
UNIVERSIDADE FEDERAL DE SANTA CATARINA
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E
SISTEMAS

Marco Aurélio Schmitz de Aguiar

Distributed Optimal Control of DAE Systems: Modeling, Algorithms, and
Applications

Florianópolis
2022

Marco Aurélio Schmitz de Aguiar

Distributed Optimal Control of DAE Systems: Modeling, Algorithms, and
Applications

Tese submetida ao Programa de Pós-Graduação
em Engenharia de Automação e Sistemasda Uni-
versidade Federal de Santa Catarina (UFSC) e pela
Norwegian University of Science and Technology
(NTNU) em regime de cotutela para a obtenção do
título de Doutor em Engenheiro de Automação e Sis-
temas(UFSC) e Doutor em Engineering Cybernetics
(NTNU).
Orientadores: Prof. Eduardo Camponogara, Ph.D.
(UFSC) e Prof. Morten Hovd, Ph.D. (NTNU)

Florianópolis
2022

Marco Aurélio Schmitz de Aguiar

Distributed Optimal Control of DAE Systems: Modeling, Algorithms, and
Applications

Thesis submitted Programa de Pós-Graduação em
Engenharia de Automação e Sistemasof the Fedeal
University of Santa Catarina (UFSC) and Norwegian
University of Science and Technology (NTNU) in co-
tutelle for obtaining the title of Doctor in Automation
and Systems Engineering (UFSC) and Philosophiae
Doctor in Engineering Cybernetics (NTNU).
Advisors: Prof. Eduardo Camponogara, Ph.D.
(UFSC) and Prof. Morten Hovd, Ph.D. (NTNU)

Florianópolis
2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Aguiar, Marco Aurelio Schmitz de
 Distributed Optimal Control of DAE Systems : Modeling,
Algorithms, and Applications / Marco Aurelio Schmitz de
Aguiar ; orientador, Eduardo Camponogara, coorientador,
Morten Hovd, 2022.
 168 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2022.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Sistemas
algébrico-diferenciais. 3. Sistemas não-lineares. 4.
Controle ótimo. 5. Algoritmos de Otimização. I. Camponogara,
Eduardo. II. Hovd, Morten. III. Universidade Federal de
Santa Catarina. Programa de Pós-Graduação em Engenharia de
Automação e Sistemas. IV. Título.

Marco Aurélio Schmitz de Aguiar

Distributed Optimal Control of DAE Systems: Modeling, Algorithms, and
Applications

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Prof. Dominique Bonvin, Dr.
EPFL/Suiça

Profa. Cristina Stoica Maniu, Dra.
Centrale Supélec/França

Prof. Lars Imsland, Dr.
NTNU/Noruega

Mario Cesar Mello Massa de Campos, Dr.
SmartAutomation/Brasil

Prof. Lars Imsland, Dr.
NTNU/Noruega

Prof. Daniel Ferreira Coutinho, Dr.
UFSC/Brasil

Certificamos que esta é a versão original e final do trabalho de conclusão que foi
julgado adequado para obtenção do título de Doutor em Engenheiro de Automação e
Sistemas.

Coordenação do Programa de
Pós-Graduação

Eduardo Camponogara, Ph.D.
Orientador

Florianópolis, 2022.

RESUMO

Os sistemas não lineares em rede consistem em vários subsistemas que interagem
entre si. Como os sistemas do mundo real raramente são isolados, os sistemas em
rede representam uma parte considerável das aplicações de controle. Esta tese con-
tribui para o campo do controle ótimo distribuído de sistemas em rede ao propor um
framework para modelagem, formalização e solução dos problemas de controle ótimo
(OCP, do inglês optimal control problems). O framework proposto baseia-se no método
Lagrangiano aumentado para controle ótimo de equações algébrico diferenciais (DAEs,
do inglês differential-algebraic equations), para o qual esta tese apresentou condições
para convergência global, local e subótima. A estrutura inclui uma estratégia de mode-
lagem que usa um grafo direcionado (directed graph) para representar os subsistemas
da rede. Cada nó representa um subsistema, enquanto uma aresta modela a relação
de entrada-saída entre dois subsistemas. Esta descrição do sistema baseada em
componentes permite um desenvolvimento e manutenção mais fáceis dos modelos. A
formulação de restrições de custo acoplado desacoplado (DCCC, do inglês decoupled
cost coupled constraints) para o OCP de tais sistemas em rede é obtida seguindo
um conjunto de diretrizes. Ao relaxar essas restrições, o método Lagrangiano aumen-
tado converte as formulações DCCC em uma formulação de restrição desacoplada de
custo acoplado (CCDC, do inglês coupled cost decoupled constraint) para o controle
ideal de DAEs. Para resolver tais formulações CCDC, esta tese desenvolve algoritmos
distribuídos baseados na descida coordenada (coordinate descent) e no método do
multiplicador com direção alternada (ADMM, do inglês alternating direction multiplier
method), que são adequados para esta formulação. Um artifício de modelagem foi pro-
posto para permitir interações paralelas de nós conectados, que de outra forma teriam
que iterar serialmente quando usando esses algoritmos. Experimentos computacionais
realizados em um sistema benchmark mostraram resultados promissores, motivando
novas investigações sobre o comportamento dos algoritmos no controle de modelos
dinâmicos não lineares de aplicações reais. Especificamente, experimentos numéricos
com uma rede de produção de petróleo representativa mostraram que os algoritmos
podem controlar os sistemas de forma adequada, apesar das não linearidades e de-
scontinuidades.

Palavras-chave: Sistemas algébrico-diferenciais. Sistemas não-lineares. Controle Ótimo.
Algoritmos de Otimização.

RESUMO EXPANDIDO

INTRODUÇÃO
Os sistemas não lineares em rede consistem em vários subsistemas que interagem
entre si. Como os sistemas do mundo real raramente são isolados, os sistemas em
rede representam uma parte considerável das aplicações de controle. Portanto existe
um grande beneficio em desenvolver metodologias que aproveitem a sua estrutura
disitribuida para alcançarem soluções eficientes, robustas e escláveis.

OBJETIVOS
Esta tese busca contribuir para o campo do controle ótimo distribuído de sistemas em
rede ao propor um framework para modelagem, formalização e solução dos problemas
de controle ótimo (OCP, do inglês optimal control problems). Uma das propriedades
esperadas desse framework é a facil modelagem e manutenção de modelos de controle.
Em sistemas de larga escala, se os modelos não são estruturados apropriadamente os
modelos podem acabar crescendo sem respeitar os limites de cada subsistema, o que
aumenta a complexidade do modelo. Ao mesmo tempo, busca-se um formalismo para
a espeficicação dos OCPs que permita obte-los de forma simples e pragmática. Um
padronização nos OCPs permite uma comunicação facil de estrategias e abordagens
de solução com a comunidade cientica. Por fim, esse framework precisa permitir que
algoritmos de controle ótimo resolvam os OCPs de forma eficiente e acertiva.

METODOLOGIA
O primeiro passo para o desenvolvimento do framework é reforçar as propriedades
do método Lagrangiano aumentado para controle ótimo de equações algébrico difer-
enciais (DAEs, do inglês differential-algebraic equations). Para este método algumas
propriedades matemáticas são elaboradas sendo elas: condições para convergência
para um mínimo global do algoritmo, condições para convergência para um mínimo
local, condições para convergência atravéz atravéz de uma sequencia de soluções
sub-ótimas para o problema auxiliar. A estratégia de modelagem proposta então é de-
senvolvida usando sistemas algébrico-diferenciais e grafo direcionados (directed graph)
para representar os subsistemas da rede. No grafo, cada nó representa um subsis-
tema, enquanto cada aresta modela a relação de entrada-saída entre dois subsistemas.
Esta descrição do sistema baseada em componentes permite um desenvolvimento e
manutenção mais fáceis dos modelos. A formulação de restrições de custo acoplado
desacoplado (DCCC, do inglês decoupled cost coupled constraints) para o OCP de
tais sistemas em rede é obtida seguindo um conjunto de diretrizes. Ao relaxar essas
restrições, o método Lagrangiano aumentado converte as formulações DCCC em uma
formulação de restrição desacoplada de custo acoplado (CCDC, do inglês coupled cost
decoupled constraint) para o controle ideal de DAEs. Para resolver tais formulações
CCDC, esta tese desenvolve algoritmos distribuídos baseados na descida coordenada
(coordinate descent) e no método do multiplicador com direção alternada (ADMM, do
inglês alternating direction multiplier method), que são adequados para esta formu-
lação. Um artifício de modelagem foi proposto para permitir interações paralelas de
nós conectados, que de outra forma teriam que iterar serialmente quando usando
esses algoritmos.

RESULTADOS E DISCUSSÃO
Experimentos computacionais realizados em um sistema benchmark mostraram re-
sultados promissores, motivando novas investigações sobre o comportamento dos
algoritmos no controle de modelos dinâmicos não lineares de aplicações reais. Especi-
ficamente, experimentos numéricos com uma rede de produção de petróleo represen-
tativa mostraram que os algoritmos podem controlar os sistemas de forma adequada,
apesar das não linearidades e descontinuidades.

CONSIDERAÇÕES FINAIS
Os experimentos apresentaram resultados inspiradores que incentivão novas pesquisas
e mostram que tanto o framework proposto quanto as estratégias de solução empre-
gadas atingiram os objetivos esperados. Na conclusão da tese possiveis continuações
para a pesquisa são apresentadas, incluindo estudos com controlo ótimo estocástico,
validação das estrategias empregadas em caso ainda mais realistas e elaborações
de propriedades matemáticas das técnicas de controle desenvolvidas com através do
framework.

Palavras-chave: Sistemas algébrico-diferenciais. Sistemas não-lineares. Controle Ótimo.
Algorítmos de Otimzação

ABSTRACT

Networked nonlinear systems consist of several subsystems that interact with one an-
other. Since real-world systems are seldom isolated, networked systems represent a
considerable portion of the control applications. This thesis contributes to the field of dis-
tributed optimal control of networked systems by proposing a framework for modeling,
formalizing, and solving the optimal control problems (OCP). The proposed framework
relies on the augmented Lagrangian method for optimal control of differential-algebraic
equations (DAEs), for which this thesis presented conditions for global, local, and sub-
optimal convergence. The framework includes a modeling strategy that uses a directed
graph to represent the network subsystems. Each node represents a subsystem, while
an edge models the input-output relation between two subsystems. This component-
based description of the system allows for easier development and maintenance of
the models. Following a set of guidelines, decoupled cost coupled constraints (DCCC)
formulation for the OCP of such networked systems is obtained. Bhy relaxing these
constraints, the augmented Lagrangian method converts the DCCC formulations into
a coupled cost decoupled constraint (CCDC) formulation for optimal control of DAEs.
To solve such CCDC formulations, this thesis develops distributed algorithms based
on the coordinate descent and the alternating direction multiplier method (ADMM),
which are well-suited for this formulation. A modeling artifice was proposed to enable
parallel iterations of connected nodes, which otherwise would have to iterate serially
according to these algorithms. Computational experiments performed in a benchmark
system showed promising results, motivating further investigation of the behavior of the
algorithms in the control of nonlinear dynamic models of real applications. Specifically,
numerical experiments with a representative oil production network showed that the
algorithms could control the systems properly, despite the nonlinearities and disconti-
nuities.

Keywords: Differential-algebraic systems, nonlinear systems, optimal control, optimiza-
tion algorithms

CONTENTS

1 INTRODUCTION . 11
1.1 MOTIVATION . 11
1.2 CONTRIBUTIONS . 11
1.3 PUBLICATIONS . 13
1.4 ORGANIZATION . 13
2 AUGMENTED LAGRANGIAN FOR OPTIMAL CONTROL PROBLEMS

OF DAE . 15
2.1 BACKGROUND . 15
2.1.1 Differential Algebraic Equations . 15
2.1.2 Optimal Control Problems for ODEs 18
2.1.3 Pontryagin’s minimum principle . 24
2.1.4 Optimal Control Problems of DAEs 26
2.2 SOLUTION METHODS . 30
2.2.1 Indirect Method . 30
2.2.2 Direct Method . 33
2.3 DISCRETIZATION SCHEMES . 35
2.3.1 Collocation Method . 36
2.3.2 Multiple-Shooting . 40
2.4 AUGMENTED LAGRANGIAN . 46
2.5 AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMAL CON-

TROL PROBLEMS . 47
2.5.1 Algorithm . 48
2.5.2 Mathematical Properties . 49
2.6 APPLICATION . 55
2.6.1 Van der Pol Oscillator . 55
2.6.2 Four Tanks . 60
3 DISTRIBUTED OPTIMAL CONTROL 68
3.1 LITERATURE REVIEW . 68
3.1.1 Distributed Dynamic Systems . 68
3.1.2 Controlling Distributed Systems 70
3.1.3 Related Works . 75
3.1.4 Contribution . 75
3.2 ALGORITHMS . 77
3.2.1 Coordinate descent . 77
3.2.2 Augmented Lagrangian with Coordinate Descent 84
3.2.3 Alternating Direction Multiplier Method (ADMM) 88
3.3 DISTRIBUTED SYSTEMS . 95

3.4 PROPOSED ALGORITHMS FOR DISTRIBUTED OPTIMAL CONTROL103
3.4.1 Augmented Lagrangian with Coordinate Descent 105
3.4.2 Alternating Directions Multiplier Method 109
3.4.3 Fully Decoupling the Subsystems 113
3.4.4 Jacobi ADMM . 115
3.5 NUMERICAL ANALYSIS . 122
3.5.1 Coordinate Descent with Augmented Lagrangian 124
3.5.2 ADMM . 126
3.5.3 Fully Decoupling the System . 128
3.5.4 Bipartite-Jacobi ADMM . 129
3.5.5 Overall Comparison . 129
3.5.6 Discussion . 130
4 APPLICATION: AN OIL AND GAS PRODUCTION NETWORK . . . 132
4.1 MOTIVATION . 132
4.2 NETWORK MODEL . 134
4.2.1 Well model . 135
4.2.2 Riser Model . 138
4.3 SCENARIO DESCRIPTION . 140
4.4 EXPERIMENTAL SETUP . 141
4.5 ANALYSIS OF EXPERIMENTAL RESULTS 143
4.6 CONCLUSION . 148
5 CONCLUSION . 149

References . 151
APPENDIX A – CALCULUS OF VARIATIONS 160

A.1 FUNCTION SPACE . 161
A.2 DERIVATIVE OF FUNCTIONALS . 164
A.2.1 Euler-Lagrange equation . 169

11

1 INTRODUCTION

1.1 MOTIVATION

A great range of industrial processes shows nonlinear behavior. Most commonly,
they are connected to other systems with their own dynamics. Such systems are clas-
sified as networked nonlinear systems, which are a representative class of practical
systems. Networked systems are usually large and complex, which complicates con-
trol design, particularly if one desires optimal control actions. For this reason, we look
for optimal control techniques that exploit the system structure enabling efficient and
structured optimal control.

This thesis seeks to develop a framework for distributed optimal control of net-
worked dynamic systems. One of the desired properties of such a framework is easy
modeling and model maintenance. With large systems, if the models are not appropri-
ately structured, the designer may end up building models with variables and equations
disregarding the boundaries of the subsystems, which adds complexity. This practice
causes a big issue when new equipment is added to the system, or a model of a partic-
ular subsystem needs to be changed. Likewise, a well-defined methodology for spec-
ifying the optimal control problem (OCP) from the ground up is desired for effectively
operating such networked systems. The formalization of a structure allows for promptly
finding in the literature strategies to solve the OCP. While having well-structured models
and OCP is a great start, the final goal of the optimal control is to obtain optimal con-
trol actions – and for that, we need algorithms. Therefore a framework should provide
means for algorithms to solve the problems efficiently and reliably to yield the optimal
control actions.

1.2 CONTRIBUTIONS

This thesis contributes to the areas of optimal control and distributed optimal
control, particularly for the control of systems described by continuous-time differential-
algebraic equations (DAE); it does this with two significant contributions.

Strengthening the augmented Lagrangian method for Optimal Control (AGUIAR, 2016)

In (AGUIAR, 2016), an augmented Lagrangian method for optimal control of
continuous-time DAEs was proposed. The algorithm is inspired by the augmented
Lagrangian method for solving constrained optimization problems. It works by relaxing
the algebraic equations of the OCP of DAEs, effectively transforming it into an OCP
of ordinary differential equations (ODEs). The relaxed equation is put in the integral
term of the objective, with a quadratic penalization term and an inner product with a
multiplier estimate. This thesis formalizes the work-in-progress algorithm presented in

Chapter 1. Introduction 12

the master’s dissertation and develops proofs of convergence, under varying conditions,
that led to a paper published in a reputable journal of the field (AGUIAR et al., 2021).
Two numerical experiments were performed to validate the proposed method.

Proposition of a framework for Distributed Optimal Control

The proposed framework models the system with a directed graph. The system
is assumed to be composed of many subsystems, each with its own dynamics, states,
inputs, and outputs variables. The inputs are the variables that are not defined by
the given subsystem, while the outputs are the variables on which other subsystems
depend. Each subsystem is represented as a node in the graph. The input-output
relation between the nodes are directed edges in the graph, mathematically, they are
trivial linear equations. This allows for a component-based description of the system so
that, if any changes are needed, the system can be easily reconfigured locally without
central intervention.

The specification of the optimal control problem also has some rules. In addition
to the DAE equations for networked systems described in terms of directed graphs, the
objective is assumed to be separable for each subsystem. A separable objective means
that the objective of each subsystem does not depend on other subsystem variables
directly. This objective leads to a decoupled cost coupled constraints (DCCC) formula-
tion, the coupling constraint being the connection between the nodes. An OCP with a
DCCC formulation has interesting properties which can be exploited. The restriction of
only separable objectives seems extreme, but a few modeling tricks are shown to allow
a vast group of objectives to be modeled with such conditions.

The proposed modeling structure allows for the augmented Lagrangian method
for optimal control of DAE systems to be used to relax the algebraic equations that
connect the subsystem. Since the coupling equations are relaxed and put into the
objective, the optimal control problem becomes a coupled cost decoupled constraint
(CCDC) problem. A CCDC optimization problem can be solved with several strategies,
notably coordinate descent and alternating direction, to name a few. An optimal control
interpretation of these strategies is developed. One downside of these strategies is
that they typically do not allow for nodes that have a direct connection to be solved
simultaneously; to circumvent this limitation, a modeling artifice is used to enable all
nodes to be solved in parallel. Numerical experiments performed with the methods in a
benchmark DAE system showed promising results. The promising results on the bench-
mark system led to a more sophisticated experiment with a small-scale oil production
network, which is full of nonlinearities and other real-world challenges.

Chapter 1. Introduction 13

1.3 PUBLICATIONS

The author was involved in the following publications, which are directly related
to this thesis

• AGUIAR, Marco Aurelio; CAMPONOGARA, Eduardo; FOSS, Bjarne. An Aug-
mented Lagrangian for Optimal Control of DAE Systems: Algorithm and Proper-
ties. IEEE Transactions on Automatic Control, v. 66, p. 261–266, 1 Jan. 2021. DOI:
10.1109/TAC.2020.2976042

• KRISHNAMOORTHY, Dinesh; AGUIAR, Marco Aurelio; FOSS, Bjarne; SKOGES-
TAD, Sigurd. A Distributed Optimization Strategy for Large Scale Oil and Gas
Production Systems. In: 2018 IEEE Conference on Control Technology and Appli-
cations (CCTA). IEEE, Aug. 2018. P. 521–526. DOI: 10.1109/CCTA.2018.8511385

• CAMPONOGARA, Eduardo; SILVA, Ricardo da; AGUIAR, Marco Aurelio. A dis-
tributed dual algorithm for distributed MPC with application to urban traffic control.
In: 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE,
Aug. 2017b. P. 1704–1709. DOI: 10.1109/CCTA.2017.8062702

• AGUIAR, Marco Aurelio; CAMPONOGARA, Eduardo; FOSS, Bjarne. An aug-
mented Lagrangian method for optimal control of continuous time DAE systems.
In: 2016 IEEE Conference on Control Applications (CCA). 2016. P. 1185–1190.
DOI: 10.1109/CCA.2016.7587967

The following publications are not directly connected to distributed optimal con-
trol, however they are tangential the themes of this thesis

• JORDANOU, Jean P.; CAMPONOGARA, Eduardo; ANTONELO, Eric; AGUIAR,
Marco Aurelio. Nonlinear Model Predictive Control of an Oil Well with Echo State
Networks. IFAC-PapersOnLine, v. 51, n. 8, p. 13–18, 2018. DOI: 10.1016/j.
ifacol.2018.06.348

• JORDANOU, Jean; ANTONELO, Eric; CAMPONOGARA, Eduardo; AGUIAR,
Marco Aurelio. Recurrent Neural Network Based Control of an Oil Well. In: XIII
Simpósio Brasileiro de Automação Inteligente. 2017

1.4 ORGANIZATION

This thesis is organized as follows:

• Chapter 2 begins with a review of concepts required for better following this dis-
sertation: DAEs, OCPs, necessary conditions for OCPs, Pontryagin’s minimum
principle, necessary conditions for OCPs of DAEs, solution methods for OCPs,

https://doi.org/10.1109/TAC.2020.2976042
https://doi.org/10.1109/CCTA.2018.8511385
https://doi.org/10.1109/CCTA.2017.8062702
https://doi.org/10.1109/CCA.2016.7587967
https://doi.org/10.1016/j.ifacol.2018.06.348
https://doi.org/10.1016/j.ifacol.2018.06.348

Chapter 1. Introduction 14

and augmented Lagrangian method for optimization. The augmented Lagrangian
method for optimal control of DAEs is presented. In the following, a series of es-
sential proofs for this method are provided. The chapter ends with two numerical
experiments illustrating the applicability of this method.

• Chapter 3 goes through a technical review of networked dynamic systems and
distributed optimal control. An overview of some optimization techniques are
provided, namely coordinate descent, augmented Lagrangian with coordinate
descent, and alternating direction multiplier method (ADMM). Based on the re-
laxation provided by the augmented Lagrangian for optimal control, a version of
the optimization methods is presented for distributed optimal control. A reformula-
tion that leads to the full parallelization of the nodes is presented. To finalize the
chapter, all the proposed methods are assessed using a benchmark plant.

• Chapter 4 provides a more realistic assessment of the distributed algorithm for
optimal control of networked systems. For this, a network with two oil and gas
production wells and a vertical riser is modeled based on models available in
the literature. The numerical experiments setup is then provided, along with the
indicators chosen for the analysis. The analysis of the results is provided.

• Chapter 5 gives the final thoughts of this thesis along with some possibilities for
future work.

15

2 AUGMENTED LAGRANGIAN FOR OPTIMAL CONTROL PROBLEMS OF DAE

2.1 BACKGROUND

2.1.1 Differential Algebraic Equations

The usual mathematical tool for modeling dynamic systems is ordinary differen-
tial equations (ODEs), which have the form

ẋ = f (x , u, t) (1)

where x(t) ∈ RNx is the state variable, u ∈ RNu is the control variable, t ∈ [t0, tf] is the
time variable, and f is the dynamic function. This class of equations allows obtaining
a compact model, which benefits from the many mathematical and numerical tools for
analysis and solution. As these models grow in size and complexity, they become hard
to interpret and, therefore, to maintain.

An approach that has increased in popularity in recent years is combining alge-
braic equations with ODEs to keep the inherent structure of the physical process. This
combination is known as differential-algebraic equations (DAEs), in which variables in
the system of equations are categorized in two groups: the state variables, those that
are defined by the differential equations, and the algebraic variables, those that are de-
fined by the algebraic equations. The typical approach of obtaining an ODE often starts
with a DAE, which is then simplified by eliminating the algebraic equations. Essentially,
the same process is performed to obtain a DAE, but the simplification step is skipped,
and the responsibility of dealing with a more complex set of equations is attributed to
the numerical solvers.

A DAE can be transformed into an ODE via two main methods: substitution and
differentiation. Those modeling an ODE system often use the substitution method with-
out being aware that they first formulate a DAE system. The technique works by simply
isolating the algebraic variables and substituting them in the differential equations with
the resulting expression. Consider the following DAE system,

ẋ = –x + y + u (2a)

0 = y – x2 + 1 (2b)

one could simply eliminate the y variable by obtaining y = x2 – 1, and replacing y in
the differential equation to obtain ẋ = –x + x2 – 1 + u. However, through this process,
information is lost. The information in y could be meaningful for the user of the model;
it could provide a hint of the process behavior or be required to be bounded due to the
very nature of the modeled system.

Differentiation, the second method to obtain an ODE of a DAE, uses the differ-
entiation of the algebraic equation with respect to the time variable to transform the

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 16

algebraic equation into a differentiation. In the example (2) by differentiating the alge-
braic equation, the differential equation ẏ = 2xẋ = 2x(–x + y + u) is obtained, therefore
making an ODE with two states. This method does not come without its hindrances: the
obtained state requires an initial condition.

For more complex models, a single differentiation may not result in an ODE
right away, requiring subsequent differentiations until no algebraic equation is left. This
process of differentiating DAEs is known as index reduction. The index of a DAE sys-
tem is the number of differentiations needed to convert the DAE into an ODE system.
For instance, an ODE is an index-0 DAE because the system itself is an ODE. An
equation like (2) is an index-1 DAE. The pendulum system can be modeled as index-3
(ASCHER; PETZOLD, 1998). Ultimately, the index of a DAE can be used as a measure
of complexity.

In this work we are particularly interested in semi-explicit index-1 DAE, the class
of DAE with the following form

ẋ = f (x , y , u, t) (3a)

0 = g(x , y , u, t) (3b)

where y(t) ∈ RNy is the algebraic variable, and g(x , y , u, t) ∈ RNy is the algebraic
function, and (3b) is solvable w.r.t. y , equivalently, the Jacobian of g w.r.t. exists and is
invertible. This particular kind of DAE was chosen because of its mathematical prop-
erties, which will be later employed to identify mathematical properties and design an
OCP algorithm for DAEs. Although they exist, higher-order DAEs appear less often in
the modeling of control applications. When they do, they are typically transformed into
a lower index DAE by applying index reduction.

The differences between the two approaches are highlighted in the following
example.

Example 1 (A simple tank: ODE vs. DAE). To demonstrate how one can approach
obtaining a DAE model, a tank that holds liquid is studied in this example. The illustration
of the tank is depicted in Figure 1.

The mass balance is typically the first thing to address when doing phenomeno-
logical modeling. Let us assume that the liquid has constant density, therefore a volume
balance can be equivalently applied. Hence, the variation of volume of liquid that the
tank holds is the inflow decreased by the outflow

V̇ = qin – qout (4)

where V is the volume of liquid, qin is the tank feed, and qout is the outflow.
Knowing the volume, the tank level can be obtained through the following equa-

tion

h =
V
A

(5)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 17

qin

qout

h

Figure 1 – Illustration of the tank

where the A is the cross section area of the tank.
Considering that the inflow qin is given, the only unknown is the outflow, which

can obtained using the orifice equation

qout = a
√

2gh (6)

where a is the cross section area of the hole, g is gravitational acceleration, and h is
the height of the liquid inside of the tank.

Grouping the equations above, the DAE model is obtained

V̇ = qin – qout (7a)

h =
V
A

(7b)

qout = a
√

2gh (7c)

Assuming that one is interested in the model for the tank height (h), then the ODE
model could be achieved by the substitution method that yields the following equation

ḣ =
qin – a

√
2gh

A
(8)

As expected due to the substitutions, ODE models are typically more compact,
whereas DAE models are richer in information. This compactness of the model not
always translates into a faster and more stable solution by numerical methods. The
sparsity provided by the DAE can aid numerical algorithms by avoiding sharp deriva-
tives.

The modularity of the DAE can be exploited to compose models with higher
complexity while preserving meaning and maintainability. For instance, modeling of
electrical submersible pumps (ESPs) and their interactions with gas and oil production

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 18

wells can be achieved while keeping meaning and understanding of the process (KR-
ISHNAMOORTHY et al., 2016). For this reason, DAEs are an excellent tool, not only
for centralized process control but for distributed control as well.

2.1.2 Optimal Control Problems for ODEs

In the previous subsection, we saw how to obtain a mathematical model that
represents a dynamic system. Here we discuss how to make the system behave as we
desire, particularly how to do so optimally. Clearly, if a controller (and system behavior)
is optimal there can be no controller giving better system behavior, and there has to
exist a criterion for making such comparisons.

Optimal control is a field of control theory that combines optimization and control
to obtain the control actions that are the best for some given criterion. This criterion,
which is commonly referred to as the objective function, is crucial to optimization. One
can only say that A is better than B if there is a comparison metric. The objective
function is typically expressed as the sum of an integrated cost and a final cost. The
integrated cost is the combination of costs for the actions, penalties, and systems’
behavior incurred during the prediction window. In contrast, the final cost is the cost
resulting from the conditions at the final time.

min
u

J(x , y , u) =
∫ tf

t0
L(x , y , u, t) dt + V (x(tf), tf) (9)

where L is the dynamic cost function (also know as the Lagrange term), and V is the
final cost function (Mayer term). The functions L and V are expected to be continuously
differentiable w.r.t. to their arguments. Under some basic assumptions, an objective
function described in terms of the dynamic cost L can be expressed purely in terms of
the final cost V , with the opposite also holding, as shown in the following theorem.

Theorem 1. (KIRK, 2004) Given an OCP with the following objective

min
u

V (x(tf), tf) +
∫ tf

t0
L(x , u, t) dt , (10)

and V (x(tf), tf) is continuously differentiable in x and t, then there is an equivalent
objective that only has the Lagrangian term,

min
u

∫ tf

t0
L̂(x , u, t) dt . (11)

Conversely, it is possible to find a representation of (10) that has only the Mayer
term,

min
u

V̂ (x(tf), tf). (12)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 19

Proof. Starting with the identity

V (x(tf), tf) = V (x(t0), t0) + V (x(tf), tf) – V (x(t0), t0) (13)

which can be developed into

V (x(tf), tf) = V (x(t0), t0) +
∫ tf

t0

dV
dt

(x , t) dt (14a)

= V (x(t0)) +
∫ tf

t0

[
∂V
∂t

(x , t) +
∂V
∂x

(x , t)
dx
dt

]
dt (14b)

= V (x(t0)) +
∫ tf

t0

[
∂V
∂t

(x , t) +
∂V
∂x

(x , t)f (x , u, t)
]

dt . (14c)

Since x(t0) and t0 are fixed, V (x(t0), t0) is fixed by consequence. Therefore they do not
affect the solution and can be disregarded. By choosing L̂ in the form

L̂(x , u, t) = L(x , u, t) + LV (x , u, t). (15)

where

LV =
∂V
∂t

(x , t) +
∂V
∂x

(x , t)f (x , u, t) (16)

the minimization of the integral of L̂ will be equivalent to (10).
For the second statement, let us introduce a new state xL such that

ẋL = L(x , u, t), (17)

with the initial condition being xL(t0) = 0. Therefore we can define a new final cost

V̂ (x(tf), tf) = V (x(tf), tf) +
∫ tf

t0
L(x , u, t) dt (18a)

= V (x(tf), tf) +
∫ tf

t0
ẋL(t) dt (18b)

= V (x(tf), tf) + xL(tf). (18c)

A common choice for the objective is to use a quadratic error between a desired
target and the state variable,

min
u

J(x , y , u) =
∫ tf

t0
(xd – x)T (xd – x) + (ud – u)T (ud – u) dt (19)

where xd and ud are the desired state and control, respectively.
However, more generally, one could choose an economic cost that will lead to

the optimum operation of processes of interest. For instance, one might choose to

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 20

maximize the oil produced by oil wells or minimize the time a rocket takes to reach a
given altitude.

The optimal control problem of an ODE system is composed of an objective
function and an ODE; it can also contain constraints on control and state variables, but
a simple OCP is investigated as a start. Putting all together, the following problem is
obtained

min
u,tf

J(x , u) = V (x(tf), tf) +
∫ tf

t0
L(x , u, t) dt (20a)

s.t.: ẋ = f (x , u, t) (20b)

x(t0) = x0 (20c)

where x0 is the initial condition for the state variable. (20)
A few assumptions on its underlying variables and functions are necessary for

problem (20) to be well defined.

Assumption 1. With respect to problem (20), the following assumptions are made:

1. The function V is continuously differentiable with respect to x and t.

2. The function L is continuously differentiable with respect to x, u, and t.

3. The dynamics function f is continuously differentiable with respect to x, u, and t.

4. The function x is continuously differentiable with respect to t, and the function u
is piecewise continuous with respect to t.

If the third assumption holds and u is piecewise continuous, then the solution of the
ODE system (20b) exists and is unique (KHALIL, 2002, Theorem 3.2).

A pair of state and control profiles x∗ and u∗ can only be said to be a solution to
the optimization problem (20) if it satisfies the conditions given in the following theorem.

Theorem 2. (KIRK, 2004; SASANE, 2004) Let (20) be an OCP for which Assumption
1 holds. If the control profile u∗ defined in the interval [t0, tf], which induces the state
profile x∗, is a minimum for (20) then there exists a function λ∗ : [t0, tf]→ RNx ∈ C1[t0, tf]
that satisfies

–λ̇∗ =
∂L
∂x

(x∗, u∗, t)T +
∂f
∂x

(x∗, u∗, t)Tλ∗, t ∈
[
t0, tf

]
(21a)

0 =
∂L
∂u

(x∗, u∗, t) + λ∗T
∂f
∂u

(x∗, u∗, t) t ∈
[
t0, tf

]
, (21b)

λ∗(tf) =
∂V
∂x

(x(tf), tf) (21c)

and x∗ is given by

ẋ∗ = f (x∗, u∗, t), t ∈ [t0, tf] (21d)

x∗(t0) = x0. (21e)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 21

Proof. In optimization theory, the Lagrangian is a function that augments the objective
function by incorporating the constraints multiplied by a vector, known as Lagrange
multipliers. Likewise, we can define an equivalent augmented functional that combines
the final cost, the dynamic cost function, and the system dynamic equation adjointed
by a variable λ(t) ∈ C1[t0, tf], as follows

Ja(x , u, λ) = V (x(tf), tf) +
∫ tf

t0

{
L(x , u, t) + λT [f (x , u, t) – ẋ

]}
dt (22)

where λ can be referred to as the adjoint variable or the costate. Notice that if x∗

satisfies the ODE equation ẋ∗ = f (x∗, u∗, t), then Ja = J (20a).
From Theorem 10 (in Appendix A) if (x∗, u∗, λ∗) are an extremum of Ja, then the

first variation of the augmented functional Ja has to be zero.
Let δx with δx(t0) = 0 be the variation of the state x , δu be variation of u, the δλ

be the variation of the adjoint variable λ, and δtf be a variation on the final time tf . The
first variation of Ja, using Theorem 12 (in Appendix A), at x∗, λ∗, and u∗ is given by

δJa =
[
∂V
∂x

(x∗(tf), tf)
]
δx(tf) +

{
∂V
∂t

(x∗(tf), tf)

+
∂V
∂x

(x∗(tf), tf)ẋ
∗(tf) + L(x∗(tf), u∗(tf), tf)

+ λ∗T
[
f (x∗(tf), u∗(tf), tf) – ẋ∗(tf)

]}
δtf

+
∫ tf

t0

{[
∂L
∂x

(x∗, u∗, t) + λ∗T
∂f
∂x

(x∗, u∗, t)
]
δx

+
[
∂L
∂u

(x∗, u∗, t) + λ∗T
∂f
∂u

(x∗, u∗, t)
]
δu

+
[
f (x∗, u∗, t) – ẋ∗

]T
δλ – λ∗T δẋ

}
dt = 0 (23)

where δẋ is the derivative of the perturbation δx , and δx(tf) is the value of the per-
turbation δx at time tf . The terms L(x∗(tf), u∗(tf), tf) + λ∗T

[
f (x∗(tf), u∗(tf), tf) – ẋ∗(tf)

]
(multiplied by δtf) arise from the differentiation of the integral with respect to tf , and the
terms related to V (x(tf), tf) originate from the first order Taylor’s expansion

δV (x(tf), tf) =
[
∂V
∂t

(x∗(tf), tf) +
∂V
∂x

(x∗(tf), tf)ẋ
]
δtf +

∂V
∂x

(x∗(tf), tf)δx(tf). (24)

Using integration by parts, the term related to δẋ can be transformed∫ tf

t0
–λ∗T δẋ dt = –λ∗T (tf)δx(tf) +

∫ tf

t0
λ̇∗T δx dt (25)

where the term λ∗T (t0)δx(t0) vanishes since δx(t0) = 0.
The term δx(tf) is a perturbation on the variable x∗(tf) at the time t = tf . Further,

let us recall that δtf is a perturbation at the point t = tf in the time axis. Let us define

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 22

the perturbation δxf as a perturbation on the final value of the trajectory of x∗, that is xf .
Notice that δx(tf) = δxf only if tf is the final time, but if the final time is perturbed then
the final time is tf + δtf and the final state is xf = x(tf + δtf).

Observing Figure 2, it can be noticed that by perturbing the value of x(t) at t = tf ,
that is x(tf), the value of the end of the trajectory xf is directly affected. In addition, note
that by perturbing the final time tf , the end of trajectory (xf) is also affected depending
on the inclination of trajectory, given by ẋ .

δxf

t0

x0

xf

δx(tf)

tf

δtf

x

ẋδtf

δx(tf)
δxf

t

tf + δtf

Figure 2 – Illustrations on the variations δxf , δx(tf), and δtf . The solid line is the original
trajectory and dotted line is the perturbed trajectory

As observed in Figure 2, we have the following relation

δxf = δx(tf) + ẋδtf (26)

which can be rearranged in the form

δx(tf) = δxf – ẋδtf (27)

Using equations (25), (27), and the fact that ẋ(tf) = f (x(tf), u(tf), tf), the first
variation of the augmented functional can be rewritten as

δJa =
[
L(x∗(tf), u∗(tf), tf) + λ∗(tf)

T f (x∗(tf), u∗(tf), tf)

+
∂V
∂t

(x∗(tf), tf)
]
δtf +

[
∂V
∂x

(x∗(tf), tf) – λ∗(tf)
]
δxf

+
∫ tf

t0

{[
∂L
∂x

(x∗, u∗, t) + λ∗T
∂f
∂x

(x∗, u∗, t) + λ̇∗T
]
δx

+
[
∂L
∂u

(x∗, u∗, t) + λ∗T
∂f
∂u

(x∗, u∗, t)
]
δu

+
[
f (x∗, u∗, t) – ẋ∗

]T
δλ

}
dt = 0 (28)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 23

Since in order to the trajectories (x∗, u∗, t) be an extremum, it is required that
δJa = 0, the Fundamental Lemma of variational calculus (Lemma 2, in Appendix A) can
be applied to the integral term in (28) obtaining the necessary conditions

–λ̇∗ =
∂L
∂x

(x∗, u∗, t)T +
∂f
∂x

(x∗, u∗, t)Tλ∗ (29a)

0 =
∂L
∂u

(x∗, u∗, t) + λ∗T
∂f
∂u

(x∗, u∗, t) (29b)

ẋ∗ = f (x∗, u∗, t) (29c)

for all t ∈ [t0, tf].
By meeting the conditions (29), the first variation of δJa becomes

δJa =
[
L(x∗(tf), u∗(tf), tf) + λ∗(tf)

T f (x∗(tf), u∗(tf), tf) +
∂V
∂tf

(x∗(tf), tf)
]
δtf

+
[
∂V
∂x

(x∗(tf), tf) – λ∗(tf)
]
δxf (30)

Under the assumption that the final time is fixed and the final state is free, the
final time perturbation is zero (δft = 0). The first term of (30) vanishes, resulting in

δJa =
[
∂V
∂x

(x∗(tf), tf) – λ∗(tf)
]
δxf (31)

In order to δJa to be zero for any pertubation xf , the following equation must be satisfied

λ∗(tf) =
∂V
∂x

(x∗(tf), tf) (32)

If the final time were considered an optimization variable or the final condition was
fixed or constrained, the necessary condition would take another form. The condition
for those cases can be found in (KIRK, 2004).

Sometimes the conditions presented in Theorem 2 are presented in terms of a
Hamiltonian system, whose Hamiltonian function is given by

H(x , λ, u, t) = L(x , u, t) + λT f (x , u, t) (33)

which leads to the necessary conditions to be presented as

–λ̇ =
∂H
∂x

=
∂L
∂x

(x , u, t)T + λT ∂f
∂x

(x , u, t) (34a)

ẋ =
∂H
∂λ

= f (x , u, t) (34b)

∂H
∂u

=
∂L
∂u

(x , u, t)T + λT ∂f
∂u

(x , u, t) = 0 (34c)

From the necessary conditions defined in terms of the Hamiltonian, we can
notice that the optimal control u∗ is the one that minimizes the Hamiltonian (∂H

∂u = 0).

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 24

2.1.3 Pontryagin’s minimum principle

Theorem 2 assumed that the control was unbounded. Next consider the case
where control is bounded, that is

u ∈ UB = {u ∈ RNu |uL ≤ u ≤ uU } (35)

where ul ∈ RNu is the lower bound, and RNu is the upper bound.
The OCP (20) can be augmented to include the control bounds

min
u,tf

J(x , u) = V (x(tf), tf) +
∫ tf

t0
L(x , u, t) dt (36a)

s.t.: ẋ = f (x , u, t) (36b)

x(t0) = x0 (36c)

u ∈ UB (36d)

If the solution of the OCP (36) has u∗ such that uL < u(t) < uU for all t ∈
[t0, tf], then solving OCP (36) with or without (36d) has the same solution, and for such
condition the optimality conditions (∂H

∂u = 0) of Theorem 2 are valid.
On the other hand, if for some interval t ∈ [t1, t2] the optimal solution u∗ touches

the boundary of the set UB, then it will not necessarily satisfy the optimality condition
∂H
∂u = 0. In this case, a strategy similar to Theorem 2 using the variational calculus can
not be used given that the pertubation on u may not lay inside the set of valid controls,
that is u(t) + δu(t) 6∈ UB, in particular if u(t) = uL or u(t) = uU .

Pontryagin’s minimum principle establishes a necessary optimal condition that
accounts for constraints in the control variable. An intuitive demonstration will be given
below, while a more detailed proof can be found in (PONTRYAGIN et al., 1962). If u∗ ∈
UB induces an optimal value in the objective J(u), assuming that the state equations
are respected, then

∆J(u) = J(u) – J(u∗) ≥ 0 (37)

for all valid u in the neighborhood of u∗. If we define u = u∗ + δu, the variation in the
objective can be reprented by

∆J(u∗, δu) = δJ(u∗, δu) + higher-order variations (38)

If we express the variation δJ in terms of the Hamiltonian we get

δJ =
[
H(x∗(tf), λ

∗(tf), u∗(tf), tf) +
∂V
∂tf

(x∗(tf), tf)
]
δtf +

[
∂V
∂x

(x∗(tf), tf) – λ∗(tf)
T
]
δxf

+
∫ tf

t0

{[
∂H
∂x

(x∗, λ∗, u∗, t)
]
δx +

[
δH
δu

(x∗, λ∗, u∗, t)
]
δu

+
[
δH
δλ

(x∗, λ∗, u∗, t) – ẋ∗T
]
δλ

}
dt (39)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 25

If for all perturbations except δu the equations are set in order to make δJ be
zero, then

∆J =
∫ tf

t0

[
∂H
∂u

(x∗, λ∗, u∗, t)
]

dt + higher-order variations (40)

Using the first variation definition,[
∂H
∂u

(x∗, λ∗, u∗, t)
]
δu = H(x∗(t), λ∗(t), u∗(t) + δu(t), t) – H(x∗(t), λ∗(t), u∗(t), t) (41)

in the definition of ∆J,

∆J =
∫ tf

t0

[
H(x∗(t), λ∗(t), u∗(t) + δu(t), t) – H(x∗(t), λ∗(t), u∗(t), t)

]
dt

+ higher-order variations (42)

By assuming that δu is sufficiently small and that u∗ + δu satisfies the neighbor-
hood demand, then the integral term of (42) dominates over the higher-order terms.
Hence acconding to (37), in order to u∗ to be optimal∫ tf

t0

[
H(x∗(t), λ∗(t), u∗(t) + δu(t), t) – H(x∗(t), λ∗(t), u∗(t), t)

]
dt ≥ 0 (43)

for all admissible δu.
Therefore, we must have

H(x∗(t), λ∗(t), u∗(t), t) ≤ H(x∗(t), λ∗(t), u∗(t) + δu(t), t) (44)

or in terms of u in a neighborhood of u∗,

H(x∗(t), λ∗(t), u∗(t), t) ≤ H(x∗(t), λ∗(t), u(t), t) (45)

for all t ∈ [t0, tf]. This means that the necessary condition to u∗ to be optimal is that it
minimize the Hamiltonian.

The intuitions introduced above are formalized in the following theorem.

Theorem 3 (Pontryagin’s Minimum Principle (PONTRYAGIN et al., 1962)). Let u∗(t) for
t ∈ [t0, tf] be an admissible control such that the corresponding trajectory x∗ is defined
by

ẋ∗ =
∂H
∂λ

= f (x∗, u∗, t) (46)

with the boundary condition x∗(t0) = x0. In order for u∗(t) and x∗(t) to be optimal it is
necessary that there exists a nonzero continuous vector function λ∗ : [t0, tf] → RNx

corresponding to u∗(t) and x∗(t) through the ODE such that

–λ̇∗ =
∂H
∂x

=
∂L
∂x

(x∗, u∗, t) +
∂f
∂x

(x∗, u∗, t), (47)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 26

with the boundary conditions given by the conditions

x∗(t0) = f (x∗, u∗, t) (48a)

λ∗(tf) =
∂V
∂x

(x∗(tf), tf) (48b)

and that

1. The function H(x∗(t), λ∗(t), u, t), with u ∈ UB, attains its minimum at the point
u = u∗(t) for all t ∈ [t0, tf]:

H(x∗(t), λ∗(t), u∗(t), t) = inf
u∈UB

H(x∗(t), λ∗(t), u, t) (49)

or, equivalently, for all u ∈ UB and for all t ∈ [t0, tf]:

H(x∗(t), λ∗(t), u∗(t), t) ≤ H(x∗(t), λ∗(t), u, t). (50)

2. If the final time is fixed and the Hamiltonian does not depend explicitly on the time
variable, then the Hamiltonian must be equal to a constant c1 for all t ∈ [t0, tf],

H(x∗(t), λ∗(t), u∗(t), t) = c1, ∀t ∈ [t0, tf]. (51)

3. If the final time is free and the Hamiltonian does not depend explicitly on the time
variable, then the Hamiltonian must be zero for all t ∈ [t0, tf],

H(x∗(t), λ∗(t), u∗(t), t) = 0, ∀t ∈ [t0, tf]. (52)

Proof. The proof of this Theorem can be found in (PONTRYAGIN et al., 1962, Chapter
2).

The conditions presented so far are necessary conditions; sufficient conditions
have been developed for OCPs of ODEs. These conditions are typically not explored in
practice due to the difficulty of extracting control laws out of these conditions. The most
well-known theorem among these sufficient conditions is the Hamilton-Jacobi-Bellman
(HJB) equations, which can be described as a continuous version of the Bellman equa-
tions. The interested reader is referred to (BERTSEKAS, 2005) for further reading.

2.1.4 Optimal Control Problems of DAEs

So far, this chapter has presented the optimality conditions for OCPs of ODEs.
However, we are interested in the OCP of DAEs.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 27

Given the definition of a DAE (3) and the definition of an OCP of ODEs (20), let
us define an OCP of DAEs

min
u,tf

J(x , y , u) = V (x(tf), tf) +
∫ tf

t0
L(x , y , u, t) dt (53a)

s.t.: ẋ = f (x , y , u, t) (53b)

0 = g(x , y , u, t) (53c)

x(t0) = x0 (53d)

where x(t) ∈ RNx is the state, y(t) ∈ RNy is the algebraic variable, u(t) ∈ RNu is
the control variable. The function f characterizes the states, and g characterizes the
algebraic variables. The final cost is given by the function V , while L defines the dynamic
cost.

The OCP of DAEs is also known in the literature as an OCP with mixed con-
straints. In those works, the dynamic system is described solely using states and
controls. The differential and algebraic equations are viewed as equality constraints.
The former representation was chosen in this work because of the structure that distin-
guishes algebraic and states variables.

Similarly to the approach described above for studying the OCP for ODEs, we
can associate a multiplier function with the equality (53c). Let ν : [t0, tf]→ RNy be the
multiplier associated with (53c). Notice since the algebraic equation should hold for all
t in [t0, tf], ν is a time dependent function.

Theorem 2 can be extended for including algebraic equations. Let the Hamilto-
nian function be defined by

HDAE (x , λ, y ,ν, u, t) = L(x , y , u, t) + λT f (x , y , u, t) + νT g(x , y , u, t) (54)

Then the necessary conditions for the functions x∗, y∗, and u∗ to be optimal are
given in the following theorem.

Theorem 4. (BIEGLER, L. T., 2010) Consider an OCP of DAE in the form (53). If the
control u∗, which induces the states x∗ by (53b), and the algebraic variables y∗ by (53c)
in the time interval t ∈ [t0, tf], is a minimum of (53a), then there exists a continuous
differentiable function λ∗ : [t0, tf]→ RNx and a function ν∗ : [t0, tf]→ RNy , such that

∂HDAE
∂x

= –λ̇∗T =
∂L
∂x

+ λ∗T
∂f
∂x

+ ν∗T
∂g
∂x

(55a)

∂HDAE
∂y

= 0 =
∂L
∂y

+ λ∗T
∂f
∂y

+ ν∗T
∂g
∂y

(55b)

∂HDAE
∂u

= 0 =
∂L
∂u

+ λ∗T
∂f
∂u

+ ν∗T
∂g
∂u

(55c)

Proof. The proof follows the same steps of the proof of Theorem 2; therefore, a sum-
mary is provided here.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 28

Let us define the an augmented functional Ja, given by

Ja(x , λ, y ,ν, u) = V (x(tf), tf)

+
∫ tf

t0

{
L(x , y , u, t) + λT [f (x , y , u, t) – ẋ

]
+ νT g(x , y , u, t)

}
dt (56)

Let δx be the perturbation on the state, δy be the perturbation on the algebraic
variable, and δu be the perturbation on the control variable. Then we can perform the
same process used to obtain the first variation of δJa for the ODE case (28). By doing
so, the first variation of Ja at (x∗, λ∗, y∗,ν∗, u∗) is given by

δJa =
[
L(x∗(tf), y∗(tf), u∗(tf), tf) + λ∗(tf)

T f (x∗(tf), u∗(tf), tf)

+ ν∗(tf)
T g(x∗(tf), y∗(tf), u∗(tf), tf) +

∂V
∂tf

(x∗(tf), tf)
]
δtf

+
[
∂V
∂x

(x∗(tf), tf) – λ∗(tf)
T
]
δxf

+
∫ tf

t0

{[
∂L
∂x

+ λ∗T
∂f
∂x

+ ν∗T
∂g
∂x

+ λ̇∗T
]
δx +

[
∂L
∂y

+ λ∗T
∂f
∂y

+ ν∗T
∂g
∂y

]
δy

+
[
∂L
∂u

+ λ∗T
∂f
∂u

+ ν∗T
∂g
∂u

]
δu +

[
f (x∗, y∗, u∗, t) – ẋ∗

]T
δλ

+
[
g(x∗, y∗, u∗, t)

]T
δν

}
dt (57)

where the arguments of partial derivatives were suppressed for a better readability.
If (x∗, λ∗, y∗,ν∗, u∗) minimizes (53), then by Theorem 10 (in Appendix A) the

first variation has to be zero. By the fundamental lemma of the calculus of variations
(Lemma 2 in Appendix A) to Ja to be zero, the following system of equation has to be
satisfied for all t ∈ [t0, tf]

–λ̇∗T =
∂L
∂x

+ λ∗T
∂f
∂x

+ ν∗T
∂g
∂x

(58a)

0 =
∂L
∂y

+ λ∗T
∂f
∂y

+ ν∗T
∂g
∂y

(58b)

0 =
∂L
∂u

+ λ∗T
∂f
∂u

+ ν∗T
∂g
∂u

(58c)

ẋ∗ = f (x∗, y∗, u∗, t) (58d)

0 = g(x∗, y∗, u∗, t) (58e)

If we assume that the final time tf is fixed and the final state xf is free, the
boundary conditions are

x(t0) = x0 (59a)

λ(tf) =
∂V
∂x

(x∗(tf), tf)
T (59b)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 29

The OCP (53) can also be extended to include bounds on the controls

min
u,tf

J(x , y , u) = V (x(tf), tf) +
∫ tf

t0
L(x , y , u, t) dt (60a)

s.t.: ẋ = f (x , y , u, t) (60b)

0 = g(x , y , u, t) (60c)

x(t0) = x0 (60d)

u ∈ UB (60e)

The Pontryagin’s mininum principle can adjusted to account for the algebraic
variables (BIEGLER, L. T., 2010).

Theorem 5. Let the optimal control u∗(t) satisfy u∗(t) ∈ UB for all t ∈ [t0, tf], such that
the corresponding trajectory x∗ and y∗ are defined by

∂HDAE
∂λ

T
= ẋ∗ = f (x∗, y∗, u∗, t) (61a)

∂HDAE
∂ν

T
= g(x∗, y∗, u∗, t) = 0 (61b)

with the boundary condition x∗(t0) = x0.
If x∗(t), y∗(t), and u∗(t) induce an optimal solution to (60), then there exists

a nonzero continuous vector function λ∗ : [t0, tf] → RNy and a nonzero functions
corresponding to x∗(t), y∗(t), and u∗(t) through the DAE

∂HDAE
∂x

= –λ̇∗T =
∂L
∂x

(x∗, y∗, u∗, t) + λ∗T
∂f
∂x

(x∗, y∗, u∗, t) + ν∗T
∂g
∂x

(x∗, y∗, u∗, t) (62a)

∂HDAE
∂y

=
∂L
∂y

(x∗, y∗, u∗, t) + λ∗T
∂f
∂y

(x∗, y∗, u∗, t) + ν∗T
∂g
∂y

(x∗, y∗, u∗, t) = 0 (62b)

with the boundary conditions given by the conditions stated in Theorem 4, and that

1. The function HDAE (x∗(t), λ∗(t), y∗(t),ν∗(t), u, t) with u ∈ UB attains its minimum at
the point u = u∗(t) for all t ∈ [t0, tf]:

HDAE (x∗(t), λ∗(t), y∗(t),ν∗(t), u∗(t), t) = inf
u∈UB

HDAE (x∗(t), λ∗(t), y∗(t),ν∗(t), u, t)

(63)

or, equivalently, for all u ∈ UB and for all t ∈ [t0, tf]:

HDAE (x∗(t), λ∗(t), y∗(t),ν∗(t), u∗(t), t) ≤ HDAE (x∗(t), λ∗(t), y∗(t),ν∗(t), u, t) (64)

2. If the final time is fixed and the Hamiltonian does not depend explicitly on the time
variable, then the Hamiltonian must be equal to a constant c1 for all t ∈ [t0, tf],

HDAE (x∗(t), λ∗(t), y∗(t),ν∗(t), u∗(t), t) = c1 ∀t ∈ [t0, tf] (65)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 30

3. If the final time is free and the Hamiltonian does not depend explicitly on the time
variable, then the Hamiltonian must be zero for all t ∈ [t0, tf],

HDAE (x∗(t), λ∗(t), y∗(t),ν∗(t), u∗(t), t) = 0 ∀t ∈ [t0, tf] (66)

More general necessary conditions have been developed that account for a
DAEs with an arbitrary index (CLARKE; PINHO, 2010; DE PINHO et al., 2001; GERDTS,
2006; KUNKEL; MEHRMANN, 2008; BOCCIA et al., 2016). Sufficient conditions for
OCP of ODEs have also been developed based on the HJB equations (GALEWSKA;
NOWAKOWSKI, 2005).

2.2 SOLUTION METHODS

So far, necessary conditions for OCPs of DAEs with and without control con-
straints have been provided, but no discussion on obtaining a solution in practice was
presented. In this section, we are going to discuss two common approaches to solve the
OCPs. These approaches restate the OCP in a form more compatible with optimization
tools. The methods can be divided into two (SRINI et al., 2003):

• Indirect Methods: The indirect methods use optimality conditions to find a solu-
tion for the OCP. They are indirect because instead of using the OCP to find the
optimal control, they try to find the solution for a set of equations obtained from
the optimality conditions.

• Direct Methods: The direct methods try to find the controls that minimize the
objective function, typically using optimization methods and solvers.

2.2.1 Indirect Method

As said previously, the methods that use the optimality conditions to obtain an
optimal solution are known as indirect methods. In this section, a method that uses the
necessary conditions given in Theorem 4 to obtain the optimal solution of an OCP with
the form of (53) will be presented. This same approach can be used to solve (60) using
the conditions defined in Theorem 5

The method will be presented following an example for better visualization. The
Van der Pol oscillator is a common benchmark application (KHALIL, 2002), that is
typically modelled as an ODE system of the form

ẋ1 = (1 – x2
2)x1 – x2 + u (67a)

ẋ2 = x1 (67b)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 31

However, this system can be modelled as a DAE system,

ẋ1 = y + u (68a)

ẋ2 = x1 (68b)

y = (1 – x2
2)x1 – x2 (68c)

Consider the objective function that brings the system to the unstable equilibrium at
x = (0, 0),

J =
∫ tf

t0

[
x2

1 + x2
2 + u2

]
dt (69)

Let the initial time t0 be 0, and the final time tf be 5 seconds, the initial conditions
are x(t0) = [0, 1]T . Figures 3 and 4 depicts the system without any control law applied.
It is possible to verify that the open-loop system goes to a limit cycle dynamic without a
control law to stabilize it.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

−2

−1

0

1

2

S
ta

te

x0

x1

Figure 3 – States of the Van Der Pol oscillator in open loop

With the DAE system (68) and the objective function (69), the following OCP can
be created

min J =
∫ tf

t0

[
x2

1 + x2
2 + u2

]
dt (70a)

s.t.: ẋ1 = y + u (70b)

ẋ2 = x1 (70c)

y = (1 – x2
2)x1 – x2 (70d)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

−4

−2

0

2

4

A
lg

eb
ra

ic
V

ar
ia

bl
e

y

Figure 4 – Algebraic variable of the Van Der Pol oscillator in open loop

If we apply the necessary conditions discussed in Theorem 5 and 4 to OCP (70)
then the following boundary value problem (BVP) arises

∂H
∂x1

= –λ̇1 = 2x1 + λ2 + ν(1 – x2
2) (71a)

∂H
∂x2

= –λ̇2 = 2x2 + ν(–2x2x1 – 1) (71b)

∂H
∂y

= λ1 – ν = 0 (71c)

∂H
∂u

= 2u + λ1 = 0 (71d)

∂H
∂λ1

= ẋ1 = (1 – x2
2)x1 – x2 + u (71e)

∂H
∂λ2

= ẋ2 = x1 (71f)

∂H
∂ν

= (1 – x2
2)x1 – x2 – y = 0 (71g)

x(0) = [1, 0]T (71h)

λ(tf) = 0 (71i)

From (71d), the optimal control strategy can be extracted

u∗ = –
λ1
2

(72)

Since there is an equation for the control variable, there are two possibilities:

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 33

1. The control variable can be recast as an algebraic variable, with the associated
algebraic equation being (72).

2. The substitution method can be applied to make u vanish from the system.

Either way, the resulting set of equations become a BVP. For instance, if the first
approach is used the following BVP is obtained

– λ̇1 = 2x1 + λ2 + ν(1 – x2
2) (73a)

– λ̇2 = 2x2 + ν(–2x2x1 – 1) (73b)

λ1 – ν = 0 (73c)

2u + λ1 = 0 (73d)

ẋ1 = (1 – x2
2)x1 – x2 + u (73e)

ẋ2 = x1 (73f)

(1 – x2
2)x1 – x2 – y = 0 (73g)

x(0) = [1, 0]T (73h)

λ(tf) = 0 (73i)

An off-the-shelf BVP with DAE capabilities solver can solve this BVP. Alternatively,
it can be solved using one of the discretization techniques for OCPs that will be later
described. Notice that BVPs are OCPs with no objective (J = 0) and a mixture of initial
and terminal constraints.

Although indirect methods are pretty simple to implement, they have a few dis-
advantages. There is a stability duality between states and costates; if a state is stable,
then its costate is unstable and vice-versa. This issue makes the BVP more challenging
to solve due to numerical instability. Furthermore, dealing with general constraints, typi-
cal in OCPs, is a complex challenge for indirect methods. The necessary conditions for
OCPs with general constraints were not discussed in this document. However, they are
pretty intricate to use in practice and have to be hand-tailored to specific applications.
For these reasons, a direct approach is often preferred in many industrial applications.

2.2.2 Direct Method

The direct methods try to solve the OCP using optimization techniques. For this
reason, the OCP needs to be conditioned to be handled by an optimization solver. The
preparation typically takes three steps.

The first step consists of transforming the objective. Optimization solvers are
made to minimize objective functions and can not handle the minimization of integrals
as is the case of the objective of the OCP (70). Theorem 1 can be used to transform
the integral in a final cost. Let us introduce a new state xc that is defined by

ẋc = L(x , y , u, t) = x2
1 + x2

2 + u2 (74)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 34

where x(t0) = 0.
Then the objective can be equivalently expressed as

Ĵ = xc(tf) (75)

Since the objective can now be expressed in terms of a scalar value, it can be used as
an objective function.

The second step to be able to solve an OCP directly is to parametrize the control
variables. The unknown variables of optimization problems can only be scalars and
vectors and can not handle arbitrary functions as it is stated in the OCP (70).

A common approach to parametrize the control is to approximate the control
function by a piecewise constant function,

u(t) = ui , t ∈ [ti , ti+1), i ∈ {1, . . . , Ni } (76)

where ui ∈ RNu are the constant value that the control will be held during the period
[ti , ti+1], and Ni is an arbitrary number of segmentations of the control variable.

Another common approach is to use a piecewise polynomial approximation, for
instance

u(t) = ui ,at2 + ui ,bt + ui ,c t ∈ [ti , ti+1), i ∈ {1, . . . , Ni } (77)

where ui ,a, ui ,b, and ui ,c for all i are the parameters that charcterize the the polynomial.
This polynomial representation has a problem. In order to constraint the controls, the
polynomial has to be evaluated. For this reason, Lagrangian polynomials are often
preferred. The piecewise polynomial approximation using the Lagrangian polynomial is
given by

u(t) =
N∑̀
j=0

`j

(
t – ti

ti+1 – ti

)
uij t ∈ [ti , ti+1), i ∈ {1, . . . , Ni } (78)

where `j are the Lagrangian polynomial basis (which can be precomputed), N` is the
degree of the polynomial, and uij is the parameters of the polynomial. Lagrangian
polynomials have a property that for some particular values τ, the basis assume the
value `j (τ) = 1 for a particular j and `k (τ) = 0 for all k = {1, . . . , Ni } – {j}. Then, for some

time t such that t–ti
ti+1–ti = τ

u(t) = uij (79)

which means that by constraining the parameters uij , the value of u(t) is being con-
strained at some “breakpoints”. We will revisit the Lagrangian polynomials in the next
section because they are the foundation for the collocation method.

By parametrizing the control variable, the search space of u is being redefined
to a subspace for the control function u. For instance, instead of specifying that the

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 35

control is a piecewise continuous function with a finite number of discontinuities, the
method narrows the search space to the space of piecewise constants functions with a
finite number of discontinuities.

The third step is to discretize the differential and algebraic equations to transform
the states and algebraic variables from time-dependent functions in a sequence of
vectors.

2.3 DISCRETIZATION SCHEMES

The discretization methods can be categorized into two groups: implicit and
explicit methods. In the implicit methods, the optimization solver is oblivious to the
discretization technique and its equations, effectively being “blind” to the state and
algebraic variables other than at some specified breakpoints. On the other hand, the
explicit methods put the discretization equations in the optimization problem, leaving
them to be solved by the optimization solver. Take the Runge Kutta of 4-th order (RK4)
discretization method as an example. It can be both an explicit and implicit method,
depending on how the optimization problem is formulated.

The RK4 has the following equation to compute the next xk+1 at the time tk
(BIEGLER, L. T., 2010), assuming an autonomous ODE system,

k1 = hf (xk , tk) (80a)

k2 = hf
(

xk +
k1
2

, tk +
h
2

)
(80b)

k3 = hf
(

xk +
k2
2

, tk +
h
2

)
(80c)

k4 = hf (xk + k3, tk + h) (80d)

xk+1 = xk +
k1
6

+
k2
3

+
k3
3

+
k4
6

(80e)

where h = tk+1 – tk is the integration step.
Notice that if we use the substitution method to substitute k1, k2, k3, and k4

into (80e) using (80a-80d), we are hiding from the solver the intermediate computation
steps. This would characterize an implicit approach.

In contrast, if all equations of (80) are used to create the optimization problem,
the optimization solver will solve the equations at the same time it optimizes, hence the
explicit methods being known as simultaneous methods.

For this reason, implicit methods are more compact and require fewer variables
to represent, while explicit methods, on the other hand, have more variables. The
increased number of variables and equations typically results in a more sparse opti-
mization problem, which some optimization solvers can exploit. Therefore, one can not
say in general that either one of the approaches is better than the other.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 36

2.3.1 Collocation Method

The collocation method is a technique for discretizing and solving differential
equations (ODEs, DAEs, and partial differential equations (PDEs)). The method works
by sectioning the time (and space in PDEs) for which the differential equation is being
solved. For each time subinterval, an approximation function is defined such that for a
specified set of points in that time subinterval, the system equations hold. These points
are known as collocation points.

The approximation function is chosen from a predefined family of basis func-
tions. The basis function can be freely chosen, but polynomials with the Lagrangian
polynomial form are preferred for practical reasons. As mentioned in Section 2.2.2 the
parameters of this class of polynomials are the values of the approximating function
at the collocation points (time breakpoints), hence facilitating the inclusion of bound
constraints in the approximated functions.

Let τ be the variable that represents time normalized within the subinterval,
having the value 0 at the beginning and 1 at the end of the subinterval. For the i-th
subinterval the time variables relate through

t = ti–1 + hiτ (81)

where

t ∈ Ti = [ti–1, ti] (82)

ti = ti–1 + hi–1 (83)

where Ti is the interval, hi is the length of the i-th time interval, t0 is given, tNi
= tf , and

Ni is the number of subintervals.
The basis for a Lagrangian polynomial can be defined by

`j (τ) =
Nk∏

k=0, 6=j

τ – τk
τj – τk

(84)

where τj and τk are collocation points.
Notice that the polynomial `j has the property that for τ = τj ,

`j (τj) = 1 (85)

`k (τj) = 0, ∀k ∈ {0, . . . , Nk } – {j} (86)

this means that if we define an approximation function x(t) such that

x(t) =
Nk∑
j=0

`j (τ)xij (87)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 37

Table 1 – Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) roots as colloca-
tion points (Table 10.1 of (BIEGLER, L. T., 2010))

Degree (Nk) LG roots LGR roots
1 0.500000 1.000000
2 0.211325 0.333333

0.788675 1.000000
3 0.112702 0.155051

0.500000 0.644949
0.887298 1.000000

4 0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000

5 0.046910 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860240
0.953090 1.000000

for all tij such that

tij = ti–1 + hiτj (88)

the value of the approximating function is given by

x(tij) = xij (89)

This property is known as the orthogonality, therefore the collocation method is com-
monly referred as the orthogonal collocation method when using polynomials with this
property.

The collocation points are chosen such that τj < τj+1 for j ∈ {0, . . . , Nk – 1},
τ0 = 0, and τj , for k ∈ {1, . . . , Nk }, are chosen accondingly to the Gaussian quadra-
ture (BIEGLER, L. T., 2010). In particular, choosing the Legendre-Gauss-Radau points
results in polynomials with high precision and, as can be seen in Table 1, which in-
cludes the final point of the interval which is of great use for setting up constraints
(KAMESWARAN; BIEGLER, L., 2007). Typically, quadratures are presented in the in-
terval [–1, 1]. However, we are interested in the interval τ ∈ [0, 1]; therefore, the points
presented in Table 1 are scaled to the appropriate interval. Legendre-Gauss and Gauss-
Lobatto are other common alternatives for choosing the collocation points.

Thus far, tools have been developed for creating a polynomial that passes
through some specific points (xij) at some specific times (τj). The question now is
how to use these tools to represent the state of a system.

Let us assume that the state is defined by the differential equation

ẋ =
dx
dt

= f (x , t) (90)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 38

Let us approximate x by the piecewise polynomial (87). In order for x to approxi-
mate the true state well, the system equations must be satisfied

dx
dt

(tik) = f (x(tik), tik) (91)

for all k ∈ {0, . . . , Nk – 1}, for all i ∈ {1, . . . , Ni }.
The left hand side of (91) can be replaced with the derivative of the approximation

polynonmial, which can be obtained by differentiating (87),

dx
dτ

(t) =
Nk∑
j=0

d`j
dτ

(τ)xij (92)

where the relation between the dt and dτ can be obtained by differentiating (88)

dt = hidτ (93)

These relations result in the following equation

Nk∑
j=0

d`j
dτ

(τk)xij = hi f (xik , tik) (94)

for k ∈ {1, . . . , Nk }.
For a system of equations to be solvable, it needs as many equations as it has

unknown variables. For each subinterval i , there are Nk + 1 unknown variables xik , but
on (94) there are only Nk equations. For the first subinterval, the additional equation
can be obtained by the initial condition,

x1,0 = x0 (95)

where x1,0 is the value of the state at the collocation point τ0, on the first subinterval.
For the following subintervals, the extra equation can be obtained by guarantee-

ing the continuity of the state, that is the value at end of the subinterval has to be equal
to the value at the begining of the subsequent subinterval.

xi+1,0 =

 Nk∑
j=0

`j (τ)xij

∣∣∣∣∣∣
τ=1

, i ∈ {1, . . . , Ni – 1} (96)

where xi+1,0 is the state value at begining of the (i +1)-th subinterval, and the right-hand
side is the value the end of the previous subinterval. If the LGR collocation points are
used, the equation reduces to

xi+1,0 = xi ,Nk
(97)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 39

which is a much simpler and sparse equation. The final condition can be obtained in a
similar fashion,

xf =

 Nk∑
j=0

`j (τ)xNi ,j

∣∣∣∣∣∣
τ=1

(98)

In the case of the OCP having terminal conditions, an extra set of equations can be
applied to xf .

It can be shown that the orthogonal collocation method using Lagrangian poly-
nomials is equivalent to implicit RK, and therefore share its good properties regarding
error tolerance and numerical stability. The truncation error ranges from O(h2Nk –2

i) to
O(h2Nk

i), depending on which set of collocation points is chosen (BIEGLER, L. T., 2010).
For a sufficient number of collocation points Nk + 1 and subintervals Ni , the approxima-
tion error can be neglected and the approximation x(t) is close enough to the solution
of the system (90).

A similar approach can be used for the algebraic variables. Since the algebraic
variables do not have initial conditions, there is no need for a collocation point at τ = 0.
Hence a new polynomial basis is used.

Let ̂̀j (τ) be a Lagrangian polynomial basis such that

̂̀j (τ) =
Nk∏

k=1, 6=j

τ – τk
τj – τk

(99)

notice that the product starts in k = 1 instead of k = 0.
For each subinterval i , the approximation of y is given by

y (τ) =
Nk∑
j=1

̂̀j (τ)yij (100)

where yij is the value of the algebraic varaible at the collocation point τj and the subin-
terval i .

Recall that the Lagrangian polynomial has the property,

y (tij) = yij (101)

therefore, to define the value of yij , the algebraic equation can be evaluated at t = tij ,

g(xij , yij , uij , tij) = 0 (102)

where uij is the value of the control at the collocation point.

Example 2 (Demonstration of Orthogonal Collocation (BIEGLER, L. T., 2010)). Con-
sider the following dynamic system,

dx
dt

= x2 – 2x + 1 (103)

x(0) = –3 (104)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 40

where t ∈ [0, 1]. The analytic solution for this ODE is x(t) = 4t–3
4t+1 . Using the Lagrangian

polynomial with Nk = 3, a single subinterval (Ni = 1), and applying the collocation
equations with the continuity equations leads to

3∑
j=0

xij
d`j
dτ

(τk) = h(x2
ik – 2xik + 1), ∀k ∈ {1, . . . , 3}, i ∈ {1, . . . , Ni } (105a)

x1,0 = –3 (105b)

xi+1,0 =
3∑

j=0

`j (1)xij , ∀i ∈ {1, . . . , Ni } (105c)

xf =
3∑

j=0

`j (1)xNi ,j (105d)

where h = 1 since tf –t0
Ni

= 1.
For the LGR tableau with Nk = 3, the collocation points are τ0 = 0, τ1 = 0.155051,

τ2 = 0.644949, and τ3 = 1. For Ni = 1, the collocation equations are

3∑
j=0

x1j
d`j
dτ

(τk) = x2
k – 2xk + 1, k = {1, . . . , 3} (106)

which expands to

x1,0(–30τ2
k – 9) + x1,1(46.7432τ2

k – 51.2592τk + 10.0488) + x1,2(–26.7423τ2
k

+ 20.595τk – 1.38214) + x1,3

(
10τ2

k –
16
3
τk +

1
3

)
= (x2

1,k – 2x1,k + 1) (107)

for all k ∈ 1, ..., 3.
Solving the set of equations leads to x1,0 = x0 = –3, x1,1 = –1.65701, x1,2 =

0.032053, x1,3 = xf = 0.207272. The plot of the polynomial is shown in Figure 5, for
Ni = 1 and Nk = 3. Note that by increasing the number of segments Ni , by subdividing
the original intreval, or the order of the polynomial Nk the error reduces and a better
approximation can be achieved.

2.3.2 Multiple-Shooting

The shooting methods are powerful methods for solving mathematical problems,
in particular methods involving differential equations (STOER; BULIRSCH, 2002). There
are two shooting methods: the single-shooting and the multiple-shooting method. The
latter is an improvement over the former, being more numerically stable and, when
applied in optimal control, allows for a better imposition of constraints. However, for the
sake of explanation, let us first present the single-shooting method.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 41

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
xappr(t)

xanal(t)

Figure 5 – Resulting polynomial

The idea of the single-shooting method can be better understood with an exam-
ple. Without loss of generality, let us take the ODE system

ẋ = –x + u (108)

with x(t0) = 0 and we want to figure out what the constant value for the control u such
that x(tf) = 5, where t0 = 0 and tf = 2. Since the terminal value for x depends on
the constant value chosen for the control u, let us use the notation x(tf |u) to imply the
terminal value of x given a particular u. Let us define a function F (u) = 5 – x(tf |u) which
has its root at x(tf) = 5, for some particular u∗.

The problem then becomes finding a root for F (u) given the dynamic equation
(108) and its initial condition. Notice that F (u) requires the solution of an initial value
problem (IVP).

In order to find a zero for F (u), one may start with the trivial solution u = 5,
and by solving the IVP for this given control, one would obtain x(tf |5) = 4.326, and
F (5) = 0.6740. By observing that the final state is slightly lower than the desired, we
could try with u = 6, which would result in x(tf |6) = 5.191, and F (6) = 0.191. Which is
closer to the root, and by following this process, just like a bisection algorithm, one would
obtain the solution for our problem. A different algorithm could be used in place of the
bisection approach, but, inevitably an IVP would need to be solved at each algorithm
step. For instance, one could use a Newton step algorithm, where each iteration is

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 42

obtained through

uk+1 = uk –
F (u(k))
∂F
∂u (u(k))

(109)

Recall, however, that F (uk) is obtained from the solution of the IVP and therefore
∂F
∂u (u(k)) cannot be computed as a regular derivative. In order to obtain this derivative,
a sensitivity analysis needs to be computed. The sensitivity analysis will be further
discussed in this section.

In the example given above, the system was simple, and the integration period
was short. Intuitively one can imagine that the relation between the control u and the
final state x(tf) was simple, close to linear. On the other hand, if the system was complex
or even unstable, it is easy to imagine that these relations would be much sharper. A
slight variation on the control would result in a notably different final state. This issue
is further pronounced with an extended time horizon. Another significant limitation of
the single-shooting method is the inability to access variables that are not in extrema of
the integration period. Since the IVP is solved from t0 to tf , a constraint in the state as
x(tf –t0

2) ≤ 4 becomes impossible to implement. Because of these aspects, the multiple
shooting method is a clear improvement over single shooting for most applications.

The multiple shooting method breaks the time interval into smaller subintervals
to avoid the long integration periods that can lead to the issues just mentioned. The
shooting starts with an estimate of the state at the start of the subinterval and produces
an estimate of the state at the end of the subinterval. This approach resembles the
collocation method: a shooting (an IVP) is performed for each subinterval, much like
the collocation method creates a polynomial for each subinterval.

Let us define Fi (ui), the solution of the IVP for a single subinterval, as

Fi (ui , x0,i) = x(ti+1) (110a)

where

ẋ = f (x , ui , t) (110b)

x(ti) = x0,i (110c)

t ∈ [ti , ti+1] (110d)

where i ∈ {1, ..., Ni } is the subinterval, Ni is number of subintervals, ui is the control in
the i-th subinterval, and x0,i is the initial condition for the given subinterval.

Multiple shooting seems like running several single-shootings in parallel, one
for each subinterval, but connecting them through continuity equations. For the first
subintervals, the intial conditions are applyed to define the initial condition

x0,1 = x0 (111)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 43

For the remaining subinterval, the initial equations should be equal to the state at the
end of the previous subinterval

x0,i+1 = Fi (ui , x0,i) (112)

for all i ∈ {1, ..., Ni }.
Notice that the equations that form the multiple shooting are (111) and (112),

which sums to Nx ×Ni equations. This number is far less than the number of equations
required for implementing the collocation method. However, while using the multiple
shooting method, constraints can only be set at the beginning and end of each subin-
terval. On the other hand, one can include constraints inside the subintervals, at each
collocation point, when the collocation method is used.

As mentioned earlier, Fi is the solution of an IVP, which can be as simple as the
RK4 presented earlier, or as complex as an IVP solver with varying integration steps
and error control. For a simple integrator, as the RK4, the derivative can be obtained
through the chain rule, but it is an unreasonable task to try to do so for more complex
solvers.

One common approach to solve this issues is to use a finite difference strategy,
for instance one could obtain an approximated derivative with respect to the control
variable using

∂Fi
∂ui

(
ui , x0,i

)
≈ F (ui + ∆ui , x0,i) – F (ui , x0,i)

∆ui
(113)

However, this approach becomes computationally intensive as the number of derivatives
increases. On top of that, these derivatives are not exact, being disturbed by numerical
noise resulting from the complex integration algorithms.

A better approach to this issue is to use sensitivity analysis, which computes the
derivatives through a numerical integration along with the IVP. There are two sensitivity
analysis methods, the forward and the backward method (also known as the adjoint
method). Their denominations originate from how they are computed. The forward
sensitivity is computed in the same direction as the IVP, while the backward is computed
in the opposite direction.

Consider a 1-index DAE system with x(t) ∈ RNx , y(t) ∈ RNy , t ∈ [t0, tf], and
a vector of decision parameters p ∈ RNp for which we want to obtain the derivatives.
Assume that the system functions f and g are continuously differentiable with respect
to all of their arguments. The DAE can be described as

ẋ = f (x , y , t , p) (114a)

0 = g(x , y , t , p) (114b)

x(t0) = x0 (114c)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 44

where x0 is the initial condition that can be parametrized by some parameter vector p.
Let F (x(tf), p) be a function for which the derivative must be taken with respect

to p,

dF
dp

(x(tf), p) =
∂F
∂x

dx
dp

(tf) +
∂F
∂p

(115)

where the partial derivatives can easily be obtained, leaving the term dx
dp (tf) to be

defined.
If the DAE system (114) is differentiated with respect to p, the following set of

equations is obtained

dẋ
dp

=
df
dp

=
∂f
∂x

dx
dp

+
∂f
∂y

dy
dp

+
∂f
∂p

(116a)

dg
dp

=
dg
dp

=
∂g
∂x

dx
dp

+
∂g
∂y

dy
dp

+
∂g
∂p

= 0 (116b)

dx
dp

(t0) =
dx0
dp

(116c)

Notice that the initial condition x0 might depend on p, in which case dx0
dp is not null.

Let us define two matrices variables

S =
dx
dp

=


dx1
dp1

· · · dx1
dpNp

...
dxNx
dp1

· · · dxNx
dpNp

 (117a)

R =
dy
dp

=


dy1
dp1

· · · dy1
dpNp

...
dyNy
dp1

· · · dyNy
dpNp

 (117b)

(117c)

where S(t) ∈ Nx × Np represents the Jacobian matrix of x with respect to p, and
R(t) ∈ Ny × Np represents the Jacobian matrix of y with respect to p.

Given that f is continuously differentiable, one can use the Schwartz’s theorem
(ALLEN, 1962) to change the order of the differentiations

d
dp

dx
dt

=
d
dt

dx
dp

=
dS
dt

(118)

Hence, the system (116) can be rewritten as

dS
dt

=
∂f
∂x

S +
∂f
∂y

R +
∂f
∂p

(119a)

0 =
∂g
∂x

S +
∂g
∂y

R +
∂g
∂p

(119b)

S(t0) =
dx0
dp

(119c)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 45

and the derivative (115) is now given by

dF
dp

(x(tf), p) =
∂F
∂x

S(tf) +
∂F
∂p

(120)

By including (119) into the DAE system one can compute through an IVP not
only the value of F but also the Jacobian. The sensitivity equations do not rely on the
function of interest F , which is advantageous for cases where F has high dimensionality.
The inclusion of the (Nx + Ny) × Np equations is often more computationally efficient
than using a finite difference method. Not only that but the sensitivity analysis method
results in an exact Jacobian, while the finite differences method does not.

The following example shows how sensitivity analysis can be used in a practical
scenario.

Example 3. Let us have an DAE system given by

ẋ1 = x2
1 + x2

2 – 3y (121a)

ẋ2 = x1x2 + x1(y + p2) (121b)

0 = x1y + p3x2 (121c)

x(t0) =

[
5
p1

]
(121d)

with t0 = 0. By defining the sensitivity states S and the sensitivity algebraic variables R,
the sensitivity equations can be written as

Ṡ =

[
Ṡ11 Ṡ12 Ṡ13
Ṡ21 Ṡ22 Ṡ23

]
=

[
2x1 2x2

x2 + y + p2 x1

]
S +

[
–3
x1

]
R +

[
0 0 0
0 x1 0

]
(122a)

0 =
[
y p3

]
S + x1

[
R1 R2 R3

]
+
[
0 0 x2

]
(122b)[

0 0 0
1 0 0

]
=

[
S11(0) S12(0) S13(0)
S21(0) S22(0) S23(0)

]
(122c)

Let the function of interest F be given by

F (x(tf), tf) =
1
2

x(tf)
T x(tf) (123)

Then the derivatives with respect to the parameters p are given by

dF
dp

(x(tf), tf) =
∂F
∂x

S(tf) =
[
x1(tf) x2(tf)

] [S11(tf) S12(tf) S13(tf)
S21(tf) S22(tf) S23(tf)

]
(124)

which provides derivatives that can be used in an algorithm like (109) to find a minimum
or a root for F .

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 46

2.4 AUGMENTED LAGRANGIAN

In mathematical programming, the augmented Lagrangian method (BERTSEKAS,
1996) is an algorithm developed to solve equality constrained optimization problems
(COP), which can also be extended to inequality constraints. The algorithm achieves
the solution of the constrained problem by solving a sequence of unconstrained opti-
mization problems.

Let us describe a COP by

min
z

V (z) (125a)

s.t.: c(z) = 0 (125b)

where z is the optimization variable, V is the objective function, and c is the constraint
function.

In order to obtain an unconstrained optimization problem, the augmented La-
grangian method relaxes the equality constraint (125b) and includes a penalization
term in the objective function creating the augmented objective function

Vµk (z, λk) = V (z) + λT
k c(z) +

µk
2
‖c(z)‖2 (126)

where µk > 0 is a scalar such that {µk } → ∞, and λk is an approximation of the
Lagrange multiplier of the constraint c(z), which belongs to a sequence {λk } → λ∗

(BERTSEKAS, 1996).
The solution of (125) is obtained by a sequence of unconstrained minimizations

of (126), determined by the scalar µk and the vector λk which are updated at each
iteration. The method is outlined in Algorithm 1 (NOCEDAL; WRIGHT, 2006).

Algorithm 1 Augmented Lagrangian for Constrained Optimization

Require: µ0 > 0, εV ,0 > 0, starting points zs
0 and λ0:

repeat
zk ← arg minz Vµk (z, λk), starting at zs

k , satisfying
∥∥∥∂Vµk
∂z (zk , λk)

∥∥∥ ≤ εV ,k ,
obtain λk+1 with the equation λk+1 = λk + µkc(zk),
choose a new parameter µk+1 ≥ µk ,
set the starting point for the next iteration zs

k+1 = zk ,
select tolerance εV ,k+1
k ← k + 1

until zk satisfies a convergence condition

An update rule often used for the parameter µk is

µk+1 = βµk (127)

where β is a scalar greater than 1, usually in the range from 5 to 10. However, if µk
is increased too much, the second order derivatives of the minimization of (126) might

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 47

become ill conditioned (BERTSEKAS, 1996). To this end, an alternative update rule is

µk+1 =

{
βµk if βµk < µmax

µmax otherwise
(128)

There exists a theoretical value µ∗ such that for any µ > µ∗, {Vµ(zk , λk)}→ V (z∗)
where z∗ is a solution for (125), if the tolerance εV ,k+1 → 0 as k →∞ and the problem
satisfies some conditions (NOCEDAL; WRIGHT, 2006).

The augmented Lagrangian method is the basis for many other optimization
algorithms, including the alternating direction multiplier method (ADMM) (BOYD et al.,
2010). In addition to solving convex constrained optimization problems, the ADMM can
also be used to train machine learning and data science algorithms. ADMM allows
the solution of these optimization problems in a distributed fashion, which has become
increasingly important as the available data has grown to a size that can only be
processed in computer clusters.

2.5 AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMAL CONTROL PROB-
LEMS

Based on the augmented Lagrangian for constrained optimization, a relax-and-
discretize approach for optimal control of continuous-time differential-algebraic systems
(DAE) has been proposed. The algorithm works by relaxing the algebraic equations
and penalizing its violation into the objective function using the augmented Lagrangian,
which converts the original problem into a sequence of optimal control problems (OCPs)
of ordinary differential equations (ODEs). The relax-and-discretize approach of the
algorithm provides flexibility by allowing the OCPs of ODEs to be solved by the method
of choice, such as direct or indirect methods. Conditions are developed for global, local,
and sub-optimal convergence in terms of the solution of the underlying OCPs. The
method is applied to an illustrative example.

The proposed algorithm solves the OCP in the form P

P : min
u,tf

J(x , y , u) = V (x(tf), tf) +
∫ tf

t0
L(x , y , u, t) dt (129a)

s.t.: ẋ = f (x , y , u, t) (129b)

0 = g(x , y , u, t) (129c)

x(t0) = x0 (129d)

u ∈ UB, t ∈ [t0, tf] (129e)

The first step is to relax the algebraic constraint (129c), and then introduce the
new objective functional,

Jµ(x , y , u,ν) =
∫ tf

t0
Lµ(x , y , u,ν, t) dt (130)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 48

where the function Lµ is given by

Lµ(x , y , u,ν, t) = L(x , y , u, t) + ν(t)T g(x , y , u, t) +
µ

2
‖g(x , y , u, t)‖2 (131)

with µ > 0 being a scalar, and the function ν : [t0, tf] → RNy being an estimate of
the multiplier function ν∗, which will be driven by the algorithm towards satisfying the
optimality conditions (21b) of problem P.

The just introduced functional (130) is used as the objective of the auxiliary OCP,
which is solved by the algorithm at each iteration k ,

PL(µk ,νk) : min
y ,u

Jµk =
∫ tf

t0
Lµk (x , y , u,νk , t) dt (132a)

s.t.: ẋ = f (x , y , u, t) (132b)

x(t0) = x0 (132c)

u ∈ UB, t ∈ [t0, tf] (132d)

Notice that with the algebraic equation relaxed, y is free and becomes an op-
timization variable. For this reason, the algebraic variable acts similarly to the control
variable u. Problem (132) can be reformulated with the aggregation of the y and u into
a new extended control variable û = [u, y], where û(t) ∈ Û = UB × Y . With this refor-
mulation, problem PL meets the standard form of an OCP of ODE, whose optimality
conditions are well established (KIRK, 2004).

2.5.1 Algorithm

The proposed algorithm follows the same structure of the augmented Lagrangian
for standard constrained optimization (BERTSEKAS, 1996). Let µ0 be an initial value for
the sequence of penalty values {µk }, ν0 be an initial estimate for the sequence of multi-
pliers {νk }, and εg be a tolerance on the violation of the algebraic constraint. Starting
with these parameters, at each iteration k , the problem (132) is solved, the multiplier
estimate and penalty are updated, and the process is repeated until an acceptable
tolerance is achieved, as detailed in Algorithm 2.

The pseudo-function solve yields a solution for the sub-problem PL and returns
the functional values Jk and the trajectories for the states, algebraic and control vari-
ables. The pseudo-function update_mu represents the use of an update rule for the
penalization µk . For the convergence analysis it is assumed that µk+1 = βµk with a
β > 1 to ensure that µk →∞. In practice, however, a µk →∞ will cause ill-conditioning
on the Hessian of the sub-problem PL, therefore when performing a computational
implementation, it is recommended to use an upper bound µmax for the penalization.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 49

Algorithm 2 Augmented Lagrangian for Optimal Control
Require: µ0, ν0, and εg :

1: for k = 1, 2, . . . do
2: (Jk , xk , yk , uk)← solve{PL(µk ,νk)}
3: νk+1 ← νk + µkg(xk , yk , uk)
4: µk+1 ← update_mu{µk }
5: if ‖g(xk , yk , uk)‖ < εg then
6: return uk
7: end if
8: end for

2.5.2 Mathematical Properties

In this section, the necessary conditions are established for the solution se-
quence produced by the algorithm to arrive at a global solution of the OCP for DAE.
Furthermore, conditions are then presented for convergence to local solutions and
convergence under a suboptimal solution sequence, which reflects situations typically
found in practice.

The development of the conditions follows a handful of assumptions that are
presented in the next.

Assumption 2 (Regularity). For problem P (129) and PL(µk ,νk) (132) to be well-
conditioned, we assume that

1. x : [t0, tf]→ RNx is continuously differentiable; y : [t0, tf]→ RNy , u : [t0, tf]→ UB,
and νk : [t0, tf]→ RNy are continuous,

2. L, g, and f are continuously differentiable with respect to all the arguments,

3. the space of feasible functions for problems P and PL are compact,

4. the Jacobian ∂g
∂y (x(t), y (t), u(t), t) has full rank for all x(t) ∈ X, y (t) ∈ Y , u(t) ∈ UB,

and t ∈ [t0, tf],

5. the sequence {µk } has the property that 0 < µk < µk+1 for all k, and µk →∞ as
k →∞,

6. problem P and PL(µk ,νk) are solvable.

From condition 4 of the Assumption 2, the algorithm does not apply to OCP with
DAE of index greater than one.

The following theorems will make use of uniform convergence and uniform norm
for functions; their definitions follow.

Definition 1. Let f : [t0, tf] → RN be a continuous function then ‖f‖ is given by ‖f‖ =
maxt∈[t0,tf] ‖f (t)‖∞.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 50

Definition 2. Let fk : [t0, tf] → RN be a function for every k ∈ N. The sequence of
functions {fk } converges uniformly to the limiting function f ∗ : [t0, tf]→ RN if, for every
ε > 0, there exists a number K ∈ N such that for all t ∈ [t0, tf] and all k ≥ K , we have
‖fk (t) – f ∗(t)‖ < ε.

The following theorem states the necessary conditions for the algorithm to con-
verge to a global optimum.

Theorem 6. Let the functions 〈xk , yk , uk 〉 be global minima of the problem PL(µk ,νk)
(Eq. 132) at each iteration k. In addition, assume that {〈xk , yk , uk 〉}K and {νk }K are
uniformly convergent subsequences. Then, under Assumption 2, the limiting functions
of every subsequences {〈xk , yk , uk 〉}K are a global minimizer of problem P and the
subsequence {Jµk (xk , yk , uk ,νk)}K converges to the optimum objective of P.

Proof. Let 〈x∗, y∗, u∗〉 be limiting functions of the subsequence {〈xk , yk , uk 〉}K . By defi-
nition of xk , yk , and uk , for a given k

Jµk (xk , yk , uk ,νk) ≤ Jµk (x , y , u,νk) (133)

for all feasible x , y , and u.
Let J∗ denote the optimal value of P. We have that

J∗ = min
u

s.t. (129b)-(129e)

J = min
y ,u

s.t. (132b)-(132d)
g(x ,y ,u,t)=0

Jµk (µk ,νk) (134)

the last term implies the minimization of the problem PL over y and u with the additional
equation g(x , y , u, t) = 0. The first equality holds by definition. The second equality holds
because P and PL are equivalent when the equation g(x , y , u, t) = 0 is included in PL.

The inequality (133) holds for any x , y , and u, including a minimizer of (134).
Therefore, we can substitute the optimum value J∗ on the right-hand side of (133), and
on the left-hand side we substitute Jµk (xk , yk , uk ,νk) with its definition to obtain∫ tf

t0
L(xk , yk , uk , t) + νT

k g(xk , yk , uk , t) +
µk
2
‖g(xk , yk , uk , t)‖2 dt ≤ J∗ (135)

Given that the subsequence {νk }K is uniformly convergent, it has a limiting
function ν∗. By taking the limit with k →∞ in the inequality (135) we obtain∫ tf

t0

[
L(x∗, y∗, u∗, t) + ν∗T g(x∗, y∗, u∗, t)

]
dt

+ lim
k→∞

µk
2

∫ tf

t0
‖g(xk , yk , uk , t)‖2 dt ≤ J∗ (136)

Since ‖g(xk , yk , uk , t)‖2 ≥ 0 and µk →∞, it follows that we must have g(xk , yk , uk , t)→
0 and

g(x∗, y∗, u∗, t) = 0 ∀t ∈ [t0, tf] (137)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 51

otherwise the limit on the left-hand side of (136) would go to +∞ which does not hold
since J∗ is finite. Therefore,

J(x∗, y∗, u∗) =
∫ tf

t0
L(x∗, y∗, u∗, t) dt ≤ J∗ (138)

Any solution to problem PL satisfies all of the constraints of P except the relaxed
algebraic equations. However (137) ensures that the limiting functions x∗, y∗, and u∗

do satisfy the algebraic equation. By definition, J∗ is less or equal to the objective of
any feasible functions for problem P, therefore we have

J∗ ≤ J(x∗, y∗, u∗) (139)

Using (138) and (139), we conclude that

J∗ ≤ J(x∗, y∗, u∗) ≤ J∗ =⇒ J∗ = J(x∗, y∗, u∗) (140)

which proves that the limiting functions x∗, y∗, and u∗ are global minimizers for problem
P and that {Jµk (xk , yk , uk ,νk)}K → J∗.

Theorem 6 assumes that the original P and the augmented problems PL are
solved to global optimality. The subsequent theorem shows that the sequence of prob-
lems PL that reaches a local minimum converges to a local minimum of problem P.

Definition 3. Let V be a function space, then a nonempty set V∗ ⊂ V is said to be an
isolated set of local minima of problem P if each function v∗ ∈ V∗ is a local minimum of
problem P and, for some ε > 0, the set

V∗ε = {v ∈ V : ‖v – v∗‖ ≤ ε for some v∗ ∈ V∗} (141)

contains no local minima of problem P other than the functions of V∗.

An isolated set of local minima consisting of a single function is a strict local
minimum.

Theorem 7. Suppose that the regularity Assumption 2 holds, and that V∗ is a com-
pact and isolated set of local minima of problem P. If 〈xk , yk , uk 〉 is a local mini-
mizer for problem PL for each k, then there exists a subsequence {〈xk , yk , uk 〉}K
converging to a limiting function 〈x∗, y∗, u∗〉 ∈ V∗. Furthermore, if V∗ consists of
a single function 〈x∗, y∗, u∗〉, then there exists a sequence {〈xk , yk , uk 〉} such that
{〈xk , yk , uk 〉}→ 〈x∗, y∗, u∗〉.

Proof. Consider the set

V∗ε̃ = {v ∈ V : ‖v – v∗‖ ≤ ε̃ for some v∗ ∈ V∗} (142)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 52

where V is the set of feasible functions of PL, with some 0 < ε̃ < ε, and ε is as in
(141). From (142) and because V is compact by Assumption 2, it follows that V∗ε̃ is also
compact, and hence the problem

min
x ,y ,u

Jµk =
∫ tf

t0
Lµk (x , y , u,νk , t) dt (143a)

s.t.: ẋ = f (x , y , u, t) ∀t ∈ [t0, tf] (143b)

u(t) ∈ UB ∀t ∈ [t0, tf] (143c)

〈x , y , u〉 ∈ V∗ε̃ , x(t0) = x0 (143d)

has a global minimum 〈xk , yk , uk 〉 ∈ V∗ε̃ . By Theorem 6, every limiting function 〈x∗, y∗, u∗〉
of {〈xk , yk , uk 〉}K is a global minimum of the problem

min
x ,y ,u

J =
∫ tf

t0
L(x , y , u, t) dt (144a)

s.t.: ẋ = f (x , y , u, t) ∀t ∈ [t0, tf] (144b)

g(x , y , u, t) = 0 ∀t ∈ [t0, tf] (144c)

u(t) ∈ UB ∀t ∈ [t0, tf] (144d)

〈x , y , u〉 ∈ V∗ε̃ , x(t0) = x0 (144e)

Furthermore, each global minimum of the problem above must belong to V∗ by the
definition of V∗ε̃ . Thus there is a subsequence {〈xk , yk , uk 〉}K converging to 〈x∗, y∗, u∗〉 ∈
V∗. If V∗ contains only one local optimum, then all the subsequences will lead to this
local optimum, therefore {〈xk , yk , uk 〉}→ 〈x∗, y∗, u∗〉 ∈ V∗.

Theorems 6 and 7 implicitly assume that a local or global minimum solutions are
found for the augmented Lagrangian problem at each iteration. From a practical point
of view, numerical methods are expected to terminate when the optimality conditions of
PL are almost satisfied, meaning that for a small scalar εk > 0 the necessary optimality
conditions (KIRK, 2004) are

‖f (xk , yk , uk , t) – ẋ‖ ≤ εk , (145a)

∥∥∥∥∂Lµk

∂x
(xk , yk , uk ,νk , t)T +

∂f
∂x

(xk , yk , uk , t)Tλk + λ̇k

∥∥∥∥ ≤ εk , (145b)

∥∥∥∥uk (t) – arg inf
u∈UB

H(xk (t), λk (t), yk ,νk , u, t)
∥∥∥∥ ≤ εk , (145c)

∥∥∥∥∂Lµk

∂y
(xk , yk , uk ,νk , t)T +

∂f
∂y

(xk , yk , uk , t)Tλk

∥∥∥∥ ≤ εk . (145d)

The following theorem shows that if εk → 0, the algorithm still converges. To
prove this properties the therem requires the folllowing lemma.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 53

Lemma 1. Let g : Rd1 → Rd2 be a continuous function, and the sequence of functions
{fn} to converge uniformly to f , where fn : [0, 1] → Rd1. Let the function norm ‖·‖ be
given by ‖g‖ = maxx∈[0,1] ‖g(x)‖∞. Then {g(fn)} converges uniformly to g(f).

Proof. If fn converges uniformly to f , then for all εf exists N, such that ‖fn – f‖ < εf for
all n > N, and exists an upper bound M s.t. ‖fn‖ ≤ M for all n ∈ N.

Then, consider g : [–M, M]d1 → Rd2. As g is continuous in a compact set, for all
εg > 0, there exists a δg > 0 such that ‖g(z1) – g(z2)‖ < εg for all ‖z1 – z2‖ < δg . Using
εf = δg , ‖fn – f‖ < εf = δg for all n > N. Therefore, ‖g(fn) – g(f)‖ < εg for all n > N.

Theorem 8. Suppose that Assumption 2 holds and let 〈xk , yk , uk 〉 be a suboptimal
solution obtained for PL(µk ,νk) such that the violation of the optimality conditions are
given by (145), for which inequality (145d) is fundamental, where 0 ≤ εk , and εk → 0
as k → ∞, {νk } is a uniform convergent sequence, and λk is the costate at the k-th
algorithm iteration. Assume that a subsequence {〈xk , yk , uk 〉}K converges uniformly to
〈x∗, y∗, u∗〉 such that ∂g

∂y (x∗, y∗, u∗, t) has full rank and is bounded for all t ∈ [t0, tf].
Then the subsequence {νk +µkg(xk , yk , uk , t)}K converges uniformly to ν̃∗, such

that the following relations are obtained, with respect to y

∂L
∂y

(x∗, y∗, u∗, t)T +
∂f
∂y

(x∗, y∗, u∗, t)Tλ∗ +
∂g
∂y

(x∗, y∗, u∗, t)T ν̃∗ = 0 (146a)

and with respect to λ, u, and x are

–λ̇∗ =
∂L
∂x

(x∗, y∗, u∗, t)T +
∂f
∂x

(x∗, y∗, u∗, t)Tλ∗ +
∂g
∂x

(x∗, y∗, u∗, t)T ν̃∗ (146b)

u∗(t) = arg inf
u∈UB

H(x∗(t), λ∗(t), y∗,ν∗, u, t) (146c)

ẋ∗ = f (x∗, y∗, u∗, t). (146d)

Proof. The derivative of Lµk w.r.t. y results in

∂Lµk

∂y
(xk , yk , uk ,νk , t) =

∂L
∂y

(xk , yk , uk , t)

+ [νk + µkg(xk , yk , uk , t)]T
∂g
∂y

(xk , yk , uk , t) (147)

Then, by defining for all k

ν̃k = νk + µkg(xk , yk , uk , t) (148)

replacing ν̃k into (147) results in

∂Lµk

∂y
(xk , yk , uk ,νk , t) =

∂L
∂y

(xk , yk , uk , t) + ν̃T
k
∂g
∂y

(xk , yk , uk , t). (149)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 54

Since ∂g
∂y is invertible, we can derive the following expression for ν̃k ,

ν̃k =
[
∂g
∂y

(xk , yk , uk , t)T
]–1 [∂Lµk

∂y
(xk , yk , uk ,νk , t)T –

∂L
∂y

(xk , yk , uk , t)T
]

(150)

From (150) we can say that there exists an F such that

ν̃k = F (xk , yk , uk ,νk) (151)

which is continuous since all the functions in (150) are continuous. Given that a subse-
quence {〈xk , yk , uk 〉}K converges to 〈x∗, y∗, u∗〉 and {νk } converges to ν∗, Lemma 1 is
invoked to conclude that

{ν̃k = F (xk , yk , uk ,νk)}K → ν̃∗ = F (x∗, y∗, u∗,ν∗) (152)

which shows that {νk + µkg(xk , yk , uk , t)}K → ν̃∗ uniformly, and ν̃∗ is given by

ν̃∗ =
[
∂g
∂y

(x∗, y∗, u∗, t)T
]–1 [∂Lµ∗

∂y
(x∗, y∗, u∗,ν∗, t)T –

∂L
∂y

(x∗, y∗, u∗, t)T
]
. (153)

Considering the optimality conditions for y , given in (145d), and taking the limit
k →∞, we obtain

∂Lµ∗
∂y

(x∗, y∗, u∗,ν∗, t) = –λ∗T
∂f
∂y

(x∗, y∗, u∗, t) (154)

which can be substituted into (153) to obtain

ν̃∗ =
[
∂g
∂y

(x∗, y∗, u∗, t)T
]–1 [

–
∂L
∂y

(x∗, y∗, u∗, t)T –
∂f
∂y

(x∗, y∗, u∗, t)Tλ∗
]

(155)

which can be rearranged into

∂L
∂y

(x∗, y∗, u∗, t) + λ∗T
∂f
∂y

(x∗, y∗, u∗, t) + ν̃∗T
∂g
∂y

(x∗, y∗, u∗, t) = 0 (156)

and related to the necessary conditions developed in Theorem 4, applying to the original
OCP P. A similar approach can be used to obtain the conditions for x , u, and λ.

Since the sequence {νk } is bounded and {νk + µkg(xk , yk , uk , t)}K → ν̃∗ from
(152), it follows that {µkg(xk , yk , uk , t)}K is bounded. Given that µk →∞ we must have
g(xk , yk , uk , t)→ 0 with g(x∗, y∗, u∗, t) = 0 for all t .

Notice that the sequence {νk } was never specified, other than it is a uniformly
convergent sequence. From Theorem 8, an update rule can be derived such that {νk }→
ν̃∗.

Corollary 1. By defining νk+1 = νk + µkg(xk , yk , uk , t) we have that {νk } → ν̃∗ and
{µkg(xk , yk , uk , t)}→ 0.

Proof. For any uniformly convergent sequence {νk }, Theorem 8 ensures that {νk +
µkg(xk , yk , uk , t)}→ ν̃∗. Therefore, we can define νk+1 = νk + µkg(xk , yk , uk , t), which
makes the sequence become {νk+1}→ ν̃∗.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 55

2.6 APPLICATION

The algorithm is applied to two optimal control problems to illustrate the algorithm
behavior and remark some implementation details. The first problem is the stabilization
of the Van der Pol Oscillator. The second scenario is the control of the four tanks system.
Both are popular benchmark systems.

2.6.1 Van der Pol Oscillator

To illustrate the algorithm behavior and to remark some implementation details,
the algorithm is applied to the optimal control problem of stabilizing the Van der Pol
oscillator (KHALIL, 2002), which is nonlinear and has an attractive limit cycle. These
features render the oscillator a widely used benchmark for the control of nonlinear
systems.

The Van der Pol oscillator is typically modeled in the form of an ODE system as

ẋ1 = (1 – x2
2)x1 – x2 + u (157a)

ẋ2 = x1 (157b)

For the purpose of our analysis, the ODE system (157) is remodeled as a DAE system,

ẋ1 = y + u (158a)

ẋ2 = x1 (158b)

y = (1 – x2
2)x1 – x2 (158c)

With the objective of keeping the system at the unstable equilibrium (0, 0), the
following objective is chosen

J(x , y , u) =
∫ tf

t0

[
x2

1 + x2
2 + u2

]
dt (159)

Let us define an optimal control problem that minimizes the functional J (159),
while being subject to the DAE system (158).

min
x ,y ,u

J =
∫ tf

t0

[
x2

1 + x2
2 + u2

]
dt (160a)

s.t.: ẋ1 = y + u (160b)

ẋ2 = x1 (160c)

y = (1 – x2
2)x1 – x2 (160d)

x(0) = x0, t ∈ [t0, tf] (160e)

where x0 = [0, 1], t0 = 0, and tf = 5.
To investigate the properties of the proposed algorithm, two cases are consid-

ered:

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 56

• Case 1, the OCP (160) is solved as stated.

• Case 2, solves (160) subject to the bound constraints: –0.3 ≤ u(t) ≤ 1 on the
control variables, and the constraint –0.4 ≤ x1(t) on the state x1.

Case 2 highlights an interesting practical property of the algorithm; the algorithm allows
state constraints to be easily expressed and solved. Solving OCP with state constraints
is not easily achieved when using indirect methods. The algorithm’s underlying OCP is
solved with the indirect method applying multiple shooting for both cases.

Case 1: Unconstrained OCP

To apply the algorithm for Case 1, the algebraic equation (160) needs to be
relaxed, and a the new augmented cost function needs to be defined

Lµ =
(

x2
1 + x2

2 + u2
)

+ ν
[
(1 – x2

2)x1 – x2 – y
]

+
µ

2

∥∥∥(1 – x2
2)x1 – x2 – y

∥∥∥2
(161)

which allows us to formulate the auxiliary problem

PL(µk ,νk) : min Jµk =
∫ tf

t0
Lµk (x , y , u, t) dt (162a)

s.t.: ẋ1 = y + u (162b)

ẋ2 = x1 (162c)

x(0) = x0 (162d)

x(t) ∈ X , y (t) ∈ Y , u(t) ∈ U (162e)

t ∈ [t0, tf] (162f)

The update of νk and µk are achieved through

νk+1 = νk + µk

[
(1 – x2

2)x1 – x2 – y
]

(163a)

µk+1 = βµk (163b)

with the parameters β = 8, µ0 = 2, and ν0 = 0 for all t ∈ [t0, tf].
A solution for (162) can be achieved by applying the indirect method. In order to

find the optimal solution, let us establish the Hamiltonian of the auxiliary problem

Hk =
(

x2
1 + x2

2 + u2
)

+ νk

[
(1 – x2

2)x1 – x2 – y
]

+
µk
2

∥∥∥(1 – x2
2)x1 – x2 – y

∥∥∥2
+ λ1 (y + u) + λ2x1 (164)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 57

By defining û = [u, y] ∈ X = U×Y and using the conditions of Theorem 2, the optimality
conditions for OCP of ODEs (162) can be expressed as

ẋ∗1 = y∗ + u∗, ẋ∗2 = x∗1 (165a)

–λ̇∗1 = (2x∗1) +
[
νk + µk [(1 – x∗22)x∗1 – x∗2 – y∗]

]
(1 – x∗22) + λ∗2 (165b)

–λ̇∗2 = (2x∗2) +
[
νk + µk [(1 – x∗22)x∗1 – x∗2 – y∗]

]
(–2x∗1x∗2 – 1) (165c)

0 = 2u∗ + λ∗1, (165d)

0 = νk (–1) + µk [(1 – x∗22)x∗1 – x∗2 – y∗](–1) + λ∗1 (165e)

and the boundary conditions x∗(t0) = x0 and λ∗1(tf) = λ∗2(tf) = 0.
From (165), the extended controls that mininize (162) can be deduced to be

u∗ = –
λ∗1
2

, y∗ = –
ν

µ
– (1 – x∗22)x∗1 – x∗2 +

λ∗1
µ

(166a)

The combination of the optimal extended controls (166a) and the differential
equations (165a-165d) compose the system of equations that need to be solved se-
quentially in order to obtain a solution to the original problem (160). Let the F (xinit , λinit),
be the function that solves the IVP for t ∈ [0, tf –t0

Ni
]. Then an optimization problem for

the indirect multiple shooting can be expressed as

min
xi ,λi

0 (167a)

s.t.:

[
xi+1
λi+1

]
= F (x0,i , λ0,i) (167b)

x0,1 = x0 (167c)

λf ,Ni
= λf = 0 (167d)

which can be solved with a proper nonlinear optimization solver, as for instance Ipopt
(WÄCHTER; BIEGLER, L. T., 2006). To easily solve the IVP and obtain the sensitivity
analysis, the solution can be implemented in CasADi framework (ANDERSSON et al.,
2019).

By using the number of subintervals N = 40 and a third-order polynomial to
describe νk , the solution displayed in Figures 6 and 7 is achieved. The controls and
state trajectories obtained using the method achieved the desired goal of stabilizing the
VDP oscillator. The results of the OCP solution using the augmented Lagrangian are
very similar to those obtained using the indirect multiple-shooting.

Case 2: Constrained OCP

In Case 2, the OCP has two constraints, one in the control variables (–0.3 ≤
u(t) ≤ 1), and one in the state variables (–0.4 ≤ x1(t)). The first constraint can be held

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 58

0 1 2 3 4 5

Time [s]

−2

−1

0

1

2

3

4

5

S
ta

te

x1

x2

λ1

λ2

Figure 6 – Optimal state trajectories for the unconstrained stabilization of the VDP os-
cillator

0 1 2 3 4 5

Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
xt

en
de

d
C

on
tr

ol

u

y

Figure 7 – Optimal control for the unconstrained stabilization of the VDP oscillator

by satisfying Pontryagin’s minimum principle, which imposes new necessary conditions
into the problem. To handle the state constraint, however, a more substantial change in
the problem structure is required.

Handling state constraints for indirect methods is difficult, but handling control
constraints can be handled by Pontryagin’s condition. Furthermore, by relaxing the
algebraic equations, the proposed augmented Lagrangian algorithm transforms the al-
gebraic variables into control variables. This transformation by itself allows for enforcing
constraints into the algebraic variables. But by introducing a new algebraic variable

yx1 = x1 (168)

the value of state x1 is bound to an algebraic variable.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 59

The OCP with the new variable can then have its algebraic equations relaxed,
with the objective function

Lµ =
(

x2
1 + x2

2 + u2
)

+ ν1

[
(1 – x2

2)x1 – x2 – y
]

+ ν2
[
x1 – yx1

]
+
µ

2

∥∥∥(1 – x2
2)x1 – x2 – y

∥∥∥2
+
µ

2
‖x1 – yx1‖2 (169)

where

g(x1, x2, y , yx1) =

[
(1 – x2

2)x1 – x2 – y
x1 – yx1

]
(170)

The Hamiltonian for the each iteration of the relaxed OCP then becomes

Hk =
(

x2
1 + x2

2 + u2
)

+ ν1,k

[
(1 – x2

2)x1 – x2 – y
]

+ ν2,k
[
x1 – yx1

]
+
µk
2

∥∥∥(1 – x2
2)x1 – x2 – y

∥∥∥2
+
µk
2
‖x1 – yx1‖2

+ λ1 (y + u) + λ2x1 (171)

By applying the conditions of Pontryagin’s minimum principle (Theorem 3), with
the Hamiltonian (171), the following conditions are obtained

ẋ∗1 = y∗ + u∗, ẋ∗2 = x∗1 (172a)

– λ̇∗1 = (2x∗1) +
[
ν1,k + µk [(1 – x∗22)x∗1 – x∗2 – y∗]

]
(1 – x∗22)

+
[
ν2,k + µk (x1 – yx1)

]
+ λ∗2 (172b)

–λ̇∗2 = (2x∗2) +
[
ν1,k + µk [(1 – x∗22)x∗1 – x∗2 – y∗]

]
(–2x∗1x∗2 – 1) (172c)

u∗ = arg min
–0.3≤u≤1

H(x∗1 , x∗2 , λ∗1, λ∗2, y∗, y∗x1
, u), (172d)

0 = ν1,k (–1) + µk [(1 – x∗22)x∗1 – x∗2 – y∗](–1) + λ∗1 (172e)

yx1 = arg min
–0.4≤yx1

H(x∗1 , x∗2 , λ∗1, λ∗2, y∗, yx1, u∗) (172f)

The optimal equation for y∗ can be obtained by isolating the variable in equation
(172e),

y∗ = –
ν1,k (–1) – µk [(1 – x∗22)x∗1 – x∗2] + λ∗1

µk
(173)

To obtain the equations that define the optimal laws for the free variables u and
yx1, the minimization of the Hamiltonian needs to solved. A necessary condition for

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 60

a minimum is that its derivative at the minimum is zero. Therefore, if there was no
constraints on u and yx1, the minimum would be attained at

u∗ = –
λ∗1
2

(174a)

y∗x1
= –

ν2,k (–1) – µkx1
µk

(174b)

To enforce the bound constraints into this variables, a feasibility projection can
be used. That is, project the variables into the feasible set when they violate the bounds.

u∗ = mid
(

–0.3, –
λ∗1
2

, 1
)

(175a)

y∗x1
= max

(
–0.4, –

ν2,k (–1) – µkx1
µk

)
(175b)

where mid is a function that the return the intermediary value between its three ar-
guments, while max is the function that returns the maximum value between its two
arguments.

Using the equations (173)-(174) that define the optimum values for u∗, y∗ and
yx1, and equations (172a-172c), a nonlinear optimization problem can be formulated
based on the multiple shooting. Just like it was formulated for Case 1. By doing so, the
optimal profiles for the states, algebraic, and control variables are obtained, as depicted
in Figure 8 and 9. The optimal profiles obtained with the augmented Lagrangian method
follow closely the profiles obtained by solving the original problem (160) with an indirect
multiple-shooting method. As can be seen in the figures, the introduced algebraic
variable yx1, mimics the dynamics of the state x1, and ensures that the constraint
–0.4 ≤ x1 is satisfied. Most likely due to the constraints on x1, the bound on u are also
satisfied.

2.6.2 Four Tanks

The computation experiment presented here was originally developed for (AGUIAR
et al., 2021), where the algorithm was applied to find the optimal controls that stabilize
the four-tank system, which is portrayed in Figure 10.

The four-tank system is typically modeled using an ODE system (JOHANSSON,
2000), here the model is represented as a DAE system. A DAE representation is
obtained by using algebraic variables to describe the outflow of each tank.

For each tank i , the outflow is discribed by

qt ,i = ai
√

2ghi , (176)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 61

0 1 2 3 4 5

Time [s]

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

te

x1

x2

yx1

Figure 8 – Optimal state trajectories for the constrained stabilization of the VDP oscilla-
tor, with the introduced algebraic variable that was relaxed

0 1 2 3 4 5

Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
xt

en
de

d
C

on
tr

ol

u

y

Figure 9 – Optimal control and the relaxed algebraic variable for the constrained stabi-
lization of the VDP oscillator

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 62

Figure 10 – Illustration of the four tank system

where ai is the cross section area of the orifice, g is the gravity constant, and hi is the
fluid level of tank i . Equations that define the dynamics for the level of each tank are

ḣ1 =
qt ,3 + γ1qp,1 – qt ,1

A1
, (177a)

ḣ2 =
qt ,4 + γ2qp,2 – qt ,2

A2
, (177b)

ḣ3 =
(1 – γ2)qp,2 – qt ,3

A3
, (177c)

ḣ4 =
(1 – γ1)qp,1 – qt ,4

A4
, (177d)

where Ai is the cross section area of the i-th tank, γj is the split ratio on the three-way
valves, and the flow pump j is given by the differential equation

q̇p,j = δj . (178)

where δj is the variation on the flow-rate.
The objective of the optimal control problem is to stabilize the tanks 1 and 2

at a given setpoint, while keeping the variation in the pump at a minimum, which is
expressed by the following objective

min
u

J =
∫ tf

t0
∆xT∆x + uT u dt (179)

with ∆x = x – xref , x = [h1, h2, h3, h4, qp,1, qp,2], and u = [δ1, δ2].
Putting the system equations and the objective together, the following optimal

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 63

control problem can be formulated

min
u

J =
∫ tf

t0
∆xT∆x + uT u dt (180a)

s.t.: ḣ1 =
qt ,3 + γ1qp,1 – qt ,1

A1
, (180b)

ḣ2 =
qt ,4 + γ2qp,2 – qt ,2

A2
(180c)

ḣ3 =
(1 – γ2)qp,2 – qt ,3

A3
, (180d)

ḣ4 =
(1 – γ1)qp,1 – qt ,4

A4
(180e)

q̇p,1 = δ1 (180f)

q̇p,2 = δ2 (180g)

for i ∈ {1, . . . , 4} :

qt ,i = ai
√

2ghi (180h)

To use the algorithm, the algebraic equation (180h) is relaxed, which ressults in
the following auxiliary problem

min
u,y

Jµk , (181a)

s.t.: ḣ1 =
qt ,3 + γ1qp,1 – qt ,1

A1
, (181b)

ḣ2 =
qt ,4 + γ2qp,2 – qt ,2

A2
(181c)

ḣ3 =
(1 – γ2)qp,2 – qt ,3

A3
, (181d)

ḣ4 =
(1 – γ1)qp,1 – qt ,4

A4
(181e)

q̇p,1 = δ1 (181f)

q̇p,2 = δ2 (181g)

where

Jµk =
∫ tf

t0
∆xT∆x + uT u +

4∑
i=1

[
νi ,k

(
qt ,i – ai

√
2ghi

)
+
µk
2

∥∥∥qt ,i – ai
√

2ghi

∥∥∥2
]

dt (182)

The auxiliary problem (181) is solved at each algorithm iteration. The optimal
solution is used to compute the new multiplier estimates νi ,k+1 using the update rule

νi ,k+1 = νi ,k + µk

[
qt ,i – ai

√
2ghi

]
(183)

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 64

the multiplier penalty is them updated using

µk+1 = βµk (184)

As discussed in (AGUIAR et al., 2016), since νi ,k is a function that can assume
any shape, a piecewise polynomial approximation with a finite number of terms is used
instead. For this application, a piecewise Lagrangian polynomial (similar to those used
in the collocation method) was chosen to facilitate the computation of updates.

An indirect collocation method with order three polynomials was used to solve the
relaxed subproblem at each iteration. The indirect collocation used 40 finite elements
and was implemented using YAOCPTool, and CasADi (ANDERSSON et al., 2019). The
same settings were used to solve the original problem (180) for comparison purposes.

The nonlinear programming problems obtained from the discretization process
were solved using the IPOPT solver (WÄCHTER; BIEGLER, L. T., 2006). By using indi-
rect methods to solve the original problem, the multipliers are computed automatically.
The multipliers from the original problem can be compared to the estimated νi obtained
by the algorithm. The multiplier estimates νi are also approximated with a piecewise
polynomial of degree 3 with 40 finite elements.

Given that no prior information is available for the multipliers, the algorithm is
initialized with the multiplier estimates as zero (νi ,0 = 0 for all t ∈ [t0, tf] and all i ∈ Ni).
The penalization term starts with µ0 = 0.1 and increases at a rate β = 4.

The trajectories of the proposed algorithm coincide with the optimal trajectories
obtained by the indirect method, which are shown in Figures 11 and 12. To evaluate
if the algorithm is converging to the optimal solution of the original problem, in Fig. 13,
the relaxed objective (Jµk) and the evaluation of the solution iteration on the original
objective (Jk) are compared to the optimal cost obtained with the indirect method (J∗). It
can be seen that the objectives converge to the same objective value J∗ as the indirect
method. As for the violation of algebraic equations, the line in blue of Fig. 14 shows
the violation rapidly converging to zero; the line in red shows the norm of the difference
between the multiplier obtained with the indirect method and the multiplier estimate
computed by the proposed algorithm, which decreases as the algorithm iterates.

An experiment was performed using the proposed algorithm with direct multiple
shooting to solve the subproblems (AL-DMS). To solve the ODE of the subproblems,
we apply Sundials CVODES and a 4th order Runge-Kutta method (RK4). The proposed
algorithm was compared against DMS applied directly to the original OCP, whereby
Sundials IDAS was used to solve the DAE. Table 2 presents the results that indicate
faster convergence of the proposed algorithm with RK4, which might be more suitable
for embedded applications with limited computational power.

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 65

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

2

4

6

8

10

12

14

16

S
ta

te

h1

h2

h3

h4

Figure 11 – Optimal state trajectories for the stabilization of the four-tank system ob-
tained with the proposed augmented Lagrangian method and which coin-
cide with the trajectories obtained with the trajectories obtained with indirect
multiple shooting of the baseline OCP

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time [s]

0

2

4

6

8

10

12

E
xt

en
de

d
C

on
tr

ol δ1
δ2
qt,1
qt,2
qt,3
qt,4

Figure 12 – Optimal control for the constrained stabilization of the four-tank system

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 66

1 2 3 4 5 6 7 8

Iteration

40

45

50

55

60

65

70
F

u
n

ct
io

n
va

lu
e

J∗

Jµk
Jk

Figure 13 – Comparison of the objective functions.

1 2 3 4 5 6 7 8

Iteration

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

‖g
(x
k
,y
k
,u
k
)‖

‖g(xk, yk, uk)‖
‖ν∗ − νk‖

10−11

10−9

10−7

10−5

10−3

10−1

‖ν
∗
−
ν k
‖

Figure 14 – Convergence of the algebraic function to zero (blue) and the multiplier
estimate converging to the original problem multiplier (red).

Chapter 2. Augmented Lagrangian for Optimal Control Problems of DAE 67

Table 2 – Algorithm Solving Time (in seconds)

AL-DMS (CVODES) AL-DMS (RK4) DMS (IDAS)
24.15 0.11 2.42

68

3 DISTRIBUTED OPTIMAL CONTROL

3.1 LITERATURE REVIEW

3.1.1 Distributed Dynamic Systems

Distributed dynamic systems, also known as networked dynamic systems or
multi-agent systems, are systems composed of multiple subsystems, each having dy-
namics or resources that couple them to the others.

Distributed systems can be classified concerning a wide range of characteristics,
for instance, according to their subsystems’ similarity. Distributed systems appear in
several fields, with different compositions of subsystems, for example:

• In urban traffic control, each traffic junction can be represented as a subsystem
(CAMPONOGARA et al., 2017a; DE OLIVEIRA; CAMPONOGARA, 2010). Con-
sidering that the queues of cars in front of the semaphoric lights are the states,
then the streets between two junctions connect these subsystems. Streets and
junctions are an excellent example of a dynamic network with systems of the
exact nature, referred to as homogeneous networks.

• An offshore oil production platform comprises various components: production
wells, pipelines, risers, separators, compressors, and gas-lift injection lines (AGUIAR
et al., 2015). This system has different sorts of subsystems and can be named a
heterogeneous network.

Besides classifying a distributed system regarding its subsystems, a system can
be classified according to its structure. For instance:

• When the network is composed of many subsystems connected to a single node,
we call it a “star” configuration, as depicted in Figure 15. This type of system might
occur, for example, when there are one power generator and several consumers.

• In the offshore oil production platform, the system is configured as a “tree”. One
layer has several nodes that connect to a node in a higher layer. Those nodes in
the higher layer also connect to a node in an even higher layer, and so on. This
structure can be seen in Figure 15.

• Another type of formation that might occur is the cycle configuration, where every
subsystem is connected to two neighbors, as shown in Figure 15.

• Very similar to the cycle configuration is the small-world configuration. This con-
figuration resembles the popular thinking that every person in the world is, on
average, six persons of distance from one another. However, with globalization,

Chapter 3. Distributed Optimal Control 69

such a number is probably down to 4. For this configuration, every node is con-
nected to two neighbors, to the neighbors of these neighbors, and occasionally to
some other node in the network. Figure 15 illustrates this kind of network.

Figure 15 – Different topologies for dynamic networks

For many applications, the resulting networks do not fully suit one of the groups
above or any other category for that matter. Nevertheless, frequently those systems
materialize as an amalgam of different known structures.

In the following, let us see how the four tank system is modeled as a dynamic
network.

Example 4 (The four-tank system). The four-tank system is a classical benchmark
system, which has been used for several purposes (JOHANSSON, 2000). Even though
it has relatively simple internal dynamics, its topology makes it an interesting control
problem.

The system is composed of four tanks, two pumps, and two three-way valves.
The first pump fills Tanks 1 and 4, according to the settings of the first three-way valve.
The second pump fills Tanks 2 and 3, according to the second three-way valve. As Tank
3 is on top of Tank 1, its outflow goes into Tank 1. Likewise, as Tank 4 is on top of Tank
2, its outflow goes to Tank 2. The system setup is illustrated in Figure 16.

Chapter 3. Distributed Optimal Control 70

In Example 1, a model for a single tank was developed using DAE equations. For
that tank, the exogenous variables were the inflow qin, and the output was the outflow
qout . In the four-tank problem, the connections between these subsystems are dictated
by where the entering flows come from and where the exiting flows go.

If we consider each subsystem as a node and each connection as an arc, then
a distributed system can be represented by a directed graph. Figure 17 shows the four
tank system represented as a graph, where the nodes P1 and P2 represent the pumps
and valves; T1, T2, T3, and T4 represent the tanks.

Figure 16 – Illustration of the four-tank system

The example above shows how the four tank system, one of the most common
benchmark systems, can be modeled as a distributed system. In fact, many systems
that are often tackled as a monolithic structure have a distributed nature, either for being
geographically sparse or having loosely coupled dynamics.

In the sequence, we will be discussing how to develop controllers that can take
advantage of the sparse structure of distributed systems.

3.1.2 Controlling Distributed Systems

Various control architectures have been proposed for distributed systems for
which different properties have been developed, especially regarding convergence and
stability. Here we do not discuss these methods but rather classify these methods using
a classification proposed by Venkat et al. (2005), and Rawlings and Stewart (2008). By
using this classification, we can understand what each method can accomplish and by
what means.

Chapter 3. Distributed Optimal Control 71

Figure 17 – Four tank system represented as a dynamic network

The standard approach to control a distributed system is to consider the system
as a monolithic system and use a centralized controller. The upside is that there is no
need to develop a communication framework, given that a single controller determines
all the decisions. Another positive factor is that the solution of the optimal control
problem is optimal, at least for the cases that the model reflects the dynamics of the
plant flawlessly.

However, according to Venkat et al. (2005), for large networked systems, the
centralized MPC is too impractical and inflexible, rendering it unsuitable for such appli-
cations. Often the problem of developing a centralized controller is not computational
but rather organizational. When different subsystems are developed and managed by
different teams, it becomes challenging to agree on a single monolithic and inflexi-
ble centralized MPC. Therefore, unless these barriers can be overcome, centralized
controllers serve more as a benchmark than a de-facto practice.

At first, the centralized approach might seem the most common technique; how-
ever, decentralized approaches are even more prevalent. In the decentralized approach,
the local controllers can be single-input single-output (like PIDs), or multivariable (locally
centralized), but overall have a decentralized structure (SCATTOLINI, 2009). These de-
centralized configurations benefit from being easy to implement, being flexible, and
having no communication or interoperability issues. On the other hand, a decentralized
configuration can have some drawbacks; for instance, the control actions of one system
might become perturbations to another. Those interactions can either be direct: the
input of one system affects the other; or indirect: the states of one subsystem affect an-
other. Anyhow, this interaction can cause poor performance or even make the process
unstable. As Scattolini (2009) points out, some methods for decentralized control that

Chapter 3. Distributed Optimal Control 72

have stability guarantees have been proposed, however not many have been proposed
thus far. This lack of popularity has distinct reasons; one of them is that the nature
of MPC allows to simply couple the system into a centralized MPC. Also, the proof of
stability for MPCs typically comes from finding an implicit law for the controllers and
showing that the cost is a Lyapunov function, which is not easily achieved when there
are several coupled systems.

Another approach for controlling a distributed system is a distributed controller.
This class of controllers can be separated into two groups (RAWLINGS; STEWART,
2008):

• Communication-based distributed control,

• Cooperative distributed control.

The communication-based controller is the next step of a decentralized controller
in the direction of a centralized controller. The typical procedure for communication-
based controllers is that the local controller calculates the control actions for that sam-
pling time; afterward, it informs the neighbors about its future actions. Each subsystem
has a model of how the controls of the neighboring subsystems affect their controlled
variables and local objectives. Such an approach can be understood as the competition
among the controllers, which falls in the non-cooperative game theory. The centralized
controller converges to a Pareto optimal solution when considering the same weight
to all local objective functions (RAWLINGS; STEWART, 2008). In contrast, controllers
under a non-cooperative game converge to the Nash equilibrium, which might be un-
stable.

Rawlings and Stewart (2008) show an example with three variants. Their results
are summarized in Figure 18. In the first case, the communication-based controller
converges to a Nash equilibrium close to the Pareto solution. In this case, the solution
of both approaches are similar, and the communication-based controller might result
in an excellent closed-loop response. In the second case, the objective function is
modified. The result is that the communication-based method converges to a Nash
equilibrium far from the Pareto set, the closed-loop implementation might be unstable.
In the third case, despite the Nash equilibrium being close to the Pareto optimal, the
Nash equilibrium is unstable. Therefore the communication-based controller diverges
from the Nash equilibrium to a point on the boundary of the feasible region. The closed-
loop system, most likely, is unstable.

To synthesize, the problem of the communication-based controller is that despite
knowing how its neighbors are going to affect their local objective, there is no negotiation
between the controllers of each subsystem. For instance, if one of the subsystems is
close to losing controllability, it can not “ask for help” to its neighbors. At the same time,

Chapter 3. Distributed Optimal Control 73

neighbors are not pro-actively trying to help because they only have information about
their objectives.

In order to circumvent the issues of a communication-based controller, one can
use a cooperative distributed controller, which was first proposed by Venkat et al. (2005).
The most significant advantage of this approach is that it can overcome the problems
that the decentralized and the communication-based controllers have (CHRISTOFIDES
et al., 2013). Typically, cooperative controllers have a model for how the other vari-
ables affect their system and how their decision variables affect the objective of their
neighboring subsystems. Ultimately, the cooperative controller solves the global opti-
mization problem, where each subsystem has only the terms that they affect. While
most communication-based algorithms are non-iterative, cooperative algorithms have
an iterative nature due to their negotiating aspect. For the same sampling time, they will
solve the optimization problem several times, informing their neighbors of the decisions
they are willing to take; this allows each controller to adjust based on their neighbor’s
actions before applying the control actions into the system.

According to Rawlings and Stewart (2008), a cooperative controller has the
following properties:

• The iterations generated by the cooperative MPC algorithm are systemwide feasi-
ble,

• Control based on any intermediate termination of the algorithm provides nominal
closed-loop stability and zero steady-state offsets,

• If iterated to convergence, the distributed MPC algorithm achieves optimal, cen-
tralized MPC control,

• To handle output instead of state feedback, a distributed estimator design strategy
can be implemented. Each estimator is stable and uses only local measurements
to estimate subsystem states. The combined distributed estimator-distributed reg-
ulator is feasible and closed-loop stable for all iterations (in the case of decaying
estimate error).

So the cooperative distributed controller has the best of both worlds; it has a dis-
tributed implementation, and, at the same time, it keeps the performance of the global
controller. The disadvantages of the cooperative distributed controller include the re-
quirement of an infrastructure to be used, including communication and multiple agents
that can solve OCPs. While this is less of a problem with technological advances, the
concept of “mainframes” remains popular. Also, depending on the sparsity of the sys-
tem, it can be more computationally costly to obtain a solution compared to centralized
controllers.

Chapter 3. Distributed Optimal Control 74

Figure 18 – Experiment demonstrating the convergence of communication-based con-
troller. The functions Φ1(u) and Φ2(u) are the objective functions of each
subsystem, a and b being their optimal solution (disregarding the other sub-
system), the ellipsoid around each optimal point being the contour curve,
the line connecting a and b are the Pareto set, where the point p is the
Pareto optimal point balancing the objective of both systems. First: the al-
gorithm converges to a Nash-point close to the Pareto optimal. Second: the
algorithm converges to a Nash-point far from the Pareto optimal. Third: the
algorithm diverges from the Nash-point despite starting at a point close to
the Pareto optimal. Extracted from (RAWLINGS; STEWART, 2008)

Chapter 3. Distributed Optimal Control 75

3.1.3 Related Works

There are not many works that use a continuous-time model for modeling dis-
tributed systems. However, the most common application is for systems whose subsys-
tems are not physically coupled but coupled by constraint. Dunbar and Murray (2006)
proposes a distributed control for a multi-vehicle system whose dynamics and con-
straints are uncoupled but the cost function couples the states. Murray (2007) surveys
of methods for continuous-time linear models of multi-vehicle systems; while this is a
multi-agent problem, the systems were not coupled physically but by constraints.

Regarding works that propose solutions for problems with continuous-time sys-
tems with coupled dynamics, some of them are described briefly in the following. In
(YAO, J. et al., 2009), a continuous-time nonlinear dynamic network was proposed, but
then there is no complete decoupling of the local models. In (GUAN et al., 2012), a
similar approach is used to solve a consensus problem in continuous time networks.
In (FARINA et al., 2014), a continuous-time linear model has been used; however, the
concept of networks is not established. In (BESTLER; GRAICHEN, 2017), an ADMM-
based algorithm is proposed for a network modeled with state and control variables but
no algebraic variables.

Other works have been using discrete-time dynamic networks (DAI et al., 2017;
FERRAMOSCA et al., 2013; HERNANDEZ et al., 2016; VENKAT et al., 2005; CAM-
PONOGARA et al., 2002; MENDES et al., 2017), although they serve as a reference
on what can be pursued, they are not directly comparable with this work.

3.1.4 Contribution

As seen in the previous sections, the cooperative distributed controller can be
implemented honoring the distributed characteristics of the system while achieving the
performance of a centralized controller. For these reasons, this class of controllers is
studied in this work.

First, a framework for modeling distributed networks based on continuous-time
DAE models is proposed. This framework is detailed in Section 3.3. This framework
renders a mathematical structure that has a decoupled cost and coupled constraint
structure. However, the only coupling constraints are the constraints that connect the
output of the upstream subsystem to the input of the downstream one. This framework
resembles “object-oriented programming”, in the sense that each subsystem has its
equations and interacts only by an interface (input-output connecting equations).

Based on this modeling framework, three methods are proposed using the aug-
mented Lagrangian algorithm developed by Aguiar (2016). All proposed algorithms
are partially connected cooperating iterative algorithms according to the classification
of (SCATTOLINI, 2009). Meaning that a local controller only shares information with

Chapter 3. Distributed Optimal Control 76

neighboring controllers (partially connected), the information is transmitted multiple
times at the same sampling time (iterative), and they minimize a global cost function
(cooperative algorithm).

The first algorithm is based on the coordinate descent method (BERTSEKAS,
1995). The main idea is to use the augmented Lagrangian algorithm for OCP to trans-
form the model given by the framework, which is a decoupled cost coupled constraint,
into a coupled cost decoupled constraint problem. Problems with coupled cost decou-
pled constraints can be solved using the coordinate descent algorithm, which splits the
decision space into smaller subspaces and solves the optimal control problem iterating
between the solution subspaces. Conveniently, we choose the subspaces to match the
spaces of variables of each subsystem. This way, each subsystem has a local optimal
control problem which is the projection of the global optimal control problem onto the
subsystem space of decision variables. In this approach, the optimal control problems
resulting from the augmented Lagrangian algorithm are solved to optimality, and then
the multiplier estimates and penalty parameter are updated.

The second approach is based on the alternating direction multiplier method
(ADMM) (BOYD et al., 2010). It has the same general idea as the previous method. The
augmented Lagrangian algorithm is used to obtain a coupled cost decoupled constraint
problem. The algorithms differ from the way that this subproblem is solved. In the
previous algorithm, the resulting subproblem is solved to convergence, and then the
parameters of the augmented Lagrangian algorithm are updated. In this method, only
one step of the coordinate descent algorithm is performed for each subsystem, and
then the penalty of the augmented Lagrangian is updated.

Both methods require some coordination among the subsystems. Due to some
characteristics of the optimal control problem generated by the augmented Lagrangian
method, not all subsystems can simultaneously solve their local optimal control prob-
lems. The subsystems can be grouped so that no two neighbors are solving their
optimal control problem simultaneously. This allows a certain degree of parallelization,
but it is limited to how coupled or sparse the system is. For highly sparse systems, this
might not be a problem for some structures; for instance, in a star or tree formation
(Figure 15), it is possible to split the whole network into two groups. However, for tightly
coupled systems, the number of groups can grow to the number of subsystems in the
network.

For this reason, a variant of both methods is proposed. This variant includes
virtual subsystems in the network; by doing so, no two original subsystems are neigh-
bors, which allows full parallelization of the network, and the cost of solving the optimal
control problem of the virtual nodes is minor.

Finally, the third proposed method is a variation of the ADMM method, which
through algebraic manipulation of the resulting equations exploits the network topogra-

Chapter 3. Distributed Optimal Control 77

phy. This method achieves simultaneous updates of all subsystems.

3.2 ALGORITHMS

3.2.1 Coordinate descent1

Coordinate descent (CD) algorithms are among the more straightforward classes
of methods for solving optimization problems. CD origins are dated to the foundation of
the optimization discipline and have many variations due to its age and straightforward-
ness (WRIGHT, 2015).

CD algorithms are iterative; at each iteration, most components of the decision
vector (x) are fixed, and the objective is minimized with the remaining components.
Each iteration is associated with a lower-dimensional subproblem that can be solved
with less effort than the original problem.

The simplicity of these algorithms and their acceptable performance arguably
is one of the main reasons for their popularity among practitioners. Nevertheless, the
scarcity of intricacies makes these algorithms overlooked by the scientific community,
who often favor investigating more elaborate methods. However, with the populariza-
tion of machine learning and the ever-increasing demand for computing power, CD
algorithms have shown to be a competitive alternative to traditional approaches for
solving problems that arise from machine learning. Simultaneously, the development
of mathematical guarantees and parallelization variants makes these algorithms even
more relevant, particularly for large-scale optimization problems.

Formulation

The simplest problem that CD solves is the unbounded optimization problem,

min
x

f (x) (185)

where f : RNc → R is a continuous function. More specific assumptions might be
required, depending on the particular CD algorithm. For instance, some algorithms
assume that f is smooth and convex, other algorithms accept it to be smooth and
nonconvex, or even f being smooth with a restricted domain.

There is another typical formulation that includes a regularization term,

min
x

f (x) + λΩ(x) (186)

where the function f is smooth, Ω is a nonsmooth and extended-value2 regularization
function, and λ > 0 is the regularization parameter. Algorithms exploit the structure of f
1 Wright (2015) was the main source for this section, however other works were used as Bertsekas and

Tsitsiklis (1989)
2 Extended-value functions are functions that have infinty in its counter-domain, e.g. f : X → Y ∪ {∞}

Chapter 3. Distributed Optimal Control 78

and the regularization functionΩ. OftenΩ is convex and separable (or block separable).
The regularization term can represent methods, as `1 norm, `2 norm, empirical risk
minimization, and Lagrangian dual. Algorithm 3 shows a general CD algorithm that
assumes that the objective function is differentiable. In each step, the component ik of
the gradient ∇f is evaluated at the current point xk , followed by an update of the ik -th
component of the decision variable x . The selection of which component of x iterates
can follow different sets of rules. These rules are further explained later in the section.
The update of the component can be via a fixed step αk , a varying αk that satisfies
a line-search condition, or an exact minimization in the direction of the component ik
which would give an optimal αk . The vector eik that appears in Algorithm 3 is a vector
with 1 in the ik -th element and 0 everywhere else.

Algorithm 3 Coordinate descent for optimization

Set k ← 0, requires x0

repeat
choose an index ik ∈ {1, . . . , Nc}
xk+1 ← xk – αk [∇f (xk)]ik eik for some αk > 0
k ← k + 1

until pass convergence test

CD algorithms have apparent similarity to the Gauss-Seidel method for solving
linear equations (GOLUB; VAN LOAN, 2013). They iterate in each component and step
towards minimizing the objective function, just like finding a solution for a set of linear
equations.

Example 5 (Coordinate descent). Consider the following optimization problem

min
x1,x2

[
x1 x2

] [1 –1
–1 2

][
x1
x2

]
+
[
0 –4

] [x1
x2

]
(187)

For a given start point for x1 and x2, the coordinate descent algorithm solves
the optimization problem above by only solving in the direction x1, keeping x2 fixed.
After finding a new x1, the problem is solved in the direction x2, keeping x1 fixed. The
process repeats until a convergence test is satisfied.

If an optimal step is used, solving problem (187) in the direction of x1 is the
equivalent of solving the problem

P1(x2) : min
x1

x2
1 – 2x1x2 (188)

where the x2 is the previous value obtained for variable x2. Likewise, solving (187) in
the direction x2 is equivalent to solving the problem

P2(x1) : min
x2

– 2x1x2 + 2x2
1 – 4x2 (189)

Chapter 3. Distributed Optimal Control 79

where the x1 is the previous value obtained for variable x1.
Figure 19 illustrates the algorithm converging to the unbounded minimum for the

initial condition x1 = 5 and x2 = 2 using optimal steps in each iteration. Notice that the
centralized method travels from the initial guess to the optimum following a diagonal,
going in a straight line. On the other hand, since the coordinate descent iterates over
each direction, it takes a longer path.

1.5 2 2.5 3 3.5 4 4.5 5 5.5

x
1

1.5

2

2.5

3

3.5

4

4.5

x
2

Level Curves

Centralized

Coord Descent

Figure 19 – Solution of problem (187) using a centralized method and a coordinate
descent (decentralized)

Variants

Algorithm 3 is a platform for many algorithm variations. A possible point of varia-
tion for the CD algorithms is choosing the component at each iteration, as previously
stated. Iterations might be sequential or parallel; in parallel iterations, the iterations may
be synchronous or asynchronous. Also, each iteration step might have a fixed length, a
varying length according to some rule, or even be of optimal length. Additionaly, there
are algorithms designed to solve particular sub-classes of problem (185).

The choice of the iterating component varies according to the technique. The
ik -th component can be chosen following a deterministic cycle (e.g., 1, 2, . . . , n), where
every n iterations, the algorithm iterates over the same component. The choice of the
component can follow a sampling rule. The component is chosen randomly at each
iteration, allowing to avoid any bias caused by the cyclic iterations. On the other hand,

Chapter 3. Distributed Optimal Control 80

a completely random choice may cause some directions to be chosen more often
than others, leading to occasional slow convergence. A third approach, sampling with
replacement, combines the previous two. A component is picked off out of a pool of
possible components. When there are no more components in the pool, it refills with
all components, allowing for a balanced iteration without hindering one component. Nu-
merical experiments by Wright (2015) show that these three variants generally behave
the same. However, in some cases, the sampling with replacement was faster than the
sampling without replacement; in other cases, the cyclic case had worse convergence
rates than the randomized variants.

So far, the CD has been described as iterating over a single component at
each iteration. However, a simple extension is to iterate a more significant number of
components at a time. This type of approach might increase the efficiency of block
decomposable problems, that is, problems in which a subset of components is tightly
connected. Also, as described further in the section, it might be possible to solve
problems with constraints that couple multiple components.

In recent years, with increased demand for efficient algorithms for solving opti-
mization problems with a high volume of data and numerous features, several parallel
variants have been proposed. CD algorithms can be parallelized for problem-specific
applications, exploiting the problem structure. Another form to achieve parallelization is
with a more generic approach, having the same algorithm running in different instances,
operating over the same shared decision vector x . The synchronous variants typically
perform some iterations over a local copy of the decision vector. The instances then
perform a synchronization step to update the local copy with the information from other
instances every few steps. Bradley et al. (2011) propose Shotgun, a parallel algorithm
for `1-Regularized Loss minimization based on the shooting method developed by Fu
(1998). Jaggi et al. (2014) propose an algorithm for convex regularization functions with
lower communication cost to reduce synchronization costs; the proposed method has
some similarities to the Gauss-Jacobi method for solving linear equations, instead of the
Gauss-Seidel. Richtárik and Takáč (2016) propose a randomized block CD algorithm for
smooth convex functions whose benefits come from exploiting the objective function’s
separability. The method is enhanced by an accelerated version on Fercoq et al. (2014),
taking advantage of the developments of Lee and Sidford (2013). A similar approach is
used in Mareček et al. (2015), where the decision variable is split into chunks, and each
instance is responsible for a chunk; the same approach of Richtárik and Takáč (2016)
is applied to each chunk for another increased parallelization. In the asynchronous
algorithms, the decision vector is centralized, available for all instances to update its
local copy and write their updates. Each instance runs its CD algorithm that does not
communicate or synchronize with other instances other than updating the same shared
decision vector. An illustrative example of an asynchronous algorithm can be obtained

Chapter 3. Distributed Optimal Control 81

from modifying Algorithm 3, displayed in Algorithm 4. Notice that Algorithms 3 and 4
differ only by the argument of the gradient computation. The differentiation happens
because, by the time an instance is updating the vector (xk+1), the current value for the
decision vector (xk) is no longer the same used to compute the gradient (x̃k): it was
changed by another thread running the same method. It is challenging to show math-
ematical properties of asynchronous algorithms due to the mismatch between several
instances running Algorithm 4. However, due to its importance to practical applications,
advances have been achieved to support these methods (LIU; WRIGHT, 2015; LIU
et al., 2015).

Algorithm 4 Asynchronous coordinate descent for optimization

Set k ← 0, requires x0

repeat
choose an index ik ∈ {1, . . . , nc}
xk+1 ← xk – αk [∇f (x̃k)]ik eik for some αk > 0
k ← k + 1

until termination

Convergence

Generically speaking, the CD may fail to converge. In a seminal work, Powel
shows that there exists an unbounded optimization problem such that a CD algorithm
may fail to converge for a problem (185). In the counter-examples, Powel proposes a
nonconvex continuously differentiable objective function in R3, in which a cyclic CD algo-
rithm that performs exact minimization and starts at a specific region will not converge,
cycling indefinitely. Powell provides further examples, which show that convergence
cannot be expected without further assumptions.

Bertsekas (2005) shows that even with a nonconvex problem, a cyclic CD may
converge if for every point x in the domain, there is only one minimizer along any
coordinate direction. Beck and Tetruashvili (2013) show that under the assumption
that the objective function f is convex and Lipschitz continuously differentiable, and the
problem attains finite minima in its domain; a cyclic block CD algorithm with constant
step sizes converges. This property can be generalized to the case where each block
has a single component.

Multi-Block CD

Multi-block CD algorithms can solve a specialized type of problem (185). These
algorithms can solve problems that have orthogonal constraints in each block, for in-

Chapter 3. Distributed Optimal Control 82

stance

min
x

f (x) (190a)

s.t.: gb(xb) ≤ 0 ∀b ∈ B (190b)

hb(xb) = 0 ∀b ∈ B (190c)

where xb ∈ RNb
c is the components of block b, a subvector of x , Nb

c is the number
of components in the block b ∈ B = {1, . . . , Nb}, gb(xb) ≤ 0 and hb(xb) = 0 are the
inequality and equality constraints of block b, which define the feasible set Xb ⊆ RNb

c .
To solve problem (190), an algorithm similar to Algorithm 3 can be used. However,

a minor modification is required. A purely fixed step algorithm cannot work because it
may violate the constraints. An approach to handle this issue is to perform a feasible
set projection. Alternatively, an optimal step for the block will provide a block-feasible
update. An algorithm that solves (190) is displayed in Algorithm 5.

Algorithm 5 Coordinate descent for multi-block optimization

Set k ← 0, requires x0

repeat
choose a block b ∈ B
xk+1 ← xk – αk [∇f (xk)]beb for some αk > 0
k ← k + 1

until pass convergence test

The following example expands on example 5 by including a constraint in each
block (in each component, for the two dimensions case).

Example 6 (Coordinate descent with intra-block constaint). Let us include the following
box constraints into (187),

2.5 ≤ x1 ≤ 5 (191a)

1.5 ≤ x2 ≤ 3.75 (191b)

which results in the following optimization problem,

P : min
x1,x2

[
x1 x2

] [1 –1
–1 2

][
x1
x2

]
+
[
0 –4

] [x1
x2

]
(192a)

s.t.: 2.5 ≤ x1 ≤ 5 (192b)

1.5 ≤ x2 ≤ 3.75 (192c)

Notice that with the intent of visualizing the iterations, (192) is a two-dimensional
problem with one component in each block. Hence box constraints in (192) are the
only possible type of intra-block constaint. In higher-order problems, more general
constraints could be included.

Chapter 3. Distributed Optimal Control 83

For the problem with box constraints with optimal steps, the directional subprob-
lems are

P1(x2) : min
x1

x2
1 – 2x1x2 (193a)

s.t.: 2.5 ≤ x1 ≤ 5 (193b)

for x1, and

P2(x1) : min
x2

– 2x1x2 + 2x2
1 + 4x2 (194a)

s.t.: 1.5 ≤ x2 ≤ 3.75 (194b)

for x2.
Figure 20 shows the algorithm iterations for the initial conditions x1 = 5 and

x2 = 2, using optimal steps at each iteration.

1.5 2 2.5 3 3.5 4 4.5 5 5.5

x
1

1.5

2

2.5

3

3.5

4

4.5

x
2

Level Curves

Box Constraints

Centralized

Coordinate Descent

Figure 20 – Solution of problem (192) using a centralized method and a coordinate
descent (decentralized)

Notice that problem (190) does not contain inter-block coupling constraints, for
instance inequality

g(x1, x2) ≤ 0 (195)

Chapter 3. Distributed Optimal Control 84

or an equality constraint

h(x1, x2) = 0 (196)

Without transforming the problem and altering the algorithm, the general coordinate
descent algorithm cannot guarantee an optimal solution that satisfies the constraints.
This issue happens because Algorithm 5 can only solve problems with coupled cost and
(block) decoupled constraints (CCDC), meaning that the problem may have cross-terms
in the objective function but no constraint coupling any two or more blocks.

This situation is illustrated in the following example.

Example 7 (Coordinate descent with inter-block constaint). If we include the following
constraints into the unconstrained problem (187),

2.5 ≤ x1 (197a)

1.5 ≤ x2 ≤ 3.75 (197b)

– x1 + 2x2 ≤ 3.5 (197c)

the coordinate descent algorithm might not converge to the centralized solution depend-
ing on the initial condition, as shown in Figure 21.

This issue happens because when the coupling constraint is active, the set of fea-
sible directions that minimizes the objective function may not include either coordinate,
x1 and x2. Therefore, the algorithm becomes “stuck” at the coupling constraint.

As seen in Example 7, CD is not able to solve coupled cost coupled constraint
problems (CCCC). Therefore a way to solve this kind of issue is to apply a technique
that transforms a CCCC problem into a CCDC.

There exist a variety of methods to perform this transformation: proximal meth-
ods, barrier methods, Lagrangian methods, augmented Lagrangian, among others. The
following section explores how to use the augmented Lagrangian method to convert
a CCCC problem into a CCDC problem, especially for dealing with coupling equality
constraints.

3.2.2 Augmented Lagrangian with Coordinate Descent

The augmented Lagrangian (Section 2.4) is a method for solving equality con-
strained optimization problems also extensible to inequality constraints. It works by
relaxing the equality constraint and including its violation as a penalty term in the ob-
jective function. By doing so, the method is removing a coupling constraint from the
constraint and moving it to the objective.

Chapter 3. Distributed Optimal Control 85

1.5 2 2.5 3 3.5 4 4.5 5 5.5

x
1

1.5

2

2.5

3

3.5

4

4.5

5

x
2

Level Curves

Constraints

Centralized

Coordinate Descent

Figure 21 – Solution of problem (192) with coupling constraint

Let us extend (190) with an coupling equality constaint

min
x

f (x) (198a)

s.t.: for all b ∈ B:

gb(xb) ≤ 0 (198b)

hb(xb) = 0 (198c)

h(x) = 0 (198d)

Notice that (198) is CCCC and cannot be solved with coordinate descent but
can be relaxed by the augmented Lagrangian. The relaxation of (198d) results in the
subproblem

min
x

f (x) + λT h(x) +
µ

2
‖h(x)‖2 (199a)

s.t.: for all b ∈ B:

gb(xb) ≤ 0 (199b)

hb(xb) = 0 (199c)

which is a CCDC problem, consequently solvable by the coordinate descent method.
The result of combining the augmented Lagrangian with coordinate descent

is a double iterating algorithm. The augmented Lagrangian’s outer loop requires the

Chapter 3. Distributed Optimal Control 86

subproblem solution to update the penalization µ and the multiplier λ. The inner loop,
the coordinate descent loop, solves the subproblem by successively iterating over each
block. Algorithm 6 synthesizes the amalgam of the augmented Lagrangian and the
coordinate descent.

Algorithm 6 Augmented Lagrangian with Coordinate Descent

Set k ← 0, requires x0, µ0, and λ0

repeat
repeat

choose a block b ∈ B
update xk+1 in the directions of block b

until pass inner loop convergence test
update µk+1

update λk+1

k ← k + 1
until pass outer loop convergence test

The following example exhibits how the combination of these two algorithms can
solve an equality-constrained optimization problem.

Example 8. Let us include the following equality constraint into (187),

x1 + x2 = 5 (200)

which yields the following equality constrained optimization problem,

P : min
x1,x2

[
x1 x2

] [1 –1
–1 2

][
x1
x2

]
+
[
0 –4

] [x1
x2

]
(201a)

s.t.: x1 + x2 = 5 (201b)

which cannot be solved by coordinate descent.
To obtain the augmented Lagrangian subproblem, let us relax the equality con-

straint, which produces

P̂(µ, λ) : min
x1,x2

[
x1 x2

] [1 –1
–1 2

][
x1
x2

]
+
[
0 –4

] [x1
x2

]
+ λ(x1 + x2 – 5) +

µ

2
‖x1 + x2 – 5‖2 (202)

The directional subproblems are

P̂1(x2,µ, λ) : min
x1

x2
1 – 2x1x2 + λ(x1 – 5) +

µ

2
‖x1 + x2 – 5‖2 (203)

for x1, and

P̂2(x1,µ, λ) : min
x2

– 2x1x2 + 2x2
2 + –4x2 + λ(x2 – 5) +

µ

2
‖x1 + x2 – 5‖2 (204)

Chapter 3. Distributed Optimal Control 87

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

(a) First augmented Lagrangian iteration

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

(b) Second augmented Lagrangian itera-
tion

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

(c) Third augmented Lagrangian iteration

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

(d) Final augmented Lagrangian iteration

Figure 22 – Solution of problem (201) using the augmented Lagrangian and the coordi-
nate descent to solve the subproblem. In the figures above, the level curves
are readjusted in each iteration, and the path of previous iteration steps are
depicted to full visualization of the algorithm behavior.

for x2.
Figure 22 shows the algorithm iterations for the initial conditions x1 = 5 and

x2 = 5, using optimal steps at each iteration. Notice that each augmented Lagrangian
iteration has different level curves; this happens because of the increase of the penal-
ization µk and the change of the multiplier approximation λk .

The combination of these two methods allows for a simple way to solve equality-
constrained optimization problems. The requirement of solving each augmented La-
grangian subproblem to its optimum is wasteful. Notice how small the steps become at
the end of an augmented Lagrangian iteration, followed by an increase in the stepsizes
with adjustments of the objective function at the beginning of the following iteration.
Supported by (BERTSEKAS, 1982, Propostion 2.3), it is possible to achieve a more
efficient strategy by starting with a higher tolerance for the subproblem solution and
decreasing it with each iteration.

Chapter 3. Distributed Optimal Control 88

The following method further builds upon this idea and dramatically reduces the
overall number of iterations.

3.2.3 Alternating Direction Multiplier Method (ADMM)3

The alternating-direction method of multipliers (ADMM) (BOYD et al., 2010) has
reached significant recognition in recent times due to its value in designing parallel
algorithms and solving regularized problems for statistics and machine learning. Each
ADMM iteration consists of obtaining an approximate minimizer of the augmented
Lagrangian function over each block in turns, succeeded by an update of the Lagrange
multiplier estimates.

The ADMM is typically presented as an algorithm to solve two-block equality
constrained problems of the form

min
x ,y

f (x) + g(y) (205a)

s.t.: Ax + By = c (205b)

where x ∈ X ⊂ RNx , y ∈ Y ⊂ RNy , A ∈ RNc×Nx , B ∈ RNc×Ny , and c ∈ RNc . The
functions f and g are assumed to be convex.

Applying the augmented Lagrangian to (205) yields the following objective func-
tion

Lµ(x , y , λ) = f (x) + g(y) + λT (Ax + By – c) +
µ

2
‖Ax + By – c‖2 (206)

The augmented Lagrangian subproblem then becomes minimizing Lµ without any con-
straints.

The ADMM iterates over each direction, just like the augmented Lagrangian
with the CD algorithm. However, it does only once for every direction, followed by an
update of multipliers. On the other hand, if we were to solve the subproblem with
the augmented Lagrangian with CD, we would iterate over the directions x and y
until the CD loop achieved convergence and only then update the multipliers and the
penalization. Algorithm 7 exhibits the steps for the ADMM. Notice that the ADMM does
not assume an ever-increasing penalization term µ > 0. On the contrary, such an
assumption may cause convergence proofs to be hard to achieve.
3 This section was written mainly based on Boyd et al. (2010), however other sources were used as

(BERTSEKAS, 1982).

Chapter 3. Distributed Optimal Control 89

Algorithm 7 Alternating direction multiplier method (ADMM)
Set k ← 0, requires x0, y0, λ0, µ
repeat

xk+1 ← arg minx Lµ(x , yk , λk)
yk+1 ← arg miny Lµ(xk+1, y , λk)
λk+1 ← λk + µ(Axk+1 + Byk+1 – c)
k ← k + 1

until pass convergence test

The ADMM uses a similar structure as its originating algorithm, the multiplier
method (BERTSEKAS, 1982). There is no distinction between x and y variables in the
multiplier method, and all variables are updated simultaneously.

(xk+1, yk+1)← arg min
x ,y

Lµ(x , y , λk) (207)

λk+1 ← λk + µ(Axk+1 + Byk+1 – c) (208)

The ADMM has better convergence properties, and the distinction of two sepa-
rate steps for x and y is what enables the decomposition when f and g are separable.

The ADMM can be written in an alternative form, where the penalization µ scales
the penalty and the Lagrangian term. Let r = Ax + By – c, then

λT r +
µ

2
‖r‖2 =

µ

2

∥∥∥∥r +
1
µ
λ

∥∥∥∥2
–

1
2µ
‖λ‖2 (209a)

=
µ

2
‖r + σ‖2 –

µ

2
‖σ‖2 (209b)

where σ = 1
µλ is the scaled multiplier variable. Using the scaled variables, the updates

in Algorithm 7 can be reestated as

xk+1 = arg min
x

(
f (x) +

µ

2

∥∥∥Ax + Byk – c + σk

∥∥∥2
)

(210a)

yk+1 = arg min
y

(
g(y) +

µ

2

∥∥∥Axk+1 + By – c + σk

∥∥∥2
)

(210b)

σk+1 = σk +
(

Axk+1 + Byk+1 – c
)

(210c)

since the term µ
2 ‖σ‖

2 does not vary with either x or y , it is disregarded for the update
steps. By defining the k -th residual as rk = Axk + Byk – c, the k -th scaled multiplier is
given by

σk = σ0 +
k∑

j=1

r j (211)

The scaled and the unscaled version are equivalent and can be used inter-
changeably.

Chapter 3. Distributed Optimal Control 90

Example 9. Let us use the same equality constrained problem (201),

P : min
x1,x2

[
x1 x2

] [1 –1
–1 2

][
x1
x2

]
+
[
0 –4

] [x1
x2

]
(212a)

s.t.: x1 + x2 = 5 (212b)

which has the following augmented Lagrangian subproblem:

P̂(µ, λ) : min
x1,x2

[
x1 x2

] [1 –1
–1 2

][
x1
x2

]
+
[
0 –4

] [x1
x2

]
+ λ(x1 + x2 – 5) +

µ

2
‖x1 + x2 – 5‖2 (213)

with the directional subproblem being

P̂1(x2,µ, λ) : min
x1

x2
1 – 2x1x2 + λ(x1 – 5) +

µ

2
‖x1 + x2 – 5‖2 (214)

for x1, and

P̂2(x1,µ, λ) : min
x2

– 2x1x2 + 2x2
2 + –4x2 + λ(x2 – 5) +

µ

2
‖x1 + x2 – 5‖2 (215)

for x2.
For an initial condition x1, x2 = 5, 5, Figure 23 depicts the iterations of the ADMM

until it reaches a point close to the optimum. Notice how the objective changes after only
one iteration in each direction (represented in the level curves). This change makes
the ADMM reach a point close to the optimum in fewer steps than the augmented
Lagrangian combined with the coordinate descent.

The example above shows the ADMM converging in fewer steps than the aug-
mented Lagrangian with CD. Indeed, empirical experiments show that ADMM is often
more efficient than the augmented Lagrangian with coordinate descent (CHEN, L. et
al., 2019; ECKSTEIN; YAO, W., 2015). However, if no warm start technique is used,
ADMM iteration steps might be more complex and time-consuming, depending on the
problem’s size and the nonlinearities.

Convergence

Over the years, several works developed convergence proofs for the ADMM.
Under the assumption that f and g are closed, proper, convex, and extended valued
functions, it has been shown that x-update and y -update are solvable; that is, there ex-
ists an x and a y that minimizes the augmented Lagrangian function. Such assumption
allows for f and g to be non-differentiable or even be an indicator function that assumes
the value +∞.

Chapter 3. Distributed Optimal Control 91

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

Optimum

(a) First ADMM iteration

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

Optimum

(b) Second ADMM iteration

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

Optimum

(c) Third ADMM iteration

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x
1
 + x

2
 = 5

x
1

x
2

Optimum

(d) Final ADMM iteration

Figure 23 – Solution of problem (212) using ADMM to solve the subproblem. In the
figures above, the level curves are readjusted in each iteration, and the path
of previous iterations iteration steps are depicted to are full visualization of
the algorithm behavior.

Further, let us assume that there exists a saddle point for the unaugmented
Lagrangian, that is, there exists a (x∗, y∗, λ∗), such that

L0(x∗, y∗, λ) ≤ L0(x∗, y∗, λ∗) ≤ L0(x , y , λ∗) (216)

for any x , y , λ. By the first assumption, there exists a finite objective L0(x∗, y∗, λ∗) for
all (x∗, y∗, λ∗). This implies that (x∗, y∗) solves (205), Ax∗ + By∗ = c, f (x∗) ≤ ∞, and
g(y∗) ≤ ∞. This further implies that λ∗ is dual optimal.

Under such assumptions, it is possible to show

• Residual convergence: rk → 0 as k →∞, meaning that the algorithm approaches
primal feasibility with the iterations.

• Objective convergence: f (x∗) + g(y∗) → p∗ as k → ∞, where p∗ is the optimal
objective of (205); implying that with the iterations the objective appoaches the
optimal value.

Chapter 3. Distributed Optimal Control 92

• Dual variable convergence: λk → λ∗ as k →∞, where λ∗ is the optimal multiplier
of (205).

The proofs are presented in (Appendix A, BOYD et al., 2010).
Practical experiments show that ADMM has a slow convergence for high-accuracy

solutions. However, ADMM has been shown to achieve reasonable accuracy within a
few iterations, which suffice for many applications. For applications that require high
precision, the augmented Lagrangian can be combined with better methods that have
better convergence when close to optimality, such as Newton’s method (ECKSTEIN;
FERRIS, 1998). However, the usage of Newton’s method might be limited by the size of
the problem. The augmented Lagrangian is commonly applied to large-scale problems
in statistics and machine learning, where high accuracy is not required. On the contrary,
high accuracy is typically associated with overfitting, therefore avoided, making the
ADMM an exceptional fit.

Multi-block ADMM

Most of the scientific and practical work was developed for two-block ADMM, as
in (205), but it often happens that we have more block separable functions and variables.
For instance,

min
x ,y ,z

f (x) + g(y) + h(z) (217a)

s.t.: A1x + A2y + A3z = c (217b)

where the augmented Lagrangian funcion is

Lµ(x , y , z, λ) = f (x) + g(y) + h(z) + λT (A1x + A2y + A3z – c) +
µ

2
‖A1x + A2y + A3z – c‖

(218)

Indeed problem (217) can be solved using a two-block strategy by grouping x
and y , or y and z. However, by doing so, we are not taking advantage of the problem
structure.

A way to benefit from the problem structure is to produce a direct extension
to Algorithm 7. Let us have a four steps update, one for each block and one for the
multipliers,

xk+1 = arg min
x

Lµ(x , yk , zk , λk) (219a)

yk+1 = arg min
y

Lµ(xk+1, y , zk , λk) (219b)

zk+1 = arg min
z

Lµ(xk+1, yk+1, z, λk) (219c)

λk+1 = λk + µ(A1xk+1 + A2yk+1 + A3zk+1 – c) (219d)

Chapter 3. Distributed Optimal Control 93

which makes use of the problem’s structure.
A long-standing question was if such extension would inherit the convergence

properties from the two-blocks ADMM, given that it has shown to be empirically efficient
(HE, B.; YUAN, X., 2018). Caihua Chen et al. (2016) showed that a multi-block ADMM
is not necessarily convergent by developing a sufficient condition for convergence
and producing a violating counter-example. The sufficient condition is that any two
coefficient matrices of (205), are orthogonal. That is, one of the following holds:

• AT
1 A2 = 0,

• AT
2 A3 = 0,

• AT
1 A3 = 0.

The proof follows by showing that if any two of the matrices are orthogonal, then
the update (219) is equivalent to two block ADMM. For instance, if AT

1 A2 = 0, then

(xk+1, yk+1) = arg min
x ,y

Lµ(x , y , zk , λk) (220a)

zk+1 = arg min
z

Lµ(xk+1, yk+1, z, λk) (220b)

λk+1 = λk + µ(A1xk+1 + A2yk+1 + A3zk+1 – c) (220c)

which is a two-block update by grouping x and y . For more details, the reader is
forwarded to (CHEN, C. et al., 2016, Section 2)

Caihua Chen et al. (2016) also claim that this proof can easily be extended for a
m-block ADMM. Given a problem with the form

min
x

m∑
i=1

θi (xi) (221a)

s.t.:
m∑

i=1

Aixi = b (221b)

xi ∈ Xi , i = 1, . . . , m (221c)

where m > 3 is the number of blocks, xi ∈ Xi ⊂ RNni are the variables of the block
i ∈ {1, . . . , m}, and Xi ⊂ Rni are closed convex sets. The sum of all θi : Rni → R defines
the decomposable objective function, which is closed and convex but not necessarily
smooth functions. The coupling constraint is defined by the matrices Ai ∈ Rp×ni , and
the vector b ∈ Rp.

In order to ensure the convergence of the extended ADMM applied to (221), the
sufficient condition is recast as

[. . .] There exist two integers i and j such that any two matrices in the sets
{Ai , Ai+1, . . . , Ai+j } and {Ai+j+1, Ai+j+2, . . . , Am, A1, A2, ..., Ai–1} are orthogo-
nal (CHEN, C. et al., 2016) .

Chapter 3. Distributed Optimal Control 94

which can be interpreted as if we can group the sequential iteration steps into two sets
with all matrices being orthogonal between each other, then the algorithm will converge.

Lin et al. (2015) propose a sufficient alternate condition that depends only on
the objective function and on the penalty parameter that has sublinear convergence.

Varying Penalty

The standard ADMM uses a fixed parameter µ; experiments show that if µ is
kept too small or too large, it can hinder computation performance (FORTIN; GLOWIN-
SKI, 2000; FUKUSHIMA, 1992; KONTOGIORGIS; MEYER, 1998) or even make the
problem ill-conditioned (TOSSERAMS, 2008). The augmented Lagrangian uses an
ever-increasing µk → ∞, and the ADMM can use a similar strategy. By doing so, the
ADMM can achieve better practical convergence, making it less susceptible to the initial
conditions. In the case of the augmented Lagrangian, Rockafellar (1976) shows that
a superlinear convergence is achievable with µk → ∞. While the convergence of the
ADMM with µk is hard to prove, the increase of µ might result in faster convergence in
practice. Combining both strategies by capping µk to a maximum value µmax increases
the convergence and maintains the same properties of the fixed-parameter ADMM. By
following this strategy, the update of the penalty parameter is defined by,

µk+1 = min(βµk ,µmax) (222)

where β > 1.
Another usual practice to vary the penalty parameter is to couple it with the

primal residual (XU et al., 2014, 2015). Given the problem (205), the primal residual is
given by the relaxed equation

rk = Axk + Byk – c (223)

The strategy is to increase the penalty parameter if there is not enough decrease
to the primal residual

µk+1 =

µk if
∥∥∥rk
∥∥∥ ≤ γ∥∥∥rk–1

∥∥∥
βµk , otherwise

(224)

where β > 1, and 0 < γ < 1.
These two previous approaches have an issue when the penalty parameter

becomes too high: the augmented problem gets close to the unrelaxed problem. This
issue hinders the method, making it sluggishly progress towards the optimal point since
it gives much importance to satisfying the constraints.

B. S. He et al. (2000) propose a modified version of the ADMM, where the penalty
parameter µ is allowed to increase and decrease. The authors present a self-adaptive

Chapter 3. Distributed Optimal Control 95

rule and exhibit the convergence proofs for such modifications. In total, three versions
are presented: µ is monotonically increasing, µ is monotonically decreasing, and µ is
adjusted by self-adaptative rule. B. S. He et al. (2000) compare the strategies where

• {µk } is constant, the traditional approach,

• {µk } is monotonically increasing,

• {µk } is monotonically decreasing,

• {µk } is a self-adaptative sequence that can decrease and increase,

They show that only the self-adaptative approach can achieve a low number of conver-
gence iterations independently from the initial parameter µ0.

The self-adaptative approach follows the rule

µk+1 =


βµk if

∥∥∥rk
∥∥∥ > γ

∥∥∥sk
∥∥∥

β–1µk if
∥∥∥sk

∥∥∥ > γ
∥∥∥rk
∥∥∥

µk , otherwise

(225)

where β > 1, γ > 1, rk is the primal residual (223), and sk is the dual residual (BOYD
et al., 2010),

sk = µkAT B(yk – yk–1) (226)

Other related works are found in the literature. Wang and Liao (2001) show the
same approach applied to other situations of interest. Xu et al. (2014, 2015) propose
using the same update steps for the augmented Lagrangian coordination algorithm.
Wohlberg (2017) proposes a normalized version of (225) that makes the update unaf-
fected by the difference of magnitudes of the objective function, equality constraints,
and variables.

3.3 DISTRIBUTED SYSTEMS

This section presents the proposed framework for modeling distributed dynamic
systems composed of nonlinear subsystems. A distributed dynamic network can be
represented by a directed graph G = (N, C), where each node n in the set of nodes
N represents a subsystem, and each arc (n1, n2) in the set of connection arcs C
represents a connection between the outputs of the subsystem n1 and the inputs of the
subsystem n2.

Regarding the modeling of each subsystem dynamics, we have, for each node
n ∈ N,

ẋn = fn(xn, yn, un, t) (227)

0 = gn(xn, yn, un, t) (228)

Chapter 3. Distributed Optimal Control 96

where xn are the states, yn are the algebraic variables, and un are the inputs of sub-
system n. The proposed modeling approach assigns a broader meaning for some of
these variables. The variable un represents the variables that are not defined by the
equations of n: the exogenous variables (variables defined by a connection with another
subsystem) and the control variables (variables that the controller of n can manipulate).
Also, the variables yn are the algebraic variables, but they are also used to represent
the subsystem’s output.

Regarding the connection between the subsystems, for every connection (n1, n2) ∈
C, the connecting equations are given by

M in
n1,n2

un2 = Mout
n1,n2

yn1 (229)

where Mout
n1,n2

is a matrix of size Nc
n1,n2

×Ny
n1

, and M in
n1,n2

is a matrix of size Nc
n1,n2

×Nu
n2

,
Nc

n1,n2
being the number of variables that the system n2 has connected to system n1,

Ny
n1

the number of algebraic variables in the subsystem n1, and Nu
n2

the number of
inputs of the subsystem n2. Notice that if all of the outputs of system n1 are inputs of
the system n2 then

M in
n1,n2

= Mout
n1,n2

= I (230)

and

un2 = yn1 (231)

Regarding the objective function, the modeling assumes a fully decoupled objec-
tive, that is

J =
∑
n∈N

∫ tf

t0
Ln(xn, yn, un, t) dt (232)

where Ln is the objective function of the subsystem n.
Further, it is possible to include all kinds of constraints in the variables of each

subsystem. For instance, for the subsystem n the following constraints can be included

hineq(xn, yn, un, t) ≤ 0, ∀t (233a)

heq(xn, yn, un, t) = 0, ∀t (233b)

hfinal (xn(tf), yn(tf), un(tf), tf) = 0 (233c)

xn(t0) = xn,0 (233d)

xn,L ≤ xn ≤ xn,U (233e)

yn,L ≤ yn ≤ yn,U (233f)

un,L ≤ un ≤ un,U (233g)

given that they do not require variables from other subsystems directly.

Chapter 3. Distributed Optimal Control 97

Therefore, an optimal control for such dynamic network can be written as

min J =
∑
n∈N

∫ tf

t0
Ln(xn, yn, un, t) dt (234a)

s.t.: for all n in N:

ẋn = fn(xn, yn, un, t) (234b)

0 = gn(xn, yn, un, t) (234c)

hineq(xn, yn, un, t) ≤ 0, ∀t (234d)

heq(xn, yn, un, t) = 0, ∀t (234e)

hfinal (xn(tf), yn(tf), un(tf), tf) = 0 (234f)

xn(t0) = xn,0 (234g)

xn,L ≤ xn ≤ xn,U (234h)

yn,L ≤ yn ≤ yn,U (234i)

un,L ≤ un ≤ un,U (234j)

for all (n1, n2) in C:

Mout
n1,n2

yn1 – M in
n1,n2

un2 = 0 (234k)

or in a simplified form,

min J =
∑
n∈N

∫ tf

t0
Ln(xn, yn, un, t) dt (235a)

s.t.: for all n in N:

ẋn = fn(xn, yn, un, t) (235b)

0 = gn(xn, yn, un, t) (235c)

xn(t0) = xn,0 (235d)

for all (n1, n2) in C:

M in
n1,n2

un2 – Mout
n1,n2

yn1 = 0 (235e)

Notice that the global optimal control problem (234) has a decoupled cost and
coupled constraints (DCCC). However, the only coupling constraints are given by the
connection (234k), equivalently (235e), which means that one subsystem does not
affect the others directly but by an input-output interface.

Despite the constraints present on formulation (234), with a few modeling tricks,
other constraints can be modeled, for instance:

• A subsystem being affected by a non-output variable of another subsystem:
for instance, a case where state or input variables of subsystem n2 are affecting
the dynamics of subsystem n1:

ẋn1 = –xn1 + un1 + un2 (236)

Chapter 3. Distributed Optimal Control 98

notice that the state xn1 is affected by un2 . To put the dynamics of this subsystem
in way that fits the form (234), we can rewrite the ODE of the state xn1 using a
new input ûn1 as

ẋn1 = –xn1 + un1 + ûn1 (237)

where ûn1 is defined by the connection equation

ûn1 = ŷn2 (238)

and the variable ŷn2 is defined as an output in the subsystem n2 as

ŷn2 = un2 (239)

This transformation allows us to fit equations like (236) into the form specified by
(234).

• Objective functions with cross terms: for example, if the global objective func-
tion is given by

J =
∫ tf

t0
xT

n1
xn1 + xT

n1
xn2 + xT

n2
xn2 dt (240)

A problem with such objective function can fit into the form (234), by including the
input variable ûn1 and the output variable ŷn1 into the subsystem n1, and including
ûn2 and the output variable ŷn2 into the subsystem n2. In addition, include the
following equations to the respective subsystems,

ŷn1 = xn1 (241a)

ŷn2 = xn2 (241b)

and the coupling constraints

ûn1 = ŷn2 (242a)

ûn2 = ŷn1 (242b)

Chapter 3. Distributed Optimal Control 99

Therefore the optimal control problem can be stated as

min J =
∫ tf

t0

[
xT

n1
xn1 +

1
2

xT
n1

ûn1

]
+
[

1
2

ûT
n2

xn2 + xT
n2

xn2

]
dt (243a)

s.t.: for subsystem n1:

ŷn1 = xn1 (243b)

other equations of the subsystem n1 (243c)

for subsystem n2:

ŷn2 = xn2 (243d)

other equations of the subsystem n2 (243e)

for all (n1, n2) in C:

Mout
n1,n2

yn1 – M in
n1,n2

un2 = 0 (243f)

and the new connections:

ûn1 = ŷn2 (243g)

ûn2 = ŷn1 (243h)

which has the same structure of (234).

• Coupling constraints: for example

xn1 + xn2 + xn3 ≤ 1 (244)

This type of constraint can be included inside one of the subsystems. The exoge-
nous variables for that subsystem can be treated as input variables, as was done
in the previous case. The constraint then becomes:

xn1 + û1,n1
+ û2,n1

≤ 1 (245)

with the connections

û1,n1
= ŷn2 (246a)

û2,n1
= ŷn3 (246b)

and in the subsystems n2 and n3, the following equalities are included

ŷn2 = xn2 (247a)

ŷn3 = xn3 (247b)

Another approach is to create a new subsystem n4 with no objective function, only
with an equivalent formulation of the constraint (244). The optimal control problem

Chapter 3. Distributed Optimal Control 100

of the subsystem n4 is given by

min Jn4 = 0 (248a)

s.t.: û1,n4
+ û2,n4

+ û3,n4
≤ 1 (248b)

and the following connections are included into the network,

û1,n4
= ŷn1 (249a)

û2,n4
= ŷn2 (249b)

û3,n4
= ŷn3 (249c)

and in the subsystems n1, n2, and n3, the following equalities are included

ŷn1 = xn1 (250a)

ŷn2 = xn2 (250b)

ŷn3 = xn3 (250c)

The following example presents the modeling of the four tank system using
formulation (234).

Example 10 (Dynamic Network of the four tank system). From Example 4 we estab-
lished that a network for the four tank system should have a structure like the one
shown in Figure 24, where the subsystems are N = {T1, T2, T3, T3, P1, P2}, and the
connections are C = {(P1, T4), (P1, T1), (P2, T3), (P2, T2), (T3, T1), (T4, T2)}.

Figure 24 – Four tank system represented as a dynamic network

Chapter 3. Distributed Optimal Control 101

In the Example 1 a DAE model for a tank was developed, whose equations were

V̇ = qin – qout (251a)

h =
V
A

(251b)

qout = a
√

2gh (251c)

From these equations, we can separate the states, algebraic, and input variables
for the tank subsystem Tn

xTn
=
[
V
]

, yTn
=

[
h

qout

]
, uTn

=
[
qin

]
(252)

and the functions fTn
and gTn

that fit accordingly.
The two lower tanks receive fluids from two sources, so there is an additional

equation

qin = qin,1 + qin,2 (253)

which makes the variables for those subsystems to be

xTn
=
[
V
]

, yTn
=

 h
qout
qin

 , uTn
=

[
qin,1
qin,2

]
(254)

The pump-valve subsystems can have their dynamics modeled by the following
equations

ω̇ = Kv v (255a)

q = Kflowω (255b)

qout ,1 = γq (255c)

qout ,2 = (1 – γ)q (255d)

where the state ω is the pump’s speed, being controlled by the voltage v; q is the flow
emanating from the pump; and the flows through the three-way valve are qout ,1 and
qout ,2, which are determined by γ. The model parameters are γ, Kv , and Kflow .

In order to put the model of a subsystems Pn in the form (234), the variables are
grouped as follows

xPn
=
[
ω
]

, yPn
=

 q
qout ,1
qout ,2

 , uPn
=
[
v
]

(256a)

and the functions fPn
and gPn

that fit accordingly

Chapter 3. Distributed Optimal Control 102

Assuming that the goal is to keep the two lower tanks’ height at some desired
reference while using the least power on the pumps, the local objectives are defined as

LT1
= (hT1

– href ,T1
)2 (257a)

LT2
= (hT1

– href ,T1
)2 (257b)

LT3
= 0 (257c)

LT4
= 0 (257d)

LP1
= v2

P1
(257e)

LP2
= v2

P2
(257f)

Regarding the connecting equations, they are defined as follows[
1 0

]
uT1

=
[
0 1 0

]
yP1

(258a)

uT4
=
[
0 0 1

]
yP1

(258b)[
1 0

]
uT2

=
[
0 1 0

]
yP2

(258c)

uT3
=
[
0 0 1

]
yP2

(258d)[
0 1

]
uT1

=
[
0 1

]
yT3

(258e)[
0 1

]
uT4

=
[
0 1

]
yT4

(258f)

Chapter 3. Distributed Optimal Control 103

Therefore the global optimal control problem can be written as

min J =
∫ tf

t0

[
(hT1

– href ,T1
)2 + (hT2

– href ,T2
)2

+ v2
P1

+ v2
P2

]
dt (259a)

s.t.: for all T ∈ {T1, T2} :

V̇T = qT ,in,1 + qT ,in,2 – qT ,out (259b)

hT =
VT
AT

(259c)

qT ,out = aT
√

2ghT (259d)

for all T ∈
{

T3, T4
}

:

V̇T = qT ,in – qT ,out (259e)

hT =
VT
AT

(259f)

qT ,out = aT
√

2ghT (259g)

for all P ∈ {P1, P2} :

ω̇ = Kv v (259h)

q = Kflowω (259i)

qout ,1 = γq (259j)

qout ,2 = (1 – γ)q (259k)

with the connections:[
1 0

]
uT1

=
[
0 1 0

]
yP1

(259l)

uT4
=
[
0 0 1

]
yP1

(259m)[
1 0

]
uT2

=
[
0 1 0

]
yP2

(259n)

uT3
=
[
0 0 1

]
yP2

(259o)[
0 1

]
uT1

=
[
0 1

]
yT3

(259p)[
0 1

]
uT4

=
[
0 1

]
yT4

(259q)

3.4 PROPOSED ALGORITHMS FOR DISTRIBUTED OPTIMAL CONTROL

This work aims to propose a distributed framework for solving optimal control
problems for networked systems. Using the proposed modeling (234) and the devel-
opments of the Section 2.5, a few proposed algorithms are presented inspired by the
algorithms from Section 3.2.2 and 3.2.3.

In this section, the OCP form (235) is used for the sake of brevity. However, the
same developments are valid for OCPs with the form (234).

Chapter 3. Distributed Optimal Control 104

The formulation (235) is a decoupled cost with coupled constraint (DCCC), which
coordinate descent algorithms cannot solve due to the connection between the subsys-
tems. To achieve a CCDC problem, which such algorithms can solve, one can use the
augmented Lagrangian for OCP presented in Section 2.5. By applying the relaxation to
the coupling constraints, the following subproblem is obtained

PL(µ,ν) :

min J =
∑
n∈N

∫ tf

t0

{
Ln(xn, yn, un, t)

+
∑

(n1,n2)∈C

[
νT

(n1,n2)

(
M in

n1,n2
un2 – Mout

n1,n2
yn1

)
+
µ

2

∥∥∥M in
n1,n2

un2 – Mout
n1,n2

yn1

∥∥∥2]}
dt (260a)

s.t.: for all n in N: (260b)

ẋn = fn(xn, yn, un, t) (260c)

0 = gn(xn, yn, un, t) (260d)

xn(t0) = xn,0 (260e)

Subproblem (260) can be projected to subsystem n, resulting in the subproblem

PL,n(µ,νn, yext
n , uext

n) :

min J =
∫ tf

t0
Ln(xn, yn, un, t)

+
∑

(n1,n2)∈C(n)

{
νT

(n1,n2)

[
M in

n1,n2
un2 – Mout

n1,n2
yn1

]
+
µ

2

∥∥∥M in
n1,n2

un2 – Mout
n1,n2

yn1

∥∥∥2 }
dt (261a)

s.t.: ẋn = fn(xn, yn, un, t) (261b)

0 = gn(xn, yn, un, t) (261c)

xn(t0) = xn,0 (261d)

where:

• C(n) is the set of connections of the subsystem n, mathematically

C(n) = {(n1, n2) ∈ C : n1 = n ∨ n2 = n} (262)

• νn is the vector containing the multipliers estimates ν(n1,n2) of the connections
(n1, n2) ∈ C(n),

• yext
n is the vector of external algebraic variables, that is yext

n = [yn1 : (n1, n) ∈ C(n)],

Chapter 3. Distributed Optimal Control 105

• uext
n is the vector of inputs, with uext

n = [un2 : (n, n2) ∈ C(n)].

Based on these relaxed subproblems, the following techinques are proposed:

• Augmented Lagrangian method with coordinate descent (AL-CD),

• Alternating direction multiplier method (ADMM),

• Fully decoupling the subsystems,

• Bipartite-Jacobi ADMM,

3.4.1 Augmented Lagrangian with Coordinate Descent

With the CCDC subproblem (260) we can develop a coordinate descent like
algorithm. Because the iteration of one subsystem depends on a few others, given
the network structure, it is not possible to iterate over all subsystems simultaneously.
Therefore, we need to define the iteration blocks. Intuitively, each node can be placed in
a block. For instance, we can separate the blocks for the four tank system, as portrayed
in Figure 25.

Figure 25 – Four tank system represented as a dynamic network, each subsystem in a
block (represented by a color)

While this is a simple solution, there exist more efficient groupings. The limiting
condition for all subsystems simultaneously iterating is that two subsystems that share
a variable cannot iterate alongside. By definition of the modeling framework, two sub-
systems share a variable if they are neighbors4. Therefore, the condition translates into
4 A subsystem is a neighbor to another subsystem if it is an in-neighbor or an out-neighbor, meaning

that it has a connection from or to another subsystem.

Chapter 3. Distributed Optimal Control 106

two neighboring subsystems not being allowed to iterate alongside if they are adjacent.
This condition matches the description of the map coloring problem5, a well-studied
graph problem (HARTSFIELD; RINGEL, 2003; BONDY; MURTY, 2008).

Given a graph G = (N, C), a k-coloring is a map c : N → S, where S is a set of
k colors. Hence the coloring c assigns each vertex one of the k colors. A coloring is
said proper if no two adjacent vertices have the same color. A coloring separates the
vertices into k groups {N1, N2, . . . , Nk } of N, where each Ni is the set of vertices that
where assigned the color i .

The only graphs that are 1-colorable are graphs with no connections between
the nodes. 2-colorable graphs are bipartite graphs, that is, graphs that can be split into
two sets. Graphs can be 3-, 4-, . . . , NN -colorable, where NN is the number of nodes in
the network. For instance, if a network is a complete graph, it is necessary NN colors
because all vertices are adjacent to each other. To have the most subsystems iterating
concurrently in the coordinate descent, we want to have the least number of colors,
which translates into the least number of blocks. The minimum k for which a graph is
k -colorable is known as the chromatic number. Therefore the coloring problem consists
of finding the minimum k for which a graph is colorable.

There exists a polynomial-time algorithm for finding if a graph is 2-colorable
because it is bipartite. For k > 2, generally the problem is NP-complete. Therefore it
is common to rely upon heuristics to obtain a k-coloring for a graph. In this work, we
focus on the OCP solution and assume that the graph coloring solution is known a
prirori. There are a few algorithms for solving this problem. In particular, for our case,
distributed algorithms could be used for assigning a block for each subsystem in a
startup phase (DUBHASHI, 2008; GHAFFARI; KUHN, 2020).

In this work context, we know that for any distributed subsystem, there is a
minimum number of blocks NB that minimize the number of iterations required by the
coordinate descent, such that 2 ≤ NB ≤ NN . For instance, as previously described, the
four tank system can be separated into three blocks, as depicted in Figure 26, or as
two blocks, as shown in Figure 27.

Notice that the grouping is only proposed for concurrent optimization, not that a
single node or subsystem performs all the computations for that group. Each subsystem
is associated with a controller that can compute its decisions locally by only exchanging
information with its neighbors.

Once the blocks are defined, a coordinate descent algorithm that solves the
augmented Lagrangian subproblem (260) can be presented. The algorithm has two
iterating loops; the outer loop is the augmented Lagrangian loop, which requires the
subproblem’s solution for updating the multipliers and the penalty parameter. The inner
loop is the coordinate descent loop, responsible for solving the subproblems until it
5 also known as vertex coloring problem.

Chapter 3. Distributed Optimal Control 107

Figure 26 – Dynamic network graph colored using three colors

Figure 27 – Dynamic network graph colored with the optimal solution using two colors

Chapter 3. Distributed Optimal Control 108

passes a convergence test. The algorithm is presented in Algorithm 8, where yb and ub
are the algebraic and control variables for all subsystems in the block b, the variables
yext,k

n and uext,k
n are defined as

uext,k
n =

{
uk

b̂,j b̂last
: ∀b̂ ∈ B such that b̂ has connections to b

}
(263)

yext,k
n =

{
yk

b̂,j b̂last
: ∀b̂ ∈ B such that b̂ has connections to b

}
(264)

where n belongs to block b, and j b̂last is the last coordinate descent iteration over the

block b̂, j b̂last = 0 if it was not iterated in the current augmented Lagrangian iteration k .
As this method uses the augmented Lagrangian for OCP, the subproblems may

use any available method to solve its subproblem. The method that each subsystem
uses may differ, even in the same block. For instance, one subsystem may use a direct
multiple shooting while another uses an indirect collocation. This flexibility makes it
possible to integrate commercial control solutions from different vendors, as long as
they can produce optimal control and algebraic variables.

The algorithm requires an initial value for the multiplier estimates ν0
n and the

penalty parameter µ0. Each block iteration requires other blocks’ previous values.
Hence the algorithm needs an initial guess for the algebraic and control variable (y0

b,0
and u0

b,0) for each block over time. Depending on the solution method used to solve
each subproblem, more initialization parameters may be required. In the case of a
direction collocation, an initial guess of the profiles for the state, the algebraic, and the
control variables are needed. An initial guess for the final value of the adjoint variables
is necessary for an indirect multiple shooting.

Algorithm 8 Coordinate descent with Augmented Lagrangian
repeat

repeat
choose a block b ∈ B(

yk
b,j+1, uk

b,j+1

)
←
(

solve
{
PL,n

(
µk ,νk

n, yext,k
n , uext,k

n

)}
, ∀n ∈ b

)
j ← j + 1

until coordinate descent converged
(yk+1

b,0 , uk+1
b,0)← (yk

b,j , uk
b,j) for all b

Update multipliers νk

Update penalty factor µk

k ← k + 1
until augmented Lagrangian converged

The algorithm assumes perfect communication and synchronization. The local
convergence can be defined by a minimum decrease in the local objective function or a
more elaborate approach. The whole system convergence is verifiable by a consensus
algorithm.

Chapter 3. Distributed Optimal Control 109

3.4.2 Alternating Directions Multiplier Method (ADMM)

The ADMM uses the relaxed subproblem (260), but instead of iterating with two
loops like augmented Lagrangian with coordinate descent, it iterates with a single loop.
To have a single loop, the ADMM performs a single iteration in each block, followed by
an update of the multipliers, where the penalty parameter may or may not vary. Under
the modeling framework (235), the resulting network may not be bipartite; therefore, the
solution does not fit the common two-block ADMM, requiring a multi-block ADMM.

The sufficient condition shown in Section 3.2.3 is equivalent to the separation
of blocks discussed in the previous section. Therefore, if a distributed system can be
separated into two groups, meaning that its underlying graph is bipartite, it inherits its
property from the two-block ADMM. Cascading subsystems like the star and the tree
formations in Figure 15, can be easily separated into two groups. The cycle topology
depends on the particular system; a six-node cycle is splittable in two, but a five-node
cycle is not bipartite.

The ADMM algorithm proposed in this work has a single loop that solves a block
of subsystems at a time, followed by the update of the multipliers, as summarized in
Algorithm 9. The proposed ADMM algorithm has the variables uext,k

n and yext,k
n defined

as

uext,k
n =

{
uk+1

b̂
: ∀b̂ ∈ B such that b̂ < b

}∪ {uk
b̂

: ∀b̂ ∈ B such that b̂ > b
}

(265)

yext,k
n =

{
yk+1

b̂
: ∀b̂ ∈ B such that b̂ < b

}∪ {yk
b̂

: ∀b̂ ∈ B such that b̂ > b
}

(266)

Like the previous algorithm, the ADMM requires an initial guess for the multipliers
ν0 and the penalty µ0, as well as initial guesses for the control and algebraic variables
(u0

b and y0
b).

Like the previous algorithm, due to the usage of the augmented Lagrangian for
OCP, each subsystem’s solution may be achieved by any available solving method, not
requiring to be the same method in all subsystems. The update of the penalty factor is
optional and can be one of the following:

• µ is constant,

• µ changes with the primal residual,

• µ is updated using a self-adaptive strategy that adjusts based on the primal and
dual residuals.

Chapter 3. Distributed Optimal Control 110

Algorithm 9 Alternating Direction Multiplier Method for OCP
repeat

for b ∈ B do(
yk+1

b , uk+1
b

)
←
(

solve
{
PL,n

(
µk ,νk

n, yext,k
n , uext,k

n

)}
, ∀n ∈ b

)
end for
Update multipliers νk+1

Update penalty factor µk+1

k ← k + 1
until convergence

For problem (260), the primal residual is obtained through the relaxed connec-
tions

rk =
∑

(n1,n2)∈C

νT
(n1,n2)

(
M in

n1,n2
un2 – Mout

n1,n2
yn1

)
(267)

To derive the dual residual, first let us assume that (260) is two-block separable,
and that vk

1 = (yk
1 , uk

1) is the vector with all algebraic and control variables of the systems
in the block b = 1, and likewise vk

2 = (yk
2 , uk

2) for the block b = 2. Then with ADMM steps

vk+1
1 = solve

v1

{
PL,1

(
µk ,νk

1, vk
2

)}
(268a)

vk+1
2 = solve

v2

{
PL,2

(
µk ,νk

2, vk+1
1

)}
(268b)

followed by the update of the multipliers νk
1 and νk

2. PL,1 is an ensemble of OCP,
with form (261), of the subsystems in the first block, similarly for PL,2. Notice that vk+1

1
depends on vk

2 , since vk+1
2 is computed in a later step; this will relevant in the necessary

conditions for OCP PL,1. For the sake of readability, let us put the relaxed constraints
in the form,

gc(v) = A1v1 + A2v2 = 0 (269)

and the multipliers update are given by

νk+1 = νk + µk (A1v1 + A2v2) (270)

Under such conditions, the Hamiltonian6 for the relaxed OCP is given by

H = L1 + L2 + λT
1 f1 + λT

2 f2 + νT
1 g1 + νT

2 g2 +
(
νk

c

)T
(A1v1 + A2v2) +

µk

2
‖A1v1 + A2v2‖

(271)

where the variables with the subscript 1 are associated with b = 1, and the ones with
the subscript 2 are associated with b = 2. Therefore, the conditions for PL,1 and PL,2
can be obtained by only taking the terms for b = 1 and b = 2, respectively.
6 presented in Section 2.1.2

Chapter 3. Distributed Optimal Control 111

The necessary condition for the OCP PL,2 obtained in (268b), under the per-
spective of v2, is 7

∂H
∂v2

k+1
=

∂L2
∂v2

k+1
+
(
λk+1

2

)T ∂f2
∂v2

k+1
+
(
νk+1

2

)T ∂g2
∂v2

k+1
+
(
νk

c

)T
A2

+ µkA2

(
A1vk+1

1 + A2vk+1
2

) (272a)

=

∂L2
∂v2

k+1
+
(
λk+1

2

)T ∂f2
∂v2

k+1
+
(
νk+1

2

)T ∂g2
∂v2

k+1

+ AT
2

[
νk

c + µk
(

A1vk+1
1 + A2vk+1

2

)] (272b)

=
∂L2
∂v2

k+1
+
(
λk+1

2

)T ∂f2
∂v2

k+1
+
(
νk+1

2

)T ∂g2
∂v2

k+1
+ AT

2

[
νk

c + µk rk+1
]

(272c)

=
∂L2
∂v2

k+1
+
(
λk+1

2

)T ∂f2
∂v2

k+1
+
(
νk+1

2

)T ∂g2
∂v2

k+1
+ AT

2 ν
k+1
c (272d)

which means that v2 always satisfy the necessary conditions.
Similarly, the necessary conditions for v1 in (268a) can be derived

∂H
∂v1

k+1
=
∂L1
∂v1

k+1
+
(
λk+1

1

)T ∂f1
∂v1

k+1
+
(
νk+1

1

)T ∂g1
∂v1

k+1
+
(
νk

c

)T
A1 + µkA1

(
A1vk+1

1 + A2vk
2

)
(273a)

=
∂L1
∂v1

k+1
+
(
λk+1

1

)T ∂f1
∂v1

k+1
+
(
νk+1

1

)T ∂g1
∂v1

k+1
+ AT

1

[
νk+1

c + µk
(

A1vk+1
1 + A2vk

2

)]
(273b)

=
∂L1
∂v1

k+1
+
(
λk+1

1

)T ∂f1
∂v1

k+1
+
(
νk+1

1

)T ∂g1
∂v1

k+1

+ AT
1

[
νk

c + µk rk+1 + µkA2

(
vk

2 – vk+1
2

)]
(273c)

=
∂L1
∂v1

k+1
+
(
λk+1

1

)T ∂f1
∂v1

k+1
+
(
νk+1

1

)T ∂g1
∂v1

k+1
+ AT

1 ν
k+1
c + µkAT

1 A2

(
vk

2 – vk+1
2

)
(273d)

Notice that ∂H
∂v1

satifies the necessary conditions only if

∂L1
∂v1

k+1
+
(
λk+1

1

)T ∂f1
∂v1

k+1
+
(
νk+1

1

)T ∂g1
∂v1

k+1
+ AT

1 ν
k+1
c = µkAT

1 A2

(
vk

2 – vk+1
2

)
= 0

(274)

therefore the vector-function s : [t0, tf]→ RNv2 , defined as

sk+1 = µkAT
1 A2

(
vk

2 – vk+1
2

)
(275)

7 Here the notation f k represent the function evaluated with its arguments at the iteration k , f k = f (xk).

Chapter 3. Distributed Optimal Control 112

can be viewed as the dual residual.
For a three-block ADMM, where the coupling constraints are given by Av1 +Bv2 +

Cv3 = 0, similar development can be made to obtain the equations,

∂H
∂v1

=
∂L1
∂v1

k+1
+
(
λk+1

1

)T ∂f1
∂v1

k+1
+
(
νk+1

1

)T ∂g1
∂v1

k+1
+ AT

1 ν
k+1
c

+ µkAT
1 A2

(
vk

1 – vk+1
2

)
+ µkAT

1 A3

(
vk

3 – vk+1
3

)
(276a)

∂H
∂v2

=
∂L2
∂v2

k+1
+
(
λk+1

2

)T ∂f2
∂v2

k+1
+
(
νk+1

2

)T ∂g2
∂v2

k+1
+ AT

2 ν
k+1
c + µkAT

2 A3

(
vk

3 – vk+1
3

)
(276b)

∂H
∂v3

=
∂L3
∂v3

k+1
+
(
λk+1

3

)T ∂f3
∂v3

k+1
+
(
νk+1

3

)T ∂g3
∂v3

k+1
+ AT

3 ν
k+1
c (276c)

The dual residual is then given by

sk+1
1 = µkAT

1 A2

(
vk

2 – vk+1
2

)
+ µkAT

1 A3

(
vk

3 – vk+1
3

)
(277a)

sk+1
2 = µkAT

2 A3

(
vk

3 – vk+1
3

)
(277b)

where sk+1
1 and sk+1

2 are the residuals for the first and second blocks, with the third
block having no residual.

This development can be generalized for a multi-block ADMM, for the n-th block
the dual residual is given by

sk+1
n = µk

(
∂gc
∂vn

k+1
)T Nb∑

m=n+1

∂gc
∂vm

(
vk+1

m – vk
m

)
(278)

The dual variable can be written in terms of the subsystems by applying (278) to
each node n in the block b,

sk
b,n =

∑
(n,n̂)∈Cout

b̂>b
(n)

–
(

Mout
(n,n̂)

)T
M in

(n,n̂)

(
uk+1

n̂ – uk
n̂

)

+
∑

(n̂,n)∈C in
b̂>b

(n)

–
(

M in
(n,n̂)

)T
Mout

(n,n̂)

(
yk+1

n̂ – yk
n̂

)
(279)

where

C in
b̂>b

(n) =
{

(n1, n) ∈ C
∣∣∣n1 ∈ b̂ ∧ b̂ > b

}
(280a)

Cout
b̂>b

(n) =
{

(n, n2) ∈ C
∣∣∣n2 ∈ b̂ ∧ b̂ > b

}
(280b)

for a given node n in the block b. The notation b̂ > b, means a block b̂ computed after
block b.

Chapter 3. Distributed Optimal Control 113

We can interpret the subsystem’s dual residual equation as the sum of mismatch
of all variables that the subsystem depends on and appear in a later iteration block.

Once the equations for the residuals have been determined, we can derive the
penalty parameter update strategies based on the rules presented in Section 3.2.3. The
update rule based solely on the primal residual is given by

µk+1 =

µ
k if

∥∥∥rk+1
∥∥∥∞ ≤ γ∥∥∥rk

∥∥∥∞
βµk , otherwise

(281)

The update rule based on the primal and dual residuals is given by

µk+1 =


βµk if

∥∥∥rk+1
∥∥∥∞ > γ

∥∥∥sk+1
∥∥∥∞

β–1µk if
∥∥∥sk+1

∥∥∥∞ > γ
∥∥∥rk+1

∥∥∥∞
µk , otherwise

(282)

where β > 1 and γ > 1. Here the norms are in the functional sense since rk and sk are
functions.

3.4.3 Fully Decoupling the Subsystems

The ADMM and the coordinate descent with augmented Lagrangian cannot
iterate over all subsystems simultaneously; this becomes an issue as the network
becomes more complex and denser, increasing the number of iteration blocks. The
subsystems spend more time waiting for the computation of other subsystems than
performing their computations. In the extreme, with a fully connected graph, each
subsystem computes at a time, making the algorithm completely sequential. On the
other hand, with a favorable network structure, there are only two computational steps.

For this reason, a modification to the structure of the dynamic network is pro-
posed. This modification allows the parallelization of the solution of the subsystem
OCPs, even for dense graphs.

The optimal control problems cannot be solved in parallel because two neigh-
boring subsystems can not simultaneously solve their OCP. This issue can be avoided
by including a new node between these two subsystems, such that they become non-
neighbors, as shown in Figure 28.

For every connection (n1, n2) ∈ C, a new subsystem nn1,n2 with the following
OCP is included in the network

min Jn1,2 = 0 (283a)

s.t.: yn1,2 = un1,2 (283b)

whose solution is trivial.

Chapter 3. Distributed Optimal Control 114

The connection (n1, n2) is then replaced by two new connections

un1,2 = Mout
n1,n2

yn1 (284)

M in
n1,n2

un2 = yn1,2 (285)

where un1,2 : [t0, tf] → RNC
n1,2 and yn1,2 : [t0, tf] → RNC

n1,2 are the inputs and outputs of
the new subsystem, with NC

n1,2
being the number of variables shared in the connection

between the subsystems n1 and n2.

n1 n2

n1 n1,2 n2

Figure 28 – Illustration of the new subsystem

When we apply the augmented Lagrangian to relax the connections of the net-
work, the relaxed problem of the OCP (283) is given by

min Jµ(νn1,n1,2,νn1,2,n2, yn1, un2) =
∫ tf

t0
νT

n1,2,n2

[
M in

n1,n2
un2 – yn1,2

]
+ νT

n1,n1,2

[
un1,2 – Mout

n1,n2
yn1

]
+
µ

2

∥∥∥M in
n1,n2

un2 – yn1,2

∥∥∥2

+
µ

2

∥∥∥un1,2 – Mout
n1,n2

yn1

∥∥∥2
dt

(286a)

s.t.: yn1,2 = un1,2 (286b)

which can be easily solved as well.
If we apply these modifications for the network shown in Figure 26, the result

is portrayed in Figure 29, with the graph already colored. With this modification, every
original subsystem is a non-neighbor of any other original subsystem, allowing all the
original subsystems to make their computations simultaneously. The second step is of
easy solution, negligible compared to the OCP of each subsystem, and can similarly
be performed in parallel.

This gain in parallelization probably does not come without cost. The introduction
of intermediate nodes may act as a filter that slows down the communication between
two neighbors, hence reducing the convergence speed. So there is a trade-off between
the number of iterations versus the number of nodes computing simultaneously.

Chapter 3. Distributed Optimal Control 115

Figure 29 – Illustration of the network for the four tank problem with the introduction of
the intermediate nodes

Alternatively, it is possible to strategically put these intermediate nodes to reduce
the number of blocks in the graph. For instance, consider a five node cycle network
(Figure 30a), the minimum number of colors is three. By strategically including one in-
termediate node between any of the nodes, in this case, the network becomes bipartite,
as shown in Figure 30b. Because the application of this approach is highly situational
dependent, this work does not explore this possibility further.

3.4.4 Jacobi ADMM

The relaxed subproblem (286) obtained for the introduced intermediate nodes
are trivially solvable. As a matter of fact, it has an analytical solution.

Consider a system with two subsystems fully connected: all algebraic variables
of the first subsystem are inputs of the second. These subsystems can be isolated by
including an intermediate node between, as Figure 28 represents. For the intermediate
node n1,2, the Hamiltonian of subproblem (286) is given by

H = νT
n1,2

(
un1,2 – yn1,2

)
+ νT

n1,n1,2

[
un1,2 – yn1

]
+ νT

n1,2,n2

[
un2 – yn1,2

]
+
µ

2
∥∥un1,2 – yn1

∥∥2 +
µ

2
∥∥un2 – yn1,2

∥∥2 (287)

With the Hamiltonian, the necessary conditions for the subproblem can be devel-

Chapter 3. Distributed Optimal Control 116

n1

n2

n3n4

n5

(a) Network with 5 nodes require a
minimum of 3 colors

n1

n2

n3

n4

n5

n5,1

(b) Network with 6 nodes can be col-
ored with only 2 colors

Figure 30 – When a intermediate node is included in the cyclic network with 5 nodes
(left), the minimum number of colors reduce from 3 to 2 (right)

oped for the variables of the subproblem

∂H
∂un1,2

= νT
n1,2

+ νT
n1,n1,2

+ µ
(
un1,2 – yn1

)T = 0 (288a)

∂H
∂yn1,2

= –νT
n1,2

– νT
n1,2,n2

– µ
(
un2 – yn1,2

)T = 0 (288b)

which implies

un1,2 =
–ν – νn1,n1,2 + µyn1

µ
(289a)

ν = –νn1,2,n2 – µ
(
un2 – yn1,2

)
(289b)

By substituting ν in the equation above, we get

un1,2 =
νn1,2,n2 + µ

(
un2 – yn1,2

)
– νn1,n1,2 + µyn1

µ
(290a)

=
νn1,2,n2 – νn1,n1,2

µ
+
(
un2 + yn1

)
– yn1,2 (290b)

=
νn1,2,n2 – νn1,n1,2

µ
+
(
un2 + yn1

)
– un1,2 (290c)

where the last equation is obtained by using the subsystem equations yn1,2 = un1,2 . This
allows us to find an optimal equation for the subsystem’s control variable

un1,2 =
νn1,2,n2 – νn1,n1,2

2µ
+

(
un2 + yn1

)
2

(291)

which implies that the solution for subsystem OCP is the average of the two connected
variables, but with the influence of the connections multipliers. The same analysis is
valid for the algebraic variable.

Chapter 3. Distributed Optimal Control 117

The equations for the optimal control and algebraic variables given by (291)
replace the need to solve the OCP for the intermediate nodes, making the network
modification proposed in the previous section easier to be implemented. As the solution
only requires the variables of the nodes involved in the connection, this implementation
can be done in both n1 and n2, each one obtaining its identical local copy of un1,2 and
yn1,2 . After the computation of the intermediate node is done, the multipliers are updated.
For the connections between the nodes n1 and n2 with the intermediate node nn1,n2,
the multiplier updates are

νk+1
n1,n1,2

= νk
n1,n1,2

+ µk (uk
n1,2

– yk
n1

) (292a)

νk+1
n1,2,n2

= νk
n1,2,n2

+ µk (uk
n2

– yk
n1,2

) (292b)

By replacing the optimal solution (291) into the multipliers update, we get

νk+1
n1,n1,2

= νk
n1,n1,2

+ µk

νk
n1,2,n2

– νk
n1,n1,2

2µk +

(
uk

n2
+ yk

n1

)
2

– yk
n1

 (293a)

=
νk

n1,n1,2
+ νk

n1,2,n2

2
+ µk uk

n2
– yk

n1

2
(293b)

likewise, for the other multiplier

νk+1
n1,2,n2

= νk
n1,2,n2

+ µk

uk
n2

–
νk

n1,2,n2
– νk

n1,n1,2

2µk –

(
uk

n2
+ yk

n1

)
2

 (294a)

=
νk

n1,n1,2
+ νk

n1,2,n2

2
+ µk uk

n2
– yk

n1

2
(294b)

By guaranteeing that ν0
n1,n1,2

= ν0
n1,2,n2

, we have that νk
n1,n1,2

= νk
n1,2,n2

for all k .
Let us call νn1,n1,2 and νn1,2,n2 as νn1,n2. Therefore,

νk+1
n1,n1,2

= νk+1
n1,2,n2

=
νk

n1,n1,2
+ νk

n1,2,n2

2
+ µk uk

n2
– yk

n1

2
(295a)

νk+1
n1,n2

= νk
n1,n2

+ µk uk
n2

– yk
n1

2
(295b)

Notice that by stating that νk
n1,n1,2

= νk
n1,2,n2

, the equation for the optimal control
of the intermediate node (291) can be simplified

un1,2 =

(
un2 + yn1

)
2

(296)

For the subsystem that comes before the intermediate node, in the case of Figure
29, the OCP objective is given

Jn1 =
∫ tf

t0
Ln +

(
νk

n1,n2

)T [
uk

n1,2
– yn1

]
+
µk

2

∥∥∥uk
n1,2

– yn1

∥∥∥2
dt (297)

Chapter 3. Distributed Optimal Control 118

For a given k , the intermediate node optimal control is given by

uk
n1,2

=

(
uk

n2
+ yk

n1

)
2

(298)

By replacing (298), into (297) we get

Jn1 =
∫ tf

t0
Ln +

(
νk

n1,n2

)T

(

uk
n2

+ yk
n1

)
2

– yn1

 +
µk

2

∥∥∥∥∥∥
(

uk
n2

+ yk
n1

)
2

– yn1

∥∥∥∥∥∥
2

dt (299)

which depends solely on the values of the subsystems in the previous iterations. The
same can be achieved with the node after the intermediate node,

Jn2 =
∫ tf

t0
Ln +

(
νk

n1,n2

)T
un2 –

(
uk

n2
+ yk

n1

)
2

 +
µk

2

∥∥∥∥∥∥un2 –

(
uk

n2
+ yk

n1

)
2

∥∥∥∥∥∥
2

dt (300)

which also does not depend on the intermediate node.
By doing these substitutions, we are effectively removing the dependence of the

subsystems in the intermediate nodes. Thus, the intermediate nodes are disregarded
and the system is back into its original configuration.

These developments can be generalized for any node in a network. Let us define
the subproblem PBJ,n, which have the following form

PBJ,n min Jn =
∫ tf

t0
Ln(xn, yn, un, t)

+
∑

(n,n2)∈Cout (n)

{(
νk

n,n2

)T
[

M in
n,n2

uk
n2

+ Mout
n,n2

yk
n

2
– Mout

n,n2
yn

]

+
µ

2

∥∥∥∥∥M in
n,n2

uk
n2

+ Mout
n,n2

yk
n

2
– Mout

n,n2
yn

∥∥∥∥∥
2 }

+
∑

(n1,n)∈C in(n)

{(
νk

n1,n

)T
[

M in
n1,nun –

M in
n1,nun + Mout

n1,nyk
n1

2

]

+
µ

2

∥∥∥∥∥M in
n1,nun –

M in
n1,nun + Mout

n1,nyk
n1

2

∥∥∥∥∥
2 }

dt (301)

and the dynaminc equations of the subsystem n.
This OCP formulation allows for the development of a two-step algorithm that

has all the subsystems iterating simultaneously. As depicted in Algorithm 10, in the
first step, all the subsystems solve their OCPs, and the following step updates the
multipliers. Here the algorithm is named Bipartite-Jacobi ADMM, as a reference to the
Jacobi method for solving linear systems that iterate over all coordinates iterating in
parallel, in opposition to the Gauss-Seidel method, which computes the coordinates

Chapter 3. Distributed Optimal Control 119

serially. The proposed algorithm is obtained by transforming the bipartite network in the
ADMM framework. This strategy only requires modifying the objective function and the
multiplier update, having no additional variable or constraint.

The algorithm requires an initial value for the multipliers estimates ν0
n, for the

penalty parameter µ0, and initial guesses for u0
n and y0

n . For this algorithm, the variables
uext,k

n and yext,k
n are defned by

uext,k
n =

{
uk

n2
: (n, n2) ∈ Cout (n)

}
(302a)

yext,k
n =

{
yk

n1
: (n1, n) ∈ C in(n)

}
(302b)

Algorithm 10 Bipartite-Jacobi ADMM
repeat

for n ∈ N do in parallel:(
yk+1

n , uk+1
n

)
← solve

{
PBJ,n

(
µk ,νk

n, yext,k
n , uext,k

n , uk
n , yk

n

)}
end for
Update multipliers νk

Update penalty factor µk

k ← k + 1
until convergence

It is important to mention that Algorithm 10 is not equivalent to pure Jacobi
ADMM for constrained optimization (HE, B., 2009; HE, B. et al., 2015). The Jacobi
ADMM iterates over all variables in parallel, and at the computation of each coordinate,
the other variables are kept at their last computed value. The Jacobi ADMM can be
easily adapted for the solution of OCPs. An equivalent algorithm can be obtained by
solving all the subsystems simultaneously, keeping the external values at their previ-
ously computed values. That is, if n1 and n2 have a connection (n1, n2), we substitute
un2 with uk

n2
, in the objective of the subsystem n1. The objective of n1 then becomes

Jn1 =
∫ tf

t0
Ln +

(
νk

n1,n2

)T [
uk

n2
– yn1

]
+
µk

2

∥∥∥uk
n2

– yn1

∥∥∥2
dt (303)

While this is a much simpler strategy, it does not have good convergence proper-
ties, even for the two-block case (HE, B. et al., 2015). A few adjustments can be made
to the algorithm to give it better convergence properties, as under relaxation steps. The
reader can find more information about this strategy in (HE, B. et al., 2015; HE, B.,
2009; HAN et al., 2014; JIANG; YUAN, X. M., 2010).

Deng et al. (2017) propose a modified version of the Jacobi ADMM with the
inclusion of a proximal term along with the augmented Lagrangian term. The proximal
term puts a penalization term between the computed value and the one obtained in
the previous iteration. The algorithm can also be adapted to the OCP context by using

Chapter 3. Distributed Optimal Control 120

the augmented Lagrangian for OCP as a base and use equivalent algorithm steps. For
instance, for a subsystem that has a relaxed connections un2 = yn1, and its variable

is yn1, the proximal term is
∥∥∥yk

n1
– yn1

∥∥∥2
. Therefore, the objective of the subsystem is

given by

Jn1 =
∫ tf

t0
Ln +

(
νk

n1,n2

)T [
uk

n2
– yn1

]
+
µk

2

∥∥∥uk
n2

– yn1

∥∥∥2
+

1
2

∥∥∥yk
n1

– yn1

∥∥∥2

P
dt (304)

where P is a scalling matrix. The same objective can also be expressed in the scaled
form

Jn1 =
∫ tf

t0
Ln +

µk

2

∥∥∥∥∥uk
n2

– yn1 +
νk

n1,n2

µk

∥∥∥∥∥
2

+
1
2

∥∥∥yk
n1

– yn1

∥∥∥2

P
+

1
µk

∥∥∥νk
n1,n2

∥∥∥2
dt (305)

as it is presented in the orignal paper. Notice that the last term is constant and can be
disregarded.

The multiplier update is also adjusted,

νk+1
n1,n2

= νk
n1,n2

+ γµ(uk+1
n2

– yn1) (306)

where γ > 0 is a dampig parameter.
The original Proximal-Jacobi ADMM makes no additional assumption on the

problem, only on the additional parameters P and γ. By doing so, it can guarantee
convergence of the algorithm.

In the generic form, the adatpted algorithm can solve a problem with the form

PPJ,n min Jn =
∫ tf

t0
Ln(xn, yn, un, t)

+
∑

(n,n2)∈Cout (n)

{(
νk

n,n2

)T [
M in

n,n2
uk

n2
– Mout

n,n2
yn
]

+
µ

2

∥∥∥M in
n,n2

uk
n2

– Mout
n,n2

yn

∥∥∥2
+

1
2

∥∥∥Mout
n,n2

yn – Mout
n,n2

yk
n

∥∥∥2

Pout
n,n2

}
+

∑
(n1,n)∈C in(n)

{
ν(n1,n)

[
M in

n1,nuk
n – Mout

n1,nyk
n1

]
+
µ

2

∥∥∥M in
n1,nun – Mout

n1,nyk
n1

∥∥∥2
+

1
2

∥∥∥M in
n1,nun – M in

n1,nuk
n

∥∥∥2

P in
n1,n

}
dt (307)

and the same constraints (261b-261d). Algorithm 11 shows the steps of the algorithm.

Chapter 3. Distributed Optimal Control 121

Algorithm 11 Proximal-Jacobi ADMM
repeat

for n ∈ N do in parallel:(
yk

n , uk
n

)
← solve

{
PPJ,n

(
µk ,νk

n, yext,k
n , uext,k

n , uk
n , yk

n

)}
end for
Update multipliers νk

Update penalty factor µk

k ← k + 1
until convergence

Deng’s Jacobi-Proximal ADMM and the proposed Bipartite-Jacobi ADMM share
some similarities. We can show that (299) and (304) have a similar objective. For brevity,
the example of the connection between n1 and n2 is used.

Let us put (299) in the scaled form

Jn1 =
∫ tf

t0
Ln +

µk

2

∥∥∥∥∥∥
(

uk
n2

+ yk
n1

)
2

– yn1 +
νk

n1,n2

µk

∥∥∥∥∥∥
2

+
1
µk

∥∥∥νk
n1,n2

∥∥∥2
dt (308)

which can be rewritten as

Jn1 =
∫ tf

t0
Ln +

µk

2

∥∥∥∥∥∥
(

uk
n2

– yn1

)
2

+
yk

n1
– yn1

2
+
νk

n1,n2

µk

∥∥∥∥∥∥
2

+
1
µk

∥∥∥νk
n1,n2

∥∥∥2
dt (309)

By applying the identity

‖a + b‖2 = ‖a‖2 + 2aT b + ‖b‖2 (310)

into (309), the following is obtained

Jn1 =
∫ tf

t0
Ln +

µk

2

∥∥∥∥∥∥
(

uk
n2

– yn1

)
2

+
νk

n1,n2

µk

∥∥∥∥∥∥
2

+ µk


(

uk
n2

– yn1

)
2

+
νk

n1,n2

µk

T (
yk

n1
– yn1

2

)

+
µk

2

∥∥∥∥∥yk
n1

– yn1

2

∥∥∥∥∥
2

+
1
µk

∥∥∥νk
n1,n2

∥∥∥2
dt (311)

Chapter 3. Distributed Optimal Control 122

If we define P = µk I, we get

Jn1 =
∫ tf

t0
Ln +

µk

2

∥∥∥∥∥∥
(

uk
n2

– yn1

)
2

+
νk

n1,n2

µk

∥∥∥∥∥∥
2

+ µk


(

uk
n2

– yn1

)
2

+
νk

n1,n2

µk

T (
yk

n1
– yn1

2

)

+
1
2

∥∥∥∥∥yk
n1

– yn1

2

∥∥∥∥∥
2

P

+
1
µk

∥∥∥νk
n1,n2

∥∥∥2
dt (312)

Notice that (312) is equivalent to (305) for the relaxed constraint
yn1–un2

2 = 0
and the additional cross term. While it is not a clear indication that the Bipartite-Jacobi
ADMM has the same properties as the Jacobi-Proximal ADMM, it instigates future
developments.

3.5 NUMERICAL ANALYSIS

A few numerical experiments were conducted to compare the multiple methods
presented in the previous section. The model used to perform the experiments is the
four-tank system. The experiments use the modeling framework (10), which models
each component as a subsystem.

The experiments are divided into two levels. The different variations for each
algorithm are studied at the first level, e.g., multiplier update rule and iteration block
rule. The different algorithms are compared at the second level while using the best-
performing combination of variants for each algorithm.

The experiments evaluate the algorithms and their variants for robustness, qual-
ity, and performance. The reference for these experiments is the solution of the same
OCP using a centralized approach. The experiments use 50 scenarios with sampled
initial conditions in a predefined region to avoid cherrypicking and biased results. For
fairness, the random number generator uses the same seed in all experiments.

For robustness, in each scenario, the algorithms are evaluated as having suc-
ceeded or failed. The solution method fails to converge if it takes more than 180 seconds
or if the final objective function differs by more than 10 % of the baseline (centralized
solution).

The quality comparisons evaluate the violation of the relaxed equation, and the
difference between the algorithms results and the baseline, for the objective function
and control profiles. The control difference is used as a measure because obtaining
the controls is the ultimate goal of solving an OCP; therefore, if two methods obtain the
same controls, they can be used interchangeably.

Chapter 3. Distributed Optimal Control 123

The performance comparison considers the time to converge from an initial
guess far from an optimal solution. When relevant, the performance comparison will
also include the number of iterations. In a receding horizon implementation, a good
initial point is typically available. However, during the algorithm’s initialization, one often
cannot expect to have a nearly-optimal initial point. Note that in these experiments, we
are dealing with the algorithm’s initialization.

Summarizing, the algorithms and variations will be analyzed with respect to the
following criteria:

• Convergence (converged scenarios / total scenarios);

• Quality:

– Relaxed equation violation,

– Objective function (algorithms vs centralized approach),

– Maximum difference between control variables (algorithms vs centralized
approach);

• Performance:

– Convergence time,

– Number of iterations.

The OCP’s objective is to take Tank 1 and Tank 2 to the reference at 16 cm and
14 cm, respectively, while minimizing the variation of the control variables. The initial
conditions of the system are centered at xT

0 = [12.4, 12.7, 1.8, 1.4] for the tanks and
[3.0, 3.0] for the pumps. The sampled initial conditions are in the range (0%, 200%] of
these values. In these experiments, no constraints were applied, except for the physical
constraint that the level of each tank cannot go to zero 8.

The algorithms, OCPs, and subsystems were implemented in Python using
YAOCPTool, and CasADi (ANDERSSON et al., 2019). The resulting optimization prob-
lems were solved using IPOPT (WÄCHTER; BIEGLER, L. T., 2006). Since this work is
academic and performance is not the primary goal, a couple of design choices were
made focusing on the ease of implementation. The main process manager performs the
synchronization and data preparation for each optimization. The optimization problems
are solved in different processes9. The experiments were performed in a computer
equipped with an Intel 7700k (4 cores/8 threads) processing unit and 16 GB DDR4 of
RAM, running Ubuntu 20.04 in WSL.
8 The tank level cannot go to numbers lower than zero; otherwise, the flow is undefined due to the

square root in the formula. The same square root causes the Jacobian to be undefined when the flow
is zero since its derivative is 1

h .
9 The term process implies independent computer processes, which do not share memory addresses,

and which need to communicate through a socket.

Chapter 3. Distributed Optimal Control 124

The following techniques are evaluated:

• Augmented Lagrangian method with coordinate descent (AL-CD),

• Alternating direction multiplier method (ADMM),

• Fully decoupling the subsystems,

• Bipartite-Jacobi ADMM.

Unless stated otherwise, the following configurations were used in the experi-
ments. The OCP was discretized using the collocation method with 60 finite elements.
The collocation method uses degree three polynomials, where Radau’s tableau defines
the collocation points. The initial value for the parameters are µ = 1 and, for the mul-
tiplier estimate, ν(t) = 0. We use a null multiplier estimate given the lack of previous
information. A better initial estimate would undoubtedly accelerate the convergence.
The bounded increase rule was used to update the penalty parameter (128), with β = 2
and µmax = 104. The exit condition for the algorithms is an absolute violation of the
relaxed constraints smaller than 10–3, which has to be reached within 1000 iterations.

3.5.1 Coordinate Descent with Augmented Lagrangian

The coordinate descent have many variations, as discussed in Section 3.2.1. In
the experiments developed for the coordinate descent with the augmented Lagrangian
method, we will investigate how the block choice rule affects the algorithm efficiency.

The rules are:

• Cyclic - the blocks are always chosen in the same order,

• Sample - choose a block without repeating until all blocks have been iterated over.

• Choices - choose a block of the ones available, regardless of the previous iterated
blocks.

The CD loop continues until it reaches a relative objective decrease smaller than
10–4 or 30 iterations. At the first augmented Lagrangian iteration, a more significant
number of CD iterations is allowed, up to 100 iterations.

The first experiment was using the network split into two blocks:

1. Pump 1, Tank 2, and Tank 3;

2. Pump 2, Tank 1, and Tank 4.

Chapter 3. Distributed Optimal Control 125

Two Blocks

The results for the first experiment is shown in Table 3. Except for the number of
convergent scenarios, all numbers are the average value of all scenarios.

Regarding the number of converged scenarios, the choices method falls far be-
hind, only solving 13 scenarios. Despite it being faster than other methods, it converges
to solutions far from the baseline objective. This issue may be caused by it eventually
solving two times the same block, which hinders dual convergence. Comparing cyclic
and sample approaches, we can see an apparent compromise between the time and so-
lution quality. While the latter converges about 25 % faster (on average), its controls are
further away from the baseline. The same observation can be made for the objectives,
with the cyclic method achieving virtually the same objective as the baseline.

Table 3 – Coord. Descent with Aug. Lagrangian for the network split into 2 blocks

Cyclic Sample Choices
Convergence (total 50) 49 49 13
Objective 0.09% 1.19% 6.80%
Relaxed eq. violation 4.3× 10–4 3.7× 10–4 5.5× 10–4

Control difference 0.13 0.40 1.41
Convergence Time (s) 29.05 22.47 15.15
Iterations 305.05 151.10 88.46

Three Blocks

In the experiment with the three blocks, the blocks were grouped as follows

1. Pump 1 and 2,

2. Tank 1 and 2,

3. Tank 3 and 4.

In this experiment, we can discern a pattern for the three methods. As the results
of Table 3 show, the choices method fails both in consistency and quality. The compari-
son of the cyclic and sample methods favors towards the cyclic, given that the sample
method delivers an acceptable result in 43 of the 50 scenarios. In contrast, the cyclic
approach converges in all scenarios. Although the sample is still a valid alternative.

Based on these results, we observe that the cyclic approach is more robust to
variations in the quality of the initial condition and results in a better quality solution. It
all comes with a cost; it is slower than the other compared methods.

Chapter 3. Distributed Optimal Control 126

Table 4 – Coord. Descent with Aug. Lagrangian for the network split into 3 blocks

Cyclic Sample Choices
Convergence (total 50) 50 43 13
Objective 0.16% 2.62% 3.76%
Relaxed eq. violation 4.0× 10–4 5.3× 10–4 4.8× 10–4

Control difference 0.15 0.62 1.01
Convergence Time (s) 32.63 21.85 20.35
Iterations 308.34 187.18 159.23

3.5.2 ADMM

The ADMM experiments explore how different update rules affect the perfor-
mance indicators. The three compared techniques are:

• Constant µ (constant),

• updates based on the primal violation (primal),

• updates based on the primal and dual violations (primal-dual).

The method’s implementation uses an initialization phase to avoid the algorithm
diverging due to a poor initial condition. The blocks are iterated until a satisfactory de-
crease in the objective, indicating a slight divergence between the subsystems. During
this initialization phase, the update of the multiplier estimates and the penalty parameter
is skipped.

The algorithms were parametrized with an initial penalty parameter µ0 = 1, a
multiplier increase parameter β = 3, and a multiplier decrease parameter βdecrease =
1.2 (used in the primal-dual method).

Two Blocks

The first set of experiments compare the methods when the network is split into
two blocks:

1. Pump 1, Tank 2, and Tank 3;

2. Pump 2, Tank 1, and Tank 4.

The experiments are presented in Table 5. The results show that the primal
method is more reliable, solving all but one of the scenarios within the convergence
constraints. The primal-dual follows behind, only missing three of the 50 scenarios. At
last, the constant method was not able to solve eight cases. Concerning the quality
of solutions, both constant and primal-dual approaches produced solutions virtually
equal to the baseline. The primal method produces solutions close to the baseline;

Chapter 3. Distributed Optimal Control 127

however, not as good as the other two methods. Regarding convergence speed, the
primal method is faster by a good margin but with the trade-off of the solution quality.

Table 5 – ADMM for the network split into 2 blocks

Constant Primal Primal-Dual
Convergence (total 50) 42 49 47
Objective 0.01% 1.52% 0.01%
Relaxed eq. violation 9.1× 10–4 5.7× 10–4 9.2× 10–4

Control difference 0.03 0.35 0.02
Convergence Time (s) 29.25 19.95 32.09
Iterations 167.19 113.67 198.93

Three Blocks

A second experiment was performed with the ADMM, this time splitting the
system into three blocks:

1. Pump 1 and 2,

2. Tank 1 and 2,

3. Tank 3 and 4.

The results for this experiments are displayed in Table 6. The conclusions for the
three blocks case are very similar to the two blocks case. The primal method has a faster
convergence at the cost of providing the worst quality solutions. As the constant and
primal-dual methods are slower to converge, they end up hitting the time constraint and
are considered to have failed. This issue is reflected in them having a worse perceived
convergence rate.

One exciting factor when comparing the 2 and 3 blocks cases is that they both
take about the same average time to solve, regardless of the number of blocks. In
particular, the constant method takes 29 seconds on average to obtain a solution for
both cases, even though the three blocks case has almost 50 % more iterations. This
outcome might result from the increase in the subproblems’ difficulty when there are
fewer blocks.

In the ADMM method, the penalty parameter has a vital role in balancing primal
and dual violations. Increasing the penalty makes the primal convergence reduce, at the
cost of increasing the dual violation. The contrary is also valid; decreasing the penalty
induces a lower dual violation and increases the primal violation.

Since the primal method can only increase the penalty parameter, the algorithm
reaches faster the termination condition (primal violation ≤ 10–3), given that it will
favor a reduction in the primal violation over the dual violation. Likewise, if we were to

Chapter 3. Distributed Optimal Control 128

Table 6 – ADMM for the network split into 3 blocks

Constant Primal Primal-Dual
Convergence (total 50) 43 49 46
Objective 0.01% 1.44% 0.04%
Relaxed eq. violation 9.0× 10–4 6.3× 10–4 9.3× 10–4

Control difference 0.03 0.57 0.09
Convergence Time (s) 29.39 20.53 28.65
Iterations 249.14 169.95 164.44

increase the initial penalty in the constant method (µ0 = 1) to a higher value, it would
make it converge faster, at the cost of the solution quality. On the other hand, the primal-
dual method can adjust the penalty to keep a proportional decrease in primal and dual
violations. This adjustment may increase the solution, which the constant method does
not suffer. A more robust convergence is expected from the primal-dual, regardless of
the initial penalty parameter, due to the adaptability.

This effect is further exacerbated by the fact that the ADMM has good general
convergence. However, the ADMM does no accelerate as the optimality gap closes, as
do other methods like Newton’s step.

3.5.3 Fully Decoupling the System

The experiments on fully decoupling the system investigate how the strategy
proposed in Section 3.4.3 changes the results of the previous investigated methods.
The following combination of methods and variants are chosen for this experiment:

• Coordinate descent with augmented Lagrangian using cyclic block selection,

• ADMM with constant penalty parameter,

• ADMM with primal-dual penalty parameter adjustment rule.

These methods are chosen because they render a solution virtually equal to the base-
line.

The results are in Table 7. With the decoupling of the systems, we can see
that all the methods still produce solutions with less than a 1 % objective difference to
the baseline. The same is valid for the difference in the control variables, although the
coordinate descent method shows a more prominent difference. The coordinate descent
was able to solve all the scenarios, proving to be quite reliable. On the other hand,
both ADMM variants solved fewer scenarios than in the previous experiments. Finally,
regarding performance, they are all slower than without the network modifications; this
is likely a consequence of the increased number of iterations used in all methods. The
increase in iterations is directly connected to an increase in the system sparsity, making

Chapter 3. Distributed Optimal Control 129

the interactions between subsystems take more iterations to propagate. Notice that the
number of iterations presented in the table accounts for iterations on all nodes, original
and intermediate nodes.

Table 7 – Fully decoupling the System

CD-AL Cyclic ADMM (Constant) ADMM (Primal-Dual)
Convergence (total 50) 50 38 43
Objective 0.72% 0.15% < 0.01%
Relaxed eq. violation 6.0× 10–4 9.2× 10–4 8.9× 10–4

Control difference 0.28 0.10 < 0.01
Convergence Time (s) 62.34 62.65 70.97
Iterations 392.88 298.18 370.36

3.5.4 Bipartite-Jacobi ADMM

The final set of experiments were performed using the Bipartite-Jacobi ADMM
method. This experiment hopes to elucidate any possible benefits over the fully decou-
pled network strategy using the ADMM method, which is very similar in structure. For
this matter, both variants for the ADMM were used

• ADMM with constant penalty parameter,

• ADMM with primal-dual penalty parameter adjustment rule.

The only difference is that the objective function and the update rule were ad-
justed accordingly.

From the results shown in Table 8, both methods achieve a meager difference
in the objective value to the baseline. In the same manner, the control difference is
negligible. The number of converged scenarios registers a good increase compared to
the fully decoupled strategy; this increase is likely related to the reduction in the conver-
gence time. One thing to notice is that the method uses a reduced number of iterations,
fewer iterations than any of the other methods tested. A smaller number of iterations
imply less communication time, which is particularly advantageous to geographically
distributed systems.

3.5.5 Overall Comparison

To wrap up the analysis of the experiments, let us compare the outstanding
performances of the experiments. The criteria for choosing the methods for this final
analysis are algorithms that yielded results that are close to the baseline, had a good
convergence in the test scenarios, and have a good performance. Under these criteria,
the following methods and results are chosen:

Chapter 3. Distributed Optimal Control 130

Table 8 – Bipartite-Jacobi ADMM

BJ-ADMM (Constant) BJ-ADMM (Primal-Dual)
Convergence (total 50) 43 45
Objective 0.05% < 0.01%
Relaxed eq. violation 9.5× 10–4 8.9× 10–4

Control difference 0.07 0.01
Convergence Time (s) 36.95 43.04
Iterations 97.60 128.44

• Augmented Lagrangian with coordinate descent (2 blocks) - denoted as a AL-CD
(Cyclic),

• ADMM with constant penalty parameter (3 blocks) - aliased as a ADMM (Const),

• ADMM with primal-dual update rule (3 blocks) - aliased as a ADMM (PD),

• Bipartite-Jacobi ADMM with primal-dual update rule (3 blocks) - aliased as a
BJ-ADMM (PD),

The results of each of these methods are synthesized in Table 9. In all of these
results, the objective and control are very close to the baseline, which shows that
all presented methods can achieve the same results as the centralized approach, at
least for the problem presented in these experiments. Regarding the converge of these
algorithms, they all solved 85+ % of the scenarios. Even greater converge rates could be
achieved by tuning the parameters to make the algorithms more robust. The algorithms
have very similar performance except for the BJ-ADMM, which was about 50 % slower
than the others. On the other hand, the BJ-ADMM is the method with the least number
of algorithm iterations, which means that an increase in the communication cost would
worsen it the least. Also, the BJ-ADMM does not depend on finding the optimal block
coloring strategy. The ADMM with a primal-dual rule is particularly interesting because
its performance does not depend on the initial penalty, making it closer to a “plug-
and-play” experience. The Augmented Lagrangian with coordinate descent performed
surprisingly well. Other works have reported that this method was less reliable than
ADMM, at least for optimization variants. However, from the results found in this work,
the Augmented Lagrangian with coordinate descent was the method that solved almost
all of the proposed scenarios while keeping comparable performance.

3.5.6 Discussion

The experiments presented in this section portray how the many techniques
available for the traditional augmented Lagrangian method and ADMM can be reinter-
preted in the optimal control context. The particular advantage of strategies like these

Chapter 3. Distributed Optimal Control 131

Table 9 – Overall comparison over the best results

AL-CD (Cyclic) ADMM (Const) ADMM (PD) BJ-ADMM (PD)
Convergence 49 43 46 45
Objective 0.09% 0.01% 0.04% < 0.01%
Rel. eq. violation 4.3× 10–4 9.0× 10–4 9.3× 10–4 8.9× 10–4

Control difference 0.13 0.03 0.09 0.01
Conv. Time (s) 29.05 29.39 28.65 43.04
Iterations 305.05 249.14 164.44 128.44

is that by decoupling the subsystem before the discretization step, we are free from
the details of how each subsystem will solve its subproblems. Therefore, we can have
subsystems using different methods and discretization strategies, and they still can
“talk” with each other as long as they use this higher-level interface.

The matter of which and how these standard optimization strategies can be
adapted to the optimal control context is a whole new area for investigation. Further,
defining which combinations of methods perform better and what their trade-offs are
is an ongoing process. Hence, these explorations are too broad to be covered in one
thesis and can undoubtedly be in the scope of future publications.

An important note concerning the values presented in the experiments is that the
methods were implemented with the practicality of implementation in mind. By doing
so, the performance is most likely hindered in the process. There are indeed many
points for improvement, given the vastity of implementation details, such as optimization
solver, multiprocessing communication, and multilanguage libraries. These issues affect
different algorithms in different ways. A method that relies a lot on communication would
benefit the most by reducing the payload of the communication. In contrast, an algorithm
that solves a few but challenging iterations would benefit the most from optimization
solver improvement. Also, several tuning parameters could be adjusted to enhance the
performance, but this kind of discovery is typically reserved for practitioners.

Nonetheless, by reporting the results of these experiments, the author feels that
these methods have been validated and would invite further contributions on the topic.

132

4 APPLICATION: AN OIL AND GAS PRODUCTION NETWORK

4.1 MOTIVATION

The experiments shown at the end of the previous chapter, while extensive, do
not adequately represent the kind of systems typically found on real-life applications.
The four-tanks system has a quasi-linear model, given that the only nonlinearity comes
from the square root on the flow through-an-orifice equation. These equations can
cause numerical issues if the solver attempts to evaluate the equations with a height of
zero or less, but it is well behaved on the regular operating region.

For this reason, in this chapter, we investigate how the distributed algorithms
presented in the previous sections handle a more complex system. The system chosen
is composed of two oil and gas production wells and a vertical riser. These systems have
a more significant number of internal states and algebraic variables, whose equations
are full of all kinds of nonlinearities.

Production wells and risers face a particular challenging phenomenon involving
the formation of gas slugs in the pipelines. This issue causes a limit cycle which disturbs
production and increases wear in the equipment. This is a well-known challenge that
has been the focus of many studies.

In the early 2000’s works focusing on using control strategies to stabilize the
wells started to bloom. Hu and Golan (2003) used Schlumberger’s OLGA simulator to
develop a feedback loop controller to stabilize the well. Eikrem et al. (2004) developed a
simplified well model which behaves very similar to OLGA; they proceeded to compare
two approaches: a PI controller using an estimated downhole pressure and a nonlinear
controller. Eikrem et al. (2008) showed a simple well model and proposed three control
strategies that were able to stabilize the well in simulations and laboratory experiments.
Plucenio et al. (2009) proposed the use of a nonlinear MPC, which relies upon a Ham-
merstein model to describe the behavior of the gas-lift well. Plucenio et al. (2012) used
a nonlinear MPC strategy to control a simplified model, similar to phenomenological
models proposed by Eikrem et al. (2004). To control a gas-lift well, Jahanshahi et al.
(2012) propose a robust control and provided some robustness analysis. Krishnamoor-
thy et al. (2016) models and performs robustness analysis in wells that have electrical
submersible pumps (ESPs). Diehl et al. (2017) developed a single model for the well
and riser, where one is directly connected to the other; this situation is quite common
in satellite wells. Jean P. Jordanou et al. (2018) used a echo-state neural network to
model the riser and developed a MPC control strategy for the model.

On the riser side, a few works proposed strategies to eliminate oscillations
caused by gas slugs. Early works focused on modeling this behavior solely for the
intent of simulation and finding the settings that reduced the formation of gas slugs in
the riser (TAITEL et al., 1989; TAITEL; BARNEA, 1997; MASELLA et al., 1998). Later

Chapter 4. Application: An Oil and Gas Production Network 133

works focused on developing simplified and compact models for control and the devel-
opment of MPCs. Di Meglio et al. (2009) proposed a first-principles model for vertical
risers and performed a stability analysis. Jahanshahi and Skogestad (2011) proposed a
riser model, including horizontal part (named pipeline), and compared it to other works
available in the literature. Stasiak et al. (2012) proposed a discrete-time control strategy
that can stabilize the riser simulated using OLGA.

The strategies proposed thus far have all relied on a centralized approach, which
is not a huge issue if only a small number of wells and risers are part of the system or
if it does not integrate with other network equipment. For instance, Sayda and Taylor
(2007) proposed a three-state separator model that is well suited for control and MPC.
Grong (2009) developed an elaborate compressor model that could be simplified for the
intent of control. Budinis and Thornhill (2015) proposed a compact compressor model
and MPC that can prevent compressor surges.

Some works have attempted integrating multiple components within the same
problem. Willersrud et al. (2012) compared the use of two nonlinear MPC approaches
for system modeled using the commercial modeling tool Dymola. Aguiar et al. (2015)
developed a centralized solution for a simplified network containing wells, risers, sepa-
rators, compressors, and a gas-lift injection line.

However, it is challenging to develop a centralized approach that achieves a sys-
temwide control of the production, where each subsystem is cooperating with others to
stabilize and reach the production goals and environmental and operational constraints.
The problems faced range from technical to organizational.

Given the large number of components present in an oil production plant, the
optimal control problem and the optimization problem resulting from the discretization
will have several variables and constraints. A large number of variables will imply long-
running optimization problems and require a computer with plenty of memory and
processing power. Many constraints will define a narrow and complex solution space
that might hinder initialization and algorithm convergence.

Regarding the organizational issues, it is often the case that different teams are
responsible for different parts of the production plant. These teams are the specialists
on the given process and are well-versed in its intricacies. Its also the responsibility of
each team to develop and maintain models, operational boundaries, and constraints;
and define the best control strategy for that particular part of the system. Therefore, it
is quite a difficult challenge to coordinate several teams into a single highly-coupled
control approach.

For these reasons, a distributed and cooperative strategy offers the distinct
advantage of enabling each team to be responsible for its own model, optimal control
problem and solution approach. Such a strategy still allows for an alignment that leads
to an optimal plant operation, unlike a purely decentralized strategy.

Chapter 4. Application: An Oil and Gas Production Network 134

In this chapter, a proof of concept is developed of such an approach. The test
case used consists of a small-scale system with two wells and a riser. The system is
modeled and controlled using an MPC strategy based on the algorithms presented in
the previous chapter.

In Section 4.2 the network model is described, Section 4.3 describes the control
objective and the implemented constraints, Section 4.4 goes through the details of the
numerical experiments, Section 4.5 reports the experiment results and analysis, finally
Section 4.6 concludes the chapter with final notes.

4.2 NETWORK MODEL

The experimental plant is composed of two oil and gas production wells con-
nected to a common manifold, where the outflow goes to a vertical riser. Figure 31
shows the components of the network.

Well 2Well 1

Riser

Flare

Figure 31 – Illustration of the oil and gas production network.

Notice that because the wells’ outflow goes into the riser, the riser has a connec-
tion for each well subsystem. Also, by sharing the same riser, the wells are connected
to the same input pressure of the riser, which is a consequence of the inflow and the
riser’s upstream separator pressure. From this analysis, the network’s graph can be
drawn, depicted in Figure 32.

Chapter 4. Application: An Oil and Gas Production Network 135

Well 1 Well 2

Riser

Outlet Flow

Outle
t Flow

Pressure

Press
ure

Figure 32 – Graph repsesentation of the oil production network

While not having as many components as the four-tanks system, this system
contains a more complex topology, given that there is a reference loop between the
well and riser nodes, and both well nodes depend on the same variable. The latter
point makes the overall problem more complex since the inlet pressure needs to be
“negotiated” between the three systems. This kind of flow-pressure pattern would repeat
if we had more components in the network given the nature of the system1.

In the following, the well and riser models are presented, along with a description
of the physical process that occurs in each component.

4.2.1 Well model

In oil wells, the fluid emanates naturally if the reservoir pressure is high enough
to push the liquid column to the surface. As the well is drained, the pressure of the
reservoir drops, and eventually, it becomes insufficient to produce oil from the well with-
out assistance. In such cases, artificial lift techniques can be applied. These techniques
not only apply for extending the life of wells, but they can also boost the production of
young wells, if the reservoir pressure is low.

Gas-lift is an artificial lift technique that consists of injecting pressurized gas in
the annulus, where it flows into the bottom of the tubing. The inflow of gas reduces the
density of the fluid column, making it lighter and increasing flow, since the pressure
required to compensate for gravity is reduced.. The injected gas is recycled and later
reinjected (JAHANSHAHI et al., 2012). In the continuous gas-lift process, there is a
constant high-pressure gas injection into the production column, reducing the fluid
density, increasing the net pressure available to cause flow. The intermittent gas-lift
process uses an injection of gas into the fluid column to displace it. It is an artificial
lifting method identical to others, where an ideal pressure difference is created to
produce the desired flow. This can be used to restart a well after shutdown. There is
1 Likewise, a similar current-voltage pattern would appear in electrical circuits

Chapter 4. Application: An Oil and Gas Production Network 136

also artificial lift via pump off, which mechanically lifts the fluid from the reservoir with
sequential up and down strokes (CAMPONOGARA et al., 2015).

Sometimes, a gas lift induces an unstable behavior by the formation of gas
slugs. This is characterized by variations in both pressure and production rate and
an oscillatory flow (JAHANSHAHI et al., 2012). Therefore the need for a controller to
stabilize and induce a stable and safe operation.

As the gas-lift injection affects the flow, there is room for optimization. If no gas
is injected, the outflow is too small; if too much gas is injected, actually, there is a
reduction in the produced oil since most of the emanating fluid is the injected gas.

The gas lifted well model used in this case study was based on the model
proposed in Krishnamoorthy et al. (2016). According to the authors, the model describes
the production from each gas lifted well through the mass balance of the different
phases, the density models, the pressure models, and the flow models.

The model states are the mass of gas in the annulus (mga), and the mass of gas
and oil in the tubing (mgt and mot , respectively). The mass balances in each well are
given by:

ṁga = wgl – wiv (313)

ṁgt = wiv – wpg + wrg (314)

ṁot = wro – wpo (315)

where:

• wgl is the gas-lift injection rate,

• wiv is the gas flowing from the annulus into the tubing,

• wpg is the produced gas flow rate,

• wpo is the produced oil flow rate,

• wrg is the gas flowing from the reservoir,

• wro is the oil flowing from the reservoir.

The flows thrugh the injection valve (wiv) and the total fluid flow through the pro-
duction choken (wpc) are defined by valve equations; wpg and wpo are consequences
of wpc and the ratio of mass gas and oil in the tubing; and wro and wrg are obtained

Chapter 4. Application: An Oil and Gas Production Network 137

from the reservoir productivity equations. The equations are

wiv = Civ
√
ρai (pai – pwi) (316)

wpc = Cpc
√
ρm(pwh – pm) (317)

wpg =
mgt

mgt + mot
wpc (318)

wpo =
mot

mgt + mot
wpc (319)

wro = PI(pres – pbh) (320)

wrg = GORwro (321)

where:

• pai - annulus pressure,

• pwh - wellhead pressure,

• pwi - well injection point pressure,

• wpc is the total flow through the production choke,

• Ci is the valve flow coefficient for the downhole injection valve,

• Cp is the valve flow coefficients for the production choke,

• PI is the reservoir productivity index,

• pres is the reservoir pressure,

• pm is the manifold pressure and,

• GOR is the gas–oil ratio.

The annulus pressure at the injection point (pai) is obtained with the ideal gas
law and the increase in pressure due to the gas column. The wellhead pressure (pwh) is
obtained with ideal gas law. The tubing pressure at the injection point (pwi) is obtained
by adding the fluid column to the wellhead pressure (pwh). The bottom hole pressure
(pbh) is the pressure at the injection point plus the pressure from the liquid column down
to the point of contact with the reservoir. These pressures are given by the following
equations

pai =
(

RTa
VaMg

+
gLa
Va

)
mga (322)

pwh =
TwR
Mg

(
mgt

LwAw + LbhAbh – mot
ρo

)
(323)

pwi = pwh +
gLw

AwLw
(mot + mgt – ρoLbhAbh) (324)

pbh = pwi + gρoLbh (325)

Chapter 4. Application: An Oil and Gas Production Network 138

where:

• Mg is the molecular weight of the gas,

• R is the gas constant,

• Ta is the temperature in the annulus,

• La is the length of the annulus,

• Va is the volume of the annulus,

• Tw is the temperature in the well tubing,

• Lbh and Lw is the vertical height of the well tubing below and above the injection
point,

• g is the gravity acceleration constant.

The gas density in the annulus ρai is obtained by assuming that the gas behave
according to the ideal gas law; and the density of the fluid in the tubing (ρm) is obtained
by the mass of oil and gas in the tubing, the gas density in the tubing, and the oil
density:

ρai =
Mg
RTa

pai (326)

ρm =
(mgt + mot)pwhMgρo

(motpwhMg + ρoRTwmgt)
(327)

where:

• ρo is the density of oil in the reservoir,

• Lr and Lw is the length of the well above and below the injection point,

• Ar and Aw is the cross-sectional area of the well above and below the injection
point.

The data used for the parametrization of both wells is available in (KRISH-
NAMOORTHY et al., 2016).

4.2.2 Riser Model

The riser is the pipeline that transports the produced fluids from the sea bed to
the platform, where the fluids are processed. It has a simple structure, consisting of a
simple vertical pipe. In the seabed, the pipe is connected to a manifold, which routes
the outflow of the well into a specific riser. Here we are taking the manifold as part of
the riser model. The riser outlet is connected to the separator and the flare. The flare

Chapter 4. Application: An Oil and Gas Production Network 139

is a safety component; if the system cannot handle the produced gas for some reason,
the flare can burn the excess gas. As one would expect, flaring gas is undesirable, it is
a direct loss of revenue, and it is limited by environmental regulation. The flare is also
included in this riser model.

The riser model is based on (JAHANSHAHI; SKOGESTAD, 2014). The authors
propose a four-state model that represents a pipeline with a riser at the end. In this
work, the pipeline is not included, so only the two states representing the riser dynamics
are used.

The riser differential equations are simply mass balances for the gas (mgr) and
liquid (mor) phases

ṁgr =
ni∑

i=1

(w i
pg) – wtg (328)

ṁor =
ni∑

i=1

(w i
po) – wto (329)

where:

• wpg is the produced gas inflow from well i ,

• wpo is the produced oil inflow from well i ,

• wtg is the gas outflow leaving at the top of the riser,

• wtg is the oil outflow leaving at the top of the riser,

• ni is the number of wells.

The gas and oil labeloutflow are given by the total flow through valve and by the
ratio of gas and oil in the riser

wpr = Cpr
√
ρr (prh – ps) (330)

wto = (1 – αg)wpr (331)

wtg = (αg)wpr (332)

αg =
mgr

mgr + mor
(333)

where:

• wpr is the total fluid outflow at the top of ther riser,

• αg is ratio of gas in the riser,

• prh is pressure at the riser outlet,

• ps is the separator pressure.

Chapter 4. Application: An Oil and Gas Production Network 140

The riser head pressure (prh) is the riser mean pressure minus the column
above the upper half of the riser. The riser mean pressure can be computed with the
ideal gas equation. Finally, the manifold pressure (pm) can be obtained by adding the
pressure from the fluid column and the pressure due to friction, which is obtained by
the Darcy–Weisbach equation. The coefficient factor assumes a laminar flow, but a
turbulent factor is a more realistic assumption.

prh = prm – g
Lr
2
ρrm (334)

prm = RTr
ρgm
Mg

(335)

pm =prh + gLrρrm +
128
π

µoilLr

D4
r

wpr
ρrm

(336)

where:

• ρrm is the riser mean fluid density,

• ρgm is the riser mean gas density,

• Dr is the riser diameter,

• Tr is the riser temperature,

• Lr is the riser length,

• Mg is the gas molecular weight,

• µoil is the oil dynamic viscosity.

The gas mean density is obtained by dividing the gas mass by the riser volume
discounted the oil volume,

ρgm =
mgr

Vr – mor
ρo

(337)

ρrm =
mgr + mor

Vr
(338)

where Vr is the riser volume.

4.3 SCENARIO DESCRIPTION

Control objectives and operation constraints are case dependent; they depend
on operating conditions, an alignment of business decisions, and technical limitations.
Often the operational situation varies day by day, for instance, when equipment breaks
or goes into maintenance. It can also vary monthly, when the production field business
team defines a new production target. Alternatively, even yearly, for instance, as new

Chapter 4. Application: An Oil and Gas Production Network 141

regulations are defined. Changes on longer timescales may also occur, whether from
changing regulations or from the gradual depletion of the reservoir. Depending on the
solution architecture, some of this decisions can be delegated to static optimization
(AGUIAR et al., 2012; KOSMIDIS et al., 2004, 2005; GUNNERUD; FOSS, 2010; SILVA
et al., 2012; CODAS; CAMPONOGARA, 2012; SILVA; CAMPONOGARA, 2014).

Given the uncertainty of the conditions, in the experiments, a simple control
objective is chosen. The ultimate goal is to assess how the algorithms developed in
Chapter 3 behave on such a network, not to mimic real-life operations.

The objective of the wells is to minimize the variation of the injected gas to reduce
the wear of valves and induce a smooth operating condition.

Jw =
∫ tf

t0
Kẇgl

ẇ2
gl dt (339)

where:

• Kẇgl
is an adjustabale penalty parameter;

• ẇgl is the variation in the gas injection.

The objective of the riser is to minimize the gas burned in the flare while trying
to keep the total oil outflow at a given target.

Jw =
∫ tf

t0
(w̄to – wto)2 + Kẇfl

ẇ2
fl dt (340)

where:

• wfl is the amount of gas burned on the flare;

• Kẇfl
is an adjustabale penalty parameter;

• w̄to is the reference for the oil outflow.

Most of the implemented constraints merely keep the models sound with reality;
for instance, flows should not go backward, and masses should not be negative. Other
than that, each well optimal control problem implements a gas injection variation range
and a minimum gas injection. Also, the riser implements an upper bound on the gas
outflow, which could be interpreted as a limit on the separator gas handling capability.

To allow any residual dynamic to be dissipated and not influence the results, the
MPC will only be activated after 250 seconds of simulation.

4.4 EXPERIMENTAL SETUP

The experiment studies the control of the previously described two wells and
riser plant for a time horizon of 1000 seconds, bringing the system to a production

Chapter 4. Application: An Oil and Gas Production Network 142

setpoint. The algorithms are implemented with an MPC control strategy, where at each
time step, the control is computed based on the available measurements. For simplicity,
the states are assumed to be measurable, or, equivalently, we have a perfect state
estimator. The MPC uses a prediction window of 300 seconds, broken down into 60
intervals. The experiments used the direct collocation method to obtain the solution of
the OCPs. The collocation method uses a polynomial of order 3.

If the OCP solver fails to obtain a solution (e.g., maximum iteration reached,
IPOPT failed to recover), the iteration is disregarded, and the previous solution is used
in the update steps. This represents the node communicating to its neighbors that it
cannot move the shared variables in the direction that they “proposed”.

The experiments are performed with 10 different scenarios varying the system
oil production target, ranging from 39 to 44 kg/s. For each of the 10 scenarios the
proposed algorithms are compared to a centralized approach, which also uses direct
collection.

The algorithms, OCPs, and subsystems were implemented in Python using
YAOCPTool, which relies on CasADi (ANDERSSON et al., 2019). IPOPT (WÄCHTER;
BIEGLER, L. T., 2006) was used to solve the optimization problems. The experiments
were performed in a computer equipped with an Intel 7700k (4 cores/8 threads) pro-
cessing unit and 16 GB DDR4 of RAM, running Ubuntu 20.04 in WSL. Different from
the experiments in the previous chapter, each node was solved sequentially using the
same thread, rather than each in a separated thead. This was due to an issue with the
implementation of the multi-threaded solution methods. It is not related to any limitation
of the proposed algorithms or the modeled system. This most likely affects negatively
the performance of the proposed algorithms.

In order to compare the algorithms, we need to define some metrics. To verify
the numerical stability of the algorithms, the first metric is the convergence of scenarios.
A scenario is said to be successful if it takes less than 3600 seconds to optimize for the
whole simulation.

Regarding the quality of the solution, the algorithms will be evaluated concerning
the realized cost. The realized cost uses the same function as the objective function in
the OCP. The difference is that the realized cost comes from accumulating the incurred
cost in the actual plant, accumulated over the entire duration of the experiment.

The performance is measured in two ways: the total time to perform the simu-
lation, and the average time per MPC iteration, discarding the first MPC iteration. The
first iteration is discarded because it is part of the algorithm initialization and does not
reflect precisely the algorithm behavior during operation.

To summarize, the algorithms and variations will be analyzed with respect to the
following criteria:

• Convergence (successful scenarios / total scenarios);

Chapter 4. Application: An Oil and Gas Production Network 143

• Quality: Realized cost;

• Performance:

– Total time;

– Average MPC iterartion after the first iteration.

The strategies that will be compared are the best performing strategies from the
previous chapter. Namely,

• Centralized,

• Augmented Lagrangian with Coordinate Descent, using a cyclic block choice rule
and constant penalty parameter update rule;

• Alternating Direction Multiplier Method, using a primal-dual penalty parameter
update rule;

• Bipartite-Jacobi ADMM, with a primal-dual µ parameter update rule.

4.5 ANALYSIS OF EXPERIMENTAL RESULTS

The numerical experiments were performed for all four strategies. The following
figures show the behavior of the system in Scenario 1 for each of the methods tested.
Similar results are obtained also in the other scenarios. The results are summarized in
Table 10.

The profile of the produced oil is very similar between the different algorithms,
with only slight difference. Figures 33, 34, 35, and 36 show the profile of the produced oil
in the first scenario for the centralized, augmented Lagrangian with coordinate descent,
ADMM, and the Bipartite-Jacobi ADMM, respectively.

Figures 37, 38, 39, and 40 display the subsystem’s states for the first scenario
with the different strategies: the centralized, augmented Lagrangian with coordinate
descent, ADMM, and the Bipartite-Jacobi ADMM, respectively. The strategies display
similar behavior for the states, just like the other compared variables.

Regarding the control actions, they all have the same behavior differing only due
to numerical noise. Figures 41, 42, 43, and 44 show the control actions along the first
scenario for the centralized, augmented Lagrangian with coordinate descent, ADMM,
and the Bipartite-Jacobi ADMM, respectively.

For better visualization of the metrics, the results of each experiment were con-
solidated by averaging all the scenarios. The results of the consolidation are reported
in Table 10.

All the tested algorithms were able to conclude the scenarios before the timeout,
so they were considered all to be successful. Regarding the realized cost, both the

Chapter 4. Application: An Oil and Gas Production Network 144

0 200 400 600 800 1000 1200
Time [s]

39

40

41

42

43

44

45

46 Riser_w_to

Figure 33 – Oil production profile for the centralized approach on Scenario 1.

0 200 400 600 800 1000 1200
Time [s]

39

40

41

42

43

44

45

46 Riser_w_to

Figure 34 – Oil production profile for the augmented Lagrangian with coordinate de-
scent approach on Scenario 1.

0 200 400 600 800 1000 1200
Time [s]

39

40

41

42

43

44

45

46 Riser_w_to

Figure 35 – Oil production profile for the ADMM approach on Scenario 1.

Chapter 4. Application: An Oil and Gas Production Network 145

0 200 400 600 800 1000 1200
Time [s]

39

40

41

42

43

44

45

46 Riser_w_to

Figure 36 – Oil production profile for the Bipartite-Jacobi ADMM approach on Scenario
1.

0 200 400 600 800 1000 1200
Time [s]

0

2

4

6

8

Well_1_m_ga
Well_1_m_gt
Well_1_m_ot
Well_1_w_gl
Well_2_m_ga
Well_2_m_gt
Well_2_m_ot
Well_2_w_gl
Riser_m_gr
Riser_m_or

Figure 37 – State profile for the centralized approach on Scenario 1.

centralized approach and the ADMM were able to induce a better operation of the plant
overall. The ADMM had the better result by a tiny margin. Concerning performance,
the total computation time was longer with the distributed algorithms compared to
the centralized approach. However, the ADMM had a very comparable time, despite
the additional cost of initialization and communication. The average time per iteration,
which does not consider the first iteration tells us another story, the ADMM ends up
outperforming the centralized strategy ever so slightly. The augmented Lagrangian with
the coordinate descent and the Bipartite-Jacobi ADMM had worse performance, both
in terms of computation time and realized cost with the parameters tested in these
experiments.

Chapter 4. Application: An Oil and Gas Production Network 146

0 200 400 600 800 1000 1200
Time [s]

0

2

4

6

8

Well_1_m_ga
Well_1_m_gt
Well_1_m_ot
Well_1_w_gl
Well_2_m_ga
Well_2_m_gt
Well_2_m_ot
Well_2_w_gl
Riser_m_gr
Riser_m_or

Figure 38 – State profile for the augmented Lagrangian with coordinate descent ap-
proach on Scenario 1.

0 200 400 600 800 1000 1200
Time [s]

0

2

4

6

8

Well_1_m_ga
Well_1_m_gt
Well_1_m_ot
Well_1_w_gl
Well_2_m_ga
Well_2_m_gt
Well_2_m_ot
Well_2_w_gl
Riser_m_gr
Riser_m_or

Figure 39 – State profile for the ADMM approach on Scenario 1.

0 200 400 600 800 1000 1200
Time [s]

0

2

4

6

8

Well_1_m_ga
Well_1_m_gt
Well_1_m_ot
Well_1_w_gl
Well_2_m_ga
Well_2_m_gt
Well_2_m_ot
Well_2_w_gl
Riser_m_gr
Riser_m_or

Figure 40 – State profile for the Bipartite-Jacobi ADMM approach on Scenario 1.

Chapter 4. Application: An Oil and Gas Production Network 147

0 200 400 600 800 1000 1200
Time [s]

0.01

0.00

0.01

0.02

0.03

0.04

Well_1_dw_gl
Well_2_dw_gl
Riser_w_fl

Figure 41 – Control profile for the centralized approach on Scenario 1.

0 200 400 600 800 1000 1200
Time [s]

0.01

0.00

0.01

0.02

0.03

0.04

Well_1_dw_gl
Well_2_dw_gl
Riser_w_fl

Figure 42 – Control profile for the augmented Lagrangian with coordinate descent ap-
proach on Scenario 1.

0 200 400 600 800 1000 1200
Time [s]

0.01

0.00

0.01

0.02

0.03

0.04

Well_1_dw_gl
Well_2_dw_gl
Riser_w_fl

Figure 43 – Control profile for the ADMM approach on Scenario 1.

Chapter 4. Application: An Oil and Gas Production Network 148

0 200 400 600 800 1000 1200
Time [s]

0.01

0.00

0.01

0.02

0.03

0.04

Well_1_dw_gl
Well_2_dw_gl
Riser_w_fl

Figure 44 – Control profile for the Bipartite-Jacobi ADMM approach on Scenario 1.

Table 10 – Experiment Result

Centralized AL-CD ADMM Bipartite-Jacobi
Convergence (total 10) 10 10 10 10
Realized Cost 913.35 919.79 913.07 918.80
Total time (s) 100.16 255.86 109.27 268.70
Avg. Iteration (w.o. first) 0.485 1.20 0.450 1.18

4.6 CONCLUSION

In the previous chapters, we focused on evaluating the proposed algorithms with
benchmark systems that are compact and well-behaved in all operating regions. In this
chapter, the algorithms were challenged with a system that is much closer to those
found in real control applications.

A simplified oil and gas production network was modeled by connecting well
and riser models from the literature. The network comprises two oil and gas production
wells and a vertical riser. The plant of choice here is a small part of a broader system.
A more complex network with a greater diversity of equipment should be investigated
for future work.

The results show exciting points. Even though the distributed methods solve the
problems iteratively, they provide an equivalent result in a comparable time, particularly
in the ADMM case. This can be justified by the nonlinearities embedded within each
node problem and the relation between the nodes being linear. Each node is solving
a smaller problem which has an iteration cost smaller than the original problem. The
iteration cost comes from the number of variables and constraints, which directly affects
the size of the Jacobian and the Hessian of the problem.

The experimental results clearly indicate that the proposed strategies are vi-
able alternatives for controlling complex nonlinear systems, which encourages further
investigation with the proposed methods, being them of practical or theoretical nature.

149

5 CONCLUSION

This thesis presents some advances in the area of optimal control and distributed
optimal control.

The second chapter provides some proofs for an augmented Lagrangian method
to solve the optimal control problem of DAE systems. The method that converts the
solution of OCP of DAEs into a sequence of solutions to optimal control problems of
ODEs. The theorems show that under certain circumstances, the algorithm can con-
verge to a global minimum if its underlying subproblems are solved to global optimality;
if the subproblems are solved to a local optimum, then the algorithm converges to a
local optimum; and if at each iteration the subproblems are iterated to a point that is
"close enough" to an optimum, and this distance decreases with the iterations, then
the algorithm converges to the optimal solution. The demonstrations also show that the
relaxed multiplier converges to a multiplier of the original problem.

Having good mathematical properties is not enough to make a valuable algo-
rithm in practice1. To address this concern, the algorithm was put to the test with two
classical benchmark control systems: the Van der Pol oscillator and the Quadruple
Tank. The first has a limit cycle that makes it challenging to stabilize, and the second
has heavy coupling between the many components of the system, which makes the
dynamics intertwined. Both experiments showed promising results, which inspired fur-
ther investigation. One highlight here is that the algorithm allows for an indirect solution
method to deal with the algebraic and state variable constraints with great ease.

Part of the challenge of applying control of large plants is creating and maintain-
ing control models and controllers. Given the system and organization’s topologies, this
task might include different teams that need to collaborate upon achieving a single con-
trol model, which is a difficult task and often leads to companies opting for decentralized
control strategies. Within this context, a modeling framework for networked systems is
proposed using differential-algebraic equations (DAEs). The framework models each
subsystem as a node in a directional graph, the edges of the graph represent an input-
output relation between the two subsystems. Mathematically, the edges are equivalent
to a trivial linear algebraic equation.

Using the augmented Lagrangian method for optimal control to relax the al-
gebraic equation of the edges, a set of distributed optimal control algorithms were
proposed, inspired by optimization algorithms. The algorithms are the augmented La-
grangian method with coordinate descent and the alternating direction multiplier meth-
ods (ADMM). It was shown that by exploring the network structure and introducing
intermediate nodes, it is possible to fully decouple the many subsystems and achieve
parallelism in solving the underlying optimal control problems. Using some manipula-
1 For instance, the ellipsoid method to solve linear programming problems has polynomial time but has

limited usage due to numerical instability (DANTZIG; THAPA, 2006).

Chapter 5. Conclusion 150

tions on the necessary conditions of the intermediate nodes, we were able to obtain an
analytical solution for the subproblem. Further manipulations allowed for merging the
solution of intermediate nodes back into the solution of the original nodes. These manip-
ulations led to a new algorithm called Bipartite-Jacobi ADMM since it is a simultaneous
iterative algorithm (like the Jacobi method). Some experiments with the Four-tanks
benchmark system were made to validate the algorithms and their variations. The re-
sults were quite positive towards the proposed algorithms, where they have shown to
solve a significant part of the scenarios with a solid performance.

Up to that point, the algorithms have faced benchmark systems, which are chal-
lenging but lack some of the complications that emerge in real-life systems. In the
fourth chapter, the proposed distributed optimal control algorithms solve a problem with
a plant composed of two oil and gas production wells and a vertical riser. The algorithms
are used in a receding horizon MPC, where their solutions obtain a new control action
at each iteration. The algorithms have been shown to solve the problem with results
comparable to the centralized baseline.

These advances inspire further investigations in the area and could be part of
further research:

• Use the augmented Lagrangian to solve stochastic optimal control problems –
the algorithms in this thesis were used for decoupling subsystems in a network;
these same algorithms could be used in the context of stochastic optimal control,
where instead of dealing with the coupling between the subsystems, the relaxed
equation would be the coupling between the multiple scenarios.

• Validation with a more complex network – as mentioned in the previous chapter,
there are numerous ways to make the problem more complex, for instance, by
including separators, compressors, gas injection lines, and gas exportation lines.
An investigation in this direction would be pretty opportune for these algorithms.

• Theoretical developments on the proposed algorithms – now that they have been
shown to provide sound practical results, it would be interesting to further develop
mathematical properties to support their usage.

151

REFERENCES

AGUIAR, Marco Aurelio. An Augmented Lagrangian Method for Optimal Control
of Continuous Time Dae Systems. 2016. MA thesis – Federal University of Santa
Catarina.

AGUIAR, Marco Aurelio; CAMPONOGARA, Eduardo; FOSS, Bjarne. An Augmented
Lagrangian for Optimal Control of DAE Systems: Algorithm and Properties. IEEE Trans-
actions on Automatic Control, v. 66, p. 261–266, 1 Jan. 2021. DOI: 10.1109/TAC.2020.
2976042.

AGUIAR, Marco Aurelio; CAMPONOGARA, Eduardo; FOSS, Bjarne. An augmented
Lagrangian method for optimal control of continuous time DAE systems. In: 2016 IEEE
Conference on Control Applications (CCA). 2016. P. 1185–1190. DOI: 10.1109/CCA.
2016.7587967.

AGUIAR, Marco Aurelio; SILVA, Thiago; CAMPONOGARA, Eduardo. A Mixed-Integer
Convex Formulation for Optimal Operation of Gas-Lifted Oil Fields with Facility, Rout-
ing, and Pressure Constraints. In: July. ENGOPT 2012 - International Conference on
Engineering Optimization. Rio de Janeiro - Brazil, 2012. P. 1–10.

AGUIAR, Marco Aurélio; CODAS, Andres; CAMPONOGARA, Eduardo. Systemwide
Optimal Control of Offshore Oil Production Networks with Time Dependent Constraints.
IFAC-PapersOnLine, v. 48, n. 6, p. 200–207, 2015. 2nd IFAC Workshop on Automatic
Control in Offshore Oil and Gas Production OOGP 2015. ISSN 2405-8963. DOI: https:
//doi.org/10.1016/j.ifacol.2015.08.032.

ALLEN, R. Mathematical analysis for economists. Macmillan, 1962.

ANDERSSON, Joel A E; GILLIS, Joris; HORN, Greg; RAWLINGS, James B; DIEHL,
Moritz. CasADi – A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, Springer, v. 11, n. 1, p. 1–36, 2019. DOI:
10.1007/s12532-018-0139-4.

ASCHER, Uri M.; PETZOLD, Linda R. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. 1st. USA: Society for Industrial and
Applied Mathematics, 1998. ISBN 0898714125.

BECK, Amir; TETRUASHVILI, Luba. On the Convergence of Block Coordinate Descent
Type Methods. SIAM Journal on Optimization, v. 23, n. 4, p. 2037–2060, 2013. ISSN
1052-6234. DOI: 10.1137/120887679.

BERGER, M.S. Nonlinearity and Functional Analysis: Lectures on Nonlinear Prob-
lems in Mathematical Analysis. Elsevier Science, 1977. (Pure and Applied Mathe-
matics). ISBN 9780080570440.

BERTSEKAS, Dimitri P. Constrained Optimization and Lagrange Multiplier Meth-
ods. Athena Scientific, 1982. ISBN 1-886529-04-3.

BERTSEKAS, Dimitri P. Constrained Optimization and Lagrange Multiplier Meth-
ods. Athena Scientific, 1996. (Athena scientific series in optimization and neural com-
putation).

BERTSEKAS, Dimitri P. Dynamic Programming and Optimal Control Vol I - Third
Edition. Athena Scientific, 2005. P. 543. ISBN 1-886529-26-4.

BERTSEKAS, Dimitri P. Nonlinear Programming. Athena Scientific, 1995.

https://doi.org/10.1109/TAC.2020.2976042
https://doi.org/10.1109/TAC.2020.2976042
https://doi.org/10.1109/CCA.2016.7587967
https://doi.org/10.1109/CCA.2016.7587967
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.08.032
https://doi.org/https://doi.org/10.1016/j.ifacol.2015.08.032
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1137/120887679

References 152

BERTSEKAS, Dimitri P.; TSITSIKLIS, John. Parallel and Distributed Computation:
Numerical Methods. 1989. P. 735. ISBN 978-1-886529-01-4.

BESTLER, Anja; GRAICHEN, Knut. Distributed model predictive control for continuous-
time nonlinear systems based on suboptimal ADMM, 2017.

BIEGLER, Lorenz T. Nonlinear Programming: Concepts, Algorithms, and Applica-
tions to Chemical Process. Society for Industrial and Applied Mathematics, 2010.

BOCCIA, A.; PINHO, M. D. R. de; VINTER, R. B. Optimal Control Problems with Mixed
and Pure State Constraints. SIAM Journal on Control and Optimization, v. 54, n. 6,
p. 3061–3083, 2016. ISSN 0363-0129. DOI: 10.1137/15M1041845.

BONDY, Adrian; MURTY, U. S. R. Graph Theory. 2008. P. 655. ISBN 978-1-84628-969-
9.

BOYD, Stephen; PARIKH, Neal; CHU, Eric; PELEATO, Borja; ECKSTEIN, Jonathan.
Distributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning, v. 3, n. 1, p. 1–122, 2010.
ISSN 19358237. DOI: 10.1561/2200000016.

BRADLEY, Joseph K.; KYROLA, Aapo; BICKSON, Danny; GUESTRIN, Carlos. Parallel
Coordinate Descent for L1-Regularized Loss Minimization. Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, n. 1998, p. 321–328,
2011. arXiv: 1105.5379.

BUDINIS, S.; THORNHILL, N.F. Control of centrifugal compressors via model predictive
control for enhanced oil recovery applications. IFAC-PapersOnLine, Elsevier Ltd., v. 48,
n. 6, p. 9–14, 2015. ISSN 24058963. DOI: 10.1016/j.ifacol.2015.08.002.

CAMPONOGARA, Eduardo; JIA, Dong; KROGH, Bruce H; TALUKDAR, Sarosh. Dis-
tributed model predictive control. IEEE Control Systems, IEEE, v. 22, n. 1, p. 44–52,
2002.

CAMPONOGARA, Eduardo; OLIVEIRA, Mateus Dubiela; DE AGUIAR, Marco Aure-
lio Schmitz. Scheduling pumpoff operations in onshore oilfields under electric-power
constraints. European Journal of Operational Research, 2015. ISSN 03772217. DOI:
10.1016/j.ejor.2015.06.001.

CAMPONOGARA, Eduardo; SANTOS DA SILVA, Ricardo; AGUIAR, Marco Aurélio
Schmitz de. A distributed dual algorithm for distributed MPC with application to ur-
ban traffic control. In: 2017 IEEE Conference on Control Technology and Applications
(CCTA). 2017a. P. 1704–1709. DOI: 10.1109/CCTA.2017.8062702.

CAMPONOGARA, Eduardo; SILVA, Ricardo da; AGUIAR, Marco Aurelio. A distributed
dual algorithm for distributed MPC with application to urban traffic control. In: 2017
IEEE Conference on Control Technology and Applications (CCTA). IEEE, Aug. 2017b.
P. 1704–1709. DOI: 10.1109/CCTA.2017.8062702.

CHEN, Caihua; HE, Bingsheng; YE, Yinyu; YUAN, Xiaoming. The direct extension
of ADMM for multi-block convex minimization problems is not necessarily convergent.
Mathematical Programming, v. 155, n. 1-2, p. 57–79, 2016. ISSN 0025-5610. DOI:
10.1007/s10107-014-0826-5.

CHEN, Liang; LI, Xudong; SUN, Defeng; TOH, Kim Chuan. On the equivalence of
inexact proximal ALM and ADMM for a class of convex composite programming.
Springer Berlin Heidelberg, 2019. ISBN 1460002571. DOI: 10.1007/s10107- 019-
01423-x.

https://doi.org/10.1137/15M1041845
https://doi.org/10.1561/2200000016
https://arxiv.org/abs/1105.5379
https://doi.org/10.1016/j.ifacol.2015.08.002
https://doi.org/10.1016/j.ejor.2015.06.001
https://doi.org/10.1109/CCTA.2017.8062702
https://doi.org/10.1109/CCTA.2017.8062702
https://doi.org/10.1007/s10107-014-0826-5
https://doi.org/10.1007/s10107-019-01423-x
https://doi.org/10.1007/s10107-019-01423-x

References 153

CHRISTOFIDES, Panagiotis D.; SCATTOLINI, Riccardo; MUÑOZ DE LA PEÑA, David;
LIU, Jinfeng. Distributed model predictive control: A tutorial review and future research
directions. Computers and Chemical Engineering, v. 51, p. 21–41, 2013.

CLARKE, Francis; PINHO, M. R. de. Optimal Control Problems with Mixed Constraints.
SIAM Journal on Control and Optimization, v. 48, n. 7, p. 4500–4524, 2010. ISSN
0363-0129. DOI: 10.1137/090757642.

CODAS, Andres; CAMPONOGARA, Eduardo. Mixed-integer linear optimization for op-
timal lift-gas allocation with well-separator routing. European Journal of Operational
Research, v. 217, n. 1, p. 222–231, 2012. ISSN 03772217. DOI: 10.1016/j.ejor.
2011.08.027.

DAI, Li; CAO, Qun; XIA, Yuanqing; GAO, Yulong. Distributed MPC for formation of
multi-agent systems with collision avoidance and obstacle avoidance. Journal of the
Franklin Institute, Elsevier Ltd, v. 354, n. 4, p. 2068–2085, 2017.

DANTZIG, G.B.; THAPA, M.N. Linear Programming 1 Introduction. Springer New
York, 2006. (Springer Series in Operations Research and Financial Engineering). ISBN
9780387226330.

DE OLIVEIRA, Lucas Barcelos; CAMPONOGARA, Eduardo. Multi-agent model predic-
tive control of signaling split in urban traffic networks. Transportation Research Part
C: Emerging Technologies, v. 18, n. 1, p. 120–139, 2010. Information/Communication
Technologies and Travel Behaviour Agents in Traffic and Transportation. ISSN 0968-
090X. DOI: https://doi.org/10.1016/j.trc.2009.04.022.

DE PINHO, M. D.R.; VINTER, R. B.; ZHENG, H. A maximum principle for optimal
control problems with mixed constraints. IMA Journal of Mathematical Control and
Information, v. 18, n. 2, p. 189–205, 2001. ISSN 02650754. DOI: 10.1093/imamci/18.
2.189.

DENG, Wei; LAI, Ming-Jun; PENG, Zhimin; YIN, Wotao. Parallel Multi-Block ADMM
with o(1 / k) Convergence. Journal of Scientific Computing, Springer US, v. 71,
n. 2, p. 712–736, 2017. ISSN 0885-7474. DOI: 10.1007/s10915-016-0318-2. arXiv:
1312.3040.

DI MEGLIO, Florent; KAASA, Glenn-Ole; PETIT, Nicolas. A first principle model for mul-
tiphase slugging flow in vertical risers. In: PROCEEDINGS of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
IEEE, 2009. P. 8244–8251. DOI: 10.1109/CDC.2009.5400680.

DIEHL, Fabio C. et al. Fast Offshore Wells Model (FOWM): A practical dynamic model
for multiphase oil production systems in deepwater and ultra-deepwater scenarios.
Computers and Chemical Engineering, Elsevier Ltd, v. 99, p. 304–313, 2017. ISSN
00981354. DOI: 10.1016/j.compchemeng.2017.01.036.

DUBHASHI, Devdatt. Distributed Vertex Coloring. In: Encyclopedia of Algorithms.
Ed. by Ming-Yang Kao. Boston, MA: Springer US, 2008. P. 258–260. ISBN 978-0-387-
30162-4. DOI: 10.1007/978-0-387-30162-4_118.

DUNBAR, William B; MURRAY, Richard M. Distributed receding horizon control for
multi-vehicle formation stabilization. Automatica, v. 42, n. 4, p. 549–558, 2006.

https://doi.org/10.1137/090757642
https://doi.org/10.1016/j.ejor.2011.08.027
https://doi.org/10.1016/j.ejor.2011.08.027
https://doi.org/https://doi.org/10.1016/j.trc.2009.04.022
https://doi.org/10.1093/imamci/18.2.189
https://doi.org/10.1093/imamci/18.2.189
https://doi.org/10.1007/s10915-016-0318-2
https://arxiv.org/abs/1312.3040
https://doi.org/10.1109/CDC.2009.5400680
https://doi.org/10.1016/j.compchemeng.2017.01.036
https://doi.org/10.1007/978-0-387-30162-4_118

References 154

ECKSTEIN, Jonathan; FERRIS, Michael C. Operator-Splitting Methods for Monotone
Affine Variational Inequalities, with a Parallel Application to Optimal Control. INFORMS
Journal on Computing, v. 10, n. 2, p. 218–235, 1998. ISSN 1091-9856. DOI: 10.1287/
ijoc.10.2.218.
ECKSTEIN, Jonathan; YAO, Wang. Understanding the Convergence of the Alternating
Direction Method of Multipliers: Theoretical and Computational Perspectives *. Pacific
Journal of Optimization, 2015.
EIKREM, Gisle; AAMO, Ole; FOSS, Bjarne. On Instability in Gas Lift Wells and Schemes
for Stabilization by Automatic Control. SPE Production & Operations, May, p. 268–
279, 2008.
EIKREM, Gisle; IMSLAND, Lars; FOSS, Bjarne. Stabilization of gas-lifted wells based
on state estimation. In: IFAC Symposium Adchem. 2004. P. 1–6.
ERNZERHOF, Matthias. Taylor-series expansion of density functionals. Physical Re-
view A, v. 50, n. 6, p. 4593–4607, 1994. DOI: 10.1103/PhysRevA.50.4593.
FARINA, Marcello; BETTI, Giulio; SCATTOLINI, Riccardo. Distributed predictive control
of continuous-time systems. Systems & Control Letters, Elsevier B.V., v. 74, p. 32–40,
2014.
FERCOQ, Olivier; QU, Zheng; RICHTARIK, Peter; TAKAC, Martin. Fast distributed
coordinate descent for non-strongly convex losses. In: 2014 IEEE International Work-
shop on Machine Learning for Signal Processing (MLSP). IEEE, 2014. P. 1–6. DOI:
10.1109/MLSP.2014.6958862.
FERRAMOSCA, A.; LIMON, D.; ALVARADO, I.; CAMACHO, E.F. Cooperative dis-
tributed MPC for tracking. Automatica, v. 49, n. 4, p. 906–914, 2013.
FORTIN, M.; GLOWINSKI, R. Augmented Lagrangian Methods: Applications to
the Numerical Solution of Boundary-Value Problems. 2000. ISBN 008087536X.
FU, Wenjiang J. Penalized Regressions: The Bridge versus the Lasso. Journal of
Computational and Graphical Statistics, v. 7, n. 3, p. 397–416, 1998. ISSN 1061-
8600. DOI: 10.1080/10618600.1998.10474784.
FUKUSHIMA, Masao. Application of the alternating direction method of multipliers to
separable convex programming problems. Computational Optimization and Applica-
tions, v. 1, n. 1, p. 93–111, 1992. ISSN 0926-6003. DOI: 10.1007/BF00247655.
GALEWSKA, E.; NOWAKOWSKI, A. Sufficient conditions for optimal control prob-
lems with mixed constraints. Optimal Control Applications and Methods, v. 26, n. 5,
p. 255–264, 2005. ISSN 01432087. DOI: 10.1002/oca.762.
GERDTS, M. Local minimum principle for optimal control problems subject to differential-
algebraic equations of index two. Journal of Optimization Theory and Applications,
v. 130, n. 3, p. 441–460, 2006. ISSN 00223239. DOI: 10.1007/s10957-006-9121-9.
GHAFFARI, Mohsen; KUHN, Fabian. Deterministic distributed vertex coloring: Simpler,
faster, and without network decomposition. arXiv, 2020. ISSN 23318422. arXiv: 2011.
04511.
GOLUB, Gene; VAN LOAN, Charles. Matrix Computation. John Hopkins University
Press, 2013. ISBN 9781421407944.
GRONG, Torbjørn Sønstebø. Modeling of Compressor Characterisics and Active
Surge Control. 2009. S. 1–97. PhD thesis – Norwegian University of Science and
Technology.

https://doi.org/10.1287/ijoc.10.2.218
https://doi.org/10.1287/ijoc.10.2.218
https://doi.org/10.1103/PhysRevA.50.4593
https://doi.org/10.1109/MLSP.2014.6958862
https://doi.org/10.1080/10618600.1998.10474784
https://doi.org/10.1007/BF00247655
https://doi.org/10.1002/oca.762
https://doi.org/10.1007/s10957-006-9121-9
https://arxiv.org/abs/2011.04511
https://arxiv.org/abs/2011.04511

References 155

GUAN, Zhi-Hong; WU, Yonghong; FENG, Gang. Consensus analysis based on impul-
sive systems in multiagent networks. IEEE Transactions on Circuits and Systems I:
Regular Papers, IEEE, v. 59, n. 1, p. 170–178, 2012.

GUNNERUD, Vidar; FOSS, Bjarne. Oil production optimization—A piecewise linear
model, solved with two decomposition strategies. Computers & Chemical Engineer-
ing, Elsevier Ltd, v. 34, n. 11, p. 1803–1812, 2010. ISSN 00981354. DOI: 10.1016/j.
compchemeng.2009.10.019.

HAN, Deren; YUAN, Xiaoming; ZHANG, Wenxing. An augmented Lagrangian based
parallel splitting method for separable convex minimization with applications to image
processing. Mathematics of Computation, v. 83, n. 289, p. 2263–2291, 2014. ISSN
0025-5718. DOI: 10.1090/S0025-5718-2014-02829-9.

HARTSFIELD, Nora; RINGEL, Gerhard. Pearls in Graph Theory: A Comprehensive
Introduction. 2003. P. 293. ISBN 9783540773405.

HE, B. S.; YANG, H.; WANG, S. L. Alternating Direction Method with Self-Adaptive
Penalty Parameters for Monotone Variational Inequalities. Journal of Optimization
Theory and Applications, v. 106, n. 2, p. 337–356, 2000. ISSN 0022-3239. DOI:
10.1023/A:1004603514434.

HE, Bingsheng. Parallel splitting augmented Lagrangian methods for monotone struc-
tured variational inequalities. Computational Optimization and Applications, v. 42,
n. 2, p. 195–212, 2009. ISSN 09266003. DOI: 10.1007/s10589-007-9109-x.

HE, Bingsheng; HOU, Liusheng; YUAN, Xiaoming. On Full Jacobian Decomposition of
the Augmented Lagrangian Method for Separable Convex Programming. SIAM Journal
on Optimization, v. 25, n. 4, p. 2274–2312, 2015. ISSN 1052-6234. DOI: 10.1137/
130922793.

HE, Bingsheng; YUAN, Xiaoming. A class of ADMM-based algorithms for three-block
separable convex programming. Computational Optimization and Applications, Springer
US, v. 70, n. 3, p. 791–826, 2018. ISSN 15732894. DOI: 10.1007/s10589-018-9994-1.

HERNANDEZ, Bernardo; BALDIVIESO MONASTERIOS, P.R.; TRODDEN, Paul. Dis-
tributed MPC: Guaranteeing Global Stabilizability from Locally Designed Tubes. IFAC-
PapersOnLine, v. 50, n. 1, p. 12335–12340, 2016.

HU, Bin; GOLAN, Michael. Gas-lift Instability Resulted Production Loss and Its Remedy
by Feedback Control: Dynamical Simulation Results. In: SPE International Improved
Oil Recovery Conference in Asia Pacific. Society of Petroleum Engineers, 2003. DOI:
10.2523/84917-MS.

JAGGI, Martin; SMITH, Virginia; TAKÁČ, Martin; TERHORST, Jonathan; KRISHNAN,
Sanjay; HOFMANN, Thomas; JORDAN, Michael I. Communication-Efficient Distributed
Dual Coordinate Ascent. Advances in Neural Information Processing Systems, v. 4,
January, p. 3068–3076, 2014. ISSN 10495258. arXiv: 1409.1458.

JAHANSHAHI, Esmaeil; SKOGESTAD, Sigurd. Simplified Dynamic Models for Control
of Riser Slugging in Offshore Oil Production. Oil and Gas Facilities, v. 3, n. 06, p. 080–
088, 2014. ISSN 2224-4514. DOI: 10.2118/172998-pa.

JAHANSHAHI, Esmaeil; SKOGESTAD, Sigurd. Simplified Dynamical Models for Control
of Severe Slugging in Multiphase Risers. In: 8TH IFAC World Congress. 2011. P. 1634–
1639. DOI: 10.3182/20110828-6-IT-1002.00981.

https://doi.org/10.1016/j.compchemeng.2009.10.019
https://doi.org/10.1016/j.compchemeng.2009.10.019
https://doi.org/10.1090/S0025-5718-2014-02829-9
https://doi.org/10.1023/A:1004603514434
https://doi.org/10.1007/s10589-007-9109-x
https://doi.org/10.1137/130922793
https://doi.org/10.1137/130922793
https://doi.org/10.1007/s10589-018-9994-1
https://doi.org/10.2523/84917-MS
https://arxiv.org/abs/1409.1458
https://doi.org/10.2118/172998-pa
https://doi.org/10.3182/20110828-6-IT-1002.00981

References 156

JAHANSHAHI, Esmaeil; SKOGESTAD, Sigurd; HANSEN, Henrik. Control structure
design for stabilizing unstable gas-lift oil wells. In: 8TH IFAC Advanced Control of
Chemical Processes. 2012. P. 93–100.

JIANG, Z. K.; YUAN, X. M. New Parallel Descent-like Method for Solving a Class of
Variational Inequalities. Journal of Optimization Theory and Applications, v. 145,
n. 2, p. 311–323, 2010. ISSN 0022-3239. DOI: 10.1007/s10957-009-9619-z.

JOHANSSON, K.H. The quadruple-tank process: a multivariable laboratory process
with an adjustable zero. IEEE Transactions on Control Systems Technology, v. 8,
n. 3, p. 456–465, 2000. ISSN 10636536. DOI: 10.1109/87.845876.

JORDANOU, Jean; ANTONELO, Eric; CAMPONOGARA, Eduardo; AGUIAR, Marco
Aurelio. Recurrent Neural Network Based Control of an Oil Well. In: XIII Simpósio
Brasileiro de Automação Inteligente. 2017.

JORDANOU, Jean P.; CAMPONOGARA, Eduardo; ANTONELO, Eric; AGUIAR, Marco
Aurelio. Nonlinear Model Predictive Control of an Oil Well with Echo State Networks.
IFAC-PapersOnLine, v. 51, n. 8, p. 13–18, 2018. DOI: 10.1016/j.ifacol.2018.06.348.

KAMESWARAN, Shivakumar; BIEGLER, Lorenz. Convergence rates for direct tran-
scription of optimal control problems using collocation at Radau points. Computational
Optimization and Applications, v. 41, n. 1, p. 81–126, 2007. ISSN 0926-6003. DOI:
10.1007/s10589-007-9098-9.

KHALIL, H.K. Nonlinear Systems. Prentice Hall, 2002. (Pearson Education). ISBN
9780130673893.

KIRK, D.E. Optimal Control Theory: An Introduction. Dover Publications, 2004.
(Dover Books on Electrical Engineering Series).

KONTOGIORGIS, Spyridon; MEYER, Robert R. A variable-penalty alternating direc-
tions method for convex optimization. Mathematical Programming, Series B, 1998.
ISSN 00255610. DOI: 10.1007/BF02680549.

KOSMIDIS, Vassileios D.; PERKINS, John D.; PISTIKOPOULOS, Efstratios N. A mixed
integer optimization formulation for the well scheduling problem on petroleum fields.
Computers & Chemical Engineering, Elsevier, v. 29, n. 7, p. 1523–1541, 2005. ISSN
00981354. DOI: 10.1016/j.compchemeng.2004.12.003.

KOSMIDIS, Vassileios D.; PERKINS, John D.; PISTIKOPOULOS, Efstratios N. Op-
timization of Well Oil Rate Allocations in Petroleum Fields. Industrial & Engineer-
ing Chemistry Research, v. 43, n. 14, p. 3513–3527, 2004. ISSN 0888-5885. DOI:
10.1021/ie034171z.

KRISHNAMOORTHY, Dinesh; AGUIAR, Marco Aurelio; FOSS, Bjarne; SKOGESTAD,
Sigurd. A Distributed Optimization Strategy for Large Scale Oil and Gas Production
Systems. In: 2018 IEEE Conference on Control Technology and Applications (CCTA).
IEEE, Aug. 2018. P. 521–526. DOI: 10.1109/CCTA.2018.8511385.

KRISHNAMOORTHY, Dinesh; BERGHEIM, Elvira M.; PAVLOV, Alexey; FREDRIKSEN,
Morten; FJALESTAD, Kjetil. Modelling and Robustness Analysis of Model Predictive
Control for Electrical Submersible Pump Lifted Heavy Oil Wells. IFAC-PapersOnLine,
Elsevier B.V., v. 49, n. 7, p. 544–549, 2016. ISSN 24058963. DOI: 10.1016/j.ifacol.
2016.07.399.

https://doi.org/10.1007/s10957-009-9619-z
https://doi.org/10.1109/87.845876
https://doi.org/10.1016/j.ifacol.2018.06.348
https://doi.org/10.1007/s10589-007-9098-9
https://doi.org/10.1007/BF02680549
https://doi.org/10.1016/j.compchemeng.2004.12.003
https://doi.org/10.1021/ie034171z
https://doi.org/10.1109/CCTA.2018.8511385
https://doi.org/10.1016/j.ifacol.2016.07.399
https://doi.org/10.1016/j.ifacol.2016.07.399

References 157

KUNKEL, Peter; MEHRMANN, Volker. Optimal control for unstructured nonlinear differential-
algebraic equations of arbitrary index. Mathematics of Control, Signals, and Sys-
tems, v. 20, n. 3, p. 227–269, 2008. ISSN 09324194. DOI: 10.1007/s00498-008-0032-
1.

LEE, Yin Tat; SIDFORD, Aaron. Efficient Accelerated Coordinate Descent Methods and
Faster Algorithms for Solving Linear Systems. In: 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science. IEEE, 2013. P. 147–156. DOI: 10.1109/FOCS.
2013.24. eprint: 1305.1922.

LIN, Tian Yi; MA, Shi Qian; ZHANG, Shu Zhong. On the Sublinear Convergence Rate
of Multi-block ADMM. Journal of the Operations Research Society of China, Oper-
ations Research Society of China, v. 3, n. 3, p. 251–274, 2015. ISSN 21946698. DOI:
10.1007/s40305-015-0092-0. arXiv: 1408.4265.

LIU, Ji; WRIGHT, Stephen J. Asynchronous Stochastic Coordinate Descent: Parallelism
and Convergence Properties. SIAM Journal on Optimization, v. 25, n. 1, p. 351–376,
2015. ISSN 1052-6234. DOI: 10.1137/140961134. arXiv: 1403.3862.

LIU, Ji; WRIGHT, Stephen J.; RÉ, Christopher; BITTORF, Victor; SRIDHAR, Srikrishna.
An asynchronous parallel stochastic coordinate descent algorithm. Journal of Machine
Learning Research, v. 16, p. 285–322, 2015. ISSN 15337928. arXiv: 1311.1873.

MAREČEK, Jakub; RICHTÁRIK, Peter; TAKÁČ, Martin. Distributed Block Coordinate
Descent for Minimizing Partially Separable Functions. In: SPRINGER Proceedings in
Mathematics and Statistics. 2015. v. 134. P. 261–288. ISBN 9783319176888. DOI:
10.1007/978-3-319-17689-5_11. arXiv: 1406.0238.

MASELLA, J.M.; TRAN, Q.H.; FERRE, D.; PAUCHON, C. Transient simulation of two-
phase flows in pipes. International Journal of Multiphase Flow, v. 24, p. 739–755,
1998.

MENDES, Paulo RC; MAESTRE, Jose M; BORDONS, Carlos; NORMEY-RICO, Julio E.
A practical approach for hybrid distributed MPC. Journal of Process Control, Elsevier,
v. 55, p. 30–41, 2017.

MURRAY, Richard M. Recent research in cooperative control of multivehicle systems.
Journal of Dynamic Systems, Measurement, and Control, American Society of Me-
chanical Engineers, v. 129, n. 5, p. 571–583, 2007.

NOCEDAL, J.; WRIGHT, Stephen J. Numerical Optimization. Springer, 2006.

PLUCENIO, Agustinho; GANZAROLI, Cleber; PAGANO, Daniel J. Stabilizing gas-lift
well dynamics with free operating point. In: 2010. 2012 IFAC Workshop on Automatic
Control in Offshore Oil and Gas Production. 2012. P. 95–100.

PLUCENIO, Agustinho; PAGANO, Daniel; CAMPONOGARA, Eduardo; TRAPLE, A.;
TEXEIRA, Alex. Gas-lift optimization and control with nonlinear MPC. In: 1. ADVANCED
Control of Chemical Processes. 2009. P. 904–909. DOI: 10.3182/20090712-4-TR-
2008.00148.

PONTRYAGIN, Lev Semenovich; BOLTYANSKII, V. G.; GAMKRELIDZE, R. V.; MISHCHENKO,
E. F. Mathematical Theory of Optimal Processes. English Ed: INTERSCIENCE PUB-
LISHERS, 1962. P. 362.

RAWLINGS, James B.; STEWART, Brett T. Coordinating multiple optimization-based
controllers: New opportunities and challenges. Journal of Process Control, v. 18, n. 9,
p. 839–845, 2008.

https://doi.org/10.1007/s00498-008-0032-1
https://doi.org/10.1007/s00498-008-0032-1
https://doi.org/10.1109/FOCS.2013.24
https://doi.org/10.1109/FOCS.2013.24
1305.1922
https://doi.org/10.1007/s40305-015-0092-0
https://arxiv.org/abs/1408.4265
https://doi.org/10.1137/140961134
https://arxiv.org/abs/1403.3862
https://arxiv.org/abs/1311.1873
https://doi.org/10.1007/978-3-319-17689-5_11
https://arxiv.org/abs/1406.0238
https://doi.org/10.3182/20090712-4-TR-2008.00148
https://doi.org/10.3182/20090712-4-TR-2008.00148

References 158

RICHTÁRIK, Peter; TAKÁČ, Martin. Parallel coordinate descent methods for big data
optimization. Mathematical Programming, v. 156, n. 1-2, p. 433–484, 2016. ISSN
0025-5610. DOI: 10.1007/s10107-015-0901-6. arXiv: 1212.0873.

ROCKAFELLAR, R. Tyrrell. MONOTONE OPERATORS AND THE PROXIMAL POINT
ALGORITHM. SIAM Journal on Control and Optimization, 1976. ISSN 03630129.
DOI: 10.1137/0314056.

SASANE, Amol. Class Notes: Calculus of Variations and Optimal Control. 2004.
P. 63.

SAYDA, Atalla; TAYLOR, James. Modeling and Control of Three-Phase Gravilty Sepa-
rators in Oil Production Facilities. In: AMERICAN Control Conference ACC ’07. 2007.

SCATTOLINI, Riccardo. Architectures for distributed and hierarchical Model Predictive
Control – A review. Journal of Process Control, Elsevier Ltd, v. 19, n. 5, p. 723–731,
2009.

SILVA, Thiago Lima; CAMPONOGARA, Eduardo. A computational analysis of multi-
dimensional piecewise-linear models with applications to oil production optimization.
European Journal of Operational Research, Elsevier B.V., v. 232, p. 630–642, 2014.
ISSN 03772217. DOI: 10.1016/j.ejor.2013.07.040.

SILVA, Thiago Lima; CODAS, Andres; CAMPONOGARA, Eduardo. A Computational
Analysis of Convex Combination Models for Multidimensional Piecewise-Linear Approx-
imation in Oil Production Optimization. 2012 IFAC Workshop on Automatic, p. 292–
298, 2012.

SRINI, B; PALANKI, S; BON, D. Dynamic optimization of batch processes I . Character-
ization of the nominal solution. Computers and Chemical Engineering, v. 27, 2003.
DOI: 10.1016/S0098-1354(02)00116-3.

STASIAK, ME; PAGANO, DJ; PLUCENIO, A. A New Discrete Slug-Flow Controller for
Production Pipeline Risers. IFAC Proceedings Volumes, IFAC, v. 45, n. 8, p. 122–127,
2012. ISSN 14746670. DOI: 10.3182/20120531-2-NO-4020.00032.

STOER, J.; BULIRSCH, R. Introduction to Numerical Analysis. New York, NY: Springer
New York, 2002. v. 142, p. xiii–xiv. ISBN 978-1-4419-3006-4. DOI: 10.1007/978-0-387-
21738-3.

TAITEL, Y; BARNEA, D. Simplified transient simulation of two phase flow using quasi-
equilibrium momentum balances. International Journal of Multiphase Flow, v. 23,
n. 3, p. 493–501, 1997. ISSN 03019322. DOI: 10.1016/S0301-9322(96)00084-5.

TAITEL, Yehuda; SHOHAM, Ovadia; BRILL, JP. Simplified transient solution and sim-
ulation of two-phase flow in pipelines. Chemical Engineering Science, v. 44, n. 6,
p. 1353–1359, 1989. ISSN 00092509. DOI: 10.1016/0009-2509(89)85008-0.

TOSSERAMS, Simon. Distributed Optimization for Systems Design: An Augmented
Lagrangian Coordination Method. 2008. PhD thesis – Technische Universiteit Eind-
hoven. ISBN 9789038613505. DOI: 10.6100/IR636822.

VENKAT, Aswin N.; RAWLINGS, James B.; WRIGHT, Stephen J. Stability and optimality
of distributed model predictive control. In: PROCEEDINGS of the 44th IEEE Conference
on Decision and Control. IEEE, 2005. P. 6680–6685.

https://doi.org/10.1007/s10107-015-0901-6
https://arxiv.org/abs/1212.0873
https://doi.org/10.1137/0314056
https://doi.org/10.1016/j.ejor.2013.07.040
https://doi.org/10.1016/S0098-1354(02)00116-3
https://doi.org/10.3182/20120531-2-NO-4020.00032
https://doi.org/10.1007/978-0-387-21738-3
https://doi.org/10.1007/978-0-387-21738-3
https://doi.org/10.1016/S0301-9322(96)00084-5
https://doi.org/10.1016/0009-2509(89)85008-0
https://doi.org/10.6100/IR636822

References 159

WÄCHTER, Andreas; BIEGLER, Lorenz T. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, v. 106, n. 1, p. 25–57, 2006. ISSN 0025-5610. DOI: 10.1007/s10107-004-
0559-y.

WANG, S. L.; LIAO, L. Z. Decomposition Method with a Variable Parameter for a Class
of Monotone Variational Inequality Problems. Journal of Optimization Theory and
Applications, v. 109, n. 2, p. 415–429, 2001. ISSN 0022-3239. DOI: 10.1023/A:
1017522623963.

WILLERSRUD, Anders; IMSLAND, Lars; HAUGER, Svein Olav; KITTILSEN, Pål. Short-
term production optimization of offshore oil and gas production using nonlinear model
predictive control. Journal of Process Control, Elsevier Ltd, 2012. ISSN 09591524.
DOI: 10.1016/j.jprocont.2012.08.005.

WOHLBERG, Brendt. ADMM Penalty Parameter Selection by Residual Balancing. n. 18,
p. 1–13, 2017. arXiv: 1704.06209.

WRIGHT, Stephen J. Coordinate descent algorithms. Mathematical Programming,
v. 151, n. 1, p. 3–34, 2015. ISSN 14364646. DOI: 10.1007/s10107-015-0892-3. arXiv:
1502.04759.

XU, Meng; FADEL, Georges; WIECEK, Margaret M. Dual Residual in Augmented La-
grangian Coordination for Decomposition-Based Optimization. In: VOLUME 2B: 40th
Design Automation Conference. American Society of Mechanical Engineers, 2014. P. 1–
9. DOI: 10.1115/DETC2014-35103.

XU, Meng; FADEL, Georges; WIECEK, Margaret M. Dual Residual for Centralized
Augmented Lagrangian Coordination Based on Optimality Conditions. 2015. v. 137.
ISBN 0001002376. DOI: 10.1115/1.4029788.

YAO, Jing; GUAN, Zhi-Hong; HILL, David J. Passivity-based control and synchronization
of general complex dynamical networks. Automatica, Elsevier, v. 45, n. 9, p. 2107–
2113, 2009.

https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1023/A:1017522623963
https://doi.org/10.1023/A:1017522623963
https://doi.org/10.1016/j.jprocont.2012.08.005
https://arxiv.org/abs/1704.06209
https://doi.org/10.1007/s10107-015-0892-3
https://arxiv.org/abs/1502.04759
https://doi.org/10.1115/DETC2014-35103
https://doi.org/10.1115/1.4029788

160

APPENDIX A – CALCULUS OF VARIATIONS

Just like functions map a number from a domain of numbers to a counter-domain
of numbers, functionals map a function from a domain of functions into a number in a
counter domain of numbers.

Given a function f : R2 → R defined by f (x1, x2) = x1 + x2, f is a function and
f (1, 2) is the real number 3. Likewise, a function x : [t0, tf]→ X applied into a functional
I : X → R results in a real number, where [t0, tf] is the interval that x is defined and X
is a function space.

The concept of functionals may be better understood with some illustrative ex-
amples:

1. Area below a curve x: The area below a curve characterizes the classical notion
of integral. For a function x , the functional for its area Ia(x) is given by

Ia(x) =
∫ tf

t0
x(t) dt (341)

2. Length of a curve x: Having as input the function x in the set of rectifiable
curves (curves that can be approximated by an infinite number of tiny straight
lines), the length of the function x in the interval t ∈ [t0, tf] can be represented by
the functional

I`(x) =
∫ tf

t0

√
1 + ẋ2 dt (342)

3. Quadratic error: The quadratic error is a classical measure in several areas
of mathematics, including control theory. For a function x , the functional that
calculates the quadratic error with respect to a reference xref during a period
t ∈ [t0, tf] is given by

Ie(x) =
∫ tf

t0
(xref – x(t))2 dt (343)

4. Maximum value: The maximum value attained to a function in the interval [t0, tf].

Imax(x) = max
t∈[t0,tf]

x(t) (344)

Although functionals are not required to be integrals, in this work we are particu-
larly interested in functionals formed by integrals, in particular with the form

Definition 4 (Functional). A functional I : X → R is given by the equation

I(x) =
∫ tf

t0
F (x , ẋ , t) dt (345)

where X is a function space, with x : [t0, tf]→ RNx , and the function F : RNx × [t0, tf]→
R which is referred as the Lagrangian function.

APPENDIX A. Calculus of Variations 161

Remark. Although there are other types of functionals, e.g. the functional of the deriva-
tive at the point 0 (I(x) = ẋ(0)), the functionals of interest here are those defined by an
integral.

In particular, we are usually interested in the critical curves x∗ ∈ X that are solu-
tions for the problem of minimizing (or maximizing) a functional I. Before the problem
can be solved, the space in which the minimization of functionals take place and its
properties must be specified.

A.1 FUNCTION SPACE

The concept of continuity is essential for functionals, because the usage of a
functional is bound to the function space of its domain, for instance

I =
∫ tf

t0
F (x , ẋ , t) dt (346)

only makes sense if x belong to the space of the continuously differentiable functions
in the interval t ∈ [t0, tf].

To define these spaces, as the space of continuously differentiable functions first
the definitions for linear space, norm, distance, and normed linear space needed to be
established.

A linear space over R is defined by a set X together with the operations of
addition, + : X × X → X , and scalar multiplication, · : X × X → X , that satisfy the
following properties:

1. Associativity: x1 + (x2 + x3) = (x1 + x2) + x3.

2. Commutative of addition: x1 + x2 = x2 + x1.

3. Identity element of addition: There exists an element 0 ∈ X , such that x1 + 0 = x1.

4. Inverse element: For every x1 ∈ X there is a –x1 ∈ X , such that (x1) + (–x1) = 0.

5. Compatibility of multiplication: a(bx1) = (ab)x1.

6. Identity element of scalar multiplication: There exists and element 1, such that
1x1 = x1.

7. Distributivity of scalar multiplication with respect to vector addition: a(x1 + x2) =
ax1 + ax2.

8. Distributivity of scalar multiplication with respect to field addition: (a + b)x1 =
ax1 + bx1.

In addition, a linear function L : X → R is a map that satisfies:

APPENDIX A. Calculus of Variations 162

1. L(x1 + x2) = L(x1) + L(x2) for all x1, x2 ∈ X .

2. L(ax1) = aL(x1) for all a ∈ R and for all x1 ∈ X .

A linear space is considered a normed space, if there exists a function ‖·‖ : X →
[0,∞), named the norm, that has the following properties:

1. Zero norm: ‖x‖ = 0 if and only if x = 0.

2. Absolute scalability: ‖ax‖ = |a| ‖x‖ for all a ∈ R and for all x ∈ X .

3. Triangle inequality: ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖.

In a normed space it makes sense to establish distances between elements. We
define a distance function d : X × X → R, where the distance between an element x1
and x2 is given by d(x1, x2) = ‖x1 – x2‖. A distance function has the following properties:

1. d(x , y) ≥ 0 for all x and y in X .

2. d(x , y) = 0 if and only if x = y .

3. d(x , y) = d(y , x) for all x and y in X .

4. d(x , z) ≤ d(x , y) + d(y , z) for all x , y , and z in X .

A linear space X equipped with a distance function d is called a metric space.
The elements of a normed linear space can be of any type, e.g. numbers, matri-

ces, functions, etc. However, working with functionals the following normed spaces are
more important:

1. C[t0, tf] is the normed space formed by all the continuous functions x in the
interval [t0, tf]. The addition operation is defined by a pointwise addition, meaning
x1(t) + x2(t) = (x1 + x2)(t) for all t ∈ [t0, tf], and the scalar multiplication is defined
by ax(t) = (ax)(t) for all t ∈ [t0, tf]. The norm function is defined by

‖x‖ = max
t∈[t0,tf]

‖x(t)‖∞ (347)

Therefore, saying that the distance between x1(t) and x2(t) does not exceed ε
means that if we plot these curves we would see that x2(t) lays inside a band with
the borders (x1 + ε)(t) and (x1 – ε)(t), as shown in Figure 45.

2. C1[t0, tf] is the normed space that contains all the functions x(·) with continuous
first derivative in the interval t ∈ [t0, tf]. The addition and multiplication operations
are the same of the space C[t0, tf], however the norm is defined by

‖x‖ = max
t∈[t0,tf]

‖x(t)‖∞ + max
t∈[t0,tf]

‖ẋ(t)‖∞ (348)

APPENDIX A. Calculus of Variations 163

ε

ε

x1 + ε

x1 – ε

x1 x2

t

Figure 45 – The distance between functions x1 and x2 is ε

Thus, if x1(t) and x2(t) have a distance that does not exceed ε this means that

|x1(t) – x2(t)| < ε, ∀t ∈ [t0, tf], and (349a)

|ẋ1(t) – ẋ2(t)| < ε, ∀t ∈ [t0, tf] (349b)

The function space presented so far contains the continuous and continuous
differentiable functions with domain [t0, tf] and codomain R. However, when describing
practical minimization problems we want functions from the interval [t0, tf] to a particular
space Rd . Therefore we can define the space of functions (C[t0, tf])

d , the space of
continuous functions from [t0, tf] to Rd . The same definitions can be applied to define
the space of (C1[t0, tf])

d .
Beside the function continuity, which is given by the chosen function space, the

continuity of the functional itself must be considered. A functional I : X → R is said to
be continuous at x̄ if for every ε > 0 if there exists a δ > 0 such that

|I(x) – I(x̄)| < ε for all x ∈ X such that ‖x – x̄‖ < δ (350)

where the norm used in the second inequality is the norm of the function space X . A
functional I : X → R is said to be continuous if it is continuous at all x ∈ X .

We define a local minimum of the functional I as the function x∗ such that

I(x∗) ≤ I(x), for all x that satisfies ‖x∗ – x‖ < ε (351)

for some ε > 0, where the norm is a norm of a function. Conversely, a local maximum
of a functional I is a functional x∗ such that

I(x∗) ≥ I(x), for all x that satisfies ‖x∗ – x‖ < ε (352)

for some ε > 0. A function is said to be a local extremum, or merely an extremum, of
the functional I if it is a local minimum or a local maximum. Moreover, the function x∗ is

APPENDIX A. Calculus of Variations 164

a global minimum for I if

I(x∗) ≤ I(x), for all x ∈ X (353)

The concepts of global maximum and global extremum are analogous to their local
counterparts.

A.2 DERIVATIVE OF FUNCTIONALS

In the previous subsection, we defined the grounds for the calculus of variations
by introducing functionals, function spaces, and continuity in those contexts. However,
oftentimes problems have candidate functions that are not in a linear space. For in-
stance, consider a problem whose candidate functions, namely Xb, are the continu-
ously differentiable functions that have the initial value at x(0) = 0 and the final value at
x(1) = 1. It can be verified that Xb is not a linear space, given that for

x3 = x1 + x2, where x1, x2 ∈ Xb, (354)

the function x3 does not belong to the space Xb, since for x3(1) 6= 1.
This often happens with problems of vectors and functions, and to cope with it

we linearize the system around a region of interest. The same approach can be used
for functionals. To this end, recall the definition of the derivative of functions, to later
define the derivative of functionals.

The derivative of f : R→ R at the point z̄ is the approximation of f around z̄ by
an affine linear map f ′(z̄),

f (z̄ + hz) = f (z̄) + f ′(z̄)hz + ε(h)|hz | (355)

where hz ∈ R is a small scalar and the approximation error ε(hz)→ 0 as hz → 0.
In the same manner, for a functional I, the derivative at the function x̄ is given by

the linear map I′(x̄), such that

I(x̄ + h) = I(x̄) +
[
I′(x̄)

]
(h) + ε(h)‖h‖ (356)

where h : [t0, tf]→ R and the error functional ε(h)→ 0 as ‖h‖ → 0.
A linear map L : A→ R is always continuous only if A is a finite dimension space.

If A is an infinite-dimensional space, then the continuity of the linear map must also be
specified, because a linear map L : X → R is a continuous linear functional only if it is
linear and it is continuous.

The notion of functional derivatives can be formalized with the following definition.

Definition 5 (Fréchet Derivative). Let X be a normed linear space and I : X → R be a
functional. Then I is Fréchet differentiable at x̄ ∈ X if there is a continuous linear map
A : X → R and a map ε : X → R such that, for all h ∈ X,

I(x̄ + h) = I(x̄) + A(h) + ε(h)‖h‖, (357)

APPENDIX A. Calculus of Variations 165

and the error functional ε(h)→ 0 as ‖h‖ → 0. We write A = I′(x̄), where I′(x̄) is called
the Fréchet derivative of I at x̄ . Since I′(x̄) is a continuous linear operator we can write

A(h) = [I′(x̄)](h) = I′(x̄)h (358)

The latter form is preferred for readability in large equations.
In addition, if I is Fréchet differentiable for every function x ∈ X, then the func-

tional I is Fréchet differentiable.

The Fréchet derivative is unique for a given function x , as shown in the following
theorem.

Theorem 9. The Fréchet derivative of a Fréchet differentiable functional I : X → R at
the point x̄ ∈ X is unique.

Proof. Let L : X → R be a linear functional, if

L(h)
‖h‖ → 0 as ‖h‖ → 0 (359)

then L(·) = 0. By contradiction, let L(h0) 6= 0 for some nonzero h0 ∈ X . Assuming
hn = 1

nh0, note that if n → ∞ the norm ‖h‖ → 0, however using the linearity of L and
the homogeneity of the absolute, we have

lim
n→∞

L(hn)
‖hn‖

= lim
n→∞

1
nL(h0)

|1n |‖h0‖
=

L(h0)
‖h0‖

6= 0 (360)

that contradicts the assumption (359), therefore the conclusion that L(·) = 0 holds.
Let L1 : X → R and L2 : X → R be continuous linear functionals such that

I(x̄ + h) = I(x̄) + L1(h) + ε1(h)‖h‖, for all h ∈ X (361a)

I(x̄ + h) = I(x̄) + L2(h) + ε2(h)‖h‖, for all h ∈ X (361b)

with ε1 → 0 and ε2 → 0 as ‖h‖ → 0. Subtracting both equations

(L1 – L2)
‖h‖ = (ε1 – ε2)(h)→ 0 as ‖h‖ → 0 (362)

therefore L1 = L2.

If a function f has an extremum point (maximum or minimum) in z∗, its derivative
at z∗, df

dz (z∗) is 0. In the same way, If x∗ is an extremum of the functional I, then its
Fréchet derivative is I′(x∗) = 0, in the same manner that if a function f has a local
extremum at the point z∗, then df

dz (z∗) = 0.

Theorem 10. Let X be a normed linear space and I : X → R be a Fréchet differentiable
functional in x∗ ∈ X. If I has a local extremum at x∗, then I′(x∗) = 0.

APPENDIX A. Calculus of Variations 166

Proof. By definition if x∗ ∈ X is a minimum of I : X → R, then there is a r > 0 such that
I(x∗ + h) ≥ I(x∗) for all h in a ball ‖h‖ < r .

To prove by contradiction, we suppose that I′(x∗)h0 6= 0 for some h0 ∈ X . Assum-
ing

hn = –
1
n
|I′(x∗)h0|
I′(x∗)h0

h0 (363)

as n → ∞ we have ‖hn‖ → 0, and with a sufficiently large N we have ‖hn‖ < r for all
n > N. By definition of derivative

I(x∗ + hn) – I(x̄)
‖hn‖

=
I′(x∗)h0
‖hn‖

+ ε(hn) (364)

we know that

I′(x∗)hn
‖hn‖

=
–1

n
|I′(x∗)h0|
I′(x∗)h0

I′(x∗)h0∣∣∣–1
n
|I′(x∗)h0|
I′(x∗)h0

∣∣∣ ‖h0‖
= –
|I′(x∗)h0|
‖h0‖

(365)

For all n > N we have

–
|I′(x∗)h0|
‖h0‖

+ ε(hn) =
I(x∗ + hn) – I(x∗)

‖hn‖
≥ 0 (366)

taking the limit n→∞, we obtain that –|İx∗(h0)| ≥ 0 which contradicts the assumptions.
Therefore we conclude that I′(x∗) = 0.

The Fréchet derivative has good properties however its definition using limits is
difficult to work. We need a way to obtain the derivative that relies on the already known
and well-developed tools. For this matter, we can use a different notion of differentia-
bility. The Gateaux derivative of a functional is similar to the directional derivative for
functions. However, instead of taking the derivative in the direction of a vector, we take
the derivative in the direction of a function h ∈ X .

Definition 6 (Gateaux Derivative or First Variation). The functional I : X → R at the
point x̄ ∈ X has the Gateaux derivative (also known as first variation) in the direction
h ∈ X defined by

δI(x̄ , h) ≡ lim
ξ→0

I(x̄ + ξh) – I(x̄)
ξ

=
dI
dξ

(x̄ + ξh)
∣∣∣∣
ξ=0

(367)

if the limit exists. If the Gateaux derivative exists for all directions h ∈ X, then I is
Gateaux differentiable.

The notion of differentiability defined by Gateaux is weaker than the one defined
by Fréchet, since δI(x̄ , h) might be neither linear nor continuous with respect to h.
However for some cases, the Fréchet and the Gateaux derivative can be related:

APPENDIX A. Calculus of Variations 167

Theorem 11. Let functional I : X → R be Fréchet differentiable. Then I is also Gateaux
differentiable. Furthermore, the Gateaux and Fréchet derivative agree,

I′(x̄)h = δI(x̄ , h) (368)

for all h ∈ X.

Proof. Assuming h = ξĥ, the definition of Fréchet derivative gives

I(x̄ + ξĥ) = I(x̄) + I′(x̄)[ξĥ] + ε(ξĥ)‖ξĥ‖. (369)

Using the linearity of the Fréchet derivative and the homogeneous property of the norm,
we have

I(x̄ + ξĥ) – I(x̄)
ξ

= I′(x̄)ĥ +
|ξ|
ξ
‖ĥ‖ε(ξĥ) (370)

As ξ→ 0, ξh→ 0 and ε(ξh)→ 0, while |ξ|ξ = ±1. Therefore,

δI(x̄ , ĥ) = lim
ξ→0

[
I(x̄ + ξĥ) – I(x̄)

ξ
–
|ξ|
ξ
‖ĥ‖ε(ξĥ)

]
= I′(x̄)ĥ (371)

Note that the converse is not true, Gateaux differentiability does not imply Fréchet
differentiability.

One of the important outcomes of Theorem 11 is that we are able to compute the
Fréchet derivative applied to h by differentiating with respect to ξ at ξ = 0, as defined
by Gateaux derivative. Meaning that,

I′(x̄)h =
d
dξ

I(x̄ + ξh)
∣∣∣∣
ξ=0

. (372)

Some rules that are valid for the classical notion of derivatives carry to Fréchet
derivative (BERGER, 1977), for instance, the chain rule and the product rule.

The definition of the Fréchet derivative also allows expanding functionals using
Taylor series (ERNZERHOF, 1994). Given a functional I : X → R, it can be expanded
in the following form

I(x + h) = I(x) + I′(x)h + higher order terms. (373)

In the case that the higher order terms are truncated the approximation error ε(h)→ 0
as ‖h‖ → 0.

This notion leads to an important tool for the calculus of variations, the first
variation. The first variation does not differ from the definition of the Fréchet derivative
obtained using the Gateaux derivative. However, it can be understood with a different
intuition.

APPENDIX A. Calculus of Variations 168

Let I be a Fréchet differentiable functional, x̄ be a function in the space X , and
δx be a function close enough to 0 that can assume any shape given that it satisfies
the regularity condition of the space X . The variation δI on the functional I is caused by
“perturbing” the function x̄ with δx . The variation δI can be obtained using the Gateaux
derivative,

δI(x , δx) =
d
δξ

I(x̄ + ξδx)
∣∣∣∣
ξ=0

(374)

Since the target functional has the form (345),

I(x) =
∫ tf

t0
F (x , ẋ , t) dt , (375)

we can develop a generic form for the first variation of this functional.

Theorem 12 (First Variation). Given a Fréchet differentiable functional I : X → R
defined by

I(x) =
∫ tf

t0
F (x , ẋ , t) dt , (376)

where F is a continuously differentiable function with respect to x, ẋ , and t.
The first variation of I, namely δI, with a perturbation δx is given by

δI(x , δx) =
∫ tf

t0

[
∂F
∂x

(x , ẋ , t)δx +
∂F
∂ẋ

(x , ẋ , t)δẋ
]

dt . (377)

Proof. If the functional I is Fréchet differentiable, then the definition of the Gateaux and
Fréchet differentiations are interchangeable. Therefore

δI(x , δx) = I′(x)δx =
d
dξ

I(x + ξδx)
∣∣∣∣
ξ=0

. (378)

Replacing I(x + ξδx) with its definition results in

δI(x , δx) =
d
dξ

∫ tf

t0
F (x + ξδx , ẋ + ξδẋ , t) dt

∣∣∣∣∣
ξ=0

. (379)

Let us define an auxiliary variable y = x +ξδx , with the first derivative with respect
to t given by ẏ = ẋ + ξδẋ . By replacing y in the definition of I(x + ξδx), we obtain

δI(x , δx) =
d
dξ

∫ tf

t0
F (y , ẏ , t) dt ,

∣∣∣∣∣
ξ=0

. (380)

Since F is continuously differentiable with respect to its arguments, we can move
the differentiation to inside the integral,

δI(x , δx) =
∫ tf

t0

dF
dξ

(y , ẏ , t)
∣∣∣∣
ξ=0

dt , (381)

APPENDIX A. Calculus of Variations 169

and applying the total derivative rule we obtain

δI(x , δx) =
∫ tf

t0

[
∂F
∂y

(y , ẏ , t)
dy
dξ

+
∂F
∂ẏ

(y , ẏ , t)
dẏ
dξ

]∣∣∣∣
ξ=0

dt . (382)

Replacing y with x + ξδx , ẏ with ẋ + ξδẋ , and applying ξ = 0, we obtain

δI(x , δx) =
∫ tf

t0

[
∂F
∂x

(x , ẋ , t)δx +
∂F
∂ẋ

(x , ẋ , t)δẋ
]

dt . (383)

Sometimes the first variation is written as δI(x), without exposing the dependence
on the perturbation variable δx , for the sake of simplicity and readability. Alternatively,
the dependence on x can also be suppressed, representing only δI.

The first perturbation can be applied to multivariate functionals. For instance
given the functional

I(x , y) =
∫ tf

t0
F (x , y , ẋ , ẏ , t) dt , (384)

the first variational δI(x , y , δx , δy) is given by the sum of the partial derivatives multiplied
by the perturbation,

δI(x , y) =
∫ tf

t0

[
∂

∂x
F (x , y , t)δx +

∂

∂ẋ
F (x , y , t)δẋ

+
∂

∂y
F (x , y , t)δy +

∂

∂ẏ
F (x , y , t)δẏ

]
dt . (385)

A.2.1 Euler-Lagrange equation

In Theorem 10 we have seen that a function x∗ is an extremum with respect to a
functional I if the Fréchet derivative is zero at x∗. The Euler-Lagrange equation gives a
more tangible necessary condition for the optimality of functionals with integrals.

Theorem 13 (Euler-Lagrange Equation). Let I be a Fréchet differentiable functional of
the form

I(x) =
∫ tf

t0
F (x(t), ẋ(t), t) dt , (386)

where the function F is differentiable with respect to x, ẋ , and t. The function x(t) ∈
C1[t0, tf] passes through the points x(t0) = x0 and x(tf) = xf . If I has an extremum at x∗,
then x∗ satisfies the Euler-Lagrange equation:

∂F
∂x
(
x∗(t), ẋ∗(t), t

)
–

d
dt
∂F
∂ẋ
(
x∗(t), ẋ∗(t), t

)
= 0 (387)

for all t in [t0, tf]. Alternatively, in a more compact format:

∂F
∂x

–
d
dt
∂F
∂ẋ

= 0. (388)

APPENDIX A. Calculus of Variations 170

Proof. The proof follows by showing that the Euler-Lagrange is an implication of The-
orem 10. However, note that the set of curves in C1[t0, tf] that meet the conditions
x(t0) = x0 and x(tf) = xf does not form a linear space, so Theorem 10 does not apply
directly. Therefore, let us define the linear space H given by

H =
{
δx ∈ C1[t0, tf]

∣∣ δx(t0) = δx(tf) = 0
}

, (389)

which has the property that for all δx ∈ H, x∗(t0) + δx(t0) = x0 and x∗(tf) + δx(tf) = xf .
Which means that δx is allowed to perturbate at all t except the integral limits, otherwise
the sum of x∗ + δx will not pass through (t0, x0) and (tf , xf).

Call J : H → R a functional defined by

J(δx) = I(x∗ + δx) (390)

for all δx ∈ H. Notice that J has an extremum at J(0) = I(x∗).
By Theorem 10, if 0 is an extremum of J then J ′(0) = 0. So if the first variation is

applied with a perturbation δx ∈ H,

δJ(δx) =
∫ tf

t0

[
∂F
∂x

(x∗, ẋ∗, t)δx +
∂F
∂ẋ

(x∗, ẋ∗, t)δẋ
]

dt = 0, (391)

integrating by parts the second term, results in[
∂F
∂ẋ

(x∗, ẋ∗, t)δx(t)
]∣∣∣∣tf

t0
+
∫ tf

t0

[
∂F
∂x

(x∗, ẋ∗, t) –
d
dt
∂F
∂ẋ

(x∗, ẋ∗, t)
]
δx dt = 0. (392)

Notice that δx(t0) = δx(tf) = 0, therefore the term outside the integral vanishes.
The remaining terms are∫ tf

t0

[
∂

∂x
F (x∗, ẋ∗, t) –

d
dt
∂

∂ẋ
F (x∗, ẋ∗, t)

]
δx dt = 0, (393)

as the function δx can be any function in H, we use the Lemma 2, which is stated in
the following, to conclude that

∂

∂x
F (x∗, ẋ∗, t) –

d
dt
∂

∂ẋ
F (x∗, ẋ∗, t) = 0. (394)

In the following we give the fundamental lemma for the calculus of variations,
which supports the condition established by the Euler-Lagrange equation.

Lemma 2 (Fundamental Lemma). Given a particular function f ∈ C[t0, tf], if∫ tf

t0
f (t)h(t) dt = 0 (395)

APPENDIX A. Calculus of Variations 171

for every h ∈ C1[t0, tf] such that

h(t0) = h(tf) = 0 (396)

we conclude that

f (t) = 0 ∀t ∈ [t0, tf]. (397)

Proof. We will develop a proof by contradiction. Assume that there exists an interval
[t1, t2] ⊂ [t0, tf] in which f (t) > 0 (an equivalent demonstration can be made for the
assumption f (t) < 0).

As (395) is valid for every h, we choose h as

h(t) =


0 for t ∈ [t0, t1)
(t – t1)2(t – t2)2 for t ∈ [t1, t2]
0 for t ∈ (t2, tf]

(398)

Notice that the chosen h is continuously differentiable, even at the points t1 and t2.
The integral (395) becomes∫ tf

t0
f (t)h(t) dt =

∫ t1

t0
f (t)h(t) dt +

∫ t2

t1
f (t)h(t) dt +

∫ tf

t2
f (t)h(t) dt (399a)

=
∫ t2

t1
f (t)h(t) dt (399b)

=
∫ t2

t1
f (t)(t – t1)2(t – t2)2 dt > 0 (399c)

The inequality (399c) results from the assumption that f (t) > 0, and, at the same
time, h only takes nonnegative values in this interval. Since (399c) contradicts (395),
we conclude that

f (t) = 0 (400)

must hold for all t ∈ [t0, tf].

Remark. Lemma 2 can be modified to hold for a more restrictive condition. For instance
the case where h ∈ Cp[t0, tf]. The proof follows in the same way as the proof given in
the lemma, however one must choose h = (t – t1)p+1(t – t2)p+1 for the interval [t1, t2],
which guarantees that the picked h is p-differentiable.

	Title page
	Approval
	Resumo
	Resumo Expandido
	Abstract
	Contents
	Introduction
	Motivation
	Contributions
	Publications
	Organization

	Augmented Lagrangian for Optimal Control Problems of DAE
	Background
	Differential Algebraic Equations
	Optimal Control Problems for ODEs
	Pontryagin's minimum principle
	Optimal Control Problems of DAEs

	Solution Methods
	Indirect Method
	Direct Method

	Discretization Schemes
	Collocation Method
	Multiple-Shooting

	Augmented Lagrangian
	Augmented Lagrangian Algorithm for Optimal Control Problems
	Algorithm
	Mathematical Properties

	Application
	Van der Pol Oscillator
	Four Tanks

	Distributed Optimal Control
	Literature Review
	Distributed Dynamic Systems
	Controlling Distributed Systems
	Related Works
	Contribution

	Algorithms
	Coordinate descent
	Augmented Lagrangian with Coordinate Descent
	Alternating Direction Multiplier Method (ADMM)

	Distributed Systems
	Proposed Algorithms for Distributed Optimal Control
	Augmented Lagrangian with Coordinate Descent
	Alternating Directions Multiplier Method
	Fully Decoupling the Subsystems
	Jacobi ADMM

	Numerical Analysis
	Coordinate Descent with Augmented Lagrangian
	ADMM
	Fully Decoupling the System
	Bipartite-Jacobi ADMM
	Overall Comparison
	Discussion

	Application: An Oil and Gas Production Network
	Motivation
	Network Model
	Well model
	Riser Model

	Scenario description
	Experimental Setup
	Analysis of experimental results
	Conclusion

	Conclusion
	References
	Calculus of Variations
	Function Space
	Derivative of Functionals
	Euler-Lagrange equation

		2022-03-20T21:22:16-0300

		2022-03-21T08:46:22-0300

