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RESUMO

Agarre automatizado de objetos por robôs têm como um de seus principais desafios a

necessidade de agarrar seguramente uma grande variedade de objetos. Para vencer esse

desafio, bases de dados grandes são necessárias, especialmente em sistemas que adotam

modelos de aprendizagem profunda. Entretanto, gerar esses dados com medições demanda

tempo e dinheiro. Pesquisas atuais mostram que é posśıvel agarrar uma grande variedade

de objetos com alta precisão utilizando redes neurais convolucionais treinadas em dados

sintéticos. Assim, este trabalho apresenta a implementação e análise da capacidade de

generalização de uma rede convolucional pré-treinada em dados sintéticos, a Grasp Qual-

ity Convolutional Neural Network. Essa implementação também passa pelo sistema de

aquisição de nuvens de pontos e imagens coloridas através de uma câmera RGB-D, o

processamento desses dados, e a avaliação da qualidade das predições de agarre. Foi feita

uma comparação entre a predição utilizando somente a nuvem de pontos e outra acom-

panhada de uma imagem de segmentação binária, constatando-se que esta última auxilia

na fase de alinhamento para o reconhecimento do objeto e consequentemente impacta

positivamente nos resultados obtidos. Apesar de ser testada em objetos com geometrias

distintas daquelas vistas durante seu treinamento, a rede neural conseguiu generalizar e

obteve 41.46% de predições de posição de agarre corretas utilizando como entrada nu-

vem de pontos e segmentação binária, o que é considerado um resultado positivo dada as

milhares de possibilidades para escolha de posição de agarre.

Palavras-chave: agarre automatizado por robôs, detecção de objetos, rede neural con-

volucional, visão computacional, dados sintéticos, peças aeronáuticas.



ABSTRACT

Robotic grasping of objects faces the challenge of reliably grasping a wide variety of ob-

jects. In order to overcome this, large datasets are required, especially in systems that

adopt deep learning models. However, generating such data with measurements demands

time and capital. Recent research shows that it is possible to grasp a wide variety of

objects with high accuracy using Convolutional Neural Networks trained on synthetic

data. Therefore, this work presents the deployment and analysis of the generalization

ability of a convolutional network pre-trained on synthetic data, the Grasp Quality Con-

volutional Neural Network. This deployment also goes through the acquisition system

of point clouds and colour images using an RGB-D camera, the processing of this data,

and the quality evaluation of the grasp predictions. A comparison between the prediction

using only the cloud of points and another one accompanied by a binary segmentation

image was made, finding that the latter helps in the alignment phase for the recognition

of the object and consequently impacts positively on the results obtained. Despite being

tested on objects with different geometries from those seen during its training, the neural

network was able to generalize and obtain 41.46% of correct grasp position predictions

using point clouds and binary segmentation images as input, which can be regarded as a

positive result, given the amount of possible positions for grasping an object.

Keywords: automated grasping systems, object detection, convolutional neural network,

computer vision, synthetic data, aeronautical parts.
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1 INTRODUÇÃO

Este trabalho foi desenvolvido a fim de atender à necessidade de um método de

agarre automatizado capaz de manipular peças aeronáuticas em uma cadeia de manu-

fatura aditiva. As atividades foram parte do projeto IDEA de Industrialização da Engen-

haria Digital e Manufatura Aditiva na cadeira de Metrologia de Produção e Gestão da

Qualidade, departamento de pesquisa de Sistemas Baseados em Modelos do Werkzeug-

maschinenlabor (WZL).

Para este fim, foi realizado um estudo sobre os métodos de planejamento de agarre

de objetos para robôs. Considerando a complexa geometria das peças aeronáuticas e que

a maioria destes projetos são treinados em conjuntos de dados com objetos comuns do

cotidiano, tais como utenśılios de cozinha, foi selecionada uma metodologia que poderia

generalizar bem entre classes de objetos. Portanto, foi adotado o modelo de Aprendizagem

Profunda desenvolvido por Mahler et al. em Dex-Net 4.0 [1], chamado Grasp Quality

Neural Network (GQ-CNN), que utiliza uma rede neural convolucional para predizer uma

posição de agarre robusta.

Além disso, para poder comparar adequadamente o desempenho da rede, foi real-

izada a configuração do sistema de modo semelhante à feita em Dex-Net 4.0, com sensor

RGB-D, garra de robô e seu posicionamento.

Técnicas de processamento de sinais foram empregadas para realizar a aquisição

de dados, aplicadas tanto em mapas de profundidade quanto em imagens coloridas e,

para estas últimas, foram utilizadas técnicas de segmentação binária necessárias na fase

de localização do objeto para a rede neural.

Os dados processados foram então utilizados para alimentar a rede neural pré-

treinada GQ-CNN. Em seguida, para avaliar a diferença entre a predição de agarre con-

siderando com imagem de segmentação e sem ela, foi realizado um estudo visual.
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2 REVISÃO BIBLIOGRÁFICA

Neste caṕıtulo, exposto em detalhe no apêndice em inglês, foram expostas as

metodologias utilizadas para planejamento de agarre, incluindo uma introdução de redes

neurais convolucionais, sistemas de aquisição, aumento e processamento de dados, além

de benchmarks utilizadas para avaliar diferentes métodos de planejamento de agarre.

Na Seção 2.4 do documento em anexo, falou-se que a implementação de agarre

robótico tem três fases: planejamento do agarre, planejamento da trajetória e execução.

Este trabalho focou somente no planejamento de agarre, que é um problema de recon-

hecimento visual que usa sensores para achar a posição em objetos para a garra do robô.

Segundo Kumra et al. [2], ele inclui tarefas como:

• Localização do objeto: alcançada através da detecção do objeto e utilizando imagens

de segmentação.

• Estimação da pose: que utiliza nuvens de pontos.

• Detecção de posição de agarre: com métodos anaĺıticos, emṕıricos ou h́ıbridos, sendo

este adotado pela GQ-CNN que utiliza modelos anaĺıticos e aprendizagem profunda,

e escolhe a posição de agarre com base em métrica de qualidade

A rede GQ-CNN é um método robusto de planejamento de agarre, que considera

o mesmo problema do método simples, entretanto na presença de perturbações, tanto nas

propriedades dos objetos, quanto mecânicas e de sensoriamento.

Enquanto na Seção 2.5, a fim de facilitar o progresso dessa ciência e a reprodução

dos resultados, foram desenvolvidos benchmarks por Mahler et al. [3], com os quais é

posśıvel comparar diferentes sistemas baseado nos códigos desenvolvidos e variação na

adoção de protocolos, sensores, luzes, objetos, braços e garras de robôs.

A primeira delas se chama média de agarres por hora, em inglês Mean Picks Per

Hour (MPPH). Ela é definida como o produto entre a velocidade e a taxa de sucesso. A

velocidade é o inverso da soma das médias de tempo de sensoriamento, cálculo computa-

cional e movimento do robô. Enquanto a taxa de sucesso é a média da confiabilidade do

agarre. Outra métrica utilizada é a de precisão, que calcula o quanto o modelo consegue

classificar corretamente seus resultados como positivos. Também se avalia a sensibili-

dade, ou seja, a fração de predições corretas dentre todas as avaliações positivas. A partir
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destas duas últimas métricas é posśıvel obter a curva de precisão versus sensibilidade.

Um método de classificação preciso mantém tanto precisão quanto sensibilidade perto de

1. Por último há a acurácia, que é a porcentagem de predições corretas dentre todas as

predições.

Na Seção 2.6 do documento em anexo, falou-se sobre métodos robustos de plane-

jamento de agarre. Considerando essa métricas, foi utilizada uma avaliação feita em

Dex-Net 4.0 [1] com os seguintes métodos:

• Dex-Net 2.0 [4]: que estima a probabilidade de sucesso de agarres considerando

pinças paralelas, classificando posições candidatas para agarre a partir de nuvem de

pontos e a rede GQ-CNN.

• Dex-Net 3.0 [5]: semelhante a Dex-Net 2.0, entretanto considerando uma garra de

sucção.

• Dex-Net 4.0 [1]: um sistema ambidestro, que pode utilizar tanto pinças paralelas,

quanto garras de sucção, e é robusto porque considera perturbações no sistema.

• Método anaĺıtico para sucção: que classifica posições de agarre baseado na distância

do ponto central do objeto.

• Método anaĺıtico ambidestro: além do método de sucção, utiliza pontos antipodais

ao centro do objeto para agarre por pinça paralela

Para o teste dos métodos foram utilizadas duas bases de dados distintas. A primeira

se refere a objetos prismáticos e circulares. A segunda se refere a objetos de uso doméstico.

Ao comparar os resultados, utilizando as métricas apresentadas, foi posśıvel perceber que

a confiabilidade, ou seja a probabilidade de sucesso do agarre, e a precisão é muito maior

para a Dex-Net 4.0. Além disso, ela apresentou o menor número de falhas. Portanto ela

e sua versão da rede neural GQ-CNN foram selecionadas como método de planejamento

de agarre.

Em Dex-Net 4.0, a rede GQ-CNN foi treinada separadamente para cada tipo de

garra, paralela e de sucção. Como a prinćıpio só serão utilizadas pinças paralelas no

projeto IDEA, somente esta rede neural foi explicada em detalhe.

Então, na Seção 2.7 explicou-se em detalhe a rede Grasp Quality Convolutional

Neural Network (GQ-CNN). A rede GQ-CNN recebe dados obtidos a partir de uma
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câmera RGB-D, sendo eles uma nuvem de pontos e os dados intrinsecos da câmera. Op-

cionalmente é posśıvel utilizar uma imagem de segmentação binária obtida a partir da

imagem RGB, sendo esta utilizada para a localização do objeto. Então ela tem como sáıda

posições de agarre em pontos antipodais de objetos com uma probabilidade de sucesso

para o agarre, considerando incerteza em sensoriamento e controle. A fim de aprender a

diretriz, o método utiliza uma base de dados sintética para seu treinamento, cuja geração

consiste de um ambiente de treinamento sintético e uma diretriz para aquisição de dados.

Na Subseção 2.7.1 do arquivo em anexo, foram feitas as definições da rede GQ-

CNN. A fim de gerar a base de dados de treinamento, é utilizado um ambiente de simulação

com uma garra de robô de hastes paralelas, modelos 3D de objetos apoiados sobre uma

superf́ıcie plana e nuvens de pontos adquiridas a partir de uma câmera RGB-D virtual.

Neste ambiente de simulação é posśıvel gerar imagens, posições de agarre e métricas de

sucesso para poder treinar a rede.

Na Figura Figure 1 é posśıvel observar estes elementos inseridos no ambiente vir-

tual, além de variáveis explicadas a seguir.

Figure 1: Modelo gráfico para planejamento robusto de agarre com garra paralela de
objetos em um ambiente virtual.

Fonte: Dex-Net 2.0 [4].

As propriedades da câmera e dos objetos no ambiente virtual são descritas pelo
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estado x = (O, TO, TC , γ), onde O representa a geometria do objeto e massa, TO e TC

representam as poses do objeto e da câmera e γ é o coeficiente de fricção entre objeto e

garra.

Enquanto as posições de agarre são especificadas como u = (p, φ) ∈ R3×S1, sendo

p = (x, y, z) ∈ R3 o centro do objeto como indicado na figura e φ ∈ S1 o ângulo com

relação ao plano da mesa.

As nuvens de pontos são definidas como y = RH×W
+ .

A métrica de sucesso é S(u,x) ∈ 0, 1 e pode ser modelada como:

S(u,x) =




1, EQ > δ e collfree(u,x)

0

(2.1)

A partir dessa métrica de sucesso, é calculada a probabilidade de sucesso Q(u,y) =

E[S|u,y] considerando incerteza no sensoriamento e controle.

A Figura Figure 2 expõe o processo de geração da base de dados para treinamento

da rede neural GQ-CNN. A base de dados é garada a partir de 1500 modelos 3D de

objetos, observados na parte esquerda da imagem. Para cada um deles, é calculado um

conjunto de poses estáveis, expostas na imagem superior do centro. Cada uma dessas poses

recebe pontos para agarre, estimados para serem livres de colisão. Dois pontos antipodais

definem uma posição de agarre, cuja qualidade EQ é avaliada, para definir a métrica de

sucesso dela. Então as poses dos objetos são associadas com imagens de profundidade

renderizadas a partir de uma câmera RGB-D virtual. Cada imagem passa por processo de

aumento de dados, por exemplo rotacionando e transladando ela, e finalmente se obtém

uma distribuição de 6.7 milhões de posições de agarre, métricas de sucesso e nuvens

de pontos. A partir das posições definidas nessas imagens renderizadas, são executados

agarres no ambiente virtual para gravar a recompensa do agarre. Se é posśıvel agarrar o

objeto e posicionar ele em outro lugar, a recompensa é igual a 1. Caso contrário, ela é 0.

Esses valores de recompensa são utilizados como referência para treinar a rede.

Na Subseção 2.7.2, foi exposta a diretriz para aquisição de dados, que avalia as

ações no ambiente de treinamento virtual descrito anteriormente, utilizando aprendizado

supervisionado para treinar a diretriz πθ a fim de maximizar a taxa de recompensa, ou

média de agarres por hora MPPH, que é o produto da velocidade de agarre pela prob-

abilidade de sucesso do agarre Q. O processo de aprendizagem da diretriz é descrito a
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Figure 2: Fluxo de geração de base de dados para treinamento da rede neural.

Fonte: Dex-Net 2.0 [4].

seguir.

A rede neural é treinada para estimar a probabilidade de sucesso para uma de-

terminada posição de agarre Qθ,g(y,u) ∈ [0, 1]. Os pesos da rede são otimizados de

forma a minimizar o erro entre a predição da rede neural e o valor de recompensa obtido

para aquela posição, como exposto na Equação 2.2. Os pesos são atualizados com retro-

propagação.

θ∗g = argmin θg∈Θ
∑

(Ri,ui,yi)∈Dg

L(Ri, Qθ(yi,ui)) (2.2)

Sendo assim, a diretriz πθ é obtida ao planejar a posição que maximiza essa métrica

de qualidade considerando todas as posições candidatas ao agarre, como descrito na

Equação 2.3.

πθ(yt) = argmax g∈G{max ug∈UgQθ,g(yt,ug)} (2.3)

Na Subseção 2.7.3 foi exposta a arquitetura da rede GQ-CNN. Utilizando esta base

de dados é posśıvel treinar a rede neural GQ-CNN. Como mencionado por Teuwen et al.

em [6], redes neurais são uma classe de modelos que são constrúıdos com camadas de

neurônios, que são definidos pela entrada multiplicada pelo peso e somada ao viés. Ex-

emplos de redes neurais utilizadas incluem as convolucionais (CNN) e recorrentes (RNN).

As convolucionais são utilizadas principalmente para reconhecimento de padrões visuais.

Elas tem configuração semelhante a exposta na Figura Figure 3, com uma camada de

entrada, camadas escondidas no meio e uma camada de sáıda.

Funções de ativação são usadas no fim dos neurônios para introduzir não linearidade

ao modelo. No caso da GQ-CNN é usada a ReLU (Rectified Linear Unit), porque ela é
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Figure 3: Rede neural com uma camada de entrada, duas camadas escondidas e uma
camada de sáıda.

Fonte: Autora

comumente utilizada em classificação de imagens e ela pode aumentar a acurácia da rede

ao zerar todos os valores negativos e passar os valores positivos sem modificações, segundo

Wu [7].

A rede é treinada com o objetivo de minimizar a função de custo, que avalia a

performance de um modelo a partir de uma função de perda. A partir de um conjunto

de dados e valores de referência, no caso o valor de recompensa, se realiza propagação

para frente a fim de obter a perda entre a estimativa da rede e a referência. No caso

da GQ-CNN foi utilizada Entropia Cruzada. Essa perda é retropropagada utilizando

Gradiente Estocástico Descendente com momento para atualizar os pesos da rede de

modo mais rápido do que o gradiente clássico. E o processo reinicia até que a rede seja

completamente treinada.

A arquitetura da GQ-CNN, exposta na Figura Figure 4, tem quatro camadas
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convolucionais em pares, que calcula a convolução entre a entrada e uma função de peso,

resultando em um mapa de caracteŕısticas. Entre os dois pares de camadas convolucionais,

há uma camada de Max Pooling, que utiliza o valor máximo em uma janela de amostras

para decimação. Após elas, há três camadas totalmente conectadas, na qual todos os

neurônios são conectados entre si, para otimizar a rede. E também há uma camada

totalmente conectada somente para a entrada z, que é a distância da garra.

Figure 4: Arquitetura da rede GQ-CNN

Fonte: Dex-Net 2.0 [4].
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3 CONFIGURAÇÃO DO SISTEMA

Considerando as vantagens e desvantagens das técnicas mencionadas na seção ante-

rior, a rede neural GQ-CNN pré-treinada e os procedimentos adotados no sistema original

foram replicados na medida do posśıvel. O modelo pré-treinado tende a generalizar bem

para objetos não presentes na base de dados de treinamento, sendo assim esperava-se que

fosse posśıvel utilizá-lo para as peças aeronáuticas do projeto IDEA.

Na Seção 3.1 do arquivo em anexo em inglês, foi explicada em detalhe a aquisição

de dados, resumida a seguiR. Para fazer a aquisição de dados para o teste com a rede

neural, foi adotada a camêra RGB-D Intel RealSense D435, a qual conta com uma câmera

infravermelho estéreo, um projetor infravermelho e uma câmera RGB. A fim de adquirir

uma base de dados para teste, a câmera foi montada em uma mesa de testes, fora do robô,

à 600 mm de uma superf́ıcie preta e não refletiva, apontando para o centro da mesma. A

posição final da câmera será rente à garra, a fim de facilitar a calibração da câmera para

o sistema de controle do robô.

A câmera conta com um software de desenvolvimento com interface para o usuário,

o qual pode ser acessado através de código com um uma biblioteca criada pelos desen-

volvedores da Intel.

Na Seção 3.3 foi explicada a configuração do robô. Apesar de que não houveram

testes com o robô até então, os detalhes que são relevantes para o planejamento do agarre

de objetos já foram estabelecidos. Foram manufaturadas pinças paralelas com impressão

3D de PLA. Os modelos 3D delas foram baseadas no trabalho de Guo et al. em [8], que

estudou variações no tamanho e textura da superf́ıcie para a ponta da garra, de forma a

melhorar a aderência ao objeto. Além disso, foi impressa uma estrutura para conectar a

garra, a câmera e as pinças. Foi escolhida a garra pneumática Schunk PGN Plus 50/2,

que foi configurada para ter abertura máxima de 50 mm, ĺımite definido pelos autores da

GQ-CNN porque a rede foi treinada com essa configuração.

Para os testes foram utilizados objetos do projeto IDEA, os quais são peças aeronáuticas

manufaturadas de forma aditiva, algumas com poliácido láctico (PLA) e outras com fusão

à laser de pó de metal.

Na Seção 3.4, foi apresentado o fluxograma do sistema, a fim de ilustrar como o

sistema foi implementado, exposto na Figura Figure 5.
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Figure 5: Fluxograma do sistema

Fonte: Autora.
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4 PROCESSAMENTO DE SINAIS

A rede neural GQ-CNN necessita como entrada uma nuvem de pontos, uma im-

agem de segmentação binária opcional e os dados intŕısecos da câmera RGB-D. Se a

imagem de segmentação não é dada, então ela é derivada da nuvem de pontos.

Na Seção 4.1 do documento em anexo, foi exposto o processamento de nuvem de

pontos, e resumido aqui. O tipo de processamento muda de acordo com a finalidade.

Para este trabalho, optou-se por obter nuvens de pontos com maior acurácia, do que com

maior densidade de informações. A câmera RealSense produz nuvens de pontos muito

ruidosas, portanto tentou-se amenizar esse rúıdo sem perder as informações dos objetos,

com os seguintes filtros:

• Filtro espacial: utilizado para preencher buracos na nuvem de pontos a partir de

uma média móvel exponencial (EMA), que considera pixels vizinhos dentro de um

raio especificado.

• Filtro temporal: que utiliza média móvel também, entretanto aplicada às capturas

obtidas em um certo periodo de tempo.

Enquanto que na Seção 4.2 do documento em inglês, foram expostos os filtros

utilizados para obter a imagem de segmentação binária. A fim de obter uma imagem de

segmentação binária foram utilizadas as seguintes técnicas nesta ordem:

• Conversão de imagem colorida para escala de cinza.

• Máscara de plano de frente: consiste na subtração da imagem de plano de fundo a

partir da imagem original.

• Ajuste da escala de cinza: com definição de limite mı́nimo e máximo.

• Conversão para imagem binária.

• Definição de contornos: pela área mı́nima de pontos brancos que define um objeto

e a distância mı́nima entre pontos brancos para definir objetos separados
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5 RESULTADOS DA AQUISIÇÃO DE DADOS

Neste caṕıtulo foram expostas imagens de profundidade e de segmentação binária

obtidas com os métodos de processamento de dados explicados no caṕıtulo de Referências

Bibliográficas. Os códigos adotados para tal estão no Apêndice do arquivo em anexo.
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6 RESULTADOS DA REDE GQ-CNN

Aplicando os dados obtidos como entrada para a rede neural, obteve-se a predição

de posições de agarre, considerando uma garra paralela, e uma métrica de qualidade que

mede a probabilidade de sucesso do agarre, denominada valor-Q.

Na Seção 6.1 do arquivo em anexo, foi feita a classificação das predições de posição

de agarre de modo visual, que é necessária para prevenir posśıveis acidentes caso houvesse

predições inadequadas.

Os resultados foram analisados com base em valor limite de 50%, para considerar o

valor-Q como positivo, e avaliação das posições indicadas como pasśıveis de agarre ou não.

Para analisar as posições, foi considerada a geometria do objeto, o diâmetro de abertura

da garra e as limitações mecânicas tanto do objeto quanto da garra.

Na Seção 6.4 do arquivo em anexo, foi feita a avaliação dos resultados. A fim de

analisar a diferença da predição dada a inserção de uma imagem de segmentação binária,

foram executadas 164 predições, metade delas com a imagem de segmentação, e a outra

metade sem ela. Assim é posśıvel determinar como este método contribui na fase de

alinhamento do objeto.

Ao comparar as análises, foi identificado um resultado falso positivo para predição

utilizando somente a nuvem de pontos, o que é considerado cŕıtico porque poderia causar

a colisão do robô com o objeto. Enquanto a predição com segmentação teve precisão

de 100%, ou seja, sem falsos positivos, além de acurácia é maior, 73,17 %. Apesar da

complexidade dos objetos utilizados no teste, a posição estimada foi adequada em 41,46%

das estimativas. Esse é um resultado positivo também se consideradas as múltiplas pos-

sibilidades de posições para agarre.

Visualmente foi posśıvel perceber que os resultados somente com nuvens de pontos

são de dif́ıcil avaliação visual devido à baixa qualidade da mesma. Essa baixa qualidade

levou à perda de informações nas nuvens de pontos e a estimativa falso positiva. Portanto

se justifica a adoção da imagem de segmentação.

Para estimar o objeto que foi mais detectado em cenas com diversos objetos, foi

feita uma comparação e conclúıdo que a turbina foi o objeto mais identificado, o que pode

ser justificado pelo seu tamanho proporcionalmente maior em relação aos outros objetos.

Entretanto, ao avaliar os resultados para ela, é dificil de conseguir identificar a posição
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adequada para o encaixe das pinças, por isso a maioria resultou em verdadeiro negativo

e 0% de precisão e sensibilidade.

Os blocos coloridos e o suporte de turbina tiveram a mesma porcentagem de de-

tecção, e as predições com eles foram mais positivas, alcançando 100% de acurácia. Eles

têm geometria um pouco mais simples e portanto mais fácil de estimar uma posição de

agarre. Além disso, os blocos coloridos tem geometria similar aos objetos vistos durante

treinamento da rede neural, o que justifica os resultados.

Com base nesses resultados expostos, foram identificados pontos de melhoria. Ape-

sar da imagem de segmentação melhorar a predição, o sensor RGB-D empregado produz

nuvens de pontos ruidosas e não é recomendado em projetos de pesquisa deste gênero.

Acredita-se que haveria um impacto positivo nas predições se for mudada a câmera para

um sensor mais preciso, como a câmera RGB-D industrial Phoxi Neo, empregada em

Dex-Net 4.0 [1].

Outra limitação é o diâmetro de abertura da garra, estabelecido em 50 mm, porque

é o diâmetro para o qual a rede foi treinada. Levando em consideração o tamanho dos

objetos expostos, seria interessante retreinar a rede ou adotar garra de sucção para objetos

maiores.

A fim de aumentar a acurácia dos resultados, ou seja, obter mais predições corretas

poderiam ser adotadas as posições que ocasionaram esse resultado, ou gerar a base de da-

dos sintética somente com os objetos do projeto e utilizar aprendizagem por transferência,

porque não há como corrigir somente os falsos negativos obtidos.
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7 CONCLUSÃO

Este trabalho visou desenvolver um sistema de agarre automatizado de peças

aeronáuticas em uma linha de produção, para atender a uma demanda do Projeto IDEA,

no instituto WZL. Dentre os métodos dispońıveis para planejamento de agarre, optou-se

por utilizar redes neurais. Mas foi desafiante encontrar uma rede que generalizasse bem

em objetos novos, principalmente considerando peças aeronáuticas, que têm geometrias

complexas e são distintas dos objetos utilizados na vida cotidiana. Escolheu-se a rede

GQ-CNN e foi analisada a capacidade de generalização dela.

Para este fim, foi projetado um sistema de aquisição de dados, com a câmera

RGB-D Intel RealSense D435. Assim como processamento de dados para a nuvem de

pontos, com aplicação de filtro espacial e temporal, e para a imagem colorida, para obter

segmentação binária, com máscara de plano de frente e detecção de contorno.

Finalmente foi feita a avaliação da rede GQ-CNN para 164 predições, de modo

qualitativo, metade delas feitas apenas com a nuvem de pontos obtida com a câmera

RGB-D e a outra metade também utilizando a imagem de segmentação binária. Ao

comparar os resultados, houve uma melhora notável no reconhecimento do objeto ao

utilizar a segmentação binária, o que se traduziu em um aumento na métrica de qualidade

valor-Q obtida e posições adequadas para o agarre dos objetos. A adoção da imagem de

segmentação levou a precisão de 100% na predição e 73,17% de acurácia.

A rede não foi capaz de generalizar bem como defendido por seus autores em

relação à sua métrica de qualidade, o que pode ser atribúıdo tanto à complexidade dos

objetos testados que diferem das classes vistas durante seu treinamento, quanto à falta

de qualidade da nuvem de pontos obtida com a câmera utilizada.
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8 FUTUROS TRABALHOS

Considerando as limitações relativas à câmera utilizada, outro modelo de sensor

RGB-D, com a mesma qualidade do utilizado pelos autores do projeto GQ-CNN, poderia

ser testado a fim de obter melhores nuvens de pontos e, consequentemente, melhorar a

predição da rede.

Caso o GQ-CNN ainda não generalize bem para os objetos do projeto IDEA,

o autor sugere usar o método apresentado por Mahler et al. [9] em Dex-Net 1.0 para

construir um conjunto de dados sintéticos com os objetos do projeto IDEA e usá-lo durante

transferência de aprendizado com a rede FC-GQ-CNN apresentada por Mahler et al.

em [10]. Posteriormente, os resultados entre o modelo pré-treinado e aquele treinado com

o conjunto de dados IDEA poderiam ser comparados.

Também seria interessante o desenvolvimento de uma integração ROS entre a

câmera, a rede GQ-CNN e o robô e uma avaliação posterior dos resultados em um robô

real. Finalmente, a fim de melhorar a mobilidade do robô, deveria ser implementado um

sistema de comunicação sem fio para a câmera.
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REFERÊNCIAS

[1] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,

K. Goldberg, Learning ambidextrous robot grasping policies, Science Robotics

4 (26). arXiv:https://robotics.sciencemag.org/content/4/26/eaau4984.

full.pdf, doi:10.1126/scirobotics.aau4984.

URL https://robotics.sciencemag.org/content/4/26/eaau4984

[2] S. Kumra, C. Kanan, Robotic grasp detection using deep convolutional neural net-

works, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), IEEE, 2017, pp. 769–776.

[3] J. Mahler, R. Platt, A. Rodriguez, M. Ciocarlie, A. Dollar, R. Detry, M. A. Roa,

H. Yanco, A. Norton, J. Falco, K. v. Wyk, E. Messina, J. , D. Morrison, M. Mason,

O. Brock, L. Odhner, A. Kurenkov, M. Matl, K. Goldberg, Guest editorial open

discussion of robot grasping benchmarks, protocols, and metrics, IEEE Transactions

on Automation Science and Engineering 15 (4) (2018) 1440–1442. doi:10.1109/

TASE.2018.2871354.

[4] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, K. Goldberg,

Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and

analytic grasp metrics (2017). arXiv:1703.09312.

[5] J. Mahler, M. . Matl, X. Liu, A. Li, D. Gealy, K. Goldberg, Dex-Net 3.0: Computing

Robust Vacuum Suction Grasp Targets in Point Clouds Using a New Analytic Model

and Deep Learning, Proceedings of the IEEE (2018) 1–8.

[6] J. Teuwen, N. Moriakov, Chapter 20 - convolutional neural networks,

in: S. K. Zhou, D. Rueckert, G. Fichtinger (Eds.), Handbook of Medi-

cal Image Computing and Computer Assisted Intervention, The Elsevier

and MICCAI Society Book Series, Academic Press, 2020, pp. 481–501.

doi:https://doi.org/10.1016/B978-0-12-816176-0.00025-9.

URL https://www.sciencedirect.com/science/article/pii/

B9780128161760000259



24

[7] J. Wu, Introduction to convolutional neural networks, National Key Lab for Novel

Software Technology. Nanjing University. China 5 (23) (2017) 495.

[8] M. Guo, D. V. Gealy, J. Liang, J. Mahler, A. Goncalves, S. McKinley, J. A. Ojea,

K. Goldberg, Design of parallel-jaw gripper tip surfaces for robust grasping, in: 2017

IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 2831–

2838. doi:10.1109/ICRA.2017.7989330.

[9] J. Mahler, F. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff,

T. Kroeger, J. Kuffner, K. Goldberg, Dex-Net 1.0: A cloud-based network of 3D

objects for robust grasp planning using a Multi-Armed Bandit model with correlated

rewards, IEEE International Conference on Robotics and Automation (2016) 1957–

1964.

[10] V. Satish, J. Mahler, K. Goldberg, On-policy dataset synthesis for learning robot

grasping policies using fully convolutional deep networks, IEEE Robotics and Au-

tomation Letters 4 (2) (2019) 1357–1364. doi:10.1109/LRA.2019.2895878.



Federal University of Santa Catarina

School of Technology

Department of Electrical and Electronics Engineering

APPENDIX: APPLICATION OF GRASP QUALITY

CONVOLUTIONAL NEURAL NETWORK FOR ROBOTIC

GRASPING OF AIRCRAFT PARTS

Luisa Torquato Niño
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ABSTRACT

Robotic grasping of objects faces the challenge of reliably grasping a wide variety of ob-

jects. In order to overcome this, large datasets are required, especially in systems that

adopt deep learning models. However, generating such data with measurements demands

time and capital. Recent research shows that it is possible to grasp a wide variety of

objects with high accuracy using Convolutional Neural Networks trained on synthetic

data. Therefore, this work presents the deployment and analysis of the generalization

ability of a convolutional network pre-trained on synthetic data, the Grasp Quality Con-

volutional Neural Network. This deployment also goes through the acquisition system

of point clouds and colour images using an RGB-D camera, the processing of this data,

and the quality evaluation of the grasp predictions. A comparison between the prediction

using only the cloud of points and another one accompanied by a binary segmentation

image was made, finding that the latter helps in the alignment phase for the recognition

of the object and consequently impacts positively on the results obtained. Despite being

tested on objects with different geometries from those seen during its training, the neural

network was able to generalize and obtain 41.46% of correct grasp position predictions

using point clouds and binary segmentation images as input, which can be regarded as a

positive result, given the amount of possible positions for grasping an object.

Keywords: automated grasping systems, object detection, convolutional neural network,

computer vision, synthetic data, aeronautical parts.



RESUMO

Agarre automatizado de objetos por robôs têm como um de seus principais desafios a

necessidade de agarrar seguramente uma grande variedade de objetos. Para vencer esse

desafio, bases de dados grandes são necessárias, especialmente em sistemas que adotam

modelos de aprendizagem profunda. Entretanto, gerar esses dados com medições demanda

tempo e dinheiro. Pesquisas atuais mostram que é posśıvel agarrar uma grande variedade

de objetos com alta precisão utilizando redes neurais convolucionais treinadas em dados

sintéticos. Assim, este trabalho apresenta a implementação e análise da capacidade de

generalização de uma rede convolucional pré-treinada em dados sintéticos, a Grasp Qual-

ity Convolutional Neural Network. Essa implementação também passa pelo sistema de

aquisição de nuvens de pontos e imagens coloridas através de uma câmera RGB-D, o

processamento desses dados, e a avaliação da qualidade das predições de agarre. Foi feita

uma comparação entre a predição utilizando somente a nuvem de pontos e outra acom-

panhada de uma imagem de segmentação binária, constatando-se que esta última auxilia

na fase de alinhamento para o reconhecimento do objeto e consequentemente impacta

positivamente nos resultados obtidos. Apesar de ser testada em objetos com geometrias

distintas daquelas vistas durante seu treinamento, a rede neural conseguiu generalizar e

obteve 41.46% de predições de posição de agarre corretas utilizando como entrada nu-

vem de pontos e segmentação binária, o que é considerado um resultado positivo dada as

milhares de possibilidades para escolha de posição de agarre.

Palavras-chave: agarre automatizado por robôs, detecção de objetos, rede neural con-

volucional, visão computacional, dados sintéticos, peças aeronáuticas.
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1 INTRODUCTION

Robotic grasping has a long history of research that is increasing due to interest

from industry, as mentioned by Mahler et al. [2]. In this field of research, the biggest

challenge is the ”Universal Picking”, in which the ability of an industrial robot to reliably

grasp a wide variety of objects for applications in assembly lines is tested in warehouses

and houses. In real-life applications, objects have different materials and textures, and

there might be poor lighting conditions, which can lead to errors in the object analysis

or identification. To overcome high failure rates and train industrial robots for real-life

applications, a large and robust dataset would be required, with different types of objects,

from the same class, different workspace configurations, with changes in light conditions

and background, and differences in the quality of the data acquired. This dataset can

be used to train deep learning models and avoid bias, but generating this data through

measurements can be time-consuming, costly and labour-intensive.

Recent results, exposed by Mahler et al. [3], suggest that it is possible to grasp a

wide variety of objects with high precision using Convolutional Neural Networks (CNNs)

trained on synthetic data sources, which is a method of data acquisition faster than

acquiring data through measurements. Therefore, using data augmentation methods and

synthetic data can be a solution for the problem of time and costs of generating a proper

dataset for a Deep Learning model.

Within this scope, to develop an automatic grasping system for a production line of

aircraft parts with complex geometries, this work used the techniques pointed out above,

such as CNNs trained on synthetic data, to make predictions of grasping positions for

robots. The specific objectives of this project will be explained below.

1.1 Objective

This work was developed to meet the need for an automated grasping method

capable of manipulating additive manufactured aircraft parts in a production line. The

activities were part of the IDEA project for Industrialization of Digital Engineering and

Additive Manufacturing in the chair of Production Metrology and Quality Management,

research department of Model-based Systems at Werkzeugmaschinenlabor (WZL).
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1.1.1 Methodology

To this end, a comprehensive study was conducted on methods for calculating the

grasp position of objects for robots. Considering the complex geometry of the aircraft

parts and that most of these projects are trained in datasets with ordinary objects of daily

life, such as kitchen utensils, a methodology that could generalize well between classes of

objects was selected. Therefore, the Deep Learning model developed by Mahler et al. [1],

called Grasp Quality Neural Network (GQ-CNN), was adopted, using a CNN to predict

a robust grasp position.

1.1.2 Specific Objectives

• System configuration: to compare the performance of the network properly, an

analysis of the configuration of sensors, end-effector and positioning required for

grasping was performed.

• Signal processing techniques: employed to perform data acquisition, applied to both

depth and colour images, and for the latter, techniques of binary segmentation

necessary for object localization by the grasp planning method were used.

• Test with GQ-CNN: feed the pre-trained GQ-CNN neural network with the pro-

cessed data.

• Visual evaluation: assess the difference between grasp prediction considering inputs

with segmented images, besides the point cloud, and inputs without it.

1.1.3 Work outline

Therefore, to briefly outline this work, the chapters are presented as follows:

• Chapter 3: Background about CNNs, Data Acquisition, Benchmarks, Grasp Plan-

ning methods, Robust Grasp Planning, Grasp Quality Convolutional Neural Net-

work and Data Processing.

• Chapter 4: System setup covering the data acquisition system, software and hard-

ware used, the robot setup and overview of the grasping pipeline.
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• Chapter 5: Code implementation of the signal processing methods presented in the

background chapter.

• Chapter 6: Data acquisition results.

• Chapter 7: GQ-CNN results and evaluation of its predictions.

• A conclusion and outlook of the work developed.
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2 BACKGROUND

In the following chapter, an overview of the methodologies used for grasp planning

will take place, covering an introduction to CNN, data acquisition systems, data aug-

mentation and processing methodologies and the benchmarks used to evaluate different

methods of grasping planning.

2.1 Deep Learning

In the early days of artificial intelligence (AI), the field rapidly tackled complex

problems for humans but straightforward for computers. The true challenge to AI proved

to be solving intuitive problems, such as recognizing spoken words or faces in images.

The solution was to allow computers to learn from experience and understand the

world in terms of a hierarchy of concepts, with each concept defined through its relation to

more straightforward concepts. A graph showing these concepts built on each other is deep

and full of layers. For this reason, this approach is called Deep Learning, as mentioned

by Goodfellow et al. in [4]. The Deep Learning models consist of multiple layers or

stages of nonlinear information processing, and the methods can be either supervised or

unsupervised learning.

It is split into three major classes:

• Deep networks for unsupervised or generative learning, which capture correlations

of the observed data for pattern analysis or synthesis purposes when no information

about target class labels is available.

• Deep networks for supervised learning or deep discriminative networks, which di-

rectly provide discriminative power for pattern classification, characterise class dis-

tributions based on visible data. In this case, target label data is always available.

• Hybrid deep networks that unify the assisted discrimination with the outcomes of

generative networks.

Deep learning is in the intersections among the research areas of artificial neural

networks, artificial intelligence, graphical modelling, optimization, pattern recognition,

and signal processing, as mentioned by Deng et al. in [5].
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An Artificial Neural Network (ANN) consists of multiple units called neurons,

connected similarly to the brain neurons. As mentioned by Teuwen et al. in [6], a neuron

is composed by the input features, defined by a vector of values x, weights, W , and bias,

b. An activation function, φ, is applied to the neuron to provide nonlinearity, resulting

in an affine function exposed in Equation 2.1. Therefore, a neuron would look like the

representation in Figure 1.

T (x) = φ(W · x + b) (2.1)

Figure 1: Schematic version of a neuron.

Source: [6].

The neurons are organized into layers of neurons. The output of a neuron is the

input of another neuron in the next layer, therefore they are connected. This network

consists of an input layer, one or more hidden layers and an output layer.

In order to use the neural network for predictions, it is necessary to find the values

for the parameters W and b, which is done during the training part of the ANN model.

An example of a network is given in Figure 2.

2.2 Convolutional Neural Networks

CNN is a type of deep learning architecture used mainly to recognize visual patterns

directly from image’s pixels in tasks such as image classification, image segmentation

and object detection in images. This neural network tends to outperform other pattern

recognition methods, as mentioned by Kuo in [7].

As mentioned in the previous section, neural networks use affine transformations,
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Figure 2: A 3-layer neural network with three inputs, two hidden layers of respectively
5 and 3 neurons, and one output layer.

Source: Author.

which can be applied to any input if the data is a vector. However, images have properties

that are not used when an affine transformation is applied. A discrete convolution can

substitute the affine function to preserve the image’s properties. Therefore the name

convolutional for this type of network comes from the mathematical operation convolution

integral, used in signal processing among other engineering applications. According to

Lathi [8], the convolution integral of two functions x(t) and w(t) is defined by:

y(t) = x(t) ∗ w(t) ≡
∫ ∞

−∞
x(τ)w(t− τ)dτ (2.2)

However, the data used in deep learning is discrete. Therefore, the discrete convo-

lution is calculated as follows:

y[n] = x[n] ∗ w[n] =
∞∑

m=−∞
x[m]w[n−m] (2.3)
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In convolutional networks, this operation averages several measurements, x[n],

with a weighting function, w[n], also defined as kernel, which gives more weight to recent

measurements. The output is a feature map, y[n].

When applied to images, both input and kernel are two-dimensional. Therefore,

the discrete convolution is expressed as:

Y [i, j] =
∑

m

∑

n

X[m,n]W [i−m, j − n] (2.4)

An example of a discrete convolution is given in Figure 3 to illustrate how it works.

This example represents a single input feature map in which a kernel slides through. The

product between kernel elements and overlapped input elements is computed in each

location, and the results are added up to obtain the output in the current location.

Figure 3: Computing the output values of a discrete convolution: a) Kernel; b) Feature
map in blue with the kernel (shaded area) and the output feature map in green.

(a) (b)

Source: [9].

Sequence 2.5 shows how a CNN runs.

x1 → w1 → x2 → ...→ xL−1 → wL−1 → xL → wL → z (2.5)

The network’s input is the tensor x1, a tensor of order three in the case of a three-

channel image. Following, w1 represents the weights from the first layer, also represented

by a tensor. The output of the first layer is x2, which is also the input for the second

layer. The process forwards until the layer for Backward Error Propagation, where a cost

or loss function measures the discrepancy between the CNN prediction, xL and a target,
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ground truth, denoted by t, to adjust the weights and minimize the cost function. Both

t and xL are probability mass functions.

A commonly used strategy is to output xL as a C dimensional vector whose i-th

entry encodes the prediction. The processing in the (L − 1)-th layer can be set as a

Softmax regression of xL−1, to make xL a probability mass function.

The Softmax regression is a form of logistic regression that normalizes an input

value into a vector of values that follows a probability distribution whose total sums up

to 1, as mentioned by Ng et al. in [10].

Other aspects of CNNs may vary between algorithms. Therefore, they will be

explained in more detail in Section 2.7.

2.3 Data Acquisition

As described in the book “The signal and the noise”, from Nate Silver [11], a

signal is the actual pattern aimed to learn from data, while noise refers to the irrelevant

information or randomness in a dataset. Usually, when the dataset is large, it is easier to

find patterns and relationships between the parameters and their values or signal. Machine

and Deep Learning helps us find those patterns in data, used to make predictions about

new data. The dataset must contain high quality and well-transformed data to get those

predictions right, considering that inaccurate data may cause the model to learn wrong

patterns. Accordingly, data acquisition and processing matter more than the model in

use.

This section will introduce measurement systems for data acquisition and synthetic

datasets applied to robust grasp planning, methods that use Deep Learning to detect

grasps. Further details about robust grasp planning will be explained in a separate section

afterwards.

2.3.1 Measurement Systems

RGB-D cameras are widely used in object detection, 3D mapping and location,

path planning, autonomous navigation and people tracking, among other applications.

This measurement system provides colours of objects, red, green and blue (RGB), with

their related distance (D) from the sensor on a per-pixel basis. It was used, for example,
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in robust grasp planning methods by Mahler et al. [12] and Manuelli et al. [13].

2.3.2 Synthetic Datasets

State-of-the-art deep neural networks require large datasets for their training. How-

ever, acquiring a dataset large enough to train the neural network from the beginning

requires extensive acquisition time in measurements. In order to reduce the time and cost

spent on data collection for these models, traditional methods of data augmentation were

adopted in renowned CNN models, like AlexNet [14]. The techniques used in their work

consisted of image translations, horizontal reflections, and patch extractions.

Another data augmentation technique is synthetic data generation, also used to

generate whole synthetic datasets. Currently, synthetic data is used to train autonomous

cars, streamline software development, simulate clinical situations to develop medical

solutions and reconstruct images based on synthetic data, as was the case of the generation

of the first image of a black hole [15]. Therefore, synthetic data is crucial to developing

new technologies. This data acquisition method has shown to be a good solution, but

there is the need to ensure that performance generalizes well between natural and rendered

scenes.

2.3.3 Dex-Net

Dexterity Network (Dex-Net) [16], [12], [17] and [1] is a research project by Mahler

et al. including code, datasets, and algorithms for generating datasets of synthetic point

clouds, robot parallel-jaw grasps, and metrics of grasp robustness based on physics for

thousands of 3D object models to train deep learning methods to plan grasps for robots.

The goal of Dex-Net is to provide reliable robot grasping across a wide variety of rigid

objects.

This project produced a synthetic dataset of 6.7 million point clouds and analytic

grasp quality metrics with parallel-jaw grasps planned using robust quasi-static Grasp

Wrench Space (GWS) [18] analysis on a dataset of 1500 3D object models in randomized

poses on a table in a virtual environment.

Before explaining the dataset in detail, the definition of the variables necessary to

understand it is given below.
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2.3.3.1 Dataset Variables Definition

Dex-Net 4.0 considers the problem of planning a robust planar parallel-jaw grasp

for a robot with an overhead depth camera and a heap of objects in a bin. Therefore, a

network that takes as input a depth image and outputs a grasp position and its robustness,

meaning the probability of success under uncertainty in sensing and control, needs to be

trained.

In order to generate a training dataset for this network, a virtual environment with

a parallel-jaw gripper, rigid objects singulated on a planar work surface, and single-view

point clouds taken with a depth camera is used to generate images, grasps and success

metrics. Figure 4 presents a graphical model with this setup and the dataset’s variables,

which will be explained below.

The variable properties of the camera and objects in the virtual environment are

described by the state x = (O, TO, TC , γ), where O represents the object’s geometry and

mass properties, TO and TC represent the object’s and camera’s 3D pose, respectively,

and γ is the coefficient of friction between the object and gripper.

Parallel-jaw grasps are specified as u = (p, ϕ) ∈ R3 × S1, p = (x, y, z) ∈ R3 is its

centre and ϕ ∈ S1 is an angle in the table plane.

Point clouds are defined as y = RH×W
+ , represented as a depth image with height

H and width W taken by an RGB-D camera.

The grasp’s success metric is S(u,x) ∈ 0, 1 and is modeled as in Equation 2.6:

S(u,x) =





1, EQ > δ and collfree(u,x)

0, otherwise

(2.6)

where EQ is the robust epsilon quality metric that includes uncertainty in friction and

gripper pose, and collfree(u,x) indicates if the gripper does not collide with the object

or table.

Based on the success metric, a probability of success under uncertainty in sensing

and control is calculated in Equation 2.7:

Q(u,y) = E[S|u,y] (2.7)
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The graphical model illustrated in Figure 4 models a joint distribution p(S,u,x,y)

on grasp success, grasps, states and point clouds. The network uses this distribution to

learn a robustness function, which will be explained further in Section 2.7.

Figure 4: Graphical model for robust parallel-jaw grasping of objects on a table surface
based on point clouds.

Source: Dex-Net 2.0 [12].

2.3.3.2 Dataset Composition

Dex-Net’s [12] dataset composition and generation is illustrated in Figure 5 and

described below:

1. 3D models: each mesh model is aligned to a standard frame of reference using the

principal axes, rescaled to fit within a gripper width of 50 mm and assigned a mass

of 1.0 kg centred in the object bounding box.

2. Stable poses: A set of stable poses for each mesh is computed with a probability of

occurrence above a threshold. Each stable pose is associated with a set of collision-

free grasps perpendicular to the table, considering a gripper model.
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3. Parallel-jaw grasps: each object is labelled with a set of parallel-jaw grasps. A

quality metric called Robust Epsilon Quality, EQ, is evaluated for each grasp under

object pose, gripper pose, and friction coefficient uncertainty using Monte-Carlo

sampling.

4. Rendered Depth Images: afterwards, each object’s stable pose is paired with a

rendered depth image ŷ. The images are rendered using a pinhole camera model

and perspective projection with the camera’s intrinsic values. Each image is rotated,

translated, cropped, and scaled to align the grasp pixel location with the image

centre and the grasp axis with the middle row of the image.

5. Robust Analytic Grasp Metrics: joint distribution p(S,u,x,y) on grasp suc-

cess, grasps, states and point clouds.

In order to find grasps, Dex-Net uses a modification of the algorithm developed

by Smith et al. [19]. To sample a single grasp, it first generates a contact point c1 by

sampling uniformly from the object surface S. Next, a random direction along which the

jaws close v ∈ S2 is sampled uniformly from a friction cone, and c2 is computed on the

line c1 + tv where t ≥ 0. This yields a grasp gi,k = (0, 5(c1 + c2),v) which is added to

the candidate set if the contacts are antipodal. The grasp parameters are illustrated in

Figure 6.

Figure 5: Dex-Net 2.0 pipeline for training dataset generation. The 3D models are in the
left image; at the top image, the parallel-jaw grasps are in the left and the stable poses
on the right side; at the bottom, there are the point clouds rendered from the stable pose;
the resulting dataset is in the right.

Source: Dex-Net 2.0 [12].
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Figure 6: Grasp parameterization and contact model.

Source: Dex-Net 1.0 [16]

2.4 Grasp Planning

Kumra et al. [20] mentioned that a robotic grasping implementation has three

phases: grasp planning, trajectory planning, and execution. This work will focus on

the first phase, grasp planning, a visual recognition problem that uses sensors to detect

graspable objects in an environment. The objective is to find a gripper position that

maximizes a quality or success metric, considering the object shape and environmental

factors, like the object’s pose on a table or an obstacle between the robot and the object.

Grasp planning includes the tasks of object localization, pose estimation and grasp

detection. Object localization is achieved using object detection and image segmentation,

while pose estimation uses point clouds for its methods. Grasp detection methods are

analytical, empirical or hybrid, based on their success metric.

2.4.1 Analytical Methods

Analytical methods match images to predefined 3D models. For example, the

kPAM method by Manuelli et al. [13] adopts four main points of an object to represent it:

a central point at the bottom, a central point at the top, an axial vector to the object and

an external point to place the object. Afterwards the object representation is matched to

known 3D objects.
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2.4.2 Empirical Methods

On the other hand, empirical methods generally use machine learning to predict

directly from the robot sensors readings to success labels from humans or physical trials.

The work developed by Gualtireri et al. [21] uses deep reinforcement learning for pick-

and-place and re-grasping tasks. The difference between their model and others is that

the exact geometry of the objects to be handled is unknown. A downside of this method

is that it has to be retrained to perform a similar task for other classes of objects and

cannot work with a more diverse set of objects.

2.4.3 Hybrid Methods

The best aspect of both methods is united in hybrid approaches, which utilizes

massive synthetic datasets generated with analytical models and Deep Learning. These

approaches utilize policies that query a neural network to determine the highest quality

grasp, and they fall into two categories, as shown in Figure 7.

The first category is discriminative, which utilizes a neural network to rank grasps

based on a quality metric and optimization techniques to search for high-quality grasp

candidates, like the policy developed in Dex-Net 4.0 [1]. This approach will be explained

later in this chapter.

The second one is generative, which comprises approaches that directly generate a

grasp set, given sensor data, and may use analytical methods to select the optimal grasp

from this set, such as Generative Grasping Convolutional Neural Network (GG-CNN) by

Morrison et al. [22].

2.4.4 Grasp Evaluation

In order to evaluate grasp candidates, EQ can be obtained through the analysis of

the Grasp Wrench Space [18], which describes the force and momentum applied at the

grasp points. In Dex-Net 4.0 [1], the framework evaluates all grasps according to the

ability to resist random disturbing forces and torques (wrench).
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Figure 7: Hybrid approaches fall into two categories: discriminative and generative.

Source: Author.

2.5 Benchmarks

Before evaluating methods available nowadays for grasp planning, an overview

of benchmarks used to evaluate them is necessary. Although the benchmarks used to

compare methods are still an open discussion, one that seems adequate is the one proposed

by Mahler et al. in [2], used in this work.

The number of objects successfully grasped per hour is measured by Mean Picks

Per Hour (MPPH). Defined as E(ρ), it is the combination of speed and success rate, given

by the following Equation 2.8:

E(ρ) = v · q (2.8)

The mean grasp, or speed, rate, is given by the following equation:

v =
1

ts + tc + tr
(2.9)

where ts, tc and tr are the average times for sensing, computation, and robot motion,

respectively, in seconds. The average time for computation is referred to as grasp com-
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putation time (GCT).

The measure of MPPH also depends on the Success Rate (q), which is the mean

grasp reliability, or probability that each grasp attempt is successful.

Another metric used to evaluate different methods for grasp planning is the Precision-

Recall curve. This curve is determined by plotting the precision against the recall for a

single classifier considering a threshold, defined as the predicted probability of an observa-

tion belonging to the positive class. In a binary classification problem, a prediction relative

to labelled data can be a true positive, false positive, true negative or false negative.

Precision estimates how well a model predicts the positive class. Therefore, it is

also known as Positive Predictive Value (PPV) and, as mentioned by Cook et al. in [23],

it can be calculated as follows in Equation 2.5, where TP is the number of true positives

and FP is the number of false positives.

precision = PPV =
TP

TP + FP
(2.10)

While recall, also known as sensitivity, is the fraction of positive predictions out of

all positive instances and is represented in Equation 2.5.

recall = sensitivity =
TP

TP + FN
(2.11)

An accurate classifier maintains precision and recalls at a high level, near 1.

2.6 Robust Grasp Planning

Robust grasp planning considers the same problem as grasp planning but in the

presence of perturbations in the object properties, such as shape and pose, or mechani-

cal properties, such as friction, caused by the imprecision in perception and control, as

mentioned by Mahler et al. in Dex-Net 1.0 [16].

In Dex-Net 2.0 [12], Mahler et al. developed a model called Grasp Quality Con-

volutional Neural Network (GQ-CNN), that predicts the probability of a successful grasp

by classifying grasp candidates sampled from an RGB-D image and ranking them indi-

vidually using CNNs. The grasp planner receives as input a depth image, an optional
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binary image and the RGB-D camera intrinsic values and outputs a grasping position

for the gripper, with two antipodal points and a probability of success under uncertainty

in sensing and control. The grasps are specified as a Cartesian position, an angle, and

a grasp distance relative to the RGB-D sensor. It uses robust analytic grasp metrics as

supervision, using the gripper distance from the camera in predictions.

Afterwards, in Dex-Net 3.0 developed by Mahler et al. [17], a compatible suction

contact model was proposed which computes the quality of the seal between the suction

cup and the target object and determines whether the suction gripper can resist the forces

external to the object, such as those caused by gravity. A dataset of 2,8 million point

clouds, suction grasp data, and grasp robustness identifiers, calculated using 1.500 3D

object models, were used for training the CNN.

The resulting system was evaluated in 375 physical tests at ABB YuMi equipped

with a pneumatic suction arm. The model achieved 99 % accuracy in a dataset of known

objects with adverse geometries such as sharply curved surfaces.

The most recent dexterous network developed by Mahler et al. [1] is Dex-Net 4.0.

It is an ambidextrous system, because it uses two end-effectors, a suction cup gripper and

a parallel-jaw, and evaluates grasps with a standard metric: expected wrench resistance,

or the ability to resist task-specific forces and torques, such as that caused by gravity,

under random perturbations. Each grasp is planned based on a depth image from an

overhead RGB-D camera, using a ray tracing algorithm for 3D reconstruction. Dex-Net

4.0 policy achieves 95% reliability on a physical robot with 300 MPPH.

In Table 1 and Table 2, Mahler et al. compared Dex-Net 4.0 alone, Dex-Net 3.0

and 2.0 composite, a heuristic for suction only and a heuristic composite for a suction

cup and parallel-jaw, using bin-picking benchmark [2], for five trials on level 1 and level

2 datasets of 25 novel objects each. Level 1 refers to prismatic and circular solids. Level

2 refers to everyday household objects with varied geometry and masses up to 500 g.

Each grasp was planned based on a depth image from an overhead RGB-D camera. The

minimum number of grasp attempts was 125.

The heuristic suction refers to a hand-coded function for suction cups. It ranks

planar grasps based on the inverse distance to the central point of an object, where the

object’s central point is estimated as the mean pixel of an object instance segmentation

mask, obtained using Euclidean clustering segmentation algorithm from the Point Cloud
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Library (PCL). Planarity was determined by evaluating the Mean Squared Error (MSE)

of all 3D points within a sphere with a radius of 10 mm, based on the suction cup size, to

the best-fit plane for the points. Grasps were considered planar if the MSE was less than

an absolute threshold or within the top 5 % of all grasps candidates.

The heuristic compound refers to a hand-coded function to select between the

suction jaws and the parallel-jaws. It classifies the planned grasp points with the suction

function mentioned above and a parallel-jaws heuristic based on antipodal points, that is,

two opposing points. This method classifies antipodal points based on the inverse distance

to the estimated central point of an object, determining the antipodal points based on the

estimated point cloud surface norms. The grasping point closest to the estimated centre

of the object through both parallel-jaws is selected for execution.

Table 1: Comparison between methods using the level 1 dataset. The best results are
highlighted in bold.

Level 1

Policy Reliability

(%)

MPPH AP (%) No. of

attempts

No. of

failures

Heuristic

(suction)

93 331 95 135 10

Heuristic

(composite)

91 281 93 139 14

Dex-Net 2-3

composite

91 306 93 135 10

Dex-Net 4.0 97 309 100 129 4

Source: Dex-Net 4.0 [1].
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Table 2: Comparison between methods using the level 2 dataset. The best results are
highlighted in bold.

Level 2

Policy Reliability

(%)

MPPH AP (%) No. of

attempts

No. of

failures

Heuristic

(suction)

80 304 87 159 31

Heuristic

(composite)

76 238 83 168 43

Dex-Net 2-3

composite

76 255 64 168 43

Dex-Net 4.0 95 312 99 131 6

Source: Dex-Net 4.0 [1].

From this comparison, Dex-Net 4.0 was selected for implementation in the grasping

pipeline of this project.

In the recent work from Vishal [24], the deployment of a Fully Convolutional Net-

work generated an alternate faster GQ-CNN, called Fully Convolutional Grasp Quality

Convolutional Neural Network (FC-GQ-CNN). The FC-GQ-CNN outperforms the GQ-

CNN, GQ-CNN(∗), and the Parallel-Jaw (PJ) heuristic in rate and reliability. With

FC-GQ-CNN, it was possible to increase the number of successful grasps significantly

compared to the prior policy, DexNet 4.0, based on iterative grasp sampling and evalua-

tion, as shown in Table 3, where GQCNN(∗) is a version of GQ-CNN with an increased

Cross-Entropy Method (CEM) sampling, increasing the performance of CEM at the cost

of rate.

Table 3: Comparison between a parallel-jaw (PJ) heuristic, GQ-CNN, and FC-GQ-CNN
on bin picking with 25 novel objects on a physical robot.

Policy Reliability (%) AP (%) GCT (s) MPPH

PJ Heuristic 53,4 77,1 2,0 162

GQ-CNN 75,8 96,0 1,5 250

GQ-CNN (∗) 81,2 93,8 3,0 236

FC-GQ-CNN 85,6 95,2 0,6 296

Source: [24].
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Considering the values in Table 3, the GQ-CNN model optimization using Fully

Convolutional Network would be the best option for this project. However, the computer

used for this work did not have enough processing power, and the ones available at the

institute that had the required processing power could not have a Linux system installed

for cybersecurity reasons. Therefore, the latest version of GQ-CNN, presented in Dex-Net

4.0 [1], was used in this project.

2.7 Grasp Quality Convolutional Neural Network

In Dex-Net 4.0, GQ-CNN was trained separately for each kind of gripper, parallel-

jaw and suction-cup. Considering that this project used a parallel-jaw gripper, the corre-

sponding policy will be explained in detail in this section, from the type of data used for

its training, its architecture, the results generated and how it can be employed.

In order to learn the policy, their method uses a training dataset generation dis-

tribution µ, which consists of two stochastic components:

• Synthetic training environment: similar to the one previously exposed for Dex-

Net 2.0 in Subsection 2.3.3, with the addition of a binary reward label, evaluated

according to the ability of a grasp to resist forces and torques due to gravity and

random perturbations.

• Data collection policy: evaluates actions in the synthetic training environment

using supervised learning to train the policy πθ.

2.7.1 Definitions

Considering Dex-Net 4.0 uses the synthetic training environment of Dex-Net 2.0,

the variables defined in Subsection 2.3.3 are the same for this problem, with the addi-

tion of a partially observable Markov decision process (POMDP) framework in which a

robot plans grasps to maximize expected reward, the probability of grasp success, given

imperfect observations of the environment.

A robot with an overhead depth camera views a pile of novel objects in a bin. On

grasp attempt t, the robot observes a point cloud yt from the depth camera and uses

a policy ut = π(yt) to plan a grasp action ut for a gripper g. The gripper consists of

a 3D rigid position and orientation Tg = (Rg, tg). After executing the grasp, a binary
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reward Rt = 1 is recorded if it successfully picks and places the object in a target position,

otherwise Rt = 0. The reward depends on the state xt, which includes geometry, pose,

a centre of mass and material properties of each object. This process continues until the

bin is empty or the total grasp attempts T is reached.

2.7.2 Policy

The goal of the GQ-CNN developed in Dex-Net 4.0 is to learn a policy, πΘ, that

maximizes the rate of reward, given by Equation 2.8, considering a constant time per

grasp and a maximum of T grasp attempts.

The learning process is illustrated in Figure 8, and the training dataset generation

pipeline was exposed in detail previously in Figure 5. First, a training dataset D =

(Riyiui)
N
i=1 is sampled from the distribution µ. Then, a quality function learnt in GQ-

CNN, Qθ,g(y,u) ∈ [0, 1], is used to estimate the probability of success for a given grasp

with gripper g. The weights θg are optimized to minimize the CEM loss L between the

GQ-CNN prediction and the true reward over the dataset D:

θ∗g = argmin θg∈Θ

∑

(Ri,ui,yi)∈Dg

L(Ri, Qθ(yi,ui)) (2.12)

where Dg denotes the subset of the training dataset D containing only grasps for gripper

g. Finally, the robot policy πθ is constructed by planning the grasp that maximizes quality

Qθ,g across all available candidates Ug and grippers G, sampled from the depth image:

πθ(yt) = argmax g∈G{max ug∈UgQθ,g(yt,ug)} (2.13)

2.7.3 Architecture

As previously explained in this section, GQ-CNN is trained separately for each

gripper in Dex-Net 4.0. Its architecture is similar to the one used in Dex-Net 2.0 [12],

illustrated in Figure 9, and Dex-Net 3.0 [17], with changes in the sizes and pooling of the

layers.

The neural network takes as input the gripper depth from the camera z and a depth

image centred at the grasp centre pixel (i, j) and aligned to the grasp axis orientation ϕ.
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Figure 8: Dex-Net 4.0 [1] framework is divided in three phases: 1) Synthethic dataset
generation (top); 2) Policy learning (middle); 3) Robot execution (bottom).

Source: Dex-Net 4.0 [1].

Then the network receives the data to estimate grasp robustness Qθ. The architecture in

Figure 9 has four convolutional layers in pairs of two separated by Rectified Linear Unit
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(ReLU), explained in Subsubsection 2.7.3.1, followed by three fully connected layers and

a separate input layer for z.

Figure 9: Original GQ-CNN architecture from Dex-Net 2.0.

Source: Dex-Net 2.0 [12].

2.7.3.1 Activation functions

An image’s semantic information is a highly nonlinear mapping of pixel values in

the input. Therefore, in CNNs, activation functions are assigned to bring nonlinearities so

that the network can learn any functionality. If those functions are removed, it is exper-

imentally observed that the system performance drops by a large margin. As mentioned

by Kuo [7], three activation functions are commonly used by CNNs: logistic sigmoid

function, ReLU, and leaky ReLU with its variants, the Parametric Rectified Linear Unit

(PReLU) and the Randomized Rectified Linear Unit (RReLU). They are shown in Figure

10.

Figure 10: Three nonlinear activation functions adopted by CNNs: the sigmoid function
(left), the ReLU (middle) and the leaky ReLU (right).

Source: Kuo [7]

Logistic sigmoid works worse than ReLU in CNN learning, as mentioned by Wu

[25], because it causes the magnitude of the gradient to reduce in the Backward Error
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Propagation process significantly. On the other hand, ReLU can increase the network’s

accuracy by zeroing all the negative values and forwarding the positive ones as they are.

In the recent work of Xu et al. [26], it was proven that Leaky ReLU and its variants

are better than ReLU, specially RReLU, due to its randomness in training, which reduces

the risk of overfitting. In contrast to ReLU, in which the negative part is dropped, the

leaky ReLU assigns a non-zero slope. For the variant PReLU, the slopes of negative parts

are learned from data, while for RReLU, the slopes are randomized in a given range in

training and then fixed in the testing.

2.7.3.2 Pooling

As mentioned by Teuwen et al. [6], the goal of a pooling layer is to produce a

summary statistic of its input and reduce the feature map’s spatial dimensions. Be-

sides ReLU, two pairs of convolutional layers are separated by a max-pooling operation.

Therefore, the max-pooling operation reports the maximum output within a rectangular

neighbourhood of each point per input. It helps to make the representation approximately

invariant to small input translations, as mentioned by Theodoris [27], which improves the

computational efficiency of the network because the layer has fewer inputs to process.

2.7.4 Training

A CNN uses its weights as a supervision signal, optimized to minimize the network

output loss value. The goal of a CNN is to match its prediction to a ground truth label.

In case of GQ-CNN, the network weights are initialized using a Kaiming initializer,

created by Kaiming et al. [28], an initialization method for neural networks that consider

the non-linearity of activation functions, such as ReLU. Therefore, the weights are initial-

ized by sampling from a zero-mean Gaussian with a standard deviation of
√

2
ηi

, where ηi

is the number of inputs to the i-th network layer. The network parameters are optimized

using back-propagation with Stochastic Gradient Descent and momentum.

2.7.5 Analysis

In order to analyze the performance of a trained GQ-CNN, it is helpful to check

the training and validation loss and classification error in a precision-recall curve, which
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can be observed in Figure 11a and Figure 11b. The plot ”train” refers to the training,

and ”val” refers to the validation.

The learning curve in Figure 11a is used to evaluate how the algorithm learns over

time. The training learning curve, in blue, is calculated from the training dataset and

gives an idea of how well the model is learning. While the validation learning curve, in

green, is calculated from a validation dataset that gives an idea of how well the model is

generalizing. This learning curve’s shape can be considered a good fit because the training

and validation loss decreases to the point of stability with a minimal gap between their

values. However, there is still a gap called the generalization gap.

While in Figure 11b, it can be observed that the system returns few positive

results, but most of its predicted labels are correct compared to the training labels. An

ideal system would have high precision and high recall.

Figure 11: GQ-CNN training analysis.

(a) Error rate versus training iteration. (b) Precision recall curves.

Source: Dex-Net 2.0 [12].

2.7.6 Cross-Entropy Robust Grasping Policy

In Dex-Net 4.0, the dataset collection policy samples grasp actions from the point

cloud using the sampling techniques of Dex-Net 2.0 [16] for parallel-jaw gripper. Grasp

policies with CNNs can only evaluate a limited number of grasps in a time interval.
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Therefore, this approach uses CEM to optimize for the most robust grasp, in other words,

the highest quality grasp.

As mentioned by Levine et al. [29], the CEM policy samples an initial set of

candidates, sort them, and fit a Gaussian Mixture Model (GMM) to the top candidates.

Then, the grasps are re-sampled from the new distribution, and the previous steps are

repeated for K iterations, returning the best candidate from the final sample set.

2.8 Data Processing

Many classical grasping pipelines consist of an alignment phase, in which 3D

Computer-Aided Design (CAD) models are used in the training set, or scans are matched

to the input point clouds received by RGB-D sensors.

Object segmentation without prior models of the objects is complex due to sensor

noise and occlusions. Projects such as the one developed by Schwarz et al. [30] and Mask

R-CNN [31] use deep learning to segment objects for the alignment phase. Mask R-CNN

is a deep learning method used to segment specific categories of objects in RGB data, but

it requires a massive hand-labelled dataset. It uses semantic segmentation, linking each

pixel in an image to a class label. Danielczuk et al. [32] mentioned that these techniques

require time-consuming human labelling to generate training data, and existing datasets

consist of RGB images of natural scenes, different from an industry’s routine. Therefore,

in robotics, pixel-wise object segmentation is often avoided, being used only for a small

number of object classes.

This section will explain the methods employed for pre-processing the colour and

depth data obtained with an RGB-D camera and the post-processing for acquiring a

binary image used in the robust grasp planning policy.

2.8.1 Unsharp mask

In medical applications, edge detection algorithms identify regions of relevant infor-

mation within an image. Techniques used to enhance the contrast of images first separate

the high or low-frequency components of an image, manipulating them separately and

then recombining them together with different weights, as mentioned by Badamchizadeh

et al. [33]. Based on the image grey levels histogram, high levels usually give relevant
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information, and the low-frequency parts of an image give the background. A method

called Unsharp Mask can emphasize the high-frequency parts of an image, considered

an edge detection filter. It is illustrated in Figure 12, where s(m,n) is the input image,

g(m,n) is the output image, and sLP (m,n) is the input image with a low pass filter. The

background information is extracted by the difference between the s(m,n) and sLP (m,n),

working as a high-pass filter, which produces a detailed image. This image is weighted

by a harmonization factor, represented by β, typically equal to 0.8. Finally, the output

is the addition between the input and the filtered image, resulting in an enhanced image.

Figure 13 illustrates the results obtained with the method described above.

Instead of subtracting an image with a low pass filter from the original one, a

Laplacian filter could be used directly as a high pass filter in the original image, and

the resulting image could be added to the original one. Nevertheless, as mentioned by

Badamchizadeh et al. [33], this filter is susceptible to noise present in the original image.

Therefore, it was not employed.

Figure 12: Circuit of an unsharp mask used to enhance edge detection algorithms.

Source: Author
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Figure 13: A filter of CT data using unsharp masking. The high-pass information of the
original image (left) is twice as high in the resulting image (right). It is noticeable how
details have been amplified. This technique works well due to the lack of noise in the
image

Source: Kikinis [34]

2.8.2 Border following technique

The border following is one of the fundamental techniques for binary segmentation

and was developed by Suzuki [35]. Considering an image in black and white, it derives a

sequence of the coordinates from the border between a connected component of 1-pixels,

which could be an object in this case, and a connected component of 0-pixels, which could

be the background or holes.

With this approach, a binary image, in which the background is black and the

observed objects are highlighted in white, can be obtained, exemplified in Section 5.1.

2.8.3 Exponential Moving Average

A low pass filter is a basis for most image smoothing methods. An image is

smoothed by decreasing the disparity between pixel values by averaging nearby pixels.

The filter passes low frequencies and attenuates high frequencies.

A type of low pass filter is the edge-preserving filter, which can be applied to

a depth image to smooth depth noise and preserve edges. This filter raster the depth
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map in x-axis and y-axis and back again, twice, while calculating the one-dimensional

Exponential Moving Average (EMA) using an α parameter that determines the amount

of smoothing. The recursive equation 2.14 is as follows:

St =





y1, t = 1

αyt + (1− α)St−1, t > 1 and ∆ = |St − St−1| < δthresh

yt, t > 1 and ∆ = |St − St−1| > δthresh

(2.14)

Where y is the newly recorded instantaneous value, and St is the value of the EMA

at any period t. The threshold parameter used to identify the edges is δthresh. If the depth

value between neighbouring pixels exceeds δthresh, then α is set to 1, so no filter is applied.

If α = 1, no filter is applied, while α = 0 means an infinite history for the filtering.

2.8.4 Spatial filtering

Spatial filtering is a hole-filling method, where the neighboring left or right pixels

within a specified radius are used to fill holes with the EMA filter explained above.

2.8.5 Temporal filtering

Temporal filtering is another filter for depth images, which is used to improve the

depth map by time averaging. It uses EMA filter as well, in which α represents the extent

of the temporal history, in other words, the frames that should be averaged.

Additionally, a persistence filter can be used, which fills a hole with the last valid

value seen given a set of frames.

2.8.6 Rigid Transformation

In order to align an object being observed by a camera, a rigid transformation has

to be calculated with equation 2.15:




xc

yc

zc


 = R×




xw

yw

zw


 + T , (2.15)
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in which xc, yc, zc are the object’s coordinates in the camera’s coordinate system and

xw, yw, zw are the object’s coordinates in the world’s coordinate system. R and T are

the orthonormal 3D rotation matrix of 3 × 3 and a 3D translation vector, respectively,

representing the camera’s location in the 3D scene.

The rotation matrix is given by:

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 (2.16)

The translation vector is given by:

T =




t1

t2

t3


 (2.17)

Together they form the extrinsic matrix of a camera:




r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3


 (2.18)

Singh et al. [36] mentioned that a camera could be calibrated with its intrinsic

and extrinsic values. The camera’s intrinsic values are its optical centre, in pixels, also

called the principal point cx, cy, its focal length fx, fy and the skew s coefficient, which is

non-zero if the image axes are not orthogonal. An intrinsic matrix, also called projection

matrix, has the following shape:

K =




fx s cx

0 fy cy

0 0 1


 (2.19)
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3 SYSTEM SETUP

Considering the advantages and limitations of the techniques mentioned earlier,

the chosen method for this project was Dex-Net 4.0’s pre-trained model and its grasping

pipeline. The pre-trained model tends to generalize well in predictions of novel objects,

i.e., not contained in the training set. Therefore, it is expected to make reliable predictions

for the IDEA’s aircraft parts.

Benchmarks were developed to facilitate progress and reproduction and focus on

gaps in the state of the art of robust grasp planning systems. Although nowadays several

researches in this area openly share code and data, it is still challenging to compare grasp

planning methods and reproduce experimental results to identify which aspects of each

approach work better due to variations in experimental assumptions and protocols, as

in sensors and lighting, robot arms, end-effectors and objects characteristics. This work

tried to reproduce the experimental setup of the adopted policy. In order to standardize

the experiments, this work will report the metrics specified by Mahler et al. in [2] in the

following chapter.

The following sections will specify how the system setup in this work was carried

out to achieve the proposed objectives.

3.1 Data Acquisition

Cameras are available with variations in mode, for example, RGB vs RGB-D,

lenses, resolution, light sensitivity and noise levels. In addition, robot jaws can have force

and tactile sensors.

In order to acquire 3D data from objects, an RGB-D camera was used. This section

will explain how the data collection was executed, the system’s operational aspects and

the type of data acquired.

3.1.1 RGB-D Sensors

The camera has an RGB-D sensor that unites traditional colourful images (Red,

Green and Blue - RGB) with a depth sensor, providing shape information and colour on

a per-pixel basis. This combination leads to improved object detection, recognition, 3D
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mapping and location, path planning, autonomous navigation and people tracking since

some objects can only be differentiated with both information. For example, an orange

can be differentiated from a lime by its colour since they have the same shape.

This project used the Intel RealSense D435 RGB-D camera to acquire data, shown

in Figure 14. It has an Infrared (IR) Stereo Camera and an IR Projector.

At first, to acquire a test dataset, the camera was mounted externally to the robot

in a fixed point of view 600 mm above the workspace, pointing to the centre of the

workspace.

At its final configuration, for the grasping pipeline, the camera was mounted on the

robot’s end-effector, an eye-in-hand configuration, with a fixed initial position of 600 mm

above the workspace. The data is acquired only in this position, so it has one Field-of-

View (FOV) parallel to the workspace plane. The resolution used was 1280×720 with 30

Frames per Second (FPS).

Figure 14: Internal components of the RGB-D camera D435.

Source: [37].

A downside experienced by Morrison et al. [22] is that the RealSense RGB-D

camera cannot provide any valid depth data on many black or reflective objects or if

the object is positioned less than 300 mm away from the camera. In order to solve this

problem, a matte colour spray could be applied to the object, which is a solution that
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was employed in this work.

Regarding the technical aspects of the Stereo Depth Camera, in order to acquire

good depth data, some parameters deserve attention during the measurement:

• Distance: Stereo depth cameras consist of two fixed cameras pointing in the same

direction but separated by a certain distance, namely the baseline. The minimum

(MinZ) and maximum (MaxZ) distance of a Stereo depth camera depend on its

baseline and its focal length as follows:

MinZ(mm) = focal length (pixels) x Baseline(mm)/126 (3.1)

Every pixel of each image needs to be shifted to match the images produced by

the right and left cameras. Those shifts are quantified by the number of pixels

shifted, known as the disparity. The disparity shift can be increased to decrease the

minimum distance, but this would also decrease the maximum distance. Therefore,

the minimum distance adopted was 300 mm.

• Depth resolution: Since the input resolution directly affects the input image and

depth precision, the highest available resolution, which is 1280x720, was used in this

project. The selected resolution also affects how many frames per second (FPS) the

camera can obtain.

3.1.2 Types of Data

There are different formats available to store 3D object models: PCL, Stereolithog-

raphy (STL), Standard for the Exchange of Product Data (STEP), Polygon File Format

(PLY), among others. The choice of format is based on the use case. For this project,

the object models obtained with RGB-D were saved as PLY, containing both colour and

depth information, and depth images were stored in Numpy array (NPY) format. This

subsection will explain the aspects considered in each data format.

• PLY:

Analysing the data type that RGB-D sensors output, they are an RGB description

of the image with the correspondent depth information, given on a per-pixel basis.
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Therefore the data obtained can be stored in PLY format, a type of structured mesh,

where the data can be accessed by indexes and the vertices positions are explicitly

stored. In this format, the object definition comes as a list of X, Y, Z, triples for

vertices and a list of faces described by indices into the list of vertices.

• NPY:

In order to process the data generated by measurements, it needs to be converted

into an easily readable format. The format adopted here is the Numpy array [38]. It

is a binary format that stores all the shape and data type information necessary to

reconstruct the array correctly in machines with different architectures. Therefore,

it was chosen to store the depth information.

3.2 Software and Hardware

In order to achieve the goal of this project, the following software and hardware

were used. Regarding the adopted software:

• Intel RealSense SDK: it is a Software Development Kit (SDK) created to use the

Intel RealSense cameras, capture depth images, RGB images, export point clouds,

produce videos, post-process the signal of both colour and depth data.

• SolidWorks: used to visualize CAD models chosen to 3D print.

• PyCharm: software used to program in Python and to interact with the project

Git repository.

Regarding the adopted hardware:

• Computer System:

A notebook with Intel(R) Core(TM) i7-4500U Processor and 8 GB installed memory,

Random Access Memory (RAM), and the operating system Linux Ubuntu 16.04

LTS. The computer has 3 USB 3.2 terminals.

• Cables: An USB-C cable was used to connect the camera to the computer. It was

purchased together with the camera.
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3.3 Robot Setup

This section will expose the setup adopted in the project for a future application

with the robot. No grasp test has been performed in the robot during this work because

this system was developed in the IDEA project initial phase. Therefore, other parts, such

as trajectory planning and grasp execution, are under development at the WZL institute,

which are essential for the grasping tests with the robot. It should be regarded that access

to the laboratory was restricted due to the pandemic, consequently the development of

the subsequent parts of this work was delayed.

3.3.1 Gripper

Two types of robot end-effectors were used in the robust grasp systems mentioned

before: parallel-jaw [12], [16] and vacuum suction [17]. Both require calculating the force

that the gripper and suction cup must apply to hold an object without damaging it and

checking which points are appropriate for grasping the objects.

Vacuum suction grippers are widely used in industry and are often preferred over

parallel jaw claws and multi-finger claws due to their ability to lift objects with a single

point of contact. This ability simplifies planning and the selection of suction points in

objects. However, this gripper is mainly used on flat and smooth surfaces.

Works such as Dex-Net 4.0 [1] explore the possibility of using two or more heteroge-

neous grippers, which is called “ambidextrous” robot grasping. The deep learning model

adopted in this project, Dex-Net 4.0, can be used for suction and parallel-jaws grasping

points predictions, but only the prediction of parallel grasps was explored. Therefore,

parallel jaws were designed, and 3D printed using polylactide (PLA) as material. The

tips for the parallel-jaws were manufactured considering the design studied by Guo et al.

in [39], with variation in the size and type of surface texture. Figure 15 shows one of the

tip models, manufactured with 3D printing, and the pairing socket to connect the robot,

the Schunk PGN Plus 50/2 gripper, the claws and the RGB-D camera.

3.3.2 Workspace

The robot’s workspace consists of a black background approximately 600 mm away

from the camera, which is located in the robot end-effector. This background is black and



57

Figure 15: 3D printed parallel-jaw at the left and pairing socket for the parallel-jaw at
the right.

Source: Author.

not reflective to avoid obstructing the measurement of objects by the RGB-D camera, as

explained previously in this chapter.

It is also relevant to notice that the workspace has to consider the robot FOV, in

which the robot kinematics allow it to perform a vertical grasp.

Concerning the lighting system for the project, an indoor ambient artificial light

was adopted.

3.3.3 Test set

The aircraft parts from the IDEA project were manufactured by multiple sources,

with a 3D printer using PLA and metal laser powder-bed fusion (L-PBF), and they were

used in the data acquisition process for the policy input. Additional objects with simple

geometries made of wood were used as well.

Once the objects from the Dex-Net 4.0 training set have been analyzed, geometry

similarities with the IDEA project objects were found. For example, the shape of a blisk

can be simplified to the one of a doughnut. The CNN tends to perform well in objects with

geometries similar to the ones contained in the training dataset. Consequently, successful

predictions were expected to be achieved.

As explained earlier in this chapter, the colour of an object and its reflection
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can cause poor measurements by the Intel Realsense camera. This problem was solved

with the application of a matte colour spray. Figure 16 shows the objects that were

manufactured as well as two grippers for the parallel-jaw gripper with differences in the

support geometry, the contact surface as well as the contact area of the tip, at the extreme

of the gripper

Figure 16: All the 3D printed objects used in this project: (I) two models of jaws; (II)
aircraft part manufactured in metal and PLA (coloured); (III) and (V) are objects from
the IDEA project, (IV) is a type of blisk and (VI) is a turbine support.

Source: Author.

3.3.4 Transformation

The camera was calibrated using the OpenCV’s calibration routine based on the

method proposed by Zhang [40]. This method estimates intrinsic and extrinsic camera

parameters from several views of a known calibration pattern, where every view is de-

scribed by several 3D-2D point correspondences. Therefore, an easily detectable object
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with known geometry shall be used as a calibration pattern. In this method, a chessboard

is used as a calibration pattern, as shown in Figure 17.

The transformations calculated with this method are used to determine the exact

pose of the object in relation to the robot and make it possible to compute the movement

of the robot to perform the grasping.

Figure 17: The chessboard is positioned on the workspace for the hand-eye calibration
between camera, robot and workspace.

Source: Author.

In order to facilitate the transformations between camera, robot and gripper, the

eye-in-hand position for the camera was adopted.

From Equation 2.19, the intrinsic parameters of the Intel RealSense D435 RGB-D

camera for 1280× 720 resolution are:
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fx s cx

0 fy cy

0 0 1


 =




637, 6 0 640, 2

0 637, 6 372, 0

0 0 1


 (3.2)

The final result of the GQ-CNN prediction is a pose and a probability of successful

grasp with the predicted pose, chosen from a sample space of candidate grasps. For the

given pose, the following transformations must be applied:

|T camera−gripper = T camera−world × T world−grasp × T grasp−gripper|, (3.3)

where T grasp−world is given by the rotation quaternion and the translation.

3.4 Grasp Detection Pipeline

The grasping pipeline comprises three stages: image processing, evaluation of net-

works and computation of grasp pose. The best grasp pose is calculated from a single

viewpoint and executed by the robot open-loop.

In order to facilitate the understanding of the process, the flow chart presented in

Figure 18 was created.



61

Figure 18: System’s open-loop control flow chart.

Source: Author.
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4 SIGNAL PROCESSING

This chapter refers to the previously proposed data acquisition system’s test and

application of the signal processing methods.

The GQ-CNN model from Dex-Net 4.0 needs to be fed with a mandatory depth

image, the camera intrinsic values and an optional binary segmentation mask. If the

segmentation mask is not provided, one is derived from the depth image with the inverse

of the zero-valued pixels, called invalid pixels.

The following sections will expose the methods used to post-process the depth and

colour image.

The post-processing method applied in Dex-Net 4.0 for acquiring the binary seg-

mentation mask for the GQ-CNN input uses a point cloud acquired by an RGB-D camera.

The method applies Euclidean Clustering to the point cloud to find objects based on the

nearest neighbour points within a threshold area.

Since the depth image generated with the Intel RealSense D435 contains more

noise than the one obtained in Dex-Net 4.0, which uses Photoneo Phoxi S, an industrial

depth camera with high precision, a better segmentation mask could be obtained using

the coloured image instead.

The methods used for noise reduction in the depth image and binary segmentation

will be explained.

4.1 RGB-D data pre-processing

The way to process data depends on its application. For this work, high accuracy

is better than high information density. Therefore, the filters chosen for the RGB-D data

provide a depth map that is less dense, which is essential in decision-making tasks.

The RealSense camera was expected to be straightforward to use. However, the

camera produces noisy point clouds, and special attention had to be given to this situation

by investigating which filters would be best for this application.

According to the Intel RealSense developers [41], a proper set of default values for

the spatial filtering would be α = 0, 6 and δ = 8, where δ is in units of 1/32 disparities,

so 8 means 8/32 disparities.

Temporal filtering was also adopted to smooth data, but its persistency mode was
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avoided in this case, because it would be favourable in a scene where poor light conditions

and the appearance of holes are common due to shadowing. In the current project, where

high accuracy is required, an optimal light source is provided, and the system stays in a

fixed position, it is not needed. The values adopted for the temporal filter were α = 0, 5

and δ = 20, as suggested by the camera developers [41].

Although being unnoticed by the human eye, a camera can capture the flickering

effect in its video frame. In order to avoid this effect, the Intel RealSense camera has its

control for power line frequency, which can be changed to 50Hz or 60Hz. The light source

in the project measurement set was artificial, so it had a frequency of 50 Hz, considering

it was implemented in Germany, which means it turns on and off 50 times per second. A

flicker avoidance of 50 Hz was therefore set.

4.1.1 Codes for RGB-D data acquisition and processing

Codes were developed to interact with the RGB-D camera and apply the previously

exposed concepts, which are contained in the appendix section and explained below.

A configuration file, presented in Appendix A, set the Intel RealSense camera and

its filters with the configurations explained previously in this chapter. The code contains

variables with names similar to the parameters that need to be set to configure the filters

to facilitate comprehension. Moreover, it is possible to configure in which folder the data

should be automatically saved and the respective filenames in this file.

The parameters specified in the configuration file were used in a code created to

interact with the Intel RealSense camera without requiring its SDK. Considering that the

data should be similar to those adopted by the authors of GQ-CNN, this code was based

on another one they developed, which is used for a different RGB-D sensor. This code is

shown in Appendix B.

Then, in order to execute the two codes explained above directly from the command

line and start the data acquisition loop, the code exposed in Appendix C was developed.

4.2 Binary segmentation

In order to obtain the binary segmentation image from colour images taken from

the RGB-D camera, the following techniques were used. This method was applied on a
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black matte background, but the results were inaccurate for reflective objects or very dark

colours, as seen in Chapter 5.

The Unsharp Mask proposed before was tested, but the results obtained were

considerably better while using a background image instead of applying a low pass filter

to the original image. In this technique, defined as foreground masking, an image is

subtracted from a background image, both in grayscale. The resulting image is filtered

with a threshold for the upper and lower grey values. Afterwards, it is converted to binary,

with pixel values of 0 and 1. In this binary image, a function to find the contours, with

the border following algorithm specified in Subsection 2.8.2, is applied to remove all white

connected points with an area bigger than a threshold specified and distance from other

objects larger than another threshold value. In the end, the detected objects appear in

white contours, and the background is black. This image is used as a segmentation image

to feed the neural network.

This method is considered semi-automatic in its level of user interaction, taking

into account that it is necessary to provide an updated background image, considering

changes in light conditions at the time of measurement.

4.2.1 Codes for binary segmentation

Based on the theory exposed above, two codes were developed to perform the

binary segmentation with the colour images obtained from the RGB-D camera.

The code exposed in Appendix D was developed to configure the filter’s parameters,

which contains information about the threshold values for the grayscale, the distance and

the area for the function that finds the contours in images. The parameter values were

obtained using as baseline the correct definition of the object’s contours, which varies

according to the object size because the border following algorithm uses the definition

of a minimum area to recognize an object. A minimum and maximum value were also

configured for the depth at which an object could be found, in case a filter based on the

point cloud obtained by the RGB-D camera was used.

The second code, shown in Appendix E, is a class created to segment coloured

images and automatically save them as input for the GQ-CNN neural network.
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5 DATA ACQUISITION RESULTS

This chapter refers to the results of the previously proposed data acquisition system

and signal processing methods.

The figures shown here were taken at different times of the experiment, and the

colour image processing was made with the final setup of height for the camera and

background described in Subsection 3.1.1.

5.1 Color Image Processing

In order to compare the original output and after adopting the processing methods

described previously, Figure 19, Figure 20 and Figure 21 represent the object segmentation

with the algorithm still in its initial configuration.

Figure 19: Comparison for the aircraft part without filter, between: a) RGB image; b)
binary image.

(a) (b)

Source: Author

In Figure 20a, it is possible to see how dark the colour image was before the filters

were applied, which made it difficult to obtain a correct segmentation image.

In Figure 21, it is possible to see that the initial configuration of the filters for

segmentation still left noise around the edges of the objects, so it was necessary to configure

the parameters of these filters until reaching optimal values according to the data obtained

by the RGB-D camera. This set of parameters can change if another place is chosen for

data acquisition with another lighting condition.

Hence, through experimental tests directly on the data obtained, the configuration

of parameters shown in Table 4 could be reached, which were used in the code exposed

in Appendix D.
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Figure 20: Comparison for the blisk without filter, between: a) RGB image; b) binary
image.

(a) (b)

Source: Author

Figure 21: Comparison between (a) RGB image without filtering and its (b) segmentation
applied to multiple objects made of wood.

(a) (b)

Source: Author.

Table 4: Segmentation Configuration

Segmentation Configuration
Grayscale Range Depth Threshold Contour Threshold

Low Upper Low Upper Distance Area
100 250 0,3 0,6 1000 300

Source: Author.

Finally, using the code in Appendices D and E, with the parameters exposed in

Table 4, it was possible to obtain segmentation images with satisfactory quality for the

alignment phase. A sample set of segmented images are exposed in Figure 22, Figure 23,

Figure 24 and Figure 25.

In Figure 22, it is possible to observe that the filtering brought significant improve-

ments in the quality of the RGB image and consequently in the binary segmentation.

In Figure 24, there was also an improvement, but as seen in the bottom right

corner, the dark blue square object could not be segmented because there was no contrast
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Figure 22: Comparison between (a) RGB image without filtering and its (b) segmentation
applied to the aircraft part.

(a) (b)

Source: Author.

Figure 23: Comparison between (a) RGB image without filtering and its (b) segmentation
applied to the blisk.

(a) (b)

Source: Author.

between the object and the background since both are dark.

Among all the methods tested and analysed, this one proved to be the most robust,

by analysing the silhouette obtained for the objects, and with the best results in the

segmentation of objects contained in colour images, considering proper lighting conditions.
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Figure 24: Comparison between (a) RGB image without filtering and its (b) segmentation
applied multiple objects with different geometries.

(a) (b)

Source: Author.

Figure 25: Comparison between (a) RGB image without filtering and its (b) segmentation
applied to the support object.

(a) (b)

Source: Author.

5.2 Depth Data Processing

Figure 26 compares a point cloud without processing and another with processing.

As can be seen in Figure 26a, there are black dots in the depth map, that represent depth

data not available or that did not meet a confidence metric of the camera, and instead of

providing a wrong value, the camera provides a value of zero at that point, as mentioned

by Grunnet-Jepsen et al. in [41]. In order to fill the black dots appropriately, hole-filling

methods, such as spatial and temporal filters, were applied. Moreover, the minimum

distance between the camera and a target was adjusted to meet the setup used in this
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project.

It is noteworthy that these images were obtained for a camera position different

from the one used at the end of the project, inclined in relation to the table on which the

object was positioned. Therefore, the depth colours vary along the image, indicating as

blue the points closer to the camera until the most distant points in red.

Figure 26: Set of depth images in which the workpiece was positioned in the middle of
the test table: a) without processing; b) processed with the final configuration, which
resulted in less data loss, as can be inferred by the fewer number of holes in the image.

(a) (b)

Source: Author.

In order to evaluate which configuration is more accurate to obtain a clearer depth

image, with less noise and which better represents the object, several configuration sets

were tested. The final configuration is described in Table 5 and the theory and code used

for arriving at this configuration were explained in Section 4.1.

Table 5: Depth processing parameters.

Depth Processing Parameters
Spatial Filter Temporal Filter Depth Threshold

Alpha Delta Alpha Delta Low Upper
0,6 8 0,5 20 0,3 0,6

Source: Author.

With this configuration, it was possible to acquire depth maps such as the one

exposed in Figure 26, where the black dots were covered, and the contours of the aircraft

part became sharper, so the result can be considered satisfactory.
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6 GQ-CNN RESULTS

In this chapter, the outputs of the neural network will be exposed, which is the

prediction of an antipodal grasp position for a parallel-jaw gripper, and a grasp success

probability, called Q-value. The results with low Q-value and with high Q-value will be

exposed separately.

Codes developed by the authors of GQ-CNN will not be exposed here. However,

they were employed in order to utilize the neural network. The GQ-CNN necessarily

receives as input a point cloud containing the object for which it intends to predict a

grasp position. However, optionally a binary segmentation image can also be used, which

could help in the stage of alignment and localization of the object by the neural network.

In order to analyze the real benefit of using a segmentation image, two predictions

were made for each point cloud obtained, one with the segmented image and another

without it. Confusion matrices based on the visual analysis of all predictions made will

be exposed since it was impossible to perform physical tests in the robot until the con-

clusion of this work because these tests depend on the robot control system, which the

WZL institute is currently developing. Although not conclusive, the manual and visual

assessment stands as a preliminary analysis, which is critical to rely on before testing in

a real robot, as this could lead to accidents if there were predictions with high Q-value

and antipodal points outside the area of the object.

Before analysing the results, the evaluation criteria and adopted thresholds will be

explained.

6.1 Grasp Prediction Classification

The visual evaluation of the obtained predictions will be explained below. First, a

threshold of 50% for the Q-value was established, defining as positive Q-value predictions

above this value and as negative the remaining ones. The Q-value indicates a probability

of success linked to a grasp position for the object, given by the neural network. Therefore,

the grasping positions indicated were evaluated as susceptible or not.

A prediction is True Positive if it has a high Q-value and indicates a favourable

grasping position for the object. However, if the position is inadequate, it is a False

Positive. Moreover, given a low Q-value and a suitable grasping position, the prediction
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is classified as False Negative, while for an inappropriate position, it is a True Negative.

Table 6 shows this classification.

Table 6: Grasp prediction classification.

Grasp Prediction Classification
Grasp Prediction Q-value

High Low
Feasible True Positive False Negative

Not feasible False Positive True Negative
Source: Author.

The feasibility analysis of grasping an object given a position considered the object

geometry, the gripper width, and its mechanical limitations. Examples with images will

be exposed subsequently to facilitate comprehension.

Figure 27a presents the A-link object resting on its side face, for which a significant

oblique position for the gripper in relation to the object was estimated. Due to this

position, the aircraft part would probably escape from the robot gripper before it could

even remove the object from the test bench. Therefore, significant oblique positions

relative to a flat surface were considered not ideal for grasping objects. Whereas in

Figure 27b, the estimated grasping position for the same object is perpendicular to its

flat surface, so there is a higher probability that the robot can grasp the object. This

position was seen in other results and therefore considered ideal for grasping.

Figure 27: Comparison for the aircraft part between: a) not feasible grasp position; b)
feasible grasp position.

(a) (b)

Source: Author

In Figure 28a, the network estimated an unfavourable position for grasping, with
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one jaw in the blisk centre and another in its rotor. This position was observed in other

predictions and therefore also considered as negative. Meanwhile, in Figure 28b, it can

be noted that the gripper has a jaw positioned in the central and outer circles of the rotor

and is therefore considered a correct position to grasp the object. It should be noted that

the jaw width is small, so it fits well in this position.

Figure 28: Comparison for the Blisk between: a) not feasible grasp position; b) feasible
grasp position.

(a) (b)

Source: Author

The estimated grasping position in Figure 29a is on the tip of the turbine support.

If both edges were parallel, this position would be feasible. However, since one of them is

oblique to the gripper’s jaw surface, it will probably slip when lifting the object. Therefore,

the object’s edges are not a feasible position for grasping. Furthermore, the object’s width

is greater than the gripper’s opening diameter when positioned in this manner. Therefore,

it is not possible to grasp in its centre. While in Figure 29b, the object is resting on its

side face, which width is smaller than the gripper opening diameter, thereby facilitating

the grasp position prediction.

As discussed for the previous objects, oblique edges in relation to the gripper

surface can cause the object to slide when grasped. Consequently, the position defined

in Figure 30a for the coloured block is not feasible. While in Figure 30b, the estimated

position is adequate since it is perpendicular to the edges of the coloured block.
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Figure 29: Comparison for the Turbine Support between: a) not feasible grasp position;
b) feasible grasp position.

(a) (b)

Source: Author

Figure 30: Comparison for the coloured blocks between: a) not feasible grasp position;
b) feasible grasp position.

(a) (b)

Source: Author

6.2 Predictions with High Q-value

The first pair of images in Figure 31 shows the aircraft part lying on the black

background. In Figure 31b, it is possible to notice in the binary segmentation image

that the indicated grasp position is in a suitable region, although it is slightly oblique in

relation to the face of the object, and the Q-value of 70,5% indicates a high probability

of grasp success. Whereas in Figure 31a, it is difficult to visualise the grasp position on

the object. However, knowing that more white areas indicate higher heights in a depth
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image and comparing the depth image to the binary one, it is estimated to be a suitable

location to grasp. It must be stressed that the probability of grasping is higher for the

segmented image than for the point cloud, indicating that the segmentation provided a

more effective prediction due to the improvement in the alignment phase.

Figure 31: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

In the second pair of images, Figure 32, it is possible to observe in both images that

there was a prediction of grasping in one of the coloured wooden blocks. The Q-value is

high due to the simple geometry of the selected object for grasping, which is comparable

to those seen during the neural network training. The network estimates the best grasp

position among thousands of possibilities in a scene, based on success metrics determined

from grasping attempts in a virtual environment used in its training. Thus, it is expected

to make better predictions on objects contained in its training database.

Moreover, by comparing the prediction in the image with segmentation, Figure

32b, to the one without segmentation, Figure 32a, it is possible to state again that the

segmentation contributed to the improvement in the prediction result.

In the third pair of images, Figure 33, given a cluttered scene, in other words,

with the combination of multiple objects, all of them belonging to the IDEA project, a

grasping position was identified in the object with simpler geometry, that is, the support

with a rectangular shape. To this end, due to the simple geometry, the Q-value estimated

was also high.

In Figure 33a, the object was not correctly outlined because of the noisy point
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Figure 32: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

cloud, causing a False Positive prediction. It is possible to observe that the position

indicated for one of the gripper jaws would collide against the object compared to the

corresponding segmentation image in Figure 33b. Hence, the segmentation image notably

improved the object identification in the absence of a proper point cloud in this case.

Figure 33: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

Finally, in Figure 34, it is possible to observe the support object of the IDEA

project previously presented in Figure 16 as the (VI) object in red, this time standing on

its base and therefore visualised from its superior surface. In Figure 34b, it is possible to
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see a grasp prediction between the outer part of the object and its central section, which

is hollow. While in Figure 34a, the prediction was made for the external edges. Both

positions are correct, but the Q-value resulted higher for the segmented, as expected.

Figure 34: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

6.3 Predictions with Low Q-value

In Figure 35a, it is difficult to identify the estimated position for the grasp without

the help of a segmentation mask. However, when compared to Figure 35b, it could be

stated that the estimation using only the point cloud is in a correct position, and the

Q-value is high, indicating a True Positive prediction.

As for the prediction made in Figure 35b, as explained previously, extremely

oblique positions in relation to the object are inadequate because they can cause the

object’s escape given the attempt to grasp it. Given this fact, considering the threshold

of 50%, the Q-value is low, and the estimation is regarded as True Negative.

A feasible grasp position for the aircraft part piece was identified, represented in

Figure 36, but the resulting Q-value is extremely low, which can be justified by consid-

ering that from this specific point of view, this piece has a different geometry from those

identified in the neural network training set and perhaps it was not able to generalize as

well as expected.

In Figure 37b, the third pair of images, the prediction was given for the blisk, at a
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Figure 35: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

Figure 36: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

point feasible to grasp the object, but the Q-value given is low, indicating a False Negative

prediction. In contrast, the prediction in Figure 37a is a True Negative because it would

not be possible to grasp the object in the indicated region.

For the following cluttered scene, in Figure 38, it is possible to observe that the

prediction was made again for objects with simple geometry, represented by the wooden

blocks. However, the Q-value resulted low, with and without the segmentation image,

estimating that the indicated position would probably not cause a successful grasp. An

explanation for this could be the low quality of the point cloud provided, as shown in
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Figure 37: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

Figure 38a. Despite identifying the object, it is probably not defined enough for the

network to estimate the grasp quality correctly.

Figure 38: Comparison between grasping predictions: a) with depth data; b) with binary
image.

(a) (b)

Source: Author.

The results of the GQ-CNN authors stated that the neural network would gener-

alize properly on new and complex objects, with an 80% success rate and 100% precision,

zero false positives, over 50 trials on ten novel test objects. However, it is reasonable to

state that the low Q-value happens because the objects used as test set differ from those

used during the neural network training.
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Moreover, the point cloud obtained with the RealSense camera contains consid-

erable noise, and the neural network was trained for another RGB-D camera model,

producing less noisy point clouds.

6.4 Evaluation

Based on the evaluation of the previously exposed results, two Tables were made

analysing the general results of the neural network with and without the segmentation

image to determine if the addition of this image processing technique contributes towards

the improvement of the results.

Table 7 shows the analysis considering 82 predictions using segmentation image,

while Table 8 shows the same analysis considering 82 predictions without binary segmen-

tation. When comparing them, it is possible to see that both obtained similar results, but

Table 8 shows False Positive results, which could cause collisions. For this reason and to

provide better visualization of the results, the use of the binary segmentation image can

be justified.

Among the objects previously exposed in Subsection 3.3.3, only the objects de-

noted as aircraft part, Baby Blisk, colour blocks and Turbine support were used for this

evaluation.

Table 7: Confusion matrix for prediction outputs using binary segmentation.

Grasp Prediction
Positive Negative

Target
Positive True Positive

14,63%
False Negative

26,83%
Negative False Positive 0% True Negative

58,54%
Source: Author.

Table 8: Confusion matrix for prediction outputs without binary segmentation.

Grasp Prediction
Positive Negative

Target
Positive True Positive

23,17%
False Negative

29,27%
Negative False Positive

1,22%
True Negative

46,34%
Source: Author.
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As seen in Table 7, despite the complexity of the objects used to test the neu-

ral network, in 41,46% of them, the grasping position indicated was correct. 26,83% of

the results were False Negatives, which means that the given position was appropriate

for grasping, but the probability of successfully grasping the object was lower than the

threshold defined for a positive Q-value. Moreover, 14,63% of the results were True Posi-

tives, in other words, with a high Q-value and indicating a suitable position for grasping

the object. This result indicates that despite the complex geometries of the objects,

GQCNN was able to predict adequate positions for grasping them. Also, the complexity

of identifying the correct point to grasp an object, among millions of possibilities, should

be considered. There were 58,54% True Negatives, that is, predictions with low Q-value

and that indicated an inadequate grasp position, and there were no False Positives, that

is, high Q-values for an inadequate grasping position, which could cause accidents to the

robot if there were, therefore the precision was of 100%.

To estimate the objects most identified by the neural network, in the predictions

with segmentation image and without it, Table 9 exposes the percentage of times each

object was identified. The predictions were made both in scenes with only one object

and scenes with several objects. In the two types of prediction, the blisk was the most

recognised, which can be justified by its proportionally larger size than other objects,

leading to easier detection.

Table 9: Objects detected in cluttered scenes.

Objects Detected in Cluttered Scenes
Prediction With segmentation Without segmentation

Aircraft Part 11,36% 24,44%
Blisk 61,36% 51,11%

Coloured Blocks 13,64% 15,56%
Turbine support 13,64% 8,89%

Source: Author.

However, prediction results for each object must be evaluated because identifying

the object is insufficient since the goal is to acquire an adequate position for the grasp.

Hence, the results will be divided by object, considering cluttered scenes. Only the outputs

using the segmentation image will be presented to avoid an extensive analysis since the

quality of the prediction given a segmentation image has already been analysed.

Despite being the most detected object in a cluttered scene, the Baby Blisk did not

present predictions with high Q-value, so there were no positive predictions, as shown in
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Table 10. However, more than half of the predictions were False Negatives. Thus, despite

conferring a grasp position to the blisk, the probability of grasp conferred by the neural

network was low.

Table 10: Confusion matrix of prediction outputs using binary segmentation and the
blisk in a cluttered scene

Grasp Prediction
Positive Negative

Target
Positive True Positive 0% False Negative

22,22%
Negative False Positive 0% True Negative

77,78%
Source: Author.

Following this, both the coloured blocks and the turbine support had the same

detection percentage, as shown in Table 11 and Table 12, respectively. There were more

positive results for the coloured blocks, being 66,67% of True Positives results to 33,33%

of True Negatives results, which is justified by the simple geometry of the objects and

assimilation to the objects used during the neural network training. While for the Turbine

Support, more than half of the results were False Negatives, and 33,33% were True Posi-

tives. For the case of the Turbine Support, the positions identified as True Positives were

obtained when it stood on its base or its side, exposing its thinner rectangular view to

the camera and facilitating grasp prediction. When laid down, this object has a diameter

larger than the maximum allowed by the robot’s gripper. Consequently, it is not possible

to estimate good positions for grasping.

Table 11: Confusion matrix of prediction outputs using binary segmentation and the
colour blocks in a cluttered scene

Grasp Prediction
Positive Negative

Target
Positive True Positive

66,67%
False Negative 0%

Negative False Positive 0% True Negative
33,33%

Source: Author.

Finally, for the aircraft part, 80% of the predictions were obtained as False Nega-

tives. In other words, the position estimated by the network was correct, yet the calculated

probability of a successful grasp was low, as exposed in Table 13.
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Table 12: Confusion matrix of prediction outputs using binary segmentation and the
Turbine Support in a cluttered scene

Grasp Prediction
Positive Negative

Target
Positive True Positive

33,33%
False Negative

66,67%
Negative False Positive 0% True Negative 0%

Source: Author.

Table 13: Confusion matrix of prediction outputs using binary segmentation and the
aircraft part in a cluttered scene

Grasp Prediction
Positive Negative

Target
Positive True Positive 0% False Negative

80,0%
Negative False Positive 0% True Negative

20,0%
Source: Author.

The Dex-Net’s 4.0 dataset [1] contains objects from the 3D Net [42] database. The

success of the prediction on unknown objects could be explained by comparing the shape

of the objects in the training dataset, as mentioned in Subsection 3.3.3. Their similarities

are one of the reasons that justify the capability of recognizing new objects.

As previously commented, the RGB-D sensor produces low-quality point clouds,

and this causes failures. As can be noted, in some cases, there were failures in the

prediction given only the point cloud, without the binary image. Therefore, it would be

interesting to use other cameras for comparison in future works.

Another limitation is the gripper aperture diameter, which was configured before

making predictions. It would be better to adopt a wider aperture, considering the size

of the blisk and the diameter of the turbine support. The network was not trained for

larger jaw openings, and its authors do not indicate test configurations different from the

ones used by them. Therefore, to adopt a gripper with a larger aperture diameter, the

net would have to be fully retrained, as well as the training dataset would have to be

generated for that specific aperture diameter.

In order to achieve more True Positives, a default positioning of the objects can

be established based on the poses that yielded True Positives for each object. There is no

means to precisely correct the False Negatives, therefore transfer learning must be done

using a dataset synthetically created with the IDEA project objects, whose generation
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process is given for all possible positions and grasps for each object. Therefore, the fastest

solution to be implemented is to adopt the positions that lead to True Positives for each

object.
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7 CONCLUSION AND OUTLOOK

This work aimed to analyse the capacity of a pre-trained neural network to gen-

eralise in novel objects to develop a system for robotic grasping of aeronautical parts in

a production line to meet a requirement of the IDEA Project in the WZL institute. To

this end, a data acquisition, processing, and analysis system were developed to determine

grasping positions for the observed objects. In this study, the objects used were aeronau-

tical parts, which have complex geometries and are distinct from objects used in everyday

life.

A CNN called GQ-CNN was chosen among the available methods to determine

grasp positions. Their pre-trained model was used to make predictions from the data

obtained in this work. The neural network’s output is a success metric, which predicts

the probability that the robot will grasp the object for an antipodal point for the robot’s

gripper. Therefore, among the available sensors for data acquisition, the IntelRealsense

D435 RGB-D camera was adopted, which is used in projects with similar characteristics.

The RGB-D camera made it possible to acquire colour images and depth maps.

The data acquisition and processing were implemented using code in the Python

programming language. It was stated that using filters such as spatial and temporal

filtering makes it possible to improve the quality of the depth map acquired by the camera.

Furthermore, foreground masking and border following filters allowed to obtain binary

segmentation images from the colour images, thus facilitating the alignment phase for the

prediction by the neural network and consequently increasing the probability of accuracy

in the prediction of the grasp position.

A total of 164 predictions were performed, half of them made only with the point

cloud obtained with the RGB-D camera and the other half also using the binary segmen-

tation image. When comparing the results, there was a noticeable improvement in the

object recognition when using binary segmentation, which was translated into an increase

in the Q-value quality metric obtained and adequate positions for grasping the objects.

Therefore, a confusion matrix evaluation was made from the binary segmentation

image predictions. This evaluation was done qualitatively, in other words, without per-

forming physical grasping tests with the robot. From this analysis, despite the geometrical

complexity of the objects used in the project, it was possible to obtain 41.46% of the pre-
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dictions in suitable positions for grasping, and there were no false positives, which means

that the network did not predict positions that would be inadequate for grasping the ob-

jects. True Positives corresponded to 14.63% of the results, indicating that the network

was not able to generalize as well as defended by its authors. It can be attributed to the

complexity of the tested objects, which differ from the classes seen during the networks’

training.
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8 FUTURE WORK

Considering the limitations regarding the camera used, another model of RGB-D

sensor, with the same quality as the one used by the authors of the GQ-CNN project,

could be tested in order to obtain better point clouds and consequently improve the grasp

prediction.

In case the GQ-CNN still does not generalize well to the IDEA’s objects, the author

suggests using the method presented by Mahler et al. [16] in Dex-Net 1.0 in order to build

a synthetic dataset with the IDEA project objects and use it during transfer learning with

FC-GQ-CNN presented by Mahler et al. in [24]. Afterwards, the pre-trained model and

the one trained with the IDEA dataset could be compared.

Also, it would be interesting to develop a ROS integration between the camera,

GQ-CNN and the robot and evaluate the results on a real robot. Finally, a wireless

communication system could be implemented for the camera to improve robot mobility.
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A CONFIGURATION FILE FOR RGB-D DATA ACQUISITION AND

PRE-PROCESSING

1 processing_parameters:

2 depth_thresh_low: 0.3 # everything between 0.3 and 0 should be noisy, therefore is avoided

3 depth_thresh_upper: 0.6 # distance between workspace and camera

4 spatial_alpha: 0.6

5 spatial_delta: 8

6 temp_alpha: 0.5

7 temp_delta: 20

8 depth_scale: 2

9 decimation_magnitude: 1.0

10 spatial_magnitude: 2.0

11

12 high_resolution:

13 height: 720 # high resolution

14 width: 1280

15 fps: 30

16 camera_intrinsics: '../../model/calib/realsense/realsense_depth_intrinsics_high.intr'

17

18 low_resolution:

19 height: 480 # high resolution

20 width: 640

21 fps: 30

22 camera_intrinsics: '../../model/calib/realsense/realsense_depth_intrinsics_low.intr'

23

24 save: 1

25 frame: 'realsense_overhead'

26 output_dir_raw: '../../data/raw'

27 output_dir_processed: '../../data/processed'

28 json_file: '../../model/calib/realsense/realsense_viewer.json'
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B CODE FOR RGB-D DATA ACQUISITION AND PRE-PROCESSING

1 """

2 Author: @ltorquato4

3 Class to interact with ONE Intel RealSense camera D400 series

4 """

5

6 import logging

7 import time

8 import cv2

9 import numpy as np

10 import pyrealsense2 as rs

11 from perception import CameraIntrinsics

12 from autolab_core import YamlConfig

13

14

15 class RealSense:

16

17 def __init__(self, cfg=None, filter_depth=True, resolution='high'):

18

19 self._running = None

20

21 if cfg is None:

22 cfg = 'cfg/realsense.yaml'

23

24 # read cfg file

25 self._config = YamlConfig(cfg)

26

27 ids = self.discover_cams()

28 self.id = ids[0]

29 self.json_file = self._config['json_file']

30 self._resolution = resolution

31 if self._resolution == 'low':

32 resolution = self._config['low_resolution']

33 self._height = resolution['height']

34 self._width = resolution['width']

35 self._fps = resolution['fps']

36 self._camera_intrinsics = resolution['camera_intrinsics']

37 else:

38 resolution = self._config['high_resolution']

39 self._height = resolution['height']

40 self._width = resolution['width']

41 self._fps = resolution['fps']

42 self._camera_intrinsics = resolution['camera_intrinsics']

43

44 self._output_dir_raw = self._config['output_dir_raw']

45 self._output_dir_processed = self._config['output_dir_processed']
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46

47 self._filter_depth = filter_depth

48

49 self._frame = self._config['frame']

50

51 if self._frame is None:

52 self._frame = 'realsense_overhead'

53 self._color_frames = '%s_color' % self._frame

54

55 # real sense objects

56 self._pipe = rs.pipeline()

57 self._cfg = rs.config()

58 self._align = rs.align(rs.stream.color)

59

60 # camera parameters

61 self._intrinsics = np.eye(3)

62

63 # save data with day and hour

64 self._save = self._config['save']

65 self._filename = time.strftime("%d%m%Y-%H%M%S")

66

67 @staticmethod

68 def discover_cams():

69 """Returns a list of the ids of all cameras connected via USB"""

70 ctx = rs.context()

71 ctx_devs = list(ctx.query_devices())

72 ids_ = []

73 for i in range(ctx.devices.size()):

74 ids_.append(ctx_devs[i].get_info(rs.camera_info.serial_number))

75 assert ids_, "[!] No camera detected."

76 return ids_

77

78 def _config_pipe(self):

79 """Configures the pipeline to stream color and depth.

80 """

81 self._cfg.enable_device(self.id)

82

83 self._cfg.enable_stream(

84 rs.stream.color,

85 self._width,

86 self._height,

87 rs.format.bgr8,

88 self._fps

89 )

90

91 self._cfg.enable_stream(

92 rs.stream.depth,

93 self._width,
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94 self._height,

95 rs.format.z16,

96 self._fps

97 )

98

99 def _set_intrinsics(self):

100 """Read the intrinsics matrix from the depth stream.

101 """

102 self._profile = self._pipe.get_active_profile()

103 strm = self._profile.get_stream(rs.stream.depth)

104 depth_profile = rs.video_stream_profile(strm)

105 obj = depth_profile.get_intrinsics()

106 self._intrinsics[0, 0] = obj.fx

107 self._intrinsics[1, 1] = obj.fy

108 self._intrinsics[0, 2] = obj.ppx

109 self._intrinsics[1, 2] = obj.ppy

110

111 def _set_depth_scale(self):

112 """Retrieve the scale of the depth sensor.

113 """

114 depth_sensor = self._profile.get_device().first_depth_sensor()

115 self._depth_scale = depth_sensor.get_depth_scale()

116

117 @property

118 def intrinsics(self):

119 """:obj:`CameraIntrinsics` : The camera intrinsics for the RealSense color camera.

120 """

121 return CameraIntrinsics(

122 self._frame,

123 round(self._intrinsics[0, 0], 1),

124 round(self._intrinsics[1, 1], 1),

125 round(self._intrinsics[0, 2], 1),

126 round(self._intrinsics[1, 2], 1),

127 skew=0.0,

128 height=self._height,

129 width=self._width

130 )

131

132 def __del__(self):

133 """Automatically stop the sensor for safety.

134 """

135 if self.is_running:

136 self.stop()

137

138 @property

139 def is_running(self):

140 """bool : True if the stream is running, or false otherwise.

141 """
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142 return self._running

143

144 @property

145 def frame(self):

146 """:obj:`str` : The reference frame of the sensor.

147 """

148 return self._frame

149

150 @property

151 def color_frame(self):

152 """:obj:`str` : The reference frame name of the color sensor.

153 """

154 return self._color_frames

155

156 def start(self):

157 """Start the sensor.

158 """

159 try:

160 self._config_pipe()

161 self._pipe.start(self._cfg)

162 # store intrinsics and depth scale

163 self._set_intrinsics()

164 self._set_depth_scale()

165 self._load_settings_json(self.json_file)

166

167 # skip few frames to give auto-exposure a chance to settle

168 for _ in range(30):

169 self._pipe.wait_for_frames()

170

171 self._running = True

172 except RuntimeError as e:

173 print(e)

174

175 def stop(self):

176 """Stop the sensor.

177 """

178 if not self._running:

179 logging.warning('Realsense not running.')

180 return False

181

182 self._pipe.stop()

183 self._running = False

184 return True

185

186 @staticmethod

187 def _to_numpy(frame, dtype):

188 arr = np.asanyarray(frame.get_data(), dtype=dtype)

189 return arr
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190

191 def _load_settings_json(self, json_file):

192 """

193 Load the settings stored in the JSON file

194

195 """

196 with open(json_file, 'r') as file:

197 json_text = file.read().strip()

198

199 device = self._profile.get_device()

200 advanced_mode = rs.rs400_advanced_mode(device)

201 advanced_mode.load_json(json_text)

202

203 def _filter_depth_frame(self, depth_frame):

204 """

205 Applies post-processing filters to the depth frame received

206 :param depth_frame: frame to post-process

207 :return: depth_filtered

208 """

209

210 processing_parameters = self._config['processing_parameters']

211 depth_thresh_low = processing_parameters['depth_thresh_low']

212 depth_thresh_upper = processing_parameters['depth_thresh_upper']

213 spatial_alpha = processing_parameters['spatial_alpha']

214 spatial_delta = processing_parameters['spatial_delta']

215 temporal_alpha = processing_parameters['temp_alpha']

216 temporal_delta = processing_parameters['temp_delta']

217 decimation_magnitude = processing_parameters['decimation_magnitude']

218 spatial_magnitude = processing_parameters['spatial_magnitude']

219

220 decimation_filter = rs.decimation_filter()

221 threshold_filter = rs.threshold_filter()

222 temporal_filter = rs.temporal_filter()

223 hole_filling = rs.hole_filling_filter()

224 spatial_filter = rs.spatial_filter()

225

226 filter_magnitude = rs.option.filter_magnitude

227 filter_smooth_alpha = rs.option.filter_smooth_alpha

228 filter_smooth_delta = rs.option.filter_smooth_delta

229

230 min_distance = rs.option.min_distance

231 max_distance = rs.option.max_distance

232

233 # define post-processing filters

234 decimation_filter.set_option(filter_magnitude, decimation_magnitude)

235 spatial_filter.set_option(filter_magnitude, spatial_magnitude)

236 spatial_filter.set_option(filter_smooth_alpha, spatial_alpha)

237 spatial_filter.set_option(filter_smooth_delta, spatial_delta)
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238 temporal_filter.set_option(filter_smooth_alpha, temporal_alpha)

239 temporal_filter.set_option(filter_smooth_delta, temporal_delta)

240 threshold_filter.set_option(min_distance, depth_thresh_low)

241 threshold_filter.set_option(max_distance, depth_thresh_upper)

242

243 out = decimation_filter.process(depth_frame)

244 out = threshold_filter.process(out)

245 out = spatial_filter.process(out)

246 out = temporal_filter.process(out)

247 depth_filtered = hole_filling.process(out)

248 return depth_filtered

249

250 def _read_color_and_depth_image(self):

251 """

252 Read a color and depth image from the device.

253 :return: color_image, depth_image

254 """

255 frames = self._pipe.wait_for_frames()

256

257 frames = self._align.process(frames)

258

259 depth_frame = frames.get_depth_frame()

260 color_frame = frames.get_color_frame()

261

262 if not depth_frame or not color_frame:

263 logging.warning('Could not retrieve frames.')

264 return None, None

265

266 if self._filter_depth:

267 depth_frame = self._filter_depth_frame(depth_frame)

268

269 # convert to numpy arrays

270 depth_image = self._to_numpy(depth_frame, dtype=np.float32)

271 color_image = self._to_numpy(color_frame, dtype=np.uint8)

272

273 # convert depth to meters

274 depth_image = depth_image * self._depth_scale

275

276 return color_image, depth_image

277

278 def frames(self):

279 """Retrieve a new frame from the RealSense and save a depth image,

280 color image and depth intrinsics

281

282 Returns

283 -------

284 : color image, depth image and the current frame for reference.

285



99

286 Raises

287 ------

288 RuntimeError

289 If the RealSense stream is not running.

290 """

291 raw_color_im, raw_depth_im = self._read_color_and_depth_image()

292

293 if self._save:

294 np.save('%s/%s_depth_image.npy' % (self._output_dir_raw, self._filename),

295 raw_depth_im)

296 cv2.imwrite('%s/%s_color_image.png' % (self._output_dir_raw, self._filename),

297 raw_color_im)

298 self.intrinsics.save(self._camera_intrinsics)

299

300 return raw_color_im, raw_depth_im
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C CODE TO START REALSENSE

1 """

2 Can be executed from the global command line

3 """

4

5 from .realsense_sensor import RealSense

6

7 if __name__ == '__main__':

8

9 # setup sensor

10 sensor = RealSense()

11 sensor.start()

12 color, depth = sensor.frames()

13 intrinsics = sensor.intrinsics

14 sensor.stop()
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D CONFIGURATION FILE FOR BINARY SEGMENTATION

1 segmask:

2 low_gray: 100

3 upper_gray: 250

4 distance_thresh: 1000

5 area_thresh: 300

6 depth_thresh_low: 0.3

7 depth_thresh_upper: 0.6

8 output_dir_processed: 'data/processed'
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E CODE FOR BINARY SEGMENTATION

1 """

2 Author: @ltorquato

3 Class to segment color images from the RealSense D400 series.

4 The output can be used as --segmask input for the GQCNN model.

5 """

6

7 from autolab_core import YamlConfig

8 from perception import ColorImage, DepthImage

9 import cv2

10 import numpy as np

11 import argparse

12 import time

13

14

15 class BinarySegmentation:

16

17 def __init__(self, cfg=None):

18

19 if cfg is None:

20 cfg = 'cfg/segmask.yaml'

21 # read cfg file

22 self._config = YamlConfig(cfg)

23

24 self._segmask = self._config['segmask']

25 self._low_gray = self._segmask['low_gray']

26 self._upper_gray = self._segmask['upper_gray']

27 self._distance_thresh = self._segmask['distance_thresh']

28 self._area_thresh = self._segmask['area_thresh']

29 self._output_dir_processed = self._segmask['output_dir_processed']

30 self._filename = time.strftime("%d%m%Y-%H%M%S")

31

32 @staticmethod

33 def _to_numpy(frame, dtype):

34 arr = np.asanyarray(frame.get_data(), dtype=dtype)

35 return arr

36

37 def color_mask(self, path_to_image, path_to_background_image):

38 """

39 Takes a color image and a background image to subtract from the image

40 and convert it to a binary image.

41 Save the binary image in the same dir as the input

42 :param: path_to_image, path_to_background_image

43 :return: color_mask

44 """

45
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46 background_image = cv2.imread(path_to_background_image)

47 color_image = cv2.imread(path_to_image)

48

49 color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)

50 background_image = cv2.cvtColor(background_image, cv2.COLOR_BGR2GRAY)

51

52 subtract = color_image - background_image

53 subtract_image_filtered = cv2.inRange(subtract, self._low_gray, self._upper_gray)

54 subtract_image_filtered = self._to_numpy(subtract_image_filtered, dtype=np.uint8)

55

56 subtract_image_filtered = ColorImage(subtract_image_filtered)

57 binary = subtract_image_filtered.to_binary()

58 color_mask = binary.prune_contours(area_thresh=self._area_thresh,

59 dist_thresh=self._distance_thresh)

60

61 cv2.imwrite('%s/%s_color_mask.png' % (self._output_dir_processed, self._filename),

62 color_mask._image_data())

63

64 return color_mask

65

66

67 if __name__ == '__main__':

68

69 parser = argparse.ArgumentParser(

70 description="Run segmentation mask")

71 parser.add_argument("--color_image",

72 type=str,

73 help="path to color image")

74 parser.add_argument("--background",

75 type=str,

76 help="path to background image")

77 args = parser.parse_args()

78 color_image = args.color_image

79 background = args.background

80

81 bs = BinarySegmentation()

82

83 color_segmask = bs.color_mask(color_image, background)
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