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RESUMO

A robótica móvel é apresentada como solução frente a falta de mobilidade dos ma-
nipuladores robóticos. Com diferentes formas de locomoção inspiradas em comporta-
mentos biológicos, robôs móveis ganharam espaço em diferentes áreas de atuação,
podendo ser encontrados desde ambientes acadêmicos até em ambientes nocivos
para seres humanos. Com o passar do tempo, foram surgindo novas ferramentas para
simplificar a utilização de sistemas robóticos. Robot Operating System (ROS) possui
uma coletânea de ferramentas e algoritmos open-source para controle de robôs, in-
cluindo mapeamento, localização e navegação para robôs móveis. Entretanto, quanto
mais funcionalidades são anexadas a um robô móvel, maior será seu custo financeiro e
também seu gasto energético, sendo necessário um equilíbrio entre funcionalidade e vi-
abilidade. Sistemas Multi-Robôs são sistemas onde é possível utilizar mais de um robô
para executar missões. Sistemas Multi-Robôs heterogêneos combinam diferentes tipos
de robôs com diferentes funcionalidades para executar missões, aumentando a eficiên-
cia e robustez do sistema. Desta forma, não se faz necessário ter apenas um robô com
todas as funcionalidades, mas vários onde cada tipo será responsável por uma deter-
minada função. Novas problemáticas são introduzidas como, por exemplo, alocação
e decomposição de tarefas específicas para cada tipo de robô, coordenação para ex-
ecução de missões e a capacidade de realocar em caso de falhas. Neste trabalho é
desenvolvido um framework chamado Heterogeneous Multi-robot (HeMuRo) Frame-
work, responsável pela alocação e decomposição de tarefas para robôs heterogêneos.
Com o objetivo de ser open-source e flexível, sua arquitetura modular e distribuída
permite modificação e aperfeiçoamento de seus módulos. Aceitando missões simples
como entrada, o framework realiza a decomposição da missão e alocação de tarefas
utilizando o algoritmo de leilão baseando-se em nível de bateria, tempo necessário
para executar a missão e se determinado tipo de robô é capaz de executar a missão.
Além disso, em caso de falha ou algum problema durante a execução, as missões
podem ser realocadas entre os robôs disponíveis. Este framework funciona de maneira
independente havendo também a possibilidade de interação com ROS para comu-
nicação com robôs físicos ou ambientes de simulação. Por último, foram realizadas
simulações, envolvendo diferentes cenários como hospital e armazém de logística,
onde HeMuRo Framework demonstrou versatilidade para decompor diferentes tipos
de missões, fornecendo informações gráficas para análise. Durante as simulações o
framework foi capaz de redirecionar missões devido a baixos níveis de bateria dos
robôs e também nas situações onde o tempo máximo de execução foi excedido.

Palavras-chave: Sistemas Multi-Robôs Heterogêneos. Robôs Heterogêneos. Alocação
de tarefas. Decomposição de Tarefas.



RESUMO EXPANDIDO

INTRODUÇÃO

Por muitos anos, estudos na área de robótica tinham enfoque em sistemas en-
volvendo apenas um único robô para executar determinadas tarefas. Com o surgimento
da Internet das coisas (IoT) e o aumento tanto da complexidade quanto do número de
missões, surgiram sistemas multi-robôs (MRS).

Nesta linha de pesquisa, robôs são capazes de inteagir uns com os outros para
executar determinadas ações. É possível enumerar algumas vantagens de um MRS
perante sistemas com apenas um robô: redundância, robustez, paralelismo e uma
maior tolerância à falhas.

Por outro lado, o desenvolvimento de MRS tornou-se complexo devido à vasta
abrangência de linhas de pesquisa relacionadas ao tema como: arquitetura, comuni-
cação, enxame de robôs, sistemas heterogêneos, alocação de tarefas e aprendizado.
Também se faz necessária uma integração do sistema em si com os robôs para execu-
tar as missões, tanto por simulação quanto em ambientes reais.

OBJETIVOS

Essa dissertação tem como objetivo conceber e desenvolver um MRS para
robôs heterogêneos com foco em decomposição e alocação de tarefas, utilizando
informações centralizadas e descentralizadas e levando em consideração algumas
restrições de tempo real como: nível de bateria, tempo máximo para execução da
missão e robôs disponíveis.

METODOLOGIA

Para alcançar os objetivos propostos para este trabalho a primeira tarefa se dá
na expansão dos conceitos relacionados à MRS, focando em arquitetura, comunicação,
robôs heterogêneos e alocação de tarefas. Como um dos objetivos é desenvolver um
ambiente para testar o framework proposto, a próxima tarefa se dá na busca de tecnolo-
gias e ferramentas para possibilitar simulações. Em seguida o framework é concebido
e implementado, sendo apresentado suas características e implementações. Para ver-
ificação do framework proposto, serão realizados experimentos em três diferentes
ambientes de simulação: o primeiro utilizando apenas o HeMuRo Framework e os dois
outros ambientes utilizando ROS e Gazebo.

RESULTADOS E DISCUSSÃO

Após o desenvolvimento e a implementação do HeMuRo Framework foram
criados três diferentes cenários para demonstrar sua utilização. A decomposição de



missões e alocação de tarefas foram realizadas de acordo com cada categoria e
modelo de robôs. Ao longo das simulações, diferentes situações aconteceram como:
redirecionamento de missão devido ao baixo nível de bateria ou por exceder o tempo
máximo para execução da missão. Em todas essas situações HeMuRo foi capaz de
identificar e alocar outro robô para a realização das missões e nenhuma missão ficou
sem ser concluída. Todos os resultados foram apresentados em forma de gráficos
plotados pelo próprio framework, facilitando a análise de resultados.

CONSIDERAÇÕES FINAIS

Este trabalho propõe o desenvolvimento de um framework genérico para Sis-
temas Multi-Robôs Heterogêneos. HeMuRo foi capaz de realizar a decomposição e
alocação de tarefas de acordo com cada modelo de robô e gerenciando a execução
em tempo real.

Palavras-chave: Sistemas Multi-Robôs Heterogêneos. Robôs Heterogêneos.
Alocação de tarefas. Decomposição de Tarefas.



ABSTRACT

Mobile robotics presents as an alternative due to the lack of mobility of robotic manipu-
lators. Biological behaviors inspired many ways of locomotion increasing the usability
of robots in multiple areas, adding robots in academic environments and also in envi-
ronments that are harmful to humans. Over time, new tools emerged to simplify the
use of robotic systems. ROS has a collection of open-source tools and algorithms to
help engineers build robotic systems, featuring robot control, mapping, localization, and
navigation for mobile robots. However, adding more functionalities to a mobile robot
impacts higher costs and higher energy consumption. Therefore, a balance between
functionality and feasibility is needed. Multi-Robot System (MRS) are systems where
it is possible to combine different types of robots with multiple abilities to perform mis-
sions, increasing the efficiency and robustness of the system. This way it is possible
to use multiple robots with specific abilities, instead of using a single robot with all
the sensors and functionalities. New issues are introduced such as, for example, task
allocation and task decomposition taking into consideration each type of robot, robot
coordination to execute missions, and also the ability to reallocate missions in case of
failure. This work presents a framework called Heterogeneous Multi-Robot (HeMuRo)
Framework responsible for task allocation and decomposition of missions for heteroge-
neous robots. With the main goal to be open-source and flexible, HeMuRo Framework
was built with a modular and distributed architecture allowing modification and improve-
ments. With simple missions as input, the framework performs mission decomposition
and task allocation using an auction algorithm taking into consideration battery level,
time to execute the mission, and if the robot has the capability of executing the mission.
In case of failure or not being able to finish the mission, there is also the possibility
to reallocate to another robot. This framework works independently but there is also
the possibility of interaction with ROS to communicate with real robots or simulated
environments. Simulations were also conducted, involving different scenarios such as
hospital and logistics warehouse. HeMuRo Framework applied versatility to decompose
different types of results, obtaining graphical information for analysis. During simula-
tion HeMuRo Framework handled task reallocation due to low-battery levels and also
timeout.

Keywords: Heterogeneous Multi-robot Systems. Heterogeneous Robots. Task Alloca-
tion. Task Decomposition.
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1 INTRODUCTION

1.1 MOTIVATION

The word robot was first introduced during a play in the Czech Republic called
Rossum’s Universal Robots, by Karel Čapek. The word in the Czech language means
serf labor but can also mean colloquially drudgery or hard work (CORKE, 2017). Out-
side the artistic world, the first robot patent was filed by George C. Devol in 1954. It was
a robot with a gripper mounted on a track (CORKE, 2017). Since then, robotics terms
started to become popular and robotic companies began to show up.

Robotics Systems can be divided into two main categories: fixed robots (manip-
ulators) and mobile robots. Manipulators are mainly used in industries, and they are
used for repetitive but often precise mechanical and physical tasks (SICILIANO et al.,
2010). Their structure is similar to a human arm composed of rigid bodies intercon-
nected by joints. However, the lack of mobility of the fixed robots limits their workspace.
Mobile robots are a younger field that came to solve this issue. There is a large variety
of possible ways for a robot to move across an environment. Walk, jump, run, slide,
swim, fly, and roll are some of the locomotion approaches found in the literature (SIEG-
WART et al., 2011). Biological behaviors inspired these approaches, and each one has
advantages and disadvantages related to the environment the robot will move.

With mobility as an advantage also come some disadvantages as energy storage
and consumption, for example. Mobile Robots must be efficient in terms of energy so
they can work for more extended periods. Docking and recharging are crucial abilities
of an autonomous mobile robot to ensure its performance (RAO; SHIVAKUMAR, n.d.).

Research involving UAV has been on focus for the past few years due to its
advantages among various applications. The use of UAVs reduces operational costs,
avoids human risks, or even makes possible situations that were not possible before as
remote sensing, search and rescue missions, and low-cost mapping and identification,
among others, (SHAKHATREH et al., 2018). The use of a camera attached to the UAV
to capture images helps to locate defects on the structure of wind turbines, monitoring
of high precision agriculture (MUCHIRI; KIMATHI, 2016), Search and Rescue missions
(SILVAGNI et al., 2017), surveillance tasks (SEYEDI et al., 2019), and others.

UAVs are a great deal for different applications. However, in extended missions,
UAVs cannot perform well due to the lack of energy to complete the mission. A UGV
performs better in this situation because, depending of the environment, it does not
consume too much energy to move from one place to another when compared to an
aerial robot. Another advantage of UGVs compared to UAVs is the battery recharging
process, which tends to be less restrictive and easier to implement.

For many years the robotics’ study focused on single-robot applications. The
emergence of the Internet of things (IoT) applications and robots becoming more ad-
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Multi-agent systems (MAS)

Multi-robot systems (MRS) Non-robotic systems with multiple 
elements

Swarm robotics

Sensor networks

Other multi-robot systems

Figure 1 – Classification of MAS adapted from (ZAKIEV et al., 2018)

vanced led the applications to increase their complexity. As the applications became
more complex, it was necessary to use more complex solutions to execute them.

Multi-Agent System (MAS) are systems composed of multiple interacting comput-
ing elements, known as agents (WOOLDRIDGE, 2009). Agents must be able to interact
with other agents and be capable of autonomous actions. There are some advantages
when comparing MAS to single-robot Systems. (WANG et al., 2016) enumerate some
of these advantages:

• Distributed sensors and actuators, as well as inherent parallelism;

• Larger redundancy, higher robustness, and greater fault tolerance. If one agent
fails or is destroyed, its task can be re-allocated;

• Performing tasks that single-agent systems cannot do, such as multiple-vehicles
cargo transportation;

• Completing missions usually with higher performance and lower cost than single-
agent systems.

MRS is a particular case of MAS and is presented to combine the use of multiple
robots to execute one or several missions. An MRS can be composed of swarm robotics,
sensor networks, and other multi-robot systems (Figure 1) (ZAKIEV et al., 2018).

According to (PARKER et al., 2016) most recent studies on mobile robot coop-
eration can be categorized into six topics of studies: Architectures, Communication,
Swarm Robots, Heterogeneity, Task Allocation, and Learning. Architecture and Com-
munication topics can be found in all robot systems, and they are relevant to their
functioning. Those topics dictate how the robots will interact and be organized in the
system. Swarm robots are a large group of homogeneous robots that must interact with
each other, and they are a particular field of MRS. Heterogeneity, which is the focus
of this work, represents the use of multiple configurations of robots in the same MRS,
exploring the best qualities of each robot. Task Allocation designates which robot will
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execute each task. When robots vary in capabilities, the task allocation becomes more
challenging, selecting the best robot available to accomplish the tasks. The last topic
learning focuses on how robots can learn new behaviors and how teams can adapt
over time.

This section discussed how robotics, in general, are related to the nowadays
society. The following section exemplifies some MRS developed by researchers. A
more detailed review about MRS will be presented in chapter 2.

1.2 LITERATURE REVIEW

Solutions aiming at the interaction between mobile robots face many challenges
in both theoretical and practical fields. One of the leading research areas is the con-
ception of cooperative systems with two or more robots exchanging information and
executing tasks together.

A large spectrum of research involves military applications, and it is not easy to
access experiments and results in this area. (LI et al., 2011) describes a MAS for military
application. There are multiple agents in this system working to destroy a missile threat.
The agents must decide which is the best available option to intercept and destroy the
missile. It was implemented with JADE Framework (BELLIFEMINE et al., 2000) and it
communicates using the Foundation for Intelligent Physical Agents (FIPA) Contract-Net-
Protocol (FIPA, 2002). There are also many non-military applications in the literature.
(SHAKHATREH et al., 2018) presents a survey focused on civil applications involving
UAVs. (SANTOS et al., 2015) developed and evaluated a model for a single UAV using
an agent architecture, exploring its ability to react quickly to changes in the environment.
The model was embedded in a real UAV system.

Another important field of MRS is the Multi-robot Task Allocation (MRTA). Re-
search aiming to improve a mission’s performance by optimizing the allocation of tasks
plays a massive role in robot coordination. (SAMPEDRO et al., 2016) presents an ar-
chitecture for UAV robot coordination, using two planners to allocate missions: a global
planner, responsible for assign and monitor high-level tasks, and an agent planner who
will monitor and control each task of the mission allocated to the agent. This framework
is implemented in C++ and does not provide any mechanism for agent failures.

The use of heterogeneous fleets increases the complexity of the Task Allocation
problem. A widespread MRS application field is the Urban Search and Rescue (USAR).
In this scenario, robots must cooperate in an optimized way to help with disasters. In
this scenario, there might occur limitations for each kind of robot, e.g., an UGV can
only move in places without floods. In this case, the algorithm must identify a suitable
robot to execute the mission. The DOMAP Framework (CARDOSO; BORDINI, 2019)
presents decentralized online planning for Multi-Agent Programming Platforms. This
framework was implemented in JaCaMo. Despite providing an online allocation and
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using decentralized communication, it is impossible to re-allocate individual tasks after
the execution starts, and the allocation algorithm must allocate all tasks again.

(GUNN; ANDERSON, 2015) describes a framework for heterogeneous robot
coordination. This work allows a team to reshape to compensate lost or failed robots
caused by network communication failures, mechanical failures, and missing robots.
Besides that, the robots’ teams are formed dynamically. They can be reshaped during
the execution of tasks to improve performance.

(EIJYNE et al., 2020) presents a task-oriented, auction-based task allocation
framework. In that work, the author proposes two modules: task allocation and the other
responsible for communication. With a centralized communication, a computer will run
the MRTA algorithm based on the auction model and assign tasks to the heterogeneous
fleet. As input to the auction model, it was considered available resources, battery, and
goals distance. The framework was tested on simulated and real environments, and
the pseudo-code is available. Failure and task re-allocation were not considered.

(PORTUGAL et al., 2019) presents a framework for simulation and benchmarks
of MRS algorithms. This work is used to study patrolling missions. Developed in C++,
the framework is open-source and integrated with ROS, which MRTA algorithms are
tested. The Stage Simulator was used to execute simulations, and, unfortunately, Stage
is no longer maintained.

Energy consumption is also a big topic in MRS. It might be necessary for a UAV
to recharge while executing a mission. (YU et al., 2019) presents a study where a
UGV needs to visit several spots in an environment, and during this mission, the robot
must recharge. The simulation was performed multiple times using fixed and mobile
charging stations. The mobile charging stations were installed on UGVs. (ARBANAS et
al., 2017) also presented a study focusing on sharing energy between heterogeneous
robots. Using the TÆMS Framework (DECKER, 1996), it was developed a decentralized
protocol to operate an underwater system based on the battery level of each robot and
their position on the environment.

The work presented by (OBDRZALEK, 2017) uses agents to implement a co-
operative MRS. This work describes a simulation where agents implemented in failure
robots are obligated to migrate from the host to another robot. This presented work was
testing basic functionalities of the JADE Framework.

As the reader can conclude, there are multiple subjects, topics, and research
involving MRS. According to the environment and specifications, each author has cho-
sen different characteristics and features to implement on their systems. However, for
a beginner or learner, these choices are hard to make, and there is not much code
available online to run tests or to be used as a start point.
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1.3 RESEARCH GOALS

1.3.1 Main Goal

This work has as a main goal to concept and develop a MRS focused on task
decomposition and cooperation of robots, obtaining collision-free trajectories, incorpo-
rating centralized and decentralized information, and real-time restrictions.

1.3.2 Specific Goals

In order to achieve the main goal, the following specific goals are defined:

1. Design a mobile robot coordination in a system with heterogeneous agents;

2. Propose a software architecture to exchange messages and information among
the agents;

3. Define real-time constraints considering energy management;

4. Create a simulation environment to implement the proposed architecture.

This set of specific goals will drive the work to reach a multi-robot system focused
on robots’ task decomposition and cooperation.

1.4 WORK DELIMITATION AND CONTRIBUTION

This work will focus on creating a MRS Framework with some delimitation.

• The robots move in a controlled environment, without severe network failures;

• The multiple access to the same environment resource was not considered in this
approach. E.g. Multiple robots trying to access the same spot in the environment.
In this case they will wait until the spot is clear but if it take a while the robot might
get stuck;

• The tests of the proposed architecture will be carried out in simulations;

• The execution of some specific task was described by printing messages and
waiting a while. Measuring temperature, picking up an object and taking a picture
are examples of tasks that were implemented using printed messages.

All experiments were executed in a computer with a Intel Core I5-4570S, 8 GB
of RAM and using Ubuntu 18.04 operating system and using ROS1 Melodic. Using
this computer as the main computer to execute all simulations resulted in a limited
performance. Adding multiple robots to the Gazebo’s simulated environment resulted in
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a increase of computational power required to perform the simulation. Therefore, four
is the maximum amount of simulated robots at the same time using gazebo.

One of the goals of this work is to help beginners to develop and deploy a MRS.
As for scientific contribution, the Framework described in this work will be available
online for testing and debugging.

The first Framework’s proposal was introduced in (DA FONSECA BRAGA et al.,
2020). Since this published work, new features were developed, and the framework
increased its complexity.

The repository available in (DA FONSECA BRAGA, 2021a) will also accept
further contributions and improvements.

1.5 CHAPTER ORGANIZATION

This dissertation is presented in the following chapters. Chapter 1 presents a
brief overview and introduces the reader to the problem addressed in this work. Chapter
2 introduces the most common research topics involving Multi-robot Systems. Chapter
3 introduces important concepts and definitions needed for a better understanding of
this work. The HeMuRo Framework is presented in Chapter 4. Architecture, modules,
task decomposition, and special agents are also covered in Chapter 4. Chapter 5
describes a simulated environment with robots communicating and completing missions
with HeMuRo Framework. The last Chapter concludes the work by summarizing the
proposed Multi-robot System Framework and how it is performed, and also presents
the difficulties encountered and open questions to be addressed in further works.
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2 MULTI-ROBOT SYSTEMS

MRS comprehends multiple subjects of studies. (PARKER et al., 2016) enumer-
ated six main areas: Architecture, Communication, Swarm Robots, Heterogeneous
Systems, Task Allocation, and Learning. This chapter presents four of those subjects:
Architecture, Communication, Heterogeneous Systems, and Task Allocation. Swarm
Robots and Learning are not the main scopes of this Master’s Work, therefore they will
not be discussed. The last section presents a Workflow to develop a MRS proposed by
(RIZK et al., 2019).

2.1 ARCHITECTURE

Designing an efficient architecture for MRS impacts directly on the robustness
and scalability of the system (PARKER et al., 2016). Scaling up the size of a robot
team to execute a mission increases the monetary cost of setting up a team and the
complexity of executing the task. Efficient strategies must be chosen and optimized for
each scenario. (TIWARI; YOUNG CHONG, 2020) presents optimal architectures for
team control strategies.

• Centralized strategies

Task Manager

Fleet

Figure 2 – Centralized Topology represented by a task manager assigning tasks for
each robot inside the fleet. Adapted from (TIWARI; YOUNG CHONG, 2020)

In a typical centralized strategy, the system concedes to a single agent the power
to acquire information and delegate tasks to other agents. The main characteristic
of this centralized strategy is having a simple architecture and it is easy to be
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maintained, and also it is easy to set up and replicate. In case of a failure on the
master agent, the whole system associated to it will collapse. Another disadvan-
tage is the increase of complexity when the number of agents increases because
the master agent will have to delegate tasks to all agents. Figure 2 represents this
kind of architecture where a task manager at the center decides what every robot
will execute.

• Decentralized strategies

Fleet Manager Fleet Manager

Task Manager

Fleet

Figure 3 – Decentralized Topology represented by the task manager at the top, fleet
managers in the middle and robots in the bottom. Adapted from (TIWARI;
YOUNG CHONG, 2020)

Decentralized strategies are implemented to solve problems found in centralized
strategies. There will be a global master to delegate global decisions, but there
will be a second level of local masters to take decisions too. As advantages, this
system will have multiple decision-making points, a failure of any master in an
intermediary level does not compromise the whole system. In this aspect, the
system is fault-tolerant. As for disadvantages, there is the risk of duplication when
two agents decide to do the same task and the risk of conflict of resolution when
two tasks are assigned for the same agent. Figure 3 illustrates this architecture.

• Distributed strategies
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Common Goal: 
assemble a car 

Local Goal:
Assemble Electronics

Local Goal:
Paint

Local Goal:
Solder

Local Goal:
Deliver Components

Figure 4 – Distributed Topology illustrated by an example of the assemble of a car. Each
team will have a local goal, independent of the common goal. Adapted from
(TIWARI; YOUNG CHONG, 2020)

Distributed strategies are based on the "divide-and-conquer" approach. Multiple
agents can be working to accomplish a common goal, but at the same time, they
can be doing drastically different tasks. As advantages, it’s possible to enumerate
the scalability, fault tolerance, and computationally efficient. As for disadvantages,
there is some difficulty in troubleshooting and deployment and preliminary costs
are high. Figure 4 illustrates this architecture. In this case each group of robots
are responsible for a task and they will work independently from each other group.

• Solitary Confinement strategies
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Area 1 Area 2

Area 4 

Area 6
Area 7

Area 3

Area 5

Figure 5 – Solitary Confinement Topology, Regions are well delimited and the robots
will only actuate in their specific region. Adapted from (TIWARI; YOUNG
CHONG, 2020).

In this strategy, each robot is confined to a region within the target environment.
One approach to delimit these regions is by applying the Voronoi tessellation
(BHATTACHARYA; GAVRILOVA, 2007). Each agent will only perform actions in its
region. This strategy is highly scalable, every single agent will have its autonomy
and the confinement regions can be adapted dynamically. As for disadvantages,
the initial confinement regions need to be well planned and the smaller the region,
the higher the redundancy in observations. Figure 5 exemplifies this architecture
where each UAV is confined to an region of the map.

2.2 COMMUNICATION

Communication is a fundamental area of MRS. There will be scenarios where
the robots might not have all the information they need to complete a mission. How-
ever, it is also possible to achieve a globally coherent and efficient solution through the
interaction of robots lacking complete global information. When information is incom-
plete or missing, the robots must communicate to obtain the missing parts. (PARKER
et al., 2016) enumerates three of the most common techniques to obtain the missing
information:

1. The use of implicit communication through the world (called stigmergy )

This technique relies on sensing the effects of the other agent’s actions through
their impacts on the world. This is a simple approach and there is no need of
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a explicit communications protocol and channels. Nonetheless, this technique is
limited by the extent to which a robot’s perception of the world reflects the salient
states of the mission the robot team must accomplish.

2. Passive action recognition

The agent uses its sensors to directly observe the actions of their teammates.
This technique is useful because it doesn’t depend upon a limited bandwidth,
fallible communication mechanism. However, it is limited by how far the sensors
can observe the teammate’s progress, and the difficulty of analyzing the actions
of robot team members.

3. Explicit (intentional) communication

In this technique, the robots communicate directly and intentionally with each
other. In most MRS cases, it is commonly used to synchronize actions, exchange
information, and negotiate between robots. In this situation the robots are aware
of the actions and goals of teammates. This technique is limited in terms of fault
tolerance and reliability. It also provides mechanisms to handle communication
failures and lost messages.

According to (TIWARI; YOUNG CHONG, 2020), there are two aspects to con-
sider while designing the communication of a MRS: (i) What information will the agent
pass around? and (ii) How will the information be passed around? Those two aspects
are really important and they interfere directly with the latency and overhead of the
communication.

• Synchronous Communication
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Send Command

Send Video

Figure 6 – Synchronous Communication. Adapted from (TIWARI; YOUNG CHONG,
2020)

This type of communication happens when the exchange of information is time
coordinated. An example of this communication is a robot’s teleoperation. The
robot receives commands from a joystick and streams the video in real-time to
the user. As pros, it can be quoted real time exchange of information, with almost
negligible delays; the response is immediate; can achieve high throughput, and
minimal overhead as the crucial data/information can be directly transmitted. As
for cons, a complex system is required to synchronize the communication, system
complexity increases with the number of peers involved and does not scale well
with the size of the team.

• Asynchronous Communication
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5 minutes walk

Send Command Confirmation

Figure 7 – Asynchronous Communication. Adapted from (TIWARI; YOUNG CHONG,
2020)

This type of communication works without co-ordination between transmitters and
receivers. An example: the user sends a command to the robot to go to a specific
position and waits for the feedback when the task is completed. This strategy is
useful because the information is transmitted when suitable to the sender and is
easily scalable. However, it is important to mention the prone to infinite waiting if
there is no time-out configured and Larger communication overhead. There must
be some flags used to control and allocate the communication servers.

• Disconnected Strategies

The author refers to this type of strategy as a technique created for harsh commu-
nicated devoid scenarios. The team coordination and intra-team communication
are a challenge. This is applied in sub-terrain explorations, for example. The
space-race is another example related to this strategie. In this case, the compa-
nies involved in a Rocket project don’t want information about their projects to
be leaked out during communication, so they have created strict protocols for
communication to enforce them not let information leak with this strategy. There is
no communication overhead, no restriction to maintain a communication link with
peer or base. However, there might be a high risk of redundancy and computa-
tional resources are local and limited.
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2.3 HETEROGENEOUS SYSTEMS

Robot heterogeneity is possible to be defined in terms of variety in robot behavior,
morphology, performance quality, size, and cognition.

According to (PARKER et al., 2016), in most large-scale MRS the benefits of par-
allelism, redundancy, and solutions distributed in space and time are obtained through
the use of homogeneous robots. However, in complex applications where the robot
teams may require a large variety of sensors and robots, the use of heterogeneous
robots make, the execution of tasks more efficient. It is also important to emphasize
that it is expensive or infeasible to add all sensors to a single robot. The use of het-
erogeneous robots in MRS can amplify its overall performance using the best suitable
robot for each task.

There are many scenarios and configurations for a heterogeneous MRS. The
use of grounded, aerial, superficial and underwater robots can be combined to amplify
the workspace of the missions. Using different robot models at the same category can
also be interesting. For example using multiple UGV’s models varying its size, bigger
robots might carry heavier objects but they tend to be slower and/or consume a great
amount of energy, while smaller robots carries small objects but tends to be faster,
consuming small amounts of energy.

10 Km

Figure 8 – Example of Heterogeneous MRS

Figure 8 represents a combination of UAV and UGV. The UAV is required to
take some aerial pictures from different places. In this case, the UGV has better battery
lifetime than the UAV. The UGV can carry the UAV until a specific position, saving the
UAV’s battery to be used when needed.
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There is also another relevant example is for USAR. UAVs tend to be faster than
UGVs to search an area. On the other side, UGVs can carry objects and/or people.
During a disaster UAVs can be used to search the entire area for people and inform the
UGVs where to collect them (Figure 9).

Figure 9 – Example of Heterogeneous MRS

2.4 TASK ALLOCATION

MRTA solutions have been the subject of increasing research over the years.
MRTA uses mathematical algorithms, biological behaviors and others to inspire and
implement solutions to robot’s tasks. (KORSAH et al., 2013) Choosing the best suitable
robot to execute each task can considerably imrpove the efficiency of MRS.

To classify MRTA problems, (GERKEY; MATARIĆ, 2004) proposes three axes
new taxonomy for Multi-Robot Task Allocation. They are defined as follows:

• Single-task robots (ST) versus multi-task robots (MT)

ST means that each robot can execute at most one task at a time, while MT
means that some robots can execute multiple tasks simultaneously.

• Single-robot tasks (SR) versus multi-robot tasks (MR)

SR means that each task requires exactly one robot to achieve it, while MR means
that some tasks need multiple robots.

• Instantaneous assignment (IA) versus time-extended assignment (TA)

IA uses the available information concerning the robots, the tasks, and the envi-
ronment to an instantaneous allocation of tasks to the robots, with no planning for
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Figure 10 – Workflow for the MRS proposed in (KIENER; VON STRYK, 2010) adapted
from (RIZK et al., 2019).

future allocations; TA means that more information is available, such as the set of
all tasks that will need to be assigned, or a model of how tasks are expected to
arrive over time.

To implement these features, a system is proposed to construct this framework.
With these premises the first allocation model implemented in this framework is the ST-
SR-IA. This framework will support the decomposition of simple tasks to be executed.

2.5 MRS WORKFLOW

(RIZK et al., 2019) proposes four main design block workflow to design an MRS
capable of accomplishing complex tasks systematically: (1) task decomposition, re-
sponsible for dividing complex tasks into simpler ones; (2) coalition formation, where
teams of agents are created; (3) Task allocation, responsible for assigning sub-tasks
to the teams for execution; and (4) task execution/planning and control, responsible for
executing a sequence of actions on the environment.

Figure 10 describes a workflow presented by (RIZK et al., 2019) based on the
paper from (KIENER; VON STRYK, 2010). In this example, a human designer was
required to manually decompose complex tasks to simpler sub-tasks based on the
available robots’ capabilities and form coalitions from a set of agents. They formed
teams that automatically execute task allocation, planning and control. According to
(RIZK et al., 2019) many researchers have decided to assign coalitions in MRS to
simplify the design statically.

This chapter covered the main characteristics and theory of MRS. The next
chapter covers some background on tools used to develop the proposed framework
and also important definitions used in this work.
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3 BACKGROUND

This chapter covers essential topics and the software used to develop this work.
There is some popular software used in the industry to develop and deploy robotic appli-
cations. The first section introduces the middleware ROS through some main concepts.
The Gazebo simulator is presented in the next section with scenarios from Amazon Web
Services - Robotics (AWS Robotics). The third section presents a framework called
WebToolkit used to design a GUI web application, providing a more user-friendly inter-
face debug. One of the main chores of the framework developed is task decomposition.
The last topic covered in this chapter will be the definitions used to decompose missions
into simple tasks.

3.1 ROS

ROS is an open-source, meta-operating system for robots. Created to integrate
different devices and programming languages, ROS provides libraries and tools to help
software developers create robot applications (ROS, 2020d). Any framework based on
ROS could be easily implemented in different programming languages, for example,
Python, C++, and Lisp. There are also experimental libraries for Java and Lua.

Some main concepts help understanding how it works and why it is useful for
academics and the industry. ROS is a distributed framework composed of applications,
and in this case, they are called Nodes. The Nodes are processes that perform com-
putation. The implementation of a robotics control system using ROS requires multiple
nodes. For example, a node responsible for acquiring sensor information, one node to
perform localization, another node to control the motors, etc.

Nodes communicate with each other through messages containing data struc-
tures. There are some predefined messages, but the end-user can also create its mes-
sage types. These messages are routed via a transport system with publish/subscribe
semantics. This transport system is made of topics.

Packages are the main unit for organizing software in ROS. A package may
contain nodes, configuration files, datasets, and other valuable files organized together.
A stack is composed of multiple packages. The following subsections will be presented
packages and a stack related to the robot’s localization and mapping.

3.1.1 Gmapping

Gmapping is a ROS package, and it contains a ROS wrapper for OpenSlam’s
Gmapping (ROS, 2020b). This package provides a laser-based Simultaneous Localiza-
tion and Mapping (SLAM) and is used to create a 2-D occupancy grid map from laser
and pose data collected by a mobile robot.
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This algorithm is vital for developing an autonomous robot. However, the SLAM
process can be costly to the robot, especially when there is not enough computational
power available in the robot. The objective of this node is to create a map of the
environment and save it before starting the execution of the missions. A saved map
permits the implementation of algorithms related to localization, which are less costly
than running it simultaneously with mapping.

The occupancy grid map created by Gmapping provides information about ob-
stacles. Then the Navigation Stack can provide the robot’s position on a map and obtain
trajectories for the robot to move across the environment. During the execution of the
missions, the localization provided by the Navigation Stack will be available instead of
the Gmapping SLAM.

3.1.2 Navigation Stack

The Navigation Stack provided by ROS is on a conceptual level, and it is de-
signed to be as general-purpose as possible. It takes in information from odometry and
sensor streams and outputs velocity commands to send to a mobile base (ROS, 2020c).
The main goal of this stack is to provide algorithms helping a robot locate itself in an
environment and move it from one place to another.

There are some basic requirements to use the Navigation Stack on a robot:

• The ROS running on the robot;

• A relation between links and frames of the robot also called Transform tree (tf);

• A sensor publishing data using the correct ROS Message types.

There are multiple algorithms implementing robot mapping, localization, path
planning, and trajectory planning included. The user can decide which ones will be
used, and there is also the possibility of developing their algorithm and integrate with
the algorithms provided by the stack. Some parameters of the Navigation Stack also
need to be configured to achieve better performance.

3.2 GAZEBO

Testing real robots in real scenarios can be dangerous and costly. Therefore, a
simulation environment to test robotic algorithms is essential. It can reduce costs drasti-
cally, and it can predict the particularities of the system. Testing in a virtual environment,
or a simulated world, increases test coverage, reduces safety risk, and decreases
development time.

Gazebo is a robot simulator capable of efficiently simulate populations of robots
in complex indoor and outdoor environments. It makes it possible to test algorithms
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Figure 11 – AWS Robotics - Hospital World

rapidly, design robots, perform regression testing, and provides the necessary data to
train an AI system using realistic scenarios (FOUNDATION, 2014). Gazebo is available
for Linux, Mac OS, and Windows. Gazebo is integrated with ROS, and there are plenty
of robots and scenarios, also called worlds, available through the community. (TAKAYA
et al., 2016) presents a integration between ROS and Gazebo.

3.2.1 Amazon Web Services - Robotics

The use of simulated environments is an excellent deal for testing new codes
and strategies. However, it takes a significant amount of time to develop simulation
worlds. For example, indoor environments require artificial lightning configuration, in-
serting objects, floor, walls, and configuring their physics parameters, such as density,
weight, and collision. Focusing on simulating robotics environments, AWS Robotics
have developed several simulated world models for Gazebo to help developers quickly
debug robotics codes, e.g., hospital, warehouses, among others (ROBOTICS, 2021).

One of the environments implemented by AWS Robotics is the Hospital World
Model. This feature was developed as a solution for testing robot applications in hospital
facilities in this particular case. There is a front waiting area, with the reception including
patients and medical staff nearby, four small rooms for consults, two storage rooms, and
infirmaries. Figure 11 describes all the rooms available on the first floor of the hospital.
There are also more extensive medical environments containing two or three floors.

Another modeled world is the small warehouse. The scenario is used for projects
involving logistics and warehouse applications. In this particular case, some industrial
objects were inserted into the scenario. Pallets, shelves, trash cans, buckets, and big
boxes are examples of objects added to make the environment as authentic as possible.
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Figure 12 – AWS Robotics - Small Warehouse World

For better visualization of the world, inserting a roof in the scenario is an optional feature.
Figure 12 describes the simulated warehouse implemented by AWS Robotics.

All world models are editable. The user can add other models to the environment
or remove some of the default objects. Working with virtual machines, this flexibility
might be helpful for better performance.

3.2.2 Important Parameters

Depending on which computer will simulate the environment, some adjustments
are necessary to improve its performance. The main goal is to execute the simulation
keeping the simulation time and real-time as equal as possible.

Some important physical parameters for the simulation are the max_step_size,
real_time_update_rate, and real_time_factor. The first parameter refers to the max-
imum time for each iteration in the simulation solver and the second one refers to the
frequency at which the simulation time steps are advanced. Those two parameters are
used to obtain the real_time_factor in Equation 1.

real_time_factor = max_step_size ∗ real_time_update_rate (1)

A real_time_factor equals 1.0 means that the simulation time and the real-time
are equal. If a value is smaller than 1.0 it means that the simulation is slower than the
real-time. Configuring the real_time_update_rate parameter as 0 the system will run
as fast as it can. These parameters just set an upper bound for the simulation system.
If the power available is not enough to solve at the right time, the simulated time will run
slower, and the real_time_factor will increase.
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3.3 WEBTOOLKIT

Creating an application can be challenging. Deciding how the information will be
displayed to the end-user is crucial to create intuitive software. Developing Graphical
User Interface (GUI) interfaces for C++ applications can be complex. The programmer
needs to implement solutions using resources available for each operating system the
application will run. There is also concern about how the application will be displayed.

Web Toolkit (Wt) is a web GUI library developed for modern C++. With Wt it
is possible to quickly develop interactive web UIs with widgets (EMWEB, 2021b). To
organize the layout of the web page, Cascading Style Sheets (CSS), layout managers
and HyperText Markup Language (HTML) templates are available.

There are essential basic widgets and building blocks to build web applications,
including tables, texts, graphics, and PDF rendering. As an example, (EMWEB, 2021a)
brings a form programmed in C++ where the end-user must fill in with personal data.
This is an easy way of acquiring data.

3.4 DEFINITIONS

To present this work’s MRTA solution, some basic definitions were introduced. It
was adopted the terminology proposed by (ZLOT, 2006) and a subset of the definitions
of the original work was adapted for better understanding. The reader is invited to check
all definitions at the original paper.

Definition 3.4.1 (Allocation). Given a set of robots R, let R = 2R be the set of all robot
subteams. An allocation of a set T of tasks to R is a function, A : T → R mapping each
task to a single robot or subteam of robots capable of completing it. Equivalently, RT is
the set of all allocations of the tasks T to the team of robots R. Let Tr (A), r ∈ R be the
set of tasks allocated to subteam r in an allocation A.

Definition 3.4.2 (Allocatability). Given a team of robots, a task is allocatable if it is
possible to assign the task to a some robot (or subteam) with the appropriate capabilities
and resources to achieve it.

Definition 3.4.3 (Multirobot Allocatability). Given a team of robots R, a set of tasks T
is multirobotallocatable if there exists some feasible allocation A of tasks to robots (or
subteams) in which more than one robot (or subteam) is assigned at least one task,
i.e., ∃r , s ∈ R, r 6= s|Tr (A) 6= ∅ ∧ Ts(A) 6= ∅. A set of tasks is not multirobot-allocatable
if there are no feasible allocations, or if every feasible allocation requires that all tasks
are assigned to a single robot or subteam.

Definition 3.4.4 (Decomposition and Decomposability). A task t is decomposable if
it can be represented as a set of subtasks σt for which satisfying some specified
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combination (ρt ) of subtasks in σt satisfies t . The combination of subtasks that satisfy
t can be represented by a set of relationships ρ, that may include constraints between
subtasks or rules about which or how many substasks are required. The pairs (σt ,ρt ) is
also called a decomposition of t . The term decomposition can also be used to refer to
the process of decomposing a task.

Definition 3.4.5 (Multiple Decomposability). A task t is multiply decomposable if there
is more than one possible decomposition of t .

Definition 3.4.6 (The Multirobot Task Allocation Problem). Given a set of tasks T , a
set of robots R and a cost function for each subset of robots r ∈ R specifying the cost
of performing each subset of tasks, cr : 2T → R+ ∪ {∞} find the allocation A∗ ∈ Rt that
minimizes a global objective function C : RT → R+ ∪ {∞}.

Definition 3.4.7 (Elemental Task). An elemental (or atomic) task is a task that is not
decomposable.

Definition 3.4.8 (Decomposable Simple Task). A decomposable simple task is a task
that can be decomposed into elemental or decomposable simple subtasks, provided
that there exists no decomposition of the task that is multirobot-allocatable.

Definition 3.4.9 (Simple Task). A simple task is either an elemental task or a decom-
posable simple task.

Definition 3.4.10 (Full Decomposability). A task t is fully decomposable if a set of
simple subtasks can be derived within a finite number of decomposition steps. Such a
decomposition (containing only simple subtasks) is called a full decomposition of t .

Definition 3.4.11 (Compound Task). A compound task t is a task that can be decom-
posed into a set of simple or compound subtasks with the requirement that there is
exactly one fixed full decomposition for t (i.e., a compound task may not have any
multiply decomposable tasks at any decomposition step).

Definition 3.4.12 (Complex Task). A complex task is a multiply decomposable task
for which there exists at least one decomposition that is a set of multirobot-allocatable
subtasks. Each subtask in a complex task’s decomposition may be simple, compound,
or complex.

This chapter discussed some relevant concepts and software related to the pro-
posed framework. The following chapter will present the development of Heterogeneous
Multi-Robot (HeMuRo) Framework.
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4 FRAMEWORK’S DEVELOPMENT

This Chapter is composed of three sections. The first section presents all the
modules in the HeMuRo Framework. The second one describes the special agents
developed for the framework. The last section provides information about all the robot
models implemented.

The conception of this Framework was based on independent modules. This
architecture was chosen over a more conservative approach, allowing the end user to
choose which features will be used without huge code modification. It also provides
easier integration for future contributions. Figure 13 presents all the modules developed.
The orange module in the center represents the only obligatory module every agent
must have. The blue ones represent modules that can be activated or deactivated
according to each agent’s capabilities.

Communication Modules:
- UDPBroadcast
- UDPSender
- UDPReceiver
- UDPReceiverSIM

Energy Module:
- Battery Manager Module

ROSBridge Module

Shared Memory Module:
Blackboard

Debug Modules:
- Logger Module
- Web Interface Module

Task Module

Mission Modules:
- Auction Model Module

AtomicTasks

Figure 13 – Agent’s Architecture for HeMuRo Framework

4.1 MODULES

There are seven group modules in the framework: Core, Communication, Debug,
Energy, Mission, ROSBridge, and Task Modules. They must be instantiated in every
agent to use their functions. When looking at the MRS, every agent will have an ar-
chitecture similar to Figure 13. An agent will have its modules and it will communicate
with other agents using communication modules. The end-user can add, remove or edit
functions inside the modules.
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4.1.1 Core Modules

Core Modules are the basis of each agent. Basic module declaration, shared
memory, and log management are some examples of the basic modules.

4.1.1.1 Blackboard

Every Agent has a module responsible for managing their global variables. The
Blackboard module implements this feature and it is in fact a shared memory. All mod-
ules access the shared memory to get parameters, invoke global methods, and commu-
nicate. To connect managing of global variables it is necessary to implement methods to
prevent simultaneous access to these variables. The communication between modules
is also implemented inside the Shared Memory by using message buffers.

4.1.1.2 Default Module and Periodic Module

Most of the modules derive from these two modules. They have a looping thread
inside and they differ from each other at the loop: the Default Module uses a non-
periodic thread. This means that the end-user must pay attention to when the loop
executes, otherwise it will consume much power of the Central Processing Unit (CPU).
As the name shows, the Periodic Module contains a periodic loop and the end-user
informs the periodicity.

4.1.1.3 DataTypes

It is not a module but it has vital importance for the Framework. All data types
used in the Framework are declared here. As will be explained later, task decomposition,
atomicTasks declaration and message types are declared inside this file.

4.1.2 Communication Modules

All agents must be able to communicate with each other at the same MRS. There
are four communication modules available at HeMuRo Framework.

4.1.2.1 UDPBroadcast

UDPBroadcast sends periodic messages to all agents containing information,
such as the agent’s name, position, current status, battery level, and category. This
module feeds the Blackboard module and the Logger agent uses this information to
create the webpage with the logs.
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 name[max_Robot_ID] operation data_size data[data_Size]

Figure 14 – Data serialization of a message

4.1.2.2 UDPSender

UDPSender sends messages on demand to a single agent or broadcasts a
specific message. This module gets the messages from a buffer in Blackboard. An
example of the use of this module is sending requests to execute missions to other
agents. Figure 14 shows the composition of a message. The fist block is the receiver’s
name. It can be the name of an agent or broadcast, to send it to all agents. The
maximum size of this field is defined on DataTypes. The following field is the operation
code. It is the size of an integer and defines who will treat the messages at the receiver.
The third field is the size of the data sent, followed by the last field: the data itself.

4.1.2.3 UDPReceiver

UDPReceiver receives all types of messages. This module is used if there is
only a single agent running on the computer. The module will acquire all messages
sent to the machine’s Internet Protocol (IP) address and it process them if they are for
this agent.

4.1.2.4 UDPReceiverSIM

If over one agent is running at the same machine, this module should be used in-
stead of the UDPReceiver. This module will acquire all messages sent to the machine’s
IP address, and will forward to the respective agent’s blackboard.

4.1.3 Task Module

The task module decomposes a task in a sequence of actions to be performed
in the environment. It is also responsible for controlling the execution of those actions,
and treating interruptions in case of an emergency.

4.1.3.1 AtomicTasks

Using all definitions presented in the Background Section, atomicTasks are, ac-
cording to Definition 3.4.7, tasks that cannot be decomposed. HeMuRo Framework is a
generic framework, and it will support different robots. Each robot has its particularities
and methods to execute actions. Therefore, each robot will have its atomicTasks imple-
mentations. For example, a wheeled robot moves by rotating its wheels, and humanoid
moves by walking. The atomicTask goTo(x,y) has different implementations for these
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two robots, but both represent the same action: to move from where they stand to
the desired position. When the action goTo(x,y) is invoked, each robot will execute it
according to its list of implementation list.

4.1.3.2 DecomposableTasks

A decomposableTask (Definition 3.4.8) is a simple task (Definition 3.4.9) and it is
composed of one or more atomicTasks. The decomposableTaskList is like a user guide
for a robot. It contains all actions a robot can perform and the execution plan. If a robot
can execute a decomposableTask, it must be declared on the decomposableTaskList
with their sequence of atomicTasks. It is important to notice that all decomposable-
Tasks with the same name must have the same arguments to be parsed on every
robot. For example, the decomposableTask checkSpot(Position) can be decomposed
for a UAV as takeOff(Position.Z), goTo(Position), takePicure(), sendPicture()
and, on the other side, for a UGV as moveBaseGoal(Position), takePicture() and
SendPicture().

In order to decompose a decomposableTask into a sequence of atomicTasks,
every robot should have a list of all possible atomicTasks and decomposableTasks

available in the whole environment, including the ones it cannot perform. Listing 4.1
shows how to declare all possible atomicTasks and decomposableTasks as "enumera-
tors". This data is implemented inside the DataTypes presented at the Core Modules.

1 enum class enum_AtomicTask{null, chargeBattery, turnOn, goTo,

moveBaseGoal, takePicture};

2 enum class enum_DecomposableTask{null, checkSpot, lowBattery, takePicture,

flightTest, deliverPicture};

Listing 4.1 – atomicTask implementation

The atomicTasks are implemented for each type of robot. It is also possible to
use the same implementation for two types of robot. After that, a human specialist
must declare the sequence of atomicTasks for each decomposableTask and store this
information into the robot’s memory.

1 std::vector<enum_AtomicTask> atomicTaskEnumerator;

2 enum_DecomposableTask dTask = enum_DecomposableTask::checkSpot;

3

4 atomicTaskEnumerator.push_back(enum_AtomicTask::moveBaseGoal);

5 atomicTaskEnumerator.push_back(enum_AtomicTask::takePicture);

6 atomicTaskEnumerator.push_back(enum_AtomicTask::sendPicture);

7 Blackboard->addDecomposableTaskList(dTask,atomicTaskEnumerator);

Listing 4.2 – DecomposableTask declaration
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Listing 4.2 presents an example of Task declaration for a robot. A vector of
atomicTask stores the sequence of atomicTasks to be performed. After the declaration,
this sequence is added to the robot’s shared memory into the decomposableTaskList.

At this point, the agent knows if it is possible to execute a task. The next step
is to provide an algorithm that receives a sequence of atomicTasks enumerators with
their attributes and converts it into a sequence of atomicTasks. Algorithm 1 presents
the steps to do this conversion.

Algorithm 1 Algorithm for TaskDecompose Module
1: enumList ← find a valid atomicTaskEnumSequence
2: for i = 0 to enumList .size do
3: atomicTaskSequence[i ]← createAtomicTask (enumList [i ])
4: end for
5: checkConsistencyOf(AtomicTaskSequence)
6: if AtomicTaskSequence is consistent then
7: return true
8: else
9: return false

10: end if

After all these steps to decompose a decoposableTask, the TaskModule is ready
to execute all actions. However, task allocation still needs to be solved for each system.

4.1.4 Mission

Mission modules organize and decide which robot will execute a particular mis-
sion. This problem solves MRTA. A mission is composed by one or more decompos-
ableTasks. If there is over one decomposableTask, they must be independent from each
other, creating the possibility of multiple robots executing a decomposableTask.

In HeMuRo Framework, it is possible to use Task Allocation Methods that are
already implemented or, if it is convenient, the user can implement its own MRTA
solution, sending the chosen task to be executed to the TaskModule.

4.1.4.1 Auction Module

The Auction Model was implemented as the default MRTA solution. To keep the
system decentralized, all agents can offer a mission to all agents. This way, the sys-
tem will be partially decentralized and partially centralized. It is decentralized because
missions can be offered by any agent, but it is also centralized because the agent who
offers the mission will be the one choosing executioner of the mission.

The mission owner will offer the mission and wait a few seconds for the bids.
All agents capable of executing this mission will send back a proposal to the mission
owner. The agent who offered the mission as the winning bid will choose the cheapest
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bid. Avoiding conflicts in case of equal bids, the first arrival will be chosen. The user
can choose the way the total cost of the mission is calculated. Each atomicTask cost is
based on energy consumption and time to complete the execution. A cost function was
created as a standard for all agents.

Totalcost = α× EnergeticCost + (1 – α)× TimeCost (2)

Where EnergeticCost will be expressed as a percentage of the total energy of
the agent, TimeCost is the estimated time to execute the mission divided by the relative
deadline and 0 ≤ α ≤ 1. Changing α allows the cost function to give priority to time or
energy. By default, the Agent will sum all the costs of each atomicTask that needs to be
executed and α = 0.5. This means that the EnergeticCost and TimeCost will have the
same weight.

The auction’s winner will receive the command to perform the task after confirm-
ing that it is still available. If the winning agent is not available, the second-best bid will
be chosen, and so on. When there are no more bids left on the list, the agent owner
will offer the mission to all robots again.

The agent must report to the owner of the mission after completing it or in case of
not completing the mission, e.g., low battery, hardware failure, or not being able to finish
the task before the deadline. In case of mission failure, the mission owner will restart the
auctioning process to allocate the mission to another agent. Timeout functions prevent
deadlock in the auctioning process.

The agent offering a mission can select different filters, selecting a specific group
of agents to execute the mission. For example, specifying a category of agents (e.g.
UGV, UAV or Unmanned Superficial Vehicle (USV)), a deadline to execute the whole
mission (slower agents cannot complete the mission in time), and of course, depending
on the requested mission the agents who cannot perform it will not bid.

At this point is important to inform that when an emergency occurs the agent will
report to the mission owner that something occurred and it cannot proceed executing
the original mission. The mission owner allocates another robot to finish or restart
the mission. If the mission owner is no longer available to do so, the mission will be
canceled.

It is also possible to assign a specific mission directly to the robot by sending a
TaskModuleMessage using the command enum_TaskMessage::addTask. If the agent is
available, it will execute the mission. If it is an emergency, it can also send a TaskMod-
uleMessage using the command enum_TaskMessage::addEmergency and the agent will
stop what it is doing and perform the mission.
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4.1.5 Energy Module

In this group, there is only one module developed yet. This single module is
responsible for managing the battery level and the charging stations.

4.1.5.1 BatteryManager

The Battery Manager module can operate in two modes: the first is for the agents
with an internal battery and the second for charging stations.

1. This module checks periodically the battery status of the agent. If the battery level
is low or if distance between the agent and the closest charging station available is
growing and there might be no sufficient energy to return and charge if the agent
keeps going, the module will contact all charging stations and require a spot to
charge. The auctioning process mentioned in the Mission module section was
used to select the best charging spot available by choosing the closest available
charging spot.

2. Selecting the charging station operational mode will enable the charging spots
previously declared and it will offer the available charging spots at the auctioning
process. A charging spot has their own limitations, for example power offered and
models of robots assisted in charging.

4.1.6 ROSBridge Module

There is a special module for the agent communicating with ROS. The ROSMod-
ule will acquire information from ROS and store it on the Blackboard and it will also
publish information on ROS based on incoming messages from a buffer in the shared
memory.

This module must be implemented individually for each type of agent. Each agent
has its topic names and services and probably a different way to operate them. The
user must specify all topics that will publish and subscribe. There is also the possibility
of creating ActionClients, e.g., using the Move_base application. For this module, each
implementation must have a different name allowing multiple ROSModules to work
simultaneously, for example, when using the same machine to simulate multiple robots.
The author recommends inserting the agent’s type at the end of the module’s name,
e.g., ROSModulePioneer, ROSModuleRosbot, etc.

When using ROS, it is important to inform that all topics regarding an agent must
have its name included as a namespace. For example, the robot named Robot0 has
a topic cmd_vel, so the topic on ROS must be called Robot0/cmd_vel. By doing so,
running multiple agents at the same machine with the same topic’s name is a possibility.
This is an essential feature for simulating multiple agents on the same computer.
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4.1.7 Debug Modules

There are two main modules responsible for debugging the system: Logger mod-
ule and Web module. Those two modules are related and normally it will be instantiated
only inside the agent who will keep track of everything that is happening inside the
MRS.

4.1.7.1 Logger Module

Responsible for printing messages at a terminal station and storing all messages
in text files. Modules must not print a message directly at the terminal. Because of
concurrent tasks, all terminal messages might be mixed up, and it will be ineligible.

The correct way to print a message at the terminal is by using the print()

method available on the Blackboard. This method will add the current message to the
loggerMessageModule. When the message arrives at the logger buffer, the logger will
add the sender’s name and arrival time to the message before printing it. This way will
be possible to identify who sent the message. Figure 15 shows an example of a printed
message.

Figure 15 – Example of terminal message printed by the Logger agent

It is also possible to store all the terminal’s messages in one text file to analyze
and debug later. In this case, before storing every message, the Logger agent will add
a time informing when the message was received. The time is measured in seconds
counted after the beginning of the simulation. Figure 16 illustrates an example of a text
file.

Figure 16 – Example of the text file printed by the Logger agent

Another feature presented by this module is saving information about all missions
in another text file, allowing the user to debug and create mission reports only. Figure
17 presents some charts made using the Logger information.
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Figure 17 – Graphic report created with from mission messages

4.1.7.2 Web Module

When this module is activated, a local web page is created using the Wt (EMWEB,
2021b). To enable this module, the user must install the library on the computer. At the
moment, this interface shows all the available agents in the environment (except for the
logger agent), informing its category, global position, battery level and, status (if it is
available, executing a mission, or in failure). Mission status is also available, informing
the mission owner and the agent who will execute it, including estimated time to execute
the mission, deadline, and the execution time. There is also a terminal window to verify
everything printed at the global terminal window. Figure 18 exemplifies a web page
provided by this module.

4.2 SPECIAL AGENTS

HeMuRo Framework has a set of agents responsible for maintaining some of the
essential functions of the framework. These agents can also be used as an example to
create other agents.

4.2.1 Logger Agent

The Logger agent handles the communication between the MRS and the end-
user. By default, both Logger modules are initiated. It has three fundamental blocks:
the first one prints all agents’ messages at the terminal; the second one is responsible
for storing messages in a text file. The last one acquires data and displays it on a web
page for better visualization.

Enabling this agent is optional for every MRS. If this agent is not enabled, there
will be no way of gathering information from the system. It is also important to remind
that multiple graphic stations can be multiple logger agents under the same name



Chapter 4. Framework’s Development 47

Figure 18 – Example of the web app by the Logger agent

"logger". This is the only case possible for having multiple agents under the same
name, and all the agents will behave equally.

4.2.2 Charging Station

The Charging Station agent offers a place for physical agents to recharge its
battery. Every Charging station has one or multiple chargers. They are called Charging
Spots, and they have their own physical limitations working for some robot’s category.

The recharging process starts with a charging request from an agent. This pro-
cess is similar to the auctioning presented by the Mission module and the request
includes the agent’s position and its category. After the first request, an auction decides
which of the Charging Stations available suits the best for this occasion.

The winning bid is selected by the distance between the agent and the Charging
Station, and a Charging Spot for the agent at the selected Charging Station is reserved.
The agent moves to the selected spot and starts charging. It is important to remember
that after the charging is complete, the agent must free the charging spot so other
agents can use it.
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4.3 ROBOTS

Some robots were included as models to execute the examples provided by the
author. Three robots are already compatible with some implemented atomicTasks.

4.3.1 UGVs

Two UGVs are implemented and they are ready to use. Both robots have the
Light Detection And Ranging (LIDAR) sensor to map the environment and to identify
where they are in the environment. ROS was used for localization, path planning and
controlling the robots. Gmapping package and Navigation stack were used to move the
robot across the environment.

Both robots don’t provide a battery simulator. Therefore, a battery simulator
module (SILVA BARBOSA, 2021) was used to simulate the behavior of a physical
battery for each robot.

4.3.1.1 ROSbot 2.0

ROSbot 2.0 model (HUSARION, 2021) is an educational, autonomous, open-
source platform based on ROS. This 4x4 drive robot is equipped with LIDAR, RGB-D
camera, IMU, encoders, and distance sensors.

4.3.1.2 Pioneer 3DX

Pioneer 3DX is also an educational, autonomous, open-source platform based
on ROS. It is a two-wheel two-motor differential drive robot, it comes with sonar, wheel
encoders, and it is possible to attach other devices (ADEPT TECHNOLOGY, 2011).

4.3.2 UAV: COEX Clover

The UAV model implemented is the COEX Clover. Clover is an educational kit of
a programmable quadcopter. It has a Raspberry Pi 4 as a controlling onboard computer,
a camera module, distance sensor, GPS and other sensors (COEX, n.d.). It has open-
source software and documentation. The flight controller has the PX4 flight stack, and
it is integrated with ROS.

This UAV doesn’t provide any LIDAR for obstacle avoidance. The navigation of
Clover drone is provided by an algorithm developed by COEX. The algorithm moves
the robot in straight line to the goal.

Before using this model, some configuration must be done. Some parameters
must be altered. As default, the PX4 estimator parameters do not include GPS fusion,
changing the EKF2_AID_MASK parameter to 3 enables the GPS fusion for a more
precise position.
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The battery simulator is not activated by default as well. By default, the battery
only drains a bit and it won’t be completely without charge. Altering the parameter
SIM_BAT_DRAIN to 300s means that the battery will last for 300s when the drone is
on air. After landing the battery will recharge automatically. With this behavior, it was
set a basis for the drone, it will execute its mission and then it will go back to the basis
for recharging. Another parameter altered was SIM_BAT_MIN_PCT to 0. This sets the
lower boundary of the battery.

A complete overview of the modules is presented in this Chapter, along with
some robot models implemented. However, another critical step of this work is to test
the framework with different scenarios. This will be cover in the next Chapter.
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5 EXPERIMENTAL ENVIRONMENT AND RESULTS

This chapter presents how to implement different scenarios for MRS using
HeMuRo Framework. A brief description of the simulations is introduced, followed by
implementing atomicTasks used by each robot.

After implementing all atomicTasks, the declaration of each model of the robot
is required, including all their decomposableTasks. The following step is to configure
the environment by creating the main program, instantiating all agents and offered
missions.

Three scenarios with different characteristics are presented below. Each sce-
nario has its particularities, using other robots and missions.

• Empty world

In this simulation, it will be considered the use of the HeMuRo Framework with
no simulator or framework communicating with it. Here, an empty map will be
used. There will be no collision avoidance in this simulation because there are no
physical constraints to the robots.

The only model used in this simulation scenario will be a general robot model.
The robots must pick up and deliver samples, inspect areas by taking pictures
and measure the temperature of selected spots.

• Hospital World

The scenario chosen for this simulation is the Hospital World provided by AWS
Robotics. In this simulation, there will be two models of UGVs, and the robots must
pick up and deliver samples of different sizes, inspect rooms by taking pictures and
measure the temperature of selected rooms. As the robot models have different
physical attributes, they will perform different missions.

• Small Warehouse World

The scenario chosen for this simulation is the Small Warehouse World provided
by AWS Robotics. In this scenario, there will be two simulation scenarios. The first
one there will be one UAV and one UGV working together. The UAV will inspect
areas by taking pictures from above, and the UGV will pick up and deliver objects.
The second simulation scenario will have two UGVs performing the same missions
as the previous simulation. The UGVs will inspect areas by taking pictures and
will also pick up and deliver objects.

The auctioning process of all three environments will have the same configura-
tion. The communication max response will be 1 second, and the bidding time will be
5 seconds. The Charging Station 01 will offer all tasks for each scenario. With these
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scenarios established, a description of atomicTasks and implementation are proposed
in the following section.

The ROS workspace is available on (DA FONSECA BRAGA, 2021b). For a
better comprehension Figure 19 presents a tree with the files in the ROS workspace
repository.

HeMuRo_Demo
├──	[1.1K]		LICENSE
├──	[		84]		README.md
└──	[4.0K]		ROS_Workspace
				└──	[4.0K]		src
								├──	[4.0K]		aws-robomaker-hospital-world
								├──	[4.0K]		aws-robomaker-small-warehouse-world
								├──	[4.0K]		battery_simulator
								├──	[4.0K]		hemuro_sim
								│			├──	[7.2K]		CMakeLists.txt
								│			├──	[4.0K]		launch
								│			│			├──	[	333]		hemuro_teleop.launch
								│			│			├──	[3.4K]		hospital_simulation.launch
								│			│			├──	[3.6K]		move_base_p3dx2.launch
								│			│			├──	[3.4K]		move_base_p3dx.launch
								│			│			├──	[3.4K]		move_base_rosbot2.launch
								│			│			├──	[3.0K]		move_base_rosbot.launch
								│			│			├──	[	904]		mrs_gmapping.launch
								│			│			├──	[1.5K]		p3dx_gmapping.launch
								│			│			├──	[3.9K]		p3dx.launch
								│			│			├──	[5.5K]		robots.launch
								│			│			├──	[3.7K]		rosbot.launch
								│			│			├──	[2.5K]		simulation.launch
								│			│			└──	[3.5K]		warehouse_simulaltion.launch
								│			├──	[4.0K]		maps
								│			│			├──	[8.9M]		hospital.pgm
								│			│			├──	[	208]		hospital.yaml
								│			│			├──	[9.9M]		warehouse.pgm
								│			│			└──	[	210]		warehouse.yaml
								│			├──	[3.0K]		package.xml
								│			└──	[4.0K]		param
								│							├──	[4.0K]		P3DX2
								│							│			├──	[	12K]		costmap_common_params.yaml
								│							│			├──	[3.4K]		global_costmap_params.yaml
								│							│			├──	[2.7K]		global_planner_params.yaml
								│							│			├──	[3.5K]		local_costmap_params.yaml
								│							│			├──	[4.4K]		move_base_params.yaml
								│							│			└──	[	536]		trajectory_planner.yaml
								│							└──	[4.0K]		Rosbot2
								│											├──	[	12K]		costmap_common_params.yaml
								│											├──	[3.4K]		global_costmap_params.yaml
								│											├──	[2.7K]		global_planner_params.yaml
								│											├──	[3.5K]		local_costmap_params.yaml

│ └── [ 356] trajectory_planner.yaml
								│											├──	[4.3K]		move_base_params.yaml
								├──	[4.0K]		pioneer_p3dx_model
								└──	[4.0K]		rosbot_description

Figure 19 – HeMuRo_Demo Repository Tree

The HeMuRo Framework files including the atomicTasks, decomposableTasks,
and robots’ implementations are available on (DA FONSECA BRAGA, 2021a). Figure
20 shows a tree with all HeMuRo files.
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HeMuRo-Framework/
[ 739] CMakeLists.txt
[ 548] configure_linux.sh
[ 435] configure_osx.sh
[ 688] configure_reverse.sh
[1.1K] LICENSE
[4.0K] logs

[ 6] README.md
[4.0K] main

[2.8K] CMakeLists.txt
[ 15K] hospital.cpp
[3.0K] mainclean.cpp
[ 16K] main.cpp
[5.9K] speedTest.cpp
[ 17K] warehouse.cpp

[4.0K] package.xml
[1.1K] README.md
[4.0K] results

[9.1K] graphics.py
[ 311] run_linux.sh
[4.0K] src

[4.0K] Agents
[ 385] Agent.cpp
[ 644] Agent.hpp
[4.0K] ChargingStation

[1.3K] ChargingStation.cpp
[ 965] ChargingStation.hpp

[4.0K] Default
[5.1K] DefaultRobot.cpp
[1.2K] DefaultRobot.hpp

[4.0K] Logger
[1.5K] LoggerAgent.cpp
[ 946] LoggerAgent.hpp

[4.0K] Mavros
[8.9K] MavrosRobot.cpp
[1.4K] MavrosRobot.hpp
[ 12K] ROSModuleMavros.cpp
[2.1K] ROSModuleMavros.hpp

[4.0K] P3DX
[5.5K] P3DXRobot.cpp
[1.3K] P3DXRobot.hpp
[7.0K] ROSModuleP3DX.cpp
[1.6K] ROSModuleP3DX.hpp

[4.0K] Rosbot
[5.7K] RosbotRobot.cpp
[1.3K] RosbotRobot.hpp
[7.0K] ROSModuleRosbot.cpp
[1.6K] ROSModuleRosbot.hpp

[4.0K] AtomicTasks
[1.4K] ArmMavROS.cpp
[ 548] ArmMavROS.hpp
[1.4K] AtomicTask.cpp
[1.0K] AtomicTask.hpp
[2.5K] ChargeBatteryROS.cpp
[ 691] ChargeBatteryROS.hpp
[2.1K] ChargeBatterySim.cpp
[ 693] ChargeBatterySim.hpp
[1.4K] DisarmMavROS.cpp
[ 581] DisarmMavROS.hpp
[1.3K] DropOffSim.cpp
[ 500] DropOffSim.hpp
[3.9K] GoToROS.cpp
[1.2K] GoToROS.hpp
[3.8K] GoToSim.cpp
[1.0K] GoToSim.hpp
[1.4K] LandMavROS.cpp
[ 533] LandMavROS.hpp
[1.4K] MeasureTemperatureSim.cpp
[ 577] MeasureTemperatureSim.hpp

[4.2K] MoveBaseGoal.cpp
[1.1K] MoveBaseGoal.hpp
[3.0K] NavigateMavROS.cpp
[ 910] NavigateMavROS.hpp
[1.2K] PickUpSim.cpp
[ 493] PickUpSim.hpp
[2.3K] TakeOffMavROS.cpp
[ 661] TakeOffMavROS.hpp
[1.3K] TakePictureSim.cpp
[ 528] TakePictureSim.hpp
[ 677] TurnOnSim.cpp
[ 487] TurnOnSim.hpp

[2.6K] CMakeLists.txt
[4.0K] Communication

[ 246] CMakeLists.txt
[3.2K] UDPBroadcast.cpp
[1.1K] UDPBroadcast.hpp
[3.0K] UDPReceiver.cpp
[1.1K] UDPReceiver.hpp
[6.1K] UDPReceiverSim.cpp
[1.5K] UDPReceiverSim.hpp
[2.4K] UDPSender.cpp
[1.2K] UDPSender.hpp

[4.0K] Core
[ 25K] Blackboard.cpp
[ 31K] Blackboard.hpp
[ 235] CMakeLists.txt
[5.9K] dataTypes.hpp
[6.0K] Logger.cpp
[1.3K] Logger.hpp
[ 930] Module.cpp
[1.8K] Module.hpp
[ 940] ModulePeriodic.cpp
[1.2K] ModulePeriodic.hpp

[4.0K] Energy
[ 24K] BatteryManager.cpp
[2.5K] BatteryManager.hpp
[ 567] ChargingRequest.hpp
[1.4K] ChargingSpot.cpp
[ 939] ChargingSpot.hpp

[4.0K] Mission
[ 27K] Auction.cpp
[3.0K] Auction.hpp
[ 217] CMakeLists.txt
[ 209] Mission.cpp
[1.7K] MissionExecution.cpp
[ 998] MissionExecution.hpp
[ 963] Mission.hpp
[ 261] MissionRequest.cpp
[ 832] MissionRequest.hpp
[ 20K] TaskModule.cpp
[2.5K] TaskModule.hpp

[4.0K] Web
[4.0K] images

[8.9K] 001-vr-glasses.png
[ 22K] 007-robot.png
[ 34K] 023-drone-2.png
[ 13K] agent.png
[ 24K] charging-station.png
[ 25K] charging_station.png
[ 19K] null.png
[ 22K] question-mark.png
[ 21K] submarine.png
[ 20K] uav.png
[ 30K] ugv.png
[ 19K] usv.png

[ 845] MRSstyle.css
[ 11K] WebApp.cpp
[1.8K] WebApp.hpp
[1.6K] WebModule.cpp
[ 664] WebModule.hpp

Figure 20 – HeMuRo Framework Repository Tree
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5.1 ATOMICTASKS IMPLEMENTATION

The simulation contains four models of robots: a general UGV robot, the Pioneer
3DX, the Husarion Rosbot 2.0, and the COEX Clover. Implementing the atomicTasks
will be split into three groups: (i) the general robot; (ii) the UGVs, comprehended as
Pioneer 3DX and Husarion Rosbot 2.0; (iii) the UAVs, represented by the COEX Clover.

5.1.1 General Robot

Implementing the atomicTasks for this robot does not involve any integration
with another framework, for example, ROS. All atomicTasks are simulated by printing
messages at the terminal and changing values at the shared memory of each agent.
This simulation can execute missions and debug them using the messages written on
a text file or using the web application and generating graphics with the results.

The first step defines the missions and decides which atomicTasks will be im-
plemented for this robot category. This first simulation is simple, and it intends to show
some of the basic features of a robot. Given an environment, the robot receives mis-
sions to inspect places by taking pictures, measuring temperature, picking up samples
from a spot, and delivering it to another spot, and charging the battery when needed.

Based on the explanation above it is easy to identify and create some atom-
icTasks: GoToSim, MeasureTemperatureSim, PickUpSim, DropOffSim, TakePictureSim,
and ChargeBatterySim. The term Sim was added at the end of each atomicTask to iden-
tify that these atomicTasks are simulated. Each mission is composed by one decompos-
ableTask: inspectPlace, deliverSample, measureTemperature and lowBattery. Table
1 contains all decomposableTasks with their atomicTasks sequence.

Table 1 – Missions available for the first simulation

Mission Name Task Decomposition Sequence

Deliver Sample GoToSim, PickUpSim, GoToSim, DropOffSim
Inspect Place GoToSim, TakePictureSim
Measure Temperature GoToSim, MeasureTemperatureSim
LowBattery GoToSim, ChargeBatterySim

The first atomicTask implemented is the measureTemperatureSim. The atomic-
Task prints a message that the robot is measuring the temperature and waiting for the
task to be completed. The configured parameters are the cost and time to execute the
task. They are configured by setting the parameters costFactor and timeFactor. Each
related function will calculate the complete cost and time. By default, the cost and time
will be equal to their factors. If there are any particular equations to provide cost and
time, they must be implemented.
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PickUpSim, DropOffSim and TakePictureSim have similar implementation as the
MeasureTemperatureSim. The difference between these atomicTasks are the message
printed, cost and time. Table 2 presents the cost for each AtomicTask, the time to
execute it and also the message printed by each one. The cost and time were selected
arbitrarily.

Table 2 – Parameters of simulated atomicTasks

AtomicTask Cost [%] Duration [s] Message

MeasureTemperatureSim 1 1 Measuring the Temperature.
PickUpSim 1 2 Picking up Sample.
DropOffSim 1 2 Dropping off Sample.
TakePictureSim 1 1 Taking a Picture.

The AtomicTask chargeBatterySim has a particular behavior. It will charge the
battery of the robot after each execution cycle. It is necessary to get how many execution
cycles will be necessary until the battery is full to estimate how long this process will
take.

The last atomicTask implemented for this MRS is the GoToSim. For this imple-
mentation, a simple control was implemented to make the robot go from a position to
another. The cost is calculated by obtaining the distance between the start point and
endpoint and multiplying this value with the cost factor. The cost factor is calculated
by how much power will be drained pro meter. This value was assumed to be linear to
simplify the calculus.

After implementing the atomicTasks, the next step is to define a robot model that
will decompose missions into atomicTasks and execute them. By default, modules do
not start their main task at the moment of declaration, so they must be started. The
task decomposition must also be programmed in this file.

The function addAtomicTask() contains the task decomposition algorithm. There
is also a consistency check-up in this function, and it returns true if everything is all
right or false otherwise. The decomposableTaskList() method contains the sequence
of atomicTasks for every decomposableTask. This method will add to the robot’s shared
memory, which tasks the robot can execute.

By doing this configuration, the robot will be ready to decompose missions and
execute them.

5.1.2 The UGVs

Both UGVs used in the simulation are based on ROS. Therefore, a ROSModule
configured for each type of robot is required among the atomicTasks.

The UGVs are quite similar in actions, they work with ROS, and they have
similar topics to acquire information and to be controlled. The ROSModule will acquire



Chapter 5. Experimental Environment and Results 55

information on position and battery level and send information to recharge or move the
robot through the map.

If an atomicTask needs to perform an action or acquire any information that
depends on ROS, it needs to communicate through this module. Table 3 contains all
the topics, services and actionServers used by ROSBot 2.0.

Table 3 – ROSModuleRosbot

Name Type Description

/odom subscriber Robot’s Odometry
/battery/percent subscriber Battery level in percentage
/cmd_vel publisher Control the speed of the robot
/battery/recharge publisher Boolean to start charging the robot
/move_base ActionServer Set a goal to the robot
/move_base/make_plan service Returns a plan

Concerning the missions, these two robots will be like the simulated robots.
However, they will be executed in a Gazebo scenario. Table 4 contains all Tasks that
will be executed for each type of UGV robot.

Table 4 – Available Tasks to be executed: Robots eligible to execute

Task Name Task Decomposition Sequence Robot

DeliverSmallSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, DropOffSim

P3DX and ROSbot

DeliverBigSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, DropOffSim

P3DX

InspectPlace
MoveBaseGoal,
TakePictureSim

P3DX and ROSbot

MeasureTemperature
MoveBaseGoal,
MeasureTemperatureSim

ROSbot

LowBattery
MoveBaseGoal,
ChargeBatteryROS

P3DX and ROSbot

InspectArea
arm, takeOff,
[MoveBaseGoal, takePictureSim](5x),
MoveBaseGoal

ROSbot

To differ between the two robot models, P3DX will carry bigger objects than
the ROSbot model, and the ROSbot will measure the temperatures of environments.
Some atomicTasks previously defined will be used as well. MeasureTemperatureSim,
PickUpSim, DropOffSim, and TakePictureSim were already defined in Table 2. The task
InspectArea was defined to replace the same mission that the UAV will perform in the
Warehouse Simulation. The robot will move through five areas taking pictures returning
to a basis.

Gmapping will be used to generate a map of the environment. The Navigation
Stack will be used for localization, planning where to go, and execute the path across the
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map. Considering that multiple robots will be simulated on a single computer, and if each
one uses its SLAM or Adaptive Monte Carlo Localization (AMCL) module, the computer
could not provide sufficient power to simulate everything. Instead of using SLAM or
AMCL robot’s localization, Fake_Localization (ROS, 2020a) from Navigation Stack is
used instead. The Fake_Localization simulates the behavior of a localization algorithm
by acquiring the robot’s position direct from Gazebo, reducing the computational power
to obtain the robot’s position.

A new atomicTask is implemented MoveBaseGoal. This atomicTask will send a
message containing the destination to the ROSModule. The ROSModule will send the
goal through an actionServer which will request a trajectory to the Navigation Stack
and execute it. Implementing both robots is equal. However, the configuration of cost
and time to execute will be different. Those parameters will be adjusted later.

The battery recharging process is also different from the previous category of
robots. The atomicTask ChargeBatteryROS was designed to send a boolean value
through the ROSModule to recharge the robot. The Battery capacity of each robot
was set with a low capacity to force the robots to recharge several times during the
simulation. Before starting the simulations, the battery level was also set around 60%
to force the robots to recharge.

The next step is to create two types of robots, as done with the simulated robot
model. P3DXRobot and RosbotRobot contains the declaration of modules and decom-
position of decomposableTasks into atomicTasks. These files are useful for creating
over one robot of the same type. Exclusive parameters for each type of robot are also
declared (E.g. costFactor and timeFactor personalized for each model).

5.1.3 The UAVs

The UAV implemented for the simulation is the COEX Clover model. Differing
from the UGVs, the UAVs need some extra atomicTasks to move from a place to
another. To complete a flight successfully, the UAV must arm the motors, take off, go to
the destination, and then land at the position, disarming the motors.

The Clover UAV is also based on ROS and a ROSModule was created. Table 5
contains all the topics and services integrated with this ROSModule, allowing the UAV
to be controlled by the framework. There are some basic services as arm, land and
disarm the robot and also the command to navigate, where the user needs to send the
destination to the UAV. The module also subscribes to get some feedback of position,
battery level and motors’ state.

COEX provides a service for ROS called navigate(). This service is responsible
for flying the UAV from a start point to a destination. It is important to remark that this
service does not have an obstacle avoidance or trajectory planner. This service moves
the robot as if nothing is preventing the UAV from achieving its position. The robot will
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Table 5 – ROSModuleMavros

Name Type Description

/mavros/state subscriber Return if the UAV is armed or not
/mavros/global_position/local subscriber Global position
/mavros/battery subscriber Battery Level in percentage
/navigate service Navigate the UAV from a place to another
/mavros/cmd/arming service arm the UAV
/mavros/cmd/land service land the UAV
/mavros/cmd/disarming service disarm all motors

fly above the obstacles to avoid colliding with them. Table 6 contains all atomicTasks
for the UAV.

Table 6 – AtomicTasks available for the Clover robot

atomicTask Name Description

armMavROS Arm all motors
NavigateMavROS Navigate from current position to a goal
LandMavROS Land the UAV and disarm motors
TakeOffMavROS Take off to a specific high
DisarmMavROS Disarm all motors
TakePictureSim Take a picture (simulation)
ChargeBatteryMavROS Do nothing and wait until battery is charged

The same process to create the robot type is done for the Clover UAV. All
modules were declared: communication, core, debug, energy, mission, ROSBridge and
task modules.

The next step is to provide information about the missions that the UAV will
perform. The information focuses on the auctioning process and all the decomposition
of the decomposableTasks presented in Table 7 were described so the UAV could place
a bid during the auctions.

The robot can inspect places in two different ways: the first will be a single spot
inspection and the second will inspect five areas of the map in the same mission. This
longer task was created to take advantage of the speed of the UAV and to optimize the
inspection of multiple areas.

UAVs need to have a behavior to land in case of an emergency otherwise,
they will fall from the sky. This was not the case for UGVs because when there is an
emergency the grounded robots, at worst case, will stop where they are. To cope wit
these problems an emergency behavior was also implemented.

With all atomicTasks created and robot models adequately described, the next
step is configuring the environment and executing the simulation.



Chapter 5. Experimental Environment and Results 58

Table 7 – Available Tasks to be executed

Task Name Task Decomposition Sequence Description

CheckPosition
arm, takeOff, goTo,
goToBasis, land

Visit a position on map

InspectArea
arm, takeOff,
[goTo, takePictureSim](5x),
goToBasis, land

Take a picture of 5 areas

TakePicture
arm, takeOff,
goTo, takePictureSim
goToBasis, land

Take a picture of an area

LowBattery
arm, takeOff, goTo, land,
chargeBattery, arm, takeOff,
goToBasis, land

Go to recharge and return to basis

EmergencyLanding land Land in case of an emergency

5.2 SIMULATED ENVIRONMENTS

To exemplify the use of HeMuRo Framework, three simulations using different
scenarios were created: the first simulation runs only with a HeMuRo Framework;
the second simulation uses the Hospital World; the last simulation uses the Small
Warehouse World.

5.2.1 Empty Environment

For this first simulation, there is no physical environment configured. The robots
are instantiated and missions are created. Spots on a Cartesian map and a charging
station agent are created as well.

The Charging Station is the agent responsible for creating missions and offering
them to the robots. This brief example, will instantiate only one mission of each kind, and
two robots will execute them. Table 8 contains the offered missions with their relative
deadlines.

Table 8 – Available Tasks to be executed and Deadline to complete the mission

Task Name Task Decomposition Deadline [s]

DeliverSmallSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, DropOffSim

100

DeliverBigSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, DropOffSim

100

InspectPlace MoveBaseGoal, TakePictureSim 50

MeasureTemperature
MoveBaseGoal
measureTemperatureSim

50

The configuration process to execute the first simulation is done. The results and
analyses will be presented in the next section after describing all simulated environ-
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ments.

5.2.2 Hospital World

The scenario chosen for this simulation is the Hospital World provided by AWS
Robotics. This environment, if full of objects unnecessary to the execution of this exam-
ple, e.g., curtains, beds, and objects inside the rooms in the back of the building. The
number of extra objects in the scenario was reduced to increase the simulation speed
and real-time factor. Two robots are used for this simulation: Rosbot 2.0 and Pioneer
3DX.

Figure 21 presents a Two Dimensional Space (2D) visualization of the map. It
was defined 14 positions in the Hospital World. Two of these positions are charging
stations located inside the storage rooms.

Figure 21 – Simulation of the hospital world with defined positions tagged

The two robots have different sizes and physical limitations. In this simulation, the
ROSbot will move faster than the Pioneer 3DX but, Pioneer 3DX will carry bigger objects
than the ROSbot. The average speed for each robot was calculated to estimate how
long it will take to finish the mission. Since we didn’t have this value, it was estimated
by taking the duration between moving across several places on the map.

In this simulation, four missions will be offered to the robots: inspectPlace,
DeliverSmallSample, DeliverBigSample, and MeasureTemperature. Table 9 contains
all tasks available in this MRS, their decomposition, which robot can execute it, and the
maximum time to execute it. Note that the missions are practically the same as the first
simulation. They differ on the restrictions by robot type.
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Table 9 – Available Tasks to be executed: Robots eligible to execute and Deadline to
complete the mission

Task Name Task Decomposition Robot Deadline [s]

DeliverSmallSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, dropOffSim

P3DX and ROSbot 100

DeliverBigSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, dropOffSim

P3DX 100

InspectPlace
MoveBaseGoal
takePictureSim

P3DX and ROSbot 50

MeasureTemperature
MoveBaseGoal
measureTemperatureSim

ROSbot 50

As an example of how the framework can easily increase the size of robots
and missions, this simulation will run several times. The number of robots will vary
from 2 to 4 robots divided equally between the two models. The number of tasks
will be divided equally: 8, 16, and 32 tasks. It will be asked to inspectPlace at the
BigRoom01 and BigRoom03; DeliverSmallSample from Room01 to Reception and from
Room03 to Reception; DeliverBigSample from Room01 to Reception and from Room03

to Reception; and to MeasureTemperature at Room02 and Room04. The relation of tasks
and goals is described in Table 10. All data will be gathered using the Logger agent.

Table 10 – Available Tasks to be executed: location in the map

# Task Name From To

1 InspectPlace - BigRoom01
2 InspectPlace - BigRoom03
3 DeliverSmallSample Room01 Reception
4 DeliverSmallSample Room03 Reception
5 DeliverBigSample Room02 Storage01
6 DeliverBigSample Room04 Storage02
7 MeasureTemperature - Room02
8 MeasureTemperature - Room04

In the environment configuration file, the user should insert the number of mis-
sions and robots it will execute and run the simulation environment and the robot
simulators.

5.2.3 Small Warehouse World

The last simulation also includes a scenario provided by AWS Robotics. The
warehouse scenario contains common objects available in a warehouse. Figure 22
presents all the available positions inside the warehouse facility.

In this scenario, two robots were used: the ROSbot and the COEX Clover. Some
minor modifications to the scenario were also implemented. For example, the shelves
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Figure 22 – Simulation of the small warehouse world with defined positions tagged

were to high compared to the robot size. Here, the laser could not identify the shelves,
a workaround was to reduce their height. Another modification was to remove one of
the shelves to add the charging area that will also work as basis for the UAV. In this
scenario both robots will start with a full battery.

For the first simulation, a instance of each model was created. The UAV will
inspect some areas of the warehouse and the UGV will pick and deliver some packages.
Table 11 contains all the offered missions with the deadline and also the restrictions by
the robot’s model.

Table 11 – Available Tasks to be executed: Robots eligible to execute and Deadline to
complete the mission

Task Name Task Decomposition Robot Deadline [s]

InspectArea
arm, takeOff,
[goTo, takePictureSim] (5x),
goToBasis, land

Clover 380

DeliverSmallSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, dropOffSim

ROSbot 100

During the simulation, there will be four missions offered, two of each type. They
will be offered simultaneously at the beginning of the simulation.

As for the locations on the map, the UAV will patrol moving from area01 to area05
and taking pictures of them. The UGV will pick products from the shelves in corridor01
to corridor03 and will deliver them on the area02. Table 12 contains all the positions
where the tasks will be executed.

In the second simulation, there will be two ROSbots available. The offered mis-
sions will be the same as the previous simulation. The number of offered missions is
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Table 12 – Available Tasks to be executed: location in the map

# Task Name From To

1 Inspect Area - Area01, Area02, Area03, Area04, Area05
2 DeliverSmallSample Corridor01 Area02
3 DeliverSmallSample Corridor02 Area02
4 DeliverSmallSample Corridor03 Area02

the same as before, with four missions comprising two of each type. These missions
are displayed at the beginning of the simulation.

In this case, there will be only UGVs available to perform the missions. Table 13
contains all the offered missions with the deadline and also the restrictions by robot’s
model. The InspectArea mission was created to simulate the UAVs mission. A last
MoveBaseGoal atomicTask was added to simulate the goToBasis atomicTask performed
by the UAV.

Table 13 – Available Tasks to be executed: Robots eligible to execute and Deadline to
complete the mission

Task Name Task Decomposition Robot Deadline [s]

InspectArea
[MoveBaseGoal, takePictureSim] (5x),
MoveBaseGoal

ROSbot 380

DeliverSmallSample
MoveBaseGoal, PickUpSim,
MoveBaseGoal, DropOffSim

ROSbot 100

All the locations configured for this second simulation will be the same as the
previous simulation presented on Table 12.

This chapter presented three possible scenarios to execute MRS using the
HeMuRo Framework: one simulation running the framework alone and two other simu-
lations integrated with ROS. The next chapter contains the analysis of the execution of
the simulations, including some comments.

5.3 SIMULATION AND ANALYSIS

This section analyses the HeMuRo Framework and simulations concerning the
different scenarios and the analysis of the results with some comments and remarks.

The first simulation will evaluate the GUI of the framework. The hospital world
environment is the second simulation and contains multiple combinations of robots and
missions. Here, the analysis is done by the execution of the missions and the feature
of generating graphical reports. The last simulation focuses on the warehouse world
environment and analyses running different categories of robots together.
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5.3.1 First simulation: Empty Scenario

The first simulation did not have an integration with a graphical simulator. The
web interface generated by the logger agent provided information about the execution
of the missions.

The web page displays information in real-time about the simulation. Figure 23
shows the main page that provides information about the current state of each agent
and their positions. The robot’s category is also available on the main page.

Figure 23 – In the web interface it is possible to debug the current status of each agent.

In this screenshot taken in the first simulation, both robots were executing mis-
sions, and the battery level of both robots was almost fully charged. As for the agent’s
categories, for this simulation, there were two charging stations and two UGV robots. It
is also possible to follow the terminal messages with the log of messages sent by the
agents.

Figure 24 refers to the second tab of the main page. It displays information
regarding the missions. It’s shown, two missions were on execution, and two were
waiting for allocation. For the ones with executing status, there is also the estimated
execution time. After completing one there will also be the time taken to execute it. It is
also possible to follow the terminal messages.

The following subsection will discuss other framework features, for example,
graphics and reports, to obtain better data visualization.
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Figure 24 – In the web interface it is possible to debug the current status of each mis-
sion.

5.3.2 Second Simulation: Hospital World

The analysis of the second simulation focuses on performing the task allocation
and execution of missions. With the robot models configured, it was easier to scale the
system. Having the simulated model launched in Gazebo, we only need to create more
instances of the robots on HeMuRo Framework.

Although two charging stations were created only the first one will offer missions
to the robots. The second charging station will have its essential function: recharge the
robots. All missions contains one decomposableTask.

Six simulations were conducted varying the number of robots and missions.
Three simulations run with two robots offering eight, sixteen and thirty-two missions.
The other three simulations run with four robots offering eight, sixteen and thirty-two mis-
sions. Simulations using two robots have one Pioneer 3DX robot model called Afrodite,
and one ROSBot robot model called Thor. Simulations using four robots contain two
models of Pioneer 3DX, called Afrodite and Athena, and two models of ROSBots, called
Thor and Zeus.

Figure 25 shows the results of the first simulation. Two robots executed eight
offered missions. There were two charging requests, one for each robot. This behavior
can be explained by the fact that the robots did not started with a full battery. All robots
were configured to start with around 60% of battery level to force at least one charging
per simulation.

As the reader can expect for this first simulation, the tasks were equally divided
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Figure 25 – Simulation with 2 robots and 8 missions

between the two robots. From the eight offered missions, Thor could execute six of the
offered missions and so does Afrodite. They both executed their two exclusive missions
plus two more tasks.

Figure 26 describes the second simulation. The same two robots executed six-
teen missions offered by the Charging Station. There were three charging requests, two
made by Afrodite, and one by Thor. In this scenario, Afrodite had to redirect its missions
twice due to a low battery. The energetic cost estimation to execute a mission is not
always accurate. In these simulations, it was decided not to have a precise algorithm
to predict the cost because the main goal was to observe the cos estimation failing
and tasks being redirected. Thor didn’t redirected its mission to recharge, this can be
justified by when the battery hit a low level, Thor wasn’t executing a mission.
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Figure 26 – Simulation with 2 robots e 16 missions

All two robots executed the same amount of tasks. Randomly, the common tasks
were executed first and at the end, there were only the specific tasks left and Thor was
on standby while Afrodite recharged and finished its tasks.

Figure 27 presents a scenario with more tasks than the firsts two. 32 missions
were offered for two robots. In this scenario, there were 5 charging requests, two made
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by Thor and three by Afrodite. In all five cases, the battery hit low level during the
execution of a mission, so all five were redirected.
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Figure 27 – Simulation with 2 robots e 32 missions

In this simulation, twenty four common missions were being offered. Restricted
by its speed, Afrodite moves slower than Thor. With more common missions available,
Thor could complete more common missions than Afrodite. Removing the specific
missions of the list Thor completed eleven common missions against five completed by
Afrodite. With only two robots in the scenario, the probability of getting stuck because
of other robots is low. Therefore, low battery was the reason for all mission redirection.

Figure 28 represents the first simulation using four robots. Eight missions were
offered and four charging requests were maid, one per robot, as usual for fewer missions.
In this scenario, Zeus completed more missions than the others, four in total, followed
by Thor with three completed missions. Athena and Afrodite completed one mission
each.
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Figure 28 – Simulation with 4 robots e 8 missions

One of the plausible justifications for Thor and Zeus completing more missions
than Athena and Afrodite is the ROSBot model’s top speed. This can’t be affirmed
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because there were only four common tasks available. Another justification would be
that Thor and Zeus were closer to the goal, offering a cheaper bid. There were four
redirected missions due to low battery.

Figure 29 shows the simulation running four robots and offering sixteen missions.
In this scenario, Thor and Athena completed five missions each, Zeus with four com-
pleted missions, and Afrodite with two completed missions. There were four charging
requests, one for each robot.
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Figure 29 – Simulation with 4 robots e 16 missions

In this simulation, Athena and Zeus were not executing a mission when the
battery hit a low level. That’s why they didn’t redirect their missions. In this simulation
Afrodite’s path planner got lost for a while, slowing it down a bit, completing only two
missions. This situation also happens in real life, the execution time wasn’t longer than
the deadline, so the mission was completed after a while. Thor and Afrodite redirected
two missions due to a low battery.

The last scenario is displayed in Figure 30. In this scenario, there were four
robots executing thirty-two missions. Thor completed twelve missions, followed by Zeus
and Afrodite with seven completed missions. Athena completed only six missions.
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Figure 30 – Simulation with 4 robots e 32 missions
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There were five charging requests during the simulation, Athena requested twice,
and the others requested once. There were six redirected missions, Afrodite and Athena
redirected two missions each. Thor and Zeus redirected one mission each. Five of the
redirected missions were related to low battery issues. However, Afrodite redirected
one mission due to timeout.

Table 14 contains the duration of each simulation. Simulations with two robots
took between 408 seconds and 1519 seconds to be completed. Simulations using four
robots took between 311 seconds and 854 seconds.

Table 14 – Duration of each simulation

# Robots Missions Duration [s] Duration [m:s]

1 2 8 408.856 06:49
2 2 16 841.346 14:01
3 2 32 1519.02 25:19
4 4 8 311.471 05:11
5 4 16 468.589 07:49
6 4 32 854.497 14:14

Comparing simulations regarding the number of missions, the difference be-
tween simulations with eight missions using two or four robots is insignificant. One
reason is that all robots had to recharge once in both scenarios, increasing the whole
simulation’s execution time. The difference between the two groups of robots becomes
more stressed when more missions are added to the system. With thirty-two missions,
the time almost doubled using only two robots compared to the four-robot system. Fig-
ure 27 shows that the robots had to recharge two and three times respectively, and
Figure 30 two robots recharged only once and the other two recharged twice. Since
there are multiple spots for charging, this process can be done simultaneously, improv-
ing the efficiency of the MRS. The more available robots can execute the more missions
in parallel.

Increasing the number of missions is possible to observe a better distribution
of the missions among the robots. It is also noticed that the faster the robot, the more
completed tasks. However, this parameter cannot be taken as the only truth because
the task allocation is random. A fast robot might get a more extended mission to execute,
while a slower robot can get faster missions because it might be near the task goal. In
this allocation process, the task owner chooses the best executioner, but it does not
mean that the task chosen was the best choice for the executioner. For example, a
robot gave two bids in different tasks. If he won the bidding process of both tasks and
the answer of the first task arrives before the second one, the robot will execute the first
one. This issue can be solved by adding a better strategy from the bidder when giving
bids, such as choosing only the near ones, etc. However, this strategy might cause the
robot to lose the opportunity of executing a task when the task is too far away. Another



Chapter 5. Experimental Environment and Results 69

curious fact about the random pick of tasks is that multiple tasks were to be executed
in the same place. The same robot did not pick the same task to be executed in a row.
For example, to measure the temperature of the same room. If that happened, it could
significantly reduce the duration of a task.

Another observation happened in Figure 30 because of a timeout. A reason for
this timeout might be justified by the number of robots in the system. With more robots
moving around, the robot might have gotten stuck and did not have time to avoid all
obstacles until reaching its goal. Another reason for that is that the robot might have got
lost. In this case, the task was redirected to another robot to execute it, completing it.

5.3.3 Third Simulation: Warehouse World

The third simulation focuses on two different categories of robots executing tasks
in the same environment. For better comparison, two simulations were executed. The
first one is a heterogeneous MRS with one UGV and one UAV. The second simulation
is a homogeneous MRS, with UGVs.

Figure 31 describes the results obtained in the heterogeneous MRS. Four mis-
sions were offered in total: two inspect area missions were described to be performed
by the UAV and two deliver small sample missions were described to be executed by
the UGV. The battery level of all robots in this scenario started at 100% to avoid a
forced recharge and mission redirection as it was done in the Hospital environment.
Therefore, there was no charging request.

Figure 31 – Simulation with one UAV and one UGV

In the second simulation, represented by Figure 32 there was only a type of
robot available. In this simulation, both robots could execute all tasks. Afrodite started
by executing the inspect area mission. Since this mission takes longer than the deliver
small sample mission, Zeus executed two missions while Afrodite executed one. Zeus
finished the two missions and won the auction to execute the last inspect area mission
because Afrodite was still busy finishing its mission.
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Figure 32 – Simulation with two UGVs

Both simulations finished with no errors and all missions were completed. How-
ever, when comparing the time to execute it there were some differences. Table 15
contains the duration of each simulation.

Table 15 – Duration of each simulation

# UAVs UGVs Duration [s] Duration [m:s]

1 1 1 176.507 02:56
2 0 2 317.459 05:17

The heterogeneous MRS used the best ability of each robot: the UAV can travel
faster than the UGV and the UGV can carry objects while the UAV can’t, resulting in a
faster simulation when compared with the second simulation.

During the inspect area mission, the UGV needed to create a path avoiding the
obstacles on the ground such as other robots, pallets and boxes, resulting in a slower
performance compared to the same mission performed by the UAV.

Another scenario for the UAV in this simulation would navigate after observing a
significant amount of packages in an area, it would create a mission to require a robot
to pick all the packages and deliver them somewhere.

This chapter analyzed all three proposed simulations described in Chapter 5.
Each simulation was considered a feature to be described to illustrate how flexible
this framework is. There is also room for improvements and future work. This will be
discussed with the conclusion of this work in the next chapter.
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6 CONCLUSION

The development of a MRS involves multiple areas and subjects. This work’s
proposal aims to provide an open-source framework to be used as a start point for the
development of a MRS, fulfilling the lack of open-source tools to simulate and control
multiple robots.

This framework’s focus consists of task decomposition and allocation accord-
ing to each robot model, task reallocation in case of failure or an unexpected event,
robot coordination incorporating centralized and decentralized information, and real-
time restrictions. The framework should work with multiple robot models in different
environments. Flexibility and modularity are prerequisites allowing future contributions.

HeMuRo Framework was designed to improve task decomposition and cooper-
ation of robots to execute missions. The architecture of the presented framework was
programmed in C++.

Each agent carries an instance of the framework and can communicate with
other agents through network messages. It is also possible to broadcast a message
containing basic data to inform that the agent is online and working.

The system was designed to work with multiple categories of robots, being capa-
ble of assigning missions to different robot models, taking into account their abilities to
execute each task. Missions previously described were decomposed into independent
tasks to be assigned, called decomposableTasks. According to each robot model, the
assigned task is decomposed into a sequence of atomicTasks to be executed. The
process occurs in real-time and therefore is classified as SR-ST-IA.

Besides the instantaneous allocation, the system reacts in real-time as well.
Missions can be re-allocated if needed. Each agent can monitor their battery level and
in case of low battery level, they can request a spot in a charging station. This behavior
assures a certain autonomous level to the robot, including redirecting a mission in case
of executing it during a low battery alert. Another example of re-allocation would be if
the robot gets stuck or timeout.

A significant amount of information and messages are sent during a simulation
or real-time application. Therefore, all systems can be debugged and deployed online
with the help of a GUI. A web page displays all the information regarding agents and
missions that are available.

Taking into consideration that many robotic applications involve the use of ROS,
there is also the possibility of integrating with the middleware. In this work multiple ROS
features were used to develop the simulations. Gmapping was used to generate a map
for localization and navigation. AMCL and fake localization were used for localization.
The Navigation Stack was used to provide a collision free trajectory for UGVs. There is
also the possibility of adding or replacing some of the packages used in this work.
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Three different simulations were described in this work: (i) a simulation with
only HeMuRo Framework, without an environment; (ii) a simulation inside a warehouse
facility; and (iii) a simulation inside a hospital. The simulated environments have proven
the versatility of HeMuRo Framework and how can use this framework in different
scenarios.

In general, the framework performed well as expected. As the results shown
in Chapter 5, HeMuRo Framework presented flexibility of working with multiple robot
models and different tasks. However, there are some important observations to present:
the auction model implemented has some flaws. With a high number of missions being
offered simultaneously, there will be many messages being exchanged. When the auc-
tioning process is finished, the top winning bids might already be assigned to another
task. This might slow down the allocation process, but it will be completed with some
delay.

Another relevant observation is that the mission owner will select the best can-
didate to execute a mission. This selection is a local decision and it does not take into
account a global view. For example, there are two offered missions in a scenario: mis-
sion1 and mission2, and two available robots: robot1 and robot2. Robot1 can execute
both missions and robot2 can execute only mission2. If the mission owner selects robot1
to perform mission2 because it is the best local option, robot2 will stay on standby and
mission1 will have to wait until mission2 is completed. A better case scenario would be
mission1 executed by robot1 and mission2 by robot2.

These issues and other observations are presented in the next section as sug-
gestions for future work.

6.1 FUTURE WORK

There is plenty room for improvements on HeMuRo Framework. As it will be
an open-source framework the community will also be allowed to contribute. As future
work, some tasks can be enumerated:

• There are two ways of assigning tasks implemented: the auctioning process and
assigning tasks directly for each robot. Adding different task-allocation algorithms
will make the framework more robust and it will make it possible to compare the
efficiency and and best method for each scenario and number of robots;

• In MRS there is also the possibility of multiple robots working together to complete
a mission. At the moment, in HeMuRo the robots can execute simple missions,
where a single robot execute the tasks. Adding the feature to synchronize the
execution of tasks, robots would cooperate to execute a mission. An example
would be multiple robots carrying a bigger object together;
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• The battery prediction model implemented in HeMuRo is based on the distance
between the robot and the goal and the energy consumption of the robot. An-
other improvement would be the implementation of intelligent ways to predict the
battery consumption during a mission, analyzing the weight carried by the robot,
environmental conditions and also the health of the battery;

• There is no protocol when multiple robots want to access the same spot. During
the simulation, a few robots got stuck because another robot was resting at the
goal position. Therefore, another improvement is to create a protocol for multiple
access to objects or places;

• There are three robot models implemented. To increase flexibility robustness of
the framework, there should be more categories and robot models available;

• In HeMuRo Framework the collision avoidance was taken in consideration for
UGVs. The collision avoidance was not take into consideration for UAVs. This was
also set as a future work.

• Every year, a new version of ROS is released. The current version used was the
ROS1 noetic. There is also a new version of ROS, called ROS2. The versions
of ROS2 are launched in parallel with ROS1. New features for localization and
navigation are available in ROS2. For future improvements a migration for ROS2
might be considered.

Last but not least, this master’s thesis has brought many challenges to the
author, starting from how to program and develop a framework in c++ to trending topics
in robotics. The use of ROS middleware is also a highlight of this work and since is
commonly used in the industry, mastering this tool is essential for a robotics engineer.
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