
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CAMPUS FLORIANÓPOLIS

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E

SISTEMAS

Ivan Francisco Yupanqui Tello

Contribution to State Estimation of Semilinear Parabolic Distributed Parameter

Systems with Applications to Transport Reaction Systems

Mons

2021



Ivan Francisco Yupanqui Tello

Contribution to State Estimation of Semilinear Parabolic Distributed Parameter

Systems with Applications to Transport Reaction Systems

Tese submetida ao Programa de Pós-Graduação

em Engenharia de Automação e Sistemas da Uni-

versidade Federal de Santa Catarina e pela Institui-

ção Université de Mons em regime de cotutela para

a obtenção do título de Doutor em Engenharia de

Automação e Sistemas.

Orientador: Prof. Daniel Coutinho, Dr. (UFSC),

Prof. Alain Vande Wouwer, Dr. (UMONS)

Mons

2021



Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Yupanqui Tello, Ivan Francisco 
   Contribution to State Estimation of Semilinear
Parabolic Distributed Parameter Systems with Applications
to Transport Reaction Systems  / Ivan Francisco  Yupanqui
Tello ; orientador, Daniel Coutinho, orientador, Alain
Vande Wouwer, 2022.
   153 p.

   Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2022.

   Inclui referências. 

   Trabalho elaborado em regime de co-tutela. 

 1. Engenharia de Automação e Sistemas. 2.  Sistemas de
Parâmetros Distribuídos. 3. Sistemas de Reação de Transporte.
4. Estimação de Estado. 5.  Equações Diferenciais Parciais.
I. Coutinho, Daniel. II. Vande Wouwer, Alain III.
Universidade Federal de Santa Catarina. Programa de Pós
Graduação em Engenharia de Automação e Sistemas. IV. Título.



Ivan Francisco Yupanqui Tello

Contribution to State Estimation of Semilinear Parabolic Distributed Parameter

Systems with Applications to Transport Reaction Systems

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Prof. Gustavo de Andrade, Dr.

Instituição Universidade Federal de Santa Catarina-UFSC

Laurent Dewasme, Dr.

Instituição Université de Mons-UMONS

Prof. Nicolas Gillis, Dr.

Instituição Université de Mons-UMONS

Prof. Joseph Winkin, Dr.

Instituição Université de Namur-UNAMUR

Prof. Thomas Meurer, Dr.

Instituição Christian-Albrechts-Universität zu Kiel-CAU

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de Doutor em Engenharia de Automação e

Sistemas.





I dedicate my work to my family.



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors Dr. Daniel Coutinho

and Dr. Alain Vande Wouwer for their appreciable inspiration, support and patience

throughout my research and acting as a mentors to my overall professional develop-

ment. The critical reviews and recommendations that they provided for the improve-

ment of my articles and presentations were very valuable. They were great supervisors

and it was a great pleasure to have the opportunity to work under their supervision.

Special gratitude to the members of the jury of my thesis, Prof. Gustavo An-

drade (Universidade Federal de Santa Catarina), president of the jury and Dr. Laurent

Dewasme (Université de Mons), secretary, Prof. Nicolas Gillis (Université de Mons),

Prof. Thomas Meurer (Christian-Albrechts-Universität zu Kiel) and Prof. Joseph Winkin

(Université de Namur). I would like to give special thanks to all them for their insightful

comments about the thesis manuscript.

To my family, words cannot fully express how deeply grateful I am for all of your

love and support. For my wife, my parents and sisters, thank you for believing in me

and for encouraging me to pursue this path. Without all of your patience and empathy,

I would not have been able to see this through. I hope to have made you proud.



“The men who have succeeded are men

who have chosen one line and stuck to it.”

(Andrew Carnegie)



RESUMO

Os sistemas de reação de transporte são descritos por equações diferenciais parciais
parabólicas semilineares (PDEs) e são fundamentais em aplicações onde os proces-
sos de difusão devem ser considerados explicitamente. O problema de estimação de
estado com base em medições distribuídas no domínio não é trivial. Neste trabalho,
abordamos esse problema para uma determinada classe de sistemas de reação de
transporte. Para realizar essa tarefa, propomos estratégias de projeto do observador
no quadro de ambas as abordagens de agrupamento inicial e tardia.

Em relação à abordagem de agrupamento inicial para o projeto do observador de es-
tado, usamos o Método dos Resíduos Ponderados (MWR), que abrange o método
de colocação ortogonal, para derivar um modelo de ordem reduzida aproximado, ex-
presso como um conjunto de equações diferenciais ordinárias (ODEs) sujeito às re-
strições algébricas. Em seguida, um método de projeto baseado em Lyapunov é pro-
posto para o modelo de ordem reduzida que fornece condições de projeto suficientes
em termos de desigualdades matriciais lineares padrão (LMIs) visando a convergência
exponencial do erro de estimativa com uma taxa de decaimento prescrita. O desem-
penho do observador é ainda melhorado por meio de um algoritmo off-line do posi-
cionamento ótimo dos sensores considerando a parametrização da matriz de saída
de ordem reduzida.

Com respeito à abordagem de agrupamento tardio, em primeiro lugar, estudamos a
representação em operadores de semigrupo que nos leva ao uso das propriedades
de decomposição espectral relacionadas aos operadores diferenciais parabólicos. As-
sim, objetivamos obter condições de síntese de observador de estado suficientes com
base nas propriedades locais de lipschitz das funções do vetor de taxa de reação
considerando um ganho de injeção de tipo modal. Em segundo lugar, o método de
projeto baseado em Lyapunov é proposto para a estabilização da dinâmica do erro
de estimação. A abordagem usa matrizes definidas positivas para parametrizar uma
classe de funcionais de Lyapunov que são positivos no espaço das funções integráveis
quadradas de Lebesgue. Assim, as condições de estabilidade podem ser expressas
como um conjunto de restrições LMI que podem ser resolvidas numericamente us-
ando programação de soma de quadrados (SOS) e ferramentas de programação semi-
definida (SDP).

Ao longo dos capítulos desta tese, todas essas técnicas e métodos propostos são apli-
cados e testados numericamente aos casos representativos de processos de reatores
tubulares bioquímicos. Os resultados da simulação apoiam a eficácia dos projetos
sugeridos.

Finalmente, o problema de monitoramento de propagação do COVID-19 é abordado
na parte de aplicação desta tese. Em particular, abordamos a estimação de estado do
modelo compartimental modelado por um sistema de equações diferenciais parciais,
que descreve a propagação da doença infecciosa em uma população hospedeira. O
método de projeto baseado em Lyapunov e parametrização polinomial das variáveis
de decisão é usado para derivar um problema de programação semi-definida cuja



solução fornece os ganhos de injeção do observador de estado do tipo Luenberger.
Experimentos numéricos são apresentados para ilustrar a eficiência do método.

Palavras-chave: Sistemas de parâmetros distribuídos. Sistemas de transporte-reação.
Estimativa de estado. Equações diferenciais parciais parabólicas semi-lineares.



RESUMO EXPANDIDO

Introdução

Os processos de reação de transporte são caracterizados pelo acoplamento de fenô-
menos de advecção, difusão e reação, e estão presentes em muitos processos cientí-
ficos e industriais sendo fundamentais em aplicações da química, biologia, meteorolo-
gia, epidemiologia, dinâmica de fluidos e em outras áreas das ciências aplicadas. Os
processos de reação de transporte são modelados por equações diferenciais parciais
(PDEs) e junto com muitos outros (como os sistemas modelados por equações inte-
grais e equações diferenciais de retardo) são chamados de sistemas de parâmetros
distribuídos (DPSs). A estimação de estado de sistemas modelados por PDEs é um
problema particularmente delicado em vista da dimensionalidade infinita do sistema e
pelo fato de que dispor de um conjunto grande de sensores é fisicamente e economi-
camente inviável. Nesse caso, os estados internos devem ser estimados com base no
modelo matemático e nas medições (disponíveis) fornecidas por sensores localizados
em posições estratégicas no domínio espacial.

Objetivos

O objetivo fundamental desta Tese é desenvolver técnicas de síntese de observadores
de estado com vistas a estimar as variáveis de estado de certa classe de sistemas de
reação de transporte para fins de realimentação e/ou monitoramento. Motivado pelo
fato de que a dinâmica deste último é descrita por sistemas semilineares de PDEs, que
podem ser formulados como uma equação diferencial semilinear em um espaço de es-
tados de dimensão infinita, várias técnicas no quadro das abordagens de agrupamento
inicial e tardia da teoria de sistemas são descritas e/ou desenvolvidas e aplicadas a
este modelo. Para atingir o objetivo principal, são definidos os seguintes objetivos es-
pecíficos: (i) obter um modelo reduzido aproximado utilizando o método de colocação
ortogonal da classe de sistemas de interesse e estudar o seu grau de precisão com
respeito à seleção dos pontos de colocação, (ii) projetar um observador de estado
baseado em Lyapunov do modelo de ordem reduzida que garanta a convergência ex-
ponencial da dinâmica do erro de estimação, (iii) estudar as propriedades espectrais
do operador diferencial multivariável de segunda ordem relacionadas a sistemas de
reação de transporte e as propriedades de Lipschitz da função taxa de reação, a fim
de obter condições suficientes para o projeto de observador de estado modal, (iv) pro-
jetar um observador de estado baseado na teoria de Lyapunov do sistema de PDEs
semilineares descrevendo a classe de sistemas de reação de transporte de interesse
usando parametrização polinomial de tal forma que os parâmetros do observador pos-
sam ser obtidos por meio da solução de um programa de soma de quadrados (SOSs),
(v) testar numericamente as metodologias de estimação de estado desenvolvidas em
aplicações de processos bioquímicos de referência.

Metodologia

Neste trabalho abordamos o problema de estimação de estado para uma determinada
classe de sistemas de reação de transporte. Para realizar essa tarefa, propomos es-
tratégias de projeto do observador usando as abordagens de agrupamento inicial e
tardia. Assim, métodos de projeto baseado em Lyapunov e na teoria de semigrupos
são propostos para a estabilização da dinâmica do erro de estimação. As condições de



estabilidade podem ser expressas como um conjunto de restrições LMI que podem ser
resolvidas numericamente usando ferramentas padrão de programação semi-definida
(SDP).

Resultados e Discussão

Esta tese é uma tentativa de fornecer uma estrutura tratável para processos multi-
estados considerando medições distribuídas no domínio espacial. As técnicas de esti-
mação de estado propostas reduzem significativamente a complexidade da análise de
estabilidade da dinâmica do erro usando condições de setor algébrico local para repre-
sentar a dinâmica do erro como um sistema de tipo Lure. Ao longo dos capítulos desta
tese as técnicas e métodos propostos são aplicados e testados numericamente aos
casos representativos de processos de reatores tubulares bioquímicos onde os resulta-
dos da simulação apoiam a eficácia dos projetos sugeridos. Finalmente, o problema de
monitoramento da propagação do COVID-19 é abordado no capitulo final desta tese,
em particular, abordamos a estimação de estado do modelo compartimental mode-
lado por um sistema de equações diferenciais parciais, que descreve a propagação
da doença infecciosa em uma população hospedeira. O método de projeto baseado
em Lyapunov com parametrização polinomial das variáveis de decisão é usado para
derivar um problema programação semi-definida cuja solução fornece os ganhos de
injeção do observador de estado do tipo Luenberger. Experimentos numéricos são
apresentados para ilustrar a eficiência do método.

Considerações Finais

As técnicas propostas nesta tese foram elaboradas à luz de uma exploração motivada
de abordagens reconhecidas e amplamente utilizadas na literatura da teoria de sis-
temas. Assim, o problema de estimação de estado foi abordado em uma estrutura unifi-
cadora combinando (i) técnicas de redução de modelo, (ii) teoria de semigrupos, (iii)
teoria de Lyapunov e (iv) programação semi-definida e de soma de quadrados. Tendo
em vista os estudos anteriores registrados na literatura, as técnicas propostas de pro-
jeto fornecem inovações importantes, compreendendo (i) o projeto sistemático através
da utilização de ferramentas de programação semi-definidas para calculas os parâmet-
ros dos observadores de estado de sistemas multi-estado, (ii) aprimoração da con-
vergência através da otimização dos posicionamentos dos sensores e das condições
iniciais do observador projetado. Essas características de projeto foram possíveis de-
vido a uma combinação frutífera das ferramentas matemáticas e computacionais para
programação semi-definida, bem como métodos de análise e projeto.

Palavras-chave: Sistemas de parâmetros distribuídos. Sistemas de transporte-reação.
Estimativa de estado. Equações diferenciais parciais parabólicas semi-lineares.



ABSTRACT

Transport–reaction systems are described by semilinear parabolic partial differential
equations (PDEs) and are fundamental in applications where diffusion processes must
be considered explicitly. The state estimation problem on the basis of some in-domain
distributed measurements is non-trivial. In this work we address this problem for a
certain class of transport-reaction systems. To achieve this task, we propose observer
design strategies in the frame of both early and late lumping approaches.

Regarding the early lumping approach for the state observer design, we use the Method
of Weighted Residuals (MWR), that encompasses the orthogonal collocation method,
to derive an approximate reduced-order model, expressed as a set of ordinary differen-
tial equations (ODEs) subject to algebraic constraints. Then, a Lyapunov-based design
method is proposed for the reduced-order model which provides sufficient design con-
ditions in terms of standard linear matrix inequalities (LMIs) aiming at the exponential
convergence of the estimation error with a prescribed decay rate. The observer per-
formance is further improved through an offline optimal sensor placement algorithm
considering a parameterized reduced-order output matrix.

Concerning the late lumping approach, firstly, we studied the operator semi-group rep-
resentation which lead us to the use of the spectrum-decomposition properties related
to parabolic differential operators. Thus we aimed at obtaining sufficient state observer
synthesis conditions based on the local lipschitz properties of the reaction rate vec-
tor functions considering a modal output injection gain. Secondly, a Lyapunov based
design method is proposed for the stabilization of the estimation error dynamics. The
approach uses positive definite matrices to parameterize a class of Lyapunov func-
tionals that are positive in the space of Lebesgue square integrable functions. Thus,
the stability conditions can be expressed as a set of LMI constraints which can be
solved numerically using sum of squares (SOS) and standard semi-definite program-
ming (SDP) tools.

Throughout the chapters of this thesis, all these proposed techniques and methods are
applied and tested numerically to the representative cases of biochemical tubular reac-
tor processes. Simulation results support the effectiveness of the suggested designs.

Finally, the COVID-19 spread monitoring problem is addressed in the application part
of this thesis. In particular, we tackle the state estimation of the compartmental model
based on partial differential equations (PDEs) which describes the spread of the infec-
tious disease in a host population. A Lyapunov based design method with SOS and
polynomial parameterization of the decision variables is used to derive a SDP prob-
lem whose solution provides the injection gains of the Luenberger type state observer,
Numerical experiments are presented to illustrate the method efficiency.

Keywords: Distributed parameter systems. Transport-reaction systems. State estima-
tion. Semi-linear parabolic partial differential equations.
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1 INTRODUCTION

For many physical systems, states, inputs, and outputs may depend on a spatial

variable, which defines a position in one-dimensional or multidimensional space. These

systems are modeled by partial differential equations (PDEs) and along with many

others (like systems modeled by integral equations and delay differential equations)

are called distributed parameter systems (DPSs). They differ from lumped parameter

systems (LPSs), modeled by ordinary differential equations (ODEs), in the non-spatial

dependence of their states, inputs and outputs. Studies on parameter identification,

control and state estimation of processes modeled by PDEs are relatively recent but

plentiful.

The time and space dependence makes the analysis of systems modeled by

PDEs more complex than in the lumped-parameter case. In addition, depending on the

type of boundary conditions, these systems can be more or less difficult to analyze.

On-line state estimation of DPSs modeled by PDEs is particularly a delicate problem

in view of the system dimensionality and the fact that providing a comprehensive set

of sensors is either physically impossible or too costly (A. VANDE WOUWER et al.,

2000). In such a case, the internal states have to be estimated on the basis of the

mathematical model and (available) online measurements provided by sensors located

at strategic positions in the spatial domain. In general, measurements for PDE systems

are either in domain (provided by sensors located inside the domain of the PDE system

and they may be of pointwise or piecewise type ) or boundary (provided by sensors

located at the boundary of the PDE system).

1.1 STATE OF THE ART

Many seemingly distinct phenomena found in different fields of research in sci-

ence and engineering can be mathematically formalized by PDEs with mixed or ho-

mogeneous boundary conditions arising from chemical and physical principles (e.g.,

conservation laws as well as mass, energy and momentum balances). Thus, there

exists need for accurate models to design algorithms for control, observation or diag-

nostic of failures for PDE systems leading to a growing interest in PDE control and

systems theory in the last decade. At the same time, the progress in computational

and applied mathematics combined with the availability of rapidly increasing computer

power steadily extend the range of real life applications that can be numerically solved.

These developments lead to new challenges in the field of state estimation and control

of PDE systems. In particular, we can cite several works related to the application of

PDE theory in different fields of application.

• Industrial processes. A significant number of applications of PDE theory arises
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in industrial process control. Perhaps one of the largest number of reported

applications have been to heating and cooling problems (LONG et al., 2016;

NGUYEN; TENNO, 2016) as well as fluid heat exchangers (MAIDI; CORRIOU,

2020; XU; DUBLJEVIC, 2016). Other major areas of applications are to bio-

chemical reactors and similar processes (CHEN, Y. et al., 2015; LAO et al.,

2014; DELATTRE, Cedric et al., 2004; BOUBAKER et al., 1998) characterized

by chemical conversion, internal heat generation or consumption, and strong

nonlinearities in their kinetics. Other applications of PDE theory are reported in

a number of other areas of process control. For instance, polymer processing

operations (LOPEZ-GOMEZ et al., 2007), control of plasmas (MAVKOV et al.,

2017), nuclear reactor control (CHAUDHURI, 1972), and for a scattered variety

of other process control applications (YEBI; AYALEW, 2015; KOTSUR, 2015) a

number of studies have appeared.

• Mechanical systems. A second area of application of PDE theory is to mechan-

ical systems problems such as bridge, towers and vehicle modeling and control

design (XING; LIU, J., 2020; KIRCHER; ZHANG, K. M., 2016; LE FLOCH et al.,

2016), and the control of platforms, flexible structures and robots; see, e.g.,

(BARTECKI, 2013; WU, F.; YILDIZOGLU, 2005; YANG, H. et al., 2015). The

main problems in this area seem to be the design of these structures so that they

are stable under dynamic disturbances as well as the identification of param-

eters and dynamic state so that structural feedback controllers may be developed.

• Resource recovery and environmental systems. Another major area of ap-

plications of PDE theory is the resource recovery and environmental problems.

Resource recovery applications include identification of under ground oil, water

and coal reservoirs (EWING et al., 1994; OMOSEBI; IGBOKOYI, 2016). The qual-

ity of the environment is another important area in which PDE theory has found

important applications. One can cite the management of water quality, modeling,

prediction and control of atmospheric pollution (FERRAGUT et al., 2013) and con-

trol of forest and meadow fires (SÉRO-GUILLAUME et al., 2008).

• Epidemiological models. Another interesting new area in PDE theory is the

modeling of spatial spread of infectious diseases. Studies reported on epidemi-

ology involve the mathematical modeling of the distribution effects in the mecha-

nism of transmission of the contagion, and this has led to a number of both quanti-

tative and qualitative predictions in the infectious diseases dynamics (LOTFI et al.,

2014; HUANG, W. et al., 2010).
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1.1.1 State estimation of PDE systems

The problem of designing observers for DPSs modeled by PDEs has been an

active field of research over the last years. Thus, the literature related to the subject

matter is very rich. These works have widely different approaches, symbolisms, mea-

surement processes and boundary conditions associated with them. As classical sur-

veys systematizing the various techniques in this field, one can cite those by (FUJII,

1980), or a more recent book (BANKS; KUNISCH, 2012) where a broad class of esti-

mation techniques for DPSs is presented.

For the purpose of implementing observer and controller design techniques for

PDE systems, the dimension of the system must be reduced. This process is called

lumping and there are two kinds of lumping (A. VANDE WOUWER; ZEITZ, 2009; RAY,

1981): early lumping and late lumping, which are summarized in the following.

1.1.1.1 Early lumping

In the early lumping approach the PDE system is first approximated by a finite-

dimensional system ( obtained by model reduction methods) for which the observer

is designed. Model reduction may be considered as some of the fundamental issues

for the DPSs modeling. In this context, within the time–space separation framework,

different approaches and methods arise according to the combination of proper model

reduction approaches and spatial basis functions selection. The method of weighted

residuals (MWR) (FINLAYSON, 2013) is the most often used method for model re-

duction. The accuracy and efficiency of MWR depend on appropriately choosing the

basis and weighted functions. Many methods have been proposed based on the se-

lection of weighting functions. The most popular approaches appear to be Galerkin

and collocation methods (FINLAYSON, 2013). On the other hand, selection of spa-

tial basis functions is critical to the model reduction, and has a great impact in the

modeling performance. The spatial basis functions can be classified into analytical

and data-based functions. In general, there are four major approaches, the finite differ-

ence method (FDM) (MITCHELL; GRIFFITHS, 1980), the finite element method (FEM)

(BRENNER et al., 2008), the spectral method (BOYD, J. P., 2001) and the Karhunen-

Loève (KL) method (PARK; CHO, 1996). For different applications, different modeling

methodologies can be formulated through an integration of proper spatial basis func-

tions and model reduction approaches.

Recently, several works have addressed the state estimation problem of

DPSs considering early lumping based approaches such as (KATZ; FRIDMAN, 2020;

MARKO et al., 2018; WU, H.-N. et al., 2016). In the context of spatially distributed

sensing, the sensor placement problem is of particular interest, since the observer

performance directly depends on the proper allocation of sensors available for on-
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line measurement. There are several approaches addressing the sensor placement

problem in distributed systems, for instance, one can cite the classic works in

(A. VANDE WOUWER et al., 2000; ALONSO et al., 2004; DEMETRIOU, 2005) and a

more recent paper in (GUNDER et al., 2018). Therein, different approaches were pro-

posed in order to improve the performance with respect to a certain optimization index

or a specific desired feature.

1.1.1.2 Late lumping

In the late-lumping approach the distributed nature of the system model is main-

tained for the observer design, the resulting observer is infinite dimensional, which is

then lumped for implementation purposes. This approach theoretically leads to bet-

ter estimation results since no approximation of the model is made, nevertheless it

requires the manipulation of more sophisticated mathematical tools and methods.

Observer synthesis of DPSs is based on semigroup theory, Lyapunov approach

and the use of the backstepping technique, which are detailed below.

• Synthesis based on the semigroup theory. The study of operator semigroups

is a mature area of functional analysis which is still very active. In this frame-

work, The DPS is described by an abstract ODE which involves a sum of lin-

ear and/or nonlinear operators (semigroup operators) defined in Hilbert or Ba-

nach spaces. The study of observation operators for such systems is relatively

more recent. Crucial to the developments of these studies are the concepts

of admissibility, observability and detectability (JACOB; PARTINGTON, 2004;

TUCSNAK; WEISS, 2009; CHEN, W.; TU, 1995). The state observer is an ex-

tension of the well-known lumped parameter Luenberger observer theory to an

infinite dimensional system described by a semigroup operator and its infinitesi-

mal generator (CURTAIN; ZWART, 2020; VRIES et al., 2007).

Concerning the design of observers for semilinear PDEs using the ab-

stract infinite dimensional description, the dissipativity-based observer design

(SCHAUM et al., n.d.) provides an effective mean for dealing with complex non-

linearities yielding local and global convergent results through the use of modal

measurement injection approach as addressed in (CURTAIN; ZWART, 2020).

• Synthesis based on the Lyapunov method. In the Lyapunov-based observer

synthesis, the convergence of the observer is established by analyzing the sta-

bility of the estimation error dynamics using an appropriate Lyapunov functional.

Stability conditions are expressed as linear matrix inequality (LMI) constraints,

which are numerically solved using standard interior-point algorithms and whose

solution provides the output injection operator of the observer. This approach

can be found in (FRIDMAN, 2013a, 2013b; CASTILLO et al., 2013) for first order
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hyperbolic systems and in (FRIDMAN; ORLOV, 2009; YANG, Y.; DUBLJEVIC,

2014; SCHAUM, Alexander et al., 2014; GAHLAWAT; PEET, Matthew M, 2016a;

LIU, Y.-Q. et al., 2018) for second order parabolic systems.

Recently, Sum-of-Squares (SOS) optimization methods have been applied to

the parametrization of positive Lyapunov functionals using SOS polynomials,

which renders the problem of searching for solutions for the observer gain con-

vex. More importantly, with such parametrization of positive operators, the so-

lutions may be searched using semidefinite programming using recently devel-

oped numerical tools (PAPACHRISTODOULOU et al., 2013). Examples of these

works can be found in (PAPACHRISTODOULOU; PEET, Matthew Monnig, 2006;

GAHLAWAT; PEET, Matthew M, 2016a, 2016b).

• Synthesis based on the backstepping technique

In the backstepping technique, an invertible integral Volterra type transformation

is used to match the state estimation error dynamics to a target system having

the desired stability properties. This technique requires the determination of the

integral kernel defined on a limited domain and which is a solution of a set of

PDEs that can be solved numerically or in some cases analytically. By principle

of equivalence, the proof of the stability of the target system allows to conclude

on the stability of the estimation error dynamics.

The strength of this approach lies in its structural simplicity and a fairly wide

field of application for various classes of systems modeled by PDEs. For sys-

tems governed by parabolic PDEs defined on a one-dimensional (1D) spatial

domain, a systematic observer design approach using boundary sensing is in-

troduced in (SMYSHLYAEV; KRSTIC, 2005). Recently, the backstepping-based

observer design was presented in (TSUBAKINO; HARA, 2015) for reaction-

diffusion processes with spatially varying reaction coeffient and a certain

weighted average of the state over the spatial domain as measured output. In

(JADACHOWSKI et al., 2011, 2015), backstepping-based observer design was

addressed for reaction-diffsion processes evolving in multidimensional spatial do-

mains. In (MIRANDA et al., 2010), the backstepping-based design for parabolic

processes was applied by adopting a nonconventional target system for the error

dynamics, embedding certain discontinuous output injection terms.

More recently, multivariable systems of coupled PDEs were considered in the

backstepping-based boundary control and observer design settings. The most

intensive efforts of the current literature seem however to be oriented towards

coupled processes of transport type (VAZQUEZ et al., 2008, 2011; MOURA et al.,

2013; BACCOLI; PISANO, 2015; LIU, B.-N. et al., 2016).
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1.2 MOTIVATION

Nowadays, transport-reaction systems have launched applications in chemistry, biol-

ogy, meteorology, epidemiology, fluid dynamics, and other fields of applied sciences.

Transport-reaction processes are characterized by the coupling of advection, diffusion

and reaction phenomena, and are pervasive in many scientific and industrial processes.

The advection–reaction–diffusion equation is one of the most pertinent areas of study

in applied mathematics. The combination of these three components in a mathematical

model puts a strong impact on the theory of PDEs and gives rise to rethink the corre-

sponding models in the light of the physical properties of a governing phenomenon.

Successful control and/or monitoring of this kind of processes requires online

information about the relevant process variables. In most cases, it is not possible to

have full access to these key variables due to economical or physical reasons and/or

the fact that not all variables can be measured. In such a case, the internal states have

to be estimated using a state observer.

1.3 PROBLEM DEFINITION

This thesis is particularly concerned with the synthesis of state observers for

a class of one-dimensional multivariable transport-reaction systems described by the

following semilinear PDE system:

∂tx(z, t) = D∂2
zx(z, t) – V∂zx(z, t) – K x(z, t) + B ud (t) + G r (x(z, t)) (1)

for (z, t) ∈ (0, 1) × (0,∞), subject to the Robin boundary conditions

Mα0∂zx(0, t) + Mβ0
x(0, t) = u0(t)

Mα1∂zx(1, t) + Mβ1
x(1, t) = u1(t)

(2)

for t ∈ [0,∞) and initial condition

x(z, 0) = x0(z) (3)

where

x(·, t) =
[

x1(·, t) · · · xnx (·, t)
]T

∈ L
nx
2 (0, 1)

denotes the state variable,

ud (t) =
[

ud ,1(t) · · · ud ,nx
(t)
]T

∈ R
nx
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is a known distributed exogenous input and

u0(t) =
[

u0,1(t), · · · u0,nx
(t)
]T

∈ R
nx

u1(t) =
[

u1,1(t) · · · u1,nx
(t)
]T

∈ R
nx

are the boundary known exogenous inputs at z = 0 and z = 1, respectively. The matri-

ces D = diag(di ), V = diag(υi ), K = diag(κi ) and B = diag(bi ), ∀i ∈ 1, ..., nx are matrices

of constant entries denoting the diffusion, superficial velocity, linear source and shap-

ing distributed input coefficients respectively, G ∈ R
nx×nr is the stoichiometric-kinetic

gain matrix and r (·) : Lnx
2 (0, 1) → L

nr
2 (0, 1) the vector of reaction rates. Mα0 = diag(α0,i ),

Mβ0
= diag(β0,i ), Mα0 = diag(α1,i ) and Mβ1

= diag(β1,i ), ∀i ∈ 1, ..., nx are matrices of

constant entries denoting the coefficients related to the Robin boundary conditions.

In order to ensure the well-posedness of the governing equations and the ob-

server design problem for (1)–(2) , the following conditions are assumed to be held

• di > 0 for i = 1, . . . , nx .

• r (·) : Lnx
2 (0, 1) → L

nr
2 (0, 1) is locally Lipschitz continuous in x , i.e., there exists a

positive constant l r = l r (ρ) where ρ > 0 such that

‖r (x) – r (x̂)‖ ≤ l r‖x – x̂‖ (4)

holds for all x , x̂ ∈ L
nx
2 (0, 1) with ‖x‖, ‖x̂‖ ≤ ρ.

1.3.1 Output measurement

The measurement vector for the PDE system (1)-(2) is defined as follows

y (t) =







∫ 1
0 c1(z)cT

1 x(z, t)dz
...

∫ 1
0 cny (z)cT

ny
x(z, t)dz






∈ R

ny (5)

where cj (z) describes the distribution of the measurement at the j-th position over the

spatial domain [0, 1].

Measurement sensors in a number of practical problems are only placed at a

finite number of discrete points or partial areas of the spatial domain. Different func-

tional forms cj (z) will lead to different forms of local measurement (WANG, J.-W. et al.,

2016). For instance, the choice

cj (z) = δ(z – ζj ) (6)
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corresponds to pointwise measurement at the positions ζj , j ∈ Ny , and the functional

form

cj (z) =
1

2εj
1[ζj–εj ,ζj+εj ] (7)

with

1[ζj–εj ,ζj+εj ] =







1, ζj – εj ≤ z ≤ ζj + εj ,

0, elsewhere
(8)

produces ny zones of piecewise uniform sensing in the interval [ζj – εj , ζj + εj ]. These

cases are illustrated in Figures 1 and 2.

...

z = 0 z = 1
ζ1 ζ2 ζny

y1(t) y2(t) yny (t)

Figure 1 – Distributed pointwise measurements.

...

z = 0 z = 1
ζ1 ζ2 ζny

y1(t) y2(t) yny (t)

Figure 2 – Distributed piecewise measurements
.

Remark 1.1. The boundary measurement case corresponds to the pointwise measure-

ment case at z = 0 and/or z = 1.

1.4 BENCHMARK APPLICATION

Transport-reaction systems described by (1)-(2) are used to represent a wide

range of systems found in science and engineering applications. For numerical valida-

tion purposes of the state estimation techniques studied and developed in this work,

we focus on benchmark applications related to biochemical tubular reactors model.

1.4.1 Biochemical tubular reactors

Industrial chemical processes typically rely on process models for design, mon-

itoring, control and optimization. Distributed chemical reaction systems correspond

to processes involving reactions with phases that are not well mixed, thus result-

ing in spatial dependencies. Tubular reactors (FRIEDLY, 1972) are a prime example
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of such systems. The dependent variables of these models are typically concentra-

tions and temperatures. These variables, which depend on time and spatial coordi-

nates, are described by partial differential equations (PDEs) consisting of material

and heat balances that couple the effects of advection, reaction, diffusion, conduc-

tion, and initial and boundary conditions. The coupling in time and space makes the

analysis of distributed reaction systems more complex. In addition, depending on the

type of boundary conditions, these systems can be more or less difficult to analyze

(PARULEKAR; RAMKRISHNA, 1984).

System description

In single-phase one-dimensional tubular reactors, the concentrations and tem-

perature are functions of the spatial coordinate ξ and the time τ. It is assumed that the

inlet of the system is located at ξ = 0 and ξ is positive along the reactor length. Since

the concentrations and the temperature vary with the spatial coordinate, the concen-

tration and temperature gradients might lead to significant diffusion when the flow of

material is not dominated by advection. Hence, the general formulation of the material

and energy balances for a single-phase one-dimensional tubular reactor considers the

system from the standpoint of an advection-diffusion-reaction problem.

0 lξ

Tw

C1(0, τ), ..., Cnc (0, τ)

T (0, τ)

C1(l , τ), ..., Cnc (l , τ)

T (l , τ)

C1(ξ, τ), ..., Cnc (ξ, τ)

T (ξ, τ)

Figure 3 – Nonisothermal tubular reactor.

Let us consider a single-phase one-dimensional tubular reactor as schematized

in Figure 3 which is characterised by an axial dispersion. Then the dynamical model is

readily derived by using mass and energy balances and can be written as the following

coupled set of parabolic PDEs,

∂τx(ξ, τ) = D∂2
ξx(ξ, τ) – V∂ξx(ξ, τ) – K x(ξ, τ) + Bdud (τ) + G r (x(ξ, τ)) (9)

for (ξ, τ) ∈ (0, l)×(0,∞), subject to the Danckwerts boundary conditions (DANCKWERTS,

1953)
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D∂ξx(0, τ) = V(x(0, τ) – xin(τ))

∂ξx(l , τ) = 0. (10)

with

x(ξ, τ) =
[

C1(ξ, τ) · · · Cnc (ξ, τ) T (ξ, τ)
]T

xin(t) =
[

C1,in(τ) · · ·Cnc ,in(τ) Tin(τ)
]T

ud (τ) =
[

0 · · · 0 Tw (τ)
]T

and

D = diag(da I,
λa

ρpcp
), V = diag(υI, ǫυ

ρgcpg

ρcp
), K = diag(0, –

2kw

rdρcp
),

Bd = diag(0,
2kw

rdρcp
), G =

[

Gr –∆H
ρcp

]T

(11)

where T is the temperature (K), C1, ..., CnC are the reactant concentrations (mol/m3),

Tw the coolant temperature (K), Tin the inlet temperature (K), C1,in, ..., Cnc ,in the inlet

reactant concentrations (mol/m3), τ (s) and ξ (m) the time and space variables, λa/(ρcp)

and da the axial energy and mass dispersion coefficients (m2/s), υ the fluid velocity

(m/s), l the reactor length (m), ∆H the reaction heat (kcal), ρ the fluid density (kg/m3),

cp the specific heat (kcal/kgK), r the reaction rate vector (m3/s), rd the reactor radius

(m), kw the heat removal rate (kcal/m2sK).

Using the chemical process engineering parametrization

z =
ξ

l
, t =

τυ

l
,

Pe =
lυ
D

, PeT =
lǫυρgcpg

λ
, Le =

ǫρgcpg

ρcp
,

Da =
l
υ

, β = –
∆H
ρcp

, η =
2kw

rdρcp

l
υ

(12)

the system modeled by (9)-(10) take the form of (1)-(2) by considering
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x(z, t) =
[

C1(z, t) · · · Cnc (z, t) T (z, t)
]T

, ud =
[

0 Tw

]T
,

u0(t) =
[

C1,in(t) · · · Cnc ,in(t) Tin(t)
]T

, u1(t) = 0,

D = diag(
1

Pe
I,

Le

PeT
), V = diag(I, Le), K = diag(0, –η),

B = diag(0,η), G =
[

–DaGr βDa

]T
,

Mα0 = diag(
1

Pe
I,

1
PeT

), Mβ0
= –I, Mα1 = I, Mβ1

= 0. (13)

For more details on the model derivation, see e.g. ((FEYO DE AZEVEDO et al.,

1990; DOCHAIN, 1994)) which contain a number of older references including seminal

papers like (LANGMUIR, 1908; DANCKWERTS, 1953).

The estimation problem corresponding to tubular biochemical reactors consists

of inferring the concentration and temperature profiles from temperature and/or con-

centration measurements.

1.5 OBJECTIVES

The fundamental objective of this Thesis is to develop techniques for the synthesis of

state observers in view to estimate the state variables of transport-reaction systems

described by (1)-(2) for feedback and/or monitoring purposes. Motivated by the fact

that the dynamics of the latter are described by semilinear systems of PDEs, which

can be formulated as a semilinear differential equation on an infinite-dimensional state-

space, several techniques in the frame of the early and late lumping approaches of

system theory are described and/or developed, and applied to this model.

In order to achieve the main objective, the following specific objectives are de-

fined:

• To obtain an approximated reduced model using the Method of Weighted Resid-

uals of the class of systems of interest and to study its degree of accuracy with

respect of the selection of the collocation points.

• To design a Lyapunov-based state observer of the reduced order model which

ensures the exponential convergence of the estimation error dynamics.

• To study the spectral properties of the multivariable second order differential op-

erator related to transport reaction systems and the Lipschitz properties of the

reaction rate function in order to obtain sufficient conditions for the modal state

observer design.



Bibliography 31

• To design a Lyapunov-based state observer of the semilinear PDEs describing

the class of transport reaction systems of interest based on polynomial parametriza-

tion and whose parameters may be obtained via the solution of a SOSs program.

• To test numerically the developed state estimation methodologies in benchmark

biochemical processes applications.

1.6 CONTRIBUTIONS

This thesis is an attempt to provide a tractable framework for the state estima-

tion of multi-state transport-reaction process described by semilinear PDE systems

considering various in-domain distributed measurements. The proposed techniques

significantly reduces the stability analysis complexity of the state estimation error dy-

namics by using local Lipschitz and algebraic sector conditions to represent the error

dynamics as a Lure system. It should be noticed that the methodology to be presented

concerns a large class of semilinear PDE systems within which the applications related

to the state estimation of biochemical tubular reactors models are very representative

as industrial process applications, moreover the observer synthesis for the SEIR-type

distributed model describing the spatial spread of COVID-19 plays an important role for

epidemic outbreak forecasting and/or conception of early warning systems in the con-

text of all advantages that the use of one state estimator can provide with respect to the

mere simulation of the actual dynamics ( faster convergence from any initial condition,

robustness).

1.6.1 Publications

Some chapters of the present thesis are contained in the following conference

papers and articles.

[1] Ivan Francisco Yupanqui Tello, Daniel Coutinho, and Alain Vande Wouwer. Ex-

tended kalman filter design for semilinear distributed parameter systems with appli-

cation to anaerobic digestion. SYSTEM THEORY, CONTROL AND COMPUTING

JOURNAL, 1(1):95–103, 2021.

[2] Ivan Francisco Yupanqui Tello, Daniel Coutinho, Joseph Winkin, and Alain Vande

Wouver. Observer design for chemical tubular reactors based on system lineariza-

tion. In 2020 European Control Conference (ECC), pages 1141–1146. IEEE, 2020.

[3] Ivan Francisco Yupanqui Tello, Alain Vande Wouver, and Daniel Coutinho. Exten-

sion of kalman filtering to semilinear pde systems-application to pulp and paper.
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In 2020 24th International Conference on System Theory, Control and Computing

(ICSTCC), pages 813–818. IEEE, 2020.

[4] Ivan Francisco Yupanqui Tello, Alain Vande Wouver, and Daniel Coutinho. LMI

observer design for a class of tubular reactors. In 2020 24th International Confer-

ence on System Theory, Control and Computing (ICSTCC), pages 570–575. IEEE,

2020.

[5] Ivan Francisco Yupanqui Tello, Alain Vande Wouver, and Daniel Coutinho. Ob-

server design for linear parabolic pde systems. In 39th Benelux Meeting on Sys-

tems and Control, pages 37–37. University of Groningen, 2020.

[6] Ivan Francisco Yupanqui Tello, Alain Vande Wouver, and Daniel Coutinho. Back-

stepping observer design for a tubular catalytic cracking reactor. In Computer Aided

Process Engineering (CAPE) Forum 2019, pages 62–62, 2019.

[7] Ivan Francisco Yupanqui Tello, Daniel Coutinho, and Alain Vande Wouver. Early

Lumping Observer Design and Sensor Placement for Transport-Reaction Systems.

In Journal of Process Control, first review.

[8] Ivan Francisco Yupanqui Tello, Daniel Coutinho, and Alain Vande Wouver. Ob-

server Design for Multivariable Transport-Reaction Systems based on Spatially Dis-

tributed Measurements. In Systems and Control Letters, in submitted.

[9] Ivan Francisco Yupanqui Tello, Daniel Coutinho, and Alain Vande Wouver. Ob-

server Design for Multivariable Transport-Reaction Systems based on Spatially Dis-

tributed Measurements. In Mathematics, submitted.

1.7 THESIS ORGANIZATION

The focus of this thesis is the online state estimation of transport-reaction sys-

tems. In particular, the state estimation and observer design techniques are addressed

via the early and late lumping approach, and along with the development, formulation,

they are explored within the following chapters.

Chapter 2 focuses on the synthesis of finite-dimensional observers for the class of

transport-reaction systems of interest. Firstly, the mathematical model described by

semilinear PDEs system is approximated using the orthogonal collocation method

yielding a differential-algebraic system of equations (DAEs). Then, a Lyapunov-based
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design method is proposed for the approximated reduced-order model which provides

sufficient design conditions in terms of standard linear matrix inequalities (LMIs) aim-

ing at the exponential convergence of the estimation error with a prescribed decay rate.

The observer performance is further improved through an offline optimal sensor place-

ment algorithm considering a parameterized reduced-order output matrix. Finally, a

case study related to a nonisothermal tubular reactor is presented to demonstrate the

observer performance as well as the advantages of the proposed sensor placement

optimization scheme.

In Chapter 3, we are interested in the modal-based observer synthesis problem. The

spectral decomposition of the infinite dimensional Hilbert state space let us to extend

the modal analysis to transpot-reaction systems described by coupled 1-D semi-linear

parabolic PDEs systems with multiple in-domain measurements and state dependent

nonlinearities. The local lipschitz property assumption of the reaction rate function let

us to set two synthesis conditions ensuring the exponential stability of the state estima-

tion error.

Chapter 4 is devoted to the Lyapunov-based design method for the state observer syn-

thesis of the class of transport-reaction systems of interest. The Lyapunov functions

is parametrized by sum-of-squares polynomials. In addition, the output injection matrix

gain is parametrized by polynomials with prescribed degree. In particular, we use the

representation of the error dynamics as a Lure system considering an intrinsic sec-

tor condition related to the rate reaction function and the estimation error state. The

observer synthesis guarantees a prescribed decay rate of convergence which is ob-

tained through the solution of an appropriately formulated SOS program. A case study

related to a nonisothermal tubular reactor is presented to demonstrate the observer

performance as well as the advantages of the proposed formulation.

Chapter 5 is dedicated to the state estimation for the compartmental model

based on partial differential equations (PDEs) which describes the spread of the in-

fectious disease in a host population. Local exponential stability and robustness with

respect to variation rates are ensured by an appropriate choice of the observer gains,

through the use of the theory of Lyapunov stability. Numerical experiments are pre-

sented to illustrate the method efficiency.

Figure 4 shows the research roadmap that contains the different methods approached

throughout the chapters of this thesis.
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Figure 4 – Research roadmap of the thesis.
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2 INSTRUMENTAL TOOLS

In this chapter, we present some mathematical definitions and preliminary re-

sults that will be used in the sequel. This chapter begins by presenting some results

on the well-posedness, stability and model reduction of PDE systems. We also provide

a brief review of Semi-Definite Programming (SDP) and SOS (Sum of Squares) tools

which are the main instruments for the computational synthesis of state observers in

this thesis. To simplify the presentation and discussion, the PDE systems of interest are

written specifically to represent a general class of second-order, semilinear systems.

Thus, we consider the following (abstract) differential equations on a Hilbert space H

∂tx(z, t) = Ax(z, t) + F (x(z, t)), x(z, 0) = x0(z) ∈ H (14)

for (z, t) ∈ Ω × (0,∞) and where A is a differential linear operator on H, F (·) is a

nonlinear function from H into itself and the following condition is assumed to be hold

• F (·) : H → H is locally Lipschitz continuous, i.e., there exists a positive constant

lF = lF (ρ) where ρ > 0 such that

‖F (x) – F (x̂)‖ ≤ lF‖x – x̂‖ (15)

holds for all x , x̂ ∈ H with ‖x‖, ‖x̂‖ ≤ ρ.

To see how this abstract representation can be used to analyze PDEs, let us go

through the following example

The Semilinear Heat Equation. Consider a heated metal bar of unit length, in which

the two ends of the bar are insulated so that there is no heat flux. The heat distribution

over the rod is described by the following semilinear PDE

∂tx(z, t) = ∂2
zx(z, t) – x3(z, t) (16)

for (z, t) ∈ (0, 1) × (0,∞), subject to the Neumann boundary conditions

∂zx(0, t) = 0

∂zx(1, t) = 0
(17)

for t ∈ [0,∞) and initial condition

x(z, 0) = x0(z). (18)
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In order to use the abstract form (14), we takeΩ = (0, 1) and hence H = L2(0, 1)

as the state space and the trajectory segment x(·, t) ∈ H as the state. Now it suffices

to define

Ax(z, t) = ∂2
zx(z, t)

D(A) = {x(z, t) ∈ H : x(z, t), ∂zx(z, t) are absolutely continuous,

∂2
zx(z, t) ∈ H and ∂zx(0, t) = 0, ∂zx(1, t) = 0

}

F (x) = –x3.

(19)

2.1 LINEAR PDE SYSTEMS

In the case where F = 0, the well-posedness problem of (14) is tied to

A being the generator of a strongly continuous semigroup denoted C0-Semigroup

(CURTAIN; ZWART, 2020; PAZY, 2012). Let L (H) be the space of bounded linear

operators on a Hilbert space H.

Definition 2.1. A strongly continuous semigroup (C0-semigroup) is an operator-valued

function S(t) : [0,∞) → L (H) that satisfies the following properties:

• S(0) = I (identity operator);

• S(t + s) = S(t)S(s), t ≥ 0, s ≥ 0;

• S(t)x0 → x0, as t → 0+ ∀x0 ∈ H.

Theorem 2.1. A C0-semigroup S(t) on a Hilbert space H has the following properties:

• ‖S(t)‖ is bounded on every finite subinterval of [0,∞);

• If ω0 = inft>0
log ‖S(t)‖

t , then ω0 = limt→∞
log ‖S(t)‖

t < ∞;

• ∀ω > ω0, there exists a constant Mω such that ∀t ≥ 0, ‖S(t)‖ ≤ Mωeωt .

The constant ω0 is called the growth bound of the semigroup.

Definition 2.2. The infinitesimal generator A of a C0-semigroup on the Hilbert space

H is defined by

Ax = lim
t→0+

S(t)x – x
t

(20)

whenever the limit exists; the domain of A, D(A), being the set of elements x ∈ H for

which the limit exists.

Theorem 2.2. Let S(t) be a C0-semigroup on the Hilbert space H with infinitesimal

generator A. Then the following results hold:



Chapter 2. Instrumental tools 37

• For x0 ∈ D(A), S(t)x0 ∈ D(A) ∀ t ≥ 0;

• dn

dtn (S(t)x0) = AnS(t)x0 = S(t)Anx0 for x0 ∈ D(An), n ∈ N, t > 0;

• S(t)x0 – x0 =
∫ t

0 S(σ)Ax0dσ for x0 ∈ D(A);

• A is a closed linear operator and D(A) is dense on H.

Sufficient and necessary conditions for a closed, densely defined operator A on

a Hilbert space to be the infinitesimal generator of a C0-semigroup satisfying ‖S(t)‖ ≤

eωt are:

Re(〈Ax , x〉) ≤ ω‖x‖2 for x ∈ D(A);

Re(〈A∗x , x〉) ≤ ω‖x‖2 for x ∈ D(A∗).

Cauchy problem in a Hilbert space

let A be a differential operator which is the infinitesimal generator of a C0-

semigroup S(t) on H. Let us also consider the following homogenous Cauchy problem

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0 ∈ D(A).
(21)

It can be easily seen from Theorem 2.2 that the classical solution of this problem

is given by:

x(t) = S(t)x0. (22)

Stability is one of the most important aspects of systems theory. In this section,

by stability we mean exponential stability. This property can be characterized by many

criteria. Here, we present the criteria for verifying the exponential stability of a linear

PDE system which is directly related to the stability of the C0-semigroup S(t).

Stability of Semigroups

Definition 2.3. A C0-semigroup, S(t), on a Hilbert space H is exponentially stable if

there exist positive constants M and α such that

‖S(t)‖ ≤ Me–αt , ∀t ≥ 0. (23)

The α is called the decay rate, and the supremum over all possible values of α is

the stability margin of S(t). We say that S(t) is β-exponentially stable if (23) holds for

–α < β, i.e., its stability margin is at least –β.
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Remark 2.1. The growth bound ω0 defined in Theorem 2.1 is the opposite of the

stability margin (CURTAIN; ZWART, 2020).

Important criteria for exponential stability of a C0-semigroup are given in the

following theorem.

Theorem 2.3. Let S(t) be a C0-semigroup on a Hilbert space H, and let A be its

infinitesimal generator. Then the following assertions are equivalent:

• S(t) is exponentially stable;

• The solution to the abstract Cauchy problem for any x0 ∈ D(A),

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0, (24)

tends to zero exponentially fast as t → ∞;

• For every x ∈ H, there exists a positive constant γx < ∞ such that
∫ ∞

0
‖S(t)x‖2dt ≤ γx ; (25)

• There exists a positive operator P ∈ L(H) such that

〈Ax ,Px〉 + 〈Px ,Ax〉 = –〈x , x〉, ∀x ∈ D(A). (26)

The expression in (26) is often referred as the (infinite dimensional) Lyapunov

equation.

In general, it is not feasible in infinite dimensions to examine exponential stability

via the spectrum of the operator as the following inequality always holds

sup(Re(λ), λ ∈ σ(A)) ≤ lim
t→∞

log‖S(t)‖
t

= ω0. (27)

Riesz-spectral operators

Here, a convenient representation for large classes of linear partial differential

systems of both parabolic and hyperbolic types is introduced. Riesz spectral operators

allow for non-self-adjoint operators whose eigenvectors may not be orthogonal, but do

form a Riesz basis.

Definition 2.4. A sequence of vectors {φn : n ≥ 1} in a Hilbert space H forms a Riesz

basis for H if the following two conditions hold:

• span{φn} = H;
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• There exist positive constants m and M such that for arbitrary N ∈ N and arbitrary

scalars αn, n = 1, ..., N, such that

m
N∑

n=1
|αn|2 ≤ ‖

N∑

n=1

αnφn‖
2 ≤ M

N∑

n=1
|αn|2. (28)

Definition 2.5. Suppose that A is a linear, closed operator on a Hilbert space, H, with

simple eigenvalues {λn : n ≥ 1} and suppose that the corresponding eigenvectors

{φn : n ≥ 1} form a Riesz basis in H. If the closure of {λn : n ≥ 1} is totally discon-

nected, then we call A a Riesz-spectral operator.

By totally disconnected we mean that no two points λ, µ ∈ {λn : n ≥ 1} can be

joined by a segment lying entirely in {λn : n ≥ 1}. Then, Definition 2.5 covers the case

where A has finitely many accumulation points.

Theorem 2.4. Suppose that A is a Riesz-spectral operator with simple eigenvalues

{λn, n ≥ 1} and corresponding eigenvectors {φn : n ≥ 1}. Let {ψn : n ≥ 1} be the

eigenvectors of A∗ such that 〈φn,ψm〉 = δnm, then

• Every x ∈ H can be represented uniquely by

x =
∞∑

n=1

〈x ,φn〉ψn; (29)

• A has the representation

Ax =
∞∑

n=1

λn〈x ,ψn〉φn (30)

for x ∈ D(A), and

D(A) = {x ∈ H :
∞∑

n=1

|λn|2|〈x ,ψn〉|2 < ∞}; (31)

• A is the infinitesimal generator of a C0-semigroup S(t) if and only if supn≥1 Re(λn) <

∞ and S(t) is given by

S(t)x =
∞∑

n=1

eλnt 〈x ,ψn〉φn; (32)

• The growth bound of the semigroup is given by

ω0 = sup
n≥1

Re(λn). (33)
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Sturm-Liouville operators

Definition 2.6. (DELATTRE, Cédric et al., 2003) Consider the differential operator de-

fined as

A =
1
ρ(z)

(∂z (p(z)∂z ) – q(z)I) , (34)

where the functions p(z), ρ(z) ∈ R
+ are continuously differentiable and q(z) ∈ R is

continuous on [0, 1]. Furthermore, the domain D(A) is given by

D(A) =
{

x ∈ L2(0, 1) : x , ∂zx are absolutely continuous, ∂2
zx ∈ L2(0, 1),

α0∂zx(0) + β0x(0) = 0 and α1∂zx(1) + β1x(1) = 0
}

where (α0,β0) 6= (0, 0) and (α1,β1) 6= (0, 0) then –A is said to be a Sturm-Liouville

operator.

The following result sets the connection between Sturm-Liouville and Riesz

spectral operators.

Theorem 2.5. (DELATTRE, Cédric et al., 2003) Any Sturm-Liouville operator is a Riesz-

spectral operator.

The immediate consequence of this result is that the properties of Riesz-spectral

systems and operators (CURTAIN; ZWART, 2020) can be used in the analysis, control

and observer design involving Sturm-Liouville operators, in particular for convection-

diffusion-reaction systems.

2.2 SEMILINEAR PDE SYSTEMS

It is well-known (see e.g. (PAZY, 2012)) that, under the above assumptions, the

Cauchy problem (14) admits a unique mild solution x(z, t) ∈ C
1([0, T ];H), T ∈ R

+

given by the integral representation

x(z, t) = S(t)x0(z) +
∫ T

0
S(t – s)F (x(z, s))ds. (35)

For the purpose of this thesis, we are interested in studying the exponential

stability of the null steady state profile, i.e., xeq(z) = 0,∀z ∈ Ω satisfying Axeq+F (xeq) =

0. Then xeq(z) = 0 is exponentially stable in H, if there exists positive scalars γ, ρ, M

‖x(z, t)‖ < M‖x0(z)‖e–γt , ∀‖x0(z)‖ < ρ (36)

and globally exponentially stable if this occurs for every initial condition x0(z) ∈ H with

finite norm.
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We now turn to the basic tool for stability analysis in the time-domain for these

systems, what is known as a Lyapunov functional. Given (14) a dynamical system on

H, a Lyapunov functional is a continuous real-valued function V : H → R
+ such that

D+[V (x(z, t))] = lim
h→0+

sup
V (x(z, t + h)) – V (x(z, t))

h
≤ 0, (37)

for all x(z, t) satisfying (35).

Notice that if x(z, t) ∈ C
1([0, T ];H), T ∈ R

+, then D+[V (x(z, t))] = V̇ (x(z, t)).

We have the following theorem

Theorem 2.6. Suppose that V : H → R
+ is a Lyapunov functional which satisfies

V (0) = 0. Let a and b be positive scalars such that

a‖x‖ ≤ V (x) ≤ b‖x‖ (38)

for all x ∈ H. Furthermore, suppose there exists c > 0 such that for all t ≥ 0 the upper

right-hand derivative of V defined in (37) satisfies

V̇ (x(z, t)) ≤ –c‖x(z, t)‖ (39)

with x(z, t) satisfying (35). Then

‖x(z, t)‖ ≤

√

b
a
‖x0(z)‖e– c

b t , t ≥ 0. (40)

Proof. For the proof of the above theorem, refer to (MEYER; PEET, Matthew M, 2015).

2.3 SEMI-DEFINITE PROGRAMMING

We use Lyapunov functions parametrized by matrices and sum-of-squares poly-

nomials for the analysis of parabolic PDEs. The search for such Lyapunov functions

can be represented as Semi-Definite Programming (SDP) problems.

A SDP problem is an optimization problem of the form (BOYD, S. et al., 1994)







min
x∈Rn

cT x

subject to :

F (x) = F0 +
∑n

i=1 xiFi ≤ 0,

Ax = b

(41)

where x ∈ R
n is the vector of decision variables, and c ∈ R

n, b ∈ R
k , A ∈ R

k×n

and Fi ∈ S
n, i = 0, 1, . . . , n, are given. Since the cost function is linear and the con-

straints are affine, an SDP problem is a convex optimization problem. Nowadays, SDP
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problems can be solved very efficiently utilizing, for instance, interior point methods

(NESTEROV; NEMIROVSKII, 1994; ALIZADEH et al., 1998) where the optimal solu-

tion may be obtained in a polynomial number of iterations. A survey of the theory and

applications of SDP problems can be found in (VANDENBERGHE; BOYD, S., 1996).

Usually, SDP problems are used to solve the feasibility problem: does there exist

an x ∈ Rn such that F (x) ≤ 0? The inequality F (x) ≤ 0 is linear in the search variables.

Thus, the feasibility problem is known as a Linear Matrix Inequality (LMI). Any number

of given LMIs can be cast as a single LMI. For example, LMIs F (x) ≤ 0 and G(x) ≤ 0

can be rewritten as

[

F (x) 0

0 G(x)

]

=

[

F0 0

0 G0

]

+
n∑

i=1

xi

[

Fi 0

0 Gi

]

≤ 0. (42)

It is important to emphasize that an LMI can be represented in several ways

and hardly appears in a problem in the generic affine form as presented in (41). For

example, given a matrix A and a matrix Q > 0, the matrix function F (P) = AT P +PA+Q,

which appears in various stability problems, is affine with respect to variable P and

therefore the inequality F (P) < 0 is an LMI that can be easily rewritten in the affine

form, where x is the vector containing the elements of the matrix P to be determined.

The advantage of the affine generic representation of F (x) in (41) is that every LMI

can be rewritten in this way and therefore, most LMIs solvers algorithms are developed

for this representation. However the conversion from an LMI to affine form is done by

specialized LMI packages called parsers such as YALMIP (LOFBERG, 2004).

2.4 SUM-OF-SQUARES PROGRAMMING

In this thesis, we employ sum-of-squares (SOS) programming in some of our

computational formulations. That is, we convert different analysis problems into a SOS

program. SOS programming is developed as a consequence of the recent interest

in sum of squares polynomials, partly due to the fact that these techniques provide

convex relaxations for many hard problems such as global, constrained, and boolean

optimization. In this section, we provide a quick overview on SOS tools, and present

the general optimization problem in SOS programming

Definition 2.7. A polynomial p : Rn → R is SOS if there exist polynomials gi : Rn → R

such that

p(z) =
m∑

i=1

g2
i (z). (43)

We use p ∈ Σs to denote that p is SOS.

The importance of the SOS condition lies in the fact that it can be readily en-

forced using semidefinite programming. This fact is attributed to the following theorem.
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Theorem 2.7. A polynomial p : Rn → R of degree 2m is SOS if and only if there exists

a positive semidefinite matrix Q such that

p(z) = Z T
m (z) Q Zm(z) (44)

where Zm(z) is a vector of monomials up to degree m.

Proof. For the proof, refer to (PARRILO, 2003).

As hinted above, sums of squares techniques can be used to provide tractable

relaxations for many hard optimization problems. A very general and powerful relax-

ation methodology, introduced in (PARRILO, 2000), is based on the Positivstellensatz,

a central result in real algebraic geometry. Some approaches in this work can be inter-

preted as special cases of the practical application of this general relaxation method.

The general optimization problem in SOS programming will be formulated as follows:







minc wT c

where c is a vector formed from the (unknown) coefficients of

polynomials pi (z), i = 1, ..., N̂,

sum of squares pi (z), i = N̂ + 1, ..., N,

such that

a0,j (z) +
∑N

i=1 pi (z)ai ,j (z) = 0, j = 1, ..., Ĵ,

a0,j (z) +
∑N

i=1 pi (z)ai ,j (z) are SOS, j = Ĵ + 1, ..., J.

(45)

In the above formulation, w is the vector of weighting coefficients for the linear

objective function. The problem formulated above are quite general, and in specific

cases reduce to well-known problems. In particular, notice that if all the unknown poly-

nomials pi are restricted to be constants, and the ai ,j , bi ,j are quadratic forms, then we

exactly recover the standard linear matrix inequality (LMI) problem formulation. The ex-

tra degrees of freedom in SOS programming are actually a bit illusory, as every SOSP

can be exactly converted to an equivalent SDP problemm (PARRILO, 2000). Neverthe-

less, for several reasons, the problem specification outlined above has definite practi-

cal and methodological advantages, and establishes a useful framework within which

many specific problems can be solved.

Algorithms for solving SOS programs are automated in MATLAB toolboxes

such as SOSTOOLS (PAPACHRISTODOULOU et al., 2013) and YALMIP (LOFBERG,

2004), in which the SOS problem is parsed into an SDP formulation and the SDPs

are solved by LMI solvers such as SeDuMi (STURM, 1999). In this thesis, we use the

SOSTOOLS toolbox for the numerical experiments.
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2.5 MODEL REDUCTION

Either for numerical simulation or for control and observer design, PDEs models

are commonly reduced to a set of ODEs by using reduced order methods. Within the

time–space separation framework, different approaches can be used based either on

discretization or functional approximation, and combinations of the two. The method of

weighted residuals (MWR) (FINLAYSON, 2013) is one of the most common methods

for model reduction in reduced order modeling.

2.5.1 Method of weighted residuals (MWR)

MWR is a general method of obtaining approximate solutions for PDEs. The

unknown solution is expanded in a set of trial functions, which are specified, but with

adjustable constants (or functions), which are chosen to give the best solution to the

PDE.

In general, applications with MWR have three important steps: choice of a trial

function, choice of a criterion that involves the selection of weight functions to mini-

mize the residual, and calculation of successive approximations. It has been shown

that the choice of a criterion is not too crucial, especially for higher approximations

(FINLAYSON, 2003). The choice of trial functions is more important, and some possi-

bilities are discussed in this section.

In order to present MWR, consider the abstract formulation of the PDE system in

(14) with H = L2(Ω). Thus, the unknown solution x(z, t) is approximated by a function

x∗(z, t) and we write

x(z, t) ≈ x∗(z, t) =
N∑

n=1

an(t)φi (z) (46)

where the set {φn(z) : n = 1, ..., N} constitutes a basis for a finite dimensional subspace

of H and the an coefficients are functions of time. The approximate solution to the

problem is then expressed in terms of the N trial functions, where the coefficients an(t)

must be defined in such a way that x∗(z, t) is a good approximation to the solution of

(14), i.e., x∗(z, t) ∈ D(A), ∀t ≥ 0 and the residual

R(z, t) = ∂tx
∗(z, t) – Ax∗(z, t) – F (x∗(z, t)) (47)

approaches to zero in some average sense over the spatial domainΩ by requiring that

〈
wi (z), R(z, t)

〉
= 0, i = 1, ..., N (48)

where {wi (z) : i = 1, ...N} is a set of weighting functions to be chosen. The choice of

weighting functions can lead to several different submethods. Let us discuss the two

most used in systems theory:
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1. Galerkin method – when the weighting functions w1(z), . . . , wN (z) are chosen to

be the basis functions themselves, i.e.,

wi (z) = φi (z), i = 1, 2, ..., N (49)

then the technique is referred as the Galerkin method. This technique has the ad-

vantage that the residual is made orthogonal to each basis function and therefore

is considered as the best solution possible in the space made up of the N func-

tions φ1, . . . ,φN (z). Thus, as N → ∞, the residual R(z, t) tends to zero, because

it will be orthogonal to every function in a complete set of functions.

2. Collocation methods – when wi (z) is chosen to be dirac functions δ(z –zi ), then

(48) is applied to R(z, t) yielding

R(z = zi , t) = 0, i = 1, . . . , N, (50)

and the differential equation is required to be solved exactly at N points on the

spatial domain. The collocation method has been further refined in (FINLAYSON,

2013; STEWART, W.; SØRENSEN, 1980) and has been shown to be extremely

powerful. The recent versions are called orthogonal collocation because orthog-

onal polynomials are used as the basis functions and the collocation points are

specified automatically in an optimal way, for instance, the roots of the orthogonal

polynomials (e.g., (LEFÈVRE et al., 2000)).

2.6 CONCLUDING REMARKS

This chapter is mainly aimed at presenting some fundamental concepts related

to the well-posedness, stability and model reduction of PDE systems as well as a

brief review of Semi-Definite Programming (SDP) and SOS (Sum of Squares) tools

which are the main instruments for the computational synthesis of state observers in

this thesis. Notice that this chapter was limited to questions related to definitions and

review of general methodologies and results. However, this constitutes a fundamental

component for the comprehension of this work. The focus of the following chapters

will be on the observer design problem for the class of transport-reaction systems of

interest, and more particularly, on specific approaches used for solving this problem.
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3 EARLY LUMPING OBSERVER DESIGN

In this chapter we address the design of finite-dimensional state estimators for

the transport-reaction systems of interest. To accomplish this task, the PDE system is

approximated using the standard method of weighted residuals (MWR) that actually

encompasses several methods (Galerkin, collocation, subdomains, among others) to

obtain the reduced order approximate model described by a set of ODEs with differ-

ent degrees of accuracy. Particularly, the orthogonal collocation method is selected as

method to derive a reduced order model described by a differential-algebraic system of

equations (DAEs). Thus, the design procedure firstly results in a brief review study that

aims to obtain a satisfactory reduced order model through the conventional analysis of

selecting the appropriate location of the collocation points to guarantee accuracy and

robustness.Later, a Lyapunov-based design method is proposed for the reduced-order

model which provides sufficient design conditions in terms of standard linear matrix

inequalities (LMIs) aiming the exponential convergence of the estimation error with a

prescribed decay rate. The observer performance is further improved through an of-

fline optimal sensor placement algorithm considering a parameterized reduced-order

output matrix. A case study related to a nonisothermal tubular reactor is presented

to demonstrate the observer performance as well as the advantages of the proposed

sensor placement optimization scheme.

3.1 ORTHOGONAL COLLOCATION METHOD

Many of the rate functions involved in transport-reaction systems concern strong

nonlinearities with respect to the state variables. Clearly, if the state variables are ex-

panded in a series of functions and the method of weighted residuals (MWR) is ap-

plied, it would be difficult to derive the values of integrals involving the referred non-

linear terms. A quadrature method can be employed to ease this problem, however

a more direct approach would be appropriate for control and state estimation appli-

cations. In the collocation method it is only necessary to evaluate the residual at the

collocation points an that is why the orthogonal collocation method can be easily im-

plemented, which has been first introduced in (VILLADSEN, JV; STEWART, Warren E,

1967). They discovered that collocation points chosen as the roots of orthogonal poly-

nomials gave good results due to some attractive features of these polynomials. They

also chose the trial functions as the Jacobi polynomials and picked the collocation

points as the corresponding zeros of these polynomials. Thereafter, many researchers

used it to solve a variety of nonlinear problems in chemical engineering (FINLAYSON,

2003, 2013; ALHUMAIZI, 2006; LEFÈVRE et al., 2000).
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3.2 MODEL REDUCTION

We use the Lagrange interpolation polynomial to get an approximate solution of

(1)-(3), that is

x∗
i (z, t) =

N∑

n=1

ai ,n(t)ℓn(z), i = 1, ..., nx (51)

where x∗
i (z, t) denotes the approximation of xi (z, t), N – 1 is the order of the reduction

and ℓn(z) is the (N – 1)-th order Lagrange interpolation polynomial defined by

ℓn(z) =
N∏

m 6=n
m=1

z – zm

zn – zm
, n = 1, ..., N (52)

with 0 = z1 < z2 < · · · < zN–1 < zN = 1 being the interpolation/collocation nodes in such

a way that the set {zm : m = 2, · · · , N –1} is chosen as the roots of the (N –2)-th degree

monic Jacobi polynomial P(α,β)
N–2 (LEFÈVRE et al., 2000).

The Lagrange polynomial has the property that

ℓn(zm) =







1, m = n

0, m 6= n
(53)

for n = 1, . . . , N. Moreover, the set {ℓn(z) : i = 1, ..., N} is linearly independent and forms

a basis for the space of polynomials of degree less than or equal to N –1 on the interval

[0, 1]. Furthermore, in virtue of (53), it follows that

ai ,n(t) = x∗
i (zn, t) = xi (zn, t); i = 1, ..., nx and n = 1, ..., N, (54)

which means that the approximate solution at nodes z1, . . . , zn are time-variant coeffi-

cients in equation (51).

Considering the approximate solution (51) for (1)-(3), the residual becomes

Ri (z, t) =
N∑

n=1

[

ȧi ,n(t)ℓn(z) – diai ,n(t)
d2ℓn

dz2
(z) + υiai ,n(t)

dℓn
dz

(z) + Kiai ,nℓn(z)

]

–biud ,i (t)–GT
i r





N∑

n=1

a1,n(t)ℓn(z), · · · ,
N∑

n=1

anx ,n(t)ℓn(z)



 , i = 1, ..., nx .

(55)

The residual equations associated to the orthogonal collocation method are pro-

duced by

∫ 1

0
Ri (z, t)δ(z – zm)dz = Ri (zm, t) = 0; i = 1, ..., nx , m = 1, ..., N. (56)
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Thus, from (55) and (56), it follows that

ȧi ,m(t) =
N∑

n=1

[

di
d2ℓn

dz2
(zm) – υi

dℓn
dz

(zm)

]

ai ,n(t) – κiai ,n(t) + biud ,i (t)

+ GT
i r
(
a1,m(t), · · · , anx ,m(t)

)
; (57)

i = 1, ..., nx , m = 1, ..., N. Additionally, the boundary conditions in (2) set

N∑

n=1

α0,iai ,n(t)
dℓn
dz

(z1) + β0,1ai ,1(t) = u0,i (t) (58)

α1,iai ,N (t) +
N∑

n=1

β1,iai ,n(t)
dℓn
dz

(zN ) = u1,i (t), (59)

i = 1, ..., nx .

Defining L1, L2 as the matrices of, respectively, first and second order deriva-

tives of Lagrange polynomials evaluated at the collocation points, that is:

(L1)m,n =
dℓn
dz

(zm), (L2)m,n =
d2ℓn

dz2
(zm); m, n = 1, ..., N. (60)

We can express (57)-(59) in the following state space representation

ȧ(t) = Aa(t) + Bdud (t) + Ga ra(a(t)) (61)

Bba(t) = ub(t) (62)

where

a(t) =
[

a1,1(t) · · · a1,N (t) · · · anx ,1(t) · · · anx ,N (t)
]T

∈ R
Nnx ,

ub(t) =
[

u0,1(t) u1,1(t) · · · u0,nx
(t) u1,nx

(t)
]T

∈ R
2nx ,

and the corresponding system matrices are defined as

A = diag (A1, ..., Anx ) , Ai = diL2 – υiL1 – κi IN , i = 1, ..., nx ,

Bd = diag
(
Bd ,1, ..., Bd ,nx

)
, Bd ,i =

−→
1 N bi , i = 1, ..., nx ,

Bb = diag
(
Bb,1, ..., Bb,nx

)
,
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Bb,i =

[

α0,i
d
dz ℓ1(z1) · · · α0,i

d
dz ℓN (z1)

α1,i
d
dz ℓ1(zN ) · · · α1,i

d
dz ℓN (zN )

]

+

[

β0,i · · · 0

0 · · · β1,i

]

, i = 1, ..., nx ,

Ga =







IN ⊗ GT
1

...

IN ⊗ GT
nx







, ra(a) =







r
(
a1,1, ..., anx ,1

)

...

r
(
a1,N , ..., anx ,N

)







.

(63)

Likewise, we can also obtain the reduced-order characterization of the output

measurement (5). It is described as

ya(t) = Ca(t) (64)

where

C = diag(cT
1 , ..., cT

ny
)







I ⊗
∫ 1

0 c1(z)l(z)dz
...

I ⊗
∫ 1

0 cny (z)l(z)dz







(65)

and

l(z) =
[

ℓ1(z) · · · ℓN (z)
]

. (66)

3.2.1 Interpolation error minimization

In searching the approximated solution in the form of (51), we actually look, at

each fixed time t , for the (N – 1)th order polynomial which interpolates the unknown

exact solution at the N collocation points (z1, ..., zN ). The following Cauchy’s result

(see (DAVIS, 1975)), gives an upper error bound for such approximations.

Let us define the interpolation error by:

e∗(z, t) = x(z, t) – x∗(z, t)

where x∗(z, t) is the approximate solution whose components are described by (51).

Assuming that the unknown solution x(z, t) is sufficiently continuously differentiable,

we have that

e∗(z, t) = w(z)
∂N+1

z x(ǫ(z), t)
(N + 1)!

(67)

where

w(z) =
N∏

m=1

(z – zm) (68)
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and ǫ(z) ∈ [0, 1]. Hence, we aim at selecting the interior collocation points z2, ..., zN–1

that minimizes the interpolation error in (67). Without any a priori knowledge on the

behaviour of the exact solution, this problem reduces to find the z2, ..., zN–1 such that

‖w(·)‖∞ is minimal.

Equation (67) suggests that we can handle the effect of large variations (typically,

due to the presence of ‘hot spots’ i.e. large and concentrated variations in the spatial

profiles of the state variables) on the interpolation error by choosing suitable collocation

points. Therefore, in (LEFÈVRE et al., 2000) it is suggested that the selection of the

N – 2 interior collocation points may be carried out through the solution of the following

problem

min
z1,...,zN ∈[0,1]





∥
∥
∥
∥
∥
∥

N∏

m=1

(z – zm)w∞(z)

∥
∥
∥
∥
∥
∥
∞



 (69)

where the weight w∞(z) is supposed to be large around the hot spots, and small ev-

erywhere else which led us to keep the interpolation error small where it should be

large.

The solution of the minimization problem in (69) is tackled in (LEFÈVRE et al.,

2000). Therein, it is found that a satisfactory approximation result may be obtained with

w∞(z) =
√
√

1 – z2w(z). (70)

Thus, in the case where the collocation points z2, ..., zN–1 are the zeros of Jacobi

polynomials P
(α,β)
N–2 , we know that

w(z) = (1 – z)α(1 + z)β. (71)

Hence, it implies that using these collocation points, we will get an approximated

solution which minimises an interpolation error weighted by the function,

w∞(z) =
√
√

1 – z2(1 – z)α(1 + z)β

= (1 – z)
2α+1

4 (1 + z)
2β+1

4

(72)

with α, β ≥ –1
2 .

Many shapes may be reached with weight of the form in (72). They allow to

emphasise the interpolation error from one side to the other of the transport-reaction

system, according to the values of the tuning parameters α and β. A simple scaling of

the weights w(z) on [0, 1] and short calculations show that these weighting functions

reach their maximum in

zmax =
1 + 2β

2(α + β + 1)
. (73)
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The dependence of zmax with respect to α and β is illustrated in Figure 5 for

values of a ranging from –1
2 (’Chebyshev’ or uniform weighting) to 2. It gives us an

overall view where the weight error is more localized around in terms of the parameters

α and β.

2
1.5

1
0.5

α
0

-0.5-0.5

0

0.5

β

1

1.5

0.8

1

0

0.2

0.4

0.6

2

z m
a
x

Figure 5 – zmax when α, β range from [–1
2 , 2].

3.2.2 Well-posedness of the reduced model

As ra(a) models the reactions function r (x) and it is possibly highly non-linear

since its components essentially depend, for instance, on the chosen kinetic models,

hence a general theory on its behaviour cannot be made available. No general informa-

tion on its structure, nor on its fastest variation rate, may be used to specify ra(a), due

to the very large variety of reaction functions used in process engineering. However,

In transport reaction systems, it may be supposed that it is differentiable, hence locally

Lipschitzian. The following assumption will, therefore, holds in the following

‖ra(a) – ra(â)‖ ≤ la‖a – â‖ (74)

where la = la(ρa) with ρa being a positive scalar such that ‖a‖ < ρa and ‖â‖ ≤ ρa. This

assumption guarantees the global existence and uniqueness of a solution for equations

(61)-(64).

The next result establishes what is often called ‘the continuous dependence of

the solution’ (see e.g. (GOTTLIEB; ORSZAG, 1977)), relatively to system (61)-(62). It is
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here generalised slightly in order to take into account the specific features of transport

reaction systems

Theorem 3.1. (LEFÈVRE et al., 2000) Let a perturbed problem be defined according

to

ȧp(t) = Aap(t) + Bdud (t) + Ga ra(ap(t)) +̟(t) (75)

Bbap(t) = ub(t) (76)

where the perturbation ̟(t) is assumed to be continuous. Then, the norm of the dis-

tance between the solution of the initial problem (61)-(62) and the perturbed problem

(75)-(76) is upper bounded as follows

‖ap(t) – a(t)‖ ≤ ̟0eϑt +̟∞
eϑt – 1
ϑ

(77)

where ̟∞ = maxt∈R+ ̟(t), ϑ = la + σmax (A).

Proof. see (LEFÈVRE et al., 2000).

Equation (77) shows the continuous dependence of the (exact) solution of (61)-

(62) to its data. Moreover, it bounds the fastest propagation of floating points errors we

may expect, as well as the propagation of errors due to modelling, inaccurate parame-

ters estimation, or approximate initial conditions. All these errors should be evaluated

carefully, when dealing with model reduction of transport-reaction systems.

On the other hand the linear part of (61), representing the discretised transport

component of the model, has always the same structure, and informations on it may

be summarised in the matrix A. Thus, to improve the conditioning of the differential

problem in (61)-(62), that is to minimise ϑ, tuning the position of collocation points may

be an efficient strategy. There is no simple analytic expression for the largest singular

value of A, since it strongly depends on the advection matrix V, and on the diffusion

matrix D, that is on operating conditions of the system. However, we may resort to

efficient numerical methods to compute it in a range of collocation points.

Taking into account this conditioning problem, the position of collocation points

has to be determined with two simultaneous criteria

1. it should minimise the theoretical interpolation error, relatively to a suitable choice

of a weighting factor, related to the dynamics of the reactor model (see Section

3.2.1);

2. it should give a reasonable conditioning number, which allows the computed so-

lution (numerical integration) to be representative of the theoretical accuracy of

the reduction method.
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3.3 STATE OBSERVER DESIGN

Considering the reduced order finite dimensional state space representation de-

scribed in (61)-(64), the following extended Luenberger observer is proposed to esti-

mate the state vector a(t):

˙̂a(t) = Aâ(t) + Bdud (t) + Gara(â(t)) + Lo(ŷa(t) – ya(t))

Bbâ(t) = ub(t) (78)

ŷa = Câ(t)

where â(t) ∈ R
Nnx is the observer state and Lo ∈ R

Nnx×ny is the output injection gain.

Hence, the estimation x̂i (z, t) of xi (z, t) can be obtained from

x̂i (z, t) =
N∑

n=1

âi ,n(t)ℓn(z), i = 1, ..., nx . (79)

Let

ã(t) := a(t) – â(t) (80)

be the estimation error. Then, the output injection gain Lo is designed in order to ensure

the stability of the estimation error dynamics, which is described by

˙̃a(t) = (A + LoC)ã(t) + Ga
[
ra(a(t)) – ra(â(t))

]
(81)

Bbã(t) = 0. (82)

where ra(a(t)) ∈ R
Nnr is defined according to (63).

Notice from (4) that ra(a(t)) satisfies the following local Lipschitz condition

‖ra(a(t)) – ra(â(t))‖ ≤ la‖a(t) – â(t)‖ (83)

where la = la(ρa) with ρa being a positive scalar such that ‖a‖ < ρa and ‖â‖ ≤ ρa.

Based on the above condition, the function ν(t) defined as

ν(t) := ra(a(t)) – ra(â(t)) (84)

and the the estimation error ã(t) satisfy different algebraic conditions

(AÇIKMEŞE; CORLESS, 2011; ARCAK; KOKOTOVIĆ, 2001). In this work, we

use a sector condition based on the boundedness of the Jacobian matrix of the

nonlinear function ra(·).
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3.3.1 Sector Condition for a(t) and ν(t)

Suppose the two matrices Γ1, Γ2 ∈ R
Nnr×Nnx are respectively constant matrices

whose entries are the local lower and upper bound of the Jacobian matrix entries of

ra(·) defined as

Γ (a) := ∇ara(a) (85)

Then, the Differential Mean Value Theorem (ZEMOUCHE et al., 2005) leads to

the following inequality

Γ1(a – â) ≤ ra(a) – ra(â) ≤ Γ2(a – â). (86)

Notice that the above inequality can be cast in the following sector condition

(ν(t) – Γ1ã(t))T (Γ2ã(t) – ν(t)) ≥ 0 (87)

or, equivalently, in the following quadratic form

[

ã(t)

ν(t)

]T [ΓT
1 Γ2+ΓT

2 Γ1
2 –Γ

T
1 +ΓT

2
2

–Γ1+Γ2
2 I

]

︸ ︷︷ ︸

M

[

ã(t)

ν(t)

]

≤ 0. (88)

Remark 3.1. The error dynamics in (81)-(82) with (83) can be represented as a Lure

system as illustrated in Fig. 6, where the mapping from ã(t) to ν(t) satisfies the sector

condition defined in (88). Then, the sector condition can be embedded into the stability

analysis by applying the S-Procedure (BOYD, S. et al., 1994).

ν(t) ã(t)˙̃a(t) = (A + LoC)ã(t) + Gaν(t)
Bbã(t) = 0

ν(t) = ra(a(t)) – ra(â(t))
= ∇ara(ă(t))ã(t)

Figure 6 – Lure-System representation of the observer error system.
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The following result provides an LMI based condition to the computation of the

output injection gain Lo guaranteeing the local exponential stability of the estimation

error dynamics while ensuring a lower bound on the estimation error decay rate.

Theorem 3.2. Let γ be a given positive scalar. Suppose there exist matrices P > 0,

with P = PT , and W having appropriate dimensions, and scalars τ > 0 and µ satisfying

the following LMI:

[

He{PA} + WC + CT W T + 2γP – µBT
b Bb PGa

GT
a P 0

]

– τM < 0 (89)

Then, the estimation error dynamics as defined in (81)-(82) is locally exponentially

stable with a guaranteed decay rate γ, where the observer gain is given by:

Lo = P–1W . (90)

Proof. Suppose there exists a feasible solution (P, W ,µ, τ) to (89) and consider the

parametrization W = PLo. Now, let

V (t) = ãT (t)Pã(t) (91)

be a Lyapunov function candidate to the estimation error dynamics defined in (81)-(82).

Next, notice that (89) can be cast as follows

[

He{P(A + LoC)} + 2γP PGa

GT
a P 0

]

– µ

[

BT
b
0

][

BT
b
0

]T

– τM < 0 (92)

Thus, pre- and post-multiplying (92) by
[

ãT (t) νT (t)
]

and its transpose yields

V̇ (t) + 2γV (t) < 0, (93)

since

[

Bb 0
]
[

ã(t)

ν(t)

]

= 0 and – τ

[

ã(t)

ν(t)

]T

M

[

ã(t)

ν(t)

]

≥ 0.

Then, from the comparison lemma (KHALIL, 2002), the dissipation inequality in

(93) implies that

‖ã(t)‖ ≤

√

λmax (P)
λmin(P)

‖ã(0)‖

︸ ︷︷ ︸

Mã

e–γt (94)

for a sufficiently small ρ0 such that ‖ã(0)‖ ≤ ρ0, which completes the proof.
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The LMI-based observer design may return high observer gains which is usually

undesirable in practical applications. Since we cannot directly restrict the observer gain

Lo because it is not a decision variable in the LMI constraint, we resort to limit its norm.

To this end, suppose that χ is the maximum allowed norm for the observer gain

Lo. Then, the following inequality holds

LT
o Lo = W T P–2W ≤ χI

From Schur complement, we obtain
[

χI W T

W P2

]

≥ 0. (95)

As (95) depends on the decision variable P quadratically, we propose the follow-

ing relaxation

P – θI ≥ 0

[

χI W T

W θ2I

]

≥ 0 (96)

where θ > 0 is a small positive scalar assigned by the designer.

3.3.2 Distributed state estimation error

Considering that the lumped parameter system described by (61)-(62) allow us

to approximate accurately the distributed parameter system in (1)-(2) over the whole

dimensionless spatial domain z ∈ [0, 1] through the appropriate selection of the collo-

cation points (LEFÈVRE et al., 2000) we can easily obtain from (94) that

‖x∗(z, t) – x̂(z, t)‖ ≤

√
√
√
√λmax

(
∫ 1

0
lT (z)l(z)dz

)√

λmax (P)
λmin(P)

‖ã(0)‖

︸ ︷︷ ︸

Me

e–γt .
(97)

Since x∗(z, t) = x(z, t) – e∗(z, t), the distributed estimation error e(z, t) = x(z, t) –

x̂(z, t) is such that

‖e(z, t)‖ ≤ Mee–γt +
∂N+1

z x(ǫ(z), t)
(N + 1)!

‖w(z)‖, ǫ(z) ∈ [0, 1]. (98)

3.3.3 Sensors placement algorithm

In this section the sensor optimal placement problem is addressed by optimizing

the lower bound γ on the estimation error decay rate with respect to sensor location

candidates while ensuring an upper bound on the observer gain norm. Then, we first
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parameterize the output matrix C = C(ζj ), ζj ∈ Z , as derived in (65), where Z corre-

sponds to some specific set related to the pointwise measurements positions or other-

wise the center points related to the distributed measurements intervals according to

the description in Section 1.3.1 That is:

Z = {ζ1, ..., ζny }. (99)

In addition, it is assumed there exists a finite set

Z = {Z1, ...,Zs} (100)

defining the sensor location candidates for a given specific practical application.

The reason for considering a finite set Z is twofold. Firstly, due to practical design

considerations, one rarely has the freedom to place sensors in more than a finite num-

ber of feasible locations; and secondly, one avoids considering a continuum of sensor

locations which could lead to an infeasible optimization. Notice, by considering a finite

set Z, one can apply simpler static optimization techniques leading to considerable

computation savings.

In view of the above developments, the following algorithm for the observer de-

sign with optimal sensor location is proposed.

Algorithm 1.

1. Define the set of admissible sensor locations Z implicitly assuming the feasibility

of the problem for every Zi ∈ Z.

2. Build the matrix C = C(ζ(i)
j ), ζ(i)

j ∈ Zi , as defined in (65) for each Zi ∈ Z.

3. For each Zi ∈ Z and given θi and χi , i = 1, . . . , s, such that the implementability

of the observer is guaranteed, find the interval of feasibility [0, γ̄i ] related to the

decay rate parameter γ in the Z-parameterized LMI conditions (89) and (96).

4. The optimal sensor location is determined via

Zopt = arg max
Zi∈Z

γ̄i .

3.3.4 Optimal initial conditions

It is clear from (97) that the observer designer has two independent means for

enhancing the condition that ‘‖e(z, t)‖ → 0 promptly’. First, the gain matrix Lo can

be designed to make γ as large as possible which is accomplished by the sensor

placement algorithm. Secondly, the value of â(0) can be designed to minimize the

‘start-up error norm’

‖ã(0)‖ = ‖a(0) – â(0)‖ (101)
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in some physically realizable sense. The design of â(0) to reduce or minimize (101)

is a subject that has almost been completely ignored in state estimation applications.

As a consequence, control engineers in industry usually set â(0) = 0 in which case

‖ã(0)‖ = ‖a(0)‖. However, this choice does not reduce ‖ã(0)‖ as much as is physically

possible. In particular, considering that x(z, 0) and hence a(0) are unknown and by

virtue of the triangular inequality ‖a(0) – â(0)‖ ≤ ‖a(0)‖+ ‖â(0)‖ which lead us to aim at

minimizing ‖â(0)‖. Then the physically realizable design is related to meet the boundary

conditions and the initial measurements y (0) which is assumed to be known. Thus, the

solution of the semidefinite programming (SDP) problem in (102) that can be solved by

using conventional SOS (sum of squares) tools (PAPACHRISTODOULOU et al., 2013)

provides a local optimal selection for â(0) and hence for x̂(z, 0).







min ‖â(0)‖

subject to

Bbâ(0) = u(0)

Câ(0) = y (0)

l(z)








ai ,1(0)
...

ai ,N (0)







≥ 0, ∀z ∈ [0, 1], i = 1, ..., nx .

(102)

Remark 3.2. Since we cannot directly implement the minimization of ‖â(0)‖ in (102),

we substitute it with the following equivalent convex relaxation







min ϑ

subject to



ϑI âT (0)

â(0) I



 ≥ 0.

(103)

3.4 CO2 METHANATION IN A FIXED BED REACTOR

The dynamic hydrogenation of carbon oxides towards methane is becoming

increasingly important. Besides hydrogen, synthetic methane offers the possibility to

store large amounts of energy from renewable sources for long time periods in an al-

ready existing storage system, the natural gas grid. Carbon dioxide captured from the

atmosphere, biogas plants, or flue gas emitted by large scale power plants can be con-

verted with hydrogen from renewable energies via water electrolysis in the Sabatier
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reaction:

CO2 + 4H2 → CH4 + 2H2O. (104)

Consider a laboratory-scale catalytic fixed-bed reactor in which the hydrogena-

tion of small amounts of CO2 to methane is accomplished according to (104). The

model consists of two PDEs for the mass balance of CO2 and the energy balance,

respectively (DOESBURG; DE JONG, 1976):

∂τ[CO2](ξ, τ) = D∂2
ξ[CO2](ξ, τ) – υ∂ξ[CO2](ξ, τ) – r

(
[CO2](ξ, τ), T (ξ, τ)

)

∂τT (ξ, τ) =
λ

ρcp
∂ξξT (ξ, τ) – ǫυ

ρgcpg

ρcp
∂ξT (ξ, τ) +

2kw

rdρcp
(Tw – T )

+
–∆H
ρcp

r
(
[CO2](ξ, τ), T (ξ, τ)

)
(105)

with

r
(
[CO2](ξ, τ), T (ξ, τ)

)
= kr

[CO2](ξ, τ)e– E
RT (ξ,τ)

1 + kC [CO2](ξ, τ)
(106)

and the boundary conditions

D∂ξ[CO2](0, τ) = υ
(
[CO2](0, τ) – [CO2]in(τ)

)

λ

ρcp
∂ξT (0, τ) = ǫυ

ρgcpg

ρcp
(T (0, τ) – Tin(τ))

∂ξ[CO2](l , τ) = 0

∂ξT (l , τ) = 0 (107)

where T is the temperature (K), [CO2] is the reactant concentration (mol%), Tw the

coolant temperature (K), Tin the inlet temperature (K), [CO2]in the inlet reactant con-

centration (mol%), τ (s) and ξ (m) the time and space variables, λ/(ρcp) and D the

axial energy and mass dispersion coefficients (m2/s), υ the fluid velocity (m/s), l the

reactor length (m), ∆H the reaction heat (kcal), ρ the fluid density (kg/m3), cp the spe-

cific heat (kcal/kgK), r the reaction rate vector (m3/s), rd the reactor radius (m), kw the

heat removal rate (kcal/m2sK), E the activation energy (kcal/mol), R the gas constant

(kcal/molK).

Using the chemical process engineering parametrization

z =
ξ

l
, t =

τυ

l
,

Pe =
lυ
D

, PeT =
lǫυρgcpg

λ
, Le =

ǫρgcpg

ρcp
, (108)

Da =
l
υ

, β = –
∆H
ρcp

, η =
2kw

rdρcp

l
υ

,
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the system modeled by (105)-(107) take the form of (1)-(2) by considering

x(z, t) =
[

[CO2](z, t) T (z, t)
]T

, ud =
[

0 Tw

]T
,

u0(t) =
[

[CO2]in(t) Tin(t)
]T

, u1(t) =
[

0 0
]T

,

D = diag
(

1
Pe

,
Le

PeT

)

, V = diag
(
1, Le

)
, K = diag

(
0, –η

)
, (109)

B =
[

0 η

]T
, G =

[

–Da βDa

]T
,

Mα0 = diag
(

1
Pe

,
1

PeT

)

, Mβ0
= –I, Mα1 = I, Mβ1

= 0.

The corresponding definition of the system parameters and their respective nu-

merical values are listed in Table 1.

Table 1 – Parameter values.

Parameter Value Definition
l 1 Reactor length
PeT 5 Thermal Peclet number
Pe 5 Mass Peclet number
Le 1 Lewis number
Da 0.875 Damkohler number
η 13 Heat transfer coefficient
β 0.9571 Heat of reaction
[CO2]in 1 Inlet reactant concentration
Tin 1 Inlet temperature
Tw 1 Coolant temperature
kr 3.2690 × 106 Constant
kC 0.1 Constant
R 1.98 × 10–3 Gas constant
Ea 29.7 × 10–3 Activation energy

The section hereafter is devoted to the analysis of the influence of the collocation

points on the accuracy and robustness of the reduced model related to this example

by following the analysis developed in Sections 3.2.1 and 3.2.2.

3.4.1 Model reduction

According to the procedure presented in Section 3.2, the model reduction of the

PDE system described by (105)-(107) leads to the set of ordinary differential equations

in (61)-(62)

Now, the steady state solution of this reduced model will be computed and com-

pared with steady state solution of the distributed parameters model. It exhibits a hot

spot in the stationary temperature profile and allows us to apply a selection of colloca-

tion points which emphasises the behaviour of the reactor around this hot spot.
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Figure 7 – Concentration and temperature stationary profiles and corresponding
weights on the error with (α,β) = (–1

2 , –1
2) (blue lines), (α,β) = (1

4 , –1
3) (red

lines) and (α,β) = (3, 5
18 ) (black lines).

From a first computation of the initial temperature and concentration profiles, it

has been observed that the temperature exhibits a hot spot around z = 0.1818. Then

the family of weights on the error defined in (72) which reach their maximal value in

z = 0.1818 according to (73) has been selected. Equation (73) is, in this case, an equa-

tion with two unknowns, the Jacobi parameters α and β. Another equation between

these two parameters may be obtained by choosing for instance any measure of the

dispersion of the weight on the error around its maximal value. In Figure 7 hereafter,

three cases have been compared, a uniform weight on the error with (α,β) = (–1
2 , –1

2),

see the blue lines, (α,β) = (1
4 , –1

3 ), see the red lines and with (α,β) = (3, 5
18 ), see

the black lines. The results confirm what the theory predicts. Indeed a weight highly

localised around zmax gives excellent results around this point but causes the solution

to diverge significantly away from this point. Note that in the chose example, there are

only three interior collocation points and consequently the asymptotic equi-oscillation

behaviour of the error is not reached yet.

It remains now to check if the designed weight which is suitable for error minimi-

sation on the stationary profiles (α,β) = (1
4 , –1

3) leads also to a reasonable conditioning

number and achieves stability of reduced transport component model.
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Figure 8 – Largest singular value σ(A) for three interior collocation points.

Thus, for three interior collocation points, the maximum singular value of the

reduced transport component matrix is of the same magnitude for reasonable values

of the Jacobi Parameters α and β as it is illustrated in Figure 8.

However this maximum singular value increases rapidly with the number of col-

location points. Then, for large values of either α or β, a very large maximum singular

value for the reduced transport component is obtained. Such a choice should be ruled

out, since this largest singular value largely exceeds the value of the Lipschitz constant

and speeds up the error propagation during the numerical integration of the reduced

differential model.

3.4.2 Observer design

From this set-up, the rate function is defined as

r (x(z, t)) =
[

r
(
[CO2](z, t), [T ](z, t)

)
]

(110)

and hence its Jacobian matrix is given by

∇x r (x) =
[

∂[CO2]r ∂T r
]

(111)
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with

∂[CO2]r =
kr e– E

R T

kC [CO2] + 1
–

kCkr [CO2]e– E
R T

(
kC [CO2] + 1

)2

∂T r =
kr E [CO2]e– E

RT

RT 2
(
kC [CO2] + 1

)

(112)

Considering the domain of operation of the state variables

D =
{(

[CO2], T
)

: 0 ≤ [CO2] ≤ 1.2, 275 ≤ T ≤ 660
}

we obtain that

0 < ∂[CO2]r ([CO2], T ) ≤ 12.18

0 < ∂T r ([CO2], T ) ≤ 136.
(113)

Then one choice for the local lower and upper bound matrices of the Jacobian

matrix in (86) are respectively

Γ1 = 0 and Γ2 =
[

12.18 I 136 I
]

. (114)

Online temperature measurement plays an important role in industrial processes

monitoring since temperature sensors are usually inexpensive, durable, and easily in-

stallable compared to sensors for other process variables. Thus, in this case study we

assume the scenario in which we only have temperature sensors to be placed along

the process length aiming the online state estimation of both variables Co and T .

Considering that the online measurement vector is given by one pointwise mea-

surement

y (t) = T (ζ1, t) (115)

which sets w1(z) = δ(z – ζ1), c1 = [0, 1]T .

Sensor placement simulation

The local optimality criterion posed in Algorithm is used to determine the location

of the unique available temperature sensor. Thus, Figure 9 shows the feasibility region

of the LMIs conditions in (89) and (96) with respect to the sensor position ζ1 and the

lower bound of the decay rate γ considering θ = 1.5 × 104 and χ = 1.5 × 106 as

parameters of design which allow the numerical implementability of the state observer.
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Figure 9 – Feasibility region with θ = 1.5 × 104 and χ = 1.5 × 106.

Figure 9 indicates that there is no feasibility of the state observer design for

ζ1 > 0.575. Furthermore, ζ1 = 0.04 provides the local maximization of γ, yielding

γmax = 3.8

Optimal initial conditions

Considering the initial profiles for [CO2]0(z) and T0(z) given by the blue lines in

Figures 10 and 11, respectively, which were generated as positive polynomials satisfy-

ing the boundary conditions. We solve the SDP problem 102 considering ζ1 = 0.04 to

obtain the optimal initial conditions of the state observer.

Observer tests

The observer and system responses are generated via numerical simulation

with initial profiles [CO2]0(z), T0(z), ˆ[CO2]0(z) and T̂0(z). Figures 12 and 13 show the

evolution of the actual profiles [CO2] and T (in red lines) with their respective estimated

profiles ˆ[CO2] and T̂ (in blue lines) considering the proposed observer in four different

time instants.
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Figure 12 – Time evolution of the spatial profile of [CO2](z, t) and ˆ[CO2](z, t) at time
instants t1 = 0, t2 = 0.1, t3 = 0.53, t4 = 1.8.
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Figure 13 – Time evolution of the spatial profile of T (z, t) and T̂ (z, t) at time instants
t1 = 0, t2 = 0.1, t3 = 0.53, t4 = 1.8.

As depicted in the above figures. The temperature estimation profile converges

faster than that of the concentration, it is substantiated through the optimal selection

of the initial estimation profiles, Thus that corresponding to the temperature already

provides a good approximation regarding the actual initial condition.
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Figure 14 – Time evolution of the estimation error norm ‖e(z, t)‖.

Finally, Figure 14 shows the evolution of the estimation error norm in the case of

one temperature sensors placed in the local optimal locations ζ1 = 0.04. Since the ini-

tial estimation profiles are already a good approximation of the actual variables states,

the estimation error norm converges quickly, and hence, provides very satisfactory es-

timates.

3.5 CONCLUDING REMARKS

In this chapter, we have explored the early lumping approach to the observer

design for transport-reaction systems. In particular, the collocation method has been

applied to derive a reduced-order finite dimensional approximate model from the semi-

linear partial differential equations governing transport-reaction systems. The approxi-

mation procedure firstly results in a computation study aiming at obtaining a satisfac-

tory model approximation through the conventional analysis of selecting the appropri-

ate location of the collocation points to guarantee accuracy and robustness. Then, an

LMI based conditon was proposed for designing an extended Luenberger observer

considering a sector condition to describe the estimation error nonlinearity. In addition,

a sensor placement algorithm (embedded into the observer design) was also proposed

to optimally allocate the measurement sensors in order to improve the estimation error

decay rate. The proposed results were illustrated and numerically tested with a repre-

sentative tubular reactor case example. It has been clearly noted that the proposed

observer has provided accurate estimation of the states.

From an implementation point of view, the proposed method in this chapter pro-

vides a procedure to deal with local bounded nonlinearities embedded into the dynam-
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ics, sensor placement and optimization of the observer initial condition. More precise

convex optimization methodology still needs to be explored to improve the proposed

method. Moreover, although the systems considered in this chapter are unidimensional

with constant parameters, multidimensional and spatial variant parameters systems

can be tackled in the same vein.
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4 ON THE MODAL-BASED OBSERVER DESIGN

In this chapter, we are interested in the modal-based observer design problem

for the transport-reaction systems of interest. It is known that the observer design prob-

lem for linear distributed parameter systems satisfying the spectrum decomposition

with bounded observation operators may be solved by the spectral decomposition of

the infinite dimensional Hilbert state space (CURTAIN; ZWART, 2020). In view of this

preliminary result the purpose of the present study is to extend the modal analysis

to transport-reaction systems described by coupled 1-D semi-linear parabolic PDEs

systems with multiple in-domain measurements and state dependent nonlinearities.

Thus, we aim to deal with complex local Lipschitz nonlinearities yielding the

exponential convergence (local or non-local) of the estimation error. Two synthesis

conditions are obtain which are based on:

• the exponential stability of the mild solution of the error dynamics considering the

local Lipschitz property assumption of the reaction rate function.

• the characterization of the error dynamics as a Lure-type system which has intrin-

sic properties of local dissipativity.

The choice of a modal injection gain for the proposed observer led us to trans-

form the synthesis of a distributed observer into a stabilization problem of a finite di-

mensional system.

4.1 OBSERVER DESIGN

Defining the Luenberger-type state observer for the system described by (1)-(2)

∂t x̂(z, t) = D∂2
z x̂(z, t) – V∂z x̂(z, t) – Kx(z, t) + B ud (t) + G r (x̂(z, t))

+ LD(z)
(
ŷ (t) – y (t)

)
(116)

for (z, t) ∈ (0, 1) × (0,∞), subject to

Mα0 x̂z (0, t) + Mβ0
x̂(0, t) = u0(t) (117)

Mα1 x̂z (1, t) + Mβ1
x̂(1, t) = u1(t) (118)

and the initial condition

x̂0(z) = x̂(z, 0) (119)

for z ∈ [0, 1]. Here LD(z) : [0, 1] → R
nx×ny is the output injection gain to be designed.

The dynamics of the state estimation error e(z, t) = x(z, t) – x̂(z, t), satisfies
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∂te(z, t) = D∂2
ze(z, t) – V∂ze(z, t) – Ke(z, t) + G

[
r (x(z, t)) – r

(
x̂(z, t)

)]

+ LD(z)
(
ŷ (t) – y (t)

)
(120)

subject to

Mα0ez (0, t) + Mβ0
e(0, t) = 0 (121)

Mα1ez (1, t) + Mβ1
e(1, t) = 0 (122)

and the initial condition

e0(z) = e(z, 0). (123)

We design the output injection gain in order to ensure the stability of the dynam-

ics of the estimation error described by (120)-(123).

4.1.1 Abstract formulation

The error dynamics described by (120)-(123) can be rewritten as an abstract

first order ordinary differential equation in the Hilbert space H = L
nx
2 (0, 1) according to

∂te(z, t) = (A + LD(z)C)e(z, t) + G
[
r (x(z, t)) – r (x̂(z, t))

]
, e(z, 0) = e0(z) ∈ H (124)

where the operators A : D(A) → H, C : D(C) → R
ny are defined as

Ae(z, t) = D∂2
ze(z, t) – V∂ze(z, t) – Ke(z, t)

D(A) = {e(z, t) ∈ H : e(z, t), ∂ze(z, t) are absolutely continuous, (125)

∂2
ze(z, t) ∈ H and

Mα0∂ze(0, t) + Mβ0
e(0, t) = 0,

Mα1∂ze(1, t) + Mβ1
e(1, t) = 0

}
. (126)

Ce(z, t) =







〈c1(·), cT
1 e(·, t)〉
...

〈cny (·), cT
ny

e(·, t)〉







. (127)

4.2 SPECTRAL DECOMPOSITION OF THE A OPERATOR

In view of the abstract formulation of the error dynamics system, the state oper-

ator A is defined as:

A = diag(Ai ), Aiei (z, t) = di∂
2
zei (z, t) – υi∂zei (z, t) – κiei (z, t), i = 1, ..., nx (128)

and
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D(Ai ) = {ei (z, t) ∈ L2(0, 1) : ei (z, t), ∂zei (z, t) are absolutely continuous, (129)

∂2
zei (z, t) ∈ L2(0, 1) and

α0,i∂zei (0, t) + β0,iei (0, t) = 0,

α1,i∂zei (1, t) + β1,iei (1, t) = 0
}

. (130)

Each Ai is the negative part of a Sturm-Liouville operator, since it has the form

in (34) with ρi , pi and qi given by

ρi (z) = e
–υi

di
z

> 0, pi (z) = diρi (z) > 0, qi (z) = –κi , i = 1, ..., nx . (131)

By the analysis in (WINKIN et al., 2000), the spectrum of Ai consists only of

isolated eigenvalues with finite multiplicities. More specifically, the spectrum σ(Ai ) of

Ai is calculated through the eigenvalue problem

Aiϕi = µϕi , i = 1, ..., nx . (132)

Thus, σ(Ai ) = {µi ,n : n ∈ N} is a simple set of real numbers with

µi ,n = –
w2

i ,n + υ2
i

4di
– κi , i = 1, ..., nx and n ∈ N. (133)

where {wi ,n : n ∈ N} is the set of all the solutions to the resolvent equation:

tan
(

wi
2 di

)

=
2 di wi (α0,i β1,i – α1,iβ0,i )

4 di
2 β0,i β1,i + 2 di υi (α0,i β1,i + α1,i β0,i ) + α0,i α1,i (υ2

i + w2
i )

(134)

for wi > 0 such that 0 < wi ,n < wi ,n+1, n ∈ N. The corresponding eigenvectors ϕi ,n are

given by

ϕi ,n(z) = pi ,n e
υi
2di

z
(

cos(
wi ,n
2di

z) –
(

2di
wi

β0,i
α0,i

+
υi
wi

)

sin(
wi ,n
2di

z)
)

, i = 1, ..., nx and n ∈ N

(135)

where pi ,n’s are nonzero constants. The adjoint operator A∗
i is given by

A∗
i ei (z, t) = di∂

2
zei (z, t) + υi∂zei (z, t) – κiei (z, t), i = 1, ..., nx (136)

on its domain
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D(A∗
i ) = {ei (z, t) ∈ L2(0, 1) : ei (z, t), ∂zei (z, t) are absolutely continuous,

∂2
zei (z, t) ∈ L2(0, 1) and

di∂zei (0, t) + (di
β0,i
α0,i

+ υi )ei (0, t) = 0,

(di
β1,i
α1,i

+ di )∂zei (1, t) + υiei (1, t) = 0
}

. (137)

and its corresponding eigenfunctions are given by

Ψi ,n(z) = qi ,n e
– υi

2di
z
(

cos(
wi ,n
2di

z) –
(

2di
wi

β0,i
α0,i

+
υi
wi

)

sin(
wi ,n
2di

z)
)

, i = 1, ..., nx and n ∈ N

(138)

where the pi ,n, qi ,n are nonzero constants which are chosen such that the sequences

ϕi ,n and Ψi ,m are biorthonormal, that is,

〈ϕi ,n,Ψi ,m〉 = δnm, n, m ∈ N. (139)

Due to the diagonal structure of the operator A, the corresponding eigenvalue-

eigenfunction sets are given by the union of the solutions of the diagonal eigenvalue-

eigenfunction problems, i.e.,

σ(A) =
⋃

i=1,...,nx

σ(Ai ) =
{
µ1,n, µ2,n, ...,µnx ,n, ...

}

n∈N (140)

and the corresponding set of eigenvectors related to A and A∗ are given by















ϕ1,n

0
...

0









,









0

ϕ2,n
...

0









, . . . ,









0
...

0

ϕnx ,n









, . . .







n∈N

,















Ψ1,n

0
...

0









,









0

Ψ2,n
...

0









, . . . ,









0
...

0

Ψnx ,n









, . . .







n∈N

. (141)

Considering the decreasing rearrangement of the elements of σ(A) , thus

σ(A) = {λn : n ∈ N}, λn > λn+1 ∀n ∈ N (142)

thereby, the elements of the sets in (141) are also rearranged correspondingly:



Chapter 4. On the Modal-Based Observer Design 73

{φn : n ∈ N}

{ψn : n ∈ N}. (143)

Thus, both sequences of eigenfunctions above form a Riesz basis on L
nx
2 (0, 1)

and every e ∈ L
nx
2 (0, 1) can be represented uniquely by

e =
∞∑

n=1

λn〈e,ψn〉φn. (144)

Moreover, the linear operator A is a Riesz-spectral operator and can be repre-

sented as

Ae =
∞∑

n=1

λn〈e,ψn〉φn. (145)

Furthermore, A is the infinitesimal generator of a C0-semigroup S(t) given by

S(t)e =
∞∑

n=1

eλnt〈e,ψn〉φn. (146)

The growth bound of the semigroup is given by ω0 = supn∈N λn and hence

‖S(t)‖ ≤ eω0t . (147)

The Riesz-spectral characterization of the operator A states that its eigenspec-

trum can be partitioned into a finite-dimensional part consisting of N slow eigenvalues

and a stable infinite-dimensional complement containing the remaining fast eigenval-

ues as follows

σ(A) = σ(As) ∪ σ(Af ) (148)

with σ(As) = {λ1, ..., λN } and σ(Af ) = {λN+1, ...}.

Such eigenspectrum partition of the riesz-spectral operator A with only finitely

many eigenvalues in σ(As) is known in the specialized literature as the spectrum de-

composition assumption at λ∗L (CURTAIN; ZWART, 2020), i.e, σ(As) is bounded and

separated from σ(Af ) in such a way that a rectifiable, simple, closed curve, Λ, can be

drawn so as to enclose an open set containing σ(As) in its interior and σ(Af ) in its

exterior.
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σ(Af ) σ(As)

λ∗L

Re

Img

Figure 15 – Spectrum decomposition of A.

The decomposition of the spectrum induces a corresponding decomposition of

the state space H and of the operators A and C. Summarizing, the spectral projection

PΛ defined by

PΛe =
1

2πj

∫

Λ
(λI – A)–1e dλ

=
N∑

n=1

〈e,ψn〉φn

(149)

where Λ is traversed once in the positive direction (counterclockwise), induces the

following decomposition:

H = Hs ⊕Hf (150)

with Hs = PΛH and Hf = (I – PΛ)H. In view of this decomposition, it is convenient to

use the notation

A =

[

As 0

0 Af

]

, C =
[

Cs Cf

]

(151)

where

As = APΛ =
N∑

n=1

λn〈·,ψn〉φn, Cs = CPΛ =
N∑

n=1

〈·,ψn〉Cφn,

Af = A(I – PΛ) =
∞∑

N+1

λn〈·,ψn〉φn, Cf = C(I – PΛ) =
∞∑

N+1

〈·,ψn〉Cφn.

(152)
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4.3 SPECTRAL ASSIGNMENT OF LD(z)

In the frame of modal decomposition for state estimation of systems described

by parabolic PDEs, see e.g. (CURTAIN; ZWART, 2020; SCHAUM, Alexander et al.,

2018; KAMRAN, 2016), we consider in this chapter a finite-dimensional modal out-

put injection gain for the Luenberger-type state observer proposed in (116)-(118) given

by

LD(z) =
[

φ1(z) · · · φN (z)
]

L (153)

with L ∈ R
N×ny . According to the spectral representation in (145), we have that

Ae =
∞∑

n=1

λn〈e,ψn〉φn

=
[

φ1 · · · φN φN+1 · · ·
]
[

As 0

0 Af

]












〈e,ψ1〉
...

〈e,ψN〉

〈e,ψN+1〉
...












(154)

such that

As = diag(λ1, ..., λN ), Af = diag(λN+1, ...). (155)

From the Fourier series expansion in (144), it turns out that

Ce =
∞∑

n=1

〈e,ψn〉Cφn

=
[

Cs Cf

]












〈e,ψ1〉
...

〈e,ψN〉

〈e,ψN+1〉
...












(156)

with

Cs =







〈c1, cT
1φ1〉 · · · 〈c1, cT

1φN〉
...

...
...

〈cny , cT
ny
φ1〉 · · · 〈cny , cT

ny
φN〉







, Cf =







〈c1, cT
1φN+1〉 · · ·
...

...

〈cny , cT
ny
φN+1〉 · · ·







(157)
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Thus, it holds that

(A + LD(z)C) e =
[

φ1 · · · φN φN+1 · · ·
]
[

As + LCs LCf

0 Af

]












〈e,ψ1〉
...

〈e,ψN〉

〈e,ψN+1〉
...












. (158)

Accordingly, if the pair (As, Cs) is detectable, the slow eigenvalues {λ1, · · · , λN }

can be rearranged so that the dominant eigenvalue λ∗L becomes

λ∗L = max {λN+1, λmax (As + LCs)} (159)

and then if λ∗L < ∞, A + LD(z)C generates a C0-semigroup denoted by SAL(t) which

satisfies

‖SAL(t)‖ ≤ Meλ
∗

Lt , t ≥ 0. (160)

Thus, if the dimension N of the observer measurement injection is such that the

pair (As, Cs) is observable, then the gain matrix L can be chosen so that the dominant

eigenvalue λ∗L satisfy conditions to ensure the local exponential stability of the error

dynamics (120)-(123).

4.4 LIPSCHITZ CONDITION BASED OBSERVER DESIGN

It is well-known (see e.g. Theorem 6.1.4 in (PAZY, 2012)) that under the as-

sumption that (A + LD(z)C) generates a C0-semigroup SAL(t), (124) admits an unique

mild solution satisfying the integral equation

e(z, t) = SAL(t)e0(z) +
∫ t

0
SAL(t – s)G

[
r (x(z, s)) – r (x̂(z, s))

]
ds. (161)

Similar to the proof of Gronwalls generalized lemma (VIDYASAGAR, 2002), it

follows that

‖e(·, t)‖ ≤ ‖SAL(t)‖‖e0(·)‖ +
∫ t

0
‖SAL(t – s)‖‖G‖‖r (x(·, s)) – r (x̂(·, s))‖ds

≤ Meλ
∗

Lt

(

‖e0(·)‖ +
∫ t

0
e–λ∗Ls‖G‖‖r (x(·, s)) – r (x̂(·, s))‖ds

)

≤ Meλ
∗

Lt

(

‖e0(·)‖ +
∫ t

0
e–λ∗Ls‖G‖ l r ‖e(·, s)‖ds

)

(162)
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where norms are taken in appropriate spaces, and l r denotes the local Lipschitz con-

stant of the function r (·) over a subset of H = L
nx
2 (0, 1). Define

η(t) = eλ
∗

Lt

(

‖e0(·)‖ +
∫ t

0
e–λ∗Ls‖G‖ l r‖e(·, s)‖ds

)

(163)

so that it follows that

η̇(t) = λ∗Lη(t) + ‖G‖ l rη(t)

= (λ∗L + ‖G‖l r )η(t). (164)

This implies that for λ∗L < –‖G‖l r the local convergence of ‖e(·, t)‖ is ensured.

Furthermore, this condition implies the system detectability as stated subsequently.

Theorem 4.1. When a matrix valued function LD : [0, 1] → R
nx×ny can be chosen so

that A + LD(z)C generates a C0-semigroup SAL(t) such that

‖SAL(t)‖ ≤ Meλ
∗

Lt , t ≥ 0 (165)

where M ≥ 1, then if λ∗L < –‖G‖l r the system described by (1)-(2) is detectable.

Proof. Under the assumption that λ∗L < –‖G‖l r is met, from (164) and (162), we obtain

that limt→∞ ‖e(·, t)‖ = 0. This, in turn, implies the detectability of the system described

by (1)-(2).

Corollary 4.1. Consider the estimation error system in (124). If LD(z) : [0, 1] → R
nx×ny

is selected such that A + LD(z)C generates a C0-semigroup SAL(t) with growth bound

λ∗L, such that

λ∗L ≤ –γ – ‖G‖l r , (166)

then the estimation error exponentially converges to zero with decay rate γ according

to

‖e(·, t)‖ ≤ M‖e0(·)‖e–γt . (167)

Observer design techniques based on Lipschitz conditions may guarantee sta-

bility only for small values of Lipschitz constants which directly translates into small

stability regions. All available results on Lipschitz systems, however, provide only suffi-

cient conditions for stability and the actual observer might still work with larger Lipschitz

constants, even though the tool used in the analysis and design are unable to provide

theoretical evidence. The implication is that there is a significant degree of conservative-

ness in the Lipschitz formulation. We can approach Lipschitz restrictions in a different

way and avoid high output injection gains in the observer design by representing the
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error dynamics as Lure system (WANG, Y. et al., 2014) and using the theory of dissi-

pativity (ROCHA-CÓZATL; MORENO, 2011) for the stability analysis as presented in

the following section.

4.5 DISSIPATIVE OBSERVER DESIGN

The error dynamics in (124) can be represented as a Lure-type dynamic-static

system interconnection (POPOV, 1962; KHALIL, 2002) shown in Figure 16.

ν(z, t) e(z, t)
∂te(z, t) = (A + LD(z)C)e(z, t) + Gν(z, t)

ν(z, t) = r (x(z, t)) – r (x̂(z, t))
= ∇x r (x̆(z, t))e(z, t)

Figure 16 – Lure-System representation of the observer error system.

Based on the assumption that r (·) is locally Lipschitz , the function denoted as

ν(z, t) = r (x(z, t)) – r (x̂(z, t)) and the the estimation error e(z, t) = x(z, t) – x̂(z, t) satisfy

different algebraic conditions (AÇIKMEŞE; CORLESS, 2011; ARCAK; KOKOTOVIĆ,

2001). In this thesis, we use a sector condition based on the boundedness of the

Jacobian matrix of the nonlinear function r (·).

4.5.1 Sector condition for e(z, t) and ν(z, t)

Suppose that the two matrices Γ1, Γ2 ∈ R
nr×nx are constant matrices whose en-

tries are the local lower and upper bounds, respectively, of the Jacobian matrix entries

of r (·) defined as

Γ (x) = ∇x r (x) (168)

then, the Differential Mean Value Theorem gives

ν(z, t) = r (x(z, t)) – r (x̂(z, t))

= ∇x r
(
x̆(z, t)

)
e(z, t)

(169)
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where x̆(z, t) ∈ Co(x(z, t), x̂(z, t)) and the following inequality holds

Γ1 e(z, t) ≤ ν(z, t) ≤ Γ2 e(z, t). (170)

Hence, the following sector condition is straightforward to obtain

(ν(z, t) – Γ1e(z, t))T (Γ2e(z, t) – ν(z, t)) ≥ 0 (171)

which can be rewritten in the following quadratic form

〈[

e(·, t)

ν(·, t)

]

,

[
ΓT

1 Γ2+ΓT
2 Γ1

2 –Γ
T
1 +ΓT

2
2

–Γ1+Γ2
2 I

]

︸ ︷︷ ︸

M

[

e(·, t)

ν(·, t)

]〉

≤ 0 (172)

In the light of Lyapunov theory for DPSs, the squared error potential energy

dissipation is analyzed aiming at the achievement of local convergence conditions for

the estimation error e(z, t). For this aim, the dissipation components corresponding to

the linear dynamical transport and the nonlinear kinetic subsystem are identified in the

quadratic sector condition (172) (SCHAUM, Alexander et al., 2018).

4.5.2 Some dissipativity concepts

In a system-theoretic framework, the concept of dissipativity is strictly related to

the concept of a power supply w , which represents a measure of energy change in

a system in terms of its inputs and outputs. Consider the system decribed in Figure

16, w(e(z, t),ν(z, t)) is a function of inputs ν(z, t) and outputs e(z, t). The concept of

dissipativity, represents a generalization of the concept of passivity, in the sense that

it applies to non-quadratic systems. For reasons of applicability, supply rates given by

quadratic forms in inputs and outputs are considered, i.e.

w(e(z, t),ν(z, t)) =

〈[

e(·, t)

ν(·, t)

]

,

[

Q(·) S(·)

ST (·) R(·)

][

e(·, t)

ν(·, t)

]〉

(173)

with real matrix-valued functions Q(z) : [0, 1] → S
nx , R(z) : [0, 1] → S

nr , S(z) : [0, 1] →

R
nx×nr . Dissipativity of the system (124) with respect to the supply rate w given by

(173) can therefore be identified with the fulfillment of an inequality characterizing the

change in the stored energy E(e(z, t)), defined as a positive functional in H = L
nx
2 (0, 1),

in terms of the supplied power w(e(z, t),ν(z, t)). The following definition is essential in

the sequel

Definition 4.1. The system defined in (124) is called (Q, S, R)-state strictly dissipative

with dissipation rate 2γ, if the positive definite functional E(e(z, t)) defined in (175),
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called the storage functional such that

Ė(e(z, t)) ≤ w(e(z, t),ν(z, t)) – 2γ‖e(z, t)‖ (174)

Consider the quadratic storage functional

E(e(z, t)) =
〈
e(z, t), e(z, t)

〉
(175)

then,

Ė(t) =
〈
∂te(·, t), e(·, t)

〉
+
〈
e(·, t),∂te(·, t)

〉

=
〈
(A + LD(z)C)e(·, t) + Gν(·, t), e(·, t)

〉
+
〈
e(·, t), (A + LD(z)C)e(·, t) + Gν(·, t)

〉

= 〈(A + LD(z)C)e(·, t), e(·, t)〉 + 〈e(·, t), (A + LD(z)C)e(·, t)〉 + 2〈e(·, t), Gν(·, t)〉.

(176)

Substituting (176) and (173) into (174) yields

〈(A + LD(z)C)e(·, t), e(·, t)〉 + 〈e(·, t), (A + LD(z)C)e(·, t)〉 + 2〈e(·, t), Gν(·, t)〉 ≤

〈e(·, t), Qe(·, t)〉 + 2〈e(·, t), Sν(·, t)〉 + 〈ν(·, t), Rν(·, t)〉 – 2γ〈e(·, t), e(·, t)〉
(177)

which can be rewritten as

〈(A + LD(z)C)e(·, t), e(·, t)〉 + 〈e(·, t), (A + LD(z)C)e(·, t)〉 + 2γ〈e(·, t), e(·, t)〉

– 〈e(·, t), Qe(·, t)〉 + 2〈e(·, t), (G – S)ν(·, t)〉 – 〈ν(·, t), Rν(·, t)〉 ≤ 0
(178)

Based on the considerations above, the following result is a direct application of

the infinite-dimensional set-up presented in (SCHAUM, Alexander et al., 2018) to the

class of systems of interest.

Theorem 4.2. Consider the Lure-type interconnection shown in Figure 16. If LD(z) :

[0, 1] → R
nx×ny is chosen such that the system (124) is (ΓT

1 Γ2, Γ
T
1 +ΓT

2
2 , –I)-state strictly

dissipative with dissipation rate 2γ > 0, then the estimation error exponentially con-

verges to zero with rate γ.

Proof. Consider the storage functional E(t) = 〈e(·, t), e(·, t)〉 and its time derivative

Ė(t) = 〈∂te(·, t), e(·, t)〉 + 〈e(·, t),∂te(·, t)〉

= 〈(A + LD(z)C)e(·, t) + Gν(·, t), e(·, t)〉 + 〈e(·, t), (A + LD(z)C)e(·, t) + Gν(·, t)〉

= 〈(A + LD(z)C)e(·, t), e(·, t)〉 + 〈e(·, t), (A + LD(z)C)e(·, t)〉 + 2〈e(·, t), Gν(·, t)〉.

(179)
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By the assumption that Σ(A + LD(z)C, G, I) is (ΓT
1 Γ2, –Γ

T
1 +ΓT

2
2 , I)-state strictly dissi-

pative with dissipation rate 2γ > 0 it follows by virtue of the dissipation inequality (174)

that

Ė(t) ≤
〈

e(·, t), ΓT
1 Γ2e(·, t)

〉

+ 2

〈

e(·, t), –
ΓT
1 + ΓT

2
2

ν(·, t)

〉

+
〈
ν(·, t),ν(·, t)

〉
– 2γ〈e, e〉

≤

〈[

e(·, t)

ν(·, t)

]

,

[
ΓT

1 Γ2+ΓT
2 Γ1

2 –Γ
T
1 +ΓT

2
2

–Γ1+Γ2
2 I

][

e(·, t)

ν(·, t)

]〉

– 2γ〈e(·, t), e(·, t)〉.

(180)

Taking (172) into account, it follows that

Ė(t) ≤ –2γ〈e(·, t), e(·, t)〉 = –2γE(t) (181)

and hence,

‖e(·, t)‖ ≤ ‖e0(·)‖e–γt . (182)

Theorem 4.3. Consider the estimation error system in (124). If LD(z) : [0, 1] → R
nx×ny

is selected such that

λ∗L <
1
2
λmin

(

–2γI + ΓT
1 Γ2 –

(

G +
ΓT
1 + ΓT

2
2

)(

GT +
Γ1 + Γ2

2

))

(183)

then the estimation error exponentially converges to zero with decay rate γ according

to

‖e(·, t)‖ ≤ ‖e0(·)‖e–γt . (184)

Proof. Consider λ∗L defined in (159), then

〈(A + LD(z)C)e(·, t), e(·, t)〉 + 〈e(·, t), (A + LD(z)C)e(·, t)〉 ≤ 2λ∗L〈e(·, t), e(·, t)〉. (185)

By the assumption that Σ(A + LD(z)C, G, I) is (ΓT
1 Γ2, –Γ

T
1 +ΓT

2
2 , I)-state strictly dissi-

pative with dissipation rate 2γ > 0 it follows by virtue of the dissipation inequality (178)

that

〈
(A + LD(z)C)e(·, t), e(·, t)

〉
+
〈
e(·, t), (A + LD(z)C)e(·, t)

〉
+ 2γ

〈
e(·, t), e(·, t)

〉

–
〈

e(·, t), ΓT
1 Γ2e(·, t)

〉

+ 2

〈

e(·, t),

(

G +
ΓT
1 + ΓT

2
2

)

ν(·, t)

〉

–
〈
ν(·, t),ν(·, t)

〉
≤ 0.

(186)
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Substituting (185) into inequality (186) it follows that

〈[

e(·, t)

ν(·, t)

]

,

[

2(λ∗L + γ)I + ΓT
1 Γ2 G + ΓT

1 +ΓT
2

2
G + Γ1+Γ2

2 –I

][

e(·, t)

ν(·, t)

]〉

. (187)

This is satisfied if the LMI

[

2(λ∗L + γ)I + ΓT
1 Γ2 G + ΓT

1 +ΓT
2

2
G + Γ1+Γ2

2 I

]

≤ 0 (188)

holds true. Taking the Schur complement this property is ensured if

2λ∗LI ≤

(

–2γI + ΓT
1 Γ2 – (G +

ΓT
1 + ΓT

2
2

)(GT +
Γ1 + Γ2

2
)

)

(189)

this in turn is fulfilled, if the smallest value over of the minimum eigenvalue of the right-

side of (189) is larger than 2λ∗L, i.e. if (183) is satisfied.

4.6 CATALYTIC CRACKING REACTOR

As a case study, a tubular catalytic cracking reactor is considered here. Indeed,

catalytic cracking is one of the most important conversion processes in petroleum re-

fineries. It is widely used to convert high-boiling, high-molecular weight hydrocarbon

fractions of petroleum crude oils into more valuable gasoline, olefinic gases and other

products (WEEKMAN JR, 1969). Here, let us consider the chemical process of a tubu-

lar catalytic cracking reactor in which the following reactions occur

A
kA→ B

kB→ C,

A
kC→ C

(190)

where A represents gas oil, B gasoline and C other products (e.g butanes, coke, etc.).

If xA and xB represent the weight fractions of reactants A and B, then the rate equations

are given by (WEEKMAN JR, 1969)

rA = –(kA + kC)x2
A = –kACx2

A,

rB = kAx2
A – kBxB

(191)

with kA, kB and kC are the kinetic constants of the reactions, respectively. If we con-

sider an isothermal process and assume axial dispersion, then by using the mass bal-
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ances within the reactor, the dynamics of the system can be described by the following

parabolic PDE system

∂txA(z, t) = d∂2
zxA(z, t) – υ∂zxA(z, t) + rA(xA)

∂txB(z, t) = d∂2
zxB(z, t) – υ∂zxB(z, t) + rB(xA, xB)

(192)

along with with the boundary conditions

d∂zxA(0, t) = υ(xA(0, t) – uA(t))

d∂zxB(0, t) = υ(xB(0, t) – uB(t))

∂zxA(l , t) = 0

∂zxB(l , t) = 0.

(193)

In the above equations, xA, xB, d , υ, xA,in and xB,in denote the weight fractions

of reactant A and B, the axial dispersion coefficient, the superficial velocity, the inlet

weight fraction of component A and the inlet weight fraction of component B, respec-

tively. The adopted numerical values for the process parameters are taken from Table

2.

Table 2 – Parameter values

.

Parameter Value Definition

d 0.5 m2h-1 Mass dispersion coefficient
υ 2 mh-1 Flow velocity
l 1 m Reactor length
kA 18.1 (h weight fraction)–1 Kinetic constant
kB 1.7 h-1 Kinetic constant
kC 4.8 (h weight fraction)–1 Kinetic constant
xA,in 0.7 weight fraction Inlet weight fraction of A
xB,in 0 weight fraction Inlet weight fraction of B

The system modeled by (192)-(193) takes the form of (1)-(2) by considering

x(z, t) =
[

xA(z, t) xB(z, t)
]T

, ud = 0,

u0(t) =
[

xA,in xB,in

]T
, u1(t) = 0,

D = d I, V = υ, K = 0,

B = 0, G =

[

–kAC 0

kA –kB

]

,

Mα0 =
d
υ

I, Mβ0
= –I, Mα1 = I, Mβ1

= 0

(194)
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with rate function defined as

r (x) =

[

x2
A

xB

]

(195)

and hence its corresponding Jacobian is given by

∇x r (x) =

[

2xA 0

0 1

]

. (196)

Considering the domain of operation of the state variables

D =
{

(xA, xB) ∈ R
2 : 0 ≤ xA ≤ 0.4341, 0 ≤ xB ≤ 0.7

}

we obtain that the local lower and upper bound matrices of the Jacobian matrix are

respectively

Γ1 =

[

0 0

0 1

]

Γ2 =

[

0.8682 0

0 1

]

. (197)

Moreover, a possible local Lipschitz constant l r for the reaction function may be

derived using the Jacobian matrix as follows

sup
x∈D

‖∇x r (x)‖ ≤ l r

max (2xA, 1) ≤ l r

1 ≤ l r .

(198)

According to Section 4.2, we set the eigenvalue problem for operator A defined

in the abstract formulation of the error dynamics (124), that is

A = diag (Ai ) , i = 1, 2,

Ai =
1

Pe
∂2

z – ∂z , i = 1, 2,

D(Ai ) = {ei (z, t) ∈ L2(0, 1) : ei (z, t), ∂zei (z, t) are absolutely continuous,

∂2
zei (z, t) ∈ L2(0, 1) and

1
Pe
∂zei (0, t) – ei (0, t) = 0,

∂zei (1, t) = 0} , i = 1, 2.

Since A1 = A2, the spectrum of A is then defined by

σ(A) =
⋃

i=1,2

σ(Ai ) = {λn : n ∈ N} (199)
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with

λn = –
w2

n + υ2

4d
, n ∈ N (200)

where {wn : n ∈ N} is the set of all the solutions to the resolvent equation:

tan
( w

2d

)

=
2wυ

w2 – υ2
(201)

for w > 0 such that 0 < wn < wn+1, ∀n ∈ N. The corresponding set of eigenvalues-

eigenvectors pairs related to A and A∗ are given by

{

(λn,

[

ϕn

0

]

), (λn,

[

0

ϕn

]

)

}

n∈N

,

{

(λn,

[

Ψn

0

]

), (λn,

[

0

Ψn

]

)

}

n∈N

(202)

where

ϕn(z) = pn e
υ
2d z
(

cos
(wn

2d
z
)

+
(
υ

wn

)

sin
(wn

2d
z
))

Ψn(z) = qn e
υ
2d (1–z)

(

cos
(wn

2d
(1 – z)

)

+
(
υ

wn

)

sin
(wn

2d
(1 – z)

))

, n ∈ N,
(203)

and the normalization constants pn, qn, n ∈ N are chosen so that 〈ϕn,Ψm〉 = δnm.

For the purpose of determining the appropriate number of modes N in the imple-

mentation of the output injection gain LD(z) in (153) that ensures a lower bound γ for

the decay rate of the estimation error norm, we first applied the criteria given in (166)

and (183) with γ = 4.5 corresponding to the Lipchitz constant and sector condition

based observer design respectively. Thus, Figures 17 and 18 depict the selection of an

appropriate γ∗L and hence of the number of modes N to be used in the implementation

of LD(z) through the spectrum decomposition of operator A.
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Re
-250 -200 -150 -100 -50 0 50 100
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Figure 17 – Spectrum σ(A) decomposition regarding γ = 4.5 considering (166).

Re
-1500 -1000 -500 0 500

Im
g

σ(Af )σ(As)

λ∗

L for γ = 4.5

N = 16

Figure 18 – Spectrum σ(A) decomposition regarding γ = 4.5 considering (183).

Considering that the online measurement vector is given by one piecewise mea-

surement

y (t) =
∫ ζ1+ε1

ζ1–ε1

xA(z, t)dz (204)
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setting ε1 = 0.01, cT
1 = [0 1], and ζ1 = 0.3 in (5) and (7). Thus, the output injection gain

LD(z) is implemented according to (153) with N = 6.

4.6.1 Observer tests

The observer and system responses are generated via numerical simulation

with initial profiles that were generated as positive polynomials satisfying the boundary

conditions, upper bounds selected by the physical conditioning of the process and

matching the initial measurements. Figures 19 and 20 show the evolution of the actual

profiles xA and xB (in red lines) with their respective estimated profiles x̂A and x̂B (in

blue lines) considering the proposed observer in four different time instants.

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
A
(z
,t
)

an
d

x̂
A
(z
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)
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1

1.5
t1
t2
t3
t4
t1
t2
t3
t4

Figure 19 – Time evolution of the spatial profile of xA(z, t) and x̂A(z, t) at time instants
t1 = 0, t2 = 0.12, t3 = 0.36, t4 = 0.6.
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Figure 20 – Time evolution of the spatial profile of xB(z, t) and x̂B(z, t) at time instants
t1 = 0, t2 = 0.12, t3 = 0.36, t4 = 0.6.

Figure 21 shows the evolution of the estimation error norm in the case of one

temperature sensors placed in the local optimal location ζ1 = 0.5. Since the initial

estimation profiles are already a good approximation of the actual variables states,

the estimation error norm converges quickly, and hence, provides very satisfactory

estimates.
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Figure 21 – Time evolution of the estimation error norm ‖e(z, t)‖.

4.7 CONCLUDING REMARKS

In this chapter, we have explored the late lumping approach to the observer

design for transport-reaction systems. In particular, the Lipschitz condition assumption

related to the reaction rate function has been considered to derive sufficient conditions

for the local exponential stability of the state estimation error dynamics. The choice

of a modal injection gain for the observer allow us to analyse the stability conditions

in terms of the slow eigenvalues of the error dynamics state operator which turns the

observer design into a stabilization problem of a finite dimensional system.

The proposed results were illustrated and numerically tested with a representa-

tive tubular reactor case example. It has been clearly noted that the proposed observer

has provided accurate estimation of the states. From an implementation point of view,

the proposed method in this chapter provides a procedure to deal with local bounded

nonlinearities embedded into the dynamics. More precise convex optimization method-

ology still needs to be explored to improve the proposed method. Moreover, although

the systems considered in this chapter are unidimensional with constant parameters,

multidimensional and spatial variant parameters systems can be tackled in the same

vein.
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5 LYAPUNOV-BASED OBSERVER SYNTHESIS

This chapter is devoted to the Lyapunov-based design method for the state ob-

server synthesis of the class of transport-reaction systems of interest. We accomplish

this task by constructing Lyapunov functions parametrized by sum-of-squares polyno-

mials. In addition, the output injection matrix gain is parametrized by polynomials with

prescribed degree. In particular, we reduce the stability analysis of the nonlinear dy-

namics of the state estimation error by using local algebraic sector conditions to rep-

resent the error dynamics as a Lure system. It should be noticed that the proposed

approach concerns a large class of semilinear PDE systems within which the polyno-

mial parametrization of the observer synthesis and a guaranteed prescribed decay rate

of convergence are obtained through the solution of an appropriately formulated SOS

program. We also discuss an extension of the proposed class of observers that is appli-

cable to the distributed state observation problem for uncertain systems. A case study

related to a nonisothermal tubular reactor is presented to demonstrate the observer

performance as well as the advantages of the proposed formulation.

5.1 OBSERVER DESIGN

Defining the Luenberger-type state observer for (1)-(2)

∂t x̂(z, t) = D∂2
z x̂(z, t) – V∂z x̂(z, t) – Kx̂(z, t) + G r (x̂(z, t))

+ LD(z)
(
ŷ (t) – y (t)

)
(205)

for (z, t) ∈ (0, 1) × (0,∞), subject to

Mα0 x̂z (0, t) + Mβ0
x̂(0, t) = u0(t) (206)

Mα1 x̂z (1, t) + Mβ1
x̂(1, t) = u1(t) (207)

and the initial condition

x̂0(z) = x̂(z, 0) (208)

for z ∈ [0, 1]. Here the gain LD(z) : [0, 1] → R
nx×ny is the output injection gain to be

designed. The dynamics of the state estimation error e(z, t) = x(z, t) – x̂(z, t), satisfies

∂te(z, t) = D∂2
ze(z, t) – V∂ze(z, t) – Ke(z, t) + G

[
r (x(z, t)) – r

(
x̂(z, t)

)]

+ LD(z)
(
ŷ (t) – y (t)

)
(209)

subject to

Mα0ez (0, t) + Mβ0
e(0, t) = 0 (210)

Mα1ez (1, t) + Mβ1
e(1, t) = 0 (211)
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and the initial condition

e0(z) = e(z, 0). (212)

We design the output injection gain using the Lyapunov methodology in order

to obtain sufficient conditions for the stability of the dynamics of the estimation error

described by (209)-(212).

As asserted in Section 4.5, the function denoted as ν(z, t) = r (x(z, t)) – r (x̂(z, t))

and the the estimation error e(z, t) = x(z, t) – x̂(z, t) satisfy a sector condition based on

the boundedness of the Jacobian matrix of the nonlinear function r (·).

5.1.1 Sector Condition for e(z, t) and ν(z, t)

Suppose that the two matrices Γ1, Γ2 ∈ R
nr×nx are constant matrices whose en-

tries are the local lower and upper bounds, respectively, of the Jacobian matrix entries

of r (·) defined as

Γ (x(z, t)) = ∇x r (x(z, t)) (213)

then, the Differential Mean Value Theorem gives

ν(z, t) = r (x(z, t)) – r (x̂(z, t))

= ∇x r
(
x̆(z, t)

)
e(z, t)

(214)

where x̆(z, t) ∈ Co(x(z, t), x̂(z, t)) and the following inequality holds

Γ1 e(z, t) ≤ ν(z, t) ≤ Γ2 e(z, t). (215)

Hence, the following sector condition is straightforward to obtain

(ν(z, t) – Γ1e(z, t))T (Γ2e(z, t) – ν(z, t)) ≥ 0 (216)

which can be rewritten in the following quadratic form

〈[

e(z, t)

ν(z, t)

]

,

[
ΓT

1 Γ2+ΓT
2 Γ1

2 –Γ
T
1 +ΓT

2
2

–Γ1+Γ2
2 I

]

︸ ︷︷ ︸

M

[

e(z, t)

ν(z, t)

]〉

≤ 0 (217)

5.1.2 Abstract formulation

The error dynamics described by (209)-(212) can be rewritten as an abstract

first order ordinary differential equation in the Hilbert space H = L
nx
2 (0, 1) according to

∂te(z, t) = (A + LD(z)C)e(z, t) + Gν(z, t), e(z, 0) = e0(z) ∈ H (218)
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where the operators A : D(A) → H, C : D(C) → R
ny are defined as

Ae(z, t) = D∂2
ze(z, t) – V∂ze(z, t) – Ke(z, t)

D(A) = {e(z, t) ∈ H : e(z, t), ∂ze(z, t) are absolutely continuous, (219)

∂2
ze(z, t) ∈ H and

Mα0∂ze(0, t) + Mβ0
e(0, t) = 0,

Mα1∂ze(1, t) + Mβ1
e(1, t) = 0

}
. (220)

Ce(z, t) =







〈c1(·), cT
1 e(·, t)〉
...

〈cny (·), cT
ny

e(·, t)〉







. (221)

The error dynamics in (218) can be represented as a Lure system shown in Fig-

ure 22 where the sector condition for the estimation error e(t) and the deviation function

ν(t) are expressed through the semidefinite constraint (217) that can be embedded into

the stability analysis by applying the S-Procedure (BOYD, S. et al., 1994).

ν(z, t) e(z, t)
∂te(z, t) = (A + LD(z)C)e(z, t) + Gν(z, t)

ν(z, t) = r (x(z, t)) – r (x̂(z, t))
= ∇x r (x̆(z, t))e(z, t)

Figure 22 – Lure-System representation of the observer error system.

5.1.3 Lyapunov convergence assessment

In this work, the design problem will be addressed within a weighted Lyapunov

framework, with the weight function as a degree of freedom (SCHAUM, Alexander et al.,

2014). The analysis of the corresponding dissipation mechanism leads to LMI conver-

gence conditions, which depends on the spatial coordinate, the observer gains, and

the Lyapunov weight function. To this end, let us set the positive-definite weighted can-

didate Lyapunov functional V : Lnx
2 (0, 1) → R as

V (t) = 〈e(·, t),Pe(·, t)〉 (222)
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where P : Lnx
2 (0, 1) → L

nx
2 (0, 1) is a strictly positive operator defined by the polynomial

matrix W (z) as

(Pe)(z) = W (z)e(z). (223)

for all z ∈ (0, 1). The following Lemma shows how two positive semi-definite matrices

Q, R > 0 and some constant ǫ > 0 can be used to define the polynomial matrix

W (z) such that the operator P is positive and therefore the functional V is a Lyapunov

candidate for the observation error dynamics (209)-(212).

Lemma 5.1. (MEYER; PEET, Matthew M, 2016) Given any positive semi-definite ma-

trices Q, R ∈ S
n(m+1), and

Z (z) = Zm(z) ⊗ In (224)

where z ∈ (0, 1), Zm is a vector of monomials with degree m or less and ⊗ is the

Kronecker product. Let for all z ∈ [0, 1]

g(z) = z(1 – z). (225)

If for some ǫ > 0

W (z) = Z (z)T (Q + g(z)R)Z (z) + ǫIn, (226)

then the functional V : Lnx
2 (0, 1) → R

+, defined as

V (e(·, t)) = 〈e(·, t),Pe(·, t)〉 =
∫ 1

0
e(z, t)T W (z)e(z, t)dz, (227)

is a strictly positive functional over Lnx
2 (0, 1), whenever e(·, t) 6= 0, and satisfies

V (e(·, t)) = 〈e(·, t),Pe(·, t)〉 ≥ ǫ‖e(·, t)‖2, ∀e(·, t) ∈ L
nx
2 (0, 1). (228)

Proof. Substituting (226) into (227), we obtain

V (e(·, t)) =
∫ 1

0
e(z, t)T

(

Z (z)T (Q + g(z)R)Z (z)
)

︸ ︷︷ ︸

†

e(z, t)dz + ǫ
∫ 1

0
e(z, t)T e(z, t)dz.

(229)

Since Q, R > 0 and g(z) > 0, ∀z ∈ [0, 1], † describes a SOS matrix polynomial

(PAPACHRISTODOULOU et al., 2013), hence

V (e(·, t)) ≥ ǫ
∫ 1

0
e(z, t)T e(z, t)dz

≥ ǫ‖e(·, t)‖2, ∀e(·, t) ∈ L
nx
2 (0, 1).

(230)
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5.1.3.1 Dissipation inequality

We wish to prove that with the chosen observer gain LD(z), the dissipation in-

equality

V̇ (t) + 2γV (t) ≤ 0, γ > 0, (231)

is satisfied along the trajectories of the estimation error dynamics (218) which proves

the exponential stability of the estimation error dynamics, since it can be easily shown

that

‖e(·, t)‖ ≤ Me e–γt , Me =

√

V (e0(z))
ǫ

. (232)

The substitution of (222) into (231) yields

V̇ (t) + 2γV (t) = 〈∂te(·, t),Pe(·, t)〉 + 〈e(·, t),P∂te(·, t)〉 + 2γ〈e(·, t),Pe(·, t)〉. (233)

Using the self-adjointness of P, (233) becomes

V̇ (t) + 2γV (t) = 2〈e(·, t), P∂te(·, t)〉 + 2γ〈e(·, t),Pe(·, t)〉 (234)

and along the error dynamics (218), it becomes

V̇ (t)+2γV (t) = 2〈e(·, t),PAe(·, t)〉+2〈e(·, t),PGν(z, t)〉+2〈e(·, t),PLD(z)Ce(·, t)〉

+ 2γ〈e(·, t),Pe(·, t)〉. (235)

The next step is the exploitation of (235) to express (231) in terms of LMIs that

can be approached by a semidefinite programming problem (SDP).

5.2 OBSERVER DESIGN – MAIN RESULT

In this section, a LMI formulation of the distributed observation problems is de-

veloped. The local exponential stability of the estimation error system (209)-(212) is

ensured for two cases of in domain distributed measurement: pointwise measurement

and piecewise measurement.

5.2.1 Pointwise measurements at ζj , j = 1, ..., ny

In this case, as shown in Figure 23, we divide the spatial domain [0, 1] into

ny subintervals [z̃j , z̃j+1], j = 1, ..., ny according to the position of the measurement

sensors. From Figure 23, we get that 0 = z̃1 < ... < z̃ny +1 = 1 and

ζj ∈ [z̃j , z̃j+1], for j = 1, ..., ny . (236)
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...

z = 0 z = 1
ζ1 ζ2 ζnyz̃1 z̃2 z̃3 z̃ny z̃ny +1

y1(t) y2(t) yny (t)

Figure 23 – Distributed pointwise measurements.

Theorem 5.1. The error dynamics in (209)-(212) (cj (z), j = 1, ..., ny defined as in (6))

is asymptotically stable with a decay rate γ if there exist

• m ∈ N, ǫ, τ > 0,

• either positive semidefinite matrices Q, R ∈ S
n(m+1) (for the equi-diffusivity and

equi-advectivity case, i.e., D = dInx and V = υInx ) or diagonal matrices Q, R ∈

R
n(m+1) such that the polynomial matrix W : [0, 1] → R

nx×nx satisfy (226),

• polynomials lj : [0, 1] → R
nx , j = 1, ..., ny defining the observer gain according to

LD(z) =
[

1[z̃1,z̃2]l1(z) · · · 1[z̃ny ,z̃ny +1]lny (z)
]

(237)

such that the following matrix inequalities hold:

2D̃(1)M–1
α1

Mβ1
+ ∂zD̃(1) + Ṽ(1) ≥ 0

2D̃(0)M–1
α0

Mβ0
+ ∂zD̃(0) + Ṽ(0) ≤ 0

(238)

Pj (z) – τ

[

M 0nxny

0nxny×(nx+nr ) 0nxny

]

≤ 0, (239)

for j = 1, ..., ny and z ∈ [0, 1] where

Pj (z) =







∂2
zD̃(z) + ∂zṼ (z) – K̃ (z) – π2ǫDmin

2p2
j

Inx + 4γW (z) G̃(z) π2ǫ

2p2
j

Inx + l̃j (z)cT
j

∗ 0nr 0nr×nx

∗ ∗ –π2ǫDmin
2p2

j
Inx








(240)

with

D̃(z) = W (z)D, Ṽ(z) = W (z)V, K̃ (z) = He{W (z)K }, G̃(z) = W (z)G,

l̃j (z) = W (z)lj (z), p2
j = max{(ζj – z̃j )

2, (z̃j+1 – ζj )
2}, j = 1, ..., ny ,

Dmin = min
i=1,...,nx

di .

(241)
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Proof. Consider the linear dissipation expression of the Lyapunov function given in

(235)

V̇ (t) + 2γV (t) = 2〈e(·, t),PAe(·, t)〉 + 2〈e(·, t),PGν(·, t)〉 + 2〈e(·, t),PLD(z)Ce(·, t)〉

+ 2γ〈e(·, t),Pe(·, t)〉.

(242)

Taking the definition of LD(z) in (237), then the substitution of (209) and (223)

into (242) yields

V̇ (t) + 2γV (t) = 2
∫ 1

0
eT (z, t)W (z)

(

D∂2
ze(z, t) – V∂ze(z, t) – (K – γInx )e(z, t)

)

dz

+ 2
∫ 1

0
eT (z, t)W (z)Gν(z, t)dz + 2

ny
∑

j=1

∫ z̃j+1

z̃j

eT (z, t)W (z)lj (z)cT
j e(ζj , t)dz.

(243)

Regarding the definitions of D̃(z), Ṽ(z), K̃ (z), G̃(z) and l̃j (z) in (241), we must

first notice that under the constrain existence definitions of Q and R, D̃, Ṽ : [0, 1] → S
nx .

Then, for the application of integration by parts into (243), we take into consideration

the formulas in (355) and (357) presented in Appendix D, thus (243) becomes

V̇ (t) + 2γV (t) = –eT (1, t)
[

2D̃(1)M–1
α1

Mβ1
+ ∂zD̃(1) + Ṽ(1)

]

e(1, t)

+ eT (0, t)
[

2D̃(0)M–1
α0

Mβ0
+ ∂zD̃(0) + Ṽ(0)

]

e(0, t)

– 2
∫ 1

0
∂zeT (z, t)D̃(z)∂ze(z, t)dz + 2

∫ 1

0
eT (z, t)G̃(z)ν(z, t)dz

+
∫ 1

0
eT (z, t)

[

∂2
zD̃(z) + ∂z Ṽ (z) – K̃ (z) + 2γW (z)

]

e(z, t)dz

+ 2
ny
∑

j=1

∫ z̃j+1

z̃j

eT (z, t )̃lj (z)cT
j e(ζj , t)dz.

(244)

Notice by virtue of Wirtinger’s inequality that the following hold

–
∫ ζj

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

–π2ǫDmin
4(ζj – z̃j )2

∫ ζj

z̃j

(

e(z, t) – e(ζj , t)
)T (

e(z, t) – e(ζj , t)
)

dz

(245)
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and

–
∫ z̃j+1

zj

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

–π2ǫDmin
4(z̃j+1 – zj )2

∫ z̃j+1

zj

(

e(z, t) – e(ζj , t)
)T (

e(z, t) – e(ζj , t)
)

dz.

(246)

where Dmin = mini=1,...,nx
di .

Next, summing up (245) and (246) yields

–
∫ z̃j+1

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

–
π2ǫDmin

4p2
j

∫ z̃j+1

z̃j

eT (z, t)e(z, t)dz +
π2ǫDmin

2p2
j

∫ z̃j+1

z̃j

eT (z, t)e(ζj , t)dz

–
π2ǫDmin

4p2
j

∫ z̃j+1

z̃j

eT (ζj , t)e(ζj , t)dz

(247)

where p2
j = max{(ζj – z̃j )

2, (z̃j+1 – ζj )
2}, j = 1, ..., ny .

Hence, substituting (247) into (244) leads to

V̇ (t) + 2γV (t) ≤

– eT (1, t)
[

2D̃(1)M–1
α1

Mβ1
+ ∂zD̃(1) + Ṽ(1)

]

e(1, t)

+ eT (0, t)
[

2D̃(0)M–1
α0

Mβ0
+ ∂zD̃(0) + Ṽ(0)

]

e(0, t)

+
ny
∑

j=1

∫ z̃j+1

z̃j

eT (z, t)

[

∂zzD̃(z) + ∂z Ṽ (z) – K̃ (z) –
π2ǫDmin

2p2
j

Inx + 2γW (z)

]

e(z, t)dz

+ 2
ny
∑

j=1

∫ z̃j+1

z̃j

eT (z, t)G̃(z)ν(z, t)dz –
ny
∑

j=1

π2ǫDmin

2p2
j

∫ z̃j+1

z̃j

eT (ζj , t)e(ζj , t)dz

+
ny
∑

j=1

π2ǫDmin

p2
j

∫ z̃j+1

z̃j

eT (z, t)e(ζj , t)dz

+ 2
ny∑

j=1

∫ z̃j+1

z̃j

eT (z, t )̃lj (z)cT
j e(ζj , t)dz.

(248)
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We can rewrite (248) as

V̇ (t) + 2γV (t) ≤ –eT (1, t)
[

2D̃(1)M–1
α1

Mβ1
+ ∂zD̃(1) + Ṽ(1)

]

e(1, t)

+ eT (0, t)
[

2D̃(0)M–1
α0

Mβ0
+ ∂zD̃(0) + Ṽ(0)

]

e(0, t)

+
ny∑

j=1

∫ z̃j+1

z̃j

e T (z, t)Pj (z) e (z, t)dz

(249)

where ej (z, t) = [e(z, t) ν(z, t) e(ζj , t)]T . Therefore, in order to ensure the negativity of

the right side of (249), it suffices that

2D̃(1)M–1
α1

Mβ1
+ ∂zD̃(1) + Ṽ(1) ≥ 0

2D̃(0)M–1
α0

Mβ0
+ ∂zD̃(0) + Ṽ(0) ≤ 0

(250)

and

Pj (z) ≤ 0, j = 1, ..., ny . (251)

Applying the S-procedure to (251) and (88), we obtain

Pj (z) – τ

[

M 0

0 0

]

≤ 0, j = 1, ..., ny . (252)

Then, (250) and (252) imply that

V (t) ≤ e–2γtV (0) (253)

and from Section 5.1.3.1, it follows that

‖e(z, t)‖ ≤ Mee–γt‖e0(z)‖. (254)

5.2.2 Piecewise measurements on [ζj – εj , ζj + εj ], j = 1, ..., ny

In this case, as shown in Figure 24, we divide the spatial domain [0, 1] into

ny subintervals [z̃j , z̃j+1], j = 1, ..., ny according to the position of the measurement

sensors. From Figure 24, we get that 0 = z̃1 < ... < z̃ny +1 = 1 and

[ζj – εj , ζj + εj ] ⊂ [zj , zj+1], for j = 1, ..., ny . (255)
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...

z = 0 z = 1
ζ1 ζ2 ζnyz̃1 z̃2 z̃3 z̃ny z̃ny +1

y1(t) y2(t) yny (t)

Figure 24 – Distributed piecewise measurements.

Theorem 5.2. The error dynamics in (209)-(212) (cj (z), j = 1, ..., ny defined as (7)) is

asymptotically stable with a decay rate γ if conditions in Theorem 5.1 are satisfied and

whenever pj , j = 1, ..., ny is redefined as

p2
j = max{(ζj + εj – z̃j )

2, (z̃j+1 – ζj + εj )
2}, j = 1, ..., ny . (256)

Proof. We proceed in the same way as in the proof of Theorem 5.1, the linear dis-

sipation expression of the Lyapunov function given in (235) along (209) is expressed

as

V̇ (t) + 2γV (t) = 2
∫ 1

0
eT (z, t)W (z)

(

D∂2
ze(z, t) – V∂ze(z, t) – (K – γInx )e(z, t)

)

dz

+ 2
∫ 1

0
eT (z, t)W (z)Gν(z, t)dz

+ 2
ny∑

j=1

∫ z̃j+1

z̃j

eT (z, t)W (z)lj (z)cT
j

(

1
2εj

∫ ζj+εj

ζj–εj

e(z, t)dz

)

dz.

(257)

Applying the first mean value theorem for integration, for each j = 1, ..., ny and

any t ≥ 0, there exists a scalar ζ̄t
j ∈ [ζj – ǫj , ζj + ǫj ] such that

1
2ǫj

∫ ζj+εj

ζj–εj

e(z, t)dz = e(ζ̄t
j , t) (258)

Regarding the definitions of D̃(z), Ṽ(z), K̃ (z), G̃(z) and l̃j (z) in (241) and applying

the integration by parts into (257), we obtain (244) where e(ζj , t) is now substituted by

e(ζ̃t
j , t). By the application of Wirtinger’s inequality lemma, the following hold

–
∫ ζ̃t

j

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

–π2ǫDmin

4(ζ̃t
j – z̃j )2

∫ ζ̃t
j

z̃j

(

e(z, t) – e(ζ̃t
j , t)
)T (

e(z, t) – e(ζ̃t
j , t)
)

dz

(259)
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and

–
∫ z̃j+1

ζ̃t
j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

–π2ǫDmin

4(z̃j+1 – ζ̃t
j )

2

∫ z̃j+1

ζ̃t
j

(

e(z, t) – e(ζ̃t
j , t)
)T (

e(z, t) – e(ζ̃t
j , t)
)

dz.

(260)

where Dmin = mini=1,...,nx
di .

As ζ̃t
j ∈ [ζj – εj , ζj + εj ] ⊂ [zj , zj+1], j = 1, ..., ny and t ≥ 0, we get

ζ̃t
j – z̃j ≤ ζj + εj – z̃j and z̃j+1 – ζ̃t

j ≤ z̃j+1 – ζj + εj (261)

Next, summing up (259) and (260) yields

–
∫ z̃j+1

z̃j

∂zeT (z, t)D̃(z)∂ze(z, t)dz ≤

–
π2ǫDmin

4p2
j

∫ z̃j+1

z̃j

eT (z, t)e(z, t)dz +
π2ǫDmin

2p2
j

∫ z̃j+1

z̃j

eT (z, t)e(ζ̃t
j , t)dz

–
π2ǫDmin

4p2
j

∫ z̃j+1

z̃j

eT (ζ̃t
j , t)e(ζ̃t

j , t)dz

(262)

where p2
j = max{(ζj + εj – z̃j )

2, (z̃j+1 – ζj + εj )
2}, j = 1, ..., ny .

Hence, taking (262) into consideration, (248)-(249) is true ( regarding the substi-

tution of e(ζj , t) by e(ζ̃t
j , t) ). Finally (250) and (252) ensures that

‖e(z, t)‖2 < Mee–γt‖e0(z)‖. (263)

5.3 GLUCONIC ACID PRODUCTION

In order to illustrate the methodology developed in previous sections, we con-

sider a tubular reactor for gluconic acid production whose biological features has been

largely studied in (MIRÓN et al., 2002).

The process takes place in a tubular reactor fed with glucose and oxygen. The

consumption of glucose (G) by the microorganisms (X) to produce gluconic acid (GA)

motivates the following simplified mechanism

G + X → X

G +
1
2

O2 → GA.
(264)
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The evolution of the concentration spatial profiles are described by the dynamic

PDE model

∂t [X ](z, t) = d∂2
z [X ](z, t) – υ[X ](z, t) + rX ([X ](z, t), [G](z, t))

∂t [GA](z, t) = d∂2
z [GA](z, t) – υ[GA](z, t) + rGA([GA](z, t), [G](z, t))

∂t [G](z, t) = d∂2
z [G](z, t) – υ[G](z, t) – rX ([X ](z, t), [G](z, t)) – rGA([GA](z, t), [G](z, t))

∂t [O2](z, t) = d∂2
z [O2](z, t) – υ[O2](z, t) + kla([O∗

2] – [O2]) – 0.5rGA([GA](z, t), [G](z, t))

(265)

for (z, t) ∈ (0, 1) × (0,∞) and subject to

d∂z [X ](0, t) = υ([X ](0, t) – [X ]in(t))

d∂z [GA](0, t) = υ([GA](0, t) – [GA]in(t))

d∂z [G](0, t) = υ([G](0, t) – [G]in(t))

d∂z [O2](0, t) = υ([O2](0, t) – [O2]in(t))

∂z [X ](1, t) = 0

∂z [GA](1, t) = 0

∂z [G](1, t) = 0

∂z [O2](1, t) = 0

(266)

where the biomass and gluconic acid reaction rates correspond with

rX ([X ](z, t), [G](z, t)) = µX [X ](z, t)
kX

1 – [X ](z, t)

kX
1

, µX =
µX

max [G](z, t)

kX
2 + [G](z, t)

(267)

rGA([GA](z, t), [G](z, t)) = µGA[GA](z, t)
kGA

1 – [GA](z, t)

kGA
1

, µGA =
µGA

max [G](z, t)

kGA
2 + [G](z, t)

(268)

The system parameters definition and its respective numerical values are listed

in Table 3.

The system modeled by (265)-(266) take the form of (1)-(2) by considering
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Table 3 – Parameter values

.

Parameter Value Definition

d 0.01 m2h-1 Mass dispersion coefficient
υ 0.01 mh-1 Flow velocity
kla 600 h-1 Mass exchange parameter
O∗

2 7.5e-3g l-1 Saturation of dissolved oxygen
[G]in 115 gl-1 Glucose stream
[O2]in 7.5e-3 gl-1 Dissolved oxygen stream
µX

max 0.219 h-1 Constant
kX

1 2.53 gl-1 Constant
kX

2 5 gl-1 Constant
µGA

max 0.312 h-1 Constant
kGA

1 109 gl-1 Constant
kGA

2 6 gl-1 Constant

x(z, t) =
[

[X ](z, t) [GA](z, t) [G](z, t) [O2](z, t)
]T

,

ud =
[

0 0 0 [O2]∗
]T

,

u0(t) =
[

0 0 [G]in [O2]in
]T

, u1(t) = 0,

D = d I, V = υI, K = diag(0, –kla),

B = diag(0, kla), G =









1 0

0 1

–1 –1

0 –0.5









,

Mα0 = d I, Mβ0
= –υ I, Mα1 = I, Mβ1

= 0.

(269)

and rate function defined as

r (x) =

[

rX ([X ], [G])

rGA ([GA], [G])

]

(270)

and hence its Jacobian matrix is given by

∇x r (x) =

[

∂[X ]rX 0 ∂[G]rX 0

0 ∂[GA]rGA ∂[G]rGA 0

]

(271)
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with

∂[X ]rX =
µX

max [G] (kX
1 – [X ])

kX
1 (kX

2 + [G])
–
µX

max [X ] [G]

kX
1 (kX

2 + [G])

∂[G]rX =
µX

max [X ] (kX
1 – [X ])

kX
1 (kX

2 + [G])
–
µX

max [X ] [G] (kX
1 – [X ])

kX
1 (kX

2 + [G])2

∂[GA]rGA =
µX

max [G] (kGA
1 – [GA])

kGA
1 (kGA

2 + [G])
–

muGA
max [GA][G]

kGA
1 (kGA

2 + [G])

∂[G]rGA =
µGA

max [GA] (kGA
1 – [GA])

kGA
1 (kGA

2 + [G])
–
µGA

max [GA][G](kGA
1 – [GA])

kGA
1 (kGA

2 + [G])2

(272)

Considering the domain of operation of the state variables

D = {([X ], [GA], [G], [O2]) : 0 ≤ [X ] ≤ 3, 0 ≤ [GA] ≤ 120, 0 ≤ [G] ≤ 60,

0 ≤ [O2] ≤ 0.0075}

we obtain that

–3.813 < ∂[X ]rX ≤ 0 – 59.7 < ∂[G]rX ≤ 0

–0.340 < ∂[GA]rGA ≤ 0.2836 – 0.63 < ∂[G]rGA ≤ 1.417.
(273)

Then one choice for the local lower and upper bound matrices of the Jacobian

matrix are respectively

Γ1 =

[

–3.813 0 –59.7 0

0 –0.340 –0.63 0

]

Γ2 =

[

0 0 0 0

0 0.2836 1.417 0

]

. (274)

It is also assumed that the measured output is given by four piecewise measure-

ments of the Glucose and Oxygen concentrations

y (t) =









∫ ζ1+ε1
ζ1–ε1

[G](z, t)dz
∫ ζ2+ε2
ζ2–ε2

[G](z, t)dz
∫ ζ3+ε3
ζ3–ε3

[O2](z, t)dz
∫ ζ4+ε4
ζ4–ε4

[O2](z, t)dz









(275)

which sets ǫj = 0.01, j = 1, ..., 4, c
T
1 = c

T
2 = [0 0 1 0], c

T
3 = c

T
4 = [0 0 0 1] and

ζ1 = 0.3, ζ2 = 0.7, ζ3 = 0.5, ζ4 = 0.8 in (5) and (7).

Thus, the output injection gain LD(z) is calculated by solving the LMIs conditions

in Theorem 5.2 and considering z̃1 = 0, z̃2 = 0.45, z̃3 = 0 and decay rate γ = 5.25

yielding
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5.3.1 Observer tests

The observer and system responses are generated via numerical simulation

with initial profiles that were generated as positive polynomials satisfying the boundary

conditions, upper bounds selected by the physical conditioning of the process and

matching the initial measurements. Figures 25, 26, 27 and 28 show the evolution of

the actual profiles (in red lines) with their respective estimated profiles (in blue lines)

considering the proposed observer in four different time instants.

z = ξ

l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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](
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,t
)
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t1
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t3
t4

Figure 25 – Time evolution of the spatial profile of [X ](z, t) and ˆ[X ](z, t) at time instants
t1 = 0, t2 = 4, t3 = 10, t4 = 20.
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Figure 26 – Time evolution of the spatial profile of [GA](z, t) and ˆ[GA](z, t) at time in-
stants t1 = 0, t2 = 4, t3 = 10, t4 = 20.
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Figure 27 – Time evolution of the spatial profile of [G](z, t) and ˆ[G](z, t) at time instants
t1 = 0, t2 = 4, t3 = 10, t4 = 20.
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Figure 28 – Time evolution of the spatial profiles of [O2](z, t) and ˆ[O2](z, t) at time in-
stants t1 = 0, t2 = 4, t3 = 10, t4 = 20.

Figure 29 shows the evolution of the estimation error norm. Since the initial

estimation profiles are already a good approximation of the actual variables states,

the estimation error norm converges quickly, and hence, provides very satisfactory

estimates.
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Figure 29 – Time evolution of the estimation error norm ‖e(z, t)‖.
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5.4 CONCLUDING REMARKS

In this chapter, we proposed a late lumping approach to the observer design of

transport-reaction systems described by a set of coupled semilinear parabolic PDEs.

In particular, the Lyapunov method has been applied to derive a set of LMI based con-

ditions for designing a nonlinear Luenberger observer in which the observer error dy-

namics can be modeled as a Lure type system with multivariable sector conditions from

the bound Jacobian matrices. The proposed methodology sets a non-conservative ap-

proach through a polynomial parametrization of the decision variables and is verified

by means of the wide-range of feasibility of the set of LMIs. Polynomial parametrization

of the Lyapunov functional and the observer gain is not constraining since, according

to Weierstrass approximation theorem, any continuous function on a bounded interval

can be approximated by a polynomial. The drawback is that the degree of the corre-

sponding approximating polynomials may not be known a priori.

The methodology presented here employed the integration by parts as a cru-

cial step on the stability analysis of PDEs as well as local checks, which is provided

by embedding results on bounded domains as the Wirtinger’s inequality and the S-

procedure for local stability analysis based on sector condition are also important to

derive less conservative LMIs. Our scope was to make these steps computationally

tractable by formulating a semidefinite programming problem (SDP). It is clear that the

results presented in sections (5.2.1) and (5.2.2) can also be directly extended to opti-

mization problems with constraints in a convex optimization framework as for instance

the H∞-optimal observer synthesis.
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6 MONITORING OF COVID-19 SPREAD

Lately, the study of social networks and the epidemiological analysis of diseases

have attracted considerable attention, and extensive research has been carried out in

these areas due to their prominent role in human life (SANATKAR et al., 2015). Social

networks provide practical methodologies to simulate diseases epidemic by developing

mathematical models to predict and monitor critical features of outbreaks (including the

size and variation of its response).

The 2019 novel coronavirus, termed as COVID-19 or SARSCoV-2 by the World

Health Organization (WHO), affects the respiratory system similar to the influenza virus,

with some common symptoms such as cough, fever, exhaustion, and breathlessness.

The rapid spread of COVID-19 all over the world has become a matter of grave con-

cern and has hugely altered the lifestyle and social behavior of humans from the be-

ginning of 2020. Indeed, it poses considerable economic, environmental, and political

challenges for the entire human population. Consequently, considerable research ef-

fort has been made to investigate precise mathematical models for the outbreak of this

newborn virus and rapid estimation of its future transmission and mortality rates.

In this chapter, employing a new generalized epidemiological SEIR model of

COVID-19 spread (MAMMERI, 2020), a model based state estimator design is devel-

oped for the COVID-19 epidemic spread in a host population. The presence of mod-

eling uncertainties and incomplete measurement feedback is tackled through the Lya-

punov based approach in order to identify susceptible, exposed and infected popula-

tions since it represents a serious measurement limitation on these groups in the real

situation. In this framework, the global numbers of symptomatic and deceased people

with bounded inaccuracies in statistical data are taken into account as the only avail-

able feedback signals. The appropriate choice of the observer gains resulting from a

SDP problem solution let us to estimate the other compartmental variables. Numerical

experiments are presented to illustrate the method efficiency.

6.1 COVID-19 OUTBREAK

In late 2019, a disease outbreak emerged in a city of Wuhan, China. The culprit

was a certain strain called Coronavirus Disease 2019 or COVID-19 in brief. This virus

has been identified to cause fever, cough, hortness of breath, muscle ache, confusion,

headache, sore throat, rhinorrhoea, chest pain, diarrhea, and nausea and vomiting

(CHEN, N. et al., 2020). COVID-19 belongs to the Coronaviridae family. A family of

coronaviruses that cause diseases in humans and animals, ranging from the common

cold to more severe diseases. Although only seven coronaviruses are known to cause

disease in humans, three of these, COVID-19 included, can cause a much severe

infection, and sometimes fatal to humans. The other two to complete the list were the
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severe acute respiratory syndrome (SARS) identified in 2002 in China, and the Middle

East respiratory syndrome (MERS) originated decade after in Saudi Arabia.

Like MERS and SARS, COVID-19 is a zoonotic virus and believed to be orig-

inated from bats transmitted to humans (ZHOU, P. et al., 2020). In comparison with

SARS, MERS, the COVID-19 appears to be less deadly. However, the World Health Or-

ganization (WHO) reported that it has already infected and killed more people than its

predecessors combined. Also, COVID-19 spreads much faster than SARS and MERS.

It only took over a month before it surpassed the number of cases recorded by the

SARS outbreak in 2012. According to WHO, it only took 67 days from the beginning of

the outbreak in China last December 2019 for the virus to infect the first 100000 people

worldwide. As of the 25th of March 2020, a cumulative total of 372757 confirmed cases,

while 16231 deaths have been recorded for COVID-19 by World Health Organization.

For the time being and in spite of the massive vaccination, COVID-19 infection is

still on the rise in many countries. Governments struggle to accelerate the vaccination

campaigns to combat the disease whereas research institutions try to find out the ef-

fectiveness of the vaccines regarding the new variants of the virus circulating in many

countries.

Several mathematical models have been proposed from various epidemiolog-

ical groups. These models help governments as an early warning device about the

size of the outbreak, how quickly it will spread, and how effective control measures

may be. However, due to the limited emerging understanding of the new virus and its

transmission mechanisms, the results are largely inconsistent across studies.

6.2 SPATIOTEMPORAL MODEL OF COVID-19 INFECTION SPREAD

We consider the mathematical model based on the SIR model (ARCEDE et al.,

2020) and developed in (MAMMERI, 2020) where it is assumed that a host population

of individuals is divided into compartments corresponding to disease status, modeling

the movement in space and time of the subpopulation in each compartment. Specif-

ically, these compartments are the densities of Susceptible population (S), Exposed

population (E), Symptomatic Infected population (Is), Asymptomatic Infected popula-

tion (Ia), Under treatment population (U) and Removed population (R) and the de-

ceased population De. Note that De refers only to deaths due to COVID-19. We de-

note the living host population as N = S + E + Ia + Is + U + R. Due to the names

of the compartments used, this model may be called a susceptible-exposed-infected-

recovered (SEIR) model. We therefore formulate the problem in terms of the state vec-

tor x = [S, E , Ia, Is, U, R]T containing the different compartments. This model assumes

that

• the spatial mobility is governed by diffusion coefficients according to the mobility
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restriccions of the host population;

• only susceptible, exposed and asymptomatic individuals are moving;

• there is a latency period between exposure and the development of symptoms;

• the probability of contagion increases with population size.

Description of the infection flow

Susceptible class contains individuals who do not have the temporary immunity

to the virus, then might become infected if exposed. Exposed class contains individuals

who have been infected but do not have symptoms. The period that starts when the per-

son becomes infected, until the person becomes symptomatic or asymptomatic is the

latent period 1
δl

= 5 days. Under treatment class contains individuals who are currently

infected and can not transmit the infection because of adequate isolation. Recovered

class contains individuals who returned to a normal state of health after having been

infected during the latent period 1
γr

= 7 days. The number of deaths depends only on

the death rate as the number of recovered depends only on the recovery rate. Finally,

the cumulative number of infected depends only on the exposed and the incubation pe-

riod. The diffusion parameters are included in the model to spread the disease spatially.

Figure 30 depicts the infection flow according to the explanation above.

S E

Is

U

Ia

R
ωβeE S

N

ωβsIs S
N

ωβaIa S
N ,

psδlE

(1 – ps)δlE

µd Is

νt Is

µdU

γr Is

γr U

γr Ia

Figure 30 – Compartmental representation of the SEIaIsUR-model.

The dynamics is governed by a system of three partial differential equations

(PDE) and three ordinary differential equations (ODE) as follows
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∂tS(z, t) = d(t)∆zS(z, t) – w(t) (βeE(z, t) + βsIs(z, t) + βaIa(z, t))
S
N

(z, t)

∂tE(z, t) = d(t)∆zE(z, t) + w(t) (βeE(z, t) + βsIs(z, t) + βaIa(z, t))
S
N

(z, t) – δlE(z, t)

∂t Ia(z, t) = d(t)∆z Ia(z, t) + (1 – ps)δlE(z, t) – γr Ia(z, t)

∂t Is(z, t) = psδlE(z, t) – (γr + µd + νt ) Is(z, t)

∂tU(z, t) = νt Is(z, t) – (γr + µd ) U(z, t)

∂tR(z, t) = γr (Ia(z, t) + Is(z, t) + U(z, t))

(276)

for (z, t) ∈ Ω ⊂ R
2 × (0,∞) as spatial and time domains, respectively, where ∆z is the

Laplacian operator defined as

∆z (·) =
2∑

i=1

∂2
zi

(·).

In this chapter, we address our analysis in a rectangular spatial domain defined

by Ω = (0, l1) × (0, l2) ⊂ R
2. The total living population is N = S + E + Ia + Is + U + R

and the deaths are De = µd (Is + U). No new recruit is added and If we assume that

the region of interest is isolated, we prescribe the following homogeneous Neumann

boundary conditions,

∇zS · n

∣
∣
∣
∣
∂Ω

= 0 ∇zE · n

∣
∣
∣
∣
∂Ω

= 0

∇z Ia · n

∣
∣
∣
∣
∂Ω

= 0 ∇z Is · n

∣
∣
∣
∣
∂Ω

= 0

∇zU · n

∣
∣
∣
∣
∂Ω

= 0 ∇zR · n

∣
∣
∣
∣
∂Ω

= 0

(277)

where n is the outward normal vector to ∂Ω and ∇z is the Gradient vector operator.

This selection of boundary conditions represents the situation where the spatial region

under consideration is closed to any in- or out- flow of populations, so that the epidemic

spread is only due to local infections, which was the case during lock-down conditions

in the first and second wave of the pandemic. If the population is traveling in or out

of the considered spatial region, then the boundary conditions need to be formulated

in another way using more general boundary conditions or mixed boundary conditions.

However the computational procedure proposed in the following is not suited to these

conditions, and the approach should be revisited. Specifically, when other kinds of

boundary conditions are considered, the additional terms in the integration by parts

procedure within the Lyapunov analysis may yield terms that cannot be expressed in

an affine way and hence could not be approached using SDP tools directly.
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The system parameters definition are listed in Table 4.

Table 4 – Parameter definition.

Parameter Definition
wβe Transmission rate from S to E from contact with E
wβs Transmission rate from S to E from contact with Is
wβa Transmission rate from S to E from contact with Ia
δl Latency rate
ps Probability of being symptomatic
1 – ps Probability of being asymptomatic
γr Recovery rates
µd Death rate
νt Under treatment rate

Latency period and infection period have been estimated as 5 days and 7 days

respectively (LAUER et al., 2020), and thus δl = 1
5 , γr = 1

7 . To account for the lockdown

and unlockdown, the average number of contacts is updated as follows (LIU, Z. et al.,

2020)

w(t) =







w0, t ≤ tbol

w0e–ρ(t–tbol ), tbol ≤ t ≤ teol
(1–η)w0

1+((1–η)e–ρ(teol –tbol )–1)e–2ρ(t–teol )
, t ≥ teol

(278)

while the diffusion coefficient is set up to

d(t) =







d0, t ≤ tbol

d0e–ρ(t–tbol ), tbol ≤ t ≤ teol
d0

1+(eρ(teol –tbol )–1)e–2ρ(t–teol )
, t ≥ teol

(279)

Here bol denotes beginning of lockdown and eol end of lockdown. Unlockdown

is assumed to be faster than lockdown. The parameter 0 ≤ η ≤ 1 is a varying coeffi-

cient translating respect for distancing. The value of d0 is fixed according to the average

daily commute related to the host population. Six parameters θ = (ρ,βe,βs,βa, ps,µd )

remain to be determined. Given, for N days, the observations Is(ti ) and De(ti ), the cost

function consists of the nonlinear least square function

J(θ) =
N∑

i=1

(Is,ob(ti ) – Is(ti ,θ))2 + (De,obs(ti ) – De(ti ,θ))2, (280)

with constraints θ ≥ 0. Here

Is(ti ,θ) =
∫

Ω
Is(z, ti ,θ)dΩ (281)
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and

De(ti ,θ) =
∫

Ω
De(z, ti ,θ)dΩ (282)

denote the output of the mathematical model at time ti computed with the parameters

θ. The optimization problem may be solved using Approximate Bayesian Computation

combined with a quasi-Newton method (MAMMERI, 2020).

6.2.1 Basic reproduction numbers

The basic viral reproduction number R0 of the infection is the expected num-

ber of cases directly generated by one case in a population where all individuals are

susceptible to infection. The most important uses of R0 are determining if an emerg-

ing infectious disease can spread in a population and determining what proportion of

the population should be immunized through vaccination to eradicate a disease. In

(MAMMERI, 2020), a condition on parameters which defines the basic reproduction

number related to the model described by (276)-(277) such that the disease has an

exponential initial growth is given.

Theorem 6.1. Let
(
S0, E0, Ia,0, Is,0, 0, 0

)
be a nonnegative initial datum. If the basic

reproduction number

R0 = w0

(
βe

σ
+

(1 – p)βa

γr
+

pβs

γr + µd + νt

)
S0
N0

> 1, (283)

then (E , Ia, Is) exponentially grows

The term βe
σl

represents the transmission rate by exposed during the average

latency period 1
σl

. The term (1–p)βa
γr

is the transmission rate by asymptomatic during

the average infection period 1
γr

, and the last one is the part of symptomatic.

Proof. See (MAMMERI, 2020) for details.

To reflect the spatio-temporal dynamics of the disease, we consider the effective

reproduction number

Reff (z, t) = w(t)
(
βe

σ
+

(1 – p)βa

γr
+

pβs

γr + µd + νt

)
S(z, t)
N(z, t)

, (284)

and its mean with respect to the domain Ω

Reff (t) =
1

A(Ωz )

∫

Ω
Reff (z, t)dΩ. (285)

Property 6.1. The density population of any host population, at any time t, would re-

main constant based on the epidemiological dynamics (8):

S(z, t) + E(z, t) + Ia(z, t) + Is(z, t) + U(z, t) + R(z, t) = N(z, t). (286)
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Also, it is worth mentioning that all compartmental variables have positive values

(populations). Thus, it can be concluded that all of these variables remain bounded

during the outbreak management time due to the boundedness of the total density

population N(z, t).

6.3 STATE OBSERVER DESIGN

In this section, we describe the corresponding developments to estimate the

compartmental states of the COVID-19 spread dynamics described by (276)-(277). The

reason why a state estimation is required is two-fold: (a) it is impossible to accurately

measure the numbers of susceptible, exposed, and infected people; and (b) other state

measurements are typically noisy, so it might not be convenient to use them in real-

time control design as that proposed in (RAJAEI et al., 2021). In order to simplify the

mathematical analysis arising from the choice of a Lyapunov weighted functional, we

address the state estimation problem in a rectangular spatial domain defined by Ω =

(0, l1) × (0, l2) ⊂ R
2.

6.3.1 Instrumental tools

It is also assumed that the measured output is given by the total symptomatic

and death individuals which corresponds to the data usually provided by health author-

ities. Thus, we consider

y (t) =

[

Is(t)

De(t)

]

=

[ ∫

Ω Is(z, t)dΩ
∫

ΩDe(z, t)dΩ

]

. (287)

Then, (276)-(277) take the form of

∂tx(z, t) = D(t)∆zx(z, t) – Kx(z, t) + G r (x(z, t)) (288)

∇zx(z, t) · n

∣
∣
∣
∣
∂Ω

= 0. (289)

by considering
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x(z, t) =
[

S(z, t) E(z, t) Ia(z, t) Is(z, t) U(z, t) R(z, t)
]T

D(t) = diag(d(t), d(t), d(t), 0, 0, 0)

K =














0 0 0 0 0 0

0 δl 0 0 0 0

0 –(1 – ps)δl γr 0 0 0

0 –psδl 0 (γr + µd + νt ) 0 0

0 0 0 –νt γr + µd 0

0 0 –γr –γr –γr 0














G =
[

–1 1 0 0 0 0
]T

(290)

and

r (x(z, t)) = (wβeE(z, t) + wβsIs(z, t) + wβaIa(z, t))
S
N

(z, t) (291)

with output measurement

y (t) =
∫

Ω
Cm x(z, t)dΩ ∈ R

2 (292)

where

Cm =

[

0 0 0 1 0 0

0 0 0 µd µd 0

]

. (293)

since De = µd (Is + U).

6.3.2 Nonlinear Luenberger-type state observer

Defining the Luenberger-type state observer for

∂t x̂(z, t) = D(t)∆z x̂(z, t) – K x̂(z, t) + G r
(
x̂(z, t)

)
+ LD(z)

(
ŷ (t) – y (t)

)
(294)

for (z, t) ∈ Ω× (0,∞), subject to

∇zx · n

∣
∣
∣
∣
∂Ω

= 0 (295)

and the initial condition

x̂0(z) = x̂(z, 0) (296)

for z ∈ Ω. Here the gain LD(z) : Ω→ R
nx×ny is the output injection gain to be designed.

The dynamics of the state estimation error e(z, t) = x(z, t) – x̂(z, t), satisfies
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∂te(z, t) = D(t)∆ze(z, t) – Ke(z, t) + G
[
r (x(z, t)) – r

(
x̂(z, t)

)]
+ LD(z)

(
ŷ (t) – y (t)

)

(297)

subject to

∇ze · n

∣
∣
∣
∣
∂Ω

= 0 (298)

and the initial condition

e0(z) = e(z, 0). (299)

Similarly to the approach in Chapter 5, the function denoted as ν(z, t) = r (x(z, t))–

r (x̂(z, t)) and the estimation error e(z, t) satisfy a sector condition based on the bound-

edness of the Jacobian matrix of the nonlinear function r (·). Then, the Differential Mean

Value Theorem gives

ν(z, t) = r (x(z, t)) – r (x̂(z, t))

= ∇x r
(
x̆(z, t)

)
e(z, t)

(300)

where x̆(z, t) ∈ Co(x(z, t), x̂(z, t)) for all (z, t) = Ω × (0,∞). Let Γ1, Γ2 ∈ R
1×6 be the

constant matrices whose entries are the local lower and upper bounds, respectively, of

the Jacobian matrix entries of r (·) and hence the following inequality holds

Γ1 e(z, t) ≤ ν(z, t) ≤ Γ2 e(z, t), (301)

which implies the following

〈[

e(z, t)

ν(z, t)

]

,

[
ΓT

1 Γ2+ΓT
2 Γ1

2 –Γ
T
1 +ΓT

2
2

–Γ1+Γ2
2 I

]

︸ ︷︷ ︸

M

[

e(z, t)

ν(z, t)

]〉

≤ 0 (302)

From the definition of the rate function in (291), its jacobian is given by

∇x r (x) =

















wβe
E
N + wβs

Is
N + wβa

Ia
N – S

N

(

wβe
E
N + wβs

Is
N + wβa

Ia
N

)

wβe
S
N – S

N

(

wβe
E
N + wβs

Is
N + wβa

Ia
N

)

wβa
S
N – S

N

(

wβe
E
N + wβs

Is
N + wβa

Ia
N

)

wβs
S
N – S

N

(

wβe
E
N + wβs

Is
N + wβa

Ia
N

)

– S
N

(

wβe
E
N + wβs

Is
N + wβa

Ia
N

)

– S
N

(

wβe
E
N + wβs

Is
N + wβa

Ia
N

)

















T

. (303)
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From Property 6.1, E
N , Is

N , Ia
N and S

N ∈ [0, 1], hence one choice for Γ1, Γ2 may be

defined as

Γ1 =














0

–wmaxβs – wmaxβa

–wmaxβe – wmaxβs

–wmaxβe – wmaxβa

–wmaxβe – wmaxβs – wmaxβa

–wmaxβe – wmaxβs – wmaxβa














T

, Γ2 =














wmaxβe + wmaxβs + wmaxβa

wmaxβe

wmaxβa

wmaxβs

0

0














T

(304)

with wmax = maxt∈R+ w(t).

6.3.3 Abstract formulation

The error dynamics described by (297)-(298) can be rewritten as an abstract

first order ordinary differential equation in the Hilbert space H = L
6
2(Ω) according to

∂te(z, t) = (A + LD(z)C)e(z, t) + Gν(z, t), e(z, 0) = e0(z) ∈ H (305)

where the operators A : D(A) → H, C : D(C) → R
2 are defined as

Ae(z, t) = D(t)∆e(z, t) – Ke(z, t)

D(A) =
{

e(z, t) ∈ H : e(z, t), ∂z1e(z, t), ∂z2e(z, t)

are absolutely continuous, ∆e(z, t) ∈ H

and ∇e(z, t) · n|∂Ω = 0} (306)

Ce(z, t) =

[

〈1Ω(·), cT
1 e(·, t)〉

〈1Ω(·), cT
2 e(·, t)〉

]

. (307)

6.3.4 Lyapunov convergence analysis

The state observer design problem is addressed within a weighted Lyapunov

framework, with the weight function as a degree of freedom in a similar fashion to

that presented in Chapter 5. The analysis of the corresponding dissipation mechanism

leads to a LMI convergence condition, which depends on the spatial coordinates, the

observer gains, and the Lyapunov weight function. To this end, let us set the positive-

definite weighted candidate Lyapunov functional V : L6
2(Ω) → R as

V (t) = 〈e(·, t),Pe(·, t)〉 (308)
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where P : L
6
2(Ω) → L

6
2(Ω) is a strictly positive operator defined by the polynomial

matrix W (z) as

(Pe)(z) = W (z)e(z). (309)

for all z ∈ Ω. The following Lemma shows how two positive semi-definite matrices

Q, R > 0 and some constant ǫ > 0 can be used to define the polynomial matrix

W (z) such that the operator P is positive and therefore the functional V is a Lyapunov

candidate for the observation error dynamics (305).

Lemma 6.1. Given any positive semi-definite matrices Q, R1, R2 ∈ S
3(m+1)(m+2), and

Z (z) = Zm(z1, z2) ⊗ I6 (310)

where z ∈ Ω = (0, l1) × (0, l2) ⊂ R
2, Zm(z) is a vector of monomials with degree m or

less and ⊗ is the Kronecker product. Let for all z ∈ Ω

g1(z1) = z1(l1 – z1), g2(z2)(l2 – z2). (311)

If for some ǫ > 0

W (z) = Z (z)T (Q + g1(z1)R1 + g2(z2)R2)Z (z) + ǫIn, (312)

then the functional V : L6
2(Ω) → R, defined as

V (e(·, t)) = 〈e(·, t),Pe(·, t)〉 =
∫

Ω
e(z, t)T W (z)e(z, t)dΩ, (313)

is a strictly positive functional over L6
2(Ω), whenever e(·, t) 6= 0, and satisfies

V (e(·, t)) = 〈e(·, t),Pe(·, t)〉 ≥ ǫ‖e(·, t)‖2, ∀e(·, t) ∈ L
6
2(Ω). (314)

Theorem 6.2. The error dynamics in (305) is (locally) exponentially stable with decay

rate γ if there exist

• m, q ∈ N, and real positive scalars ǫ, τ,

• block diagonal positive semidefinite matrices Q = diag(Q1, Q2), R1 =

diag(R11, R12), R2 = diag(R21, R22) with Q1, Q2, R11, R12, R2,1, R2,2 ∈

S
3
2 (m+1)(m+2) such that the polynomial matrix W (z) : Ω→ R

6×6 satisfy (312),

• the polynomial matrix LD(z) : Ω→ R
6×3

and the following matrix inequality is feasible:

P(z, t) – τ

[

M 0

0 0

]

< 0 (315)
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∀z ∈ Ω and t ∈ R
+ where

P(z, t) =






P11(z, t) P12(z) P13(z)

∗ P22(z) P23(z)

∗ ∗ P33(z)




 (316)

with

P11(z, t) = –∆W (z)D(t) – W (z)K – K T W (z) + 2γW (z)

P12(z) = W (z)G

P13(z) = l1l2
(

L̃D(z)Cm + CT
mL̃T

D(z)
)

+
2
√

l21 + l22d(t)ǫ

π
I

P22(z) = 0

P23(z) = 0

P33(z) = –
2
√

l21 + l22d(t)ǫ

π
I

(317)

with

L̃D(z) = W (z)LD(z) (318)

Proof. Consider the linear dissipation expression of the Lyapunov function

V̇ (t) + 2γV (t) = 2〈e(·, t),PAe(·, t)〉 + 2〈e(·, t),PGν(·, t)〉 + 2〈e(·, t),PLD(z)Ce(·, t)〉

+ 2γ〈e(·, t),Pe(·, t)〉

(319)

then, the substitution of (297) into (319) yields

V̇ (t) + 2γV (t) =

2
∫

Ω
eT (z, t)W (z)D(t)∆e(z, t)dΩ – 2

∫

Ω
eT (z, t)W (z) (K – γI) e(z, t)dΩ

+ 2
∫

Ω
eT (z, t)W (z)Gν(z, t)dΩ

+ 2
∫

Ω
eT (z, t)W (z)LD(z)Cm

(∫

Ω
e(z, t)dΩ

)

dΩ.

(320)

Applying the first mean value theorem for integration, there exists a scalar zt
m ∈

Ω such that

e(zt
m, t) =

1
l1l2

∫

Ω
e(z, t)dΩ, ∀t ∈ R

+. (321)
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Regarding the definition (318) and applying the integration by parts into (320),

we obtain

V̇ (t) + 2γV (t) =
∫

Ω
eT (z, t)∆W (z)D(t)e(z, t)dΩ

– 2
∫

Ω
(vec∇e(z, t))T [I2 ⊗ W (z)D(t)] (vec∇e(z, t)) dΩ

–
∫

Ω
eT (z, t)

(

KW (z) + W (z)K T – 2γW (z)
)

e(z, t)dΩ

+ 2
∫

Ω
eT (z, t)W (z)Gν(z, t)dΩ + 2l1l2

∫

Ω
eT (z, t)L̃D(z)Cme(zt

m, t)dΩ.

(322)

Notice by the virtue of Poincaire inequality that the following holds

– 2
∫

Ω
(vec∇e(z, t))T [I2 ⊗ W (z)D(t)] (vec∇e(z, t)) dΩ ≤

–
2
√

l21 + l22 d(t)ǫ

π

∫

Ω

(

e(z, t) – e(zt
m, t)

)T (
e(z, t) – e(zt

m, t)
)

dΩ.

(323)

Hence, substituting (323) into (322) leads to

V̇ (t) + 2γV (t) ≤

∫

Ω
eT (z, t)



–∆W (z)D(t) – KW (z) – W (z)K T + 2γW (z) –
2
√

l21 + l22 d(t)ǫ

π
I



 e(z, t)dΩ

+ 2
∫

Ω
eT (z, t)W (z)Gν(z, t)dΩ

∫

Ω
eT (z, t)



2l1l2L̃D(z)Cm +
4
√

l21 + l22d(t)ǫ

π
I



 e(zt
m, t)dΩ

–
2
√

l21 + l22d(t)ǫ

π

∫

Ω
eT (zt

m, t)e(zt
m, t)dΩ.

(324)

We can rewrite (324) as

V̇ (t) + 2γV (t) ≤
∫

Ω
e T (z, t)P(z, t) e (z, t)dΩ (325)

where e(z, t) = [e(z, t) ν(z, t) e(zt
m, t)]T . Therefore, in order to ensure the negativity of

the right side of (325), it suffices that

P(z, t) < 0, ∀z ∈ Ω and t ∈ R
+. (326)
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Applying the S-procedure to (326) and (302), we obtain

P(z, t) – τ

[

M 0

0 0

]

< 0, ∀z ∈ Ω and t ∈ R
+. (327)

Then (327) implies that

V (t) ≤ e–2γtV (0) (328)

and from Chapter 5, it follows that

‖e(z, t)‖ ≤ Me‖e0(z)‖e–γt . (329)

6.4 COVID SPREAD MONITORING

In this section we provide some numerical simulations obtained from the formu-

lation scheme presented in Section 6.3. Firstly, we show the feasibility provided through

the solution of the LMIs in (315) for different selections of lower bound decay rates γ.

Then, the convergence features of the proposed observer are depicted through the nu-

merical simulation of the observer system. We consider the case study regarding the

state estimation of the compartmental variables in a host population defined by the 2D

spatial domainΩ = (0, 100)×(0, 200) in which the average commuting defines d0 = 252

16
and the values corresponding to the model parameters are listed in Table. 6

Table 5 – Parameter values.

Parameter Value Definition
w0βe 0.122920 Transmission rate from S to E from contact with E
w0βs 0.384542 Transmission rate from S to E from contact with Is
w0βa 0.445237 Transmission rate from S to E from contact with Ia
ρ 0.043198 Lockdown decay
δl

1
5 Latency rate

ps 0.503939 Probability of being symptomatic
1 – ps 0.496061 Probability of being asymptomatic
γr

1
7 recovery rates

µd 0.010381 Death rate
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The population distribution is assumed to be defined by

S0(z) = 2 × 104e– (z1–100)2+(z2–125)2

500 + 1.5 × 104e– (z1–100)2+(z2–55)2

500

+ 8 × 103e– (z1–150)2+(z2–100)2

300 + 9 × 103e– (z1–75)2+(z2–175)2

300

E0(z) = 10e– (z1–100)2+(z2–125)2

200

Ia0(z) = 0, Is0(z) = 0, U0(z) = 0, R0(z) = 0

(330)

which is depicted in Figure 31, yielding a total host population of

N0 =
∫

Ω
(S0(z) + E0(z)) dΩ = 20896065 persons. (331)

(a) S0(z) (b) E0(z)

Figure 31 – Initial conditions of the compartmental variables defining the population
distribution

Figure 31 depicts the initial simulation scenario in which the population distribu-

tion corresponds to four contiguous cities and where that located in the center is the

largest and where exposed people to the virus appears initially.

To obtain the output injection gain LD(z) : Ω → R
6×2 through the application of

the sufficient conditions presented in Theorem 6.2, we solve the LMI in (315) only at

the vertices of the polytope defined by the bounded time variant parameter d(t) defined

in (279) (OLIVEIRA; PERES, 2005). Thus, its solution for different values of m and q

along with bisection search provides γmax for each case according to Table 6.

Table 6 – γmax of the proposed approach for different combinations of m and q.

(m, q) γmax
(4, 2) 0.14
(5, 3) 0.26
(7, 4) 0.35
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For (m, q) = (7, 4), the observer and system responses are generated via nu-

merical simulation with system initial conditions in (330) and those corresponding to

the observer are set to be zero. The simulation scenario considers tbol = 10 days,

teol = 25 days which specifies the degree of danger of the epidemic through the time

variant definitions of w(t) and d(t) in (278) and (279) respectively.

Figure 32 shows some snapshots of the evolution of the actual distribution (on

the left) with its respective estimated distribution (on the right) of the Ia asymptomatic

compartmental variable considering the proposed observer in three different time in-

stants. As depicted in the corresponding figures, the uniform wave front propagates

from the center to the corners (where the disease starts) with the infected asymp-

tomatic individuals rapidly increasing when t ≤ tbol which is then attenuated for t ≥ teol .

This is logical, because w(t) and d(t) specify the degree of danger of the epidemic ac-

cording to this modeling. It may also be seen that the estimation distributions of the

compartmental state variables converge to the actual profiles for t = 10 days.
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(a) Ia(z, t1) (b) Îa(z, t1)

(c) Ia(z, t2) (d) Îa(z, t2)

(e) Ia(z, t3) (f) Îa(z, t3)

Figure 32 – Spatial distribution of Ia(z, t) and Îa(z, t) at time instants t1 = 10, t2 =
15, t3 = 30 days.

Figure 33 shows the profile evolution of the absolute values related to all com-

partmental variables for the host population.

Then, Figure 34 shows the evolution of the estimation error norm. Although the

initial estimation profiles were all set to be zero, the estimation error norm converges

quickly, and hence, provides very satisfactory estimates. In the same figure, the result

corresponding to the inclusion of measurement white noise (V = 2.7) in the Is(t) vari-

able is depicted. It should be observed that the procedure outlined here guarantees

that the state estimate robustly converges to the true state.
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(a) S(t) and Ŝ(t) (b) E(t) and Ê(t)

(c) Ia(t) and Îa(t) (d) Is(t) and Îs(t)

(e) U(t) and Û(t) (f) R(t) and R̂(t)

Figure 33 – Time evolution of the global number of variables of the generalized epi-
demiological SEIR model of COVID-19.
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Figure 34 – Time evolution of the estimation error norm ‖e(z, t)‖.

One of the main virtues of the SEIR distributed model based state estimation is

to attain the monitoring of the pandemic throughout the host region which plays a fun-

damental role as warning system of the current epidemiological situation in each sub-

population in contrast with state estimation techniques based on lumped SIR models

such as (MARTÍNEZ-GUERRA; FLORES-FLORES, 2021). For instance, the evolution

of the partial number of infected people I(t) = Ia(t) + Is(t) and under treatment U(t)

population along with their estimated profiles related to the sub-population centered at

(100, 55) are shown in Figure 35 considering the measurement of total under treatment

and deceased population. Notice that these local estimates can be utilized to alert the

local health infrastructure to take further actions.



Chapter 6. Monitoring of COVID-19 spread 127

(a) Ia(t) and Îa(t) (b) U(t) and Û(t)

Figure 35 – Time evolution of the partial number of infected and under treatment peo-
ple in the sub-population distribution centered at (100, 55).

6.5 CONCLUDING REMARKS

In this chapter, a nonlinear Luenberger-like state observer was designed to es-

timate the compartmental variables of the generalized epidemiological SEIR model of

COVID-19 spread proposed in (MAMMERI, 2020). The Lyapunov method has been

applied to derive a set of LMI based conditions to ensure the local stability of the error

dynamics which has been modeled as a Lure type system with a multivariable sector

condition, thus the appropriate choice of the observer gains results from a SDP prob-

lem solution. The proposed technique is an attempt to set a non-conservative LMIs

conditions through a polynomial parametrization of the decision variables where the in-

tegration by parts as well as the local checks, which is provided by embedding results

on bounded domains as the Poincare inequality and the S-procedure for local stability

analysis based on sector condition play a crucial role on this purpose. In this frame-

work, the presence of bounded time variant parameters and incomplete measurement

feedback may be tackled through the polytope analysis of the proposed LMIs which

guarantees a robust convergence. Numerical experiments are presented to illustrate

the method efficiency.
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7 CONCLUSIONS

This thesis has addressed the state estimation problem for a certain class of

transport-reaction systems described by semilinear PDE systems. Both early and late

lumping approaches have been used to explore different design strategies. The core

idea of the methodologies explored in this work has been to find sufficient conditions

for ensuring the local exponential stability of the state estimation error dynamics un-

der the assumption that the nonlinearity corresponding to the rate function is continu-

ously differentiable and hence, locally Lipschitz. Particularly, this thesis is an attempt to

provide a tractable framework for multi-state process having in domain distributed mea-

surements. The proposed state estimation techniques significantly reduces the stability

analysis complexity of the error dynamics by using local algebraic sector conditions to

represent the error dynamics as a Lure system. It should be noticed that the addressed

methodologies concerns a large class of semilinear PDE systems. Hereinafter a sum-

mary of the Thesis along with some comments and hints about the potential future

research directions for the contribution of each Chapter are discussed:

• In Chapter 3 the orthogonal collocation method has been applied to derive a

reduced-order finite dimensional approximate model by using lagrange interpola-

tion and the roots of Jacobi polynomials as collocation nodes which also allowed

us to apply an optimal location criteria of them in order to reduce the approxima-

tion error model. Then, an LMI based condition was proposed to design a nonlin-

ear Luenberger-type observer. In addition, an offline sensor placement algorithm

was also proposed to optimally allocate the measurement sensors in order to

improve the estimation error convergence. An interesting topic for future general-

ization of the present results is to extend them for more computationally tractable

reduction methods as the POD-Galerkin based method in which the derivation of

the sector condition parameters related to the finite dimensional model deserves

a more numerical attention due to the use of integral quadratures in the approxi-

mate model derivation.

• In Chapter 4 the state estimator design has been carried out by making reference

to the spectral decomposition of the infinite dimensional description on Hilbert

state space H = L
nx
2 (0, 1). The modal injection gain assignment that has been

widely used for the stabilization of linear PDE systems allowed us to reduced

the state estimation problem into the stabilization of a ODE system regarding

the appropriate allocation of the slow modes of the dynamical system according

to the local Lipschitz constants or the lower and upper bounds of the Jacobian

matrix related to the nonlinear reaction function. Involving spatially dependent

diffusion and advection coefficients into the proposed synthesis and its extension



Chapter 7. Conclusions 129

to broader classes of PDE systems (e.g., high dimensional PDEs and PDEs with

coupling of the advective an diffusive terms ) are among the most interesting lines

of future investigations.

• In Chapter 5 the Lyapunov method has been applied to derive a set of LMI based

conditions aiming at designing a nonlinear Luenberger-type observer. The pro-

posed methodology is an attempt to set a non-conservative approach through

a polynomial parametrization of the decision variables. The use of results on

bounded domains as the Wirtinger’s inequality and the S-procedure for local sta-

bility analysis based on sector condition are also important to reduce the conser-

vatism of the proposed approach. Our scope was to make these steps computa-

tionally tractable by formulating a semidefinite programming problem (SDP). The

generalization of the proposed approach through the use of Lyapunov functionals

of the form

V (e(z, t)) =
∫ 1

0
eT (z, t)W1(z)e(z, t) +

∫ 1

0
eT (z, t)

∫ 1

0
W2(z, y )e(y , t)dydz (332)

addressed in (MEYER; PEET, Matthew M, 2016) in order to improve the stability

analysis of PDE systems by adding more degrees of freedom (and hence to

diminish the conservatism) in the Lyapunov functional is one of the the most

interesting lines of future investigations.

The corresponding above mentioned techniques have been drawn in the light

of a motivated exploitation of well recognized and widely used approaches in the liter-

ature of PDE systems theory. Thus, the state estimation problem was addressed in a

unifying framework by combining: (i) model reduction techniques; (ii) semigroup theory;

(iii) Lyapunov theory; and (iv) semidefinite and sum of squares programming.

In view of previous studies recorded in literature, the observer designed for these

case studies represent important innovations, in the understanding of

• systematic design through the utilization of semidefinite programming tools for

computing the parameters of the state observers;

• convergence behavior improvement through the sensor placement and the initial

conditions optimization; and

• simple implementation.

These design features have been possible due to a fruitful combination of the

above mentioned mathematical, system and computing tools, as well as analysis and

design methods.

Finally in Chapter 6, some implications of the obtained design method in Chapter

5 in the perspective of bidimensional transport-reaction systems with application to the
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estimation of the compartmental variables of the COVID-19 spread have been drawn

yielding a set of LMI based conditions for the design of an exponential observer with a

polynomial parameterized matrix as output injection.

Numerical simulations show the applicability of the suggested approaches to the

considered classes of PDE systems, which were performed by means of Matlab and

COMSOL software packages.
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APPENDIX A – CLASSICAL ORTHOGONAL POLYNOMIALS

In mathematics, the classical orthogonal polynomials are the most widely used

orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi poly-

nomials (including as a special case the Gegenbauer polynomials, Chebyshev polyno-

mials, and Legendre polynomials).

Jacobi polynomials

The N-th order Jacobi polynomial P(α,β)
N on the space interval [zl , zr ] is defined

by the orthogonal relation

∫ zr

zl

(z – zl )
β(zr – z)αP(α,β)

j (z)P(α,β)
N (z)dz = 0, j = 0, ..., N – 1. (333)

It can be seen from (333) that Jacobi polynomials are orthogonal. α and β de-

note weightings on the left end point zl and right end point zr , respectively. α = 1 if zl

is included as an interpolation point, otherwise α = 0. β is selected in the same way

regarding the right end zr .

For (α,β) = (0, 0), P
(0,0)
N reduces to the Legendre polynomials. For (α,β) =

(±1
2 ,±1

2 ), P
(± 1

2 ,± 1
2 )

N reduces to the the Chebyshev polynomials (of the second and first

kind, respectively). The Jacobi polynomials with α = β are called the Gegenbauer

polynomials.

A power series representation P
(α,β)
N can be written as

P
(α,β)
N =

N∑

i=0

(–1)N–iγiz
i (334)

where γi is calculated iteratively,

γi =
N – i + 1

i
N + i + α + β

i + β
γi–1 (335)

in which γ0 = 1 and i = 1, ..., N.

It has been providing, e.g., (VILLADSEN, John; MICHELSEN, 1978), that P(α,β)
N

has N real and distinct zeros zj ,

zl < zj < zr , j = 1, ..., N. (336)

A detailed numerical determination of the zeros of Jacobi polynomials can also

be found in (VILLADSEN, John; MICHELSEN, 1978).

Remark A.1. A classical choice of collocation points in the orthogonal collocation

method is to take them as zeros of orthogonal polynomials, usually from the N-th order

Jacobi polynomial P(α,β)
N .
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Choosing zeros of classical orthogonal polynomials as collocation points makes

orthogonal collocation approximations able to integrate exactly polynomials up to order

2N – 1 by means of quadrature formula (GAY, 1989), which actually is the maximum

order of accuracy reachable with such N-th order approximations. In this sense, this

choice can be considered as optimal, and, in practice, it provides results comparable

with those obtained from Galerkin’s method.
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APPENDIX B – HILBERT SPACES AND OPERATOR THEORY

Definition B.1. Let H be a linear space over the real field R. If for any pair x1, x2 ∈ H

is defined a map 〈·, ·〉 : H×H → R with the properties

• 〈x1, x2〉 = 〈x2, x1〉;

• 〈αx1 + βx2, x3〉 = α〈x1, x3〉 + β〈x2, x3〉, α, β ∈ R and x3 ∈ H;

• 〈x1, x1〉 ≥ 0 and 〈x1, x1〉 = 0 if and only if x1 = 0,

then 〈·, ·〉 is called a scalar product on H. By the scalar product the norm

‖x‖ =
√

〈x , x〉, ∀x ∈ H (337)

is defined. In addition, the Schwarz inequality

|〈x1, x2〉| ≤ ‖x1‖‖x2‖

is valid. A Banach space with a scalar product and the norm defined by (337) is called

a Hilbert space.

Lebesgue square integrable vector valued functions

The space H = L
nx
2 (Ω) is the Hilbert space of square integrable real vector val-

ued functions x : Ω ⊂ R
nz → R

nx , which is equipped with an inner product generated

by its norm

〈x,x〉 =
∫

Ω
xT (z)x(z)dΩ < ∞ (338)

where dΩ = dz1 ... dznz .

The basic example is when Ω = (a, b) ⊂ R and nx = 1, i.e,

L2(a, b) =






x : (a, b) → R :

(
∫ b

a
x2(z)dz

) 1
2

< ∞






. (339)

Sobolev spaces for scalar functions

The Sobolev space for H = W
1,2(Ω) is the Hilbert space, often denoted by

H1(Ω), defined as

W
1,2(Ω) =

{
x ∈ L2(Ω) : Dαx ∈ L2(Ω) ∀ |α| ≤ 1

}
. (340)
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Definition B.2. A linear operator T is a map T : D(T ) ⊂ H1 → H2 such that for all

x1, x2 ∈ D(T ) and scalar α, it holds that

T (x1 + x2) = T x1 + T x2,

T (αx1) = αT x1.

Definition B.3. Let T be a linear operator from D(T ) ⊂ H1 to H2. T is a bounded

linear operator if there exists a real number c such that for all x ∈ D(T )

‖Tx‖H2
≤ c‖x‖H1

.

Definition B.4. Let T be a bounded linear operator from D(T ) ⊂ H1 to H2. We define

its norm, ‖T ‖, by

‖T ‖ = sup
x∈D(T )

‖T x‖H2

‖x‖H1

, x 6= 0.

A consequence of the previous definition is that ‖T x‖H2
≤ ‖T ‖‖x‖H1

.

Definition B.5. If H1 and H2 are normed linear spaces, we define the normed linear

space L(H1,H2) to be the space of bounded linear operators from H1 to H2 with

D(T ) = H1. For the special case that H1 = H2 we denote L(H1,H1) by L(H1).

Definition B.6. Assume that the domain of the linear operator A, D(A) ⊂ H, is dense

in H. Then the adjoint operator A∗ : D(A∗) ⊂ H → H of A is defined as 〈Ax1, x2〉 =

〈x1,A∗x2〉, where x2 ∈ D(A∗) and A∗x2 = x∗
2 .

Definition B.7. We say that a densely defined, linear operator A is symmetric if for all

x1, x2 ∈ D(A)

〈Ax1, x2〉 = 〈x1,Ax2〉.

A symmetric operator is selfadjoint if D(A∗) = D(A).

Definition B.8. A self-adjoint operator A on the Hilbert space H is nonnegative if

〈Ax , x〉 ≥ 0, ∀x ∈ D(A);

A is positive if

〈Ax , x〉 > 0, ∀x ∈ D(A) x 6= 0;

and A is coercive if there exists an ǫ > 0 such that

〈Ax , x〉 ≥ ǫ‖x‖2, ∀x ∈ D(A).
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APPENDIX C – INSTRUMENTAL RESULTS

In this appendix, we present some statements and results used for the develop-

ment of this thesis.

Definition C.1. Let x , x̂ ∈ R
n. We define by Co(x , x̂) the convex hull of the set {x , x̂},

i.e.

Co(x , x̂) =
{
θx + (1 – θ)x̂ : θ ∈ [0, 1]

}
. (341)

Lemma C.1. (Differential mean value theorem (ZEMOUCHE et al., 2005))

Let the function r (x) : R
n → R differentiable with respect to x and let x , x̂ be two

elements in R
n. Then, there is an element x̆ ∈ Co(x , x̂), such that:

r (x) – r (x̂) = ∇r (x̆)(x – x̂) (342)

where ∇r =
[

∂x1r · · · ∂xnr
]

.

Lemma C.2. (Wirtinger’s inequality (HARDY et al., 1970))

Let x ∈ W
1,2 ([a, b]) be a scalar function with x(a) = 0 or x(b) = 0, then the following

inequality holds

∫ b

a
x2(z)dz ≤

4(b – a)2

π2

∫ b

a

(
dx
dz

(z)
)2

dz. (343)

Lemma C.3. (Poincaré–Wirtinger inequality (ADAMS, 1978))

Let Ω be an open bounded Lipschitz connected subset in R
n. Then there exists a

constant CΩ, depending only on Ω, such that for every function x ∈ W 1,2(Ω)

∫

Ω
(x(z) – mx )2 dΩ ≤ CΩ

∫

Ω
|∇zx(z)|2dΩ. (344)

where

mx =
1

|Ω|

∫

Ω
x(z)dΩ. (345)

is the mean value of x over Ω, with |Ω| standing for the Lebesgue measure of the

domain Ω.

Remark C.1. The Poincaré constant CΩ depends on the geometry of the domain Ω.

Particularly, if Ω is a bounded, convex, Lipschitz domain with diameter d, then the

Poincaré constant is at most d /π (PAYNE; WEINBERGER, 1960).

Lemma C.4. (Schur Complement lemma (BOYD, S. et al., 1994)) Consider the matrix

M =

[

A B

C D

]

(346)
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with D, a non-singular (invertible) matrix. The matrix

S = A – BD–1C (347)

is called the Schur complement of D in M. If M is a symmetric definite matrix then

M > 0 is equivalent to

D > 0 and S = A – BD–1C > 0. (348)

The S-procedure for quadratic forms and strict inequalities

Let T0, ..., Tp ∈ R
n×n be symmetric matrices. We consider the following condi-

tion on T0, ..., Tp:

ζT T0ζ > 0 ∀ ζ 6= 0 such that ζT Tiζ ≥ 0, i = 1, ..., p. (349)

It is obvious that if there exists scalars τi ≥ 0, i = 1, ..., p such that

T0 –
p
∑

i=1

τiTi > 0 (350)

then (349) holds. It is a nontrivial fact that when p = 1, the converse holds, provided

that there is some ζ0 such that ζT
0 T1ζ0 > 0. Note that (350) is an LMI in the variables

T0 and τi ≥ 0, i = 1, ..., p.
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APPENDIX D – INTEGRATION BY PARTS

In this thesis, we will restrict ourselves to the use of equalities generated through

the use of the technique known as integration by parts. In its most general form, this

equality is defined by the following, where for a vector field u and a scalar function v

defined in the closure of an open solid region Ω ∈ R
nz . ∂Ω denotes the boundary of

the region Ω and n is the outward normal vector to this boundary.

∫

Ω
u · ∇vdΩ =

∫

∂Ω
vu · nd∂Ω –

∫

Ω
v∇ · udΩ. (351)

The case u = ∇u, where u ∈ C2(Ω), is known as the first of Green’s identities:

∫

Ω
∇u · ∇vdΩ =

∫

∂Ω
v∆u · nd∂Ω –

∫

Ω
v∆udΩ. (352)

INTEGRATION BY PARTS OF QUADRATIC FORMS

For the Lyapunov convergence assessment, we are interested in integrals re-

lated to quadratic forms of the state vector and its first or second derivative.

We consider first the one-dimensional integral

∫ b

a
eT (z)Ṽ(z)∂ze(z)dz =

n∑

i ,j

∫ b

a
ei (z)νij (z)∂zej (z)dz (353)

with Ṽ : [a, b] → R
n×n. Thus, integrating by parts the terms of the summation, it is easy

to show that

∫ b

a
eT (z)

(

Ṽ(z) + ṼT (z)
)

∂ze(z)dz = eT (z)Ṽ(z)e(z)

∣
∣
∣
∣

b

a
–
∫ b

a
eT (z)∂z Ṽ(z)e(z)dz. (354)

If V : [a, b] → S
n, then we have

∫ b

a
eT (z)Ṽ(z)∂ze(z)dz =

1
2

eT (z)Ṽ(z)e(z)

∣
∣
∣
∣

b

a
–

1
2

∫ b

a
eT (z)∂z Ṽ(z)e(z)dz. (355)

Similarly the one-dimensional integral

∫ b

a
eT (z)D̃(z)∂2

ze(z)dz =
n∑

i ,j

∫ b

a
ei (z)d̃ij (z)∂2

zej (z)dz. (356)

with D̃ : [a, b] → R
n. Thus, its integration by parts yields
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∫ b

a
eT (z)D̃(z)∂2

ze(z)dz = eT (z)D̃(z)∂ze(z)

∣
∣
∣
∣

b

a
–
∫ b

a
∂zeT (z)D̃(z)∂ze(z)dz

–
∫ b

a
eT (z)∂zD̃(z)∂ze(z)dz. (357)

If D̃ : [a, b] → S
n, we can apply the identity in (355) into the last term of the right

side of (357), thus we obtain

∫ b

a
eT (z)D̃(z)∂2

ze(z)dz = eT (z)D̃(z)∂ze(z)

∣
∣
∣
∣

b

a
–

1
2

eT (z)∂zD̃(z)e(z)

∣
∣
∣
∣

b

a

+
1
2

∫ b

a
eT (z)∂2

zD̃(z)e(z)dz –
∫ b

a
∂zeT (z)D̃(z)∂ze(z)dz. (358)

In bidimensional systems, we are interested in the integral

∫

Ω
eT (z)D̃(z)∆e(z)dΩ =

n∑

i ,j

∫

Ω
ei (z)d̃ij (z)∆ej (z)dΩ. (359)

Applying Green’s first identity in the right side of (359), it yields

n∑

i ,j

∫

Ω
ei (z)d̃ij (z)∆ej (z)dΩ =

n∑

i ,j





∫

∂Ω
ei (z)d̃ij (z)∇ej (z) · ndl

–
∫

Ω
d̃ij (z)∇ei (z) · ∇ej (z)dΩ





+
1
2

∫

Ω
ei (z)∆d̃ij (z)ej (z)dΩ –

1
2

∫

∂Ω
ej (z)∇d̃ij (z)ei (z) · ndl . (360)

For Neumann boundary conditions ∆e · n

∣
∣
∣
∣
∂Ω

= 0

∫

Ω
eT (z)D̃(z)∆e(z)dΩ =

1
2

∫

Ω
eT (z)∆W̃ (z)e(z)dΩ

–
∫

Ω
(vec∇e(z))T

[

I2 ⊗ W̃ (z)
]

(vec∇e(z)) dΩ. (361)
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