
FEDERAL UNIVERSITY OF SANTA CATARINA
CAMPUS JOINVILLE

POST GRADUATION PROGRAM OF ENGINEERING AND MECHANICAL
SCIENCES

Marcus Vinícius Leal de Carvalho

A Review of ROS Based Autonomous Driving Platforms to Carry Out Automated
Driving Functions

Joinville
2022

Marcus Vinícius Leal de Carvalho

A Review of ROS Based Autonomous Driving Platforms to Carry Out Automated
Driving Functions

Dissertation submitted to the Post Graduation Pro-
gram of Engineering and Mechanical Sciences of Fe-
deral University of Santa Catarina for obtaining the ti-
tle of Master in Engineering and Mechanical Scien-
ces.
Advisor: Prof.Roberto Simoni, Dr.

Joinville
2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Leal de Carvalho, Marcus Vinícius
 A Review of ROS Based Autonomous Driving Platforms to
Carry Out Automated Driving Functions / Marcus Vinícius
Leal de Carvalho ; orientador, Roberto Simoni, 2022.
 164 p.

 Dissertação (mestrado) Universidade Federal de Santa
Catarina, Campus Joinville, Programa de PósGraduação em
Engenharia e Ciências Mecânicas, Joinville, 2022.

 Inclui referências.

 1. Engenharia e Ciências Mecânicas. 2. Autonomous
Vehicles. 3. Path Planning. 4. Advanced Driving Assistance
Systems (ADAS). 5. Robotics' Simulators. I. Simoni,
Roberto. II. Universidade Federal de Santa Catarina.
Programa de PósGraduação em Engenharia e Ciências Mecânicas.
III. Título.

Marcus Vinícius Leal de Carvalho

A Review of ROS Based Autonomous Driving Platforms to Carry Out
Automated Driving Functions

The present Master Dissertation in Master level was evaluated and approved for the
following board of examiners:

Prof.Andrea Piga Carboni, Dr.
Federal University of Santa Catarina

Prof.Lucas Weihmann, Dr.
Federal University of Santa Catarina

Prof.Ricardo Tellez Lara
U.P.C Technical University of Catalonia

University of LaSalle from Barcelona, Spain

We certify that this is the original and final version of the concluding work, which
was judged appropriate to acquire the title of Master of Engineering and Mechanical
Sciences.

Prof. Diego Alexandre Duarte, Dr

Program Coordination

Prof. Roberto Simoni, Dr

Advisor

Joinville, 2022.

" Just the well well done stands the test of the time, only the creative reaches into the
future."
(Pecon)

RESUMO EXPANDIDO

Introdução

No mundo moderno, o fluxo de pessoas e de bens nos meios de transporte disponíveis
é excepcionalmente elevado. Se por um lado as redes de transporte e veículos sofrem cada
vez mais melhorias, promovendo e facilitando a locomoção das pessoas, por outro lado
aumenta-se o número de acidentes. Acidentes em rodovias são a quinta maior causa de
motalidade no mundo. Estatisticamente, este número corresponde a mais de um milhão
e duzentos mil óbitos e mais de 20 milhões de pessoas lesionadas por ano, sendo que
mais de 94% destes acidentes são consequências de erro humano. Na tentativa de reduzir,
quando não possível eliminar, as consequências das colisões entre veículos, a indústria
automobilística vem criando à décadas sistemas cŕiticos de auxilío ao motorista: sistemas
de segurança passivo e sistema de segurança ativo. Posteriormente, com a evolução da
eletrônica e computação, este setor passou a desenvolver e disponibilizar os Sistemas
Avançados de Assistência à Direção (ADAS). Ainda que estas tecnologias, tenham reduzido
o número de acidentes ou ao menos atenuado o impacto, a indústria e pesquisadores
perceberam que quanto maior o nível de automação veicular, reduz-se sensivelmente
a quantidade de acidentes. A partir desta análise, nas últimas décadas os fabricantes
de automóveis têm direcionado esforços para alcançar o última fase de automação de
direção: o veículo totalmente autônomo (nível 5). Para se chegar neste nível de automação,
onde até mesmo a presença do motorista no veículo não se faz necessária, a estrutura
computacional, eletrônica, inteligência artificial e robótica presentes neste veículo devem
ser excepcionalmente robustas, eficientes e com elevado grau de confiabilidade. Para
atingir essa melhor performance, o software que comanda este veículo-robô é fracionado
em diversos módulos: mapeamento, localização,percepção, detecção, planejamento de
trajetória, tomada de decisão e controle. Este trabalho fornece um estudo aplicado e
comparativo das mais renomadas Pilhas de Navegação Autônomas (ADS) de código aberto
(Open-Source) disponíveis em âmbito mundial.

Objetivos

O objetivo principal destre trabalho é realizar simulações em cenários relevantes
no contexto de veículos autônomos, para obter-se benchmark das diferentes Pilhas de
Navegação utilizadas, bem como dos módulos que as compõem, com enfoque na camada de
planejamento de trajetória. Para atingir este objetivo, as metas especifícas são: investigar
e simular aplicações baseadas na framework ROS1 e ROS2 e selecionar a mais adequada;
definir cenários relevantes para simular, a partir da literatura; implementar o código
dos cenários e do comportamento dos agentes participantes desta simulação (pedestres e
veículos); aplicar os algoritmos mais eficazes disponíveis nas Pilhas de Navegação baseads

em ROS para cumprir com as tarefas exigidas à um veículo autônomo; configurar a
comunicação das camadas de comunicação do ROS com os simuladores a serem utilizados;
extrair aos canais com fluxo de dados relevantes, subscrevendo-os e plotando os dados
obtidos; avaliar os dados e reportá-los.

Metodologia

As Pilhas de Navegação são compostas por diversos módulos, bibliotecas e extensos
algoritmos que requerem alto poder computacional para serem executados de maneira
eficaz. Para habilitar estes módulos com o simulador foi selecionado uma máquina virtual,
locada na empresa Paperspace, com as seguintes configurações: Unidade de Processamento
Aritmético (CPU) de 16 núcleos, Unidade de processamento gŕafico Quado P-6000, Memória
de Acesso Rápido (RAM) de 60 Gigabytes e Sistema Operacional Ubuntu 20.04. Os
simuladores utilizados para interfacear com as Pilhas de Navegação foram o Gazebo
e o SVL da empresa LG Eletronics. O primeiro foi utilizado para comunicação com a
estrutura de navegação baseada em ROS1: Navigation Stack. O segundo foi utilizado para
a comunicação com as Pilhas de Navegação: Autoware.AI (ROS1), Autoware.Auto (ROS2)
e Apollo.Auto6.0 (Cyber-Rt). Para as simulações realizadas com o Navigation Stack, o
ambiente simulado foi modelado, via código (.world file), visando representar o complexo
e laboratório CARISSMA, presente na universidade THI. O modelo do carro foi baseado
no PRIUS, cujo código de Format Unificado de Descrição do Robô (URDF) deste veículo,
encontra-se disponível em meu github. Para as simulações envolvendo o simulador da LG
(SVL), foram utilizados os veículos disponibilizados e configurados para cada Pilha de
Navegação: Jaguar (Autoware.AI), Lexus (Autoware.Auto), Lincoln MKZ (Apollo.Auto).
Os planejadores de trajetória utilizados, assim como algoritmos especifícos de cada módulo
das Pilhas de Navegação, foram os disponibilizados por estes softwares. Todavia, as
alterações pontuais para funcionamento adequado destes algoritmos com o simulador,
podem ser encontradas tambe no meu repositório do gitbub: códigos_do_mestrado. Quanto
à determinação dos estudos de caso para serem simulados, diferentes metodologias foram
empregadas para definição destes: O método ontológico apresenta agentes interagindo
com o veículo autônomo em ambiente virtual de teste combinatorial, com subsequentes
análises de cenários critícos apontados como saída de técnicas de machine learning; o
estudo de avaliação do modo de dirigir do veículo autônomo em conjunto com o Fator
de Indicação de Performance (KPI) para definição da análise de segurança da condução
autônoma e respectiva determinação de cenários critícos do sistema sob teste (SUT);
o método fornecido pelo consórcio das indústrias automotivas alemãs com o governo,
nomeado de "Projeto para Estabelecimento Geral de critérios, ferramentas e métodos
de qualidade Aceitos, assim como Cenários e Situações" (PEGASUS). A partir destes
métodos em conjunto com critérios que definem cenários críticos, como um reduzido Tempo
para Colisão (TCC), foram determinados e posteriormente programados no simulador,

https://github.com/marcusvinicius178

os cenários estático e dinâmicos simulados nesta dissertação. Para programação destes
cenários e posterior comunicação com os módulos das Pilhas de Navegação para troca de
dados, foi utilizado a aplicação PythonAPI do simulador da LG. Desta forma, foi possível
receber dados provindos dos sensores veiculares presentes nos carros simulados, tais como
LiDar (velodyne) e câmera, processamento interno nas Pilhas de Navegação (Localização,
Deteccção, Planejamento e Tomada de Decisão), e por fim, a saída dos dados gerados
pelos planejadores de trajetória chegaram em uma camada de conversão para controle
veicular dos atuadores do veículo emulado pelo simulador, representando de maneira fiel o
comportamento de um veículo autônomo real.

Resultados e Discussão

Utilizando o software Navigation Stack, baseado em ROS1, foi verificado que a maior
parte dos planejadores de trajetória disponíveis, com exceção do TEB, são incompatíveis
com as restrições não-holônomicas de um veículo-robô, que seguem as restrições da
geometria do modelo de direção de Ackermann. Desta forma, as simulações realizadas
com este software não foram satisfatórias para evitamento de colisão e movimentos suaves,
que correspondem com um motorista humano. Isso se explica pelo fato deste software
ser amplamente aplicado para outros tipos de robôs: holônomicos e não-holonômicos
diferenciais. Porém, a partir da utilização das Pilhas de Navegação este problema é
suprimido, uma vez que os módulos destas são particularmente definidos para uso de
robôs do tipo carro. Utilizando o software Autoware e Apollo.Auto foi possível testar 5
diferentes planejadores de trajetória: Parking Planner (Autoware.Auto) , Freespace Astar
(Autoware.AI), Freespace Lattice (Autoware.AI), Open Planner (Autoware.AI) e Public
Road (Apollo.Auto). O primeiro obteve performance satisfatória, sendo possível realizar
manobras de estacionamento em cenário especifíco. Porém, nota-se que ainda são necessários
ajustes no módulo "Behavior Planner", uma vez que a transição entre o Lane Planner e o
Parking Planner não está bem definida, gerando trepidações e súbitas mudanças bruscas
na direção. Por fim, para o cenário onde o veículo autônomo se depara com um obstáculo,
foram aplicados os demais quatro planejadores trajetórias descritos anteriormente. Eles
foram avaliados em dez diferentes métricas. A performance dos planners: Open Planner e
Public Road foram de maneira geral melhores que as providas pelo planejador de trajetória
Global (Freespace) e seus respectivos planejadores de trajetória locais (Astar e Lattice),
uma vez que apresentaram um comportamento mais similar ao de um motorista que viesse
a se deparar com a mesma situação.

Conclusão

O presente trabalho propôs a utilização das Pilhas de Navegação de Código Aberto

para geração de trajetórias para o robô do tipo carro em diferentes cenários. Uma análise
gráfica e comparativa dos diferentes planejadores de trajetória foi realizada, e por fim
um Benchmark do módulos que compõem estas estruturas. Verifica-se destas análises
que importantes módulos da framework Autoware, como o módulo de localização e o de
mapeamento, apresentam desempenho insatisfatório em cenários de maior extensão. Em
contrapartida o módulo de Percepção da framework Apollo.Auto6.0 se mostra falho para
correta detecção de obstáculos, forçando o uso de uma percepção modular virtual, que
publica os dados dos obstáculos presentes na simulação diretamente, através da ponte que
conecta o simulador a esta framework. Ainda assim, de maneira geral, a Pilha de Navegação
Apollo.Auto6.0 se mostrou mais robusta, apresentando resultados mais constantes durante
a execução das simulações, sendo mais precisa na geração e cumprimento das trajetórias.
A framework Autoware.AI se mostra mais modular com possibilidade de utilização e
intercambiação de diversos pacotes de algoritmos, no caso do controle, por exemplo, pode-
se escolher entre MPC e Pure-Pursuit, enquanto a framework Apollo oferece apenas o
último. Em relação aos planejadores de trajetória, o Open Planner foi responsável por gerar
a trajetória mais segura nos aspectos de distância lateral e distância miníma deixada do
obstáculo durante a ultrapassagem, em contrapartida, essa maior margem de segurança fez
com ele gerasse o caminho mais extenso para o veículo percorrer. No aspecto de conforto,
o planejador de trajetória Freespace Lattice obteve a pior performance, uma vez que gerou
uma trajetória pouco suave e apresentou elevadas oscilações no perfil de aceleração ao longo
da execução da trajetória. Em termos de esforço computacional, conclui-se que o planejador
de trajetória Public Road e os módulos da framework Apollo.Auto obtiveram os maiores
consumos de memória e de CPU, significando uma maior exigência em termos de Hardware
e sistemas embarcados para utilização em um véiculo real e também para ambientes de
simulação. Verificando a performance de cada planejador de trajetória nota-se que não
há um planejador de trajetória universal, otimizado para todos cenários e com melhor
performance em todos parâmetros de avaliação, porém pode-se otimizar os parâmetros
de cada planner, ou ainda selecionar diferentes planejadores de trajetória para diferentes
situações para quando se deseja obter melhores performances em aspectos especifícos.

Palavras-Chave: Veículo Autônomo, Cenários, Simulador, Pilhas de Navegação, ROS,
Planejadores de Trajetória, Módulos.

Abstract

In the last decades, advanced driving assistance systems (ADAS) have avoided or mitigated
high road accidents. Lane-keeping, lane departure warning, blind-spot detection, auto-
matic emergency braking, and important technological innovations are being developed
and optimized each year by the automotive industry. As in other sectors, automation,
electronics, and robotics technology continuously modify automobile production. The
ultimate step from this process is autonomous driving. Conducting a car-like robot from
point A to point B, using the shortest path, avoiding collisions comfortably and safely, is
the final goal of this system. This work delineates the autonomous driving process, from
mapping to control, focusing on the planning layer. Available open-source frameworks,
called autonomous driving stacks (ADS), containing the mentioned modules are employed.
Different sorts of mission and motion planning algorithms available on these frameworks
are tested to address the path planning topic. The planning and control problem is solved
for different scenarios, globally and locally. The studied test cases are performed with a real
environment emulator: the LGSVL simulator. In the end, an analysis of the autonomous
vehicle (AV) generated trajectories, its performance, and benchmark from Autoware.AI
and Apollo.Auto 6.0 ADS modules are performed.

Keywords: ADAS, AV, Obstacle Avoidance, LGSVL, Path Planning, Safety, Scenarios.

Acknowledgements

This work would not have been possible without the partnership between the Federal
University of Santa Catarina (UFSC) from Brazil and the Technische Hochschule Ingolstadt
(THI) from Germany instigated by the AWARE network. Therefore, I am very grateful for
these government institutions, which spread knowledge and technology worldwide.

At first, a capital "THANK YOU" must be given to my adviser, Dr.Prof Roberto Simoni,
who introduced me to this exciting robotics world and guided my way to success. Under
his supervision, I have learned multiple computational and research skills, which enriched
my knowledge exorbitantly. He put me on another level and expanded my academic and
professional horizons. I am very grateful for his unconditional support and trust in all
decisions and steps I have chosen during this journey.

Additionally, I would like to thank Dr.Prof Hüber from THI, who provided me an
opportunity to extend this research in Germany’s best autonomous driving lab: CARISSMA.
His classes in ADAS subjects and the practical classes formed the spark that triggered
the beginning of this research. Watching his effort and passionate work on this topic have
motivated me to overcome this survey challenge.

My deepest gratitude to my lab partner and friend Bruno Mamoru Kato, who often
helped me with bug fixing and simulations optimization.

I am also extremely grateful to my supervisor at Audi, Moritz Würth, who opened me
an internship opportunity at AUDI in the Radar & Laser-Scan department. This fantastic
experience in this automotive industry was essential to deepen and better master the
ADAS subject. I have learned a lot from him since programming better to become a better
professional.

Above all, I want to give special thanks to my father, Wanderley de Carvalho. He
provided me financial and emotional support during this challenging period of the covid-19
pandemic, which part of it I found me alone in another country.

I thank the groups: LG, The Construct, AWF, Apollo, and the whole ROS wiki
community for their technical assistance during the development of this work. Thanks to
dear people who participated in this work directly or indirectly: Florian Denk (CARISSMA),
Eric Boise (LG), Duong Le, Ricardo Tellez, Arif Rahman.

I thank the institutions FAPESC and BAYLAT for the respective scholarships in Brazil
and Germany during this research period.

Finally, I let warm gratitude to my family and friends, as without their continuous
belief in me, I would not make it to the end: Vera, Heloisa, Johny, and Rafael (family).
Stefany Carvalho, Dimitris Kisimov, Hitesh Deriya, and Jesuslene Gomes (friends).

List of Figures

Figure 1 – Advanced Driving Assistance Systems Functions 28
Figure 2 – Technology Investment Trend . 29
Figure 3 – V2N Communication . 30
Figure 4 – First Brazilian self-driving car travel autonomously 74 km on urban

roads and highways . 31
Figure 5 – Early designs for automating vehicles 35
Figure 6 – Main sensors used in autonomous vehicles 39
Figure 7 – Application of Genetic Algorithm to image fusing 41
Figure 8 – Robot Autonomous Navigation Interrelated sub-problems 45
Figure 9 – Path Planning Classification . 46
Figure 10 – Overview of OMPL structure . 48
Figure 11 – Solution path a car-like robot using OMPL 49
Figure 12 – The occupancy grid map of a city environment. 50
Figure 13 – Dijkstra’s algorithm grid-search strategy implementation 50
Figure 14 – Implementation of Greedy BFS algorithm using the Manhattan

Heuristic . 52
Figure 15 – Greed BFS behavior when facing a concave obstacle environment. . . . 53
Figure 16 – Implementation of A* algorithm in Robot Ignite Academy 54
Figure 17 – RRT Pseudo code . 55
Figure 18 – Comparison of optimality from RTs, RRT and RRT* 56
Figure 19 – RRT process overview . 57
Figure 20 – Implementation of RRT algorithm in Robot Ignite Academy 57
Figure 21 – RRT exploration process for a car-like-robot 58
Figure 22 – Elastic Band Motion Planner . 59
Figure 23 – Dynamic-Window Approach working-principle 60
Figure 24 – DWA on ROS Navigation Stack . 60
Figure 25 – Time Elastic Band configuration sequence 61
Figure 26 – TEB on ROS Navigation Stack . 62
Figure 27 – Effectiveness of HSL-RRT* in finding a feasible path on the highway,

avoiding multiple obstacles . 62
Figure 28 – Kinematic of a car-like-robot . 64
Figure 29 – ROS Master Management . 66
Figure 30 – ROS Nodes and ROS Packages Configuration 67
Figure 31 – Navigation Stack Setup . 71
Figure 32 – AD Stack Configuration . 73
Figure 33 – AV High Level Architecture . 73

Figure 34 – AV Signal Flow . 74
Figure 35 – Autoware Overview. 76
Figure 36 – Autoware Foundation Members . 77
Figure 37 – Autoware.AI Runtime Manager Interface 78
Figure 38 – Autoware.AI architecure . 79
Figure 39 – Guideline-based A-Star working principle 80
Figure 40 – Comparison of A* versus Hybrid A* Search Expansion 81
Figure 41 – Hybrid A* processing phases . 82
Figure 42 – Classical Lattice vs Modified Lattice 83
Figure 43 – Trajectory generation on modified Lattice 85
Figure 44 – Global planning using the Open Planner algorithm 86
Figure 45 – Open Planner Architecture . 87
Figure 46 – Local Planning phases in Open Planner algorithm 88
Figure 47 – AWF Development Cycle . 90
Figure 48 – AWF AVP Architecture . 91
Figure 49 – AVP Planning Architecture . 94
Figure 50 – Apollo.Auto Architecture Diagram . 95
Figure 51 – Interaction of Apollo.Auto modules . 95
Figure 52 – Selected Lane, based on cost operating and safety rules 96
Figure 53 – EM path-speed decoupled optimizers 96
Figure 54 – Path and speed spline smoothing process 97
Figure 55 – Optimized Trajectory after refinement of second layer 97
Figure 56 – Nvidia Drive Constellation Architecture 98
Figure 57 – Elektrobit Architecture . 99
Figure 58 – BMW 5 Series test vehicle . 101
Figure 59 – Mesh modeling of simulated car-like-robot 102
Figure 60 – Integration of Autonomous Driving Stack and LGSVL Simulator 103
Figure 61 – An ontological scenario method for verification and validation of AD . 105
Figure 62 – Scenario selection method . 106
Figure 63 – PEGASUS scenario-description model 107
Figure 64 – Selected scenarios to simulation tests 109
Figure 65 – Unpredictable behavior by Ego-vehicle 110
Figure 66 – Scenario Influence on Decision-Making Module 111
Figure 67 – Lanelet2, behavior and lane planners in action 112
Figure 68 – Parking Maneuvers Tests. Up: Front Park, Bottom: Rear Park 113
Figure 69 – Lane Change to avoid collision with a static vehicle on Apollo.Auto . . 114
Figure 70 – Open Planner Calculated Trajectory 116
Figure 71 – Freespace Planner trajectory generation 117
Figure 72 – Astar Deforming Freespace Global Planner Trajectory 118

Figure 73 – Lattice Deforming Freespace Global Planner Trajectory 119
Figure 74 – Public Road Planner trajectory generation 119
Figure 75 – Trajectory profile from simulated planners 120
Figure 76 – Lateral Displacement from Global Path 120
Figure 77 – Total Distance Traveled. 121
Figure 78 – Distance From Obstacle . 122
Figure 79 – Rear Left (RL) point selection from planar rectangular object model . 122
Figure 80 – Smoothness of Trajectory and relational factor 123
Figure 81 – Time Consumption to accomplish the generated trajectories 124
Figure 82 – Instantaneous Center of Rotation of a car-like-robot 125
Figure 83 – Ackerman Steer . 126
Figure 84 – Power consumed by trajectory planners 127
Figure 85 – Distance to path error . 128
Figure 86 – Vehicle Behavior . 129
Figure 87 – Trajectory Planner’s CPU usage . 130
Figure 88 – Trajectory Planner’s average of CPU usage 130
Figure 89 – Trajectory Planner’s Memory consumption 131
Figure 90 – A deep insight of Freespace Astar Trajectory Generation 149
Figure 91 – A deep insight of Freespace-Lattice Trajectory Generation 150
Figure 92 – A deep insight of Open Planner Trajectory Generation 151
Figure 93 – A deep insight of Public Road Trajectory Generation 152
Figure 94 – Vehicle Configurator. Left: SVL configurator interface., Right: JSON

format. 153
Figure 95 – Open Planner behavior states . 155
Figure 96 – ODD based Development Workflow . 156
Figure 97 – autonomous driving representation of Autoware.Auto architecture,

with motion planner focus, . 157
Figure 98 – Representation of a reference path in Frenet Coordinates 158
Figure 99 – High Definition Map Content . 159
Figure 100 –PEGASUS validation method workflow 160
Figure 101 –Autonomous Driving Stack Composition 161
Figure 102 –Graphics Card Configuration Required 163

List of Tables

Table 1 – Collision Avoidance Systems for AVs (CASs). 44
Table 2 – Machine Description . 100
Table 3 – Autonomous Driving Stack Performance 132
Table 4 – Trajectory Planners Performance . 134

List of abbreviations and acronyms

ABS Anti-Lock Brakes

ACC Adaptive Cruise Control

ACTor Autonomous Campus Transportation

ADAS Advanced Driving Assistance Systems

AD Autonomous Driving

ADS Autonomous Driving Stacks

AI Artificial Intelligence

ALV Autonomous Land Vehicle

AMCL Adaptive Monte Carlo Localization

AMR Autonomous Mobile Robot

AN Autonomous Navigation

AUV Autonomous Undewater Vehicles

AV Autonomous Vehicles

AVP Autonomous Valet Parking

AWF Autoware Foundation

AWS Amazon Web Services

BMWi German Federal Ministry for Economic Affairs and Energy

CAN bus Controller Area Network bus

CARISSMA Center of Automotive Research on Integrated Safety Systems and
Measurement Area

CASs Collision Avoidance Systems

CCW CounterClock Wise

CG Conjugate Gradient

CHOMP Covariant Hamiltonian Optimization for Motion Planning

CNN Convolutional Neural Network

CPU Central Processing Unit

CR-RRT Closed Loop RRT

CVM Curvature Velocities Techniques

CW Clock Wise

DARPA Defense Advanced Research Projects Agency

DART Dynamic Animation and Robotics Toolkit

DDS Data Distribution Service

DGPS Differential GPS

DP Dynamic Programming

DSC Dynamic Stability Control

DWA Dynamic Window Approach

EEM External Errors

EKF Extentend Kalman Filter

ESP Electronic Stability Program

EST Expansive-Spaces Tree

FCL Flexible-Collision-Library

FZD Technische Universität Darmstadt

GA Genetic Algorithm

Greedy BFS Greedy Best First Search

GNSS Global Navigation Satellite System

GPU Graphic Processing Unit

GPS Global Positioning System

HAD Highly Automated Driving

HD-Map High Definition Map

HDR High Dynamic Range

HEIs Human Error Detection Methods

HET Human Error Template

HDRP High Definition Render Pipeline

HIL Hardware in the Loop

Hp Horsepower

ICR Instantaneous Center of Rotation

IMU Inertial Measurement Unit

IRA Independent Reasoning Agent

JSON JavaScript Object Notation

KPIECE Kinodynamic Planning by Interior-Exterior Cell Exploration

KPI Key Performance Indicator

LaSiN Naval Simulation Laboratory

LiDAR Light Detection and Ranging

LRR Large Radar Range

MPC Model Predictive Control

MRR Medium Radar Range

NAV2 Navigation Stack 2

NDT Normal Distribution Transform

ODD Operation Design Domain

ODE Open Dynamics Engine

ODO Overall Direct Optimization

OGRE Object Oriented Graphics Rendering Engine

OMPL Open Motion Planning Library

Op Open Planner

OpenCV Open source Computer Vision and Machine Learning Software Li-
brary

OS Operating System

OTA Over-the-air

PCD Point Cloud Data

PEGASUS Project for the Establishment of Generally Accepted

PELOPS Program for Development of Longitudinal Traffic Processes

PID Proportional Integral Derivative

PQP Proximity Query Package

PRM Probabilistic Roadmap

QP Quadratic Programming

RaDAR Radar Detecting and Ranging

RAM Random Access Memory

RL Rear Left

ROS Robot Operating System

ROS2 Robot Operating System 2

RQT ROS QT

RRT Rapidly-exploring Random Tree

RT Random Trees

Rviz ROS Visualization

SAE Society of Automotive Engineers

SBL Single-query Bi-Directional Probabilistic Roadmap Planner

SBPL Search-based Planning Library

SDF Simulation Description Format

SDR Standard Dynamic Range

SIL Software in the Loop

SLAM Simultaneous Localization and Mapping

SRR Short Radar Range

SSRRT* Spline based RRT

STOMP Stochastic Trajectory Optimization for Motion Planning

SUT System Under Test

SyCLOP Synergistic Combination of Layers of Planning

TEB Time Elastic Band

TCC Time To Collision

TTE Time To Enter

THI Technische Hochschule Ingolstadt

UFES Federal University of Espirito Santo

UKF Unscented Kalman Filter

UGV Unmanned Ground Vehicle

URDF Unified Robot Description Format

VFF Virtual Force Field

VFH Vector Field Histogram

V2N Vehicle-to-Network

V2P Vehicle-to-Pedestrian

V2V Vehicle-to-Vehicle

V2VCR Vehicle-Vehicle Collision Probability Relation

V2X Vehicle-to-Everything

V21 Vehicle-to-Infrastructure

YOLO You Only Look Once

List of symbols

5G Fifth Generation Technology Standard for Broadband Cellular Net-
works

acclin Linear acceleration

accnet Net acceleration

atan Tangential acceleration

acent Centripetal acceleration

ares Resultant acceleration

α1 coefficient factor to increase or decrease the H1 term weight

α2 coefficient factor to increase or decrease the H2 term weight

βpi Bubble Configuration

∆ti Instantaneous time

d(i) Instantaneous displacement

dx Robot’s longitudinal control space

dy Robot’s lateral control space

dθ Robot’s heading control space

f cost Cost to travel from the origin cell to the neighbor cell, in the path
planning context

f(i) Instantaneous force

F(i) Heuristic Function

G(i) Cost to reach the final waypoint

h cost Represents an heuristic distance from a node n to the goal location

H1(i) Distance between the point i and the guideline

H2(i) Distance from g(i) to the target

Qo Start Point

Qfree Indicates a grid cell with free space

Qobs Indicates a grid cell occupied by obstacle

qinit Root node of the tree (origin)

qgoal Final node of the tree

Ks Path Curvature of length s

Ns Start Point

ηn Final vertex of lattice path

pii Free-space robot configurations

P Power Consumption (Hp)

ψ Front’s wheel steering angle

si Vehicle Pose

v Velocity

δ Steering Angle

φ Steering Control

S Smoothness of Trajectory

τ Time Interval

T t Jerk (acceleration derivative)

ẋ Longitudinal Velocity

ẏ Lateral Velocity

ω Angular acceleration

Contents

1 INTRODUCTION . 25
1.1 Motivation . 26
1.2 Contextualization of the work . 32
1.2.1 Main Objective . 32
1.2.1.1 Specific Aims . 32
1.3 Outline . 33

2 AUTONOMOUS VEHICLES . 34
2.1 Definition . 34
2.2 History . 34
2.3 Automation Levels . 35
2.4 Sensors . 37
2.5 Path Planners & Collision Avoidance for AVs: An Overview 39

3 PATH PLANNING: A DEEP INSIGHT 45
3.1 Challenges of Autonomous Mobile Robot Navigation 45
3.2 Path Planning Concept . 45
3.3 Planning Libraries . 47
3.3.1 OMPL . 47
3.4 SBPL . 48
3.5 Global Planners Work Principle . 48
3.5.1 Dijkstra . 49
3.5.2 Greedy BFS . 51
3.5.3 A* . 52
3.5.4 RRT . 54
3.6 Local Planners Work-Principle . 58
3.6.1 Elastic Band . 58
3.6.2 Dynamic-Window Approach (DWA) . 59
3.6.3 Time Elastic Band (TEB) . 60
3.6.4 RRT . 62
3.7 The ROS Planning Libraries Integration 63
3.7.1 Kinematic Models . 63

4 THE ROBOT OPERATING SYSTEM (ROS) 65
4.1 The ROS Framework . 65
4.2 ROS AD Driving Application Timeline 69

4.2.1 ROS1 based Frameworks . 69
4.2.1.1 MoveIt . 69
4.2.1.2 Navigation Stack . 71
4.3 The next stage: Autonomous Driving Stacks 72

5 AUTONOMOUS DRIVING STACKS 76
5.1 Autoware . 76
5.2 Autoware.AI . 77
5.2.1 Planning Module . 77
5.2.2 Guideline-based A-Star (Freespace) . 79
5.2.2.1 Hybrid A* (Local Planner) . 80
5.2.2.2 Modified Lattice . 83
5.2.3 Open Planner-Global . 86
5.2.3.1 Open Planner Behavior State Machine . 87
5.2.3.2 Open Planner-Local . 87
5.3 Autoware.Auto . 89
5.3.1 Planning Module . 91
5.3.1.1 Lanelet2 Global Planner . 91
5.3.1.2 Behavior Planner . 92
5.3.1.3 Trajectories Planners (Lane Planner, Parking Planner) 93
5.3.1.4 Object Collision Estimator . 93
5.4 Apollo.Auto . 94
5.4.1 Planning Module . 96
5.5 Proprietary AD Stacks . 97
5.5.1 Nvidia . 97
5.5.2 Elektrobit . 98

6 SIMULATION SETUP . 100
6.1 Navigation Stack Simulation Setup 100
6.1.1 City . 100
6.1.2 Vehicle Model . 101
6.1.3 Simulation Results . 101
6.2 LGSVL Simulator . 102
6.2.1 Selection . 102
6.2.2 Conception . 102
6.2.3 AD Stack -LGSVL Bridge . 103
6.2.4 Simulation Engine . 103
6.2.5 Scenarios . 104
6.2.6 Related Functionalities . 104
6.3 Determination of Test Cases Scenarios 104

6.3.1 Scenario Remarks . 109
6.4 Autoware.AI . 110
6.4.1 Vehicle Configuration . 110
6.4.2 Tested Scenarios . 110
6.5 Autoware.Auto . 111
6.5.1 Vehicle Configuration . 111
6.5.2 Tested Scenarios . 112
6.6 Apollo.Auto . 114
6.6.1 Vehicle Configuration . 114
6.6.2 Tested Scenarios . 114

7 SIMULATION ASSESSMENT AND DISCUSSION 115
7.1 Trajectory . 115
7.1.1 AutowareAI Trajectories Planners . 115
7.1.1.1 Open Planner . 115
7.1.1.2 Freespace . 116
7.1.1.2.1 Local Planner: Astar . 117

7.1.1.2.2 Local Planner: Lattice . 118

7.1.1.3 Public Road . 119
7.2 Lateral Displacement Region . 120
7.3 Distance Traveled . 121
7.4 Distance From Obstacle . 121
7.5 Smoothness of Trajectory . 123
7.6 Evasive Maneuver Duration . 124
7.7 Power Consumption . 125
7.8 Persecution of Trajectory: Path deviation 128
7.9 Vehicle Behavior . 129
7.10 Computational Effort . 130

8 CONCLUSION AND FUTURE WORK 132

Bibliography . 135

A APPENDIX . 148
A.1 Appendix 1: RosGraph Outline: Freespace-AstarPath Generation . . 149
A.2 Appendix 2: RosGraph Outline: Freespace-Lattice Path Generation 150
A.3 Appendix 3: RosGraph Outline: Open Planner Path Generation . . . 151
A.4 Appendix 4: Cyber-Graph Outline: Public Road Path Generation . . 152
A.5 Appendix 5: Vehicle Configuration in SVL simulator 153

B ANNEX . 154
B.1 Annex 1: Open Planner Decision-Making Structure 155
B.2 Annex 2: Operation Design Domain Diagram 156
B.3 Annex 3: Autonomous Driving Architecture 157
B.4 Annex 4: Frenet Coordinates . 158
B.5 Annex 5: High Definition Map . 159
B.6 Annex 6: Pegasus Method . 160
B.7 Annex 7: Autonomous Stack Full Composition 161

25

1 Introduction

Each hour of the day worldwide, millions of people plan to go from point A to B.
Whether with their vehicles or using public transportation. Unfortunately, not all of these
displacements are completed. Road traffic accidents are the fifth leading cause of morbidity
and mortality worldwide (Baiee et al., 2020). Which numerically means 1.2 million deaths
and more than 20 million injured people every year. Up to 94 % of these road traffic
crashes are consequences of human behavior (Najafi and Arghami, 2020).

Automobile manufacturers have created critical systems and tests to counterattack the
number of victims on highways and in urban driving areas. They took the first actions over
passive safety systems with the creation of the crash test (the 1930s), seat belt(1950s),
padded instrument panels(1960s,) and airbag (1970s). The above systems effectively reduce
bodily injuries during the crash event but do not avoid collisions. To act on accident
prevention, the automotive industry developed the first active safety system in the 1980s:
the Anti-Lock Brakes (ABS), Electronic Stability Program (ESP), Dynamic Stability
Control (DSC). To increase passenger comfort and security in the late 1990s, cruise control
and, later the Active Cruise Control were also developed and classified as driver assistance
systems. In this century, the automotive industry focuses on Advanced Driving Assistance
Systems (ADAS), which ultimate phase is autonomous driving (Aeberhard, 2017).

According to Battiston (2015), an autonomous vehicle is defined as a passenger vehicle
that drives by itself. This vehicle must perceive its surrounding environment and decide
which route to take to reach its destination and drive. These car-like robot decisions are
taken on planner modules to create collision-free waypoints. These waypoints will prevent
the car from colliding with static or dynamic obstacles and enable the vehicle to reach the
final target (Marin-Plaza et al., 2018).

An autonomous vehicle relies upon numerous sensors, decision-make algorithms, and is
data-dependent. Therefore, the lack of reliable information, and an eventual gap in getting
data, and a wrong algorithm computation will probably lead the vehicle to undesired
behavior, which can directly impact passengers’ lives. Legalizing these vehicles requires
reliable software and hardware. The automotive industry has split autonomous driving
into functions that compose modules divided into Perception, Localization, Planning, and
Control to ensure robust software. The automotive sector hires numerous AI software
companies to develop these specific functions to improve the modules. The frameworks
made up by these modules are called Autonomous Driving Stacks (ADS).

This dissertation provides an outline of the open-source ADS. It gives an overview of
the current software applied by the automotive industry and their respective layers and
features. It takes focus on the trajectory planners domain. It covers how they integrate

Chapter 1. Introduction 26

the driving functions and performance in different autonomous driving scenarios.

1.1 Motivation
Severe injuries and deaths are expected consequences of vehicles accident. More than

90% of worldwide road collisions are caused by human error (Masuri et al., 2012; Yurtsever
et al., 2020). According to the driving tasks, these errors emerge and vary in intensity
and form. Najafi and Arghami (2020) used the Human Error Template (HET) to classify
external errors (EEMs) in the form of human error detection methods (HEIs). The technique
figured out 12 errors patterns done by the drivers when they drive in the following scenario:

"the driver departs from the park and moves in a pre-determined direction. A
few moments later, he speeds up to overtake the front car. Then, he continues
driving. By getting the destination, he exits the path and parks the car". The
survey concluded that the majority of the drivers commit the mistake called
"Fail to Execute" while executing the task called "Scrolling the route," equalling
48% of all errors. Technically the error was distributed in the following ratio:
49%, 33% 18% for "acceleration changing," "line changing," and "distance
adjusting" respectively.

Similar study (Hale et al., 1990) indicates a close relationship between human errors and
the type of scenario the driving is submitted. Therefore, the specific scenario is essential
for ADAS developers’ teams. To mitigate these errors and assist the drivers while they
are traversing these scenarios, the automotive industries brought through ADAS essential
driving functions, such as:

• Adaptive Cruise Control (ACC): The ACC automatically adjusts the vehicle
speed to maintain a safe distance from vehicles ahead ("A" in Figure 1);

• Emergency Brake Assist: It assists the vehicle achieve a maximum braking
effectiveness in an emergency situation.It’s controlled automatically via the Electronic
Stability Control system, which senses how much pressure the driver has applied to
the brake himself and automatically increases it, if necessary ("B" in Figure 1);

• Rear Cross Traffic Alert: Informs to the driver if another vehicle is approaching
from either direction when the vehicle ins in reverse and is backing out of a parking
place ("C" in Figure 1);

• Lateral Control: The lateral control is responsible for regulating the vehicle’s
lateral control, steering the vehicle’s wheels for path tracking, maintaining it in
center of lane ("D" in Figure 1);

Chapter 1. Introduction 27

• Blind Spot Monitoring (BSM): It assists the driver with noise warnings, while
the vehicle is switching lane, if the BSM detects that a car is in the vehicle blind
spot ("E" in Figure 1);

• Intelligent Headlamp Control: This system uses a video camera to measure the
ambient brightness and to estimate the distance from vehicles in front and oncoming
traffic (Bosch, 2021). This data is used to implement a variety of light functions ("F"
in Figure 1);

• Traffic Sign Assist: Detects traffic signs with multi-function camera and assists
the driver by displaying detected speed limits and overtaking restrictions in the
instrument cluster (Ford, 2021), ("G" in Figure 1);

• Active Lane Departure Warning: The system emits audible warnings to the
drivers when they unintentionally leave their lanes ("D" in Figure 1);

• Surround View: Fused data (from radar, camera and lidar) to create a model of
the surrounding objects around the vehicle. It ensures better obstacle detection.
The same term can also be recognized as the camera system which provides the
driver several views like top, view, rear and panorama view to assist the driver while
parking ("H" in Figure 1);

• Longitudinal Control: Control the vehicle’s longitudinal motion speed ("A" in
Figure 1);

• Parking Guidance System (PGS): This system helps the drivers aprk with
greater precision, using guidance system technology that rivals ultrasonic and other
camera-based solutions with superior, advanced technology (CARandDriver, 2021);

• Intersection Assistant: This system employs the camera and radar sensor tech-
nology to detect oncoming traffic while attempting to turn left. If there’s a potential
collision with an oncoming vehicle, the vehicle can alert the driver and apply the
brakes;

• Tire-Pressure Monitoring (TPMS): Inform the drivers which tire has low air
pressure via the TPMS readout in the instrument panel. Individual sensors in each
tire monitor pressure and transmit the data to a receiver in the system. The pressure
reading for each tire is displayed in the instrument panel (Honda, 2021);

• others.

The Figure 1 shows some of the main ADAS functions:

Chapter 1. Introduction 28

Figure 1 – ADAS Functions Source: Hella (2021); Ford (2021); Volkswagen-Newsroom
(2018)

The automotive industry is continuously improving these technologies in partnership
with companies supplying sensors, software, and related technologies. ADAS has demon-
strated to be a good driver’s ally, taking into account it assists the vehicle operator to drive
safer, with more comfort and constantly acts to prevent collisions, issuing warnings or
directly taking actuators control (steering, braking, or throttling). McKinsey and Company
(2019) pointed out that heavy investment is being made in developed countries. in average,
$2.3 Billion were applied in the last five years to AD-related software development. The
Figure 2 depicts the previous decade’s trends.

Chapter 1. Introduction 29

Figure 2 – Technology Investment Trend. Source: McKinsey and Company (2019)

It is possible to check that AVs and ADAS have attracted more and more investments
in the last years. In 2020 Tesla gained authorization to drive on public roads in specific
cities in the USA, Apollo in particular places in China, and recently, the Robo-taxi on
specific conditions in Germany was allowed (Juliussen, 2020). Vehicle connectivity is also
a trend in the autonomous driving context. It is divided into:

• The network-based communication: allows the cars to use the cellular network to
communicate with nearby vehicles, pedestrians, and the infrastructure around them.
This technology is known as vehicle-to-network (V2N) communication. the V2N has
a more extensive range of communication compared with direct methods (McKinsey,
2019)

• Direct Communication: Enables the vehicles to interact directly with nearby sur-
roundings, including communication with other vehicles (V2V). Contact with the
traffic light, for example, is also possible, preventing an AV from passing the red
light.

Chapter 1. Introduction 30

The Figure 3 depicts the sorts of network and direct communications. These technologies
are currently being tested and improved each year due to improvements in electronics and
communications technology, such as 5G.

Figure 3 – Network and Direct Communication among cars on the road. Source: McKin-
sey (2019)

These kinds of communication depend directly on reliable and fast-speed data trans-
mission. For this reason, the fifth-generation wireless technology, 5G, will be a vital enabler
of this technology (McKinsey, 2019). The 5G is already being implemented in the most
developed countries and started this year in Brazil (Feitosa, 2021). Regarding Brazil, the
government already has exciting projects in autonomous vehicles. Badue et al. (2021)
developed a complete architecture of a self-driving car at the Federal University of Espirito
Santo (UFES), named intelligent Autonomous Robotics Automobile(IARA). This AV was
the first Brazilian car to travel autonomously 74 km on urban roads and highways. The
Figure 4 depicts this AV architecture.

Chapter 1. Introduction 31

Figure 4 – Intelligent and Autonomous Robotic Automobile (IARA), the first Brazilian
self-driving car to travel autonomously 74 km on urban roads and highways.
Source: Badue et al. (2021)

Autonomous driving is not fully developed yet. The automotive industry and research
groups study and test different scenarios, also called the operation design domain (ODD).
These groups are trying the AD functions in as many scenarios as possible. According to
Kalra and Paddock (2016), the automated driving systems cannot keep being validated
by test drives and conventional methods, such as driving thousands of kilometers on the
high road. This problem, however, must be solved by a scenario-based approach (Pütz
et al., 2017). That is the only way these functions will reach the maturity, robustness, and
reliability needed to become legalized. Covering different scenarios is the primary
strategy to enable the AV to address adequately all situations that may occur
in specific circumstances in a distinct scenario (Ponn, Gnandt and Diermeyer, 2019;
Schuldt et al., 2013; Klück et al., 2018; Nitsche et al., 2018; Rogic et al., 2016).

Autonomous Driving Systems (ADS) can bring positive impacts and benefits to society.
They can: reduce the vehicle’s miss behavior caused by human distraction, increase the
mobility of elderly people, reallocate driving time and ride-sharing (Yurtsever et al., 2020).
Battiston (2015) foresee the ADS will eliminate crashes, improve energy efficiency, increase
safety, bring more comfort and reduce driving stress.

The potential noble social and economic contribution provided by autonomous driv-
ing, the optimistic perspective for this market, allied to the developed projects by this
University’s lab, in particular the ones based on ROS frameworks, inspire the survey on
ROS based Autonomous Driving Stacks, the topic of study of this dissertation. Aligned
to ADAS and ADS goals, it is intended on this work to investigate the performance of

Chapter 1. Introduction 32

the driving tasks executed by the planning module. To this end, relevant scenarios will
be covered within the autonomous driving context. Assess the trajectory planners and
decision-making taken by this module in different situations regularly present on traffic
roads.

1.2 Contextualization of the work
This survey was partially developed in Naval Simulation Lab (LaSiN) and Technische

Hochschule Ingolstadt (THI). Both laboratories cover several robotic’s research topics
and use ROS-based frameworks. The first idea was to test OMPL path planners for AUV
vehicles (present in LaSin) using MoveIt ROS-based software. Similarly, test distinct path
planners for AV vehicles in Navigation Stack ROS-based framework. The last goal was
accomplished with success, and we preferred to focus more on the AV side than AUV for
lack of time reasons. Therefore, more powerful ROS-based software was tested to reach
the previously described features (see Section1.1) with more properties.

1.2.1 Main Objective

The main objective of this research is to perform autonomous driving simulations in
different scenarios, applying distinct ADS and exploring its features, such as collision
avoidance, addressing safety, and smooth maneuvers to the vehicle through the usage of
standard trajectories planners.

1.2.1.1 Specific Aims

As described previously, to accomplish the primary goal of this work, the following
aims need to be addressed:

• Investigate and test ROS1 and ROS2 based applications and choose the most suitable
ones to AD context.

• Define relevant driving scenarios through the state-of-the-art literature review.

• Implement the scenario, agent’s behavior, and position.

• Apply the most suitable algorithms available on ROS based ADS frameworks, to
carry out the following tasks:

– Sense: Environment Perception

– Plan: Decision Making Planners

– Action: Trajectory execution and motion control

Chapter 1. Introduction 33

• Set the ROS layers communication with the real-world scenarios represented by the
simulator.

• Extract the relevant data-flow, subscribing to the topics and plot them.

• Evaluate this data and report the results.

1.3 Outline
This work is structured in the following chapters:

• Chapter 2 covers the definition, challenges, benefits, providing a contextualization
of autonomous vehicles.

• Chapter 3 introduces the path planning concept, libraries, and first software
available to test and investigate the path planners. Starting from the standard
planners used for robot navigation to those developed for self-driving cars application.

• Chapter 4 presents the Robot Operating System (ROS), the leading middleware
used in this thesis to test different driving tasks scenarios. An overview of this
framework and the earlier ROS-based software are presented: MoveIt and Navigation
Stack. Afterward, some of the path planners introduced on chapter 3 supported by
Navigation Stack are integrated, and the performed simulations are displayed. Lately,
an insight into ROS-based Autonomous Driving applications has been provided,
which will further be detailed on chapter 5.

• Chapter 5 covers the software applied to address the autonomous driving tasks,
known as Autonomous Driving Stacks (ADs). It describes the ROS-based ADs with
a significant focus on the planning module architecture since it is the principal-agent
responsible for executing the driving tasks, the topic of interest of this work.

• Chapter 6 presents the methodologies and simulations produced for the relevant
scenarios discussed on chapter 2 implemented over the frameworks described on
chapter 5.

• Chapter 7 present the simulation results by the use of extracted graphics from
ROS and Cyber topics. Analysis and discussion are done in this chapter.

• Chapter 8 Concludes the work confronting the initial goals defined on chapter
1 with the results reported on chapater 7. The gaps are identified, and the next
challenges are proposed.

34

2 Autonomous Vehicles

The driverless technology has long been enticing. It has the potential to transform
users’ experience of commuting, reduce the tiredness and stress of long journeys, take
people out of high-risk working environments and streamline the industries.

2.1 Definition
An autonomous vehicle is defined as a passenger vehicle that drives by itself. A fully

autonomous car does not require any operator to go it. These futuristic vehicles are usually
driverless, driver-free, self-driving, autopiloted, or car-like robots. They can perceive its
environment, decide which route must be taken to achieve the desired destination, and
drive to it (Battiston, 2015).

2.2 History
Autonomous Vehicles have existed as prototypes and demonstrations since the 1960s

(Battiston, 2015). The first automated vehicle was created by the electrical and computer
engineer Robert Fenton and his team at Ohio State University in the mid-1960s. It is
believed to be the first land vehicle to have used a computer. They placed a current-
carrying wire laid down the center of the roadway and ran current through it, creating a
magnetic field that enabled their control of the cars. The car was equipped with a large
bump of electronics stuck out from the bumper to sense the fixed wire (Beasley, 2019).
According to the inventor, the vehicle achieved higher speeds: "It worked beautifully. We
were automatically steering at speeds up to 85 mph". A blueprint of the followed principle
is sketched below:

In 1977 the first self-driving vehicle was built by Tsukuba mechanical engineering lab.
The car reached speeds up to 30 km/h by tracking white lanes marked on the street for 50
meters.

In March of 2004, the Defense Advanced Research Projects Agency (DARPA) launched
Darpa’s Grand Challenge. This competition had as aim to develop autonomous vehicles
able to navigate on desert trails and roads at high speeds. The first event had no winners
since no competitor could complete the challenge. However 2005, 5 vehicles were able to
finish the race of 244 km under 7 hours (Buehler et al., 2009). The encouragement of
this event was a response to a congressional mandate that a third of US military ground
vehicles should be unmanned by 2015 and as consensus that only research programs would
not be able to carry out the necessary technology to meet this goal. Therefore DARPA

Chapter 2. Autonomous Vehicles 35

Figure 5 – An image from the original 1969 article illustrating the idea of a vehicle
drawing current for propulsive power from the roadway. Source: Ackerman
(2016)

was vital for the vertiginous advance of this technology.

Nowadays, companies such as Google, Nissan, Volvo, General Motors, Volkswagen/Audi,
Tesla, Nissan, Toyota, BMW, and Mercedes-Benz have started research on this topic and
keep investing in better implementations of AVs to fulfill the required requirements
government obligations.

2.3 Automation Levels
The Society of Automotive Engineers (SAE) developed an industry-standard scale

from zero to five to describe this continuum, although there are many gray areas where
features might overlap. Here’s what those levels generally means (Tettamanti et al., 2016):

• Level 0: No Automation. The driver is entirely responsible for controlling the vehicle,
performing tasks like steering, braking, accelerating, or slowing down. Level 0 vehicles
can have safety features such as backup cameras, blind spot warnings, and collision
warnings. Even automatic emergency braking, which applies aggressive braking in
an imminent collision, is classified as Level 0 because it does not act over a sustained
period;

• Level 1: Driver Assistance. At this level, the automated systems start to take control
of the vehicle in specific situations but do not fully take over. An example of Level
1 automation is adaptive cruise control, which controls acceleration and braking,

Chapter 2. Autonomous Vehicles 36

typically in highway driving. Depending on the functionality, drivers can take their
feet off the pedals;

• Level 2: Partial Automation. At this level, the vehicle can perform more complex func-
tions that pair steering (lateral control) with acceleration and braking (longitudinal
control), thanks to a greater awareness of its surroundings;

• Level 2+: Advanced Partial Automation. While Level 2+ is not one of the officially
recognized SAE levels, it represents an important category that delivers advanced
performance at price consumers can afford. Level 2+ includes functions where the
vehicle systems are essentially driving, but the driver must still monitor the vehicle
and step in if needed. (By contrast, Level 3 represents a significant technology leap,
as it is the first level at which drivers can disengage from the act of driving —
often referred to as "mind off." At Level 3, the vehicle must safely stop in the event
of a failure, requiring much more advanced software and hardware.) Examples of
Level 2+ include highway assistance or traffic jam assistance. The ability for drivers
to take their hands off the wheel and glance away from the road ahead for a few
moments makes for a much more relaxing and enjoyable experience, so there is strong
consumer interest;

• Level 3: Conditional Automation. At Level 3, drivers can fully disengage from the
act of driving, but only in specific situations. Conditions could be limited to certain
vehicle speeds, road types, and weather conditions. But because drivers can apply
their focus to some other task — such as looking at a phone or newspaper — this is
generally considered the initial entry point into autonomous driving. For example,
features such as traffic jam pilot mean that drivers can sit back and relax while the
system handles it all — acceleration, steering, and braking. The vehicle alerts the
driver to regain control when the car gets through a traffic jam and the vehicle speed
increases in stop-and-go traffic. The vehicle must also monitor the driver’s state to
ensure that the driver resumes control and come to a safe stop if the driver does not;

• Level 4: High Automation. At this level, the vehicle’s autonomous driving system
is fully capable of monitoring the driving environment and handling all driving
functions for regular routes and conditions. However, depending on the vehicle’s
operational design domain (ODD), the system may, on rare occasions, need a driver
to step in. In those cases, the car can alert the driver of an environmental condition
that requires a human in control, such as heavy snow;

• Level 5: Full Automation. Level 5-capable vehicles are fully autonomous. No driver is
required behind the wheel at all. Level 5 vehicles might not even have a steering wheel
or gas/brake pedals. Level 5 vehicles could have "smart cabins" so that passengers

Chapter 2. Autonomous Vehicles 37

can issue voice commands to choose a destination or set cabin conditions such as
temperature or choice of media.

Each level of automation requires additional layers of sensors, as the vehicles increasingly
assume functions previously controlled by the driver. For example, a Level 1 vehicle might
only have one Radar and one camera. A Level 5 vehicle, which must navigate any
environment it encounters, will require full 360-degree sensing across multiple sensor types.
For example, Aptiv’s autonomous cars have included dozens of sensors and redundant,
fail-operational architectures, such as Aptiv’s Smart Vehicle Architecture™.

2.4 Sensors
The AVs can easier apply sensors with different work-principle to map their surrounding.

The roboticists usually use more than one sensor to identify the obstacles and the AV’s
spot. Schröder et al. (2019) developed a network architecture based on Lidar and camera
fusion, which increased traceability of the entire system, allowing to deal with real-world
challenges such as sensor failures or blindness. Winner et al. (2014) presents the usual
sensors (Yaqoob et al., 2019) employed to solve the perception phase of AN applied into
AV. These sensors are:

• Camera: A battery-powered or energy harvesting device, which transfers data (2D
or 3D) in the form of images or videos. A usual new sort of this device currently
being applied by AVs is the smart camera, which detects accidents, measures the
traffic, detects wrong way-drivers, etc (RENESAS, 2020). Elon Musk believes that
any other vision system than cameras is needed for a self-driving car (Musk, 2019).
This affirmation demonstrates how relevant is this sensor for AV’s perception. This
device is mainly used for the object detection phase, and its processing is quite
complex, involving stages such as image segmentation, calibration, convolution, and
other techniques. Object detection relies on renowned image processing algorithms
and machine learning libraries, such as you only look once (YOLO) and open-source
computer vision and machine learning software library (OpenCV)(Szeliski, 2010).

• RaDAR: Radio detection and ranging is an electromagnetic device that detects
distant objects and infers their distances through the reception of the reflected signal
when it collides with the obstacle. The time calculated between the wave transmission
and the reception allows the object’s spot location. Estimating the obstacle’s speed
and capturing its pose more accurately is possible in more sophisticated radars (Mark
et al., 2010). In general, Radar can measure the object’s distance, angle, velocity,
and cross-section. An AV can use multiple radars, from the rear to the front part
of the car (usually fixed in bumpers). The Radar can be classified by type (but is

Chapter 2. Autonomous Vehicles 38

not the unique classification): Short Radar Range (SRR), Medium Radar Range
(MRR), and Large Radar Range (LRR), reaching the range from 70 meters to 250
meters. The rear Radar is typically mounted on the rear and is used for blind-spot
detection and parking assist systems. The MRR and LRR are mounted on the front
and responsible for traffic jam assist, ACC, and emergency braking, respectively
(Skolnik, 1962).

• LiDAR: Light Detection and Ranging (LiDAR) is an optical technology of remote
detection which measures the light properties to obtain the distance and the shape of
the surrounding environment. Its working principle is similar to the Radar regarding
the reflection phenomena but not concerning the device’s nature. The output from
a LiDAR is point cloud data (PCD). The LiDAR is employed for object detection,
tracking, and vehicle localization. The raw data from this device must be post-
processed to remove useless, problematic, and redundant data. Its processing involves
ground downsampling, PCD fusing, filtering, object detection, shape extraction
(Petrovskaya and Thrun, 2009). One well-known Lidar is from the Velodyne enterprise,
which presents a significant range and high resolution.

• Ultrasonic: The main component of the ultrasonic sensor is the transducers, which
emit sound waves in the air and, after touching an object, receive this sound wave
again. This sensor data is processed using the trilateration method to get the
obstacle distance from the bumper. A combination of four or six sensors in the front
or rear bumper and advanced tracking algorithms, which sense the steering angle is
responsible for realizing the autonomous parking.

The sensors described above integrate the perception module of AD. After the sensor
fusion procedure, they produce an object list containing reliable information from the
objects surrounding the AV (Aeberhard, 2017). These sensors are also applied in charge
of the localization functionality, where they are fused with AV’s internal sensors, such as
Inertial Measurement Unit (IMU), wheel encoders, and odometry. As these data come
from different sources, at different rates and qualities, a filtering process using a Kalman
filter or a nonlinear filter (EKF or UKF) is necessary (Caliskan, 2020).

The Figure 6 shows the primary AV sensors applied in a simulation using Autoware.Auto
ADS.

Chapter 2. Autonomous Vehicles 39

Figure 6 – AV’s Sensors: Up Radar Object List (Left), LiDAR PCD (Right), Bottom:
Camera Lane Tracking (Left), Ultrasonic Pedestrian Detection (Right).
Source: Own Authorship

2.5 Path Planners & Collision Avoidance for AVs: An Overview
As related in the previous subsection 2.4, the last decades were marked by numerous

technologies to deal with autonomous driving. One of the first significant events regarding
autonomous driving was promoted by DARPA, which first took place in 2007. In one of
these events, the winner implemented an RRT-based motion planner to deal with the
driving in real-time (Kuwata et al., 2009). The algorithm calculated all feasible nodes
through a sample of candidate nodes, which fed the controller. To find an optimal path, a
cost-to-go function was set, the implemented heuristic allowed the vehicle to avoid the

Chapter 2. Autonomous Vehicles 40

stooping nodes, which reduced the wavy trajectories. As a result, the AV did not need to
stop route recalculation and performed smoother maneuvers.

The adapted RRT contained a pure-pursuit fused with a PID controller model to adjust
the moving control and speed. Besides that, the algorithm recalculated the robustness
of the most feasible generated path and also the repropagation of the best route. The
CR-RRT algorithm allowed the race car to perform all the required maneuvers from the
DARPA competition, such as getting in and out of the parking, applying evasive maneuvers
to avoid a collision, and finishing the race (Kuwata et al., 2009).

As well as other projects initiated by the defense and army departments, autonomous
driving has also become a target of interest for large companies in the automotive industry
and university researchers. The BMW group sponsored a project to develop autonomous
driving on German highways (Aeberhard et al., 2015). The vehicles used redundant
information collected by 12 embodied sensors to build the road map. A hybrid system
was designed to control the lateral and the longitudinal displacement to guarantee safety
and smooth driving. These AVs embed a robust technology that detects how fast the
other vehicles are, measuring their speed through a combination of a static and a dynamic
model. Conducted simulations comparing scenarios with human driving and autonomous
driving inside the Program for Development of Longitudinal Traffic Processes (PELOPS)
presented results that support the Highly Automated Driving (HAD) insertion, once the
data exhibited a considerable number of collisions reduction when applying the AV in
replacement to the human being This enterprise idea is reducing the number of accidents
next to 0 (Bahram et al., 2014).

Despite some advantages over the sensory part and more straightforward mapping
than AUV, the AV also faces particular adversities in their applications. The overtaking
maneuvers, sunlight reflections, blindness, passing at crossroads are investigated in this
subsection.

To reduce the overtaking risk, Li et al. (2014) presented a method to merge maps
generated by different vehicles aided by the use of a Genetic Algorithm (GA). The map
can be used to avoid collision in autonomous driving. Once a car is located back, another
will share the view of this vehicle. The algorithm is developed through the Overall Direct
Optimization (ODO) technique. In this method, the similar areas of each vehicle’s map
are locked, and the remaining grids are filled based on an objective function (Fc), which
measures the consistency degree of the cell’s equivalence between the maps. Mutations
are realized in several iterations to achieve the most significant value of Fc to generate
the optimum merged map. The study demonstrated that the GA solves the convergence
of almost all map points on average with only ten iterations. Thanks to the data fusion
obtained by this Evolutionary Algorithm, the driver with limited vision in advance can
check whether there are obstacles in front of the vehicle he desires to overtake. The Figure

Chapter 2. Autonomous Vehicles 41

7 depicts an image of this technique application.

Figure 7 – a) Car B with vision occlusion b) Car B "see" through occlusion after GA
application. Source: Li et al. (2014)

Yang et al. (2019) developed an optimization in the dynamic control in autonomous
driving. The study applied the Convolutional Neural Network (CNN) to implement deep
learning to perform autonomous driving. This artificial intelligence model was elaborated
by combining the Feature-Based Map and the Structural Errors Based Map. The most
activated neurons built these maps feeding the machine learning software composed by
the TORC-Matlab software framework. In this training phase, the heading and dynamic
properties were adjusted to achieve the best trajectory generation with the shorter Euclidian
Loss, requiring numerous iterations to achieve the optimum path. The results of the driver
simulator revealed small oscillations in the vehicle’s maneuvers, presenting a behavior
similar to human driving. The maximum spatial errors verified in experiments were about
37 cm in position and 0.6 degrees for steering.

An intense collision, which unfortunately generated the first death in autonomous
driving. Paul and Chung (2018) applied High Dynamic Range (HDR) imaging algorithms
to resolve the video image processing issue in direct sunlight situations. The Standard
Dynamic Range (SDR) imaging algorithm used in Tesla Model S was insufficient to predict
a white tractor when the car faced high-intensity bright sunlight. To solve this issue, the
scientists off the Lawrence Technological University applied the HDR algorithm into the
Autonomous Campus Transportation (ACTor) vehicle to verify and compare the produced
image quality. The HDR algorithms assigned fair values for each generated pixel through
an average calculus for each pixel captured by the camera in a period or directly setting
visual parameters, such as contrast and saturation, in real-time. The simulations proved
that the HDR algorithms, especially the Mertens HDR, delivered a better image of the
environment than the SDR algorithm, preserving the image data and the computer vision

Chapter 2. Autonomous Vehicles 42

features (contrast, color). This image optimization dramatically improves the perception
phase of AN, and thus it can prevent the vehicle from collisions in direct sunlight cases.

Noh (2019) addressed the collision issue at road intersections combining the motion
prediction, threat assessment, and decision-making procedures. A predicted future path
digital map was used conjointly with a threat assessment algorithm to foresee the vehicle’s
move and eventual collision probability. The algorithm is generated through threats
estimation was given by the awareness situation, situation assessment, and maneuver
decision modules. The modules consider the temporal and spatial relationships between
the vehicles near the same road intersection. Then an independent reasoning agent (IRA)
values area is assigned for each vehicle-vehicle collision probability relation (V2VCR),
highlighting the most relevant (dangerous) automobiles. Bayesian Networks and Time
Window Filtering methods overcame the loss of information and uncertain noise data
acquired during the road track. The Time To Enter (TTE) strategy (the time a vehicle
enters a collision area, based on its current position) was crucial to elaborate the collision
likelihood function used in the algorithm. Using Danger, Attention, and Safe area metrics,
the experimental vehicle avoided imminent threats by applying proper behavior without
resorting to overly conservative safety behavior. The method resolved with excellent
reliability and efficiency the AN also in unsignalized environments and when other vehicles
violated traffic rules (such as happened with Google AV in 2016 (Dolgov, 2016)).

Yoon et al. (2018) optimized the path planning and obstacle avoidance applying the
spline-based RRT (SSRRT*) algorithm. The method consists of creating Bezier Curves
through the use of path-following controllers represented by control points related to the
car’s shape and dynamic. The Bezier Curves are drawn over the two extreme ends of
a rectangle. These points are described by vectors representing the rear inner axle and
the front outer corner of the vehicle. These positions support the dominant generating
trajectories among all the courses caused by all of the car’s corners from possible paths
(curves). The SSRRT* algorithm was improved, modifying the non-optimal feature intrinsic
to the traditional RRT algorithm. The algorithm solved the collision avoidance phase
requiring less computational effort (reduced the time complexity). It decreased the path
cost for a reasonable number of expanded nodes, compared to traditional classes of
RRT algorithms, such as Rectangle Sample RRT (RSRRT*) and SRRT*. Besides that,
particularly for narrow corridors, the algorithm showed to be the most suitable to avoid the
collision. The simulations showed that this check collision algorithm-generated much fewer
nodes during the tree expansion when the vehicle was approximated near these corridors.
The authors point out others algorithms did not work suitable with the constraints of
the nonholonomic vehicle and presented worse results, colliding in an obstacle dilatation
scenario. The SSRRT* algorithm discretizes the UGV model using angularly discretized
rectangles. As a result, they adjusted the nonholonomic vehicle constraints (turn radius)
and calculated the required space of the moving vehicle with more accuracy than other

Chapter 2. Autonomous Vehicles 43

methods. Through this improvement and modifying the original RRfT search algorithm,
the SSRRT* became more able to plan paths with variable curvatures continuously and
efficiently.

Numerous other challenges are part of the HAD, and there are several state-of-the-art
techniques and algorithms proposed to solve them. Some of the graph search and CASs
used to fit the AN can be contemplated in the Table 1.

Chapter 2. Autonomous Vehicles 44

Table 1 – Collision Avoidance Systems for AVs (CASs).

Obstacle Avoidance Strategies Literature
Traditional Algorithms

Bug Algorithms Kamon et al. (1996); Lumelsky
and Stepanov (1987); Lumelsky
and Skewis (1990)

Vector Field Histogram (VFH) He et al. (2015); Borenstein and
Koren (1989)

VFH+ Ulrich and Borenstein (1998)
VFH* Ulrich and Borenstein (2000)
The Bubble Band Technique Khatib et al. (1997); Urmson

et al. (2007); Yoon et al. (2018)
Elastic Band Concept Quinlan and Khatib (1993)
Curvature Velocities Techniques
(CVM)

Yang et al. (2019); Simmons
(1996)

Dynamic Windows Approaches Aeberhard et al. (2015);
Minguez et al. (2002); Fox et al.
(1997); Brock and Khatib (1999)

The Schlegel Approach Schlegel (1998)
Nearness Diagram Minguez and Montano (2004);

Mínguez and Montano (2002);
Iturrate et al. (2009)

Virtual Force Field (VFF) Methods
Gradient Methods Rostami et al. (2018)
Worst Case Estimation Konolige (2000)
Bacterial Potential Field Montiel et al. (2015)

Genetic based Algorithms
Biological Approach Chen et al. (1997)

Hybrid VFF-Genetic Algorithms
Evolutionary Behaviour based on Ge-
netic Programming

Clemente et al. (2018)

Geometrical Methods
Collision Cone Snape et al. (2011)
Fuzzy / Neurofuzzy Relational Prod-
ucts

Tzafestas and Tzafestas (1999)

Anti-target Approach Laws
Cone’s Geometry based Calculated
Rule

Chakravarthy and Ghose (1998)

Graph search algorithms
RRT, BFS, PF, and so on *will be discussed in detail in

Section 3.5
Source: Own Author.

45

3 Path Planning: A Deep Insight

3.1 Challenges of Autonomous Mobile Robot Navigation
The main feature of autonomous vehicles is moving independently from a starting point

to any choice point, through a changing environment, without collisions. To achieve this
goal, the autonomous car relies on solving a series of tasks that must be progressive and
synchronized. The Figure 8 depicts an overview of the sub-problems that an Autonomous
Mobile Robot (AMR) must accomplish to perform autonomous navigation. Roboticists
create ROS packages that integrate a specific module to solve the correlated sub-problem.

Figure 8 – Robot Autonomous Navigation Interrelated sub-problems. Source: Zegers
(2020)

As the Figure 8 brings us, an autonomous vehicle must solve least sensing, perception,
localization, path planning, and motion control tasks to bring the AV from point A to
point B. Despite the need to use all the modules related previously, it is not the scope of
this dissertation to cover all of them detailed but focus on the path planning theme.

3.2 Path Planning Concept
Path planning is one of an autonomous robot’s most basic and vitally essential skills,

enabling it to carry out assigned tasks. An autonomous vehicle context consists of finding
an adequate route that the vehicle can follow to move from a start point to a parking
spot and target another parking spot in another city without hitting obstacles. Navigating

Chapter 3. Path Planning: A Deep Insight 46

safely around people and other vehicles are features that must be assured. A path planning
algorithm would take the start and goal location as input and produce a sequence of valid
waypoints according to the local’s High digital (HD) map. The selection of path planners
will depend on the environment, situations, and robot kinematics. Path planning can be
either online or offline, and these methods are also usually called static or dynamic. In any
jargon, the distinction refers to whether the entire path is calculated before the motion
begins, with a previously existing map or incrementally, during action using recent sensor
information. Concerning the kinematic constraints, path planning can be classified into
holonomic if these constraints are considered or nonholonomic path planning if they are
not. "If the generated path also considers constraints on velocity and acceleration, the term
kinodynamic path planning is used." The Figure 9 depicts the path planning classification.

Figure 9 – Path Planning Classification. Source: (Zegers, 2020)

Both global and local planners are needed during an autonomous vehicle mission. The
global planner ’uses a previous know map of the environment. This map is used to find the
shortest path. On the other hand, the local path planner does not use a previously known
map. This planner gets and generates a local map based on sensor readings. Therefore a
robust autonomous navigation system relies at least on the use of 2 path planners: a global
and a local, in a two-level planning architecture. "The global path planner is concerned
with long-range planning and uses the available map information, which can be slow, but is
key to finding the most efficient path to a distant goal. It is not concerned with the robot’s
dynamics or avoiding unexpected obstacles left to the local path planner. In this way,
each planner deals with only one set of concerns: finding a traversable path to a distant
goal and following that path while reacting to unforeseen situations like the appearance of
obstacles. Therefore, global and local path planning can be complementary solutions and
are commonly built into path planning systems in real-world applications.

Chapter 3. Path Planning: A Deep Insight 47

3.3 Planning Libraries
In this section, the planning libraries and usual algorithms for path planning will be

prescribed.

3.3.1 OMPL

A key goal of robotics is to demonstrate and validate the improvement of specific
parameters of a new motion planning algorithm implementation. For that, the researcher
must develop accurate metrics and methods to compare the algorithms against each
other and obtain reliable Benchmarks. This task, however, is often very challenging and
exhaustive. The Kavraki Laboratory from Rice University developed the open motion
planning library (OMPL) to overcome this arduous and time-consuming process.

The OMPL is a library designed for sampling-based motion planning. It contains the
implementations of state-of-the-art algorithms, such as PRM, RRT, EST, SBL, KPIECE,
SyCLOP, and several variants of these planners. The OMPL is limited to providing these
algorithms functionalities, which means there is no environment specification, no collision
detection, or visualization. Although OMPL can not directly simulate collision detection,
once the robot’s geometry, control, and environment be not defined within it, this library
contains the classes and functions that will allow easy and effective integration with other
software. The Figure 10 depicts the main courses that can be instantiated by other software
to accomplish with the specific robot’s characteristics into a simulation:

This arrangement allows OMPL to be easily integrated into systems that provide
additional needed content, such as OMPL.app, MoveIt and the Robot Operating System
(ROS) Sucan et al. (2012). To use OMPL’s features, the user needs:

• Instantiate the Space to plan (car’s case)

• Create the planning context

• Specify the function that distinguishes the valid states

• Specify the input start and goal states

• Finally compute the solution

However, the above steps are implemented in robotics software such as the ROS
manipulation software stack known as MoveIt and on OMPL’s graphical front end such as
OMPL.app and A Primer (Kavrakilab, 2020).

The graphical interface enables the user to tune desired planners parameters, set
the start/goal positions and other features. The OMPl.app, for example, contains a

Chapter 3. Path Planning: A Deep Insight 48

Figure 10 – Overview of OMPL structure

Source: Sucan et al. (2012)

lightweight for Flexible-Collision-Library (FCL) and Proximity Query Package (PQP)
collision checkers. It also allows the loading of 3-D models and geometries for the robot and
environment, ensuring a rigid body motion planning simulation functionality. The Figure
11 depicts a simulation using the OMPL.app graphical interface for the Reed’s-Shepp car
geometry.

This interface enables OMPL to simulate some rigid bodies and vehicles types (Plaku,
2020). A more optimized and close-to robot’s reality simulation can be done thanks to
integrating Robot Operating System (ROS) and Gazebo simulator implemented by Willow
Garage Team. In the end, a log text file can be used programmatically to generate a
complete Benchmark to assess and compare the planners.

3.4 SBPL

3.5 Global Planners Work Principle
To find a feasible path between the start position and the goal position, the robot path

planners’ algorithms must calculate the trajectory over a map. In robotics, this map is

Chapter 3. Path Planning: A Deep Insight 49

Figure 11 – A solution path is shown for a car-like robot driving out of a "bug trap"
environment. Source: Moll et al. (2011)

created by getting, processing, and updating sensor data, usually from Laser Detection and
Range (LIDAR) sensor. An occupancy grid is a discretized grid surrounding the current
ego robot position. This discretization can be done in two or three dimensions. Each square
of the occupancy grid indicates if a stationary or dynamic object is present in that grid
location (Sebastian Thrun, 2005). If yes or not, the grid is classified as occupied or free.
Each square takes a binary value, indicating if it is busy or not, as displayed the Figure 12:

Once the robot already generates the occupancy grid map, this one must apply a
sampling strategy of waypoint generation which will configure the final trajectory. This
strategy is the working principle of a path planner itself. The 0 value assigned means a
free from collision space, and 1 means an occupied space. Below, the sub-sections will
describe the most valuable planners applied to this research project.

3.5.1 Dijkstra

The Dijkstra algorithm keeps track of the shortest distance from the start node to
each grid cell. This metric is known as the node’s g_cost. Before the search process starts,
the starting point gets a g_cost of 0. Later, as the algorithm progresses, these values will
be updated to the actual shortest distance from the start node. This algorithm relies on
numerous iterations and cycles of visiting the neighbor grids, adding them to the available
list, verifying if this neighbor has the smaller g_cost against the other grids added to
this open list. Afterward, the visited grids are put into the closed list, and these cells’
g_cost are compared against each other to verify which one presents the smaller value.
The neighbor cells with more expensive g_cost are removed from the closed list to remain

Chapter 3. Path Planning: A Deep Insight 50

Figure 12 – The occupancy grid map of a city environment.

Source: Waslander (2021)

on the sequence of cells with the minor cost and, therefore, the shortest path. The current
node is continuously updated when all possibilities of the neighboring cell are exhausted,
and the least costly one is checked. This process is done repeatedly until the robot achieves
the goal spot. The closed list is programmatically in inverse order. The last grid cells
added are the first numbers on this list. Then to finally find the path, the robot must
follow the backtracking process is required to reverse this list. A snapshot of this process
is depicted below, where Q0 is the start point and Ns the goal point.

Figure 13 – The Dijkstra’s algorithm grid-search strategy on the left. On the right the
application of this algorithm on Robot Ignite Academy Development Studio

Source: Zegers (2020)

Chapter 3. Path Planning: A Deep Insight 51

The yellows cells on Figure reffig:Djkistra represents the already visited nodes during
the Dijkstra process; therefore, the nodes are put into the closed list. The Orange squares
represent the nodes inside the empty list. Finally, the green arrow indicates the shortest
path calculated by Dijkstra. As we can verify in the image above, the algorithm searched
in all directions in a radial pattern (yellow area). This occurs because Dijkstra is an
uninformed search algorithm known as blind search. This means that it is now aware if
a grid cell is better than others to be chosen during its expansion process. This feature
makes it generally slower than informed search strategies such as A* (see subsection 3.5.3)
and RRT (see subsection 3.5.4) especially as the map size increases.

Although Dijkstra leads to an optimal solution, it expands to many nodes. Thus, it is
a very CPU-intensive algorithm. This may result in a slow path search process or failure
to find the path in time, in low time to react. Additionally, the further the search expands,
the more memory is needed. This can sometimes be a problem since memory requirements
increase exponentially as the map size or space dimensionality increases. Last but not
least, this algorithm calculates the trajectory for the static environment. This means that
it produces a rigid path, and as a result, if the environment changes, the robot could move
along a potentially obsolete way Zegers (2020).

3.5.2 Greedy BFS

The Greedy-Best-First Search (Greedy BFS) algorithm shares most of its code with
Dijkstra’s shortest path algorithm, except that it expands by selecting the node closest to
the goal. A heuristic function is used to estimate how far from the goal any node is. This
heuristic allows the algorithm robot to focus its traveling in a specific direction. Heuristics
often used for this purpose are the Euclidian Distance, an imaginary straight line between
two points (goal node and start node), and the Manhattan Distance, which is the distance
between two points measured along the axes at right angles. Although these heuristics do
not guarantee an optimal solution, they have the advantage of significantly speeding up
the path solution finding process, running much quicker than Dijkstra. The image below
the Greedy BFS behavior.

Chapter 3. Path Planning: A Deep Insight 52

Figure 14 – The Manhattan Heuristic strategy. The output of this heuristic imple-
mented on greedy BFS algorithm with the robot search results on Robot
Ignite Academy Development Studio

Source: RIA (2020)

As we can visually check, the Greedy BFS focused its exploration to the desired
direction, north, and avoided visiting neighbor nodes in other directions in contrast
with Dijkstra. Although Greed BFS presents good results in a significant number of
environments, it can be easily trapped if find regions with significant or concave obstacles.
When this algorithm relies on these scenarios, it produces long paths far from optimal,
which is a considerable disadvantage in energy consumption and travel time to the robot
executing this path. The Figure 15 demonstrates this situation:

In the same scenario, Dijkstra would produce the shortest path at the cost of time.
And the Greedy BFS the inverse. Every algorithm presents advantages and disadvantages,
and the most suitable can be chosen for a specific project’s needs.

3.5.3 A*

In contrast with the Dijkstra algorithm and the Greedy BFS, the A* is an informed
search algorithm. This means it utilizes the information about the goal location to guide
the search towards the target and produce a more efficient map exploration. Therefore the
exploration process is not open to all directions but focuses on the selected and desired
specific one. A* has proven efficient and effective as it is quick and finds the shortest paths.
The critical factor of this success is that it combines the distance from the start node to
the current node as Dijkstra does and the estimated distance from the current node to
the goal node, like Greedy Best-First Search does. These two pieces of information are

Chapter 3. Path Planning: A Deep Insight 53

Figure 15 – Greed BFS behavior when facing a concave obstacle environment.

Source: RIA (2020)

combined to create a value known as the total cost of the node, denoted as f_cost. The
total cost f_cost is equaled the g_cost summed to h_cost, where:

• g_cost represents the exact travel distance from the starting point to any node n

• h_cost represents a heuristic distance from a node n to the goal location

Whenever A* expands its search to a new node, each candidate is evaluated to its
total cost, given by f_cost. The node with the smallest f_cost is selected as the next node
to be explored. The output of the A* implemented on RIA development studio for the
turtlebot robot is depicted below:

As we can check, A* focused the search on the specific direction and avoided at the
same time concave traps. The algorithm efficiently combined the advantages brought by
Dijkstra and Greedy BFS, generating the trajectory with satisfactory speed and time.

A* is a complete algorithm, meaning that it will always find the solution if it exists.
A* is also an optimal algorithm, once it will always find the shortest path if one exists.
These features, however, come at a cost. A so-called deterministic algorithm is required
to see a complete and optimal solution. A* is a deterministic path planning algorithm,
meaning that it always produces the same path (given the same start, goal, and map
input), following the same computation steps. Deterministic algorithms, however, do not
scale well with the map size. The more nodes to process, the more difficult it becomes
to keep up with the planning time requirements. In addition, large maps require a lot

Chapter 3. Path Planning: A Deep Insight 54

Figure 16 – A* algorithm trajectory output when facing a concave obstacle scenario at
left and traveling to a north goal spot on the right.

Source: RIA (2020)

of memory since each node discovered has to be accounted for. The robotics community
relies on probabilistic algorithms that sacrifice optimality and completeness to win in
computational efficiency to overcome this memory issue related to the large area to cover.
A usual employed for these use cases is the RRTs, which are better described in the
following subsection.

3.5.4 RRT

The probabilistic path planning method is prevalent and suitable for solving complex,
high-resolution, and high-dimensional path planning problems. Instead of meticulously
examining directly connected grid cells, sampling-based algorithms generate candidate
waypoints at completely random positions in the map and determine if these positions
can be connected without hitting obstacles. The Rapidly-Exploring Random Trees is one
such algorithm. It is regarded as one of the most efficient tools for robotic path planning
in higher dimensions (Zegers, 2020).

The RRT plans a navigation path in a Q C space, where Qfree is the free space and
Qobs is the space that contains an obstacle. The root node of the tree qinit starts expanding
a G tree randomly from the root node until one of its branches reaches the final point
qgoal. The nodes are added to connect these points (initial and goal nodes), generating the
path R (route). The qnear is the closest point of a random node generated through the
predecessor node, and the qnew is the leaf node (node located of one of the extremities).

Chapter 3. Path Planning: A Deep Insight 55

The distance between the qnew and the qnear is ∆q, and if there is no obstacle between
them (no QObs interception), the tree is extended. The same collision procedure is executed
between the qnew and the qgoal to achieve the desired position. The Figure 17 shows a
pseudocode for the RRT algorithm.

Figure 17 – RRT Pseudocode. Source: Véras et al. (2019).

The RRT is an optimization of the random trees (RTs) methods, which creates nodes
in an unexpected direction. Once its working principle differs from RTs, it builds the
nodes’ links (edges) toward the goal. In this way, the RRT finds the goal node faster. A
more advanced RRT model in the optimality sense is the RRT* algorithm which rewires
the tree to form the shortest paths. As more samples nodes the programmer includes in
the model, the shorter (optimum) the path planner becomes. On the other hand, the
search time increases. The Figure 18 displays a comparison of the previous short-described
methodologies acting to achieve the goal in a local minimum scenario.

In Figure 18, the goal node was set in the exact spatial location, and then the RT,
RRT, and RRT* search algorithms were applied. The RT search algorithm used more
than 3500 nodes to find the goal node, and it failed. When the user input more nodes, the
system crashed and did not produce more nodes. On the other hand, the RRT and RRT*
found the goal node more quickly, requiring 431 and 501 nodes, respectively. The difference
between them is that the RRT* generates an optimum path than RRT. Although the
RRT* used more nodes to find the goal, it generated a shorter route than RTT. In this way,

Chapter 3. Path Planning: A Deep Insight 56

Figure 18 – Comparison of optimality from RTs, RRT and RRT*. Source: Adapted from
Aaron and Huang (2019)

with little computational effort (to process more nodes), the vehicle spends less energy
and less time performing the trajectory.

All these displayed sample-based algorithms related to the random trees are prob-
abilistically complete, which means that if a nonzero width path exists, the tree will
eventually find the trail. These algorithms can be configured in a uniform or non-uniform
standard. The RRT searches the goal node in a uniform configuration in a uniform spatial
distribution. This non-uniform configuration can still be subdivided into two different
sampling strategies: in the second type, the sample collection process can be biased by
determining the most promising regions of the search space.

• Importance Sampling: The RRT expands to the regions with a significant interest in
the C space;

• Adaptive Sampling: The sampling changes during the planning whenever restrictions
are encountered in the navigation space.

These sampling processes are based on a non-uniform distribution, which reduces the
number of samples needed to find a feasible path compared to a uniform distribution.

In the first one, the expansion of RRT can be regionally biased, collecting samples next
to the significant regions of interest on the C space. This approach is called importance

Chapter 3. Path Planning: A Deep Insight 57

sampling. In the second, the sampling is changed during the planning, depending on the
restrictions encountered in the navigation space. This last approach is called adaptive
sampling. By adopting one of these approaches, the sampling process is biased by a
non-uniform distribution, which reduces the number of samples needed to find a viable
path. A diagram of the essential operation of any RRT is shown in Figure 19:

Figure 19 – RRT process overview Zegers (2020)

The exploration process behavior of RRT can be checked in the Figure 20.

Figure 20 – Implementation of RRT algorithm on Robot Ignite Academy Development
Studio. Source: RIA (2020)

There are numerous sorts of RRTs variations and implementations to fit specific
project’s needs and features, such as creating more nodes near obstacles, taking into
account nonholonomic constraints, and others. These variations gain RRT derivative names,
such as RRT Connect, RRT*, RRTX, RRT*-Smart, MP-RRT, and many others. Umari
and Mukhopadhyay (2017) developed an RRT-based algorithm for the ROS framework. His

Chapter 3. Path Planning: A Deep Insight 58

algorithm detects unknown frontier regions and enables the robot’s exploration in space,
finding a free-collision path. This algorithm was simulated in this work for the car-like
robot. The Figure 21 depicts the exploration process of RRT in a simulated scenario.
The scenario represents the THI’s university courtyard in the vicinity of the CARISSMA
complex lab.

Figure 21 – RRT exploration process

Source: Own Authorship

3.6 Local Planners Work-Principle
The local planners are also known as obstacle avoidance planners. They are responsible

for updating the global planner trajectory according to the environment’s sensor updates.
In other words, the local planner deforms the global planner trajectory if the robots find a
new obstacle occupying the grid map where the original course was defined.

3.6.1 Elastic Band

The elastic band algorithm relies on bubbles to represent the maximum local subset
of the free space around the robot. Using these bubbles, a collision-free path can be
guaranteed to the robot. Khatib et al. (1997) defines how this algorithm works:

[...]Given a {pi}i=1...n configurations in free-space such that the bubbles defined
around two consecutive configurations, β(pi) and β(Pi+1) overlap it is possible
to construct a collision-free path from p1 to pn. This path is an elastic band
paved with bubbles or a bubble band. This band will be deformed according
to two kinds of forces: internal and external.[...] The internal forces remove
slack in the band (energy minimization). The external forces move the band
away from obstacles. [...]

Chapter 3. Path Planning: A Deep Insight 59

Within this algorithm, the robot follows the generated path connecting the center
points of the band. The implementation of this planner for ROS supports just holonomic
robots (Quinlan and Khatib, 1993). An adaptation of this algorithm for differential drive
machines can be visualized (Connete, 2019). The Figure 22 shows this algorithm applied
for the car-like robot used in one of the simulations of this work (see section 6.1).

Figure 22 – Elastic Band Motion Planner

Source: Own Authorship

3.6.2 Dynamic-Window Approach (DWA)

In the dynamic window approach, the search for commands controlling the robot is
carried out directly in the space of velocities. The robot dynamics are incorporated into
the method by reducing the search space to those velocities that are reachable under the
dynamic constraints. In addition to this restriction, only velocities are considered, which
are safe concerning the obstacles. This pruning of the search space is done in the first step
of the algorithm. In the second step, the objective function’s velocity maximizing is chosen
from the remaining velocities in the second step.s (Fox et al., 1997)

The Dynamic Window Approach (DWA) discretely samples a square in the robot’s
control space (dx, dy, dtheta). Then a forwarded simulation from each sample velocity
from the robot’s current state is done to predict what would happen if the sampled speed
were applied for some (short) period. Then an assessment of each resulting trajectory, using
proximity to obstacles, proximity to the goal, proximity to the global path, and speed
metrics to discard and score the trajectories. Afterward, the highest-scoring trajectory is
getting and sent to the robot. A sketch of this behavior can be visualized in Figure 23:

Chapter 3. Path Planning: A Deep Insight 60

Figure 23 – Dynamic-Window Approach working-principle

Source: Moll et al. (2015)

The DWA local planner algorithm was simulated for one of the car-like-robot. This
simulation is shown in Figure 24.

Figure 24 – DWA on ROS Navigation Stack

Source: Own Authorship

3.6.3 Time Elastic Band (TEB)

The Time Elastic Band (TEB) is a local planner that creates a sequence of intermediate
vehicle poses that modifies the initial global plan (Rösmann et al., 2013). These poses are

Chapter 3. Path Planning: A Deep Insight 61

given by:

si = (xi, yi, θi)T (1)

si ∈ R x S1

These poses configurations, robot position (xi, yi) and orientation β are denoted in a
global frame (map). The TEB augments this representation by incorporating the time
intervals between two consecutive configurations, resulting in a sequence of n-1 time
intervals ∆ Ti:

Each time interval denotes the time the robot requires to transit from the current
configuration to the following format in the sequence Q. The TEB is defined as a tuple of
both sequences:

B := (Q, τ) (2)

The algorithm requires the vehicle’s velocity and acceleration limits, the security
distance of the obstacles, and the geometric, kinematic, and dynamic constraints of the
car. All of this configuration generates a set of commands for speed(v) and steering angle
(δ) required to achieve the intermediate waypoints while the vehicle is moving, once:

cmdi = (vi, δi)T (3)

According to Marin-Plaza et al. (2018) the drawback of this method is the influence of
the dynamic obstacle’s direction in the generation of the recalculated local path.

An overview of The TEB sequences of configurations in a global map can be visualized
below:

Figure 25 – (a) TEB: sequences of structures and time differences and (b) Large sce-
nario with consideration of waypoints and obstacles Rösmann et al. (2013)

Chapter 3. Path Planning: A Deep Insight 62

The Figure 26 shows the TEB algorithm simulated with one of the car-like-robots used
in this work:

Figure 26 – TEB on ROS Navigation Stack

Source: Own Authorship Moll et al. (2015)

3.6.4 RRT

Some algorithms derived from RRT can be used as local planners (Tian et al., 2007). A
Particular RRT variation, called HSL-RRT*, implemented by Le et al. (2019) proved to be
a robust algorithm to find a viable path in complex environments. This RRT* optimization
method uses the RRT* algorithm in SL coordinate using historical planning data. His
article demonstrated the HSL-RRT* effectiveness against classical algorithms, such as
Lattice (see subsection 5.2.2.2) in enabling the AV’s navigation through many obstacles
disposed of sequentially arranged in different highway lanes. The behavior of this algorithm
is demonstrated in Figure 27.

Figure 27 – a) Lattice path planner failing to generate a path. Effectiveness of HSL-
RRT* in finding the feasible path on the highway, avoiding multiple obsta-
cles (b). Source: Le et al. (2019)

Chapter 3. Path Planning: A Deep Insight 63

A presentation of ROS framework explanation in the self-driving car context, as well
as the simulations, were done with the Navigation Stack can be found on GitHub:

Master_Thesis_Simulations.

3.7 The ROS Planning Libraries Integration
The planning libraries and some helpful software depicted in this current section are

essential to better understanding the planner’s functionality and implementation. However,
it only comes to practical reality in robotics when applied to a robot. ROS becomes the
more feasible and widely used framework for these planners’ application, observation, and
improvement. In path planning, the robot kinematic model is of extreme relevance. A
path planner is often implemented to fit a particular robot shape and handle specific
constraints.

3.7.1 Kinematic Models

The kinematic model from a robot defines its motion behavior. The kinematics of a
robot can be of two different types: Holonomic or Nonholonomic.

A holonomic robot can move forward, backward, and translate left or right. It also
can perform rotations around the Z-axis (CCW or CW). The holonomic robots can slide
sideways while the wheel drives forward or backward without slipping in that direction. A
nonholonomic robot, however, cannot move directly sideways (Zegers, 2020). The most
habitual nonholonomic robots are described below.

• Unicycle Robot: This is the most basic nonholonomic robot. It is based on a single
wheel, which moves at the desired velocity V and with a specific heading φ;

• Differential Drive robot: A robot of this type contains two independently driven
wheels that rotate about the same axis.

• Car-Like-robot consists of two steered front wheels and two fixed-heading rear wheels.
To prevent slipping of the front wheels, they are driven using Ackermann steering
(Krishna, 2020). The center of rotation of the car’s chassis lies on the line passing
through the rear wheels at the intersection with the perpendicular bisectors of the
front wheels.

In this dissertation, the focus is the car-like robot. In this robot, only the front wheels
can turn. A representation of this system is in Figure.

https://github.com/marcusvinicius178/Master_Thesis_Data.git

Chapter 3. Path Planning: A Deep Insight 64

Figure 28 – Kinematic of a car-like-robot. Source: Zegers (2020)

The ψ angle represents the front wheels’ angle (steering angle), and φ angle represents
the steering control. The equations that model this system are:

ẋ = vcos(φ+ ψ) (4)

ẏ = vsin(φ+ ψ) (5)

φ̇ = v/lsin(ψ) (6)

ψ̇ = σ (7)

And the steering angle is given by:

ψ = arcsin(wl/v) (8)

Where l is the distance between the back and front wheels.

The ROS integration with the planning libraries and the kinematic models they support
is necessary to describe better the ROS framework composition, which is found in the
chapter 4.

65

4 The Robot Operating System (ROS)

Lately, robotics has been attracting non-roboticist experts to generate and upgrade
new robot functionalities provided by robotics branches, such as AI, Machine Learning,
and others. The problem is that heterogeneous systems obstruct constant development.
Different programming languages, operational systems, and hardware are being adopted
to address these complex functionalities.

To mitigate these issues, uniform the whole development structure for robot program-
ming, and enable the reusing of specific functionalities already implemented, the Willow
Garage generated the Open-Source framework called ROS. The words "OS" from ROS
means a middleware that runs on Unix-based operational systems (Nayoga University,
2016).

In this way, the robot’s developers can combine software developed by other ROS
developers to optimize a project, reducing the implementation time and focusing just on
the implementation on the specific area the roboticist wish to work on.

4.1 The ROS Framework
The ROS is a trending robot application development platform that provides numerous

features such as message passing, distributed computing, code reusing, etc. The ROS
project began in 2007 with the name Switchyard by Morgan Quigley as part of the
Stanford STAIR robot project. The ROS community and the number of ROS developers
worldwide have grown more and more. Most of the high-end robotics companies are
porting their software to ROS. A trend noted in industrial robotics, once the companies
are also migrating from proprietary robotic applications to ROS (Joseph, 2015). The
ROS framework is based on nodes. The multiple nodes can publish information such as
sensors reading, motor commands, or planners ordering in a topic, and other nodes can
simultaneously subscribe to this information through the ROS master.

Chapter 4. The Robot Operating System (ROS) 66

Figure 29 – ROS communication framework. Source: Huang (2019)

ROS is a framework for integration. ROS presents high-end capabilities such as SLAM
and Adaptive Monte Carlo Localization(AMCL) packages, which can be used to perform
AN. ROS contains the MoveIt package for motion planning of robot manipulators and
numerous other capabilities stored in the called packages. ROS also presents multiple
tools for debugging language codes to visualize the nodes that are working and how
they are integrated. ROS supports high-end sensors and actuators, such as LIDAR and
Dynamixel servos. The programming code language also is interchangeable in ROS, and
it was generated to work with inter-platform operability, supporting, for example, C++,
Python, or Java. One of the best features of ROS is the concurrent resource handling and
its modularity. These features allow the robot to keep working if some issue happens and
some specific node crashes. For example, if the node related to the robot’s right arm fails,
the other sensors keep working. In other words, the robot will not completely stop because
of a punctual problem.

More detailed description of the content of the ROS packages and how they work-
integrated can be found in (Joseph, 2015).

The Robot Operating System is wrapped by nodes and packages, which communicate.
Each node performs a task, and the aggregation of studies defines a function. Therefore a
certain number of nodes forms a package that can get (subscribe) and send (publish) data
to another node through specific transmission channels: topics, services, actions. These
different sorts of communication, the ROS components as well as the main ROS features
are described below:

0Available in:
https://www.autoblog.com/2018/11/28/audi-demonstrates-pop-up-next-air-taxi/slide-1301558/

Chapter 4. The Robot Operating System (ROS) 67

• Package: A package contains ROS nodes, a ROS independent library, a data-set,
configuration files, or anything that logically constitutes a useful module.

• Node: The ROS node is the unit that handles a robot part. It can be an image
processing program, a joint controller program or anything else which addresses the
robot’s function (Robotics Back-end, 2018).

An illustrative example of ROS nodes and packages structure is depicted below.

Figure 30 – ROS Packages and Nodes Structure. Source: Robotics Back-end (2018)

The ROS nodes are responsible for processing specific functions in the particular
packages (Camera, Motion Planning, and Hardware Control, in the example above).

In the communication aspect, ROS uses

• Topic: ROS topic is the pipeline in which the ROS nodes communicate with each
other. It is the spot where the ROS messages flow. A Node can subscribe and publish
to a Topic. The node that subscribed info from a topic will get this info infinitely
until the user’s input command or coding interrupts this subscription. This kind of
information is asynchronous.

• Service: ROS services are synchronous communication. In this type of transmission,
the ROS service client requests a node and information at a specific time, and the
ROS service server replies to this request sending the requested information.

• Action: ROS action is a more sophisticated communication. In this process, the ROS
action client requests info from a ROS node, this node (the action server) confirms
the receipt from this request through a feedback message. Differently from service,
during this process, the action client can cancel the order(request), and once in a
while the, the action server sends the status from the request (which step of the

Chapter 4. The Robot Operating System (ROS) 68

program it is realizing). The ROS node client can do other things during this period
and is not "frozen" waiting for this message. Finally, when the ROS action server
finishes processing the program, it returns a response message (Aderinola, 2020).

ROS contains Powerful tools, which are worthy of describing:

• Rviz: It is the ROS viewer. A 3D visualizer can display sensor data and state
information from ROS. It converts raw data from topics to visible human data
through standard or customized plugins.

• RQT: It is an assistant in which the user can manage the active ROS topics, debugging
the messages transmitted separately. It can also check the robot transforms, visualize
rosbag info, display topics data on dynamic graphics, etc.

ROS also contains numerous valuable tools, such as the rosbag, which can record topics’
data in a compressed ".bag" file. This feature is exciting and with the assistance of other
ROS tools, such as PlotJuggler (Faconti, 2010), the user can plot, visualize and debug
different data from a robot’s mission. ROS is very extensive and more info can be taken in
(The Construct, 2020; ROS Wiki, 2020).

Gazebo was developed by professor Dr. Andrew Howard and his student Nate Koenig.
Gazebo was integrated into ROS in 2009 and is widely used by design roboticists to test
algorithms rapidly, design robots, perform regression testing, and train AI systems using
realistic scenarios. When a robot is not available to test the robot’s ROS directly with it,
ROS also has easy integration with the Gazebo simulator.

This multi-robot simulator contains numerous valuable features such as:

• Dynamics Simulations: The user can access multiple high-performance physics
engines, including ODE, Bullet, Somebody, and DART;

• Advanced 3D Graphics: Using the OGRE, Gazebo provides realistic rendering of
environments, including high-quality lighting, shadows, and textures.

• Sensors and Noise: Generate sensor data, optionally with noise, from laser range
finders, 2D/3D cameras, Kinect style sensors, contact sensors, force-torque, and
others.

• Plugins: It contains developed plugins designed for a robot, sensor, and environmental
control. The plugins provide direct access to Gazebo’s APIs.

• Robot Models: Gazebo provides numerous robots, including PR2, Pioneer2 DX,
iRobot Create, and TurtleBot. It is also possible to build the own personalized robot
using SDF format.

Chapter 4. The Robot Operating System (ROS) 69

• TCP/IP Transport: Allow to run the simulation on remote servers and interface to
Gazebo through socket-based message passing using Google Protobufs.

• Cloud Simulation: It is possible to use cloudSim on Amazon AWS and GzWeb to
interact with the simulation through a browser.

• Command Line tools: Extensive command-line tools are provided to facilitate simu-
lation introspection and control.

4.2 ROS AD Driving Application Timeline
With a better comprehension of the planning libraries (see section 3.3) and the ROS

framework (see section 4.1), this section will give a brief overview of the ROS-based
applications (software) implemented to generate collision-free trajectories. They will be
delighted in a timeline according to the advancement of this project.

4.2.1 ROS1 based Frameworks

4.2.1.1 MoveIt

MoveIt is a ROS-based software develop to address industrial robots application’s
tasks, such as pick and place, assembly, and grasping tasks (MoveIt Applications, 2021).
MoveIt provides a friendship interface that enables the roboticist to define the robot’s
links, joints, control, and other features.

Although MoveIt is widely employed for industrial arms application, its use can also
be adapted and extended to holonomic robots in 3D environments as done on (Youakim
et al., 2017). MoveIt is designed to work with many different types of planners from:

• Open Motion Planning Library (OMPL)

• Pilz Industrial Motion Planner

• Stochastic Trajectory Optimization for Motion Planning (STOMP)

• Search-Based Planning Library (SBPL)

• Covariant Hamiltonian Optimization for Motion Planning (CHOMP)

This massive amount of available planners makes MoveIt ideal for benchmarking
analysis. (MoveIt Planners, 2021)

In principle, this application was thought to achieve autonomous driving simulations,
taking advantage of the complete and robust Benchmark this framework provides. MoveIt
has implemented the Planner Arena Benchmark functionality, which allows the user to

Chapter 4. The Robot Operating System (ROS) 70

assess the planners’ behavior compared to other planners in several relevant aspects such
as:

• Time

• Solution Difference

• Solution Length

• Solution Segments

• Solution Smoothness

• Solution Clearance

• Correct Solution

• Number of Iterations

• Memory

• Others

These parameters are relevant in robotics and computer science since they can help
the roboticist determine the most suitable algorithms for a specific application.

However, during software experimentation, it was recognized the impossibility of using
it for simulations involving nonholonomic robots nor to simulate complex environments
required to study autonomous vehicles. The main drawbacks which avoided MoveIt
application for this research were:

• MoveIt was designed to emulate the robot’s three-dimensional displacements, not
bidimensional, which is the case for autonomous vehicles.

• MoveIt do not have available an AV kinematic model

• MoveIt is not able to emulate a nonholonomic robot ROS Answers -MoveIt (2020)

• MoveIt is not able to simulate the static or dynamic contact between the wheels and
the asphalt ROS Answers (2020)

Chapter 4. The Robot Operating System (ROS) 71

4.2.1.2 Navigation Stack

The Navigation Stack was first implemented to address industrial robots displacement.
ROS is responsible for getting robot data, such as odometry and sensor streams information,
processing it, and sending the output commands to the robot’s mobile base to enable
navigation. Therefore the first Navigation Stacks path planners and sensors available were
in the beginning functional just for holonomic robots (See section 3.7.1). An overview of
the Navigation Stack Setup is shown in the Figure 31.

Figure 31 – Navigation Stack Setup

Source: ROS Wiki Navigation (2018)

Even though the Navigation Stack is a relatively robust ROS-based robot navigation
software, it is not explicitly developed for AV. In addition, in contrast with MoveIt, the
Navigation Stack does not provide a Benchmark tool with ready-to-use metrics for an
accurate path planners investigation.

In a recent development of navigation stack, it was enabled path planners for car-like
robots. The Dortmund University implemented the Time Elastic Band (TEB) path planner,
considering the vehicle’s nonholonomic behavior and the Ackerman constraints (Macenski
et al., 2020). This platform was tested for the AD simulations: the standard ROS path
planners (Globals and locals) or the TEB.

The simulation results are described below:

• Eband: The Elastic Band local planner computes an elastic band within the local
costmap, and attempts to follow the path generated by connecting center points of
the band using various heuristics. The Figure 22 displays the simulation using this
planner in a car-like robot.

• RRT: The RRT (See section: 3.5.4) was applied in the car-like robot using navigation

Chapter 4. The Robot Operating System (ROS) 72

stack only as a global planner. Unfortunately, at the moment of this research, any
available RRT-based path planner was known as a local planner.

• DWA: The Dynamic Window Approach algorithm (See section 3.6.2) presented an
excellent lateral and longitudinal move, compared to Eband. However, it was not
able to avoid the obstacle.

• TEB: The Time Elast Band algorithm, as described

The usage of ROS1 within the Gazebo simulator was essential for a better understanding
and code familiarization with different modules. However, the ROS-based frameworks were
limited to emulate real and extensive driving scenarios sensors and didn’t provide a path
planner suitable for robots with nonholonomic constraints. For these reasons, experts from
the automotive industry in integration with the ROS community and university researchers
created the Autonomous Driving Stacks. These complex frameworks have proven to be
more robust for simulation and integration with actual vehicles.

4.3 The next stage: Autonomous Driving Stacks
Due to the limitations detected regarding vehicle planning and control and the simulator

simplicity, the research groups started to implement ROS-based applications to address
automated driving functions. These applications are known as Autonomous Driving Stacks.
The ADS comprises numerous algorithms, packages, and modules that work-integrated
will address specific driving tasks on specific scenarios. A sketch of the architecture can be
visualized in Figure 32:

An Autonomous Driving Stack is composed of multiple layers (stacks):

• Hardware Stack: Consist of the highest level of vehicle, such as sensors, actuators,
electronics, etc

• Off Board Software and Data: Composed by modules responsible for processing
specific pieces of information, such as mapping (creation, update, or distribution),
data recorder (in AV’s recording data it’s mandatory, it works as black-box) and so
on;

• Methodologies: Part handles testing, integration, security, and validation processes,
such as HIL, SIL.

• On-Board Software: The lowest level of the AV, composed of the algorithms and
modules, such as localization, perception, planning, and control.

0HIL: Hardware in the Loop, SIL: Software in The Loop

Chapter 4. The Robot Operating System (ROS) 73

Figure 32 – AD Stack Configuration. Source: Kato et al. (2018)

• Product: The integration from the previous layers designed for the user applications.

In a nutshell, an autonomous driving stack architecture is composed of sense, plan and
act layers. A scheme of the interaction between these layers is shown in Figure 33.

Figure 33 – AV High Level Architecture. Source: Whitley (2021)

Chapter 4. The Robot Operating System (ROS) 74

In addition, for an automation level 3, a monitoring system is needed to observe the
driver conditions; once in this level, the driver must take the direction if some issue happens
with the software or hardware.

Autonomous driving, the sensors have a close relationship with the automated driving
functions, as shown in Figure 34.

Figure 34 – AV Signal Flow. Source: Whitley (2021)

Figure 34 makes it possible to check how the camera is directly linked to the Lane
Detection. Therefore, it directly influences the lateral vehicle control in the trajectory
planning module. Similarly, the GPS sensor is directly connected to the localization module,
which impacts route planning, behavior planning, and as a result, trajectory planning.

In Autonomous driving level 4 and level 5, the driver becomes a simple passenger, and
the interaction of the AD stack layers suffers particular modifications, especially in the
planning layer. This layer is now composed of the Strategic, Tactical, and Reactive levels.

These different levels on the planning layer require other times to vehicle action and
consequently affect the control layer.

At the operational level, the vehicle active safety systems operate, such as automatic
emergency brake, for example. The vehicle navigation system works on the mission level,
and it has an extended period to act. However, the Reactive Control must act in a period
of milliseconds to avoid a collision with an unexpected obstacle that entries the vehicle’s
front part, for example.

A self-driving car must handle different system critical levels. The AV needs to address

Chapter 4. The Robot Operating System (ROS) 75

a failure in task execution from the low-critical system level. Still, it is not dangerous to
the user, to the safety-critical system level, which can lead the human being to injury or
death, usually those involved with the need of steering the vehicle in hard-real-time.

76

5 Autonomous Driving Stacks

5.1 Autoware
From the breakthrough of Dortmund group research, new groups worldwide studied and

kept the Navigation Stack development for autonomous driving. Nav2 of Steve Macenski
is an upgraded example of some of the Navigation Stack features (Macenski et al., 2020).
However, many limitations were detected in Navigation Stack, mainly regarding the
absolute scenario loyalty that this platform along Gazebo Simulator could offer and the
previously path planners limitation described in Section 4.2.1.2. To overcome these limits,
Shinpei Kato at Nayoga University started the Autoware project in 2015. The idea was to
develop an "All-in-One" open source software for autonomous driving technology. Autoware
is an open-source software based on ROS. It can be pushed on Github for autonomous
driving research and development. Autoware wraps up standard autonomous driving
modules, allowing 3-D map generation, localization, perception, planning, and control
functionalities. An overview of the first Autoware arrangement is shown in Figure 35.

Figure 35 – Autoware Overview. Source: Nayoga University (2016)

Detecting the project potential, the Autoware Foundation was launched in 2018. This
group started as a non-profit organization open-source, composed of relevant academic,
industry, and government members, as shown in Figure 36.

Chapter 5. Autonomous Driving Stacks 77

Figure 36 – Autoware Foundation Members. Source: Nayoga University (2016)

5.2 Autoware.AI
As described previously in the section 5.1, Autoware.AI is based on the first Autoware

project, inherited many of its functionalities, improved, and created others. Autoware.AI
provides a friendly user interface called Runtime Manager, in which the user can select
different algorithms and launch the packages related to the autonomous driving modules.
There are numerous distinct packages available from mapping, localization, detection,
prediction to be chosen, and different planners and driving strategies for the mission
planning, motion planning, and decision-making modules, respectively. Figure 37 shows
an overview of the AD modules and the available packages to integrate them into the
runtime manager interface.

Autoware.AI can detect surrounding objects, such as pedestrians, vehicles, traffic
lights, etc. Autoware.AI uses Light Detection and Ranging (LIDAR), and on-vehicle
cameras localize the ego-car position. The vehicle’s localization is done through the Global
Navigation Satellite System (GNSS) or by use of the Normal Distribution Transform
(NDT), a scan-based matching strategy that uses the 3-D map of Point Cloud Data (PCD)
format and LIDAR data (Nayoga University, 2016). Afterward, making judgments to
drive/stop at lanes or intersections and the driving assistance and safety diagnosis support
are performed with an embedded multi-core CPU.

An overview of Autoware.AI modules integration is shown in Figure 38.

5.2.1 Planning Module

The planning module in Autoware.AI is set in 2 sub-modules:

• Mission Planning: Given the destination, is the global trajectory generated based

Chapter 5. Autonomous Driving Stacks 78

Figure 37 – Runtime Manager Tabs: QuickStart at the top, and Computing in the bot-
tom

Source: Own Authorship

on AV’s current position. The mission planning uses a rule-based system to determine
the path courses, in which it considers the driving states, such as lane changes, merges,
and passing. This sub-module needs to be fed with a high-definition 3D map, which
contains information from the static road features and is used to calculate the global
path. The basic policy of the mission planner is to follow the center lines of the lanes
over the route generated (Kato et al., 2018).

• Motion Planning: The motion planner is in charge of generating feasible local
trajectories along with the previously given global path, considering the vehicle
states, the drivable area indicated by the 3D map, the surrounding objects, the

Chapter 5. Autonomous Driving Stacks 79

Figure 38 – Autoware.AI architecure. Source: Nayoga University (2016)

traffic rules, and the desired goal.

The tested mission plannings and motion plannings applied in this research are outlined
in sections 5.2.2, 5.2.3 and 5.2.2.1, 5.2.2.2, 5.2.3.2 respectively.

5.2.2 Guideline-based A-Star (Freespace)

The guideline-based A-Star algorithm optimizes the classic A* algorithm (see section
3.5.3) for the autonomous land vehicle (ALV). To express the driver’s intention, the
algorithm applies the following heuristic function:

F (i) = G(i) +H1(i)× α1 +H2(i)× α2 (9)

Figure 39 represents the physical meaning of the expression above. As the classical A*,
G means the cost to reach the final waypoint (from initial position), H means an estimated
value from Av’s current position to the target (last waypoint). In this A* optimization, H
was split into two components: H1 and H2. The H1 component corresponds to the distance
between point i and the guideline, and H2 is the distance from g(i) to the target, α1 and
α2 are coefficients applied to penalize the AV’s move in specific directions, increasing or
decreasing the weight from the H1i or H2i costs (Erke et al., 2020).

Chapter 5. Autonomous Driving Stacks 80

Figure 39 – Guideline-based A-Star working principle. Source: Erke et al. (2020)

5.2.2.1 Hybrid A* (Local Planner)

The Hybrid A* is a modification of the classical A* algorithm. This adjustment aims to
create a kinematically feasible path that satisfies the vehicle’s non-holonomic constraints.
In Hybrid A* implementation, a 4D search space (x,y, θ, r), where the fourth dimension
(r) represents the current direction of motion (forward or reverse). The possible drivable
directions are used to apply penalties on the path-cost function if the length of the segments
driven falls on the reverse or an abrupt change in the robot’s orientation. The classical A*
and the Hybrid A* algorithms search graphs are shown in Figure 40.

Chapter 5. Autonomous Driving Stacks 81

Figure 40 – Graphical Comparison of search algorithms: Searching directions of the
original A* (Left-Up) and Hybrid A* (Left-Bottom). Graph Expansion:
A* visit states following centers of cells (Right-up), Hybrid A* visit states
following a continuous state in each cell (Right-Bottom). Source: Dolgov
et al. (2010); Tu et al. (2019).

As we can see in Figure 40, the Hybrid A* algorithm expands the nodes in a continuous
kinematically feasible trajectory. This model guarantees a drivable path.

The Hybrid A* uses two phases to the path generation:

• Non-holonomic-without-obstacles: Ignore obstacles, just take into account the
non-holonomic nature of the car. This heuristic computes the shortest path to the
goal from every point in the 4D space (x, y, θ, r) in some discretized neighborhoods
of the goal. A positive effect is assigning high costs to search branches that approach
the target with the wrong heading (Dolgov et al., 2010);

• Holonomic-with-obstacles: This heuristic ignores the vehicle non-holonomic con-
straint but uses the obstacle map to compute the shortest distance to the goal by
performing dynamic programming (DP) in 2D (Dolgov et al., 2010).

In summary, the first heuristic consists of a heuristic search in continuous coordinates,
producing drivable trajectories that lie in a neighborhood of the global optimum. The
second uses numerical optimization in constant coordinates to improve the solution quality
locally. As reported by Dolgov et al. (2010) The usage of these heuristics reduce the
number of expanded nodes by about 45% compared to the Euclidian 2D distance usage.

Chapter 5. Autonomous Driving Stacks 82

The heuristics above describe the forward search expansion using a discretized control
actions (steering) space. This means that the search will not find an actual continuous-
coordinate goal state, depending on an analytic expansion. The Hybrid-A* used the
Reed-Sheep model, which leads to noticeable gains in replanning speed compared to
regular forward node expansions. At that phase, the Hybrid-A* local path can still be
sub-optimal and contain unnatural swerves, requiring excessive steering. Therefore, a fourth
step is needed: Trajectory Optimization. To accomplish that, a non-linear optimization
program on the coordinate of the path vertices is applied, improving the length and
smoothness of the solution. The optimization the use of conjugate-gradient (CG) descent
(Dolgov et al., 2010). The third and fourth described steps can be visually checked below.

Figure 41 – Analytic Reed Sheep Expansion (Up). Trajectory Smoothing process (bot-
tom)

Source: Dolgov et al. (2010)

The integration of Freespace global planner and Hybrid A* local planner with Auto-
ware.AI for the path generation is demonstrated in Appendix A.1.

Chapter 5. Autonomous Driving Stacks 83

5.2.2.2 Modified Lattice

The classical state lattice (Pivtoraiko et al., 2009) is a method for inducing a discrete
graph search on a continuous state space while respecting differential constraints. State
lattice was applied in 2007 DARPA Urban Challenge to handle with parking maneuvers
(Likhachev and Ferguson, 2009). Lattice methods are most applicable to unstructured
environments, and the original lattice formulation is not readily applicable to on-road
driving scenarios. The modified Lattice (Autoware Lattice planner) adapts from the
classical Lattice. In contrast with the classical, it plans a dynamic feasible motion in
structured environments, such as roads with moving traffic, by conforming the Lattice to the
environment. Figure 42 displays the modified Lattice adapted for structured environments.

Figure 42 – Bottom:Regular state Lattice in unstructured environment. Up: State
Lattice conformed to a structured environment).Source: Pivtoraiko et al.
(2009); McNaughton et al. (2011)

This modified Lattice was implemented to assume more responsibility in trajectory
persecution. This means that the lattice planner is more independent from the global
planner path. This method was implemented to cover mismatches between the planners
experienced by the authors, especially when higher-level planners give commands to
lower-level planners that are unfeasible (McNaughton et al., 2011).

The modified Lattice samples many steering actions that take the vehicle away from
the lane centerline and then back towards it. As stated by McNaughton et al. (2011):

Chapter 5. Autonomous Driving Stacks 84

[...] Our lattice is constructed around a lane center line defined as a sampled
function [x(s) y(s) θ(s) k(s)] where s is the arc length s, and the points p(s,l)
defines the lateral offset (l) from the road to the center line. k(s) is the curvature
of the path, such that θ(s, l) =

∫ d
0 k(s, l)ds

[...] To construct our lattice we define a discrete grid points to station and
latitude using a simple linear multiplication s(i) = asi, l(j) = al + bl(j) , so
that the station is monotonic increasing starting from zero and moving right
in the coordinate frame. The latitude may be positive(left) or negative (right)
w.r.t the centerline. A plan through this structure is a sequence of smooth
lateral shifts joined with Lattice poses aligned to the road[...]

[...] The path given by Lattice is defined as a cubic polynomial spiral, which
means that the curvature of the path is a cubic polynomial function of arc
length: k(s) = a+ bs+ cs2 + ds3

[...] The path Tp is a continuous curve through the state space [x y θ k]
defined by a start state x0 = [x0 y0 θ0 k0] and a set of cubic polynomial spiral
parameters. Since our paths are defined as functions of curvature w.r.t are
length, they can be readily followed by the vehicle at any speed, subject to
constraints on steering rate, lateral acceleration, and the like [...] McNaughton
et al. (2011)

Multiple splines are created from the described modified lattice path generation. As
seen in Figure 43, in the lattice algorithm, multiple trajectories converge into the same
lattice vertex.

Chapter 5. Autonomous Driving Stacks 85

Figure 43 – Trajectories conversion in Lattice. Each vertex in the Lattice is identified
with a quadrant corresponding to a pose on the road and a range of times
and velocities. In each vertex, the ending time and velocity value from the
incoming trajectory with the minimum cost is assigned to the lattice ver-
tex’s (t,v) coordinates. These values are used in turn for outgoing trajecto-
ries from the vertex). Source: McNaughton et al. (2011)

The modified Lattice uses a cost function to select the final trajectory, which includes
terms such as obstacle avoidance, vehicle’s physical limitations, such as the rate of change of
path curvature w.r.t time. This function also penalizes lateral acceleration to promote more
comfort to the passenger. At first, the cost function assesses the terms depending on (x,y θ,
k), afterward evaluating the terms depending on a,t,v. The best trajectory is represented
by the continuous sequence of trajectories through the Lattice to the final vertex with the
smallest cost. In addition, to specify the last vertex, a minimum planning horizon th in
terms of time is applied. This strategy excludes long and non-feasible trajectories w.r.t
time. The modified lattice implementation enables rapid progress at a reasonable cost. To
accomplish this, the selected final vertex nf is the one that minimizes.

argnf
minĉ(nf)− ks(s(nf)) + kt(t(nf)) (10)

A weighted sum of the trajectory cost to reach the vertex nf. They assigned a bonus for
driving further with a penalty for taking extra time. Finally, they traced backward through
Lattice from nf to the start state, reconstructing the trajectory. The weights are tuned
manually to achieve the desired balance of forwarding progress against a low trajectory
cost. In this modified lattice implementation, the vehicle remains roughly parallel to the
road.

According to the authors, a drawback of the modified Lattice is the maneuverability
limitation while constructing courses at low speeds. This algorithm requires an exhaustive
search to sweep all possible expanded nodes and formed trajectories regarding computa-

Chapter 5. Autonomous Driving Stacks 86

tional effort. In a high-road experiment (McNaughton et al., 2011), the GPU needed to
evaluate about 400.000 trajectories per cycle.

The integration of Freespace global planner and the modified lattice local planner with
Autoware.AI for the path generation is demonstrated in Appendix A.2.

5.2.3 Open Planner-Global

The Open Planner was designed for a structured environment. In contrast with OMPL
and Navigation Stack planners, which need a cost map to generate feasible paths, the
global Open Planner needs to be fed with a High Definition Map (HD-map). The HD
map is a particular type of map which provides information on the road, such as Lane
Network information, intersection, traffic lights, signs, curbs, lane boundaries information,
and other specific information for the AV. The HD-map, the vehicle start position, and
the destination pose (goal) are the necessary inputs for the Open Planner to plan the
global path. The open planner plans its global trajectory close to the center of the lane
road, as represented by a straight blue line in Figure 44.

Figure 44 – Up: SVL simulator graphical interface. Bottom: Op Global Planner taking
the center of the lane (Blue) and the rollout local planner trajectories at
lateral sides (Green) in rviz. Source: Own Authorship

The AV remains at the center of this line traveling in the right direction and changing

Chapter 5. Autonomous Driving Stacks 87

the lane only when allowed and needs to move to the other one to perform a right or left
turn. Nevertheless, the lane persecution region can be customized, tuning the path planner
algorithm’s or control parameters, as demonstrated in this study (Flessner, 2020).

The general architecture of Open Planner is shown in Figure 45.

Figure 45 – Open Planner Architecture. Source: Darweesh et al. (2017)

Thanks to the HD-map information, in Open Planner, kinematic optimization becomes
more straightforward than the others described in this work because it already provides
the AV the unfeasible and not allowed routes, making it easier for the car-like robot to
avoid awkward paths.

5.2.3.1 Open Planner Behavior State Machine

Another component of Open Planner architecture is the behavior generator (or be-
havior planner). This part is responsible for the task planning. It relies on state machine
usage to represent tasks and apply the rules that govern transitions between these tasks.
The behavior states transition conditions, and an illustrative example of its use while
accomplishing autonomous navigation on Nayoga University is available in Annex B.1.
Each state represents a traffic situation. The transitions between these states are con-
trolled by intermediate parameters, calculated using the current traffic information and
pre-programmed traffic rules.

5.2.3.2 Open Planner-Local

The local open planner (Op) is integrated into the global planner and runs parallel to
the reference path. The Op local planner generates multiple rollouts, starting from the

Chapter 5. Autonomous Driving Stacks 88

vehicle’s center and added perpendicular to the reference path. The rollouts are linearly
sampled and are post-optimized to satisfy the vehicle kinematics. The rollout generation
obeys a maximum time of 0.1 seconds, allowing the controller to respond quickly to the
changes in velocity. The inputs for the rollout creation are current position, planning
distance, number of rollouts, and the next section of the global path. The output is n
smooth trajectories, running from the vehicle’s center out to the maximum planning
distance. These steps are seen in Figure 46.
.

Figure 46 – Steps for generating local trajectories: (a) original map, (b) path section
extracted from the global path, (c) sampling phase, (d) smoothing using
the conjugate gradient. Source: Darweesh et al. (2017)

As it can be seen, the sampled rollouts are split into three sections: the car tip margin,
roll-in margin, and rollout section detailed described here (Darweesh et al., 2017). Object
tracking and detection is an essential feature for the Op local planner to eliminate the false
negatives and false positives detections. After the rollouts generation step, considerable
candidate trajectories need to be analyzed. To select the one with the lowest cost, a cost
function is applied, considering the rollouts and the detected obstacles (inputs).

This cost function calculates three different normalized cost measurements: priority,
collision, and transition. Afterward, the smallest cost is selected. A complete description
of these costs can be found in (Darweesh et al., 2017).

The integration of Open Planner with Autoware.AI for the path generation is demon-
strated in Appendix A.3.

Chapter 5. Autonomous Driving Stacks 89

5.3 Autoware.Auto
Autoware.AI was a considerable step to automotive research groups reaching simulations

close to an AV’s reality. Nevertheless, the Autoware team detected the lack of security in
data transmission and the lack of robustness, being one of the factors closely correlated to
the limitations of ROS1 middleware. In addition, companies’ members from the foundation,
such as APEX.AI, have envisioned a commercial perspective for the software. These factors
culminated in the development of a new project: Autoware.Auto.

Autoware.Auto is ROS2 based. The main difference between ROS2 and ROS1 is that
ROS2 uses Data Distribution Service (DDS) for publishing and subscribing instead of a
custom message handler. The DDS allows real-time data sharing across network-connected
devices. Therefore compared to ROS1, ROS 2 has a better transmission performance. The
DDS feature is considered the heart of ROS2. A profound explanation can be accessed
here (Corsaro, 2020).

In addition, ROS2 provides a life cycle management for the nodes, allowing greater
control over the state of the ROS system. It ensures that all components have been
instigated correctly before enabling them to execute their behavior. It also allows the
node to be restarted or replaced online, ensuring more robot safety (Génération ROBOTS,
2019).

Autoware.Auto was conceived to optimize Autoware.AI limitations in terms of security
and solve the real time data flow issue. Autoware.Auto can work with hard-real time data
flow and, therefore, can handle time-critical ensuring a high safety degree compared to
Autoware.AI. In addition, different from Autoware.AI, a framework oriented for autonomous
driving modules evaluation, Autoware.Auto focus on addressing a specific mission in
a particular real scenario. Therefore the range of available modules, from perception
to planning, is restricted. Autoware.AI is the ideal platform for testing packages and
modules. Autoware.Auto, however, is oriented to cover accurate autonomous driving tests
in particular scenarios, as explained here by Autoware.Auto System Architect (Tellez,
2021).

Autoware.Auto aims to test as many different and specific scenarios as possible to
accomplish the driving tasks with more reliability and ensure the software’s robustness.
They established the Operation Design Domain (ODD) strategy, which is shown in the
Figure 47.

Chapter 5. Autonomous Driving Stacks 90

Figure 47 – Autoware Foundantion (AWF) development Cycle. Source: Whitley (2021)

An ODD is defined to test specific automated driving functions, such as parking. The
selection of an appropriate ODD relies on automotive industry experience, and usually,
it follows a self-driving car’s engineer methodologies, as described (Lee et al., 2020). A
complete diagram with a deeper investigation of the ODD working principle is available in
Annex B.2.

Up to the present time of this research, the AWF team and collaborators had ac-
complished just with the first ODD: Autonomous Valet Parking (AVP). The compatible
modules for this ODD were developed, tested, and achieved the final goal. The system
architecture that the AWF team designed to address this ODD is displayed in Figure 48.

Chapter 5. Autonomous Driving Stacks 91

Figure 48 – AWF AVP Architecture. Source: Whitley (2021)

Figure 48 shows all the applied modules to reach the AVP mission. A complete
explanation of the integration and composition of each one of the depicted modules can
be found on the AWF course (AWF, 2021). As the goal of this work is planning, just this
module will be covered.

5.3.1 Planning Module

Because the framework application under discussion has a more commercial rather
than academic orientation, unfortunately, no article was found describing the planning
module. Even so, valuable technical documents discussions (AutowareAuto git, 2021) and
the motion control live class (Longo, 2020) can help clarify the planning module working-
principle. An overview of autonomous navigation architecture with focus on motion planner
is available at Annex B.3.

5.3.1.1 Lanelet2 Global Planner

The Autoware.Auto global planner name derives from a proper map format for Au-
tonomous Driving: The Lanelet2. The lanelet map shrinks encapsulate indispensable data
for autonomous safety driving (Poggenhans et al., 2018), such as:

• Points: Express the coordinates of one point (represented by poles and punctual
structures);

Chapter 5. Autonomous Driving Stacks 92

• Linestring: Express a line. Used to describe curbs, road markings, facades, fences, or
traffic lights;

• Lanelet: An atomic section. It is created in the unit of attribute change and intersec-
tion. It is represented by lanes, pedestrian crosses, and rails;

• Areas: Indicates where AV movement is not possible, such as green areas, squares,
parking areas, or buildings;

• Polygon: Similar to line string, however, assumes that the first and last point of the
polygon is connected to close the shape. The difference with the "Area" object is
that it does not have routing connection information.

• Regulatory Elements: Express Traffic Regulations. Refers to traffic rules, speed limits,
priority rules, traffic lights, etc.

Except for the Regulatory Elements, all the Lanelet2 data primitives are derived from
the first one (Points). An HD-map content and a lanelet2 data primitives can be checked
in Annex B.5.

The Lanelet2 is also a ROS library that handles the Lanelet2 HD-map data. This
library can interpret and process complex scenarios from HD maps (ROS Wiki- Lanelete2,
2020).

The Lanelet2 global planner working principle is trivial: It takes the AV’s starting
pose from the Localizer and the goal position and then calculates a route following the
HD-map semantics(traffic rules, allowed road directions, signs, etc.). The global planner in
Autoware.Auto works as an onboard GPS, which calculates a route in a road network. For
this reason, it is also called a route planner.

5.3.1.2 Behavior Planner

Similar to Open Planner behavior state machine

• 1: Receives the global route from the lanelet2 global planner;

• 2: Subdivides the global route into "subroutes" to find out the order of Trajectory
Planners to activate;

• 3: For each subroute:

– Activate the appropriate trajectory planner (Lane Planner or Parking Planner)
by sending an Action;

– The Behavior Planner receives the trajectory by topic from the selected trajec-
tory planner while activated;

Chapter 5. Autonomous Driving Stacks 93

– The Behavior Planner calls the Object Collision Estimator’s service to modify
the velocity of trajectory;

– The Behavior Planner relays the received trajectory from Object Collision
Estimator to control.

In a summarize, the behavior planner monitors the phase of the self-driving trip,
triggering the Lane Planner in the beginning and during the road navigation and controlling
the AV’s speed, with the assistance of the Object Collision Estimator module, and
deactivating the Lane Planner and triggering the parking planner algorithm when the AV
is approaching the goal (parking spot).

5.3.1.3 Trajectories Planners (Lane Planner, Parking Planner)

The Trajectories Planners are activated when one of one-of-them receives a subroute
from the Behavior Planner. Once the subroute is received, it will request relevant map
information from the map provider module and start planning the trajectory that navigates
from the start point to the goal point of the given subroute. While the trajectory planner
(Lane or Parking) is activated, it broadcasts the trajectories to the Behavior Planner
for monitoring purposes. The trajectory planner keeps calculating and sending points to
build the subroute trajectory until the vehicle reaches the goal of this subroute. When the
"sub-goal" is called, the trajectory planner returns a code to stop planning using Action’s
Result (A ROS type communication) described in section 4.1.

5.3.1.4 Object Collision Estimator

The Object Collision Estimator module is an essential piece from the navigation module
because it tracks the distance and speed at the vehicle will collide with the front car. This
module receives the trajectory from the Behavior Planner. Then it compares the trajectory
with the detected objects by the perception modules, modifying the velocity profile of
this trajectory. This module is responsible for smoothing the velocity profile to enable
a feasible speed for the control module (MPC). Finally, the Object Collision Estimator
sends back the modified trajectory to the Behavior Planner, further transmitting to the
Model Predictive Control (MPC) controller.

The visual explanation of the whole planning process is shown in Figure 49.

Chapter 5. Autonomous Driving Stacks 94

Figure 49 – AVP Planning Architecture. Source: AutowareAuto git (2021)

The AVP planning module and its planners were tested in this dissertation. The figures
from this simulation and respective notes are found in Section 6.5.

Recently, the second ODD was set by Autoware.Auto team: Autonomous Cargo Delivery.
The third, fourth, and fifth ODDs are objects of discussion: Highway ACC and driver
assistance and Autonomous Bus Rapid Transit and Active Campus Navigation, respectively.

5.4 Apollo.Auto
Apollo.Auto is software developed by Baidu. In the first releases, Apollo was imple-

mented based on ROS. However, similarly to Autoware.Auto, this framework migrated
from ROS1 to Cyber-RT 1 protocol to ensure more safety and robustness. Apollo.Auto
contains more than six different versions. Figure 50 refers to Apollo’s latest version used
in this research (6.0 release).

1Cyber-RT is protocol communication analogous to ROS2

Chapter 5. Autonomous Driving Stacks 95

Figure 50 – Apollo.Auto Architecture Diagram.Source: Baidu (2021)

The architecture of Apollo.Auto is similar to the Autoware frameworks described
previously. To perform autonomous navigation, it relies on the same standard modules:
Mapping, Perception, Localization, Prediction, Planning, and Control. One interesting
feature added in Apollo, in contrast with Autoware, is the addition of a safety module,
called guardian, which performs the function of an Action Center, and intervenes if the
Monitor detects a failure (Baidu, 2021). Figure 51 displays the integration of Apollo
Modules.

Figure 51 – Interaction of Apollo.Auto modules. Source: Baidu (2021)

An in-depth explanation of each apollo module can be found in (Baidu, 2021). In this
work, just the planning module will be described in detail.

Chapter 5. Autonomous Driving Stacks 96

5.4.1 Planning Module

The Public Road Trajectory Planner is based on The EM-type iterative algorithm
(Dempster et al., 1977). This planner deals with multiple requirements for level-4 on-road
autonomous driving. The algorithm comprises three layers that address a safety trajectory
at the end of the process. The first layer deals with lane determination. A multilane
strategy covers both nonpassive and passive lane-change scenarios. For the candidate lanes,
the obstacles and environment information are projected on lane-based Frenet frames 2.
Under this framework, each candidate lane forms a best-possible trajectory based on the
lane level. In the end, the trajectory decider will resolve which route to choose based on
both the cost operating and safety rules.

Figure 52 – Selected Lane, based on cost operating and safety rules

Source: Fan et al. (2018)

The second layer address the lane-level motion planning. To generate an optimal
trajectory, the EM planner optimizes the path and speed iteratively using Dynamic
Programming (DP) and Quadratic Programming (QP).

Figure 53 – EM path-speed decoupled optimizers. Source: Fan et al. (2018)

2Representation from coordinates in a lateral(d) and a longitudinal(s) distance from the origin (see
Annex 98

Chapter 5. Autonomous Driving Stacks 97

The third layer covers traffic regulations and decisions. To avoid obstacles and follow a
reasonable trajectory, the DP calculates a rough and feasible trajectory. The interaction
between barriers and the Ego vehicle’s course is measured in a second step. Finally, the
QP-based smoothing spline is used to smooth the trajectory. The output is a feasible and
smooth solution (Fan et al., 2018).

An overview of the applied steps in the EM planner to generate the path and speed
splines can be visualized in Figure 54.

Figure 54 – Path and speed spline smoothing process. Source: Fan et al. (2018)

Finally, the optimized trajectory is generated, as shown in Figure 55.

Figure 55 – Optimized Trajectory after refinement of second layer Source: Fan et al.
(2018)

The integration of EM Planner (Public Road) with Apollo.Auto for the path generation
is demonstrated in Appendix A.4.

5.5 Proprietary AD Stacks
There are others AD Stacks usually employed for research groups of this area. However,

they are not open source. Between them, it is worthy of describing:

5.5.1 Nvidia

The Nvidia AD Stack is commercial software. It consists of 4 blocks. Each driver (block)
is responsible for managing different modules:

Chapter 5. Autonomous Driving Stacks 98

• Drive AV: Handles with the Planning, Mapping and Perception modules;

• Drive IX: Responsible for Visualization interface, for monitoring the system (failures)
as well as the driver state ;

• DriveWorks: Responsible for calibration of the Ego vehicle motion and networks
connection. The drive core submodule is responsible for sensors processing, such as
image processing and PCD processing;

• Drive OS: the reference operating system and associated software stack explicitly
designed for developing and deploying autonomous vehicle applications. NVIDIA
DRIVE OS delivers a safe and secure execution environment for safety-critical
applications, with secure boot, security services, firewall, and over-the-air (OTA)
updates (Whitley, 2021).

Nvidia supports different hardware platforms for AD, such as Xavier and Pegasus.

The Nvidia DriveWorks is displayed in Figure 56.

Figure 56 – Nvidia Drive Constellation Architecture. Source: Whitley (2021)

5.5.2 Elektrobit

The Elektrobit ADS is based on the AI Behavior Arbitration (AIBA), an algorithm
designed to arbitrate between different driving strategies, or vehicle behaviors, based on

Chapter 5. Autonomous Driving Stacks 99

AIBA’s understanding of the relations between the scene objects. These ADS focused on
an improvement of the AV’s decision-making process. This system constructs a description
and understanding model of the driving scene based on human driver behavior (Trăsnea
et al., 2019). An overview of these frameworks is shown in Figure 57.

Figure 57 – Elektrobit Architecture. Source: Elektrobit (2021)

Currently, numerous software enterprises are working to develop AD modules and
functions. Each ADS, open-source or proprietary, concentrates more effort in developing
and optimizing different modules.

100

6 Simulation Setup

To carry out the simulations, a cloud machine from paperspace 1 was used. The
specifications are shown in Table 2.

Table 2 – Machine Description

Parameter Specification
CPU

Board 4.7.6.6.3/ HVM domU (Xen)
Name Interl(R)Xeon(R)CPUES-2023v4@2.60GHz
Description 1 physical processor; 16 cores, 16 threads
Configuration 16x 2600.09 MHz
Memory 61810544 kiB

GPU
Graphics Processor Quadro P-6000
CUDA cores 3840
Total Memory 24576 MB

Computer
Machine Type Virtual
Memory 61810 MB
Operating System Ubuntu 20.04.5 LTS

Display
Resolution 2560x1440 pixels

Source: Own Author.

To simulate different AD planners and scenarios, the Gazebo (see section 4.1) and
LGSVL simulator (see section 6.2). The simulators used are ideal because they enable the
sensors arrangement (sorts, position, frequencies, etc.), scenarios, vehicles, environments,
etc. It is also almost inexpensive.

The performed simulations with the correspondent chronological order provided by
section 4.2 will be demonstrated in this chapter’s subsequent sections.

6.1 Navigation Stack Simulation Setup

6.1.1 City

The Navigation Stack works by default with the Gazebo simulator (described in section
4.1). The environment set up for the self-driving car simulation on this software, named as
.world file, was defined based on the Center of Automotive Research on the Integrated
Safety Systems and Measurement Area (CARISSMA). This environment is composed of

1A cloud platform which rent powerful computers in terms of GPU and CPU

Chapter 6. Simulation Setup 101

static standing pedestrians and static vehicles (hatchback, SUV, pickup) and buildings,
trees, and other usual objects present in this place.

6.1.2 Vehicle Model

The autonomous vehicle configuration was based on the Prius car model, which contains
16 beam lidar on the roof, eight ultrasonic sensors, four cameras, and two planar lidars
(Tellez, 2017). A configuration relative similar to the BMW research AV (Aeberhard, 2017)
displayed in Figure 58.

Figure 58 – BMW 5 Series test vehicle. Source: Aeberhard (2017)

The vehicle description on ROS, written on the unified description robot format (URDF)
format, is substantially modular. Therefore, the sensors’ plugin can be easily replaced
in the URDF file. However, since the research purpose of this work is to investigate the
trajectory planning module and not the perception, it was decided to use the already
available sensors defined in the Prius model to advance quickly to the primary goal. And,
afterward, if the case, exchange the types and number of sensors. The external vehicle’s
Mesh chosen was the BMW’s 335i, a model present on the lab CARISSMA during an
internship in 2020. The MMeshwas acquired on 3D Warehouse rearranged on Sketch-up
and Blender software.

The sensors described on URDF were later re-positioned according to the new dimen-
sions and geometry to fit the Mesh above correctly.

6.1.3 Simulation Results

The Navigation Stack is an ideal framework to test indoor robots subject to holonomic
constraints. However, it is not efficient for car-like-robots simulations since the available

Chapter 6. Simulation Setup 102

Figure 59 – Mesh Acquisition on 3D Warehouse on top-left, rearrangement on SketchUp
Pro at left-bottom. Reallocation of mMesh’scenter of mass with Blender on
the right. Source: Own Authorship

path planners do not appropriately fit robots with non-holonomic constraints. Even so,
among the tested planners, the TEB local planner was integrated with success, and the
AV was able to reach the target avoiding collisions along the way, as demonstrated in
subsection 4.2.1.2.

6.2 LGSVL Simulator

6.2.1 Selection

LGSVL can import, edit and export the most common HD-maps formats, such as
OpenDRIVE, Lanelet2, and Apollo HD map. It is worthy of citing that other commercial
and proprietary simulators are also widely used with AD stacks, such as CarMaker,
ADAMS, ANSYS, NVIDIA’s Drive Constellation, etc., as well as the open-source, such
s Airsim, CARLA, and Deepdrive. The SVL simulator from LG was selected due to the
extensive number of tutorials, documentation, fast and excellent support provided in
GitHub (LGsvl git, 2021), and mainly for the high realistic design.

6.2.2 Conception

The LGSVL simulator is a Unity-based high-fidelity simulator for autonomous driving.
It is developed using the Unity game engine, taking advantage of its latest technologies,
such as the High Definition Render Pipeline (HDRP) (Unity Technologies, 2021). This
feature simulates a photo-realistic virtual environment very close to reality.

Chapter 6. Simulation Setup 103

The LGSVL simulator communicates with Baidu and Autoware Foundation Au-
tonomous Driving Stacks: Autoware.AI, Autoware.Auto, Apollo.Auto and recently also
has an interface with the Navigation Stack2 (Nav2) (Macenski et al., 2020).

6.2.3 AD Stack -LGSVL Bridge

The simulator and the recent related frameworks are communicated through the related
AD’s bridges: ROS, ROS2, and Cyber-RT, respectively. These bridges bypass messages
from the AD stack modules to the simulator and the inverse. Usually, ROS/Cyber nodes
or packages make the message type conversion during the process. Afterward, the vehicle’s
sensors receive the data from the simulator. They are sent to the AD Stack modules. These
modules process the data and send control commands to the vehicles to stop, swerve or
accelerate through the bridge. An illustrative image of this integration process is shown in
Figure 60.

Figure 60 – High-level architecture of an autonomous driving system and the roles of
the LGSVL simulator engine. Source: Rong et al. (2020)

The messages conversion from AD stacks to the simulator and the transmission to
real car vehicles via the CAN bus is not the focus of this work. A detailed work from this
process can be found in (Battiston, 2015).

6.2.4 Simulation Engine

The LGSVL simulator handles four functions:

Chapter 6. Simulation Setup 104

• Environment Simulation: Include traffic simulation, physical environment simulation
such as weather and time-of-the day;

• Sensor Simulation: It accepts JSON formats to sensor intrinsic and extrinsic param-
eters configuration. In addition, it provides sensor models which contain parameters
that math the real-world counterpart, e.g., Velodyne VLP-16 LiDAR, for example,
which generate point cloud data in the same format of the real sensors;

• Vehicle Dynamics: The simulator provides an essential vehicle dynamics model for the
ego vehicle. However, it allows integration of external third party dynamic models;

• Control of the Ego Vehicle in Simulation.

6.2.5 Scenarios

Relevant attributes from SVL are the possibility of scenario customization, modifying
road conditions, and adding multiple agents (static or dynamic vehicles or pedestrians).
The SVL has available multiple AD scenarios, from AV’s test facilities such as GoMentum
and Shalun to cities such as Borregas Avenue and San Francisco (Rong et al., 2020).

6.2.6 Related Functionalities

Advancements features from the simulator, such as multiple AD stacks communication,
V2X (V2V, V21, V2P) system, interface with Software-in-the-loop (SIL) and Hardware-in-
the-loop (HIL), are better described in (Rong et al., 2020).

6.3 Determination of Test Cases Scenarios
One general method to assure a safety system in autonomous driving is testing the

AV in a certain amount of miles (Kalra and Paddock, 2016). Other researchers, however,
propose validating AD systems testing these vehicles under critical scenarios on simulation
platforms.

The scenarios were configured using the LGSV PythonAPI (LGsvl Python API, 2020).

For the test-cases selection, numerous methodologies can be applied. Klück et al. (2018)
makes use of ontology of the environments in which the AV is interacting as input of
combinatorial testing. The output from this interaction is obtaining critical test scenarios
in which the faults on vehicle capabilities can be detected. An overview of the ontology
methodology proposed (Klück et al., 2018) is shown in Figure 61.

Chapter 6. Simulation Setup 105

Figure 61 – Architecture of three main pillars of general automated testing approach for
verification and validation of automated and autonomous driving functions.
Source: Klück et al. (2018).

Ponn, Schwab, Diermeyer, Gnandt and Záhorskỳ (2019), on the other hand, firstly
evaluated the AV driving behavior in specific scenarios, and through this behavior with
the conjunction of Key Performance Indicator (KPI) metrics, it defines system-specific
challenging scenarios for the safety assessment. Ponn, Schwab, Diermeyer, Gnandt and
Záhorskỳ (2019) also describes and chronicles the type of scenarios, from scenes to critical
scenarios. An overview of this method is shown in Figure 62.

Chapter 6. Simulation Setup 106

Figure 62 – Overview of the described methodology. Source: Ponn, Schwab, Diermeyer,
Gnandt and Záhorskỳ (2019).

At step III-G, the features from the driving behavior of the system under test (SUT)
are identified. The KPI and weaknesses in the driving behavior of the SUT are defined
based on expert knowledge and are done manually. Then these results are evaluated
using the KPIs, and the weak spots from this behavior are determined (a delay or jerk
in the lateral or longitudinal control, for example). Finally, the scenario that generated
this critical AV behavior creates more similar critical scenarios. Validating autonomous
driving is relatively new, and there is still no standard model or official regulations for
that. However, numerous testing and validating methods, such as the described previously,
can be found in the literature. Nalic et al. (2020) have investigated multiple approaches in
this regard.

Motivated by the lack of standard criteria to the scenarios selection for AD validation
functions, the research project PEGASUS (Project for the Establishment of Generally
Accepted quality criteria, tools and methods as well as Scenarios and Situations) was
promoted. The PEGASUS project is based on an argumentative structure, called the
"safety argument," to reach a method for the assessment of Highly Automated Driving
Functions (SAE level 3+). PEGASUS project uses as inputs huge Database with analysis
of accident data, take into account comparisons between the driver and the AV and other
numerous indicators to build a combined safety argumentation.

Chapter 6. Simulation Setup 107

As shown in the figure, PEGASUS applies a systematic description of scenarios split
into six independent layers for scenario modeling 63.

Figure 63 – Systematic description model of scenarios with six independent layers by
PEGASUS. Source: Audi and Volkswagen (2020)

In a further phase, the selected scenarios and corresponding tested automated driving
functions are evaluated by a systematic concept. This process workflow can be checked in
Annex B.6.

A detail from the process can be found in the PEGASUS manual (Audi and Volkswa-
gen, 2020). This manual assists in the selection of critical scenarios, as well as suggest
simulation methods for AD validation. However, one limitation of its manual is its scala-
bility, once it country has particular laws and regulations. Although the project initially
aimed to automate driving safely on the national level, in the foreground. International
conferences and dialogues are being held at the continental level (Europe, Asia, North
America). Therefore the conclusions of the PEGASUS project can serve as a basis for
other countries. PEGASUS project is supported by German Federal Ministry for Economic
Affairs and Energy (BMWi) and contain prominent partners, such as Audi AG, BMW
Group, Daimler AG, Robert Bosch GmbH, Volkswagen AG, as well as universities such as
Technische Universität Darmstadt (FZD), Forschungsgesellschaft mbH, Aachen (fka) and
other renowned automotive industries and research groups.

A concrete scenario was set first for the path planner’s evaluation based on the

Chapter 6. Simulation Setup 108

guidelines above. Then more complex scenarios which could significantly affect a safety
measurement indicator, the Time To Collision (TCC), were also programmed. As these
scenarios reflect proximity to an accident, they can be considered critical scenarios (Ponn,
Schwab, Diermeyer, Gnandt and Záhorskỳ, 2019). The scenarios chosen for this work are:

• Static Truck: A truck is parked on the right side of the Ego Vehicle Lane, obstructing
its passage.

• Crossing the Crosswalk: A pedestrian suddenly traverses the crosswalk while the
Ego vehicle turns left in a pedestrian direction.

• Stop and Go: A sedan moves forward the Ego Vehicle and suddenly stops and goes
successively, while the Ego vehicle moves closely behind it.

• Cut-in: The Ego Vehicle is moving forward in its lane when a Sedan abruptly changes
from its road-lane and entries in front of the Ego Vehicle.

Figure 64 shows the selected scenarios for testing the planners in this work.

Chapter 6. Simulation Setup 109

Figure 64 – Test Cases. Up: Static Truck(left), Crossing the Crosswalk (right). Bottom:
Cut-in(Left), Stop and Go(Right). Source: Own Authorship

6.3.1 Scenario Remarks

A video from the test cases was recorded and is available (Carvalho, 2020).

In this research, all the trajectory planners tested the first scenario (concrete scenario).
The AV’s driving behavior for each trajectory was evaluated in Section 7.9. Unfortunately,
unpredictable behavior occurred due to severe failures in the perception module and
unexpected behavior of the decision-making module. The critical scenarios are under
simulation tests. In the "Stop and Go" test case, the perception does not recognize the
dynamic vehicle and drive straight the road, crossing the obstacle. On the "Cut-in" test
case, the decision-making module chooses the right side from the dynamic obstacle to
overtake it, and the AV climbs over the curb, as displayed in Figure 65.

Chapter 6. Simulation Setup 110

Figure 65 – Unexpected wrong choice taken by decision-making module in "Cut-in" test
case: Ego climbs the curb. Source: Own Authorship

These failures and behaviors need to be studied more deeply to tune the parameters or
fix the errors to test these challenging scenarios in a future opportunity.

6.4 Autoware.AI

6.4.1 Vehicle Configuration

The AWF foundation made available the urdf from the following vehicles: Lexus,
Prius, and Jaguar. The Jaguar was selected for the simulation on this framework since it
already has ROS1 bridge configured. The vehicle configuration from Autoware.AI as well
as Autoware.Auto and Apollo.Auto follows the JSON format. And the amount and types
of sensors and their respective parameters can be set in the LGSVL web interface. It is in
this configurator interface and in JSON format 2, where the sensors parameters can be set,
as well as the topics or channels in which they subscribe and publish messages. A sample
of the description above can be visualized in Appendix A.5.

6.4.2 Tested Scenarios

Autoware.AI currently has seven different HD maps available on its official repository.
Most of them were simulated in this work, especially Borregas Avenue, Cube Town, and
Shalun. The Autoware.AI localization module proved effective in these maps. However, it
did not work correctly with extensive and more complex HD maps such as San Francisco
Borregas Avenue. For the final simulation selected scenario, the Cube Town map was

2JavaScript Object Notation is an open standard file format and data interchange format that uses
human-readable text to store and transmit data objects consisting of attribute-value pairs and arrays

Chapter 6. Simulation Setup 111

adopted. The reason is that this map contains a two-way highway available for overtaking
maneuvers, as well as fewer traffic lights and signs information, which at-the end interfere
in vehicle behavior and decision-making module significantly. As the focus of this survey
is path planning, the other scenarios prejudice this evaluation once the vehicle got stuck
or presented weird behaviors influenced by the decision-making module.

Negative influences from traffic lights during the simulations are displayed below. The
AV stops infinitely behind the NPC agent with the right side of the highway available for
lane changing and goes straight to the agent’s rear, colliding with it (instead of stopping
or changing the route) respectively.

Figure 66 – Scenario Influence on Decision-Making Module

Source: Own Authorship

6.5 Autoware.Auto

6.5.1 Vehicle Configuration

For Autoware.Auto, the Lexus vehicle model, was selected once it had been already
configured with the ROS2 bridge and its urdf was also available. In this way, this was the
chosen model in the LGSVL simulator.

Chapter 6. Simulation Setup 112

6.5.2 Tested Scenarios

As described in the section 5.3, the Autoware.Auto project was launched to cover
specific ODDs. Until this work, only the first ODD had been implemented yet: the AVP.
For this reason, the AWF has made available just the "Autonomous Stuff" PCD map. This
map has numerous parking spots in which the vehicle can park. The Figure 67 displays a
piece of this map while the AV global planner is guiding it to the parking spot:

Figure 67 – Lanelet2, behavior and lane planners in action

Source: Own Authorship

Chapter 6. Simulation Setup 113

In Figure 67 (up), the Lexus vehicle is controlled by the lanelet2 global planner and
follows the produced trail (in green). Simultaneously, the behavior planner is activated
and calculates a possible park spot (bottom from the previous figure), switching to the
park planner when recognizing a candidate (green rectangle trying to "escape" the rail).
As the goal spot is not the close parking spot available, Lexus returns to the rail center
and keeps its search.

Finally, when the AV is closest to the goal spot, the behavior planner triggers the
parking planner and vehicle parks. At first, a rear parking maneuver was tested. Then
later, a front parking maneuver was tested. These maneuvers are depicted in Figure 68.

Figure 68 – Parking Maneuvers Tests. Up: Front Park, Bottom: Rear Park

Source: Own Authorship

Several simulations were needed to park the car with success. The global planner often
found the goal and reached it. However, the parking planner occasionally failed to find the
proper orientation to park successfully.

Chapter 6. Simulation Setup 114

6.6 Apollo.Auto

6.6.1 Vehicle Configuration

In Apollo.Auto the Lincolns MKZ vehicle was selected for the simulations since it was
already configured with a Cyber-RT bridge.

6.6.2 Tested Scenarios

In contrast with Autoware.AI, Apolo.Auto proved to be very robust regarding the
localization module. It can navigate through the environments without the vehicle losing
itself in the map, or the localization fails. For this reason, more simulations in different
sorts of scenarios were possible. The AV was able to perform overtake maneuvers and
travel long distances in the most extensive and complex LG landscape available: The San
Francisco city map. Figure 69 displays an overtake maneuver into this city.

Figure 69 – Lane Change to avoid collision with a static vehicle on Apollo.Auto

Source: Own Authorship

The use of other available planners by Apollo.Auto. The standard planner called "Public
Road" by Apollo Team optimized EM planner features was simulated. The Lattice planner
was also tested; however, the module failed due to a lack of computational resources. So
further analysis from this planner within this framework was not possible.

115

7 Simulation Assessment and Discussion

In this section, the simulated scenarios executed with the previous autonomous driving
stacks are assessed in terms of relevant parameters in the robotics context (Gillani et al.,
2016). The sensors raw data extracted from the LGSVL bridge, as well as the data
science(Wikipedia, 2020) methods(codes), applied to process this data, are available on
Github:Master_Thesis_Simulations.

This section brings plotted charts from meaningful data extracted for all available path
planners of each AD stack, presented in the section 5, except for Autoware.Auto. These
data describe the vehicle’s behavior at each Timestamp along its journey and cooperate
with the metrics visualization and evaluation. The data refers to the first test-case scenario,
described in Section 6.3.

7.1 Trajectory
The final trajectory calculated by the applied path planners is discussed and visually

demonstrated in the following subsections.

7.1.1 AutowareAI Trajectories Planners

The following subsections depict the application of the trajectory planners available
in the open-source ADS used in this work. The planners were applied in a simulation
environment (see Section 6.2), demonstrating what the behavior of the real vehicle would
be for each generated trajectory.

7.1.1.1 Open Planner

Open Planner let a safety distance from the obstacle, and the vehicle decision-making
forced it to switch the lane, as shown in Figure 70.

https://github.com/marcusvinicius178/Master_Thesis_Data.git

Chapter 7. Simulation Assessment and Discussion 116

Figure 70 – Open Planner Calculated Trajectory

Source: Own Authorship

7.1.1.2 Freespace

The Freespace global planner calculates free waypoints over the obstacle. A sketch of
its behavior can be visualized in Figure 71.

Chapter 7. Simulation Assessment and Discussion 117

Figure 71 – Freespace Trajectory Generation. Source: Own Authorship

Two different local planners were simulated with Freespace: Astar and Lattice

7.1.1.2.1 Local Planner: Astar

Figure 72 displays the executed trajectory by Freespace Global planner working with
A* as local Planner.

Chapter 7. Simulation Assessment and Discussion 118

Figure 72 – Astar Deforming Freespace Global Planner Trajectory

Source: Own Authorship

7.1.1.2.2 Local Planner: Lattice

Figure 73 displays the executed trajectory by Freespace Global planner working with
Lattice as a local Planner.

Chapter 7. Simulation Assessment and Discussion 119

Figure 73 – Lattice Deforming Freespace Global Planner Trajectory

Source: Own Authorship

7.1.1.3 Public Road

The Public Road path planner behavior is shown in Figure 74.

Figure 74 – Public Road Planner Trajectory. Source: Own Authorship

Chapter 7. Simulation Assessment and Discussion 120

The previous trajectories can be checked in the figure

Figure 75 – Trajectory profile from simulated planners. Source: Own Authorship

7.2 Lateral Displacement Region
As presented in the trajectories profiles, in Figure 75, the path planners have generated

paths with different lateral offsets from the obstacle. The portion of this offset in the y-axis
was calculated. This information represents the path planning distortion from the original
global way (a straight line on the x-axis).

Figure 76 – Lateral Displacement from Global Path. Source: Own Authorship

Chapter 7. Simulation Assessment and Discussion 121

7.3 Distance Traveled
Figure 77 displays the full path traveled by the AV. The distance was calculated

by setting the minimum x distance traveled by all the path planners. That adjustment
was needed due to different threshold and goal points sent to each Planner. This slight
deviation occurs because the goal point is sent manually in the Autonomous Driving
Software Interface.

Figure 77 – Total Distance Traveled. Source: Own Authorship

As expected, the Open Planner produced the longest path. Compared to the other
trajectory planners, the wide distortion explains this from the global Planner, which
created a more considerable margin and lateral distance from the obstacle. Contrarily, the
Freespace Lattice has produced the minor path in exchange for a minimum safety lateral
distance from the obstacle.

7.4 Distance From Obstacle
An indicator from the safety is the minimum distance in which a trajectory planner

stays from the obstacle along its trajectory (Ferrer Sánchez et al., 2018; Gillani et al.,
2016).

Figure 78 represents the distance the AV remained from the obstacle at each waypoint,
along with the persecution of the trajectory.

Chapter 7. Simulation Assessment and Discussion 122

Figure 78 – Distance From Obstacle. Source: Own Authorship

The obstacle position and dimensions were extracted from the Velodyne data using
regex; the reference point selected was the Truck rear left (RL) point from the rectangular
model, demonstrated in Figure 79, as it is the close point the AV remains before the
obstacle avoidance maneuver.

Figure 79 – Rear Left (RL) point selection from planar rectangular object model.
Source: Aeberhard (2017).

Chapter 7. Simulation Assessment and Discussion 123

7.5 Smoothness of Trajectory
Smoothness: The smoothness S of a trajectory can be measured as a function of jerk,

the time derivative of acceleration:

T (t) = da(t)
dt

(11)

For a given trajectory T , the smoothness is defined as the sum of squared Jerk along
T .

S =
∫ tf

ti
T (t)2dt (12)

where ti and tf are the initial and final time, respectively (Gillani et al., 2016). The
smoothness of the trajectory is related to the rider’s comfort during the trip (Caesar et al.,
2021).

Figure 80 – Smoothness of Trajectory (left). Relational Factor of Smoothness (right).

Source: Own Authorship

The Power of Jerk gives the smoothness of a trajectory. Jerk is found taking the
derivative of the robot’s acceleration. From Figure 80, it is possible to check that the
worst smooth trajectory is from Lattice and the smoother generated by the Public Road
algorithm. Therefore the highest smoothness value, the less smooth is the trajectory. As
more Jerky is, the trajectory is more difficult for the vehicle to travel along with it due
to kynodynamic constraints. As a consequence, the AV spends more energy during the

Chapter 7. Simulation Assessment and Discussion 124

displacement. Jerky contributes to power consumption directly. It is a relevant factor
but not a determinant. Suppose we check the power consumption graph 84, it is clear
that OP and Lattice spent more energy rather than A*. However, Open Planner’s low
Jerky and smoothness value consumed more Power. This happened because the Public
Road planner executed the trajectory in higher velocities and spent less than half of the
time accomplishing its trajectory than the other planners. This factor contributed to the
increase in the Power consumed, directly related to the velocity.

7.6 Evasive Maneuver Duration
Total Simulation Time: The time the path planner takes to generate the path added

by the time the robot travels through this planned path.

The Simulation Time is the measurement the path planner takes to generate the
path added by the time the vehicle travels through this planned path. The time taken to
persecute the trajectory on each is a crucial measurement indicator because it demonstrates
how well the path fits the vehicle dynamics (Peralta et al., 2020). Unfortunately, path
generation time was not available during the data process. However, this test case does not
significantly influence the Simulation time benchmark, once this time is usually shorter
than a second.

Figure 81 – Time Consumption to accomplish the generated trajectories

Source: Own Authorship

Chapter 7. Simulation Assessment and Discussion 125

7.7 Power Consumption
The Energy Consumption that the AV spent persecuting the trajectory. While the AV

is moving, it continuously changes its steering angle (α) and its Instantaneous Center of
Rotation (ICR). This factor influences the calculation of the curvature radius (R). For
this reason, the power consumption needs to be measured at each vehicle timestamp.

The parameters above are shown in Figure 82.

Figure 82 – Vehicle Orientation in the bicycle kinematic model. Source: Krishna (2020).

The total amount of power consumed P by the AV to move from start to the goal
state is computed as:

P =
n∑
i

fidi
∆ti

(13)

where fi,di and ti are the force, displacement and time respectively.

At first, the force at each trip instant was calculated:

Fl = Mass× acclin (14)

Fr = Mass× accnet (15)

Chapter 7. Simulation Assessment and Discussion 126

where acclin = ax, since the velocity component in y axis is equals to 0 (extracted data
from the ROS topic current_velocity and divided by the delta in time between sequential
waypoints). The resultant rotational acceleration from the AV is given by:

accnet =
√
a2
tan + a2

cent (16)

The tangential acceleration is given by:

atan = α× r (17)

The centripetal acceleration is given by:

acen = ω2 × r (18)

where and ω2 is the Angular Velocity and r is given by the AV’s Ackermann Steering
Model:

r = L× tan(α) (19)

Where L is the robot’s wheelbase (given by LGSVL Unix Engine) and α is the steering
angle (yaw angle) at each Timestamp (extracted from ROS topic imu_raw in quaternions
format and converted to roll, pitch, yaw). Figure 83 depicts the Ackermann steering
geometry.

Figure 83 – Steering Angle (yaw) for an Ackermann Steering Geometry. Source: Kelly
(2010).

Found the anet acceleration, it is decomposed in x and y components. The anet x
component is summed with the acclin x component and then the resultant acceleration is
found:

ares = (anetx + alinx)2 + (anety)2 (20)

Finally, the force can be found, multiplying the vehicle Mass by the ares

F = M × ares (21)

Chapter 7. Simulation Assessment and Discussion 127

The vehicle Mass is given by the LGSVL simulator Unix engine. The last term, distance
traveled at each Timestamp, is extracted from the ROS topic current_pose. Having all
these data, the Instantaneous Power(W) is obtained for each waypoint, dividing the AV’s
work()J) by the delta time(s). And the total power consumed by the vehicle is found, as
displayed in the first equation.

The average power consumption when the vehicle is accelerating, and the friction
consumption when the car is braking, were calculated and are shown in Figure 84.

Figure 84 – The average Power consumed (HorsePower) by the car-like robot while mov-
ing along the solution path and overall average. Source: Own Authorship

Chapter 7. Simulation Assessment and Discussion 128

7.8 Persecution of Trajectory: Path deviation
While the AV tries to follow the trajectory, the AV does not follow it with 100 percent

accuracy. A path error is caused and is directly related to the control module efficiency.
The figures below display the errors in XY pose and heading while following this trajectory.

Figure 85 – Distance To Path Error: Position (Up) and Heading (Bottom)

Source: Own Authorship

The Public Road presented the more significant deviation in following the x, y waypoints
produced by the trajectory planners at each Timestamp. A possible reason for this behavior
is the most considerable speed that the vehicle developed while following the generated
trajectory, bringing more hardness for the controller module. The Open Planner has also
presented a substantial deviation from the planned path, mainly in the heading component.
The more significant deviations coincided with the beginning of the trip when it turned
abruptly in the CCW direction to avoid the obstacle. At the end of the journey, it turns
back in CW’s direction to return to the road’s right lane. The deviations from the path
are closely related to the control layer. This module, however, is not the focus of this work.
Other works involving AD stack controllers discuss typical controllers’ performance on
self-driving maneuvers, such as MPC and Pure Pursuit (Karunainayagam, 2020).

Chapter 7. Simulation Assessment and Discussion 129

7.9 Vehicle Behavior
The AV changed the velocity, acceleration, and heading during the trip. These features

are highlighted below:

Figure 86 – Vehicle Behavior Source: Own Authorship

.

The Public Road planner achieved more significant velocities than the other planners,
which collaborated directly to reach the more considerable power consumption. The Lattice
planner presented the most oscillation behavior during the continuous time, showing a less
smooth trajectory. Regarding the heading, Open Planner performed the most significant
deviation from the vehicle center of rotation while switching the lane.

Chapter 7. Simulation Assessment and Discussion 130

7.10 Computational Effort
The simulation involved the usage of numerous modules, packages, and libraries. Each

Planner has its own needs and therefore requires a different amount of Random Access
Memory (RAM), Graphics Process Unit (GPU), and Central Process Units (CPU) cores.
The graphics in Figure 87 display the amount of usage for each Planner:

Figure 87 – Trajectory Planner’s CPU usage for each thread. Source: Own Authorship

The median and mean from the CPU consumption were also calculated:

Figure 88 – Trajectory Planner’s average of CPU usage. Source: Own Authorship

Chapter 7. Simulation Assessment and Discussion 131

Using the respective trajectory planners, the RAM consumed by each framework can
be visualized in Figure 89.

Figure 89 – Trajectory Planner’s Memory consumption. Source: Own Authorship

The Public Road from Apollo.Auto autonomous driving stack was the planning module,
along with the other modules (perception, localization, controlling), which has required
more memory (RAM) and arithmetical computational effort (CPU) to function. The
Autoware platform required less computational effort, however, Apollo.Auto AD stack
proved to be more robust in planning and localization. Autoware presented more failures
during the simulation and was unable to maintain the vehicle localization working in all
the scenarios and presented more failures during the planning process. Even so, Autoware
demonstrated better performance in the perception module than Apollo.Auto 6.0. In
Apollo AD Stack, a modular perception was needed to be activated within the LGSVL
simulator once it could not demonstrate a robust behavior in detection using its perception
module.

132

8 Conclusion and future work

This work covered the path planners applied for self-driving cars using open source
platforms based on ROS, from Navigation Stack to the most popular Autonomous Driving
Stacks: Autoware.AI, Autoware.Auto and Apollo.Auto. The integration with a powerful
simulator from LGSVL was also done, representing realistic scenarios for assessment of
the AD stacks modules, with a focus on planning. The behavior from the path planners
and a complete benchmark involving the evaluation of numerous parameters were also
realized. A benchmark from the open-source AD platforms was also performed and is
shown in Table 3. Analogously, a comparative Table from the applied trajectory planners
is available in Table 4.

Table 3 – Autonomous Driving Stack Performance

Parameters Autoware Apollo
Modules Functionality

Mapping Moderate High
Localization Low High
Perception High Moderate
Planning Moderate High
Control Moderate High

Quality Factor Raju et al. (2019)
Distributed System High High

Maturity Moderate Moderate
Performance Moderate High
Robustness Moderate High

Project Development
Modularity High Moderate
Complexity High Moderate

Developer Manual Low Moderate
Simulation Tools High High

Source: Own Author, adapted from Raju et al. (2019).

From Table 3 it is possible to check that the Autoware.AI project lack robustness in
important modules, such as localization. As stated in Section 6.4.2, this ADS could not
handle vehicle mapping and localization in several HD-Maps provided by the LGSVL
simulator. In this regard, Apollo proved to be more robust, and the Simultaneous Lo-
calization and Mapping (SLAM) algorithms were able to perform the mapping and
the vehicle localization in all tested maps. In addition, Apollo provides to the user a
more friendly user interface, the Dreamview (Baidu-Apollo, 2020). This interface makes
available dynamic graphics, contributing to monitoring and debugging purposes. In the
perception aspect, however Apollo.Auto6.0 failed to perceive and track the obstacles in
the simulated scenarios (see Section 6.3). To overcome this issue a modular perception was

Chapter 8. Conclusion and future work 133

needed (LGsvl-Doc, 2020). Autoware.AI perception algorithms did not fail, and the object
detection and tracking could be optimized by tuning parameters of the costmap generator
package. In trajectory planning and control aspects, and Apollo demonstrated a more
consistent and regular behavior. The Autoware.AI trajectory planners neither planned the
path nor executed the same path for the same simulated test cases. For these reasons,
Apollo.Auto ADS can be considered more robust and with a better performance.

Both platforms lack on presenting a complete usage manual, Apollo.Auto, however,
has more active support on GitHub, in which the developer can get more information.
Evaluating the modularity, the Autoware project, specially Autoware.AI, is one step
ahead of Apollo. As we can check in Runtime Manager Interface, Autoware.AI provides
many different ROS packages and algorithms for the autonomous driving modules, which
can be switched. For example, in the control module, it is possible to choose between MPC
or Pure-pursuit control. At the same time, Apollo 6.0 fixed the usage for MPC, requiring
complex code implementation to enable alternative algorithms to work with its modules
and the Cyber-Rt system. Another detailed evaluation from these aspects was performed
(Raju et al., 2019) and analyzed in their paper for those interested in more comparison
parameters from this benchmark.

In Table,4 a score from 1 to 5 is assigned to the trajectory planners, in which one
corresponds to lousy performance, and five corresponds to optimum performance. The
evaluated parameters are based on the section 7 results. From this table, it is possible
to check that Open Planner generated the most safety trajectory in terms of lateral
distance (see section 7.2) and minimum distance left from the obstacle (see Section 7.4).
this safety margin however increased the total displacement of the vehicle (path length).
The passenger comfort parameters were assessed based on the trajectory smoothness
(see Section 7.5) and vehicle jerk data (see Section 7.9). As the table demonstrates,
the Freespace Lattice had the worst performance, once it presented the worst value for
smoothness of trajectory (see Section 7.5) and had high oscillation in acceleration profile
(see Section 7.9). To the Time Trip aspect, a direct relation was taken from Section 81
to assign the Path Planner grades. To measure the feasibility of trajectory the data
from Section 7.8 was taken into account since the frenet coordinates (s,d) and the vehicle’s
heading angle deviation are directly related to how suitable were the waypoints generated
by the planner to the control module track. As the Open Planner and Public Road had
the most significant deviation in this topic, the lower notes were assigned to them. In
terms of computational effort, while the Public Road was being executed, it reached
the most prominent memory and CPU usage consumption. The Open Planner had the
lowest values for these metrics, presenting less computation burden. This metric, however,
is not just related to the trajectory planner usage, but all the modules from the ADS (from
mapping to control) being executed at the simulation running time. This measurement is
also a good indicator of the ADS computational requirements. Since the Public Road is

Chapter 8. Conclusion and future work 134

the trajectory planner implemented by Apollo.Auto ADS, it is possible to infer that this
framework requires higher computational effort than Autoware.AI in exchange for offering
more robustness, as displayed in the table 3.

Table 4 – Trajectory Planners Performance

Evaluated
Metrics

Freespace
A*

Freespace
Lattice

Open
Planner

Public
Road

Path Length 5 5 2 4
Safety Maneuver

(Collision Risk 7.4)
2 1 5 2

Passenger Comfort 3 1 2 4
Time trip 1 3 3 5
Trajectory
Feasibility

3 4 2 2

Computational
Effort

3 3 4 1

Source: Own Authorship

Testing the AV in diverse scenarios and accomplishing specific AD functions, such as
parking, was achieved. Although the initial goals from this work have been reached, it is
desired for the next work, to try the AD stacks in more critical scenarios and use more
specific technical performance metrics for autonomous driving. Another relevant goal is to
test the AD Stack and automated driving function in a real vehicle to assess its behavior
in the real environment.

135

Bibliography

Aaron and Huang (2019), ‘Rapidly exploring random tree (rrt) and rrt*’.
URL: http://demonstrations.wolfram.com/RapidlyExploringRandomTreeRRTAndRRT/

Ackerman (2016), ‘The electronic highway: How 1960s visionaries presaged today’s
autonomous vehicles’.
URL: https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-
electronic-highway-of-1969

Aderinola, B. (2020), ‘[ros in 5 mins] 034 – what is ros action?’.
URL: https://www.theconstructsim.com/ros-5-mins-034-ros-action/

Aeberhard, M. (2017), Object-level fusion for surround environment perception in auto-
mated driving applications.

Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., Pilat, Y., Homm,
F., Huber, W. and Kaempchen, N. (2015), ‘Experience, results and lessons learned
from automated driving on germany’s highways’, IEEE Intelligent transportation
systems magazine 7(1), 42–57.

Audi, A. and Volkswagen, A. (2020), ‘Description of the pegasus-method’.

AutowareAuto git (2021), ‘Implement semantic-map-based navigation and planning’.
URL: https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-
/issues/447

AWF (2021), ‘Self-driving cars with ros and autoware’.
URL: https://www.autoware.org/awf-course

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A.,
Jesus, L., Berriel, R., Paixao, T. M., Mutz, F. et al. (2021), ‘Self-driving cars: A sur-
vey’, Expert Systems with Applications 165, 113816.

Bahram, M., Ghandeharioun, Z., Zahn, P., Baur, M., Huber, W. and Busch, F. (2014),
Microscopic traffic simulation based evaluation of highly automated driving on high-
ways, in ‘17th International IEEE Conference on Intelligent Transportation Systems
(ITSC)’, IEEE, pp. 1752–1757.

Baidu (2021), ‘Apollo 3.5 software architecture’.
URL: https://github.com/ApolloAuto/apollo/blob/master/docs/specs/Apollo3.5SoftwareArchitecture.md

Bibliography 136

Baidu-Apollo (2020), ‘Dramview usage table’.
URL: https://github.com/ApolloAuto/apollo/blob/master/docs/specs/dreamviewusagetable.md

Baiee, H. A., AL-Araji, K. and Mohammed, A. J. (2020), ‘Road traffic fatalities in
babylon province-six years epidemiologic study.’, Indian Journal of Forensic Medicine
& Toxicology 14(1).

Battiston, A. (2015), ‘Software in c++ for communication between can bus and ros in a
robot vehicle’.

Beasley (2019), ‘Taking the lead in self-driving cars’.
URL: https://car.osu.edu/news/2019/08/taking-lead-self-driving-cars

Borenstein, J. and Koren, Y. (1989), ‘Real-time obstacle avoidance for fast mobile
robots’, IEEE Transactions on systems, Man, and Cybernetics 19(5), 1179–1187.

Bosch (2021), ‘Intelligent headlight control’.
URL: https://www.bosch-mobility-solutions.com/en/solutions/assistance-
systems/intelligent-headlight-control/

Brock, O. and Khatib, O. (1999), High-speed navigation using the global dynamic win-
dow approach, in ‘Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No. 99CH36288C)’, Vol. 1, IEEE, pp. 341–346.

Buehler, M., Iagnemma, K. and Singh, S. (2009), The DARPA urban challenge: au-
tonomous vehicles in city traffic, Vol. 56, springer.

Caesar, H., Kabzan, J., Tan, K. S., Fong, W. K., Wolff, E., Lang, A., Fletcher, L., Bei-
jbom, O. and Omari, S. (2021), ‘nuplan: A closed-loop ml-based planning benchmark
for autonomous vehicles’, arXiv preprint arXiv:2106.11810 .

Caliskan, M. (2020), ‘State estimation for localization’.
URL: https://gitlab.com/ApexAI/autowareclass2020/-
/tree/master/lectures/10Localization

CARandDriver (2021), ‘What is park assist? quick guide’.
URL: https://www.caranddriver.com/research/a32814141/park-assist/ /

Carvalho, M. (2020), ‘Test cases for autonomous driving’.
URL: https://www.youtube.com/watch?v=mSIJ8coeQolist =
PLdY iRmUA3nnTRmF8QJKyPoEQhrdvpP2index = 11

Chakravarthy, A. and Ghose, D. (1998), ‘Obstacle avoidance in a dynamic environment:
A collision cone approach’, IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans 28(5), 562–574.

Bibliography 137

Chen, C.-T., Quinn, R. D. and Ritzmann, R. E. (1997), A crash avoidance system
based upon the cockroach escape response circuit, in ‘Proceedings of International
Conference on Robotics and Automation’, Vol. 3, IEEE, pp. 2007–2012.

Clemente, E., Meza-Sánchez, M., Bugarin, E. and Aguilar-Bustos, A. Y. (2018), ‘Adap-
tive behaviors in autonomous navigation with collision avoidance and bounded ve-
locity of an omnidirectional mobile robot’, Journal of Intelligent & Robotic Systems
92(2), 359–380.

Connete, C. (2019), ‘Path optimization by elastic band’.
URL: https://www.youtube.com/watch?v=KJgHAhJxUr0t=28s

Corsaro, Angelo; Strahm, S. (2020), ‘Autoware course lecture 4: Platform hw, rtos and
dds’.
URL: https://www.youtube.com/watch?v=IyycN6ldsIst=5465s

Darweesh, H., Takeuchi, E., Takeda, K., Ninomiya, Y., Sujiwo, A., Morales, L. Y.,
Akai, N., Tomizawa, T. and Kato, S. (2017), ‘Open source integrated planner for
autonomous navigation in highly dynamic environments’, Journal of Robotics and
Mechatronics 29(4), 668–684.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), ‘Maximum likelihood from
incomplete data via the em algorithm’, Journal of the Royal Statistical Society: Series
B (Methodological) 39(1), 1–22.

Dolgov, D. (2016), ‘Google self-driving car project monthly report’, Published September
.

Dolgov, D., Thrun, S., Montemerlo, M. and Diebel, J. (2010), ‘Path planning for au-
tonomous vehicles in unknown semi-structured environments’, The international
journal of robotics research 29(5), 485–501.

Elektrobit (2021), ‘Autonomous driving - the future of mobility’.
URL: https://www.elektrobit.com/trends/autonomous-driving/

Embotech (2021), ‘Hierachical architecture in autonomous driving’.
URL: https://gitlab.com/ApexAI/autowareclass2020/-
/blob/master/lectures/12MotionControl/1architectureAD.pdf

Erke, S., Bin, D., Yiming, N., Qi, Z., Liang, X. and Dawei, Z. (2020), ‘An improved
a-star based path planning algorithm for autonomous land vehicles’, International
Journal of advanced Robotic Systems 17(5), 1729881420962263.

Faconti, D. (2010), ‘Plot juggler: Juggle with data’.
URL: https://github.com/facontidavide/PlotJuggler

Bibliography 138

Fan, H., Zhu, F., Liu, C., Zhang, L., Zhuang, L., Li, D., Zhu, W., Hu, J., Li, H. and
Kong, Q. (2018), ‘Baidu apollo em motion planner’, arXiv preprint arXiv:1807.08048
.

Feitosa (2021), ‘5g no brasil: quando chega? precisa trocar de celular? veja respostas’.
URL: https://g1.globo.com/economia/tecnologia/noticia/2021/11/02/leilao-do-5g-
acontece-nesta-semana-quando-chega-precisa-trocar-de-celular-veja-respostas.ghtml

Ferrer Sánchez, J. et al. (2018), ‘Implementation and comparison in local planners for
ackermann vehicles’.

fjp.github.io (2018), ‘Trajectory planning in the frenet space’.
URL: https://fjp.at/posts/optimal-frenet/

Flessner, D. (2020), Investigation and Implementation of Available Software and Algo-
rithms for Autonomous Vehicle Development, PhD thesis, The Ohio State University.

Ford (2021), ‘What is ford traffic sign recognition’.
URL: https://www.tch.co.uk/about/why-choose-ford/traffic-sign-recognition/

Fox, D., Burgard, W. and Thrun, S. (1997), ‘The dynamic window approach to collision
avoidance’, IEEE Robotics & Automation Magazine 4(1), 23–33.

Gillani, M., Akbari, A. and Rosell, J. (2016), Physics-based motion planning: Evalua-
tion criteria and benchmarking, in ‘Robot 2015: Second Iberian Robotics Conference’,
Springer, pp. 43–55.

Génération ROBOTS (2019), ‘Ros vs ros2’.
URL: https://www.generationrobots.com/blog/en/ros-vs-ros2/

Hale, A., Stoop, J. and Hommels, J. (1990), ‘Human error models as predictors of acci-
dent scenarios for designers in road transport systems’, Ergonomics 33(10-11), 1377–
1387.

He, Y., Chen, C., Bu, C. and Han, J. (2015), ‘A polar rover for large-scale scientific
surveys: design, implementation and field test results’, International Journal of Ad-
vanced Robotic Systems 12(10), 145.

Hella (2021), ‘Lighting systems’.
URL: https://www.hella.com/hella-si/en/Headlamps-202.html

Honda (2021), ‘Tire pressure monitoring system (tpms) with tire fill assist (select mod-
els)’.
URL: https://www.hondainfocenter.com/Shared-Technologies/Safety/Tire-
Pressure-Monitoring-System-TPMS-with-Tire-Fill-
Assist/: :text=The%20Feature%3A,displayed%20in%20the%20instrument%20panel.

Bibliography 139

Huang (2019), ‘Ros tutorial: Publishers and subscribers’.
URL: https://www.youtube.com/watch?v=bJB9tv4ThV4list=PLdY iRmUA3kP488BvwEw5r7aahxzl4fkindex =
4t = 357s

Iturrate, I., Antelis, J. M., Kubler, A. and Minguez, J. (2009), ‘A noninvasive brain-
actuated wheelchair based on a p300 neurophysiological protocol and automated
navigation’, IEEE Transactions on Robotics 25(3), 614–627.

Joseph, L. (2015), Mastering ROS for robotics programming, Packt Publishing Ltd.

Juliussen (2020), ‘Germany leads the autonomous vehicle regulation race’.
URL: https://www.eetimes.eu/germany-leads-the-autonomous-vehicle-regulation-
race/

Kalra, N. and Paddock, S. M. (2016), ‘Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability?’, Transportation Re-
search Part A: Policy and Practice 94, 182–193.

Kamon, I., Rivlin, E. and Rimon, E. (1996), A new range-sensor based globally conver-
gent navigation algorithm for mobile robots, in ‘Proceedings of IEEE International
Conference on Robotics and Automation’, Vol. 1, IEEE, pp. 429–435.

Karunainayagam, N. (2020), Entwicklung und Bewertung von Methoden zur Trajekto-
rienplanung für die Simulation automatisierter Fahrfunktionen, PhD thesis, Technis-
che Hochschule Ingolstadt.

Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y.,
Monrroy, A., Ando, T., Fujii, Y. and Azumi, T. (2018), Autoware on board: Enabling
autonomous vehicles with embedded systems, in ‘2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS)’, IEEE, pp. 287–296.

Kavrakilab (2020), ‘The open motion planning library app’.
URL: https://ompl.kavrakilab.org/

Kelly, A. (2010), A vector algebra formulation of kinematics of wheeled mobile robots,
in ‘International conference on Field and Service Robotics’, pp. 1–14.

Khatib, M., Jaouni, H., Chatila, R. and Laumond, J.-P. (1997), Dynamic path mod-
ification for car-like nonholonomic mobile robots, in ‘Proceedings of International
Conference on Robotics and Automation’, Vol. 4, IEEE, pp. 2920–2925.

Klück, F., Li, Y., Nica, M., Tao, J. and Wotawa, F. (2018), Using ontologies for test
suites generation for automated and autonomous driving functions, in ‘2018 IEEE
International symposium on software reliability engineering workshops (ISSREW)’,
IEEE, pp. 118–123.

Bibliography 140

Konolige, K. (2000), A gradient method for realtime robot control, in ‘Proceedings.
2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2000)(Cat. No. 00CH37113)’, Vol. 1, IEEE, pp. 639–646.

Krishna, K. A. R. A. Y. (2020), ‘Mobile robot kinematics’.
URL: http://www.cs.cmu.edu/ rasc/Download/AMRobots3.pdf

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E. and How, J. P. (2009), ‘Real-
time motion planning with applications to autonomous urban driving’, IEEE Trans-
actions on Control Systems Technology 17(5), 1105–1118.

Le, D., Liu, Z., Jin, J., Zhang, K. and Zhang, B. (2019), Historical improvement op-
timal motion planning with model predictive trajectory optimization for on-road
autonomous vehicle, in ‘IECON 2019-45th Annual Conference of the IEEE Industrial
Electronics Society’, Vol. 1, IEEE, pp. 5223–5230.

Lee, C. W., Nayeer, N., Garcia, D. E., Agrawal, A. and Liu, B. (2020), Identifying the
operational design domain for an automated driving system through assessed risk, in
‘2020 IEEE Intelligent Vehicles Symposium (IV)’, IEEE, pp. 1317–1322.

LGsvl-Doc (2020), ‘Modular testing’.
URL: https://www.svlsimulator.com/docs/archive/2020.06/modular-testing/

LGsvl git (2021), ‘Lgsvl simulator github issues’.
URL: https://github.com/lgsvl/simulator

LGsvl Python API (2020), ‘Python api guide’.
URL: https://www.svlsimulator.com/docs/python-api/python-api/

Li, H., Tsukada, M., Nashashibi, F. and Parent, M. (2014), ‘Multivehicle cooperative
local mapping: A methodology based on occupancy grid map merging’, IEEE Trans-
actions on Intelligent Transportation Systems 15(5), 2089–2100.

Likhachev, M. and Ferguson, D. (2009), ‘Planning long dynamically feasible maneuvers
for autonomous vehicles’, The International Journal of Robotics Research 28(8), 933–
945.

Longo, Stefano;Merkli, S. (2020), ‘Motion planning and control’.
URL: https://www.youtube.com/watch?v=fQJpAVRQBrIt=3s

Lumelsky, V. J. and Skewis, T. (1990), ‘Incorporating range sensing in the robot navi-
gation function’, IEEE Transactions on Systems, Man, and Cybernetics 20(5), 1058–
1069.

Bibliography 141

Lumelsky, V. J. and Stepanov, A. A. (1987), ‘Path-planning strategies for a point mo-
bile automaton moving amidst unknown obstacles of arbitrary shape’, Algorithmica
2(1-4), 403–430.

Macenski, S., Martín, F., White, R. and Clavero, J. G. (2020), The marathon 2: A
navigation system, in ‘2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)’, IEEE, pp. 2718–2725.

Marin-Plaza, P., Hussein, A., Martin, D. and Escalera, A. d. l. (2018), ‘Global and
local path planning study in a ros-based research platform for autonomous vehicles’,
Journal of Advanced Transportation 2018.

Mark, A. R., James, A. S. and William, A. H. (2010), ‘Principles of modern radar: Ba-
sic principles’.

Masuri, M. G., Isa, K. A. M. and Tahir, M. P. M. (2012), ‘Children, youth and road
environment: Road traffic accident’, Procedia-Social and Behavioral Sciences 38, 213–
218.

McKinsey (2019), ‘Development in the mobility technology ecosystem—how can 5g
help?’.
URL: https://www.mckinsey.com/industries/automotive-and-assembly/our-
insights/development-in-the-mobility-technology-ecosystem-how-can-5g-help

McKinsey and Company (2019), ‘The future of mobility is at our doorstep’.
URL: https://www.mckinsey.com/industries/automotive-and-assembly/our-
insights/the-future-of-mobility-is-at-our-doorstep

McNaughton, M., Urmson, C., Dolan, J. M. and Lee, J.-W. (2011), Motion planning for
autonomous driving with a conformal spatiotemporal lattice, in ‘2011 IEEE Interna-
tional Conference on Robotics and Automation’, IEEE, pp. 4889–4895.

Mínguez, J. and Montano, L. (2002), ‘Robot navigation in very complex, dense, and
cluttered indoor/outdoor environments’, IFAC Proceedings Volumes 35(1), 397–402.

Minguez, J. and Montano, L. (2004), ‘Nearness diagram (nd) navigation: collision avoid-
ance in troublesome scenarios’, IEEE Transactions on Robotics and Automation
20(1), 45–59.

Minguez, J., Montano, L. and Khatib, O. (2002), Reactive collision avoidance for nav-
igation with dynamic constraints, in ‘IEEE/RSJ International Conference on Intelli-
gent Robots and Systems’, Vol. 1, IEEE, pp. 588–594.

Bibliography 142

Moll, M., Şucan, I. A., Bordeaux, J. and Kavraki, L. E. (2011), Teaching motion plan-
ning concepts to undergraduate students, in ‘Advanced Robotics and its Social Im-
pacts’, IEEE, pp. 27–30.

Moll, M., Sucan, I. A. and Kavraki, L. E. (2015), ‘Benchmarking motion planning algo-
rithms: An extensible infrastructure for analysis and visualization’, IEEE Robotics &
Automation Magazine 22(3), 96–102.

Montiel, O., Orozco-Rosas, U. and Sepúlveda, R. (2015), ‘Path planning for mobile
robots using bacterial potential field for avoiding static and dynamic obstacles’, Ex-
pert Systems with Applications 42(12), 5177–5191.

MoveIt Applications (2021), ‘Moveit applications’.
URL: https://moveit.ros.org/documentation/applications/

MoveIt Planners (2021), ‘Moveit planners’.
URL: https://moveit.ros.org/documentation/planners/

Musk, E. (2019), ‘Elon musk on cameras vs lidas for self driving and autonomous cars’.
URL: https://www.youtube.com/watch?v=HM23sjhtk4Q

Najafi, S. and Arghami, S. (2020), ‘Predictive assessment of driver errors using human
error template (het)’, Iran Occupational Health 16(6), 53–65.

Nalic, D., Mihalj, T., Bäumler, M., Lehmann, M., Eichberger, A. and Bernsteiner, S.
(2020), Scenario based testing of automated driving systems: A literature survey, in
‘Proc. FISITA Web Congr.’, p. 30.

Nayoga University (2016), Autoware User’s Manual, Nayoga University.

Nitsche, P., Welsh, R. H., Genser, A. and Thomas, P. D. (2018), A novel, modular
validation framework for collision avoidance of automated vehicles at road junctions,
in ‘2018 21st International Conference on Intelligent Transportation Systems (ITSC)’,
IEEE, pp. 90–97.

Noh, S. (2019), ‘Decision-making framework for autonomous driving at road intersec-
tions: Safeguarding against collision, overly conservative behavior, and violation vehi-
cles’, IEEE Transactions on Industrial Electronics 66(4), 3275–3286.

Paul, N. and Chung, C. (2018), ‘Application of hdr algorithms to solve direct sunlight
problems when autonomous vehicles using machine vision systems are driving into
sun’, Computers in Industry 98, 192–196.

Peralta, F., Arzamendia, M., Gregor, D., Reina, D. G. and Toral, S. (2020), ‘A compari-
son of local path planning techniques of autonomous surface vehicles for monitoring
applications: The ypacarai lake case-study’, Sensors 20(5), 1488.

Bibliography 143

Petrovskaya, A. and Thrun, S. (2009), ‘Model based vehicle detection and tracking for
autonomous urban driving’, Autonomous Robots 26(2), 123–139.

Pivtoraiko, M., Knepper, R. A. and Kelly, A. (2009), ‘Differentially constrained mobile
robot motion planning in state lattices’, Journal of Field Robotics 26(3), 308–333.

Plaku (2020), ‘The open motion planning library app’.
URL: https://ompl.kavrakilab.org/

Poggenhans, F., Pauls, J.-H., Janosovits, J., Orf, S., Naumann, M., Kuhnt, F. and
Mayr, M. (2018), Lanelet2: A high-definition map framework for the future of auto-
mated driving, in ‘2018 21st International Conference on Intelligent Transportation
Systems (ITSC)’, IEEE, pp. 1672–1679.

Ponn, T., Gnandt, C. and Diermeyer, F. (2019), An optimization-based method to
identify relevant scenarios for type approval of automated vehicles, in ‘Proceedings
of the ESV—International Technical Conference on the Enhanced Safety of Vehicles,
Eindhoven, The Netherlands’, pp. 10–13.

Ponn, T., Schwab, A., Diermeyer, F., Gnandt, C. and Záhorskỳ, J. (2019), A method
for the selection of challenging driving scenarios for automated vehicles based on
an objective characterization of the driving behavior, in ‘9. Tagung Automatisiertes
Fahren’.

Pütz, A., Zlocki, A., Bock, J. and Eckstein, L. (2017), ‘System validation of highly
automated vehicles with a database of relevant traffic scenarios’, situations 1, E5.

Quinlan, S. and Khatib, O. (1993), Elastic bands: Connecting path planning and con-
trol, in ‘[1993] Proceedings IEEE International Conference on Robotics and Automa-
tion’, IEEE, pp. 802–807.

Raju, V. M., Gupta, V. and Lomate, S. (2019), Performance of open autonomous vehi-
cle platforms: Autoware and apollo, in ‘2019 IEEE 5th International Conference for
Convergence in Technology (I2CT)’, IEEE, pp. 1–5.

RENESAS (2020), ‘Smart camera for automotive’.
URL: https://www.renesas.com/us/en/application/automotive/adas/automotive-
smart-camera

RIA (2020), ‘Path planning basics, online course implementation on robot ignite
academy (ria) development studio’.
URL: https://www.theconstructsim.com/robotigniteacademylearnros/ros− courses−
library/path− planning − basics/

Bibliography 144

Robotics Back-end (2018), ‘What is a ros node?’.
URL: https://roboticsbackend.com/what-is-a-ros-node/

Rogic, B., Bernsteiner, S., Samiee, S., Eichberger, A. and Payerl, C. (2016), Konzep-
tionelle virtuelle absicherung von automatisierten fahrfunktionen anhand eines sae
level 3 fahrstreifenwechselassistenten, in ‘VDI/VW-Gemeinschaftstagung: Fahrerassis-
tenz und automatisiertes Fahren’.

Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise, E., Uhm,
G., Gerow, M., Mehta, S. et al. (2020), Lgsvl simulator: A high fidelity simulator
for autonomous driving, in ‘2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC)’, IEEE, pp. 1–6.

ROS Answers (2020), ‘3d navigation for robot without arm’.
URL: https://answers.ros.org/question/273447/moveit-with-ompl-for-mobile-
platform-naviagtion/

ROS Answers -MoveIt (2020), ‘Moveit with ompl for mobile platform navigation’.
URL: https://answers.ros.org/question/273447/moveit-with-ompl-for-mobile-
platform-naviagtion/

Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F. and Bertram, T. (2013), Efficient
trajectory optimization using a sparse model, in ‘2013 European Conference on Mo-
bile Robots’, IEEE, pp. 138–143.

Rostami, S. M. H., Sangaiah, A. K., Wang, J. and Kim, H.-j. (2018), ‘Real-time ob-
stacle avoidance of mobile robots using state-dependent riccati equation approach’,
EURASIP Journal on Image and Video Processing 2018(1), 79.

ROS Wiki (2020), ‘Ros wiki documentation’.
URL: http://wiki.ros.org/Documentation

ROS Wiki- Lanelete2 (2020), ‘Lanelet2’.
URL: http://wiki.ros.org/lanelet2

ROS Wiki Navigation (2018), ‘Navigation stack setup’.
URL: http://wiki.ros.org/navigation/Tutorials/RobotSetup

Schlegel, C. (1998), Fast local obstacle avoidance under kinematic and dynamic con-
straints for a mobile robot, in ‘Proceedings. 1998 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications
(Cat. No. 98CH36190)’, Vol. 1, IEEE, pp. 594–599.

Bibliography 145

Schröder, E., Braun, S., Mählisch, M., Vitay, J. and Hamker, F. (2019), Feature map
transformation for multi-sensor fusion in object detection networks for autonomous
driving, in ‘Science and Information Conference’, Springer, pp. 118–131.

Schuldt, F., Saust, F., Lichte, B., Maurer, M. and Scholz, S. (2013), ‘Effiziente systema-
tische testgenerierung für fahrerassistenzsysteme in virtuellen umgebungen’, Automa-
tisierungssysteme, Assistenzsysteme und Eingebettete Systeme Für Transportmittel
.

Sebastian Thrun, Wolfram Burgard, D. F. (2005), Occupancy grid mapping for an
overview of how occupancy grids are generated, in ‘Probabilistic robotics’, MIT Press,
Cambridge, MA, chapter 9, pp. 221–242.

Simmons, R. (1996), The curvature-velocity method for local obstacle avoidance, in
‘Proceedings of IEEE international conference on robotics and automation’, Vol. 4,
IEEE, pp. 3375–3382.

Skolnik, M. I. (1962), ‘Introduction to radar’, Radar handbook 2, 21.

Snape, J., Van Den Berg, J., Guy, S. J. and Manocha, D. (2011), ‘The hybrid reciprocal
velocity obstacle’, IEEE Transactions on Robotics 27(4), 696–706.

Sucan, I. A., Moll, M. and Kavraki, L. E. (2012), ‘The open motion planning library’,
IEEE Robotics & Automation Magazine 19(4), 72–82.

Szeliski, R. (2010), Computer vision: algorithms and applications, Springer Science &
Business Media.

Tellez, R. (2017), ‘How to start with self-driving cars using ros’.
URL: https://www.theconstructsim.com/start-self-driving-cars-using-ros/

Tellez, Ricardo; Whitley, J. (2021), ‘Ros developers podcast 071: The autoware founda-
tion (self-driving cars) with joshua whitley’.
URL: https://www.youtube.com/watch?v=X9mzQwsP7gw/

Tettamanti, T., Varga, I. and Szalay, Z. (2016), ‘Impacts of autonomous cars from a
traffic engineering perspective’, Periodica Polytechnica Transportation Engineering
44(4), 244–250.

The Construct (2020), ‘Ros developers’ course library’.
URL: https://www.theconstructsim.com/robotigniteacademylearnros/ros− courses−
library/

Thompson, S. (2021), ‘Hd maps for autonomous driving: Part 1’.
URL: https://gitlab.com/ApexAI/autowareclass2020/-
/blob/master/lectures/14HDMaps/HDMapsforAutonomousDrivingPartI .pdf

Bibliography 146

Tian, Y., Yan, L., Park, G.-Y., Yang, S.-H., Kim, Y.-S., Lee, S.-R. and Lee, C.-Y.
(2007), Application of rrt-based local path planning algorithm in unknown environ-
ment, in ‘2007 International Symposium on Computational Intelligence in Robotics
and Automation’, IEEE, pp. 456–460.

Trăsnea, B., Pozna, C. and Grigorescu, S. M. (2019), Aiba: An ai model for behavior
arbitration in autonomous driving, in ‘International Conference on Multi-disciplinary
Trends in Artificial Intelligence’, Springer, pp. 191–203.

Tu, K., Yang, S., Zhang, H. and Wang, Z. (2019), Hybrid a based motion planning
for autonomous vehicles in unstructured environment, in ‘2019 IEEE International
Symposium on Circuits and Systems (ISCAS)’, IEEE, pp. 1–4.

Tzafestas, C. S. and Tzafestas, S. G. (1999), Recent algorithms for fuzzy and neuro-
fuzzy path planning and navigation of autonomous mobile robots, in ‘1999 European
Control Conference (ECC)’, IEEE, pp. 4736–4743.

Ulrich, I. and Borenstein, J. (1998), Vfh+: Reliable obstacle avoidance for fast mobile
robots, in ‘Proceedings. 1998 IEEE international conference on robotics and automa-
tion (Cat. No. 98CH36146)’, Vol. 2, IEEE, pp. 1572–1577.

Ulrich, I. and Borenstein, J. (2000), Vfh/sup*: Local obstacle avoidance with look-
ahead verification, in ‘Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065)’, Vol. 3, IEEE, pp. 2505–2511.

Umari, H. and Mukhopadhyay, S. (2017), Autonomous robotic exploration based on
multiple rapidly-exploring randomized trees, in ‘2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS)’, IEEE, pp. 1396–1402.

Unity Technologies (2021).
URL: https://unity.com/

Urmson, C., Anhalt, J., Bartz, D., Clark, M., Galatali, T., Gutierrez, A., Harbaugh, S.,
Johnston, J., Koon, P., Messner, W. et al. (2007), A robust approach to high-speed
navigation for unrehearsed desert terrain, in ‘The 2005 DARPA Grand Challenge’,
Springer, pp. 45–102.

Véras, L. G. D., Medeiros, F. L. and Guimaráes, L. N. (2019), ‘Systematic literature
review of sampling process in rapidly-exploring random trees’, IEEE Access 7, 50933–
50953.

Volkswagen-Newsroom (2018), ‘City emergency braking’.
URL: https://www.volkswagen-newsroom.com/en/city-emergency-braking-3667

Bibliography 147

Waslander, Sebastian; Kelly, J. (2021), ‘Occupancy grids’.
URL: https://www.coursera.org/learn/motion-planning-self-driving-
cars/lecture/oJcwU/lesson-1-occupancy-grids

Whitley, J. (2021), ‘Autoware 101’.
URL: https://gitlab.com/ApexAI/autowareclass2020/-
/tree/master/lectures/06Autoware101

Wikipedia (2020), ‘Data science’.
URL: https://en.wikipedia.org/wiki/Datascience

Winner, H., Hakuli, S., Lotz, F. and Singer, C. (2014), Handbook of driver assistance
systems, Springer International Publishing Amsterdam, The Netherlands:.

Yang, S., Wang, W., Liu, C. and Deng, W. (2019), ‘Scene understanding in deep
learning-based end-to-end controllers for autonomous vehicles’, IEEE Transactions on
Systems, Man, and Cybernetics: Systems 49(1), 53–63.

Yaqoob, I., Khan, L. U., Kazmi, S. A., Imran, M., Guizani, N. and Hong, C. S. (2019),
‘Autonomous driving cars in smart cities: Recent advances, requirements, and chal-
lenges’, IEEE Network 34(1), 174–181.

Yoon, S., Lee, D. and Jung (2018), ‘Spline-based rrt* using piecewise continuous
collision-checking algorithm for car-like vehicles’, Journal of Intelligent & Robotic
Systems 90(3-4), 537–549.

Youakim, D., Ridao, P., Palomeras, N., Spadafora, F., Ribas, D. and Muzzupappa, M.
(2017), ‘Moveit!: autonomous underwater free-floating manipulation’, Ieee Robotics &
Automation Magazine 24(3), 41–51.

Yurtsever, E., Lambert, J., Carballo, A. and Takeda, K. (2020), ‘A survey of au-
tonomous driving: Common practices and emerging technologies’, IEEE access
8, 58443–58469.

Zegers, R. (2020), ‘Path planning basics, online course of the construct by roberto
zegers’.
URL: https://www.theconstructsim.com/robotigniteacademylearnros/ros− courses−
library/path− planning − basics/

148

A Appendix

The next pages contain an outline for the rosgraphs recorded in the simulation time for
the trajectory planners:

• Freespace A*: Appendix A.1:

• Freespace Lattice: Appendix A.2:

• Open Planner: Appendix A.3:

• Public Road: Appendix A.4:

The original and complete rosgraphs are available on github:Rosgraphs. It can be
visualized using the rqt graph on a ROS installation or with the Runtime Manager

Interface, in Autoware.AI (See Figure 37). A complete explanation from these rosgraphs
meaning, as well as this master thesis content can be found in my master thesis video:

Youtube_Master_Thesis_Marcus

The last Appendix A.5 illustrates the LGSVL configurator interface, which allow the
user defines the AV’s sensors, frequencies, data publishing rates, topics, etc.

https://github.com/marcusvinicius178/Master_Thesis_Repository
https://www.youtube.com/watch?v=BcCOudHdc60&t=13s

A
ppendix

A
.

A
ppendix

149

A.1 Appendix 1: RosGraph Outline: Freespace-AstarPath Generation

Figure 90 – A deep insight of Freespace Astar Trajectory Generation

A
ppendix

A
.

A
ppendix

150

A.2 Appendix 2: RosGraph Outline: Freespace-Lattice Path Generation

Figure 91 – A deep insight of Freespace-Lattice Trajectory Generation

A
ppendix

A
.

A
ppendix

151

A.3 Appendix 3: RosGraph Outline: Open Planner Path Generation

Figure 92 – A deep insight of Open Planner Trajectory Generation

A
ppendix

A
.

A
ppendix

152

A.4 Appendix 4: Cyber-Graph Outline: Public Road Path Generation

Figure 93 – A deep insight of Public Road Trajectory Generation

A
ppendix

A
.

A
ppendix

153

A.5 Appendix 5: Vehicle Configuration in SVL simulator

Figure 94 – Vehicle Configurator. Left: SVL configurator interface., Right: JSON format.

154

B Annex

The next pages contain relevant figures and schemes that complement the dissertation
understanding.

A
ppendix

B
.

A
nnex

155

B.1 Annex 1: Open Planner Decision-Making Structure

Figure 95 – Open Planner behavior states illustration. Darweesh et al. (2017)

A
ppendix

B
.

A
nnex

156

B.2 Annex 2: Operation Design Domain Diagram

Figure 96 – ODD based Development Workflow. Source: Whitley (2021)

A
ppendix

B
.

A
nnex

157

B.3 Annex 3: Autonomous Driving Architecture

Figure 97 – A faithful autonomous driving representation of Autoware.Auto architecture, with motion planner focus.

Source: Embotech (2021)

A
ppendix

B
.

A
nnex

158

B.4 Annex 4: Frenet Coordinates

Figure 98 – Representation of a reference path in Frenet coordinates(s,d) on a road segment. Source: fjp.github.io (2018)

A
ppendix

B
.

A
nnex

159

B.5 Annex 5: High Definition Map

Figure 99 – UP: High Definition Map Content. Bottom: Lanelet2 HD-map format composition. Source: Thompson (2021)

A
ppendix

B
.

A
nnex

160

B.6 Annex 6: Pegasus Method

Figure 100 – PEGASUS validation method workflow. Source: Audi and Volkswagen (2020)

A
ppendix

B
.

A
nnex

161

B.7 Annex 7: Autonomous Stack Full Composition

Figure 101 – Autonomous Driving Stack Composition. Source: Whitley (2021)

Appendix B. Annex 162

AppendixC - SETUP OF ADS ON LINUX MACHINES

Autonomous Driving Stacks: Installation Procedures

Run Autoware.Ai and Apollo.Auto with LGSVL simulator is straightforward. Any
additional docker setup is needed to launch the containers. For this reason I am going to
share just the weblink of the installation procedures:

Autoware.AI: Autoware.AI-LGSVL-Simulator

Apollo.Auto 6.0: Apollo.Auto 6.0 -LGSVL-Simulator

Autoware.Auto: Autoware-Auto-LGSVL-Simulator

The Autoware.Auto ADS, however have more complex additional steps and workaround
which I will describe more detailed in lines below:

Componentes of ADS - Autoware.Auto - Ros2 - Lgsvl Simulator

The steps below are suitable for :

Graphics Card: Nvidia-GPU-driver Operational System: Ubuntu 20.04 ROS2-Distro:
Foxy

Obs: The lines that follow the symbol “$” are command lines that must be just copied
and pasted in terminal.

Autoware.Auto && ROS2

Autoware.Auto comes already with the most recent Ros2 version pre-installed in git
clone step. However it is possible to install a desired ros2 distro from source:

source-installation

1) Check if you have the Nvidia-driver and Cuda installed on machine:

$ nvidia-smi

I have the most recent version, was tested and is working with ubuntu 20.04:

Driver graphic Cards: Nvidia 460 Cuda: 11.2

Other older versions also works fine but is necessary to check for compatibility.

To check for the driver-cuda compatibility:

Cuda-Comatibility or cuda-nvidia

It is important to install nvidia-driver and the suitable cuda version to allow GPU
consumers application (such as rviz2, LGSVL simulator, and others) work properly without
crash, return errors, or open and close issues.

https://www.svlsimulator.com/docs/system-under-test/autoware-instructions/
https://www.svlsimulator.com/docs/system-under-test/apollo-master-instructions/
https://www.svlsimulator.com/docs/system-under-test/autoware-auto-instructions/
https://docs.ros.org/en/foxy/Installation.html
https://docs.nvidia.com/pdf/CUDA_Compatibility.pdf
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

Appendix B. Annex 163

Figure 102 – Graphics Card Configuration Required

If $ nvidia-smi command line above did not return the installed driver and cuda,
probably it is not installed.Then go to the installation procedures, described in link below
and install it:

docs-nvidia

2) Intall Docker Container, in order to enable the download of Autoware.Auto
repo images in a virtual environment.

There are 2 possibilities here.

A.1) Choose the method “Install using repository” in the link below:

A.2) Stop when find the recommendation of “linux post install” bolded in blue and
click over it, then go: A.3) Repeat all the instructions and commands below the following
chapters: “Manage Docker as a non-root user” and “Configure Docker to start on boot”
(optional)

or B.1) install in a single step the most recent Docker version: $ curl https://get.docker.com
| sh sudo systemctl –now enable docker

later install nvidia-container-toolkit to allow build and run GPU accelerated Docker
containers.

B.2) Follow the steps written of the chapter “Setting up NVIDIA Container Toolkit”:

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html#ubuntu-lts
https://docs.docker.com/engine/install/linux-postinstall/

Appendix B. Annex 164

nvidia-container-toolkit

B.3) After redo the steps above in "Setting up Docker" and “Setting up NVIDIA
Container Toolkit”, it is important to follow linux post install steps, described in A.2 and
A.3 section previously: docker-post-install

This toolkit allows to leverage NVIDIA GPUs and run high graphical consumers
applications such as rviz2, Autonomous Driving stack within Lgsvl simulator, etc.

3) Return to the requirements of Autoware.Auto installation here: ade-cli-
requirements

The "Requirements" section of this website were accomplished throug the steps above.
If not follow the instruction of the link above. Then now install the most recent ade-cli
project following the commands bellow the chapter “Linux x86_64 and aarch 64” from
item 1 until finish the item 3 inside the gray box.

4) Now follow the link below to start Autoware.Auto repository installation:
Autoware-Auto-istallation

and repeat the chapters:

“Setup ADE home and project checkout” That is basically the clone of Autoware.Auto
image on github (download AD stack pkgs and functionalities)

“Sharing files between the host system ADE” Syncronize bashrc from host and docker
(optinal) There is a typo error in cmd line in this section: replace "ade-home" to "adehome"

“Entering the development enviroment” In step 4 of this third chapter (in red above) is
importan to launch all the most recent container images listed (foxy) : - .aderc-amd64-foxy
.aderc-amd64-foxy-lgsvl Also dashing version if available (last version of ubuntu 18.04)

For my case rviz2 just work with the bolded image above...for rviz2 does not crash
with the standard foxy image (.aderc-amd64-foxy) or the other ones, it is necessary to
modify the .aderc file. But this will be showed in further section of this manual.

In my case I have chosen to build the image below, once it contains the LG simulator
inside the virtual machine for quick tutorial learnings:

$ ade –rc .aderc-amd64-foxy-lsvl start –update –enter

However It is interesting the standard image too (it is possible to build a lot of images
in docker, and they do not conflict with each other). So you can exit the built container
image above and built other images: $ logout $ ade stop $ cd adehome/AutowareAuto
$ade –rc .aderc-amd64-foxy start –update –enter

Then follow the steps found in this link to check if the container image is running ok
and how to enter and use the ade container image.

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
https://docs.docker.com/engine/install/linux-postinstall/
https://ade-cli.readthedocs.io/en/latest/install.html#requirements
https://ade-cli.readthedocs.io/en/latest/install.html#requirements
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/installation-ade.htm

Appendix B. Annex 165

5) To test the packages functionalities of Autoware Auto build the packages
through the following command:

First navigate to AutowareAuto folder if you not be inside it: autoware-auto-ros1@ade:

$cd AutowareAuto

Now issue the command to build the packages (similar to catkin_make in ROS1)
autoware-auto-ros1@ade:

$ colcon build

After build the packages probably an error of compilation will raise (in my case this
happened). This is an issue of missing libraries, packages or not-well written CmakeList,
package.xml or another c++ file. . . To fix this and update the AutowareAuto folder with
the most recent and correct and additional ros2 packages run the commands found in the
first gray box below the chapter “Starting from a clean state” , found on the bottom of
the following webpage below:

Autoware-building

obs: In current section, there is a "git checkout 1.0.0 release" step. In this git branch the
AutowareAuto team probably forgot to add the autoware_auto_launch package inside the
adehome/AutowareAuto/src/tools folder. This package is necessary to launch important
demos such as visualization, perception and others in rviz. In this way if you had this
issue you will need to dowload it from the repo and copy and past e this missed folder
into the directory cited above. You will find below the link to get it: Autoware-tools

Then build/compile the packages again using the command: autoware-auto-ros1@ade:

$ colcon build

In this way you will have more packages built that were outside the AutowareAuto
repo folder that are also important to launch demos, etc...

Congratulations the AutowareAuto installation is done!!!

Now you need to install the lgsvl simulator to work along AutowareAuto

Obs.: There is a internal LGSVL simulator that was installed with the container image
above. Probably the simulator will crash or open and close every time you restart and
reenter the container image (because of libraries will reinstalled every time the container
image start). In this way it is required to remove this library every time you enter the
container, through the cmd below:

$ sudo apt remove mesa-vulkan-drivers

This internal simulator does not have a real web-socket connection to exchange ros-
simulator messages, therefore there are not a real car/actuator/sensors conversion to the

https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/building.html
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/tree/master/src/tools

Appendix B. Annex 166

ros messages type and vice-versa. It is a kind of easy use or shortcut for AutowareAuto
team test quickly some autonomous driving functionalities. To set up scenario, car, sensors
and launch the internal LG simulator follow the link below steps:

Autoware-lgsvl

The most real use of LGSVL simulator is its installation outside the docker container. It
needs to be installed in the host system. In this way it will really simulate a communication
between ROS2 and an outside framework (LGSVL simulator that represents the real car
and the scenario perception) through a ros2 bridge.

6) INSTALLATION OF LGSVL SIMULATOROUTSIDE DOCKER (REC-
OMMENDED) In this way the installation steps of the LGSVL simulator on the host
system are found below:

LGSVL simulator linux

6.1) Go to this website and dowload the the simulator package lgsvl-simulator

6.2) Run the executable of the simulator If the simulator open and close quickly, issue
the following command: sudo apt remove mesa-vulkan-drivers

6.3) Click over “Open web browser” icon Register an account and dowload the scenarios,
cars, etc.

ROS2 LGSVL Briged installation

7) INSTALATION OF ROS2-LGSVL INTERFACE BRIDGE

Follow the steps found in the link below INSIDE THE $ade image (start the docker
container and enter it)

Follow the steps below to install the ros2-lgsvl simulator bridge: ros2-bridge

I will reproduce the commands found in the link above to make easy:

$sudo apt update

$sudo apt install python3-colcon-common-extensions

$sudo apt install libboost-all-dev

$git clone https://github.com/lgsvl/ros2-lgsvl-bridge.git

$source opt/ros/foxy/setup.bash

$cd ros2-lgsvl-bridge

$git checkout foxy-devel

$colcon build –cmake-args ’-DCMAKE_BUILD_TYPE=Release’

https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/lgsvl.html
https://www.lgsvlsimulator.com/
https://www.lgsvlsimulator.com/docs/ros2-bridge/

Appendix B. Annex 167

$source install/setup.bash

$lgsvl_bridge

After issue the last command you should have as output Listening on port 9090

Good! Now it is possible to make ros2 works with lgsvl simulator simulating a CAN
bus communication and ros2-car actuators messages conversion!!! To see the integration
reproduce a usage tutorial of rviz2 and simulator!

Obs: It is good to be aware that you will find some issues with ros2 bridge and simulator
if or install an old or new version of the simulator or ros-distro regarding communication
and rviz2... It is always good to read the documentation to be sure your simulator installed
match the ros2-distro version, etc. Also take care in tutorials that were made to internal
simulator, they have different ROS2 topics set than the external simulator. Also were done
for different ROS versions. Therefore it is pretty important to check ROS2 topics list and
configure the Car json model with the correct topics inside the simulator. I have issues to
see lidar point cloud in rviz for example because the tutorial was done for internal simulator,
suggesting rviz to subscribe to "Lidar_Front" frame and topic "Lidar_Front/points_raw".
However for the external simulator the correct was to set the fixed frame to "Velodyne"
and topic "lgsvl/lidar/points_raw"

8) You will probably face rviz2 issues, then goes to appendinx section to
learn hot to fix this issue! If rviz2 does not open it may be necessary to remove the
following line present in .aderc file:

ADE_DISABLE_NVIDIA_DOCKER=true

	Folha de rosto
	Epigraph
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Motivation
	Contextualization of the work
	Main Objective
	Specific Aims

	Outline

	Autonomous Vehicles
	Definition
	History
	Automation Levels
	Sensors
	Path Planners & Collision Avoidance for AVs: An Overview

	Path Planning: A Deep Insight
	Challenges of Autonomous Mobile Robot Navigation
	Path Planning Concept
	Planning Libraries
	OMPL

	SBPL
	Global Planners Work Principle
	Dijkstra
	Greedy BFS
	A*
	RRT

	Local Planners Work-Principle
	Elastic Band
	Dynamic-Window Approach (DWA)
	Time Elastic Band (TEB)
	RRT

	The ROS Planning Libraries Integration
	Kinematic Models

	The Robot Operating System (ROS)
	The ROS Framework
	ROS AD Driving Application Timeline
	ROS1 based Frameworks
	MoveIt
	Navigation Stack

	The next stage: Autonomous Driving Stacks

	Autonomous Driving Stacks
	Autoware
	Autoware.AI
	Planning Module
	Guideline-based A-Star (Freespace)
	Hybrid A* (Local Planner)
	Modified Lattice

	Open Planner-Global
	Open Planner Behavior State Machine
	Open Planner-Local

	Autoware.Auto
	Planning Module
	Lanelet2 Global Planner
	Behavior Planner
	Trajectories Planners (Lane Planner, Parking Planner)
	Object Collision Estimator

	Apollo.Auto
	Planning Module

	Proprietary AD Stacks
	Nvidia
	Elektrobit

	Simulation Setup
	Navigation Stack Simulation Setup
	City
	Vehicle Model
	Simulation Results

	LGSVL Simulator
	Selection
	Conception
	AD Stack -LGSVL Bridge
	Simulation Engine
	Scenarios
	Related Functionalities

	Determination of Test Cases Scenarios
	Scenario Remarks

	Autoware.AI
	Vehicle Configuration
	Tested Scenarios

	Autoware.Auto
	Vehicle Configuration
	Tested Scenarios

	Apollo.Auto
	Vehicle Configuration
	Tested Scenarios

	Simulation Assessment and Discussion
	Trajectory
	AutowareAI Trajectories Planners
	Open Planner
	Freespace
	Local Planner: Astar
	Local Planner: Lattice

	Public Road

	Lateral Displacement Region
	Distance Traveled
	Distance From Obstacle
	Smoothness of Trajectory
	Evasive Maneuver Duration
	Power Consumption
	Persecution of Trajectory: Path deviation
	Vehicle Behavior
	Computational Effort

	Conclusion and future work
	Bibliography
	Appendix
	Appendix 1: RosGraph Outline: Freespace-AstarPath Generation
	Appendix 2: RosGraph Outline: Freespace-Lattice Path Generation
	Appendix 3: RosGraph Outline: Open Planner Path Generation
	Appendix 4: Cyber-Graph Outline: Public Road Path Generation
	Appendix 5: Vehicle Configuration in SVL simulator

	Annex
	Annex 1: Open Planner Decision-Making Structure
	Annex 2: Operation Design Domain Diagram
	Annex 3: Autonomous Driving Architecture
	Annex 4: Frenet Coordinates
	Annex 5: High Definition Map
	Annex 6: Pegasus Method
	Annex 7: Autonomous Stack Full Composition

		2022-02-03T11:02:52-0300

		2022-02-03T11:06:26-0300

