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RESUMO 

 

Técnicas de pesquisa oriundas da física estatística têm se mostrado uma ferramenta de análise 

bastante poderosa para explicar a dinâmica da distribuição de renda. No entanto, o atributo da 

escalabilidade das profissões não vem sendo explorado nessa agenda de pesquisa, embora 

apresente um enorme potencial para explicar as diferenças salariais. Foi sugerido que as 

ocupações em que alguém é pago por hora não são escaláveis, enquanto as ocupações 

escaláveis permitem que se ganhe mais dinheiro sem um aumento equivalente no trabalho e 

no tempo. Espera-se que as ocupações não escaláveis tenham baixa variância de renda, 

enquanto as escaláveis mostrem grandes desigualdades de renda. Este estudo examina as 

evidências para esta distinção sugerida usando microdados de rendimentos pessoais para doze 

ocupações candidatas a ambos os tipos, escaláveis ou não. De modo geral, encontramos que 

as caudas superiores de todas as distribuições decaem como leis de potência. No primeiro 

ensaio, testamos a eficácia de um modelo de distribuição de renda de duas classes que 

concilia a lei de Pareto para os indivíduos com maior renda e a distribuição log-normal para o 

restante da amostra. No segundo ensaio, computamos o ponto de corte ótimo para caracterizar 

o extrato superior dos rendimentos para as diferentes ocupações. No terceiro ensaio, 

utilizamos a abordagem não paramétrica das curvas de Pareto generalizadas para caracterizar 

a desigualdade de rendimentos em todos os níveis da distribuição entre as diferentes 

profissões. Em síntese, não podemos rejeitar a distinção sugerida entre ocupações escaláveis e 

não escaláveis através de três diferentes modelos teóricos. 

 

Palavras-chave: Distribuição de renda. Profissões escaláveis. Lei de potência. Distribuição 

de Pareto. Econofísica. 

 

 

  



 

 

RESUMO EXPANDIDO 

 

Introdução 

Nas últimas décadas, a agenda que analisa problemas econômicos a partir de modelos 

derivados da física vem ganhando importância. Nesse sentido, técnicas de pesquisa oriundas 

da mecânica estatística vem sendo cada vez mais aplicadas a temas de interesse relacionados a 

economia e finanças. O termo econofísica foi então cunhado para fazer referência a essas 

novas abordagens que buscam integrar assuntos econômico-financeiras a conceitos de física. 

Uma das principais circunstâncias que ensejou o surgimento e a difusão da econofísica foi a 

vinculação dos modelos clássicos de econometria à distribuição normal (Gaussiana) e suas 

propriedades e a limitação que isso provocava na capacidade explicativa de eventos extremos. 

Um dos tópicos mais recorrentes nas pesquisas em econofísica é a evidenciação em diversos 

fenômenos das chamadas leis de potência, que apresentam distribuição de Pareto para as 

caudas em detrimento do decaimento exponencial característico da distribuição normal. 

A dinâmica da distribuição de renda, por exemplo, tem se mostrado um campo de estudo 

bastante fértil sob o arcabouço da econofísica. No entanto, o atributo da escalabilidade das 

profissões não vem sendo explorado nessa agenda de pesquisa, embora apresente um enorme 

potencial para explicar diferenças salariais. Segundo Taleb (2010), algumas atividades podem 

ser “escaláveis” no tempo, enquanto outras, não. Uma profissão escalável é aquela na qual 

não se é pago por hora e, portanto, não se está sujeito às limitações do volume de trabalho. 

Atividades cuja remuneração depende do tempo e esforço empregado muito dificilmente 

podem tornar as pessoas muito ricas. Nesse tipo de profissão, dita não escalável, a renda do 

trabalho depende mais de esforços contínuos do que da qualidade das decisões tomadas. Nas 

ocupações não escaláveis, espera-se um tipo moderado de aleatoriedade e uma distribuição 

aproximadamente Gaussiana dos rendimentos. Em contrapartida, as ocupações escaláveis 

caracterizam-se por um tipo intenso de aleatoriedade em que não existe um membro típico. 

Esse tipo de atividade produz o efeito winner-takes-almost-all. Taleb (2010) sugere que as 

atividades escaláveis estão associadas à geometria Mandelbrotiana e às leis de potência, em 

detrimento da “curva em formato de sino”. Neste caso, uma única observação pode afetar 

desproporcionalmente o todo. Como as caudas desta distribuição são mais grossas do que as 

da distribuição Gaussiana, nenhum evento extremo precisa ser excluído e tratado como 

“outlier”. Assim, o presente trabalho se apoiará no conceito de escalabilidade como um fator 

explicativo para as acentuadas diferenças nos rendimentos do trabalho entre determinadas 

profissões. A desigualdade na distribuição das rendas entre as ocupações será avaliada a partir 

de técnicas de pesquisa oriundas da mecânica estatística. 

 

Objetivos 

O presente trabalho tem como objetivo geral identificar, descrever e analisar as distribuições 

de probabilidade da renda do trabalhador brasileiro a partir de características de escalabilidade 

das profissões. Desse modo, busca-se verificar se ocorre diferença estatística significativa 

entre os rendimentos de algumas ocupações escaláveis e não escaláveis. Além disso, propõe-

se averiguar a presença de leis de potência nas caudas superiores e estimar os parâmetros 

correspondentes. De maneira geral, o trabalho investiga se as profissões escaláveis 

apresentam cauda superior mais grossa na distribuição de renda se comparadas com as 

profissões não escaláveis. 



 

No primeiro ensaio, o objetivo específico é avaliar a eficácia de um modelo de distribuição de 

renda de duas classes que concilia a lei de Pareto para indivíduos com renda mais alta e a 

distribuição log-normal para o restante da amostra. No segundo ensaio, o objetivo é calcular o 

ponto de corte ótimo para caracterizar o estrato superior de rendimentos para as diferentes 

ocupações e compará-los. No terceiro ensaio, ampliamos o escopo de análise da cauda 

superior para toda a distribuição de renda através da abordagem não paramétrica das curvas 

de Pareto generalizadas. 

 

Metodologia 

O artigo propõe uma investigação sobre a distribuição da remuneração do trabalhador formal 

brasileiro, devidamente tabulada por grupos de ocupação, a partir de microdados da Relação 

Anual de Informações Sociais (RAIS) do ano de 2017. Para agrupar as profissões, foi 

utilizada a Classificação Brasileira de Ocupações (CBO). 

Portanto, partindo da base da RAIS para o ano de 2017 consideramos os microdados de renda 

nominal média mensal para 12 diferentes ocupações. A partir da base do estado do Rio de 

Janeiro, coletamos dados para motoboy, escriturário de banco, dentista, arquiteto, ator e 

jogador de futebol. A partir da base de São Paulo, foram coletados dados de renda para 

advogado, professor de português do ensino fundamental, designer de moda, locutor de rádio 

e televisão, artista visual e músico intérprete instrumentista. 

Convém destacar que os dados para as ocupações candidatas a escaláveis são 

indiscutivelmente conservadores. Como a RAIS é um registro administrativo e de âmbito 

nacional, suas informações revelam as características do mercado de trabalho formal a partir 

de declarações enviadas pelos empregadores brasileiros. Desse modo, os superastros do 

futebol que atuam em clubes de outros países, por exemplo, não são considerados nos 

registros. Da mesma maneira, para os jogadores de futebol que atuam no mercado brasileiro 

não são computadas rendas oriundas de outras fontes, como contratos publicitários. 

Busca-se, a partir desses dados, derivar as distribuições de probabilidade da renda do 

trabalhador brasileiro a partir de características de escalabilidade das profissões e compará-

las. Para tal, será apresentado um conjunto de técnicas estatísticas que permitem diagnosticar 

e caracterizar a lei de potência, bem como métodos para calcular seus parâmetros. 

 

Resultados e discussão 

No primeiro ensaio, o modelo de distribuição de renda de duas classes, que concilia a lei de 

Pareto para os indivíduos de maior renda e a distribuição log-normal para o restante da 

amostra, mostrou-se compatível com a categorização interocupacional proposta por Taleb 

(2010). Nela, espera-se que ocupações não escaláveis apresentem baixa variância de 

rendimentos, enquanto as escaláveis se caracterizem por grandes desigualdades salariais. Os 

resultados encontrados nos permitem concluir que, a considerar o modelo de distribuição de 

renda de duas classes, não podemos rejeitar a hipótese de que ocupações não escaláveis são 

mais igualitárias que as escaláveis para a porção superior dos dados a partir do ponto de corte 

ótimo. As distribuições de rendimentos de ocupações escaláveis decaem como lei de potência 

e apresentam caudas mais pesadas - menores expoentes de Pareto - do que ocupações não 

escaláveis. 

No segundo ensaio, calculamos os expoentes de Pareto das distribuições de renda de doze 

profissões selecionadas usando OLS e ML. Nosso objetivo foi testar a hipótese de que 

ocupações não escaláveis são mais igualitárias que as escaláveis. Concluímos que não 

podemos rejeitar tal hipótese para a porção dos dados de renda entre a mediana e o ponto de 

corte ótimo. No entanto, existe outro regime de lei de potência acima dos pontos de corte 



 

 

ótimos onde esses resultados são invertidos. Esse resultado geral diferenciado surge porque os 

pontos de corte computados dos rendimentos extremos apresentam alta variância e, portanto, 

uma dinâmica de concentração bastante distinta entre as ocupações. 

Os resultados do terceiro ensaio alinham-se às conclusões do segundo ensaio de que na região 

que caracteriza o topo dos rendimentos as ocupações escaláveis são mais igualitárias do que 

as não-escaláveis. 

 

Considerações finais 

Em vista dos resultados, evidencia-se uma dinâmica de concentração bastante distinta entre os 

tipos de profissões. Desse modo, a categorização das ocupações de não escalável para 

escalável depende não apenas do threshold de rendas mais altas escolhido, mas também do 

regime de escala (scaling) nas caudas. Além de revelar um mecanismo distinto de 

concentração de rendimentos entre os tipos de profissões, o presente trabalho também pode 

ser entendido como um novo olhar sobre a dimensão macroeconômica. Com base nas 

caracterizações intra e interocupacionais da distribuição de rendimentos, fornecemos novos 

elementos e perspectivas para abordar a desigualdade de renda em nível agregado. 
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de Pareto. Econofísica. 

 

 

 

 

 

 

 

 

 

  



 

ABSTRACT 

 

Research techniques derived from statistical physics have proved to be a very powerful 

analysis tool to explain the dynamics of income distribution. However, the attribute of 

scalability of professions has not been explored in this research agenda, although it has huge 

potential to explain salary differences. It has been suggested that occupations where one is 

paid by the hour are not scalable, while scalable occupations allow one to make more money 

without an equivalent increase in labor and time. Non-scalable occupations are expected to 

have low income variance, whereas scalable ones show large income inequalities. This study 

examines the evidence for this suggested distinction using personal earnings microdata for 

twelve candidate occupations of both types, scalable and not. Generally, we find the upper 

tails of all distributions decay as power laws. In the first essay, we tested the effectiveness of a 

two-class income distribution model that reconciles Pareto's law for individuals with higher 

incomes and the log-normal distribution for the rest of the sample. In the second essay, we 

computed the optimal cut-off point to characterize the upper stratum of earnings for the 

different occupations. In the third essay, we used the non-parametric approach of generalized 

Pareto curves to characterize earnings inequality at all levels of the distribution between 

different occupations. In summary, we cannot reject the suggested distinction between 

scalable and non-scalable occupations through three different theoretical models. 

 

Keywords: Income distribution. Scalable professions. Power law. Pareto distribution. 

Econophysics. 

 

  

  

  



 

 

LIST OF FIGURES 

 

Figure 1 – Two-class income distribution ………………………………………………...… 33 

Figure 2 – Normal quantile plots .............................................................................................. 36 

Figure 3 – Histograms .............................................................................................................  38 

Figure 4 – CCDF (y axis) and earnings (x axis) in log scale  .................................................. 41 

Figure 5 – Zipf plots for S(x) ≤ 0.5 ....................................................................................... .  48 

Figure 6 – D statistics and their p-values vs. thresholds ............................................. ...........  50 

Figure 7 – Two scaling regimes in Zipf plots ...................................................................... ...  55 

Figure 8 – R2 statistics and the corresponding tail index vs. cut-offs ................. ...................  58 

Figure 9 – Scaling in Zipf plots  ............................................................................................... 61 

Figure 10 – Generalized Pareto curves  .................................................................................... 68 

 

 

  



 

LIST OF TABLES 

 

Table 1 – Results of the two-class income distribution model ................................................. 40 

Table 2 – Pareto coefficients for pre-established thresholds: OLS estimation ........................ 45 

Table 3 – Pareto coefficients for pre-established thresholds: ML estimation ......... ...............  46 

Table 4 – OLS estimates for the scaling regime above KS thresholds ...................................  53 

Table 5 – ML estimates for the scaling regime above KS thresholds .... ................................  53 

Table 6 – Results for the scaling regime from medians to optimal cut-offs .......... ................  54 

Table 7 – Pareto coefficients above optimal cutoffs R2 .................................. .......................  57 

Table 8 – OLS estimates for the scaling above medians ...................... ..................................  63 

  



 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

 

ABNT Associação Brasileira de Normas Técnicas 

CBO Classificação Brasileira de Ocupações 

IBGE Instituto Brasileiro de Geografia e Estatística 

ML Maximum Likelihood 

KS Kolmogorov-Smirnov 

OLS Ordinary Least Squares 

RAIS Relação Anual de Informações Sociais 

p90 Percentil 90 

p95 Percentil 95 

 

  



 

CONTENTS 

 

1 INTRODUCTION ............................................................................................... 19 

1.1 THEME.................................................................................................................. 19 

1.2 OBJECTIVES ........................................................................................................ 19 

1.2.1 General Objectives............................................................................................... 19 

1.2.2 Specific Objectives ............................................................................................... 20 

2 THEORETICAL REFERENCE ........................................................................ 20 

3 METHODOLOGY .............................................................................................. 27 

3.1 MATERIALS ........................................................................................................ 27 

3.2 METHODS ............................................................................................................ 29 

3.2.1 Descriptive statistics and visual inspection........................................................ 29 

3.2.2 Power law and estimation of Pareto exponent .................................................. 29 

4 ESSAY 1: TWO-CLASS EARNINGS DISTRIBUTION MODEL ................ 32 

4.1 INTRODUCTION ................................................................................................. 32 

4.2 RELATED LITERATURE ................................................................................... 32 

4.3 METHODOLOGY ................................................................................................ 33 

4.4 RESULTS .............................................................................................................. 35 

4.4.1 Visual inspections ................................................................................................ 35 

4.4.2 Two-class income distribution model estimation .............................................. 40 

4.5 CONCLUSIONS ................................................................................................... 43 

5 ESSAY 2: TOP EARNINGS OF SCALABLE VS. NON-SCALABLE 

OCCUPATIONS ..................................................................................................................... 44 

5.1 INTRODUCTION ................................................................................................. 44 

5.2 RELATED LITERATURE ................................................................................... 44 

5.3 METHODOLOGY ................................................................................................ 45 

5.4 RESULTS .............................................................................................................. 45 

5.4.1 Estimation ............................................................................................................. 45 

5.4.2 Optimal cut-off point: the Kolmogorov-Smirnov statistics ............................. 47 



 

 

5.4.3 The R2 coefficient ................................................................................................. 57 

5.5 CONCLUSIONS ................................................................................................... 63 

6 ESSAY 3: THE “LOCAL” APPROACH OF THE INVERTED 

COEFFICIENT AND THE GENERALIZED PARETO CURVES .................................. 64 

6.1 INTRODUCTION ................................................................................................. 64 

6.2 RELATED LITERATURE ................................................................................... 64 

6.3 METHODOLOGY ................................................................................................ 65 

6.4 RESULTS .............................................................................................................. 67 

6.5 CONCLUSIONS ................................................................................................... 70 

7 CONCLUSION .................................................................................................... 71 

BIBLIOGRAPHIC REFERENCES .................................................................. 72 

APPENDIX ........................................................................................................... 77 





19 

 

 

1  INTRODUCTION 

1.1 THEME 

 

In recent decades, different approaches to income distribution have played a 

fundamental role in economic models. At the same time, the research agenda that analyzes 

economic problems from concepts derived from physics is gaining importance. In this sense, 

statistical mechanics instruments have been increasingly applied to research topics in 

economics and finance. 

The dynamics of income distribution, for example, has proved to be a very fertile 

field of study under the framework of econophysics. However, the attribute of scalability of 

professions has not been explored in this research agenda, although it has enormous potential 

to explain salary differences. 

Thus, the present thesis will be based on the concept of scalability as an explanatory 

factor for the marked differences in labor earnings between certain professions. The inequality 

in the distribution of income between occupations will be evaluated using research techniques 

from statistical mechanics. 

 

1.2 OBJECTIVES 

1.2.1 General Objectives 

 

The thesis has as general objective to identify, describe and analyze the probability 

distributions of the Brazilian worker's income from the scalability characteristics of the 

professions. Thus, we seek to verify whether there is a statistically significant difference 

between the income of scalable and non-scalable occupations. 

Furthermore, it is proposed to investigate the presence of power laws in the upper 

tails and estimate the corresponding parameters. In general, the work investigates whether 

scalable professions have a thicker upper tail in the income distribution compared to non-

scalable professions. 
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1.2.2 Specific Objectives 

 

In its first essay, the thesis evaluates the effectiveness of a two-class income 

distribution model that reconciles Pareto's law for individuals with higher incomes and the 

log-normal distribution for the rest of the sample. 

In the second essay, we computed the optimal cut-off point in order to characterize 

the upper stratum of earnings for the different occupations and compare them. 

In the third essay, we broaden the scope of analysis from the upper tail to the entire 

income distribution through the non-parametric approach of the generalized Pareto curves. 

 

2  THEORETICAL REFERENCE 

 

Economists have long historically and empirically analyzed income and wealth 

inequalities. Several prominent researchers such as Smith, Marshall, Pareto, Friedman and 

Kuznets have made great contributions to consolidate the study of the dynamics of the 

distribution of earnings and assets as one of the main fields of research in social sciences and 

political economy. 

With regard to the positive perspective of income distribution, the theoretical 

approach of classical economists focused mainly on the functional distribution of income, that 

is, on the way in which incomes are distributed among the factors of production. 

In order to carry out an analysis with a high level of aggregation, the classical 

approach to the functional distribution of income assumed the premise that production factors 

are homogeneous. In fact, the assumption of homogeneity was admittedly a very strong 

theoretical abstraction, especially when it came to the distribution of income from the labor 

factor. It was always very evident that salaries were very different between different 

occupations. In principle, there could be two reasons for this. 

First, wage differences can be caused by competitive forces. Second, they can be 

caused by the absence of competition, whether by particular restrictions or government 

regulations. 

Smith's (1776) view of wage differentials became known as the theory of 

compensating variances. His most general idea is that wage incomes will reflect the particular 

circumstances of each of the different professions. Thus, for any particular job class, these 
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circumstances will determine whether the salary will be above or below the average for all 

professions. 

In this sense, Smith (1776) mentioned some elements that could cause inequality 

between wages. The first one would be the ease or difficulty inherent in this work. 

Furthermore, the attributes of honor and social repulsion of occupations would also play a key 

role. 

According to the eminent author, some professions are particularly honorable and, as 

honor is related to reward, salaries are relatively lower. Other professions, on the contrary, 

embody the general feeling of disgrace, are carried out in unhealthy environments or carry a 

high degree of danger. In these cases, the effect on wages is the opposite, that is, the 

corresponding earnings are relatively higher. 

For Smith (1776), the great variability of wages is also related to how difficult and 

expensive it is to learn the profession, with the constancy or inconstancy of employment and 

with the amount of trust placed in the worker. 

The last cause of wage inequality according to Smith (1776) is the probability of 

success in the profession. In his best-known example, if an individual practices to become a 

shoemaker, he will almost certainly be able to make a living making shoes. However, if 

someone is brought up to become a lawyer, only one in 20 will be able to do well enough to 

live up to that occupation. 

In Smith's (1776) view, professions such as lawyer function as a kind of lottery. So, 

as there are few winning tickets, they should receive very high prizes. However, wage 

differences of this nature would, in fact, answer less than rational considerations of 

probabilities, given that most people, especially young people, have a tendency to 

overestimate the probability of success. 

In Mill's (1848) view, Smith's theory only has some explanatory power for the case 

of perfect competition with jobs of the same category and filled by similar people. However, 

this case would be far from the reality of labor markets. 

Thus, Mill (1848) believed that Smith's hypothesis that wages tended to increase 

with the net disadvantages associated with different occupations was wrong. For him, 

otherwise, the difficulties and the corresponding income maintained an inverse relationship 

between them. Thus: 
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“The really exhausting and the really repulsive labours, 

instead of being better paid than others, are almost invariably paid the 

worst of all, because performed by those who have no choice… The 

more revolting the occupation, the more certain it is to receive the 

minimum of remuneration, because it devolves on the most helpless 

and degraded, on those who from squalid poverty, or from want of 

skill and education, are rejected from all other employments.” (MILL, 

1848; 1965, p. 475) 

The marginalist revolution, which gave rise to the neoclassical school, enunciated the 

new foundations of conventional economic theory. Unlike classical authors, marginalist 

economists based their analyzes on the individual behavior of economic agents. This 

evolution in the conception of economic ideas was only possible thanks to advances in the use 

of optimization theories and other tools of differential calculus. 

In this sense, the equality between the value of marginal productivity and the price of 

the corresponding factor of production, arising from the problem of maximizing profit, 

becomes one of the main foundations of neoclassical economics. Walras (1874-1877; 1954), 

one of the main exponents of marginalism, also emphasized that a theory about the average 

wage rate – which, according to him, was the core of classical thought – would not be very 

useful. According to the eminent author, the analysis of wages should be based on a 

disaggregated view of the labor market. Thus, earnings from work should reflect specific 

conditions of occupation. 

Like Walras (1874-1877; 1954), Marshall (1890; 1920) also believed that analyzes of 

the general wage rate were misleading since: 

“[…] in fact there is no such thing in modern civilization as a 

general rate of wages. Each of a hundred or more groups of workers 

has its own wage problem, its own set of special causes, natural and 

artificial, controlling the supply-price, and limiting the number of its 

members; each has its own demand-price governed by the need that 

other agents of production have of its services.” (MARSHALL, 1890; 

1920, p. 533) 

In this way, a contrasting perspective can be seen between the marginalist view and 

the classical authors. While the classical school based its discussion on the general rate of 

wages (though it later added an ad hoc discussion of wage differentials), the marginalists 

analyzed wage incomes within multiple (albeit interrelated) labor markets. 

In the 20th century, the neoclassical ideas were rescued by economists who would 

give rise to the theory of human capital, according to which items such as education and 

technical courses are also considered capital. Thus, spending on education and professional 
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training can be classified as investments, and the decision-making criteria are similar to those 

for investments in physical capital. 

Although the theory of human capital emerged with the work of Schultz, its 

conceptions were extensively developed and popularized by Becker. In this sense, it is fair to 

say that Becker (1964) inaugurated an extremely influential new field of research, even 

addressing issues related to income distribution. For the author, the quality of labor reflects 

the stock of cognitive skills, which can be improved through investment in human capital, 

thus making work more productive and improving workers' earnings. 

According to Becker and Chiswick (1966), at the individual level, the amount to be 

invested in human capital is determined by the intersection between the supply and demand 

curves, or more specifically, between the marginal benefit and marginal cost curves. 

Empirically, it is expected that the supply and demand curves show great variety among 

individuals. 

While the position of the supply curves may reflect parents' income and wealth and 

access to capital markets, the different demand curves may represent individual 

characteristics, such as the potential for skill development and risk behavior pattern. 

The balance of risk in the distribution of income between occupations represented a 

fundamental element in compensating wage differences. In choosing between a safe and a 

risky occupation (shoemaker and lawyer, respectively, in Smith's classic example), the 

expected wage income in the risky occupation would have to be higher than in the safe 

profession to compensate individuals for their additional risk burden. 

To the extent that individuals correctly assessed probabilities, these ex ante 

expectations would be translated into ex post income inequality. Thus, the salary of lawyers 

would tend to have a higher average, although with greater variability compared to the 

earnings of shoemakers. 

The possibility of formally modeling individual choice in risk scenarios was driven 

by the axioms of expected utility theory developed by von Neumann and Morgenstern (1947). 

The theory of income distribution was one of the first fields of research to adopt this 

theoretical tool. 

The seminal contributions in this field were given by Friedman (1953), who 

interpreted income distribution as the result of rational choice under uncertainty. In this sense, 

as much as individuals have ex ante equal opportunities, the income lotteries in which they 
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engage incur an unequal distribution of results, as some will benefit ex post with high incomes 

and others will be included in low-income groups. 

For Friedman (1953), the format of the utility function will generate a given income 

distribution, consistent with the observed patterns. The renowned author also argued that 

individuals, as members of a democratic society, will be motivated to introduce redistributive 

mechanisms that protect them against the socioeconomic consequences of the most adverse 

outcomes. 

According to this view, therefore, both income inequality and redistributive policies 

emerge as a result of the free choice of individuals in a situation of equal opportunities and 

reflect their attitude towards risk. The less risk-averse individuals are, the greater will be the 

income inequality in society. 

Although the marginalist revolution presented a set of quite consistent theoretical 

propositions regarding the personal distribution of income, the end of the 19th century saw the 

emergence of a more inductive view of the phenomenon, based no longer on an a priori 

theory, but on statistical inference. The pioneering contribution of this new conception can be 

attributed to Pareto (1897), whose work caused much discussion and controversy for several 

decades after its initial publication. 

The prototype that later came to be known as Pareto's law did not derive from a 

theoretical model. Instead, it was based on a detailed study of income statistics for various 

countries and periods. Data analysis led Pareto to the hypothesis that all statistical 

distributions of income have a common form which can be characterized as follows. 

Suppose we make a list of all the society's incomes, from lowest to highest. From the 

median of income, we know that 50% of income earners have an income above the median. 

We then move to an income level 1% higher than the median and ask what percentage of the 

population has an income above that level. 

Obviously, the percentage is less than 50, but how much less? Pareto found the 

response to be 1.5%; in other words, as the income level increases by 1%, the number of 

individuals with income above that level falls by 1.5%. In general, in mathematical terms 

Pareto wrote his law as log N = log A – α log y, where N is the number of individuals with a 

minimum income of y and A is a parameter that reflects the size of the population. α is the 

Pareto constant that he estimated to be approximately equal to 1.5. 
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The relationship has the interesting property that the average income of those whose 

income is greater than y will be equal to α / (α-1) times y. Thus, assuming again that α = 1.5, 

the average income of those with income above 10,000 units of money should equal 30,000 

units of money. 

The tradition established by Pareto's work of looking for regularities or empirical 

laws in the distribution of income was continued by several later writers. 

The seminal work by Gibrat (1931), for example, inaugurates the view that income 

data fit sufficiently well with the lognormal distribution. 

Roy (1950) also claimed that the observed income distributions could be reasonably 

approximated by the lognormal distribution. According to him, "there must be some rational 

explanation for the fact that all income distributions have similar shapes" (ROY, 1950, p. 

490). He tried to discover this explanation by studying several industrial cases where workers 

performed a standard and identical task and where individual output was easy to measure. To 

the extent that people are paid according to output, this result can go a long way in explaining 

the distribution of earnings in terms of the distribution of individual skills. 

Roy (1951) studies the theoretical case of a "primitive" society in which people can 

choose to work in two or more occupations and where their abilities differ between 

occupations. He then discussed how different skill correlations give rise to different statistical 

distributions of earnings (always assuming earnings are proportional to output), emphasizing 

the central role played by the lognormal distribution. 

Recently, econophysicists discovered that only upper stratum incomes follow the 

Paretian distribution, with the lower stratum being distributed as a two-parameter lognormal 

(CLEMENTI; GALLEGATI, 2005). Mandelbrot (1960) also points out that Pareto's law 

applies only asymptotically to the extremes of the upper tail of distributions. In this sense, the 

Pareto Type I model fits well with higher income data (ATKINSON et al., 2014). 

The various statistical approaches to the study of income distribution involve some 

controversy. From attempts to rationalize the observed income distribution, these approaches 

use some stylized facts or assumptions about income generation to explain the observed 

patterns. The controversy of this type of analysis is no longer supported by works such as 

Atkinson (1970) and Sen (1973), since it has been established that any particular index of 

inequality is implicitly based on some ethical judgment about the nature of inequality. 
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When it comes to the need to reduce inequalities, we certainly do not seek to 

eliminate all differences in terms of economic results. Differences in economic rewards are, in 

a sense, inherent in market economies. In recent literature, the factors that determine the 

discrepancy of economic gains are divided into inequality of opportunities and inequality of 

results. 

Inequality of opportunities is related to socioeconomic circumstances (social class in 

which the family is inserted and inheritance, for example) and are beyond personal control. 

When factors associated with these socioeconomic circumstances do not interfere with the 

achievement of rewards, we say that there is equality of opportunity. In this way, equality of 

opportunity is an ex ante concept, as all agents start from the same point and dispute the 

allocation of scarce resources with equal chances of success. 

The inequality of results is associated with the degree of effort made by the 

individual in the demand for economic rewards. It is, therefore, an ex post concept and 

imputed to the agent, in the sense that he is responsible for his diligence. 

However, it is essential to differentiate between competitive and non-competitive 

equal opportunities. According to Atkinson (2015), non-competitive equality must ensure that 

individuals have the same opportunity to carry out their independent life projects. All people 

should thus have a chance of becoming a successful lawyer. 

Alternatively, competitive equality of opportunity states that individuals must have 

an equal chance of becoming a successful lawyer or a famous football athlete. Thus, it is 

verified the presence of unequal rewards ex post, which leads us to a more detailed 

investigation regarding the role of inequality in results. 

According to Atkinson (2015), “it is the existence of a highly unequal distribution of 

prizes that makes us give so much importance to ensuring that the race is fair. And the prize 

structure is, to a large extent, socially constructed.” In this way, our socioeconomic apparatus 

determines whether the winners in a given market earn R$ 2,000 or R$ 60,000 per month. 

However, the distribution of rewards between different types of occupation does not 

follow a purely stochastic process. Several factors can influence the great inequality in the 

division of premiums between professions. Among these factors, we can highlight the 

scalability attribute. 
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According to Taleb (2010), some activities can be “scalable” in time, while others 

cannot. A scalable profession is one in which you are not paid by the hour and therefore not 

subject to workload limitations. In the author's conception: 

“A scalable profession is good only if you are successful; 

they are more competitive, produce monstrous inequalities, and are far 

more random, with huge disparities between efforts and rewards—a 

few can take a large share of the pie, leaving others out entirely at no 

fault of their own. One category of profession is driven by the 

mediocre, the average, and the middle-of-the-road. In it, the mediocre 

is collectively consequential. The other has either giants or dwarves—

more precisely, a very small number of giants and a huge number of 

dwarves.” (TALEB, 2010, p. 28) 

Activities whose remuneration depends on the time and effort employed can hardly 

make people very rich. In this type of profession, which is said to be non-scalable, income 

from work depends more on continuous efforts than on the quality of decisions taken. 

In non-scalable professions, moderate or type 1 randomness is perceived, in which 

the most typical member is mediocre. In this type of activity, earnings have an approximately 

Gaussian distribution. Here, in a large sample, no single event significantly alters the whole. 

The greatest observation of the sample is impressive, but it is insignificant for the total 

sample. The extreme event can be excluded without too many consequences and considered 

an “outlier”. 

In contrast, scalable professions are characterized by intense randomness or type 2, 

in which there is no typical member (the most typical is giant or dwarf). This type of activity 

produces the winner-takes-almost-all effect. Taleb (2010) suggests that scalable activities are 

associated with Mandelbrotian geometry and power laws, to the detriment of the “bell-shaped 

curve”. In this case, a single observation can disproportionately affect the whole. As the tails 

of this distribution are thicker than those of the Gaussian bell-shaped distribution, no extreme 

events need be excluded and treated as “outlier”. 

 

3 METHODOLOGY 

3.1 MATERIALS 

The article proposes an investigation on the distribution of Brazilian workers' 

remuneration, duly tabulated by occupation groups, based on microdata from the Annual 

Social Information Report (RAIS) for 2017. 
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To group the professions, the Brazilian Classification of Occupations (CBO) was 

used. The CBO is the standardizing document for the classification, naming and coding of 

titles and contents of occupations in the Brazilian labor market. The enumerative function of 

the CBO is used in administrative records such as the Annual Social Information Report – 

RAIS. 

Since its publication at the beginning of the last quarter of the last century, the CBO 

has undergone punctual updates, without structural and methodological changes. The 

international classification made public in 1988 under the acronym CIUO 88 in Spanish – 

ISCO 88 and CITP 88, in English and French, respectively – introduced new criteria for 

aggregation of occupations. 

Therefore, starting from the RAIS base for the year 2017, we considered the monthly 

average nominal income microdata for 12 different occupations. From the base of the state of 

Rio de Janeiro, we collected data for motorcycle messenger, bank clerk, dentist, architect, 

actor and soccer player. From the base of São Paulo, income data were collected for lawyers, 

elementary school Portuguese teachers, fashion designers, radio and television broadcasters, 

visual artists and music performers. 

It should be noted that the data for occupations that are candidates for scalables are 

indisputably conservative. As RAIS is an administrative register with a national scope, its 

information reveals the characteristics of the formal labor market based on statements sent by 

Brazilian employers. Thus, football superstars who play in international clubs, for example, 

are not considered in the records. In the same way, for soccer players who work in the 

Brazilian market, income from other sources, such as advertising contracts, is not computed. 

In addition, the choice of professions mainly met the criterion of availability, given 

that for many occupations, especially those candidates for scalable, there was not enough 

data. One possible explanation for the scarcity of earnings data for many scalable occupations 

is that many of these individuals are part of the informal market, work as freelancers or are 

registered with an adverse occupation code. 

Based on these conservative data, the aim is to derive the probability distributions of 

the Brazilian worker's income from the scalability characteristics of these professions and 

compare them. For that, a set of statistical techniques that allow to diagnose and characterize 

the power law will be presented, as well as methods to calculate its parameters. 
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3.2 METHODS 

3.2.1 Descriptive statistics and visual inspection 

In the present work, descriptive statistics are presented, such as percentiles, mean, 

standard deviation, asymmetry and kurtosis of earnings tabulated by occupation. The 

histograms of income distributions are also presented. A histogram is a frequency graph 

intended to illustrate how a particular sample or population of data is distributed. 

Afterwards, the normal quantile plots of remuneration are displayed. The QQ plot, or 

quantile-quantile plot, is a graphical tool to help us assess whether a data set comes from 

some theoretical distribution, such as normal or exponential. For example, if we run a 

statistical analysis that assumes our dependent variable is normally distributed, we can use a 

normal QQ plot to verify this assumption. It's just a visual check. 

 

3.2.2 Power law and estimation of Pareto exponent 

The probability density function (PDF) for a Pareto Type I random variable is: 

 

𝑝(𝑥) =
𝛼𝑥𝑚𝑖𝑛

𝛼

𝑥𝛼+1
          (1) 

It is very important to also consider the cumulative distribution function or CDF of a 

power-law distributed variable, which we denote P(x) and which is defined as P(x) = Pr(X ≤ 

x). For example, in the continuous case: 

𝑃(𝑥) = ∫ 𝑝(𝑧)𝑑𝑧
𝑥

𝑥𝑚𝑖𝑛

= 1 − (
𝑥𝑚𝑖𝑛
𝑥
)
𝛼

         (2) 

The complementary cumulative distribution function (CCDF), or Survivor function, 

in a Pareto type I model shows the fraction of a given population with incomes greater than x 

- that is, S(x) = Pr(X > x) - and is given by: 

𝑆(𝑥) = ∫ 𝑝(𝑧)𝑑𝑧 =
∞

𝑥

1 − 𝑃(𝑥) = (
𝑥

𝑥𝑚𝑖𝑛
)
−𝛼

          (3) 

where x ≥ xmin > 0, and xmin > 0 is the lower income limit. The α parameter is the shape 

parameter (“tail index”) that describes the weight of the right tail of the distribution, with 

smaller values corresponding to heavier tails. The k-th moment exists only if k < α. 

An important power law graphical representation mechanism derived from equation 

(3) was known as Zipf plots. These are plots of the logarithm of the Survivor function against 
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the logarithms of income (for incomes in ascending order and greater than xmin). In the event 

of a power law, the format of these plots generates straight line intervals with an inclination 

equal to -α. 

There are several methods for calculating the scaling parameter of a power law. For 

example, the exponent of a type I Pareto distribution can be estimated by an ordinary least 

squares regression of the logarithm of the complementary cumulative distribution function (or 

Survivor function) over the logarithm of income and a constant term. 

An ordinary least squares estimate is consistent, but the standard error is imprecise 

because the positive autocorrelation in the residuals from income rankings is neglected 

(JENKINS, 2017). An alternative is maximum likelihood (ML) estimation. For the continuous 

case of a Pareto type I model, the maximum likelihood estimator (HILL, 1975) for the shape 

coefficient is: 

�̂� = 𝑛 [∑ln
𝑥𝑖
𝑥𝑚𝑖𝑛

𝑛

𝑖=1

]

−1

          (4) 

where xi, i = 1. . . n are the observed values of x such that xi ≥ xmin. 

This estimator produces a consistent standard error, but is susceptible to bias in the 

presence of extremely high incomes (JENKINS, 2017). This is a serious limitation given the 

nature of our data. However, as our dataset is conservative - as explained above, superstars 

operating in markets beyond national borders are absent - we also provide ML estimates. 

In addition, both the ordinary least squares (OLS) and the maximum likelihood (ML) 

estimators are biased in small samples (JENKINS, 2017). As the sample size in our datasets 

for each occupation is not large enough, we consider here the OLS estimator proposed by 

Gabaix and Ibragimov (2011) that solves the small sample problem and produces a consistent 

standard error, given by: 

log (𝑅𝑎𝑛𝑘 −
1

2
) = 𝑎 − 𝑏 log(𝑥)         (5) 

where x in this case is income. The change through the subtraction of 1/2 is optimal, cancels 

the bias and the standard error of   is not the standard error of the OLS estimator, but is, 

asymptotically, equal to ( )
1
22

n
  (GABAIX; IBRAGIMOV, 2011). 

Additionally, the graph of the log of rank-1/2 versus the log of income in straight line 

form suggests that the decay of the upper tail of the income distribution follows a power law. 
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As can be inferred, there is also a type II Pareto model that adds an extra parameter 

and sometimes produces a better fit to the data. However, in most cases, the improvement in 

the quality of the fit is negligible and this must be balanced against the greater simplicity of 

the Pareto type I model. Furthermore, the Pareto type II model collapses to the type I after 

proper parameterization. Here, we do not consider the Pareto type II model. 
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4 ESSAY 1: TWO-CLASS EARNINGS DISTRIBUTION MODEL 

4.1 INTRODUCTION 

In this first essay, we tested the effectiveness of a two-class income distribution 

model, which reconciles Pareto's law for individuals with higher incomes and the log-normal 

distribution for the rest of the sample, considering the attribute of scalability of occupations. 

 

4.2 RELATED LITERATURE 

In the literature related to econophysics, one can define income distribution as the 

probability P(x)dx that, in the "equilibrium" or "steady state" of the system, a randomly 

chosen person has income between x and x + dx. 

In his seminal work, Pareto (1897) found that the upper portion of the income 

distribution follows a power law: 

𝑃(𝑥) ~ 𝑥−𝛼          (6) 

Later, Gibrat (1931) found that despite Pareto's law being valid only for the upper 

tail, the average income interval is well represented by the log-normal probability density: 

𝑃(𝑥)~
1

𝑥√2𝜋𝜎2
𝑒𝑥𝑝 {−

𝑙𝑜𝑔2 (
𝑥
𝑥0
)

2𝜎2
}          (7) 

where x0 is the mean and σ2 is the variance. 

Since then, several studies have shown that income distributions maintain some 

stable and robust properties (YAKOVENKO; ROSSER, 2009). Thus, this type of regularity 

observed in income distribution models suggests a kind of “natural” law of economics 

(CHAKRABARTI ET AL, 2013). 

Empirically, a series of works reveals that in the graphical representation of the 

logarithm of the accumulated distribution of income against the logarithm of income, at least 

90% of the sample fits well into the lognormal format (or Gibbs distribution). The remainder 

of the sample, which denotes the highest earnings, fits well with a power law. The following 

figure illustrates this pattern. 
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Figure 1. Two-Class Income Distribution 

 

Fonte: Chakrabarti et al., 2013  

  

However, the attribute of scalability of professions has not been explored in this 

research agenda, although it has enormous potential to explain salary differences. 

Based on this finding, an attempt was made to fully derive the probability 

distributions of the Brazilian worker's income in a two-class model based on the scalability 

characteristics of the professions. 

 

4.3 METHODOLOGY 

We estimate the following model to express the probability of an individual having 

an individual income greater than or equal to x: 

𝑃(𝑥′ ≥ 𝑥) ≅

{
 
 

 
 Φ(

(ln 𝑥) − 𝜇

𝜎
) ,     𝑥 ≤ 𝑥𝑚𝑖𝑛

(
𝑥

𝑥𝑚𝑖𝑛
)
−𝛼

,     𝑥 ≥ 𝑥𝑚𝑖𝑛  

          (8) 

where Φ is the cumulative distribution function of a standard normal distribution N(0,1). 

As the complementary cumulative distribution function (CCDF) plotted on a log-log 

scale presented a decreasing linear slope, the presence of a power law in the upper tail was 

considered. 

The Kolmogorov-Smirnov statistic was used for the task of drawing an optimal cut-

off point between the middle stratum income and the upper tail (CLAUSET; SHALIZI; 

NEWMAN, 2009). This statistic provides the maximum distance D between the empirical and 

adjusted cumulative distribution functions: 
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𝐷 = max
𝑥≥𝑥𝑚𝑖𝑛

|𝑆(𝑥) − 𝐹(𝑥)|          (9) 

where S(x) is the empirical complementary cumulative distribution function (CCDF) and F(x) 

is the theoretical CCDF of the power law model that best fits the sample data for x ≥ xmin. For 

each possible choice of xmin, MATLAB's plfit.m function (available at 

http://www.santafe.edu/~aaronc/powerlaws) estimated “alpha” using the maximum likelihood 

method and calculated the Kolmogorov-Smirnov D statistic. 

Subsequently, estimates of xmin whose value gives the smallest D statistic were 

selected. The optimal cut-off point is therefore the value of xmin that minimizes D - to a 

sufficiently large p-value, say, p > 0.05. 

In the next section, the graphic results of the best fit procedure of the CCDF's 

functions plotted in log-log scale are displayed. 

In addition, the two parameters characteristic of the log-normal distribution were 

estimated. Generally, the mean μ and the variance σ2 of log(x) are used to specify it. However, 

there are advantages to using "back-transformed" values, that is, values in terms of x 

(LIMPERT; STAHEL; ABBT, 2001): 

𝜇∗ = 𝑒𝜇          (10) 

𝜎∗ = 𝑒𝜎          (11) 

Thus, μ* represents the median of the log-normal distribution and also the geometric 

mean of the distribution in terms of the original data. The parameter σ*, the so-called 

geometric standard deviation, determines the shape of the distribution. Therefore, as μ* and σ* 

are in the original measurement units, they are easier to interpret. 
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4.4 RESULTS 

4.4.1 Visual inspections 

A QQ chart is a scatter plot created by plotting two sets of quantiles against each 

other. If the two sets of quantiles come from the same distribution, we should see the points 

forming a line that is approximately straight. QQ charts take sample data, sort it in ascending 

order, and then plot it against calculated quantiles from a theoretical distribution. 

From the normal quantile plots, it can be seen that the earnings from non-scalable 

professions such as bank clerk, motorcycle courier, Portuguese teacher, lawyer and dentist 

had quantiles compatible with the quantiles of the normal distribution, with the exception of 

the values of the tails lower and upper. The histograms for these occupations display a format 

compatible with the lognormal distribution. 

Likewise, it is clear that the normal quantile plots of the remuneration of scalable 

professions such as actor, football player, visual artist and musician performing 

instrumentalist showed incompatibility with the quantiles of the normal distribution at all 

levels, even generating a certain distance in values around the median. Histograms for these 

occupations show thicker tails than the Gaussian distribution. 

Because of these initial results based on visual inspections, we will test the empirical 

adherence of the two-class income distribution model to the data. 
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Figure 2. Normal quantile plots 
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Figure 2. Normal quantile plots – Continue 
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Figure 3. Histograms 
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Figure 3. Histograms – Continue 
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4.4.2 Two-class income distribution model estimation 

The results of the two-class income distribution model specified on section 

methodology can be seen in the table below. 

 

 

Table 1. Results of the two-class income distribution model 
 Power Law Log Normal PDF 

Occupation xmin α D μ* σ* 

      

Footballer 1500 1.6775 -6807 2566.8 3.8057 

Actor 17959 2.3629 -4452.6 15446 2.7093 

Radio Tv Broadcaster 2650.7 3.0046 -3620.6 1707.3 1.9894 

Visual Artist 2979.3 3.1372 -3777.7 2330.4 1.8452 

Fashion Designer 5376.9 3.4256 -4821 3188.1 1.9678 

Portuguese Teacher 3426.1 3.7114 -19292 2873.5 1.9078 

Lawyer 26722 4.3583 -4120.8 5345.8 2.0428 

Bank Clerk 13144 4.5100 -30421 6674.1 2.0595 

Dentist 13317 4.5731 -1196.1 4369.5 1.7259 

Architect 25577 5.6733 -1147.9 9620.3 1.9369 

Music Performer 17777 6.3849 -54.5407 3595.1 2.4713 

Motorcycle Messenger 1397 7.9171 -78379 1444.4 1.3115 
Source: Own elaboration based on RAIS 2017 microdata 
 

Thus, the two-class income distribution model, which reconciles Pareto's law for 

higher-income individuals and the log-normal distribution for the rest of the sample, was 

compatible with the interoccupational categorization proposed by Taleb (2010). In it, non-

scalable occupations are expected to have low income variance, while scalable ones are 

characterized by large wage inequalities. 

Insofar as the Pareto coefficient α is typically interpreted as an inverse measure of 

concentration at the top of incomes, the results expressed in Table 1 show less concentrated 

upper incomes for non-scalable professions such as motorcycle messenger, architect, dentist 

and bank clerk. In contrast, we can observe heavier upper tails for scalable occupations such 

as football player, actor, radio and tv broadcaster and visual artist. 
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Figure 4. Complementary Cumulative Density Function (y axis) and earnings (x axis) in  

log scale1 

 

 

 

 

  

 
1 The dashed line is the power law distribution tail computed. 
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Figure 4. Complementary Cumulative Density Function (y axis) and earnings (x axis) in  

log scale - Continue 
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4.5 CONCLUSIONS 

The results found allow us to conclude that, considering the two-class income 

distribution model, we cannot reject the hypothesis that non-scalable occupations are more 

egalitarian than those scalable for the upper portion of the data from the optimal cutoff point. 

The income distributions of scalable occupations decay as a power law and have 

heavier tails - smaller Pareto exponents - than non-scalable occupations. 
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5 ESSAY 2: TOP EARNINGS OF SCALABLE VS. NON-SCALABLE OCCUPATIONS 

5.1 INTRODUCTION 

Usually, the most used empirical reference to adjust the top earnings is the Pareto 

type I model. As will be shown, arbitrary choice of cutoff points for income, such as the 

highest 5% or 10%, can lead to wrong inferences. For this reason, we address the optimal 

cutoff problem. 

 

5.2 RELATED LITERATURE 

In recent decades, interest in research on the distribution of higher incomes has 

grown. The choice of the upper income stratum as the object of study is not limited to the 

purpose of explaining only the distributive dynamics among members of the wealthier social 

strata. 

In fact, the different parts of the distribution are interdependent, insofar as the 

outcome of one group is affected by the outcome of the others. In this sense, the choice of the 

group with the highest income is based on some specific aspects of this set, such as its 

command over resources, its command over people and its global significance (ATKINSON; 

PIKETTY, 2007). 

However, the different interoccupational patterns of distribution of the highest 

incomes have not yet been explored in a specific study. In this context, the attribute of 

scalability of professions proposed by Taleb (2010) constitutes an alternative approach to 

address the issue of wage distribution. Thus, this essay will support the concept of scalability 

as a determining element to explain the highest incomes from work among some selected 

professions. 
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5.3 METHODOLOGY 

There are some commonly used methods to estimate the shape parameter α of the 

Pareto model type I. In this essay we considered the OLS estimator proposed by Gabaix and 

Ibragimov (2011) – equation 5 – and the ML estimator proposed by Hill (1975) – equation 4. 

An important question related to implementation is: if we assume that rents are 

described by a Pareto model above some threshold, what should that threshold be? What is 

the cutoff point to use to distinguish between higher incomes and not-so-high incomes? Is the 

highest income group the top 10% (RUIZ; WOLOSZKO, 2015), the top 5% (ATKINSON, 

2016) or the top 1% (ALVAREDO, 2011)? This discussion will be empirically presented in 

the following section. 

 

5.4 RESULTS 

5.4.1 Estimation 

To begin our analysis, let's consider the traditional 10% and 5% cutoff points. It is 

important to note that smaller values of the Pareto exponent mean heavier tails. 

 

Table 2. Pareto coefficients for pre-established thresholds: OLS estimation 

Occupation Top 10 percent incomes Top 5 percent incomes 

Motorcycle messenger 2.94 2.39 

Bank clerk 4.17 4.49 

Dentist 3.66 3.47 

Lawyer 2.85 3.13 

Elementary school Portuguese teacher 2.77 3.28 

Architect 4.50 4.52 

Fashion designer 3.01 3.00 

Radio and TV broadcaster 2.11 2.39 

Visual artist 4.50 6.19 

Music performer 6.64 8.44 

Actor 4.19 8.10 

Footballer 1.64 4.14 

Source: Own elaboration based on RAIS 2017 microdata 
 

The results in Table 2, which reveal the Pareto coefficients estimated using the 

method proposed by Gabaix and Ibragimov (2011), suggest a diffuse pattern among the 

selected professions. 

Of the entire sample, the heaviest tail was the soccer player for the highest-paid 10%. 

Although this individual result is in line with expectations, we can see that if we consider the 
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top 5% of earnings, the coefficient increases a lot, showing itself even higher than that of 

some notably non-scalable occupations. 

The high values of the α coefficient found for actor, musician and visual artist 

indicate that the income distribution between the top 10% and 5% is less unequal than the 

upper strata of occupations such as motorcycle messenger, lawyer and Portuguese teacher. 

As a comparison, we present in table 3 the estimates of the Pareto α coefficient 

obtained through the maximum likelihood method. 

 

Table 3. Pareto coefficients for pre-established thresholds: ML estimation 

Occupation Top 10 percent incomes Top 5 percent incomes 

Motorcycle messenger 4.94 4.33 

Bank clerk 3.62 4.55 

Dentist 3.59 3.63 

Lawyer 2.49 2.81 

Elementary school Portuguese teacher 2.62 2.56 

Architect 4.25 4.60 

Fashion designer 2.89 3.12 

Radio and TV broadcaster 1.92 2.12 

Visual artist 3.47 4.87 

Music performer 7.64 6.72 

Actor 2.69 6.79 

Footballer 1.03 2.70 

Source: Own elaboration based on RAIS 2017 microdata 
 

The results in table 3 confirm the diffuse pattern found for the pre-established 

thresholds of 5% and 10%. Although heavier tails were observed for soccer player and radio 

and television broadcaster, low values for the Pareto exponent were also found for remarkably 

non-scalable occupations, such as lawyer and Portuguese teacher. 

In addition, it appears that the Pareto α coefficient estimates for non-scalable 

professions were less sensitive to the values used as threshold, namely, the 90th and 95th 

percentiles. 

Setting the cutoff point for the highest incomes in the Pareto Type I model as the 

highest 5% or 10% can lead to wrong inferences. A higher cutoff point lowers the Pareto 

exponent estimate, artificially leading to more inequality among top incomes (JENKINS, 

2017). For this reason, we address the problem of the optimal cut-off point here. 
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5.4.2 Optimal cut-off point: the Kolmogorov-Smirnov statistics 

There is some evidence that adopting a higher cutoff point decreases the estimate of 

the scale coefficient α, which characterizes the Pareto type I distribution. Thus, assigning a 

higher threshold would increase inequality between higher incomes, keeping others constant 

variables (BURKHAUSER, 2012). 

Some criteria have been proposed for the computation of the ideal cutoff point of the 

Pareto distribution (see, for example, CLAUSET; SHALIZI; NEWMAN, 2009). 

A common and pragmatic method of choosing the cut-off point is to visualize the 

point beyond which the accumulated distribution function becomes more or less linear in a 

graph constructed on a logarithmic scale. Another visual inspection tool for this purpose is to 

plot the estimated α exponent as a function of the threshold and identify a point beyond which 

the value appears relatively stable. These approaches, however, can be considered subjective 

and present sensitivity to noise or fluctuations in the tail of the distribution (CLAUSET; 

SHALIZI; NEWMAN, 2009). 

Clauset, Shalizi and Newman (2009) advocate a "more objective and principle-based 

approach, based on minimizing the "distance" between the power-law model and the 

empirical data". In this sense, they suggest measuring the distance between fitted and 

empirical distributions using the Kolmogorov-Smirnov (KS) statistic. 

Figure 5 shows the Zipf plots derived from the empirical estimates of ln S(x), where 

S(x) ≤ 0.5. From a first visual inspection of the tails, we cannot rule out the presence of power 

laws after some threshold xmin. It is important to note that few distributions follow a power 

law across the entire range of values. Normally, the power law appears after a lower limit and 

usually disappears after an upper limit; this is precisely the reason why a distribution is 

characterized by a power-law tail (NEWMAN, 2005). 
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Figure 5. Zipf plots for 𝑺(𝒙) ≤ 𝟎. 𝟓 
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Figure 5. Zipf plots for 𝑺(𝒙) ≤ 𝟎. 𝟓 - Continue 

 

As the significance of the KS statistic depends on the sample size, rather than 

minimizing D in Equation (9) to find the optimal one, we determined the ideal cutoff point in 

percentage terms associated with the smallest KS statistic with a p value > 0.05 (Fig. 6). 
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Figure 6. D statistics and their p-values vs. thresholds: OLS(left) and ML(right) 
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Figure 6. D statistics and their p-values vs. thresholds: OLS(left) and ML(right) - Continue 
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Figure 6. D statistics and their p-values vs. thresholds: OLS(left) and ML(right) - Continue 
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Tables 4 and 5 provide a summary of the estimates for OLS and ML, respectively. It 

is important to highlight that the OLS estimates employ regressions against the log of 

earnings, as proposed by Gabaix and Ibragimov (2011). 

 

Table 4. OLS estimates for the scaling regime above the KS thresholds 

Occupation   n   G E/ln n D p-value 

Motorcycle Messenger 0.22 38 1.06 0.89 0.5304 0.19 0.128 

Radio and TV Broadcaster 21.00 397 2.06 0.32 0.0300 0.03 0.766 

Elementary School Portuguese Teacher 39.60 2155 2.73 0.22 0.0118 0.02 0.566 

Fashion Designer 7.80 176 3.05 0.20 0.0134 0.06 0.469 

Bank Clerk 0.10 18 3.19 0.19 0.0217 0.06 0.663 

Dentist 1.80 106 3.50 0.17 0.0109 0.04 0.984 

Lawyer 1.70 396 3.58 0.16 0.0081 0.05 0.325 

Music Performer 0.20 5 4.27 0.13 0.0203 0.22 0.921 

Architect 7.20 142 4.58 0.12 0.0057 0.05 0.837 

Visual Artist 1.90 25 7.05 0.08 0.0035 0.11 0.908 

Footballer 2.50 34 8.34 0.06 0.0022 0.13 0.343 

Actor 2.50 22 9.87 0.05 0.0018 0.06 0.955 

Source: Own elaboration based on RAIS 2017 microdata 
 

 

Table 5. ML estimates for the scaling regime above the KS thresholds 

Occupation   n   G E/ln n D p-value 

Motorcycle Messenger 0.43 75 1.67 0.43 0.0731 0.12 0.194 

Radio and TV Broadcaster 21.90 414 2.00 0.33 0.0319 0.03 0.813 

Fashion Designer 23.40 529 2.43 0.26 0.0189 0.05 0.126 

Elementary School Portuguese Teacher 40.70 2215 2.71 0.23 0.0118 0.02 0.620 

Bank Clerk 0.12 22 2.80 0.22 0.0275 0.06 0.688 

Lawyer 1.70 396 3.40 0.17 0.0091 0.03 0.876 

Visual Artist 10.10 134 3.46 0.17 0.0107 0.10 0.090 

Dentist 2.10 123 3.59 0.16 0.0100 0.04 0.996 

Architect 7.20 142 4.68 0.12 0.0054 0.04 0.896 

Music Performer 0.20 5 5.60 0.10 0.0113 0.20 0.962 

Footballer 2.50 34 7.51 0.07 0.0028 0.09 0.676 

Actor 2.60 23 9.99 0.05 0.0017 0.06 0.958 

Source: Own elaboration based on RAIS 2017 microdata 
 

 

Tables 4 and 5 also display Gini and entropy indices. The Gini index (G) ranges from 

0 (perfect equality) to 1 (perfect inequality). In the Pareto type I model, it is given by: 

1

2 1
G


=

−
,          (12) 

to α > 1 (JENKINS, 2017). We report the Gini index, but caution that it may be unreliable 

under heavy tails; at least this is true for non-parametric methods (FONTANARI; TALEB, 

2018). 
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The generalized entropy index (E) in the Pareto type I model is given by: 

1
log

1
E



 
= −

−
,          (13) 

for α > 1 (Jenkins 2017), and can also be interpreted as a measure of inequality. To 

meaningfully compare occupations, we divide E by ln n to obtain a "normalized" entropy 

index in the range of 0 to 1. 

Fig. 7 shows the presence of two scaling regimes in Zipf plots. Tables 4 and 5 

present the results for the portion of data above the optimal cut-off points in percentage terms 

τ (vertical lines in Fig. 7). Here, motorcycle messengers have income distributions with 

heavier tails than those of actors and soccer players. It is important to highlight once again 

that smaller Pareto exponent values mean heavier tails. However, the reverse is true for the 

part of the data between the medians and ideal cutoff points τ (Table 6). 

 

Table 6. Results for the scaling regime from medians to optimal cut-offs 

Occupation OLS ML 

  G E/ln n   G E/ln n 

Motorcycle Messenger 6.67 0.08 0.0013 7.50 0.07 0.0011 

Broadcaster 5.31 0.10 0.0032 4.14 0.14 0.0055 

Fashion Designer 2.97 0.20 0.0107 2.15 0.30 0.0235 

Portuguese Teacher 23.92 0.02 0.0001 15.19 0.03 0.0004 

Bank Clerk 2.67 0.23 0.1036 1.99 0.34 0.0215 

Lawyer 2.64 0.23 0.0104 2.12 0.31 0.0177 

Visual Artist 2.37 0.27 0.0195 1.72 0.41 0.0450 

Dentist 3.46 0.17 0.0065 2.74 0.22 0.0112 

Architect 3.36 0.17 0.008 2.41 0.26 0.0180 

Music Performer 1.66 0.43 0.0449 1.23 0.69 0.1223 

Footballer 0.81 -- -- 0.67 -- -- 

Actor 1.74 0.40 0.0462 1.29 0.64 0.1198 

Source: Own elaboration based on RAIS 2017 microdata 
Note: For α < 1, G and E cannot be computed 

 

This differentiated result arises because the ideal cutoff points τ have high variance - 

they range from 0.1 to 39.6% in Tables 4 and 5. Therefore, there are very different 

concentration dynamics in the extreme gains between occupations. In this case, the Gini and 

entropy indices can add relevant explanations about this dynamic. For the power law regime 

above (Tables 4 and 5), the extreme income distributions of actors and soccer players are 

more equal than those of motorcycle messengers, but they are more unequal for the power law 

regime from median to τ (Table 6). 
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In short, the ranking of occupations from non-scalable to scalable depends not only 

on the chosen higher income threshold, but also on the scaling regime. From the median to the 

ideal cutoff point, soccer players are a more scalable occupation than motorcycle messengers. 

However, above τ, this is no longer true. 

 

Figure 7. Two scaling regimes in Zipf plots: vertical lines are optimal cutoff points in 

percentage terms 
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Figure 7. Two scaling regimes in Zipf plots: vertical lines are optimal cutoff points in 

percentage terms - Continue 
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5.4.3 The R2 coefficient 

In this section, we develop the analysis based on the values of the R2 coefficient. 

Table 7 provides a summary of the OLS and ML estimates for the part of the data above the 

ideal cut-off points. Here, instead of ( )1
2

log rank −  we will use the logarithm of the 

complementary cumulative distribution function S(x) as the explained variable in the OLS 

regression. 

 

Table 7. Pareto coefficients above optimal cutoffs R2 

Occupation  n R2 OLS ML 

     G E/ln n  G E/ln n 

Motorcycle Messenger 0.35 61 0.93 1.07 0.87 0.4285 1.51 0.49 0.1026 

Broadcaster 3.23 61 0.95 2.28 0.28 0.0338 2.65 0.23 0.0235 

Fashion Designer 2.21 50 0.97 3 0.2 0.0185 2.74 0.22 0.0228 

Dentist 0.85 50 0.96 3.16 0.19 0.0163 3.73 0.15 0.0112 

Bank Clerk 0.66 121 0.95 3.45 0.17 0.0109 4.13 0.14 0.0073 

Lawyer 0.21 50 0.96 4.02 0.14 0.0095 3.63 0.16 0.0119 

Architect 2.53 50 0.99 4.06 0.14 0.0093 4.43 0.13 0.0077 

Visual Artist 9.13 121 0.95 4.46 0.13 0.0062 3.51 0.17 0.0105 

Actor 5.95 53 0.95 6.75 0.08 0.0031 5.27 0.1 0.0052 

Musician 8.8 227 0.91 6.95 0.08 0.0021 5.26 0.11 0.0038 

Portuguese Teacher 1.4 76 0.95 7.3 0.07 0.0024 6.77 0.08 0.0028 

Footballer 2.77 38 0.91 7.32 0.07 0.0028 6.09 0.09 0.0042 

Source: Own elaboration based on RAIS 2017 microdata 

 

The values of R2 show a behavior of the upper tail estimated via OLS similar to the 

asymptotic behavior of the ML estimates (DOREA et al., 2016). The ranking of Pareto 

exponents based on estimates via OLS is close to that found for estimates via ML. The 

ranking of professions, however, is far from the expected pattern. 

Motorcycle messengers, for example, have an income distribution with a heavier 

upper tail than soccer players (smaller values of the Pareto exponent mean heavier tails.). The 

median earnings of motorcycle messengers and soccer players are similar – R$ 1,468.72 and 

R$ 1,213.71, respectively. But their corresponding extreme superior earnings cannot be 

adequately captured above the ideal cut-off points. 

The Gini and entropy indices also reveal an unexpected pattern. The extreme income 

distributions of football players are more equal than those of motorcycle messengers. The 

ideal cut-off points exhibit high variance - they range from 0.21% to 9.13% in Table 7 - which 

reveals very different dynamics of extreme earnings concentration between professions. Fig. 8 

shows the R2 values and the corresponding tail indices of the OLS and ML estimates. 
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Figure 8. R2 statistics (left) and the corresponding tail index (right) vs. cut-offs 
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Figure 8. R2 statistics (left) and the corresponding tail index (right) vs. cut-offs - Continue 
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Figure 8. R2 statistics (left) and the corresponding tail index (right) vs. cut-offs - Continue 
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Figure 9 shows the scaling on the Zipf plot for the part of the data above the ideal 

cut-off points. 

 

Figure 9. Scaling in Zipf plots: vertical lines are optimal cutoff points in percentage terms 
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Figure 9. Scaling in Zipf plots: vertical lines are optimal cutoff points in percentage terms - 

Continue 

 

 

There are drastic changes in the scaling regime (Fig. 9). For this reason, we also 

calculate OLS estimates for the portion of data above the medians. Table 8 shows that the 

expected ranking can be roughly replicated. 
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Table 8. OLS estimates for the scaling above medians 

Occupation  n  G E/ln n R2 

Footballer 18.85 231 0.70 2.46 - 0.9800 

Musician 31.98 330 0.83 1.50 - 0.9800 

Actor 34.79 125 0.87 1.33 - 0.9799 

Architect 48.40 30 0.97 1.06 - 0.9799 

Visual Artist 36.43 176 1.13 0.80 0.1979 0.9800 

Portuguese Teacher 49.32 36 1.41 0.55 0.0670 0.9797 

Dentist 47.66 92 1.45 0.53 0.0606 0.9800 

Broadcaster 49.05 18 1.53 0.49 0.0595 0.9786 

Fashion Designer 7.74 932 1.62 0.45 0.0490 0.9800 

Bank Clerk 8.59 7454 1.93 0.35 0.0234 0.9800 

Lawyer 19.54 5384 2.02 0.33 0.0201 0.9800 

Motorcycle Messenger 49.75 35 6.26 0.09 0.0016 0.9795 

Source: Own elaboration based on RAIS 2017 microdata 
Note: For α < 1, G and E cannot be computed 

 

Now, the distribution of income of soccer players has heavier tails (a smaller 

exponent of Pareto) than that of motorcycle messengers. Therefore, for earnings above the 

medians, we cannot reject the hypothesis that income distributions from scalable occupations 

exhibit heavier tails. 

 

5.5 CONCLUSIONS 

We calculated the Pareto exponents of the income distributions of twelve selected 

professions using OLS and ML. So, we test the hypothesis that these non-scalable occupations 

are more egalitarian than these scalable ones. We conclude that we cannot reject such a 

hypothesis for the portion of income data between the median and the optimal cut-off point. 

It was found, therefore, that the income distributions of these scalable occupations 

decay as a power law and have heavier tails - smaller Pareto exponents - than these non-

scalable occupations. However, there is another power law regime above the ideal cutoff 

points, where these results are reversed. 

This differentiated general result arises because the ideal cutoff points for extreme 

earnings have high variance and, therefore, a very different concentration dynamics between 

occupations. Thus, the ranking of occupations from non-scalable to scalable depends not only 

on the chosen higher income threshold, but also on the scaling regime in the tails. 
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6 ESSAY 3: THE “LOCAL” APPROACH OF THE INVERTED COEFFICIENT AND 

THE GENERALIZED PARETO CURVES 

6.1 INTRODUCTION 

A more comprehensive analysis of income inequality must address distributions in 

their entirety, from the upper tail of incomes, where power laws are a good description, to the 

lower portions, where they are not. For this purpose, a good analysis tool is a non-parametric 

approach called generalized Pareto curve, which is the graphical representation of the inverted 

Pareto coefficients 𝑏(𝑝). So, instead of trying to make a preconceived functional shape fit the 

data by tuning a set of parameters, we start with the observed Pareto curve. In this way, we 

intend to compare the behavior of the inverted Pareto coefficient over the entire range of 

income distributions between selected scalable and non-scalable occupations. 

 

6.2 RELATED LITERATURE 

The specialized economic literature has been finding out for some time that the upper 

portion of the income distribution presents a good fit with the Pareto model, which means that 

the arrangement of the highest incomes follows a power law. 

However, the empirical analysis of the data reveals that, although the approximation 

with the Pareto distribution is acceptable for some purposes, it does not hold even on top of 

the observations. In practice, assuming that a certain upper portion of the data is distributed 

according to the Pareto model imposes the strict restriction that inequality is configured in the 

same way in all higher-income groups within this interval. 

This is equivalent to saying that the complete distribution between the 10%, 1% or 

0.1% of higher incomes is the same, which is not necessarily the case. If this property 

manifests itself, we enter into the discussion of the "fractal" nature of inequality. However, 

this result is not so common in practice. 

In this sense, the real distributions of income and wealth usually have Pareto 

coefficients that depend on the rank 𝑝 ∈ [0,1] in the distribution. By allowing the variation of 

these coefficients, we allow more flexibility and precision, keeping the Pareto model as a 

baseline (BLANCHET; FOURNIER; PIKETTY, 2017). 

Thus, the “local” approach of the inverted Pareto coefficient, calculated for the entire 

sample from the observation rank, reveals more faithfully the nature of inequality in a given 

income distribution. 



65 

 

 

Formally, the inverted Pareto coefficient 𝑏(𝑝) is defined as the ratio between the 

average income above rank p and the 𝑝-th quantile, that is: 

𝑏(𝑝) =
𝔼[𝑋|𝑋 > 𝑄(𝑝)]

𝑄(𝑝)
          (14) 

Ultimately, 𝑏(𝑝) = 1 defines a situation in which all individuals above rank 𝑝 have 

the same income or wealth, so that there is no inequality above 𝑝 (BLANCHET et al. 2018). 

Therefore, the larger the coefficient 𝑏(𝑝), the higher the corresponding level of inequality. 

In practice, inverted Pareto coefficients range from 1.5 to 3.5 (PIKETTY, 2014). An 

inverted coefficient of 1.5 means that the average income beyond a certain threshold is equal 

to one and a half times the value of that threshold (people who have more than one million 

euros have, on average, 1.5 million euros, and so on for any threshold), which corresponds to 

a relatively smooth inequality. An inverted coefficient of 3.5, on the contrary, corresponds to 

a very strong inequality. 

 

6.3 METHODOLOGY 

For any income level x > 0, the inverted Pareto coefficient is 𝑏∗(𝑥) = 𝔼[𝑋|𝑋 > 𝑥] 

or: 

𝑏∗(𝑥) =
1

(1 − 𝐹(𝑥))𝑥
∫ 𝑧𝑓(𝑧)𝑑𝑧          (15)
+∞

𝑥

 

where F(x) is the cumulative distribution function of x. 

The inverted Pareto coefficient can also be expressed as a function of the fractile p 

with p = F(x) and b(p) = b*(x): 

𝑏(𝑝) =
1

(1 − 𝑝)𝑄(𝑝)
∫ 𝑄(𝑢)𝑑𝑢          (16)
1

𝑝

 

If X follows a Pareto distribution with coefficient α and lower bound �̅�, so that 

𝐹(𝑥) = 1 − (
�̅�

𝑥
)
𝛼

, then 𝑏(𝑝) =
𝛼

𝛼−1
 is constant and the participation of the top 100 × (1 −

𝑝)% is an increasing function of b and is equal to (1 − 𝑝)
1

𝑏. Otherwise, b(p) will vary. 

Thus, the function 𝑏: 𝑝 ↦ 𝑏(𝑝) defined over  [�̅�, 1[ with �̅� = 𝐹(�̅�) is called the 

generalized Pareto curve (BLANCHET; FOURNIER; PIKETTY, 2017). 
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For a strict power law (a Pareto distribution), the Pareto curve is constant. But strict 

power laws rarely exist in practice, so we can characterize the Pareto curve when the power-

law behavior is only approximated. 

In practice, Blanchet, Fournier, and Piketty (2017) found that b(p) varies within the 

upper tail of observed income and wealth distributions (including between the top 10% or the 

top 1%), but the b(p) curves are relatively similar (usually U-shaped). 

Probability distributions can be divided into three categories, based on the behavior 

of their generalized Pareto curve (BLANCHET; FOURNIER; PIKETTY, 2017). 

First, power laws for which b(p) converges to a constant strictly greater than one. 

Second, “thin-tailed” distributions for which b(p) converges to one. The third category 

includes distributions with erratic tail behavior for which b(p) can oscillate at an ever faster 

rate without converging to anything. This last category does not include any standard 

parametric family of distributions and its members can essentially be considered pathological. 

If we exclude it, we are left with a straightforward dichotomy between power laws and thin 

tails. 

When lim
𝑝→1

𝑏(𝑝) > 1, such that X is an asymptotic power law, the generalized Pareto 

curve can still be used to observe how the distribution converges. If b(p) increases close to p = 

1, the tail will get fatter with higher levels of income. But if b(p) decreases, it's getting 

thinner. 

With a strict power law such that b(p) is constant, the level of inequality remains the 

same as we move forward in the distribution. The share of the richest 10% among the entire 

population is the same as the share of the richest 1% among the richest 10% or the share of 

the richest 0.1% among the richest 1%. This property is often called the "fractal" nature of 

inequality. 
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6.4 RESULTS 

The results found reveal diversified patterns of inverted coefficients and, 

consequently, of the shape of the curves for the different types of occupation. In fact, this 

represents an alternative way of illustrating the different characteristics concerning the 

distribution of income for professions that are distinguished, above all, by the attribute of 

scalability. 

With the exception of the soccer player occupation, all curves were decreasing in the 

initial portion of their respective distributions, that is, the inverted Pareto coefficient decreases 

as we advance through the first percentiles. This means that initially, as a rule, income 

inequality decreases with p. 

For the first fractiles, the coefficient b(p) found is very high, which suggests that the 

income of the extremely poorest is very small in relation to the average income of people who 

are richer than them. However, as we move forward in distribution, the income of individuals 

begins to represent a larger fraction of the average income above them, thus decreasing the 

value of b(p). 

The main differences found lie at the top of the distributions, that is, at the last 

percentiles. For the non-scalable occupations, especially architect, bank clerk and courier, the 

curve presents an inflection in the last levels of p. 

Thus, the slopes of b(p) change around the most advanced percentiles and then 

increase to the top of the distribution, which shows that within the group of better paid 

individuals there is also an important intragroup inequality, since the extreme portion of the 

best pay constitutes a highly concentrated subgroup. Thus, the layout of the curves for these 

occupations approximates the U-shape found by Blanchet, Fournier and Piketty (2017) for 

aggregated data. 

For the scalable professions, especially fashion designer, music performer, radio and 

television broadcaster and visual artist, there was a certain equality at the top of the 

distributions, as the coefficient b(p) remained more or less constant or even decreased in the 

last fractiles. 

The results, therefore, do not reject the conclusions of essay 2 that above the ideal 

cutoff points to characterize the top of incomes, scalable occupations are more egalitarian 

than non-scalable ones. 
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Figure 10. Generalized Pareto curves 
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Figure 10. Generalized Pareto curves - Continue 
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6.5 CONCLUSIONS 

For the purpose of addressing the income distributions in their entirety, from the 

upper tail, where power laws are a good description, to the lower portions, where they are not, 

we use generalized Pareto curves. 

In general, income distributions from our scalable occupations decay as a power law 

and have heavier tails than our non-scalable occupations. Above the ideal cutoff points, 

however, there is another power law regime, where these results are reversed. 

The results of essay 3, therefore, are in line with the conclusions of essay 2 that in the 

region that characterizes the top incomes, our selected scalable occupations are more 

egalitarian than the non-scalable ones. 

In view of this, there is evidence of a very different concentration dynamics between 

the types of professions. Thus, the categorization of occupations from non-scalable to scalable 

depends not only on the highest income threshold chosen, but also on the scaling regime in 

the tails. 
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7  CONCLUSION 

 

The present thesis aimed to verify if there is a statistically significant difference 

between the earnings of selected scalable and non-scalable occupations. For this purpose, the 

work was divided into three essays, each one containing a different theoretical model. 

The results of essay 1 allow us to conclude that, considering the two-class income 

distribution model, we cannot reject the hypothesis that our non-scalable occupations are 

more egalitarian than those scalable for the upper portion of the data from the optimal cutoff 

point. The higher incomes of both types of occupations fit well as a power law and the 

earnings distribution of scalable occupations have heavier tails - smaller Pareto exponents - 

than non-scalable occupations. 

In essay 2, we focused on the top earnings of the selected professions. Our aim was 

to test the hypothesis that the higher earnings of non-scalable occupations are more egalitarian 

than scalable ones. We conclude that we cannot reject such a hypothesis for the portion of 

income data between the median and the optimal cut-off point. However, there is another 

power law regime above the ideal cutoff points, where these results are reversed. 

In the 3rd essay, we compared the behavior of the inverted Pareto coefficient over 

the entire range of earnings distributions between scalable and non-scalable occupations using 

generalized Pareto curves. The results of essay 3 are in line with the conclusions of essay 2 

that in the region that characterizes the top earnings scalable occupations are more egalitarian 

than non-scalable ones. 

This differentiated general result arises because the ideal cutoff points for extreme 

earnings have high variance and, therefore, a very different concentration dynamics between 

occupations. Thus, the ranking of occupations from non-scalable to scalable depends not only 

on the chosen higher income threshold, but also on the scaling regime in the tails. 

In addition to revealing a distinct earnings concentration mechanism between the 

types of professions, the present work also sheds light on the macroeconomic dimension. 

Based on the intra and inter-occupational characterizations of earnings distribution, we 

provided new elements and perspectives to address income inequality at the aggregate level. 
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