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RESUMO

Neste trabalho, apresentamos um algoritmo iterativo para resolver o problema de in-
clusão na presença de operadores cocoercivos definidos em espaços de Hilbert com
métodos projetivos de decomposição. Primeiramente, introduzimos esses métodos no
caso da soma de n operadores em que o problema é o de encontrar um ponto num con-
junto solução estendido e utilizar projeções sobre semi-espaços separadores contendo
este conjunto. Estes semi-espaços são construídos com pontos no gráfico dos opera-
dores e uma operação de resolvente é necessária para cada operador. Neste caso,
a convergência fraca do algoritmo é obtida através de uma condição de separação
suficiente. Em seguida, introduzimos um problema de inclusão envolvendo operadores
cocoercivos e composições com operadores lineares limitados. Para este problema,
apresentamos um algoritmo projetivo de decomposição que explora cocoercividade
de forma que o algoritmo resultante envolve um passo forward por cada operador
cocoercivo, em contraste com algoritmos prévios na família de métodos projetivos
de decomposição, que têm usado apenas passos backward ou dois passos forward.
A prova de convergência do último algoritmo com um passo forward requer alguns
desvios da estrutura de prova anterior para algoritmos projetivos de decomposição.

Palavras-chave: Operadores monótonos maximais. Problema de inclusão monótona.
Algoritmos proximais. Algoritmos projetivos de decomposição. Operadores cocoerci-
vos.



RESUMO EXPANDIDO

Introdução

Existe uma variedade de algoritmos de decomposição para resolver o problema de

inclusão

0 ∈ Az + Bz,

onde A e B são operadores monótonos maximais. Tais problemas surgem em áreas

como equações diferenciais parciais, análise funcional, otimização convexa, entre ou-

tras.

Neste trabalho analisamos um esquema recente de algoritmos de decomposição base-

ado em projeções sobre semi-espaços que contem o conjunto de soluções primal-dual,

primeiramente num contexto geral e logo no contexto mais específico envolvendo so-

mas de composições de operadores lineares limitados e operadores cocoercivos.

Objetivos

Esta dissertação de mestrado tem os seguintes objetivos:

1. Estudar e entender os algoritmos de decomposição projetiva.

2. Analisar os conceitos matemáticos relacionados e as referências principais para o

problema .

3. Entender a aplicação do método para um caso particular que envolve operadores

cocoercivos.

Metodologia

Estudamos um novo framework de algoritmo de decomposição no espaço primal-

dual de soluções que apresenta grande flexibilidade na escolha dos parâmetros. Para

isso fazemos um estudo da bibliografia relevante relacionada, que está disponível na

seção de referências, entendendo primeiramente os conceitos matemáticos básicos

da teoria de operadores monótonos em espaços de Hilbert. Seguidamente, fazemos

revisão do artigo que apresenta o caso general para entender os fundamentos por trás

deste esquema.

Finalizamos com uma variação deste esquema para um caso que envolve composição

com operadores lineares e operadores cocoercivos onde vemos como é aproveitada a

cocoercividade.



Resultados, discussão e considerações finais

Acreditamos que o algoritmo de decomposição projetiva é um poderoso framework

que faz diferença com métodos já existentes do tipo decomposição, devido a seu me-

canismo e a flexibilidade que oferece. Ele tem tido um desenvolvimento para tratar

problemas específicos usando suas propriedades particulares como no caso de opera-

dores Lipschitz contínuos que faz dois passos forward ao invés de um passo backward,

ou no caso de operadores cocoercivos que faz apenas um passo forward.

Também foram desenvolvidos algoritmos deste esquema que possuem recursos de

bloco iterativo e assíncrono que são considerados em outros artigos. Mas para o caso

de operadores cocoercivos estes recursos ainda não são implementados sendo um

tópico de pesquisa.

Palavras-chave: Operadores monótonos maximais. Problema de inclusão monótona.

Algoritmos proximais. Algoritmos projetivos de decomposição. Operadores cocoerci-

vos.



ABSTRACT

We present in this work an iterative algorithm to solve the inclusion problem with the
presence of cocoercive operators defined in Hilbert spaces under the projective splitting
scheme. First, we introduce the projective splitting scheme in the case of the sum of
n operators where the problem is posed as the one of finding a point in an extended
solution set and make use of projections over separator half-spaces containing this
set. These half-spaces are constructed with points in the graph of the operators and a
resolvent operation is needed for each operator. In this case, the weak convergence of
the algorithm is obtained via a condition of sufficient separation. Next, we introduce an
inclusion problem involving cocoercive operators and compositions with bounded linear
operators. For this problem is presented a projective splitting algorithm that exploits
cocoercivity in such a manner that the resulting algorithm involves one forward step
applied to each cocoercive operator, in contrast with prior algorithms in the projective
splitting family, which have used only backward steps or two forward steps. The con-
vergence proof of the algorithm with one forward step requires some detours from the
previous proof framework for projective splitting.

Keywords: Maximal monotone operators. Monotone inclusion problem. Proximal algo-
rithms. Projective splitting algorithms. Cocoercive operators.
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1 INTRODUCTION

The theory of monotone and maximal monotone operators plays a central role

in nonlinear analysis. It has impacted areas such as partial differential equations, func-

tional analysis, variational inequalities, and convex optimization. Many problems arising

in these areas can be studied under the unified and general framework of monotone

operator theory. Moreover, many of these problems can be reduced to the one of finding

a z such that

0 ∈ Tz, (1)

where T is a maximal monotone operator defined on a real Hilbert space H. Problem

(1) is known as the Monotone Inclusion Problem (MIP).

An example of such reduction in convex optimization is obtained via the subdif-

ferential ∂f of the convex function f : H →] ± ∞,∞], since when certain conditions are

met, the problem

min
z∈H

f (z)

is equivalent to (1), where T is the subdifferential of f . When f is a proper, convex, and

closed function, the subdifferential constitutes an example of a maximal monotone op-

erator; and it is a fundamental tool in the analysis of non-differentiable convex functions.

This relation makes a connection between these two seemingly unrelated fields.

The inclusion problem (1) is an important problem in the theory of monotone

operators. It turns out that this problem can be related to one of finding a fixed point

of certain associated non-expansive operator called the resolvent which is denoted

by JT . Moreover, since the set of zeros of the operator γT with γ > 0 is equal to the

set of fixed points of the operator JγT , a zero of T can be approximated iteratively by

suitable resolvent iterations. Such algorithms are known as proximal-point algorithms.

They consider iterations of the form

zk+1 = JγT zk .

The proximal-point algorithm in the context of maximal monotone operators can be

traced back to (ROCKAFELLAR, 1976).

When considering an extension of this problem to the one of finding the zeros of

a sum of two monotone operators, that is

0 ∈ T1z + T2z, (2)

instead of using the resolvent of the operator T1 + T2, a widely applicable alternative

is to devise an operator splitting algorithm. In this case, the approach is to employ the

operators T1 and T2 in separate steps, so instead of considering the resolvent of the

sum, it is considered the resolvent of each operator separately, which it is assumed to
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be ªavailableº. With this approach, several iterative algorithms have been proposed. The

three most popular classes of operator splitting algorithms are the Douglas/Peaceman-

Rachford class, the forward-backward class, and the double-backward class. Indeed,

many algorithms in convex optimization and monotone inclusions are, in fact, appli-

cations of one of these underlying techniques to a reduced monotone inclusion in an

appropriately defined product space.

These three operator splitting techniques are, in turn, a special case of the

Krasnoselskii-Mann (KM) iteration for finding a fixed point of a nonexpansive operator

(KRASNOSEL’SKII, 1955; MANN, 1953).

Splitting algorithms have been studied since 1970, where the case n = 2 pre-

dominates. Even when considering the sum of n ≥ 2 operators, many of the existing

algorithms reduce it to the case of the sum of two operators, by posing the problem in

the product space Hn.

A different class of operator splitting algorithms was introduced in (ECKSTEIN;

SVAITER, 2007), the projective splitting class. This class has a different convergence

mechanism based on projection onto separating sets and, in general, does not reduce

to the KM iteration. The proposed scheme shows a relation between the solutions to the

inclusion problem and the problem of finding a point belonging to a certain ªextended

solution set.º

In each iteration, the operation applied to each operator T1 and T2, was a resol-

vent operation, which consists of evaluating the resolvent operator (I + ρTi )
±1 for some

ρ > 0. This is known as a ªbackward step.º The proximal parameter ρ is allowed to vary

from iteration to iteration, and even from operator to operator.

This method was generalized later to the case n ≥ 2 of (2) in (ECKSTEIN;

SVAITER, 2009), that is, it was considered the problem

0 ∈ T1z + T2z + · · · + Tnz, (3)

where an error criterion in the evaluation of resolvent was included. In those formulations

was applied the resolvent to each operator Ti separately, obtaining in this way a splitting

algorithm. As explained in (JOHNSTONE; ECKSTEIN, 2020) the root ideas of the

projective splitting scheme can be found in the references (IUSEM; SVAITER, 1997),

(SOLODOV; SVAITER, 1999b) and (SOLODOV; SVAITER, 1999c).

Projective splitting algorithms work by performing separate calculations on each

individual operator to construct a separating hyperplane between the current iterate

and the problem’s Kuhn±Tucker set S (essentially the set of primal and dual solutions),

and then projecting onto this hyperplane. In each iteration k , it is constructed an affine

ªseparatorº function φk for which φk (p) ≤ 0 for every p ∈ S. The next iterate pk+1

is then obtained by projecting the current iterate pk onto the half-space defined by

φk (p) ≤ 0, possibly with some over-relaxation or under-relaxation. The crucial part of

the projective splitting scheme is how φk is obtained, its calculation relies on getting
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points in the graph of each operator. Since some calculations are performed on each

operator Ti separately, the procedures are indeed operator splitting algorithms.

Convergence in this algorithm is achieved via a ªsufficient separationº condition.

Since it may be that the separator φk might separate the current iterate pk from the S

in a shallow way or even in a way that does not separate at all.

Projective splitting methods were generalized to cover compositions of maximal

monotone operators with bounded linear maps in (ALOTAIBI; COMBETTES; SHAHZAD,

2014), that is, problems of the form

0 ∈ Az + L∗BLz.

In prior projective splitting algorithms, the only operation performed on the in-

dividual operators Ti is a proximal step or a backward step. Resolvent operations

remained the only way to process individual operators. The algorithm in (JOHNSTONE;

ECKSTEIN, 2020) was the first to construct projective splitting separators by applying

calculations other than resolvent steps to the operators Ti . This paper considers the

inclusion problem

0 ∈
n∑

i=1

G∗
i TiGiz, (4)

where a subset of the operators {T1, . . . , Tn} is Lipschitz continuous and Gi : H0 → Hi

is a bounded linear operator for each i = 1, . . . , n.

In the context of convex optimization, problem (4) under appropriate constraint

qualification is equivalent to the minimization problem

min
z∈H0

n∑

i=1

fi (Giz),

where the functions fi are convex and some of them are also differentiable with Lipschitz-

continuous gradients, and the Gi are linear and bounded operators in an appropriate

Hilbert space. Minimization problems like this arise in a host of applications such as

machine learning, signal and image processing, inverse problems, and computer vision,

some examples can be found in (BOYD et al., 2011; COMBETTES; PESQUET, 2009;

COMBETTES; WAJS, 2005).

When considering problem (4) under the projective splitting scheme, it was de-

veloped a procedure that could instead use two ªforwardº (explicit or gradient) steps

for operators Ti that are Lipschitz continuous equivalent to applying I ± ρTi , which are

computationally easier than backward steps. Each step size must be bounded by the

inverse of the Lipschitz constant of Ti . The algorithm developed in (JOHNSTONE; ECK-

STEIN, 2020) also presented a block-iterative operation, meaning that only a subset of

the operators making up the problem need to be considered at each iteration.
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As mentioned, the projective splitting scheme exploited the presence of Lipschitz

continuous operators to perform two forward steps on them. This result raised the

question: can projective splitting further exploit the presence of cocoercive operators?

The answer to this question is ªyesº, and it is developed in (JOHNSTONE; ECK-

STEIN, 2021). This paper considers the problem

0 ∈
n∑

i=1

G∗
i (Ai + Bi )Giz, (5)

where Ai and Bi are maximal monotone for i = 1, . . . ,n, each Bi is L±1
i ±cocoercive, and

Gi : H0 → Hi is linear and bounded. Problem (5) could be derived from the optimization

problem

min
z∈H0

n∑

i=1

(fi (Giz) + hi (Giz)),

where the functions fi : Hi →] ± ∞,∞] and hi : Hi →] ± ∞,∞] are closed, proper

and convex and every hi is also differentiable with Li -Lipschitz continuous gradients.

Taking Ai as the subdifferential of fi , Bi as the gradient of hi , and under some constraint

qualification conditions, this optimization problem is equivalent to (5).

Just as in (JOHNSTONE; ECKSTEIN, 2020), the presence of cocoercive oper-

ators was exploited to obtain a projective splitting algorithm that performs one forward

step while processing each cocoercive operator. Hence, the algorithm presented in

(JOHNSTONE; ECKSTEIN, 2021) requires one forward step on Bi , and one resolvent

for Ai at each iteration.

Cocoercivity is in general a stronger property than Lipschitz continuity. However,

in the case Bi = ∇hi above, the Baillon-Haddad theorem (BAILLON; HADDAD, 1977)

establishes that ∇hi is Li -Lipschitz continuous if and only if it is L±1
i ±cocoercive, so the

two properties are equivalent.

This algorithm has a different mechanism of convergence than that in (ECK-

STEIN; SVAITER, 2009). Instead of having a condition of sufficient separation, the

convergence is obtained via an ªascent lemmaº that relates the values φk (pk ) and

φk±1(pk±1) in such a way that overall convergence may still be proved.

STRUCTURE OF THIS WORK

This work is based mainly on the papers (ECKSTEIN; SVAITER, 2009) and

(JOHNSTONE; ECKSTEIN, 2021).

Chapter 2 introduces all necessary background, notations, definitions, and re-

sults that will be necessary for the work developed in the following chapters. An impor-

tant result is that contained in Theorem 2.3, together with Lemma 2.2, since they give

the tools to prove the convergence of the algorithms presented in this work.
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Chapter 3 is based on (ECKSTEIN; SVAITER, 2009), it begins with a generic

linear separator-projection method in Algorithm 1 for finding a point in a closed and

convex set that produces a Fejér monotone sequence. Then we show how to frame

the inclusion problem (3) into this generic method. Proposition 3.4 shows a condition

of ªsufficient separationº to guarantee weak convergence for the generated sequence.

Algorithm 3 gathers the analysis previously presented, together with a relative error

criterion. Finally, Theorem 3.1 shows that the resulting algorithm produces a weakly

convergent sequence.

Chapter 4 is based on (JOHNSTONE; ECKSTEIN, 2021), it deals with the inclu-

sion problem (5). As in the previous chapter, it begins framing the inclusion problem into

the generic linear separator-projection method. Then it is presented how to exploit the

presence of cocoercive operators to perform one forward step for those operators. The

convergence analysis diverges from that in Chapter 3, it relies on an ªascentº lemma

(Lemma 4.13) regarding the separators generated by the algorithm. Finally, Theorem

4.1 condenses the convergence results obtained for Algorithm 4.
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2 PRELIMINARIES

This chapter contains a small portion of the theory of maximal monotone oper-

ators, projections, and convex optimization. We aim to establish all needed concepts

and results on which the development of Chapters 3 and 4 relies. Moreover, this also

serves to settle the notation that will be used. The main reference for the content of this

chapter is (BAUSCHKE; COMBETTES, 2017), unless otherwise specified.

Let H be a real Hilbert space with inner product ⟨· , ·⟩, the associated norm is

denoted as ∥ · ∥, where ∥x∥ =
√

⟨x , x⟩, and the associated distance d is defined as

d(x ,y ) = ∥x ±y∥. The distance from a point x to a set C is denoted by dC(x). Throughout

this chapter, K is a real Hilbert space. We denote the Hilbert direct sum of the two Hilbert

spaces H and K as H⊕K. Given subsets C, D of H we define

C ± D = {x ± y | x ∈ C, y ∈ D}.

In particular for z ∈ H we have

C ± z = C ± {z} and z ± C = {z} ± C.

For λ ∈ R we define

λC = {λx | x ∈ C}.

More generally, given a non-empty subset Λ of R we define

ΛC =
⋃

λ∈Λ

λC.

In particular, we say that a subset C is a cone if C = R++C, where R++ = {λ ∈ R | λ > 0}.

The conical hull of C is the intersection of all the cones in H containing C, i.e., the

smallest cone in H containing C. It is denoted by cone C, and we have that

cone C = R++C.

The intersection of all the linear subspaces of H containing C, i.e., the smallest linear

subspace of H containing C, is called the span of C and is denoted by span C; its

closure is the smallest closed linear subspace of H containing C and it is denoted by

spanC. The interior of a set is denoted by int C. Now we introduce the fundamental

notion of the convexity of a set.

Definition 2.1. A subset C of H is convex if for all α ∈ [0,1] we have C = αC + (1 ± α)C

or, equivalently

αx + (1 ± α)y ∈ C, ∀ x ,y ∈ C.

With these definitions stated, we now define several weaker notions of interiority

for convex sets.
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Definition 2.2. Let C ⊂ H be convex. The core of C is

core C = {x ∈ C | cone(C ± x) = H};

the strong relative interior of C is

sri C = {x ∈ C | cone(C ± x) = span(C ± x)};

the relative interior of C is

ri C = {x ∈ C | cone(C ± x) = span(C ± x)}

We have the inclusions

int C ⊂ core C ⊂ sri C ⊂ ri C ⊂ C.

The following example makes a distinction between the concepts of core and strong

relative interior of a set.

Example 2.1. Let C be a proper closed linear subspace of H. Then core C = ∅ and

sri C = C.

The orthogonal complement of a subset C ⊂ H, denoted by C⊥ is

C⊥ = {u ∈ H | ⟨x , u⟩ = 0, ∀ x ∈ C}. (6)

The orthogonal complement is always a closed subspace of H.

Now that we have established some notions relative to subsets oh Hilbert space,

we focus our attention on an important class of extended real-valued functions. We

begin with some definitions before introducing them. Let f : H → [±∞,∞], the domain

of f is

dom f = {x ∈ H | f (x) < ∞}.

The function f is proper if ±∞ /∈ f (H) and dom f ̸= ∅. The function f is convex if

f (αx + (1 ± α)y ) ≤ αf (x) + (1 ± α)f (y ), ∀α ∈ [0,1] and ∀ x ,y ∈ H.

A function f : H → [±∞,∞] is said to be (sequentially) lower semicontinuous (or closed)

if, for every sequence (xk )k∈N we have

xk → x ⇒ f (x) ≤ lim inf
k→∞

f (xk ).

The set of proper lower semicontinuous convex functions from H to ]±∞,∞] is denoted

by Γ0(H).

Definition 2.3. Let f : H →] ±∞,∞] be a proper function. The subdifferential of f is the

set-valued operator

∂f : H ⇒ H : x 7→ {u ∈ H | ⟨y ± x , u⟩ + f (x) ≤ f (y ) ∀ y ∈ H}.
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We say that f is subdifferentiable at x ∈ H if ∂f (x) ̸= ∅. In the case of f being

differentiable a x we obtain that ∂f (x) = {∇f (x)}.

Definition 2.4. Let f ∈ Γ0(H), let γ > 0. Then Proxγf is the unique point that satisfies

Proxγf (x) = argmin
y∈H

(

f (y ) +
1
2γ

∥x ± y∥2
)

.

The operator Proxγf : H → H is the proximal operator of γf . This operator is

related to an important concept that will be explored in Section 2.3.

2.1 OPERATORS

Definition 2.5. A set-valued operator denoted by T : H ⇒ K maps every point x ∈ H

to a set Tx ⊂ K. Then T is characterized by its graph

gra T = {(x ,u) ∈ H ×K | u ∈ Tx}.

The domain and the range of T are

dom T = {x ∈ H | Tx ̸= ∅}, and ran T = {y ∈ K | y ∈ Tx for some x ∈ H},

respectively. The inverse of T , denoted by T ±1, is defined through its graph

gra(T ±1) := {(u,x) ∈ K ×H | (x ,u) ∈ gra T }.

The set of zeros of T is

zer T = T ±1(0) = {x ∈ H | 0 ∈ Tx}.

We say that the operator T is affine if

T (λx + (1 ± λ)y ) = λTx + (1 ± λ)Ty ∀x ,y ∈ H, ∀λ ∈ R.

If A : H ⇒ K and B : H ⇒ K are set-valued operators, then for λ ∈ R the set-valued

operator A + λB has the graph

gra(A + λB) = {(x ,u + λv ) | u ∈ Ax , v ∈ Bx}.

If an operator T : H ⇒ H with a non-empty domain is such that Tx is a singleton

for all x ∈ dom T , then we say that T is at most single-valued, and we instead write

T : dom T → H.

An important class of single-valued operators is the set of linear operators be-

tween the Hilbert spaces H and K. The set of linear and bounded (continuous) oper-

ators T : H → K is denoted by B(H,K). In particular, the identity operator is denoted
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by I. When K = R those operators are called functionals. The kernel of an operator

T ∈ B(H,K), denoted by ker T is the closed subspace ker T = {x ∈ H | Tx = 0}.

Let L ∈ B(H,K), then the adjoint of L is the unique operator L∗ ∈ B(K,H) that

satisfies

⟨Lx , y⟩ = ⟨x , L∗y⟩.

The following example computes the adjoint of an operator that will be important in the

following chapters.

Example 2.2. Let Hi be a real Hilbert space for i = 0, . . . , n. Let Li ∈ B(H0,Hi ) for

i = 1, . . . , n. Define T : H0 → H1 × · · · ×Hn : x 7→ (L1x , . . . ,Lnx). Then T ∗(y1, . . . ,yn) =
∑n

i=1 L∗i yi .

Proof. Take x ∈ H0, then

⟨Tx ,(y1, . . . , yn)⟩ = ⟨(L1x , . . . , Lnx),(y1, . . . ,yn)⟩

=
n∑

i=1

⟨Lix , yi⟩ =
n∑

i=1

⟨x , L∗i yi⟩

= ⟨x ,
n∑

i=1

L∗i yi )⟩

= ⟨x , T ∗(y1, . . . , yn)⟩.

The following example computes the orthogonal complement of a linear sub-

space that we will appear later.

Example 2.3. Let L ∈ B(H,K). Set G = H ⊕ K and V = {(x ,y) ∈ G | Lx = y}. Then

V⊥ = {(z,w) ∈ G | z = ±L∗w}.

Proof. Let (z,w) ∈ G. According to the definition of the orthogonal complement in (6),

(z,w) ∈ V⊥ if for all (x ,y ) ∈ V we have

⟨(x ,y ), (z,w)⟩ = 0

⟨x ,z⟩ + ⟨Lx ,w⟩ = 0

⟨x ,z⟩ + ⟨x , L∗w⟩ = 0

⟨x , z + L∗w⟩ = 0.

Hence, (z,w) ∈ V⊥ must satisfy z + L∗w = 0.

The following propositions contain useful and interesting properties about a

bounded linear operator and its adjoint.
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Proposition 2.1. Let K a Hilbert space, let T ∈ B(H,K), and let ker T = {x ∈ H | Tx = 0}.

Then the following hold:

1. T ∗∗ = T .

2. (ker T )⊥ = ranT ∗.

3. (ran T )⊥ = ker T ∗.

4. kerT ∗T = kerT and ranTT ∗ = ranT .

Proposition 2.2. Let K be a real Hilbert space and let T ∈ B(H,K). Then ran T is

closed ⇔ ran T ∗ is closed ⇔ ran TT ∗ is closed ⇔ ran T ∗T is closed.

2.2 WEAK CONVERGENCE AND FEJÉR MONOTONE SEQUENCES

Given that we have defined a distance d in the Hilbert space H, we say that

a sequence (xk )k∈N in H converges strongly to point x if ∥xk ± x∥ → 0; in symbols,

xk → x . In addition to strong convergence, the weak convergence of sequences can

be introduced. Before formally defining it, we recall some concepts.

Let u ∈ H \ {0} and η ∈ R. A closed hyperplane in H is a set of the form

{x ∈ H | ⟨x , u⟩ = η}

Moreover, a closed half-space with outer normal u is a set of the form

{x ∈ H | ⟨x , u⟩ ≤ η},

and an open half-space with outer normal u is a set of the form

{x ∈ H | ⟨x , u⟩ < η}.

A sequence (xk )k∈N converges weakly to x ∈ H if for every u ∈ H we have

⟨xk , u⟩ → ⟨x , u⟩.

We denote this weak convergence by xk ⇀ x . Geometrically this means that the

distance between the sequence (xk )k∈N and any closed hyperplane containing x con-

verges to zero. We say that an operator T : D ⊂ H → K is weakly continuous if for

every sequence (xk )k∈N such that xk ⇀ x ∈ D we have Txk ⇀ Tx . The following

lemmas establish some conditions regarding the weak convergence of sequences.

Lemma 2.1. Let (xk )k∈N be a bounded sequence in H. Then (xk )k∈N possesses a

weakly convergent subsequence.

Lemma 2.2 (Opial). Let (xk )k∈N be a sequence in H and let C be a nonempty subset

of H. Suppose that, for every x ∈ C, (∥xk ± x∥)k∈N converges and that every weak

sequential cluster point of (xk )k∈N belongs to C. Then (xk )k∈N converges weakly to a

point in C.
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Now we define Fejér monotone sequences. We will see that the algorithms

presented in the following chapters generate Fejér sequences. Their convergence relies

heavily upon Lemma 2.2, as we shall see.

Definition 2.6. Let S be a nonempty closed and convex set in a real Hilbert space H

with norm ∥ · ∥. A sequence (xk )k≥0 of points in H is said to be Fejér monotone with

respect to S if

∥xk+1 ± x∥ ≤ ∥xk ± x∥, ∀ x ∈ S, ∀ k ≥ 0.

In words, each point in the sequence is not further from any point in S than its

predecessor. Basic properties of these sequences are stated in the following proposi-

tion.

Proposition 2.3. Let (xk )k≥0 a Fejér monotone sequence with respect to S, then the

following hold:

1. The sequence (xk )k≥0 is bounded.

2. For all x ∈ S the sequence (∥xk ± x∥)k≥0 converges.

3. The sequence (dS(xk ))k≥0 is nonincreasing.

In general, Fejér monotone sequences do not converge, not even weakly. How-

ever, by Proposition 2.3(1) and Lemma 2.1, the set of weak limit points of a Fejér

monotone sequence is non-empty. Additionally, from Proposition 2.3(2) and Lemma

2.2, we conclude that it is sufficient for the weak convergence of the Fejér monotone

sequence (xk )k≥0 that their weak limit points belong to S.

2.3 MAXIMAL MONOTONE OPERATORS AND THE RESOLVENT

A set-valued operator T : H ⇒ H is monotone if

⟨u ± v , x ± y⟩ ≥ 0 ∀ u ∈ Tx and ∀ v ∈ Ty .

Example 2.4. The following are examples of monotone operators.

1. Let A : H ⇒ H and B : K ⇒ K be monotone operators, let L ∈ B(H,K) and let

γ ≥ 0. Then the operators A±1, γA and A + L∗BL are monotone.

2. Let f : H →] ± ∞,∞] proper, then ∂f is monotone.

Definition 2.7. The monotone operator T is called maximal monotone (or maximally

monotone) if its graph is not contained properly in the graph of any other monotone

operator S : H ⇒ H.

For every monotone operator there exists a maximally monotone extension con-

taining its graph.
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Example 2.5. The following are examples of maximal monotone operators.

1. Let A : H ⇒ H and B : K ⇒ K be maximal monotone operators. Then A±1 and

the operator T : H⊕K ⇒ H⊕K : (x ,y ) 7→ Ax × By are maximal monotone.

2. Let f ∈ Γ0(H), then ∂f is maximal monotone.

3. Let A : H → H be monotone and continuous. Then A is maximal monotone.

4. Let A ∈ B(H) be such that A∗ = ±A. Then A is maximal monotone.

One important property of maximal monotone operators is the following:

Proposition 2.4. Let T : H ⇒ H maximal monotone, and let x ∈ H. Then Tx is closed

and convex.

A notable consequence of this proposition is that for a maximal monotone oper-

ator T we have that the set

zer T = T ±1(0)

is closed and convex, since as seen in Example 2.5(1) the operator T ±1 is maximal

monotone as well.

Notice that as seen in Example 2.4(1) by taking L = I, the sum of two mono-

tone operators is monotone. However, it remains the question of whether this sum is

additionally maximal. It turns out that some algebraic conditions are needed to ensure

this.

Proposition 2.5. Let A : H ⇒ H and B : K ⇒ K maximal monotone, let L ∈ B(H,K),

and suppose that

cone(dom B ± L(dom A)) = span(dom B ± L(dom A)). (7)

Then A + L∗BL is maximal monotone. In the case of L = I, condition in (7) reduces to

cone(dom B ± dom A) = span(dom B ± dom A), (8)

from where A + B is maximal monotone.

The following proposition, which a proof is found in (BRICEÑO-ARIAS; COM-

BETTES, 2011) shows an example of a maximal monotone operator constructed via

the operations in Example 2.5.

Proposition 2.6. Let A : H ⇒ H and B : K ⇒ K be maximal monotone operators. Let

L : H → K a linear bounded operator. Define on G = H⊕K the operators

M : G ⇒ G : (x ,v ) 7→ Ax × B±1v and S : G → G : (x ,v ) 7→ (L∗v , ± Lx).

Then the following hold:
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1. M is maximal monotone;

2. S ∈ B(G) and S∗ = ±S;

3. M + S is maximal monotone.

Proof. 1. Follows from the definition of M and Example 2.5(1).

2. Clearly S is linear and

⟨S(x ,v ),(y ,w)⟩ = ⟨(L∗v , ± Lx),(y ,w)⟩ = ⟨L∗v ,y⟩ + ⟨±Lx ,w⟩

= ⟨v ,Ly⟩ + ⟨x , ± L∗w⟩ = ⟨(x ,v ),(±L∗w ,Ly )⟩

= ⟨(x ,v ), ± S(y ,w)⟩,

that is, S∗ = ±S. Additionally, we have

∥S(x ,v )∥2 = ∥(L∗v , ± Lx)∥2 = ∥L∗v∥2 + ∥Lx∥2

≤ ∥L∥2(∥v∥2 + ∥x∥2)

= ∥L∥2∥(x ,v )∥2.

Thus, S ∈ B(G).

3. From item 4 of Example 2.5 it follows that S is maximal monotone. In addition,

since dom S = G we conclude from Proposition 2.5 that the sum M + S is maximal

monotone.

The importance of this proposition is that since M + S is maximal monotone we

can conclude following Proposition 2.4 that zer(M + S) is closed and convex. We will

express a certain important set as the zeros of an operator of the form M + S.

In (MINTY, 1962) we see an important characterization of a maximal monotone

operator.

Theorem 2.1 (Minty’s Theorem). Let T : H ⇒ H be monotone. Then T is maximally

monotone if and only if ran(I + T ) = H.

An implication of this Theorem is that for a maximal monotone operator T and

for z ∈ H there is a unique (x ,y ) ∈ gra(T ) such that

x + y = z ⇒ z ∈ (I + T )x ⇒ x ∈ (I + T )±1z.

Therefore, we can define the resolvent, proximal mapping, or proximal operator of T ,

denoted by JT as

JT = (I + T )±1.
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Notice that if ρ > 0, then the resolvent of ρT satisfies

x = JρT (t) ⇔ x + ρu = t and u ∈ Tx , (9)

with the x and u satisfying this relation being unique. In view of Minty’s Theorem, the

proximal mapping (of a maximal monotone operator) is a function whose domain is the

whole underlying Hilbert space.

As we saw in Example 2.5(2) the subdifferential of a function f ∈ Γ0(H) is maximal

monotone, and accordingly its resolvent is well defined. It is interesting that in addition

to this we have the following relation

J∂f = (I + ∂f )±1 = Proxf .

2.4 PROJECTIONS

This section defines projections over closed and convex subsets. More specifi-

cally, it deals with projections over affine subspaces. We begin with the concept of best

approximation. Let C be a nonempty subset of H, let x ∈ H, and let p ∈ C. Then p is a

best approximation to x from C (or a projection of x onto C) if ∥x ± p∥ = dC(x). In other

words,

∥x ± p∥ ≤ ∥x ± q∥ ∀ q ∈ C.

As it is, the best approximation to x from C could not even exist, or it could be more

than two approximations. The following theorem gives conditions over C to ensure

a well-defined projection. Additionally, it provides a characterization of the projection

mapping.

Theorem 2.2 (Projection Theorem). Let C be a nonempty closed convex subset of H.

Then for every x ∈ H and every p in H,

p = PCx ⇔ p ∈ C and ⟨y ± p,x ± p⟩ ≤ 0, ∀ y ∈ C. (10)

Therefore, closed and convex sets allow us to define a projection operator with

no ambiguity. In this case, the projector onto C is the operator, denoted by PC , that

maps every point in H to its unique projection onto C. The projector PC is an example

of a maximal monotone operator.

The following example details the projection over a hyperplane.

Example 2.6. Suppose that u ∈ H \ {0}, let η ∈ R, and set C = {x ∈ H | ⟨x ,u⟩ = η}.

Then for x ∈ H

PC(x) = x +
η ± ⟨x , u⟩

∥u∥2
u. (11)
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Proof. To prove it, we apply (10) in Theorem 2.2. Set

p = x +
η ± ⟨x ,u⟩

∥u∥2
u.

Then

⟨p,u⟩ =
〈

x +
η ± ⟨x ,u⟩

∥u∥2
u,u
〉

= ⟨x ,u⟩ +
(
η ± ⟨x ,u⟩

∥u∥2

)

⟨u,u⟩

= η,

that is, p ∈ C. Next, take arbitrary y ,z ∈ C and compute

⟨y ± z,x ± p⟩ =
〈

y ± z,x ± x ±
(
η ± ⟨x ,u⟩

∥u∥2

)

u

〉

=
(
⟨x ,u⟩ ± η

∥u∥2

)

(⟨y ,u⟩ ± ⟨z,u⟩)

=
(
⟨x ,u⟩ ± η

∥u∥2

)

(η ± η)

= 0.

Therefore, PCx = p.

In what follows, we will focus on projections over linear subspaces. We begin

with some general properties.

Proposition 2.7. Let V be a closed linear subspace of H and let x ∈ H. Then the

following hold:

1. Let p ∈ H, then p = PV x if and only if (p,x ± p) ∈ V × V⊥.

2. PV ∈ B(H), ∥PV ∥ = 1 if V ̸= {0}, and ∥PV ∥ = 0 if V = {0}.

3. PV⊥ = I ± PV .

Now we study the projection over the range of an operator T ∈ B(H,K). We say

that x is a least square solution to the problem Tz = y if

∥Tx ± y∥ = min
u∈H

∥Tu ± y∥.

Notice that the right-hand side is the best approximation problem over the set ran T ,

which is convex. Furthermore, it is a linear subspace. Provided that ran T is closed we

have according to Theorem 2.2 that the projection over ran T is well-defined and for

x ∈ H
∥Tx ± y∥ ≤ ∥Tu ± y∥ ∀ u ∈ H

≤ ∥r ± y∥ ∀ r ∈ ran T ,
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that is,

Tx = Pran T y . (12)

Additionally, since ran T is a linear subspace we deduce from Proposition 2.7(1) that

y ± Tx ∈ (ran T )⊥, hence

⟨v , y ± Tx⟩ = 0 ∀ v ∈ ran T

⟨Tu, y ± Tx⟩ = 0 ∀ u ∈ H

⟨u, T ∗(y ± Tx)⟩ = 0

which yields that T ∗y = T ∗Tx . Hence, we had proven that the set of least square

solutions is

{x ∈ H | T ∗y = T ∗Tx}.

If T ∈ B(H,K) is such that T ∗T is invertible, we have as unique solution of the least

square problem: x = (T ∗T )±1T ∗y . Furthermore, we conclude by (12) that

Pran T y = Tx = T (T ∗T )±1T ∗y . (13)

With this in mind, we will obtain the projection over two important subspaces. The first

one is a direct consequence of (13).

Proposition 2.8. Let L ∈ B(H,Hn) defined by L : z 7→ (z, . . . , z), then

Pran L(w1, . . . , wn) =
1
n

(
n∑

i=1

wi , . . . ,
n∑

i=1

wi

)

Proof. Notice that the operator L is an instance of Example 2.2, with Gi = I for i =

1 . . . , n. Hence L∗(w1, . . . , wn) =
∑n

i=1 wi , from which we easily obtain L∗L = nI. From

(13), it follows that

Pran L(w1, . . . , wn) = L(L∗L)±1L∗(w1, . . . , wn)

= L

(

1
n

n∑

i=1

wi

)

=
1
n

(
n∑

i=1

wi , . . . ,
n∑

i=1

wi

)

.

The second subspace is a little more elaborated.

Proposition 2.9. Let L ∈ B(H,K). Set G = H⊕K and V = {(x ,y) ∈ G | Lx = y}. Then,

for every (x ,y ) ∈ G, the following hold:

PV (x ,y ) = (x ± L∗(I + LL∗)±1(Lx ± y ), y + (I + LL∗)±1(Lx ± y )). (14)
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Proof. Define T : G → K : (z, w) 7→ Lz ± w . Hence, V = ker T and its orthogonal

complement is given by

V⊥ = {(z,w) ∈ G | z = ±L∗w}. (15)

Notice that

⟨T (z,w),v⟩ = ⟨Lz ± w ,v⟩ = ⟨(z,w),(L∗v , ± v )⟩,

that is, T ∗(v ) = (L∗v , ± v ) so we obtain that

TT ∗v = T (L∗v , ± v ) = LL∗v + v ⇒ TT ∗ = I + LL∗.

This implies that TT ∗ is invertible and ran TT ∗ = K, which is closed and therefore by

Proposition 2.2, ran T ∗ is closed as well.

To relate the projection over V to the projection over a range of a linear bounded

operator we first notice that since V = ker T is a linear subspace we have from Proposi-

tion 2.7(3) that PV = I ± PV⊥ and by Proposition 2.1 V⊥ = ranT ∗.

Since ran T ∗ is closed we can write V⊥ = ran T ∗, and from TT ∗ being invertible

we can use (13) and the fact that T ∗∗ = T to compute Pran T ∗ as follows

Pran T ∗(x ,y ) = T ∗(TT ∗)±1T (x ,y )

= T ∗
(

(I + LL∗)±1(Lx ± y )
)

=
(
L∗(I + LL∗)±1(Lx ± y ), ±(I + LL∗)±1(Lx ± y )

)
.

Therefore,

Pker T (x ,y ) = I ± Pran T ∗(x ,y )

= (x ,y ) ±
(
L∗(I + LL∗)±1(Lx ± y ), ±(I + LL∗)±1(Lx ± y )

)

=
(
x ± L∗(I + LL∗)±1(Lx ± y ), y + (I + LL∗)±1(Lx ± y )

)
.

We derive from (14) one more expression for the projector PV and one for PV⊥ .

Proposition 2.10. Let L ∈ B(H,K) and define V = {(z, w) ∈ H ⊕K | Lz = w}, then

1. PV (x ,y ) = ((I + L∗L)±1(x + L∗y ), L(I + L∗L)±1(x + L∗y ))

2. PV⊥(x ,y ) = (L∗(I + LL∗)±1(Lx ± y ), ±(I + LL∗)±1(Lx ± y )).

Proof. The proof is based on showing that x ± L∗(I + LL∗)±1(Lx ± y ) ± (I + L∗L)±1(x + L∗y )

is on the kernel of I + L∗L for all (x ,y ) ∈ H⊕K, and since I + LL∗ is invertible this yields

the desired equality x ± L∗(I + LL∗)±1(Lx ± y ) = (I + L∗L)±1(x + L∗y ). The same argument
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is applied to the second entry. For the first entry we have

(I + L∗L)
(

x ± L∗(I + LL∗)±1(Lx ± y ) ± (I + L∗L)±1(x + L∗y )
)

= x + L∗Lx ± (L∗(I + LL∗)±1(Lx ± y ) + L∗LL∗(I + LL∗)±1(Lx ± y )) ± x ± L∗y

= L∗(Lx ± y ) ± L∗(I + LL∗)(I + LL∗)±1(Lx ± y )

= L∗(Lx ± y ± (Lx ± y ))

= 0.

Since I + LL∗ is invertible, this means that

x ± L∗(I + LL∗)±1(Lx ± y ) = (I + L∗L)±1(x + L∗y ), ∀ (x , y ) ∈ H ⊕K.

With the same procedure for the second entry we have

(I + LL∗)
(

y + (I + LL∗)±1(Lx ± y ) ± L(I + L∗L)±1(x + L∗y )
)

= y + LL∗y + (Lx ± y ) ± L(I + L∗L)±1(x + L∗y ) + LL∗L(I + L∗L)±1(x + L∗y )

= L(x + L∗y ) ± L(I + L∗L)±1(x + L∗y ) ± LL∗L(I + L∗L)±1(x + L∗y )

= (L(I + LL∗) ± L ± LL∗L)(I + L∗L)±1(x + L∗y )

= L(I + LL∗ ± I ± LL∗)(I + L∗L)(x + L∗y )

= 0.

Thus,

y + (I + LL∗)±1(Lx ± y ) = L(I + LL∗)±1(x + L∗y ) ∀ (x , y ) ∈ H ⊕K.

Therefore

PV (x , y ) =
(
x ± L∗(I + LL∗)±1(Lx ± y ), y + (I + LL∗)±1(Lx ± y )

)

=
(
(I + L∗L)±1(x + L∗y ), L(I + L∗L)±1(x + L∗y )

)

The second item follows readily from the identity PV⊥ = I ± PV .

The following theorem introduced in (BAUSCHKE, 2009) will be handy later in

proving the weak convergence of the generated sequences of the projective splitting

algorithms.

Theorem 2.3. Let T : H ⇒ H be maximal monotone, and let V be a closed linear

subspace of H. Let (xk , uk )k∈N a sequence in gra T such that (xk , uk ) ⇀ (x ,u) ∈ H×H.

Suppose that

xk ± PV xk → 0 and PV uk → 0,

where PV denotes the projector onto V . Then

(x ,u) ∈ (V × V⊥) ∩ gra T , and ⟨xk , uk ⟩ → ⟨x , u⟩ = 0.

The proof is made using a firmly non-expansive operator related to the resolvent

of T and the projection mapping PC . A different proof based on the Spingarn’s partial-

inverse can be found in (ALVES, 2020).
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2.5 COCOERCIVE OPERATORS

In this section, we define an important class of operators, namely, firmly non-

expansive operators. From these, we obtain the class of cocoercive operators, they will

be important in Chapter 4.

Definition 2.8. Let D ⊂ H nonempty, and let T : D → H. Then T is firmly non-

expansive if ∀ x ,y ∈ H

∥Tx ± Ty∥2 + ∥(I ± T )x ± (I ± T )y∥2 ≤ ∥x ± y∥2. (16)

It follows from (16) that every firmly non-expansive operator is also nonexpansive,

that is,

∥Tx ± Ty∥ ≤ ∥x ± y∥, ∀ x ,y ∈ H, (17)

in other words, T is Lipschitz continuous with constant 1. It is easy to see that (16) is

equivalent to

⟨x ± y , Tx ± Ty⟩ ≥ ∥Tx ± Ty∥2 ∀ x ,y ∈ H. (18)

A particular example of a firmly non-expansive operator is

Definition 2.9. Let D ⊂ H nonempty, and let T : D → H, and let β > 0. Then T is

β±cocoercive (or β±inverse strongly monotone), if βT is firmly non-expansive, that is,

⟨x ± y , Tx ± Ty⟩ ≥ β∥Tx ± Ty∥2, ∀ x ,y ∈ H. (19)

Notice that (19) follows from (18) applied to βT . It turns out that β±cocoercive

operators have a desirable property as states the following

Proposition 2.11. Let T : H → H be β±cocoercive, then T is maximal monotone.

Proof. From (19) we deduce that the operator T is monotone. Additionally, since eve-

ry firmly non-expansive operator is also non-expansive and therefore continuous, we

conclude that a β±cocoercive operator is continuous and hence maximal by Example

2.5(3).

The following proposition shows us that the sum of compositions of linear opera-

tors and cocoercive operators is a cocoercive operator.

Proposition 2.12. Let Ki be a real Hilbert space for i = 1, . . . , n. Suppose that Li ∈

B(H,Ki ) \ {0} for i = 1, . . . , n, let βi ∈ R++, and let Ti : Ki → Ki be βi±cocoercive. Set

T =
n∑

i=1

L∗i TiLi and β =
1

∑n
i=1

∥Li∥

βi

.

Then T is β±cocoercive.
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We finish this section with two examples of firmly non-expansive operators.

Example 2.7. The following are examples of firmly non-expansive operators

1. The resolvent of a maximal monotone operator.

2. The projector PC where C is nonempty closed convex subset of H.

2.6 THE MINIMIZATION AND INCLUSION PROBLEMS

In this section, we will show how the problem of minimizing a convex function is

related to the problem of finding zeros of a maximal monotone operator.

Proposition 2.13. Let f : H →] ± ∞,∞] proper. Then

Argmin f = zer ∂f . (20)

Now consider a problem of the form

min
z∈H

f (z) + g(Lz),

where f ∈ Γ0(H), g ∈ Γ0(K) and L ∈ B(H,K). To apply (20) we have to compute the

subdifferential ∂(f + g ◦ L). When certain conditions are met, we can compute this

subdifferential in terms of the subdifferentials of the convex functions f and g. These

conditions are called constraint qualification conditions. The following theorem shows

one of such conditions.

Theorem 2.4. Let f ∈ Γ0(H), let g ∈ Γ0(K), let L ∈ B(H,K). Suppose that

0 ∈ sri(dom g ± L(dom f )), (21)

then ∂(f + g ◦ L) = ∂f + L∗ ◦ ∂g ◦ L.

The condition in Theorem 2.4 could be a consequence of the following:

1. dom g ± L(dom f ) is a closed linear subspace.

2. 0 ∈ core(dom g ± L(dom f )).

3. 0 ∈ int(dom g ± L(dom f )).

4. dom g ∩ L(dom f ) ̸= ∅ or L(dom f ) ∩ int dom g ̸= ∅.

Notice that when f = 0 in Theorem 2.4, condition (21) reduces to

0 ∈ sri(dom g ± ran L),

yielding ∂(g ◦ L) = L∗ ◦ ∂g ◦ L.

Corollary 2.5. Let f and g functions in Γ0(H) such that one of the following holds:

1. 0 ∈ sri(dom f ± dom g).
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2. dom f ∩ int dom g ̸= ∅.

3. dom g = H.

4. H is finite-dimensional and ri dom f ∩ ri dom g ̸= ∅.

Then ∂(f + g) = ∂f + ∂g.

Due to the relation in (20) when considering the problem

min
z∈H

n∑

i=1

fi (z), fi ∈ Γ0(H),

we ask under what conditions ∂
(∑n

i=1 fi
)

=
∑n

i=1 ∂fi . Some conditions are established

in the following corollary of Theorem 2.4.

Corollary 2.6. Let n be an integer such that n ≥ 2, set I = {1, . . . , n}, and let (fi )i∈I be

functions in Γ0(H) such that one of the following holds:

1. We have

0 ∈
n⋂

i=2

sri



dom fi ±
i±1⋂

j=1

dom fj



 .

2. For every i ∈ {2, . . . , n} dom fi ± ∩i±1
j=1 dom fj is a closed linear subspace.

3. The sets (dom fi )i∈I are linear subspaces and, for every i ∈ {2, . . . , n}, dom fi +

∩i±1
j=1 dom fj is closed.

4. dom fn ∩
⋂n±1

i=1 int dom fi ̸= ∅.

5. H is finite-dimensional and
⋂

i∈I ri dom fi ̸= ∅.

Then ∂
(∑n

i=1 fi
)

=
∑n

i=1 ∂fi .

The following example shows an application of these results.

Example 2.8. Consider the minimization problem

min
z∈Rp+1

2∑

i=1

(fi ◦ Gi + hi ◦ Gi )(z). (22)

where the functions f1,h1 : Rd → R, f2,h2 : Rp+1 → R are defined as follows

f1(t) = ∥t∥1, h1(t) = 0,

f2(γ,β) = ∥γ∥1, h2(γ,β) =
1
2
∥βe + Hγ∥2

2,

e ∈ R
d has all elements equal to 1, and the linear operators G1 and G2 are

G1 = [H | 0], and G2 = I,
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where G1 ∈ R
d×(p+1) with H ∈ R

d×p and G2 is the (p + 1) × (p + 1) identity matrix.

Hence, problem (22) reduces to

min
z∈Rp+1

[f1 ◦ G1 + (f2 + h2)](z).

More specifically

min
γ∈Rp

β∈R

∥Hγ∥1 + ∥γ∥1 +
1
2
∥βe + Hγ∥2

2.

Notice that the function h2 is Lipschitz differentiable. Condition in Theorem 2.4 is

0 ∈ sri(dom f1 ± G1(dom(f2 + h2)))

which follows from dom f1 = R
d . Thus we obtain

∂(f1 ◦ G1 + (f2 + g2)) = G∗
1 ◦ ∂f1 ◦ G1 + ∂(f2 + h2).

Additionally, f2 and h2 satisfies one of the hypotheses in Corollary 2.5, specifically that

dom h2 = R
p+1. Thus

∂(f2 + g2) = ∂f2 + ∂h2.

Altogether, we have according to (20) that the minimization problem is equivalent to the

inclusion problem

0 ∈ [G∗
1 ◦ ∂f ◦ G1 + ∂f2 + ∂h2](z).

This example is a simplified version of the problem in (JOHNSTONE; ECKSTEIN, 2021,

Sect. 6.3).

Now that we have established a connection between the minimization problem

and the inclusion problem, we explore a little more about the later. Let A : H ⇒ H and

B : K ⇒ K be maximal monotone operators, and let L ∈ B(H,K). Consider the problem

find z ∈ H such that 0 ∈ Az + L∗BLz, (23)

together with the dual inclusion

find w ∈ K such that 0 ∈ ±LA±1(±L∗w) + B±1w . (24)

Consider now the operators M and S defined in Proposition 2.6 applied to the

operators A, B and L. For the problem

find z ∈ H such that 0 ∈ Mz + Sz,

denote by Z its set of solutions

Z = zer(M + S)

= {(z, w) ∈ H ⊕K | ± L∗w ∈ Az and Lz ∈ B±1w}.
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We call it the set of Kuhn - Tucker points associated with problem (23)-(24). We will see

the Kuhn - Tucker set for two inclusion problems in Chapters 3 and 4. Notice that in the

case of L = I we have the primal inclusion

0 ∈ Az + Bz (25)

and the dual inclusion

0 ∈ ±A±1(±w) + B±1w .

Having established a simple form of an inclusion problem, we present two well-known

iterative algorithms to find a solution. These employ the operators in separate steps; this

is what a splitting scheme is. We begin with the Douglas-Rachford splitting algorithm,

which traces back to (DOUGLAS; RACHFORD, 1956).

Theorem 2.7 (Douglas±Rachford algorithm). Let A, B : H ⇒ H be maximal mono-

tone operators such that zer(A + B) ̸= ∅, let (ρk )k∈N be a sequence in [0, 2] such that
∑

k∈N ρk (2 ± ρk ) = +∞ and let γ ∈ R++. Let y0 ∈ H, and set for k = 0,1, . . .

xk = JγB yk ,

zk = JγA(2xk ± yk ),

yk+1 = yk + ρk (zk ± xk ).

Then there exists y ∈ H such that yk ⇀ y, and x := JγBy is a solution of the primal

problem (25).

The following theorem presents the Forward-Backward algorithm (FB) which

considers the case when one of the operators is cocoercive.

Theorem 2.8 (Forward-Backward algorithm). Let A : H ⇒ H be maximal monotone,

let β ∈ R++, let B : H → H be β±cocoercive, let γ ∈ ]0, 2β[, and set δ = 2 ± γ/(2β).

Futhermore, let (ρk )k∈N be a sequence in [0, δ] such that
∑

k∈N ρk (δ ± ρk ) = +∞, and

let x0 ∈ H. Suppose that zer(A + B) ̸= ∅ and set for k = 0,1, . . .

yk = xk ± γBxk ,

xk+1 = xk + ρk (JγA yk ± xk ).

Then the following hold:

1. (xk )k∈N converges weakly to a point in zer(A + B).

2. Let x ∈ zer(A + B). Then (Bxk )k∈N converges strongly to the unique dual solution

Bx .

The forward±backward splitting algorithm dates back to (LIONS; MERCIER,

1979).
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3 GENERAL SPLITTING ALGORITHM

In this chapter we consider the general problem of finding a zero of a sum of n

maximal monotone operators, or MIP. The approach is as in (ECKSTEIN; SVAITER,

2009). The organization of the chapter is as follows. Section 3.1 introduces a general

projection-separator algorithm to find a point in a set, that generates a Fejér monotone

sequence. Section 3.2 shows how to frame the inclusion problem so a projection-

separator algorithm can be applied, and it is presented a convergence condition in

Proposition 3.4. Section 3.3 specifies some features of this general framework applied

to the MIP, and presents an algorithm with those features. Finally, Section 3.4 shows

that the algorithm presented in Section 3.3 converges weakly to a solution point in

Theorem 3.1.

3.1 A GENERAL FRAMEWORK FOR A PROJECTION ALGORITHM

Let S be a closed convex set in a real Hilbert space H. The following framework

consider at each iteration k a half-space Hk containing the set S, then it performs a

projection Pk onto this half-space.

Algorithm 1: Abstract projection algorithm

Data: Start with an arbitrary p0 ∈ H
1 for k = 0,1,2, . . . do
2 Find a half-space Hk such that S ⊂ Hk ;
3 Compute the projection Pkpk of pk onto to the half-space Hk ;
4 Choose ρk ∈ [0,2] and set pk+1 = pk + ρk (Pkpk ± pk )
5 end

This framework described in (COMBETTES, 2001) produces a Fejér monotone

sequence with the properties listed in Proposition 2.3. Now we are going to describe

analytically the elements of the general framework in Algorithm 1. To define such half-

space at iteration k , we make use of an affine function φk , and we denote by Pk the

projection onto the half-space

Hk := {x ∈ H | φk (x) ≤ 0} = {x ∈ H | ⟨∇φk , x⟩ + η ≤ 0}. (26)

As follows from Example 2.6 we have that

Pk (p) =







p p ∈ Hk

p ±
φk (p)

∥∇φk∥
2
∇φk p /∈ Hk .

Since φk (p) > 0 for p /∈ Hk , the definition for the projection is summarized in the

expression

Pk (p) = p ±
max{0,φk (p)}

∥∇φk∥
2

∇φk .
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We now restate Algorithm 1 in terms of the affine function φk as found in (ECKSTEIN;

SVAITER, 2009), where S is closed convex subset of a Hilbert space U.

Algorithm 2: Abstract projection algorithm

Data: Start with an arbitrary p0 ∈ U

1 for k = 0,1,2, . . . do
2 Determine a non-constant differentiable affine function φk : U → R such that

φk (p) ≤ 0 for all p ∈ S.

3 Let pk the projection of pk onto the half-space (26) given by

pk = pk ±
max{0,φk (pk )}

∥∇φk∥
2

∇φk . (27)

4 Choose some relaxation parameter ρk ∈ (0,2), and set

pk+1 = pk + ρk (pk ± pk ). (28)

5 end

The last two steps may simply be condensed to

pk+1 = pk ± ρk
max{0,φk (pk )}

∥∇φk∥
2

∇φk . (29)

Note that in the projection computation, it may happen that φ(pk ) ≤ 0, giving that

pk+1 = pk . This might happen if the hyperplane does not separate the current iterate

pk from the set S. Later, we will present a condition to ensure this separation.

Figure 1 presents a rough depiction of the current algorithm iterate pk and the

separator φk in the case that φk (pk ) > 0. The hyperplane is the boundary of the half-

space Hk , and it always holds that φk (p∗) ≤ 0 for every p∗ ∈ S. When φk (pk ) > 0 (as

shown), the hyperplane separates the current point pk from the solution set S.

Figure 2 presents a rough depiction of two iterations of this process in the ab-

sence of over-relaxation or under-relaxation. Each iteration k constructs a separator

φk as shown in Figure 1 and then obtains the next iteration by projecting onto the

half-space Hk = {p ∈ U | φk (p) ≤ 0}, within which the solution set S is known to lie.



Chapter 3. General splitting algorithm 36

Figure 1 ± Properties of the hyperplane Hk = {p ∈ U | φk (p) = 0} obtained from the
affine function φk .

S

pk

φk (p) = 0

φk (p) > 0

φk (p) ≤ 0

Source: (JOHNSTONE; ECKSTEIN, 2021), modified by the author.

Figure 2 ± The basic operation of the method.

pk

φk (p) = 0

pk+1

pk+2

φk+1(p) = 0

S

Source: (JOHNSTONE; ECKSTEIN, 2021), modified by the author.

Notice that in (27) we can write Pkpk = pk , and that for p∗ ∈ S we have Pkp∗ = p∗

for all k ≥ 1. Now, we can use the fact that the projector is a firmly non-expansive

operator to obtain

∥Pkp∗ ± Pkpk∥2 + ∥(I ± Pk )p∗ ± (I ± P)pk∥2 ≤ ∥p∗ ± pk∥2

∥p∗ ± pk∥2 + ∥pk ± pk∥2 ≤ ∥p∗ ± pk∥2

∥p∗ ± pk∥2 ≤ ∥p∗ ± pk∥2 ± ∥pk ± pk∥2. (30)
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Additionally, since Pk is projection we obtain using (10) in Theorem 2.2 that

⟨p∗ ± pk , pk ± pk ⟩ = ⟨p∗ ± pk + pk ± pk , pk ± pk ⟩

= ⟨p∗ ± Pkpk , pk ± Pkpk ⟩ ± ∥pk ± pk∥2

≤ ±∥pk ± pk∥2.

Using this last inequality and (29), we have for p∗ ∈ S that

∥p∗ ± pk+1∥2 = ∥p∗ ± pk ± ρk (pk ± pk )∥2

= ∥p∗ ± pk∥2 + 2ρk ⟨p
∗ ± pk , pk ± pk ⟩ + ρ2

k∥pk ± pk∥2

≤ ∥p∗ ± pk∥2 ± 2ρk∥pk ± pk∥2 + ρ2
k∥pk ± pk∥

= ∥p∗ ± pk∥2 ± ρk (2 ± ρk )∥pk ± pk∥2. (31)

The properties of a sequence generated by Algorithm 2 are in the following

Proposition 3.1. Any infinite sequence (pk )k≥0 generated by Algorithm 2 behaves as

follows

1. For any p∗ ∈ S, the sequence (∥pk ± p∗∥)k≥0 is nonincreasing, that is, (pk )k≥0 is

Fejér monotone with respect to S.

2. If pk0 ∈ S for some k0 ≥ 0, then pk = pk0 for all k ≥ k0.

3. If (pk )k≥0 has a strong accumulation point in S, then the whole sequence con-

verges to that point.

4. If S is nonempty, then (pk )k≥0 is bounded. Moreover, if there exist ρ, ρ such that

0 < ρ ≤ ρk ≤ ρ < 2 for all k, then

∞∑

k=0

∥pk ± pk∥2 < ∞,
∞∑

k=0

∥pk ± pk+1∥2 < ∞. (32)

5. The sequence (pk )k≥0 has at most one weak accumulation point in S.

Proof. 1. It follows from (31) that the sequence (∥pk ± p∗∥)k≥0 is nonincreasing for

any p∗ ∈ S, thus (pk )k≥0 is Fejér monotone with respect to S.

2. If pk0 ∈ S for some k0 ≥ 0, then φk (pk0) ≤ 0 for all k ≥ k0 and from (29) we

conclude that pk = pk0 for all k ≥ k0.

3. Follows from the fact of the sequence (∥pk ± p∗∥)k≥0 being nonincreasing.

4. If S is nonempty we can consider for p∗ ∈ S the sequence (∥pk ± p∗∥)k≥0. Thus

from item 1 we obtain the boundedness of (pk )k≥0. To obtain the convergence of

the first series, notice that from (31) follows the convergence of the series
∞∑

k=0

ρk (2 ± ρk )∥pk ± pk∥2.



Chapter 3. General splitting algorithm 38

Now, since there exist ρ, ρ such that 0 < ρ ≤ ρk ≤ ρ < 2 for all k , we have that

there exist some β > 0 such that

[ρk (2 ± ρk )]±1 < β±1.

Hence
∞∑

k=0

∥pk ± pk∥2 ≤
1
β

∞∑

k=0

ρk (2 ± ρk )∥pk ± pk∥2 < ∞.

To obtain the convergence of the second series we use (28) since we can write
∞∑

i=1

∥pk ± pk+1∥2 =
∞∑

i=1

ρ2
k∥pk ± pk∥2,

thus using the boundedness of ρ2
k and the convergence of the first series yields

the result.

5. Suppose the sequence (pk )k≥0 has two weak accumulation points p and p′, then

there exist subsequences such that

pkn → p and pkm → p′.

Since p and p′ are in S we have by item 1 that the sequences (∥pk ± p∥)k∈N and

(∥pk ± p′∥)k∈N converge. From

2⟨pk , p ± p′⟩ = ∥pk ± p′∥2 ± ∥pk ± p∥2 ± ∥p∥2 ± ∥p′∥2

follow that (⟨pk , p ± p′⟩)k≥0 converges, say, to y . From the weakly convergence of

the two subsequences follows that

⟨pkn , p ± p′⟩ → ⟨p, p ± p′⟩ = y and ⟨pkm , p ± p′⟩ → ⟨p′, p ± p′⟩ = y .

Therefore, ∥p ± p′∥2 = 0, that is, p = p′.

3.2 APPLICATION TO THE INCLUSION PROBLEM

Now we consider the general framework introduced in the last section applied to

the following inclusion problem. Let n ≥ 2 and let Ti : H ⇒ H, be set-valued maximal

monotone operator for i = 1, . . . , n. The problem is to find z ∈ H such that

0 ∈ T1z + · · · + Tnz. (33)

Since problem (33) deals with n maximal monotone operators, we will introduce a

splitting scheme to deal only with each operator separately or their resolvents, instead

of combinations such as Ti + Tj . Hence, it is assumed that each resolvent is available.

With the objective to use the general framework of Section 3.1 we need to

define a closed convex set and a sequence of half-spaces containing it. Hence, we will

construct a set of solutions S and for each iteration an affine function φk that generates

the separating half-space.
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3.2.1 Extended solution set

We start noticing that if an element z ∈ H is a solution to the problem 0 ∈

T1z + · · · + Tnz, then there exist w1, w2, . . . , wn ∈ H such that wi ∈ Tiz and that

w1 + w2 + · · · + wn = 0. With this in mind we define the set

W := {(w1, . . . , wn) ∈ Hn | w1 + w2 + · · · + wn = 0}. (34)

Consider the linear operator L and its adjoint L∗ defined by

L : H → Hn : z 7→ (z, . . . ,z), L∗(w1, . . . ,wn) =
n∑

i=1

wi , (35)

according to Example 2.2. We can express the set W as

W = {(w1, . . . , wn) ∈ Hn | L∗(w1, . . . , wn) = 0}. (36)

We will make use of this representation later.

Proposition 3.2. The set W defined above is a subspace of Hn and it is closed.

We now move the problem (33) to the Hilbert space H × Hn = Hn+1 under the

canonical inner product

⟨(v , w1, . . . , wn), (x , y1, . . . , yn)⟩ = ⟨v , x⟩ +
n∑

i=1

⟨wi , yi⟩, (37)

and define the set

V := H× W = {(v , w1, . . . ,wn) ∈ Hn+1 | w1 + · · · + wn = 0}. (38)

Clearly, the set V is a closed linear subspace of Hn+1. To make an association with the

problem we are considering we defined the extended solution set to be

Se(T1, . . . , Tn) := {(z, w1, . . . , wn) ∈ V | wi ∈ Tiz, i = 1, . . . , n}, (39)

which we will denote simply as Se. Notice that the way we defined the set Se is deeply

connected with the solutions to problem (33). This is stated in the following

Lemma 3.1. Finding a point in Se is equivalent to solving (33) in the sense that

0 ∈ T1z + . . . + Tnz ⇐⇒ ∃ w1, . . . , wn ∈ H : (z, w1, . . . , wn) ∈ Se.

The following proposition contains a necessary property of the set Se. The proof

is based on the techniques found in (JOHNSTONE; ECKSTEIN, 2021) instead of the

original in (ECKSTEIN; SVAITER, 2009).
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Proposition 3.3. The extended solution set Se is closed and convex in Hn+1.

Proof. The main idea here is to express the set Se as the zero set of a maximal

monotone operator and then use Proposition 2.4. Consider A : H → H : x 7→ 0, the

zero operator which is maximal monotone and B : H → Hn : z 7→ T1z × · · · × Tnz

which is also maximal monotone by Example 2.5 (1). Define L ∈ B(H,Hn) as in (35).

Denoting (w1, . . . ,wn) ∈ Hn by w we define the operators as in Example 2.6 by

M(z,w ) = Az × B±1w , and S(z,w ) = (L∗w , ± Lz).

Let’s show that zer(M + S) = Se. Indeed, let (z,w ) ∈ zer(M + S), then

0 ∈ M(z,w ) + S(z,w ) ⇔ 0 ∈ (Az + L∗w ) × (B±1w ± Lz)

⇔ L∗w = 0 and Lz ∈ B±1w

⇔ w ∈ W and w ∈ B(Lz) [using (36)]

⇔ w ∈ W and wi ∈ Tiz, ∀i = 1, . . . ,n

⇔ (z,w1, . . . ,wn) ∈ Se.

Since zer(M + S) is closed and convex, it follows the conclusion.

3.2.2 Definition of the separators

We have the first ingredient of the standard projection algorithm, next we are

going to construct the hyperplanes. To do that, we make use of the monotonocity of the

operators Ti . Consider a point (xi , yi ) ∈ gra Ti for i = 1, . . . ,n. From the definition of the

set Se, we have that if a point (z,w1, w2, . . . , wn) ∈ Se then specifically (z, wi ) ∈ gra Ti

and by monotonicity

⟨z ± xi , wi ± yi⟩ ≥ 0.

Equivalently, ⟨z ± xi , yi ± wi⟩ ≤ 0, and therefore

n∑

i=1

⟨z ± xi , yi ± wi⟩ ≤ 0. (40)

With this in mind we define the following function on Hn+1

Definition 3.1. Let V ⊂ Hn+1 be the subspace defined in (38), given (xi , yi ) ∈ gra Ti

for i = 1, . . . , n , define φ : V → R as

φ(z, w1, . . . , wn) :=
n∑

i=1

⟨z ± xi , yi ± wi⟩. (41)

The properties of this function is a step closer to the application of the standard

projection algorithm. In view of Lemma 3.1 and Proposition 3.3, we attempt to solve

(33) by finding a point in Se(T1, . . . , Tn). The following lemma details the properties of

these separators.
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Lemma 3.2. Let φ : V → R as in Definition 3.1. Then, for any (z, w1, . . . , wn) ∈ Se, one

has φ(z, w1, . . . , wn) ≤ 0, that is,

Se ⊆ {(z, w1, . . . , wn) ∈ V |φ(z, w1, . . . , wn) ≤ 0}. (42)

Additionally, φ is affine on V , with

∇φ =

(
n∑

i=1

yi , x1 ± x , x2 ± x , . . . , xn ± x

)

, where x :=
1
n

n∑

i=1

xi , (43)

and
∇φ = 0 ⇐⇒ (x1, y1, . . . , yn) ∈ Se, x1 = x2 = . . . = xn

⇐⇒ φ(z, w1, . . . , wn) = 0 ∀ (z, w1, . . . , wn) ∈ V .

Proof. The inclusion in (42) follows from the discussion that leads to the definition of

the separator in (40). To prove that φ is affine on V , define the operator L as in (35),

setting x = (x1, . . . , xn), y = (y1, . . . ,yn), and w = (w1, . . . , wn) we can write (41) using

the canonical inner product of the product space Hn as

φ(z,w ) = ⟨Lz ± x , y ± w⟩. (44)

Recall from (36) that for (z,w ) ∈ V we have that L∗w = 0. Define x =
1
n

L∗x , and using

the expression in (44) we obtain

φ(z, w ) = ⟨z, L∗y⟩ ± ⟨z, L∗w⟩ ± ⟨x , y⟩ + ⟨x , w⟩ (45)

= ⟨z, L∗y⟩ + ⟨x ± Lx , w⟩ + ⟨Lx , w⟩ ± ⟨x , y⟩

= ⟨z, L∗y⟩ + ⟨x ± Lx , w⟩ + ⟨x , L∗w⟩ ± ⟨x , y⟩

= ⟨(z, w ), (L∗y , x ± Lx)⟩ ± ⟨x , y⟩. (46)

We have to prove that the vector (L∗y , x ±Lx) is in V , or more specifically that x ±Lx ∈ W

or that L∗(x ± Lx) = 0 according to (36). This follows from the fact that L∗L = nI

and L∗x = nx . Hence, from (46) this gives us that φ is affine on V , and yields that

∇φ = (L∗y , x ± Lx).

Lastly, from (43) we have that ∇φ = 0 if and only if
n∑

i=1

yi = 0 and xi = x ∀ i = 1, . . . , n.

Since (xi ,yi ) ∈ gra Ti we obtain that (x , y1, . . . , yn) ∈ Se, which proves the first equiva-

lence. For the second equivalence, we notice that if ∇φ = 0 the expression of φ in (46)

reduces to

φ(z,w ) = ±⟨x , y⟩ =
n∑

i=1

⟨xi , yi⟩

=

〈

x ,
n∑

i=1

yi

〉

= 0.
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Note that φ is not an affine function in the space Hn+1 but only on its subspace

V , where the cross term ⟨z, L∗w⟩ in (45) must be zero. We will implement the algorithm

within the subspace V .

3.2.3 First Convergence Analysis

If we want that the affine function φk creates a separation between the set Se

and the iterate pk = (zk ,wk
1 , . . . , wk

n ) /∈ Se then we require that φk (pk ) > 0. Since the

function is defined in terms of the points (xk
i , yk

i ) ∈ gra Ti then we must have a way

to choose such points to guarantee this separation. As we commented, in Algorithm

1 the affine function φk might not separate pk from Se, or even when it makes some

separation, this might be shallow. The condition φk (pk ) ≥ ξ∥∇φk∥
2 for all k ≥ 0, with

ξ > 0 a fixed constant, guarantees convergence.

We now perform a preliminary analysis of the convergence properties of Al-

gorithm 2. The following proposition contains a separation condition that along with

Hypotheses 5 and 6 ensure weak convergence. In the original paper (ECKSTEIN;

SVAITER, 2009) we found Hypothesis 4 as part of the reasoning. However, the note

in (BAUSCHKE, 2009) shows how Theorem 2.3 can be used to prove the weak con-

vergence of the sequence (pk )k≥0 without the Hypothesis 4 below. The same idea is

repeated in a similar result found in Lemma 4.4. In view of that, the proof presented

here make use of Theorem 2.3.

Proposition 3.4. Suppose that the following conditions are met in Algorithm 2:

1. Se(T1,...,Tn) ̸= ∅

2. 0 < ρ ≤ ρk ≤ ρ < 2 for all k.

3. There exists some scalar ξ > 0 such that, for all k ≥ 0,

φk (pk ) = φk (zk ,wk
1 , . . . ,wk

n ) ≥ ξ∥∇φk∥
2 = ξ

(

∥
n∑

i=1

yk
i ∥

2 +
n∑

i=1

∥xk
i ± xk∥2

)

(47)

Then ∇φk → 0, that is xk
i ± xk

j → 0 for all i ,j = 1, . . . ,n and
∑n

i=1 yk
i → 0.

Furthermore, φk (pk ) → 0. If it is also true that

4. Either H has finite dimension or the operator T1 + · · · + Tn is maximal,

5. zk ± xk → 0

6. wk
i ± yk

i → 0, for i = 1, . . . ,n,

then (pk )k≥0 converges weakly to some p∞ = (z∞,w∞
1 , . . . ,w∞

n ) ∈ Se(T1, · · · ,Tn),

which implies that z∞ solves (33). Furthermore, xk
i ⇀ z∞ and yk

i ⇀ w∞
i for i = 1, . . . ,n.

Proof. For the first part of the proof we assume Hypotheses 1-3 true. Hypothesis 3
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implies that φk (pk ) ≥ 0, and according to (27) we have

∥pk ± pk∥ =
φk (pk )
∥∇φk∥

, (48)

For all k having ∇φk ̸= 0. Substituting φk (pk ) ≥ ξ∥∇φk∥
2 into this equation, we obtain

∥pk ± pk∥ ≥ ξ∥∇φk∥. (49)

Hypotheses 1 and 2 are those in Proposition 3.1(4), hence (32) implies that

∥pk ± pk∥ → 0.

Thus (49) implies ∇φk → 0. From the expression for ∇φk in (43), we immediately have

n∑

i=1

yk
i → 0 and xk

i ± xk → 0 for i = 1, . . . ,n. (50)

And thus xk
i ± xk

j → 0 for all i ,j = 1, . . . ,n. Recall that by Lemma 3.2, φk (pk ) = 0

whenever ∇φk = 0, hence if ∇φk ̸= 0 we can multiply (48) by ∥∇φk∥ and obtain

φk (pk ) = ∥pk ± pk∥∥∇φk∥. (51)

Therefore, we have established the equality in (51) for all k ≥ 0, since ∇φk → 0 and

∥pk ± pk∥ → 0 we conclude that φk (pk ) → 0.

Now, we focus on the proof of the second part without Hypothesis 4. The strategy

is to use Lemma 2.2 and Theorem 2.3. Recall that the sequence (pk )k≥0 by Proposition

3.1(1) is Fejér monotone with respect to Se, that is, it satisfies the first hypothesis

of Lemma 2.2. For the second hypothesis, consider any weak cluster point p∞ =

(z∞,w∞
1 , . . . ,w∞

n ) of the bounded sequence (pk )k≥0, to prove that this point belongs to

Se we will use Theorem 2.3.

Since p∞ is a weak cluster point of the sequence (pk )k≥0, there exists a subse-

quence (pkm)m≥0 such that zkm ⇀ z∞ and wkm

i
⇀ w∞

i for i = 1, . . . , n.

The sequences in Theorem 2.3 will be (xkm

1 , . . . , xkm
n ) and (ykm

1 , . . . , ykm
n ), recall

that they satisfy ykm

i
∈ Tix

km

i
, for i = 1, . . . , n. Next, we establish the weak convergence

of these sequences. From Hypothesis 5 and xk
i ± xk → 0, we immediately obtain

zk ± xk
i → 0, for i = 1, . . . ,n,

thus combining this and zkm ⇀ z∞ follows that

xkm

i
⇀ z∞, for i = 1, . . . ,n. (52)

From Hypothesis 6 and wkm

i
⇀ w∞

i we also obtain

ykm

i
⇀ w∞

i , for i = 1, . . . , n. (53)
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Now, for the second part of Theorem 2.3 we consider projections over a closed sub-

space of Hn. This closed subspace is defined by

C = {(v1,v2, . . . , vn) ∈ Hn | v1 = v2 = · · · = vn}.

Whose orthogonal complement is given by

C⊥ =

{

(v1,v2, . . . ,vn) ∈ Hn
∣
∣

n∑

i=1

vi = 0

}

.

The projection over the set C was treated in Proposition 2.8. Notice that the two conver-

gences in (50) can be represented in terms of this set as

PC(ykm

1 , . . . , ykm
n ) → 0 and (xkm

1 , . . . , xkm
n ) ± PC(xkm

1 , . . . , xkm
n ) → 0,

respectively. This, (52) and (53) are the hypotheses in Theorem 2.3 with T = T1×· · ·×Tn,

so we can conclude that

(
(z∞, . . . ,z∞), (w∞

1 , . . . , w∞
n )
)
∈ (C × C⊥) ∩ gra T .

This implies that
∑

w∞
i = 0 and w∞

i ∈ Tiz
∞ for i = 1, . . . , n, in other words, p∞ ∈ Se.

In conclusion, we have that any weak cluster point of the sequence (pk )k≥0 is in

Se, hence by Lemma 2.2 the whole sequence (pk )k≥0 converges weakly to the point

(z∞,w∞
1 , . . . , w∞

n ) ∈ Se.

Remark 3.1. Proposition 3.4 allows to understand that under condition (47) we have

that the sequence of points (xk
i , yk

i ) ∈ gra Ti actually approach to a solution of problem

(33), since we are getting xk
i = xk

j for all i , j = 1, . . . , n and
∑n

i=1 yk
i → 0. Therefore, if

at some iteration of Algorithm 2 we have that xk
1 = · · · = xk

n and
∑n

i=1 yk
i = 0 we set

wk+1
i = yk

i for i = 1, . . . , n and zk+1 = xk
1 and we have encountered a solution.

3.3 PROJECTIVE SPLITTING ALGORITHM

Having established a convergence condition for Algorithm 2, now we show how

the crucial part, that is, how the construction of the separator can be made. Since the

definition of the separator φ depends on the chosen points (xi ,yi ) ∈ gra Ti , it is natural

to ask how to choose them. In each iteration of the algorithm we require separation

from the current point p = (z, w1, . . . , wn) ∈ V and the set Se, we deduce from (42) that

we require that

φ(z, w1, . . . , wn) > 0.

Suppose that p ∈ V \ Se, notice that if in (41) we have that

z ± xi = λi (yi ± wi ) with λi > 0, (54)
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this yields

φ(z, w1, . . . , wn) =
∑

λi ||z ± xi ||
2 > 0,

unless z = x1 = · · · = xn in which case we have from (54) that yi = wi for all i = 1, . . . ,n,

and since p ∈ V this implies that (z, w1, . . . , wn) ∈ Se, contrary to the assumption. The

condition in (54) can be stated as

z + λwi = xi + λiyi ⇒ z + λiwi ∈ (I + λiT )(xi ). (55)

By the maximal monotonicity of the Ti , there exists according to Theorem 2.1

a unique (xi , yi ) ∈ gra Ti satisfying the inclusion in (55). Finding the (xi , yi ) ∈ gra Ti is

equivalent to evaluating the resolvent (I + λiTi )
±1, which is, by assumption, tractable for

each individual Ti .

3.3.1 Generalizations of the way of choosing the points

As we saw earlier, a way to choose the points (xk
i ,yk

i ) ∈ gra Ti is one satisfying

xk
i + λk

i yk
i = zk + λk

i wk
i .

As commented in (ECKSTEIN; SVAITER, 2009) we can generalized this scheme by

performing the proximal calculations for the Ti sequentially at each iteration starting

with i = 1 and finishing with i = n, using ªrecentº information generated in calculating

(xk
j , yk

j ) where j < i when calculating (xk
i , yk

i ). Specifically, when calculating (xk
i , yk

i ),

we consider replacing zk with an affine combination of the vectors zk and xk
j , j < i .

Starting with operator T1 we find the unique (xk
1 , yk

1 ) ∈ gra T1 such that

xk
1 + λk

1yk
1 = zk + λk

1wk
1 .

Next, for operator T2 we take some αk
21 ∈ R and find the unique (xk

2 , yk
2 ) ∈ gra T2

xk
2 + λk

2yk
2 = (1 ± αk

21)zk + αk
21xk

1 + λk
2wk

2 .

To continue, we choose some αk
31,αk

32 ∈ R and find the unique (xk
3 , yk

3 ) ∈ gra T3 such

that

xk
3 + λk

3yk
3 = (1 ± αk

31 ± αk
32)zk + αk

31xk
1 + αk

32xk
2 + λk

3wk
3 ,

and so forth. In general, we choose (xk
i , yk

i ) ∈ gra Ti to satisfy the conditions

xk
i + λk

i yk
i =



1 ±
i±1∑

j=1

αk
ij



 zk +
i±1∑

j=1

αk
ij x

k
j + λk

i wk
i , yk

i ∈ Tix
k
i . (56)

In addition to this flexibility afforded by the choice of the αk
ij and λk

i , it is considered two

more generalizations
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1. Errors ek
i ∈ H are allowed in (56) as long as they satisfy a condition defined

later in (61).

2. The order of processing the operators may vary from iteration to iteration. At

iteration k , this order is specified by an permutation πk (·) of {1, . . . ,n}.

This flexible scheme is summarize in the equation

xk
πk (i) + λk

i yk
πk (i) =



1 ±
i±1∑

j=1

αk
ij



 zk +
i±1∑

j=1

αk
ij x

k
πk (j) + λk

i wk
πk (i) + ek

i . (57)

3.3.2 Presenting the Algorithm

Having introduced a flexible scheme to choose a point in gra Ti we would like to

state an instance of Algorithm 2 applied to problem (33) and analyze the convergence of

it using Proposition 3.4, specifically the condition in item 3. To introduce such condition

we will employ some standard matrix analysis.

Given an n × n real matrix L, we define ∥L∥ to be its operator 2-norm and κ(L)

to be the smallest eigenvalue of its symmetric part, that is,

∥L∥ = max
∥x∥=1

∥Lx∥, sym L =
1
2

(L + L⊤), κ(L) = min eig sym L.

It is straightforward to show that κ(L) ≤ ∥L∥ and that, for any x ∈ R
n ⟨x , Lx⟩ ≥ κ(L)∥x∥2.

In analogy to the usual linear map R
n → R

n associated with L we can define a linear

mapping Hn → Hn corresponding to L via

Lu = L(u1, . . . , un) = (v1, . . . , vn), where vi =
n∑

j=1

ℓijuj ∈ H, (58)

with ℓij denoting the elements of L. In turns out, this mapping retains key spectral

properties that L exhibits over Rn.

Lemma 3.3. Let L be any n × n real matrix. For all u = (u1, . . . , un) ∈ Hn,

∥Lu∥ ≤ ∥L∥∥u∥ (59)

⟨u, Lu⟩ ≥ κ(L)∥u∥2. (60)

Where Lu is defined as in (58), ⟨·, ·⟩, denotes the canonical inner product for Hn induced

by the inner product for H, and ∥·∥ applied to elements of Hn denotes the norm induced

by this inner product.

The proof of this lemma can be found in the Appendix. Related to (57) the

following n × n matrices are constructed

Λk = diag(λk
1, . . . , λk

n),
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that is, the diagonal matrix with entries λk
i . The matrix Ak = (a(k )

ij
)i ,j=1,...,n where

a
(k )
ij

=







1, if i = j ,

±αk
ij , if i > j ,

0, if i < j

In (ECKSTEIN; SVAITER, 2009) the error condition is stated in terms of these matrices

as follows

n∑

i=1

(λk
i )±1∥ek

i ∥
2 ≤ σ2κ(Λ±1

k Ak )2
n∑

i=1

∥xk
i ± zk∥2, σ ∈ [0,1). (61)

Additionally, if the matrices Λ
±1
k Ak are such that there exist β, ζ > 0 such that

κ(Λ±1
k Ak ) ≥ ζ and ∥Λ

±1
k Ak∥ ≤ β ∀ k ≥ 0, (62)

then when choosing the points (xk
i , yk

i ) ∈ gra Ti via (57) the hypotheses of Proposition

3.4 are met. Algorithm 3 gathers all these conditions.

Algorithm 3: Projective splitting algorithm
Data: Choose scalars β, ζ > 0, 0 < ρ < ρ < 2, and σ ∈ [0,1). Start with an

arbitrary (z0, w1, w2, . . . , wn) ∈ V , that is, w1 + · · · + wn = 0.
1 for k = 1,2, . . . do

2 Choose scalars λk
i > 0, i = 1, . . . , n and αk

ij with 1 ≤ j < i ≤ n such that

κ(Λ±1
k Ak ) ≥ ζ and ∥Λ

±1
k Ak∥ ≤ β, where Λ

±1
k and Ak are defined as above.

3 Let πk (·) be any permutation of {1,...,n}. For i = 1, . . . , n, find
(xk

i , yk
i ) ∈ gra Ti satisfying (57) and (61).

4 If xk
1 = xk

2 = · · · = xk
n and

∑n
i=1 yk

i = 0, let wk+1
i = yk

i for i = 1, . . . , n and
zk+1 = xk

1 . Otherwise, continue.
5 Choose some ρk ∈ [ρ, ρ] and set

xk :=
1
n

n∑

i=1

xk
i (63)

θk :=

∑n
i=1⟨z

k ± xk
i , yk

i ± wk
i ⟩

∥
∑n

i=1 yk
i
∥2 +

∑n
i=1 ∥xk

i
± xk∥2

(64)

zk+1 = zk ± ρkθk

n∑

i=1

yk
i (65)

wk+1
i = wk

i ± ρkθk (xk
i ± xk ) (66)

6 end
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Equations (63)-(66) came from the update formula in (29), the definition of φk ,

and the form of ∇φk as obtained in (43). Notice that step 4 guarantees that the denom-

inator in (64) cannot be zero. The computation of θk in (64) is basically φ(pk )/∥∇φk∥
2,

in fact, steps 2 and 3 ensure that φk (pk ) > 0 as we will see in Remark 3.2. Finally, note

also that pk ∈ V and the update (66) ensures wk+1
1 + · · · + wk+1

n = 0, so by induction all

iterates pk = (zk , wk
1 , · · · , wk

n ) produced by Algorithm 3 lies in V .

Here we consider a simpler case than that in (ECKSTEIN; SVAITER, 2009),

where αk
ij = 0 for all k ≤ 0 and i ,j = 1, . . . ,n. With this change we have Ak = In for all

k ≥ 0, where In is the n × n identity matrix. Hence (62) transform into

κ(Λ±1
k ) ≥ ζ and ∥Λ

±1
k ∥ ≤ β ∀ k ≥ 0. (67)

Therefore, the expression in (57) becomes

xk
πk (i) + λk

i yk
πk (i) = zk + λk

i wk
πk (i) + ek

i . (68)

And the error condition is now
n∑

i=1

(λk
i )±1∥ek

i ∥
2 ≤ σ2κ(Λ±1

k )2
n∑

i=1

∥xk
i ± zk∥2, σ ∈ [0,1). (69)

The error condition (61) is an n±operator generalization of the relative error toler-

ance proposed in (SOLODOV; SVAITER, 1999b, 1999a, 2001) for modified proximal-

extragradient projection methods.

3.4 MAIN CONVERGENCE PROOF

In this section we will prove the convergence of Algorithm 3.

First, we prove a general result about the gradient of φk . In order to do that, we

define auxiliary sequences (pk )k≥0 ⊂ Hn+1, (uk )k≥0 ⊂ Hn, and (vk )k≥0 ⊂ Hn via

pk := (zk , wk
1 , . . . , wk

n ), uk
i := xk

i ± zk , vk
i := wk

i ± yk
i (70)

for all i = 1, . . . , n and k ≥ 0, and also define as in (41) the function

φk (p) = φk (z, w1, . . . , wn) :=
n∑

i=1

〈
z ± xk

i , yk
i ± wi

〉
.

From (70), we immediately have

φk

(
pk) = φk

(
zk , wk

1 , . . . , wk
n

)
=

n∑

i=1

〈
zk ± xk

i , yk
i ± wk

i

〉

=
〈
uk , vk〉 =

n∑

i=1

〈
uk

i , vk
i

〉
. (71)

With this in mind we prove the following
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Lemma 3.4. The gradient ∇φk satisfies

∥∇φk∥
2 ≤ n

∥
∥vk

∥
∥2 +

∥
∥uk

∥
∥2. (72)

Proof. To do so, first note that since
n∑

i=1

wk
i = 0,

n∑

i=1

vk
i =

n∑

i=1

(
wk

i ± yk
i

)
= ±

n∑

i=1

yk
i ⇒

∥
∥
∥
∥
∥

n∑

i=1

vk
i

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

n∑

i=1

yk
i

∥
∥
∥
∥
∥

2

. (73)

Next, define

uk :=
1
n

n∑

i=1

uk
i =

1
n

n∑

i=1

(
xk

i ± zk) = xk ± zk ,

and observe that for all i = 1, . . . , n and k ≥ 0,

uk
i ± uk = xk

i ± zk ±
(
xk ± zk) = xk

i ± xk . (74)

Substituting (73) and (74) into the expression for ∥∇φk∥
2 arising from Lemma 3.2, we

obtain

∥∇φk∥
2 =

∥
∥
∥
∥
∥

n∑

i=1

yk
i

∥
∥
∥
∥
∥

2

+
n∑

i=1

∥
∥xk

k ± xk
∥
∥2

=

∥
∥
∥
∥
∥

n∑

i=1

vk
i

∥
∥
∥
∥
∥

2

+
n∑

i=1

∥
∥uk

i ± uk
∥
∥2

=
1
n

∥
∥Evk

∥
∥2 +

∥
∥Muk

∥
∥2,

where we define E to be the n × n matrix of all ones and M = I ± (1/n)E . Applying (59),

it then follows that

∥∇φk∥
2 ≤

1
n

∥
∥Evk

∥
∥2 +

∥
∥Muk

∥
∥2

≤
1
n
∥E∥2 ∥∥vk

∥
∥2 + ∥M∥2 ∥∥uk

∥
∥2. (75)

Over Rn, the matrix M represents orthogonal projection onto the nontrivial subspace

T = {(t1, . . . , tn) ∈ R
n | t1 + · · · + t n = 0}, so we conclude ∥M∥ = 1. It also follows that

I ± M represents orthogonal projection onto the nontrivial subspace T⊥, so

∥I ± M∥ = 1 ⇒ ∥E∥ = ∥n(I ± M)∥ = n∥I ± M∥ = n.

Therefore, (75) reduces to

∥∇φk∥
2 ≤

(
1
n

)

n2 ∥∥vk
∥
∥2 +

∥
∥uk

∥
∥2 = n

∥
∥vk

∥
∥2 +

∥
∥uk

∥
∥2.



Chapter 3. General splitting algorithm 50

Finally, we can prove the convergence of Algorithm 3 in the following theorem.

The goal here is to prove that the conditions (69) and (67) imply the sufficient separation

condition (47).

This theorem as found in (ECKSTEIN; SVAITER, 2009) has the hypothesis of

either H having finite dimension or the operator T1 + . . . + Tn being maximal, here we

drop this hypothesis since, as was commented before Proposition 3.4, it is not longer

needed.

Theorem 3.1. Suppose that (33) has a solution. Then, in Algorithm 3, the sequences

(zk )k≥0, (xk
1 )k≥0, . . . , (xk

n )k≥0 ⊂ H all weakly converge to some z∞ solving (33). For

each i = 1, . . . ,n , we also have wk
i , yk

i ⇀ y∞
i , where y∞

i ∈ Tiz
∞ and also y∞

1 + . . . +

y∞
n = 0.

Proof. Define ek =
(
ek

1 , . . . , ek
n

)
∈ Hn for all k ≥ 0, and observe that by taking square

roots and substitution of the definitions of ek and uk , (69) simplifies via the notation

(58) and the definition of Λk to

∥
∥Λ

±1
k ek

∥
∥ ≤ σκ

(
Λ

±1
k

) ∥
∥uk

∥
∥. (76)

Take any i ∈ 1, . . . , n. Subtracting zk from both sides of (68) and regrouping yields
(

xk
πk (i) ± zk

)

+ λk
i yk

πk (i) = zk ± zk + λk
i wk

πk (i) + ek
i

⇔
(

xk
πk (i) ± zk

)

± ei
k = λk

i

(

wk
πk (i) ± yk

πk (i)

)

.

Dividing by λk
i and substituting the definitions of uk

i and vk
i yields

(
1

λk
i

)(

uk
πk (i)

± ek
i

)

= vk
πk (i)

. (77)

Applying the notation (58) to (77) for i = 1, . . . , n produces

vk = (ΠkΛ
±1
k Π

⊤
k )uk ± (ΠkΛ

±1
k ) ek , (78)

where Πk is the n × n permutation matrix corresponding to the permutation πk (·).

Substituting (78) into (71) yields

φk (pk ) =
〈

uk , ΠkΛ
±1
k Π

⊤
k uk

〉

±
〈

uk , ΠkΛ
±1
k ek

〉

≥
〈

uk , ΠkΛ
±1
k Π

⊤
k uk

〉

± ∥uk∥∥ΠkΛ
±1
k ek∥ [ Cauchy - Schwarz ]

≥ κ(ΠkΛ
±1
k Π

⊤
k )∥uk∥2 ± ∥uk∥∥ΠkΛ

±1
k ek∥ [ using (60) ]

= κ(Λ±1
k )∥uk∥2 ± ∥uk∥∥Λ

±1
k ek∥ [Πk orthonormal ]

≥ κ(Λ±1
k )∥uk∥2 ± σκ(Λ±1

k )∥uk∥2 [ using (76) ]

= (1 ± σ)κ(Λ±1
k )∥uk∥2

≥ (1 ± σ)ζ∥uk∥2. [ using (67) ] (79)
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We need to convert this lower bound on φk

(
pk
)

expressed in terms of
∥
∥uk

∥
∥2, to one

expressed in terms of
∥
∥∇φk

∥
∥2, so we can meet hypothesis 3 of Proposition 3.4. First,

starting with (78) we obtain

∥
∥vk

∥
∥2 =

∥
∥
(
ΠkΛ

±1
k Π

⊤
k

)
uk ± ΠkΛ

±1
k ek

∥
∥2

≤
(∥
∥
(
ΠkΛ

±1
k Π

⊤
k

)
uk
∥
∥ +

∥
∥ΠkΛ

±1
k ek

∥
∥
)2 [ triangle inequality ]

≤
(∥
∥ΠkΛ

±1
k Π

⊤
k

∥
∥
∥
∥uk

∥
∥ +

∥
∥Λ

±1
k ek

∥
∥
)2 [ using (59) ]

≤
(∥
∥Λ

±1
k

∥
∥
∥
∥uk

∥
∥ + σκ

(
Λ

±1
k

)∥
∥uk

∥
∥
)2 [ using (76) ]

≤
((

1 + σ
) ∥
∥Λ

±1
k

∥
∥
∥
∥uk

∥
∥
)2 [κ

(
Λ

±1
k

)
≤
∥
∥Λ

±1
k

∥
∥]

≤
((

1 + σ
)
β
∥
∥uk

∥
∥
)2 [ using (67)]

=
(
1 + σ

)2
β2 ∥∥uk

∥
∥2. (80)

Now, from (72) in Lemma 3.4 and (80) follows that

∥∇φk∥ ≤
(

n(1 + σ)2β2 + 1
)

∥uk∥2.

Combining this with the lower bound for φk (pk ) in (79) yields

φk (pk ) ≥ (1 ± σ)ζ∥uk∥2

≥ (1 ± σ)ζ
[

∥∇φk∥

n(1 + σ)2β2 + 1

]

=
(1 ± σ)ζ

n(1 + σ)2β2 + 1
∥∇φk∥. (81)

Hence, taking

ξ =
(1 ± σ)ζ

n(1 + σ)2β2 + 1
> 0,

as in (81), we obtain Hypothesis 3 of Proposition 3.4, hence φk (pk ) → 0. Then, we

deduce from (79) that uk → 0, and by (80) this implies that vk → 0. Thus, Hypotheses

5 and 6 of Proposition 3.4 are satisfied. Then, in virtue of this proposition follows

the weak convergence of the sequences (zk )k≥0, (xk
i )k≥0, (yk

i )k≥0, and (wk
i )k≥0, for

i = 1, . . . , n.

Remark 3.2. Note that (81) implies that φk (pk ) is always nonnegative so there is no

need of the operation max{0,·} when computing the fraction in the update (29). This is

reflected in Algorithm 3, in the computation of the formulas (64)-(66).
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4 PROJECTIVE SPLITTING WITH ONE FORWARD STEP FOR COCOERCIVE

OPERATORS

In the previous chapter we saw how the general separator-projector framework

was applied to an inclusion problem. The resulting algorithm performs only backward

steps, and a convergence condition was presented. This chapter, based on (JOHN-

STONE; ECKSTEIN, 2021), it is considered an inclusion problem involving cocoercive

operators. The problem is presented in Section 4.1. Section 4.2 shows the construction

of the extended solution set and the separators for this particular problem. Section 4.3

shows a connection between the way the points are chosen to construct the separators

and the FB algorithm. Section 4.4 presents a projective splitting algorithm for the in-

clusion problem considered in this chapter. Finally, Section 4.5 contains the necessary

results to prove the convergence of the algorithm to a solution point.

4.1 PROBLEM STATEMENT

For a collection of real Hilbert spaces {Hi }
n
i=0 consider the finite-sum convex

minimization problem:

min
z∈H0

n∑

i=1

(
fi (Giz) + hi (Giz)

)
, (82)

where every fi ∈ Γ0(Hi ), every hi ∈ Γ0(Hi ) is also differentiable with Li -Lipschitz-

continuous gradients, and the operators Gi ∈ B(H0,Hi ). Under appropriate constraint

qualifications, (82) is equivalent to the monotone inclusion problem of finding z ∈ H0

such that

0 ∈
n∑

i=1

G∗
i (Ai + Bi ) Giz (83)

where all Ai : Hi ⇒ Hi and Bi : Hi → Hi are maximal monotone and each Bi is

L±1
i -cocoercive. Notice that when Li = 0, Bi must be a constant operator, that is, there

is some vi ∈ Hi such that Bix = vi for all x ∈ Hi . Example 2.8 presents an application

of some constraint qualification conditions to turn a problem like (82) into one of the

form (83).

Defining Ti = Ai + Bi for all i , problem (83) may be written as

0 ∈
n∑

i=1

G∗
i TiGiz. (84)

This more compact problem statement will be used occasionally in our analysis below.

We collect here the main assumptions regarding to problem (83).

Assumption 1. Problem (83) conforms to the following:
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1. H0 = Hn and H1, . . . ,Hn±1 are real Hilbert spaces.

2. For i = 1, . . . ,n, the operators Ai : Hi ⇒ Hi and Bi : Hi → Hi are monotone.

Additionally each Ai is maximal.

3. Each operator Bi is either L±1
i -cocoercive for some Li > 0 (and thus single-valued)

and dom Bi = Hi , or Li = 0 and Bix = vi for all x ∈ Hi and some vi ∈ Hi , that is,

Bi is a constant function.

4. Each Gi : H0 → Hi for i = 1, . . . ,n ± 1 is linear and bounded.

5. Problem (83) has a solution.

We denote by H the product space

H = H0 × · · · × Hn±1,

and we will denote any point of H as

p = (z,w ) = (z,w1, . . . , wn±1), thus w = (w1, . . . , wn±1).

For H, we adopt the following norm and inner product for some γ > 0 :

∥(z,w )∥2
γ := γ∥z∥2 +

n±1∑

i=1

∥wi∥
2, ⟨(z1,w1),(z2,w2)⟩γ := γ⟨z1,z2⟩ +

n±1∑

i=1

⟨w1
i ,w2

i ⟩.

4.2 CONSTRUCTION OF A EXTENDED SOLUTION SET AND THE SEPARATORS

Our first goal is to construct a separator-projector algorithm as in Chapter 3, so

that we obtain all the discussed properties of the generated sequence as in Proposition

3.1.

To that end, we would like to devise a construction of a extended solution set

and separators inherent to the problem we are considering. We start by making the

assumption that there exist a z ∈ H such that

0 ∈
n∑

i=1

G∗
i TiGiz.

In what it follows we will impose the assumption that Gn = I, this does not represent a

restriction since one could redefine the last operator as Tn = G∗
n ◦ Tn ◦G∗

n, or one could

simply append a new operator Tn with Tnz = {0} everywhere. Setting wi ∈ TiGiz we

can rewrite the inclusion as follows

0 ∈
n±1∑

i=1

G∗
i wi + Tnz
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from where we obtain

±
n±1∑

i=1

G∗
i wi ∈ Tnz.

Hence, we define the extended solution set as

Se :=






(z,w1, . . . , wn±1) ∈ H | wi ∈ TiGiz, i = 1, . . . , n ± 1, ±

n±1∑

i=1

G∗
i wi ∈ Tnz






(85)

In the previous construction we set wn := ±
∑n±1

i=1 G∗
i wi , therefore, we may say that

(z,wn) ∈ gra Tn.

Lemma 4.1. Suppose Assumption 1 holds. The set Se defined in (85) is closed and

convex.

Proof. First, Assumption 1(5) and the construction shown of the set Se allow us to

conclude that Se ≠ ∅. By Proposition 2.11 each Bi is maximal. Since dom Bi = Hi

applying Proposition 2.5 we obtain that Ti = Ai + Bi is maximal monotone for i = 1, . . . ,n.

Now, to prove that Se is closed and convex we are going to relate it with the set of zeros

of a maximal monotone operator, just as in Proposition 3.3. To that end, consider A = Tn

and B = T1×· · ·×Tn±1 and L : z → (G1z, . . . ,Gn±1z), then L∗(w1, . . . ,wn) =
∑n±1

i=1 G∗
i wi

as proved in Example 2.2.

Let (z,w ) ∈ zer(M + S), then

0 ∈ M(z,w ) + S(z,w ) ⇔ 0 ∈ (Az + L∗w ) × (B±1w ± Lz)

⇔ 0 ∈ Tnz + L∗w and Lz ∈ B±1w

⇔ ±L∗w ∈ Tnz and w ∈ BLz

⇔ ±L∗w ∈ Tnz and wi ∈ TiGiz

⇔ (z,w ) ∈ Se.

Consequently, Se is closed and convex.

Now we show how to construct the separators. Let (z,w1, . . . , wn±1) ∈ Se, from

the construction of the extended solution set we had (Giz,wi ) ∈ gra Ti for i = 1, . . . , n.

Suppose that for each i = 1, . . . , n, we get a point (xi , yi ) ∈ gra Ti , we have from the

monotonocity of each Ti that

⟨Giz ± xi , yi ± wi⟩ ≤ 0.

Summing over i we obtain

n∑

i=1

⟨Giz ± xi , yi ± wi⟩ ≤ 0. (86)

This leads to the following
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Definition 4.1. Given the points (xk
i , yk

i ) ∈ gra Ti , for i = 1, . . . ,n ± 1, we define the

function φk : H → R as

φk (z, w1, . . . , wn) :=
n∑

i=1

⟨Giz ± xk
i , yk

i ± wi⟩. (87)

As we saw in (86) this function has the property of being non-positive in Se.

Some additional properties of this function are presented in the following

Lemma 4.2. Let φk be defined as in (87). Then:

1. φk is affine on H.

2. With respect to inner product ⟨· , ·⟩γ on H, the gradient of φk is

∇φk =




1
γ





n±1∑

i=1

G∗
i yk

i + yk
n



 , xk
1 ± G1xk

n , xk
2 ± G2xk

n , . . . , xk
n±1 ± Gn±1xk

n



 .

(88)

Proof. Separating terms and using the adjoint of each Gi , the fact that
∑n

i=1 G∗
i wi = 0,

and the definition of wn we have

φk (z,w1, . . . ,wn±1) =
n∑

i=1

⟨Giz, yk
i ± wi⟩ ±

n∑

i=1

⟨xk
i , yk

i ± wi⟩

=

〈

z,
n∑

i=1

G∗
i yk

i ±
n∑

i=1

G∗
i wi

〉

±
n∑

i=1

⟨xk
i , yk

i ⟩ +
n∑

i=1

⟨xk
i , wk

i ⟩

=

〈

z,
n∑

i=1

G∗
i yk

i

〉

±
n∑

i=1

⟨xk
i , yk

i ⟩ +
n±1∑

i=1

⟨xk
i , wi⟩ ±

〈

xk
n ,

n±1∑

i=1

G∗
i wi

〉

.

It follows that

φk (z,w1, . . . ,wn±1) =

〈

z,
n∑

i=1

G∗
i yk

i

〉

+
n±1∑

i=1

⟨xk
i ± Gix

k
n , wi⟩ ±

n∑

i=1

⟨xk
i , yk

i ⟩. (89)

This equation allows to conclude that φk is affine. Now, fix an arbitrary p̃ ∈ H. Using

that φ is affine, we may write

φk (p) = ⟨p ± p̃,∇φk ⟩γ + φk (p̃) = ⟨p,∇φk ⟩γ + φk (p̃) ± ⟨p̃,∇φk ⟩γ

= γ⟨z,∇zφk ⟩ +
n±1∑

i=1

⟨wi ,∇wiφk ⟩ + φk (p̃) ± ⟨p̃,∇φk ⟩γ.

Equating terms between this expression and (89) yields the claimed expression for the

gradient in (88).
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We also use the following notation for i = 1, . . . ,n:

φi ,k (z,wi ) := ⟨Giz ± xk
i , yk

i ± wi⟩.

Note that φk (z,w1, . . . ,wn±1) =
∑n

i=1 φi ,k (z,wi ).

4.3 THE NEW PROCEDURE

4.3.1 A Connection with the Forward-Backward Method

Just as it was important in Chapter 3 the way the points are chosen, here we

have an specific situation where each Ti is the sum of two maximal monotone operators.

In (JOHNSTONE; ECKSTEIN, 2021) it was proposed that at each iteration k and for

each i = 1, . . . ,n to find a pair (xk
i ,yk

i ) ∈ gra Ti = gra(Ai + Bi ) conforming the conditions

t = (1 ± αi )x
k±1
i + αiGiz

k ± ρi (Bix
k±1
i ± wk

i ) (90)

xk
i = JρA(t) (91)

ak
i = (1/ρi )(t ± xk

i ) (92)

bk
i = Bix

k
i (93)

yk
i = ak

i + bk
i . (94)

where αi ∈ (0,1), ρi ≤ 2(1 ± αi )/L and b0
i

= Bix
0
i

. A resolvent calculation gives us (91),

and (92) follows from the relation in (9). To obtain (93) is required only an evaluation

(forward step) on Bi , and (94) is a simple vector addition.

Now we show how this proposed updated is related to the FB algorithm. As in

(JOHNSTONE; ECKSTEIN, 2020) the pairs (xk
i , yk

i ) ∈ gra Ti are solutions of

xk
i + ρiy

k
i = Giz

k + ρiw
k
i : yk

i ∈ Tix
k
i (95)

for some ρi > 0, which lead us to a resolvent calculation. Notice the similarity with the

way was done in the previous chapter in (54) which leads to φk (pk ) > 0. Now, with

problem (83) we have Ti = Ai + Bi , with Bi being cocoercive and Ai maximal monotone.

For Ti in this form, computing the resolvent as in (95) exactly may be impossible, even

when the resolvent of Ai is available. We would like to take advantage of the cocoercivity

of each Bi . To that end, since the stepsize ρi in (95) can be any positive number, let us

replace ρi with ρi /αi for some αi ∈ (0,1) and rewrite (95) as

xk
i +

ρi

αi
yk

i = Giz
k +

ρi

αi
wk

i : yk
i ∈ Tix

k
i . (96)

With this structure, xk
i in (96) satisfies:

0 =
ρi

αi
yk

i + xk
i ±

(

Giz
k +

ρi

αi
wk

i

)

=⇒ 0 ∈
ρi

αi
Aix

k
i +

ρi

αi
Bix

k
i + xk

i ±
(

Giz
k +

ρi

αi
wk

i

)



Chapter 4. Projective splitting with one forward step for cocoercive operators 57

which can be rearranged to 0 ∈ Aix
k
i + B̃ix

k
i ,where

B̃iv = Biv +
αi

ρi

(

v ± Giz
k ±

ρi

αi
wk

i

)

.

Since Bi is L±1
i -cocoercive, B̃i is (Li + αi /ρi )

±1-cocoercive by Proposition 2.12. Consider

the generic monotone inclusion problem 0 ∈ Aix + B̃ix where Ai is maximal and B̃i is

cocoercive, and thus one may solve the problem with the FB method as in Theorem 2.8.

If one applies a single iteration of FB initialized at xk±1
i , with stepsize ρi , to the inclusion

0 ∈ Aix + B̃ix , one obtains the calculation:

xk
i = JρiAi

(

xk±1
i ± ρi B̃ix

k±1
i

)

= JρiAi

(

xk±1
i ± ρi

(

Bix
k±1
i +

αi

ρi

(

xk±1
i ± Giz

k ±
ρi

αi
wk

i

)))

= JρiAi

(

(1 ± αi )x
k±1
i + αiGiz

k ± ρi (Bix
k±1
i ± wk

i )
)

.

So, the proposed calculation is equivalent to one iteration of FB initialized at the previous

point xk±1
i , applied to the subproblem of computing the resolvent in (96). Prior versions

of projective splitting require computing this resolvent either exactly or to within a certain

relative error criterion, which may be time consuming. Here, a simple single FB step is

made toward computing the resolvent which we will prove is sufficient for the projective

splitting method to converge to Se. Note, however, that the step size restriction in

Assumption 2 is stronger than the natural stepsize limit that would arise when applying

FB to 0 ∈ Aix + B̃ix , which would be

ρi <
2 ± αi

Li
.

4.4 ALGORITHM DEFINITION

We introduce here a notation for the one-forward-backward step update as fol-

lows:

Definition 4.2. Suppose H and H′ are real Hilbert spaces, A : H ⇒ H is maximal

monotone with nonempty domain, B : H → H is L±1-cocoercive, and G : H′ → H is

bounded and linear. For α ∈ [0,1] and ρ > 0, define the mapping Fα,ρ(z,x ,w ; A,B,G) :

H′ ×H2 → H2, with additional parameters A, B, and G, as

Fα,ρ

(

z,x ,w ;

A,B,G

)

: = (x+,y+) :







t := (1 ± α)x + αGz ± ρ(Bx ± w)

x+ = JρA (t)

y+ = ρ±1(t ± x+) + Bx+.

(97)

The expression for y+ follows from (94) and (92). Notice that this avoids the

evaluation of Ax+. To simplify the presentation, we will also use the notation

F i (z,x ,w) := Fαi ,ρi (z,x ,w ; Ai ,Bi ,Gi ) . (98)
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With this notation the step (90)-(94) can be written as

(xk
i , yk

i ) = F i (zk ,xk±1
i ,wk ). (99)

Now, we state the projective splitting algorithm for problem (83).

Algorithm 4: One-Forward-Step Projective Splitting

Data: p1 = (z1,w1) ∈ H, γ > 0, δ ∈ (0,1), and ρ̂. For i = 1, . . . ,n: x0
i
∈ Hi and

0 < αi ≤ 1 and ρi > 0.
1 for k = 1,2, . . . do

2 Compute (xk
i ,yk

i ) = F i (zk , xk±1
i , wk

i ) with F i defined in (97)
/* Projection starts */

3 uk
i = xk

i ± Gix
k
n , i = 1, . . . ,n ± 1

4 vk =
∑n±1

i=1 G∗
i yk

i + yk
n

5 πk = ∥uk∥2 + γ±1∥vk∥2

6 if πk > 0 then

7 φk (pk ) = ⟨zk ,vk ⟩ +
∑n±1

i=1 ⟨wk
i , uk

i ⟩ ±
∑n

i=1⟨x
k
i , yk

i ⟩

8 τ =
1
πk

max{0,φk (pk )}

9 zk+1 = zk ± γ±1τv

10 wk+1
i = wk

i ± τuk
i i = 1, . . . , n ± 1

11 wk+1
n = ±

∑n±1
i=1 G∗

i wk+1
i

12 else

13 return (xk
n ,yk

1 , . . . , yk
n )

14 end

15 end

Line 5 computes the squared norm of the gradient of the separator expressed in

(88) using the norm ∥ · ∥γ.

The stepsizes ρi for i = 1, . . . ,n are fixed across all iterations, satisfying Assump-

tion 2. The same applies for the averaging parameter αi .

The parameter γ > 0 allows for the projection to be performed using a slightly

more general primal-dual metric than (37). In effect, this parameter changes the relative

size of the primal and dual updates in lines 9-10 of Algorithm 4. As γ increases, a

smaller step is taken in the primal and a larger step in the dual. As γ decreases, a

smaller step is taken in the dual update and a larger step is taken in the primal. See

(ECKSTEIN; SVAITER, 2009, Sec. 5.1) and (ECKSTEIN; SVAITER, 2007, Sec. 4.1) for

more details.

Unlike the algorithm in the previous chapter, where was ensured that φk (pk ) is

always nonnegative, here will be established an ªascent lemmaº that relates the values

φk (pk ) and φk±1(pk±1) in such a way that overall convergence may still be proved, even

though it is possible that φk (pk ) ≤ 0 at some iterations k . In particular, φk (pk ) will
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be larger than the previous value φk±1(pk±1), up to some error term that vanishes as

k → ∞.

Remark 4.1. The algorithm presented in (JOHNSTONE; ECKSTEIN, 2021) contains a

backtracking linesearch for those operators Bi with unknown cocoercivity constant. Here

with the objective of simplifying the analysis, we opted to assume that all cocoercivity

constants are known, so Algorithm 4 is presented without the backtracking linesearch.

4.4.1 Separator projector properties

Lemma 4.3 details the key results for Algorithm 4 that stem from it being a

separator-projector algorithm. While these properties alone do not guarantee conver-

gence, they are important to all of the arguments that follow.

Lemma 4.3. Suppose that Assumption 1 holds. Then for Algorithm 4

1. The sequence (pk )k≥0, where pk = (zk ,wk
1 , . . . ,wk

n±1) is bounded.

2. If the algorithm never terminates via line 13, pk ± pk+1 → 0. Furthermore zk ±

zk±1 → 0 and wk
i ± wk±1

i → 0 for i = 1, . . . n.

3. If the algorithm never terminates via line 13 and ∥∇φk∥γ remains bounded for all

k ≥ 1, then lim supk→∞ φk (pk ) ≤ 0.

Proof. 1. Notice that line 2 computes for each i = 1, . . . , n a point (xk
i ,yk

i ) in gra(Ai +

Bi ) according to (98), while lines 7-11 computes the projection of the current

iterate (zk ,wk
1 , . . . , wk

n ) onto the hyperplane according to the definition of the sep-

arator in (89) and to the basic projection Algorithm 2. Therefore the sequence pro-

duced by Algorithm 4 satisfies the properties listed in Proposition 3.1, specifically

we obtain that the sequence (pk )k≥0 = (zk ,wk
1 , . . . , wk

n )k≥0 is a Fejér monotone

sequence with respect to Se, and thus is a bounded sequence. Additionally, we

can write

pk+1 = pk ±
max{0,φk (pk )}

∥∇φk∥
2
γ

∇φk .

2. If Algorithm 4 never terminates via line 13 this means that πk ̸= 0, which implies

that lines 7-11 were executed. This generates an infinite sequence that as in the

previous item is a Fejér monotone sequence, by Proposition 3.1(4) we have from

the convergence of the series in (32) that ∥pk ± pk+1∥2 → 0. We conclude from

this that

zk ± zk+1 → 0 and wk
i ± wk+1

i → 0 for i = 1, . . . ,n.

3. Suppose that ∥∇φk∥γ ≤ ξ ∀ k , from

pk+1 = pk ±
max{φk (pk ),0}

∥∇φk∥
2
γ

∇φk ,
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follows that

0 = lim
k→∞

∥pk+1 ± pk∥ = lim
k→∞

max{φk (pk ),0}
∥∇φk∥γ

≥ lim sup
k→∞

φk (pk )
ξ

.

Therefore, lim supk→∞ φk (pk ) ≤ 0.

We now precisely state our stepsize assumption for the manually chosen step-

sizes, as well as the stepsize upper bound ρ̂.

Assumption 2. If Li > 0, then 0 < ρi ≤ 2(1 ± αi )/Li . The parameter ρ̂ must satisfy

ρ̂ ≥ ρi . (100)

Note that if Li > 0, Assumption 2 effectively limits αi to be strictly less than 1,

otherwise the stepsize ρi would be forced to 0, which is prohibited. In this case αi must

be chosen in (0,1). On the other hand, if Li = 0, there is no constraint on ρi other than

that it is positive and nonzero, and in this case αi may be chosen in (0,1].

4.5 MAIN PROOF

The following lemma contains a condition to ensure weak convergence. Hence,

the core of the proof strategy will be to establish (101) below.

Lemma 4.4. Suppose Assumption 1 holds and Algorithm 4 produces an infinite se-

quence of iterations without terminating via Line 13. If

(∀i = 1, . . . ,n) : yk
i ± wk

i → 0 and Giz
k ± xk

i → 0, (101)

then there exists (z,w ) ∈ Se such that (zk ,wk ) ⇀ (z,w ). Furthermore, we also have

xk
i ⇀ Giz and yk

i ⇀ w i for all i = 1, . . . ,n ± 1, xk
n ⇀ z, and yk

n ⇀ ±
∑n±1

i=1 G∗
i w i .

Proof. The strategy of the proof follows a similar pattern to the second part of the proof

of Proposition 3.4, however this proof is a little more elaborated.

The first tool is to use Lemma 2.2, that is, we need to show that any weak cluster

point of the sequence (pk )k≥0 belongs to the set Se. Consider a weak cluster point

of (pk )k≥0 which exists by Lemma 2.1, hence there exists an increasing sequence of

indices (km)m≥0 such that

(zkm ,wkm) ⇀ (z∞,w∞) ∈ H. (102)
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In what follows, we consider the subsequences as a sequences, renaming if necessary

the indices. In order to apply Theorem 2.3 we consider the sequences

xk = (xk
1 , . . . , xk

n±1) and yk = (y1
1 , . . . , yk

n±1).

Recall that they satisfy yk
i ∈ Tix

k
i for i = 1, . . . ,n ± 1. From yk

i ± wk
i → 0 and wk

i ⇀ w∞
i

follow that yk
i ⇀ w∞

i for i = 1, . . . ,n. Similarly, from Giz
k ± xk

i → 0, zk ⇀ z∞ and the

boundedness of Gi follow that xk
i ⇀ Giz

∞ for i = 1, . . . ,n.

Now we establish the second part of the Theorem 2.3. Notice that from the first

part of the hypothesis in (101), and the boundedness of Gi imply that

n∑

i=1

G∗
i yk

i =
n∑

i=1

G∗
i wk

i +
n∑

i=1

G∗
i (yk

i ± wk
i ) → 0. (103)

In addition, the second part of (101), and the boundedness of Gi yield

xk
i ± Gix

k
n = xk

i ± Giz
k ± Gi (x

k
n ± zk ) → 0, ∀ i = 1, . . . ,n ± 1. (104)

Next, we define a projection over a closed subspace, to this end we will follow (ALOTAIBI;

COMBETTES; SHAHZAD, 2014, Prop. 2.4) applied to this context. Let L : H0 →

H1 × · · · × Hn±1 defined by

L : z → (G1z, . . . , Gn±1z)

then by Example 2.2 we have that L∗ : H1x · · · xHn±1 → H0 is given by

L∗(w1, w2, . . . , wn±1) =
n±1∑

i=1

G∗
i wi .

Notice that in terms of L and L∗ we can write (103) and (104) as

yk
n + L∗yk → 0 and xk ± Lxk

n → 0, (105)

respectively. Setting K = H0 ×H1 × · · · × Hn±1 and recalling that w = (w1, · · · , wn±1)

we define

V = {(z, w ) ∈ K : Lz = w },

its orthogonal complement as seen in (15) is

V⊥ = {(z, w ) ∈ K | z = ±L∗w }.

Using the expressions for PV and PV⊥ in Proposition 2.10 and (105) we obtain that

PV (yk
n , yk ) = ((I + LL∗)±1(yk

n + L∗yk ), L(I + L∗L)±1(yk
n + L∗yk )) → 0,

and

(I ± PV )(xk
n , xk ) = PV⊥(xk

n , xk ) = (L∗(I + LL∗)±1(Lxk
n ± xk ), ±(I + LL∗)±1(Lxk

n ± xk )) → 0.
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Altogether, since L and L∗ are weakly continuous we have

((xk
n , xk ), (yk

n , yk )) ∈ gra Tn × T1 × · · · × Tn±1

(xk
n , xk ) ⇀ (z∞, G1z∞ . . . , Gn±1z∞) = (z∞, Lz∞)

(yk
n , yk ) ⇀ (±L∗w∞, w∞)

PV⊥(xk
n , xk ) → 0

PV (yk
n , yk ) → 0

Denoting Tn × T1 × · · · × Tn±1 by T , it follows from Theorem 2.3 that

(
(z∞, Lz∞), (±L∗w∞, w∞)

)
∈ (V × V⊥) ∩ gra T .

Since ((z∞, Lz∞), (±L∗w∞, w∞)) ∈ gra T we have

±
n±1∑

i=1

G∗
i w∞

i = ±L∗w∞ ∈ Tnz∞ and w∞
i ∈ TiGiz

∞ for i = 1, . . . ,n ± 1.

This implies by the definition of Se in (85) that (z∞, w∞
1 , . . . , w∞

n±1) ∈ Se. We have

established that the weak cluster point (z∞, w∞) belongs to Se, since this point was

arbitrary we can conclude via Lemma 2.2 that the whole sequence (zk ,wk )k≥0 con-

verges weakly to some (z,w ) ∈ Se. For each i = 1, . . . ,n, we finally observe that since

Giz
k ± xk

i → 0 and yk
i ± wk

i → 0, we also have xk
i ⇀ Giz and yk

i ⇀ w i .

In order to establish (101), we start by establishing certain contractive and ªas-

centº properties for the mapping F in Lemmas 4.9 and 4.13. Then, we prove the

boundedness of xk
i and yk

i , in turn yielding the boundedness of the gradients ∇φk and

hence the result that lim sup∇φk ≤ 0 by Lemma 4.3. Next we establish a ªLyapunov-

likeº recursion for φk
i (zk ,wk

i ), relating φk
i (zk ,wk

i ) to φk±1
i (zk±1,wk±1

i ). Eventually this

result will allow us to establish that lim inf∇φk ≥ 0 and hence that lim∇φk = 0, which

will in turn allow an argument that yk
i ± wk

i → 0. The proof that Giz
k ± xk

i → 0 will then

follow fairly elementary arguments.

4.5.1 Some Basic Results

We begin by stating three elementary results on sequences, which may be found

in (POLYAK, 1987), and a basic, well known nonexpansivity property for forward steps

with cocoercive operators.

Lemma 4.5. Suppose that ak ≥ 0 for all k ≥ 1, b ≥ 0, 0 ≤ τ < 1, and ak+1 ≤ τak + b

for all k ≥ 1. Then {ak } is a bounded sequence.

Lemma 4.6. Suppose that ak ≥ 0, bk ≥ 0 for all k ≥ 1, bk → 0, and there is some

0 ≤ τ < 1 such that ak+1 ≤ τak + bk for all k ≥ 1. Then ak → 0.
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Lemma 4.7. Suppose that 0 ≤ τ < 1 and {rk },{bk } are sequences in R with the proper-

ties bk → 0 and rk+1 ≥ τrk + bk for all k ≥ 1. Then lim infk→∞{rk } ≥ 0.

Proof. Negating the assumed inequality yields ±rk+1 ≤ τ(±rk ) ± bk . Applying Lemma

4.6 then yields lim sup{±rk } ≤ 0.

Lemma 4.8. Suppose B is L±1-cocoercive and 0 ≤ ρ ≤ 2/L. Then for all x ,y ∈ dom(B)

∥x ± y ± ρ(Bx ± By )∥ ≤ ∥x ± y∥. (106)

Proof. Squaring the left hand side of (106) yields

∥x ± y ± ρ(Bx ± By )∥2 = ∥x ± y∥2 ± 2ρ⟨x ± y ,Bx ± By⟩ + ρ2∥Bx ± By∥2

≤ ∥x ± y∥2 ±
2ρ
L
∥Bx ± By∥2 + ρ2∥Bx ± By∥2

≤ ∥x ± y∥2.

4.5.2 A Contractive Result

We begin the main proof with a result on the one-forward-step mapping F from

Definition 4.2. The following lemma will ultimately be used to show that the iterates

remain bounded in the next subsection.

Lemma 4.9. Suppose (x+,y+) = Fα,ρ(z,x ,w ; A,B,G), where Fα,ρ is given in Definition

4.2. Recall that B is L±1-cocoercive. If L = 0 or ρ ≤ 2(1 ± α)/L, then

∥x+ ± θ̂∥ ≤ (1 ± α)∥x ± θ̂∥ + α∥Gz ± θ̂∥ + ρ ∥w ± ŵ∥ (107)

for any θ̂ ∈ dom A and ŵ ∈ Aθ̂ + Bθ̂.

Proof. Select any θ̂ ∈ dom(A) and ŵ ∈ Aθ̂ + Bθ̂. Let â = ŵ ± Bθ̂ ∈ Aθ̂. Then we can

write

â = ŵ ± Bθ̂ ⇒ ρâ + θ̂ ∈ ρAθ̂ + θ̂ = (I + ρA)θ̂

⇒ θ̂ = (I + ρA)±1(ρâ + θ̂).

In other words

θ̂ = JρA(θ̂ + ρâ), (108)

according to the definition of the resolvent. Therefore, the definition of the operator F

in (97), (108) and the non-expansiveness of the operator JρA yield

∥x+ ± θ̂∥ =
∥
∥
∥JρA

(
(1 ± α)x + αGz ± ρ(Bx ± w)

)
± JρA(θ̂ + ρâ)

∥
∥
∥

≤
∥
∥
∥(1 ± α)x + αGz ± ρ(Bx ± w) ± θ̂ ± ρâ

∥
∥
∥

=
∥
∥
∥(1 ± α)

(

x ± θ̂ ±
ρ

1 ± α

(

Bx ± Bθ̂
))

+ α(Gz ± θ̂) + ρ
(

w ± â ± Bθ̂
)∥
∥
∥ (109)
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where the last term was obtained by grouping terms, adding and subtracting Bθ̂. Notice

that if L > 0 we have by Assumption 2 that

ρ

1 ± α
≤

2
L

therefore, applying Lemma 4.8 to the first term on the right hand side in (109) to obtain
∥
∥
∥x ± θ̂ ±

ρ

1 ± α

(

Bx ± Bθ̂
)∥
∥
∥ ≤ ∥x ± θ̂∥. (110)

Finally, we can write (109) using the triangle inequality and (110) as

∥x+ ± θ̂∥ ≤ (1 ± α)
∥
∥
∥x ± θ̂ ±

ρ

1 ± α

(

Bx ± Bθ̂
)∥
∥
∥ + α∥Gz ± θ̂∥ + ρ

∥
∥
∥w ± (â + Bθ̂)

∥
∥
∥

≤ (1 ± α)∥x ± θ̂∥ + α∥Gz ± θ̂∥ + ρ ∥w ± ŵ∥ .

Alternatively, if L = 0, implying that B is a constant-valued operator, then Bx = Bθ̂

and we obtain just an equality in (110).

The inequality in (107) helps us establish the boundedness of the sequence

(xk )k≥0, as in the following lemma.

4.5.3 Boundedness Results and their Direct Consequences

Lemma 4.10. For all i = 1, . . . ,n, the sequences (xk
i )k≥0 and (yk

i )k≥0 are bounded.

Proof. First, we prove the boundedness of the sequence (xk
i )k≥0. To that end, notice

that in the context of Algorithm 4, we have for i = 1, . . . , n

(xk
i ,yk

i ) = Fαi ,ρi (z
k , xk±1

i , wk
i ; Ai , Bi , Gi ).

Hence, in this context, Lemma 4.9 reduces to

∥xk
i ± θ̂i∥ ≤ (1 ± αi )∥xk±1

i ± θ̂i∥ + αi∥Giz
k ± θ̂i∥ + ρi

∥
∥
∥wk

i ± ŵi

∥
∥
∥ (111)

for k ≥ 1, and for any θ̂i ∈ dom Ai fixed. Additionally, Assumption 2 holds, that is, ρi ≤ ρ̂

we arrive from (111) at

∥xk
i ± θ̂i∥ ≤ (1 ± αi )∥xk±1

i ± θ̂i∥ + αi∥Giz
k ± θ̂i∥ + ρ̂

∥
∥
∥wk

i ± ŵi

∥
∥
∥ (112)

Calling

bk
i = αi∥Giz

k ± θ̂i∥ + ρ̂∥wk
i ± ŵi∥,

we deduce it is bounded by, say b, since 0 < αi ≤ 1, the sequences (zk )k≥0, and

(wk
i )k≥0 are bounded by Lemma 4.3, and Gi is bounded by Assumption 1. Consider

now for each i = 1, . . . ,n the sequence ak
i = xk

i ± θ̂i , thus we can write (112) as

ak+1
i ≤ τak

i + b.



Chapter 4. Projective splitting with one forward step for cocoercive operators 65

Applying Lemma 4.5 with τ = 1±αi < 1 to this last form of (112) we deduce boundedness

of (xk
i )k≥0. Next, we establish that the sequence (yk

i )k≥0 is bounded. Recall that

(xk
i ,yk

i ) = Fαi ,ρi (z
k , xk±1

i , wk
i ; Ai , Bi , Gi ).

Expanding the y+-update in the definition of F in (97), we may write

yk
i = (ρi )

±1
(

(1 ± αi )x
k±1
i + αiGiz

k ± ρi (Bix
k±1
i ± wk

i ) ± xk
i

)

+ Bxk
i . (113)

Notice that the sequence (Bix
k
i )k≥0 is bounded since Bi is continuous and (xk

i )k≥0

is bounded. Additionally, Gi , zk , and wk
i are bounded, hence we conclude from the

expression of yk
i in (113) its boundedness

With (xk
i )k≥0 and (yk

i )k≥0 bounded for all i = 1, . . . ,n, the boundedness of ∇φk

follows immediately:

Lemma 4.11. The sequence (∇φk )k≥1 is bounded. If Algorithm 4 never terminates via

line 13, lim supk→∞ φk (pk ) ≤ 0.

Proof. Recall that by Lemma 4.2(2), we have

∇zφk =
n∑

i=1

G∗
i yk

i ,

which is bounded since each Gi is bounded by assumption and each (yk
i )k≥0 is

bounded by Lemma 4.10. Furthermore,

∇wiφk = xk
i ± Gix

k
n

is bounded for each i = 1, . . . , n ± 1, using the same two lemmas. Therefore, the

sequence (∥∇φk∥)k≥1 is bounded, it follows from Lemma 4.3(3) that

lim sup
k→∞

φk (pk ) ≤ 0.

Once again, using the boundedness of (xk
i )k≥0 and (yk

i )k≥0, next we can derive

the following simple bound relating φi ,k±1(zk ,wk
i ) to φi ,k±1(zk±1,wk±1

i ):

Lemma 4.12. There exists M1,M2 ≥ 0 such that for all k ≥ 2 and i = 1, . . . ,n,

φi ,k±1(zk ,wk
i ) ≥ φi ,k±1(zk±1,wk±1

i ) ± M1∥wk
i ± wk±1

i ∥ ± M2∥Gi∥∥zk ± zk±1∥.

Proof. Boundedness of the sequences (pk )k≥0, (xk
i )k≥0 and (yk

i )k≥0 together with the

assumption of each Gi being bounded, allow us to conclude that for each i ∈ {1, . . . ,n},

there exist M1,i , M2,i ≥ 0 such that

∥Giz
k±1 ± xk±1

i ∥ ≤ M1,i ,
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and

∥yk±1
i ± wk

i ∥ ≤ M2,i .

Let M1 = max{M1,1, . . . , M1,n} and M2 = max{M2,1, . . . , M2,n}. Now, for any k ≥ 2

and i ∈ {1, . . . ,n}, in order to relate φi ,k±1(zk±1,wk±1
i ) with φi ,k±1(zk ,wk

i ), we add and

subtract the terms Giz
k±1 and wk±1

i in the inner product of φi ,k±1 yielding

φi ,k±1(zk ,wk
i ) = ⟨Giz

k ± xk±1
i ,yk±1

i ± wk
i ⟩

= ⟨Giz
k±1 ± xk±1

i ,yk±1
i ± wk

i ⟩ + ⟨Giz
k ± Giz

k±1,yk±1
i ± wk

i ⟩

= ⟨Giz
k±1 ± xk±1

i ,yk±1
i ± wk±1

i ⟩ + ⟨Giz
k±1 ± xk±1

i ,wk±1
i ± wk

i ⟩

+ ⟨Giz
k ± Giz

k±1,yk±1
i ± wk

i ⟩

Next, applying the Cauchy-Schwarz inequality to the last two terms of the right hand

side follows that

φi ,k±1(zk ,wk
i ) ≥ φi ,k±1(zk±1,wk±1

i ) ± ∥Giz
k±1 ± xk±1

i ∥∥wk±1
i ± wk

i ∥

± ∥Giz
k ± Giz

k±1∥∥yk±1
i ± wk

i ∥

≥ φi ,k±1(zk±1,wk±1
i ) ± M1∥wk

i ± wk±1
i ∥ ± M2∥Gi∥∥zk ± zk±1∥,

where the last step uses the boundedness of each Gi and the definitions of M1 and

M2.

4.5.4 Ascent lemma

We now prove the key ªascent lemmaº. It shows that, while the update step given

by (99) is not guaranteed to find a separating hyperplane at each iteration, it does make

a certain kind of progress toward separation.

Lemma 4.13. Suppose (x+,y+) = Fα,ρ(z,x ,w ; A,B,G), where Fα,ρ is given in Definition

4.2. Recall B is L±1-cocoercive. Let y ∈ Ax + Bx and define φ := ⟨Gz ± x ,y ± w⟩. Further,

define φ+ := ⟨Gz ± x+,y+ ± w⟩, t as in (97), and ŷ := ρ±1(t ± x+) + Bx. If α ∈ (0,1] and

ρ ≤ 2(1 ± α)/L whenever L > 0, then

φ+ ≥
ρ

2α

(

∥y+ ± w∥2 + α∥ŷ ± w∥2
)

+ (1 ± α)
(

φ ±
ρ

2α
∥y ± w∥2

)

. (114)

Proof. Since y ∈ Ax +Bx , there exists a ∈ Ax such that y = a+Bx . Let a+ := ρ±1(t ±x+).

Note that a+ ∈ Ax+ by definition of the resolvent. With this notation, ŷ = a+ + Bx , hence

(y+,y ) = (a+ + Bx+,a + Bx) where a ∈ Ax , a+ ∈ Ax+. (115)

Additionally, we may write the x+-update in (97) as

x+ + ρa+ = (1 ± α)x + αGz ± ρ(Bx ± w)
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which rearranges to

x+ = (1 ± α)x + αGz ± ρ(ŷ ± w) =⇒ ±x+ = ±αGz ± (1 ± α)x + ρ(ŷ ± w).

Adding Gz to both sides yields

Gz ± x+ = (1 ± α)(Gz ± x) + ρ(ŷ ± w). (116)

Substituting this equation into the definition of φ+ yields

φ+ = ⟨Gz ± x+,y+ ± w⟩

=
〈
(1 ± α)(Gz ± x) + ρ(ŷ ± w), y+ ± w

〉

= (1 ± α)⟨Gz ± x , y+ ± w⟩ + ρ⟨ŷ ± w , y+ ± w⟩

= (1 ± α)⟨Gz ± x , y ± w⟩ + (1 ± α)⟨Gz ± x , y+ ± y⟩ + ρ⟨ŷ ± w , y+ ± w⟩ (117)

= (1 ± α)φ + (1 ± α)⟨Gz ± x , y+ ± y⟩ + ρ⟨ŷ ± w , y+ ± w⟩.

We now focus on the second term on the right-hand side of (117). First, consider the

case where L > 0. Adding and subtracting x+ to the first entry of the inner product we

obtain using (115) that

⟨Gz ± x ,y+ ± y⟩ = ⟨x+ ± x ,y+ ± y⟩ + ⟨Gz ± x+,y+ ± y⟩

= ⟨x+ ± x ,a+ ± a⟩ + ⟨x+ ± x ,Bx+ ± Bx⟩ + ⟨Gz ± x+,y+ ± y⟩

≥ L±1∥Bx+ ± Bx∥2 + ⟨Gz ± x+,y+ ± y⟩ (118)

= L±1∥Bx+ ± Bx∥2 + ⟨Gz ± x+,y+ ± w⟩ + ⟨Gz ± x+,w ± y⟩

= L±1∥Bx+ ± Bx∥2 + φ+ + ⟨Gz ± x+,w ± y⟩. (119)

In (118) we applied the monotonicity of A and the L±1-cocoercivity of B to the previous

term. Next, we simply add and subtract w to the second entry of the inner product to

get (119). Now, we can substitute the resulting inequality back to (117) yielding

φ+ = (1 ± α)φ + (1 ± α)⟨Gz ± x , y+ ± y⟩ + ρ⟨ŷ ± w , y+ ± w⟩

≥ (1 ± α)φ + (1 ± α)
(

L±1∥Bx+ ± Bx∥2 + φ+ + ⟨Gz ± x+,w ± y⟩
)

+ ρ⟨ŷ ± w , y+ ± w⟩.

Subtracting (1 ± α)φ+ from both sides of the above inequality produces

αφ+ ≥ (1 ± α)
(

φ + L±1∥Bx+ ± Bx∥2 + ⟨Gz ± x+,w ± y⟩
)

+ ρ⟨ŷ ± w , y+ ± w⟩. (120)

Using (116) once again, this time to the third term on the right-hand side of (120), we

write

⟨Gz ± x+,w ± y⟩ =
〈
(1 ± α)(Gz ± x) + ρ(ŷ ± w), w ± y

〉

= (1 ± α)⟨Gz ± x , w ± y⟩ + ρ⟨ŷ ± w ,w ± y⟩

= (α ± 1)φ ± ρ⟨ŷ ± w ,y ± w⟩. (121)
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Substituting this equation back into (120) yields

αφ+ ≥ (1 ± α)
(

αφ + L±1∥Bx+ ± Bx∥2 ± ρ⟨ŷ ± w ,y ± w⟩
)

+ ρ⟨ŷ ± w , y+ ± w⟩. (122)

We next use the identity ⟨x1,x2⟩ = 1
2∥x1∥

2 + 1
2∥x2∥

2 ± 1
2∥x1 ± x2∥

2 on both inner products

in (122), as follows:

⟨ŷ ± w ,y ± w⟩ =
1
2

(

∥ŷ ± w∥2 + ∥y ± w∥2 ± ∥ŷ ± y∥2
)

=
1
2

(

∥ŷ ± w∥2 + ∥y ± w∥2 ± ∥a+ ± a∥2
)

(123)

and

⟨ŷ ± w ,y+ ± w⟩ =
1
2

(

∥ŷ ± w∥2 + ∥y+ ± w∥2 ± ∥ŷ ± y+∥2
)

=
1
2

(

∥ŷ ± w∥2 + ∥y+ ± w∥2 ± ∥Bx+ ± Bx∥2
)

. (124)

Here we have used the identities

ŷ ± y = a+ + Bx ± (a + Bx) = a+ ± a

ŷ ± y+ = a+ + Bx ± (a+ + Bx+) = Bx ± Bx+.

Using (123)±(124) in (122) yields

αφ+ ≥ (1 ± α)
(

αφ + L±1∥Bx+ ± Bx∥2 ± ρ⟨ŷ ± w ,y ± w⟩
)

+ ρ⟨ŷ ± w , y+ ± w⟩

= (1 ± α)
(

αφ + L±1∥Bx+ ± Bx∥2
)

±
ρ(1 ± α)

2

(

∥ŷ ± w∥2 + ∥y ± w∥2 ± ∥a+ ± a∥2
)

+
ρ

2

(

∥ŷ ± w∥2 + ∥y+ ± w∥2 ± ∥Bx+ ± Bx∥2
)

= (1 ± α)
(

αφ ±
ρ

2
∥y ± w∥2

)

+
ρ

2

(

∥y+ ± w∥2 + α∥ŷ ± w∥2
)

+
(

1 ± α

L
±
ρ

2

)

∥Bx+ ± Bx∥2 +
(1 ± α)ρ

2
∥a+ ± a∥2.

Consider the last two terms in this last expression: since α ≤ 1, the coefficient (1±α)ρ/2

multiplying ∥a+ ± a∥2 is nonnegative. Furthermore, since ρ ≤ 2(1 ± α)/L, the coefficient

multiplying ∥Bx+ ± Bx∥2 is positive. Therefore we may drop these two terms from the

above inequality and divide by α to obtain (114).

Now, consider the case where L = 0, which implies that Bx = v for some v ∈ H

for all x ∈ H. The main difference is that the ∥Bx+ ± Bx∥2 terms are no longer present

since Bx+ = Bx . The analysis is the same up to (117). Hence, instead of the expression

in (119) we obtain

⟨Gz ± x ,y+ ± y⟩ = ⟨x+ ± x ,y+ ± y⟩ + ⟨Gz ± x+,y+ ± y⟩

= ⟨x+ ± x ,a+ ± a⟩ + ⟨x+ ± x ,Bx+ ± Bx⟩ + ⟨Gz ± x+,y+ ± y⟩

≤ φ+ + ⟨Gz ± x+,w ± y⟩.
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Since Bx+ = Bx = v is constant we also have that

ŷ = a+ + Bx = a+ + v = a+ + Bx+ = y+

Thus, instead of (120) in this case we have the simpler inequality

αφ+ ≥ (1 ± α)
(
φ + ⟨Gz ± x+,w ± y⟩

)
+ ρ∥y+ ± w∥2. (125)

The term ⟨Gz ± x+,w ± y⟩ in (125) is dealt with just as in (120), by substitution of (116).

This step now leads via (121) to

αφ+ ≥ α(1 ± α)φ ± ρ(1 ± α)⟨y+ ± w ,y ± w⟩ + ρ∥y+ ± w∥2.

Once again using ⟨x1,x2⟩ = 1
2∥x1∥

2 + 1
2∥x2∥

2 ± 1
2∥x1 ± x2∥

2 on the second term on the

right hand side above yields

αφ+ ≥ α(1 ± α)φ + ρ∥y+ ± w∥2 ±
ρ(1 ± α)

2

(

∥y+ ± w∥2 + ∥y ± w∥2 ± ∥y+ ± y∥2
)

.

We can lower-bound the ∥y+ ± y∥2 term by 0. Dividing through by α and rearranging,

we obtain

φ+ ≥
ρ(1 + α)

2α
∥y+ ± w∥2 + (1 ± α)

(

φ ±
ρ

2α
∥y ± w∥2

)

.

Since y+ = ŷ in the L = 0 case, this is equivalent to (114).

We now establish a Lyapunov-like recursion for the hyperplane. At iteration k we

have from line 2 that

(xk
i ,yk

i ) = Fαi ,ρi (z
k , xk±1

i , wk
i ; Ai , Bi , Gi )

which means in the context of lemma that x+ = xk thus by definition of the x+- update

in (97), there exists by (9) ak
i ∈ Aix

k
i such that

xk
i + ρia

k
i = (1 ± αi )x

k±1
i + αiGiz

k ± ρi (Bix
k±1
i ± wk

i ). (126)

Additionally we have that

φ = ⟨Gzk ± xk±1, yk±1 ± wk
i ⟩ = φi ,k±1(zk ,wk

i )

φ+ = ⟨Gzk ± xk , yk ± wk
i ⟩ = φi ,k (zk ,wk

i ).

Just as in Lemma 4.13, we define for xk±1
i

ŷk
i := ak

i + Bix
k±1
i . (127)

A direct application of this lemma gives us

φi ,k (zk ,wk
i ) ±

ρi

2αi

(

∥yk
i ± wk

i ∥
2 + αi∥ŷk

i ± wk
i ∥

2
)

≥ (1 ± αi )
(

φi ,k±1(zk ,wk
i ) ±

ρi

2αi
∥yk±1

i ± wk
i ∥

2
)

(128)
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Since

∥yk
i ± wk

i ∥
2 ≤ ∥yk

i ± wk
i ∥

2 + αi∥ŷk
i ± wk

i ∥
2

We readily obtain from this last inequality applied to (128) that

φi ,k (zk ,wk
i )±

ρi

2αi
∥yk

i ± wk
i ∥

2 ≥ (1 ± αi )
(

φi ,k±1(zk ,wk
i ) ±

ρi

2αi
∥yk±1

i ± wk
i ∥

2
)

. (129)

4.5.5 Finishing the Proof

We now work toward establishing the conditions of Lemma 4.4. Unless other-

wise specified, we henceforth assume that Algorithm 4 runs indefinitely and does not

terminate at line 13. Termination at line 13 is dealt with in Theorem 4.1 to come.

Lemma 4.14. For all i = 1, . . . ,n, we have yk
i ± wk

i → 0 and φk (pk ) → 0.

Proof. Fix any i ∈ {1, . . . ,n}. First, note that for all k ≥ 2,

∥yk±1
i ± wk

i ∥
2 = ∥yk±1

i ± wk±1
i ∥2 + 2⟨yk±1

i ± wk±1
i ,wk±1

i ± wk
i ⟩ + ∥wk±1

i ± wk
i ∥

2

≤ ∥yk±1
i ± wk±1

i ∥2 + M3∥wk
i ± wk±1

i ∥ + ∥wk
i ± wk±1

i ∥2

= ∥yk±1
i ± wk±1

i ∥2 + dk
i , (130)

where

dk
i := M3∥wk

i ± wk±1
i ∥ + ∥wk

i ± wk±1
i ∥2,

and M3 ≥ 0 is a bound on 2∥yk±1
i ±wk±1

i ∥, which must exist because both (wk
i )k≥0 and

(yk
i )k≥0 are bounded by Lemmas 4.3 and 4.10 respectively. Note that dk

i → 0 since

wk
i ± wk±1

i → 0 by Lemma 4.3. Second, recall Lemma 4.12, which states that there

exists M1,M2 ≥ 0 such that for all k ≥ 2,

φi ,k±1(zk ,wk
i ) ≥ φi ,k±1(zk±1,wk±1

i ) ± M1∥wk±1
i ± wk

i ∥ ± M2∥Gi∥∥zk ± zk±1∥. (131)

Now let, for all k ≥ 1,

rk
i := φi ,k (zk ,wk

i ) ±
ρi

2αi
∥yk

i ± wk
i ∥

2, (132)

so that

n∑

i=1

rk
i = φk (pk ) ±

n∑

i=1

ρi

2αi
∥yk

i ± wk
i ∥

2. (133)

Notice that the left hand side of (129) is rk
i , thus we can write

rk
i ≥ (1 ± αi )

(

φi ,k±1(zk ,wk
i ) ±

ρi

2αi
∥yk±1

i ± wk
i ∥

2
)

. (134)
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Using (130) on (134) we obtain

rk
i ≥ (1 ± αi )

(

φi ,k±1(zk ,wk
i ) ±

ρi

2αi
∥yk±1

i ± wk±1
i ∥2 ±

ρi

2αi
dk

i

)

.

Applying (131) to the first term of the right hand side of this last inequality yields

rk
i ≥ (1 ± αi )r

k±1
i + ek

i , ∀k ≥ 2, (135)

where

ek
i := ±(1 ± αi )

(
ρi

2αi
dk

i + M1∥wk±1
i ± wk

i ∥ + M2∥Gi∥∥zk ± zk±1∥

)

. (136)

Note that ek
i → 0. This follows from the fact that 0 < αi ≤ 1, the boundedness of ρi ,the

finiteness of ∥Gi∥, ∥zk ± zk±1∥ → 0 and ∥wk
i ± wk±1

i ∥ → 0 by Lemma 4.3, and dk
i → 0.

Since 0 < αi ≤ 1, we may apply Lemma 4.7 to (135) with τ = 1 ± αi < 1, which

yields lim infk→∞ rk
i ≥ 0. Therefore

lim inf
k→∞

n∑

i=1

rk
i ≥

n∑

i=1

lim inf
k→∞

rk
i ≥ 0. (137)

On the other hand, lim supk→∞ φk (pk ) ≤ 0 by Lemma 4.11. Therefore, using (133) and

(137),

0 ≤ lim inf
k→∞

n∑

i=1

rk
i = lim inf

k→∞

{

φk (pk ) ±
n∑

i=1

ρi

2αi
∥yk

i ± wk
i ∥

2

}

≤ lim inf
k→∞

φk (pk ) ≤ lim sup
k→∞

φk (pk ) ≤ 0.

Therefore limk→∞ φk (pk ) = 0. Consider any i ∈ {1, . . . ,n}. Since lim infk→∞
∑n

i=1 rk
i ≥

0 and limk→∞ φk (pk ) = 0 we have from its definition in (133) that

lim sup
k→∞

{
ρi

αi
∥yk

i ± wk
i ∥

2
}

≤ 0 ⇒ ∥yk
i ± wk

i ∥
2 → 0.

We have already proved the first requirement of Lemma 4.4, that yk
i ±wk

i → 0 for

all i ∈ {1, . . . ,n}. We now work to establish the second requirement, that Giz
k ± xk

i → 0.

In the upcoming lemmas we continue to use the quantity ŷk
i which is given in (127).

Lemma 4.15. For all i = 1, . . . ,n, ŷk
i ± wk

i → 0.

Proof. Fix any k ≥ 1. For all i = 1, . . . ,n. Starting with the inequality in (128) and using

(130) and (131) we obtain

φi ,k (zk ,wk
i ) ≥ (1 ± αi )

(

φi ,k±1(zk ,wk
i ) ±

ρi

2αi
∥yk±1

i ± wk
i ∥

2
)

+
ρi

2αi

(

∥yk
i ± wk

i ∥
2 + αi∥ŷk

i ± wk
i ∥

2
)

≥ (1 ± αi )r
k±1
i +

ρi

2
∥ŷk

i ± wk
i ∥

2 + ek
i
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where rk
i is defined in (132) and ek

i is defined in (136). Notice that this is the same

argument used in Lemma 4.14, but applied to (128), rather than (129), so that we can

upper bound the ∥ŷk
i ± wk

i ∥
2 term. Summing over i = 1, . . . ,n, yields

φk (pk ) =
n∑

i=1

φi ,k (zk ,wk
i ) ≥

n∑

i=1

(1 ± αi )r
k±1
i +

n∑

i=1

ρi

2
∥ŷk

i ± wk
i ∥

2 +
n∑

i=1

ek
i .

Since φk (pk ) → 0, ek
i → 0, and lim infk→∞ rk

i ≥ 0, the above inequality implies that

ŷk
i ± wk

i → 0.

Lemma 4.16. For i = 1 . . . ,n, xk
i ± xk±1

i → 0.

Proof. Fix i ∈ {1, . . . ,n}. Using the definition of ak
i in (126) and the definition of ŷk

i in

(127), we have for k ≥ 1 that

xk
i + ρia

k
i = (1 ± αi )x

k±1
i + αiGiz

k ± ρi (Bix
k±1
i ± wk

i )

= (1 ± αi )x
k±1
i + αiGiz

k ± ρi (a
k
i + Bix

k±1
i ± wk

i )

= (1 ± αi )x
k±1
i + αiGiz

k ± ρi (ŷ
k
i ± wk

i ).

This implies that

xk
i = (1 ± αi )x

k±1
i + αiGiz

k ± ρi (ŷ
k
i ± wk

i ), ∀ k ≥ 1 (138)

xk±1
i = (1 ± αi )x

k±2
i + αiGiz

k±1 ± ρi (ŷ
k±1
i ± wk±1

i ), ∀ k ≥ 2.

Subtracting the second of these equations from the first yields, for all k ≥ 2,

xk
i ± xk±1

i = (1 ± αi )(x
k±1
i ± xk±2

i ) + αi (Giz
k ± Giz

k±1) ± ρi (ŷ
k
i ± wk

i )

+ ρi (ŷ
k±1
i ± wk±1

i )

Taking norms and using the triangle inequality yields, for all k ≥ 2, that

∥xk
i ± xk±1

i ∥ ≤ (1 ± αi ) ∥xk±1
i ± xk±2

i ∥ + ẽk
i (139)

where

ẽk
i = ∥Gi∥ ∥zk

i ± zk±1
i ∥ + ρi∥ŷk

i ± wk
i ∥ + ρi∥ŷk±1

i ± wk±1
i ∥

Since ρi is bounded from above, ẽk
i → 0 using Lemma 4.15, the finiteness of ∥Gi∥, and

Lemma 4.3. Furthermore, αi > 0, so we may apply Lemma 4.6 to (139) to conclude that

xk
i ± xk±1

i → 0.

Lemma 4.17. For i = 1, . . . ,n, Giz
k ± xk

i → 0.

Proof. Recalling (138), we first write

xk
i = (1 ± αi )x

k±1
i + αiGiz

k ± ρi (ŷ
k
i ± wk

i )

⇔ αi

(

Giz
k ± xk

i

)

= (1 ± αi )(x
k
i ± xk±1

i ) + ρi (ŷ
k
i ± wk

i ). (140)
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Lemma 4.16 implies that the first term on the right-hand side of (140) converges to zero.

Since ρi is bounded from above, Lemma 4.15 implies that the second term on the right-

hand side also converges to zero. Since αi > 0, we conclude that ∥Giz
k ± xk

i ∥ → 0.

Finally, we can state the convergence result for Algorithm 4:

Theorem 4.1. Suppose that Assumptions 1-2 hold. If Algorithm 4 terminates by reach-

ing line 13, then its final iterate is a member of the extended solution set Se. Otherwise,

the sequence (zk ,wk )k≥0 generated by Algorithm 4 converges weakly to some point

(z,w ) in the extended solution set Se of (83) defined in (85). Furthermore, xk
i ⇀ Giz

and yk
i ⇀ w i for all i = 1, . . . ,n ± 1, xk

n ⇀ z, and yk
n ⇀ ±

∑n±1
i=1 G∗

i w i .

Proof. If Algorithm 4 terminates via line 13 implies that πk = 0 for some k . By definition

of πk in line 5 we have that

uk = xk
i ± Gix

k
n = 0 ∀ i = 1, . . . ,n ± 1, (141)

and

vk =
n±1∑

i=1

G∗
i yk

i + yk
n = 0. (142)

Since by construction we have that yk
i ∈ Tix

k
i we obtain from (141) that

xk
i = Gix

k
n ∀i = 1, . . . ,n ± 1 ⇒ yk

i ∈ TiGix
k
n ∀i = 1, . . . ,n ± 1,

and from (142) that

yk
n = ±

n±1∑

i=1

G∗
i yk

i ⇒
n∑

i=1

G∗
i yk

i = 0.

Hence, taking zk+1 = xk
n , wk+1

i = yk
i for i = 1, . . . , n ± 1 we obtain by definition of

the extended solution set in (85) that (zk+1,wk+1
1 , . . . , wk+1

n±1 ) ∈ Se

Now, if the algorithm never terminates via line 13 then Lemmas 4.14 and 4.17

imply that the hypotheses of Lemma 4.4 hold, hence the conclusion follows.

Remark 4.2. The special case where n = 1 turns out to be an application of the FB

algorithm for a forbidden boundary case. Indeed, in this case we have by assumption

that G1 = I, wk
1 = 0, and we are solving the problem 0 ∈ Az + Bz, where both operators

are maximal monotone and B is L±1-cocoercive. Let xk := xk
1 , yk := yk

1 , α := α1, and

ρ := ρ1. Then the updates carried out by the algorithm are

xk = JρA

(

(1 ± α)xk±1 + αzk ± ρBxk±1
)

(143)

yk = Bxk +
1
ρ

(

(1 ± α)xk±1 + αzk ± ρBxk±1 ± xk
)

zk+1 = zk ± τkyk , where τk =
max{⟨zk ± xk ,yk ⟩,0}

∥yk∥2
.
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If α = 0, then for all k ≥ 2, the iterates computed in (143) reduce simply to

xk = JρA

(

xk±1 ± ρBxk±1
)

which is exactly FB. However, as seen in Assumption 2 the case α = 0 is not allowed

since would imply that ρi = 0. Thus, FB is a forbidden boundary case which may be

approached by setting α arbitrarily close to 0. As α approaches 0, the stepsize constraint

ρ ≤ 2(1 ± α)/L approaches the classical stepsize constraint for FB: ρ ≤ 2/L ± ε for some

arbitrarily small constant ε > 0.

A potential benefit of Algorithm 4 over FB in the n = 1 case is that it does allow

for backtracking when L is unknown or only a conservative estimate is available.
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5 CONCLUSION

The simplicity of the Algorithm 2 is attractive, leaving the crucial part of the

algorithm to the mechanism to choose the points. In the construction of Algorithm 3,

we see great flexibility in what the choice of parameters refers to, in contrast with,

for instance, the Douglas-Rachford method (Theorem 2.7) where the corresponding λ

parameter is fixed in all the iterations and for both operators.

Two proofs in (ECKSTEIN; SVAITER, 2009) were modified employing two more

recent results. Those results were also present in the related results for (JOHNSTONE;

ECKSTEIN, 2021). For instance, Proposition 3.4 was updated using Theorem 2.3, but

this theorem was also used in the related result in Lemma 4.4, which is related to the

fact that the solution points are also in the defined sets V and V⊥. In the same spirit,

we saw that the operator M + S used to prove the closedness and convexity of the

extended solution set for problem (84) was applicable to the extended solution set of

problem (33) too.

It is also interesting that both algorithms perform low-complexity projections over

a half-space for which a simple formula is known, involving only inner products, norms,

matrix multiplication by Gi (when applicable), and sums of scalars. Even when linear

operators are involved there is no need to estimate their norms.

Additionally, Theorems 3.1 and 4.1 show that not only the generated sequence

by the algorithm (pk )k≥0 converges to a point in the solution set, but also the sequence

of points chosen (xk
i , yk

i ) ∈ gra Ti , showing that the way of choosing them and the

projection performed relates these sequences.

We decided to study the algorithm developed in (JOHNSTONE; ECKSTEIN,

2021) without the backtracking procedure to make simpler the exposition, however, it

is of interest because in certain cases the cocoercivity constant is unknown or hard to

estimate. In our first reading, we found it interesting that the backtracking termination

conditions are related to the obtained inequalities in (107) and (114) showing that the

properties of the operator F allow this backtracking search. We wish to do a deeper

review of this procedure to understand the full capacities of this proposed method.

A potential benefit of Algorithm 1 over FB in the n = 1 case is that it does allow

for backtracking when L is unknown or only a conservative estimate is available.

In addition to this, just as in (JOHNSTONE; ECKSTEIN, 2020) a block-iterative

feature could be interesting to implement in Algorithm 4.
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APPENDIX A ± PROOF OF LEMMA 3.3

Proof. If u = 0, then Lu = 0 and (59)±(60) hold trivially, so it remains to consider the

case that at least one ui is nonzero. Given any such u, let v = (v1, . . . , vn) and lij be

defined as in (58). Define U ⊆ H to be the finite-dimensional subspace spanned by

u1, . . . ,un in H. From (58), we have vi ∈ U for i = 1, . . . , n, and, thus, u, v ∈ Un. Letting

n′ ≤ n denote the dimension of U, take B = (b1, . . . ,bn′) to be some orthonormal basis

for U. From B, we may create an orthonormal basis B = (b1, . . . , bn′n) for Un via

b1 = (b1, 0, 0, . . . , 0), bn+1 = (b2, 0, 0, . . . , 0) · · · b(n′±1)n+1 = (bn′ , 0, 0, . . . , 0),

b2 = (0, b1, 0, . . . , 0), bn+2 = (0, b2, 0, . . . , 0) · · · b(n′±1)n+2 = (0, bn′ , 0, . . . , 0),
...

...
...

bn = (0,0, . . . , 0, b1), b2n = (0, 0, . . . , 0, b2) · · · bn′n = (0, 0, . . . , 0, bn′).

Let u ∈ R
n′n be the unique representation of u with respect to this basis, that is, its

elements um,m = 1, . . . , n′n, are such that u =
∑n′n

m=1 umbm. Similarly, let v ∈ R
n′n

be the unique representation of v . By the orthonormality of the basis B, it follows that

∥u∥ = ∥u∥, ∥v∥ = ∥v∥, and ⟨u, Lu⟩ = ⟨u, v⟩ = u⊤v . Let us now examine the action of the

linear mapping defined by (58) on the basis B, namely,

b1 = (b1, 0, 0, . . . , 0) 7→ (ℓ11b1, ℓ21b1, . . . , ℓn1b1) =
∑n

i=1 ℓi1bi ,

b2 = (0, b1, 0, . . . , 0) 7→ (ℓ12b1, ℓ22b1, . . . , ℓn2b1) =
∑n

i=1 ℓi2bi ,
...

bn = (0, 0, . . . , 0, b1) 7→ (ℓ1nb1, ℓ2nb1, . . . , ℓnnb1) =
∑n

i=1 ℓinbi ,

bn+1 = (b2, 0, 0, . . . , 0) 7→ (ℓ11b2, ℓ21b2, . . . , ℓn1b2) =
∑n

i=1 ℓi1bn+i ,

bn+2 = (0, b2, 0, . . . , 0) 7→ (ℓ12b2, ℓ22b2, . . . , ℓn2b2) =
∑n

i=1 ℓi2bn+i ,
...

bn′n = (0, 0, . . . , 0, bn′) 7→ (ℓ1nbn′ , ℓ2nbn′ , . . . , ℓnnbn′) =
∑n

i=1 ℓinb(n′±1)n+i .

Thus, in terms of the basis B, the action of the linear mapping (58) is that of the n′n×n′n

block-diagonal matrix

L :=









L

L
. . .

L









︸ ︷︷ ︸

n′ times

and we must have v = Lu. It is easily seen that sym L has the same eigenvalues as

sym L, so κ(L) = κ(L). Using standard eigenvalue analysis in R
n′n, we therefore have

u⊤Lu ≥ κ(L)∥u∥2 = κ(L)∥u∥2.
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Substituting ∥u∥ = ∥u∥ and ⟨u, Lu⟩ = ⟨u, v⟩ = u⊤v = u⊤Lu into this relation yields (60).

To establish (59), we observe that

∥L∥2 = max
{∥
∥Lx

∥
∥2

∣
∣
∣ x ∈ R

n′n, ∥x∥ = 1
}

= max

{
n′

∑

j=1

∥Lxj∥
2

∣
∣
∣
∣
∣

x1, . . . , xn′ ∈ R
n,

n′

∑

j=1

∥xj∥
2 = 1

}

= max

{
n′

∑

j=1

max
{

∥Lx∥2
∣
∣
∣
∣

x ∈ R
n

∥x∥2 = νj

} ∣
∣
∣
∣

ν1, . . . , νn′ ≥ 0

ν1 + · · · + νn′ = 1

}

= max

{
n′

∑

j=1

νj ∥L∥2
∣
∣
∣
∣

ν1, . . . , νn′ ≥ 0

ν1 + · · · + νn′ = 1

}

= ∥L∥2.

Thus, we may substitute ∥L∥ = ∥L∥ into the inequality ∥Lu∥ ≤ ∥L∥∥u∥, along with

∥Lu∥ = ∥v∥ = ∥v∥ = ∥Lu∥ and ∥u∥ = ∥u∥ to obtain (59).
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