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ABSTRACT

The tire is the primary source of forces and torques that provide control and stability to
the vehicle. Thus, the performance of a vehicle is mainly influenced by the characteris-
tics of its tires. It is vital that the automotive engineer has a mathematical/ computational
tool that provides precision and consistency to model a tire. The Magic Formula is the
main model currently in use in the automotive industry. The fitting process of the Magic
Formula model is a complex task and can be treated as a optimization problem. For
this reason a particle swarm and genetic algorithm are implemented. A benchmark
and comparison is made between these two algorithms, for standard test functions and
fitting of a Magic Formula 6.1 model.

Keywords: Tire 1. PSO 2. Genetic Algorithm 3.



RESUMO

E vital que 0 engenheiro automotivo tenha uma ferramenta matematica/computacional
que fornecga precisédo e consisténcia para modelar um pneu. A Férmula Mégica € o
principal modelo atualmente em uso na industria automotiva. O processo de ajuste do
modelo Magic Formula é uma tarefa complexa e pode ser tratada como um problema
de otimizacdo. Por esta razdo, um enxame de particulas e um algoritmo genético
séo implementados. Um benchmark e uma comparagao séao feitos entre esses dois
algoritmos, para fungdes de teste padrao e ajuste de um modelo Magic Formula 6.1.

Palavras-chave: Pneu 1. PSO 2. Algoritimo Genético 3.
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1 INTRODUCTION

According to W.F. Milliken and D.L. Milliken (1995) the tire is the primary source
of forces and torques that provide control and stability to the vehicle. Also as stated
by Jazar (2013) the tire is the main component interacting with the road; thus, the per-
formance of a vehicle is mainly influenced by the characteristics of its tires, they affect
handling, traction, ride comfort, and fuel consumption. For this reason, the tire is one
of the most important components of an automobile. Taking this into account, it is vital
that the automotive engineer has a mathematical/ computational model that provides
precision and consistency in the calculations made during the project, such as simula-
tions of vehicle dynamics. That said, other applications include the virtual prototyping
of a tire, which helps to reduce the costs for tire manufacturers by reducing the multiple
iterations of physical prototypes, and even, the use for a realistic tire representation on
video games.

Currently, there are multiple tire models, either steady-state or transient systems,
where there are two main ways of addressing the problem. The theoretical form, with
a physical model, or the empirical form that comes directly from experimental data.
Pacejka (2006) proposed a semi-empirical tire model that can accurately calculate
lateral force and self-aligning torque. This study has been improved in new versions
over the years and has become known as the “Magic Formula”, the last one being
the Magic Formula version 6.2. The model implies in a treatment of the experimental
raw data of each tire by a semi-empirical curve fitting method that provide the value of
forces and moments generated, given as input a normal force and parameters such
as pressure, inclination and slip angle. The relative simplicity of the equations, grants
the possibility of calculating the outputs in real time and also not having to rely on data
interpolation, resulting in an advantage over the use of experimental data by itself for
vehicle dynamics simulations.

However according to W.F. Milliken and D.L. Milliken (1995), the parameters
(constants) of the fit are difficult to obtain and require cross plotting to obtain effects of
more than one variable. So, the definition of the Magic Formula parameters is a task
that must be performed with the aid of computational tools, as they are arbitrary factors
that vary for each tire test case. In this way, given the non-linearity of the problem and
the potential local minima, we can approach the curve fitting as an optimization problem
where several already establish algorithms can be used.

The evolutionary algorithms are search techniques inspired by the biological
evolution of the species (DREO et al., 2006). This type of operation allows the appli-
cation of multiple methods ensuring versatility in solving problems. An implementation
of such techniques is the genetic algorithm (GA), that is a metaheuristic based on the
process of natural selection, which takes a population of individuals and separates it
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taking into account their fitness to an objective function. The best performing individuals
reproduce or mutate into off-springs generating a new population, repeating the cycle
until a desired result is found.

Another type of metaheuristic is the Particle Swarm Optimization (PSO) algo-
rithm is a population-based evolutionary computation technique. It is motivated by the
behavior of organisms such as fishing schooling and bird flock. In a PSO system, each
particle corresponding to individual of the organism is a candidate solution to the prob-
lem at hand. Particles of the population fly around in a multi-dimensional search space,
to find out an optimal or sub-optimal solution by competition as well as by cooperation
among them. (SUN et al., 2004)

Due to the high amount of tires used in motorsport, and the high amount of test
needed to model those tires, a fast and reliable tool is essential for the tire engineer.
Therefore, this work proposes the implementation of both algorithms, to allow the user
to o obtain the MF coefficients with efficiency and consistency, thus, the tire model
based on the input of raw test data. Then, a comparison of both techniques is analyzed,
for performance in convergence rate, precision and robustness. First, a theoretical
foundation is given to the reader as an introductory view into the multiple fronts of
knowledge this work addresses, later, the methods used to achieve the goals presented
are explained, and a detailed view of the algorithms implementation is given. Then the
results obtained when those algorithms are used for test and tire fitting functions are
demonstrated and commented.

1.1 OBJECTIVES

The objectives of this work are explained in the followings sections.

1.1.1 Main objective

Implement and compare a particle swarm and genetic algorithm for tire fitting
purpose.
1.1.2 Specific objectives

« Write and implement a genetic algorithm to fit an MF6.1.2 tire model,

» Write and implement a particle swarm optimization algorithm to fit an MF6.1.2 tire
model,

« Compare and validate both optimization algorithms in terms of speed and result
accuracy,

» Determine the most apt algorithm for tire model fitting purposes.
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2 THEORETICAL FOUNDATION

This chapter presents a foundation on the topics covered in this work, granting a
better understanding by explaining the main concepts and why or how they were used
to achieve the results obtained.

First, the tires fundamentals in a automotive context are explained to give a
broad vision on the complexity of the subject and the motivation to study said object.
Later, tire modeling is explained comparing the existing types of approaches. Lastly
the optimization problem is discussed and a focus is given on the particle swarm and
genetic algorithm method.

2.1 TIRE FUNDAMENTALS

Tires are the primary source of the forces and torques which provide grip, bal-
ance and also, the control and stability (or "handling") of the vehicle (OPTIMUMG, 2018).
Since tires are the only component of a vehicle which is in contact with the ground, all
the forces required to move it, being braking, accelerating or cornering, are supplied
from the tire/ road interaction. Furthermore, according to W.F. Milliken and D.L. Milliken
(1995), the tires also supply the forces used for controlling and stabilizing the vehicle
and for resisting external disturbances from road and wind.

A tire is an advanced engineering product made of rubber and a series of syn-
thetic materials bound together. Fiber, textile, and steel cords are some of the compo-
nents that go into the tire’s inner liner, body plies, bead bundle, belts, sidewalls, and
tread (JAZAR, 2013). In Figure 1 it is possible to see the different tire interior compo-
nents and their arrangement.

The different components can be explained as stated by Jazar (2013):

Bead bundle: is a high strength steel cable to give the tire the strength to seat on
the wheel rim and to transfer the tire forces to the rim.

* Inner layers: they are made from different kind of fabrics called plies. usually made
from polyester the material purpose is to keep the assembly together.

 Inner liner: is the rubber that forms the inside of a tubeless tire, it maintain the air
pressure.

* Belts: are one or more rubber-coated layers of steel, polyester, nylon, Kevlar or
other materials running circumferentially around the tire under the tread. They are
designed to reinforce body plies to hold the tread flat on the road and make the
best contact with the road.
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» Carcass: are the main part in supporting the tension forces generated by tire air
pressure. The carcass is made of rubber-coated steel or other high strength cords
tied to bead bundles.

« Sidewall: provides lateral stability for the tire, protects the body plies, and helps to
keep the air from escaping from the tire.

« Tread: is the portion that comes in contact with the road. Their design vary widely
on the purpose of the tire and are made from different kinds of natural and syn-
thetic rubbers.

Although the great importance of the tire in the dynamic behavior of the vehicle,
it is also too complex due to its construction and chemical compound dependency, and
sometimes is better understood when isolated and explained separately. Tire forces
and moments can be represented as vectors and magnitudes on the tire/ road contact
interface, this representations are separated according to an established coordinate
system. An overview of the SAE system can be seen in the Figure 2.

2.1.1 Tire forces and moments

Tire forces or grip are generated through the friction obtained by the contact
between tire and road. This friction can be generated in three different ways according
to (SEGERS, 2019):

+ Indentation: Due to the slippage of the rubber over the rough road surface, the
strike against this rough spots generates an asymmetrical deformation due to hys-
teresis effects. This in the other hand creates a force with a horizontal component
which resists slippage. (SEGERS, 2019)

* Molecular adhesion: Adhesion results from molecular interactions on the ground/
rubber interface. After the molecular bound is created between the two surfaces,
this molecular chain is stretched resulting in a force opposing slippage.

» Wear: According to Segers (2019), at higher deformation forces and higher slip-
page speeds local stress in the rubber can exceed the material’s tensile strength,
especially near the point of a sharp irregularity. When the rubber is deformed past
the point of elastic recovery, tearing is caused. Tearing absorbs energy, resulting
in an additional friction force opposing slippage.

This forces can be separated and nominated according to its effect on the vehicle
dynamic behavior and are going to be explained in the following subsections.
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Figure 1 — Diagram of tire components
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Source — Jazar (2013).

Figure 2 — Tire forces and coordinates diagram (SAE)
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2.1.1.1 Lateral force (Fy)

According to W.F. Milliken and D.L. Milliken (1995) a lateral tire force originates
at the center of the tire contact with the road, lies in the horizontal road plane and is
perpendicular to the direction in which the wheel is headed. This force is responsible to
the vehicle steering and represents the tire capability to resist lateral acceleration.

It can be generated by or generate a slip angle. It is also influenced by the tire
inclination angle and the normal force (Fz). According to Megaride (2021), the slip angle
is defined by the angle between the forward speed and the equatorial plane of the tire.
It is achieved by the contact patch deformation. A visualization of the slip angle can be
seen on Figure 3

Figure 3 — Slip angle visualization diagram

Path of
rolling tire

—_——
Leading Tread
Deformation

Contact
Patch
Trailing Tread

Deformation

Source — Megaride (2021).

The slope of the curve of the lateral force by slip angle is defined as cornering
stiffness, Cy, and it is related to the tire capability to deform laterally. The higher the
cornering stiffness, less slip angle is required to produce the same amount of lateral
force. The behavior of the tire in the scope of lateral force by slip angle curve, is
presented with a linear region, reaching a peak of lateral force that is surrounded by a
non linear region. Figure 4 shows an example for a racing tire, where is possible to see
an elastic or linear behavior for lower slip angles, and the non linear region coming to a
peak at higher values of slip angle.
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Figure 4 — Slip angle visualization diagram
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Figure 2.7 Lateral force vs. slip angle for a racing tire.

Source — W.F. Milliken and D.L. Milliken (1995)

2.1.1.2 Longitudinal force (Fx)

In order to accelerate or brake a vehicle, longitudinal forces must be developed
between the tires and the ground, in the tire footprints (MILLIKEN, W.; MILLIKEN, D.,
1995). The longitudinal forces also depend on the normal force (Fz) and inclination
angle but in this case a slip ratio is responsible to the generation of this component.

SAE (2008) defines slip ratio, SR, as the difference between the angular velocity
of the driven or braked wheel, 3, and the angular velocity of the free-rolling wheel, Q,,
representing as a fraction being as Equation (1)

Q-0
SR = a 0 (1)

Being, SR = 0 free rolling, SR = -1 for locked breaking and SR = 1 for a spinning
wheel. As the slip ratio increases (numerically) from zero, the forces rise rapidly to a
maximum which usually occurs in the range of 0.10 to 0.15 slip ratio, after which the
forces fall off. Up to the peak the forces depend heavily on the elastic properties of the
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tread and carcass. After the peak the forces depend on a variety of factors such as tread
composition, road texture, surface moisture, speed, tire temperature, etc. (MILLIKEN,
W.; MILLIKEN, D., 1995).

2.1.1.3 Aligning Torque (Mz)

SAE (2008) describes the aligning torque as a tire’s tendency to steer about
a vertical axis through the center of the print (the origin of the tire axis system). W.F.
Milliken and D.L. Milliken (1995) states that between low and medium slip angles the
tires tents to align its heading with its path. In other words, tires tends to point the way
they are going.

The aligning torque is created from the deformation of the tire print. The elastic
distortion increases from front to back and this gives an uneven distribution of lateral
force in the length of the print, thus giving rise to the aligning torque. The Aligning
torque (Mz) is an important moment generated on the tire since it is one of the main
factors that gives the driver a feedback on the steering of the car.

2.1.2 Other tire effects

The previous sections were focused on tire forces and moments, but there are
other effects that affect tire dynamic behavior and they are important to the understand-
ing of this work.

2.1.2.1 Tire pressure

The pressure that the pneumatic tire is inflated have a significant effect on tire
behavior. Higher tire pressure causes higher tire stiffness and thus a higher cornering
stiffness. So, as stated before, less slip angle is needed for the same amount of lateral
force generated. This effect also translates to the aligning torque, since lower cornering
stiffness represents a higher steering effort and an increase in the aligning torque due
to the contact patch size. Lowering the tire pressure increases the size of the contact
patch resulting in more friction, according to W.F. Milliken and D.L. Milliken (1995) this
results in a higher peak of lateral and longitudinal force. But a balance is required since
it also increases the tire wear and drag. According to Segers (2019) other parameters
may be influenced by tire pressure, such as:

« Dynamic ride-height witch influence in the aerodynamic behavior of the vehicle;
» Tire vertical spring rate, affecting the non suspended mass natural frequency;

» And the tire temperature build up over time.
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2.1.2.2 Tire temperature

Tire temperature affects both the force-producing capability of the tire and also
the life of the tire (MILLIKEN, W.; MILLIKEN, D., 1995). Tire temperature is measured
in different locations. It can be referred to the tread temperature, inside the carcass and
the inside air temperature, where all of them presents different effects in tire behavior.
Tire temperature is an important effect of the dynamic behaviour and it can affect the
vehicle in many ways, but is not approached in this work due to its complexity to model.

2.2 TIRE MODELING

In the last section, the importance the tire has over the vehicle dynamic behaviour
was introduced. Tire modeling is present in the automotive industry for years and
according to Megaride (2021) the main reasons are:

 Decreases the number of iterations of design and manufacture by generating a
better understanding of the behaviour even before the manufacture process.

 Decreases the time and money invested in the design, manufacture and vehicle
dynamics modeling processes by the same reasons mentioned above.

» Possibilities of generating "what if" scenarios, meaning a possibility of extrapolat-
ing the physics to give a better grasp on the behaviour of the tire.

* Increases computational efficiency, by implementing a model it allows the analysis
of vehicle dynamics without the need of an interpolation table that requires tire
testing for each tire analysed.

2.2.1 Model types

Several types of mathematical models of the tire have been developed during
the last half century. Each type has a specific purpose. Different levels of accuracy and
complexity may be introduced in the various applications. This often involves entirely
different ways of approach (PACEJKA, 2006). Megaride (2021) describes different types
of tire modeling, that are presented in the following subsections.

2.2.1.1  Empirical or curve fit model

A empirical or curve fit model is based on a "grey-box" approach on fitting the
tire test data to a mathematical model that may have some basing on a physics un-
derstanding, but it is mainly based on mathematical methods. This type of model is
widely used in the industry for its great accuracy and the lower need for computational
power. But it has the disadvantage of being limited by the test range, and the model
parameters not having a direct meaning.
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2.2.1.2 Physical model

The physical tire model is more complex than the the empirical model since it
uses only physical methods to model the tire. It is still relatively fast to obtain results,
and presents great accuracy for regions that the empirical model may not model with
precision, but it is limited to the assumptions made on the physical approach. Also some
parameters needed to model may be difficult to measure or obtain, such as precise
composite composition factors, tire belt stiffness, etc.

2.2.1.3 Finite element model

The finite element tire model presents the higher complexity, and has a realist
representation of the whole tire by modeling material properties, compounds, assembly,
etc. Since it has the higher computational time and higher accuracy, this type of model
is used for tire design. In the following Figure 5, we can see the relationship of model
type and computational cost and complexity.

Figure 5 — Model type complexity and complexity relationship
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2.2.2 Magic formula

A semi-empirical tire model widely used to calculate steady-state tire force and
moment characteristics for use in vehicle dynamics studies is based on the so-called
Magic Formula. The development of the model was started in the mid-eighties, since
then, TU-Delft and Volvo developed several versions. The combined slip scenario was
modeled from a physical point of view in the MF. In 1993 Michelin introduced a purely
empirical method using Magic Formula based functions to describe the tyre horizontal
force generation at combined slip (PACEJKA, 2006). There are several iterations of
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the Magic Formula (MF) tire model, the ones used for this work are based on the MF
5.2 and the MF 6.1 that is capable of modeling tire pressure effects. It is considered a
semi-empirical tire model since it has some physical foundation, but the main objective
is to fit the test data in a series of equations developed to better represent the tire
behavior. The general form of the formula by Pacejka (2006) that holds for given values
of vertical load and camber angle reads:

y = Dsin[Carctan(Bx — E(Bx — arctanBx))] (2)
with
Y(X) = y(x) + Sy 3)
X=X+ SH (4)
being:

* Y: output variable Fx, Fy or possibly M;
« X:input variable tanx or k where « is slip angle and « is slip ratio.

The Magic Formula y(x) typically produces a curve that passes through the origin
x =y = 0, reaches a maximum and subsequently tends to a horizontal asymptote. For
given values of the coefficients B, C, D and E the curve shows an anti-symmetric shape
with respect to the origin. To allow the curve to have an offset with respect to the origin,
two shifts Sy and S\, have been introduced (PACEJKA, 2006). Figure 6 shows the
curve produced by the original formula, Equation (2).

Figure 6 — MF original curve and its parameter’s meaning indicated
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The formula is capable of reproducing characteristics that matches the curves
measured from test data of Fy, Fx and M as functions of their respected slip quantities
( slip angle « and longitudinal slip k).The shift factors presented before models the
offset effect given by the inclination angle and normal load. A sine function is assigned
for each force curve to better capture its peculiarities and to better fit the data, so each
force has multiple parameters to be fit. The complete MF 6.1 equations can be found in
the book "Tyre and vehicle dynamics" by Pacejka (2012).

2.3 CURVE FITTING

Curve fitting is the process of constructing a curve, or mathematical function,
that has the best fit to a series of data points. Curve fitting can involve either interpo-
lation, where an exact fit to the data is required, or smoothing, in which a "smooth"
function is constructed that approximately fits the data. The Magic Formula takes the
smoothing approach by modeling the tire forces that approximate the model behavior to
the behavior obtained from the test data. Fitted curves can be used as an aid for data
visualization, to infer values of a function where no data are available, and to summarize
the relationships among two or more variables. Extrapolation is the use of a fitted curve
beyond the range of the observed data, and is subject to a degree of uncertainty since it
may reflect the method used to construct the curve as much as it reflects the observed
data. This is also one of the uses of the Magic Formula, where the tire behavior can
be characterized outside of the testing range. The process of fitting the Magic Formula
curves to the tire test data can be treated as an optimization problem where the goal is
to minimize the error between the model and the equivalent data points.

2.4 OPTIMIZATION

Everyday, engineers and the decision makers are confronted with problems of
growing complexity, which emerge in diverse technical sectors, such as in-operations
research, design of mechanical systems, image processing, and electronics. The prob-
lem to be solved can be often expressed as an optimization problem. Here one can
define an (or several) objective function, or cost function, that is sought to be minimized
or maximized for all the parameters concerned. The optimization problem is often sup-
plemented by the information of constraints. All the parameters of the adopted solutions
must satisfy these constraints, or otherwise these solutions are not realizable (DREO
et al., 2006). As stated before the Magic Formula model requires the fitting of the equa-
tions parameters to better represent the test data. This fitting can be achieved by a
number of ways, but since the magic formula model requires a lot of parameters without
direct meaning to be fit, the problem was treated as an optimization problem where the
goal is to find the coefficients which generates the model that have the least error from
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the measured data. Thus, the genetic and particle swarm algorithms can be used to
tackle this problem.

2.4.1 Genetic algorithm

Dréo et al. (2006) states that the evolutionary algorithms (EA) are the optimiza-
tion techniques inspired by the biological evolution of the species. One of this techniques
is the genetic algorithm (GA). The principle of a genetic algorithm can be described
as follows. A set of N points in a search space, chosen a priory at random, constitutes
the initial population; each individual x of the population has a certain fitness value,
which measures its degree of adaptation to the objective aimed. In the case of the
minimization of an objective function z, the fitness of x will be higher, if z(x) is smaller.
An EA consists in evolving gradually, in successive generations, the composition of
the population, by maintaining its size constant. During generations, the objective is to
overall improve the fitness of the individuals; such a result is obtained by simulating the
two principal mechanisms which govern the evolution of the living beings (DREO et al.,
2006). According to the theory of Darwin (1859) those mechanisms are:

« Selection, which supports the reproduction and the survival of the fittest individu-
als,

» Reproduction, which allows mixing, the recombination and the variations of the
hereditary features of the parents, to form offspring with new potentialities.

In Figure 7 we can visualize the genetic algorithm block diagram to get a better
grasp of its workings. Dréo et al. (2006) also states that, since the GA handle a popu-
lation of solution instances, the genetic algorithm are particularly indicated to propose
a set of multiple solutions, when a objective function comprises several global optima.
This can be applied to the MF fitting problem, since multiples solutions of different
parameters are possible.

The GA uses several mechanisms to control and maintain the individual’s popu-
lation, they are known as operators. During each generation, a succession of operators
is applied to the individuals of a population to generate the new population for the next
generation.

When one or more individuals are used by an operator, they are labeled as
parents, that will generate new individuals for the next generation which on its turn are
labeled as offspring. Thus, when two operators are applied successively, the offspring
generated by one can become parents for the other (DREO et al., 2006). There are
different implementations for each operator that affects greatly the algorithm behavior.
The two main operators types are the selection and variation operators. They will be
explained briefly in the sections to follow.



Chapter 2. Theoretical Foundation 25

Figure 7 — Principle of a genetic algorithm
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2.4.1.1 Selection operators

According to Dréo et al. (2006) on every generation, the individuals reproduce,
survive or disappear from the population under action of two selection operators:

» The selection for reproduction, witch determines if and how many times an indi-
vidual will reproduce in a generation;

» The selection for replacement, that determines which individuals will disappear
from the population in each generation so that, the population size remains con-
stant throughout the evolution process. It's important to note that the individual
can be selected by both operators at the same time.

In accordance with Darwin (1859), the better or more fit an individual is, the more
often it is selected to reproduce or survive. To make a selection possible, a fitness value,
which depends on the objective function (function being optimized), must be attached
to each individual. In a curve fitting case, the objective function can be the error value
between the curve and the data points, so each time that an individual is evaluated,
the error between the curve that it generates is evaluated with the data points. This,
however, implies that, in each generation, all the individuals are evaluated against a
determined goal or objective, which can be computational intensive.

2.4.1.2 Variation operators

Dréo et al. (2006) says that in order for the algorithm to find better solutions than
those present in the current population, it is required that they are transformed by the
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application of variation operators. A large variety of them can be imagined. They are
classified into two categories:

« The mutation operators, which modify an individual to form another;

» The crossover operators, which generate one or more offspring from combinations
of two or more parents. The designations of these operators are based on the
real life concept of the sexual reproduction of the living beings, but without the
constrain of a real life limitation to two parents for each offspring.

In Figure 8 a simple example is demonstrated. Each individual is represented
by the number container, that represents a genome, each genome is composed by
multiple genes. The parents can be seen, for simplicity sake, in the evenly distributed
containers, and it’s offspring on the following containers. Figure 9 shows an example
for the evaluation process. The genome of an individual is taken and its information is
used to generate a curve, then this curve is compared with the data points and the error
value is used as the individual fitness value.

Figure 8 — Simple demonstration of the different GA organization layers.
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2.4.2 Particle Swarm Optimization

The particle swarm optimization (PSO) evolved from an analogy drawn with the
collective behavior of the animal displacements (in fact,the metaphor was largely de-
rived from socio-psychology). Indeed, for certain groups of animals, e.g. the fish schools,
the dynamic behavior in relatively complex displacements can be observed, where the
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Figure 9 — Example of GA evaluation step for a curve fitting application.
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individuals themselves have access only to limited information, like the position and the

speed of their closer neighbors. (DREO et al., 2006).

An example can be made in a fish school, which is able to avoid a predator
by initially dividing in two groups then reforming the original school while maintaining

cohesion seen in figure Figure 10.

Figure 10 — Fish school example
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According to Dréo et al. (2006) these collective behaviors completely conform to
the theory of self-organization. In this theory, each individual uses the local information
regarding the movement of his closer neighbors, which are reachable by him, to decide

on his own movement.
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Simple rules like “remain close to the other individuals”, “go in the same direction”,
“at same speed” etc. are good enough to maintain the cohesion among the entire group,
and to allow complex and adaptive collective behaviors.

This behavior can be achieved by a group of "particles" that have a position in
the solution space that is described by it's configuration. Each particle has a velocity
that will update the particle’s configuration (position) in the next iteration, and is linked
with two main factors that represent both the particle’s individualism and it's social
dependency. The speed and position equation that can be used to represent the swarm
behavior is expressed in equation Equation (5) and Equation (6).

Vier = WV, + fepq(Ppest — Xi) + fsp2(9best — Xi) ()

Xiv1 = Xi+ Vi (6)

Being V;, 1 the particle speed in generation i + 1. The social factor (fs) repre-
sents the particle’s tendency of following other particles. The cognitive factor (f¢) is the
particle’s independence in searching the solution based on it’s own findings, and the
inertia (W) is the particle’s tendency to reduce it's speed for each iteration during the
search process. py and p» are randomly generated numbers, ppest and gpest are the
particle’s personal best position and the connected particles’ best position respectively.

The connected particles refers to the particles that are in direct relation with the
reference particle. This relation can be established in a variety of ways and the rules
that determines which particle are connected to which is called topology. The most
simple one being that every particle is connected with each other, where gy is the
best overall swarm’s position. Another example of topology is the ring topology, where
each particle is connected only with the two closest particles, in this case gpeg; is the
best position achieved by only the two closest particles. It’'s possible to get an overall
view of the many types of topology in Figure 11.

2.4.2.1  Quantum particle swarm optimization

A variation of the standard particle swarm algorithm is the quantum particle
swarm, proposed by Sun et al. (2004) it replaces the classical physics movement
equations to a quantum behavior of the particles, where a wave function represents the
particle’s position variation. The main purpose is the change in behavior of the particles
resulting in an uncertain or probability search algorithm, which has a higher chance
of finding solutions that are far away from the local search that the standard particle
swarm usually stays. As Grotti et al. (2020) mentions, the equations Equation (7) and
Equation (8) determine the state of the particles based on the Monte Carlo method,
since in order to obtain the position of the particle, the state of the particle needs to be
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Figure 11 — Some topology possibilities
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collapsed from the quantum state (which gives a probability of position) to the classical
state (that gives a deterministic location).

’
Xist = Pi=B(Mpest = Xi)In(_-) forp >=0.5;
' (7)

1
Xist = Pj+ B(Mpest = Xi)In(_-) forp < 0.5
I

B(t) = [(B1=Bo)(T=8)/T]+ Bg (8)

Where Bpand 34 are the shape parameters of the wave function, and (3(t) de-
pendent on the current iteration t and the max number of iterations T.

2.4.3 Related work

Alagappan et al. (2015) compares multiple algorithms for the fitting of a MF
6.0 tire model, including a particle swarm algorithm and a variation of the genetic
algorithm. The research resulted in relatively close error values for the pure lateral
force optimization, Figure 12 presents the pure lateral coefficients results. However all
of the used algorithms are already established optimization libraries for Matlab, and
no direct implementation to the problem were done by the authors. Zhuo et al. (2015)
uses different implementations of the particle swarm algorithm, such as the adaptative
control weight, the dynamically changing weight and the KPSO. Good fit was achieved
by the author, however, the tire model used in the research was a simplified magic
formula model with much less coefficients.
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Figure 12 — Comparison

for pure lateral force for the researched algorithms.

Coefficients Pyl

PEy

PEy2

SSE

MSE

TRR(UB) 1.535
TRR(B) 1.535
NMS(UB) 1.707
PTS(UB) 1.568
PTS(B) 1.535
DE(UB)  — 1535
DE(B) 1.535
PSO(B) 1.535
CS(UB) 1.598
CS(B) 1.535

0.172
0.171
0.455
0.272
0.171
0.172
0.171
0.171
0.279
0.171

—5.185
—5.191
—0.046
—4.847
—5.190
—5.186
—5.190
—5.190
—4.256
—5.190

497,090
498 877
714,281
544,573
498 877
497,089
498 877
498 877
431,402
498 877

0.022
0.022
0.026
0.023
0.022
0.022
0.022
0.022
0.020
0.022

Source — Alagappan et al. (2015)
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3 METHODOLOGY

This chapter is intended to explain the methods used to obtain the results pre-
sented in this thesis. To this work, a fully working software was written, that includes
all the necessary steps to fit a MF tire model. However, to keep in focus with the thesis
objectives, only the relevant software implementations are explained.

3.1 THE PROCESS OF MODELING A TIRE

A set of steps is required in order to model a tire using the Pacejka MF model.
First, tire test data is required. This data can be obtained by two main ways: Field
testing using a sensory equipped test car or a laboratory test with tire testing machines.
These two types of obtaining tire data are explained in the following sections

3.1.1 Outdoor testing

Field or outdoor testing, is referred to as a test that obtains the tire data from a
instrumented tire/ vehicle on a test performed typically at proving grounds. There are
two possibilities for a field test: movable testing rig or vehicle testing.

3.1.1.1 Movable testing rig

A vehicle is used to tow an instrumented trailer that in its turn, has the tire being
tested in contact with the road mounted in a testing rig. This trailer is used to simulate
the tire testing machines of lab use. The main difference is that the surface of contact
is more representative than of the material used in lab testing. Some disadvantages
include limitation to lower test speeds, the uncontrolled environment and the low degree
of repeat-ability. Figure 13 shows an example of such testing machinery.

3.1.1.2 Vehicle testing

The other way of outdoor testing is by using an instrumented car and testing
the tires as they are mounted in this vehicle. This kind of test produces accurate mea-
surements for the designed test range, due to the tire being in the environment that its
meant to be used and mounted to a real vehicle. However, it is limited to what the driver
can achieve, since the maneuvers required to test all the tire capability are difficult to
perform. The forces in the tire are typically measured with wheel transducers, which is
an expensive sensor adding to the monetary cost of the test, one of the major disadvan-
tages of this type of test. Figure 14 shows an example of a test car using wheel force
transducers.
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Figure 13 — Tire test trailer example.

Source — Tass International (2021).

Figure 14 — Optimum G test car.

Source — Optimum G (2021)
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3.1.2 Indoor testing

The other option to obtain tire test data is with indoor testing, where laboratory
test facilities are used to generate more repeatable data by performing the test in
environmentally controlled conditions. The machine used to obtain the data typically
consists of one or more rotating steel drums, covered by a steel belt with an abrasive
surface to simulate road surface. The tire is mounted in an articulated head which
regulates the load, slip angle, speed, pressure and other conditions while measuring
the forces and moments generated. Figure 15 illustrates a Calspan testing machine.

Figure 15 — Calspan tire testing machine.

Source — Calspan (2021)

The advantage of this setup is that the tyre can be tested across a range of load
cases while under very consistent test conditions. This is due the rigs being able to
accurately apply to requested load case, while the indoor nature of the testing means
that the local temperature and moisture can be controlled (SMITH; BLUNDELL, 2017).
According to Megaride (2021) indoor tire testing is usually less expensive than outdoor
vehicle testing, since there are companies specialized in this kind of testing that offers
the testing service such as Calspan. Also, there is much more preparation and time
consuming tasks in outdoor vehicle testing that add to the overall cost. The difference
in the surface used in the steel belt and the asphalt in a road, can be corrected in the
MF model using its scaling factors. For this reason indoor testing is suitable to obtain
tire test data to be used in the MF model.
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3.1.3 FSAE Tire test consortium

The data to test the application, and validate the tire models implementation of
this work were obtained via the FSAE tire test consortium.

The FSAE Tire Test Consortium (FSAE TTC) is a volunteer-managed organiza-
tion of member schools who pool their financial resources to obtain high quality tire
force and moment data targeted for Formula SAE and Formula Student competitions.
The FSAE TTC'’s role is to gather funds from registering member schools, organize
and conduct tire force and moment tests and make the data available to individuals at
member schools (FSAE TTC, 2005).

3.1.4 Data treatment

After obtaining the test data, it is required to treat i, to filter any bad data and to
separate the tests cases. Tire data from indoor testing machines are usually separated
in a free-rolling test and a combined test. Free-rolling tests means that there is no
acceleration applied to the tire as it is free-rolling in the test surface so that the SR is
equal to 0. For the combined test different fixed values of slip angles are set and the
machine varies the SR. Figure 16 presents the treatment done to a free-rolling test,
the different colors imply the different test cases. The graphs are plotting the aligning
torque by slip angle measured by the machine. The first graph on the figure shows the
raw data from the machine, for the second, the slip angle range was filtered to capture
only the tire working range. Further treatment may be applied to help the fitting process,
such as down-sampling and collapsing.

3.1.4.1 Binning

The process of separating the tire data into test cases is known in more general
terms as data binning. It consists in the process of separating the data in different
bins (test cases) where all the collected data which fall into a specific small interval
is labeled or some times replaced by a value representative of that interval, being a
way of quantization. This process is specially important for on-track tests that are much
less controlled than indoor tests, being more susceptible to effects of minor observation
errors.

For this work, a very simple method of binning was used due to the in-door
nature of the data. Given a sensibility value to the tests input variables, (normal force,
inclination and slip angle, etc.) the algorithm detects variations in those data channels,
separating the original data set into different smaller versions containing all the data in
the range where the variation is lower than the sensibility.
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Figure 16 — Example of tire data treatment.
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3.1.4.2 Collapsing

Collapsing is the process of using one or several grouping variables to average
data points in the data set, reducing the overall sample number. This is done to help
the optimization algorithm by reducing the number points it needs to compare in each
iteration. Also, in the tire fitting case, it also helps by reducing and averaging the tire
hysteresis effect which MF models does not usually capture.

There is also multiple ways to collapse a data set, most known methods include
K-means clustering and it’s variations, however a different and simpler method was
used in this work, since it can better filter the hysteresis effects granting better error
results for tire fitting. It consists in averaging the data channels according to the normal
load average for each sample number. Figure 17 shows the difference in the original
and collapsed data.

Figure 17 — Difference of raw (lines) and collapsed (points) test data. (values hidden
due confidentiality). IA = inclination angle
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Source — OptimumTire.

3.2 SOFTWARE DEVELOPMENT

In recent years, software engineering has become an effective engineering dis-
cipline. Due to the constantly increasing complexity of its tasks and the diversity of
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its application domains, a portfolio of software engineering techniques has been con-
structed, offering a customized range of suitable methods and concepts for the applica-
tion domain, criticality, and complexity of each system to be developed. Techniques for
management of projects, configuration, variant and quality, as well as software product
lines, development processes, specification techniques, analysis and design patterns,
and best practices for specific tasks are only some elements of this portfolio (RUMPE,
2016).

3.2.1 Code structure

The object-oriented programming (OOP) is a technique or a paradigm created to
approach the programmer problem in a more effective and communicative way than the
traditional procedural approach. In OOP, computer programs are designed by making
them out of objects that interact with one another (KINDLER; KRIVY, 2005).

For this work OOP was used to structure the proposed application, since it allows
a more divided approach that suited for the genetic and PSO algorithms. The OOP also
allows the use of software architecture tool such as the Unified Modeling Language
(UML) diagrams. according to Rumpe (2016) the UML is a communication and mapping
tool based on visualization that allows the software development team share the same
concepts and transfer knowledge between themselves more efficiently.

UML class diagrams describes the structure or rather the architecture of a system
and are thus the basis for almost all other description techniques. The class concept
is used universally in modeling and programming; it therefore offers a backbone that
enables us to trace requirements and errors through the different activities of a project
(RUMPE, 2016).

The entire framework for this work was coded in C++ by the Author in collabo-
ration with Optimum@G, including the GA and PSO algorithms, the data management
and tire modeling classes. The following sections are intended to explain the software
implementation of the algorithms used.

3.2.2 Genetic algorithm implementation

The genetic algorithm development was a collaboration between the author and
Avi (2021), since the GA capability needed to be extended to any optimization problem.
For this reason the OptimumGenetics library was created. It consists in a template
library coded in the C++ language that can be applied with little to no modification to
any optimization problem applicable to a genetic algorithm. In the Figure 18 we can
visualize the UML class diagram of the library. Each template class requires a defined
type to be operational according to the problem being optimized.

The genome type refers to the variable that affects the fitting of the individual, for
this application each MF coefficient is a gene (which is the division of a genome) that
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Figure 18 — OptimumGenetics library class diagram.
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has the type of a double numeric variable referring to its value. This value is contained
in a standard library vector that is then modified in the evolution process of the genetic
algorithm to generate new model configurations.

The individual for the optimization is the tire model. This way each individual
has it's set of genes (MF parameters) that are modified in the evolution process. The
output and data type is an standard library vector of doubles which refers to the forces
arrays. Each force and moment is divided and has it’s own array object for a given input
of normal force, slip angle, slip ratio inclination angle and pressure, depending on the
force and model implementation.

The exception type is required for the algorithm to handle the possible excep-
tions that occur in the evolution process. The defined "NaNFitnessException" was
implemented to capture possible miss evaluations obtained from the forces error calcu-
lation. For the application proposed in this work the template type parameters for the
genetic algorithm are defined according with Table 1.

The main class of the library is the Setup, this is where the user sets the algorithm
behavior. It uses the evaluation class and the selection operators to evaluate and select
the individuals from the population that is generated with the IndividualFactory class,
which in it’s turn, uses the variation operators (crossover and mutation) classes to
generate new tire models. The Logstream class is used to store and display statistical
data from the optimization.
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Table 1 — Template parameters for the kinematics optimization.

Template name Assigned class
GenomeType std::vector<double>
Type TireModel
OutputType std::vector<double>
EvaluationException NaNFitnessException

Source — Author (2021)

The template nature of the library allows it to be adaptive to any problem type,
but it also requires some classes to be re-implemented specifically for each problem.
Those are explained in the following sections.

3.2.2.1 Boundaries class

The boundaries are specific to each problem so a class is needed to be im-
plemented for the fitting process. A linear boundary class was created, this class is
intended to limit the MF coefficient to a user defined linear boundary. This boundary
can be defined to be hard or soft in each lower or upper side, this allow a better control
of the search space and allows the algorithm to search for solutions that can help the
population to get out of a local minima.

Figure 19 illustrates the behavior of a linear boundary like the one defined for the
current work. It is important to remember that each MF coefficient has its own defined
boundary.

Figure 19 — Linear boundary illustration.
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3.2.2.2 Operators

The cross over and mutation classes are defined according to the genome type
of the algorithm. For this reason each method of cross over or mutation need to be
implemented in it's own class. The library allows multiple implementations to be used,
however, for simplicity sake, only the best performing implementation will be explained.

For this work the Blx-« was used to allow a better coverage of the design space
allowing a search for out of boundary values according to a defined user parameter of «.
This grants the search of MF parameters combinations that usually would be discarded.

The mutation implementation follows a Gaussian principle that generates muta-
tions according to a Gaussian distribution, the standard variation o allows the strength
of this mutation to be user defined.

The selection for reproduction used is known as the truncation selection. It se-
lects the n best individuals in the population, being n a parameter chosen by the user.It
has a fast conversion rate but it can also trap the population in a local minima.

The selection for replacement used is similar to the truncation selection, but for
replacement. The steady state selection for replacement selects the n worst individuals
to be replaced, with n usually being a small number.This strategy is useful when the
representation of the solution is distributed on several individuals, that is, when the
design variables are really disperse through the population, but the population has a
low overall fithess standard deviation.(AVI, 2021)

3.2.2.3 Evaluation class

The evaluation class also depends on the problem being optimized, since it is
responsible to evaluate the individuals with the fitness function. For this reason the
evaluation class was implemented taking into account the error analysis between the
tire test data and tire model data as a fitness function. Multiple error calculations were
tested to analyze the best convergence of the GA and the one that is used for this work
is defined in the Equation (9).

\/>(Model - Data)2

> |Datal ©)

The error is calculated by taking a force or moment output vector from the model
using the test data input parameters (Normal force, inclination angle, slip angle, pres-
sure, etc.) and comparing it to the correspondent force or moment vector from the test
data. Weight functions can be used to give more value to specific inputs values but for
simplicity’s sake were not used in this work.

Each evaluation contain a one or more objectives, so it’s possible to fit multiple
forces and moments at the same time, however, due to the MF coefficients nature of
being dependent on one another, it is best to fit one or two forces at a time.

Error =




Chapter 3. Methodology 41

3.2.2.4 Extinction mechanism

A mechanism to help the algorithm to get unstuck from local minima was created
by the author and Avi (2021). Based on nature’s great extinctions in history, where
during this events, most species were removed from earth’s environment leaving only a
few very fit individuals, which mutated and reproduced in the following years, granting
the possibility for new species to flourish over time. The concept is the same for the
Author’s genetic algorithm. When a elongated stagnation is reached and the best fitness
value is repeated during multiple generations (possibly a local minima), an extinction
event is triggered and all but the best individual is removed. Then the population is
refilled with mutated individuals generating a whole new set of solutions that can lead
to an ever better error number.

3.2.3 Particle swarm implementation

The particle swarm development was also a collaboration between the author
and OptimumG and it’s also able to be extended to any optimization problem. A sim-
pler approach was taken than the GA in the sense that fewer template classes were
created, and the configuration for each particle is set in a defined type. This requires
a serialization of the problem being optimized in the form of a vector of doubles. For
the tire fitting purpose, this step was easy to follow since it is the same approach used
in the GA, being the vector of doubles, the vector of MF coefficients. The algorithm’s
simpler nature also allowed an easy overall implementation with much less classes and
functions to be re-implemented for each specific problem. Figure 20 shows the UML
class diagram of the library. For the application proposed in this work the template type
parameters are defined according with the Table 2.

Table 2 — Template parameters for the kinematics optimization.

Template name Assigned class
EvaluationObject TireModel
OutputType std::vector<double>

Source — Author (2022)

The evaluation and objective class have the exact same functionality as the
classes with same name in the GA, only with some differences in method signatures
to accommodate the rest of the library. The AbstractParticleConverter class has a
similar functionality of the IndividualFactory class from the GA, where it’s responsible
of converting particle to evaluation object (In this case tire models) and vice versa.

The swarm is the main class from this library, where the user control’s the opti-
mization process and it’s possible configurations. The swarm is responsible of initializing
the particles at the initial iteration, and updating it’s position and velocity in the subse-
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Figure 20 — OptimumSwarm library class diagram.
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quent ones. It’s also responsible to call the evaluation class to evaluate each particle.
During the initialization process it’s also responsible to call the topology class to tell the
particles which particle it's connected to.

The particle class is the building block of the swarm, it is responsible of search-
ing the best solution, storing the tire model configuration in a vector of doubles. The
movement behavior are described by the equations mentioned in chapter 2 and can
be easily changed into the standard or quantum behavior. The boundaries are used
when initializing a particle to grant that it is initialized in bounds, although they do not
necessarily stay on set boundaries during the optimization process.

The classes that need re-implementation for a specific problem are the parti-
cle converter, boundary, evaluation and objective. Since they are dependent on the
configuration of the evaluation object that change for each problem.

3.2.3.1 Evaluation and objective classes

As stated before the evaluation and objective classes work the same way it does
for the GA. The error is also calculated the same way (Equation (9)), for comparison
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reasons.

3.2.3.2 Boundaries

The boundaries were also implemented in the same way, the main difference is
that it is only used in the initialization of the particles, and differently than the GA, that
initialize individuals each generation, the PSO only initializes the particles on the first
iteration and the population is kept the same throughout the process only changing the
configuration. A different approach can be implemented where, when searching for a
new solution, if the particle set up a coefficient out of bounds, it’s velocity is changed to
make the particle "bounce" off back to the bounds. However for this work some times
searching outside the bounds is desirable.

3.2.3.3 Particle converter

The particle converter class works similarly to the individual factory class from
the GA. It's responsible for converting the particle to the evaluation object (tire model)
to be evaluated in each iteration. Converting the evaluation object to a particle is also
possible but not as much used. For the particle swarm implementation, the particle
configuration that stores the information to generate a new evaluation object, was
chosen as a fixed type, instead a variable like the GA’s genome type. This allows a
simpler implementation for different problems and overall algorithm implementation.
However it also limits the algorithm reach to only problems that can be serialized into a
vector.

3.2.4 Data used for the comparison

The data used in the algorithm comparison is real race car tire data provided by
Optimum@G, for this reason, all the values and tire specifics characteristics are modified
and do not represent the real values since it is classified. However, are still useful to
present the methodologies and results obtained. It also "stress" tests the software to a
real life use case, validating it's usage for a commercial software.

The data was taken as it’'s raw state obtained from the test facility. It was taken
from a in-door test similar to the one explained previously in this chapter. Due to the
data raw state, a treatment was also needed to allow a fitting process to take place. The
following subsection will explain the treatment applied. The same final data was used
for both algorithms to a fair comparison. Figure 21 shows an overall representation of
the data used, where FZ is normal force in Newtons, SN is sample number, 1A and SA
are inclination angle and slip angle respectively in degrees, and P is pressure in Pascal.
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Figure 21 — Free rolling data (input channels by sample number) used for comparison.
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Source — Author (2022)

3.2.4.1 Data treatment applied

The data comes organized in a tabular text file, the free rolling test file is sepa-
rated from the combined one, so, in this section the explanation follows the treatment
applied to the free rolling test, the same treatment can be applied to any other tests
with little modifications.

Figure 21 shows the input channels that the machine uses in this specific test
to acquire the desired force and moments channels. It's possible to see the slip angle
sweeps in red, the inclination angle steps in green, normal force in blue and pressure
in gray. The test behavior changes abruptly at the end, indicating a different purpose
for that specific setup. Most of the time, temperature controlling sweeps occur before a
step of pressure is changed, these are only for tire temperature control and should not
be included in the fitting process, since it can skew the data, being not representative
of a tire behavior that MF can capture.

After cropping the unwanted or problematic data, the binning process is per-
formed. In this work the data binning resulted in 39 bins being 36 with approximately
1110 samples each and 3 bins with 900 samples each. After the binning is done, the
collapsing process can begin. Multiples values were tested for the collapsing method
implemented, the value of 80 samples per bin resulted in a good compromise between
performance and preserving data. The final treatment numbers can be found in Table 3.
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Table 3 — Data treatment numbers.

Parameter Value
Total Number of Bins 39
Initial Number of Samples 42438
Final Number of Samples 3120
Percent Decrease 92.6

Source — Author (2021)

3.2.5 Optimization test functions

Test functions, also known as artificial landscapes by Back et al. (1996), are
useful to evaluate characteristics of optimization algorithms, such as:

» Convergence rate

* Precision

» Robustness

» General performance

These test functions are aimed for giving an idea about the different situations
that optimization algorithms have to face when encountering these kinds of problems.
For the purpose of this work, two types of single-objective landscapes were used.

3.2.5.1 Rastrigin function

The Rastrigin function is a non-convex function used as a performance test prob-
lem for optimization algorithms. It is a typical example of non-linear multi-modal function,
first proposed in 1974 by Rastrigin as a 2-dimensional function. The generalized version
was popularized by Back et al. (1996). Finding the minimum of this function is a fairly
difficult problem due to its large search space and its large number of local minima.

On an n-dimensional domain it is defined by:

f(x) = An+ > _[x;— Acos(27x;)] (10)
i=1

A 3d view of the function can be seen in Figure 22.

3.2.5.2 Rosenbrock function

The Rosenbrock function also known as Rosenbrock’s valley or Rosenbrock’s
banana function, is a non-convex function that was introduced by Howard H. Rosen-
brock in 1960, and is used as a performance test problem for optimization algorithms.
The global minimum is inside a long, narrow, parabolic shaped flat valley. Finding the
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Figure 22 — 3D view of the Rastrigin function.

Source — (WIKIPEDIA, 2022)

valley is an easy task, however, the convergence to the global minimum a very difficult
problem due to extreme slow gradient leading to the minimum. It is a contrast com-
pared to the Rastrigin function since there is only one valley and it’s a very different
optimization problem. The Rosenbrock function is defined by:

f(x,y) = (a=x) + b(y = x) (11)

Usually a = 1 and b = 100 and the local minima is (1,1). The 3d view of the
function can be seen in Figure 23
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Figure 23 — 3D view of the Rosenbrock function.

Source — (WIKIPEDIA, 2022)
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4 RESULTS AND DISCUSSION

Both algorithms were implemented and applied to tire model fitting. First, tests
were made with the mentioned test function, to achieve the best configuration. Then
the best results for these tests were compared for both algorithms. Later, an application
on tire fitting was performed, and a new comparison was made.

4.0.1 Genetic algorithm results

The genetic algorithm configuration used for the test functions can be seen in
Table 4.

Table 4 — GA Test Setup.

Parameter Value

Population size 100

Maximum number of generations 200

Selection for reproduction type Tournament (selection: 20, size: 5)
Selection for replacement type Truncation (selection: 50)

Alpha value (crossover) 1.7

Standard deviation value (mutation) 1.0

Mutation rate 10%

Source — Author (2021)

4.0.1.1 Test function results

Due to the random nature of the algorithms, after the best configuration was
achieved a series of 3 optimization for each test function were run to gather an average
result. The convergence graph seen in Figure 24 and Figure 25 is a random result
picked from the tests runs. The average fitness is the population average fitness on
that specific generation, the best fitness, is the fitness value of the best individual on
that generation and the selection pressure is Table 5 and Table 6 presents the average
results for the Rastringin and Rosenbrock functions respectively.

Table 5 — GA Rastrigin test average results.

Parameter Value [unit]
Time Elapsed 66 [ms]
Total Evaluation Count 10150
Time per Evaluation 6.5 [us]
Final Fitness Value 0

Iteration Where Minima was Found 64

Final Average Population Fitness 0.81

Source — Author (2022)
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Figure 24 — Convergence plot of GA’s Rastrigin test function.
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Figure 25 — Convergence plot of GA’s Rosenbrock test function.
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Table 6 — GA Rosenbrock test average results.

Parameter Value [unit]
Time Elapsed 71.6 [ms]
Total Evaluation Count 10150
Time per Evaluation 6.96 [us]
Final Fitness Value 3.35e-10
Iteration Where Minima was Found 194

Final Average Population Fitness 0.058

Source — Author (2022)

It's possible to note a huge difference in algorithm behavior in the two test func-
tions. The Rastrigin function presents an early convergence rate and it finds the global
minima pretty easily. The Rosenbrock function, however, never actually converges to a
single value, and although it's numerically close to the global minima, the value found
is farthest from zero than the result found in the Rosenbrock test.

It is possible to notice the effect of the extinction mechanism in the Rosenbrock
test. In Figure 25 near generation 100 a big dip on the best fitness occurs after a long
period of stagnation. This happens because an extinction is triggered and a best result
is found in the mutated population. This, however, doesn’t occurs in the Rastrigin test,
the algorithm can find the minima in it's own without the aid from the mechanism.

Figure 26 shows a 2D projection of the Rosenbrock function and the individuals
from a GA test optimization. It's possible to see that the algorithm rapidly converges
near the global minima, however on iteration 51 we see a high fitness value, but after
an extinction is triggered (seen by the suddenly appearance of a cloud of mutated
individuals), the fitness value rapidly decreases.

Figure 26 — 2D projection of a Rosenbrock test optimization presenting the behavior of
the extinction mechanism.
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Source — Author(2022)
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4.0.1.2 Tire fitting results

The GA setup was a bit different for the tire fitting application. The best setup
found is presented in Table 7. More individuals and population were needed to find a
good fit value. The selection for reproduction was also different. The tournament selec-
tion present a more steady and consistent convergence rate, however the truncation
selection presents better final values. the mutation and crossover values were also
adjusted to better fit the other parameters. Another parameter not mentioned before is
the thread number, for the test functions only one thread was used, since the process
of queuing tasks were longer than evaluating the individual, however a sweet spot of 6
threads was found for the tire fitting application.

Table 7 — GA Tire Fitting Setup.

Parameter Value

Population size 300

Maximum number of generations 500

Selection for reproduction type Truncation (selection: 75)
Selection for replacement type Steady-state (selection: 75)
Alpha value (crossover) 2.2

Standard deviation value (mutation) 1.2

Mutation rate 15%

Source — Author (2022)

The force fit used for this work is the Fy pure, because it is the first step in fitting
the MF tire model, leaving all the other forces and moments dependent on the Fy pure
coefficients, thus a model with good Fy pure fitting has a greater possibility of resulting
in a good overall tire model.

The genetic algorithm presented a great overall fitness. Table 8 shows an aver-
age results for 3 different fit procedures, Figure 27 presents the algorithm behavior in
an example optimization and Figure 28 shows the force plot of the model on top of the
collapsed data used for fitting.

The tire fitting plots shown here were done using the OptimumTire software,
since it has a good and convenient plotting tool, however it’s important to remember
that OptimumTire was strictly used only to plot the results, all the calculations, fit and
tire treatment process were done with the software discussed and implemented along
this thesis.

The final model obtained with the genetic algorithm resulted in a great fit consid-
ering the difficulty of data and model nature. In the convergence graph is possible to
see that there was a rapid convergence in the first 100 generations and a much slow
gradient in the other 400. It’s also possible to see the adaptative mutation rate working
on those generations, seen by the fluctuations in average fitness. This means that in
the last 400 generations the algorithm is more dependent on the mutation than the
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Table 8 — GA Tire Fitting average results.

Parameter Value [unit]
Time Elapsed 24 [sec]
Total Evaluation Count 38025
Time per Evaluation 649 [us]
Final Fitness Value 234
Iteration Where Minima was Found -

Final Average Population Fitness 4099

Source — Author (2022)

Figure 27 — GA convergence plot for tire fitting.
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crossover to get better results. In Figure 29 it's possible to see what an optimization
without mutation looks like, the best fitness value is much worse and no fluctuations on
the average fitness occur leading to a premature convergence.

4.0.2 Particle swarm results

The particle swarm test approach was the same of the genetic algorithm, how-
ever much less fiddling with the test setup was needed, since there is much less param-
eters to tune and the results were great in the first couple of tries. Table 9 shows the
tests setups for the standard PSO. The quantum PSO was tested separately but using
the same configurations, the only difference is that, instead of using the parameters
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Figure 28 — GA resulting tire model Fy x SA curve (values hidden due to confidentiality).
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Table 9 — PSO Test Setup.

Parameter Value
Particle count 100
Maximum number of iterations 200
Max speed 5
Particle Inertia 0.7
Social Factor 1.0
Cognitive Factor 1.4

Test function results

Source — Author (2022)

The results presented here are separated into standard particle swarm and
quantum behavior PSO. Table 10 and Table 11 present the average results of 3 runs
for the standard variation on the Rastrigin and Rosenbrock functions respectively. The
same goes to Figure 30 and Figure 31.
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Table 10 — PSO Rastrigin test average results.

Parameter Value [unit]
Time Elapsed 219 [ms]
Total Evaluation Count 20100
Time per Evaluation 10.96 [us]
Final Fitness Value 0

Iteration Where Minima was Found 169

Final Average Population Fitness 3.19

Source — Author (2022)

Table 11 — PSO Rosenbrock test average results.

Parameter Value [unit]
Time Elapsed 222 [ms]
Total Evaluation Count 20100
Time per Evaluation 11.16 [us]
Final Fitness Value 8.9e-22
Iteration Where Minima was Found 196

Final Average Population Fitness 9.33e-08

Source — Author (2022)
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Figure 30 — Convergence plot of PSO’s Rastrigin test function.
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Figure 31 — Convergence plot of PSO’s Rosenbrock test function.
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The standard PSO presented a different result in behavior for both test func-
tions. In the Rastrigin function, the global minima is always found, and the Rosenbrock
optimization has a convergence behavior instead to suddenly finding the global min-
ima.The quantum PSO (QPSO) has a very different behavior like seen in Figure 32 and
Figure 33. Table 12 and Table 13 presents the result of the Rastrigin and Rosenbrock
respectively.

Table 12 — QPSO Rastrigin test average results.

Parameter Value [unit]
Time Elapsed 240 [ms]
Total Evaluation Count 20100
Time per Evaluation 11.8 [us]
Final Fitness Value 0

Iteration Where Minima was Found 34

Final Average Population Fitness 1.10e-10

Source — Author (2022)

Figure 32 — Convergence plot of QPSO’s Rastrigin test function.

—— Fitness std. dev.
—— Average fitness
—— Best fitness

101 4 30

J

-3
10 L o5

10—7 4

N
o

10711 4

=
(9]

10715 4

Fitness value

T
=
o

Fitness Standard Deviation

10719 4

10723 4

10727 4

0 25 50 75 100 125 150 175 200
Generation

Source — Author(2022)

The quantum PSO presented a much better performance for the Rastrigin func-
tion, but was not able to find the minima in the Rosenbrock function. The quantum
behavior allows the algorithm to easily get out of local minima but in contrast, it is much
worse to search low gradient functions.
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Table 13 — QPSO Rosenbrock test average results.

Parameter Value [unit]
Time Elapsed 230 [ms]
Total Evaluation Count 20100
Time per Evaluation 11.06 [us]
Final Fitness Value 8.97e-4
Iteration Where Minima was Found 33

Final Average Population Fitness 9.87e+14

Source — Author (2022)

Figure 33 — Convergence plot of QPSO’s Rosenbrock test function.
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4.0.2.2 Tire fitting results

Just like the genetic algorithm, the particle swarm also needed different setup
configurations for the tire fitting shown in Table 14. However as seen by the convergence
plot (Figure 34 and Figure 35), neither the standard or the quantum PSO, were able to
get a good curve fit, not even to plot the results comparing to the collapsed data.Table 15
presents the average optimization values for both standard and QPSO. The possible
reasons for this poor performance is discussed in the next section.

Table 14 — PSO Tire Fitting Setup.

Parameter Value
Particle count 30
Maximum number of iterations 1500
Max speed 0.5
Particle Inertia 0.9
Social Factor 1.0
Cognitive Factor 1.4

Source — Author (2022)

Figure 34 — Convergence plot of PSO tire fitting.
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Figure 35 — Convergence plot of QPSO tire fitting.
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Table 15 — Standard and QPSO tire fitting results.
Parameter PSO Value [unit] QPSO Value [unit]
Time Elapsed 23 [sec] 22 [sec]
Total Evaluation Count 90000 90000
Time per Evaluation 256 [us] 244 [us]
Final Fitness Value 6940 6880
Iteration Where Minima was Found 1000 200
Final Average Population Fitness 7200 54000

Source — Author (2022)
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4.0.3 Comparison between algorithms

The following section is intended to comment on the comparison of both algo-
rithms results and is divided by test function and tire fitting application.

4.0.3.1 Test functions comparison

Compared to the genetic algorithm, the PSO has a better performance overall
when finding the global minima of both functions. Although it takes more time to find the
minima in the Rastrigin function, for the Rosenbrock, the values are much better than
the GA. Even if the global minima is not found in the 200 test iterations, when allowing
more time to search the algorithm is capable of finding it, unlike the GA that very rarely
finds the global minima even with more generations, since it's more dependent of it's
random nature.

However the GA is much faster than the PSO due to needing only half the
evaluation count to get similar behavior and even has faster evaluation calculation. But
at the same time, it's much more dependent of the multiple parameters values and
implementations, so it is required a skilled optimization engineer to adapt the algorithm
to different problems. Table 16 and Table 17 shows the compiled results for all test
cases.

Table 16 — Test comparison for Rastrigin function.

Parameter PSO Value [unit] QPSO Value [unit] GA Value [unit]
Time Elapsed 219 [ms] 240 [ms] 66[ms]

Total Evaluation Count 20100 20100 10150

Time per Evaluation 10.96 [us] 11.8[us] 6.5 [us]

Final Fitness Value 0 0 0

Iteration Where Minima was Found 169 34 64

Final Average Population Fitness 3.19 1.1e-10 0.81

Source — Author (2022)

Table 17 — Test comparison for Rosenbrock function.

Parameter PSO Value [unit] QPSO Value [unit] GA Value [unit]
Time Elapsed 222 [ms] 230 [ms] 71.6 [ms]

Total Evaluation Count 20100 20100 10150

Time per Evaluation 11.16 [us] 11.06[us] 6.96 [us]

Final Fitness Value 8.9e-22 8.97e-4 3.35e-10
Iteration Where Minima was Found 196 33 194

Final Average Population Fitness 9.33e-8 9.87e+14 0.058

Source — Author (2022)
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4.0.3.2 Tire fitting comparison

For the tire model fitting application, there is no doubt that the genetic algorithm
performed better than the PSO, with it not even being able to get a usable result.
The PSO algorithms suffers for being heavily stuck on a local minima, there is no
implemented configurations that allows it to escape. The probable main factor for this is
the lack of a "turbulence" mechanism, like the mutation for the genetic algorithm. This
is visible when looking to Figure 29, where the optimization process of the GA without
mutation looks very similar to the PSO, with almost the same results.

The quantum PSO, however, has in it’s nature a way of getting out local minima
as seen in the test functions and in it’s fluctuations of the particle’s average fitness
throughout the optimization process (see Figure 35). But the bad results may indicate
that this mechanism is not suited for the tire fitting problem. So by comparing the tire
fitting and test functions results for all the algorithms, a possible approximate "surface"
format can be visualized. The GA and QPSO convergence plot and the overall algo-
rithm behavior indicates that the surface has multiple local minima, like the Rastrigin
function, but the bad results for the QPSO and the slow and highly mutation dependent
convergence for the GA, also indicates that there is a low gradient slope for the global
minima, resulting in a mix between the Rosenbrock and Rastrigin functions behavior.
With this in mind, it’s clear that an algorithm that presents good performance on both
test functions and a good adaptability like the GA, would result in a great performance
for the tire model fitting task.

A possible way to get better results for tire fitting with the PSO is by implementing
a "turbulence" mechanism, which gives the particles a way to get out of a local minima.
A potential approach would be by modifying the speed behavior of the particles. Liu
and Abraham (2005) proposes a fuzzy adaptive turbulent particle swarm optimization.
It is based on a minimal velocity threshold that is tuned adaptively with a fuzzy logic
controller. The particle’s velocity are kept under a minimal value that changes according
to the need of a broader exploration of the solution space. Liu and Abraham (2005)
also explains that the bigger the dimension of the optimization problem is, the poorest
is the performance of the standard PSO, which comes into agreement with this works
results, since, although the test functions were kept with 3 dimensions, the tire fitting
problem dimension is related to how many coefficients are being optimized. For the Fy
pure case there are 26 coefficients with gives the optimization problem 26 dimensions.
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Table 18 — Comparison for tire model fitting.

Parameter PSO Value [unit] QPSO Value [unit] GA Value [unit]
Time Elapsed 23 [sec] 22 [sec] 24 [sec]

Total Evaluation Count 90000 90000 38025

Time per Evaluation 256 [us] 244 [us] 649 [us]

Final Fitness Value 6940 6880 234

Iteration Where Minima was Found 1000 200 -

Final Average Population Fitness 7200 54000 4099

Source — Author (2022)
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5 CONCLUSIONS

This work presented very efficient and flexible implementations for a genetic and
particle swarm optimization algorithms. Both were compared with artificial landscapes
and in the tire model fitting application, where a Magic Formula 6.1 pure lateral force
model was fitted. For the test functions, the PSO presented a great performance, being
easier to implement and resulting in good convergence values. However, due to the high
complexity and high dimension number of the tire fitting problem, it was not able to result
in a usable model. In contrast, the GA presented a good but slightly worse performance
than the PSO on the artificial landscape tests, yet, exhibited great capability when fitting
the Magic Formula model. A possible upgrade for the particle swarm algorithm was
purposed, where a minimum velocity threshold is implemented, giving the algorithm
capable tools for higher dimensional optimization problems.

The speed of both algorithms are similar and very fast overall, taking advantage
of the optimizations granted by the C++ language. The particle swarm algorithm has
less time per evaluation than the GA, however it also takes double the amount of
evaluations to reach the same result. The complexity of the individuals has a big impact
on the optimization time. For the test functions, an individual consists in a 3D point,
but for the tire modeling application, each individual carries the configuration of a tire
model. For the GA, this makes the process of crossover, mutation and selection much
more complex and time demanding, highlighting the advantage in simplicity of the PSO
algorithm.

The results presented here allow us to understand why the genetic algorithm
is widely used in the tire modeling industry, given it's adaptability to multiple kinds of
problems and great overall performance to complex optimization problems. A possible
expansion for this work would include different implementations of the particle swarm
optimization that has numerous variations to help it adapt to different kind of prob-
lems. Also, other types of algorithms could be implemented to be tested for the current
application. A good contender would be the trust region algorithm or the ant colony
optimization. Another focus could be given if a usable result with the modified particle
swarm is achieved, where different tire model fitting, beyond the pure lateral force could
be applied, presenting a different optimization problem like the combined self aligning
torque, loaded radius or effective rolling radius optimizations.
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