. p. 166–175.

MARTIN, M. M.; HILL, M. D.; SORIN, D. J. Why on-chip cache coherence is here to stay.
Communications of the ACM, ACM, v. 55, n. 7, p. 78–89, June 2012.

MCCRUM-GARDNER, E. Which is the correct statistical test to use? British Journal of

Oral and Maxillofacial Surgery, v. 46, n. 1, p. 38 – 41, 2008. ISSN 0266-4356. Disponível
em: http://www.sciencedirect.com/science/article/pii/S0266435607004378.

MOORE, G. E. Cramming More Components onto Integrated Circuits. Electronics, v. 38, n. 8,
p. 114–117, apr. 1965.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design, Fifth Edition:

The Hardware/Software Interface. 5th. ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2013. ISBN 0124077269.

PFEIFER, N. et al. A reinforcement learning approach to directed test generation for shared
memory verification. In: 2020 Design, Automation & Test in Europe Conference &

Exhibition (DATE). [S.l.: s.n.], 2020. p. 538–543.

QIN, X.; MISHRA, P. Automated generation of directed tests for transition coverage in cache
coherence protocols. In: Design, Automation, and Test in Europe (DATE). [S.l.: s.n.], 2012.
p. 3–8. ISSN 1530-1591.

74

SHAKERI, N. et al. Near optimal machine learning based random test generation. In: 2010

East-West Design Test Symposium (EWDTS). [S.l.: s.n.], 2010. p. 420–424.

SORIN, D. J.; HILL, M. D.; WOOD, D. A. A Primer on Memory Consistency and Cache

Coherence. 1st. ed. [S.l.]: Morgan & Claypool Publishers, 2011. ISBN 1608455645.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. 2. ed. [S.l.]:
MIT Press, 2018. ISBN 9780262039246.

WAGNER, I.; BERTACCO, V. MCjammer: Adaptive Verification for Multi-core Designs.
In: Design, Automation, and Test in Europe (DATE). [S.l.: s.n.], 2008. p. 670–675. ISSN
1530-1591.

WAGNER, I.; BERTACCO, V. Post-Silicon and Runtime Verification for Modern

Processors. [S.l.]: Springer US, 2010. (SpringerLink : Bücher). ISBN 9781441980342.

YAZICI, B.; YOLACAN, S. A comparison of various tests of normality. Journal of Statistical

Computation and Simulation, Taylor |& Francis, v. 77, n. 2, p. 175–183, 2007.

ZHANG, M. et al. PVCoherence: Designing Flat Coherence Protocols for Scalable
Verification. IEEE Micro, v. 35, n. 3, p. 84–91, May 2015. ISSN 0272-1732.

ÅSTRÖM, K. J. Optimal control of markov processes with incomplete state information I.
Elsevier, v. 10, p. 174–205, 1965. ISSN 0022-247X.

	Title page
	Acknowledgements
	Resumo
	Resumo Expandido
	Abstract
	List of abbreviations and acronyms
	Introduction
	Target problem and proposed approach
	Contributions
	Organization of This Dissertation

	Background
	Coherent Shared Memory Concepts
	Cache basics
	The cache coherence problem
	Coherence invariants
	How to maintain cache coherence
	An example of coherence protocol
	False Sharing

	Machine Learning Concepts
	Genetic Algorithms
	Recurrent Neural Networks
	Reinforcement Learning

	Related work
	Constrained RTG legacy
	DTG for shared memory verification
	Reinforcement learning for DTG

	The Reinforcement Learning Generator
	Formulation of the Decision Process
	Proposed actions
	Two-parameter actions
	Three-parameter actions
	Four-parameter actions

	The underlying model

	Experimental validation
	Experimental set up
	Impact of learning on coverage evolution
	Impact of problem-specific information on learning
	Error discovery rate and effort
	Statistical Significance of Final Coverage Values
	Impact of Test Size Step on Coverage Evolution
	Impact of Time Quantization on Coverage Evolution

	Conclusions and Perspectives
	Future Work
	Publications

	Bibliography

		2022-01-09T16:42:41-0300

		2022-01-10T09:28:48-0300

