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ABSTRACT

This work intended to enhance the resolution of Spatial Transcriptomics datasets by
assigning the cell type to its location in the tissue. To perform this task, we focused on
segmenting the cells, extracting their morphological features, and creating a classifier
from them. The segmentation used the Mesmer algorithm as its core function and per-
formed well in both 4’,6-diamidino-2-phenylindole (DAPI) and haematoxylin and eosin
(HE) images. The morphological information was extracted using the Fiji software, but
due to its characteristics, it could not be integrated into our R package, hindering the
development of the classification task. The quality of the obtained features from the cell
masks and the lack of other packages to perform the task showed the opportunity to
develop new projects in the area. The quality of the segmentation demonstrates the
robustness of the method and indicates that it could also be applied to other projects.
Therefore, it was incorporated into the Giotto package and made open source. Addi-
tionally, the results presented here give clear guidelines to continue it in the future.

Keywords: Spatially resolved transcriptomics. 10X Visium. Nuclei segmentation.



RESUMO

Este trabalho teve como objetivo melhorar a resolução de dados de Spatial Transcrip-
tomics, atribuindo o tipo de célula à sua localização no tecido biológico. Para realizar
essa tarefa, focamos em segmentar as células, extrair suas características morfológi-
cas e criar um classificador a partir delas. A segmentação usou o algoritmo Mesmer
como sua função principal e teve um bom desempenho em imagens DAPI e HE. A
informação morfológica foi extraída no software Fiji, mas devido às suas características,
não pôde ser integrada ao nosso pacote R, dificultando o desenvolvimento da tarefa
de classificação. A qualidade das características obtidas das máscaras celulares e a
falta de outros pacotes para realizar a tarefa mostraram a oportunidade de desenvolver
novos projetos na área. A qualidade da segmentação demonstra a robustez do método
e indica que também pode ser aplicado a outros projetos. Por isso, foi incorporado ao
pacote Giotto e tornado open source. Além disso, os resultados apresentados aqui
fornecem diretrizes claras para a continuação da tarefa no futuro.

Palavra-chave: Transcriptoma espacialmente resolvido. 10X Visium. Segmentação de
núcleos.
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1 INTRODUCTION

The transcriptome, the set of RNA molecules transcribed from the DNA se-

quence of our cells, provides a blueprint of all genes expressed by the cells in our body.

Different cell types may express a different set of genes, which are related to cell type-

specific biological functions. Therefore, the transcriptome is a molecular measure of

cell identity, and understanding transcriptomic differences between cell types in health

and disease is important to understand tissue physiology.

In 2013, the journal Nature Methods defined the technologies that quantify the

transcriptome of individual cells - Single-cell RNA sequencing (scRNA-seq) - as the

method of the year. However, due to the tissue dissociation process required to gen-

erate scRNA-seq data, the spatial localization of cells in the tissue is lost. Importantly,

depending on the location of a particular cell type in the tissue, cellular behavior might

be distinct. Thus, preserving the spatial information of cell types is crucial to under-

standing tissue architecture. Later, in 2020, the same journal stated spatially resolved

transcriptomics - the ability to quantify the transcriptome while preserving the spatial lo-

cation of the cells - as the method of the year. By integrating the tissue image based on

histology and the spatial location of gene expression, analysis of spatial transcriptomics

data is quite challenging and new algorithms are required. Interestingly, this technology

provides new avenues to develop computer vision algorithms to interpret tissue images

and their gene expression profiles (matrices that contain genes as rows and cells as

columns), providing an unprecedented resolution to understand tissue biology.

The advance of technologies to collect transcriptomic information with spatial res-

olution allowed scientists to comprehend how gene expression varies spatially. These

methods allowed the identification of new cell types or cell states within the tissue. More-

over, they brought new insights about the architecture of the tumor-microenvironment

interface, how the distance between cells affects their communication, and also about

tissue development. These techniques can be divided into two major categories de-

pending on how they collect the data: barcode-based methods and image-based ones.

They are still not perfect and need to balance resolution and throughput. The ones that

capture subcellular resolution are restricted to measuring only hundreds of genes, such

as the MERFISH provided by the Vizgen company, while the ones that count thousands

of genes capture the information of multiple cells at the same time, such as the ST

provided by the Visium 10X company.

The barcoded method used in this study is the ST one. Figure 1 presents an

illustration of how the barcodes of ST are placed in the tissue. The transcriptomic infor-

mation of each spot is given along with the HE image. The number of cells (represented

by their nuclei in purple) in each circle can vary depending on the tissue, but in general,

it ranges from 5 to 10. Therefore, instead of having a matrix of genes per cell, it provides
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only a matrix of genes per spot, which limits the understanding of tissue diversity.

Figure 1 ± Illustration of the spots (circles) in ST.

Source: Personal archive.

Today, there are tools to calculate the percentage of cell types in each ST spot

(Figure 2). Yet, they do not assign the type to the cell location and only present a

graphical representation of the deconvolution. A method with high throughput and

resolution would allow a deeper understanding of tissue diversity, providing new insights

into how cells are affected by their location.



Chapter 1. Introduction 17

Figure 2 ± Representation of cell-type deconvolution of ST.

Source: Personal archive.

Therefore, the task intended in this project was to develop an algorithm that will

overcome the multi-cellular resolution limitation of the ST technology by assigning cell

types to the specific cell location.

As there is no ground truth for the cell types of the ST dataset, we applied

this approach to another technology. The MERFISH data presents the expression and

spatial information of individual cells along with a DAPI stained image of the nuclei

(Figure 3). Therefore, it will be used to create a pseudo-ST dataset which will be used

to validate our approach.
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Figure 3 ± Illustration of the transcripts in each individual cell as obtained from the
MERFISH data.

Source: Vizgen.

1.1 OBJECTIVES

The overall objective was to develop an algorithm based on computer vision and

machine learning to enhance the resolution of Spatial Transcriptomics by assigning the

cell type to the cell location using morphology analysis of the segmented cells in the

tissue. However, as there is no labeled data for the ST dataset, we focused on testing

this approach using pseudo-ST data created from the MERFISH dataset.

Therefore, the first step is to create the pseudo-ST dataset. Figure 4 illustrates

this process.
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Figure 4 ± Illustration of the pseudo-ST.

Source: Personal archive.

The second step is to segment cells in the associated tissue image. Figure 5

represents the ST spot before and after the cell segmentation, where the cells are the

black dashed circles.

Figure 5 ± Segmentation of the cells in the ST spot.

Source: Personal archive.
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The third step is to assign the cell type obtained in the deconvolution to the cell

location by classifying the morphology information obtained in the segmentation (Figure

6). It is worth mentioning that we chose to use morphological information because we

aimed to understand which features are correlated with specific cell types. Therefore,

we avoid deep learning methods due to their poor interpretability.

Figure 6 ± Assignment of the cell type to its location.

Source: Personal archive.

Finally, after validating the approach, the last step is to extend it to the original

ST dataset. Therefore, except for the creation of pseudo-ST, all the other steps would

be repeated for the HE image and the expression matrix for the ST spots.
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1.2 LITERATURE REVIEW

The methods to analyze spatial transcriptomics data are divided into five cat-

egories: spatial clustering, identification of spatially variable genes, cell-type decon-

volution in spatial transcriptomics spots, enhancement of gene expression resolution,

and identification of cellular interactions. The methods of spatial clustering groups sim-

ilar cells or spots by their spatial and transcriptomic information. The identification of

spatially variable genes aims to detect spatial patterns of gene expression. The cell-

type deconvolution aims to calculate the percentage of cell types in each spot. The

enhancement of gene resolution aims to reduce the size of the spots and predict the

gene expression in each of them. The identification of cellular interactions intends to

incorporate spatial information into the cellular communication analysis. Most of the

tools available today lack to integrate image analysis with the spatial and transcriptomic

information (HU et al., 2021).

This work will incorporate tools of cell-type deconvolution and image analysis to

enhance the resolution of spatially resolved transcriptomics. Different from the existing

methods, we will not focus on gene expression. Instead, we will aim to perform this step

by working with the cell types and the segmented cells. To the best of our knowledge,

there is not a work in literature that performs this task. Therefore, the accomplishment

of this project will result in a novel approach to investigating cellular diversity.

1.3 DOCUMENT STRUCTURE

Chapter 2 describes the institutions in which the FWP was performed. This

project was a collaboration between the Lummertz da Rocha Lab (UFSC) and the

Dries Lab (Boston University). Therefore, this chapter describes both laboratories, their

process, and how this work contributed to each of them. In Chapter 3, we describe the

theoretical foundation that guided this thesis. We provide information on the data and

also the tools used. Chapter 4 explains the general requisites, functional or not, con-

sidered in the project. It includes the major goal and the necessary steps to achieve it.

Chapter 5 details the final product of the project. It explains how the methods described

in chapter 3 were put together to achieve the desired result. It also explains which

decisions were made to keep the development aligned with its requisites and the extent

to which they were satisfied. In Chapter 6, we analyze the results, the advantages, and

disadvantages of the algorithm, and its impacts on the field of spatial omics. Finally,

chapter 7 concludes the work by summarizing everything that was mentioned in the

previous chapters, identifying limitations in the project, and indicating future works.



22

2 LABORATORIES

In this chapter, section 2.1 explains the context of the collaboration between the

laboratories. Then, section 2.2 describes the Lummertz da Rocha Lab, and section 2.3

the Dries Lab.

2.1 COLLABORATION BETWEEN LABORATORIES

The present work was conducted as a collaboration between the Lummertz da

Rocha laboratory, part of the Department of Microbiology, Immunology, and Parasitol-

ogy at the Federal University of Santa Catarina, Brasil, and the Dries Lab located in the

Boston University Medical Campus and part of the Department of Hematology and Med-

ical Oncology and Computational Biomedicine. Therefore, the project took advantage

of both laboratories in combining gene expression with image analysis. This chapter

describes both groups and how the project contributed to each of them.

2.2 LUMMERTZ DA ROCHA LABORATORY

By creating and implementing systems biology methodologies, the Lummertz

da Rocha group hopes to better understand the cellular and molecular mechanisms

underlying cell phenotypes in health and illness. This knowledge is used to create

novel cell types, unravel phenotypic dysregulation in illness, and find new therapeutic

possibilities.

Tissue ecosystems, stem cell engineering, systems biology, and machine learn-

ing are the primary areas of the organization. The first attempts to learn how tissue

ecosystems are influenced during normal homeostasis and how they change during

pathogenic processes like cancer and viral disorders. To put it another way, the goal

is to analyze the cell-type makeup of tissues in different disease states and identify

plausible reasons that cause the shift. The second goal is to learn how the immune

system develops and use that information to create clinically relevant cell types for cell

therapy. It investigates how stem cells differentiate in order to mimic this behavior in a

lab setting. The third, which includes this project, is concerned with developing com-

puter algorithms to assess biological data in order to develop data-driven hypotheses

that will direct our experimental study. It tries to explain how cells communicate with

one another and how their transition dynamics work.

The CellRouter algorithm was created by the team to analyze single-cell se-

quencing data. It’s a complex single-cell analysis platform with data processing and

visualization functions implemented in R. Complex single-cell trajectories are a specialty

of the program. It was tested using data from single-cell RNA sequencing (ROCHA et

al., 2018). The team built additional functions to analyze this data in response to the in-
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troduction of new sequencing methods, such as Spatial Transcriptomics (STÅHL et al.,

2016) and integrated them into the current algorithm.

Furthermore, the team just released CellComm, a platform for studying inter-

cellular communication and how it influences cell differentiation. The aorta-gonad-

mesonephros (AGM) influenced hematopoietic stem cell emergence in this study, which

was also corroborated using other scRNA-seq data. This tool included the algorithms

for ST analysis to incorporate the distance between cells as a factor in their communi-

cation.

The work developed previously in Rafael Peixoto’s Mandatory Internship at the

laboratory confirmed the importance of understanding the cell location in systems

biology. Yet, it also showed how the low resolution of the ST can skew the results.

Therefore, this work would contribute to the Lummertz da Rocha Laboratory by unveiling

the tissue morphology and improving the previous results in cellular communication.

2.3 DRIES LABORATORY

The group focus on developing tools to take advantage of the latest advances in

spatial and functional genomics, imaging, and tissue modeling. These algorithms are

applied to bring new insights into cancer biology, epigenetics, and transcription. In both

health and disease, the lab focus on learning more about the transcriptional principles

of cellular plasticity and the sources of diversity in multicellular tissues. It aims to better

understand and intervene in processes like tumor growth and treatment resistance by

producing experimental data and employing computational and statistical tools. The

group is particularly interested in enhancing breast cancer detection and treatment

options, and it works with collaborators in the Boston Medical Center to remove racial

disparities in cancer care and research.

The laboratory developed Giotto: a toolbox for integrative analysis and visual-

ization of spatial expression data. This package is divided into two parts: analysis and

visualization. The analysis module performs end-to-end analysis by utilizing a variety of

algorithms for determining tissue composition, spatial expression patterns, and cellular

interactions. Additionally, data from scRNA-seq can be used to analyze spatial cell-type

enrichment. Users can visualize analysis outputs and imaging features interactively

using the visualization module (DRIES et al., 2021). Additionally, the team is constantly

updating the software to include new methods and other types of spatial omics data.

One of the algorithms incorporated in Giotto is the SpatialDWLS. This method

analyses the gene expression to estimate the percentages of cell types in each spot

(DONG; YUAN, 2021). The cell-type deconvolution tool allows a deeper comprehension

of cell diversity, but it does not indicate the specific location of the cell types. Therefore,

the current work aims to address this issue by assigning the deconvolved cell types to

their specific location.
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3 THEORY

In this chapter, section 3.1 describes the data used in this project. Then, section

3.2 explains the methods used in the image segmentation, section 3.3 the tools for

extracting morphological information, and section 3.4 the classification.

3.1 DATA

The SRT technologies are divided into image-based in situ sequencing and

spatial barcoding, followed by next-generation sequencing (NGS). Subsection 3.1.1

explains the ST technology, which is based on barcoding, while subsection 3.1.2 ex-

plains the MERFISH, which is based on imaging. Finally, subsection 3.1.3 explains the

pseudo-ST data.

3.1.1 Spatial Transcriptomics

In this work, we focused on the spatial barcoding approach called Spatial Tran-

scriptomics (STÅHL et al., 2016). It works by placing identifiers at specified locations in

the tissue, indexing each of them, and then using NGS to quantify the genes present in

each region (Figure 7). It can be utilized on formalin-fixed, paraffin-embedded (FFPE)

tissues as well as samples stained with HE.

Figure 7 ± Barcoding process from ST technology.

Source: Adapted from (STÅHL et al., 2016)

The ST method, first published in 2016, used NGS to quantify the transcripts.

This feature allowed the reading of the complete transcriptomic information. However,

due to the limitation generated in the barcoded process, the spots may contain more
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than one cell, resulting in a multicellular resolution (ASP; BERGENSTRÅHLE; LUNDE-

BERG, 2020). The first version of the ST technology had spots of 100µm in diameter

that were 200 micrometers apart from each other. The 10X Genomics corporation re-

cently acquired the method (MARX, 2021), improved it, and created the 10X Visium.

This second version made it possible to quantify gene expression within spots of 55 mi-

crometers in diameter that are 100 micrometers apart from each other (ASP; BERGEN-

STRÅHLE; LUNDEBERG, 2020). Figure 2 presents how the barcodes are spaced

in each version of the technology. Today, this technology is one of the most popular

methods for SRT due to its accessibility and advantages regarding high throughput.

Figure 8 ± Distribution of spots in ST.

Source: Adapted from (ASP; BERGENSTRÅHLE; LUNDEBERG, 2020)

In this project, the image provided for the ST dataset was HE stained. This tech-

nique provides an RGB image in which the cell nuclei are colored as blue-purple, the

extracellular matrix and cytoplasm are pink, the air spaces are white, and the other com-

ponents may be a combination of these colors (CHAN, 2014). Therefore, it is possible

to obtain information not only about the nuclei but also of the components surrounding

them. This is the most used staining method for histology; it is often called the gold

standard (ROSAI, 2007). The HE image from the data collected in the laboratory had

1.8 GB in size, 30 bits per pixel, 21015 pixels in width, and 22832 pixels in height.

3.1.2 MERFISH

The general idea behind the FISH methods is to bind fluorescent particles to

selected transcripts and then photograph this tissue to locate them using image analysis

(LANGER-SAFER; LEVINE; WARD, 1982). Therefore, it is possible to obtain the exact

location of the gene. However, since the transcripts are close to each other, it is not

possible to detect multiple genes at once because the light emitted from one type would

obfuscate the one emitted from others.

To overcome the limitations of the Fluorescence In Situ Hybridization (FISH)

methods, other techniques have been developed. In this project, we used the MERFISH
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method, acquired by the Vizgen company. The difference between this tool and the

original FISH technique is that the MERFISH captures multiple hybridization images and

then combines them using an error-correction technique (Figure 9). Therefore, it allows

near-genome-wide genome profiling at subcellular resolution (MOFFITT; ZHUANG,

2016).

Figure 9 ± Illustration of the transcripts in each individual cell as obtained from the
MERFISH data.

Source: Vizgen

Differently from the ST, the MERFISH method does not provide the HE im-

age of the tissue. Instead, it offers a DAPI stained image. Since it binds strongly to

adenine±thymine-rich regions in DNA, it is often used to stain nuclear DNA (KAPUS-

CINSKI, 1995). Therefore, it does not have three color channels such as the RGB

image, but just one which represents the nuclei. The DAPI image provided by Vizgen

had 10.9 GB in size, and 89085x61310. Therefore, it was not possible to load the image

using regular software as it would overflow the computer memory.

Additionally, the MERFISH data provides the polygon files for the cells in the

image. These objects indicate the border of the cells, but instead of using a regular

image mask, they present the polygon that approximates the cell shape.

3.1.3 Pseudo-ST

In this project, we aim to improve the resolution of ST datasets by segmenting

the cells in the tissue and classifying their cell types using information obtained from cell-

type deconvolution. However, there is no labeled data to evaluate our model. Therefore,

we created a pseudo-ST dataset using the MERFISH DATA.

The MERFISH presents the matrix of genes per cell. However, if we used this

information to generate the expression per spot, it would not look like the ST dataset.

There are cells that can reside in the border of the spot, so a portion of its transcripts
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are inside the spot and the rest is not. The ST method does not focus on extracting the

information from the cell but from the spot. Therefore, it counts the genes regardless of

which cell it is.

To overcome this issue, we used the matrix of gene and position to create the

pseudo-ST. The first step was to generate a list with the centroid for each spot. Then,

by iterating over the matrix, we verified which transcripts were within the circumference

of the spot (55 µm) and added them to the expression matrix. This process is not

computationally efficient, as it uses for loops, however, it was used because the creation

of the pseudo-ST data would only be performed once.

3.2 IMAGE SEGMENTATION

The second step in this project was to segment the tissue image. In this section,

subsection 3.2.1 describes the segmentation of the nuclei in the DAPI image, while

subsection 3.2.2 explains the procedures for the HE image.

Since the image file was too large to fit in a regular computer, before actually

segmenting the cells or doing any processing, we sliced it into tiles. Therefore, each tile

would be analyzed individually and the results would be merged together taking into

account the coordinates of the tile regarding the original image. To perform this task,

we used the Terra package (HIJMANS, 2022) because it allowed cropping the image

without loading it into memory.

3.2.1 DAPI Image

The DAPI image provided by the MERFISH dataset comes with polygon files

representing each cell. Therefore, it could be used to train a supervised algorithm of

image segmentation. However, as we aim to extend this project to the ST data, which

presents an unlabeled image, we focused on unsupervised algorithms to perform the

segmentation task.

In this subsection, item 3.2.1.1 explains the adjustments made in the image,

while the other sections explain the segmentation methods that were used.

3.2.1.1 Image Preprocessing

Before implementing the segmentation methods, we opted to process the image

to highlight the nuclei characteristics. We implemented contrast stretching (normaliza-

tion), which attempts to improve the contrast by stretching the range of intensity values.

We also applied histogram equalization, which adjusts the intensities by spreading out

the most intense pixels and making the histogram more evenly distributed. Last, we

tested the adaptive histogram equalization technique, which follows the same principles

of histogram equalization but creates different histograms for the regions of the image.
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3.2.1.2 Global Thresholding

Since the DAPI image has only one color channel, the simplest method to use

to create masks is thresholding. This technique works by comparing each pixel of a

gray image to a selected value (threshold) and then substituting it for black or white,

depending on whether the condition was satisfied. The idea behind thresholding is quite

simple, the question that comes with is the value to choose as the threshold.

One strategy to pick the best value for the threshold is guessing. In this case, the

user can try different values and analyze which provides the best results. The problem

with this strategy is that the threshold that works for an image may not work well for

others. Since we had to crop the original image into tiles, we need to find the value that

works for all tiles, not a single one. Another reason is that there is no standard value

for the threshold. So, whenever the user analyzed a different image, it would need to

guess the value again.

Another alternative for selecting the threshold value is to calculate the mean

of the pixel values. This strategy is advantageous because it is simple and can be

automatized. However, it may not lead to the best results

This method analyses the image histogram, iterating through all the possible

threshold values, and selecting the one that minimizes the intra-class variance. The

advantage of this method is that it automatically calculates the threshold and produces

good results if the histogram has a well-defined bimodal distribution (deep and sharp

valley between the two peaks). The disadvantage is that it may not work well outside

these conditions.

3.2.1.3 Local Thresholding

The previous methods calculated the threshold value analyzing the whole image.

However, from the tiles we analyzed, we realized that there is a significant difference in

cell density between regions of the image. Therefore, we also considered methods that

only analyze a region of the image when calculating the threshold, the local thresholding

methods.

Using the Fiji Local Auto Threshold tool, we tested the nine methods available in

the software: Bernsen, Contrast, Mean, Median, MidGrey, Niblack, Otsu, Phansalkar,

and Sauvola. This tool also allowed adjusting the radius of the region used to calculate

the local threshold (SCHINDELIN et al., 2012).

3.2.1.4 Morphological Transformations

The technique used here combined different morphological transformations.

First, we defined a kernel to apply to the image. Then, we used the morphological

gradient operation (the difference between dilation and erosion) to calculate the bor-
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ders of the cells. With the borders, we applied the closing operation to close the holes

and the opening to remove the noise.

3.2.1.5 Blob Detection

A blob can be considered an object that differs in its characteristics from the back-

ground. Since the DAPI image presents the nuclei as bright spots in a black background,

this technique can be used to detect the nuclei as blobs. The simpleBlobDetector func-

tion available in the OpenCV package allows the detection of blobs using filters such

as area, color, circularity, convexity, and inertia ratio.

3.2.1.6 KMeans

The K-means algorithm is usually used for clustering, but it can also be used for

segmentation. In this case, the method works by clustering the pixels by their intensity.

Then, one of the classes can be used as the segmentation results. Similar to the K-

means algorithm used for data clustering, the one for segmentation also requires the

value of k to be specified by the user.

3.2.1.7 Cellpose

As there was no labeled data, we did not train our own supervised algorithm.

However, we tested some pre-trained models. Cellpose is a generalist algorithm for

cellular segmentation based on deep learning. It was trained on a new dataset of highly

varied images of cells that contains more than 70,000 labeled data (STRINGER et al.,

2021). The model combines a neural network with features extracted from the image

(Figure 10).
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Figure 10 ± Architecture of the Cellpose algorithm.

Source: Adapted from (STRINGER et al., 2021)

3.2.1.8 Stardist

Another pre-trained model tested on this project was StarDist. This algorithm

proposes detecting the cells using star-convex polygons (Figure 11). It aims to over-

come the limitations of previous methods that used bounding boxes to represent the

cells. Its architecture is based on a convolutional neural network that predicts a polygon

for the cell at the pixel position for every pixel on the image (SCHMIDT et al., 2018).
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Figure 11 ± Implementation of StarDist.

Source: Adapted from (SCHMIDT et al., 2018)

3.2.1.9 Mesmer

The Mesmer algorithm is a deep-learning-enabled segmentation model that was

trained on the TissueNet dataset, which contains more than one million labeled data and

uses a human-in-the-loop approach. It allows nuclear and whole-cell segmentation from

different tissue images (GREENWALD et al., 2021). Figure 12 presents the architecture

of the algorithm and a comparison with other models.
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Figure 12 ± Mesmer architecture and benchmark.

Source: Adapted from (GREENWALD et al., 2021)

3.2.2 HE Image

We focused on extending the methods applied to the DAPI image to the HE one.

Since the HE provides RGB color channels, we adapted the image by extracting the

nuclei channel and applying the segmentation algorithms previously described. Some

of the pre-trained algorithms did not need this adaptation as they were also trained on

HE images.

3.3 MORPHOLOGY INFORMATION

After segmenting the cells, the next step is to extract morphological information

from them. Section 3.3.1 explains the tools studied for extracting information from the

masks and section 3.3.2 from the polygons generated from the masks.

3.3.1 Masks

In this subsection, we investigated three different tools for extracting morphology

information.
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3.3.1.1 Fiji

The Fiji software offers a tool called Particle Analysis. This method takes as

input the binary mask and returns a matrix with the features extracted from the parti-

cles (SCHINDELIN et al., 2012). The measurements for each particle available in the

platform are:

• Area

• Mean gray value

• Standard deviation of gray values

• Modal gray value

• Minimum and maximum gray values

• Centroid

• Center of mass (brightness)

• Perimeter

• Bounding rectangle

• Circularity

• Aspect ratio

• Round (roundness)

• Solidity

• Feret’s diameter (maximum caliper)

• Integrated density

• Median value of the pixels

• Skewness

• Kurtosis

• Area fraction

• Stack position
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3.3.1.2 Vampire

The Visually Aided Morpho-Phenotyping Image Recognition (VAMPIRE) tool en-

ables the profiling and classification of cells obtained from post-segmentation datasets.

It bases the calculation of features on equidistant points along contours. The method

clusters the cells into different shape modes (PHILLIP et al., 2021). Figure (fig:3_vampire)

presents the algorithm’s pipeline.

Figure 13 ± Steps in the Vampire pipeline.

Source: Adapted from (PHILLIP et al., 2021)
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3.3.1.3 WND-CHARM

WND-CHARM is an open-source tool for biological-image analysis. It was pub-

lished in 2008 and has over 3000 methods for feature extraction (ORLOV et al., 2008),

including:

• Radon transform features

• Chebyshev Statistics

• Gabor Filters

• Multi-scale Histograms

• First 4 Moments, of mean, standard deviation, skewness, and kurtosis

• Tamura texture features of contrast, directionality, and coarseness

• Edge Statistics features computed on the Prewitt gradient

• Object Statistics

• Zernike features

• Haralick features

• Chebyshev-Fourier features

3.3.2 Polygons

The Giotto package from our laboratory implements a method to convert masks

to polygons. We searched for tools to extract information from the polygons instead

of the masks. We investigated a method that uses contour diffusion to measure the

similarity of polygons (FAN; ZHAO; LI, 2021). This technique converts the polygon into

a grid and applies convolutional operations to extract their characteristics (Figure 14).
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Figure 14 ± Overview of the method Towards Measuring Shape Similarity of Polygons
Based on Multiscale Features and Grid Context Descriptors.

Source: Adapted from (FAN; ZHAO; LI, 2021)

3.4 CLASSIFICATION

Before classifying the cells, we implemented techniques to reduce the dimension

of the features and visualize the cells in two dimensions. The first method used was

the Principal Component Analysis (PCA) which projects the multi-dimensional data into

new axes in order to maximize the variance. We also tried the t-distributed stochastic

neighbor embedding (t-SNE) which works by converting the similarity of points into

probabilities and then minimizes the Kullback-Leibler divergence of the low and high-

dimensional space. As there were no visible clusters in the reduced dimension space,

we realized that the features used were not informative and did not proceed with the

classification.
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4 REQUIREMENTS

This project intended to deliver a tool to enhance the resolution of spatial tran-

scriptomic datasets by assigning the cell type obtained in the cell-type deconvolution to

the specific cell location. As the final project, we aimed for an algorithm that receives

the HE image, the spot locations, and the percentage of cell types in each spot; then

it returns the segmented cells and their cell types. Since the ST data does not provide

the ground truth for the cell types, we focused on applying the methodology to the

pseudo-ST data created from the MERFISH data to later extend it to the original ST

dataset. The overall objective was divided into smaller items that could be performed

independently but needed to work together to reach the final goal.

The first step is to create the pseudo-ST data. The original ST dataset is com-

posed of the image, the gene expression matrix, and the spot locations. As there is no

feasible way to convert a DAPI image to an HE image, this step was discarded. The

gene expression matrix should include all transcripts in the spot, regardless of whether

their cell is complete inside or not. Additionally, the spot locations and sizes should

match the ones generated by the 10X Visium technology (second version of the ST).

The second step is to segment the cells (or nuclei). Since the data presents a

large image, the basic requirement was to process it without overflowing the memory.

Then, we aimed for segmenting the cells, even those that were close to each other,

and to remove the noise. Another aspect considered was the time to process the files

and ease of run. Moreover, we looked for an algorithm that could be extended from the

DAPI image to the HE one with few adjustments.

The third step was to extract the morphological information from the segmented

cells. In this case, there is no specification of what feature should be obtained. So we

focused on calculating a large number of them to later use the results to understand the

characteristics that matter the most in cell-type classification. Regarding the extraction,

we focused on values that were fast to calculate and easy to interpret.

After extracting the morphological information, we focused on the classification.

The algorithm should produce good results (accuracy, F1-score. . . ) when trained on

the labeled data provided by the spots of pure cell type. Additionally, it needed to

be interpretable in order to investigate the features that have a higher impact on the

classification. It would also be useful to have a model that returns the probabilities for

each cell instead of a hard answer.

With the classification ready, the following step would be to convert the results

from a table to a clear visualization. Therefore, it is necessary to color the segmented

cells based on their cell type and provide this information to the user. It would also be

useful to highlight the border of the spots to present that some cells are on the borders.

Finally, after creating all these steps for the pseudo-ST, they should be extended
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Table 1 ± Functional Requirement 1.

Name: F1 pseudo-ST data Hidden
Description: incorporate spatial data into the current package.
Non-functional requirements
Name Restriction Specifications
NF1.1 Expres-
sion matrix

Include all transcripts in the spot,
regardless of the cell they belong
to.

Performance; Permanent.

NF1.2 Spot
shape

The size of the spots and the dis-
tance between them should be the
same as those from the 10X Vi-
sium technology.

Performance; Desirable;
Permanent.

Source: personal archive.

Table 2 ± Functional Requirement 2.

Name: F2 segmentation Hidden
Description: Segment the nuclei in the DAPI image.
Non-functional requirements
Name Restriction Specifications
NF2.1 Memory Process the image without over-

flowing the memory.
Performance; Permanent

NF2.2 Density Segment the cells regardless of
the density of the region.

Performance; Permanent

NF2.3 Noise Remove the noise. Performance; Permanent
NF2.4 Speed Be fast. Performance; Desirable;

Permanent.
NF2.5 General-
ization

Be easily extendable to segment
the HE image.

Performance; Desirable;
Permanent.

Source: personal archive.

to the original dataset. As there is no way to evaluate the method on the ST dataset,

the previous steps should be verified individually, especially the image segmentation

one.

Tables 1, 2, 3, 4, 5, and 6 present an overview of all requirements. They were

classified into two categories: functional items, which represented a task that needed

to be completed, and non-functional items, which represented qualifications for the

functional ones. They were designed to ensure that all of the procedures could work

together to confirm that the biological results were usable and meaningful. Furthermore,

they are utilized to determine whether the project’s initial goals were met.
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Table 3 ± Functional Requirement 3.

Name: F3 Morphological information Hidden
Extract the morphological information from the segmented cells.
Non-functional requirements
Name Restriction Specifications
NF3.1 Number of
features

Consider a large number of fea-
tures.

Performance; Permanent.

NF3.2 Speed Be fast. Performance; Desirable;
Permanent.

NF3.3 flexibility Be easily interpretable. Performance; Desirable;
Permanent.

Source: personal archive.

Table 4 ± Functional Requirement 4.

Name: F4 Classification Hidden
Description: Classify the cells regarding the cell type.
Non-functional requirements
Name Restriction Specifications
NF4.1 Evaluation Produce good results even when

calculated on the limited labeled
data produced by the pure spots.

Performance; Permanent.

NF4.2 Speed Be fast. Performance; Desirable;
Permanent.

NF4.3 Inter-
pretability

Be easily interpretable. Performance; Desirable;
Permanent.

NF4.4 Results Return the probabilities instead of
only the classes.

Performance; Desirable;
Permanent.

Source: personal archive.

Table 5 ± Functional Requirement 5.

Name: F5 Visualization Hidden
Description: Visualize the results.
Non-functional requirements
Name Restriction Specifications
NF5.1 Images Present the classified cells in their

original image.
Performance; Permanent.

NF5.2 Spots Highlight the border of the spots. Performance; Permanent.
Source: personal archive.
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Table 6 ± Functional Requirement 6.

Name: F6 Generalization Hidden
Description: Apply the methodology to the ST dataset.
Non-functional requirements
Name Restriction Specifications
NF6.1 Verifica-
tion

Verify each requirement individu-
ally.

Performance; Permanent.

Source: personal archive.
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5 DEVELOPMENT

In this chapter, we present the actual development of the project and the re-

sults obtained. Section 5.1 describes the creation of the pseudo-ST data. Section 5.2

the image processing and segmentation. Section 5.3 describes the efforts to extract

morphological information. Finally, section 5.4 shows the steps for the classification.

5.1 PSEUDO-ST

To generate the pseudo-ST dataset, we first created a list with the centroids for

the spots. Following the characteristics of the 10X Visum data, we aimed to space them

100 µm apart from each other. Therefore, we create a row with the spots separated by

this distance. Then, created another row with the centers shifted by 50 µm and 86.6

µm below the other row, creating an equilateral triangle with the vertex as the centers.

Figure 15 shows a section of the centroids and Figure 16 presents the center of the

centroids over the cells in the MERFISH dataset.

Figure 15 ± Center of sample spots.

Source: Personal archive.
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Figure 16 ± Spots over the cells of the MERFISH data.

Source: Personal archive.

After calculating the centroids, we counted the transcripts within the spot region.

We used for loops to iterate over the spots, and if statements to verify if the euclidean

distance of the transcript to the center was smaller than 50µm. To optimize the process,

we filtered the transcripts based on their coordinates before calculating the euclidean

distance. We also opted to select only a piece of the complete image, since it would be

faster to test and require less memory. Figure 17 shows the number of transcripts in

the selected section.
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Figure 17 ± Number of transcripts in each spot.

Source: Personal archive.

5.2 SEGMENTATION

In this section, we describe the preprocessing steps evaluated in the project in

subsection 5.2.1 and we show the methods analyzed for image segmentation in the

other subsections. In all these cases, the image used as an example was the one

presented in Figure 18.
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Figure 18 ± Example slice used in the segmentation methods.

Source: Personal archive.

5.2.1 Preprocessing

By analyzing the DAPI image, we observed that it could benefit from more con-

trast when performing the segmentation. Therefore, we applied different contrasting

techniques to observe the ones that produced the best results. Figure 19 shows the

results of different histogram equalization techniques.

Figure 19 ± Histogram equalization techniques on the DAPI image.

Source: Personal archive.
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In all the cases, the processing highlighted the nuclei, but it also brought more

noise. Furthermore, in some cases, it merged cells that were close to each other,

making it impossible to detect them individually. Figure 20 presents a comparison

between the original image (left) and the one obtained by the contrast stretching method.

It is possible to see that the nuclei in the top right corner were joined into a single object

after the stretching. We obtained more inadequate results when reducing the interval for

the stretch (Figure 21). Therefore, we only used the original image in the segmentation.

Figure 20 ± Results from the contrast stretching method with the limits of 2% and 98%.

Source: Personal archive.

Figure 21 ± Results from the contrast stretching method with the limits of 10% and
90%.

Source: Personal archive.
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5.2.2 Thresholding

In this subsection, we present the results for all the thresholding methods tested:

guessing, mean, and Otsu.

5.2.2.1 Guessing

Before actually segmenting the nuclei, we analyzed the image histogram to get

an idea of the best threshold value (Figure 22).

Figure 22 ± Histogram of the DAPI image slice.

Source: Personal archive.

By analyzing the histogram, we noticed that there are many pixels with low in-

tensity, probably indicating the background, and also a significant amount with intensity

between 20 and 41. Therefore, we created another histogram to investigate only this

region (Figure 23).
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Figure 23 ± Histogram of the DAPI image slice for the intensities between 20 and 41.

Source: Personal archive.

Analyzing the graph in Figure 23, we chose the value 30 as our threshold be-

cause it was in one of the valleys and therefore could separate the actual nuclei pixels

from the background. Figure 24 presents the results from this threshold, on the left

are the pixels that were below the value, and on the right are those that were above,

indicating the mask. This threshold was able to separate some of the nuclei, but it failed

when they were close to each other, such as for those on the top right corner.

Figure 24 ± Thresholding by guessing the value of 30 based on the image histogram.

Source: Personal archive.

5.2.2.2 Mean

Next, we calculated the mean intensity of the pixels and used it as the threshold.

As this slice of the image does not have many nuclei and most of it is background,

then the mean value was 11, less than half of what we guessed from the histogram.
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Figure 25 shows that this technique also did not present good results as the nuclei were

merged.

Figure 25 ± Thresholding by the mean value of 11.

Source: Personal archive.

5.2.2.3 Otsu’s Method

We applied Otsu’s thresholding method to the image and found the value of 22,

a little less than our guess. The results produced by this value are shown in Figure 26.

As the previous results, the algorithm did not work well for dense regions.

Figure 26 ± Thresholding by Otsu’s method with the value of 22.

Source: Personal archive.

5.2.3 Morphological Transformations

We tried to segment the nuclei by applying the image gradient followed by mor-

phological operations. Using a kernel of ones with size 5x5 pixels, we calculated the
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gradient of the image (Figure 27).

Figure 27 ± Gradient with a kernel of ones with the size of 5x5 pixels.

Source: Personal archive.

We applied the OR operation on the inverse binary with the Otsu thresholding.

Then, we inverted the image and obtained the result of Figure 28.

Figure 28 ± Inverted results of the bitwise or operation between the inverted binary and
Otsu thresholds.

Source: Personal archive.

We applied the closing operation to close the holes in the nuclei (Figure 29).

Then, we used the opening operation to remove the noise (Figure 30).



Chapter 5. Development 50

Figure 29 ± Results of the closing operation.

Source: Personal archive.

Figure 30 ± Results of the opening operation.

Source: Personal archive.

From the previous images, it can be seen that the nuclei were not perfectly

segmented and that there is still some noise in the image. Figure 31 presents the mask

for these operations and confirms that the method was not successful.
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Figure 31 ± Results from the morphological operations.

Source: Personal archive.

5.2.4 Blob Detection

For the blob detection algorithm, we did not choose to filter by circularity, con-

vexity, or inertia ratio. Instead, we filter the blobs by color, indicating that they were the

bright spots, and by area, that should be between 2500 and 12500 pixels. These val-

ues were obtained after testing different combinations. Figure 32 presents the 7 blobs

detected in the image and shows how the algorithm failed to detect most of the nuclei.

Figure 32 ± Blobs detected in the image.

Source: Personal archive.

In an attempt to improve these results, we used the algorithm on the image with
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adjusted contrast. Figure 33 shows that the algorithm detected 13 blobs, but still failed

in some of the cases.

Figure 33 ± Blobs detected in the contrast-adjusted image.

Source: Personal archive.

5.2.5 K-means

We used the K-means algorithm to segment the image by creating clusters

based on the pixel intensity. Figure 37 shows the results of the clustering with k equals

2 (middle image) and 7 (right image). From the image with 2 clusters, we observe that

some of the nuclei were merged into a single blob, similar to what happened in the

thresholding. For the image with 7 clusters, it is possible to observe the nuclei more

clearly, but to convert these clusters into actual masks, we would need to process the

image. Furthermore, even with k equals 7, some of the nuclei were merged.
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Figure 34 ± Original image, results from the K-means algorithm for k equals 2 and 7,
respectively.

Source: Personal archive.

5.2.6 Local Thresholding

After realizing that most algorithms did not perform well on the denser regions of

the image, we investigated local thresholding methods since they only analyze a part

of the picture to calculate the threshold. Therefore, areas with fewer cells could have a

smaller value while areas with more cells could have a greater one. The Fiji software

already provides an automated local threshold with different methods. Figure 35 shows

the results for the segmentation considering an area of 60 pixels for local thresholding.

The Bernsen (Figure 37) and Midgray (Figure 37) methods presented promising results

that when applied the morphological operations to close the holes and remove the

noise could look very similar to the actual nuclei. Choosing a smaller value for the area

can lead to more noise and a greater value can aggregate more cells
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Figure 35 ± Auto local threshold with an area of 60 pixels for different methods.

Source: Personal archive.
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Figure 36 ± Bernsen local threshold with an area of 60 pixels.

Source: Personal archive.

Figure 37 ± MidGray local threshold with an area of 60 pixels.

Source: Personal archive.

We also applied the Bernsen method to another tile of the image, keeping the

same parameters. Figure 38 shows that, in this case, the method did not provide

satisfactory results as it still merged some of the cells.



Chapter 5. Development 56

Figure 38 ± Bernsen local threshold with an area of 60 pixels.

Source: Personal archive.

5.2.7 Cellpose

The CellPose algorithm takes as an input the gray image corresponding to the

nuclei and the average size of the nuclei diameter. In this case, after observing and

testing different values, we defined the average nuclei diameter as 50 pixels. Figure 39

presents the segmented image for this diameter. The CellPose presented better results

than the previous algorithms as it was able to segment cells that were next to each

other on the top right corner, but it failed for other cells, probably because they were

bigger than the average diameter size.
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Figure 39 ± Results from the Cellpose algorithm with an average cell diameter of 50.

Source: Personal archive.

Figure 40 exemplifies what happens if we increase the diameter to detect the

larger nuclei. We see that the cells that were not detected previously are now identified,

but the code combined nuclei that were separated before.
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Figure 40 ± Results from the Cellpose algorithm with an average cell diameter of 70.

Source: Personal archive.

5.2.8 StarDist

The StarDist Python package presents a collection of pre-trained models. First,

we tested the 2D_paper_dsb2018 one. Figure 41 shows that the algorithm failed to

detect most of the nuclei.
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Figure 41 ± Results of the 2D_paper_dsb2018 StarDist model.

Source: Personal archive.

As the 2D_paper_dsb2018 did not provide satisfactory results, we tested the

2D_versatile_fluo model. Figure 42 shows how it detected some of the nuclei, but

missed or merged others.

Figure 42 ± Results of the 2D_versatile_fluo StarDist model.

Source: Personal archive.

As there is no parameter to adjust in the StarDist model, such as the average

diameter for the cell, we reduce the resolution of the image to understand how it would
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impact the results. Figure 43 shows that the algorithm performed well for most of the

cases, but still missed a few nuclei.

Figure 43 ± Results of the 2D_versatile_fluo StarDist model with an image of reduced
dimension.

Source: Personal archive.

To verify the extent to which the StarDist model produces good results, we tested

it on a denser region on the image. Figure 44 shows that when there are more cells

close to each other, the algorithm does not perform well.

Figure 44 ± Results of the 2D_versatile_fluo StarDist model for a denser region.

Source: Personal archive.
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5.2.9 Mesmer

The last algorithm we tested was Mesmer. This model takes as input a channel

for the nuclei, one channel for the cytoplasm, and the correspondence of microns per

pixel. Since the DAPI image does not provide the cytoplasm channel, we passed the

nuclei as this argument, following the recommendations of the paper (GREENWALD

et al., 2021). Additionally, there is no adjustment on the cell size, only on the microns

per pixel. In the project, we opted to reduce the resolution of the image four times and

keep the value of 0.5 microns per pixel, which was the one that the algorithm was

originally trained for. Therefore, we also reduced the number of tiles that the model

would need to analyze and increase the speed of the segmentation. The right image in

Figure 45 shows the masks for the segmentation, where each color represents a cell.

Figure 45 ± Results from the Mesmer algorithm.

Source: Personal archive.

Figure 46 shows the contours of the segmentation. It is possible to see how the

model performed well even in a region with cells close to each other and outperformed

the previous ones. However, it still missed a few spots. Additionally, it segmented some

smaller parts, which are only noise and not cells, and must be removed.
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Figure 46 ± Contours obtained from the Mesmer algorithm.

Source: Personal archive.

The Cellpose, StarDist, and Mesmer algorithms performed similarly when trained

on the TissueNet data and evaluated using the F1-score (GREENWALD et al., 2021).

However, using only the pre-trained models, the Mesmer algorithm provided the best

results compared to the other methods and we chose it as the core for the segmentation.

Then, we created a wrapper function to take a large image, and apply a sliding window

for the segmentation. It uses the R language and the Terra package, to receive a large

image, crop it into tiles, leaving some overlap between them, and then call the Python

Mesmer code through the Reticulate R package (USHEY; ALLAIRE; TANG, 2022). We

also implemented filtering to remove the smaller objects, which correspond to the image

noise. Additionally, in every segmentation, we removed the objects that touched the

border of the tile because they were probably divided when cropping the tiles and might

not represent the actual cell. As there is an overlap between tiles, this removal does

not prevent the nuclei from being detected.

5.3 MORPHOLOGICAL INFORMATION

The next step after segmenting the images is to extract their morphological

information. First, we tested the VAMPIRE algorithm. This Python package is open
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source and available on GitHub. It was designed for Windows, but can be installed in

Mac (UNIX-based operating system) through the usage of pip. We could not install it on

Linux due to a dependency conflict in the library. The vampireanalysis package requires

NumPy to be above a specific version. However, it depends on a package that requires

NumPy to be below that version.

We also tried to install the wnd-charm package. It has two implementations:

one command-line program written in C++ and a Python source code. Since we aim to

integrate the tool with the laboratory R package, we opted to test the Python version. We

followed the instructions on the website to build the code, but we were not able to install

it. Since the package was released in 2008, it has not been properly maintained and we

could not fix the installation error. We contacted our colleagues from the department,

who had installed the software, and they recommended using Python 2.7. However,

even after creating a virtual environment and following his instructions, we were unable

to make the code work.

Lastly, we used the analyze particles tools present in the Fiji interface to get the

features from the masks. To test the image, we selected five tiles from the DAPI image.

Figure 47 presents one of these tiles and its mask. In this case, we did not remove the

smaller objects and neither the nuclei around the borders to see how they would impact

the data.

Figure 47 ± One of the tiles and its mask used to extract the morphological information.

Source: Personal archive.

Although the Mesmer algorithm already presents the segmentation mask, the

Fiji software is not able to recognize them. It requires the mask to be in the binary

format, not in colors. So, we converted the mask to binary by applying the Huang color

thresholding method. Figure 48 presents the mask obtained from the binarization. It is
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possible to see that the algorithm merged some of the nuclei, thus there are some blobs

with two or three cells, which can mislead the classification by creating objects with a

greater area. Yet, no better solution was found in the Fiji platform and these groups

were kept in the analysis.

Figure 48 ± Binarization obtained from Fiji’s Huang Color Threshold method.

Source: Personal archive.

We extracted the morphological information by applying Fiji’s analyze particles

method. This tool returns both the image identifying each particle (Figure 49) and a

table with the data for each cell. In this case, it is possible to see that objects 14, 33, 44,

and others contain more than one cell and may skew the data.
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Figure 49 ± Particles analyzed by Fiji.

Source: Personal archive.

From the features present in Fiji, we opted to choose those that relied on the

shape of the cell and could be easily interpreted. The software provided one matrix with

the value for each feature for the particles in the image. Each image had around 60

particles on it, we merged the matrices for all tiles, obtaining 309 observations. Then,

we removed the values that relied on the particle coordinates (X and Y, their mean, and

base values) and all the rows that contained NAs, resulting in 119 particles.

We analyzed the histogram of the areas in the table (Figure 50) and noticed that

there are some values in the right end. Those are since some cells were merged during

the binarization and this must be filtered to avoid misleading results.
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Figure 50 ± Histogram of the area of the particles.

Source: Personal archive.

To see if the features were meaningful to the classification of the cell types, we

used the PCA dimensionality reduction technique to visualize the data in two dimen-

sions. Figure 51 shows how the data is dispersed. There are some outliers in the graph,

however, it is not possible to identify clear clusters.

Figure 51 ± Data in PCA reduced dimension.

Source: Personal archive.

To further understand this issue, we also analyzed the data using the tSNE
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technique (Figure 52). The data is better organized compared to the PCA visualization,

but it is not clear to identify the clusters, which may lead to creating artificial ones.

Further investigation is required to obtain a conclusion about the features obtained from

the Fiji software.

Figure 52 ± Data in tSNE reduced dimension.

Source: Personal archive.

After realizing that the morphological information obtained from the Fiji tool was

not conclusive, we looked for alternatives to obtain it. Instead of extracting the features

directly from the masks, we considered converting them to polygons using the Giotto

software to extract their characteristics. We tested the pyshp Python package to read

the polygons files created in the R environment, which worked as expected. Then, we

tried to implement the algorithm to measure the similarity between polygons and it did

not work. First, there were some errors in the source files, which were fixed. Then, we

were able to run the source code but got errors when calling the functions. There are

other options to extract features from the polygons, but due to scheduling constraints,

we could not implement them.

5.4 CLASSIFICATION

The idea behind the classification was to train a supervised algorithm that re-

ceived as training data the cells that were in spots of pure cell types to then predict for

those of mixed types. Therefore, the first step was to obtain the cell types and perform
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their deconvolution. Using the Giotto software, we loaded the expression data from the

spots, processed, and clustered them using Louvain’s method. Figure 53 presents the

clusters in the UMAP (top) and spatial dimension (bottom).

Figure 53 ± Leiden clustering of the spatial data.

Source: Personal archive.

With this information, we applied cell-type deconvolution. The SpatialDWLS data

requires the single-cell gene expression matrix of the same region to perform the
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deconvolution. In this case, the MERFISH already presented this data. So we filtered

this matrix to get the expression from the same region from where we created the

pseudo-ST. Figure 32 presents the results from the cell-type deconvolution. Comparing

this image with Figure 54, we can see that the number of clusters is different. This

happens because the SpatalDWSL relies on the clusters that were identified in the

single-cell data used to assist the algorithms. Therefore, as we used the Fusca package

to calculate them, they do not match the ones obtained by the Giotto tool.

Figure 54 ± Results from the cell-type deconvolution.

Source: Personal archive.
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6 ANALYSIS

In this chapter, we analyze the results of the project. We investigate whether the

work presented in chapter 5 meets the requirements of chapter 4. Instead of considering

the project result as a whole, we identify the tasks individually to see the extent to which

it was accomplished.

The first functional requirement (FR) was to create an ST dataset using the MER-

FISH data. This task was accomplished as it met the two non-functional requirements

(NFR): the expression matrix counted the expression of the transcripts in the spots

and not of the cells, and it maintained the spatial characteristics of the 10X Visium

technology. The only issue regarding this requirement is the time it takes to create the

dataset. It took a few hours to create the data presented in this report, which was just a

portion of the MERFISH transcripts. Yet, we did not focus on this part as we would only

perform it once.

The second FR was segmentation. The quality of the results depended on the

model we chose. In this case, we are only considering the Mesmer algorithm as it

was the most consistent. By using the Terra package and a sliding window we met the

first NFR which was to not overflow the memory. Our tool also met the second NFR

because the Mesmer model performed well in all the tiles we tested, regardless of their

cell density (the metrics for the model are available in the Mesmer paper (cite Mesmer)).

Third, we were able to remove the noise by defining a minimum area for the nuclei.

Since we could not contact a pathologist in time for this report, we left this parameter to

be defined by the user. Regarding the time, the model is relatively fast even when run

on a computer without GPU. Finally, the Mesmer algorithm proved to generalize well as

presented in its article.

The third FR was the morphological information, which had three non-functional

ones. This step was partially accomplished. We were not able to extract a large number

of features (hundreds or thousands) because the algorithm that performed such tasks

failed to install. Instead, we used the Fiji software that provided only sixteen features.

Regarding the time NFR, the software did not take long to obtain the values. Last, most

of the characteristics found by Fiji were interpretable, satisfying the third non-functional

requirement. However, this part of the project presented three major issues:

• To use the analyze particles function, we needed to convert the colored mask

from Mesmer to binary masks. In this process, some of the cells were merged

and they needed to be removed to not skew the results. To solve this issue, we

could create individual tiles for the cells that would be merged before binarizing

them. However, this would significantly increase the time to process the image

and not satisfy the third NFR.
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• The Fiji software relies on a guided user interface (GUI) which is written in java

and cannot be easily incorporated into our R or Python code, restraining the

automation of the code. One possible solution would be to use Jython to call the

commands from the GUI. Yet, this tool required the Fiji software to be installed

in the user computer, and, differently from a dependency, we cannot require a

specific version to be installed for the code to run, leaving the package susceptible

to errors.

• Additionally, when analyzing the features individually and in the reduced dimen-

sion space, we did not note a significant difference between them, indicating that

they may not be sufficient for the classification. There needs to be a deeper inves-

tigation on this topic, but the algorithm will likely need other features. One possible

cause is that the DAPI file only provides the nuclei, which is not as informative as

the cell shape.

Since we could not accomplish the third requirement, the fourth and fifth FRs

were not developed. Although we generated the cell-type deconvolution using the Giotto

and CellRouter package, the number of clusters obtained from each algorithm was

considerably different, which required further investigation. Additionally, the software

used to extract the morphological information could not be incorporated into the code for

automation and did now allow the processing of a large number of tiles. Moreover, after

analyzing the values of the features, we did not notice promising results and decided to

focus on other areas of the project.

Finally, even though we did not meet all functionalities of the project, we could

test the generalization of the ones we developed. Given how well the Mesmer algorithm

performed, we used it in the HE image by selecting the color channel that represented

the nuclei and the results were equally satisfactory. Additionally, given the masks from

the model, the process to extract the morphological information was analogous to the

pseudo-ST. The other steps were not concluded for the pseudo-ST data, therefore they

were not tested for the original ST dataset and were left for future work.
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7 CONCLUSION

The field of spatial omics allows the comprehension of tissue architecture at an

unforeseen level. However, this is the latest of the sequencing technologies and, while

others had time to mature and evolve, SRT had just started. Therefore, these techniques

lack perfection and have limitations. One of these is the balance between resolution and

high throughput. The 10X Visium technology, one of the major technologies available

today, can collect expression information from the whole transcriptome but is not able to

get this data from single cells. Having a clear understanding of genomics and location

could lead to discoveries in different fields of biology.

In this project, we proposed an algorithm to enhance the resolution of ST by as-

signing the cell type to its location. The method was designed to have three major parts:

segmentation, extraction of morphological information, and classification. Additionally,

these items would be tested in a pseudo-ST created from the MERFISH dataset. Due to

software limitations and time constraints, the second task did not produce satisfactory

results, becoming a hindrance for the third one. Nevertheless, the work was fruitful

as the segmentation algorithm created here could be extended to other projects in

the group. Additionally, the limitations found here can indicate deficiencies in current

algorithms, leaving room for code development in the future.

Regarding the actual development, the first task tested different algorithms for

segmentation and noted that most of them failed in denser regions of the image, the

exception was the Bernsen local thresholding and Mesmer method. We chose the last

one to be the core in our segmentation function due to its generality and robustness to

noise. Our final tool encompassed a sliding window function that was able to receive

a large tissue image, apply a sliding window, segment the nuclei in each tile and also

remove the noise. This method works with the DAPI image from the pseudo-ST, and

also with the HE data from the ST. This tool proved to be useful in other projects of

the laboratory. Therefore, we incorporated it into our package for spatial omics analysis,

contributing to the Giotto software and the field as a whole. It is now open-source and

available on GitHub.

The second task relied on extracting morphological information from the masks

obtained in the segmentation. We verified different packages and they presented prob-

lems either on the installation or when calling the function. Indicating that there is a lack

of functional packages available in this area, and also leaving space for future projects.

Therefore, instead of using a Python or R library, we used the Fiji GUI. This tool pro-

vided interpretable features, but it was limited regarding reading the data, automating

the process, and providing relevant features. Further investigation is required on how to

overcome these issues, but due to time restrictions. The unsatisfactory results obtained

in this item hindered the development of the classification tool.
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In conclusion, the work presented here provided a tool for nuclei segmentation

in both DAPI and HE images. Moreover, it shed light on the limitations of current tech-

niques to extract morphological features from the cells. Lastly, it gave direction on what

the next steps of the project should be. We aim to continue working on enhancing the

resolution of ST, taking a closer look at the tools to extract morphological information

and how to improve them.
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