UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO DE CIENCIAS FiSICAS E MATEMATICAS
PROGRAMA DE POS-GRADUACAO EM MATEMATICA PURA E APLICADA

Francielle Kuerten Boeing

Semigrupos Inversos Quénticos e Bissecoes generalizadas para algebroides de
Hopf

Florianopolis
2022



Francielle Kuerten Boeing

Semigrupos Inversos Quanticos e Bissecoes generalizadas para algebroides de
Hopf

Tese submetida ao Programa de Pos-Graduagéo
em Matematica Pura e Aplicada da Universidade
Federal de Santa Catarina para a obtengao do ti-
tulo de doutora em Matematica.

Supervisor:: Prof. Eliezer Batista, Dr.

Florianopolis
2022



Ficha de identificagcdo da obra elaborada pelo autor,
através do Programa de Geracao Automética da Biblioteca Universitaria da UFSC.

Kuerten Boeing, Francielle

Semigrupos inversos quédnticos e bissec¢des generalizadas
para algebroides de Hopf / Francielle Kuerten Boeing ;
orientador, Eliezer Batista, 2022.

88 p.

Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro de Ciéncias Fisicas e Mateméaticas,
Programa de Pdés—-Graduacdo em Matemdtica Pura e Aplicada,
Floriandpolis, 2022.

Inclui referéncias.

1. Matemdtica Pura e Aplicada. 2. Algebroides de Hopf.
3. Semigrupo inverso quéntico. 4. Birretracdes. I. Batista,
Eliezer. II. Universidade Federal de Santa Catarina.
Programa de Pdés—-Graduacdo em Matemdtica Pura e Aplicada.
III. Titulo.




Francielle Kuerten Boeing

Semigrupos Inversos Quénticos e Bissecoes generalizadas para algebroides de
Hopf

O presente trabalho em nivel de doutorado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Prof. Marcelo Muniz Silva Alves, Dr.
Universidade Federal do Parana

Prof. Michael Dokuchaev , Dr.
Universidade de Sio Paulo

Prof. Paulinho Demeneghi , Dr.
Universidade Federal de Santa Catarina

Prof. Gilles Gongalves de Castro, Dr.
Universidade Federal de Santa Catarina

Prof. Alcides Buss, Dr.
Universidade Federal de Santa Catarina

Certificamos que esta é a versao original e final do trabalho de conclusao que foi
julgado adequado para obtencéao do titulo de doutora em Matematica.

Documento assinado digitalmente

Daniel Goncalves

Data: 31/03/2022 21:24:15-0300

CPF: 017.022.459-77

Verifique as assinaturas em https://v.ufsc.br

Coordenacao do Programa de
Pés-Graduacao

Documento assinado digitalmente

Eliezer Batista

Data: 31/03/2022 20:37:01-0300

CPF: 135.541.288-99

Verifigue as assinaturas em https://v.ufsc.br

Prof. Eliezer Batista, Dr.
Supervisor:

Florianépolis, 2022.



A minha familia.



ACKNOWLEDGEMENTS

Agradeco aos meus pais, Edio e Raquel, e a minha irma Michelle por me propor-
cionarem as condi¢cdes necessarias para chegar a este momento, pelo amor e carinho
recebido em todos os anos da minha vida. Ao meu marido Luis Gustavo, pelo suporte
incondicional e por me levantar quando eu nao tinha mais animo. Amo vocés.

A minha segunda familia, meus sogros Vanderlei e Rita e meu cunhado André
e também a todos 0os meus amigos por ajudarem a tornar essa caminhada mais leve.

Agradeco ao meu orientador, Prof. Dr. Eliezer Batista, por me guiar durante o
doutorado e compartilhar comigo seu conhecimento e suas belas ideias, pela infindavel
paciéncia e por nunca perder o bom humor. Ao Prof. Dr. Marcelo Muniz Silva Alves,
agradeco pelas varias contribuigdes durante a pesquisa. Aos demais membros da
banca, Prof. Dr. Michael Dokuchaev, Prof. Dr. Paulinho Demeneghi, Prof. Dr. Gilles
Goncgalves de Castro e Prof. Dr. Alcides Buss por aceitar o convite e pelas contribuigcdes
ao trabalho.

A todos os meus professores, por todas as licdes e condugdo durante toda a
minha jornada.

Agradeco aos funcionarios do Programa de Pds Graduagdo em Matematica da
UFSC pela dedicacao e apoio durante o periodo de doutorado.

Por fim, agrade¢o a Coordenacédo de Aperfeicoamento de Pessoal de Nivel
Superior (CAPES) pelo suporte financeiro durante os trés primeiros anos do doutorado.



RESUMO

Nesse trabalho é introduzida a nogao de um semigrupo inverso quantico como uma
generalizagao linearizada de semigrupos inversos. Além da algebra de um semigrupo
inverso, que € o exemplo natural de semigrupo inverso quantico, sdo apresentados
varios outros exemplos dessa nova estrutura em diferentes contextos, relacionados
a algebras de Hopf, algebras de Hopf fracas e categorias de Hopf. Finalmente, uma
nogao generalizada de bisse¢bes locais é definida para algebroides de Hopf comuta-
tivos sobre uma algebra de base comutativa, gerando novos exemplos de semigrupos
inversos quanticos associados a algebroides de Hopf da mesma maneira que semigru-
pos inversos estao relacionados com grupoides.

Palavras-chave: Semigrupos Inversos Quanticos. Algebroides de Hopf. Grupoides.
Semigrupos Inversos. Birretragoes.



ABSTRACT

In this work, the notion of a quantum inverse semigroup is introduced as a linearized
generalization of inverse semigroups. Beyond the algebra of an inverse semigroup,
which is the natural example of a quantum inverse semigroup, several other examples
of this new structure are presented in different contexts, those are related to Hopf
algebras, weak Hopf algebras and Hopf categories. Finally, a generalized notion of
local bisections is defined for commutative Hopf algebroids over a commutative base
algebra giving rise to new examples of quantum inverse semigroups associated to Hopf
algebroids in the same sense that inverse semigroups are related to groupoids.

Keywords: Quantum Inverse Semigroups. Hopf Algebroids. Groupoids. Inverse Semi-
groups. Biretractions.



RESUMO EXPANDIDO

Introducao

A nocao bésica de grupo ja recebeu muitas generalizagdes em diferentes contextos,
gerando uma miriade de novas estruturas matematicas. Como 0s grupos apresen-
tam umas importante relacdo com as simetrias, pode-se considerar que essas novas
estruturas sao novas ferramentas para entender aspectos mais profundos e sutis de
simetrias. De inicio, é possivel generalizar grupos enfraquecendo suas operagdes. Por
exemplo, se a propriedade dos elementos inversiveis do grupo é enfraquecida, pode-
se encontrar semigrupos inversos. Se além disso, deixa-se de exigir a unicidade do
elemento inverso, pode-se encontrar semigrupos regulares. Pelo conhecido Teorema
de Wagner e Preston (PRESTON, 1954; WAGNER, 1952), todo semigrupo inverso
pode ser visto como um semigrupo de bije¢ces parcialmente definidas em um conjunto,
com operacgao dada pela composicéo. Essas bijecdes parcialmente definidas também
lembram outra estrutura que generaliza a nogcao de grupo: a estrutura de grupoide. No
caso dos grupoides, o que o torna mais geral que o0 grupo é a sua operacao, que nao
é globalmente definida.

A relagdo entre semigrupos inversos e grupoides vem sendo estudada de diversas
maneiras. Por exemplo, sendo S um semigrupo inverso, pode-se associa-lo ao grupoide
indutivo cujo espaco de unidades é o conjunto E(S) dos elementos idempotentes de
S e operacgao sendo a restricao da operacao em S. Por outro lado, dado um grupoide
indutivo, pode-se associa-lo a um novo semigrupo inverso. Essa relacao entre semigru-
pos inversos e grupoides € dada pelo teorema Ehresmann-Nambooripad-Schein, que
estabelece um isomorfismo de categorias entre a categoria dos semigrupos inversos
com pré-homomorfismos e a categoria de grupoides indutivos e funtores ordenados
(EHRESMANN, 1960; NAMBOORIPAD, 1979; SCHEIN, 1979).

Também pode-se observar a relacdo entre semigrupos inversos e grupoides étale.
Essa relacao foi primeiramente explorada no contexto de algebras de operadores (PA-
TERSON, 1999). Um grupoide étale é um grupoide topoldgico cujas fungdes source e
target sao homeomorfismos locais (MATSNEV; RESENDE, 2010). Dado um grupoide
étale G, o conjunto de suas bissecdes locais B(G) é um semigrupo inverso (EXEL,
2008). Por outro lado, dado um semigrupo inverso S, pode-se definir uma acao desse
semigrupo sobre o conjunto dos caracteres do seu conjunto de idempotentes e, dessa
acao, associar seu grupoide de germes Gr(S), que € um grupoide étale (MATSNEYV;
RESENDE, 2010).

Por fim, outra maneira completamente diferente de generalizar grupos é pelas alge-
bras de Hopf, que podem ser consideradas como um tipo de "versao linearizada de
grupos". Algebras de Hopf possuem boas propriedades com relagdo a dualidade e
a teoria de representacdes. Diversas generalizagbes de algebras de Hopf ja foram
estudadas. Aqui mencionamos trés estruturas que generalizam algebras de Hopf e
grupoides: as algebras de Hopf fracas (BOHM; NILL; SZLACHANY!I, 1999), os alge-
broides de Hopf (BOHM, 2009; BRZEZINSKI; MILITARU, 2002) e as categorias de Hopf
(BATISTA; CAENEPEEL; VERCRUYSSE, 2016). Dentre as estruturas mencionadas,
os algebroides de Hopf sdo, em certo sentido, a opcdo mais rica e promissora para
generalizar grupoides no contexto de Hopf.

Dessa forma, é possivel que as relagdes entre semigrupos inversos e grupoides
possam ser generalizadas usando os algebroides de Hopf como generalizacao de
grupoides.



Objetivos

Nesse momento surge a questdo: podemos encontrar uma boa generalizacdo de
semigrupos inversos que trabalhe junto aos algebroides de Hopf da mesma maneira
que 0s semigrupos inversos e 0s grupoides se relacionam? Nosso objetivo nesse
trabalho é comecar a responder essa pergunta introduzindo os semigrupos inversos
quanticos. Mais especificamente, vamos generalizar a relacdo de que o conjunto das
bissecbes de um grupoide € um semigrupo inverso. Para isso, vamos generalizar
a definicdo de bissec¢des locais para algebroides de Hopf (satisfazendo condicbes
especificas) e mostrar que essa versao de bisse¢des gera um semigrupo inverso
quantico.

Metodologia

O estudo de acbes parciais de algebras de Hopf e alguns aspectos da teoria de al-
gebroides de Hopf motivaram exemplos do que deveria ser um semigrupo inverso
quantico. A préxima ideia foi tentar generalizar a definicdo de bissecdes locais para
algebroides de Hopf. Comecamos trabalhando com exemplos conhecidos de alge-
broides de Hopf comutativos e, tentando encontrar de maneira natural como deveria
ser definida a generalizacao da bissecao local, chamada aqui de birretracédo local. Nos
exemplos trabalhados, tentamos dualizar a definicdo de bissec¢ao local tomando como
birretracado uma funcao partindo do algebroide de Hopf para a algebra de base, e
dessa maneira, a birretracao local aparecia sempre como uma funcdao multiplicativa,
sendo morfismo de médulos a direita, e uma bijecdo parcialmente definida quando
composta com a fungao target. Dessa forma, chegamos a nossa primeira definicdo de
birretragdes locais e com essa definicdo provamos que as birretragcdes locais de um
algebroide Hopf comutativo sobre uma &lgebra base comutativa formam um monoide
regular.

Um dos exemplos mais importantes nessa parte do trabalho foi o algebroide de Hopf
das funcdes representativas de um grupoide. Um dos objetivos a ser atingido por
esse exemplo era o de relacionar as bissecdes locais de um grupoide com as birre-
tracdes do algebroide de Hopf de suas fungdes representativas. E possivel construir,
de maneira natural, uma funcao entre os dois conjuntos. O problema encontrado nesse
passo da pesquisa foi que essa fungdo néo era, necessariamente, um morfismo de
monoides regulares. Analisando esse exemplo mais profundamente foi possivel ajustar
a definicao de birretracéo local, associando um elemento idempotente da algebra base
a cada birretracao local.

Resultados

Com o ajuste na definicao de birretragbes locais, obtivemos um morfismo de monoides
regulares entre as bissecbdes do grupoide e o algebroide de Hopf das suas funcoes
representativas, que se torna um isomorfismo quando consideramos apenas grupoides
transitivos finitos.

Além disso, a demonstracao de que as birretragcées locais formam um monoide regular
continua valendo e finalmente mostramos que as birretracées locais geram uma alge-
bra que é um semigrupo inverso quantico.

Por fim, como as demonstragdes ndo dependiam muito da comutatividade do alge-
broide de Hopf mas sim da comutatividade da algebra de base e das relagdes entre
as funcbes source e target, foi possivel estender os resultados para algebroides de
Hopf ndo necessariamente comutativos sobre uma algebra de base comutativa, com



as fungoes source e target satisfazendo condi¢cbes especiais.

Consideracoes finais

Dessa forma, comegamos a responder a pergunta inicial, encontrando no semigrupo
inverso quantico um bom candidato para a generalizacao de semigrupos inversos no
sentido de se relacionar com algebroides de Hopf da mesma maneira que semigrupos
inversos se relacionam com grupoides. Como objetivos de trabalhos futuros temos
definir as birretracdes locais para quaisquer algebroides de Hopf e tentar encontrar
mais relacdes entre 0s semigrupos inversos quanticos e os algebroides de Hopf.
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1 INTRODUCTION

The very basic notion of a group has undergone several generalizations in diffe-
rent contexts, giving rise to a myriad of new mathematical structures. Since groups
are inherently related to symmetries, one can consider these new structures arising
from groups as new tools to understand the deep and subtle aspects of symmetries.
In one direction, it is possible to extend groups by weakening their operations. For
example, when someone weakens the group inversion, also giving up the uniqueness
of units, one ends up with regular semigroups and inverse semigroups. By the widely
known theorem due to Wagner and Preston (PRESTON, 1954; WAGNER, 1952), every
inverse semigroup can be viewed as a semigroup of partially defined bijections in a
set, with the operation given by the composition. These partially defined bijections also
evoke another mathematical structure which generalizes the notion of a group, namely,
the groupoid structure. For the case of groupoids, what is weakend is the definition of
the operation, which is not globally defined anymore. It is easier to understand why
groupoids are generalization of groups if we consider a group as a one object category,
whose endomorphisms of that object are the elements of the group. In this case, a
groupoid is a “multi-object group", more precisely, a small category in which every
morphism is an isomorphism.

The relationship between inverse semigroups and groupoids has been eluci-
dated in the literature in several ways. For example, starting from an inverse semigroup
S, one can naturally associate a groupoid whose unit space is the set of units E(S)
and the operation is the restriction of the operation in S. This groupoid has a partial
order induced by the partial order of the semigroup itself, in fact, it is an inductive
groupoid, meaning that its set of units is a meet semilattice. On the other hand, given
an inductive groupoid, one can associate to it a new inverse semigroup. This exchange
between inverse semigroups and groupoids composes the content of the Ehresmann-
Nambooripad-Schein theorem, which stablishes a categorical isomorphism between
the category of inverse semigroups with prehomomorphisms and the category of in-
ductive groupoids and ordered functors (EHRESMANN, 1960; NAMBOORIPAD, 1979;
SCHEIN, 1979).

One can also observe the interchange between inverse semigroups and grou-
poids considering the case of étale groupoids. This connection was first explored in
the context of operator algebras (PATERSON, 1999). An étale groupoid is a topological
groupoid in which the source and target maps are local homeomorphisms (MATSNEV;
RESENDE, 2010). Given an étale groupoid G, the set of its local bisections B(G) con-
stitutes an inverse semigroup (EXEL, 2008). In turn, given an inverse semigroup S,
one can define an action of this semigroup on the set of characters of its unit space
and, from this action, associate its germ groupoid Gr(S), which is an étale groupoid
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(MATSNEV; RESENDE, 2010). More precisely, considering the category of inverse
semigroups with semigroup morphisms and the category of étale groupoids with alge-
braic morphisms’, the functor which associates to each inverse semigroup the germ
groupoid of the canonical action on the characteres of its unit space is left adjoint to the
functor which associates to each étale groupoid its semigroup of bisections (A.BUSS;
EXEL; MEYER, 2012).

Another completely different direction in which it is possible to generalize groups
is through Hopf algebras, which can be considered as a kind of “linearized version
of groups". Hopf algebras have nice properties relative to duality and representation
theory and, due to the emergence of the quantum groups (DRINFELD, 1988) became
more popular in the nineties, even among the physicists, when quantum groups started
to be considered seriously as symmetries of quantum systems, for example, as symme-
tries of the spectrum of diatomic molecules (CHANG; H.Y. GUO, 1992) or symmetries
of Landau states in the quantum Hall effect (SATO, 1995). There are several different
generalizations of Hopf algebras in the literature. Here we mention only three struc-
tures which generalize both Hopf algebras and groupoids: weak Hopf algebras (BOHM;
NILL; SZLACHANY!I, 1999), Hopf algebroids (BOHM, 2009; BRZEZINSKI; MILITARU,
2002) and Hopf categories (BATISTA; CAENEPEEL; VERCRUYSSE, 2016). Among
the aforementioned structures, Hopf algebroids are, in a certain sense, the richest and
most promising option to generalize groupoids in the Hopf context.

The question that arises in this moment is: can we find a good generalization
of inverse semigroups and Hopf algebras which can play the same role with Hopf
algebroids as inverse semigroups do with groupoids? In this work our aim is to start
filling this gap by introducing the quantum inverse semigroups. This subject appeared
as a collection of examples in search of a theory. The lessons coming from the study
of partial actions of Hopf algebras and some aspects of the theory of Hopf algebroids
motivated examples of what should be a quantum inverse semigroup. We generalize
the concept of local bisections for Hopf algebroids and prove that the these "generalized
bisections" generate a quantum inverse semigroup.

This work is structured in four parts. In chapter 2, we recall the definitions of
inverse semigroups, groupoids and Hopf algebroids to stablish the notations, aside
from the proof that the bisections of a groupoid form an inverse semigroup and some
properties of Hopf algebroids that will be used throughout the work. Moreover, we
present an alternate and more algebraic definition for local bisections for groupoids.
Under this new definition, we prove that the statement that the local bisections form an
inverse semigroup still holds. Lastly, we give some examples of Hopf algebroids with
special attention to the Hopf algebroid of the representative functions of a groupoid,

1

An algebraic morphism between the groupoids G and # is a left action of G over the arrows of H
commuting with the right action of # over itself by the multiplication in 4 (BUNECI, 2008).
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introduced by (KAOUTIT, 2013).

The third chapter is dedicated to the definition and examples of quantum inverse
semigroups.

Chapter 4 introduces the generalized bisections for commutative Hopf algebroids
over a commutative algebra, that are called /local biretractions. Then we prove that
the set of all local biretractions is a regular monoid with a convolution product and
that the free vector space generated by them with the extended linearly convolution
product is in fact a quantum inverse semigroup. After that, we recall the Hopf algebroid
examples from the first chapter and find their biretractions. Moreover, we present a
morphism between the local bisections of a groupoid and the local biretractions of the
Hopf algebroid of its representative functions.

Finally, we define local biretractions for not necessarily commutative Hopf al-
gebroids over a commutative algebra with a special condition for the bialgebroids’
structures.

The last chapter concludes this work showing some of the difficulties found in
the process of the construction of the best definition for local biretractions and what we
can expect from future works.
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2 PRELIMINARIES

This chapter contains the definition of inverse semigroups, groupoid, bisections
of a groupoid and Hopf algebroids, together with some properties that are used in
chapters 3 and 4. Then of all relations between inverse semigroups and groupoids, we
elucidate the one about the bisections of a groupoid being an inverse semigroup.

Also, since our aim is to generalize the definition of bisections for Hopf algebroids,
we introduce in the second section of this chapter some examples of Hopf algebroids
that helped us find the best definition of local biretractions. We give special attention to
the Hopf algebroid of the representative functions of a groupoid, so we can later work
on the relations between the bisections of a groupoid and the biretractions of the Hopf
algebroid of its representative functions.

2.1 GROUPOIDS AND INVERSE SEMIGROUPS

Definition 2.1.1 (Groupoid) A groupoid is a set G together with a subset G?) C G x G,
a product G — G, (g,h) — gh and an inverse mapi: G — G, g — g~ (in the sense
that (g-")~1 = g) such that:

(G1) if(g,h),(h,]) € G, then (gh,l), (g,hl) € 6@ and

(gh)! = g(hi).
(G2) (9,97") € G©@ forevery g € G and if (g,h) € G2, then
g (g =h (ghh ' =g.

If, in addition, G is a groupoid with a topology and the multiplication and the inversion
are continuous, we say that G is a topological groupoid.

Remark 2.1.2 We also define the unit space G©) C G as the image of the source and
target maps s,t : G — G

sg9=g'g g9 =9g",

which are well defined, because (9,97"),(g7",9) € 6 and

s@=9"g=9"(g") " =tg")
for every g € G, thus Im(s) =Im(t).
If G is a topological groupoid whose unit space G is locally compact and
Hausdorff in the relative topology, with s and t local homeomorphisms, then we say G
is an étale groupoid.
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Remark 2.1.3 From the definition of the source and target maps, we have the following
consequences:
(1) Forevery g,h € G, (9,h) € G@ if and only if, s(g) = t(h). Indeed, if (g,h) € G©@),
then
s(9)=9"g=9"((ghh ") = (g7 (@Mh™" = hh™" = t(h).
On the other hand, s(g) = t(h) implies that g~'g = hh~'. Then, since (g.g~"g) and
(hh~1,h) are in G, we have that
(9.h) = ((gh)h™',h) = (g(hh™"),h) € G©).

2) If (g,h) € @ then (h1,g7") € 6@ and (gh)™' = h g7 1.

Indeed, s(h™') = t(h) = s(g) = t(g~") implies that (W"1,g1) € G@). Then (h,h g,
(h1g1,9) are in @) and since (g,h) € G we have from (G2) that (gh,h”1g™"),
(h1g~1,gh) are in G\@. Then

g (gh gy = (g g g = ((F Tl h g = g™
(g g M) gh= (g ) g ) gh=((gg™") g)h = gh,
respectively. Therefore, (gh)™' = h~1g~".
(3) If(g,h) € G2 then s(gh) = s(h) and t(gh) = t(g) :
s(gh) = (gh)"(gh) = (g (gh)) = i h = s(h)
tgh) = (gh)(gh)™' = (ghhi g™ = gg" = t(g).
(4) The maps source and target are the identity when restrict to the unit space G 0
s(s(g)) = s(g™' 9) = s(9)
t(s(9)) = tg™"g) = tg™") = s(g)-

Definition 2.1.4 (Inverse Semigroup) Aninverse semigroup S is a semigroup in which
every s € S has a unique pseudoinverse s* € S in the sense that s = ss*s and
s* = s*ss*.

Example 2.1.5 Let X be a set. The set Z(X) formed by all bijections between subsets
of X, that is
Z(X) ={f : Dom(f) C X — Im(f) C X | f bijective }

is an inverse semigroup. The semigroup operation is given by the composition:
fg=fog: g‘1 (Dom(f) N Im(g)) — f(Dom(f) N Im(Q)).

This inverse semigroup is a monoid, because it contains the identity map Idy : X — X.
Also, Z(X) has a zero element, given by the empty map( : ) C X — 0 C X.
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Example 2.1.6 Let A be an algebra. Similarly to the previous example, the set Z(A)
formed by all isomorphisms between ideals of A is an inverse semigroup.

Remark 2.1.7 Denote by E(S) the set of all the idempotent elements of an inverse
semigroup S. Observe that if e € E(S), then e* = e.

Proposition 2.1.8 Let S be a regular semigroup, that is, a semigroup in which every
element of S has a pseudoinverse. Then the idempotents of S commute if, and only if,
every element of S has a unique pseudoinverse. In other words, a reqular semigroup S
is an inverse semigroup if, and only if, its idempotents commute.

Proof. First, suppose that E(S) is commutative. Let s’ and s” both be pseudoinverses
of an element s in S. Then we have that s’ = s'ss/, s” = s’ss” and ss's = s = ss’s.
Observe that the elements s's,ss’,s”s,ss” are all idempotents, hence

s =5'ss' = §'ss'"ss' = s"ss'ss’ = s"ss’ = s"ss"ss' = s"ss'ss’ =§'ss" =§".

Now, suppose that the pseudoinverse is unique. Let e,f € E(S). Being (ef)* the
pseudoinverse of ef, we have

(f(ef)*e)(f(ef)*e) = f((ef)*ef(ef)*)e = f(ef)*e,
which implies that f(ef)*e is an idempotent with
(ef)(f(ef)*e)(ef) = ef(ef)*ef = ef

and
(f(ef)*e)(ef)(f(ef)"e) = f(ef)*ef(ef)*e = f(ef)"e.

By the uniqueness of the pseudoinverse, we have that (ef)* = f(ef)*e is an idempotent.
Consequently, ef = (ef)* € E(S). Similarly, we also have fe € E(S). So,

ef(fe)ef = (ef)(ef) = ef and fe(ef)fe = (fe)(fe) = fe,
and again by the uniqueness of the pseudoinverse, we conclude that
fe = (ef)* = ef.

Therefore, E(S) is commutative. O

Remark 2.1.9 The above result implies that for any inverse semigroup S, the cor-
respondence s — s* is an involutive antimorphism of inverse semigroups. Indeed, for
every s,t € S,
(st)(t"s*)(st) = s(tt*)(s*s)t = s(s™s)(tt*) t = st
and
(t*s*)(st)(t*s™) = t*(s™s)(tt*) s* = t*(tt*)(s*s) s* = t"s™.

Consequently, (st)* = t*s*.
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Definition 2.1.10 (Bisection) Let G be a groupoid. A bisection of G is a subset U C G
such that s|;y and t|; are injective. The set of all the bisections of G is denoted by B(G).

Proposition 2.1.11 Let G be a groupoid. Then the set B(G) is an inverse semigroup
with

UV ={gh|(g,h) € U x V and s(g) = t(h)}

U ={g'lge U}

defined for any U,V € B(G).

Proof. First, observe that the product is associative: for any U, V and W bisections of
G, if g(hl) € U(VW) then (g,h) and (h,/) are in (@ and

g(hl) =(ghl e (UV)W,

leading to U(VW) C (UV)W. Analogously, we have that (UV)W C U(VW).

Also, for any bisection U of G, s|y« = |y and t|y- = S|y are both injective. Thus
U* is a bisection. Moreover, to prove that UV is a bisection for any U and V bisections,
take g1 hy, goho € UV with (g4,h4), (92,ho) € U x V such that s(g1hy) = s(goho). Then

s(hy) = s(g1hq) = s(gahp) = s(ho)

and hq,ho € Vimplies that hy = ho. And since s(gq) = t(hy) and s(go) = t(ho), we obtain

s(g1) = t(hy) = t(ho) = s(gp)

leading to g1 = g»> and, consequently, g1 hy = goho. Hence s|yy is injective. Analogously,
we have that f|y is also injective. Therefore UV is a bisection of G and B(G) is a
semigroup with this product.

Now take g € U. Then g = g(g~'g) with s(g) = t(g~"), which implies that g €
UU*U, that is, U C UU*U. On the other hand, take the element k = g(h™'1) € UU*U
with g,h,/ € U, s(g) = t(h™1) and s(h™") = t(/). Then

s(@)=tthY=sh) and  t(h)=s(h) =t

imply that g = h= /. Hence
k=g(g'g)=geU
and, consequently, UU*U c U. Therefore B(G) is a regular semigroup.

In order to prove that 5(G) is an inverse semigroup, we need to prove that the
pseudoinverse U* is unique. Take V a bisection o G satisfying

uvu =U and VUV = V.
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If k € V then there exist g,/ € V and h € U such that k = ghl with s(g) = t(h) and s(h) =
t(/). Now observe that

s(k)=s(ghl)=s(l) and (k)= t(ghl) = t(g).

Since V is a bisection, we have that k = g = I. Thus k = khk. Also, note that hkh €
UVU = U and then s(h) = s(hkh) implies that h = hkh. Therefore, k = ™1 € U*.

On the other hand, being g~! € U*, since UVU = U there exist k € V and
h,l € U such that g = hkl with s(h) = t(k) and s(k) = t(/). Then

s(g) = s(hkl) = s(/)  and  t(g) = t(hkl) = t(h)

imply that g = I = h and g = gkg. Also, kgk € VUV = V and s(kgk) = s(k) imply that
kgk = k. Therefore g~1 = k € V and, consequently, U* = V.
0

The interplay between groupoids and inverse semigroups has been vastly ex-
plored in the literature (EHRESMANN, 1960; LAWSON, 1998; NAMBOORIPAD, 1979;
PATERSON, 1999; SCHEIN, 1979). One of the most important sources of inverse
semigroups associated to groupoids are the bisections of étale topological groupoids
(A.BUSS; EXEL; MEYER, 2012; EXEL, 2008; MATSNEV; RESENDE, 2010). As proved
in Proposition 2.1.11, the set of all bisections of a groupoid G defined this way is an
inverse semigroup. Let us redefine bisections in a more algebraic way, so we can better
generalize this notion for Hopf algebroids.

Definition 2.1.12 A local bisection of a groupoid G is a pair (u,X) in which X is a subset
of G and u : X — G is a function such that

(i) sou=Idy.

(ii) tou: X — tu(X)) is a bijection.
The set X is called the domain of the bissection (u,X). A global bissection is a local
bissection whose domain is X = G0).

Note that, item (ii) implies that the function u : X — G is injective. Denote again
by B(G) the set of the local bisections of the groupoid G and by GIB(G) the set of its
global bisections.

Remark 2.1.13 The two notions of a bisection, as a subset of the groupoid restricted to
what the source map is injective and as a pair of a subset of the unit set and a function
are in fact related. On one hand, given a subset U C G for which s|y : U — G0 js
injective, define X = s(U) C G ©) andu : X — G as the inverse of s|yy. On the other hand,
given a pair (u,X), as in Definition 2.1.12, define U = u(X), as u is already injective, the
corestriction u : X — U is bijective. As the left inverse of u is s, by definition, then it is
the inverse of that corestriction, making s| injective.
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Several instances of the following result have already appeared in the literature
(see (GARNER, 2019), Example 17, for a version closer to our approach).

Proposition 2.1.14 Let G be a groupoid, then the set B(G) of its local bissections is an
inverse semigroup and the set GII3(G) of its global bissections is a group considering the
product between two local bisections (u,X) and (v,Y) of G as (u,X) - (v,Y) = (uv, XY),
in which

XY =(tov) (tov(Y)NX) and (uv)(y) = u(to v(y)v(y).
Proof. The product is associative. Indeed, for (u,X),(v,Y),(w,Z) € B(G), we have
(uX)(v.Y))(w,2) = (L)w,(XY)Z)  and (U, X)((v,Y)(W,2)) = (u(vw),X(YZ)),
where

(XY)Z = (tov) N tov(Y)NX)Z) = (tow)  (to w(Z) N (to V) (to v(Y)N X))
X(YZ)=X(tow) (tow(2)NY)) = (tovw)  (tovw((tow)  (to w(Z)N Y))N X)).

In order to show that these bisections are equal, first note that, for any z € YZ
tovw(z) = t(v(tow(2))w(z)) = t(v(t o w(2))) =toVvotow(z).
Hence the inverse map of the bijection tovw : YZ — to vw(YZ) is
(tovw)™ ' = (tow) M (tov) itovotow(YZ) = YZ
Then

tovw) ™ (to vw((tow) (to W( )NY)) N X))
Y)n X)

X(YZ) = (

(ToVW) (tovotow((tow)” (ToW( )) N
= (tow) Wtov) (tov(tow(Z)n Y)N X)
= (tow) (tow(2)N (to v) I (to v(Y)N X))
= (XY)Z.

Now, for z € XYZ,
u(vw)(z) = u(t o vw(2))vw(z) = u(to vo to w(2))v(t o w(z))w(z)

and
(uv)w(z) = uv(to w(2))w(z) = u(tovotow(2))v(tow(z)w(z).
Therefore ((u,X) - (v,Y)) - (w,2) = (u,X) - ((v,Y) - (w,2)).
For any bisection (u,X) € B(G) define (u,X)* = (u,t o u(X)), in which, for any
x € X, U(to u(x)) = u(x)~". Then for any x € X € g0

uu(x) = u(to u(x))u(x) = u(x)”
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We conclude that

uuu(x) = u(touu(x))uu(x) = u(t(x)) x = u(x)

and
Tul(to u(x)) = Tu(toT(t o u(x)))U(t o u(x))
= Tu(t(u(x)))T(t o u(x))
= wu(so u(x))u(t o u(x))
= So u(x)(u(x))_1
= (u(x)™
= U(to u(x)).
And since

(u,X)* - (u,X) = (U,t o u(X)) - (u,X) = (du, (to u)_1(to u(X) N to (X)) = (ldy,X)
(uldy)(x) = u(t o Idy(x)) Idx(x) = u(x)x = u(x)s o u(x) = u(x)
(dxT)(t o u(x)) = ldx(t o T(t o u(x))) TU(t o u(x)) = t((u(x))™") (u(x))™" = T(t o u(x))

for every x € X, we have that

(u,X) - (u,X)* - (u,X) = (u,X) - (Tt o u(X)) - (u,X)
= (u,X) - (Idx.,X)

= (u,X)
and

(u,X)" - (u,X) - (u,X)* = (ldy,X) - (utou(X))
= (@, (tou)y N (toT(toulX)) N X))
= (U,t o u(X))
= (u,X)".

It remains to prove that the idempotents in 5(G) commute among themselves. If (u,X)
is an idempotent element, then

(u,X) = (U,X) - (u,X) = (uu,(t o u)™ (t o u(X) N X)),

implying that t o u(X) = X and u(t o u(x))u(x) = u(x). Multiplying the last equality on the
right by u(x)~! we end up with u(to u(x)) = to u(x). And since to u(X) = X, we conclude
that u = Idy and (u,X) = (Idy,X). Hence multiplying two idempotents we have

(Idy,X)-(Idy,Y) = (IdxIdy,(toldy) ™ (toldy (Y)NX)) = (Idyny, XN Y) = (Idy, Y)-(Idy,X).
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Therefore, the idempotents commute and B(G) is an inverse semigroup.

The global bisections are of the form (u,g<°)) and clearly, global bisections GIB(G)
form a subsemigroup of B(G). But the only idempotent in GIB(G) is the unit (/dg(o),g(f’)).
An inverse semigroup with only one idempotent is a group, therefore GIB(G) is a group.
O

2.2 HOPF ALGEBROIDS

Now for the definition of Hopf algebroids and further this text, k will denote a field
of characteristic 0 and unadorned tensor products will denote tensor products over the
base field k.

Definition 2.2.1 (BOHM, 2009) Let A be a k algebra. A left bialgebroid over A is a

quintuple (H, s;,t, A, €;) in which:

(LB1) H is ak-algebra, s; : A — H is an algebra map and t; : A — H is an antialgebra
map such that s)(a)t;(b) = t(b)s)(a), for every a,b € A making H an A-bimodule
with the structure

ar h<b=s)a(b)h.

(LB2) (#H,4,,¢)), is an A-coring with the above mentioned A-bimodule structure.

(LB3) A[(H) CH ><f47-[ =D hokie HRaH | > hit(a) @ ki =>_ h;® kjs/(a), Va € A}
(Takeuchi’s product) and the co-restriction map is an algebra map.

(LB4) &/(hk) = /(hs(e/(k))) = e/(hti(e/(k))).

Definition 2.2.2 (BOHM, 2009) Let A be a k algebra. A right bialgebroid over A is a

quintuple (H, sr,tr,Ar, er) in which:

(RB1) H is ak-algebra, sy : A — H is an algebra map and t, : A — H is an antialgebra
map such that sy(a)t(b) = t-(b)sr(a), for every a,b € A making H an A-bimodule
with the structure

aw» h 4 b= ht(a)sr(b).

(RB2) (H,Ar,er), is an A-coring with the above mentioned A-bimodule structure.

(RB3) Ar(H) CH X%'H ={D_hiokiec HRaH | > sr(@hj@k;=>_ hj®t(a)k;, Va € A}
(Takeuchi’s product) and the co-restriction map is an algebra map.

(RB4) cr(hk) = er(sr(er(h)k) = er(tr(er(h))k).

Definition 2.2.3 (BOHM, 2009) Let A and A be k algebras. A Hopf algebroid over the
base algebras A and A is a triple H = (H;, Hr, S) such that.
(HA1) H,; = H is a left bialgebroid over A and H, = H is a right bialgebroid over A.
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SrO€r0t1=t/ trOErOS/=S/.

(HA3) (4, ®Z'H) oAr=(H®paAr)oA;and (Ar @pH) oA = (H ®ZA/) oAr.

(HA4) S : H — H is a k linear map such that for alla €¢ A, b € A and h € H,
S(t(a)htr(b)) = sr(b)S(h)s)(a).

(HA5) Denoting by u; and ur, respectively, the multiplication in H as left and right
bialgebroid, we have

HI(S®aH)0A; =Sroey, and pr(H ®ZS)OAr=S/O€/.

Throughout this work we use the Sweedler notations for A; and A, : for every
h € H, we write
Al(h) = hiyy @ hig) Ar(h) = iY@ h),

2.2.1 Some Hopf algebroid’s properties

The next properties are valid for a general Hopf algebroid H = (H;,#,S) with
the maps s;,t,4,,;, Sr,tr,Ar and <.

(P1) Forevery ac A, b c Aand h € H, we have that
S(tr(a)h (b)) = s/(b) S(h) sr(a).
Indeed,

S(tr(a)h) = S(tr(a) @ ty o e (h1)))
= sy 0 e(h") S(tr(a) K@)
= 5 (hW1)) gy Sttr(a) H®))
= S(hy)) hgy " S (tr(a) h(2)(2))
= S(h1)) sr(@ higy M S (@)
= S(h(1y) sr(a@) sy o e/(hz))

© S(heyy) sjee/(hp)) sr(a)

= S([’I o E/(h(z)) h(1)) Sl’(a)
= S(h) sr(a),

where (x) comes from the fact that s; = fy o ¢y 0 5; and the images of ; and s,
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commute by definition. Moreover,

S(ht(b)) = S(t; o £/(h2)) 1) (b))

S(he1y (b)) 510 £/(h())

= S(h1) (b)) iy VS (hp)®)
S

= 5/(b) sr 0 er(h(1)) S(H?))
= s(b) S (h<2) to g,(h“)))
= 5/(b) S(h),

again using that sy = troer o s;.

(P2) S is antimultiplicative: for every h,k € H,

S(hk) = S(tj o £/(h(2)) h1)k)

(P3) S maps unity to unity, because

19 =8roer(1y) = S(19) 194 = S(19).
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(P4) The composition ¢; o sy is an antimorphism of algebras: for every a,b € A,

ej o sr(ab) = ¢/(sr(a) sr(b))
= ¢/(tj o gy o sr(a) sr(b))
=¢/(sr(b) < g/ 0 sr(a))

=¢j0 8r(b)ej o sr(a).

Analogously, ;o tr, er 0 5y and r o t; are also antimorphisms of algebras.

(P5) The compositions ;0 S and ¢, o S can be written as

ero S(h) =10 S(toei(hp)) h))
= ¢/(S(hey) 810 £/(M2)))

el(S(hey) hiz))

gjosroer(h)

and

ero S(h) = ey 0 S(h® t; o £, (h1)y)
= er(sr o er(hV) S(h?)))
= (1) S(h2)y)

=erosjog(h)

for every h € H.

(P6) S is anticomultiplicative as in

AjoS=(S®8)o0alP.
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Indeed,
A/ o S(h) = A/ o S(t/ o 6/(h(2)) h(1))
=A/(S(hqy) 810 e/(hg))
= (S(h)))) i o 8/(/7(2)) A (S(hay)e
= (Sthay)n) Py S(hp®) @a (S(hr)) 2y
S(h' 1>)> h'1pyS(h®) @a (S<h“21>>)<2>

)
(
B
S(h )
)

S 1

(st

(

(st
(5%
=<S 121>)
( et
(s

(

_ 1) ) (2) (1)(1) (1)(1) (1)(2)
= (s(h) (2)>(1)S(h ) ®a (S(h N (2))(2)3(/7 )
_ (2) (1)(1) (1(2)

= (sroerh )msm )@a (s o2 >)(2) S(hh@)

= S(h®) @4 s,oerm“)“)) S(h)

h2
S(h®) @4 S(H@ t, o g (D))
S(h )®A S(h )
(S®a S) 0 AP (h)

for every h € H.

2.2.2 Commutative Hopf Algebroids

From now on, unless it is explicitly said otherwise, we will be working only with commuta-
tive Hopf algebroids over a commutative base algebra A = A. In this case, the source and target
maps sy, Sr, t; and t, are all morphisms of algebras and because of the commutativity of #, we
have s, = f, and s, = t;. Therefore, one can choose arbitrarily one laterality for the bialgebroid
structure. Throughout this work we shall denote by s the right source map and by t the right
target map. Also in the commutative case, the left and right Takeuchi tensor products, H x/, H
and H x/, H are identified with the tensor product H ®4 . Indeed, for every >~ hi@ ki € H®aH,
then

d sH@h®ki=>Y_ his(a)®k;

for every a € A. Consequently, H xy H = H ®4H and, analogously, H ><’AH =H®aH. Thus the
left and right comultiplications and counits coincide and the counit turns out to be an algebra
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morphism. Finally, we can rewrite some of the axioms in a more suitable way: for any h,k € H
and a,b € A, we have
(1) s,t: A— H are both algebra morphisms and H has the A-bimodule structure

arhab = t(a) hsb);

(@)
(3) S(s(a)h) =t(a) S(h) and S(t(a) h) = s(a) S(h);
(4)
(5) h

e=¢=¢,:H — Ais an algebra morphismand cos=cot=1Idy;
4) S(hq))he) = s(e(h)) and hy)S(hg)) = te(h);

S) hyS(h))ha =h and S(hy))he)S(hg) = S(h);
using A = A, = A, and the notation A(h) = h) @ h).

Remark 2.2.4 Observe that if (H,s,t,A,e, S) is a commutative Hopf algebroid over a commuta-
tive algebra A, then S? = Idy,. Indeed, for every h € H,

S?(h) = S (S(t o e(hpy) hi2))
= S (S(hg) s 0 =(h))
= toe(hy)) S?(h)
~ hyyy S(hie) S(hg)
= hiny S (M) S(hea))
= hy S (toe(hg))
= by s o e(h)

Example 2.2.5 Let A be a commutative algebra and consider H = A® A. Then H is endowed
with a Hopf algebroid structure by

s(a)=14® a, ta) =a®1,, Ala®b)=a®1,414® b,
c(a® b) = ab and Sa® b)=b® a.

Example 2.2.6 A little generalization of the previous example is the algebra of Laurent poly-
nomials, H = (A ® A)[x,x™'], for A being a commutative algebra. This algebra is also a Hopf
algebroid with

s(@=1a®a, t(@=a® 1 A((@ax b)x")=(@®12)x" R4 (14 ® b)x"

e((a® b)x") = ab and S((a® b)x") = (b a)x™"

2.2.2.1 The Hopf algebroid of the representative functions

Given a groupoid G, we can construct a Hopf algebroid of its representative functions
(KAOUTIT, 2013). In order to define a representative function of G, we need to understand what
is a representation of a groupoid. A representation of a groupoid is called a G-representation
and consists on:
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* & =|yegwo Ex disjoint union of finite dimensional k-vector spaces Ey such that there
exists an n-dimensional k-vector space V and linear isomorphisms ¢y : V — Ey for
every x € G0

c A fam|ly of linear |somorph|sms pg Egg) — Et(g) for every g € G such that for every
x € G and (g,h) € g®

px = ide,,  Pgn = PgPh-
For example, Z = | |, o Zx, With Zy = k for every x € G and pj = Idy for every g € G
is a G-representation.

A morphism A between G-representations (£,0°) and (F,p”) is a family of linear maps
{Ax}xego With Ay - Ex — Fy such that for every g € G,

PgAsig) = MigPg-

Denote by Repy (G) the category of the G-representations in k-vector spaces, with tensor
product and duals for G-representations (£,0f) and (F,p”) given by

(Ep%) @ (Fp7) = (E® Fpf @p”) = ( || (Ex®x F). {0 ®kp§}geg)

X€gO)

(€p5) = ( L Ex*,{pé*}geg) :

xeGO)

where p¢" 1 Egg)" — Eyg)* With p5" () = ¢ op‘ff1 for every g € G and ¢ € Egg)".

Proposition 2.2.7 (KAOUTIT, 2013) Let G be a groupoid and (£,0%) a G-representation. Setting
A = Fun(G© k) the commutative k—algebra of all maps from G© to k, we have

r€)={p:69 = &|p(x) € Ex Vx € GO}
is a finitely generated and projective A-module.

Proof. In order to prove that I'(£) is a finitely generated and projective A-module, it is enough
to construct its dual basis. Take V the underlying n—dimensional vector space from (£,0%) with
the isomorphisms ¢y : V — Ex. Fix {v4,...,vs} a basis for V and consider foreach i=1,...,n,
the maps e : GO — &, x — ox(v)). Since {ox(v1), . ..,ox(Vn)} is a basis of Ex and p(x) € Ey for
every x € G\9, we can write

p(x) = Z X)ox(Vi) Zp/

i=1

with p; € A. We can also define foreachi=1,...,namap e : I'(£) — A, p+— p;, thus

n
p=> eip)e;
i=1

Therefore, {€],e}7, forms a dual basis for the A-module I'(£). 0
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Now for any G—representation (£,0%), let

Te = Endrep,)(€0°)  Ter = HoMrep,(g) ((€,09).(F p7))

and consider the tensor products

r= @ reEyenreE.

(&,pf)eRep,(9)
I is a commutative (A @y A)—algebra with the product
(P @1 PIY 712 Q) = (P BAYP) BTy (P DA Q)
forevery o € I'(E*), Y € I'(F), p € I(£) and g € I'(F). Finally, the quotient

De pe)erep, ) [(E7) @1 T(E)
A Rep,(0)

Rk(g) =
of I with the ideal

fRepk(g) = <§0®T]—‘ Ap_@A ®Tg p| 2 S r(f*)sp € I—(g)lA S Tg,]:>

is a (A ®k A)-algebra with the inherited product from I and is called the algebra of the represen-
tative functions on the groupoid G. The elements of the algebra are denoted by ¢ @7, p. Ri(G)
has a commutative Hopf algebroid structure over the commutative base algebra A : for every
acA p®r. peR(G) and x € GO,

n
5@ =Ta®r,a Ha)=a®r1a A@Srp) =) P01, 6®46" 37, P,
i=1
P BT P(X) =o(X) (p(x)) SO, P) =P, ¢, with () : £ = (£7)",
where {ej*,e;} is the dual basis of the A-module I'(£) and 7 is the trivial G—representation
T = | yego k, with pf = Idy.

Example 2.2.8 A group G can be seen as a groupoid G = G with G = {15}. A G-representation
is a finite dimensional vector space V together with linear isomorphisms pg : V — V such that
pgPl = Py, for every g.h € G. Hence the representations of the groupoid G are the same as
the representations of the group. Also, we have that A = Fun(G© k) = k,

r(V)y={p:{lg) = iz Vv

and r(v*) = V*. Moreover, an endomorphism for the representation (V,p V) is a linear map
a:V — V such that

oo pg = pg o
for every g € G. Thus a = Aldy for some A € k and then Ty = k. Consequently, the ideal
Arep,6)(G) = 0. Then the algebra of representative functions of G is the algebra

(G P VeV
(V,pV)eRep, ()

and an element of Ry (G) can be written as a triple (¢,v,pY) with p € V*, v € V and p a
G-representation, which can be identified as the representative function for the group G
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f: G — k
g — epEY(@WV)

Therefore R(G) is exactly the commutative Hopfk—algebra R(G) of the representative functions
on the group G.

Example 2.2.9 LetG be the groupoid known as the unit groupoid where G = G(© and the source
and target maps are s = t = ld 5. Then a G—representation is given by a disjoint union

e= || Ex= ||V,
xegO) xeg©
where V is a n—dimensional vector space and the linear isomorphisms p% : Ex — Eyx are the
identity map for every x € G. Hence the G—representation is simply the set V x G, Also,
observe that
MVxg={p:69 5 Vxg9|px)eVxi{x}}=A"

where A = Fun(G© k). Similarly, I (V x G©)*) = A" and morphisms between G—representations
are Ty,go wxgo = Mnm(A), where W is a m—dimensional vector space. Therefore, the Hopf
algebroid of the representative functions of G is given by the quotient

Dren A" @umy(a) A"

Ri(9) =
<U () AV = UAj) @ntyp(a) V>

UEAT VEAM, (A}) €M, m(A)

This quotient, indeed coincides with the algebra A. Consider, for example the following
element of Ri(G)

g
(f1,...,f”)®Mn(A) :
gn
The vector (f', ..., f") € A" can be viewed as the product 14(f', ..., "), in which 14 : GO — k
is the constant unit function, and (f', ..., f") € My n(A) then
g' g'
(M ema | | =1a@me (L ) 0 | =1a@e ) figl.
g" g" i

Lemma 2.2.10 (Proposition 2.2, (KAOUTIT, 2013)) Let G be a groupoid, A = Fun(G k) and
put B = Fun(G k). The following map

¢: Rxg(G) —B
e®R1, p —C(p @7, P),

with {(p @7, P)(9) = ©(t(9)) (p5(P(s(9))) for each g € G is a (A @y A)—algebra map. Moreover,
we have
(1) i*ol=¢, withi: GO — G being the inclusion map;

(2) CoS(p @7, P9 =C(P BT, PG
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(3) Forevery g,h € G such that s(g) = t(h) and every F € Ri(G), we have that
C(F)(gh) = C(Fa))(9)¢(F))(h),
where A(F) = F1y ®a F2).

Proof. First, C is well-defined because

for every (£pf) and (F,p”) G—representations, g € G, p € ['(F*), p € ['(£) and A € T¢ 7. Also,
{(1a®r,1a) =1gandfor o @7, p,P @7, q € Ri(G) and g € G,

(e @1 PP ®715 )(9) = C(p ®aY) BT, (P4 9))(9)
= (p @A P)(t(@)) (0§ i pg (P ®4 G)(S(9))))
= o(t(9)) (p5(P(s(9))) W(t(g)) (pg (t(s(9)))
= G PLYar, 9)(g

)
)-
Hence ¢ is multiplicative. Moreover,

(1) Forevery x € G and o ®7, p € Rk(G),

i* o {(p @1, P)(X) = C(p @7 P)(i(X))
= @(t(x)) (px(p(s(x))))
= ¢(x)(p(x))
=e(p ®7: P)(X).

(2) Forevery g c Gand ¢ ®71. p € Ri(9),

Co Slp @1, P)9) = (P ®T,. ¥)(9)

= B(1(9)) (p5 (#(s(9)))

= 5 (e(s(@)(p(t(g))

= 4(s(9)) © p5 1 (P(1(9)

= pltlg™ ))( (p(s(g™))
= (@ aT. PG

(3) Forevery (g,h) € G® and F = p @1, p € Ri(F),
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n

SFn@)G(F)(h) = > 4(p ®7. e)lg)&(e] @, p)(h)

i=1
n

= > 2(t(9)) (p5(ei(s(9)) & (th) (pf(p(s(h)))

i=1
) (pg (Z ei(s(9)) €/(s(9)) (pi(p(s(h)»)))
i=1

= e(t(gh) (pGn(p(s(gn)))
4@, P)(gh)
= S(F)(gh).

Remark 2.2.11 The original proposition (Proposition 2.2 (KAOUTIT, 2013)) for the previous
result also states that the morphism ¢ is injective.

Example 2.2.12 (KAOUTIT, 2013) Consider the groupoid G = X x G x X, where X is a set, G
is a group, (x,g,y)™" = (v,g7',x) and

(X=g’y) ’ (y,h,Z) = (X,gh,Z)

for every x,y,z € X and g,h € G. Also consider GO = {(x,15,x)|x € X} = X and the source
and target maps being the projections on the third and first coordinates, respectively. Let A =
Fun(X k) the set of all maps from X to k. We will see that

Rx(G) = Ay R(G) ®k A.

Using the { map from Lemma 2.2.10, a representative function ¢ @1, p of G can be seen
as a map from G onto k given by

ST, PXG.Y) = 2(X) (P (PW)) (1)

forevery x,y € X and g € G.
Now fix x, € X. Hence for a n—dimensional G—representation (£ ,0°),

£ _ £ E E
Px.g.y) = Px,16.50)P (x0,9.%0)P(x0,16.¥)

for every (x,9,y) € G. Let (a}?)1<ij<n

morphism , and denote by b2*)i<ii<n and (b;"°)1<j <, the matrices representing
P (X0,9,%0) ij SIS if Shis

P(nge,xo) Ex, — Ex and p (0.1 6.) . Ex — Ex,, respectively, for every x ¢ X. Then, with {e}, e;}

the n—square matrix representing the k—linear iso-

being the dual basis for ' (£) we can write

p(x) = ZP/(X)ei(X)
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and from (1) we have
F BT PX.GY) = #X) (Phgp(PY))

n
= ¢(x) < p(gxﬂGxXo)pro7Q,Xo)pr0,1Gx}’) pity) e/(XO)>

.k, I=1

= Y py) b & e(x) (b,’/“) X e,(x))
ijk,l=1

= 3 B &l b pily) e(x)(ei(x))
i k=1

= b aj bl pi(y) pi(x)
if,k,I=1

=

with p; : X — k given by x — ¢(x)(€i(x)). Defining

X —k p:X —k
X — 2}721 b;j(."’xap,-(x) X — e b pi(x)
we have that 5
C(p @1, P)(X,9.Y) = @i(x) & pi(y)- @)
ij k=1

Observe that the maps a; : G — k, g — a;f} are all representative functions on the group G,
because foreveryij=1,...n,

aﬁ = €/ (Xp) (p(gxo,g,xo)(ef(XO))> ’

for all g € G, with ei(xo) € Ex, andpf, ... : G — GL(E,) a G-representation. Also note that
a;° = €/ (x0) (PfxOAG,xO)(e/(Xo))) = e/ (x0)(gj(x0)) = &, (3)

which implies that (a,}e)1 <ij<n = In. In addition to that, ifa® f @ b is in A®y R(G) ®x A with R(G)
being the Hopf algebra of the representative function on the group G, then f : G — k can be
written as

f(9) = Flp(g)(v)) VgeG

with v being an element of a n—dimensional vector space V, F : V — k andp : G — GL(V)
a representation of the group G. Thus £ = Llxex V and p(gxf‘g,h) =p(@) :V = Vform a
G—representation and defining

P X — Vv p?: X —V
X — @P(x) : w— b(x) F(w) X —ax)v’
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we have that for every (x,9,y) € G,

4P @1, PIXGY) = 2°0) (P (P2(X))
= ¢°(V)(p(9)(alx) v))
= a(x) b(y) F(p(9)(v)) (4)
= a(x) f(g) b(y)
=1(a® f® b)(x,9,y),
where 1 is the the canonical map

A®y R(G) @k A <> Fun(X x G x X.k).

Consequently, (A @, R(G) ®k A) C {(Rx(G)) and from the expression (2),

if,k,I=1

Z(SO X7, p)(x!g:y) =1 ( Z P ® djk ®pl) (X:g!y)

for every (x,9,y) € G, so we have {(Rx(G)) C 1(A®k R(G) ® A). Therefore, the image of Ry (G)
in Fun(X x G x X k) by ¢ coincides with the image of Ay R(G) @k A in Fun(X x G x X,k) by 1.
And since the two maps are injective, we have an isomorphism of A—bimodules

Re(G) - Ay R(G) @y A
PRTP > 21kt Pi @ 8k Py

Moreover, this is an isomorphism of A—Hopf algebroids. Indeed, with the Hopf algebroid
structure on A @ R(G) @k A being

sa=1a®1gg ®a
t(a)=ae1pg @ 1a
A@xfob)=(a® 1) ®a(1a® fio) @ b) (®)
g'(a® f @ b)(x) = a(x)b(x)f(1g)
Saefeb)(x®gay)=aly)bx)fg").
with a,b € A, x,y € X and f € R(G), we have that:
(i) Foreveryac Aand(x,9,y) € G,
¢(3(a)(x.9.) = ¢(Ta®7, a)(x.g.y)
= 1400 (pleg (@)
=a(y)
=114 ® 1gG) ® a)(Xx,8,Y),

which implies that

§E@)x2gey)=(1a01pg @a(XRg®Yy)
=s@xegey).
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and £ o's = 5. On the other hand,

C(Ha)(x.g.y) = Lar, 1a)(X.9,)
= a(x) (Pleg.)(140)
= a(x)
=1(@a® 1 ® 14)(x,9.Y)

implies that

Ha)(xowgey)=(avlge@1)Xx0g®y)
=tf(@x®g®y)

and consequently, Eo t =t

(i) Now for every x,y,z,t € X,g,he G,ac Aand ¢ @71, p € Ri(9),

n

Z Z(Qp ®Tg ei) XA C(e;k ®Tg p)((xsg’y) ®A (Z1h!t))

i=1

=) e 1. @)(x.0.y) ¢(ef ®7, P)(z,h.1)

i=1
- Z o) (Pfegy (@) €@ (g (P(1)

& E E
(2)Pz,16.0)P (x0.hx0)P (30,1 6.t) PLE ))

*

5 &
= Z plx <P<x 16,500 (6,950 (00,16, €1 (V) €]

) _

= ¢ <p<x,1G,xO)P(xO,g,xO>P<xO,1G,y)w © 4% Plz16,300P broshx0)P 0,16, p(f)>
£ £ £ E E & &

= ¢(X) <P<x,1 65000 0%0,9.0)P (50,1 6P 1,1 6,2P (2,1 6,50)P (10, hyx0)P (30, 1) P(t))

& E E
= ¢(X) <P<x,1G,xO>P(xO,g,xO>P<xO,h,xO)P(xO,1G,t) P(f))

= Y wixay b
i.j k=1
n
= Z @/(X)ajk(najk(hg)pl(t)
ij,k,I=1
n

(D1 ® ajk gy ® 14) @a1(14 ® k(o) @ P((X,9,Y) ®a (2,h,1))
i ki<t

where (x) comes from ej(y) = ¢y o ¢7' 0 z(Vi) = ¢y 0 ¢ (€i(2)).
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Hence

E@8Ap . P((x0gey)Ra(zohet)

=) &e®7, &) @al(eF 7. P(X 2 gD y)®a(z@ h@ 1)

r=1
n

Y @i®ak 214 0a(1a® 8k @D (X2 gRYy)@a(z0 ha )
i,k I=1
n
ST AGieaep)(xegey)®izehot)
ik, l=1

=N o(pRT. P(XRgRY)®a(z2 ha 1),

thatis, (§ ® &) oA =A"0&.
Also,

n

eollpar. p)(X) = > €@ ®akep)x)
ij,k,1=1

Zi(X)Py(x) @y

1l I
5= 51s 2

S

&

I
oy
=5
%
ey
x

X
§
s

Te P)(X),

9

where (x) comes from the fact that (bx0 oy (bX X°),j, because

£ £ £ £ £
P(x0,16,)P(x,16,%0) =pXo = IdExo Pix,16x)P(x016.x) =Px = IdE, .
Therefore, 0 S=S' o€ andc’ o § =¢.

(iii) Finally, for (¢ ®71, P) € Ri(G), 9 € Gand x,y € X,
US@ T, P)X.8.Y) = (e BT, P)(Y.g " X)

n
-1
Z @i(y) aji pi(x)
ijikI=1
n
Z 108 (g; ® ak ® P))(x,9,Y)
ijkI=1

implies that

SO Px®g®y)= Z S(@i©ak@p)x©gey)
ij,k,1=1

=S 0&(p @7, P)(XBDG® y).
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Consequently, § is an isomorphism of Hopf algebroids.

Remark 2.2.13 A transitive groupoid G with source s and target t is a groupoid such that for
every pair x,y € X there exists an element g € G that satisfies x = s(g) and y = t(g). Then, fixing
xo € G, we have G = GO x Gy, x GO (Gy, is the isotropy group for xo) with the isomorphism

¥(9) = (1(9), #iy 9Ps(a) 5(9))

where for every y € GO, @, gives the element of G that satisfies xo = s(¢py) and y = t(¢p,) and
source and target given by the projections on third and first coordinates, respectively.

Therefore, we have from Example 2.2.12 that the Hopf algebroid of the representative
functions of a transitive groupoid is

Rx(9) = Ay R(G) ® A,

where A = Fun(G\% k) and R(G) is the Hopf algebra of the representative functions on the
isotropy group G = Gy, for some fixed xo € G0,

Example 2.2.14 Consider a set X and the groupoid G = X x X with

(X,y)(y,Z) = (X,Z) (X’y)_1 = (y,X).

Observe that this groupoid can be seen as a particular case from Example 2.2.12 with G being
a unitary group {e}. Since the Hopf algebra R({e}) is isomomorphic to k and, consequently,

Ri(G) = ARk A

with the same Hopf algebroid structure seen at the Example 2.2.5.



39

3 QUANTUM INVERSE SEMIGROUPS

We want the definition of quantum inverse semigroups to be a generalization of inverse
semigroups in the same sense that Hopf algebras can be thought as a generalization of groups.
With this in mind, we ask for a quantum inverse semigroup to have a comultiplication, a pseudo
antipode and some commutative idempotents related to the convolution product.

3.1 DEFINITION

Definition 3.1.1 (Quantum Inverse Semigroup) A quantum inverse semigroup (QISG) is a
triple (H, A, S) in which
(QISG1) H is a (not necessatrily unital) k-algebra.

(QISG2) A : H— H® H is multiplicative.
(QISG3) S : H — His ak-linear map, called pseudo antipode, satisfying
(i) S(hk) = S(k)S(h), for all h,k € H.
(i) Idy S x ldy = Idy and S x Idy « S = S in the convolution algebra Endi(H).

(QISG4) The subalgebras generated by the images of Idy « S and S = Idy mutually commute,
that is, for every h,k € H,

A quantum inverse semigroup is unital if H is a unital k-algebra and S(1y) = 14. A quantum
inverse semigroup is counital if H is ak-coalgebra and ey o S = ey.

Remark 3.1.2 /n an inverse semigroup, we have the uniqueness of the pseudo-inverse and,
equivalently, the commutativity of the idempotents. In the definition of quantum inverse semi-
groups, we don’t ask for any of these things, and these are not direct consequences of the
definition.
(i) The pseudo antipode is not always unique. In the case where the idempotents of the
convolution algebra Endy(H) commute, then the pseudo antipode is unique. In fact, being
S and S both pseudo antipodes of the quantum inverse semigroup H, we have that
ldy « S, Idy + S, S * Idy and S « Idy are idempotents in the convolution algebra End (H)
and then

§=§*/dH*§=§*/dH*S*/O’H*§=S*/dH*g*/dH*§=S*/dH*§
=Sxldy*xSxldy+«S=S8Sxldy+«Sxldy*S=Sxldy+S=38.

(ii) Let (H,A,e,S) be a coalgebra satisfying (QISG1), (QISG2), (QISG3) andeo S = c. If
the idempotents of the convolution algebra Homy(H @ H,H) commute, then the axiom
(QISG4) follows automatically. In fact, let e, e : H® H — H given by
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(iii)

(iv)

(v)

for every h,k € H. Then e is idempotent in the convolution algebra
Homyg(H ® H,H), because

(exe)(hw k) = hy)S (h) e (k1) ha)S (ha) < (k)
h(1)S (h(g)) e(k) =e(h® k)

for every h,k € H. Similarly, we obtain that € is also an idempotent. Also for every h,k € H,

exe(he k) =huS (hg) e (k) € (he) S (ko) ka)
= hi)S (h)) S (k) ke)

and

exe(h® k) =c(hy) S (k1) kS (h) € (k)
= S (kw)) k2yh)S (hee)) -

Since the idempotents commute, we have (QISG4).

In axiom (QISGB), it is imposed that the pseudo antipode is antimultiplicative, even though
in most examples of quantum inverse semigroups it is possible to show this property
directly from other intrinsic characteristics of those particular examples. On the other
hand, it is not required that the pseudo antipode is anticomultiplicative, that is, Ao S =
(S®S8) oA, Although this is true in most examples, there are cases where this property
is not valid.

In reference (LI, 1998), the author introduced a notion somewhat related to our quantum
inverse semigroup, called there as “weak Hopf algebras”. This notion of a weak Hopf
algebra does not correspond to the usual notion of weak Hopf algebra in the literature
(BOHM: NILL; SZLACHANYI, 1999), basically because they were bialgebras, while usual
weak Hopf algebras don'’t satisfy the unitality of the comultiplication nor the multiplicativity
of the counit. Despite the fact that the notion of pseudo antipode was introduced there,
we must highlight some essential differences between a quantum inverse semigroup and
the so called “weak Hopf algebras” (WHA for short). First, a quantum inverse semigroup
need not to be unital nor counital, while the WHA are bialgebras, then they are unital and
counital, therefore, even the algebra of an inverse semigroup could not be, in general, an
example of a WHA. In axiom (QISG3) we demanded the antimultiplicativity of the pseudo
antipode, while for WHA this condition was not postulated, but it is asumed in many points
in order to obtain relevant results. Finally, for WHA there is no similar to axiom (QISG4,).

We also acknowledge another similar construction in (AUKHADIEV, 2016) (although
it was not so far published elsewhere), also called quantum inverse semigroups. The
difference is that the notion of a quantum inverse semigroup given there is a C*-algebra
with a dense bialgebra with a pseudoantipode satisfying (QISG3). Here we do not demand
a quantum inverse semigroup to be unital or counital. Also, the author does not demand
any condition similar to our axiom (QISG4).
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3.2 EXAMPLES

Example 3.2.1 Let S be an inverse semigroup. The algebra

kS= {23563 | as S k}

seS

can be endowed with an structure of a counital quantum inverse semigroup with
A(6s) = 65 ® b, e(6s) =1, S(6s) = 6~
This is a fact because the product from kS inherits all the properties from the product in S and
£08(6g) = e(6s+) =1 =¢(6s)
forevery s € S. Also, S is anticomultiplicative:
(S ®8) 0A“P(8s) = 5(6s) @ S(6s) = b5+ @ b5+ =A 0 S(65)

forevery s € S.

When S is an inverse monoid, then kS is a unital and counital quantum inverse semi-
group with 1ys = 614. The axiom (QISG4) is automatically satisfied, because the algebras
generated by the images ld.s xS and S x lds both coincide with kE(S), which is a commutative
algebra.

Example 3.2.2 An affine inverse semigroup scheme is a functor S from the category of com-
mutative k-algebras to the category of inverse semigroups whose composition with the forgetful
functor U : InvSgrp — Set becomes an affine scheme, that is, a representable functor from the
category of algebras to the category of sets. Let S be an inverse semigroup scheme and H the
commutative algebra which represents it, that is,

S(f) = HomComAlg(Hai) .

The assumption that S(A) is an inverse semigroup and that for any algbra morphism ¢ : A — B
induces a semigroup morphism S(p) : S(A) — S(B) leads to the conclusion that the multiplica-
tions in each semigroup S(A), define a natural transformation, m: S x S = S. As the functor S
is representable, one can write the multiplication as

m : Homgomaig(H,__) x Homcomaig(H,__) = Homcomalg(H,_),
or yet, via the canonical natural isomorphism
Homcomaig(H,_) x Homcomag(H,_) = Homcomay(H ® H,_)
an associated natural transformation
m : Homeomaig(H ® H,__) = Homcomaig(H,_).
By Yoneda’s lemma, this natural transformation induces a morphism of algebras

A:H— H®H.
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Such that, for each algebra A and every pair of algebra morphisms x,y : H — A we have
X.y =ma(X,y) =(Xx® y)oA.

In the same way, the pseudoinverse operation can be viewed as a natural transformation
()* : S°? = S. Again, by Yoneda’s lemma, this natural transformation induces a morphism of
algebras (as the algebras are commutative, also an antimorphism of algebras) S : H — H.

Given a commutative algebra A, the identities ss*s = s and s*ss* = s* for each s €
Homcomaig(H,A) are equivalent to the expressions Idy + S+ ldy = Idy and S Idy S = S. Indeed,
for any h € H and for any algebramaps: H — A

s(h) = ss™s(h) = s(h(1))s*(hg))s(hg)) = s(h))s(S(hg))s(h)) = s(hq)S(hg)h))-

As this equality is valid for every algebra morphism s : H — A and for every commutative
algebra A, we have
h= h(1)8(h(2))h(3),Vh e H.

Finally, axiom (QISG4) is trivially verified because all algebras are commutative, then,
for every h,k € H the elements Idy « S(h) and S * Idy(k) do commute. Therefore, the algebra H,
representing the affine inverse semigroup scheme is a quantum inverse semigroup.

Example 3.2.3 Given an inverse semigroup S, let Hs be the polynomial algebra generated
by all the matrix coordinate functions of isomorphism classes of finite dimensional k-linear
representations 1 of S, that is

HS = ]k[TT,'J | m:S— Mn(k), 1< I,j < n],

in which 1 (s) = (; /(s)) . Define the comultiplication on the generators by

7T// Z"lk®77k/

and extend to an algebra morphism A : Hs — Hg ® Hg by the universal property of the
polynomial algebra. Considering the natural embedding of Hs ® Hs as a subalgebra of the
algebra of functions from S x S to k, the comultiplication can be written in the following way:

A(”i,/)( 7T// (st) = Z"T/k 7Tk/

Also, one can define the pseudoantipode on the generators as
S(mij)(s) =mij(s*), VseS§,

and extend it by the universal property of the polynomial algebra to an algebra morphism
S : H— H (which is also an anti-algebra morphism because of the commutativity).

It is easy to verify that (Hs, A, S) is a unital quantum inverse semigroup. The unit of the
polynomial algebra can be seen as the constant function 1y, : S — k = My(k) which sends
every element of the semigroup S into 1y, and the pseudoantipode S, as algebra morphism,
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naturally sends 1y to 14,. It is enough to prove Axiom (QISG3) for the generators, then taking
a generator;; with1 < i,j < n and any element s € S, we have

> mik(8)S(rmk )(8)mi(s)

k,I=1

= Z ; k(8) 1k, 1(S)1T1 j(S)

k,I=1
= ’IT,'J(SS*S)

/dH * S * /C/H('IT,',/')(S)

= TT/'j(S).

Therefore Idy + S * Idy = Idy. Similar reasoning for S x Idy x* S = S. Axiom (QISG4) is satisfied
because the algebra Hs is commutative.

Example 3.2.4 Every Hopf algebra (H,u,n,A,¢,S) is a unital and counital quantum inverse
semigroup. The axiom (QISG4) follows from the antipode axiom in the Hopf algebra, then the
images of Idy « S = S x Idy = n o € are contained in the commutative subalgebrak - 1.

Example 3.2.5 Every weak Hopf algebra is a quantum inverse semigroup. A weak Hopf algebra
is a sextuple (H,u,n,A,¢,S) such that (H,u,n) is a unital algebra and (H,A,e) is a coalgebra.
Moreover, the comultiplication A : H — H ® H is multiplicative and satisfies

A @ N1 @A) = (1 @A) AT) @ 1) = (A @ Id) 0 A(1),
which can be rewritten as
Ty @11ay @ 1)y =11y @112y @ 1) = 1(1) ® 1) @ 13

and the counit e : H — k satisfies e(hkl) = e(hkp)) e(k2)/) = e(hk(2)) e(k)/). Lastly, the antipode
S : H — H in a weak Hopf algebra satifies the following axioms:

haySlhe) = ei(h) = (1)),
S(hay)hee) es(h) =11y e(h (),
S(huy)he)S(hi) = S(h).

With these axioms, we have that H imediatly satisfies (QISG1) and (QISG2). H also satisfies
(QISG4): for every h,k € H,

h1)S(he)) S(k)kz)

5(1 (1)h)1 (2)1 (1/)€(k1 (2/))
5(1 (1)h)1 (1/)1 (2)€(k1 (2/))
S(ky)k) hi1yS(heg)). (6)
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Besides that, S is antimultiplicative, because

S(hk) = S (huykay) hiyk2)S (h)ka)
haykayl@) S (hake)
€ 1

=1 (heyka
(hayk@)

Il I ] I Il Il ] Il
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=

=

™
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=

I
©
=
0
=

for every h,k € H, where (x) comes from the expression (6). Finally,
hi1)S(h)) i) = e(1¢)hiy) 12 i) = e(h)) hig) = h

for any h € H and S(h))hi2)S(hg)) = S(h) for any h € H by definition. Therefore H satisfies
(QISG3) and is a quantum inverse semigroup.
Moreover, H is a unital and counital quantum inverse semigroup, because

S(1) = S(11)) 12 S(1(3))

S(1
(
(
=1me(1@)
- 1

)e(Tanlz) 12
)e(1(2)) 1(3)

)1
’

—_

(
1

Il
nw O

1)
1)
e
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and
(SN S(h) =& (S(h(1))h(2)8(h(3)))
= ¢ (S(ha)h) e (hz)S(ha))
=< (1 e(hmyle)) € (e(anhe) 1@))
=e(12y) e(1anhg) e(hiylz) e(1(1y)
=¢(h)
for all h € H.

Example 3.2.6 A nontrivial example of a quantum inverse semigroup was inspired in the work
of Theodor Banica and Adam Skalski (BANICA; SKALSKI, 2015) on Quantum Permutation
Groups. Consider the polynomial k-algebra generated by the set {u; | 1 < i,j, < n} and then
consider the quotient

H=k[u;1 <ij<n]/Z,

in which T is the ideal generated by elements of the type

1. UjjUik —6,-,ku,-j ,

2. U,]'Ukj—(()‘,',ku,'j .
Defining the function

A {Uij}1§i,j§n — He H
Ujj — 2221 Uik & Ugj ,

one can lift it to a morphism of algebras A : k[uz|1 < i,j < n] - H ® H doing the same on
generators. We need to check that A(Z) C Z @ k[uy|1 < i,j < n]+k[u;|1 <ij < nl®Z. Indeed,

n n
A(U,'jU,'k —6,-,ku,-,-) = Z UjpUig & UpjUgk — ZSj,ku,-p ® Upj
p.g=1 p=1

n n
Z UipUiq © UpjUqk — Z 6p,qUip © UpjUgk
p.g=1 p.g=1

n n
+ Z bp,qUip @ Upjlgk — Z‘Sj,kuip @ Upj

p.q=1 p=1
n n
= > (uplig=8p.qUip) ® Upjligk + Y Uip © (UpjUpk =8 kUyy),
p.q=1 p=1

analogous forZ(u,-jukj —6; xUj). Therefore, there is a well defined algebra mapA : H — H® H
defined on generators as Aujj = S hoq Uik ® Ugg.
Also, one can define a function
g . {Uij}1§i,j§n —s H=H°%®
Uijj = Uj ,
also, lifting to an algebra morphism S : k[uj|1 < i,j < n] — H. It is easy to see that S(Z) C Z,
then we have a well defined algebramap S : H — H = HP.
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Let us verify that (H,A, S) defined as above is indeed a quantum inverse semigroup. First
note that

n n
/dH * S U,] Z U,kS Uk/ Z UikUjk = 6,',/' Z Uik
k=1 k=1
and

S*/d/-/ U,/ ZS Uik uk,_Zuk,uk/_ ,/ZUk/

Then, we have

/dH * S x /d/./(u,'”'1 C U,'NjN) = Z Z Uik - U,‘,\,/(N-S(U;ﬁ/1 c UkN/N)U/”'1 - Uiy
Ky, =1 Ky, IN 1
n

= Z . Z Ui kg -+ Uiyky Uinky - - - Ul kg U/1/'1 R U/NfN
kih=1 kn,In=1

= Z B Z Uik - qukN6f1,/1 .. .(S,‘,\,!/NU/U'1 < Uiy
kih=1 kn,In=1

n
= Z ... Z U,'1k1 - UiNkNUi1j1 ... uiNjN

ki=1 kN 1
n
= e Z jiky - - - Ojkn Uicjy - - - Uingjy
k=1  ky=1
= Uiy -+ Uinjy-

leading to ldy « S* Idy = Idy and, analogously, S« Idy « S = S. The elements of the form |« S(h),
naturally commute wih elements of the form S x Idy (k) due to the commutativity of H, satisfying
(QISG4). Therefore (H,A, S) is a quantum inverse semigroup.

Moreover, this quantum inverse semigroup is unital and counital: first, it is unital because
H is a unital algebra and, by construction, S(14) = 14. Also, it is counital because one can define
a function € : {ugt1<ij<n — k given by €(uy) = 6;;, this can be lifted to an algebra morphism
€t k[u;[1 < i,j < n] — k doing the same. It is straightforward to verify that €(Z) = 0, therefore,
there exists an algebra morphism ¢ : H — H, making, in particular, H to be a commutative
bialgebra. It is also easy to check that So € = €. Note that H is an example of a quantum inverse
semigroup which is not a Hopf algebra, neither a weak Hopf algebra, nor an inverse semigroup
algebra.

3.2.1 Partial representations

Definition 3.2.7 Let H be a Hopfk-algebra, and let B be a unital k-algebra. A partial represen-
tation of H in B is a linear map m : H — B such that

(PR1) m(1p) =18,

m(hymr(k)m(S(ke)) = m(hka))m(S(K)), for every hk € H.
(hy)m(S(he)(k) = m(ha))m(S(h)k), for every hk € H.
(M) (S(k))m(key) = T(hS(K1))Tr(Key), for every hk € H.

3

PR4

3

(PR2)
(PR3)
(PR4)



Chapter 3. Quantum inverse semigroups 47

(PRS) ’lT(S(h(1)))‘lT(h(2))1T(k) = 1T(S(h(1)))1T(h(2)k), for every hk € H.

Definition 3.2.8 (ALVES; BATISTA; VERCRUYSSE, 2015) Let H be a Hopf algebra and let
T(H) be the tensor algebra of the vector space H. The partial Hopf algebra Hpa is the quotient
of T(H) by the ideal | generated by elements of the form

(1) th=17H

(2) h@ kg ® S( 2)) — hky @ S(k)), for all h,k € H;
(3) h S(hg)) @ k= hy @ S(h)k, for all hk € H;
4) h® S(k(1 ) ® kpy — hS(kp)) @ K, for all h,k € H;
(5)

5) S(hy) ® hpy @ k= S(h1y) ® hpk, for all h,k € H.

Denoting the class of h € H in Hpa by [h], it is easy to see that the map
[1: H — Hpar
h — [h]
is a partial representation of the Hopf algebra H on Hp,,.

The partial Hopf algebra Hpar has the following universal property: for every partial
representation m : H — B, there is a unique morphism of algebras 7 : Hpasr — B such that
m=T1o[]. In (ALVES; BATISTA; VERCRUYSSE, 2015), it was shown that Hp,, has the structure
of a Hopf algebroid over the base algebra

Apar(H) = (en = [h1)][S(h))] | h € H).

For H being a cocommutative Hopf algebra, things become much simpler. For example, in order
to verify whether a linear map m : H — B is a partial representation, one needs only to check
axioms (PR1) (PR2) and (PR5). In this case, the following result is valid for the universal algebra
Hpar-

Theorem 3.2.9 Let H be a cocommutative Hopf algebra over a field k. Then the partial Hopf
algebra Hp,r has the structure of a unital quantum inverse semigroup.

Proof. First, one needs to define a comultiplication A : Hpar — Hpar @ Hpar Which is multiplicative.
For this, define the linear map

6 . H — Hpar ® Hpar
h = [hy]®[hg)]
One can prove that the map 6 is a partial representation of H. For example, let us verify axiom
(PR2):

6(Mb(k1))6(S(k)) = [ha)llkn)[S(ka)] @ [h)llke)l[S(k3)]

hay k) l[S(kay))] @ [h ki) l[S(k3))]

hayllk)I[S(K2)] @ [hi2) K(3)][S(K(4))]
knl[S(ki2))] @ [h) k@) l[S(kay)]

= [hayk)l[S(k4))] @ [hg ki) l[S(kg))]

= 6(hk(1))0(S(K2))-

[
[
[
[



Chapter 3. Quantum inverse semigroups 48

Therefore, there exists a unique algebra map A : Hpar — Hpar ® Hpar given by
A=+ [h") = [hy] - - [yl @ [hig)] - - - [hiy)-
In order to define the pseudo antipode, consider the linear map
S: H - HE
h — [S(h)]

For every h,k € H, we have

S(h) -op S(k(1)) -op S(S(ki2)) = [S(M)] -0 [S(k(1)] ap [S(S(ki2)))]
= [S(S(K)n)IIS(K))IIS(M)]
= [S(S(k)m)IIS(k)e)S(h)]
= [S(S(kg))I[S(hk))]

= [S(hkm)] -op [S(S(K2)))]

= S(hk) op S(S(k(2))),

and the other axioms of partial representations are easily verified in the same way. Therefore
S'is a partial representation of H in Hp%,, inducing a morphism of algebras S : Hpar — Hphy, OF
equivalently, an antimorphism of algebras S : Hpar — Hpar given by

S(h'T---[h") = [S(h"]---[S(h")].

In order to verify the identities ldy,,, * S * ldy,,, = Idy,, and S * ldy,,, * S = S, first note that, for
any hk e H

[hl ek [Allk1)I[S(k2))] = [hk1)][S(K2))]
= [haykn)l[S(h ke)llh@ K@) l[S(Ka))]

= [ha)ykn)l[S(h ki2)1[hE) K@) S(Ka))]

= [~y ka)l[S(he) k)1l

= enyklhe)l. (7)
This implies, in particular, that the elements ¢, do commute when H is cocommutative (ALVES;
BATISTA; VERCRUYSSE, 2015). Indeed

enck = [h)l[S(hez))] ek
= [ lesigk[S(hz)]
= Ehyy Siha) kN2 1[S(A3))]
= Ehpyy S(he) kN3 [S(Ma))]
= ex[hnl[S(he)]
= £xEp.

Let us prove the identity Idy,,, * S * Idy,,.([h']---[A"]) = [A"]- - [A"] by induction on n > 1. For
n=1, we have

IdH,., * S * 1dy,, ([h]) = [h)][S(he)][hE)] = [hqyS(he)llhe)] = (AL
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Suppose valid for n, then
[0, * S # Iehy ([0'] -+ [W7*1]) = [hfy)] - [AES TS (]~ [S(hip) M) - (']
= [l [l [S(iy)] - [S(hig) )] [ LA ]

L (R (N S N B C S A BTN e
= Ehfyyoh b [h(12)] o [h(nZ)][hFZJr)1]
=[h']-- [W"le s [h']
=[h']--- [N"IAE LS (A DM ']
_ [h1] o [hn+1]
where (x) comes from the expression (7). For the identity Sx ldy,,, xS = S, consider [A'1]---[h" €
Hpar and use the fact that S is involutive, then
S x ldy,, * S([']---[A"])
= [S(h)1- - [S(h{y)IAy] - - - [N IS ()] - - [S(hi)]
= [S(h3)1- - [S(h)IIS(S(hi)] - - - [S(S(hp DILS(h{1 - - [S(h{y)]
= [S(h")n)]- - [S(NH)IS(S(h)@)] - - - [S(S(NM2NIIS(h") )] - - - [S(h")3)]
=[S(h")]---[S(h")]
= S([h']- - [A").
Finally, in order to verify Axiom (QISG4), note that

Iy % SN'T---[H") = [A] - - - [AG) IS (A1 - - - [S(hiy))]

= [h{y)]- - (A% lemlS(hiz 1 - - [S(hiz))]
= ey npimlh)] - T IS(hED] -+ - [S(hiy)]

1)
= ey, mpmlhig)] - [ T [S(MGEN - [S(hgg)]

= ey, gt et (] IEPIS(AG)] - [S(hiy)]

2 (2

=Ep LI pn€Rl L pn2pn-t cEpt
) (n)

while, on the other hand,

S # Iy, (W] (M) = [S(HG)]-- - [S(hi)IA)] - - - [hy)]

= [S(h}y)]-- - [S(hi)IS(S(h1))] - - - [S(S(hfiy))]

= [S(M) )]+ [S()NHIIS(S(h)2)]- - - [S(S(h")2))]
= ES(h) 4y S(PR) 1) S(h")ES(h") ) S(MR) @) * " " ES(h™) ()

= ES(hn))--S(H2)S(MES(h_ )-SR )

-Es(h(nw).
As both expressions can be written in terms of combinations of products of elements ¢y, for
Xx € H, then they commute among themselves. Therefore, for a cocommutative Hopf algebra H,

the universal Hopf algebra Hpz, is @ quantum inverse semigroup. a
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3.2.2 Hopf Categories

Hopf categories were introduced in (BATISTA; CAENEPEEL; VERCRUYSSE, 2016) in
the context of enriched categories over a strict braided monoidal category V. In this section we
will consider the case of V = g M, the symmetric monoidal category of left K-modules over a
commutative ring K.

Let Coalg(K) be the category of K-coalgebras. This is a monoidal category with respect
to the tensor product of coalgebras, with unit given by the trivial coalgebra K. Hence we may
consider enriched categories over Coalg(K), or Coalg(K)-categories.

Unraveling the definition, a (small) Coalg(KK)-category H over the set X consists of a
family {Hyx y}x,yex of K-coalgebras, with structure morphisms

plus K-linear mappings ux,y.z : Hxy ® Hy > — Hxz and ny : K — Hy x such that

Hx,zt© (IJx,y,z & Hz,t); (9)
Hy,y = px,y,y © (Hx,y @ ny). (10)

Hx,y,t© (Hx,y ®lJy,z,t)
Hx,x,y © (Nx ® Hxy)

Moreover, the coalgebra structure and the multiplications iy, and unit mappings ny are required
to be compatible in the sense of the following equalities: first, A is compatible with multiplications
and unit mappings by

AxzOoUxyz = (IJx,y,z ®Hx,y,z) o (Hx,y & THyy,Hy, @ Hy,z) o (Ax,y ®Ay,z)a (11)

Ax,xoqx =Nx @ Nx, (12)

where T4, , 1, , IS the twist map
THx,y;Hy,z Hx,y ® Hy’z — Hy!Z ® nyy, h® k —> k ® h,
the equalities respective to the counit mappings are

Exy €y z = ExzOMHxy.z (13)
EX,XO’)X = K. (14)

So let H be a Coalg(K)-category and let
alg(H) = @x,yeXHx,y-

Since alg(H) is a direct sum of coalgebras it has a canonical coalgebra structure as follows,
where “ay,,” indicates an element of the component H, :
+ A :alg(H) — alg(H) ® alg(H) defined by A(ax,y) = Ax,y(ax,y);

* ¢ :alg(H) — K defined by e(ax,y) = ex,y(ax,y)-
We also can define a product on alg(H) by
+ u:alg(H) ® alg(H) — alg(H),
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}J(ax,y:by,z) = Hx,y,z(ax,y:by,z)
p(axy,bwz) = 0 whenever y # w.

The triple alg(H) = (alg(H),u,A) satisfies conditions (QISG1) and (QISG2). In fact, it follows
from equalitities (9)-(14) that A and ¢ are multiplicative, and also that alg(H) is an algebra, which
is unital if and only if X is finite. Moreover, in any case alg(H) is at least an idempotent ring since
it has a system of local units: the idempotents nx(1) commute amongst themselves and the set
of finite sums ny, (1) + - - - + nx,(1), where n > 1 and the elements x1,xp, - - - , X, are distinct, is a
system of local units for alg(H).

A Hopf K-category is a Coalg(K)-category H with an antipode which, in this context, is
a family of K-linear maps Sy, : Hx,y — Hy x such that

PX,y,XO(HX,y®SX,y)oAX,y = I]XOEX,y . HX’y — HX,X; (15)
Hyxy©(Sxy @ Hxy)oAxy = nyoexy: Hxy — Hyy, (16)

for all x,y € X. This family induces a K-linear map S : alg(H) — alg(H) which satisfies, in
Sweedler notation, the equalities

(hxy)(1yS((hxy)2) = exylhxy)ny(1), (17)
S((hx,y)(1))(hx,y)(2) = Ex,y(hx,y)r)x(1)- (18)

Let S :alg(H) — alg(H) be the K-linear map induced by the family (Sx,y)xycx- Then
(ld * S * /d)(hx,y) = (hxry)(1)S((hx,y)(Z))(hx’y)(S)
= xy((Mxy) )y (N(Axy)i2) = ey
and
(S * Id * S)(hx,y) = S((hx,y)(1))(hx,y)(2)8((hx,y)(3))
= 6X:}’((hx!y)ﬁ))’7X(1)(hx,y)(z) = hxy

In (BATISTA; CAENEPEEL; VERCRUYSSE, 2016, Lemma 3.6) it is proved that

Sxzolxyz = Hzyx©(Syz® Sxy)oTH, H,, (19)
Ay,x o Sx,y THy x,Hy x © (Sx,y & Sx,y) oAx,y- (20)

Hence for hy .k, » € alg(H) we have
S(hx,yky,z) = S(ky,z)s(hx,y),

S(hx,y) 1) @ S(hx,y) ) = S((hx,y)2) @ S((hx.y)1))s

which implies that
S(hk) = S(k)S(h),  S(h)) @ S(h) = S(hg)) © S(h))

for all h,k € alg(H).
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Finally,

and it follows that alg(H) is a counital quantum inverse semigroup.

In (BATISTA; CAENEPEEL; VERCRUYSSE, 2016), Prop 7.1) it is proved that, for the
particular case of a Hopf category H with a finite set of objects, the algebra alg(H) is a weak Hopf
algebra, which is also a quantum inverse semigroup. One can easily verify that the structure
of quantum inverse semigroup of alg(H) obtained here coincides, in the case of finite Hopf
categories, with the structure of quantum inverse semigroup for weak Hopf algebras described
in Example 3.2.5.
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4 GENERALIZED BISECTIONS ON HOPF ALGEBROIDS

In chapter 2, we redefined local bisections for any groupoid (G,s,t) as a pair (u,X) with
u:Xc G - Gsatisfying sou = Idy and tou : X — to u(X) being a bijection. Then for
any groupoid G, the set of all local bisections of G is an inverse semigroup. In this chapter, we
dualize this definition for commutative Hopf algebroids over a commutative base algebra and
create the local biretractions. Lastly, we extend this definition for not necessarily commutative
Hopf algebroids over commutative algebras under a special condition.

4.1 BIRETRACTIONS

Here we introduce the notion of a local biretraction of a Hopf algebroid, as a dual
version of local bissections in groupoids. First we focus on commutative Hopf algebroids over a
commutative base algebra and then we find a morphism between the bisections of a groupoid
and the biretractions of the Hopf algebroid of its representative functions.

Definition 4.1.1 LetH be a commutative Hopf algebroid over a commutative algebra A. Alocal
biretraction in H is a linear and multiplicative map a : H — A such that
(BRT1) aos(a) =aa(ly) forevery a € A.

(BRT2) There exists e* € A such thata o t(e*) = a(1y) and
aotjpea : A€ — Aa(1y)

is a bijection.
A local biretraction a is global if a(13) = 14. Denote the set of local biretractions of H by
Brt(H, A) and the set of global biretractions of H by GIBrt(H, A).

Remark 4.1.2 Observe that
(1) For a local biretraction o : H — A, a(1y) is an idempotent in A, since o is multiplicative.
Moreover, for every h € H and a € A,

a(h) = a(h) a(1y) € Aa(1y) and aa(ly) = ao s(a) € a(H).

Hence the image a(H) coincides with the ideal Aa(14) < A. Also, note that a(14) is the
unity of the ideal Aa(1%).

(2) The element e is idempotent:
aot(e”) =a(ly) =a(ly)a(ly) =ao t(e*)ao t(e”) = ao t(e* e%).

Since a o t|pea s bijective and e* e* € A e“, we have that

e“e” = e*,
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(3) Suppose that there exist €* and f* in A such that a o t(e®) = a(1y) = a o t(f*) and the
maps
aotlpen : A — Aa(1y)

and
ao tlap : AFY — Aa(1y)

are both bijections. Then,
aot(e*f*)=aot(e*)aot(f) =a(ly).
Since the element e“f* is in both ideals A e* and Af®, we obtain
e* = evf* = f.
Therefore, the element * from (BRT2) is unique.

(4) For any local biretractiona : H — A and a € A,

aotl@ =aotl@a(ly)=aot(@aot(e®)=aotae).

(5) For a local biretraction o : H — A, the map a o t|pe : A€® — Aa(1y) is an element of
the inverse semigroup Z(A) of the isomorphisms between ideals of A.

Remark 4.1.3 For a commutative Hopf algebroid over an integral domain A, we only have
global biretractions, since the only idempotent element in A is 1 4.

As we have seen before, the set of local bisections of a groupoid G is an inverse semi-
group. Let us explore deeply the algebraic structure of the set of biretractions of a commutative
Hopf algebroid.

Theorem 4.1.4 Let (H,s,t,4,¢,S) be a commutative Hopf algebroid over a commutative alge-
bra A. Then the set Brt(H, A) of local biretractions of H is a reqular monoid with the convolution
product

(a* B)(h) = Bla(hyy) > hg) = B o toalhyy) B(he)
for every o, 3 € Brt(H, A) and any h € H.

Proof. For every a8 € Brt(H, A), o = (3 is a local biretraction, because a * 8 is multiplicative and
foreach a € A,

(a0x B) o s(a) =B o toa(ly)B(s(a))

=afotoa(1x)B(1x)
= a(ax*B)(1x),
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hence a x 3 satisfies (BRT1). Also, since t represents the left action, we can use the fact that
A(t(a)) = t(a) ®a 14 for every a € A, which implies that (o « ) o t=Botoaotand

@epot (oot (Satt)) =potoacto@ot (Falts)
=Bot(a(lx)é)
=Botoa(ly)B(1)
= (o B) (1)

Here, we are simplifying the notation by using (a o t)™' = ((ao t)|ae)”" . In order to prove that
a * 3 satisfies (BRT2), we will prove that the map

(0% B) © tha oty (2 a1y - Al0 D) (eﬂ a(m)) 5 Ao+ B)(13)

is a bijection, leading to o * B being a biretraction with e = (a o )™ (ef a(14)) . Indeed,
e (ax*pB)o Hatwo -t (eFa(tn) * Aldo )" (Pa(1y)) — Ala * B)(1y) is surjective: for
eachac A,

(@Byet((@ot)™ (ot @t alin) (o (faltn)))
=potoacto(asti™ (8ot (@) e ally)
=Bot((Bon(@B(1) & altn))
—Boto(Bot)” (a,Bot<or(1H) e’3> ,8(1?-[))
=apot(a(ty) )
= aP o toa(ty) B(1x)

= a(axB)(1%).

o (axf)o t|A(aot)_1(eﬁ a(130) is injective: suppose that, for some a € A,

(a*mot( a(aot)y (¥a1ﬂ)) 0.
Since ao t|aex and B o t|4 4 are injective,
0=,Botoaot(a(aot)—1 (eﬁa(m))):ﬁot(aot(a)eﬁ)
= O=aot(@é = aot( <eﬁa ) “)
—~ 0=a(aot)” (eﬁa(m)) e =aaot)! (eﬂa(m)).

This convolution product of biretractions of # is associative. Indeed, consider a, 3,y €
Brt(H, A), then for any h € H,

((axB)*y)(h) = yoto(axpB)(hw)y(hg)
= yolt(Botoalhy)B(hp)) y(hg)
M)y e to Blhz)y(hg))
= (Bxy)otoa(hy) (B *y)(hg)
= (ax(B*y))(h)

= yotofotoa(h
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The counit e : H — Alis a global biretraction, because it is linear, multiplicative, (1) =
1pandeot =08 =Ida. The counit ¢ is the unit for the convolution product. Indeed, for any
local biretraction a and any h € H, we have

exa(h) = aotoe(hy))alhyz)
= o (He(hay) h)

and

axe(h) = eotoa(hy)e(hp)

[
2
=

Therefore, the set Brt(H, A) is a monoid relative to the above defined convolution product.
Now, we have to define a pseudo-inverse for any biretraction a € Brt(H, A). Define

-1

a*=(aot) " caoS,

where we use (oo t)™' = (a o t|ge)". Since a,t and S are multiplicative, we have that o* is
multiplicative and observe that

oa*(1y) =(@ot) Toao S(1y) = (ao ) ca(ly) = °.

So, a* is a biretraction, because

1

a*os(@=(ot) ToaoSos(@=(aot) caot(a)=ae’=aa*"(1y)

and
a*ot(@ =(aot) caoSot@=(aot) caos(a)=(aot) N (aa(ly))

for every a € A, which implies that a* o t| 4 4(1,,) : A a(13) — A € is a bijection with e* =a(ly).
Finally, we need to prove that every biretraction a : H — A satisfies a * o* * a = o and
a* x o« o = a*. Observe that for any h € H,

(axa®)(h) o* o toa(hyy)a*(hg)

= e(h)e” (21)
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and
(o xa)(h) = aotoa’(hy)alhy)
= aoto(aoty oao S(hyy)alhg)
= ao S(hy)) a(hg)
= a(S(hw)) hz)
= aosSoe(h)
= e(h)ya(1y) (22)
Then,
axa’xa(h) = aoto(axa®)(hy))alhy)
= ao t(e(hy)) %) alh)
= a(toe(hy)) hp)
= a(h) (23)
and
a*xaxa’(h) = a"oto(a”*a)(hy)a*(hg)
= (aot)yToaoSot (e(hyy)a(lx)) (aot) ' oao S(hy)
= (o) oa(soe(hyy) Shy))
= (aot) T oaoS(hgtoe(hy))
= o*(h). (24)
for every h € H. Therefore, Brt(H, A) is a regular monoid. O

Remark 4.1.5 We can not prove, in general, that Brt(H, A) is an inverse semigroup. Consider
an idempotent E € Brt(#, A) and denote its associated idempotent in A by eF then, for any

acA,
E o t(a) (E x E)(t(a)) = Eoto E(t(a)) E(1x)

= EotoEola).

Then, Eot: A— Ais alinear and multiplicative map in A which is idempotent with respect to
the composition. Moreover, for every a € A,
Eot(Eot(a)—aEot(1a)=EotoEot(a)—Eot(@EotoEot(1a)
=Eot(a)—Eota)
=0,
which implies that E o t(a) eF = aE(14,) eF. Thus for every idempotent E,F < Brt(#,A), we have
that
(E « F)(h) €F ef = F ot o E(hpy)) F(h)) F F
= E(hyy) F(13) €F F(h) €5
= E(hyy)) F(hg) eF eF
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(F  E)(h) eF ef = E o to F(hpy)) E(h) e eF
= F(h)) E(13) €5 F(hp) "
= F(h(1)) E(h(z)) eE eF.

for every h € H. Therefore, there is no a priori reason to suppose that the idempotents of
Brt(H,A) should commute in general.

Remark 4.1.6 Leta,B € Brt(H, A). Then,

-1

((axB)otlaea)™ = (aotlpems)” o (Bo t|Ae‘3)_1 LA @sp)(1y) - Alas B)(12) — Ae™F,

or simplifying the notation as before,
((a*pB)o (@ot)y o (Bot)™.
Indeed, we have for every a € A,

(ot oBot)y o(axp)ot (aea*ﬂ)
= (ot oBoty T opotoant (alaoty (faln)))
—(aoty o (Bot)y oﬁot(aot<a(aot)1(eﬁa(1ﬂ))> &)
-(aot)-1<aot(a ( a(1n))) )
ofae (4e0)
aot(aaot ( >e°‘)
=a(ao )(eﬁa(1H)>

= ae™P

and

((axB)otyo(aoty™ o (Bot)™ (alaxp)(12))
=Botoaoto(aoty o(Bot)y (@Botoa(ly)B(1))
_Botoaoto(aot) o (Bo (aﬁ(M)ﬁof(a(m)e"))
=ﬁotoaoto(aot)_1 (B @p1w) e a(1n))
=Bot((Bot (@B a(1) e
=Boto(Bot)” (aﬁot(a(m) eﬁ) ﬂ(m)
=apot(a(ty) )

= a(a*B)(1%).
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Remark 4.1.7 Observe that the pseudoinverse o* of a biretraction o € Brt(H, A) satisfies
(a*)* = a. Indeed, for any h € H,

(@) (h) = (@ o )" oa” o S(h)
=aoto(aot) oao S(S(h)
= ao S?(h)

where (x) comes from Remark 2.2.4. Also, for any a,B € Brt(H, A), we have that (a x B)* =
B* « o*. Indeed, for every h € H,

(axB)*(h) = ((axB) o t) o (axB) o S(h)

(@oty M o(Bot)" (BotoaoS(hg)Bo S(hyy))
=(@ot) " oao S(hg) (ot o (Bot)" oo S(hy)
= o*(h) (@* o t) o (Bot)™ o B o S(hyy)

= o o to B*(hyy)) a*(h®)

= (B* « a*)(h).

Consider now the free vector space generated by the biretractions of # and extend
linearly the convolution product to this space. Then, we have an algebra structure on the space
kBrt(H, A), henceforth denoted by B(H).

Theorem 4.1.8 Let H be a commutative Hopf algebroid over a commutative algebra A. Then
the algebra B(H), generated by the set of all biretractions of H with the convolution product
is a unital quantum inverse semigroup with a comultiplication A : B(H) — B(H) ® B(H) and a
pseudo antipode S : B(H) — B(H) defined on the basis elements of Brt(H, A) as

Alo)=a®@a and S@)=a*=(ot) " cao8
and linearly extended to B(H).

Proof. As we have already proven in the last theorem, Brt(#, A) is a regular monoid, hence the
algebra B(#) is a unital algebra. For proving that the comultiplication is multiplicative with respect
to the convolution product, it is enough to check on the biretractions. Being o, 8 € Brt(H, A),

Alaxf) = (axf@axp)=(axa)(Bp)=A@)Ap).

Hence B(#) satisfies (QISG1) and (QISG2).
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Again, to prove that S is antimultiplicative, it is enough to check on the biretractions.
Then for h € # and a, 8 € Brt(H, A), we have

((a*B) o )™ o (axB) o S(h)

(o) o)™ (ﬁo toao S(hg) B o S(hyy))

(@oty ooty (Botoas Shg)BoSthy)Bot(e))
= (aotyToBot)y oﬁot(aoS(h<2))(ﬁof)_1Oﬁos(hm)eﬂ)
= (aot)” (aoS eﬁ(ﬁ _Oﬁos(hu)))

= (aoty T oao S(hg)(aot)y ooty (BoShyy)a(lx))

= o (hg)(@ot)™ (ﬁ*(hm)a(m)) ,

S(axp)(h)

—
*
=

*
%
X

where we used in (x) the property (P6) of Hopf algebroids, and in (xx) the result (o x8) o t)™! =
(@oty™ o (Bot)™" from Remark 4.1.6. On the other hand,

(S(B) = S(a)) (h) (B* = a™)(h)
= a" otof (hy))a*(hp)
= (aot) T oaoSotof(hy)a*(he)
(@oty oaosoB(h Of*(h(z))
= (aot)” (B*(h) (17-{)) a*(h).
Consequently, S(a = ) = S(B) = S(a) and S is antimultiplicative. Hence # satisfies item
(i) of (QISG3) and the equations (23) and (24) imply the item (ii).
Finally, for checking axiom (QISG4), we use the equations (21) and (22). Then for
a,p € Brt(H,A)and h € H,

oy * S(ag) * S(By) * By(h) = (axa®) (B *p)(h

and

S(B)) * P2y xagy x Slag)(h) = B*«p

)
= (axa”)o t(e(hqy) B(1x)) (axa*)(hg)
= cot(e(hqy) B(1n)) € (hg)
= ¢e(h) " B(19).



Chapter 4. Generalized bisections on Hopf algebroids 61

Therefore, B(H) is a quantum inverse semigroup. More than that, the algebra B(#) is a unital
quantum inverse semigroup. Indeed, for h € H,

SEh) = (cot)y"ocoS(h)
= eo0S(h)
= 0 S(telhy)) he)
= ¢ (S(hg) s(e(hm)))
= ¢ (hn)S(hg))

Example 4.1.9 Let H be a commutative Hopf algebra, considered as a Hopf algebroid over the
fieldk withs=1t:k — H, k — k - 1y4. Since the only idempotent ink is 1, then all biretractions
are global and being o : H — k a k—linear and multiplicative map,

aos(k)=alk-1y) = ka(1y) = k

for every k € k. Therefore, the set of biretractions coincides with the group of algebra morphisms
between H and 'k, that is, the group G(H®) of group-like elements of the finite dual Hopf algebra
He.

Example 4.1.10 Let A be a commutative Hopf algebra and consider the Hopf algebroid H =
A® A, from Example 2.2.5. Let M(A) be the set of multiplicative functions ¢ : A — A and

M(A) x° E(A) = {(¢, €) € M(A) x E(A) | ¢|ae : Ae — Ap(e) is a bijection}.
Consider the equivalence relation
(p, ) ~ (p,f) < e=fandp|ae=y|ae-

Representing the class of an element (¢, €) € M(A) x? E(A) by [¢,€], then the biretrac-
tions of H are classified by the set

M(A) x E(A) = {[go,e] - (p,€) € M(A) xP E(A)} ,
which is a regular monoid with the multiplication
[o.€][p.f] = [0 o, g~ (ep(f)].

Indeed, the multiplication is well defined, because if [¢,€] = [¢',€] and [y, f] = [¢/,f] then

e=¢€,f=F,0lae=¢|ae: Plar=y|ar and

@' (e (f)) = ' (ep(f)) = w7 (ey(f)),
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which implies that

for every a € A. Hence [p,elly.f] = [¢',€][y/,F].
Also, the function

© 0 Pl ag1(epir) - AP~ (ep(f) — Ap(ey(f))

is bijective, because
. QO o ()UlAL[J_1 (etp(f)) |S |nJeCt|Ve

0 = pop(ap™ (ep(f)) = wlp(@w(f) e)
= 0=y(ap~ (ep(f) e = p(ay™ (ep() = w(ay™ (ep(f) ))
= 0=ay ™ (ep() f = ay™ (ep(f).

« oo p(Ap™ (ep(f)) = Aglep(f) : given ap(ep(n)) € Aglep(f), we have

ap(ep(h) = (o' (ap(e) p(f)
= popoy™ (¢ @p(e) y(l)
= oy (9@ @p@N) p (M) € v o p(AYT (ep(N)).

Now given the element [p,e] € M(A) x E(A), we have that

[p,€]lldla, 1 4] = [i¢ o Idia, (Ida)™" (€ Ida(14))] = [0 €]
[Ida,1all.6] = [lda o ¢, ¢ (14 0(€))] = [0, €],
that is, [/da,14] is the unity element of M(A) x E(A). On the other hand, denotating by ¢! the

multiplicative map from A to A that takes every a € Ato ¢~ (ap(e)), then ¢ a,e) = (¢lae)™ :
Ap(e) — Ae is a bijection and

[p.€lle™ o(e)lle.€] = [Ida, p(e & (2(€)))]l,€]

= [lda,o(€)]lp,€]
= [p.07 (v(e)p(e))]
=[p,€]

[ e(e)llp.elle™ (6] = [da,e™ (p(e)p(e)lly ™ p(e)]
= [lda,ell¢™" ()]
=l plev  (p(e))]
= [ e(e)].
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Therefore, every element [, €] has a pseudoinverse and M(A) x E(A) is a regular monoid.
Thus given the element [p,e] € M(A) x E(A), we can define the multiplicative map

Ofy,e] T ARA — A
ab — o(ae)b,
which is clearly a biretraction with el = g, because for every a € A,

Afp,e] © S(8) = Ay (1A ® &) = ap(e) = aaq, e(1aza),
Ofp,e] © H(€) = appe(€ @ 14) = @(€) = Oy (1 agA)

and ap, ¢ © tlae = ¢lae is a bijection. The convolution product between two local biretractions
Ofp,els Ap,f € Brt(A® A,A) is given by

Ap,e] * A[p,7(@R b) App,f 0 toap el@®14) oy a(1a® b)
= ap,nle(@e) @ 14)p(f) b

= P(p(ae)f)p(f) b

= Y(p(ae)f)b

= poplay(fe(e)b

= Opop,e (fip(e))(@© D)

Ay, f][p.e)(@ © b)

for every a,b € A. Then there is an isomorphism of semigroups
a: (MA) x E(A)? — Brt(Ax AA)
[,€] = Op,e] ’

whose inverse is
A Bri(A® A A — (M(A) x E(A))%P

B = [Bot €]
Indeed, for every [p,e] € M(A) x E(A),

Aoa(p,e]) = [a,e o t, 4] = [, €]
and for every § € Brt(A® A,A) and a,b € A,
aoA(B)(a® b) = = Qgorep)(@® D) = ﬁotaeﬁ b=pot(@pPosb)=Pp@x14)p(1ab)=p(axb).

Moreover, this is an isomorphism of regular monoids:
* a maps unity to unity: for every a,b € A,

Qiy,14(@© b) = Ida(a)b = ab = c(a® b).

 a even maps the specific pseudoinverse [¢!,¢(e)] of [p,€] to the pseudoinverse
af, ¢ forevery a,b € A,

of,.g(@®@b) = (ag,e 0 1) oo, e 0 S(@aw b)
(O‘[ap €] ° " o Ay, e](b ® a)
= ¢ (p(be)a)

= ¢ ' (ap(e) b

= O (e (a b).
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Example 4.1.11 Generalizing slightly the previous example, we can find the local biretractions
for the Hopf algebroid H = (A ® A)[x,x~'] from Example 2.2.6, with A commutative. Consider
the set

(M(A) x E(A)) x" A= {([p.e].p) € (M(A) x E(A)) x A|3p' € A: pp’ = p(e)},

where M(A) x E(A) is the regular monoid from the previous example.
Observe that if p',p" € A both satisfy pp’ = o(e) = pp’, then

p'o(e) =p'pp’ =p'pp’ = p"vle). (25)
Now, considering the equivalence relation
([¢.el.p) ~ (lp.fl.9) < [p.e]l=Iy.fl and py(e) = qo(e)

and representing by [[v,€l,p] the class of equivalent elements by this relation, we have that
Brt(A® A)[x,x"'] can be identified with

(M(A) < E(A) x A= {[[p, el. Pl : ({¢.€]p) € (M(A) x E(A) x' A},
which is a regular monoid with the product
€161 [[p.11.4] = [lv.€lig, . pe(@)] = [[v 0w, w7 (ew(N)] po(a)]
unity [[Ida,14114] and [lo,el 1" = [[v.el", &' (Po(e))]

Indeed, the product is well defined, because if we take [[¢,€],p] = [[@’,e’],ﬁ] and
[ly.f.q] = [[y'.f'1,q] , then from the previous example,

@ (e(f)) = (e Y'(F) poPlagiepm = ¢ P lapepn):
And pp(e) = pp(e) and qy(f) = qy(f) imply that

pe(q) e o (ew(f) = py

Also, we can take (pp(q)) = p'¢(q’), because

pe(q) P e(q) = pp'v(qq’)
= p(e)p(p(f))
= 0o (' (ep(f))).

Now, given [[p,€],p] € (M(A) x E(A)) x A, we have

[[.€e].p][[/da, 14,1 4] = [p.6, pp(14)] = [[0,€].P]
[[/da,1a],14] [0, €].P] = [[,€].14 Ida(p)] = [[,€].p]
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and

o610l [+ ()™ (0 o(6)] llp.elpl = [[idap(e)], piols™ (P w(e))] .6l
= [lida, p(@) 2] [[,6Lp]
= llp.6l, (&) Ida(p)]
= [[p,el.p]

" (@™ (0 ple)] liv.elpl [l (e (o (o))

= [Uida.ele™ (0 w(e) 7' ()] [ (el 7 (0 8]

= [lidaelel |[v™ w(e)], 7 (0 w(e))|

= [l ¢ (e, & ldale™ (0 w(e))]

= [t v (e (0 w(e)]

Therefore, (M(A) x E(A)) x Ais a regular monoid.
Then, given [[p,€e],p] € (M(A) x E(A)) x A, we can define for n € N,

Aol 0 (AR AXXT] — A
(@2 b)x"  — p(ae)bp”
(@@ b)x™ — p(ae)b(p)",
which is also well defined because of (25).

This map is a biretraction in H just like in the previous example and the convolution
product between two local biretractions oq,, ¢ o}, Ay, 1,91 1S given by

Ap.elp] * At el (8 © DIXT) = g g1 © o el p) (@@ 1A)XT) O ,q1((14 @ D)XT)
= p(p(ae)pfy(f)bq"
= o p(ap™ (f(e(e)))bw(p™q"
= Ao (foleNlap(p)] (8 © DIXT)
= [y, f,qlllp.elp (@ ® D)X")

and

Afip,el,p1 * Ay, A, (2@ D)XT") = Ay 1,91 © T 0 Af,e1,p1((2R 12)X") 7,1 (14 © D)X
= Y(p(ae)(P)"yp(fb(q")"

= p o play (Fe(e))by((P)")(q)"

(%) -n
= Afyop.o (Fo(e)ap(p)] (8 @ D)X

= Ay qlleelp((@® D)X
for every (a® b)x" € (A® A)[x,x"'], where (x) comes from (q(p))’ = g'p(p’). Therefore, the
map
a: ((MA) x E(A) x A% —  Brt((A® A)x,x 1],A)
[[.el.p] = Oflp.elp]
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is an isomorphism of semigroups, whose inverse is given by

A Bri((A A)x,x',A) — ((M(A) x E(A)) x A)°P
B — [[Bot, ef1,B(x)]

Indeed, for every [[p,€e],p] € (M(A) x E(A)) x Aand every (a® b)x" € (A® A)[x,x'],

Affaot, e ax) (8 ® D)x") = a0 t(ae”) ba(x”)
=ao t(a)ao s(b)a(x™)

=a((a® b)x")

and [a[[cp,e],p] © t: ea[[%e]’p] ;a[[go,e],p] (X)] = [[SO, e]: SO(e)p] = [[805 e]! p]

Moreover, this is an isomorphism of regular monoids, because o maps unity to unity:
a[[|dA,1A],1A]((a ® b)Xn) = IdA(a) b(1A)n =ab= E((a (%9 b)Xn).

a also maps the specific pseudoinverse [[(p_1,g0(e)],cp_1 (p'go(e))] of [[¢,e],p] to the pseudoin-
Verse of, ¢ -

A e1.p1((@ 2 D)IXT) = (A ep.p1 © 1) © A e,1 © S((a @ b)X")
= (Ap,e01 © o a0 (b @ @)X~

= ¢ (p(be)a(p’)")

= ¢ '(a(p')"p(e)) b

= o (ap(e)b (¢ (Pole)”

= Al ple)e (p’so(e))]((a ® b)x")

for every (a® b)x" € (A® A)[x,x~'] and analogously for (a ® b)x™".

4.1.1 Biretractions and the representative functions of a discrete groupoid

Remember from the first chapter that from a groupoid G we can construct the Hopf
algebroid Ry (G) of its representative functions. This Hopf algebroid is commutative over the
commutative algebra A = Fun(G© k), thus we can study its biretractions.

Here we create local biretractions using the local bisections of the groupoid. From
Lemma 2.2.10 we have a multiplicative map ¢ from Ry(G) to Fun(G,k) that we can adapt in
a natural way to create a morphism between the bisections 5(G) of G and the biretractions
Brt(Ry(G), A) of Ri(G).

Proposition 4.1.12 Let G a groupoid, A = Fun(G k) and H = Ri(G) the Hopf algebroid of
representative functions of G from the section 2.2.2.1. The map a : B(G) — Brt(Rx(G), A),
(u,X) = ag,x given by

)P BT P = lt 0 ux)) (pl(p(x) Ix € X]

for every p @71, p € H and x € GO is well defined and a morphism of regular monoids.
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Proof. First, a can be written as

A, x) (P @71 P)x = Clp @7 P)(U(X))[x € X], (26)

with  from Lemma 2.2.10. Hence each a(, x) is well defined and multiplicative. Also, (BRT1) is
valid, because

X) ©8(a)x =aux)(1a®71; = = ,
(@,x) ©8(a)x = o x)(1a @7, ax = ax)[x € X] Au,x)(12)x
for every x € G and a € A. To prove that o, x) satisfies (BRT2) for every bisection (u,X) of G,
remember that (u,X)* = (T,t o u(X)), with TU(t o u(x)) = u(x)~'. Then,
aw,x) © t(auxy (1), = X x) (1) tou [X € X]

= [tou(x) € tou(X)][x € X]

=[x € X]

= 0l(u,x) (%) x
and oy, xy- (1) is our candidate for e®«x. Observe that the map

Au,x) © HAag e (17) * A x)- (1) — Awx)(12)
is injective. Indeed, for any a € A such that
a,x) o t(aax=(12)) =0,

we have that
a(to u(y))ly € X] = (aaw.x)(1u)touy)ly € X] =0 (27)
for every y € G, Then

(aoux)-(11)), = alX)[x € to u(X)]
9 a(t o u((to uy " (XN(to u) (x) € X][x € to u(X)]
=0

for every x € G0, where we used the equation (27) in (x) with y = (t o u)™"(x).
Now, observe that for every p @7, p € H and x € G©

x)
() 3
= p(t o Ut 0 u(x) (P out (AL 0 U(X)) ) [0 U(X) € to u(X)]

= (X (P O P) 1oy

which implies that O(y,x) © S= Ay, X)* - Thus Ay,x) © ﬂAO‘(u,X)*“H) . Aa(u,X)*“H) — AO‘(U,X)“H)
is surjective, because for every a € A and every x € G0

(@ x)(1)), = (awx) © S(a))x
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Therefore, e« = a(, x)-(13) satisfies (BRT2) and ay, x) is a local biretraction.
Now, for (u,X) and (v,Y) local bisections of G with (u,X) - (v,Y) = (uv,2),

Ay, X) * Ay, y)(p @1, P)x

_ZGVY uX)(‘P T, eI)Xa(v Y)(e T, P)x

—ZGvY A(u,x) (P O, €) @1, 14)x A(v,v)(€] @1, P)x

=Za(u,X)(90®Tg €i)tov(x ( v (1a )IIXG Y]ow,v(ef @71, P)x
i1

= Doltoue tovn) (Plotovin(@ilt o VX)) ) &5 (o v(x)) (P (PX)) ) [x € YI[to vix) € X]

_ng (touv(x)) (ef (o) ei) (to v(x ))( ﬁ(x)(p(x))) [x € Z]

= ot o UV (X))Pfetor P (PO X € Z]
= @(t o uv(x)) (Pl (PL)) [x € 2]
= Ay, 2) (¢ @71 P)x

for every p @7, p € H and every x € G©. Consequently, o is a morphism of semigroups. Finally,
with i : G©© — G being the inclusion map of the groupoid, we have that

(o) (¢ O1. P)x = p(t 0 i(X)) ( ?(x)(lO(X))) [x € GO
= p(X)(p(x))
= 5(‘P®77;p)x

and

O‘*u,x (P @1, P)x = (O(u,x) © f)_1 o Oy, x) © S(p @7, P)x
(u,X)
= (a(u,X) © t)_1 O Oy, X)* (W) tou(x)
= awx) (¢ @7, D),

forevery p @7, pc Hand x € GO, Therefore, a is a morphism of regular monoids.

The morphism between bisections and biretractions introduced above is not necessarily
a bijection. But we can prove it is an isomorphism for some specific groupoids:

Proposition 4.1.13 Let G be a finite and transitive groupoid, A = Fun(G© k) and H# = Ri(G)
the Hopf algebroid of representative functions of G. Then there exists an isomorphism of regular
monoids between the bisections B(G) of G and the set of the biretractions Brt(H,A) of H.

Proof. The Proposition 4.1.12 gives a morphism between the regular monoids B(G) and Brt(H,A).
Hence it is enough to prove that when G is a finite and transitive groupoid, this morphism is
bijective.
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We saw on Remark 2.2.13 that the groupoid G can be seen as the groupoid G x Gx G,
where G is a group, and that # = A ®x R(G) ®k A, with R(G) being the Hopf algebra of
representative functions of the group G. Recall from Example 2.2.12 the Hopf algebroid structure
of ARy R(G) ®k A given by the expressions (5). Besides that, if (u,X) € B(G), we can write

u: X — GO xGxgo
X — (A(x),p(x),u(x))

with A,u : X — G© and ¢ : X — G. By the definition of bisections, we have that x = sou(x) = u(x)
forall x € X and tou=A: X — A(X) is a bijection. Thus u can be written as

u(x) = (A(x)(x),X)

forall x € X, withp : X — Gand A : X — A(X) being a bijection. Now for anfob € AxkR(G)®iKA,
recall the function § and equation (4) from Example 2.2.12 that we can write

awfeb=¢(Paor, pi).
Hence from expression (26), the morphism o from Proposition 4.1.12 can be written for G as

awx)(@® f @ b)x = (¢P @7, p?) AX),0(x).x) [x € X]
= a(A(x)) f(o(x) b(x) [x € X]

forevery a® f® b € A®, R(G) @ Aand x € G, So we want to prove that the morphism
o B(G) — Brt(A®k R(G) @k A, A), (u,X) — o x) is bijective. From now on, we use # to denote
Ak R(G) @k A.

First, suppose that (u,X) and (v,Y) are both bisections of G with

u(x) = A(x),e(x),x)  v(y)=A'().¢'(¥).y)
and Ay, X) = O(v,Y)- Then
[x € X] = awx)(12)(x) = gy, v)(12)(x) = [x € Y],
which implies that X = Y. Also, for any x € X,

1 = 80 (A(X)) = Xux) Oa) @ TRG) ® 1a)x = A, v)(Oax) @ 1R(G) @ T1a)x = Sxx (A (X))
implies that A = A’. Similarly, we have that ¢ = ¢/ and, consequently, (u,X) = (v,Y). Therefore, a
is injective.

On the other hand, let 8 : Ak R(G) ®x A — A be a local biretraction and a® f ® b in

A ®y R(G) ®k A. Then by definintion,

B(1a® 1 @ b) = o s'(b) = bB(12);
Blaw 1gg @ 14) =Lot(a)

and there exists &® ¢ A such that 8 o t'(ef) = B(13) and

Botlsw: AP — AB(1%)
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is a bijection.
Since B(1%) and &° are idempotents in A = Fun(G k), we have that B(1%) = xx and
ef = xy for some X,Y C GO, where yx(x) = [x € X]. Denoting xx := Xix, We have that
B(1a® 1) @ b)x = b(x) B(13)x = b(x)[x € X]. (28)
Also,

Xx=B(1n) = Y Bxx®1re ®1a) = Y Bot(xx)

x€gO xegO

Xx =B0w) =Botixv) =3 Blx ® 1ae @ 1a) = 3 Bo(xx)

xeY xeY

and if x # y, then Bo t'(xx) B o t'(xy) =B o t'(xxxy) = 0. Thus B o t'(xx) = 0 for all x € GO\ Y and
there exists a bijection A : X — Y, x — A(x) such that

Bot'(Xax) = Xx-

Hence we have that for every x € G©©

Bla®1re @1a)x= Y aly)Blxy ® 1ac © 1a)x

yeGgO
= Z Bot'(xy)x
yey
- a(A(x))[x € X]. (29)

Finally, since G is transitive and finite, we have that R(G) = Fun(G,k) (SIMON, 1996),
hence f can be written as
= > fth)pn,

heG
where pp(g) = [g = h], for all g € G, and all p, are functions of R(G). Then

Xx=B(1x) =Y B1la®pg®1a)
geG
with B(14 ® pg ® 14) B(14 ® pn ® 14) = 0 whenever g # h. Thus we can defineamap o : X — G
that takes each x € X to the unique g = ¢(x) € G such that B(14 ® p,x) ® 14)x = 1. Therefore,

Bla® f@14)x = Z f(9) (14 ® pg @ 14)x
geG

= f(p(x))[x € X] (30)

for all x € g
So, from expressions (28), (29) and (30), and considering the bisection u : X — G,
X = (A(x),0(x),x), we can write
Bla® f@b)x =pa® 1pe @ 1a)xP1aR F®14)xf(14® 16 ® b)x
= a(A(x)) f(e(x)) b(x) [x € X]
=ax)(@® f @ b)x.

Observe that A and ¢ do not depend on a® f @ b. Therefore 8 = o, x) and a is surjective. O
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Remark 4.1.14 As a particular case from the finite and transitive groupoids, take the groupoid
G = X x X, with X being a finite set. Thus a bisectionu : Y C X — X of G can be written for an
elementy € Y as

where A . Y — A(Y) is a bijection, that is, any bisection of G is determined by a subset Y C X
and a bijection A 1 'Y — A(Y) C X, which from the Proposition 4.1.13, also determines the
biretractions for the Hopf algebroid of the representative functions of G.

On the other hand, from Example 2.2.14, the representative functions of G are given by
Rk(9) = Axyk A. From Example 4.1.10, a biretraction for Aoy A with A = Fun(X k) is determined
by a pair [¢,e] such that ¢ : A — A is multiplicative, € = e € A and p|ae : Ae — Ap(e) is a
bijection.

These two characterizations of the biretractions are the same, because since e and ¢(e)
are idempotents in A, there exist Z,Y C X such that e = xz and p(e) = xy. And since X is finite
and ¢ is multiplicative, there exists a bijectionA . Y — Z such that foreachy € Y, o(xay)) = Xy-
Therefore [p,€] is also determined by a subset y C X and a bijectionA: Y — Z C X.

4.1.2 The noncommutative case

We can go one step further and work with a not necessarily commutative Hopf algebroid
over a commutative algebra. In this case we have only one base algebra, which is commutative,
but we still have two different structures of a left-bialgebroid and of a right bialgebroid. The defi-
nition of a biretraction for this structure should be an extension of the definition for commutative
Hopf algebroids.

Let us consider a Hopf algebroid H over a commutative algebra A such that s, =t =t
and s, = f; = s. In this case we can use the exact same definition of biretraction that we used in
the commutative case: a biretraction for H is a multiplicative linear map o : H — A satisfying

(BRT1) aos(a) = aa(1y) for every a € A.

(BRT2) There exists e* € A such that a o t(e*) = a(1y4) and
aotlpen : A — Aa(1y)

is a bijection.
Denote the set of local biretractions of H by Bri(#, A).

Remark 4.1.15 Exactly like in the commutative case, we have that for a biretractiona : H — A,
a(14) and e* are idempotent elements of A and e satisfying (BRT2) is also unique.

Remark 4.1.16 Since A is commutative and o is multiplicative, we have that a(hk) = a(kh) for
every hk € H.

Remark 4.1.17 Withs, =t =t ands, = t; = s we have that all maps ;o s, ejot,crosande, ot
are the identity map Ids. Then from the property (P5) of Hopf algebroids, we have the identities



Chapter 4. Generalized bisections on Hopf algebroids 72

eroS=¢ande;o S =c¢,. Also, forevery ac A,

Ajot(@ =Aav 1y)=av(lyg@1y)=t@ 14
Ajos(@)=A(1y < a) =1y R1y4) < a=14 ® s(a).

Analogously, we have A, o t(a) = t(a) ® 14 and A, o s(a) = 1y ® s(a).

Remark 4.1.18 The counits ¢; and ¢, are not always biretractions, because they are not ne-
cesssarily multiplicative functions, but given a biretraction o and using the notation A,(h) =
A" @, h@ we have that

e%y(h) = (aoty T oaotogh)
= (a0 1) o a(hV) S(h?))
= (a o 1) (V) S(h?))

for every h € H. Since t = s; is multiplicative by the definition of Hopf algebroid, we still have
a o t multiplicative. And since A, is multiplicative and S is antimultiplicative, we have from
Remark 4.1.16 that %<, is multiplicative. Then €<, is a biretraction with e®! = e, because
(e%)) o tlaex = Idaex. On the other hand, for every h € H,

a(1y)er(h) = ao soer(h) = a(S(hq)) he),

which is also multiplicative. Then a(1y)e, is a biretraction with e®'")er = a(14,), because
(a(1%) er) o tlaa(y) = daaq,,)- And using ) = e, o S and the property (P6) from Hopf algebroids

a(13)e/(h) = a(1%) er o S(h)
= a(S o S(h?) S(hMy)
= ao S(h S(h@)y)

for all h € H, which implies that a(1y) e, is multiplicative and hence is a biretraction with
e1n)er = q(1y).

Theorem 4.1.19 Let H be a Hopf algebroid over a commutative algebra A such that s; = t, = {,
s, = tj = s. Then the set Brt(H, A) is a reqular semigroup with the convolution product between
two biretractions o and 8 given by

(axB)(h) = B(alhi)) > hz)) = B o toalhy))B(heg).

Proof. Like in the commutative case, this product is associative and well-defined. Now define a
pseudoinverse for any biretraction o € Brt(H,A) and h € H as

a*(h) = (ao ) cao S(g(hV) > h?)
= (ao )" oao S(toe(hM)h?)
= (a0 t) " o a(S(h?)) s0g/(h))
= (@0 t)™ (=(h M) a0 S(h®)) .
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Observe that all maps ao t, S,Ar and t o ¢; are multiplicative or antimultiplicative, thus
from Remark 4.1.16, o* is multiplicative. Moreover, we have for every a € A that

1

a*os(a)=(aot) N e(1y)ao Sos(a)=(aot) caot(a) = ae* = aa*(1x)

and

o* o t(aa(ly)) = (ao t) (g0 tlaa(1y)) a o S(1%))

= (a0 t) (aa(1y)),
that is, a® o t|aq(1,,) = (a© ! lAa(15)- Then a* is a biretraction with e =a(1y). Also,

axa*(h)=a* otoalhy)a*(hgz)
= (aot) (g0 toa(hm))ao S(13)) (ao t)™ (é‘/ (h(Z)m) aeS (h<2)(2)>>
=(aot) " oa (h(1) Sogy (h(z)m) S h(2)(2)))
=(aot) T oa (h(”m soeg (hm(z)) 3(’7(2)))
= (oo iy o (KN S(H@))
=(aot) caotoglh)
=€e%¢/(h) 81)

and

o* xa(h) =aotoa™(hy))alhg)
=aoto(aoty™ (5 (hn™)ao s (hn@))alhg)
- 5/(h(1))a (S (h(Z)m h(2)(2)>
= gl(h(1))a oSo €r(h(2))

= a(13)e/(h) (32)

for every h € H. Recall that for a biretraction a, we have a(hk) = a(kh) for every h,k € H, which
was used in (x) for the biretraction a(1y) /.
Now using the identities (31) and (32), we get

axo*xa(h)=aoto(axa’)(hy)alhg)
= ao t(e%(hn))) a(hg)
= a(t o g/(h1y)hz)
a(h) (33)



Chapter 4. Generalized bisections on Hopf algebroids

74

and

o = axa’(h) = a” o to (o  a)(h) o (g)

= (@ot)™ (z10to (@ xa)(hm) a0 S(1n) e (™) a0 S (e

= (oot (a(1H)5/(h(1))5,( ) aoS (h2 ))
= (aot)! (5; (h“)m) e (h< >(2)) ao S(h2>))

= (ot (= (toey (h0y) V) ) o S(H®))

= (oo t) (e;(h") a o S(h?))

=o*(h)

for all h € H. Therefore, Brt(H, A) is a regular semigroup.

Remark 4.1.20 Observe that given a biretraction o : H — A,

((e%¢)) x a) (h) = ao t(e” e/(hy))) alhz)
= a(t o g/(hy)hz)

and

for every h € H. Also note that

(e%))"(h) = (6% o t) " (e/(hV) €% 0 S(h®))
= e%(hM) e,(h®)
= e%(h)

and analogously, (a(14) e/)*(h) = a(1y) e/(h) for all h € H.

)

Now, just like in the commutative case, consider the free vector space generated by the
biretractions of # and extend linearly the convolution product to this space. Then, we have an

algebra structure on the space kBrt(H, A), henceforth denoted by B(H).

Theorem 4.1.21 Let H be a Hopf algebroid over a commutative algebra A such that s; = t, = {,

= S. Then the algebra B(H), generated by the set of biretractions of H with the convolution

product is a quantum inverse semigroup with the comultiplication A : B(H) — B(H) and S : H —
‘H defined on the biretractions as A(a) = a ® a and S(a) = o* and linearly extended for B(H).
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Proof. The comultiplication A is multiplicative, just like in the commutative case. Also, S is
antimultiplicative: for every o, € Brt(H,A) and h € H,

S(a+ B)(h) = (a+B)'(h
=((axB)o )Y (% B) o S(h®)y)

=(aoty o (Bo 1‘)_1 <6/(h“’),3 oloa <<S(h(2)))<1>> P <<S(h(2)))<2>>>

® (ot <(ﬁ o )" (E/(h )B o S(hP) )) ao S(h<2>(2>))

= (@oty™ (B (h") a0 S(h?)),

where in (x) we used the property A0 S = (S®; S) 0 A, which holds for any Hopf algebroid.
Conversely,

(S(B) = S(a))(h) = (B = a™)(h)
oo to () )
= (aot) 6/01‘ ,B*(hn) o S(1x)) o*(h)

o
oo (B0 (o () 8 (1) ()= ()
07 (Bot (= (H") Bo S (H)P) Botoe (hVg)) oo S(HD))
= (aot) 1<(ﬁot (o (D) B (S (A1) toes (K@) )) a0 S(hE))
-1 ((ﬁot -1 (a, (h ) oS(h(1)(2))>ao S(h<2>))
— (aot) (ﬁ (h)ao S(h<2>))

for every h € H. Consequently, S(a x ) = S(B) * S(a)
Finally, for checking axiom (QISG4) for any a,f € Brt(H,A), the expressions (31) and
(32) imply that for every h € H,

ag) * SBa)) *Pe)(h) = (axa) = (B = B)(h)

= (B" *B) o to (axa*)(huy) (B* * B)(hz))
=B(1x) e o to(ax*a®)(hy)) e(hz)
=B(1x) €% e/(hy) ei(hz)
= B(12) €% ei(h)

The same result for S(B(1)) * B2) * 1) * S(axz))(h).
Therefore, B(H) is a Quantum Inverse Semigroup. |

Remark 4.1.22 Consider a Hopf algebroid H over a commutative algebra A withs = s, =t =
Sr = t.. A local biretraction for H is a linear and multiplicative map o : H — A that satisfies
ao s(a) = aa(1y) for every a € A and there exists e* € A such that o o s(e*) = a(1y) and
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aoS|ae : Ae* — Aa(1y) is a bijection. Combining both conditions we have

oo s(a(1%) €%) = a o s(a(14)) a o s(€%)

a(1x) a(1y) a(1y)
(121)-

Since a(14) e* € Ae® then a(1y) €* = €*. Therefore

Il
Q

a(ly) =aos(e”) = e a(1y) = e
Moreover, for every a € A,
aos(aa(ly)) = aa(1y)a(ly) = aa(1y).

Consequently, we can describe a local biretraction for H as a linear and multiplicative map
o H — Asuch that a o S|aq,,) = 1daa(t,,)-

Example 4.1.23 Recall the definition of a weak Hopf algebra from Example 3.2.5. A weak
Hopf algebra (H,u,n.A,e, S) has a structure of Hopf algebroid over the algebras H; = +(H) and
Hs = es(H) given by

Sr(X)=X tr(X)=6(X1(1))1(2) Ar=7Tr OA €r=€s
for every x € Hs, where, : H®y H — H ®p, H and
si(x) = x t(x) =e(12)¥)1(1) Aj=m0A €l = ¢t

for every x € Hy, where ;. H @ H — H ®p, H.
Observe that for every x € Hs, x can be written as x = es(h) = 1(1ye(h12)) for some
he H. Then

es(X) = 1(1)e(x1(2))
=10y e(14y e(M2))1(2)
=1y e(M2)) ety 1(2)
=11)e(M)
= X.

Similarly, we have that £¢(x) = e(1(1)X)1(2) = x for every x € H;.
Now suppose that H; = Hg and that A := Hy = Hg is commutative. Then, for every x € A,
we have that
11ex1e) = x =(11)X)12),
which implies that

(x)=¢
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and

Therefore, we have that s; = t, = s, = t; are all the inclusion map A — H. We also have that
X = €(X1(1))1(2) = €(X1(2))1(1) = 6(1(2)X)1(1) = 6(1(1)X)1(2>

forevery x € Aandifh e H.
Then by the Remark 4.1.22, a local biretraction for a weak Hopf algebra with A := H; = Hs
commutative is a linear and multiplicative map a : H — A such that a|aq1,,) = 1daa(,,)-

Example 4.1.24 As a particular case from the previous example, consider a finite groupoid G
and its groupoid algebra kG given by

kG = {Zagéiglgeg,agek}

geg

with product 8465 = 4n if (g,h) € G® and 5461, = 0, otherwise. kG is an algebra with unity

1kg = Z 6)(,

xeGO)

because (g,h) € G@ if. and only if, s(g) = t(h) implies that

(Z ag 6g) ( > SX) = ) agbgbx =) ag8ybsq) = > aghy

geg xcg0) geg geg geg
xegO)

x€G0) geg geg geg geg
xegO

forevery > g6 8g 6g € kG. kG is also a coalgebra with structure given in its base elements by
A(6g) =64 ® 6g and £(64) = 1. From the Example 3.2.5, kG is a weak Hopf algebra with

et(6g) =e(1(1)8g) 12y = Y £(6x8g) 6x = £(6()8g) Sit(g) = S1(g)»

xegO

es(6g) = 1(1)e(Bg1@) = Y 6xe(8g6x) = 65(g)2(5¢ 65(g)) = Bs(g)
xegO

and S(64) = 641 for every g € G. Finally, kG also has a Hopf algebroid structure over the algebra
A= (5¢|x € GOy given by s) = t; = s, = t, being the inclusion maps A — kg,

A=A, =1mp0A E| =€t Er=E€s
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and the same S. Note that 5x6x = 6x and 6x6, = 0 for all x # y in G©
Observe that A is a commutative algebra. Hence by the Remark 4.1.22, a biretraction
forkg is a linear and multiplicative map o : kG — A such that o| aa(1,5) = 1daa(1,.)- Now we have
for any o : kG — A biretraction,
* a(1xg) is an idempotent. Then, a(1yg) can be written as

a(lig) = ) _ by

xeX

for some X C GO If X = GO, we have a global biretraction.

« Fix the subset X* C GO such that a(1xg) = 3 e xa Sx- If y € X,

BRT1
8y =3 8,5¢=5ya(lig) "= a(6y).

XEX

Then

Yo bx=allg)= Y aldy) =D S+ Y, alb),

xexa yeg) xeXa ze GO\ Xa

which implies that ", go\xa (82) = 0, hence for every y € GO\ X,

a(8y) = a(sy) ( > a(az)) =0.

zeGON\Xa

* Now for any g € G, we have that

2
>
<
I
2
S
Q
o
@
=
I

a(6g)a(bs(g))
a(6g) = a((g)6g) = A(b¢(g))x(g)-

Hence if s(g) ¢ X“ or t(g) &€ X°, then a(6g) = 0. And writing
albg) = > aysy
yeg
with all & ink, then s(g),t(g) € X imply that
a(8g) = a(Sg) ABs(g) = Y ay6ybsig) = @ g5s(0)
yego

and

a(8g) = a(Sy(g) = Y &by By = &f)5g)-

yeg
Hence for a(64) to be nonzero, we need s(g) = t(g) € X®. Moreover, we have that if
s(9) = t(g) = x € X? then a(6g) = ag6x with ag € k\{0}. Indeed, if a(64) = 0 then

0 = a(dg) a(6g4+1) = a(byg)) = a(6x) = 6x,

which is a contradiction.
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» Brt(kG,A) is commutative: for any o, € Brt(kG,A) we have

(60) agfsx, ifs(g) =t(g) =xe€ X* C g(O)
(0 =
J 0, otherwise

and

86,) - by6y, ifs(g)=tg) =ye YFCGO
J 0, otherwise

with ag € k\{0}, by € k\{0}, ax = 1 and b, = 1 for every x € X* and y € YP. Then

(% B)(8g) =B o toa(dy) BSy)
=P o a(bg) B(6g)
= B(ag6x) B(dg) [s(9) = t(g) = x € X°]
= agbg 6x [s(g) = t(g) = x € X* N YF]
= (B xa)(6g)

for every g € G. Observe that this means that Brt(kG,A) is an inverse semigroup, with o*
given by

a*(8g) = (a0 1) (£/(8g) & © S(8g)) = Sr(g) AB41) = AlBt(g) 1) = A(E 1) = x 0 S(5g)
for every g € G. Brt(kG,A) also has a unity 1 : kG — A given by

1(6g) = 6x [s(g) = t(9) = ]

for every g € G.
With these remarks, we can represent the biretractions using the characters from the
isotropy groups Gy = {g € G|s(g) = t(g) = x}. Being G© = {x1, ... ,xn}, consider the algebra

n
F = [{#i : Gy, — k\ {0} morphism of groups} U{0 = ¢; : Gy, — k}

i=1

with the pointwise product. The elements of F are n—tuple of characters from the isotropy groups

of G or zero maps. F is also a commutative inverse semigroup with (o1, ...,n)" = (¢, ... ,¢0n),
where
. wi(97), ifei#0
¢i(9) = ]
0, if i = 0.
For each (¢4,...,¢n) € F and g € G, we can define the map a(,, . ., -kG — A

0, ifs(g) # t(9),

which is a biretraction, because forevery i =1,...,n,

{%@mm if s(g) = t(g) = Xi

6x,, Ifyjis a morphism of groups

Xy, 2 (0x) = wi(X) Ox =
it Y 0, ifgi=0,
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hence a,, is a local biretraction with X* = {x; € GO | y; is a morphism of groups}. Then

..... ©n)
for every (o1, . .¢n)y (P, \pn) € Fand g € G,

=A(yy,..., Lpn)(Spi(g) Ox;) Ay, ..., Lp,,)(SQ) [s(9) = t(g9) = xi]
= 0i(9) Pi(g) Yi(x;) 6x; [s(g) = H(g) = Xi]
= »i(9) Yi(9) 6x [s(9) = t(9) = xi]

= a(@ﬂlﬁ ~~~~~ ©nPn) (69)

and the map

a: F —  Brt(kG,A)
(15 50n) = oy, iom)

is an isomorphism of inverse semigroups.
Observe that Brt(kG,A) is a commutative inverse semigroup with unity, but is not neces-

.....

= i(X;) 6x, [8(9) = 1(g) = x; € X]
=6y [s(9) = t(g) = x; € X]

for every g € G, which is not the unity of Brt(kG,A), unless X* = G\, that is, unless o, is

a global biretraction. Therefore, we have that GIBrt(kG,A) is a group.

----- l,Dn)

Example 4.1.25 (The algebraic quantum torus) Consider an algebra T, over C, generated
by two invertible elements U and V satisfying UV = q VU, with q € C*. The algebra T, has a
structure of Hopf algebroid over the commutative C-algebra A = C[U] :

e s=8 =ti=8s =1t :A— Tqis the inclusion map;

« A(UTV™) = UV @, VM and ¢/(U"V™) = U";

e A(VMU™) = VMU @4 V™ and e,(VTU") = U™,

e S(U"VM) = v-myn,

Observe that the only idempotent of A is 1. Then we can only have global biretractions
for Tq4. By the Remark 4.1.22, a global biretraction for T, can be described as a linear and
multiplicative map o : Tq — A such that a|a = Ida.

Moreover, since a is multiplicative, we have that

aV)ya(V) =a(V ) a(V)=a(VV) =a(lc) = 1c = a(V)" =a(V7),
which implies that a(V) is invertible in A, and consequently,

Ua(V) = a(UV) = ga(VU) = q Ua(V)
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= q=1¢.

So we only have global biretractions for the commutative torus Ty. In this case, we have
that a global biretraction for Ty is a multiplicative and linear map o : Ty — A such that a(U) = U
and a(V) = g, U, with g, € C and t, € Z.

Moreover, since the zero map is not a global biretraction, any global biretraction o :
Ty — Ais in fact a morphism of algebras (since a(17,) = 14). Ty and A are algebras of Laurent
polynomials, Ty = C[U,U™",V, V™" and A = C[U,U™"]. General arguments from algebraic
geometry show that algebra morphisms a : Ty — A correspond to maps f : C* — C* x C*
whose entries are Laurent polynomials in z, i.e., f(z) = (p1(2),p2(2)) with p;(U) € A. Given such
a map, the associated morphism of algebras is a(U) = p;(U), a(V) = p2(V).

In particular, given a real number 6 and an integer n, the biretraction o : T — A given
by a(V) = €2™®U" corresponds to the the map f : C* — C* x C*,f(z) = (z,e?™°z"). The
restriction of f to the unit circle S' yields the map

g: S1 N S1 % 81, eZ‘lTit — (821Tit, 621Ti(6+tn))'

Hence biretractions of the Hopf algebroid Ty include imersions of Ty in T?. Also, we can say
that o rolls up the unit circle S' around the torus T?. Indeed, observe that

axa(V)=aoa(V)a(V)
- a(e2rri6 Un) eZﬂiO Un
— eZn'iQa(U)n eZTriQ Un
eZni 20 U2n

and, analogously,

af = ax- - xa(V) = 2RO
N’
k times

Consequently, we can associate o with the restriction
Ok S1 s 81 % 81, e21rit — (eZTTit, 621Tik(6+tn))_

We remark that g is a closed curve that starts and ends at (1,e™°) for t = 0 and for
t =1, and runs along the torus as shown in Figure 1.

Observe that the curve g» acts similarly to g but rolls up twice as fast (vertically) along
the torus, starting and ending at (1, €*™). In general, the map gx rolls up the torus k—times
faster than g vertically, starting and ending at (1,e2™0).
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Figure 1 — Representation of the curve g
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5 CONCLUSION

We started this work with a question: can we find a good generalization of inverse
semigroups and Hopf algebras which can play the same role with Hopf algebroids as inverse
semigroups do with groupoids?

Trying to find the answer, we first analysed the definition that relates inverse semigroups
and groupoids: the bisections. We started working with known examples of commutative Hopf
algebroids and tried to find the best definition of biretractions that would generalize the notion
of bisections. Trying to dualize the definition of bisections for these Hopf algebroids, we started
analysing maps from the Hopf algebroid to the base algebra defined in a natural way, and kept
finding maps a that were at the same time multiplicative, right-module morphisms and that their
composition with the target map were partially defined bijections.

Hence our first definition of a biretraction for a commutative Hopf algebroid #H over a
commutative algebra A was that o : H — A should be a multiplicative map satisfying

(BRT1) ao s(a) = aa(1y) for every a € A.

(BRT2) The restriction
ao tlAa(1H) . AG(1H) — Aa(17.[)

is a bijection.

With this definition, we were able to define a product and a pseudoinverse for the local
biretractions in a way that the set Brt(H,A) is a regular monoid.

At the same time, we wanted to use the example of the Hopf algebroid of representative
functions of a groupoid G to relate the set B(G) of all local bisections of groupoid with the set
Brt(H,A) of all local biretractions of the Hopf algebroid of its representative functions. We had
a map from B(G) to Brt(H,A) defined in a natural way, but this map was not necessarily a
morphism os regular monoids. Analysing this map it was clear that we need to redefine the
condition (BRT2). The problem is that the partial bijection o o t|441,,) has equals domain and
image. Thus inspired by the example of the representative functions and by the classic inverse
semigroup of partially defined bijections of a set, which considers different domains and images,
we thought that would be better to restrict the map a ot to the ideal A e, where aot(e*) = a(14),
such that the restriction a o tjpea : Ae® — Aa(1y) is a bijection. And it turned out that the
element e* defined in this way is unique and idempotent.

On the other hand, we wanted the definition of quantum inverse semigroups to be a
generalization of inverse semigroups in the same sense that Hopf algebras are a generalization
of groups. With this is mind, it got created the Definition 3.1.1. Then we just needed to adjust
the definitions of the product and the pseudoinverse in Brt(#,A) so the algebra B(#) generated
by the local biretractions has a structure of quantum inverse semigroup, just like the bisections
of a groupoid form an inverse semigroup.

So we were able to generalize the definition of bisections for Hopf algebroids and also
created a structure that generalize inverse semigroups at least with this particular relation.

We also created a definition of biretractions for non necessarily commutative Hopf alge-
broids over a commutative algebra with s, = t- and t; = s,. Observe that in a lot of instances
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from the proofs of the Theorems 4.1.19 and 4.1.21 we used the commutative property of the
base algebra along with the properties s; = t- and s, = f; so we could maneuver between the
left and right bialgebroid structures. Thus it seems like for the general case, we should define
as biretraction a map that creates a relation between the two structures. Also, it is not expected,
in the general case of noncommutative Hopf algebroids, for the biretractions to be multiplicative,
but this definition should be an extension of the definition for the commutative case.

It remains for the future to find a good definition of biretractions for any Hopf alge-
broid. Being H = (H,,H,, S) a Hopf algebroid with bialgebroid structures (#,,s;,,,4;,¢;) and
(Hr,sr,trArer), it is an initial thought to replace (BRT1) and the multiplicative property valid for
the commutative case by the following conditions: a local biretraction of H is a pair of linear
maps a: H — Aand a : H — A satisfying for every ac A, bc Aand h,k € H,

a(ti(@) h) = a(h<a) =a(h) a a(hk) = a(ht; o a(k)) (35)
ai(hs/(b)) =a(h 4« b) =a(h) b ai(hk) = &(sy o ai(h) k). (36)

that is, a should be a left A-module morphism and & a A-morphism, which extends (BRT1) and
the second line is what replaces the multiplicative property. These conditions are inspired by
(XIAO, 2021), where was proposed a definition of "bisections" for bialgebroids.

With these conditions, all maps a o s;, ao t, a o s and a o t. are multiplicative or
antimultiplicative. Indeed, for every a€ Aand h € H,

a(si(a) h) = a(si(a) tj o a(h)) = a(t; o a(h) s/(a)) = a o s)(a) a(h),
which implies that
ao s/(ay a) = alsi(ar) si(a)) = ao si(as)ao s)(ag)

for all a,a> € A. Consequently, a o s; is multiplicative. Analogously, using the facts that s is
multiplicative, t, is antimultiplicative and that sjo¢, 0t = t, and t- o e, 0 §; = 5;, we have that

a(ty(b) h) =ao t(b)a(h)  alht (b)) =aot(b)a(h)  alhs(a)) =ao s/(a)a(h)

forevery a € A, b € Aand h € H. Hence a o s; and a o t, are antimultiplicative and @ o t,
is multiplicative. And these are properties that will probably facilitate the work of defining a
condition for the pair (a,a) that extends (BRT2).

Moreover, is possible to define products for the maps satisfying the conditions (35) and
(36): for any maps a, 8 : H — A satisfying (35) and @, 8 : H — A satisfying (36), define for each
heH,

((X(h(1)) > h(g)) = B(S/ l¢] G(h(1)) h(z)) = ﬁ oS0 G(h(n)ﬁ(h(z))
@(h") » h®) = B(h® 4 o a(h)) = B o t o a(h) B(H®).

\
W ™



Chapter 5. Conclusion 85

These products are associative and well defined, because for every ac Aand h,k € H,

(a=B)(t(a) h) =B o sjoalhy))B(ti(a) hg) = B o sjoalhm) Blhe) a=(axp)(h) a
(axB)(htio(axp)(k) =pBosioalhy)Blhg tio(ax*p)(k))
=B o sioalhm) Blhe t (B o s 0 alky) Blka2)))
=B o sjoa(hyy)B(hp) b o B(Kke)) t o B o 510 alkpy))
= Bo s oalhm) Blhe t o Blke) s o alka))
=B o sjoa(h)) Blhe) sio alkn)) b o B(ke))

= (a p)(hk),

where we used the property of the Takeuchi product on (x). Hence o 3 satisfies (35) and,
analogously, o 3 satisfies (36).

We can call the maps a : H — A satisfying (35) left-retractions of H and the maps
o : H — Aright-retractions of 7{. This way, a local biretractions of # is a pair of a left-retraction
and a right-retraction. Also, it is expected for a "pseudoinverse" of a left-retraction to be a right-
retraction and for a "pseudoinverse" a* of a right-retraction a to be a left-retraction, because of
the action of S. Therefore, for this definition to be an extension of the definition for commutative
Hopf algebroids, we can redefine a local biretraction of H as a pair (a,a*) of a left-retraction and
its "pseudoinverse". So it remains to create a condition that extends (BRT2) and a product that
enable us to define a pseudoinverse (a,a*)*.

Finally, we want, in future works, to answer the questions:

+ Can we extend the definition of local biretractions for any Hopf algebroid? Will we also
be able to create a quantum inverse semigroup generated by these biretractions?

+ Can we use the quantum inverse semigroups and Hopf algebroids’ structures to
extend other relations between inverse semigroups and groupoids?
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