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Profa. Patŕıcia Nascimento Pena, Dra.
Universidade Federal de Minas Gerais

Prof. Gustavo da Silva Viana, Dr.
Universidade Federal do Rio de Janeiro

Prof. Max Hering de Queiroz, Dr.
Universidade Federal de Santa Catarina
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RESUMO

O diagnóstico de falhas é uma tarefa fundamental em sistemas de engenharia com o intuito
de evitar comportamentos indesejados que podem afetar o funcionamento de equipamentos
ou a segurança humana. Neste trabalho, somente o diagnóstico de falhas em Sistemas a
Eventos Discretos (DESs) modelados como autômatos são considerados. Recentemente,
uma nova arquitetura para diagnóstico descentralizado, denominada Diagnóstico Śıncrono
Descentralizado, foi proposta. No Diagnóstico Śıncrono Descentralizado, os diagnosti-
cadores locais são calculados com base no comportamento livre de falha dos componentes
do sistema, o que reduz o tamanho dos diagnosticadores locais ao ser implementado. Em-
bora esse método tenha sido implementado com sucesso, sua principal desvantagem é o
crescimento da linguagem livre de falha do sistema para o diagnóstico, reduzindo a sua
eficiência. A fim de contornar este problema, é proposto um novo método de diagnóstico
śıncrono descentralizado (DSD) refinando o status do diagnóstico por meio de cluster
autômatos dos componentes locais. Para tanto, um protocolo de comunicação entre os
estimadores locais e um diagnosticador, descrito em um algoritmo de diagnóstico é pro-
posto. O método elimina o crescimento da linguagem livre de falha para o diagnóstico,
garantindo o mesmo desempenho de diagnóstico do método centralizado tradicional. Além
disso, uma implementação prática do método em um sistema didático de manufatura é
apresentada.

Palavras-chave: Sistemas a eventos discretos. Autômatos. Diagnóstico de falhas. Di-
agnóstico śıncrono.



RESUMO EXPANDIDO

Introdução

O desenvolvimento da Indústria 4.0 aumenta a implementação de sistemas automatizados
em inúmeras aplicações, como Internet das Coisas Industrial, Robôs Autônomos, Integração
de Sistemas e Segurança Cibernética. O poder de processamento desses sistemas está
aumentando, enquanto que o tamanho de seus componentes está diminuindo, e há mais
capacidade de comunicação entre os diferentes sistemas e seus componentes. Além disso,
esses sistemas podem estar fisicamente distribúıdos ou até mesmo constrúıdos de forma
descentralizada. Esses recursos levam a sistemas integrados e cada vez mais complexos,
conhecidos como Sistemas Ciber-F́ısicos (SCFs), que incluem ambientes virtuais e f́ısicos.

A modelagem de SCF como um Sistema a Evento Discreto (SED) é útil para tais fins.
Um SED é um sistema dinâmico cujo espaço de estados é um conjunto discreto, e cuja
evolução é provocada pela ocorrência de eventos que representam mudanças instantâneas
no sistema que podem modificar seu estado atual. Portanto, uma vez que um grande
número de processos dos SCFs não depende diretamente da passagem do tempo, mas
dessa abstração de eventos, um SED pode ser usado para modelar esses sistemas. A
chegada ou partida de cargas em um armazém, uma mudança de estado do sensor, a
conclusão de uma tarefa ou uma falha mecânica são exemplos de eventos. Podem ser
classificados como observáveis quando sua ocorrência puder ser identificada por um sensor
ou não-observável se sua ocorrência não estiver associada a um sensor.

Como a evolução de estados de um SED é dada pela ocorrência de eventos e não pela pas-
sagem do tempo, equações diferenciais ou diferenças não são apropriadas para representar
este tipo de sistema. Os formalismos mais comuns utilizados para descrever e manipular
SEDs são autômatos e redes de Petri (LAWSON, 2004; DAVID; ALLA, 2005; CASSAN-
DRAS; LAFORTUNE, 2008). Neste trabalho, apenas sistemas modelados por autômatos
são considerados. Autômatos são grafos direcionados, em que os vértices representam os
estados, e os arcos são rotulados com eventos que provocam a mudança de um estado
para outro (LAWSON, 2004). Quando modelado por autômatos, é posśıvel construir um
modelo de planta global complexo de um SED a partir de modelos mais simples de seus
subsistemas.

Os sistemas ciber-f́ısicos, como qualquer sistema de engenharia, são suscet́ıveis à ocorrência
de falhas que podem afetar o comportamento esperado, podendo colocar em risco a
segurança dos operadores ou agravar problemas nos equipamentos. Portanto, uma técnica
de diagnóstico de falha que pode detectar com precisão a ocorrência de um evento de falha
em SCFs mais complexos é uma tarefa fundamental que deve ser realizada.

Vários trabalhos na literatura abordam o problema de diagnóstico de falhas de SEDs
modelados por autômatos (SAMPATH et al., 1995, 1996; DEBOUK et al., 2000; QIU;
KUMAR, 2006; DAIGLE et al., 2007; LEFEBVRE; DELHERM, 2007; CARVALHO et al.,
2012; CABASINO et al., 2012; BASILE, 2014; CABRAL et al., 2015; WHITE et al., 2019;
CABRAL; MOREIRA, 2020; VERAS et al., 2021). Recentemente, uma nova arquitetura
para diagnóstico, denominada Diagnóstico Śıncrono Descentralizado, foi proposta. No



Diagnóstico Śıncrono Descentralizado, diagnosticadores locais são calculados com base
no comportamento livre de falha dos componentes do sistema, com o objetivo de reduzir
o tamanho dos diagnosticadores para implementação. Embora esse método tenha sido
implementado com sucesso, sua principal desvantagem é o crescimento da linguagem livre
de falha do sistema para o diagnóstico, reduzindo a sua eficiência.

A fim de contornar este problema, um método de diagnóstico śıncrono descentralizado
com coordenador (DSDC) é proposto, refinando o status do diagnóstico por meio de
cluster autômatos dos componentes locais. Para tanto, um protocolo de comunicação entre
os estimadores locais e o coordenador é proposto. Este método impede o crescimento
da linguagem livre de falha para o diagnóstico, garantindo o mesmo desempenho de
diagnóstico do método centralizado tradicional. Além disso, uma implementação prática
do método em um sistema didático de manufatura é apresentada.

Objetivos

O objetivo principal deste trabalho é desenvolver um método descentralizado de diagnóstico
śıncrono em que a linguagem livre de falha observada e aceita para o diagnóstico śıncrono
seja igual à linguagem do sistema livre de falha observada.

Primeiramente, exploram-se métodos de diagnóstico de falhas em SEDs modelados como
autômatos. Em seguida, uma técnica que refina o status do diagnóstico em um módulo de
sincronização é proposta. Finalmente, é apresentado que este método impede o crescimento
da linguagem livre de falhas para o diagnóstico.

Objetivos espećıficos

1. Investigar métodos de diagnóstico de falhas em SEDs modelados como autômatos,
especialmente o método de diagnóstico śıncrono;

2. Desenvolver um método para eliminar o crescimento da linguagem livre de falhas
aceita pelo diagnóstico śıncrono;

3. Implementar o método em um sistema didático de manufatura;
4. Analisar o custo computacional do método;

Metodologia

Primeiramente, este trabalho consiste em realizar um levantamento bibliográfico sobre
os métodos de diagnóstico de falhas abordados na literatura, com ênfase no diagnóstico
śıncrono. A partir disso, um estudo sobre o crescimento da linguagem livre de falha aceita
pelo diagnóstico śıncrono é apresentado para corroborar com a proposta desta dissertação.

Propõe-se o desenvolvimento de um método para eliminar esse crescimento da linguagem
com o objetivo de obter a mesma linguagem observada pelo sistema. Para tanto, os
componentes livre de falha do sistema e suas observações locais para o diagnóstico são
utilizados. Considerando esses componentes, um protocolo de comunicação utilizando



a estimativa local dos componentes e um diagnosticador para apresentar o status do
diagnóstico são propostos. O protocolo de comunicação envia clusters correspondentes
à observação de um evento para o diagnosticador, o qual realiza operações com esses
clusters com o intuito de informar a ocorrência da falha. Além disso, o procedimento de
diagnóstico considera as posśıveis sincronizações de eventos não-observáveis em comum.
Os algoritmos desenvolvidos foram implementados em um sistema didático de manufatura,
considerando três estações que processam uma peça de trabalho.

Resultados e discussões

O método proposto considera caracteŕısticas relevantes de componentes de um determinado
sistema, tais como um evento ser observável para um componente e não-observável para
outro ou possuir eventos não-observáveis em um comum entre os componentes. O protocolo
de comunicação envia os clusters de acordo com o evento observado pelos estimadores
locais, entretanto, também considera os eventos não-observáveis em sua composição. No
procedimento de diagnóstico, obtém-se tanto o resultado sobre ocorrência da falha, quanto
a real sincronização dos eventos não-observáveis. Por conta dessa sincronização, é posśıvel
obter a mesma linguagem observada do sistema sem o crescimento da linguagem que
pode ocorrer no diagnóstico śıncrono. Portanto, sistemas que eram não-sincronamente
diagnosticáveis e monoliticamente diagnosticáveis podem ser diagnosticados com o método
desenvolvido. Além disso, a implementação em um sistema real não-diagnosticável de forma
śıncrona, representa a viabilidade do método com um custo computacional menor do que
a implementação do modelo com a planta completa na maioria dos casos.

Considerações finais

Neste trabalho, um método para o diagnóstico śıncrono descentralizado com coordenador
com o objetivo de eliminar o crescimento da linguagem aceita pelo diagnóstico é proposto.
Uma revisão de literatura sobre arquiteturas de diagnóstico de falhas é apresentada a fim
de contextualizar a problemática do crescimento da linguagem no diagnóstico śıncrono.
Um estudo de caso é apresentado para indicar que determinados sistemas podem ser
monoliticamente diagnosticáveis e não-sincronamente diagnosticáveis. O método proposto
visa contornar este problema com o desenvolvimento de dois algoritmos: um protocolo
de comunicação e um procedimento de diagnóstico. Os algoritmos operam em conjunto
e, com isso, conseguem identificar a ocorrência da falha mesmo em sistemas que ocorrem
a não sincronização de eventos não-observáveis considerando o diagnóstico śıncrono. A
implementação do método em um sistema real com eventos não-observáveis em comum e
não-sincronamente diagnosticável, uma planta didática de manufatura, mostra a eficácia
do método. Além disso, em sistemas com muitas operações em paralelo, e que possuem em
sua maior parte eventos observáveis, o método desenvolvido traz um custo computacional
menor do que a implementação do modelo da planta completa com o mesmo poder de
diagnóstico. Como trabalhos futuros, almeja-se implementar o método em CLPs e estudar
posśıveis atrasos de comunicação.

Palavras-chave: Sistemas a eventos discretos. Autômatos. Diagnóstico de falhas. Di-
agnóstico śıncrono.



ABSTRACT

Fault diagnosis is a fundamental task that must be performed in engineering systems
in order to avoid undesired behaviors that can affect equipment or human safety. In
this work, we consider fault diagnosis of Discrete Event Systems (DESs) modeled as
automata. Recently, a new architecture for diagnosis called Decentralized Synchronous
Diagnosis (DSD) has been proposed. In the DSD, local diagnosers are computed based
on the fault-free behavior of the system components with the view to reduce the size
of the local diagnosers for implementation. Although this method has been successfully
implemented, its main drawback is the growth of the fault-free language of the system for
diagnosis, which reduces the diagnosis efficiency. In order to circumvent this problem, in
this work, we propose a decentralized synchronous diagnosis method with coordination
(DSDC) that refines the diagnosis status using cluster automata of the local components.
To do so, we also propose a communication protocol between local state estimators and the
coordinator. We show that this method prevents the growth of the fault-free language for
diagnosis, which guarantees the same diagnosis performance as the traditional centralized
diagnosis method. Furthermore, a practical implementation of the method to a didactic
manufacturing system is also presented.

Keywords: Discrete-Event Systems. Automata. Fault diagnosis. Synchronous Diagnosis.
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1 INTRODUCTION

The development of Industry 4.0 increases the implementation of automated sys-
tems in countless applications such as Industrial Internet of Things, Autonomous Robots,
System Integration, and Cyber-security. In this context, automated systems are becoming
more interconnected with more computation power between different systems and their
components. Also, the system-human interaction is constantly changing to provide safer
cooperation between them. In addition, these systems can be physically distributed or
even built in a decentralized way. These features lead to integrated and more complex
systems known as Cyber-Physical Systems (CPSs), which include virtual and physical
environments.

A CPS is usually modeled as a Discrete Event System (DES). A DES is a dynamic
system that has a discrete state space, and its evolution is driven by the occurrence of
events that represent instantaneous changes in the system that can modify its current
state. Therefore, since a large number of CPSs’ processes do not depend directly on time
passage but this event abstraction, a DES can be used to model these systems. The arrival
or departure of loads on a warehouse, a sensor state change, the completion of a task, or
a mechanical failure are examples of events. They can be classified as observable when
their occurrence can be identified by a sensor or unobservable if their occurrence is not
associated with a sensor.

Since the state evolution of a DES is driven by the occurrence of events, differential
or difference equations are not appropriate to represent this type of system. The most
common formalisms used to describe and analyze a DES behavior are automata and Petri
nets (LAWSON, 2004; DAVID; ALLA, 2005; CASSANDRAS; LAFORTUNE, 2008). In
this work, we only consider systems modeled as automata. Automata are directed graphs,
where the vertices represent the states, and the arcs are labeled with events that provoke
a change from a state to another (LAWSON, 2004). Usually, the automaton complete
behavior model of a system can be obtained from the automata models of its subsystems.

Cyber-physical systems, like any engineering system, are subject to the occurrence
of faults that can affect their expected behavior which can endanger the safety of oper-
ators or aggravate equipment problems. Therefore, a fault diagnosis technique that can
accurately detect a fault event occurrence in more complex CPSs is a fundamental task
that must be performed. Since the systems are more interconnected and interdependent,
a fault event occurrence in one component can spread to its connected ones impacting the
entire system. Thus, the fault diagnosis is even more relevant in Industry 4.0 applications
analysis. In this work, we address the fault diagnosis problem for Discrete Event Systems
modeled as automata to be applied in CPSs.

Several works in the literature address the problem of fault diagnosis of DESs
modeled by automata (SAMPATH et al., 1995, 1996; DEBOUK et al., 2000; QIU; KUMAR,
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2006; DAIGLE et al., 2007; LEFEBVRE; DELHERM, 2007; CARVALHO et al., 2012;
CABASINO et al., 2012; BASILE, 2014; CABRAL et al., 2015; WHITE et al., 2019) and
synchronous diagnosis (CABRAL; MOREIRA, 2020; VERAS et al., 2021). In the seminal
work of Sampath et al. (1995, 1996), the authors proposed the notion of diagnosability of
DESs and the monolithic diagnosis scheme. In order to diagnose the fault event occurrence,
it is necessary to compare both fault-free and the post-fault behaviors of the global plant
model. The system is diagnosable if the fault event can always be detected and isolated
after a bounded number of events observations. The fault event is usually modeled as
an unobservable event since its occurrence does not immediately cause a change in the
sensors’ readings (CASSANDRAS; LAFORTUNE, 2008).

In Sampath et al. (1995), a diagnoser that can verify the system diagnosability
and provide a diagnosis status is proposed. In order to compute this diagnoser, the global
system model is modified to build a twin-plant that corresponds to the global system model
with labeled states. In this case, each state receives the label F if it is reached by a sequence
of events that contains the fault, and N , otherwise. The diagnoser is then obtained by
computing the observer automaton of the twin-plant. Although the diagnoser presented
in Sampath et al. (1995) guarantees an accurate fault diagnosis status, its computation
is, in general, avoided since, in the worst-case, the state-space of the diagnoser grows
exponentially with the cardinality of the state-space of the plant model (SAMPATH et al.,
1995, 1996; HASHTRUDI ZAD et al., 2003; QIU; KUMAR, 2006).

In Cabral et al. (2015), a Petri net diagnoser (PND) based on the fault-free model
of the system is proposed. The PND provides the state estimate of the fault-free behavior
model of the system after the observation of a sequence. If the state estimate is empty
after an observation, the fault event is detected. Different from Sampath et al. (1995), the
diagnoser grows polynomially according to the plant size. Furthermore, methods for im-
plementation of the PND on Programmable Logic Controllers (PLC) are presented. Other
works also address the fault diagnosis problem in a monolithic way for a robust diagnosis
(CARVALHO et al., 2012), for computation of minimal diagnosis bases (SANTORO et al.,
2017) and for systems modeled as Petri nets (CABASINO et al., 2012).

Although the monolithic diagnosis approach can be applied to several DESs, there
are many applications where the diagnosis information is only available locally. For those
systems, decentralized (DEBOUK et al., 2000; QIU; KUMAR, 2006; WANG et al., 2007)
and distributed (QIU; KUMAR, 2005; KEROGLOU; HADJICOSTIS, 2014, 2018) archi-
tectures are more appropriated. In the following, these architectures will be presented.

In Debouk et al. (2000), the fault diagnosis approach called decentralized diagnosis
is presented. In Protocol 3 of Debouk et al. (2000), the authors extend the work presented in
Sampath et al. (1995) for a decentralized architecture. In this context, local diagnosers are
computed based on the global system model, considering local observation sites which lead
to local observable event sets. The local diagnosers do not communicate with each other.
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The fault event occurrence is diagnosed when at least one local diagnoser identifies its
occurrence. When it does, the local diagnoser sends the diagnostic status to a coordinator
that informs the system operator that the fault has occurred. This Protocol is explored in
several works in the literature, such as Qiu and Kumar (2006) and Wang et al. (2007). In
Debouk et al. (2000), the notion of decentralized diagnosability, known as codiagnosability,
is also presented. The definition of diagnosability can be seen as a particular case of the
notion of codiagnosability. Methods to verify the codiagnosability are presented in Qiu
and Kumar (2005) and Moreira et al. (2011).

A different architecture for DES, called distributed diagnosis, is proposed in Qiu and
Kumar (2008) and Keroglou and Hadjicostis (2018). In this context, the local diagnosers
can communicate between them and exchange information regarding event observations
and the state estimate of the system. This exchanged information is used to refine the
diagnosis, i .e., to perform a more accurate diagnosis. The main drawback of the decentral-
ized and distributed approaches is that the local diagnosers are obtained from the global
plant model, which can grow exponentially with the number of system components. Thus,
the local diagnosers can also grow exponentially, leading to a high computational cost for
diagnosis.

In order to avoid the use of the global plant model for fault diagnosis, the modular
architecture is proposed in Debouk et al. (2002) and Contant et al. (2006). In these works,
it is assumed that the fault event is modeled in a single component of the system, and
notions of modular diagnosability are presented. Moreover, the cited works also consider
two assumptions: (i) there are no common unobservable events between the components,
and (ii) the faulty component model has persistent excitation, i .e., the faulty component
model always generates a new event. In practice, the same fault event can occur in more
than one component model and in Contant et al. (2006) a method for the verification of
the persistent excitation property is not presented. Thus, assumptions (i) and (ii) limit
the application of this diagnosis approach.

A comparison between the main diagnosis architectures proposed in the literature
is shown in Figure 1. Notice that, in Figure 1, G represents the global plant model
and G1,G2, . . . ,Gr are the component models of the global plant behavior G , where
G is obtained composing the local system models. In Figure 1 (a), Po represents the
observation of observable events which are communicated to a single diagnoser Gd . In
Figure 1 (b) and 1 (c), we present the decentralized and distributed scheme, respectively.
In these schemes, local diagnosers represented by G1,G2, and G3 computed based on the
global system models with local observations represented by Po1 ,Po2 , and Po3 . Notice
that, in Figure 1 (c), the local diagnosers can communicate between each other through
channels c1,2, c2,3, and c1,3. Finally, in Figure 1 (d), the modular scheme is presented
where it is supposed that the faulty component model is G1. Thus, a single diagnoser Gd1

is computed in G1 with local event communication. In addition, the model behavior for
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G1 ‖ G2 ‖ ‖ Gr
. . .

G

Gd

Po

(a) Monolithic scheme (b) Decentralized scheme

(c) Distributed scheme

G1 ‖ G2 ‖ ‖ Gr
. . .

G

Gd1

Po1

(d) Modular scheme

Figure 1 – Comparison between the main diagnosis architectures proposed in the litera-
ture:the monolithic scheme (a); the decentralized scheme (b); the distributed
scheme (c); and the modular scheme (d).

the diagnosis is based on the faulty component.
More recently, a new diagnosis strategy, called synchronous diagnosis, has been

proposed in Cabral and Moreira (2020). In this approach, local state estimators computed
from the fault-free behavior automata of the system components are implemented. No-
tions of synchronous diagnosability and codiagnosability and a method to verify these
properties are presented in Cabral and Moreira (2020). Since in the synchronous diagnosis
strategy, the local diagnosers are based on the local system models instead of the global
system model, the local diagnosers do not grow exponentially with the number of system
components. Moreover, the assumptions needed for modular diagnosis are not considered
in the synchronous approach.

Although the method has been successfully used in real systems, the drawback
of the synchronous diagnosis strategy is that the fault-free observable language for syn-
chronous diagnosis can be a larger set than the fault-free observable language of the
system. This shows that monolithically diagnosable systems cannot be synchronously
codiagnosable. In order to decrease the exceeding language for synchronous diagnosis, the
distributed synchronous diagnosis scheme is proposed in Cabral and Moreira (2020). In
this scheme, the local diagnosers can exchange information regarding state estimate and
event observations. The distributed scheme can reduce the exceeding language but not
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D1[GN1 ] D2[GN2 ] Dr[GNr ]b b b
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(a) Centralized/conditional scheme

b b b‖ ‖ GrG2G1 ‖
G

D1[GN1 ] D2[GN2 ] Dr[GNr ]b b b

Σ1,o Σ2,o Σr,o

(b) Decentralized scheme

G1 G2 G3‖ ‖
G

Σ1,1
o Σ2,2

o Σ3,3
o

D1 D2 D3

ch2,3ch1,2 ch1,3

(c) Distributed scheme

Figure 2 – Synchronous diagnosis schemes

eliminate it, i .e., the distributed synchronous approach still can present an exceeding lan-
guage. The architectures proposed for the synchronous diagnosis are depicted in Figure 2,
where Di [GNi

] represents the local diagnosers computed from the local fault-free behavior
models, Σo is the set of observed events, Σi ,o is the set of local observations and chi ,j

represents the communication channel between the local diagnosers.
In this master thesis, we propose a decentralized synchronous diagnosis with coor-

dination (DSDC) method, which eliminates the exceeding fault-free language accepted for
the synchronous diagnosis approach to the fault-free language generated by the system.
In the synchronous diagnosis scheme, the language grows due to the loss of unobserv-
able events synchronization. In order to avoid this loss of synchronization, we propose
in this work a coordinator that, based on the local state estimate, verifies the correct
synchronization of unobservable events after the observation of an event. To do so, local
state estimators send cluster automata of the fault-free behavior component models to the
coordinator. We show that by using the DSDC method one can reconstruct the observed
fault-free language of the system without using the global system model.

We show that the computational complexity is smaller than implementing the
global system behavior model for diagnosis. Since we compute the unobservable reach
of the fault-free behavior after each observable event occurrence, this state estimate can
only grow if the local component models have a large number of transitions labeled
with unobservable events. In practice, this feature has been modified with Industry 4.0
development, where more sensors are being used to communicate their signals reducing
the number of unobservable events.
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1.1 OBJECTIVES

The main goal of this work is to develop a decentralized synchronous diagnosis
with coordination method where the observed fault-free language accepted for synchronous
diagnosis is equal to the observed fault-free system language.

Firstly, we explore fault diagnosis schemes in the DES framework modeled as
automata. Then, we propose a technique that refines the diagnosis status with a communi-
cation protocol and a coordinator. Finally, we show that this method prevents the growth
of the fault-free language for diagnosis.

1.1.1 Specific objectives

1. Investigating fault diagnosis methods of DESs modeled as automata, especially the
synchronous diagnosis method;

2. Develop a method to eliminate the exceeding fault-free language accepted by the
synchronous diagnosis scheme;

3. Implement the method in a didactic manufacturing system;

4. Analyze the computational cost of the method.

1.2 WORK ORGANIZATION

This work is organized as follows. In Chapter 2, the fundamentals concepts about
DESs modeled as automata are presented. In Chapter 3, the notion of diagnosability of
DESs considering the classical approach and the definition of synchronous codiagnosability
are introduced. Also, the growth of the language accepted for synchronous diagnosis is
illustrated. The decentralized synchronous diagnosis with coordination method is proposed
in Chapter 4. In Chapter 5, the decentralized synchronous diagnosis with coordination
method applied to a real system is presented. Finally, in Chapter 6 the conclusions of this
work along with its contributions and future works are presented.
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2 FUNDAMENTALS OF DISCRETE EVENT SYSTEMS

A Discrete Event System (DES) is a dynamic system with a discrete state space,
and its evolution depends on the occurrence of, usually, asynchronous events. Events can
be seen as instantaneous actions that change the state reached by the system. In this
work, only automata are considered as modeling formalism to describe DES.

In order to introduce the concepts of automata, we first consider the notion of
languages and its characteristics. The formal definitions used in this work can also be
found in Cassandras and Lafortune (2008).

2.1 LANGUAGES

In this work, Σ is denoted as the event set of a Discrete Event System (DES) and
σ as a generic event. A sequence of events forms a trace. If a trace does not contain any
event, it is called the empty trace and the symbol ε is used to represent it. ∥s∥ represents
the length of trace s . The empty trace ε has length equal to zero. Definitions of language
and live language are stated in the sequel.

Definition 2.1 (Language). A language L defined over an event set Σ is a set of finite-
length traces formed from events in Σ.

Definition 2.2 (Live language). A language L is said to be live if for all t ∈ L, exists σ

such that tσ ∈ L.

For example, the language L = {ε, a, aa, ab, bc, abc} is defined over the event set
Σ = {a, b, c} and it consists of six traces, including the empty trace ε. In the following,
operations used to manipulate languages are presented.

2.1.1 Language operations

Since languages are sets, all set operations can be applied to languages. The con-
catenation is the main operation involved in the construction of traces, and consequently
languages, from an event set Σ. Consider the example aforementioned, where the trace
aa ∈ L is an element of the language L. This trace is formed by the concatenation of
the event a with another event a. The empty string ε is the identity element of the
concatenation, i .e., tε = εt = t , for any trace t .

Definition 2.3 (Concatenation). Let L1,L2 ⊆ Σ⋆, then:

L1L2 = {t ∈ Σ⋆ : (t = t1t2) where (t1 ∈ L1) and (t2 ∈ L2)}

A trace s is in L1L2 if it can be obtained by the concatenation of a trace t1 ∈ L1

with a trace t2 ∈ L2
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The set of all finite traces that can be formed with the elements of Σ is denoted
by Σ⋆ and it includes the empty trace ε. The notation ⋆ represents the Kleene-closure
operation. Languages defined over Σ are subsets of Σ⋆. Sets ∅, Σ and Σ⋆ are also languages.

Definition 2.4 (Kleene-Closure). Let L ⊆ Σ⋆, then:

L⋆ = {ε} ∪ L ∪ LL ∪ LLL ∪ ...

The concatenation of a finite number of elements of L is an element of L⋆. The
empty string ε represents the concatenation of “zero” elements. Moreover, the operation
⋆ is idempotent, i .e., (L⋆)⋆ = L⋆.

Some important concepts regarding traces are the prefix, subtrace and suffix. Let
s = tuv , where s is a trace and t , u, v ∈ Σ⋆, then it can be stated that: t is the prefix of
s , u is the subtrace of s , and v is the suffix of s . Notice that, ε and s are also prefixes,
subtraces, and suffixes of s .

The prefix-closure operation of a language L is defined in the sequel.

Definition 2.5 (Prefix-closure). Let L ⊆ Σ⋆, then:

L = {t ∈ Σ⋆ : (∃u ∈ Σ⋆)[tu ∈ L]}

The prefix-closure of L is the language represented by L which contains all the
prefixes of the traces of L. By definition, the language L is a subset of L, i .e. L ⊆ L. A
language L is said to be prefix-closed if L = L.

For a language L = ∅, L = ∅ but if L ̸= ∅, then ε ∈ L. Furthermore, ∅⋆ = {ε} and
{ε}⋆ = {ε}. Also, the concatenation between the empty set and a language is equal to
the empty set, i .e., ∅L = L∅ = ∅.

Another operation that can be applied to traces is the projection, from a larger set
of events, Σl , to a smaller set of events, Σs , where Σs ⊂ Σl . Cassandras and Lafortune
(2008) present the formal definition as follows.

Definition 2.6 (Projection). The projection P l
s : Σ

⋆
l → Σ⋆

s is defined as:

P l
s(ε) = ε,

P l
s(σ) =

 σ, if σ ∈ Σs ,

ε, if σ ∈ Σl \ Σs ,

P l
s(tσ) = P l

s(t)P
l
s(σ), for all t ∈ Σ⋆

l ,σ ∈ Σl ,

where \ denotes set difference.

According to definition 2.6, applying the projection to a trace s erases events from
Σl that do not belong to Σs . The inverse projection can also be defined as follows.
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Definition 2.7 (Inverse projection). The inverse projection P l–1
s : Σ⋆

s → 2Σ
⋆
l is defined as:

P l–1
s (u) = {t ∈ Σ⋆

l : P l
s(t) = u}.

The inverse projection operation applied to a trace t with events from Σs results in
a set constituted by all traces that can be formed with the events of Σl which projection
is equal to trace u.

The projection and inverse projection operations can also be applied to languages.
In this case, these operations are applied to all traces of the language.

Example 1. Let Σl = {a, b, c} and consider the subsets Σ1 = {a, b} and Σ2 = {b, c}. The
language L = {c, cca, cab, cbcab} ⊂ Σ⋆

l . Consider the two projections Pi : Σ⋆
l → Σ⋆

i , i =

1, 2. We have that:
P1(L) = {ε, a, ab, bab}

P2(L) = {c, cc, cb, cbcb}

P–1
1 ({ε}) = {c}⋆

P–1
2 ({b}) = {a}⋆{b}{a}⋆

In the next section, the automata formalism that is used to represent languages is
presented.

2.2 AUTOMATA

An automaton is a device that is capable of representing a language giving well-
defined rules and it is defined in the following (CASSANDRAS; LAFORTUNE, 2008).

Definition 2.8. An automaton, denoted by G, is a four-tuple

G = (Q ,Σ, f , q0)

where Q is the set of states, Σ is the finite set of events, f : Q × Σ → Q is the partial
transition function, and q0 is the initial state.

In this work, the marked states symbolism is not used and it is omitted from the
tuple definition.

The transition function f (q1,σ) = q2 represents that there is a transition from state
q1 to state q2 labeled with the event σ, which can be extended to any trace of the generated
language of the automaton. The feasible event function is defined as ΓG : Q → 2Σ, where
it is the set of all events σ for which f (q ,σ)!, and “!” denotes that the function is defined.

An automaton is represented by a directed graph called state transition diagram.
The vertices represent the states, and the arcs are labeled with events from one vertex
to another (LAWSON, 2004). In order to represent the initial state of the automaton, an
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Figure 3 – State transition diagram of automaton G of Example 2.

arc that does not have a previous state is included. In the following, an example of an
automaton and its state transition diagram is presented.

Example 2. Let G be an automaton which state transition diagram is illustrated in
Figure 3. The state and event sets of G are Q = {0, 1} and Σ = {a, b}, respectively. The
initial state of G is q0 = 0. The feasible event function is defined as: ΓG (0) = {a, b}
and ΓG (1) = {b}. The transition function is defined as: f (0, a) = 0, f (0, b) = 1 and
f (1, b) = 1.

The notion of the language generated by an automaton is presented in the following.

Definition 2.9 (Generated language). The generated language of an automaton G =

(Q ,Σ, f , q0), L(G), is

L(G) = {t ∈ Σ⋆ : f (q0, t)!},

For the sake of simplicity, in this work, the generated language of G is represented
as L. The language L represents all the traces that can be built by following the transitions
of the state transition diagram starting at the initial state, i .e., f (q0, t)!. Thus, a trace
t ∈ L if, and only if, it corresponds to an admissible path in the state transition of G .
It is important to notice that L is prefix-closed by definition since a trace in L is only
possible if all its prefixes are also possible to be generated by G . Furthermore, if f is a
total function over its domain, then L = Σ⋆. If Q = ∅, the language generated by G is
also the empty set. If ΓG (q) ̸= ∅ for all q ∈ Q , the language generated by G is said to be
live.

For two automata S = (QS ,Σ, fS , q0,S ) and G = (Q ,Σ, f , q0), S is said to be a
subautomaton of G if fS (q0,S , t) = f (q0, t) for all t ∈ L(S ). Notice that this condition
implies that QS ⊆ Q , q0,S = q0, and L(S ) ⊆ L. This definition also implies that the
state transition diagram of S is a subgraph of that of G (CASSANDRAS; LAFORTUNE,
2008).

In the next section, automata operations are defined.

2.2.1 Operations on automata

There are some operations that can be used to modify the language in order to
modify an automaton. In this context, there are unary operations for a single automaton
and operations for more than one automaton that are usually used for compositions
(CASSANDRAS; LAFORTUNE, 2008).
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(a) (b)

Figure 4 – Automaton G (a) and Ac(G) (b).

The unary operation transforms the state transition diagram of an automaton while
the event set Σ remains unchanged. In the following, the definition of accessible part of
an automaton is presented.

Definition 2.10 (Accessible part). The accessible part of an automaton G, Ac(G), is
defined as:

Ac(G) = (Qac ,Σ, fac , q0),

where Qac = {q ∈ Q : (∃s ∈ Σ⋆)[f (q0, s) = q ]}, and fac = f |Qac×Σ→Qac
.

The notation f |Qac×Σ→Qac
means that function f is restricted to a smaller domain

of the accessible states Qac .
The accessible part of an automaton G produces an automaton Ac(G), where all

the states and its related transitions that are not reachable from the initial state q0 are
deleted. It is important to notice that this operation does not affect the generated language
of G , L(G).

In the following, an example to show the accessible part of an automaton operation
is presented.

Example 3. Let G be the automaton depicted in Figure 4(a) with the set of states Q =

{0, 1, 2, 3} . The accessible part of G is represented in Figure 4(b), where Qac = {0, 1, 2}.

The composition operations are used to obtain a single automaton from two or
more automata. In this work, only one composition operation on automata is defined: the
parallel compositions. This operation is used to compute an automaton model of a system
from its subsystems models (CASSANDRAS; LAFORTUNE, 2008).

In general, systems are composed by smaller components or subsystems that in-
teract between themselves. The component behavior can be internal or coupling, and
are modeled by private and common events, respectively. The parallel composition, also
named synchronous composition, is the operation which is capable of integrating individual
systems components while considering their private behavior. This operation is formally
defined as follows.
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Definition 2.11 (Parallel composition). Let G1 = (Q1,Σ1, f1, q0,1) and G2 = (Q2,Σ2, f2, q0,2)

be two automata. The parallel composition of G1 and G2 is the automaton:

G1∥G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f1∥2, (q0,1, q0,2)),

where

f1∥2((q1, q2),σ) =



(f1(q1,σ), f2(q2,σ)) if σ ∈ ΓG1
(q1) ∩ ΓG2

(q2);

(f1(q1,σ), q2) if σ ∈ ΓG1
(q1) \ Σ2;

(q1, f2(q2,σ)) if σ ∈ ΓG2
(q2) \ Σ1;

undefined, otherwise.

According to definition 2.11, a common event, i .e., an event in Σ1 ∩ Σ2, can only
be executed if G1 and G2 executes it simultaneously. The private events, i .e., those in
(Σ1 \Σ2)∪ (Σ2 \Σ1) can be executed whenever they are possible in G1 or in G2. Therefore,
the parallel composition allows each component to execute their private behavior and only
synchronizes the common behavior of the components.

The parallel composition is equivalent to the product composition if Σ1 = Σ2 since
all transitions will be synchronized. If Σ1∩Σ2 = ∅, then G1∥G2 is the concurrent behavior
of G1 and G2 because there are no synchronized transitions. Let Pi = (Σ1∪Σ2)

⋆ → Σ⋆
i be

two projections for i = 1, 2. The language generated by G1∥G2 is equal to L(G1∥G2) =

P–1
1 (L(G1)) ∩ P–1

2 (L(G2)). Moreover, this operation has the associative property, i .e.,
(G1∥G2)∥G3 = G1∥(G2∥G3).

In the following, an example of product and parallel composition operations is
presented.

Example 4. Let G1 = (Q1,Σ1, f1, q0,1) and G2 = (Q2,Σ2, f2, q0,2) be two automata, where
Σ1 = {a, b, c} and Σ2 = {a, b, d}. The state transition diagrams of G1 and G2 are shown
in Figure 5 (a) and 5 (b), respectively. The automata Gprod= G1×G2 and Gpar= G1∥G2

that correspond to the product and parallel composition are presented in Figures 6 (a) and
6 (b), respectively. Notice that in automaton Gprod all transitions are labeled with events
from Σ1 ∩ Σ2 = {a, b}, whereas Gpar models the synchronization of G1 and G2 and their
concurrent behavior through events Σ1 ∪ Σ2 = {a, b, c, d}.

2.2.2 Partially-observed automata

The event set of an automaton G can be partitioned as Σ = Σo∪̇Σuo , where Σo

and Σuo denote the set of observable and unobservable events, respectively. An event is
observable when its occurrence can be detected by a sensor, for example. Fault events
are usually modeled as unobservable events since their occurrence does not immediately
provoke a change in sensor readings (CASSANDRAS; LAFORTUNE, 2008). In order
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Figure 5 – Automata G1 and G2 of Example 4.
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Figure 6 – Automata Gprod and Gpar of Example 4.

to improve the readability of this work, the unobservable events are represented inside
brackets in the automata transition state diagrams.

The observed language of a system G can be obtained from its generated language
L by applying the projection operation Po(L), where Po : Σ⋆ → Σ⋆

o . Given a system
with observable and unobservable events, it is necessary to know the set of possible states
reachable from a state q ∈ Q after the occurrence of an observable event. The unobservable
reach represents this set of states and its definition is presented in the following.

Definition 2.12 (Unobservable reach). The unobservable reach of a state q ∈ Q , denoted
as UR(q), is defined as:

UR(q) = {y ∈ Q : (∃t ∈ Σ⋆
uo)[(f (q , t) = y)]}.

The unobservable reach is extended to sets of states A ⊆ Q as:

UR(A) =
⋃
q∈A

UR(q).

Definition 2.12 shows that the unobservable reach of a state q ∈ Q is a set formed
by all states reached from q by sequences of transitions labeled with unobservable events.
The unobservable reach can be used to build an observer automaton from G , Obs(G ,Σo),
that generates the observed language of G , Po(L). This automaton is defined as follows.

Definition 2.13 (Observer automaton). The observer automaton of G with respect to a
set of observable events Σo , denoted as Obs(G ,Σo), is given by:

Obs(G ,Σo) = (Qobs ,Σo , fobs , q0,obs),



Chapter 2. Fundamentals of Discrete Event Systems 30

(a) G

1,30 2
a b

(b) Obs(G ,Σo)

Figure 7 – State transition diagram of automaton G of Example 5 (a), and observer
automaton of G , Obs(G ,Σo) (b).

where Qobs ⊆ 2Q . fobs and q0,obs are obtained from the Algorithm 1 (CASSANDRAS;
LAFORTUNE, 2008; BASILIO et al., 2010).

Algorithm 1 Observer automaton
Input: G = (Q ,Σ, f , q0), and the observable event set Σo , where Σ = Σo∪̇Σuo .
Output: Observer automaton Obs(G ,Σo) = (Qobs ,Σo , fobs , q0,obs).

1: Define qobs ← UR(q0), Qobs ← {q0,obs} and Q̃obs ← Qobs

2: Q̄obs ← Q̃obs and Q̃obs ← ∅
3: for each B ∈ Q̄obs do
4: Γobs(B)← (

⋃
q∈B UR(q)) ∩ Σo

5: for each σ ∈ Γobs(B) do
6: fobs(B ,σ)← UR({q ∈ Q : (∃y ∈ B)[q = f (y ,σ)]})
7: end for
8: Q̃obs ← Q̃obs ∪ fobs(B ,σ)
9: end for

10: Qobs ← Qobs ∪ Q̃obs
11: Repeat lines 2 to 10 until all accessible part of Obs(G ,Σo) is constructed

In the sequel, an example of an observer automaton of a system G is presented.

Example 5. Let G be an automaton which state transition diagram is shown in Figure
7 (a). The state set of G is Q = {0, 1, 2, 3} and the event set of G is Σ = Σo∪̇Σuo =

{a, b,σuo}, where Σo = {a, b} and Σuo = {σuo}. The observer automaton of G , Obs(G ,Σo),
is illustrated in Figure 7 (b). If we consider that the system has executed the trace
t = aσuob, the observed trace is Po(t) = ab, where Po : Σ⋆ → Σ⋆

o . It is important to
notice that the state reached after the observation of the trace Po(t) = ab in Obs(G ,Σo) is
q = {2}. The states of Obs(G ,Σo) correspond to state estimates of G after the observation
of a trace.

2.3 FINAL REMARKS

In this chapter, the formal definition of a DES language and the automata formalism
used to represent DESs behavior are presented. In this work, only DESs modeled as
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automata are considered and it is important to analyze their behavior. The unary and
composition operations have also been presented in this chapter.

In the next chapter, the problem of fault diagnosis of DES for the monolithic
(SAMPATH et al., 1995) and decentralized synchronous schemes (CABRAL; MOREIRA,
2020) are presented.
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3 DIAGNOSIS OF DES

In this chapter, the notion of diagnosability of Discrete Events Systems considering
the monolithic approach (SAMPATH et al., 1995) is presented. This method is explored
in this chapter because it is the first one presented in the literature and it can be used
to explain the diagnosis problem in the context of DESs. The monolithic approach uses
the global system model in order to diagnose the fault event occurrence. However, the
global system model can grow exponentially with the number of system components in
the worst-case scenario.

Thus, in Cabral and Moreira (2020) the synchronous diagnosis approach (CABRAL;
MOREIRA, 2020) is presented in order to reduce this computational complexity by
using only the fault-free behavior component models for diagnosis. The synchronous
diagnosis has been successfully implemented in manufacturing systems and it has a smaller
computational complexity than the monolithic approach. However, the fault-free accepted
language for synchronous diagnosis can be a larger set than the observed fault-free language
of the global system.

The idea of this Master thesis is to refine the synchronous diagnosis strategy in
order to restore the diagnosis power of the monolithic approach, i .e, diagnose systems
that are diagnosable and may be not synchronously diagnosable, without the exponential
computational cost with respect to the number of system components. Therefore, in this
chapter, both methods are presented.

3.1 MONOLITHIC DIAGNOSIS OF DES

The notion of diagnosability of a language L is to identify an occurrence of deter-
mined unobservable event from the observation of the language generated by the system.
Since fault events are modeled as unobservable events, it is said that the system is diag-
nosable with respect to the projection Po : Σ⋆ → Σ⋆

o and the fault event, if the fault event
occurrence can be identified. Let G be the automaton that models a system and L be the
language generated by G . The fault event set is denoted as Σf , where Σf ⊆ Σuo . For the
sake of simplicity, it is assumed that there is only one fault event σf , i .e., Σf = {σf }. If the
system has more than one fault event type, each fault type can be considered separately
(WANG et al., 2007). In the following, the definition of faulty and fault-free traces of a
system is presented (CASSANDRAS; LAFORTUNE, 2008).

Definition 3.1 (Faulty and fault-free traces). A faulty trace is a sequence s which contains
the fault event σf . On the other hand, a fault-free trace does not contain it.

The fault-free language LN ⊂ L denotes the set of all fault-free traces of L. Notice
that, LN = LN . In addition, the set of all fault traces of L is given by LF = L \ LN . The
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subautomaton of G that generates the language LN and LF are represented as GN and
GF , respectively.

In Sampath et al. (1995), the definition of language diagnosability is presented
considering two assumptions:

A1. The language generated by the system is live;

A2. There is no cycle of unobservable events in the system.

Then, the following definition of language diagnosability can be stated (SAMPATH
et al., 1995).

Definition 3.2 (Language diagnosability). The prefix-closed and live language L is diag-
nosable with respect to the projection Po : Σ⋆ → Σ⋆

o and Σf if

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ∥t∥ ≥ z ⇒ Po(st) ̸∈ Po(LN ))

where ∥.∥ denotes the length of a trace.

It is also important to remark that there are works for fault diagnosis that do not
consider assumption A2. In this work, assumption A2 is not necessary as well.

The definition 3.2 indicates that L is diagnosable, if and only if, all fault traces
with arbitrarily long length do not have the same projection as any fault-free trace of LN .
Thus, if L is diagnosable, it is always possible to detect and isolate the occurrence of fault
events within a bounded number of event occurrences.

In Sampath et al. (1995), a diagnoser automaton, denoted as Gd , that can be used
to verify the diagnosability of L and to diagnose a system, is presented. This diagnoser
is built based on a labeling automaton, denoted as Gl , computed from the plant model
G . The automaton Gl is obtained by labeling the states of G according to the traces that
reach them. If a trace that contains the fault event σf reaches a state of G , it is labeled
with F , otherwise, it is labeled with N . The diagnoser automaton Gd is the observer of
Gl with respect to its observable events, i .e., Gd = Obs(Gl ,Σo).

Definition 3.3 (Diagnoser automaton). The diagnoser automaton Gd with respect to the
faulty set Σf and the observable events set Σo is given by:

Gd = (Qd ,Σo , fd , q0,d ),

where Qd ⊆ 2Q×{N ,F}. The transition function fd , and the initial state q0,d are defined
according to Algorithm 2.

The state transition diagram of automaton Al is illustrated in Figure 8. It is
important to notice that the language generated by Gl and G are the same. Furthermore,
there are two types of states q ∈ Q according to the trace that reaches q , ql = (q ,N ) if
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Algorithm 2 Diagnoser automaton Gd

Input: G = (Q ,Σ, f , q0).
Output: Gd = (Qd ,Σo , fd , q0,d )

1: Define automaton Al = (Ql ,Σf , fl , q0,l ), where Ql = N ,F , q0,l = N , fl (N ,σf ) = F ,
and fl (F ,σf ) = F

2: Compute the labeling automaton Gl = G∥Al
3: Compute the diagnoser automaton Gd = Obs(Gl ,Σo)

Figure 8 – State transition diagram of automaton Al .

q is reached by a fault-free trace and ql = (q ,F ) if q is reached by a faulty trace. The
generated language of Gd is the natural projection of the generated language of G , L, i .e.,
L(Gd ) = Po(L).

If the automaton Gd reaches a state labeled only with F , it indicates that the fault
event has certainly occurred and it is diagnosed. On the other hand, if a state is labeled
only with N , it represents that the fault event has not been executed by the system. States
that have both labels are called uncertain states, indicating that the occurrence of the fault
event is not certain. This occurs when an observed generated trace can be mapped both in
a fault-free trace and in a faulty trace. In order to verify the diagnosability of a language
L using Gd , it is necessary to search for indeterminate cycles in Gd . Indeterminate cycles
are cycles of uncertain states that are associated to both faulty and fault-free cycles in
the plant G . If there is an indeterminate cycle in Gd , the language L generated by G is
not diagnosable.

In the sequel, an example that illustrates the construction of the diagnoser automa-
ton Gd for a given plant G is presented.

Example 6. Let G be the system depicted in Figure 9(a), such that Σ = Σo∪̇Σuo =

{a, b, c,σu ,σf }, where Σo = {a, b, c} and Σuo = {σu ,σf }. Automaton Gl = G∥Al is
illustrated in Figure 9(b). Finally, in the Figure 9(c) the diagnoser automaton Gd computed
from the observer of Gl with respect to its observable event set Σo , Gd = Obs(Gl ,Σo) is
presented.

Notice that the initial state of Gd is {0N }, which corresponds to the unobservable
reach of the initial state of Gl . After the occurrence of event a, Gd reaches state {1N ; 2F}.
The observations of traces ac and acb leads to states {3N ; 4N ; 5F} and {0N ; 2F}, respec-
tively. It is important to remark that all these states are labeled with N and F , correspond-
ing to uncertain states, which means that the occurrence of the fault event is uncertain.
There is an uncertain cycle formed by the states {1N ; 2F}, {3N ; 4N ; 5F}, {0N ; 2F} and
it is necessary to verify if this cycle is also indeterminate. In this case, all the states of the
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Figure 9 – Automaton G (a), Gl (b), Gd (c), and G ′d (d). Adapted from (CABRAL, 2017).

unique cycle of Gl associated to this uncertain cycle have the label N , i .e., only with states
reached by fault-free traces. Thus, this cycle is not indeterminate. If the system executes
the fault trace aσf (cb)

n , the fault event is diagnosed when Gd reaches state {5F}. Since
there are no indeterminate cycles in Gd , the language of G is diagnosable with respect to
the projection Po : Σ⋆ → Σ⋆

o and Σf .
Let us now consider that the observable event set of G is Σ′o = {b, c} and the

unobservable event set is Σuo = {a,σu ,σf }. The diagnoser G ′d considering Σ′o as the set
of observable events is shown in Figure 9 (d). Notice that the states {0N ; 1N ; 2F} and
{3N ; 4N ; 5F} forms an uncertain cycle. Differently from the uncertain cycle of Gd , this
is an indeterminate cycle since it is associated with cycles in Gl labeled with N and F ,
for example, cycle formed by the states {0N }, {1N }, {3N }, and {4N }, and {2F} and
{5F} in Gl . Thus, the language generated by G, L, is not diagnosable with respect to the
projection P ′o : Σ⋆ → Σ⋆

o and Σf .

Remark 3.1. The diagnoser presented in this work is used to illustrate the diagnosability
definition (Definition 3.2). However, this work does not compute the observers for a
diagnoser computation (SAMPATH et al., 1995).

It is important noticing that the diagnoser automaton Gd is computed based on an
observer, and its construction is in general avoided since, in the worst-case, the state-space
of the diagnoser grows exponentially with the cardinality of the state-space of the plant
model.
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3.2 SYNCHRONOUS DIAGNOSIS

In the decentralized diagnosis scheme proposed in (CABRAL; MOREIRA, 2020)
the system G is supposed to be formed by r local components, such that G = ∥ri=1Gi .
Local diagnosers Di are implemented for each local component Gi and they are computed
from the fault-free behavior models of Gi = (Qi ,Σi , fi , q0,i ), GNi

= (QNi
,Σi \Σf , fNi

, q0,i ),
i = 1, . . . , r . In this setting, the set of local events Σi is partitioned into observable, Σi ,o ,
and unobservable, Σi ,uo , event sets, such that Σi = Σi ,o∪̇Σi ,uo . It is important to remark
that in the decentralized setting, an event can be observable to local diagnoser Di and
unobservable to local diagnoser Dj , i .e., Σi ,o ∩Σj ,uo is not necessarily equal to the empty
set for i , j ∈ {1, . . . , r} and i ̸= j .

Since the decentralized synchronous diagnosis (DSD) scheme proposed in Cabral
and Moreira (2020) is performed based on the fault-free local component models GNi

and with local observations, the fault-free language for synchronous diagnosis, LNa
, can

be larger than the fault-free system language LN due to the loss of synchronizations
(CABRAL; MOREIRA, 2020). Language LNa

can be written as:

LNa
= ∩ri=1P

o–1

i ,o (Pi ,o(LNi
)),

where Po
i ,o : Σ⋆

o → Σ⋆
i ,o and Pi ,o : Σ⋆ → Σ⋆

i ,o are projections. Then, the following definition
of synchronous codiagnosability can be stated (CABRAL; MOREIRA, 2020).

Definition 3.4 (Synchronous codiagnosability). Let GN = ∥ri=1GNi
, where GNi

is the
automaton that models the fault-free behavior of Gi . Assume that LNi

denotes the language
generated by GNi

, for i = 1, . . . , r . Let Po : Σ⋆ → Σ⋆
o , with Σo = ∪ri=1Σi ,o . Then, L is

said to be synchronously codiagnosable with respect to Po , LNi
, i = 1, . . . , r , and Σf if

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ∥t∥ ≥ z ⇒ Po(st) ̸∈ LNa
).

□

Definition 3.4 of synchronous codiagnosability of a language L is equivalent to
definition 3.2 of diagnosability for a system where the fault-free language is LNa

and the
faulty language is LF .

Since Po(LN ) ⊆ LNa
= ∥Po(LNi

) (CABRAL; MOREIRA, 2020), then a system
can be diagnosable with respect to Po , LN and Σf according to Definition 3.2 and not
synchronously codiagnosable according to Definition 3.4. The growth of the fault-free
observable language LNa

for DSD scheme is associated with the lost of synchronization of
common unobservable events between two or more components of the system.

In Cabral and Moreira (2020) two architectures for synchronous diagnosis are pre-
sented: (i) the centralized and (ii) the decentralized. In the centralized scheme, all local
diagnosers Di are implemented in one unique site and they receive all information re-
garding event observations trough a unique communication channel. Thus, the centralized
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(a) G1 (b) G2

Figure 10 – Automata G1 and G2 of case study.

synchronous diagnosis is a particular case of the decentralized synchronous diagnosis, since
in the centralized setting, an observable event is observable to all components where it is
defined.

Remark 3.2. In Cabral and Moreira (2020), a method for the verification of synchronous
codiagnosability is presented. Although the verification is exponential according to the com-
ponents number, the synchronous diagnosis method considers only the fault-free behavior
model of the system components. Therefore, this growth is avoided for the diagnosis.

In the sequel, a case study is presented to show the growth of the fault-free language
LNa

for the synchronous diagnosis.

3.3 CASE STUDY

Consider a system G composed of two modules G1 and G2 depicted in Figure 10.
The event sets of the two modules are Σ1 = {a, c, e, g ,σ1}, Σ2 = {e, h,σ1,σ2,σf }. The
observable event sets of G1 and G2 are Σ1,o = {a, c, e, g}, Σ2,o = {e, h}, respectively.
The sets of unobservable events of G1 and G2 are Σ1,uo = {σ1}, Σ2,uo = {σ1,σ2,σf },
respectively. The fault event set is Σf = {σf }. Automaton G = G1∥G2, and the composed
fault-free behavior automaton GN are shown in Figures 11 and 12, respectively. The
fault-free behavior of automata G1 and G2, denoted by GN1

and GN2
, respectively, are

shown in Figure 13. All automata considered in this case study are taken from Cabral
(2017).

Since all synchronous diagnosis schemes are based on the observation of the fault-
free behavior of the system components, we can compare the accepted fault-free languages
for the different diagnosis methods using observers1. According to definition 2.13, the
language generated by an observer is the projection of the generated language of the original
automaton (CASSANDRAS; LAFORTUNE, 2008). The computation of an observer is
presented in Algorithm 1. In the sequence, we present the observer automata of GN1

, GN2
,

1 It is importante to remark that the use of observers in this document is only to simplify the case study.
In Cabral et al. (2017) and Cabral and Moreira (2020) observers are also avoided in order to escape
from their computational exponential growth in the worst case scenario.
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Figure 11 – Automaton G of case study.

Figure 12 – Automaton GN of case study.

(a) GN1 (b) GN2

Figure 13 – Automata GN1
and GN2

of case study.
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(a) Obs(GN1 ,Σ1,o) (b) Obs(GN2 ,Σ2,o)

Figure 14 – Automata Obs(GN1
,Σ1,o) and Obs(GN2

,Σ2,o) of case study.

Figure 15 – Automaton Obs(GN ,Σo) of case study.

Figure 16 – Automaton Ga
N of case study, Ga

N = Obs(GN1
,Σ1,o)∥Obs(GN2

,Σ2,o).
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Figure 17 – Cardinality of the exceeding language generated by the decentralized syn-
chronous diagnosis scheme L≤nExc,Na

(◦) for different values of n for case study.

and GN , Obs(GN1
,Σ1,o), Obs(GN2

,Σ2,o), and Obs(GN ,Σo), respectively, in Figures 14
and 15.

Since, in the decentralized synchronous diagnosis scheme, state estimators of
the fault-free system component models are implemented in parallel, we can model
the fault-free language LNa

by making the parallel composition of the observers Ga
N=

Obs(GN1
,Σ1,o)∥Obs(GN2

,Σ2,o), depicted in Figure 16 (CABRAL; MOREIRA, 2020). In
the sequel, we compare the generated language by Ga

N with the generated language by
Obs(GN ,Σo). In order to do so, we define languages L≤nNo

and L≤nNa
formed of all possi-

ble observed fault-free traces of length less than or equal to a given number n ∈ N of
Obs(GN ,Σo) and Ga

N , respectively as follows.

L≤nNo
:= {s ∈ L(Obs(GN ,Σo)) : ∥s∥ ≤ n}, (1)

L≤nNa
:= {s ∈ L(Ga

N )) : ∥s∥ ≤ n}, (2)

where ∥s∥ denotes the length of trace s .
Thus, we can define the exceeding language L≤nExc,Na

= L≤nNa
\ L≤nNo

. Language
L≤nExc,Na

corresponds to the traces with length less than or equal to n ∈ N that are accepted
as fault-free in the decentralized synchronous diagnosis method and do not belong to the
fault-free language of the system model. The cardinality of the exceeding language L≤nExc,Na

for the decentralized synchronous diagnosis scheme is presented in Figure 17. Note that
the cardinality of the exceeding language of this scheme significantly increases as n grows.
For example, for n = 10, there are 586 more traces in L≤nExc,Na

than in L≤nExc,No
.

Since each exceeding trace in the decentralized synchronous diagnosis scheme can
lead to an increase in the delay bound for diagnosis, the reduction of the accepted fault-free
language is of great importance. Moreover, when we consider arbitrary long values of n,
this accepted language growth can lead a diagnosable system to be not synchronously
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codiagnosable. Particularly, in this case study, the language generated by G is diagnosable
according to Definition 3.2 and it is not synchronously diagnosable according to Definition
3.4.

3.4 FINAL REMARKS

In this chapter, the definitions of language diagnosability and synchronous codi-
agnosability are presented. In order to diagnose a fault using the monolithic scheme it
is necessary to construct a diagnoser automaton based on an observer and search for
indeterminate cycles in the diagnoser. If there is at least one indeterminate cycle, the
language generated by the system is not diagnosable. Methods that avoid the use of ob-
servers for verification of diagnosability and online diagnosis have also been proposed in
the literature.

Furthermore, a case study to verify the fault-free language growth in the decentral-
ized synchronous diagnosis is presented. The concept of observers presented in Sampath
et al. (1995) are used to illustrate it. Since the local component models are implemented
in parallel, the fault-free language accepted can be seen through the parallel composition
of the local observers. The case study aforementioned shows that a diagnosable system
can be not synchronously codiagnosable because of this language growth.

In the next chapter, we propose the decentralized synchronous diagnosis with co-
ordination scheme in order to reduce the fault-free language accepted for synchronous
diagnosis, LNa

, into the observed system language, Po(LN ). Thus, the synchronous co-
diagnosability verification is not needed for the diagnosis method proposed in this work.
Since the fault-free observed language of the system according to the DSDC method is
equal to Po(LN ).
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4 DECENTRALIZED SYNCHRONOUS DIAGNOSIS WITH COORDINA-
TION

In this chapter, the decentralized synchronous diagnosis with coordination scheme
is presented. The goal of the method is to provide a diagnosis scheme with the same
diagnosis power as the monolithic approach proposed in Sampath et al. (1995) without
using the global plant model for diagnosis. The use of the global automaton model of the
system is avoided in order to provide a diagnosis method that has better computational
complexity than other approaches that need to implement the whole system model. Since,
in this work, only an online diagnosis scheme is proposed, unless stated otherwise, it is
assumed that all systems are monolithic diagnosable according to Definition 3.2.

As presented in the previous chapter, the fault-free observed language for the
synchronous diagnosis scheme, LNa

, can be a larger set than the observed fault-free
system language, Po(LN ), when there are unobservable events in common between two or
more components of the system. This is due to the loss of synchronization of unobservable
events, and in order to maintain the same diagnosis power, one needs to reduce LNa

into Po(LN ). Thus, in this work, a decentralized synchronous diagnosis with coordination
scheme is proposed with the view to preserve the synchronization of unobservable events
without the use of the fault-free global system model. To do so, the method is based on
local state estimators of the fault-free component models of the system that can send
cluster automata to a coordinator after the observation of an event. These clusters are
composed of the unobservable reach of the local fault-free models after an observed event.
The coordinator uses these clusters to build the correct state estimate of the fault-free
global model of the system and verifies if an observed event is feasible in the current state
estimate. If the event is not feasible, the fault event occurrence is detected.

In the sequel, the diagnosis scheme proposed in this work is presented in details.

4.1 DIAGNOSIS SCHEME

In this work, we introduce a decentralized synchronous diagnosis with coordination
(DSDC) scheme based on local state estimators of the fault-free component models of
the system Di that are implemented in parallel and a coordinator C that receives state
estimate information from Di , i = 1, . . . , r . Coordinator C uses the local state estimation
of Di to refine the diagnosis and provide the fault event occurrence status. In this regard,
suppose that the plant model consists of r components, i .e., G = ∥ri=1Gi and, associated
with each component Gi , for i ∈ {1, . . . , r} there is a Di based on the fault-free component
model, GNi

. Each module Gi has a local measurement site LMi that provides observation
of events directly to its state estimator Di . The set of events of Gi is defined as Σi =

Σi ,o∪̇Σi ,uo , where Σi ,o and Σi ,uo denote the sets of observable and unobservable events
of Gi , respectively. The set of events of G is denoted as Σ = ∪ri=1Σi . The observable and
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Figure 18 – Decentralized Synchronous Diagnosis scheme.

unobservable events of G are denoted as Σo = ∪ri=1Σi ,o and Σuo = Σ \ Σo , respectively.
Σf ⊆ Σuo denotes the fault event set.

In the DSDC framework, when an event σo ∈ Σi ,o is observed by the local mea-
surement site LMi , this information is sent to the local state estimator Di , which updates
the current state estimate of GNi

. Then, Di sends to the coordinator a subautomaton of
GNi

, referred in this work as a cluster automaton C com
i , composed of the states of the

last state estimate for which σo is feasible, the states of the state estimate reached after
the occurrence of σo , and all of its unobservable transitions.

After a cluster C com
i is communicated to the coordinator, a composition between

all local clusters is built by the coordinator in order to keep tracking the possible syn-
chronizations of unobservable events. This is necessary to prevent the diagnosis scheme to
consider fault-free traces that cannot be generated by the global plant model. These exceed-
ing fault-free traces, caused by the lost of synchronization of unobservable events, cause
the growth of the fault-free language for the DSD scheme, LNa

, presented in (CABRAL;
MOREIRA, 2020).

In this work, the communication between the local measurement sites LMi and
local state estimators Di , and between local state estimators Di and the coordinator are
assumed to be ideal, i .e., there are no communication delays and/or package losses. The
DSDC scheme is depicted in Figure 18.

4.2 PROBLEM FORMULATION

In order to correctly synchronize common unobservable events, we propose the
DSDC scheme, where the local state estimators Di send clusters C com

i of GNi
to the

coordinator C that can select the correct traces of GNi
according to the observed trace

generated by the system. To do so, a communication protocol between the local state
estimators Di and coordinator C, and a fault diagnosis procedure that indicates if a fault
has occurred after the observation of a trace are proposed. Before these algorithms are
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presented, it is first necessary to introduce the concepts of cluster automaton and natural
cluster of an automaton.

Definition 4.1 (Cluster automaton). A cluster C = (QC , ΣC , fC , ∅) is an automaton
that has no initial states. □

Given a subset of states of an automaton G = (Q ,Σ, f , q0), E ⊆ Q , and an
observable event σo ∈ Σo , we define set B ⊆ E composed of the states of E such that σo

is feasible:
B = {q ∈ E : f (q ,σo)!}. (3)

Then, the following definition of natural cluster of an automaton can be stated.

Definition 4.2 (Natural cluster automaton). Let G = (Q , Σ, f , q0). Let E ⊆ Q be a
subset of states of G and consider an observable event σo ∈ Σo . The natural cluster
automaton NC (E ,σo) = (QC ,ΣC , fC , ∅) is a subautomaton of G = (Q ,Σ, f , q0) and is
defined as:

• QC = B ∪ (∪q∈EUR(f (q ,σo)));

• ΣC = {σo} ∪ Σu ;

• fC : QC × ΣC → QC , where

fC (q ,σ)=


f (q ,σo) if (q ∈ B) ∧ (σ = σo);

f (q ,σu) if (q ∈ QC \ B) ∧ (σu ∈ Σu);

undefined, otherwise.

□

The natural cluster NC (E ,σo) of G defined in Definition 4.2 corresponds to the
states q ∈ E such that σo is feasible, the transitions (q ,σo , q ′), for q ∈ E , the unobservable
reach of states q ′, and the unobservable transitions between the elements of UR(q ′). The
following example illustrates the natural cluster introduced in Definition 4.2.

Example 7. Consider automaton G = (Q ,Σ, f , q0) of Figure 19, where its set of observ-
able and unobservable events are Σo = {a, b} and Σuo = {σ1}, respectively. Let E = {1, 3},
where E ⊆ Q . The natural cluster NC ({1, 3}, b) is shown in Figure 20. Notice that since
event b is feasible in state 1, i .e., b ∈ ΓG (1), state 1 belong to NC ({1, 3}, b). □

The communication protocol of the DSDC method is given by Algorithm 3. Algo-
rithm 3 is initialized in lines 1-5, where each local state estimator Di , for i = 1, . . . , r ,
sends a subautomaton of GNi

, S0,i , corresponding to the states in the unobservable reach
of its initial state and their related unobservable transitions. Then, in lines 6-16 the com-
munication procedure is detailed when an event is observed. If an observed event σo ∈ Σi ,o
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Figure 19 – Automaton G of Example 7.

1 2
σ1b

3
σ1

4

Figure 20 – Cluster C ({1, 3}, b) of Example 7.

Algorithm 3 DSDC communication protocol
Input: GNi

= (QNi
,Σi \Σf , fNi

, q0,i ), for i ∈ {1, . . . , r}.
1: for i = 1, . . . , r do
2: Compute Ei ← UR(q0,i )
3: Compute the subautomaton S0,i = (Ei ,Σi ,u , fSi , q0,i ) of GNi

, where fSi (q ,σ) =
fNi

(q ,σ) for q ∈ Ei and σ ∈ Σi ,uo
4: Send S0,i to the Coordinator
5: end for
6: Wait for the observation of an event σo ∈ Σi ,o generated by the system
7: for each GNi

such that σo ∈ Σi ,o do
8: if σo ∈ ΓGNi

(Ei ) then
9: Compute cluster C com

i ← NCi (Ei ,σo) and send it to the Coordinator
10: Compute E ′i ← ∪qi∈Ei

UR(f (qi ,σo))

11: Update Ei ← E ′i
12: else
13: Send C com

i ← ∅ to the Coordinator
14: end if
15: end for
16: Return to line 6

is feasible in the current state estimate of Di , Ei , the natural cluster NCi (Ei ,σo) is com-
puted and it is communicated to the coordinator C. Otherwise, C com

i = ∅ is communicated
to the coordinator C, which uses this information to directly diagnose the fault event
occurrence.

It is important to remark that the computation of NCi (Ei ,σo) that is required in
Line 9 of Algorithm 3 according to Definition 4.2 can be done in linear time by using any
graph search algorithm (CORMEN et al., 2009).

4.3 DIAGNOSIS PROCEDURE

In the DSDC scheme, a coordinator C needs to compute a composition between r

clusters each time a new event σo is observed in order to verify if σo is feasible according to
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the fault-free behavior of the system. According to Algorithm 3, after an initialization, the
coordinator C receives a new cluster C com

i = NCi (Ei ,σo) from all local state estimators
Di , such that σo ∈ Σi ,o , each time an event σo is observed by LMi . Each new cluster
is incorporated in a previous stored one using a cluster union operation, defined in the
following1. The definition of the cluster synchronous composition is also presented in the
sequel.

Definition 4.3 (Cluster union). Let C1 = (Q1,Σ1, f1, ∅) and C2 = (Q2,Σ2, f2, ∅) be two
clusters. The union operation of C1 and C2, is defined as C = C1 ⊔ C2 = (Q ,Σ, f , ∅),
where

• Q = Q1 ∪Q2;

• Σ = Σ1 ∪ Σ2;

• f : Q × Σ→ Q , where

f (q ,σ) =


f1(q1,σ1) = q ′1 if q1, q ′1 ∈ Q1 and σ1 ∈ Σ1;

f2(q2,σ2) = q ′2 if q2, q ′2 ∈ Q2 and σ2 ∈ Σ2;

undefined, otherwise.

Definition 4.4 (Cluster synchronous composition). Let C1 = (Q1,Σ1, f1, ∅) and C2 =

(Q2,Σ2, f2, ∅) be two cluster automata. The synchronous composition between C1 and C2

is defined as sync((C1,C2),R) = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f ,R), where R ⊆ Q1 ×Q2 is a set
of initial states and

f ((q1, q2),σ) =



(f1(q1,σ), f2(q2,σ)) if σ ∈ ΓC1
(q1) ∩ ΓC2

(q2);

(f1(q1,σ), q2) if σ ∈ ΓC1
(q1) \ Σ2;

(q1, f2(q2,σ)) if σ ∈ ΓC2
(q2) \ Σ1;

undefined, otherwise.

Note that Definition 4.4 is equivalent to the parallel composition between automata
using R as the set of the initial states. The coordinator C uses the unobservable part of
the communicated clusters to correctly follow the fault-free global behavior of the system
by syncing the clusters of all system components after the observation of an event. In
the following, the coordinator C, that computes the fault diagnostic status, for the DSDC
scheme proposed in this work is formally presented in Algorithm 4. Algorithm 4 runs
together with Algorithm 3.

The idea of Algorithm 4 is to verify if the observation of an event is indeed feasible
in the fault-free behavior of the system, considering the synchronization of unobservable
events. If the occurrence of an observable event is not possible in the fault-free system
behavior, the algorithm informs the occurrence of the fault event and stops. To do so,
1 The cluster union operation is inspired in the graph union operation presented in Harary (1969).
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Algorithm 4 Diagnosis procedure
Input: Σi = Σi ,o ∪ Σi ,uo for i = 1, . . . , r , Σo = ∪ri=1Σi ,o , subautomata S0,i , and commu-
nicated clusters C com

i , for i = 1, . . . , r .
Output: Diagnosis decision.

1: Define R ← ∅ and I ← ∅
2: Define C ′i ← ∅, for i = 1, . . . , r
3: After receiving subautomata S0,i , i = 1, . . . , r , compute S = ∥ri=1S0,i
4: Assign to R the initial state of S
5: For S0,i = (Ei ,Σi ,u , fSi , q0,i ), define Ci ← (Ei ,Σi ,u , fSi , ∅), i = 1, . . . , r
6: Wait for the observation of an event σo ∈ Σi ,o
7: for each C com

i communicated from Di do
8: if C com

i = ∅ then
9: Inform the occurrence of the fault event and Stop

10: else
11: Define Ci ← Ci ⊔ C com

i = (QCi
,Σi , fCi

, ∅)
12: Define I ← I ∪ {i}
13: end if
14: end for
15: Compute S ← sync((C1,C2, . . . ,Cr ),R) = (QS ,ΣN , fS ,R)
16: if fS (q ,σo) is undefined for all q ∈ QS then
17: Inform the occurrence of the fault event and Stop
18: else
19: Set R ← {q ′ ∈ QS : fS (q ,σo) = q ′}, for all q , q ′ ∈ QS
20: for each i ∈ I do
21: Compute C ′i = (Q ′i ,Σi , f

′
i , ∅) by removing from Ci all states and transitions that

are not reachable after σo
22: Define Ci ← C ′i
23: end for
24: end if
25: Define I ← ∅
26: Return to line 6

Algorithm 4 is initialized in lines 1-5 by assigning set ∅ to R, I , and C ′i . In line 3, S0,i ,
communicated in the initialization of Algorithm 3, are used to compute automaton S . The
initial state of S is assigned to variable R in line 4. Clusters Ci are then initialized using
automata S0,i in line 5.

From lines 6 to 26, the main cycle of Algorithm 4 is carried out when a new event
is observed by at least one local state estimator Di that communicates a new cluster to
the coordinator. If an observable event σo is common to more than one system component
and it occurs, each corresponding local state estimator Di will communicate a new natural
cluster C com

i . For each C com
i communicated, clusters Ci are updated in lines 7-14. If

the empty automaton is communicated, then the fault is diagnosed, and the algorithm
stops, as indicated in lines 8 and 9 of Algorithm 4. Otherwise, Ci is updated in line 11
to consider the behavior of the communicated cluster from Di , C com

i , using the cluster
union operation. Set I is then updated to record the indexes of local state estimators that
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have communicated in this run due to the observation of σo .
In line 15 of Algorithm 4, automaton S is computed by the cluster synchronous

composition considering R as the set of initial states. If there is no observable transitions
labeled with σo in S , then the occurrence of σo is not feasible in the fault-free system
behavior. Therefore, the fault is diagnosed and the coordinator informs the occurrence of
the fault event and stops. Otherwise, in line 19, a new set of initial states R is computed,
formed by all states of S that are immediately reached by an observable transition labeled
with σo , in order to be considered after a new event observation. In lines 21 and 22, the
clusters Ci are updated to consider only the possible unobservable behavior after the
occurrence of σo . Finally, the set of indexes I is defined as the empty set in line 25, and
Algorithm 4 waits for a new event observation by Di .

The following theorem guarantees that the fault-free language considered in the
method presented in this work is equal to the observable fault-free language Po(LN ) of
the system.

Theorem 4.1. Consider a system G whose generated language is L and the fault-free
language is LN . The observable fault-free language considered in the DSDC scheme is
equal to the observable fault-free language of the system Po(LN ), Po : Σ⋆ → Σ⋆

o .

Proof. The proof is done by induction with respect to the size of an observed trace s for
the state estimate provided by the DSDC scheme and the state estimate of the fault-free
automaton model of the system GN .

• ∥s∥ = 0:
For ∥s∥ = 0, algorithms 3 and 4 are initialized. This process is done by the com-
munication of the subautomata S0,i , i = 1, . . . , r , computed in Algorithm 3 to the
coordinator C, which is carried out in lines 1-4 of Algorithm 3. Note that the state
set of S0,i is Ei which is equal to UR(q0,i ), where q0,i is the initial state of GNi

.
In addition, the transitions of S0,i correspond to the unobservable transitions of
GNi

related to the states belonging to Ei . After Algorithm 4 receives subautomata
S0,i , automaton S = ∥ri=1S0,i is computed in line 3. Since S = ∥ri=1S0,i , the states
of S correspond to the initial state estimate of automaton GN = ∥ri=1GNi

for the
observed sequence ε.

• ∥s∥ = n, n ∈ N:
Suppose now that a trace s = s ′σo , such that ∥s∥ = n, has been observed by the
DSDC scheme. Consider automaton S = (QS ,ΣN , fS ,R), computed in line 15 of
Algorithm 4. For all q ∈ QS , such that q ′ = fS (q ,σo), UR(q ′) correspond to the
state estimate of automaton GN after the observation of trace s .

• ∥s∥ = n + 1, n ∈ N:
Let us suppose that s = s ′σoσ′o , such that ∥s∥ = n + 1. Automaton S computed in
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the previous step, i .e., after the observation of trace s ′σo , contains the correct state
estimate of GN after the observation of σo . Notice that, after obtaining automaton
S , set R is computed in line 19 of Algorithm 4 and it stores all states of S reached
after event σo . In the sequence, for each local component i such that σo ∈ Σi ,o ,
clusters Ci are updated in lines 21 and 22 in order to consider only the unobservable
behavior after σo . It is important noticing that, according to the previous step,
if the operation sync((C1,C2, . . . ,Cr ),R) is performed, the result is equal to an
automaton that corresponds to the state estimate of GN after the observed trace
s ′σo .

After the observation of σ′o , clusters C com
i are communicated to the coordinator

C, where σ′o ∈ Σi ,o . These clusters correspond to all possible occurrences of σ′o at
the current state estimate of GNi

and all their unobservable continuations. In line
11 of Algorithm 4, the cluster union operation is performed, which guarantees that
clusters Ci are updated to also consider the information available in C com

i . Then,
in line 15, a new automaton S is built using clusters Ci and the set of initial states
R, computed after the observation of s ′σo . Since the sync operation is equivalent
to the parallel composition considering all elements of R as the initial state of the
resulting automaton, the unobservable reach of the states of automaton S reached
after σ′o correspond to the state estimate of GN after the observed trace s . This
result is achieved since the communicated clusters correspond to the unobservable
reach of automata GNi

after the observation of s , which concludes the proof. ■

In the following, an example is presented to illustrate the use of Algorithm 4 for
the Decentralized Synchronous Diagnosis with coordination process.

Example 8. Consider the system G = ∥3i=1Gi , where G1, G2 and G3 are depicted in
Figure 21, automata G is shown in Figure 22 and the fault-free model GN is illustrated
in Figure 23. The sets of events of G1, G2 and G3 are, respectively, Σ1 = Σ1,o ∪ Σ1,uo =

{a, b, d ,σ1,σ2}, Σ2 = Σ2,o ∪ Σ2,uo = {a, c,σ1,σf } and Σ3 = Σ3,o ∪ Σ3,uo = {a, e, g ,σ1},
where Σ1,o = {b, d}, Σ2,o = {a, c} and Σ3,o = {a, e, g} are the sets of observable events
of G1, G2 and G3, and Σ1,uo = {a,σ1,σ2}, Σ2,uo = {σ1,σf } and Σ3,uo = {σ1} are
the sets of unobservable events of G1, G2 and G3. The set of observable events of G is
Σo = Σ1,o ∪ Σ2,o ∪ Σ3,o = {a, b, c, d , e, g} and the set of fault events is Σf = {σf }.
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(a) G1 (b) G2 (c) G3

Figure 21 – Automata G1, G2 and G3 of Example 8.

Figure 22 – Automaton G of Example 8.

Figure 23 – Automaton GN of Example 8.

Suppose that the system G has generated the fault trace sf = bcσf a
n , n ∈ N,

which its local projections are P1,o(sf ) = b, P2,o(sf ) = can and P3,o(sf ) = an , where
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Pi ,o : Σ⋆ → Σ⋆
i ,o , i ∈ {1, 2, 3}, are projections. It is important to notice that this system

is not synchronously codiagnosable since the local projections of the fault trace can be
observed in the fault-free component models GN1

, GN2
, and GN3

, presented in Figure 24.
The DSDC scheme is illustrated by using Algorithms 3 and 4 after each observed event.

(a) GN1 (b) GN2 (c) GN3

Figure 24 – Automata GN1
, GN2

and GN3
of Example 8.

• Observed trace ε

Before any event is observed, Algorithm 3 sends S0,1, S0,2, and S0,3, shown in Figure
25, to the Coordinator. Then S = S0,1∥S0,2∥S0,3, shown in Figure 26, is computed
by Algorithm 4 that stores the initial state of S in R = {(0, 0, 0)}.

(a) S0,1 (b) S0,2 (c) S0,3

Figure 25 – Subautomata S0,1 (a), S0,2 (b), and S0,3 (c) of Example 8.

Figure 26 – Initial composition S = S0,1∥S0,2∥S0,3 of Example 8.

At this stage, Algorithms 3 and 4 wait for a new observed event by D1, D2 or D3.

• Observed trace b

When event b occurs, it is observed by D1, and C com
1 , depicted in Figure 27, is

communicated.

Figure 27 – Cluster automaton C com
1 after observation of event b.

In Algorithm 4, the union operation of C1 and C com
1 is computed in line 11, and the

result is assigned to C1, depicted in Figure 28 (a). Notice that, in this case, C1 is
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equal to C com
1 . Since only local state estimator D1 observes event b, set I is updated

to I = {1}. Clusters C2 and C3 are not modified as shown in Figure 28 (b) and 28
(c), respectively.

(a) C1 (b) C2 (c) C3

Figure 28 – Cluster automata C1, C2, and C3 after observation of event b.

A new S is computed, according to line 15 of Algorithm 4 and it is depicted in
Figure 29. Since a transition labeled with b, namely ((0, 0, 0), b, (1, 0, 0)), exists in S

of Figure 29, the fault event is not detected and set R is updated to the states of S
reached by transitions labeled with b, i .e., R = {(1, 0, 0)} in line 19 of Algorithm 4.

Figure 29 – S after observation of event b.

After that, C ′1, shown in Figure 30, is computed and it is used to update C1, according
to lines 21 and 22 of Algorithm 4 by removing the states and transitions that are
not reachable after event b. Algorithm 4 then updates set I = ∅ and waits for a new
observed event.

Figure 30 – Cluster automaton C1 = C ′1 after observation of event b.

• Observed trace bc

The next generated event is c, observed by state estimator D2 that sends C com
2 ,

depicted in Figure 31. Then, the cluster automaton C2 shown in Figure 32 (b) is
updated and, in this case, it is equal to C com

2 . Notice that cluster automata C1 and
C3, illustrated in Figure 32 (a) and 32 (c), respectively, do not change.

Figure 31 – Cluster automaton C com
2 after observation of trace bc.
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(a) C1 (b) C2 (c) C3

Figure 32 – Cluster automata C1, C2, and C3 after observation of trace bc.

Set I is updated to I = {2} and a new S is computed using R = {(1, 0, 0)} as the
initial state, as shown in Figure 33.

Figure 33 – S after observation of trace bc.

After that, set R is updated to R = {(1, 1, 0)} and a new C2 is computed, as presented
in Figure 34.

Figure 34 – Cluster automaton C2 = C ′2 after observation of trace bc.

• Observed trace bca

When event a occurs, state estimators D2 and D3 send clusters C com
2 and C com

3 ,
depicted in Figures 35 and 36, respectively.

Figure 35 – Cluster automaton C com
2 after observation of trace bca.

Figure 36 – Cluster automaton C com
3 after observation of trace bca.

Clusters C2 and C3, illustrated in Figure 37(b) and 37(c), are updated, and C3, in
this case, is equal to C com

3 , shown in Figure 36. Notice that cluster C1, shown in
Figure 37(a), does not change.

(a) C1 (b) C2 (c) C3

Figure 37 – Cluster automata C1, C2, and C3 after observation of trace bca.
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Set I is then computed, and it is equal to I = {2, 3}. Notice that since R = {(1, 1, 0)},
which corresponds to the initial state of S , and events a and σ1 are common to all
three components but are not feasible in all three states, (1,1,0), no transitions leave
state (1, 1, 0) of S . Thus, S is equal to a graph composed of only state (1, 1, 0), shown
in Figure 38, and since there are no transitions in S labeled with event a, the fault
event occurrence is detected in line 17 of Algorithm 4.

Figure 38 – S after observation of trace bca.

Remark 4.1. It is important to remark that the method presented in this work can be
implemented even in the case where there are events that are observable to one component
and unobservable to other components, as it is the case in Example 8.

4.4 COMPUTATIONAL COMPLEXITY ANALYSIS

Since mostly operations of Algorithms 3 and 4 have linear computational complexity
and are performed on automata GNi

, i = 1, . . . , r , the computational complexity of the
DSDC scheme can be analyzed according to the construction of S in line 15 of Algorithm
4. To do so, let Qi denote the set of states of Gi , i = 1, . . . , r , and suppose that all Gi have
the same number of states |Qi |. Due to the cluster synchronous composition performed
in line 15 of Algorithm 4, automaton S can have, in the worst case scenario, |Qi |r states
and |Qi |r × (|Σuo |+ 1) transitions. Thus, automaton S can grow exponentially with the
number of system components.

However, this complexity order is achieved only if the majority of transitions of the
component models are labeled with unobservable events since the communicated clusters
C com
i are composed of states and unobservable transitions reached after an observed event.

Thus, the DSDC method performs better than fault diagnosis techniques based on the
global system model, as it is the case in Example 8, where GN has 31 states, while the
sum of states of GN1

, GN2
and GN3

is equal to 15 and automaton S has, in the worst case,
two states and one transition.

It is important to remark that one of the tendencies of Industry 4.0 is the increasing
number of sensors in order to achieve more information of the system. Therefore, in practice,
the number of unobservable events tend to be much smaller than the number of observable
events, which also contributes to a better performance of the method presented in this
work. This result can be seen in the next chapter, where a practical application of the
DSDC method is presented.
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4.5 FINAL REMARKS

In this chapter, the decentralized synchronous diagnosis with coordination (DSDC)
scheme has been presented. The DSDC method is based on the implementation of state
estimators computed from the fault-free component models of the system components. As
in Cabral and Moreira (2020), if an event is observed and it is not feasible in the current
state estimate of all state estimators, the fault event occurrence is diagnosed. Otherwise,
the local state estimators that observed the event send clusters composed of the state
estimates and their related unobservable transitions to a coordinator. This coordinator
verifies if the observed event is indeed possible to occur in the synchronization of all local
clusters. If the answer is negative, the fault event is diagnosed.

The method is formalized using two algorithms: (i) a communication protocol, that
establishes when the cluster automata must be communicated from the state estimators
to the coordinator; and (ii) the diagnosis procedure, that provides the diagnosis status
after the observation of an event. Although, in the worst case scenario, the method is
exponential with the number of the system components, it performs better than other
methods based on the global system model, mainly for systems with a low number of
unobservable events/transitions.

The DSDC scheme can be seen as a method to compute the state estimate of the
global fault-free behavior model online, without the need to store the whole automaton
model. Thus, it preserves the diagnosis power of the monolithic approach presented in
Sampath et al. (1995) without the use of observers.

In the next chapter, the DSDC method is applied to a didactic manufacturing
system.
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5 DSDC METHOD APPLIED TO A MANUFACTURING SYSTEM

In this chapter, the DSDC method is applied to a didactic manufacturing system.
The system has unobservable events in common to two components and it is previously
known to be diagnosable according to Definition 3.2 and not synchronously codiagnosable
according to Definition 3.4. Therefore, one can use the monolithic diagnosis approach to
diagnosis the fault event, however, it leads to a higher computation cost.

This chapter is organized as follows. First, the controlled plant and the system
model are presented and then the fault-free behavior system components necessary to
run the DSDC method are shown. A fault trace that cannot be diagnosed using the
synchronous decentralized diagnosis scheme is used to illustrate the DSDC method. This
fault trace is successfully diagnosed using the DSDC approach. Finally, final remarks
about this implementation are drawn at the end of the chapter.

5.1 CASE STUDY SYSTEM

The controlled plant is a workpiece assembly manufacturing system of the manu-
facturer FESTO (FESTO, 2006) installed at the Industrial Informatics and Automation
Laboratory of the Federal University of Santa Catarina. This didactic manufacturing
system consists of six stations: (i) the Distributing station that removes workpieces from
the magazine and transfer them to the next station through a robotic arm with a suction
cup; (ii) the Testing station that either reject a workpiece or make it available to the
subsequent station according to its height; (iii) the Separating station that separates the
workpiece according to its positioning; (iv) the Pick and Place station which positions a
lid over the workpiece; (v) the Fluidic Muscle Press station presses the lid to lock it in
the workpiece; and (vi) the Sorting Station sorts the workpieces according to its material
and color. In this work, only the first three stations functioning on their operation cycle
are considered. The system schematics is presented in Figure 39 and a top view picture
of the real system is shown in Figure 40.

The first three stations are designed to select workpieces with the appropriated
height and in the right position. The detailed behavior is presented as follows: In the
Distributing station, a pneumatic cylinder pushes a workpiece out of the magazine. A
robotic arm with a suction cup turns on the vacuum and delivers it to the Testing station.
Then, the workpiece is allocated in an elevator that moves it to be tested according to its
height. If the workpiece is not higher than the standard model, a pneumatic cylinder pushes
it to a conveyor belt with air pockets and the workpiece is delivered to the Separating
station. Otherwise, it is discarded. Then, in the Separating station, the workpiece is
allocated under a sensor to evaluate if it is rightly positioned. If the answer is yes, the
workpiece is transferred to the following station. Otherwise, it is discarded.
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(a) (b)

(c)

Figure 39 – Stations considered for this case study: (a) Distributing station; (b) Testing
station; and (c) Separating station.

Figure 40 – Real didactic manufacturing system of Industrial Computing and Automation
Laboratory.
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(a) G1 (b) G2 (c) G3

Figure 41 – Automata models: (a) Distributing station - G1, (b) Testing station - G2 and
(c) Separating station - G3.

(a) GN1 (b) GN2 (c) GN3

Figure 42 – Fault-free behavior of the stations: (a) Distributing station - GN1
, (b) Testing

station - GN2
and (c) Separating station - GN3

.

5.2 SYSTEM MODEL

In order to implement the DSDC method, it is first necessary to model the plant
according to its controlled behavior. It is considered that the global system is composed of
three stations: (i) the Distributing station; (ii) the Testing station; and (iii) the Separating
station. The automata models of the stations and their fault-free behaviors are illustrated
in Figures 41 and 42, respectively. The global plant model, G , has 159 states and 369
transitions and its fault-free behavior model, GN , has 96 states and 218 transitions, and
are omitted due to their large number of states and transitions.

The initial state of automaton G1 represents that the workpiece is ready to be
transported. The robotic arm leaves the neutral position in order to grab the workpiece,
modeled as event ul , and G1 reaches state 1. This means that the robotic arm is ready
to turn on the suction cup. When the workpiece is grabbed by the suction cup, modeled
as event sc , the system evolves to state 2. If the Testing station is ready to receive the
workpiece, the robotic arm moves towards the right position to deliver the workpiece, and
event s2r occurs and the system evolves to state 3. The occurrence of event ur indicates
the rising edge of the right position sensor of the robotic arm. This leads the system to
reach state 4, where the robotic arm can deliver the workpiece to the Testing station.
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After that, the suction cup is turned off, event d2 occurs, and the system evolves to state
5. In this state, the workpiece is successfully delivered and the robotic arm can return to
its neutral position when event dr occurs, leading G1 back to this initial state.

In this system, the fault event, represented by σf , models the suction cup malfunc-
tioning. Therefore, the workpieces cannot be grabbed by the robotic arm and transported
to the Testing station. It is important to notice that the robotic arm trajectory is not
affected by the fault event and the system cannot recognize if the workpiece was success-
fully delivered. The fault behavior is modeled in the cycle formed by (6,s2r ,7), (7,ur ,8),
(8,dr ,9), and (9,ul ,6) transitions in G1.

The initial state of automaton G2 represents that the station has no workpiece
in the elevator and it is waiting to receive a new workpiece. When event s2r occurs, the
station can receive a new workpiece and reaches state 1 meaning that it is ready to test
it. The occurrence of event d2 illustrates that the workpiece was delivered to the elevator
and the system reaches state 2. When event ds occurs, it means that the robotic arm has
returned to a safe position and the elevator can rise to test the workpiece height. Then,
the system evolves to state 3, which represents that the workpiece has been tested and
can be either accepted or discarded. If the workpiece has an acceptable height, then the
pneumatic cylinder pushes the workpiece to a conveyor belt with air pockets, modeled
as event gp . After that, the workpiece is in the conveyor belt and the elevator is in an
upper position, illustrated by state 4. The successful deliver to the separating station
is represented by the occurrence of event d3. Then, the system reaches state 6, where
there are no workpieces in the workstation and event rs can occur returning the system
to its initial state. If the workpiece has greater height than the accepted, it is discarded,
which is modeled as event bp . The system now evolves from state 3 to state 5, where
the pneumatic cylinder pushes the workpiece to a discard ramp. When event dp occurs,
the workpiece was discarded and the system can return to its initial state. The cycle
(0,s2r ,1),(1,ds ,7),(7,gp ,8), and (8,rs ,0) represents the behavior of the station when the
fault has occurred and the robotic arm of the previous station only attempts to deliver
a workpiece. Since the system only tests if a piece has a greater height, when the first
station fails to deliver a real workpiece, the Testing station considers that a good height
workpiece was tested.

The automaton G3 represents the Separating station and its essential functioning.
The initial state illustrates that the station is ready to receive a workpiece. When event d3
occurs, the system evolves to state 1, where the workpiece has been placed. If the station
detects a workpiece, modeled as event de , the process starts leading the system to state
2. The occurrence of event ep means that the workpiece was successfully verified and the
system is available to receive another workpiece. The behavior model of the Separating
station was simplified, since it does not affect the diagnosability status of the whole system.

The sets of events of G1, G2, and G3 are Σ1 = {ul , sc , s2r , ur , d2, dr ,σf }, Σ2 =
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{s2r , d2, ds , gp , rs , bp , d3, dp}, and Σ3 = {d3, de , ep}, respectively, where the sets of observ-
able events of each component are Σ1,o = {ul , s2r , ur , dr}, Σ2,o = {s2r , ds , gp , bp}, and
Σ3,o = {de , ep}. Thus, the set of events of G = G1∥G2∥G3 is Σ = {ul , sc , s2r , ur , d2, dr ,σf ,
ds , gp , rs , bp , d3, dp , de , ep}, where the set of observable events of G is Σo = Σ1,o ∪
Σ2,o ∪ Σ3,o = {ul , s2r , ur , dr , ds , gp , bp , de , ep} and the set of unobservable events of G is
Σuo = Σ \ Σo .

In the sequel, we present the list of states and events of automata G1, G2, and G3.

State Meaning
0 Workpiece is in the right position to be transported
1 Robotic arm is in the right position to turn on the suction cup
2 Workpiece has been grabbed by the robotic arm with the suction cup on
3 Robotic arm is moving towards the position to deliver the workpiece
4 Robotic arm is ready to deliver the workpiece to the next station
5 Workpiece was successfully delivered
6 Workpiece has not been grabbed by the robotic arm with the suction cup off
7 Robotic arm moving towards the delivering position without a workpiece
8 Robotic arm is at the delivering position without a workpiece
9 Robotic arm is returning to its neutral position

Table 1 – States of G1.

State Meaning
0 The station is waiting for a new workpiece
1 Station is ready to test another workpiece
2 Workpiece delivered to the elevator
3 Workpiece height tested by the sensor
4 Workpiece in the conveyor belt and elevator in upper position
5 Pneumatic cylinder pushed the workpiece off
6 Station with no workpiece waiting to return to its initial state
7 Phantom workpiece height tested by the sensor
8 Phantom workpiece in the conveyor belt and elevator in upper position

Table 2 – States of G2.

State Meaning
0 The station is waiting for a new workpiece
1 Workpiece is in the right position to be verified
2 Workpiece is detected by the sensor

Table 3 – States of G3.

5.3 DSDC SCHEME APPLIED TO THE CASE STUDY

In this section, Algorithms 3 and 4 are applied to this manufacturing system in
order to diagnose the fault event occurrence. Suppose that the system has generated
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Event Meaning
ul Robotic arm leaves the neutral position
sc Suction cup is turned on
s2r Testing station is ready to receive the workpiece
d2 Workpiece is delivered to the elevator
ur Rising edge of the right position of the robotic arm
dr Falling edge of the right position of the robotic arm
σf The suction cup fails
ds Robotic arm returns to a safe position
gp Pneumatic cylinder pushes the workpiece to a conveyor belt
d3 Workpiece is delivered to separating station
rs Returns the system to its initial state
dp Workpiece is discarded
bp Pneumatic cylinder pushes the workpiece to a ramp
de Workpiece is detected
ep Workpiece is verified

Table 4 – Events of G1, G2, and G3.

the fault trace sf = ulσf (s2rurdrdsgpul rs)
n , n ∈ N, where its observation is Po(sf ) =

ul (s2rurdrdsgpul )
n , for Po : Σ⋆ → Σ⋆

o . It is important to notice that this system is not
synchronously codiagnosable since the local projections of the fault trace can be observed
in the fault-free component models presented in Figure 42.

• Observed trace ε

At first, Algorithm 3 sends subautomata S0,1, S0,2, and S0,3 depicted in Figure 43
to the Coordinator. After that, Algorithm 4 computes S = S0,1∥S0,2∥S0,3 shown in
Figure 44 and stores the initial state of S in R = {(0, 0, 0)}.

(a) S0,1 (b) S0,2 (c) S0,3

Figure 43 – Subautomata S0,1 (a), S0,2 (b), and S0,3 (c).

Figure 44 – Composition S = S0,1∥S0,2∥S0,3.

• Observed trace ul

Algorithms 3 and 4 wait for a new event observation by the local state estimators.
When event ul occurs, it is observed by D1 that communicates cluster C com

1 depicted
in Figure 45. Since D2 and D3 do not observe any event, their clusters are equal to
the ones sent before as Figure 46 illustrates.
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Figure 45 – C com
1 after observation of event ul .

(a) C2 (b) C3

Figure 46 – C2 and C3 after observation of event ul .

In Algorithm 4, the union operation of C1 and C com
1 is computed in line 11, and

the result is assigned to C1 shown in Figure 47. Notice that, in this case, C1 and
C com
1 are the same clusters. Since only local state estimator D1 observes event ul ,

set I is updated to I = {1}.

Figure 47 – C1 after observation of event ul .

Then, a new S is computed, according to line 15 of Algorithm 4 and it is depicted
in Figure 48. Since a transition labeled with ul exists in S of Figure 48, the fault is
not detected and set R is updated to R = {(1, 0, 0)}.

Figure 48 – S after observation of event ul .

After that, only C1 is updated from C ′1 as shown in Figure 49, according to lines 21
and 22 of Algorithm 4. The states and transitions that are not reachable after event
ul are removed and the set I is updated to I = ∅. Then, the Algorithms 3 and 4
wait for a new event occurrence.

Figure 49 – C ′1 after observation of event ul .

• Observed trace ul s2r

The next event, s2r , is observed for local state estimators D1 and is D2. The cluster
automata C com

1 and C com
2 illustrated in Figure 50 are sent to the diagnoser. Then,
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C1 and C2 depicted in Figure 51 (a) and 51 (b), respectively, are updated after the
union operation. Notice that C1 and C2 are equal to C com

1 and C com
2 , respectively.

It is important to notice that the cluster automaton C3 - shown in Figure 51 (c) -
has not changed.

(a) C com
1 (b) C com

2

Figure 50 – C com
1 and C com

2 after observation of trace ul s2r .

(a) C1 (b) C2 (c) C3

Figure 51 – Cluster automata C1, C2, and C3 after observation of trace ul s2r .

According to line 12 of Algorithm 4, set I is updated to I = {1, 2} and a new S is
computed and it is shown in Figure 52.

Figure 52 – S after observation of trace ul s2r .

After that, set R is updated to R = {(3, 1, 0)} and new C1 and C2 are computed
from C ′1 and C ′2, as presented in Figure 53 (a) and 53 (b). Then, Algorithm 4 updates
set I = ∅.

(a) C ′
1 (b) C ′

2

Figure 53 – C ′1 and C ′2 after observation of trace ul s2r .

• Observed trace ul s2rur

The next generated event is ur , and it is observed by D1 which sends C com
1 to the

diagnoser as illustrated in Figure 54. Then, C1 is updated as shown in Figure 55 (a)
and cluster automata C2 and C3 remain the same as depicted in Figure 55 (b) and
55 (c). In this case, C1 is equal to C com

1 .

Figure 54 – C com
1 after observation of trace ul s2rur .
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(a) C1 (b) C2 (c) C3

Figure 55 – C1, C2, and C3 after observation of trace ul s2rur .

After that, set I is equal to I = {1} and a new S is computed, as presented in
Figure 56. Then, set R is updated to R = {(4, 1, 0)}.

Figure 56 – S after observation of trace ul s2rur .

Cluster C1 is updated as shown in Figure 57 (a) and cluster automata C2 and C3

are not modified as depicted in Figure 57 (b) and 57 (c). Then, set I is updated to
I = ∅.

(a) C ′
1 (b) C2 (c) C3

Figure 57 – C ′1, C2, and C3 after observation of trace ul s2rur .

• Observed trace ul s2rurdr

The occurrence of event dr is observed by D1 and C com
1 is sent to the Diagnoser as

illustrated in Figure 58. After that, C1 is updated according to line 11 of Algorithm
4 as presented in Figure 59. Clusters C2 and C3 are the same as shown in Figure 57
(b) and 57 (c).

Figure 58 – C com
1 after observation of trace ul s2rurdr .

Figure 59 – C1 after observation of trace ul s2rurdr .

Then, set I is updated to I = {1} and a new S is computed, according to line 15 of
Algorithm 4 and it is presented in Figure 60. Since there is a transition labeled as
dr in S , set R is updated to R = {(0, 2, 0)}.
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Figure 60 – S after observation of trace ul s2rurdr .

After that, a new cluster automaton C1 is computed from C ′1 as shown in Figure 61
(a). C2 and C3 illustrated in Figure 61 (b) and 61 (c) do not change since there was
not an event observation in D2 or D3. Also, Algorithm 4 updates set I = ∅.

(a) C ′
1 (b) C2 (c) C3

Figure 61 – C ′1, C2, and C3 after observation of trace ul s2rurdr .

• Observed trace ul s2rurdrds

When event ds occurs, local state estimator D2 communicates two clusters C com
2 to

the diagnoser according to line 8 of Algorithm 3 and it is presented in Figure 62 (a)
and 62 (b).

(a) C com
2 (b) C com

2

Figure 62 – C com
2 after observation of trace ul s2rurdrds .

Then, C2 is updated after the union operation and it is depicted in Figure 63 (a).
C1 and C3 are not modified as illustrated in Figure 63 (b) and 63 (c).

(a) C1 (b) C2 (c) C3

Figure 63 – C1, C2, and C3 after observation of trace ul s2rurdrds .

Set I is updated to I = {2} and a new S is computed from these clusters as shown
in Figure 64.

Figure 64 – S after observation of trace ul s2rurdrds .
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After that, set R is updated to R = {(0, 3, 0)} and the cluster C2 is computed from
C ′2 presented in Figure 65 (b). In this case, C1 and C3 - depicted in Figure 65 (a)
and 65 (c) - are the same as before the event observation. At last, set I is updated
to I = ∅.

(a) C1 (b) C ′
2 (c) C3

Figure 65 – C1, C ′2, and C3 after observation of trace ul s2rurdrds .

• Observed trace ul s2rurdrdsgp

The next generated event is gp and it is observed by D2. Then, the local state
estimator communicates C com

2 as illustrated in Figure 66.

Figure 66 – C com
2 after observation of trace ul s2rurdrdsgp .

After that, C2 is updated as shown in Figure 67. In this case, C2 is equal to C com
2 .

Since event gp was not observed by D1 or D3, their clusters were not modified and
they are depicted in Figure 65 (a) and 65 (c).

Figure 67 – C2 after observation of trace ul s2rurdrdsgp .

Set I is updated to I = {2} and a new S - depicted in Figure 68 - is computed.

Figure 68 – S after observation of trace ul s2rurdrdsgp .

After that, set R is updated to R = {(0, 4, 0)}, a new C ′2 is computed and C2

is updated as shown in Figure 69 (b). C1 and C3 are not modified and they are
illustrated in Figure 69 (a) and 69 (c), respectively. Then, set I is updated to I = ∅.

(a) C1 (b) C ′
2 (c) C3

Figure 69 – C1, C2, and C3 after observation of trace ul s2rurdrdsgp .
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• Observed trace ul s2rurdrdsgpul

After the second occurrence of event ul , Algorithm 3 sends C com
1 to the diagnoser

and it is depicted in Figure 70.

Figure 70 – C com
1 after observation of trace ul s2rurdrdsgpul .

Then, C1 is updated and equal to C com
1 as shown in Figure 71 (a). C2 and C3 are

the same as before the event observation as depicted in Figure 71 (b) and 71 (c),
respectively. A new S is computed from C1, C2, and C3 as presented in Figure 72.
At this point, set I is updated to I = {1}. Notice that events d3 and rs are now
possible in S .

(a) C1 (b) C2 (c) C3

Figure 71 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul .

Figure 72 – S after observation of trace ul s2rurdrdsgpul .

After that, Algorithm 4 updates R = {(1, 4, 0), (1, 6, 1), (1, 0, 1)}. Cluster automaton
C1, illustrated in Figure 73 (a) is computed according to lines 21 and 22 of Algorithm
4. Also, set I is updated to I = ∅. C2 and C3 are not modified and can be seen in
Figure 73 (b) and 73 (c).

(a) C1 (b) C2 (c) C3

Figure 73 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul .
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• Observed trace ul s2rurdrdsgpul s2r

When event s2r occurs for the second time, it is observed by D1 and D2. These local
state estimators communicate C com

1 and C com
2 to the diagnoser as shown in Figure

74 (a) and 74 (b), respectively.

(a) C com
1 (b) C com

2

Figure 74 – C com
1 and C com

2 after observation of trace ul s2rurdrds gpul s2r .

Then, C1 and C2 are computed according to the operation union of each cluster
as depicted in Figure 75 (a) and 75 (b), respectively. C3 remains the same cluster
automaton as seen in Figure 75 (c). Algorithm 4 updates I = {1, 2} according to
line 12.

(a) C1 (b) C2 (c) C3

Figure 75 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2r .

In this point, a new S is computed and it is depicted in Figure 76. Notice that S

has three initial states since R = {(1, 4, 0), (1, 6, 1), (1, 0, 1)}.

Figure 76 – S after observation of trace ul s2rurdrdsgpul s2r .

Then, set R is updated to R = {(3, 1, 1)}. Cluster automata C1 and C2 are updated,
as presented in Figure 77 (a) and 77 (b), respectively. C3 does not have any mod-
ification as can be seen in Figure 77 (c). Algorithm 4 then updates set I = ∅ and
waits a new event occurrence.
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(a) C1 (b) C2 (c) C3

Figure 77 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2r .

• Observed trace ul s2rurdrdsgpul s2rur

The occurrence of event ur is observed by D1 which sends C com
1 to the diagnoser as

illustrated in Figure 78.

Figure 78 – C com
1 after observation of trace ul s2rurdrdsgpul s2rur .

After that, C1 is computed as shown in Figure 79 and set I is updated to I = {1}.
In this case, C1 is equal to C com

1 .

Figure 79 – C1 after observation of trace ul s2rurdrdsgpul s2rur .

A new S is computed by Algorithm 4 and it is shown in Figure 80. Set R is now
updated to R = {(4, 1, 1)}.

Figure 80 – S after observation of trace ul s2rurdrdsgpul s2rur .

A new C ′1 - presented in Figure 81 (a) - is computed and C1 is updated. Notice that
C2 and C3 do not change as depicted in Figure 81 (b) and 81 (c), respectively. Set
I is updated to I = ∅.

(a) C ′
1 (b) C2 (c) C3

Figure 81 – C ′1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2rur .

• Observed trace ul s2rurdrdsgpul s2rurdr
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The next generated event is dr and it is observed by D1 which communicates the
cluster automaton C com

1 as shown in Figure 82. Then, C1 is updated as presented
in Figure 83 (a). Clusters C2 and C3 are not modified since D2 or D3 observe the
event dr and can be seen in Figure 83 (b) and 83 (c), respectively. Algorithm 4 then
updates I = {1}.

Figure 82 – C com
1 after observation of trace ul s2rurdrdsgpul s2rurdr .

(a) C1 (b) C2 (c) C3

Figure 83 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2rurdr .

After that, a new S is computed from C1, C2, and C3 as illustrated in Figure 84.
Algorithm 4 now updates set R to R = {(0, 2, 1)}.

Figure 84 – S after observation of trace ul s2rurdrdsgpul s2rurdr .

Then, C1 is updated according to lines 21 and 22 from Algorithm 4 as depicted in
Figure 85 (a). C2 and C3 are the same as before the observed event as shown in
Figure 85 (b) and 85 (c), respectively. Set I is now updated to I = ∅.

(a) C1 (b) C2 (c) C3

Figure 85 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2rurdr .

• Observed trace ul s2rurdrdsgpul s2rurdrds

The second occurrence of event ds is observed by D2 which communicates two
clusters C com

2 - depicted in Figure 86 (a) and 86 (b) - to the diagnoser.

(a) C com
2 (b) C com

2

Figure 86 – C com
2 after observation of trace ul s2rurdrdsgpul s2rurdrds .



Chapter 5. DSDC method applied to a manufacturing system 71

Then, C2 is updated after the union operation according to line 11 of Algorithm 4
and it is depicted in Figure 87 (a). C1 and C3 are not modified as shown in Figure
87 (b) and 87 (c). Algorithm 4 updates set I = {2}.

(a) C1 (b) C2 (c) C3

Figure 87 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2rurdrds .

A new S is computed as presented in Figure 88. Then R is updated to R = {(0, 3, 1)}.

Figure 88 – S after observation of trace ul s2rurdrdsgpul s2rurdrds .

After that, C2 is updated, presented in Figure 89 (b), according to lines 21 and 22
of Algorithm 4 by removing the states and transitions that are not reachable after
event dr . C1 and C3 are not modified as illustrated in Figure 89 (a) and 89 (c),
respectively. Then, set I is updated to I = ∅.

(a) C1 (b) C2 (c) C3

Figure 89 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2rurdrds .

• Observed trace ul s2rurdrdsgpul s2rurdrdsgp

When event gp occurs for the second time, it is observed by D2 which communicates
C com
2 as shown in Figure 90.

Figure 90 – C com
2 after observation of trace ul s2rurdrdsgpul s2rur drdsgp .

After that, C2 is updated as depicted in Figure 91. In this case, C2 is equal to C com
2 .

Clusters C1 and C3 - depicted in Figure 89 (a) and 89 (c) - are not modified at this
point since local state estimators D1 and D3 do not observe event gp . Then, set I is
update to I = {2}.
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Figure 91 – C2 after observation of trace ul s2rurdrdsgpul s2rur drdsgp .

A new S is now computed by Algorithm 4 and it is shown in Figure 92. Then, set
R is updated to R = {(0, 4, 1)}.

Figure 92 – S after observation of trace ul s2rurdrdsgpul s2rurdrdsgp .

After that, cluster C2 is updated, illustrated in Figure 93 (b). C1 and C3 are not
updated as presented in Figure 93 (a) and 93 (c), respectively. Then, Algorithm 4
updates set I = ∅.

(a) C1 (b) C2 (c) C3

Figure 93 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2rurdrdsgp .

• Observed trace ul s2rurdrdsgpul s2rurdrdsgpul

After the third occurrence of event ul , D1 sends C com
1 to diagnoser as depicted in

Figure 94.

Figure 94 – C com
1 after observation of trace ul s2rurdrdsgpul s2rur drdsgpul .

Then, C1 is updated and, in this case, it is equal to C com
1 as shown in Figure 95.

After that, set I is updated to I = {1}.

Figure 95 – C1 after observation of trace ul s2rurdrdsgpul s2rur drdsgpul .

A new S is computed from C1, C2, and C3 as presented in Figure 96. Then, set R

is updated to R = {(1, 4, 1)}.
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Figure 96 – S after observation of trace ul s2rurdrdsgpul s2rurdrdsgpul .

After that, C1 is updated as shown in Figure 97 (a). Clusters C2 and C3 are not
modified and can be seen in Figure 97 (b) and 97 (c), respectively. Then, set I is
updated to I = ∅.

(a) C1 (b) C2 (c) C3

Figure 97 – C1, C2, and C3 after observation of trace ul s2rurdrdsgpul s2rurdrdsgpul .

• Observed trace ul s2rurdrdsgpul s2rurdrdsgpul s2r

Finally, the third occurrence of event s2r is observed by D1 and D2 which send C com
1

and C com
2 as presented in Figure 98 (a) and 98 (b), respectively.

(a) C com
1 (b) C com

2

Figure 98 – C com
1 and C com

2 after observation of trace ul s2rurdrds gpul s2rurdrdsgpul s2r .

Then, clusters C1 and C2 are computed according to the operation union of each
cluster as illustrated in Figure 99 (a) and 99 (b), respectively. C3 is not modified at
this stage as shown in Figure 99 (c). After that, set I is updated to I = {1, 2}.

(a) C1 (b) C2 (c) C3

Figure 99 – C1, C2, and C3 after observation of trace ul s2rurdrds gpul s2rurdrdsgpul s2r .

Then, a new S is computed as shown in Figure 100. Notice that, since R = {(1, 4, 1)},
event s2r is common to two components but not feasible in both states, no transition
leave state (2, 4, 1) of S . Therefore, S is equal to a graph composed of two states
(1, 4, 1) and (2, 4, 1), presented in Figure 100. Since there are no transitions in S

labeled with event s2r , the fault occurrence is detected in line 17 of Algorithm 4.

Figure 100 – S after observation of trace ul s2rurdrdsgpul s2rurdrdsgpul s2r .
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5.3.1 Concluding remarks of the case study

It is important to notice that the fault occurrence is detected after the third
observation of event s2r . Moreover, in the worst-case scenario for this example, S has 9
states and the sum of states of GN1

, GN2
, and GN3

is equal to 26. On the other hand, the
fault-free behavior automaton, GN , has 96 states.

Notice also the growth of the cardinality of the exceeding language L≤nExc,Na
for the

DSD scheme presented in section 3.3 applied to this practical implementation in Figure
101. For example, for n = 9, there are 9,093 more traces in L≤nNa

. Notice that the cardinality
of the exceeding language considerably increases as n grows, which is avoided in the DSDC
scheme proposed in this work.

Figure 101 – Cardinality of the exceeding language generated by the decentralized syn-
chronous diagnosis scheme L≤nExc,Na

(◦) for different values of n.

5.4 FINAL REMARKS

In this chapter, the DSDC method is applied to a real system. A didactic manufac-
turing system installed at Industrial Computing and Automation Laboratory of Federal
University of Santa Catarina was considered. In order to implement the DSDC method,
the controlled plant is first modeled from three component models where a brief explana-
tion of their operations is presented. The fault-free component models are used as input
to the communication protocol algorithm, which runs together to the diagnosis procedure.

In this case, the system is not synchronously codiagnosable since the local projec-
tions of the fault trace can be observed in the fault-free models of the local components.
In order to diagnose the fault event occurrence, a fault trace generated by the system
was considered and the DSDC method is applied to each event observation of the fault
trace. The exceeding language accepted for the decentralized synchronous diagnosis for
this implementation is also presented.
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6 CONCLUSION

Recently, the synchronous diagnosis strategy has been presented in the literature.
In this scheme, state estimators of the fault-free system component models are imple-
mented in parallel, and the fault event is diagnosed when an observable event that is not
feasible in the current state estimate of at least one fault-free component model occurs.
Although, by using this method, an exponential complexity order, with the number of
the system components, is avoided for diagnosis, the fault-free language accepted by the
synchronous diagnosis can be larger than the observable fault-free language generated by
the system. Thus, a system may be diagnosable and not synchronously codiagnosable due
to this property, which reduces the diagnosis efficiency. Thus, in this work, a decentralized
synchronous diagnosis with coordination (DSDC) for discrete event systems modeled as
automata is proposed with the view to eliminate this fault-free language growth.

In the DSDC method, two algorithms run together: the communication protocol
and the diagnosis procedure, also called coordinator. Local state estimators send the
information regarding event observations, and the coordinator provides the diagnosis
status. The method uses cluster automata of the fault-free component models to online
computed the current fault-free state estimate of the global system model in order to
verify if an observed event is feasible. If an observed event is not feasible in the current
fault-free state estimate, the fault event occurrence is diagnosed. The main advantage of
the proposed method is that the fault-free language accepted by the DSDC is equal to
the observable fault-free language of the global system. In general, the DSDC method has
a smaller computational complexity than traditional diagnosis approaches. Moreover, the
same diagnosis power is achieved as the monolithic technique using only the fault-free
component models for diagnosis.

The method was implemented to a real system that is not synchronously codiagnos-
able. It is shown that the DSDC method successfully diagnose the fault event occurrence
after a bounded number of event observations. The implementation of the method illus-
trates that if the system is monolithically diagnosable, the DSDC method can be applied.

The main contributions of this work are highlighted in the following:

• An algorithm for the communication protocol between local state estimators and a
coordinator is proposed;

• A cluster automata synchronous composition is proposed;

• An algorithm for the coordinator that detects if the fault event has been occurred
and synchronizes the common unobservable events is proposed;

• The DSDC method is guaranteed to have the same diagnosis power as the monolithic
diagnosis approach;
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• An application of the DSDC method in a real system is presented.

In the sequel, future research themes that can be carried out from this work are
presented.

• A full implementation of the DSDC method using PLCs and a Supervisory Control
and Data Acquisition (SCADA) approach is currently being investigated.

• In this work, the communication between local state estimators and the coordinator
is supposed to be ideal, which cannot always be guaranteed. A DSDC method that
is robust to communication delays and/or package losses is an open research theme.

The results presented in this thesis have been submitted for presentation in the
next International Conference on Automatic Control and Soft Computing (CONTROLO
2022) as Mayer et al. (2022).
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A new approach for diagnosability analysis of Petri nets using verifier nets. IEEE
Transactions on Automatic Control, v. 57, n. 12, p. 3104–3117, 2012.

CABRAL, Felipe G. Synchronous Failure Diagnosis of Discrete-Event Systems.
2017. S. 143. PhD thesis – Universidade Federal do Rio de Janeiro.

CABRAL, Felipe G.; MOREIRA, Marcos V. Synchronous Diagnosis of Discrete-Event
Systems. IEEE Transactions on Automation Science and Engineering, IEEE,
v. 17, n. 2, p. 921–932, 2020.

CABRAL, Felipe G.; MOREIRA, Marcos V.; DIENE, Oumar; BASILIO, João Carlos. A
Petri Net Diagnoser for Discrete Event Systems Modeled by Finite State Automata.
IEEE Transactions on Automatic Control, v. 60, n. 1, p. 59–71, 2015.

CABRAL, Felipe G.; VERAS, Maria Z.M.; MOREIRA, Marcos V. Conditional
synchronized diagnoser for modular discrete-event systems. In: PROCEEDINGS of the
14th International Conference on Informatics in Control, Automation and Robotics -
ICINCO 2017. [S.l.: s.n.], 2017. P. 88–97.

CARVALHO, Lilian K.; BASILIO, João C.; MOREIRA, Marcos V. Robust diagnosis of
discrete event systems against intermittent loss of observations. Automatica, Elsevier
Ltd, v. 48, n. 9, p. 2068–2078, 2012.

CASSANDRAS, Christos G.; LAFORTUNE, Stéphane. Introduction to Discrete
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SINNAMOHIDEEN, Kasim; TENEKETZIS, Demosthenis C. Failure diagnosis using
discrete-event models. IEEE Transactions on Control Systems Technology, v. 4,
n. 2, p. 105–124, 1996.

SAMPATH, Meera; SINNAMOHIDEEN, Kasim; LAFORTUNE, Stephane;
TENEKETZIS, Demosthenis. Diagnosability of Discrete-Event Systems. IEEE
Transactions on Automatic Control, v. 40, n. 9, p. 1555–1575, 1995.

SANTORO, Leonardo P.M.; MOREIRA, Marcos V.; BASILIO, João C. Computation of
minimal diagnosis bases of Discrete-Event Systems using verifiers. Automatica, v. 77,
p. 93–102, 2017.



References 80

VERAS, Maria Z.M.; CABRAL, Felipe G.; MOREIRA, Marcos V. Distributed
synchronous diagnosis of discrete event systems modeled as automata. Control
Engineering Practice, v. 115, p. 104892, 2021.

WANG, Yin; YOO, Tae Sic; LAFORTUNE, Stéphane. Diagnosis of discrete event
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