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RESUMO

Neste trabalho, um método de diagnóstico de falhas para Sistemas a Eventos Discretos
(SEDs) modelados por redes de Petri rotuladas (RPRs) é proposto. Para tanto, nesta
dissertação é suposto que algumas transições da rede de Petri são não observáveis, incluindo
as transições de falha. O método de diagnóstico consiste em dois passos: primeiro, a
detecção online de falhas é feita; e então, candidatos de falha são isolados com base na
sequência de eventos observada. A detecção online é feita com base na construção de uma
RPR a partir do modelo do comportamento livre de falha do sistema, chamada de rede
de Petri do comportamento observável (RPCO), cujas transições são todas observáveis e
cuja linguagem gerada é igual à linguagem observável do modelo livre de falha quando
algumas condições são satisfeitas. Além disso, neste trabalho, é mostrado que a RPCO
pode ser implementada para detecção de falha ao invés do grafo de alcançabilidade da rede
que modela o sistema, ou mesmo parte dele, o que leva a um rápido método de detecção
de falhas sem necessitar de um grande uso de memória. Um estudo de caso é também
apresentado para ilustrar o método proposto

Palavras-chave: Detecção de falhas, Diagnóstico de falhas, Redes de Petri, Sistemas a
eventos discretos.



RESUMO EXPANDIDO

Introdução
Sistemas automatizados estão sujeitos à ocorrência de falhas que podem alterar seu compor-
tamento nominal, o que pode causar danos aos equipamentos e ferir operadores humanos.
Portanto, se faz necessária a implementação de um sistema de diagnóstico eficiente que
detecte e isole a ocorrência de falhas a fim de prevenir danos ao sistema. A fim de resolver
esse problema, o diagnóstico de falhas em Sistemas a Eventos Discretos (SEDs) tem re-
cebido bastante atenção na literatura, sendo as abordagens mais comuns desenvolvidas
para sistemas modelados por autômatos e Redes de Petri (RP).

Neste trabalho, um método de diagnóstico de falhas para sistemas modelados por Redes
de Petri Rotuladas (RPR) é proposto. Em um primeiro momento, a detecção da ocorrência
de uma falha é feita e depois os candidatos à falha são isolados. Para isso, a sequência
de eventos observada e o modelo completo do comportamento do sistema em RPR são
utilizados para isolar o tipo de falha que ocorreu. O esquema de detecção de falhas é
baseado na construção da chamada Rede de Petri do Comportamento Observável (RPCO),
cujas transições são rotuladas somente por transições observáveis e à linguagem gerada é
igual a linguagem livre de falha do sistema. A RPCO fornece todos os eventos observáveis
do comportamento livre de falha do sistema que são factíveis depois da observação de uma
sequência de eventos. A detecção da falha é feita caso um evento não factível na marcação
atual da RPCO seja observado.

Além disso, neste trabalho, um estudo de caso de um sistema pesagem-mistura introduzido
na norma internacional IEC 6084 é apresentado. Nesse sistema, foram considerados dois
tipos de falha com o objetivo de ilustrar as etapas de detecção e isolamento em um sistema
diagnosticável prático. Outro estudo de caso também é apresentado para comparar a efi-
ciência do método proposto com outras abordagens relevantes da literatura. A metodologia
proposta neste trabalho é justificável para sistemas que possuem grande comportamento
paralelo, uma vez que o detector de falhas, a RPCO, é obtido utilizando-se o formalismo
de redes de Petri, o que, geralmente, permite um grafo menor para esse tipo de sistema.

Objetivos
Este trabalho tem como objetivo o desenvolvimento de um método de diagnóstico de falhas
para Sistemas a Eventos Discretos modelados por Redes de Petri, utilizando somente a
estrutura da rede que modela o sistema, sem a necessidade de construir uma estrutura
adicional. O método é desenvolvido para redes de Petri que possuem transições observáveis
e não observáveis. As etapas de detecção e isolamento da falha são separadas para garantir
maior velocidade na detecção, o que é fundamental para sistemas que demandam uma
rápida resposta após a ocorrência de uma falha. O método também é comparado com
outras abordagens propostas na literatura.

Metodologia
A metodologia do trabalho consiste do levantamento bibliográfico de métodos de diagnós-
tico de falhas em SEDs modelados por autômatos e redes de Petri. Além disso, trabalhos
que abordam temas como identificação de sistemas, prognosticabilidade, controle super-



visório e diagnosticadores mínimos foram considerados com o objetivo de identificar os
métodos propostos na literatura para esses problemas correlatos.

Após o levantamento bibliográfico, identificou-se o estado da arte do problema de diag-
nóstico de falhas em SEDs modelados por redes de Petri. A abordagem mais utilizada
propõe converter a rede de Petri em um grafo orientado e um conjunto de marcações
que podem ser usados para o diagnóstico de falhas. Entretanto, esse método tem um
resultado computacional ruim para redes que possuem muito comportamento paralelo.
Assim, seguiu-se o estudo de uma técnica de construção de um diagnosticador de falhas
que preservasse a natureza distribuída das redes de Petri, sem a conversão para um novo
grafo que não preserve essa propriedade.

Identificou-se, em seguida, hipóteses para o modelo do sistema que viabilizam a aplicação
do método. Além disso, condições suficientes que garantem que a linguagem observada do
sistema é igual à linguagem gerada da RPCO foram identificadas. Os resultados teóricos
do trabalho foram provados e aplicações práticas foram conduzidas para comparação com
o estado da arte.

Resultados e Discussões
Neste trabalho, um método para detecção de falhas em sistemas a eventos discretos
modelados por redes de Petri rotuladas seguras é proposto. A abordagem consiste na
remoção de todas as transições não observáveis do modelo do comportamento livre de
falha do sistema, resultando na Rede de Petri do Comportamento Observável. Uma vez
que a RPCO é construída, o processo de detecção pode ser realizado calculando os eventos
observáveis factíveis para uma determinada marcação. Se um evento que não é factível na
marcação atual é observado, a falha é detectada. Neste trabalho é suposto que o modelo
em Rede de Petri do sistema é diagnosticável. A análise da diagnosticabilidade pode ser
feita offline usando qualquer método proposto na literatura.

Dois estudos de caso são conduzidos para ilustrar a eficiência do método quando comparado
a trabalhos clássicos propostos na literatura. A RPCO do primeiro estudo de caso, um
sistema de pesagem-mistura introduzido na IEC 60848, possui 10 lugares e 7 transições,
enquanto que o grafo de alcançabilidade do modelo do sistema tem 197 estados e 412
transições. O grafo de marcações base, usado como diagnosticador tradicional para sistemas
modelados por redes de Petri, possui 51 estados e 116 transições. Para o segundo estudo de
caso, um sistema de manufatura, a RPCO possui 22 lugares e 14 transições, enquanto que
o grafo de alcançabilidade do modelo do sistema tem 30.880 estados e 140.748 transições
e o grafo de marcações base possui 435 estados e 1.182 transições. Isso mostra a grande
redução em memória que pode ser obtida ao se utilizar o método proposto neste trabalho.

Considerações Finais
Com a evolução dos sistemas automatizados, o tamanho dos modelos estão crescendo tanto
em número de componentes quanto em complexidade, portanto, diagnosticar corretamente
possíveis ocorrências de falhas que podem alterar o comportamento nominal desses sis-
temas, prevenindo danos a equipamentos e mantendo a segurança de operadores, pode não
ser uma tarefa fácil. Neste trabalho, um esquema de diagnóstico de falhas para sistemas
a eventos discretos modelados por uma classe de redes de Petri rotuladas é apresentado.



O método consiste de dois passos: (i) primeiro a ocorrência de um evento de falha é
detectada e depois (ii) os eventos candidatos à falha são isolados. A principal contribuição
deste trabalho é que o modelo do sistema usado para a detecção de falhas é, no geral,
muito menor do que o grafo de alcançabilidade do sistema, o que permite o uso de menos
memória para implementação do detector de falhas do que usando as técnicas tradicionais.
Isso faz com que a falha possa ser detectada de forma rápida, sem o uso de qualquer grafo
de alcançabilidade. O método proposto foi aplicado em dois estudos de caso com sucesso,
em que a eficiência do detector de falhas proposto pode ser comprovada comparando-se o
tamanho da RPCO calculada com os grafos obtidos de acordo com outras propostas da
literatura.

Como trabalhos futuros, investiga-se a possibilidade de se relaxar algumas das hipóteses
consideradas neste trabalho. Um método de detecção e diagnóstico de falhas para outras
classes de redes de Petri que preserve a estrutura da rede que modela o sistema original
também é um tema em aberto. Os resultados deste trabalho foram apresentados no
Simpósio Brasileiro de Automação Inteligente (SBAI) de 2021 e uma contribuição foi
submetida para publicação na Control Engineering Practive Journal.

Palavras-chave: Detecção de falhas, Diagnóstico de falhas, Redes de Petri, Sistemas a
eventos discretos.



ABSTRACT

In this work, a fault diagnosis method for Discrete-Event Systems (DES) modeled as
labeled Petri nets (LPN) is proposed. In order to do so, it is assumed that some transitions
of the Petri net are unobservable, including the fault transitions. The diagnosis method
consists of two steps: first, an online fault detection is carried out; and then, by using the
observed sequence of events and the Petri net model, the fault candidates are isolated. The
online fault detection is based on the construction of an LPN from the fault-free system
behavior model, called observable behavior Petri net (OBPN), whose transitions are all
observable, and whose generated language is guaranteed to be equal to the observable
language of the fault-free system model when some conditions are satisfied. It is also shown
that the OBPN can be used for fault detection instead of implementing the reachability
graph, or even part of it, of the Petri net system model, which leads to a fast fault
detection method without requiring the use of a large amount of memory. A case study is
also presented in order to illustrate the proposed method.

Keywords: Fault detection, Fault diagnosis, Petri nets, Discrete Event Systems.
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1 INTRODUCTION

Automated systems are subject to fault occurrences that can alter their nominal
behavior, which can cause equipment damages and potentially injury human operators.
Thus, it is necessary to implement an automatic fault diagnosis system to efficiently detect
and isolate the fault occurrence to prevent damages to the system. In order to address
this problem, fault diagnosis of Discrete-Event Systems (DESs) has received considerably
attention in the literature (PROCK, 1991; SAMPATH et al., 1995, 1996; CONTANT et al.,
2004; MIYAGI; RIASCOS, 2006; GIUA et al., 2007; CABASINO et al., 2014; CABRAL
et al., 2015; SANTORO et al., 2017; RAN et al., 2017; NUNES et al., 2018) where the
most common approaches consider systems modeled as automata or Petri Nets (PNs).

In Sampath et al. (1995), a diagnoser for DESs modeled as automata is proposed,
and a necessary and sufficient condition to verify language diagnosability, i.e., the capa-
bility of detect and isolate the fault event occurrence after a bounded number of event
observations, using the diagnoser automaton is presented. The diagnoser presented in
Sampath et al. (1995) is based on the computation of an observer automaton of the
system model, whose number of states can grow exponentially with the system state
space cardinality. Since then, methods to avoid the use of observers for diagnosability
verification, and have polynomial complexity with the system state space cardinality, have
been proposed (QIU; KUMAR, 2006; MOREIRA et al., 2011, 2016).

In order to avoid the computation of an observer automaton for diagnosis, a Petri
Net Diagnoser (PND) for DESs modeled by automata is proposed in Cabral et al. (2015).
The PND is capable of estimating online the states of the fault-free system model, and
can be obtained in polynomial time with respect to the system model size. If, after the
observation of an event, the state estimate of the PND is equal to the empty set with
respect to a specific fault, then this fault is diagnosed. Methods to convert the PND to
Programmable Logic Controller languages, such as Ladder and Sequential Function Chart
(SFC), are also proposed in Cabral et al. (2015).

Several fault diagnosis strategies for DESs modeled by PNs have also been proposed
in the literature. In the PN modeling, events are usually associated with transitions, leading
to the so-called Labeled Petri Net (LPN). The main advantage of modeling systems using
a PN formalism instead of automata is the more complex structure that makes it more
suitable to describe some structural information of the system, such as concurrency and
synchronization, leading to more compact models. The fault diagnosis of bounded PN
models can be carried out directly from the reachability graph of the net by applying
the methods developed for systems modeled by automata. The main advantage of these
methods is the fast tracking of the system states after the observation of events. However,
if there are several subsystems operating concurrently, the reachability graph of the system
may have a large number of states and transitions, which requires a large amount of memory
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to store it. In order to circumvent the memory space problem, an alternative would be
to compute on the fly the next state estimate of the Petri net, after the observation of
an event. This can be done based on the current state estimate and the system model.
The main disadvantage of this method is the time necessary to compute online the state
estimate of the system. In this case, the system cannot execute any observable event until
the next state estimate is computed, which can generate false diagnosis status restricting
the application of this approach.

In order to avoid the construction of the complete reachability graph, recent works
in fault diagnosis of systems modeled by PNs have been proposed. The so-called basis
markings and minimal explanations have been presented in Cabasino et al. (2010) to
avoid the construction of the complete reachability graph for PNs with unobservable
transitions, called silent transitions (CABASINO et al., 2010). The introduction of the
concept of minimal explanations, which provide the shortest unobservable firing sequence
that explains, for a given marking, the observable transition that has fired, together with
basis markings, which is a part of the reachability set related with the sequence that has
fired are used in Cabasino et al. (2010) to provide a method for diagnosis of LPN. In
the case of bounded LPN systems, Cabasino et al. (2010) also proposes a deterministic
graph called Basis Reachability Graph (BRG), to perform most of the computations offline.
However, in the worst-case, according to Yue et al. (2019), the number of nodes of the
BRG is equal to the number of reachable states in the reachability tree. Hence, computing
the BRG has the same complexity as computing the reachability graph in a worst-case
scenario.

Lefebvre and Delherm (2007) proposed an approach based on state estimation,
where it is considered that some places of the PN system model are observable and
diagnosis techniques are provided by solving a set of constraints. This method avoids
the construction of the whole reachability graph of the system, that must be modeled by
ordinary, live and safe PNs. One of the main algorithms in Lefebvre and Delherm (2007),
provides a list of the minimal sets of places that must be observed to perform the state
estimation for a given firing sequence. It is important noticing that this algorithm is NP
complete.

An interpreted diagnoser based on the online solution of programming problems
is proposed in Basile et al. (2009). The method avoids the computation of all possible
reachable markings of the net after the observation of a sequence of events. However, it is
assumed that the net does not have two different observable transitions labeled with the
same event.

In all fault diagnosis approaches mentioned above, fault detection and isolation are
carried out at the same time, i.e., the fault is identified only after it is distinguished from
all other fault event types. A different strategy is presented in Roth et al. (2011), Moreira
and Lesage (2019) and Souza et al. (2020), where the fault diagnosis is carried out in two
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steps, firstly the fault is detected and then, fault candidates are isolated. This strategy is
suitable for systems where the fault must be detected as soon as possible, stopping the
plant execution, in order to avoid the loss of products and ensure the security of equipment
and system operators. As a consequence, when the fault is detected, only fault candidates
are provided in the isolation step and not the specific type of fault that has occurred.

In this work, a fault diagnosis method for systems modeled by LPNs is proposed.
As in Roth et al. (2011), Moreira and Lesage (2019) and Souza et al. (2020), the fault
detection is carried out first, and then, fault candidates are isolated. In order to do so,
the observed sequence of events and the Petri net model of the complete system behavior
are used to compute the fault candidates. This step is performed offline, and thus, the
observed reachability graph can be computed without interfering in the fault detection.
In this work, the fault detection scheme is based on the construction of an LPN from the
fault-free behavior system model, called Observable Behavior Labeled Petri net (OBPN),
whose transitions are all labeled with observable events and whose generated language
is equal to the observable fault-free language of the system. The OBPN provides all
observable events of the fault-free system behavior that are feasible after the observation
of a sequence of events. Thus, the detection is carried out by analyzing the marking of
the OBPN after the observation of a sequence of events. If an event that does not label
any enabled transition of the OBPN is observed, then the fault is diagnosed.

Differently from Lefebvre and Delherm (2007), the fault detection is performed
only by observing system events. In this regard, it is assumed that the system may have
unobservable events, and the fault is diagnosed when its occurrence can be detected after
a bounded number of event occurrences. Differently from Basile et al. (2009), the Petri
net model of the system may have more than one observable transition labeled with the
same event. Differently from the works presented in Cabasino et al. (2010, 2011), our
method is not based on the construction of reachability graphs to perform detection. It is
important to remark in most cases that the number of places and transitions of the OBPN
is smaller than or equal to the number of places and transitions of the LPN that models
the fault-free system behavior. Thus, the memory required to implement the diagnoser
is smaller than the memory needed to implement other PN diagnosers proposed in the
literature.

Moreover, in this work, an example of a weighing-mixing system, introduced in the
international standard IEC 60848, with two fault types is constructed to illustrate the
detection and isolation of a fault in a diagnosable practical system. Other case study is
presented to show the efficiency of the proposed method compared to other approaches
of the literature. Both study cases illustrate the class of PNs covered with the method
proposed in this work. In the next section, we present the general and specific objectives
of this work.
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1.1 OBJECTIVES

The aim of this work is to develop a fault diagnosis method for DESs modeled as
PNs, using only the structure of the net that models the system, without the need to con-
struct additional structures as reachability graphs, basis markings, minimal explanations
or solving a set of constraints.

Firstly, we explore fault detection methods in DESs modeled as PNs with a set of
observable transitions, then we develop a fault detection technique using only the model
structure to construct the diagnoser. After the fault is detected, the observation of the
generated sequence of the system is then used to isolate fault candidates.

1.1.1 Specific objectives

The specific objectives of the presented work are enumerated in the following.

1. Investigate fault diagnosis methods of DESs modeled by PNs with a set of observable
transitions;

2. Construct the Observable Behavior Petri net (OBPN);

3. Propose a method to detect the fault occurrence;

4. Propose a method to isolate the fault occurrence that was prior detected;

5. Apply the developed approach to a practical system.

1.2 ORGANIZATION OF THE WORK

Chapter 2 presents a literature review about DESs, PNs and their main properties
to a better understanding of the developed approach. Also, a brief explanation about the
difference between the diagnosis problem and the verification of diagnosability problem is
shown with an example. The problem considered in this work is formulated in Chapter 3,
where the algorithms for the computation of the OBPN are proposed. In this chapter, a
running example is used to illustrate the results. A case study is presented in Chapter 4,
where the practical system is the weighing-mixing introduced in the international standard
IEC 60848 (IEC:60848, 2002) with two fault types considered. In Chapter 5 conclusions
are drawn.
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2 BACKGROUND

A Discrete-Event System (DES) is a system whose state space is a discrete set and
the state transition mechanism is event-driven, i.e., the evolution of the system depends
on events that occur, typically, asynchronously over time. Events cause the state transition
of the system and can be thought as an instantaneous action that leads the system to
another state. For example, the press of a button by a human operator, can happen
for any reason in any point of time, causing the system to instantaneously evolve to a
different state. Thus, due to the nature of DESs, differential or difference equations are
not appropriate to describe their behavior. Therefore, mathematical modeling formalisms
to develop appropriate models that describe the behavior of these systems and provide a
framework for analysis techniques are needed.

In order to present the mathematical formalisms used to model the behavior of
many systems, it is important to know how these behaviors can be represented. In this
regard, when considering the evolution of a DES, we need to know the sequence of events
that the system has generated and, associate it with the change in system states. To
correct represent the behavior of the system and provide analysis techniques, mathematical
modeling formalisms as automata and Petri nets (PNs) were developed (CASSANDRAS;
LAFORTUNE, Stephane, 2009; MURATA, 1989).

The most ordinary class of DES models is formed by automata, they are a intuitive
and easy to use tool but, in some cases, modeling complex systems may lead to a very large
state space due to its lack of structure. On the other hand, Petri nets have more structure,
they are commonly used to represent systems with synchronous, asynchronous, concurrent
and parallel activities and, most of them, in a more compact way than automata. Both
PNs and automata are defined and represented graphically as graphs. In this work, we
only consider systems modeled with PNs and we propose a PN based diagnoser method
that keep track with the observable fault free behavior of the system.

With that in mind, in the next section we formally define languages and then, in the
following sections, we present the structure, the main properties and modeling formalisms
of Petri nets. Lastly, in section 2.7 the diagnosability definition of systems modeled by
PNs is presented.

2.1 LANGUAGES

In this work, we use the symbol Σ to represent a set of events of a give system
model and the symbol σ to represent a generic event. A sequence of events is represented
here as s and its length is denoted by ||s||. We can also have an empty sequence, whose
length is equal to zero, denoted as ε. The formal definition of language is presented in the
following.
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Definition 1 (Language). A Language L defined over a set of events Σ is a set of finite
length sequences of events from Σ.

Therefore, a language L generated by a system represents all sequences of events
that can occur in the system. For example, the language L = {ε, a, ab, baa, aab} defined
over Σ = {a, b} is formed by five sequences, including the empty sequence ε. The symbol
? is used in this work to represent the Kleene-closure operation, where Σ? denotes the set
of all possible finite length sequences formed with elements of Σ.

The language of a system that can always evolve from any generated sequence
of events is called live. The formal definition of a live language is presented bellow in
Definition 2 (CASSANDRAS; LAFORTUNE, Stephane, 2009).

Definition 2 (Live language). A language L is said to be live if for all s ∈ L, there exists
σ such that sσ ∈ L.

In order to create and modify languages, we can apply operations such as con-
catenation, the Kleene-closure, and the projection. These operations are defined in the
following in definitions 3, 4, 5, and 6, respectively. It is also important to remark that, as
languages are sets, therefore all set operations can be applied to them (CASSANDRAS;
LAFORTUNE, Stephane, 2009; MURATA, 1989).

Definition 3 (Concatenation). Let L1, L2 ⊆ Σ?, then the concatenation L1L2 is defined
as:

L1L2 = {s = s1s2 : (s1 ∈ L1) and (s2 ∈ L2)}

A sequence s is in L1L2 if it is formed by the concatenation of a sequence s1 ∈ L1
and s2 ∈ L2. For example, let L1 = {ε, a, ab, baa} and L2 = {cd, cdd} then, the concate-
nation of L1 and L2 is given by L1L2 = {cd, cdd, acd, acdd, abcd, abcdd, baacb, baacdd}.

Definition 4 (Kleene-closure). Let L ⊆ Σ
?
, then

L? = {ε} ∪ L ∪ LL ∪ . . .

An element of L? is formed by the concatenation of elements of L. By defini-
tion, the empty sequence ε is also an element of L?, because it represents the con-
catenation of zero elements. For example, the kleene-closure of language L1 is given
by L?1 = {ε, a, ab, baa, aab, abaa, aa, abab, baabaa, . . .}.

It is necessary to define prefix and suffix of a sequence s, in order to present the
formal definition of prefix-closure. To do so, let s = tuv, where t, u, v ∈ Σ?, then t is a
prefix of s, u is a subsequence of s, and v is a suffix of s. The prefix-closure of a language
L is formally defined as follows (CASSANDRAS; LAFORTUNE, Stephane, 2009).

Definition 5 (Prefix closure). Let L ⊂ E?, then

L̄ := {s ∈ E? : (∃t ∈ E?) [st ∈ L]}
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i.e., the prefix closure of language L is the language denoted by L̄ and consisting of all the
prefixes of all sequences in L.

For example, the prefix-closure of L = {abc} is given by L̄ = {ε, a, ab, abc}.
Another important operation that can be applied to sequences or languages is the

projection operation, defined as follows.

Definition 6 (Natural projection). The projection P ls : Σ?l → Σ?s, where Σs ⊂ Σl, is
defined recursively as follows:

P ls(ε) = ε

P ls(σ) =

{
σ, if σ ∈ Σs

ε, if σ ∈ Σl\Σs,
P ls(sσ) = P ls(s)P

l
s(σ), for all s ∈ Σ?l , σ ∈ Σl,

where \ denotes the set difference operation.

According to Definition 6, the natural projection operation erases all events σ ∈
Σl\Σs from the sequences s ∈ Σ?l . For example, let Σl = {a, b, c} and Σs = {a, c}, consider
the language L = {a, b, ac, abb, acbc, bcc} then, the projection P ls of L ∈ Σ?l is given by
P ls(L) = {ε, a, ac, cc, acc}.

The language of a DES is the set that contains all the information about all possible
sequences that a system is capable to generate. As one can notice, to describe a DES only
by its generated language can be a difficult task. Then, structures that are capable of
representing languages and can be manipulated using operations as the ones defined above,
allowing the construction and analysis of system with complex behavior are necessary.
In the next section, we finally define the formalism of PNs, that is used in this work to
represent languages.

2.2 PETRI NETS

Petri nets (PNs) are a graphical and mathematical modeling tool firstly developed
by Carl Adam Petri in the early sixties. A PN can be enunciated as a direct, weighted,
bipartite graph with an initial state, called initial marking. Its graph consist of two kinds
of nodes called places and transitions, where arcs can connect either places to transitions
or transitions to places. A marking assigns to each place p a positive integer, then we
can say that p is marked with k tokens. Graphically, places are drawn as empty circles,
transitions as bars and tokens as black dots.

In a PN, events are associated with transitions and, to a transition fire, a set
of conditions must be satisfied. The information regarding these conditions are held in
the places, that can be input and/or output places of a transition. Input places are
associated with the necessary conditions required for this transition fire and output places
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can be seen as the new conditions affected by the occurrence of this transition (MURATA,
1989; CASSANDRAS; LAFORTUNE, Stephane, 2009). In the following subsection, the
structure of a Petri net graph and its relations are defined.

2.2.1 Petri net graph

A Petri net graph is composed of two types of nodes, places and transitions, and
arcs connecting them. This can be seen as relationships that define the basic components
of a Petri net structure. As a PN is a bipartite graph, arcs do not connect nodes of the
same type. The formal definition of a Petri net graph is given as follows (CASSANDRAS;
LAFORTUNE, Stephane, 2009; MURATA, 1989).

Definition 7 (Petri net graph). A Petri net graph is a weighted bipartite graph

(P, T, Pre, Post) ,

where P is the set of places, T is the set of transitions, Pre : (P × T )→ N = {0, 1, 2, . . .}
is the function of ordinary arcs that connect places to transitions, and Post : (T ×P )→ N
is the function of ordinary arcs that connect transitions to places.

The set of finite places is denoted by P = {p1, p2, . . . , pn} and the finite set of
transitions is denoted by T = {t1, t2, . . . , tm}. Therefore, |P | = n, |T | = m, where |.|
denotes set cardinality. The set of input places (resp. input transitions) of a transition
tj ∈ T (resp. place pi ∈ P ) is denoted as Ip(tj) (resp. It(pi)), and is formed by the
places pi ∈ P (resp. transitions tj ∈ T ) such that Pre

(
pi, tj

)
> 0 (resp. Post(tj , pi) > 0).

Analogously, the set of output places (resp. output transitions) of a transition tj ∈ T (resp.
place pi ∈ P ) is denoted as Op

(
tj
)
(resp. Ot (pi)), and is formed of the places pi ∈ P

(resp. transitions tj ∈ T ) such that Post
(
tj , pi

)
> 0 (resp. Pre

(
pi, tj

)
> 0).

The functions Pre and Post determine the number of arcs, or weight of the arc,
that connect places to transitions and transitions to places. The values of these functions
are shown in the graph only if they are greater than 1. In the sequel, an example of the
graph of a Petri net is presented, and then, subsection 2.2.2 presents how conditions are
described in a PN graph. The PN examples of this section were based on Cabral (2017)
thesis.

Example 1. Let the graph of a Petri net, presented in Figure 1, be defined as P = {p1, p2},
T = {t1}, Pre(p1, t1) = 1, Post(t1, p2) = 2. In this example, Ip(t1) = {p1} and It(p2) =

{t1}, Ot(p1) = {t1} and Op(t1) = {p2}.

2.2.2 Petri net marking

As mentioned above, in a Petri net, transitions are associated with events driving
a DES and places describe conditions under which these transitions can occur. So, in this
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p1 t1 p2

2

Figure 1 – Petri net graph of example 1.

circumstances, token is the name given to the element that indicates if these conditions
are met, therefore, when tokens are assigned to places, we have a Petri net called marked
Petri net. Formally, the number of tokens assigned to a place pi is given by x(pi), where
x : P → N is a marking function. The marking of a PN is represented by the column

vector x =
[
x(p1) x(p2) . . . x(pn)

]T
formed of the number of tokens in each place pi,

for i = 1, . . . , n.
Graphically a token is drawn as a dark dot or a number in the assigned place. In

the following we present the formal definition of a marked Petri net.

Definition 8 (Petri net). A marked Petri net N is a five-tuple

N = (P, T, Pre, Post, x0) ,

where (P, T, Pre, Post) is a Petri net graph and x0 : P → N is the initial marking function.

In a marked Petri net, or simply Petri net, the marking vector x represents the
system state and for each new reachable state, the PN reaches a new marking. In the
sequel, we present an example of a marked PN. The initial marking of a PN is denoted as
x0.

Example 2. Let N be the Petri net graph defined in Example 1. Figure 2 shows two

possible initial markings, x10 =
[
1 0

]T
and x20 =

[
1 2

]T
, for Petri net N .

p1 t1 p2

2

(a) Initial marking x10

p1 t1 p2

2

(b) Initial marking x20

Figure 2 – Petri Net N of example 2 with two different initial markings.

In a Petri net, a transition tj ∈ T is said to be enabled when the number of tokens
assigned to each input place of tj is greater or equal to the weight of the arcs that connect
the places of Ip(tj) to transition tj . The mathematical definition of an enabled transition
is presented in the sequel.

Definition 9 (Enabled transition). A transition tj ∈ T is said to be enabled if

x (pi) ≥ Pre
(
pi, tj

)
,∀pi ∈ Ip

(
tj
)
.
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In the following subsection, the dynamics of a Petri net graph is presented.

2.2.3 Petri net dynamics

In a Petri net, when a transition is enabled it can fire. The state transition function
of a PN is defined through the change in the marking of the places due to the firing of an
enabled transition. If a transition tj is enabled, for a given marking x, and tj fires, a new
marking x′ is reached according to the following state transition equation

x′(pi) = x(pi)− Pre(pi, tj) + Post(tj , pi), for i = 1, . . . , n. (1)

According to Equation (1), if pi is an input place of tj and tj fires, the number
of tokens that are equal to the weight of the arc that connects pi to tj , Pre(pi, tj), are
removed. Similarly, if pi is an output place of tj , it receives the amount of tokens as the
weight of the arc that connects tj to pi, Post(tj , pi). Example 3 shows the evolution of a
Petri net due to the firing of a transition.

Example 3. Consider the PN depicted in Figure 3 (a). Notice that transition t1 is enabled

for the initial marking x0 =
[
1 0

]T
and it can fire. When t1 fires, one token is removed

from p1, since the weight of the input arc of t1 is 1, and two tokens are added in p2, since
the weight of the arc that connects t1 to p2 is 2. The resulting marking due to the fire of

t1 is x =
[
0 2

]T
, as shown in Figure 3 (b).

p1 t1 p2

2

(a)

p1 t1 p2

2

(b)

Figure 3 – Petri Net N of Example 3 with transition t1 enabled (a) and the new marking
reached after the firing of t1 (b).

In this work, we represent the transition function of the Petri net as f : Nn×T → Nn.
Thus, the firing of an enabled transition tj in state x leads to the new marking x′ = f(x, tj).
The domain of f can be extended to Nn×T ?, where ? denotes the Kleene-closure operator,
to consider a sequence of transition firings as f(x, θ) = x, where θ denotes the empty
sequence of transitions, and f(x, stj) = f(f(x, s), tj), for all s ∈ T ? and tj ∈ T .

In the sequel, we present the construction of a reachability graph, where its structure
is commonly used for analysis techniques, such as the fault diagnosis proposed in this
work.
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2.2.4 Reachability graph of a Petri net

The reachability graph of a Petri net, represents all possible states reached by the
initial marking of the PN graph. At each new state reached by the fire of a transition, a
new node is added to the graph. If the fire of a transition leads to a state that already
exists on the reachability graph, then, its transition is drawn back to the respective node.
In the following we illustrate this method with an example.

Example 4. Consider the Petri net graph depicted in Figure 4 (a), where the initial

marking is given by x0 =
[
2 0 0

]T
. So, the initial state of the reachability graph depicted

in Figure 4 (b), is given by the initial state [2, 0, 0]. Now, we need to examine all transitions
that can fire from the initial state and define these states as new nodes in the graph. In
this example, the only transition that is enable to fire due to the initial marking of the PN
is t0, which leads to the new state [1, 1, 0], in Figure 4 (b) represented by state 1.

From state 1, transitions t0, t1 and t2 are enabled. If t1 fires we reach state 0, that
is the initial state of the graph. If t0 fires, we reach state 2, given by [0, 2, 0]. If t2 fires,
we reach state 3, given by [1, 0, 1].

Suppose we are in state 2, transitions t1 and t2 are enabled, if t1 fires, we reach
state 1 again, if transition t2 fires, state 4, given by [0, 1, 1], is reached. In state 4, it
is possible to go back to state 2 with the firing of transition t3, and then, state 3 can
be reached with the firing of transition t1, or state 5 can be reached with the firing of
transition t2. We follow discovering all the states and transitions that are possible from
the initial marking until there are no more new nodes or new connections between nodes.
Therefore, the reachability graph resulting from the Petri net presented in Figure 4 (a) is
the reachability graph presented in Figure 4 (b).

p0

t1

p1

t0

t3

t2

p2

(a)

0

1

t0

2 3

t0
t1

t2

t3

4

t2

t3

t0

t1

5
t3

t2

t1

[2, 0, 0]

[1, 1, 0]

[0, 2, 0] [1, 0, 1]

[0, 1, 1]

[0, 0, 2]

(b)

Figure 4 – Petri net graph, 4 (a) , of Example 4 and its reachability graph 4 (b).

In the sequence we present some important Petri net properties.
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2.3 PETRI NET PROPERTIES

In this section, important concepts are briefly explained, so that the reader can
understand some properties used to developed the approach presented in Chapter 3.

2.3.1 Deadlock free

A PN is said to be deadlock free if no reachable marking is a deadlock, i.e., all
reachable markings enable at least one transition of the net (DAVID; ALLA, 2005).

2.3.2 T ′-induced subnet

Definition 10 presents the T ′-induced subnet defined by Cabasino et al. (2012).

Definition 10 (T ′ - induced subnet). Let T ′ be a subset of T . The T ′-induced subnet of
a Petri net N = (P, T, Pre, Post, x0) is the subnet N ′ = (P, T ′, P re′, Post′, x0), where
Pre′ : P × T ′ → N and Post′ : T ′ × P → N with Pre′

(
pi, tj

)
= Pre

(
pi, tj

)
and

Post′
(
tj , pi

)
= Post

(
tj , pi

)
, for all tj ∈ T ′ and pi ∈ P .

Therefore, a T ′-induced net contains all places of the original net N , but only the
transitions in the subset T ′ and their related arcs.

In the next section we define the formalism of Labeled Petri nets to establish a
correspondence between events and transitions of a Petri net graph.

2.4 LABELED PETRI NET

In order to use Petri nets to model Discrete-Event systems and represent languages,
we associate events to each transition of the Petri net. This is carried out by a labeling func-
tion, leading to the so-called Labeled Petri nets (LPNs) (CASSANDRAS; LAFORTUNE,
Stephane, 2009), defined as follows.

Definition 11 (Labeled Petri net). A labeled Petri net is a seven-tuple

Nl = (P, T, Pre, Post, x0,Σ, `) ,

where (P, T, Pre, Post, x0) is a Petri Net, Σ is the set of events, and ` : T → Σ is the
labeling function that assigns events of Σ to transitions in T .

An enabled transition tj in a Labeled Petri net, only fires when the event associate
it occurs. Example 5 presents this dynamic.

Example 5. Consider the LPN presented in Figure 5, where P = {p1, p2}, T = {t1, t2, t3, t4},
Pre(p1, t2) = Pre(p2, t3) = Pre(p2, t4) = 1, Post(t1, p1) = Post(t2, p2) = 1, x0 =[
1 0

]T
, Σ = {a, b, c, d}, `(t1) = {a}, `(t2) = {b} , `(t3) = {c} and `(t4) = {d}. In this
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example, transitions t1 and t2 are enabled and can fire as soon as events a or b occurs,

respectively. Suppose we change the initial marking of the net to x0 =
[
0 1

]T
, then the

transitions t1, t3 and t4 would be enabled and could fire when events a or c, or d occurs,
respectively.

p1t1 p2t2 t4

a b d
c t3

Figure 5 – Labeled Petri Net Nl of example 5.

The domain of the labeling function ` can be extended to consider sequences of
transition firings, i.e., ` : T ? → Σ?, as `(θ) = ε, where ε denotes the empty sequence of
events, and `(st) = `(s)`(t), for all s ∈ T ? and t ∈ T . The labeling function can also be
applied to a set of sequences of transitions B ⊆ T ? as `(B) = ∪s∈B`(s).

In the sequel we present sequences and languages generated by Labeled Petri nets.

2.5 PETRI NET LANGUAGES

The language L(N ) generated by a Labeled Petri net N , or simply L, represents
all sequences of transitions labels that are obtained by all possible sequences of transitions
firings. The language L of a Petri net N is defined over a set of events Σ, where Σ is
a set of finite length sequences of transitions labeled with the function `. Then, before
explaining the subject matter of the presented work in section 2.7, we first present the
concepts of fault and fault free sequences in order to define faulty and fault free languages.

Definition 12 (Fault and fault free sequences). A fault sequence is a sequence of events
s such that σf is one of the events that form s. On the other hand, a fault free sequence
is one that does not contain the fault event σf .

Definition 13 (Fault and fault free languages). The fault free language LN ⊂ L is the
set of all fault free sequences of L and the set of all sequences generated by the PN model
of the system that contain σf is LF = L \ LN .

The next section present some Petri net classes used in this work.

2.6 PETRI NET CLASSES

In this section, classes of Petri nets considered in the development of this work are
formally presented.
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2.6.1 Safe Petri net

A place pi ∈ P is said to be safe, if x(pi) ≤ 1 for all reachable markings of the net.
A Petri net is said to be safe for a given initial marking x0, if all places are safe for all
reachable markings of the net (DAVID; ALLA, 2005).

2.6.2 Ordinary Petri net

An ordinary Petri net is a PN such that Pre(pi, tj) ≤ 1 and Post(tj , pi) ≤ 1, for
i = 1, . . . , n and j = 1, . . . ,m(MURATA, 1989).

2.6.3 State machine Petri net

A particular class of ordinary Petri nets is the so-called State Machine Petri Net
(SMPN). An SMPN is an ordinary PN in which each transition has exactly one input
place and one output place. SMPNs allow the representation of conflicts, but not the
synchronization of concurrent activities (MURATA, 1989). In the following, example 6
shows an SMPN graph.

Example 6. Figure 6 graphically represent an state machine Petri net, where each tran-
sition has only one input and one output place.

p1

t1 t3

t4 p5

p2 t2 p3

t5

p4

Figure 6 – Petri Nets of class SMPN of Example 6 .

In the following section, we present the diagnosability of DESs modeled as LPN.

2.7 DIAGNOSABILITY OF DISCRETE EVENT SYSTEMS MODELED BY PETRI
NETS

The diagnosis subject can be divided into two different problems: the diagnosis
and the verification of diagnosability. A diagnosis problem is the one concerned with
determining which faults, if any, explain certain sequences of observable events with
respect to the system model. Whereas, a diagnosability problem is to determine if, once
a fault has occurred, a diagnoser can detect its occurrence in a finite number of events
occurrences. Therefore, the system needs to be diagnosable, so a fault diagnosis method
can be applied. The works of Bakalara et al. (2020), Cabral (2017), Cabral et al. (2015),
Cabasino et al. (2013, 2011, 2010), Dotoli et al. (2009), Ru and Hadjicostis (2009), Basile
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et al. (2009) and Lefebvre and Delherm (2007), and Genc and Stéphane Lafortune (2003)
propose approaches to diagnosis, while Cabasino et al. (2014, 2009, 2012) and Moreira
et al. (2011), and Sampath et al. (1995) are concerned with verifying the diagnosability.
In these frameworks, faults are usually modeled as unobservable events, otherwise its
diagnosis would be straightforward.

The first relevant approach of diagnosis and diagnosability of DESs were developed
within the automata framework in the late nineties. In the pioneer work of Sampath et al.
(1995, 1996) the basic and fundamental concepts are defined, and then, an approach based
on the system model, where the fault diagnosis could be done following only the current
diagnoser state is presented. The mathematical definition of diagnosability proposed by
Sampath et al. (1995) is shown in Definition 14.

Definition 14 (Language diagnosability). Let L and LN ⊂ L be the prefix-closed and live
languages generated by the system and the fault free model of the system, respectively. Let
LF = L\LN . Then, L is said to be diagnosable with respect to the projection Po : Σ? → Σ?o

and Σf if the following holds

(∃z ∈ N) (∀s ∈ LF ) (∀st ∈ LF ) (‖t‖ ≥ z ⇒ (Po(st) /∈ Po (LN )))

where ‖.‖ denotes the length of a sequence.

According to Definition 14, L is diagnosable with respect to the projection Po, and
the set of fault events Σf , if, and only if, for all fault sequences st with arbitrarily long
length after the occurrence of a fault event, there does not exist a fault free sequence
sN ∈ LN , such that Po(st) = Po(sN ). Thus, if L is diagnosable, then it is always possible
to identify the occurrence of a fault event after a bounded number of observations of
events. It is important to remark that in order to this definition be stated, it is assumed
that the language generated by the system is live.

At a later time, the diagnosis problem were addressed to PNs due to the well known
fact that PN models of systems that have behaviors such as concurrency and synchro-
nization usually are more compact than their correspondent automata representations.
For this reason, PNs started to be considered suitable due to its analytical capabilities
and its distributed nature, that allows the reduction of the computational complexity
when solving diagnosability problems by avoiding the construction of the entire reachabil-
ity graph (FANTI; SEATZU, 2008; ZAYTOON; LAFORTUNE, Stéphane, 2013; GIUA;
SILVA, 2018). Before we present the notion of diagnosability of LPN modeled systems, we
first define some important notation.

Let Nl be an LPN that models the system. The set of all finite-length sequences of
transitions that can fire from the initial marking x0 is given by S = {s ∈ T ? : f(x0, s)!},
where ! denotes is defined. The language generated by Nl, L, is obtained using the labeling
function ` and is defined as L = `(S).
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The set of events Σ can be partitioned as Σ = Σu∪̇Σo, where Σu and Σo denote,
respectively, the sets of unobservable events and observable events. The set of fault events
is denoted by Σf ⊆ Σu. In this work, for simplicity, we consider that the system has a
unique fault event, i.e., Σf = {σf}. The sets of transitions labeled by events of Σo, Σu

and Σf are denoted by To, Tu and Tf , respectively.

Definition 15 (Mask function). The observation mask function M : T ? → Σ?o, is re-
cursively defined as M(tj) = σ, if tj ∈ To, where σ = `(tj), M(tj) = ε, if tj ∈ Tu,
M(stj) = M(s)M(tj), for all s ∈ T ? and tj ∈ T , and M(θ) = ε.

The inverse mask function M−1 : Σ?o → 2S is defined as M−1(ρ) = {s ∈ S :

M(s) = ρ}.
Let SF be the set formed of all sequences of transitions of S that have at least

one fault transition tf ∈ Tf . The following definition of diagnosability of an LPN can be
stated.

Definition 16. A deadlock free LPN Nl is diagnosable with respect to M : T ? → Σ?o and
Tf if

(∃z ∈ N)(∀ν ∈ SF )(∀νµ ∈ SF )(‖µ‖ ≥ z ⇒
∀ρ ∈M−1(M(νµ)), ρ ∈ SF ). (2)

�

The set of all sequences of transition firings that does not contain any transition
from Tf is denoted by SN . Thus, SN = S \ SF . The LPN that models SN is denoted
in this work as NN = (PN , TN , P reN , PostN , x0,N ,ΣN , `N ), where ΣN = Σ \ Σf . Note
that TN can be partitioned as TN = TNo

∪̇TNu
, where TNo

⊂ To and TNu
⊂ Tu denote

the sets of observable and unobservable transitions of NN , respectively. In the following,
an example is presented in order to illustrate the notion of language diagnosability for
labeled Petri nets.

Example 7. The Labeled Petri net system depicted in Figure 7 is formed by five places
P = {p1, p2, p3, p4, p5} and six transitions T = {t1, t2, t3, t4, t5}, labeled by the observable
events Σo = {a, b} and unobservable events Σu = {c, σf}, where σf is the fault event.
The observable behavior of the fault free model of the system is given by the set of event
sequences {a, ab, aba, abab, ...}. At each occurrence of the event a, it is expected that the
next observation is event b, and thus, we form a pattern where after every event a, b is
also observed. For example, sequence abab is an expected behavior of the system. After the
occurrence of the fault σf , the behavior of the system is given by the set a? and in this
case, event b is no longer observed. Thus, the system is said to be diagnosable due to the
fact that it is possible to identify the fault within a finite number of event occurrences, in
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Figure 7 – Labeled Petri net for example 7.

this case, as soon as two events in sequence are observed. Thereby, to perform the fault
diagnosis in this system, its just necessary to observe two occurrences of event a.

On the other hand, suppose that the observable event set changes to Σo = {a, c}.
The observable behavior of the fault free model of the system is given by the set of event
sequences {a, ac, aca, acac, ...}. At each occurrence of event a, we expect to see event c.
But after the fault occurrence, σf , the set of observable sequence of events is given by
{a, ac, aca, acac, ...}, that is the same sequence expected in the fault free behavior of the
system. Therefore, fault diagnosis methods cannot be applied in this system conditions,
because the system is not diagnosable due to the fact that is not possible to distinguish
between the fault free and the fault sequence behaviors.

In the following chapter, we present the algorithms to perform fault diagnosis in
systems modeled with Labeled Petri nets.
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3 FAULT DIAGNOSIS OF DISCRETE EVENT SYSTEMS BY A CLASS
OF PETRI NETS

In this chapter, we describe the approached problem and then present the algorithms
and conditions to compute the observable behavior Petri net of the fault free system model.

3.1 PROBLEM FORMULATION

The fault diagnosis scheme in two steps proposed in this work is depicted in
Figure 8. First, a comparison between the set of observable feasible events of the model
at the current state xc, Γ (xc), with the observed event σo generated by the plant, is
carried out. If σo ∈ Γ(xc), then the fault is not detected and a signal is emitted to the
model player to update the current state xc of the model and compute the new set of
observable feasible events Γ(xc). The fault isolation module also receives the observed
event σo, and computes the next possible states considering the complete Petri net system
model, including the post-fault behavior, and the current state estimate of the system.
On the other hand, if σo 6∈ Γ(xc), then the fault is detected and a signal is emitted to
the fault isolation module to compute the fault candidates. The model player initiates
providing the observable feasible events at the initial state x0 of the model.

It is important to remark that, if the fault isolation module receives an observed
event while it is updating its state estimate, then a first-in first-out queue is formed with
the observed events. Thus, after the fault detection, it may be necessary to wait the fault
isolation module to process offline all observed events before providing the fault candidates.
This process can be performed using traditional techniques found in the literature. The
advantage of this method is that it does not interfere with the fault detection and the
system can be halted as soon as the fault is detected.

Plant

OBPN

Model player
Set of feasible
events Γ(xc)

σo ∈ Γ(xc)?

No

Fault isolation

Observed
event σo

Yes

module

Fault detector

Figure 8 – Fault diagnosis scheme for LPN.
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In order to perform an online fast computation of the set of observable feasible
events of NN , it is necessary to compute from NN an LPN that does not have un-
observable transitions. By doing so, one can easily track the state of the new LPN in
order to compute the observable feasible events, without the need for computing any
unobservable reach. Let us call the Petri net obtained from NN such that all tran-
sitions are observable, the observable behavior labeled Petri net (OBPN), denoted as
No = (Po, TNo

, P reo, Posto, x0,o,ΣN , `o). In order to use No for fault detection, without
increasing the detection delay, it is necessary to guarantee that its generated language is
equal to the observable language of the fault-free system model. Thus, the objective of
this work is to find a labeled Petri net No from NN such that M(SN ) = `o(So), where
So = {s ∈ T ?No

: fo(x0,o, s)!} and fo : Nn × T ?No
→ Nn is the transition function of No.

In order to characterize the class of labeled Petri nets that can be used in the fault
diagnosis scheme proposed in this work, we need to consider the following assumptions
regarding the system model:

A1. The LPN system model Nl is safe.

A2. There is no sequence of transition firings s ∈ S such that s = uv, where u ∈ T ?,
v ∈ T ?u , and v has arbitrarily long length.

A3. Two or more transitions of NN labeled with the same observable event cannot be
simultaneously enabled for any marking estimate.

It is important to remark that several practical systems can be modeled by safe
Petri nets (MURATA, 1989; LEFEBVRE; DELHERM, 2007), and thus Assumption A1
holds true in several cases, as in the example presented in Chapter 4. Assumption A2
requires that the system does not have cycles of unobservable events, which is a usual
assumption considered in the fault diagnosis of DES (SAMPATH et al., 1995). Assumption
A3 implies that the observation of an event is related with the firing of only one observable
transition of NN that is feasible for all reachable markings of the current marking estimate.
Thus, after the observation of an event generated by the system, one can uniquely identify
which transition has fired. It is important to remark that Petri nets that do not have
two different observable transitions labeled with the same event, as the PN considered in
(BASILE et al., 2009), satisfy Assumption A3.

In the following, the steps to compute the Petri net No are presented.

3.2 COMPUTATION OF No

The method proposed in this work, consists of modifying the fault free labeled
Petri net model, NN , in order to compute the OBPN No by removing all unobservable
transitions tu ∈ TNu

of NN . The method is based on the merging of the input and output
places of each transition tu of NN by following the steps of Algorithm 1.
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Algorithm 1 Eliminating an unobservable transition tu of NN .
Input: NN =

(
PN , TN , P reN , PostN , x0,N ,ΣN , `N

)
and tu ∈ TNu

Output: N ′N =
(
P ′N ,T

′
N ,P re

′
N ,Post

′
N ,x
′
0,N ,ΣN ,`

′
N

)
1: T ′N = TN \ {tu}
2: Define Pu = {px,y : px ∈ Ip(tu) ∧ py ∈ Op(tu)}
3: P ′N = (PN \ (Ip(tu) ∪Op(tu))) ∪ Pu
4: Pre′N (pi, tj) = PreN (pi, tj) for all pi ∈ P ′N \ Pu and tj ∈ T ′N
5: Post′N (tj , pi) = PostN (tj , pi), for all tj ∈ T ′N and pi ∈ P ′N \ Pu
6: for each px,y ∈ Pu do
7: Pre′N (px,y, tout) = 1, ∀tout ∈ Ot(px) \ {tu}
8: Pre′N (px,y, tout) = 1, ∀tout ∈ Ot(py)
9: Post′N (tin, px,y) = 1, ∀tin ∈ It(px)

10: Post′N (tin, px,y) = 1, ∀tin ∈ It(py) \ {tu}
11: x′0,N (px,y) = x0,N (px), ∀px,y ∈ Pu
12: x′0,N (pi) = x0,N (pi), ∀pi ∈ P ′N \ Pu
13: `′N (tj) = `N (tj), ∀tj ∈ T ′N

In Algorithm 1, the modified Petri net N ′N is computed from NN , by merging the
input places of tu with its output places, and eliminating tu from NN . Thus, in Line 1,
tu is removed from TN , obtaining the new set of transitions T ′N . Then, in Line 2, set Pu
is formed with the merging of all input places px and output places py of tu. In Line
3, the new set of places P ′N is obtained. From Lines 4 to 10, the preconditions and the
postconditions of each transition of T ′N are computed. Note that, except from the arcs
connected to tu, all other arcs of NN are maintained, and that the input transitions of
each px ∈ It(px) or py ∈ It(py) \ {tu} are input transitions of px,y, and that the output
transitions of each px ∈ Ot(px)\{tu} or py ∈ Ot(py) are output transitions of px,y. Finally,
in Lines 11-12 we define the initial marking of the new net N ′N , and in Line 13, we define
the labeling function `′N .

Example 8. Consider the Petri net NN depicted in Figure 9(a). The set of observable
and unobservable transitions of NN are TNo

= {t2, t4, t5, t6, t9} and TNu
= {t1, t3, t7, t8},

respectively. Let us eliminate transition t7 of Petri net NN according to Algorithm 1 in
order to compute Petri net N ′N . The first step is to compute set T ′N = TN \ {t7} =

{t1, t2, t3, t4, t5, t6, t8, t9}. Since places p5 and p8 are input places of t7 and p9 is an
output place of t7, we can compute set Pu = {p5,9, p8,9} according to Line 2 of Al-
gorithm 1. The set of places of N ′N is computed in Line 3 and it is equal to P ′N =

{p1, p2, p3, p4, p5,9, p6, p7, p8,9, p10}. Then, in Lines 4-10, the Pre′N and Post′N are calcu-
lated, and since transition t7 does not belong to N ′N and places p5,9 and p8,9 were created,
we define the arcs related to the places p5,9 and p8,9 as Pre′N (p8,9, t8) = Pre′N (p5,9, t8) =

Post′N (t6, p8,9) = Post′N (t4, p5,9) = 1. Finally, in Lines 11, 12, and 13, the initial mark-
ing is defined and the labeling function `′N is established from the labeling function of NN ,
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Figure 9 – Petri net NN of Example 8 (a); and the reduced Petri net N ′N after the
elimination of the unobservable transition t7 according to Algorithm 1 (b).

`N . The resulting Petri net N ′N is presented in Figure 9(b). �

In order to obtain conditions to guarantee that the generated language of No,
computed by applying recursively Algorithm 1 to remove all unobservable transitions
of NN , be equal to the observable language of NN , i.e., `o(So) = M(SN ), it is first
necessary to find all weakly connected components (CORMEN et al., 2009) of NN , Nk =(
Pk, Tk, P rek, Postk, x0,k,ΣN , `k

)
, such that Tk 6= ∅ and Tk ⊆ TNu

, for k = 1, . . . , ρ,
where ρ denotes the number of weakly connected components of NN of this kind. The
procedure to obtain Nk is presented in Algorithm 2.

Algorithm 2 Computation of all Nk, k = 1, . . . , ρ, of NN
Input: NN =

(
PN , TN , P reN , PostN , x0,N ,ΣN , `N

)
Output: Nk =

(
Pk, Tk, P rek, Postk, x0,k,ΣN , `k

)
, k = 1, . . . , ρ

1: Compute the TNu
-induced subnet of NN , denoted as Nu

2: Find all weakly connected components Nk of Nu such that Tk 6= ∅
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In Line 1 of Algorithm 2, the TNu
-induced subnet of NN , Nu, is computed. Since

TNu
is formed only of unobservable transitions, Nu may be formed of several disconnected

graphs. Thus, in Line 2 of Algorithm 2, maximal weakly connected subgraphs of Nu that
has at least one transition are obtained, forming the weakly connected components Nk.

In the sequel, we present conditions to guarantee that `o(So) = M(SN ).

Theorem 1. Let No be the LPN obtained by applying recursively Algorithm 1 to NN ,
eliminating all the unobservable transitions in TNu

. Then, `o(So) = M(SN ), if all the
following conditions are satisfied for each Nk, k = 1, . . . , ρ:

C1. (i) Nk is an SMPN with a unique source place; or (ii) all places of Nk have at most
one input transition and one output transition, and all the output places (resp. input
places) of the unobservable transitions of Nk do not have tokens if there is at least
one token in one of its input places (resp. output places), for all reachable markings
of Nk;

C2. All places pi ∈ Pk that are not source places in Nk cannot have observable input
transitions in NN , i.e., PostN (tj , pi) = 0, for all tj ∈ TNo

;

C3. The places of Nk that are not source places cannot have a token in the initial marking
of NN .

Proof. Let us consider first Condition C1.(i), i.e., Nk is an SMPN with a unique source
place. Then, since NN is safe, the sum of the number of tokens of all the places of Nk is
at most equal to one for all reachable markings of the net. Thus, only one place pi ∈ Pk of
Nk can have a token at a time, and after the firing of an observable output transition of
pi, the token is removed from Nk. After applying Algorithm 1 to eliminate all transitions
of Nk, all places of Nk are merged into a unique place p with the same observable output
transitions as the places of Pk, which corresponds to the observed behavior of the SMPN.
Since it is considered, according to Condition C2, that only the source place of Nk can
have an observable input transition, and, according to Condition C3, only the source
place can have an initial token, then an observable transition to of NN that is an output
transition of a place of Nk, is enabled if, and only if, to is enabled in the modified net
obtained by removing all unobservable transitions of the SMPN Nk. Thus, Conditions C2

and C3 guarantee that the observed behavior of the modified net obtained by removing
all unobservable transitions of Nk is the same as the observed behavior of NN .

Let us consider now Condition C1.(ii), i.e., all places of Nk have at most one input
transition and one output transition. Let tu be an unobservable transition of Nk with set
of input places Ip(tu) and set of output places Op(tu). Since it is assumed that all the
output places (resp. input places) of tu do not have tokens if there is at least one token
in one of its input places (resp. output places), for all reachable markings of Nk, then, it
is not possible that an output transition of a place in Op(tu) and an output transition of
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a place in Ip(tu) be both enabled at the same time. Thus, after applying Algorithm 1 to
eliminate tu, the set of places Pu is formed, and the firing of an output transition to of any
place px,y ∈ Pu corresponds to the firing of the same output transition to of px ∈ Ip(tu)

or py ∈ Op(tu), since according to Algorithm 1, N ′N and NN have the same observable
transitions. Since both px and py cannot be enabled at the same time, then the removal
of a token of px,y of N ′N after the firing of to leads to the same observed behavior as the
firing of to in NN .

In addition, if Conditions C2 and C3 are true, then a transition to in N ′N is enabled
if, and only if, to is enabled in NN , and, consequently, the removal of tu according to
Algorithm 1 does not alter the observed behavior of N ′N with respect to the observed
behavior of NN . It is also important to remark that the elimination of an unobservable
transition tu does not change the characteristics of the modified net, i.e., each place of
N ′k still has at most a unique input transition and a unique output transition. Thus, the
observed language of Nk is the same as the observed language of the modified net obtained
by removing recursively all unobservable transitions of Nk. �

Example 9. Consider again the LPN model NN depicted in Figure 9(a). If we apply
Algorithm 2 to NN , the weakly connected components N1, N2, and N3, depicted in Figure
10, are obtained. Note that all conditions C1-C3, presented in Theorem 1, are satisfied
in N1, N2, and N3, and thus, we can apply Algorithm 1 recursively, eliminating all
unobservable transitions of NN , in order to compute the Petri net No depicted in Figure 11.
�
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Figure 10 – Weakly connected components of NN : N1 (a), N2 (b), and N3 (c) of Example
9.

Note that the elimination of an unobservable transition tu leads to the creation of
|Ip(tu)| × |Op(tu)| places. Thus, the size of the Petri net No depends on the number of
unobservable transitions of each Nk, and the number of their input and output places. Let
npk denote the maximum number of input or output places of all unobservable transitions of
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Figure 11 – Observable Behavior Petri Net No of Example 9.

Nk. Then, in the worst-case, the number of places of No grows with complexity O(|PN |+∑ρ
k=1 n

|Tk|+1
pk ). It is also important to remark that the worst-case is, in general, not

observed in real-world systems and, in several examples there is a reduction in the number
of places of No in comparison with NN .

In the next example we show that the conditions presented in Theorem 1 are
only sufficient, i.e., the OBPN No, obtained by using Algorithm 1 to eliminate all the
unobservable transitions of NN , may be such that `o(So) = M(SN ) when the conditions
are not satisfied.

Example 10. Consider the LPN N presented in Figure 12, where Tu = {t2, t3, t4} and
To = {t1, t5, t6, t7, t8}. Notice that, the unique weakly connected component of N obtained
by using Algorithm 2, N1, depicted in Figure 13, does not satisfy Conditions C1.(i) and
C1.(ii) of Theorem 1, i.e., it is not an SMPN and p2 has more than one unobservable output
transition. However, if Algorithm 1 is used recursively to eliminate all the transitions of
N1, then the modified LPN No of Figure 14 is obtained. As it can be seen, the observable
language of N is equal to the language generated by No. �

It is important to remark that the assumption that the SMPN Nk has a unique
source place, in Condition C1.(i) of Theorem 1, can be relaxed. In order to do so, it is
necessary to modify NN , generating a new fault-free behavior Petri net N a

N , such that
each Nk that is a SMPN of NN with number ns > 1 of source places, is replaced with ns
SMPN in N a

N where each one has a unique source place. In this case, the conditions of
Theorem 1 can be verified in N a

N .
In Algorithm 3 we present a method for modifying NN when Nk is an SMPN with

more than one source place psq , for q = 1, 2, . . . , ns. Firstly, in Line 1, we create set Ps
formed of all source places psq of Nk, and then, in Line 2, we remove from PN all places
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of Nk, except the source places of Ps, forming set P aN , and in Line 3, we remove from TN

all transitions of Tk and the observable output transitions of the the places in Pk, forming
set T aN . Then, in Lines 4 and 5, we define the arcs from places to transitions and from
transitions to places, respectively, for all places and transitions of P aN and T aN , of N a

N .
Then, for each source place psq ∈ PS , we perform a search for all nodes that are reachable
in Pk from the source place. In order to do so, we use Algorithm 4, called REACH, that
systematically explores the nodes (places and transitions) of a Petri net graph, starting
from each source place psq . The output of the REACH algorithm are the set of places
Pq, formed of all places reached from psq in Nk without considering psq itself, and the
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set of transitions Tq, reached from psq , including the observable output transitions of the
places in Pk. After that, from Lines 9 to 12 new places pqi and transitions tqj are created
for each place pi ∈ Pq and transition tj ∈ Tq, and the sets P qN and T qN are formed. The
arcs connecting the places and transitions of P qN and T qN are created in Lines 13 to 16.
In Lines 17 and 18, the sets of places and transitions of N a

N are updated by adding the
places and transitions, respectively, of P qN and T qN . Finally, in Lines 19 and 21, the initial
state xa0,N is defined, and in Lines 20 and 22, the labeling function laN is defined.

Algorithm 3 Modification algorithm when Nk is an SMPN with more than one source
place
Input: NN =

(
PN , TN , P reN , PostN , x0,N ,ΣN , `N

)
,

Nk =
(
Pk, Tk, P rek, Postk, x0,k,ΣN , `k

)
Output: N a

N =
(
P aN ,T

a
N ,P re

a
N ,Post

a
N ,x

a
0,N ,ΣN ,`

a
N

)
1: Let Ps be the set formed of all source places psq of Nk
2: Define P aN = (PN \ Pk) ∪ Ps
3: Define T aN = TN \ (Tk ∪Ot(Pk))
4: PreaN (pi, tj) = PreN (pi, tj), for all pi ∈ P aN and tj ∈ T aN
5: PostaN (tj , pi) = PostN (tj , pi), for all pi ∈ P aN and tj ∈ T aN
6: for each psq ∈ Ps do
7: Define P qN = ∅ and T qN = ∅
8: (Pq, Tq) = REACH(Nk,NN , psq)
9: for each pi ∈ Pq do

10: Create place pqi and add it to P qN
11: for each tj ∈ Tq do
12: Create transition tqj and add it to T qN
13: PreaN (psq , t

q
j) = PreN (psq , tj), for all t

q
j ∈ T

q
N

14: PreaN (p
q
i , t

q
j) = PreN (pi, tj), for all p

q
i ∈ P

q
N and tqj ∈ T

q
N

15: PostaN (t
q
j , p

q
i ) = PostN (tj , pi), for all p

q
i ∈ P

q
N and tqj ∈ T

q
N

16: PostaN (t
q
j , pi) = 1, for tqj ∈ T

q
N and for all pi ∈ Op(tj)∩P aN , and PostaN (t

q
j , pi) = 0,

for all pi 6∈ Op(tj) ∩ P aN and pi 6∈ P qN
17: P aN ← P aN ∪ P

q
N

18: T aN ← T aN ∪ T
q
N

19: xa0,N (psq) = x0,N (psq), and x
a
0,N (p

q
i ) = 0, for all pqi ∈ P

q
N

20: laN (t
q
j) = lN (tj), for all t

q
j ∈ T

q
N

21: xa0,N (pi) = x0,N (pi), for all pi ∈ PN \ Pk
22: laN (tj) = lN (tj), for all tj ∈ TN \ (Tk ∪Ot(Pk))

In the sequel, we present an example to illustrate the use of Algorithm 3.

Example 11. Consider the Petri net NN depicted in Figure 15(a), where the unique
weakly connected component N1 is formed of the set of places Pk = {p1, p2, p3, p4} and
the unobservable transitions Tk = {t1, t2, t3}. Note that N1 is an SMPN with two source
places, p1 and p2.
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Algorithm 4 (Pq, Tq) = REACH(Nk,NN , psq)
1: Compute all the places and transitions that are reachable from psq in Nk, using a

standard breadth-first search algorithm (CORMEN et al., 2009).
2: Separate the nodes computed in Line 1 into the set of places Pq and the set of

transitions Tq
3: Add to Tq all observable output transitions of the places pq ∈ Pq obtained from NN
4: Pq ← Pq \ {psq}

In Line 1 of Algorithm 3, set Ps = {p1, p2} is created. Then, in Line 2, all places
that are not source places are removed from NN and in Line 3, all transitions are removed
from NN . Then, in Line 6, for the source place ps1 = p1, the first reach is computed,
using Algorithm 4, leading to sets P1 = {p3, p4} and T1 = {t1, t3, t4, t5}. In Lines 9 to
12, the sets P 1

N = {p13, p14} and T 1
N = {t11, t13, t14, t15} are computed, and in Lines 13 to

16, the arcs connecting places p1, p2, p13, p
1
4 and transitions t11, t

1
3, t

1
4, t

1
5, depicted in

Figure 15(b), are created. In Line 17 and 18, respectively, sets P aN and T aN are updated
to P aN = {p1, p2, p13, p14} and T aN = {t11, t13, t14, t15}. The initial marking of the source place
p1 is computed in Line 19, and all transitions of T 1

N are labeled in Line 20 with the same
event of the corresponding transition of TN . Algorithm 3 continues for the source place p2,
generating the complete Petri net depicted in Figure 15(b). �
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Figure 15 – Petri nets NN (a) and Nr (b) of Example 11.

3.3 FINAL REMARKS

In this chapter we propose a new method for the detection of faults of discrete
event systems modeled by safe Labeled Petri Nets. The method consists of removing the
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non-observable transitions of the fault free behavior model of the system resulting in the
Observable Behavior Petri Net, which is, in general, a smaller graph than the original fault
free behavior Petri net model. Once the OBPN is computed, the fault detection process
can be carried out by computing the feasible observable events for a given marking. If an
event that is not feasible for the current marking is observed, the fault is detected.

In order to implement the method described in this chapter we suppose that the
Petri net system model is diagnosable. The diagnosability analysis can be carried out
offline by using any method proposed in the literature (CABASINO et al., 2012).

In the following Chapter we present two case studies to illustrate the use of the
proposed method for fault diagnosis in practical systems. These examples are also used to
compare the efficiency of the proposed method with others approaches presented in the
literature.



43

4 CASE STUDIES

4.1 WEIGHING-MIXING SYSTEM

4.1.1 Description of the system

The case study we consider in this work is the weighing-mixing system introduced
in the international standard IEC 60848 (IEC:60848, 2002), whose scheme is shown in
Figure 16. In this system, products A and B are mixed together with two soluble bricks.
In order to do so, valve VA is opened and the product A is firstly poured in a weighing
balance until the mark wa is reached, then valve VA is closed and valve VB is opened
to provide product B to the weighing balance until mark wb is reached. When it occurs,
valve VB is closed and valve VC is opened, pouring products A and B into the mixer,
until mark wz is reached in the weighing balance. Then, valve VC is closed. We consider
here that the flow of valve VC is greater than the flow of valves VA and VB when
completely opened. In parallel, soluble bricks are fed into the mixer by a conveyor belt
that is controlled using motor BM. The correct mixture is achieved with two bricks, that
are counted using a transit detector (TD).

Once all necessary raw material (two bricks, and products A and B) are in the
mixer, motor MR is turned on in order to start the mixing process. When the mixture is
done, which is achieved after a predetermined time, motor TM is turned on in order to tilt
the mixture container until the position of sensor S1, causing the mixture to be poured
down. After reaching position S1, motor MR is turned off and motor TM is actuated to

BM

TD
z

a

b

VC

VA VB

MR

S0

S1

TM

Figure 16 – Scheme of the weighing-mixing system, adapted from (IEC:60848, 2002).
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turn on in the opposite direction until position S0 is reached, which allows a new cycle to
be initiated. The production cycle begins when a cycle start button (not represented in
Figure 16) is pressed.

4.1.2 System model

We first present the fault-free behavior model of the system NN , which is rep-
resented by the black subnet of Figure 17. Place p1 starts with one token representing
that the system is ready to begin a production cycle, which is initialized by event cs
that models the pressing of the cycle start button. When cs occurs, both subsystems, the
conveyor belt and the weighing unit, start to operate, which is modeled by the parallel
paths starting with places p2 and p7 in Figure 17. Transition t2 is labeled with event bon,
that represents the command to turn on the conveyor belt motor BM. Transitions t3 and
t4 are labeled with event d that models the rising edge of the TD signal, and thus, after
two occurrences of event d, place p5 receives a token, indicating that the mixing unit have
been fed with two bricks. After that, the conveyor belt motor is commanded to turn off,
modeled by event boff . In parallel, products A and B are provided to the mixing unit.
First, the command to open valve VA, vao, is issued by the controller, and then, when
the weight w in the balance is greater than value wa, event a occurs. After observing the
occurrence of a, the controller sends a command to close valve VA, vac, and open valve
VB, vbo. When the weight w in the balance is greater than wb, represented by event b,
the controller issues the command vbc to close valve VB, and then, command vco to open
valve VC to empty the weighing balance. When the weight w is smaller than or equal to
wz, represented by event z, the balance is empty, modeled by place p15. After that, valve
VC is closed, represented by event vcc.

When both places p6 and p16 have tokens, the synchronizing transition t15 is enabled
and immediately fires, which indicates that the mixing process has started, represented
by places p17 and p20. Transition t16 is associated with a timer. Since the value of the
timer is considered in this work unobservable, t16 is labeled with the unobservable event
σu that occurs when the accumulated value of the timer reaches a predetermined value.
Then, the controller sends the command td to actuate the tipping motor TM to tilt down.
The mixing motor is actuated by command mon, and when both places p19 and p21 have
tokens, the synchronizing transition t19 immediately fires, adding a token to p22. When
the mixer reaches the position of sensor S1, represented by event s1, the mixer motor is
turned off (moff ), and then the mixer is commanded to tilt up (tu), until reaching the
position of sensor S0, represented by event s0.
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Figure 17 – Complete labeled Petri net Nl1 of the weighing-mixing system considering
fault σf1 .
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Figure 18 – Complete labeled Petri net Nl2 of the weighing-mixing system considering
fault σf2 .
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We consider in this case study two fault types. For the sake of simplicity, and
without loss of generality, we consider that only one fault may occur in one production
cycle. Thus, the two different fault types lead to two possible models of the system, Nl1
and Nl2 , represented in Figures 17 and 18, respectively. In Figure 17, we present the model
of the system subject to fault σf1 , that represents a problem related with motor BM of
the conveyor belt. When σf1 occurs, BM cannot be turned off anymore and the conveyor
belt keeps running, wrongly feeding the mixing unit with new bricks. We consider that
the fault may occur at any time between the occurrence of events bon and boff . After
the occurrence of σf1 , bricks continue to be delivered to the mixer, being detected by
the transit sensor TD, i.e., an event d may occur at any time. It is important to remark
that transition t32 models the fact that an event d is observed necessarily before the
synchronization of the parallel activities of weighing products A and B, and feeding the
mixer with bricks. This is due to the fact that the time to weigh products A and B, and
then to empty the weighing balance is always greater than the time to deliver three bricks
to the mixer.

In Figure 18, we present the model of the system subject to a fault in valve VA.
Event σf2 models that valve VA stuck open when VA is already opened, which occurs
in places p8 and p9. After valve VA stuck open, the weighing balance continues to be
filled after the command to close the valve. Since the flow in valve VC is greater than
the flow in valve VA, after opening valve VC, the weighing balance is emptied in a lower
speed than when valve VA is not stuck open. However, after closing valve VC, it is filled
again, leading to the post-fault behavior presented in Figure 18, where events a and b

occur while the mixing process is taking place.
Note that faults σf1 and σf2 are related with the supply of raw material to the

system, and therefore it is important to halt the system execution when any of these faults
is detected so as not to lose material when it occurs.

In this example, we consider that only the events associated with the system
sensors are observable. Thus, the set of observable events is Σo = {a, b, z, d, s0, s1},
and the unobservable event set is Σu = {λ, σu, σf1 , σf2 , cs, bon, boff , vao, vac, vbo, vbc, vco,
vcc,mon,moff , td, tu}. Table 1 presents the events of the system and their corresponding
meanings.

The faults are separated into two fault classes Σf1 = {σf1} and Σf2 = {σf2}, and
the fault diagnosis is carried out in two steps. In the first step, by using the observable
behavior Petri net No, the fault is detected online, and, after detection, the system is
stopped, and then the fault is isolated.

4.1.3 Diagnosis process

In order to implement the fault diagnosis strategy proposed in this work, it is first
necessary to identify the weakly connected components Nk, k = 1, . . . , ρ, of NN by using
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Table 1 – Events of the weighing-mixing system.

Event Meaning
cs cycle start button is pressed
a weight is greater than wa
b weight is greater than wb
z weight is smaller than or equal to wz
d detection of a brick with sensor TD
λ synchronization of the end of tasks
σu timeout of the mixing process
s0 rising edge of sensor S0
s1 rising edge of sensor S1
bon turn on the conveyor belt motor BM
boff turn off the conveyor belt motor BM
vao open valve VA
vac close valve VA
vbo open valve VB
vbc close valve VB
vco open valve VC
vcc close valve VC
td actuate TM to tilt down the mixer
tu actuate TM to tilt up the mixer
mon turn on the mixer motor MR
moff turn off the mixer motor MR
σf1 BM remains permanently turned on
σf2 VA stuck open

Algorithm 2. In Figure 19, we present the five weakly connected components of NN . As
it can be seen from Figure 19, all Nk, k = 1, 2, . . . , 5, satisfy the conditions of Theorem 1.
Thus, we can compute the OBPN No from the fault-free Petri net model NN , presented
in the black subnet of Figure 17, applying recursively Algorithm 1 until all unobservable
transitions of NN are eliminated. In Figure 20, the OBPN No is depicted. Note that
No has only 10 places and 7 transitions, and therefore, it can be implemented without
requiring a large amount of memory to store it in a computer.

It is important to remark that the reachability graph of the Petri nets of Figures
17 and 18 have, respectively, 132 states and 298 transitions, and 126 states and 214
transitions, which shows that the diagnosers constructed using the reachability graphs of
Nl1 and Nl2 would need much more memory space than the proposed fault detector based
on No. Moreover, it is important to remark that the BRG proposed in Cabasino et al.
(2011) has 40 states and 100 transitions for the LPN Nl1 , and 28 states and 46 transitions
for the LPN Nl2 .

Now, let us show how No can be used for fault detection. Let us suppose that
the fault sequence associated with fault σf1 , s = cs bon vao σf1 d a vac vbo d boff d, has
been executed by the system. Thus, its observation is given by dadd, which cannot be
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Figure 19 – Weakly connected components ofNN ,N1,N2,N3,N4 andN5 of the weighing-
mixing system.
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Figure 20 – Observable Behavior Petri Net No of the weighing-mixing system.

executed in No, and the fault detection scheme indicates the occurrence of a fault. Since
sequence dadd can only be observed if a transition labeled with σf1 is fired in Nl1 , and it
cannot be observed in Nl2 , then the fault isolation module indicates that σf1 has occurred.

Let us consider now that sequence s = cs bon vao d a σf2 vac vbo d boff b vbc vco z

vcc mon a is executed. In this case, the observation of s is dadbza which cannot be exe-
cuted in No. Thus, the fault detector indicates the fault occurrence. Since sequence dadbza
can only be observed after the firing of a transition labeled with σf2 in Nl2 , and it cannot
be observed in Nl1 , then the fault isolation module indicates that σf2 has occurred.

4.2 MANUFACTURING SYSTEM

Let us consider the manufacturing system depicted in Figure 21, obtained by
adapting the example presented in Zhou and DiCesare (1993) and Cabasino et al. (2011).
The system consists of four machines (M1-M4), four robots (R1-R4), and one automated
guided vehicle (AGV ), that produces two different types of products. Parts are delivered
to the system to be processed, and robot R1 transports them to Machine M1 or M3

alternately, starting with M1. Each machine works on only one part at a time, and each
robot arm can transport only one part from one machine to another at a time. When the
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processing in machine M1 (resp. M3) ends, robot R3 (resp. R4) transports the processed
part to machine M2 (resp. M4). Robot R2 transports parts processed in machines M2 and
M4 to the AGV , and the AGV delivers the final products to the output of the system. The
complete Petri net system model is presented in Figure 22, where the fault-free behavior
is depicted in black.

The gray parts of the Petri net model depicted in Figure 22 represents the post-fault
behavior, where we have considered two fault events. Event σf1 models a fault in Robot R1

that transports the part to the wrong machine, while event σf2 represents the fault in the
AGV that is not capable of delivering final products to the output, becoming unavailable
and emitting the same signal it provides when a part regularly exits the production line.
In this example, the events associated with the robot arms picking up a part or delivering
a part, and the event emitted by the AGV after delivering a part to the output are
observable. All the other events are unobservable. Thus, Σo = {a, e, b, g, c, `, d, h, s1, s2}.
In Table 2, the meaning of each event of the system is presented.

R1

INPUT

M1 M3

R3 R4

M2 M4

R2

AGV

OUTPUT

INPUT

Figure 21 – Manufacturing system scheme.

In this case, it can be seen that Assumptions A1-A3 and all conditions C1-C3 of
Theorem 1 are satisfied. The OBPN No of this example can be seen in Figure 23. The
reachability graph of the Petri net of Figure 22 has 30,880 states and 140,748 transitions,
and the BRG, computed using the method presented in Cabasino et al. (2011), has 435
states and 1,182 transitions. The OBPN No, depicted in Figure 23, has only 22 places
and 14 transitions, which shows the great reduction in the model used for fault detection
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Table 2 – Events of the manufacturing system.

Event Meaning
a R1 picked up a part in Input 1
e R1 picked up a part in Input 2
s1 R1 delivered a part in machine M1 and M1 starts processing the part
s3 R1 delivered a part in machine M3 and M3 starts processing the part
ei end of service in Mi, for i = 1, 2, 3, 4
b signal emitted by R3 when picking up a part from M1 or delivering it to M2
g signal emitted by R4 when picking up a part from M3 or delivering it to M4
c R2 picked up a part in M2
` R2 picked up a part in M4
h R2 delivered a part to the AGV
d signal emitted by the AGV
σf1 fault event in R1

σf2 fault event in AGV

using the method proposed in this work than using the other methods proposed in the
literature.

In Table 3 we compare the size of the reachability graph, the basis reachability
graph, and the OBPN for the weighing-mixing system and the manufacturing system,
where we can see that the proposed method leads, in these examples, to a much smaller
model than by using the other strategies. The numbers of states and transitions of the
reachability graph have been computed using the Petri net tool TINA (http://projects.
laas.fr/tina/), and the numbers of states and transitions of the basis reachability
graph have been computed with the MATLAB toolbox used in (CABASINO et al., 2011)
(https://www.alessandro-giua.it/UNICA/TESI/09_Marco.Pocci/PN_DIAG.zip).

Table 3 – Comparison between the sizes of the reachability graph (RG), the basis reach-
ability graph (BRG), and the OBPN for the weighing-mixing system and the
manufacturing system.

System RG BRG OBPN
states transitions states transitions places transitions

weighing-mixing (σf1) 132 298 40 100 10 7
weighing-mixing (σf2) 126 214 28 46 10 7
manufacturing system 30,880 140,748 435 1,182 22 14

http://projects.laas.fr/tina/
http://projects.laas.fr/tina/
https://www.alessandro-giua.it/UNICA/TESI/09_Marco.Pocci/PN_DIAG.zip
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Chapter 4. Case Studies 54

t1a t10 e

p1

t2
p2,3

t4b

t5b

t7c

t8

t9d

p4

p5

p6
R3

M1

p7,8 p9

M2

p10 p11R2

p12 p13

AGV
t18 d

p14 p15
R1

M3

p19

p16

t11
p17,18

t13
g

p20

p21
R4

g t14

p22,23

t16

p24

M4

ℓ

p25

p26

t17

s1 s3

h h

Figure 23 – No for the manufacturing system.



55

5 CONCLUSION

With the evolution of automated systems, the size of the models are growing in
number of components and in complexity, then, it may not be an easy task to correctly
diagnose possible faults occurrences that can alter the nominal behavior of these systems
in order to prevent equipment damage and maintain the safety of human operators. We
have presented in this work, a fault diagnosis scheme for discrete event systems modeled
by a class of labeled Petri nets. The method is based on two steps, where in the first one we
detect the occurrence of a fault event and then the candidates to these faults are isolated.
The main advantage of the presented approach is that the model of the system used to
fault detection is, in general, much smaller than the reachability graph of the system,
which allows to use less memory for implementing the fault detector than using traditional
strategies and, that the fault can be detected in a fast manner, without requiring the use of
any reachability graph. The proposed method was consider for a practical weighing-mixing
system introduced by the international standard IEC 60848 (IEC:60848, 2002).

In parallel with the writing of this work, significant improvements on the modi-
fication algorithms are being made in order to relax some of the proposed hypothesis.
We are also currently investigating other classes of LPN that can be used avoiding the
construction of complex structures for fault diagnosis. The future research themes are
summarized as follows in section 5.1.

The results of this work are going to be presented in the next Simpósio Brasileiro de
Automação Inteligente (SBAI 2021) and a contribution has been submitted for publication
in the Control Engineering Practice Journal. These references are cited in the following.

• Bonafin et al. (2021a)

• Bonafin et al. (2021b)

5.1 FUTURE WORKS

• Implement the proposed diagnose method in a plant using programmable logic
controllers

• Relax the assumptions and/or conditions proposed here in order to reach more Petri
nets classes.
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