
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E
SISTEMAS

Matheus Kraemer Bastos do Canto

A holonic manufacturing architecture for Line-less Mobile
Assembly Systems operations planning and control

Florianópolis

2022

Matheus Kraemer Bastos do Canto

A holonic manufacturing architecture for Line-less Mobile Assembly Systems
operations planning and control

Dissertação submetida ao Programa de Pós-
Graduação em Engenharia de Automação e
Sistemas da Universidade Federal de Santa
Catarina para a obtenção do título de mestre
em Engenharia de Automação e Sistemas.
Orientador: Professor Ricardo José Rabelo

Florianópolis

2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

do Canto, Matheus Kraemer Bastos do Canto
 A holonic manufacturing architecture for Line-less
Mobile Assembly Systems operations planning and control /
Matheus Kraemer Bastos do Canto do Canto ; orientador,
Ricardo José Rabelo , 2022.
 144 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2022.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Line-Less
Mobile Assembly Systems. 3. Holonic Control Architecture.
4. Holonic Manufacturing Systems. 5. Ontology. I. ,
Ricardo José Rabelo. II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Engenharia de
Automação e Sistemas. III. Título.

Matheus Kraemer Bastos do Canto

A holonic manufacturing architecture for Line-less Mobile Assembly Systems
operations planning and control

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca examinadora
composta pelos seguintes membros:

Prof.(a) Ricardo José Rabelo, Dr.(a)
UNIVERSIDADE FEDERAL DE SANTA CATARINA

Prof.(a) Marcelo Ricardo Stemmer, Dr.(a)
UNIVERSIDADE FEDERAL DE SANTA CATARINA

Prof.(a) Jomi Fred Hübner, Dr.(a)
UNIVERSIDADE FEDERAL DE SANTA CATARINA

Prof.(a) João Carlos Espíndola Ferreira, Dr.(a)
UNIVERSIDADE FEDERAL DE SANTA CATARINA

Certificamos que esta é a versão original e final do trabalho de conclusão que
foi julgado adequado para obtenção do título de mestre em Engenharia de Automação e
Sistemas.

Coordenação do Programa de Pós-Graduação

Prof.(a) Ricardo José Rabelo, Dr.(a)
Orientador

Florianópolis, 2022.

Dedico esta dissertação de mestrado para minha mãe
Míriam e meu pai Jefferson.

Acknowledgements

Sou imensamente agradecido ao Armin Buckhorst e ao Professor Ricardo José
Rabelo aos quais devo todo o suporte técnico requisitado durante o desenvolvimento deste
trabalho. Especialmente agradeço ao Armin Buckhorst por promover a oportunidade de
uma colaboração entre a UFSC e o WZL da RWTH de Aachen. Estendo os especiais
agradecimentos ao Professor Ricardo José Rabelo por acreditar nessa iniciativa e promover
suporte, mesmo que de longe, durante os tempos difíceis em que vivemos.

Agradeço aos meus amigos Thiago Linhares Fernandes, Diogo de Carvalho Padilha
e Maycon Luiz da Silva por permanecerem comigo e me incentivarem para superar os
desafios acadêmicos e pessoais, mesmo através dos mais de 10.000 km que nos separaram
quase que durante toda a construção desse trabalho. A meu amigo, que a Alemanha me
deu, Presley, pelo seu companheirismo, sem o qual tudo teria sido extremamente mais
difícil.

Não há medida que possa representar o quanto sou imensamente agradecido à
minha namorada Aparna Joshi pelo seu essencial suporte emocional e técnico na variedade
de desafios que o fato de morar noutro país nos obriga a enfrentar. Sou grato pelo acaso
que nos uniu.

Agradeço à UFSC, ao PPGEAS e ao ensino público de educação brasileiro, no
qual há muito tempo faço parte. O ensino médio e superior em instituições públicas de
ensino me fez acreditar que a educação é base da qual necessitamos para resolver os mais
intrincados dos problemas, sejam eles de natureza técnica ou social (principalmente).

Mesmo não conhecendo pessoalmente ainda a maioria dos colegas de mestrado,
devido a característica especial deste trabalho e a pandemia, agradeço imensamente pelo
companheirismo e pelo esforço despendido no exercício das tarefas e trabalhos em grupo,
em especial à minha amiga Patrícia Mônica Campos Mayer Vicente. A todos os colegas
e amigos que o contexto da UFSC me deu, meus maiores agradecimentos. Agradeço
também ao departamento de Metrologia de Produção e Gestão da Qualidade do WZL, pelo
acolhimento e suporte financeiro durante a minha estadia em Aachen. Obrigado aos meus
amigos que WZL me deu: Mohamed, Gabriel, Javad, Richard, Danilo, Joaquin, Karen,
Jan, Cristina, Karen e Jasmin pelas várias horas em discussões técnicas, small talk, tempo
perdido, e almoços no Mensa.

À toda minha família, em especial meu pai Jefferson e minha mãe Míriam. Obrigado
pela vida, ensinamentos, educação e por acreditarem que sempre há uma saída e se
tentarmos e perseguirmos nossos sonhos. Consigo ver cada um de vocês dois na minha
pessoa, e a cada dia, fico ainda mais grato pelo acaso ter me escolhido filho de vocês.

“The concept of hierarchic order occupies a central place in this book,
and lest the reader should think that I am riding a private hobby horse,

let me reassure him that this concept has a long and respectable ancestry.
So much so, that defenders of orthodoxy are inclined to dismiss it as "old hat",

and often in the same breath to deny its validity. Yet I hope to show as we go along
that this old hat, handled with some affection, can produce lively rabbits”.

(Koestler, 1967)

Resumo

O Line-Less Mobile Assembly Systems (LMAS) é um paradigma de fabricação que visa
maximizar a resposta às tendências do mercado através de configurações adaptáveis de
fábrica utilizando recursos de montagem móvel. Tais sistemas podem ser caracterizados
como holonic manufacturing systems (HMS), cujas chamadas holonic control architecture
(HCA) são recentemente retratadas como abordagens habilitadoras da Indústria 4.0 devido
a suas relações de entidades temporárias (hierárquicas e/ou heterárquicas). Embora as
estruturas de referência HCA como PROSA ou ADACOR/ADACOR2 tenham sido muito
discutidas na literatura, nenhuma delas pode ser aplicada diretamente ao contexto LMAS.
Assim, esta dissertação visa responder à pergunta "Como uma arquitetura de produção e
sistema de controle LMAS precisa ser projetada?" apresentando os modelos de projeto de
arquitetura desenvolvidos de acordo com as etapas da metodologia para desenvolvimento
de sistemas holônicos multi-agentes ANEMONA. A fase de análise da ANEMONA resulta
em uma especificação do caso de uso, requisitos, objetivos do sistema, simplificações e
suposições. A fase de projeto resulta nos modelos de organização, interação e agentes,
seguido de uma breve análise de sua cobertura comportamental. O resultado da fase de
implementação é um protótipo (realizado com o Robot Operation System) que implementa
os modelos ANEMONA e uma ontologia LMAS, que reutiliza elementos de ontologias
de referência do domínio de manufatura. A fim de testar o protótipo, um algoritmo para
geração de dados para teste baseado na complexidade dos produtos e na flexibilidade do
chão de fábrica é apresentado. A validação qualitativa dos modelos HCA é baseada em
como o HCA proposto atende a critérios específicos para avaliar sistemas HCA. A validação
é complementada por uma análise quantitativa considerando o comportamento dos modelos
implementados durante a execução normal e a execução interrompida (e.g. equipamento
defeituoso) em um ambiente simulado. A validação da execução normal concentra-se no
desvio de tempo entre as agendas planejadas e executadas, o que provou ser em média
irrelevante dentro do caso simulado considerando a ordem de magnitude das operações
típicas demandadas. Posteriormente, durante a execução do caso interrompido, o sistema é
testado sob a simulação de uma falha, onde duas estratégias são aplicadas, LOCAL_FIX e
REORGANIZATION, e seu resultado é comparado para decidir qual é a opção apropriada
quando o objetivo é reduzir o tempo total de execução. Finalmente, é apresentada uma
análise sobre a cobertura desta dissertação culminando em diretrizes que podem ser vistas
como uma resposta possível (entre muitas outras) para a questão de pesquisa apresentada.
Além disso, são apresentados pontos fortes e fracos dos modelos desenvolvidos, e possíveis
melhorias e idéias para futuras contribuições para a implementação de sistemas de controle
holônico para LMAS.
Keywords: Line-Less Mobile Assembly Systems. Holonic Control Architecture. Holonic
Manufacturing Systems. Ontology.

Resumo expandido

Introdução
Nos últimos anos, a diversidade de preferências dos clientes levou ao aumento das variedades
de produtos, resultando na redução do tamanho dos lotes das empresas e na urgência de
lidar com a personalização em massa (OLIVEIRA, 2019). As altas exigências dinâmicas
dos clientes, o avanço dos conceitos de fabricação e a disponibilidade cada vez maior
de técnicas sofisticadas de Tecnologia da Informação (TI) influenciaram diretamente os
antigos paradigmas de fabricação, tais como Sistemas de Manufatura Dedicada (DMS)
e Sistemas de Montagem Dedicada (DAS), para evoluir da rigidez para paradigmas de
fabricação mais flexíveis. Exemplos destas abordagens são os Sistemas de Manufatura
Flexível (FMS) e os Sistemas de Manufatura Reconfiguráveis (RMS). Sob a perspectiva
da montagem, abordagens equivalentes são respectivamente os Sistemas de Montagem
Flexíveis (FAS) e os Sistemas de Montagem Reconfiguráveis (RAS) (BUCKHORST et al.,
2019).
Embora os novos paradigmas de fabricação e montagem tenham proposto flexibilidade
crescente, seus conceitos dependem de estações de trabalho estacionárias e níveis de célula
modular, restringindo a capacidade de abordar trabalhos individuais e rotas de peças
(BUCKHORST et al., 2019). A disposição das etapas do produto durante a realização
da montagem, a diversidade das capacidades de montagem, a generalização desafiadora
em meio a diferentes operações do produto e a individualização do produto dificultam
a implementação do RAS. Para lidar com tais desafios, a implementação de uma nova
abordagem chamada Sistemas de Montagem móveis sem linha (LMAS) é pesquisada
e desenvolvida na cadeira de Metrologia de Produção e Qualidade do Laboratório de
Máquinas-Ferramenta da Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen
(Werkzeugmaschinenlabor der RWTH Aachen).
A evolução da indústria, chamada Indústria 4.0, é caracterizada por um alto nível de
recursos conectados ao longo de todo o ciclo de vida do produto (YANG; GU, 2021). A
riqueza da disponibilidade de dados em todo o fluxo de produtos abre novas oportunidades
de negócios e possibilidades para melhorar a cadeia de processo agregando valor ao
produto final (TAY et al., 2018). Entre outras suposições, a Indústria 4.0 considera que
as empresas devem planejar e executar seu processo com adaptabilidade às flutuações
externas/internas em mente (AHELEROFF et al., 2020). Tais flutuações assumem vários
formatos, tais como mudanças na demanda de mercado, pedidos apressados e relações
com concorrentes de mercado (OLIVEIRA, 2019). Neste contexto, especialmente para
as empresas de manufatura, torna-se vital considerar o uso de sistemas de informação
conectados a arquiteturas de controle interoperáveis, flexíveis e reativas (DERIGENT et
al., 2020).
Antigos sistemas de controle de fabricação centralizados não foram concebidos para se
adaptarem às mudanças e exigências intensas do mercado atual, como personalização em
massa, ciclo de vida curto do produto e preços de produtos concorrentes (BARBOSA et
al., 2015). Novas abordagens mais recentes, seguindo uma organização heterárquica, foram
propostas. Em uma organização heterárquica, o problema de controle é resolvido através
da cooperação entre os componentes do sistema, em vez de um plano rígido fornecido
por uma entidade superior do sistema. A vantagem mais significativa é que os sistemas

heterárquicos se adaptam prontamente às interrupções do sistema (por exemplo, pedidos
urgentes, defeitos de produtos, falhas de recursos).
Neste contexto, uma solução que une as vantagens das abordagens hierárquica e het-
erárquica toma forma nas arquiteturas de controle holônico (HCA) (BARBOSA et al.,
2015; LEITÃO; RESTIVO, 2006; BRUSSEL et al., 1998; JIMENEZ et al., 2017) que se
baseiam no conceito do sistema de Manufatura Holônica (HMS).
O LMAS é um paradigma de montagem projetado para grandes produtos (HÜETTEMANN
et al., 2019) e consiste em três princípios-chave (BUCKHORST et al., 2020): (a) abordagem
de piso limpo; (b) mobilidade de todas as entidades; (c) tarefas totalmente flexíveis:
(HÜETTEMANN et al., 2019). Um problema de pesquisa ainda em aberto lida com o
controle das operações LMAS, exigindo uma arquitetura de sistema capaz de lidar com a
reconfigurabilidade topológica, planejamento e controle da LMAS. Esforços na modelagem
dos conceitos, estrutura e implementação de LMAS foram aplicados (HÜETTEMANN et al.,
2019; BUCKHORST et al., 2020; BUCKHORST et al., 2019). Assim, uma arquitetura de
planejamento e controle é obrigatória para gerenciar a atribuição ideal de montagem/fluxo
de peças através de recursos, executar etapas de produção e responder a interrupções nos
sistemas, tais como novos pedidos de clientes ou falhas de equipamentos. Esta dissertação
é baseada neste problema aberto específico e propõe uma arquitetura HMS adequada para
o LMAS. Assim pretende-se responder a pergunta científica: Como a arquitetura de
um sistema de produção e controle LMAS precisa ser projetada?
Objetivos
O objetivo geral é projetar, implementar e avaliar uma arquitetura holônica para o
planejamento e controle das operações do sistema de montagem móvel sem linha (LMAS).
Objetivos específicos
• definição da metodologia de projeto do HMS;
• projeto e implementação de um modelo de dados baseado em uma ontologia de nível

superior para apoiar a aplicação de arquitetura;
• projeto da arquitetura HMS composta por:

– modelo de organização;
– modelo de agente;
– modelo de tarefa/objetivo;
– modelo de interação;
– modelo de ambiente.

• implementação da arquitetura do HMS em forma de protótipo de sofware utilizando
framework de desenvolvimento para robótica;

• integração do protótipo de arquitetura com módulos anteriores do LMAS (por exemplo:
algoritmo de otimização);

• avaliação da lógica do software do protótipo e das características holônicas propostas
em um ambiente simulado;

• análise quantitativa e qualitativa dos ensaios simulados, a fim de apoiar a resposta a
ser dada à questão da pesquisa;

Metodologia
Este projeto de pesquisa foi realizado nas instalações da WZL localizada em Aachen,
Alemanha. A pesquisa será desenvolvida através da colaboração com o PPGEAS da UFSC
e o MAA da WZL. O trabalho geral é dividido em cinco fases principais:

• revisão da literatura;
• projeto de fabricação holônica;
• implementação da fabricação holônica;
• avaliação da arquitetura holônica proposta;
• análise da arquitetura holônica proposta.
Em uma visão geral, embora metodologias distintas sejam aplicadas em cada fase, todo o
projeto é inspirado na metodologia pesquisa-ação, onde o objetivo é a resolução de um
problema particular (SILVA; MENEZES, 2005).
De acordo com a metodologia de pesquisa-ação: o problema é primeiramente identificado,
depois é seguido por um estudo que deriva um conjunto de possíveis soluções para esse
problema. As soluções são analisadas e uma é levada à ação. Os dados que saem da
experiência são utilizados para avaliar as conseqüências sobre o sistema. De acordo com as
conseqüências, os resultados são interpretados à luz do sucesso da ação. O ciclo se repete
sistematicamente até que o problema seja resolvido.
Resultados e discussões
O resultado da fase de implementação é um protótipo (realizado com o Robot Operation
System) que implementa os modelos ANEMONA e uma ontologia LMAS, que reutiliza
elementos de ontologias de referência do domínio de manufatura. A fim de testar o protótipo,
um algoritmo para geração de dados para teste baseado na complexidade dos produtos
e na flexibilidade do chão de fábrica é apresentado. A validação qualitativa dos modelos
HCA é baseada em como o HCA proposto atende a critérios específicos para avaliar
sistemas HCA. A validação é complementada por uma análise quantitativa considerando
o comportamento dos modelos implementados durante a execução normal e a execução
interrompida (e.g. equipamento defeituoso) em um ambiente simulado. A validação da
execução normal concentra-se no desvio de tempo entre as agendas planejadas e executadas,
o que provou ser em média irrelevante dentro do caso simulado considerando a ordem de
magnitude das operações típicas demandadas. Posteriormente, durante a execução do caso
interrompido, o sistema é testado sob a simulação de uma falha, onde duas estratégias
são aplicadas, LOCAL_FIX e REORGANIZATION, e seu resultado é comparado para
decidir qual é a opção apropriada quando o objetivo é reduzir o tempo total de execução.
Finalmente, é apresentada uma análise sobre a cobertura desta dissertação culminando
em diretrizes que podem ser vistas como uma resposta possível (entre muitas outras) para
a questão de pesquisa apresentada. Além disso, são apresentados pontos fortes e fracos
dos modelos desenvolvidos, e possíveis melhorias e idéias para futuras contribuições para a
implementação de sistemas de controle holônico para LMAS.
Considerações finais
Esta dissertação apresenta uma arquitetura de controle holônico desenvolvida para o LMAS
respeitando suas exigências e características operacionais específicas. Primeiramente,
uma revisão de bibliografia foi conduzida a fim de se identificar obras relacionadas a
metodologia de desenvolvimento holônicas para sistemas multi-agentes, arquiteturas de
controle holônicas, ontologias e requisitos do LMAS. Com base nos resultados da revisão
bibliográfica e dos requisitos do LMAS, apresenta-se os modelos de organização, interação,
tarefa/objetivo, ambiente e agente, acompanhados de um protótipo de software seguindo
as definições nos modelos. Em seguida um modelo de dados baseado em ontologia e
um protótipo de sistema seguindo as recomendações da metodologia da ANEMONA. O
protótipo foi avaliado durante a execução normal e interrompida em ambiente simulado.

O HCA permite a autonomia das entidades LMAS e permite a reconfiguração espaço-
temporal da fábrica e da estação. A abordagem ontológica para implementar o modelo de
dados permitiu a identificação das interações e atributos necessários para soluções baseadas
em agentes e promove a interoperabilidade semântica. A avaliação do desempenho do
protótipo durante a execução normal indica aderência à reconfigurabilidade desejada e
estabilidade adicional. Como pretendido, os holons da camada de execução seguem seus
cronogramas locais, com atrasos de execução insignificantes, mesmo tendo miopia ao plano
de fabricação global. No caso da execução interrompida, pôde-se estabelecer um trade-off
entre as duas estratégias utilizadas para resolução de falhas (REORGANIZATION e
LOCAL_FIX), comparando o aumento no tempo de execução entre as duas estratégias
em casos de falhas simuladas. Como contribuições futuras, os resultados apresentados
neste trabalho sugerem a necessidade de um tratamento mais poderoso das interrupções de
operações que ocorrem na prática industrial (por exemplo, alocação de operações com base
em alternativas em suas seqüências de operação); a comparação da execução da arquitetura
com uma abordagem de ambiente simulado DES, que é uma ferramenta que pode ser útil
quando se trata de simulação de incertezas de execução e comportamentos imprevistos;
a tomada de decisão entre as estratégias disponíveis de tratamento das interrupções é
um problema a ser investigado; em outras palavras, como decidir seguir uma estratégia
específica em vez de outras baseadas em objetivos de fabricação pré-definidos (por exemplo
durante todo o processo, tempo de conclusão, tempo de transporte); e o comportamento
do protótipo de arquitetura quando conectado ao equipamento real, o que imporia um
aumento nos atrasos e robustez para lidar com as incertezas do processo de montagem
real.
Palavras-chave: Sistema de montagem móvel sem linha. Arquitetura de Controle Holônico.
Sistemas Holônicos de Manufatura. Ontologia.

Abstract

The Line-Less Mobile Assembly Systems (LMAS) is a manufacturing paradigm aiming to
maximize responsiveness to market trends (product-individualization and ever-shortening
product lifecycles) by adaptive factory configurations utilizing mobile assembly resources.
Such responsive systems can be characterized as holonic manufacturing systems (HMS),
whose so-called holonic control architectures (HCA) are recently portrayed as Industry
4.0-enabling approaches due to their mixed-hierarchical and -heterarchical temporary
entity relationships. They are particularly suitable for distributed and flexible systems
as the Line-Less Mobile Assembly or Matrix-Production, as they meet reconfigurability
capabilities. Though HCA reference structures as PROSA or ADACOR/ADACOR2 have
been heavily discussed in the literature, neither can directly be applied to the LMAS
context. Methodologies such as ANEMONA provide guidelines and best practices for
the development of holonic multi-agent systems. Accordingly, this dissertation aims to
answer the question "How does an LMAS production and control system architecture
need to be designed?" presenting the architecture design models developed according
to the steps of the ANEMONA methodology. The ANEMONA analysis phase results
in a use case specification, requirements, system goals, simplifications, and assumptions.
The design phase results in an LMAS architecture design consisting of the organization,
interaction, and agent models followed by a brief analysis of its behavioral coverage.
The implementation phase result is an LMAS ontology, which reuses elements from
the widespread manufacturing domain ontologies MAnufacturing’s Semantics Ontology
(MASON) and Manufacturing Resource Capability Ontology (MaRCO) enriched with
essential holonic concepts. The architecture approach and ontology are implemented using
the Robot Operating System (ROS) robotic framework. In order to create test data sets
validation, an algorithm for test generation based on the complexity of products and the
shopfloor flexibility is presented considering a maximum number of operations per work
station and the maximum number of simultaneous stations. The validation phase presents
a two-folded validation: qualitative and quantitative. The qualitative validation of the HCA
models is based on how the proposed HCA attends specific criteria for evaluating HCA
systems (e.g., modularity, integrability, diagnosability, fault tolerance, distributability,
developer training requirements). The validation is complemented by a quantitative analysis
considering the behavior of the implemented models during the normal execution and
disrupted execution (e.g.; defective equipment) in a simulated environment (in the form of
a software prototype). The normal execution validation focuses on the time drift between
the planned and executed schedules, which has proved to be irrelevant within the simulated
case considering the order of magnitude of the typical demanded operations. Subsequently,
during the disrupted case execution, the system is tested under the simulation of a failure,
where two strategies are applied, LOCAL_FIX and REORGANIZATION, and their
outcome is compared to decide which one is the appropriate option when the goal is
to reduce the overall execution time. Ultimately, it is presented an analysis about the
coverage of this dissertation culminating into guidelines that can be seen as one possible
answer (among many others) for the presented research question. Furthermore, strong and
weak points of the developed models are presented, and possible improvements and ideas
for future contributions towards the implementation of holonic control systems for LMAS.
Keywords: Line-Less Mobile Assembly Systems. Holonic Control Architecture. Holonic
Manufacturing Systems. Ontology.

List of Figures

Figure 1 – LMAS three key principles overview, adopted from (HÜETTEMANN
et al., 2019) . 24

Figure 2 – LMAS architecture, adopted from (BUCKHORST et al., 2021, in Press) 25
Figure 3 – Action Research: methodology cycle, adopted 29
Figure 4 – RAMI: the reference architectural model for Industry 4.0, adopted from

(ZEZULKA et al., 2016) . 33
Figure 5 – Information and communication technologies convergence, adopted from

(MONOSTORI et al., 2016) . 35
Figure 6 – CPS maturity level model, adopted from (MONOSTORI et al., 2016) . 36
Figure 7 – Traditional automation pyramid breakdown, adopted from (VDI, 2013) 37
Figure 8 – Traditional automation pyramid breakdown, adopted from (LEE et al.,

2015) . 37
Figure 9 – ANEMONA development phases (BOTTI; GIRET, 2008) 40
Figure 10 – ANEMONA notation, adopted from (BOTTI; GIRET, 2008) 43
Figure 11 – Line-Less Mobile Assembly System: Key principles and operation plan-

ning organization, adopted from (BUCKHORST et al., 2019) 46
Figure 12 – Line-Less Mobile Assembly Systems UC1: normal operation, adapted

from (BUCKHORST et al., 2021, in Press) 48
Figure 13 – Line-Less Mobile Assembly Systems UC2: disturbance during normal

operation . 49
Figure 14 – MaRCO Ontology sub-section, adopted from (JÄRVENPÄÄ et al., 2019) 51
Figure 15 – PROSA: holon’s knowledge exchange, adopted from (BRUSSEL et al.,

1998) . 54
Figure 16 – ADACOR: Holon’s organization, adopted from (LEITÃO; RESTIVO,

2006) . 55
Figure 17 – ADACOR: Stationary and Transient state, adopted from (LEITÃO;

RESTIVO, 2006) . 56
Figure 18 – ADACOR2: States, adopted from (BARBOSA et al., 2015) 57
Figure 19 – ADACOR2: Reasoning mechanism, adopted from (BARBOSA et al.,

2015) . 57
Figure 20 – POLLUX: Decisional entities and layers description (JIMENEZ et al.,

2017) . 59
Figure 21 – SoHMS: SoHMS network, adopted from (QUINTANILLA et al., 2016) 60
Figure 22 – SoHMS: Virutal-comissioning Integration, adopted from (QUINTANILLA

et al., 2016) . 61
Figure 23 – ORCA behavioral comparison, adopted from (PACH et al., 2014) . . . 62

Figure 24 – ARTI: Architecture, adopted from (VALCKENAERS, 2018) 64
Figure 25 – ADACOR ontology, adopted from (BORGO; LEITÃO, 2004) 67
Figure 26 – First and second levels of unified ontology proposal, adapted from

(SIMÓN-MARMOLEJO; RAMOS-VELASCO, 2018) 69
Figure 27 – MaRCO ontology composition, adopted from (JÄRVENPÄÄ et al., 2019) 70
Figure 28 – Section of the MaRCO ontology, adopted from (JÄRVENPÄÄ et al.,

2019) . 70
Figure 29 – LMAS HCA: Overview . 84
Figure 30 – HCA Organization Model (in ANEMONA Notation) 85
Figure 31 – Order holon agent diagram. 87
Figure 32 – Station holon agent diagram. 87
Figure 33 – Assembly equipment holon agent diagram. 88
Figure 34 – Sub-assembly holon agent diagram. 88
Figure 35 – Part holon agent diagram. 89
Figure 36 – Operational holons state models. 90
Figure 37 – Send customer order interaction diagram. 94
Figure 38 – Request optimization interaction diagram. 95
Figure 39 – Configure holons interaction diagram. 96
Figure 40 – Order execution interaction diagram. 97
Figure 41 – Disruption handling interaction diagram. 98
Figure 42 – LMAS Data Model Merging Process 102
Figure 43 – Holontology: Ontologies Reuse Method 103
Figure 44 – LMAS HCA Data Model (Colors refer to Conceptual Similarities) . . . 104
Figure 45 – Order holon template description. 108
Figure 46 – ROS packages for HCA. 109
Figure 47 – Input file generation diagram. 112
Figure 48 – Product families A, B, and C operation precedence order graph. 121
Figure 49 – HCA prototype execution drift analysis. 125
Figure 51 – Id l3 local fix completion graph. 127
Figure 52 – Id l3 reorganization completion graph. 127
Figure 53 – Id l3: Local fix vs. Reorganization strategies scaled down completion

graph. LOCAL_FIX and REORGANIZATION are scaled to 1. The
remaining time is scaled down 50 x. 128

Figure 54 – Id h3: Local fix vs. Reorganization strategies scaled down completion
graph. LOCAL_FIX is scaled to 1. The remaining time is scaled down
50 x. 128

List of Tables

Table 1 – Holonic manufacturing systems architectures classifications 39
Table 2 – LMAS requirements. 50
Table 3 – HCA literature review. 66
Table 4 – Ontology literature review. 72
Table 5 – Detailed architecture requirements. 74
Table 6 – Simplifications and assumptions . 79
Table 7 – Architecture system goals . 83
Table 8 – Ontology evaluation results. 102
Table 9 – Framework suitability analysis for Line-Less Mobile Assembly Systems.

(++ fully applied; + partially applied; 0 not applied) 104
Table 10 – HCA platforms. 107
Table 11 – HCA qualitative analysis. 114
Table 12 – Number of operation in pump families.. 119
Table 13 – UC1 - Normal use case input: low complexity. 122
Table 14 – UC1 - Normal use case input: high complexity. 122
Table 15 – HCA prototype low complexity results. 123
Table 16 – HCA prototype high complexity results. 124
Table 17 – UC2 test recipe. 126
Table 18 – UC2 execution results. 129
Table 19 – Pump Type A operation processing times. 142
Table 20 – Pump Type B operation processing times. 143
Table 21 – Pump Type C operation processing times. 144

List of abbreviations and acronyms

HCA Holonic Control Architecture

HMS Holonic Manufacturing Systems

LMAS Line-Less Mobile Assembly System

MAS Multi-Agent Systems

FMS Flexible Manufacturing System

RMS Reconfigurable Manufacturing Systems

FAS Flexible Assembly Systems

RAS Reconfigurable Assembly Systems

IT Information Technology

DMS Dedicated Manufacturing Systems

UFSC Federal University of Santa Catarina

RWTH Rheinisch-Westfälische Technische Hochschule

ERP Enterprise Resource Planning

MES Manufacturing Execution System

IMS Intelligent Manufacturing Systems

PPGEAS Graduate Program in Automation and System Engineering

MAA Metrology Assisted Assembly Group

WZL Werkzeugmaschinenlabor der RWTH Aachen

CPS Cyber-Physical Systems

CPPS Cyber-Physical Production Systems

CS Computer Science

ICT Information and Communication Technologies

NSF National Science Foundation

PCL Programmable Computer Logic

EC European Community

EFTA European Free Trade Association

PROSA Product Resource Order Staff Architecture

ADACOR ADAptative holonic COntrol aRchitecture

HCBA Holonic Component Based Architecture

PROSIS Product, Resource, Order, Simulation for Isoarchy Structure

ORCA Optimized and Reactive Control Architecture

ANEMONA A Multi-agent Methodology for Holonic Manufacturing Systems

DACS Designing Agent-based Control Systems

ROMAS Regulated Open Multi-Agent Systems

ARTI Activity, Resource, Type and Instance Architecture

CASE Computer-Aided Software Engineering

DAI Distributed Artificial intelligence

AGV Automated Guided Vehicle

UC Use Case

RQ Requirement

RDF Resource Description Framework

SPARQL Protocol and RDF Query Language

OWL Web Ontology Language

SKOS Simple Knowledge Organization System

LDE Local Decisional Entities

RDE Resource Decisional entities

GDE Global Decisional Entities

SoA Service-oriented Architecture

DES Discrete-event Simulation

SoHMS Service-oriented Holonic Manufacturing Systems

AI Artificial Intelligence

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

OCHRE Object-Centered High-level Reference Ontology

SUMO Suggested Upper Merged Ontology

BFO Basic Format Ontology

FIPA Foundation for Intelligent Physical Agents

H2CM Holonic Hybrid Control Model

MaRCO Manufacturing Resource Capability Ontology

MASON MAnufacturing’s Semantics ONtology

MSDL Manufacturing Service Description Language

SA Simplification & Assumption

FLERMO FLExible Resource Manufacturing Ontolog

HOLLONTO HOLonic assembLy manufacturing ONTOlog

Holontology Holonic ontology

ROS Robot Operating System

JADE Java Agent DEvelopment Framework

JSON JavaScript Object Notation

KPI Key Performance Indicator

SMH Switch Mechanism Holon

OH Order Holon

SH Station Holon

AEH Assembly Equipment Holon

PH Part Holon

SAH Sub-assembly Holon

AH Assembly Holon

Contents

1 INTRODUCTION . 22
1.1 General problem . 22
1.2 Specific problem . 24
1.3 Research question . 26
1.4 Justification . 26
1.5 Objective . 27
1.5.1 General objective . 27
1.5.2 Specific objectives . 27
1.6 Scientific contribution . 28
1.7 Organization . 28

2 RESEARCH AND WORK METHODOLOGY 29
2.1 Research methodology . 29
2.2 Work methodology . 31

3 THEORETICAL BACKGROUND 32
3.1 Industry 4.0 . 32
3.2 Cyber-Physical Systems . 34
3.3 Holonic manufacturing systems . 37
3.3.1 Holonic manufacturing systems history . 38
3.3.2 Holonic manufacturing system architectures 39
3.4 ANEMONA methodology . 39
3.4.1 ANEMONA notation . 41
3.5 Multi-Agent Systems . 43
3.6 Robot operating system . 44
3.6.1 Asynchronous messages . 45
3.6.2 Synchronous messages . 45
3.6.3 Parameter server . 45
3.7 Line-Less Mobile Assembly System 45
3.7.1 LMAS Architecture . 46
3.7.2 LMAS Use Cases . 47
3.7.3 LMAS Requirements . 49
3.8 Ontology . 50

4 LITERATURE REVIEW . 53
4.1 PROSA: Product, Resource, Order and Staff architecture 53

4.2 ADACOR: ADAptative holonic COntrol aRchitecture 54
4.3 ADACOR2: The evolution of ADACOR 56
4.4 Pollux . 58
4.5 Virtual Commissioning-Based Development and Implementation of a

Service-Oriented Holonic Control for Retrofit Manufacturing Systems 59
4.6 ORCA-FMS: a dynamic architecture for the optimized and reactive

control of flexible manufacturing scheduling 61
4.7 ARTI (Activity Resource Type Instance) 62
4.8 Holonic architectures review . 64
4.9 The ADACOR ontology . 66
4.10 Unified ontology for a holonic manufacturing system 68
4.11 MaRCO Ontology . 69
4.12 Ontologies review . 71

5 SYSTEM ARCHITECTURE DESIGN 73
5.1 Architecture analysis . 73
5.1.1 Requirements . 73
5.1.2 Simplifications and assumptions . 78
5.1.3 System goals . 82
5.2 System overview . 83
5.2.1 Organization model . 84
5.2.2 Agent model . 86
5.2.3 Agent model diagrams . 86
5.2.4 Agent state models . 89
5.2.5 Interaction model . 93
5.2.5.1 Send customer order . 93
5.2.5.2 Request optimization . 94
5.2.5.3 Configure holons . 95
5.2.5.4 Order execution . 96
5.2.5.5 Disruption handling . 97
5.2.6 Architecture models considerations . 99

6 SYSTEM ARCHITECTURE IMPLEMENTATION 101
6.1 System data model . 101
6.1.1 Ontology . 101
6.1.2 Data model . 103
6.2 Robotic programming framework . 104
6.3 System platforms and ROS templates 105
6.4 ROS packages . 108
6.5 Input files generator . 109

7 EVALUATION . 113
7.1 Architecture model analysis . 113
7.1.1 Modularity . 113
7.1.2 Integrability . 115
7.1.3 Diagnosability . 115
7.1.4 Convertibility . 116
7.1.5 Fault tolerance . 117
7.1.6 Distributability . 118
7.1.7 Developer training requirements . 118
7.2 Execution analysis . 119
7.2.1 Industrial pumps . 119
7.2.2 Input data . 120
7.2.3 UC1 - Normal execution . 123
7.2.3.1 Execution drift . 123
7.2.4 UC2 - Disruption . 125
7.2.5 Test preparation . 125
7.2.6 Test results . 126
7.2.7 Test analysis . 127

8 CONCLUSION . 130

BIBLIOGRAPHY . 136

A APPENDIX: PUMP TYPE A PROCESSING TIME 142

B APPENDIX: PUMP TYPE B PROCESSING TIME 143

C APPENDIX: PUMP TYPE C PROCESSING TIME 144

22

1 Introduction

In recent years, customer preferences diversity has led to increased product varieties,
resulting in reduced companies’ lot sizes and the urgency to cope with mass customiza-
tion (OLIVEIRA, 2019). The high dynamic customer requirements, the advancement
of manufacturing concepts, and the ever-increasing availability of sophisticated Informa-
tion Technology (IT) techniques directly influenced the former manufacturing paradigms,
such as Dedicated Manufacturing Systems (DMS) and Dedicated Assembly Systems
(DAS), to evolve from rigidity to more flexible manufacturing paradigms. Examples of
these approaches are the Flexible Manufacturing Systems (FMS) and Reconfigurable
Manufacturing Systems (RMS). Under the assembly outlook, equivalent approaches are
respectively Flexible Assembly Systems (FAS) and the Reconfigurable Assembly Systems
(RAS) (BUCKHORST et al., 2019). Although the new manufacturing and assembly
paradigms have proposed increasing flexibility, their concepts rely on stationary worksta-
tions and modular cell levels, constraining the ability to address individual job and part
routes (BUCKHORST et al., 2019). The arrangement of product steps during assembly
realization, diversity of machining assembly capabilities, challenging generalization amid
different product operations, and product individualization hamper a RAS implementation.
To handle such challenges, the implementation of a novel approach called Line-Less Mobile
Assembly Systems (LMAS) has been researched and devised at the chair of Production
Metrology and Quality of the Machine Tool Laboratory of the Rheinisch-Westfälische
Technische Hochschule (RWTH) Aachen (Werkzeugmaschinenlabor der RWTH Aachen).

1.1 General problem
The evolution of industry, so-called, Industry 4.0 is characterized by a high level of

connected resources along all the product life cycle (YANG; GU, 2021). The richness of
data availability across the product flow opens new business opportunities and possibilities
to enhance the process chain adding value to the final product (TAY et al., 2018). Among
other assumptions, Industry 4.0 considers that companies should plan and execute their
process with adaptability to external/internal fluctuations in mind (AHELEROFF et al.,
2020). Such fluctuations assume various formats such as market demand changing, rush
orders, and market competitors relations (OLIVEIRA, 2019). In that context, especially for
the manufacturing companies, it becomes vital to consider the use of information systems
connected to reactive interoperable and flexible control system architectures (DERIGENT
et al., 2020).

The control system architectures can be understood as control systems responsible

Chapter 1. Introduction 23

for defining the system’s composition elements, operation behaviors, and control execution.
In practice, in the case of a manufacturing system, the instantiation of a control system
architecture takes form in a Manufacturing Execution System (MES) that connected to
the Enterprise Resource Planning (ERP), governs the manufacturing operation in turn
planning, control, and execution levels (JIMENEZ et al., 2017).

Initially, a significant amount of solutions for such control system architecture
have been devised to be centralized architectures. One great advantage of a centralized
architecture is that it can be optimized globally. It can easily query the whole system state
because the system’s components are all known to the central controller and derive an
optimal global plan based on the current state. With the centralized strategy, the optimal
plan deployment is executed via a hierarchical approach where the components strictly
obey the given plan. The most significant disadvantage of a centralized solution is the lack
of adaptability and reactivity capabilities (BARBOSA et al., 2015).

Former centralized manufacturing control systems have not been devised to adapt
to the current high intense market-changing and requirements like mass customization,
short product life-cycle, and competing product prices (BARBOSA et al., 2015). Industry
4.0 holds the promise of increased flexibility (AHELEROFF et al., 2020) and adaptability,
which requires control architectures to deal with high dynamic scenarios. In general,
(YANG; GU, 2021) lists five particular points that Industry 4.0 drags attention to:

• shortening the development period with the use of highly innovative means;

• using ultra-customization to end the traditional "one for all" and to promote
uniqueness or is sometimes called "batch size one" in manufacturing;

• productions are integrated with higher flexibility;

• enabling faster decision-making procedures by decentralization as opposed to
lengthy organizational hierarchy;

• promoting sustainability and resource efficiency in the context of the ecological
aspect.

More recent new approaches following a heterarchical organization have been
proposed. In a heterarchical organization, the control problem is solved via the cooperation
between the system components instead of a strict plan supplied by a higher system entity.
The most significant advantage is that the heterarchical systems adapt promptly to system
disruptions (e.g., rush orders, product defects, resource faults). The main disadvantage is
the lack of performance in providing an optimal global plan due to the system myopia
(one entity has a limited capacity regarding the system perception) (WANG; HAGHIGHI,
2016).

In this context, a solution that couples the advantages from both hierarchical and
heterarchical approaches takes form in the holonic control architectures (HCA) (BARBOSA

Chapter 1. Introduction 24

et al., 2015; LEITÃO; RESTIVO, 2006; BRUSSEL et al., 1998; JIMENEZ et al., 2017)
which are based on the Holonic Manufacturing system (HMS) concept. The HMS offers
a conceptualization to derive HCAs that benefit from the best of the heterarchical and
hierarchical approaches. The HMS concept utilizes the idea of autonomous entities called
holons (CHRISTENSEN, 1994). These entities are organized assuming the most appropriate
behaviors, which may vary between heterarchical and hierarchical depending on the system
state. The name given to this dynamic organization is holarchy (BRUSSEL et al., 1998).

In this work, a control architecture for the LMAS paradigm is derived based on
the HMS concept.

1.2 Specific problem
The LMAS is an assembly paradigm designed for large products (HÜETTEMANN

et al., 2019) and consists of three key principles (BUCKHORST et al., 2020): (a) clean
floor approach; (b) mobility of all entities; (c) fully flexible assignments: (HÜETTEMANN
et al., 2019). Applying these principles provides a dynamic response that allows reconfig-
urability and scalability to meet high altering market demands. These three principles are
summarized in the figure 1.

Figure 1 – LMAS three key principles overview, adopted from (HÜETTEMANN et al.,
2019)

Efforts in modeling the LMAS concepts, framework, and implementation have
been applied (HÜETTEMANN et al., 2019; BUCKHORST et al., 2020; BUCKHORST
et al., 2019). An example of the connection between the HMS concepts and the LMAS
is presented in (BUCKHORST et al., 2021, in Press). In this work, the LMAS system
architecture is composed of three layers: the planning layer, the control layer, and the

Chapter 1. Introduction 25

execution layer. In each layer, holons are designed to take functionalities such as planning
and scheduling (planning layers), control and monitoring (execution layer), and operation
execution (execution layer). The figure 2 exhibits the LMAS architecture separated into
layers and highlights its main components.

Figure 2 – LMAS architecture, adopted from (BUCKHORST et al., 2021, in Press)

A remaining open research problem deals with LMAS operations control, requiring a
system architecture capable of dealing with LMAS’s topological reconfigurability, planning,
and control. Accordingly, a planning and control architecture is mandatory to manage
the optimal assembly/part flow assignment through resources, execute production steps,
and respond to disruptions to the systems, such as new customer orders or equipment
faults. This dissertation is based on this specific open problem and proposes a suitable
HMS architecture for the LMAS.

The HMS proposal was built over the Intelligent Manufacturing Systems (IMS)
requirements for 21st-century manufacturing systems. Hence it promises to offer a suitable
control strategy adaptable to LMAS control and planning main requirements, given in the
format of the three already presented principles.

The present dissertation, envisioning to evaluate the HMS concept applied for the
LMAS paradigm, investigates, proposes, and tests an architecture consisting of interaction,
agent, and organization models based on the holonic manufacturing system concept. The
performance shall be evaluated via simulation. The current work can be viewed as a
continuation of the research started on (BUCKHORST et al., 2021, in Press). The main
differences are related to:

• the interaction model of the assembly equipment holons. The station described in
(BUCKHORST et al., 2021, in Press) is considered an instantiation of assembly
equipment, while on this current work, the author proposes to increment the

Chapter 1. Introduction 26

interaction model in order to support the communication required to create
dynamic stations composed of a variety of assembly equipment;

• the data model classes. The data model classes structure should be adapted to
represent the shop floor granularity, the holons states, the necessary data repre-
sentation to support the addition to the interaction model, the scheduler, the
sub-assembly, and the order holons. The data model derived in this dissertation
will be based on a higher level manufacturing domain ontology, as suggested by
the HMS methodology used;

• the control layer interaction model. It is necessary to propose and increment
modifications to the control layer to fulfill the holon’s initialization, addition,
deletion, customer order interpretation, simulation execution, and optimization
layer integration (input/output data interpretation and distribution to operation
holons). For example, the new broker holon’s addition will create, monitor, and
delete all the holon classes. The broker holon is essential on the initialization
phase and acts as the principal holon on the control layer;

• integration between modules related to LMAS former initiatives. This work
integrates the optimization, control, and operation layers and validates the
results in a simulated environment. The simulation is carried with a simple
timing structure, where wait operations in the prototype replace the assembly
and transport operations;

• disruption orchestration: this work considers in the architecture design models
the fact that the system should correctly respond to disruption such as equipment
fault. This work proposes a simple treatment for fault detection and correction
based on two simple strategies: complete reorganization and local fix (equipment
replacement). The orchestration is carried out by adding a new holon, the switch
mechanism holon.

1.3 Research question
How does an LMAS production and control system architecture need to be designed?

1.4 Justification
The increase in product customization, shortened product life-cycle, and high com-

petition between companies to attend product lower prices are characteristics of Industry
4.0. Consequently, manufacturing companies should implement flexibility, scalability, and
modularity in their production systems to cope with the Industry 4.0 requirements. The
HMS concept envisions to support dynamic organization structures where a hierarchical

Chapter 1. Introduction 27

and heterarchical approach is applied to adapt the production systems to incoming orders
and system faults. The HCA has its basis on the HMS concepts, and it might offer a
suitable architecture metamodel for the novel LMAS manufacturing paradigm.

Nevertheless, this research project aims to design and evaluate a suitable HCA
applied for the novel LMAS manufacturing paradigm. This work will also contribute to
HMS concerning evaluating the efficiency of using heterarchical and decentralized control
architectures to respond to disruptions in the production execution phase (e.g., resource
unavailable, rush orders, upcoming new production batches).

Besides the necessary and essential support of the Graduate Program in Automation
and System Engineering (PPGEAS) of the Federal University of Santa Catarina (UFSC),
the conduction of this research is supported by the Group Metrology Assisted Assembly
(MAA) of WZL.

1.5 Objective

1.5.1 General objective

Design, implement and evaluate a holonic architecture for Line-Less Mobile Assem-
bly System operations planning and control.

1.5.2 Specific objectives

Considering the LMAS requirements and the general objective presented, the
following specific objectives are highlighted:

• HMS design methodology definition;

• design and implementation of a data model based in a higher-level ontology to
support the architecture application;

• design of HMS architecture composed of:

– organization model;
– agent model;
– task/goal model;
– interaction model;
– environment model.

• implementation of the HMS architecture utilizing a robotic software framework
platform as a prototype;

• integration of the architecture prototype with former modules of LMAS (e.g.:
optimization algorithm);

Chapter 1. Introduction 28

• evaluation of the prototype’s software logic and proposed holonic features in a
simulated environment;

• quantitative and qualitative analysis of the simulated trials in order to support
the answer to be given to the research question;

1.6 Scientific contribution
This work’s main contribution to the scientific community is related to a proposal

of a holonic control architecture for the LMAS paradigm. In order to contribute to previous
approaches for a suitable holonic control architecture for LMAS, this work:

• proposes architecture models developed following a methodology specific for
HMS concepts;

• adds to the previous contribution the necessary interactions to create dynamic
stations (interaction model);

• utilizes a data model based on a higher manufacturing ontology artifact;

• adds a simple disruption orchestration.

This work’s progress and intermediate results were submitted in the format of a
scientific paper in the 55th CIRP Conference on Manufacturing Systems 2022 (CMS2022),
under the title "A Holonic Control System Approach for Line-Less Mobile Assembly
Systems".

1.7 Organization
The remainder of this work is organized as follows: chapter two presents the applied

methodology on research and work; chapter three presents a theoretical background
on essential concepts related to this research work; chapter four presents the literature
review; chapter five presents the control architecture design models; chapter six covers
the implementation aspects of the HCA; chapter seven covers the test and results; and
chapter eight overviews the developed HCA models and presets and answer to the research
question.

29

2 Research and work methodology

2.1 Research methodology
This research project will be conducted in the physical facilities of the WZL located

in Aachen, Germany. The research will be constructed by collaborating with the UFSC’s
PPGEAS and the WZL’s MAA. The overall work is divided into five main phases.

In an overview, though distinct methodologies are applied in each phase, the
whole project is inspired in the Action-Research methodology, where the objective is the
resolution of a particular problem (SILVA; MENEZES, 2005).

The action-research methodology cycle is presented in the figure 3. According to
the presented diagram, the problem is first identified, then it is followed by a study that
derives a collection of possible solutions for that problem. The solutions are analyzed, and
one is taken to action. The data that comes out of the experiment is used to evaluate
the consequences on the system. According to the consequences, findings are interpreted
in the light of how successful the action was. The cycle repeats systematically until the
problem is solved.

Figure 3 – Action Research: methodology cycle, adopted
from (YASMEEN, 2008)

Subsequently, the general methodology is briefly described:

Chapter 2. Research and work methodology 30

• objective: Action-Research. The research is realized with a specific action or
a problem resolution in mind. All participants are cooperatively involved in
solving this specific action or problem;

• nature: applied. The research aims to generate knowledge for practical applica-
tions oriented to solve a specific problem;

• research method: Quali-quantitative. The research aims to propose a holonic
architecture that should be evaluated qualitatively and quantitatively. The
generated design models and concepts are in the qualitative evaluation while
the system prototype is on the quantitatively part;

• procedures: literature review, experiments driven by simulations, and use cases
analysis;

• local: The research will be conducted in the WZL laboratory located at Aachen,
Germany.

The research methods applied in each research phase are described below:

• literature review: the review will be held on public and private consultation
bases over books, articles, dissertations, and master/bachelor dissertation. The
candidate will conduct this review with the PPGEAS and WZL teams’ support
and guidance. It is intended to cover the last 20 years of research on the field.
The literature review phase is related to the Diagnosing and Action Planning
phases of each iteration in the action research methodology;

• holonic manufacturing design: design of the architecture models composing
the holonic control architecture for LMAS. The design will be described through
a representational suggested by the HMS methodology applied. The holonic
manufacturing design phase is related to the Action Planning phase of each
iteration in the action research methodology;

• holonic manufacturing implementation: on this phase, agile software
methodology, each identified software module is implemented. This phase is
related to the Taking Action phase of each iteration in the action research
methodology;

• evaluation of the proposed holonic architecture: the evaluation of the
proposed HCA will be conducted with two objectives: first, evaluate the archi-
tecture design models, and second the prototype performance accordingly to
the identified use cases. The design models are evaluated concerning their per-
formance, reliability, availability, modifiability, and functionality. The proposed
holonic architecture prototype will be evaluated by applying the use cases utiliz-
ing a simulated environment. As an input for the use cases, genuine industrial
pumps data will simulate the incoming customer orders. The evaluation of the

Chapter 2. Research and work methodology 31

proposed holonic architecture phase is related to the Evaluating phase of each
iteration in the action research methodology;

• analysis of the proposed holonic architecture: in this phase, a quantitative
and qualitative analysis of the proposed simulated prototype outputs will be
conducted. The result of that phase is the argumentation for the research
question answer. The analysis of the proposed holonic architecture phase is
related to the Specifying Learning phase of each iteration in the action research
methodology.

2.2 Work methodology
During the progress of this work, a methodology inspired by agile methodologies

(e.g., SCRUM, Kanban, Scrumban) will be taken to deal with the programming and
research tasks.

The student will conduct regular bi-weekly meetings with the local supervisor to
keep up with the last findings and new resolutions. This approach is beneficial in multiple
ways, as the actual research project has requirements that can affect parallel developments
and vice-versa.

During the bi-weekly meetings, the current tasks will be reviewed and new ones
created depending upon the actual need or last discussions. Tools for task management
(e.g., Trello) and version control systems (e.g., git, Gitlab) are used and, when necessary,
provided by the WZL infrastructure.

To keep up with the UFSC’s Professor advisor, Professor Rabelo, monthly meetings
will be held between all the parts: the candidate student, the local advisor, and Professor
Rabelo. In these meetings, the objective is to report the project’s current status, share
knowledge, and get insights to better conduct the dissertation outcome.

Besides the monthly meetings, emails will be sent between the candidate student
and the Professor to answer specific dissertation questions.

32

3 Theoretical background

3.1 Industry 4.0
The Industry 4.0 definition must be clarified in this work as the HMS itself is

an enabling technology for its requirements. Industry 4.0 concept is a consequence of
a new industrial revolution. However, three revolutions shaped how society consumes,
communicates, and conducts business along with modern history. Industrial revolutions
are associated with technological advancement but bound to societal requirements (e.g.,
sustainability). The paradigm shift acts like a trigger that instigates new business models
and affects industrial sites and innumerable society layers (OLIVEIRA, 2019).

The first industrial revolution (1760 - 1840) was characterized by the steam ma-
chine and the train rails with which the manual production force was escalated to an
increased level of productivity. The second industrial revolution is marked mainly by
introducing electrical energy, making it possible to develop the production line concept
and mass production. The third industrial revolution, 1960, is associated with electronics,
informatics, and internet development and usage. These achievements are the base for the
always-increasing sharing of knowledge via the network and the digital transformation of
information (TAY et al., 2018).

The entire chain of industrial development served as a basis to establish the
mechanisms for the emerging Industry 4.0 revolution. Industry 4.0 is usually associated
with manufacturing, though it is not restricted to that context. Industry 4.0 addresses a
wide range of topics involving innumerable technologies convergence, process automation,
efficient use of energy, sustainability, and increasing of autonomous systems and Cyber-
Physical Systems (CPS) (SCHWAB, 2016).

In (ZEZULKA et al., 2016) the authors developed a 3D model for Industry 4.0
that represents the interconnection between technical and business features envisioned
by this model. The 3D model is observed in figure 4: the vertical axis represents the
viewpoints about the benefits of Industry 4.0 from the business level to the asset level;
the left horizontal axis represents the stream of the product life-cycle, where there are
opportunities to collect valuable data to improve not only the product but the whole
process; the right-horizontal axis describes the functional position of components, aiming
to identify where the function is allocated (e.g., product, enterprise, stations).

For an enterprise to benefit from what Industry 4.0 promises, it is necessary to
adapt to a set of technical requirements. These requirements are (HERMANN et al., 2016;
LAMNABHI-LAGARRIGUE et al., 2017):

Chapter 3. Theoretical background 33

Figure 4 – RAMI: the reference architectural model for Industry 4.0, adopted from
(ZEZULKA et al., 2016)

1. distributed and decentralized control;

2. decision autonomy;

3. CPS collaboration;

4. virtualization of organizational entities of any type and level;

5. adaptability and ability of company and systems to be plug & play;

6. interoperability between distributed systems and heterogeneous technologies;

7. cybersecurity;

8. emergent behavior and dynamic self-organization;

9. resilient system supervision and operation;

10. real-time, data-driven control and optimization;

11. modularity of production systems;

12. service-oriented computing architectures;

13. symbiotic interaction between humans and cyber-physical systems.

Among the presented items, in the author’s view, an HMS application is aligned
with the topics: 1, 2, 4, 8, and 11.

Chapter 3. Theoretical background 34

In brief, Industry 4.0 can be defined as a novel industrial model of communication
and inter-connectivity in real-time of significant amounts of data between CPS and people.
The aim is to accelerate the decision-making process, and systems adaptability (SCHUH
et al., 2017).

Additionally, Industry 4.0 is motivated by high dynamic market fluctuations
(OLIVEIRA, 2019) and the emergence of a high number of connected resources throughout
the whole manufacturing process. The connectivity targeted by the Industry 4.0 enables
the emergence of flexible and reactive control systems based on the cooperation of entities
during the decision-making process(DERIGENT et al., 2020).

Considering the presented reactivity and connectivity required by Industry 4.0,
the concept of decentralized production architectures and especially HMS experiences
a new relevance (GRÄSSLER; PÖHLER, 2017). Besides the promised capabilities, the
HMS presents an autonomous entity called holon as a basic unit. The conceptualization
of a holon and a CPS have a degree of similarity and overlap of definitions (WANG;
HAGHIGHI, 2016). Both concepts rely on integrating logical and possible physical parts,
which interact, exchanging information between the digital and physical components to
fulfill a specific objective.

3.2 Cyber-Physical Systems
In this subsection, the concepts of Cyber-Physical Systems (CPS) and Cyber-

Physical Production Systems (CPPS) are summarized as their relevance is vital and
inspires the development of this research work as a contribution to the Industry 4.0
domain.

Cyber-Physical Systems (CPS) are systems characterized by intense collaboration
between their components, which are connected with the physical world, requiring and using
services of data processing and accessing data available on the internet (MONOSTORI et
al., 2016). The key element in a CPS is the interaction between the cyber and the physical
world: “CPS is about the intersection, not the union, of the physical and the cyber. It is
not sufficient to separately understand the physical components and the computational
components” (LEE; SESHIA, 2017). Practical examples of CPS realization can be elected:
autonomous cars, robotic surgery, intelligent buildings, smart electric grid, and smart
manufacturing (NIST, 2013).

The CPS emergence relies upon the development of computer science (CS) and
information and communication technologies (ICT). The parallel development of ICT and
CS led to a convergence between the cyber and physical world is depicted in the figure
5. The figure shows the HMS as an initiative to merge cyber and physical worlds, which
started and the physical side.

Chapter 3. Theoretical background 35

Figure 5 – Information and communication technologies convergence, adopted from
(MONOSTORI et al., 2016)

The origin of CPS is usually associated with the embedded systems (PARK et
al., 2012). Such systems consist of mechanical and electrical parts that perform specific
functions within real-time computer constraints. Hence, the embedded systems are charac-
terized by interactions between the computational features and the physical constraints of
the physical world. The term CPS can be tracked back to 2006 when the first National
Science Foundation (NSF) WorkShop on Cyber-Physical Systems was held in Texas, USA.
In its first years of maturation as an official term, the CPS concept was associated as an
enabling technology for various application fields (MONOSTORI et al., 2016):

• agriculture;

• building controls;

• defense;

• energy response;

• energy;

• healthcare;

• manufacturing and industry;

• society;

• transportation.

In the German context, the National Academy of Science and Engineering (ACAT-
ECH) has provided a leading role in promoting the CPS concepts. The figure 6 represents
a graphical representation of a maturity model developed in the Laboratory for Machine

Chapter 3. Theoretical background 36

Tools and Production Engineering (WZL) of RWTH Aachen University (MONOSTORI et
al., 2016).

Figure 6 – CPS maturity level model, adopted from (MONOSTORI et al., 2016)

Following this maturity model, on the first level (Basics), the organization and
structural conditions for a CPS are created. In contrast, in the next four, higher maturity
levels are represented by the information and knowledge processing and the cooperation,
and collaboration aspects (MONOSTORI et al., 2016).

Cyber-Physical Production Systems (CPPS) extends the primary idea of CPS to
the manufacturing domain and may be considered as a pivotal basis for the 4th Industrial
Revolution. CPPS consists of autonomous and cooperative elements connected across all
production levels, from processes through machines to production and logistics networks.
The three main characteristics of CPPS are highlighted here (MONOSTORI et al., 2016):

• intelligence;

• connectedness;

• responsiveness.

The concept of CPPS works to break the traditional automation pyramid. The
typical control and field levels still exist, for example, in the form of Programmable
Computer Logic (PCL). However, the higher levels of the traditional pyramid are frequently
related to more decentralized solutions. Figure 7 represents this breakdown (MONOSTORI
et al., 2016).

In summary, the CPPS is represented by two key components. The components
that stay at the lower level are responsible for real-time functions, while the components in
the higher levels have the tasks of performing data analysis, data processing, and intelligent
decision-making (MONOSTORI et al., 2016).

Chapter 3. Theoretical background 37

Figure 7 – Traditional automation pyramid breakdown, adopted from (VDI, 2013)

Figure 8 represents a architecture for developing a CPPS. From the data acquisition
to the final level creation. Level 1 (connection level) represents the physical space, levels
II-IV represent the cyberspace domain, and V represents the interaction between the cyber
and physical worlds (MONOSTORI et al., 2016).

Figure 8 – Traditional automation pyramid breakdown, adopted from (LEE et al., 2015)

3.3 Holonic manufacturing systems
The holonic manufacturing systems (HMS) may offer a suitable alternative to

achieve the LMAS implementation requirements. The HMS brings to the manufacturing
field the concepts elaborate by Arthur Koestler for living organisms and social organizations
(KOESTLER, 1968). The HMS is based on the interaction of individual entities called
holons. As Koestler explained, a holon is an identifiable part of a system that represents a
group of functionalities, but at the same time, this part may also be a set of other parts

Chapter 3. Theoretical background 38

(holons). In brief, a holon is a part of a whole and a whole for its subparts (holons) at the
same time (LEITÃO; RESTIVO, 2006).

In the HMS perspective, a holon is an autonomous and cooperative part of a
manufacturing system that works transforming, transporting, storing, validating informa-
tion and physical parts. The holon may consist of both physical (optional) and logical
components (mandatory). A holarchy is a set of holons following defined rules to achieve a
production objective (BRUSSEL et al., 1998).

3.3.1 Holonic manufacturing systems history

The HMS concept was created after a collaboration between the public institutes
and private companies of USA, Japan, Australia, Canada and the European Community
(EC), and the European Free Trade Association (EFTA). This international effort intended
to start a two-year feasibility study on IMS. The program was divided into six different
consortia, one of which, driven by 31 international industry, academic, and research
institute partners, was responsible for an extensive study over the application of HMS
concept (CHRISTENSEN, 1994):

As a result of this extensive study, an initial proposal for HMS was developed
and formalized by Christensen: on that work, an initial architecture, system engineering
methodology, and standardization directions for upcoming technologies and enabling
technologies for HMS were proposed (CHRISTENSEN, 1994).

The HMS initial proposal considered the agile 21st-century manufacturing en-
terprise requirements. To cite a few, the 21st-century manufacturing enterprises should
(CHRISTENSEN, 1994):

• bring out new products quickly;

• assimilate new experience and technological innovations easily continuously
modifying its products accordingly;

• develop products to evolve;

• implement re-programmable, re-configurable, continuously changeable produc-
tion systems with an integrated approach making the lot size irrelevant

A HMS consists of holons interacting and respecting a distributed control model to
accomplish manufacturing goals. Due to its autonomous behavior and intelligent capabili-
ties, the HMS concept promises to add an alternative to novel manufacturing paradigms
to increase modularity, decentralization, autonomy, and scalability (LEITÃO; RESTIVO,
2006), increasing the responsiveness to market demands and technical disruptions. The
generic approach of HMS control systems is reinvestigated in the context of Industry 4.0.

Chapter 3. Theoretical background 39

Further, it seems to be a suitable approach for LMAS operations planning and control
and is going to be investigated in the context of this work in the section 3.3.

3.3.2 Holonic manufacturing system architectures

In consonance with the efforts to increase HMS’s flexibility and adaptability,
architectures have been developed PROSA (BRUSSEL et al., 1998), ADACOR (LEITÃO;
RESTIVO, 2006), and ADACOR2 (BARBOSA et al., 2015).

The table 1 summarizes studied HMS architectures which served as a basis for the
design of this research work along with the classification of the architecture defined on
(DERIGENT et al., 2020): the historical architectures represent former proposals frequently
cited and used as a basis for the recent holonic architectures; the dynamic represents the
architectures focused on adaptability and system reactivity; the web-oriented refer to the
architectures for cloud-based solutions.

Table 1 – Holonic manufacturing systems architectures classifications

Architecture Architecture classification

PROSA (BRUSSEL et al., 1998) Historical

ADACOR (LEITÃO; RESTIVO, 2006) Historical

HCBA (CHIRN; MCFARLANE, 2000) Historical

PROSIS (PUJO et al., 2009) Historical

ORCA (PACH et al., 2014) Dynamic

(BORANGIU et al., 2015) Dynamic

ADACOR2 (BARBOSA et al., 2015) Dynamic

POLLUX (JIMENEZ et al., 2017) Dynamic

(QUINTANILLA et al., 2016) Web-oriented

3.4 ANEMONA methodology
Various methodologies containing engineering design procedures have been de-

vised as a guide for HMS development and Multi-Agent systems (MAS): The VDI2206
(GAUSEMEIER; MOEHRINGER, 2002) presents a flexible procedure model for the
development of mechatronic systems proposing the V-model and process modules to be
used on mechatronic system development steps, though not focussing HMS or MAS in
particular; Designing Agent-based Control Systems (DACS) methodology is probably

Chapter 3. Theoretical background 40

the first engineering approach for agent-based control systems, focusing on a semiau-
tonomous collaborative method (BUSSMANN et al., 2004); ROMAS (GARCIA et al.,
2014) addresses the engineering of normative open systems using the multi-agent paradigm,
presenting a multi-agent architecture, meta-model, methodology, and Computer-Aided
Software Engineering (CASE) tool. In ANEMONA methodology’s (BOTTI; GIRET, 2008)
the aggregation feature to the agent definition is included suitable for HMS applications.

The HCA presented in this work is built with the support of the ANEMONA
methodology. It explicitly declares the concept of holons over the agent conceptualization.
In the ANEMONA methodology, the authors complement the agent definition to the
so-called Abstract Agent to be used as the basic unit for the system design. The Abstract
Agent can be a unique, indivisible agent or a group of agents. With that definition, the
authors benefit from the agent technology to implement a holonic manufacturing system
while keeping the conceptualization compatible with the holon’s former definition (BOTTI;
GIRET, 2008). ANEMONA comprises the five phases: analysis, design, implementation,
setup, and operation/maintenance, represented by figure 9.

Figure 9 – ANEMONA development phases (BOTTI; GIRET, 2008)

The ANEMONA methodology is chosen among other multi-agent development
methodologies due to its bound to the holonic concept, primarily when referring to
differences between the agent technologies and the HMS concepts, highlighting how an
HCA can be designed to benefit from the HMS concepts. ANEMONA methodology
defines an iterative process over design, analysis, and implementation phases. Following
the ANEMONA methodology, researchers develop use cases and models containing the

Chapter 3. Theoretical background 41

holon objectives, roles, and behavior descriptions. The list below presents the ANEMONA
system architecture models (BOTTI; GIRET, 2008):

• Organization model: this model is used to specify the main architectural elements
of the HMS specifying the relationships between the main entities;

• Interaction model: this model is used to determine the dynamic behavior of
the HMS. It is composed of abstract agents, agents, roles, goals, abstract goals,
tasks, abstract tasks, interactions, and interaction units;

• Agent model: the agent model specifies the abstract agents’ autonomy, intelli-
gence, and conceptualization. The agent model is a set of agent diagrams. Each
agent diagram might contain goals, beliefs, and tasks.

• Task and goals model: this model is used to specify the consequences of tasks
present in the organization, interaction, and agent models;

• Environmental model: the environment model defines the environment enti-
ties the HMS holons may interact with. It is focused on the abstract agent’s
perceptions and actions.

In chapter 5 a subsection of the ANEMONA system architecture models is presented.
The novel LMAS paradigm briefly presented in the Introduction chapter may find a suitable
architectural realization to fulfill its basic requirements due to the HMS’s autonomy,
cooperative and reactivity characteristics.

3.4.1 ANEMONA notation

For comprehension reasons, it is essential to present the ANEMONA notation. The
ANEMONA, notation, figure 10, presents a collection of symbols that represent the agent
properties and interactions. This notation is used in the interaction, environment, tasks
and goals, Agent and organization models. The description of the notation is listed below,
(BOTTI; GIRET, 2008):

• Abstract agent: an autonomous entity that is abstract and complex. An
abstract agent represents non-atomic holons that are in turn composed of
holons;

• Agent: an autonomous, reactive, proactive, and social computational entity,
which can act in an environment. In an HMS, an agent may represent atomic
holons;

• Interaction unit: t can be a message or an event. An interaction unit details
who executes it (the abstract agent that initiates it), who collaborate with it
(the abstract agent to which the interaction unit is sent), and what tasks are
executed in the interaction unit;

Chapter 3. Theoretical background 42

• Abstract task: is used to represent an abstract agent capability. It can be a
task (when the abstract agent is a single agent);

• Task: it is used to model the capabilities of an agent. A task represents the
functionality of the agent. An agent can modify its environment employing
tasks;

• Abstract belief : it is used to model the belief of an abstract agent. It may be
decomposed into agents’ beliefs or group beliefs;

• Belief : it is the mental entity that models the idea that an agent has about its
surroundings;

• Abstract goal: it is used to represent the goal of an abstract agent (non-atomic
holon);

• Goal: it describes what an agent (atomic holon) is trying to fulfill, what it is
looking for, the reason for its execution;

• Organization model: represents a group of abstract agents which cooperate
to achieve common goals;

• Interaction: it is used to specify dependencies among abstract agents and to
define their behavior. An interaction shows what the reaction of an abstract
agent is to a given event, message, environment status;

• Abstract: information structure: it represents a collection of abstract agent
beliefs;

• Information structure: it represents a collection of agent beliefs;

• Event: it models changes in the environment that an abstract agent perceived.

Chapter 3. Theoretical background 43

Figure 10 – ANEMONA notation, adopted from (BOTTI; GIRET, 2008)

3.5 Multi-Agent Systems
The multi-agent systems (MAS) study began about 40 years ago, related to

distributed artificial intelligence (DAI). DAI is a sub-field research area of artificial
intelligence. DAI field of study concerns how a group of modules cooperates to divide
and share a task. It researches the techniques necessary for coordination and actions
management in a multi-agent environment but considers the agents with a fixed behavior
model (GIRET; BOTTI, 2004).

MAS studies the coordination of intelligent behavior of a group of autonomous
intelligent agents. It focuses on individual behavior and mainly on behavior models,
cooperation and coordination strategies, intelligent brokerage, performance optimization,
learning from experiences, and coalition formation. The MAS can be understood as a
software technology inspired by the requirements of autonomy, cooperation, and group
formation. Due to that characteristics, MAS is applicable for an extensive range of domains.
In the manufacturing domain, to cite a few: real-time control, planning and scheduling,
enterprise integration and supply chain management, and product design (GIRET; BOTTI,
2004).

The agents which compose a MAS are autonomous and flexible computational

Chapter 3. Theoretical background 44

systems acting in a specific environment (WOOLDRIDGE; JENNINGS, 1995). The usual
properties of MAS are (FRANKLIN; GRAESSER, 1997; NWANA, 1996):

• autonomy: agents can operate without human intervention;

• social ability: agents communicate with others to fulfill their objectives;

• rationality: agents reason about collect data to find an optimal solution;

• reactivity: agents detect the environment changes and react accordingly;

• pro-activeness: agents are capable of acting guided by their objectives and goals;

• adaptability: the agent can learn with the experiences;

• mobility: agents can move through a network;

• veracity: agents do not provide false information;

• benevolence: agents help each other in order to fulfill their goals unless the
other agents act against their own goals.

3.6 Robot operating system
The Robot operating system (ROS) is an alternative for the ANEMONA imple-

mentation phase preferred development framework (JADE). It is not an agent-dedicated
platform; however, it provides all the functionalities to establish communication among
entities and benefits related to code-reuse for robotic applications.

ROS is an operating system for robots that provides hardware abstraction, low-
level device control, implementation of common-used functionalities, message-exchanging
between software entities, and packages management. ROS provides the possibility to
build, write and distribute software solutions for robots on various computer platforms.

One of ROS’s main characteristics is code reuse for developing robotics applica-
tions. Several packages in the ROS universe contain robot 3D models, dynamic motion
controllers, navigation, mapping, and image processing algorithms commonly applied for
robot operations (e.g., screw driving, pick & place).

The code reuse accelerates the development time, providing quick prototyping,
results, and feedback. However, it is possible to write specific packages to implement
customized solutions. In 2007, the ROS developers community counted with more than
2477 authors, 181509 code contributions (commits), and 14 million lines of code. The ROS
community encourages and provides tutorials teaching how to write packages for the ROS
correctly.

ROS provides communication mechanisms in different patterns: asynchronous
communication via topics, synchronous communication via services and action services, or
parameter server.

Chapter 3. Theoretical background 45

3.6.1 Asynchronous messages

In this approach, messages are routed using a publish and subscribe semantic.
A node sends a message publishing to a topic. The nodes that are interested in that
information subscribe to this topic. Topic publisher and subscriber are not aware of the
existence of each other. The idea is to decouple the producer from the consumer.

3.6.2 Synchronous messages

When a node sends a message and needs a response, topics are not a reliable option
due to the unidirectional nature of its implementation. In this case, ROS services utilize a
bi-directional communication mechanism between two nodes. A node can send a message
directly to another node and wait for the answer with ROS services. A variation of ROS
services is the ROS action servers. The ROS action services provide a dynamic feedback
message stream while the server node executes the service request. The client waits for
the server without a feedback stream in the normal ROS server.

3.6.3 Parameter server

The parameter server is a center of information, where nodes can set or get
parameters values. The parameter server is practically used in all ROS applications,
especially for publishing and getting constants or input control parameters. The parameter
server is shared among all the ROS nodes in the network, making the information published
to it unsafe.

3.7 Line-Less Mobile Assembly System
The Line-Less Mobile Assembly Systems (LMAS) is an assembly paradigm designed

to address the lote size 1 large product assembly. It derives from the necessity of the
flexibility increase regarding the mobility of products and resources, not addressed at this
level on former paradigms like Flexible Assembly/Manufacturing Systems (FAS/FMS)
and Reconfigurable Assembly/Manufacturing Systems (RAS/RMS) (BUCKHORST et al.,
2019). The LMAS paradigm relies on three main key principles:

1. Clean Shop Floor: the factory design should offer the few space constraints
as possible. With that principle, the resource operations assignments carry a
low chance to lead the whole system to a deadlock state. In a deadlock state,
the movement of resources would be impeded, or the system would not be able
to continue the assembly planning;

2. Mobilization of all relevant assembly resources this principle considers
the mobilization of all product resources, including product, parts, industrial
robots, and metrology systems, to cite a few;

Chapter 3. Theoretical background 46

3. Unrestricted Assignment: the last principle covers the fact that it should be
possible to associate an assembly operation to a resource (e.g., transportation
operation for an automated guided vehicle(AGV)) at a specific place and time
on the shop floor. It is mandatory to meet the two previous principles to
accomplish the third (BUCKHORST et al., 2020).

The principles and the shop floor flexible organization, based on multi-purpose
stations, for the LMAS, are presented in the figure 11. The factory configuration represents
how the factory is organized to allocate the multi-purpose stations. The stations represent
the entities capable of performing manufacturing operations. Each station’s capabilities
result from a combination of resources (e.g., AGV, tools, assembly robots, and operators),
which variety of combinations give the LMAS paradigm great flexibility to match different
product requirements.

Figure 11 – Line-Less Mobile Assembly System: Key principles and operation planning
organization, adopted from (BUCKHORST et al., 2019)

The LMAS paradigm follows a semi-heterarchical approach. Depending on the sys-
tem state (e.g., regular operation or disrupted mode), entities can negotiate autonomously
or follow a strict optimal plan given by another entity in the hierarchy’s upper posi-
tion. This dynamic organization characteristic is one of the holons defined for the HMS,
indicating that initially, the HMS is a promising approach to LMAS realization.

3.7.1 LMAS Architecture

As a design decision of former initiatives towards the definition of an LMAS
architecture (BUCKHORST et al., 2021, in Press) the LMAS paradigm architecture
consists of the interaction between three layers: the planning, control, and execution layers.

Chapter 3. Theoretical background 47

The arrival of customer orders triggers the planning layer, and it is responsible for
generating optimal temporary schedules for the assembly equipment present on the shop
floor. The schedules contain assignments from assembly equipment to stations, operations
sequences, and assembly equipment locations (BUCKHORST et al., 2021, in Press).

The control layer is responsible for preparing the data to be processed by the
optimization layer, interpreting the global schedule and distributing it through the available
assembly equipment, requesting global schedules based on user or local (holon) input, and
monitoring the system execution (BUCKHORST et al., 2021, in Press).

The execution layer consists of the low-level holons, which autonomously and coop-
eratively execute the assembly process (e.g., assembly equipment holon) (BUCKHORST
et al., 2021, in Press). The low-level level holons are most likely to present a physical part
since their use is related to the assembly operation itself.

3.7.2 LMAS Use Cases

As the current result of these former studies and analysis on the LMAS paradigm,
UCs have been generated to help the modeling of the systems requirements and clarify
directions regarding the system development (BUCKHORST et al., 2021, in Press). This
work relies on two UCs: Use case one (UC1) - Normal operation; Use case two (UC2) -
Disruptions during normal operation.

UC1 is depicted in figure 12. It represents the intended workflow of the normal
operation of an assembly system without any disruptions. In that case, the operator can
insert a new customer order to initialize the optimization algorithm. The optimization
algorithm generates an optimal schedule for all holons on the shop floor (e.g., stations,
fixtures, testbeds), considering the shop floor’s current state and the customer requirements.
Once completed, the optimal plan is distributed to the holons through a control mechanism
and executed considering the holon’s capabilities. The optimal plan consists of customer
orders executions sequence and the definition of where and when the resources should
execute operations on the shop floor. The operator also can monitor the production,
checking the progress of the overall system or individual aspects of production holons. The
system should be prepared to accept new orders during the execution of an initialized
customer order, reacting accordingly to the new shop floor state and customer demand.

Chapter 3. Theoretical background 48

Figure 12 – Line-Less Mobile Assembly Systems UC1: normal operation, adapted from
(BUCKHORST et al., 2021, in Press)

UC2 is shown in figure 13. This use case represents how the production system
should react to disturbances during the operation. For example, the disturbances may
involve the absence of parts, assembly equipment, and station. After detecting these
disturbances, the system shall perform a disturbance handling procedure to decide which
operations should be executed to repair the detected fault. The consequence of the
fault could lead the system to assume a compensation behavior or even perform a total
system reconfiguration. In the last case, the system requires a new schedule; therefore,
the optimization algorithm must be rerun to find a new optimal plan. Considering that
manufacturing failure management is an open problem, a suitable heuristic to deal with the
UC2 shall be chosen. Regardless of the chosen option to compensate for the disturbance,
the system will check the holons’ state, assign new locations, and control the execution
necessary to realize the new configuration.

Chapter 3. Theoretical background 49

Figure 13 – Line-Less Mobile Assembly Systems UC2: disturbance during normal operation

3.7.3 LMAS Requirements

Envisioning to fulfill the requirements imposed by the UC1, UC2, and LMAS former
contributions ((BUCKHORST et al., 2021, in Press)), the proposed control architecture
shall present the elements depicted in the table 2. The requirements are presented in
four categories: process, product, process, and design patterns. The process, product,
and process categories are inspired in the PROSA (BRUSSEL et al., 1998) high-level
knowledge exchange. The design patterns are requirements specified due to the experience
and requirements of previous contributions to LMAS.

Chapter 3. Theoretical background 50

Table 2 – LMAS requirements.

ID Requirements
R

es
ou

rc
e

RQ-01 Multipurpose station and resources

RQ-02 Fabric model / Shop floor management

RQ-03 Mobile resources / temporary station locations

RQ-04 Spatio-temporal order relations between stations and resources

P
ro

du
ct RQ-05 Products, parts and assemblies structures (physical relationships)

RQ-06 Products, parts and assemblies manufacturing data and information

P
ro

ce
ss RQ-07 Individual order routes

RQ-08 Interface to transportation services

D
es

ig
n

pa
tt

er
ns

RQ-09 Global manufacturing plan

RQ-10 Strategies for delay and failure compensation

RQ-11 Central control / Central monitoring

RQ-12 Decentralized order execution

RQ-13 Ontology-based

RQ-14 Type/Instance

3.8 Ontology
Realizing an HMS for the LMAS paradigm involves the dynamic creation of complex

cooperative communication structures between the basic entities (holons) depending on
the system state. During the structure creation process, the holons should understand
and have the necessary knowledge to interact with one another and their environment
following specific objectives and behavior rules.

Besides, care must be taken to avoid the loss of semantic meaning between message
exchanges. Different protocol usage is inevitable due to the connectivity of different entities
and the heterogeneity of applications, resulting in message transformations and wrappers
to communicate via the systems’ interfaces.

Thus it becomes necessary to implement manufacturing ontologies to express clearly,
differentiate, and precisely detail the system knowledge descriptions (e.g., environment,
holons, objectives) (SIMÓN-MARMOLEJO; RAMOS-VELASCO, 2018). Briefly, the
ontologies carry the system concepts and vocabulary associated with a specific domain. In

Chapter 3. Theoretical background 51

this case, the LMAS is a highly flexible manufacturing paradigm that concentrates on the
flexible manufacturing domain. Figure 14 describes an example that shows a section of a
manufacturing ontology.

Figure 14 – MaRCO Ontology sub-section, adopted from (JÄRVENPÄÄ et al., 2019)

Semantic Web technologies enable people to create data stores on the Web, build
vocabularies, and write rules for handling data. The enabling description languages
for Semantic Web are: Resource Description Framework (RDF), Protocol and RDF
Query Language (SPARQL), Web Ontology Language (OWL), and Simple Knowledge
Organization System (SKOS) (W3C, 2015).

The term ontology comes from philosophy and means the study of the being. It
works like an artifact able to describe categories and relationships of all existing things
(GUARINO, 1995). Typically, for engineering applications, "all existing things" is limited
to a context of interest, and the ontology about this context is described as an explicit
specification of the context concepts. When shared, the ontology is an engineering artifact
that computational entities can use to visualize and understand the world in which they are
inserted (OBITKO et al., 2010). For example, an extrusion machine uses the ontology to
execute a specific operation or communicate with other entities, interpreting the extrusion
domain’s terminology.

The context definition of an ontology is usually defined as a formal description and
consists of concepts representing classes of objects in the real world, attributes, relations,
and constraints. The ontology works as a static vocabulary describing a particular reality.
(OBITKO et al., 2010). The realization of an ontology is composed of instances of the

Chapter 3. Theoretical background 52

ontology classes, usually called the knowledge base. In this work, the instantiation of an
ontology for a specific domain is named a data model.

53

4 Literature review

The literature review covers two essential aspects of this research project: the
HMS architectures and the manufacturing field’s ontologies. Among other subjects to be
researched, ontologies are chosen because this dissertation’s proposal is also to (along with
the holonic architecture models) implement a data model as an instantiation of a high-level
manufacturing domain ontology. It is intended to research and find out ontologies that
provide sufficient expression power to represent the holonic and manufacturing concepts
essential to connect the HMS concept to the LMAS principles. In case of a lack of a
ready-to-use ontology, an ontology will be proposed based on the research findings. The
methodology used applied consultation utilizing specific keywords in scientific research
repositories.

The actual research explored in detail 38 works related to HCA implementations
and respective methodologies and 13 other scientific contributions to the manufacturing
ontology field. A subset of 9 HCAs implementations and three ontologies contributions
from this collection of works is described below. The Citavi® software is being used to
organize the research literature. It is foreseen for the subsequent phases of the project to
summarize other works of great relevance for the development of this project.

This work’s keywords are Holonic Manufacturing System, Line-Less Mobile Assem-
bly Systems, and Holonic Control Architecture.

4.1 PROSA: Product, Resource, Order and Staff architecture
Title: Reference architecture for holonic manufacturing systems: PROSA.

One of the more consistent holonic manufacturing architectures is the Product
Resource Order Staff Architecture (PROSA) (BARBOSA et al., 2015). The PROSA
architecture relies on four different types of holons: (1) resource holon: it consists of a
production resource and holds the operations knowledge necessary to drive production
(e.g., operation times, waiting times, resource capabilities); (2) product holon: it holds the
processes and product knowledge in order to achieve the correct product manufacturing;
(3) order holon: represents a task on the shop floor, it is responsible for resource assignment,
operations control and production monitoring; (4) staff holon: this holon is designed to be
a multi-purpose holon in order to add specialized functionalities to the production system,
such as optimization (BRUSSEL et al., 1998).

The PROSA architecture also defines the high-level knowledge exchanged between
the holons and a behavioral interaction model, which describes the holons in preparation
and production execution. The holons exchange production (order-product holons), process

Chapter 4. Literature review 54

(resource-product holons), and process execution (order-resources holon) knowledge in
order to drive the manufacturing processes, see figure 15. The behavioral interaction model
is described for three different situations: launch of a new order, addition of a new resource,
and the order driving production (BRUSSEL et al., 1998).

Figure 15 – PROSA: holon’s knowledge exchange, adopted from (BRUSSEL et al., 1998)

The PROSA architecture is a seminal work for an enormous amount of holonic
architectures researched in the context of this work. One reason may be its high-level
definition of Product, Resource, Order, and Staff holons which can be specialized to more
complex and application-oriented holons. In the context of this dissertation, the PROSA
architecture holons will be used as a basis for the application-oriented holons. This choice
is justified as the PROSA offers an abstract definition aligned with the field of application
of this work.

However, the PROSA architecture does not define complex holon data, interactions,
states, and behavior as its conceptualization is bound to a high-level system definition. This
dissertation aims to use PROSA as a starting point and define the necessary interactions
over its seminal holon’s definition.

4.2 ADACOR: ADAptative holonic COntrol aRchitecture
Title: ADACOR: A holonic architecture for agile and adaptive manufac-

turing control.

A more recent architecture called ADAptative holonic COntrol aRchitecture (ADA-
COR) also addresses the HMS. The ADACOR is similar to PROSA in defining the basic
holons. ADACOR addresses four types of holons: product (PH), operational task (OH),
task holons (TH), and supervisor holons (SH). The PH, OH, and TH are similar to the
PROSA holons, whilst the SH is a holon specialized in developing optimal schedule assign-
ment and control holon groups (LEITÃO; RESTIVO, 2006). The authors of ADACOR
claim that the SH is different from the PROSA staff holon regarding the latter considers

Chapter 4. Literature review 55

the coordination and the optimally of resource assignment. The figure 16 represents the
ADACOR holon’s organization.

Figure 16 – ADACOR: Holon’s organization, adopted from (LEITÃO; RESTIVO, 2006)

Regarding the behavioral model, the ADACOR presents a mechanism to drive
normal production scenarios and support disruptions during the execution phase. The
system is designed to change between two states: stationary and transient. First, the
system takes the form of a hierarchical system, following optimal schedules as advice given
by the SH. The optimal schedule results from the interaction between various instances of
the PH, TH, OP, and SH. When a fault occurs (e.g., resource fails), the system enters the
transient state, activating the heterarchical mode. Each holon has the so-called autonomous
factor that indicates the level of autonomy given to a specific holon during a fault. The
holon, on which the failure occurred, spread a pheromone to the holonic neighborhood.
When interacting with this pheromone, each holon has its level of autonomy increased.
The intensity of the pheromone falls according to the layer distance between the holons.
At a certain level of the autonomous factor, the holon stops following the optimal plan
and interacts directly with the order holon to deal with the failure. When the pheromone
losses its influence, the holons return to the heterarchical model (LEITÃO; RESTIVO,
2006). The figure 17 represents the changing of states of ADACOR.

The hierarchical and heterarchical modes in the ADACOR architecture aim to
use the advantages of each organizational structure. The optimality is a complex task
to achieve in distributed systems due to the restricted knowledge that each entity has,
while in heterarchical mode, due to the centralized control, one entity has the entire
system knowledge, and the optimality is easier to solve. At the same time, disruptions
and unforeseen events cause less impact on distributed systems with autonomy, while on
centralized systems, they can cause critical errors leading to a complete restructuring of
the initial plan.

Chapter 4. Literature review 56

Figure 17 – ADACOR: Stationary and Transient state, adopted from (LEITÃO; RESTIVO,
2006)

Though the ADACOR architecture introduces different holons than the PROSA,
there exists a certain degree of similarity between the high-level functionality of each holon.
The ADACOR is focused on the system’s dynamic behavior and clarifies the difference
between stationary and transient states given detailed interaction procedures during
each phase. This dissertation will use the system state-changing mechanism presented
on ADACOR but will not consider the pheromone as a strategy to inform the holons
that a disturbance has occurred. This dissertation proposal also extends the definition of
ADACOR holons introducing specializations not contained in the ADACOR architecture.

4.3 ADACOR2: The evolution of ADACOR
Title: Dynamic self-organization in holonic multi-agent manufacturing

systems: The ADACOR evolution.

The evolution of ADACOR (ADACOR2) expands the former architecture adding a
more complex treatment to the evolutionary states. ADACOR2 utilizes the same concepts
of ADACOR concerning the holons’ structure. The ADACOR2 considers aspects from the
Darwinian Evolution theory, chaos theory, and biology to derive a concept of more than
just two evolutionary states. The authors propose a system where the holons constantly
look for opportunities to evolve. The evolution of the system may drive local micro changes
(holon level) or even a more intense macro modification (e.g., rush order or new big order
upcoming) (BARBOSA et al., 2015). Figure 18 represents the evolution predicted by
ADACOR2, in this case of a micro-change which can lead to a self-organization behavioral
modification or even a complete structural organization.

To detect the evolutionary opportunities, ADACOR2 considers at the holon level a

Chapter 4. Literature review 57

Figure 18 – ADACOR2: States, adopted from (BARBOSA et al., 2015)

learning mechanism that proposes insights based on the holon environment. The insights
are evaluated by a reasoning module that assesses the efficiency of the proposals in a
classic control-inspired mechanism. The reasoning module is designed to system stability
regulation to avoid a possible chaotic behavior (BARBOSA et al., 2015). Figure 19
represents the ADACOR2’s reasoning mechanism.

Figure 19 – ADACOR2: Reasoning mechanism, adopted from (BARBOSA et al., 2015)

The evolution of ADACOR proposes using a reasoning mechanism to evolve to a
new state based on evolutionary opportunities. This dissertation will use the idea of the
reasoning mechanism, which is intentionally very simplified, to deal with system disruptions
such as resource faults, product defects, and rush orders. The development of a reasoning
mechanism proposed by the ADACOR2 proposal would be a whole dissertation due to
the variety of solutions that may evolve to new states. The ADACOR2 holons are built

Chapter 4. Literature review 58

over the former ADACOR definition, and the same considerations are taken regarding the
holonic definition.

4.4 Pollux
Title: Pollux: a dynamic hybrid control architecture for flexible job shop

systems.

The Pollux architecture focuses on using governance rules in the "what-if" sce-
narios to modify the system state. The changes in the system behavior are triggered by
disturbances observed by the control higher level. The opportunities to change followed by
modifying the system’s holons structural behavior are known as switches. In the presence
of a switch, the system simulates several different consequences regarding the performance
achieved. The higher-level controls perform the one which shows the best performances
among them.

The atomic entity in Pollux architecture is called a decisional entity. The decisional
entity is composed of: an entity objective, a decision-making technique, a parameter,
governance parameters, a communication module, a data storage module, and an execution
mechanism.

The remarkable characteristic of the decisional entities is the governance decision-
making mechanism. This mechanism is an explicit set of parameters that define the rules of
the holon’s conduct. The governance rules can change, for example, objectives, interrelation
with other entities, the decision-making technique, the roles of other entities; the priority
of objectives; machine parameters; AGV’s speed. The communication module gives the
decisional entity features to transmit and understand other entities’ messages. The data
storage selects and stores relevant data during system operation. The execution module
executes the actions of the decisional entity and is dependent on the entity’s role. The
architecture is composed of three basic decisional entities: local decisional entities (LDE),
resource decisional entities (RDE), and global decisional entities(GDE). The decisional
entity (a) and the decisional entities layer distribution (b) are depicted in the figure 20.

• The LDEs are located on the operation layer and are responsible for coordinating
the online scheduling and jobs. The LDEs have all the manufacturing information
related to the jobs. Their specific objective is to deal with the unexpected events
that may occur during the system execution.

• The RDEs control the operation layer’s resources (e.g., robots, conveyors, AGVs).
They are responsible for providing manufacturing services that give the system
the capability of producing the required products.

• The GDEs are located on the control layer and are responsible for the offline
scheduling. The GDEs are related to the global objective and serve as the first

Chapter 4. Literature review 59

Figure 20 – POLLUX: Decisional entities and layers description (JIMENEZ et al., 2017)

optimal solution considering a system without disruption.

When the system is initialized, the GDE advises the LDE holons on scheduling
the RDEs to drive the manufacturing production. In that first state, the LDE has low
autonomy, so it follows the advice provided by the GDE. If an unexpected event is triggered
(rush order, resource failures, product defect), the global entities are disconnected from
the local decisional entities giving them sufficient autonomy to treat the failure based on
the governance parameters (e,g, replace resource).

This dissertation will use the concept of the "what-if" rules presented in Pollux
to deal with the system state transitions. The rules have to be researched and proposed
in a simplified scenario. The Pollux presents the LDE entity responsible for the local
optimization during a fault state. Unlike that approach, this dissertation pretends to split
the adaptation tasks between collective holons that cooperate utilizing simplified rules.

4.5 Virtual Commissioning-Based Development and Implementation
of a Service-Oriented Holonic Control for Retrofit Manufactur-
ing Systems
Title: Virtual Commissioning-Based Development and Implementation

of a Service-Oriented Holonic Control for Retrofit Manufacturing Systems.

In (QUINTANILLA et al., 2016) is focused on the use of both Service-oriented
Architecture (SoA) and HMS to contribute to the field of service-oriented holonic manufac-
turing systems (SoHMS). The overall architecture is supported by virtual commissioning,
which tests the system using discrete-event simulation (DES).

An experimental platform was implemented using the SoHMS approach in the

Chapter 4. Literature review 60

proposed system. The SoHMS system with the industrial equipment using TCP socket.
The TCP protocol is used to communicate with industrial equipment, composed of sensors,
actuators (electro valves, lamps, relays), RFID readers, and manipulation robotic arms.
The equipment connection is depicted in Figure 21.

Figure 21 – SoHMS: SoHMS network, adopted from (QUINTANILLA et al., 2016)

The virtual commissioning, the differential of this work, is performed via the parallel
SoHMS integration with a DES tool, namely Rockwell ARENA. The manufacturing model
in the ARENA software simulates the characteristics of operations and time demanded by
the operations. This integration is advantageous to developers and stakeholders because it
allows checking whether errors on the control system can be corrected before the actual
implementation. The integration between the Rockwell ARENA and the SoHMS is depicted
in the figure 22.

The authors conclude that a higher level of generalization in the architecture
interfaces and a better definition of the holons’ role is necessary.

The SoHMS and the virtual commissioning concept presented in that work are
essential for defining this dissertation architecture interface. As presented previously, the
virtual commissioning concept matches with the specific object of integrating a DES tool
to the control architecture prototype. The SoHMS will not be used entirely, but it gives
inspiration for the user and operator interfaces to access the holonic system functionalities.
The model utilized before on the DES tool presents a static environment. This dissertation
plans to escalate the model to configure a more dynamic behavior, where resources are
defined as a composition of other resources, and the combination of resources provides
variable capabilities.

Chapter 4. Literature review 61

Figure 22 – SoHMS: Virutal-comissioning Integration, adopted from (QUINTANILLA et
al., 2016)

4.6 ORCA-FMS: a dynamic architecture for the optimized and
reactive control of flexible manufacturing scheduling
In (PACH et al., 2014), the authors proposed the dynamic Architecture for an

Optimized and Reactive Control (ORCA). ORCA hierarchical part is responsible for global
optimization, while the heterarchical element allows local optimization. ORCA can handle
predictive and reactive behaviors simultaneously.

The ORCA organization is composed of three layers: the physical system (PS), the
local control (LC), and the global control (GC). While the global control has a global view
of the system, the local control has only a local view, and its goal is to react to unexpected
events occurring in the physical system. The local control has the autonomy to detect any
perturbation and trigger the disrupted mode. Then, it controls the entity’s responsible
behavior and begins the optimization. The global control does not have access to this
control because it occurs locally.

In the article, ORCA is applied to a Flexible Manufacturing System (FMS) called
ORCA-FMS. Each machine belonging to the system can provide services to complete inter-
active operations. This process is explored, solved, and handled statically and dynamically
by ORCA-FMS (PACH et al., 2014).

The authors carry out an experimental study. The aim was two-folded: highlight the
advantages of using hybrid control architectures and demonstrate the feasibility of ORCA-
FMS. The experiment comprises two phases: a part produced under system perturbations;
a part produced without system perturbations. The set of operations is assumed to be

Chapter 4. Literature review 62

known at the beginning of the production.

To compare the final ORCA-FMS behavior, the authors executed a comparative
study, whose results are shown in figure 23. The ILP* mode represents the system’s
performance when never disrupted (following an optimal global schedule). The potential
fields model (PF model) shows the system performance when the system initialization
applies the compensation strategy. The ILP model represents the system reacting just
when a failure is introduced. The ORCA-FMS shows a significant improvement regarding
the first completion time compared to the potential fields and ILP model.

Figure 23 – ORCA behavioral comparison, adopted from (PACH et al., 2014)

4.7 ARTI (Activity Resource Type Instance)
Title: ARTI Reference Architecture – PROSA Revisited.

In the ARTI architecture proposal (VALCKENAERS, 2018) the author extends
the well-known and referenced PROSA architecture creating in the process the ARTI
– Activity Resource Type Instance – architecture. The paper details the process of the
PROSA conceptualization. The reason that first influenced the author to extend the
PROSA architecture was the nomenclature. Even in the HMS domain, the common
understanding of an order or product holons sometimes leads to misunderstanding. The

Chapter 4. Literature review 63

ARTI architecture supports the PROSA team and improves the PROSA architecture in
other aspects, such as artificial intelligence (AI). Namely, the AI features included are:

• Non-optimal holon aggregation: The Nobel Prize winner Herbert Simon stated
that flexible aggregation hierarchies are crucial/essential to adapt within time
windows. Based on that, as in PROSA, the ARTI the aggregation is a non-
optional feature;

• User mass consideration: the former architecture has not foreseen the user mass
usage over the applications, which supports the whole product life cycle, helping
in the improvement of the whole production chain. The ARTI considers the
user mass and sets a limit to the architecture, where self-reinforcement learning
should start;

• Intelligent beings: instead of using intelligent agents, the ARTI architecture
designs the decision-making mechanism via intelligent beings. The mechanism
that takes the decision is seen as a repository of useful tools, which intelligent
beings can use to accomplish a specific objective;

• Short-term forecasts: the ARTI considers that when a decision is made, the
outcome should be predicted and informed to the user who shares the use of a
specific working scenario. That scenario can be considered as an imagination
process. The imagination process is another feature included in the ARTI
architecture.

The nomenclature problem was solved using a more generic terminology: order
holons become activity holons; product holons become activity types holons; resources
holons are subdivided into instances and types holons. The ARTI architecture organization
is described in the figure 24.

The intelligent agents (green cubes) on the picture represent the technologies used
to fulfill the intelligent being requirements, while the yellow cubes represent the connection
of the intelligent agents to the rest of the system. The blue cubes of the architecture
represent the system flexibility to the intelligent beings’ descriptions (e.g., activity type,
activity instance, activity instances grouped to represent a resource activity). Human
beings are seen as activity performs, covering all the cubes on the architecture.

The ARTI addresses the in-depth interoperability of the capabilities of a Digital
Twin. The ARTI separates digital and physical and supports using the proposed architecture
to develop Digital Twins. The architecture contributes to the Digital Twin adoption with
a generic nomenclature that should avoid misunderstanding and disconnect the Digital
Twin from a specific field, extending the ARTI to other fields other than manufacturing.

The author concludes the paper by emphasizing that the content should be con-
sidered work-in-progress and open to new business ideas and suggestions. The author

Chapter 4. Literature review 64

Figure 24 – ARTI: Architecture, adopted from (VALCKENAERS, 2018)

puts focus on the paper review process and how the research community could benefit
whether the comfort zones (e.g., closed research communities) were more flexible and open
to communication.

Though considered by the authors as a working-in-progress, the ARTI architecture
promotes the idea of generalization replacing the names of the holons proposed on PROSA
and proves to be a starting point to the more generic and applicable architecture for
Digital Twins. The ARTI architecture gives a critical insight into the current development
regarding the use of the platform as a Digital Twin, enabling competitive advantages and
benefit from the data collected by a system following the ARTI architecture guidelines. As
with PROSA, the ARTI is a very generic architecture, not defining complex interactions
and the data exchanged by the holons but is an architecture that addresses the multi-level
characteristics of the holons. The architecture proposed by this dissertation does not
require a high level of abstraction and can follow the PROSA architecture as it was
designed for the manufacturing domain.

4.8 Holonic architectures review
According to the analyzed HCAs, the following points were noticed:

• high-level holons definition such as the product, resource, order, and staff holons;

• high-level interaction model definitions between holons (e.g., order and product
holons);

• specialized holons such as the disturbance, state, holonic manufacturing systems

Chapter 4. Literature review 65

holons;

• switching mechanism to drive the transition between stationary and transient
states (e.g., disrupted state) in the holonic control architecture;

• use of a reasoning mechanism used to identify evolutionary system opportu-
nities and reorganize the system to solve the fault adaptability problem of a
manufacturing system;

• use of governance rules "what-if" to detect and adapt to fault scenarios (e.g.,
rush order, product defect, resource fault);

• association between SoA and HMS to interface an HMS with operators, cus-
tomers, and other HMS;

• use of virtual commissioning to evaluate the HMS architecture using a DES
tool previous to the actual configuration and operation;

• lack of a holonic architectures develop under an ontology specification which
considers the separation between physical and cyber worlds;

• lack of the definition of interactions necessary to build up dynamic stations
necessary to the LMAS paradigm;

Accordingly to the observed features, this dissertation aims to design a holonic
architecture with the following additional features:

• definition of specialized holons as sub-classes of the PROSA definitions (e.g.,
scheduler holon as a subclass of a staff holon);

• use of the switching mechanism idea to identify a failure and to manage the
system during a failure (e.g., fault in station assembly equipment);

• application of a data model derived from an ontology that considers HMS,
factory, resources, and products concepts;

• definition of the interactions necessary to build up dynamic stations required
by the LMAS paradigm.

A qualitative classification of how the studied literature attends the LMAS require-
ments (table 2) is presented in the table 3.

Chapter 4. Literature review 66

Table 3 – HCA literature review.

ID Requirements P
R

O
SA

A
D

A
C

O
R

A
D

A
C

O
R

2

P
ol

lu
x

Q
ui

nt
an

ill
a

et
al

.

A
R

T
I

O
R

C
A

R
es

ou
rc

e

RQ-01 Multipurpose station and resources

RQ-02 Fabric model / Shop floor management

RQ-03 Mobile resources / temporary station
locations

RQ-04 Spatio-temporal order relations between
stations and resources

P
ro

du
ct RQ-05 Products, parts and assemblies

structures (physical relationships)

RQ-06 Products, parts and assemblies
manufacturing data and information

P
ro

ce
ss RQ-07 Individual order routes

RQ-08 Interface to transportation services

D
es

ig
n

pa
tt

er
ns

RQ-09 Global manufacturing plan

RQ-10 Strategies for delay and failure
compensation

RQ-11 Central control / Central monitoring

RQ-12 Decentralized order execution

RQ-13 Ontology-based

RQ-14 Type/Instance

4.9 The ADACOR ontology
Title: The Role of Foundational Ontologies in Manufacturing Domain

Applications.

In this work, the authors investigate the use of the foundation ontologies on top
of more specific ontologies in real applications and propose an extension to a selected
foundation ontology to suit a previously described HMS architecture, ADACOR. The

Chapter 4. Literature review 67

work’s objective is to show how foundation ontologies, the most general ones, are essential
for system reusability and how they can be extended to more specific ontologies (BORGO;
LEITÃO, 2004).

The authors performed a state of art study review on foundation ontologies like
DOLCE (the Descriptive Ontology for Linguistic and Cognitive Engineering), OCHRE
(the Object-Centered High-level Reference Ontology), OepnCyc, SUMO (the SUggested
Upper Merged Ontology), BFO (the Basic Format Ontology). As criteria for selecting the
foundation ontology, the authors considered the richness of conceptual distinctions, at
least a few related to the aimed domain (manufacturing), and the characterizable aspect
of the features declared. Based on that criteria, the authors selected the DOLCE ontology
(BORGO; LEITÃO, 2004).

The authors proposed the ADACOR ontology based on the FIPA ontology service
recommendations. The ontology is described in an object-oriented, frame-based manner,
representing concepts and predicates. Apart on the ADACOR ontology is depicted in
figure 25.

Figure 25 – ADACOR ontology, adopted from (BORGO; LEITÃO, 2004)

The authors provide a detailed study of relations between the classes and predicates
of DOLCE and ADACOR ontologies. They found, in this manner, a high degree of
similarity between the architecture and the foundation ontology.

The ADACOR ontology brings important attribute definitions and helps in the

Chapter 4. Literature review 68

high-level phase of the proposed ontology conceptualization. It provides just a section of
the ontology given in a class diagram not explicitly defining the holons’ properties and
relations. The current work aims to extend the ontology resource definition to a more
flexible approach where the resource is a component of a station holon, where the assembly
operations are executable.

4.10 Unified ontology for a holonic manufacturing system
Title: Unified ontology for a holonic manufacturing system.

The authors provide an extensive literature review on different proposals to HMS
architectures and ontologies used in the manufacturing context in this research work.
Reviewing and analyzing the former HMS works, the authors proposed one unified ontology
that integrates roles and behaviors. The ontology validation was held in a case study in a
manufacturing cell (SIMÓN-MARMOLEJO; RAMOS-VELASCO, 2018).

The state of art research analyzed various holonic manufacturing architectures:
PROSA, ADACOR; MES-MHS, ADACOR2, MAS-DUO & RFID-IMS and H2CM (Holonic
Hybrid Control Model). As a result, except for ADACOR, the authors indicate that the
observed architectures do not propose a formal manufacturing ontology.

Detecting the need for ontology features integration into holonic HMS, the authors
selected seven different research works on the manufacturing field’s ontology area to
analyze. The analysis was based on specific criteria: manufacturing field converging,
concepts formalization, normalized and semantic data, hierarchical levels, evaluation
of proposed ontology, evidence of the application on HMS/MAS systems, taxonomic
relationships, holon or agent definitions, attributes, and predicates.

These criteria form the group of requirements the authors proposed to integrate with
their architecture as, according to their analysis, none of the seven analyzed architectures
provides a unique solution. The figure 26 represents the high-level class of their proposed
ontology.

In the current dissertation, the Unified Unified ontology for a holonic manufacturing
system will be extensively used as it presents holonic definitions such as disturbance, holonic
manufacturing system, state and administration, holons. These types of holons do not
exist in previously analyzed architectures and ontologies. The holons are defined at a high
level in previous works, as in PROSA. The Unified ontology also defines suggestions for
naming the attributes which compose the holons. The current dissertation will explore the
holonic definition presented in (SIMÓN-MARMOLEJO; RAMOS-VELASCO, 2018) and
extend to an ontology where the explicit separation between the cyber and physical parts
is present.

Chapter 4. Literature review 69

Figure 26 – First and second levels of unified ontology proposal, adapted from (SIMÓN-
MARMOLEJO; RAMOS-VELASCO, 2018)

4.11 MaRCO Ontology
Title: The development of an ontology for describing the capabilities of

manufacturing resources

In (JÄRVENPÄÄ et al., 2019) the authors propose a manufacturing ontology called
Manufacturing Resource Capability Ontology (MaRCO). The MaRCO ontology was built
following a product model, process model, capability model, and resource model (MaRCO).
Figure 27 represents the MaRCO composition.

The MaRCO ontology is focused on the resource level and the definition of resource
organization and capabilities. The ontology allows its users to represent dynamic systems
formed by devices that can be a group of devices that may offer additional capabilities
based on the component devices’ capabilities. The MaRCO ontology considers the dynamic
capability changing depending on how a device is composed. Figure 28 represents that a
Station in a manufacturing Site context may be composed of Device Combinations and
Individual devices. The individual devices have capabilities that represent a combined
capability when the devices are merged.

The MaRCO ontology was created utilizing the OWL language and tested utilizing
the Protègè software through the application of SPARQL queries.

The MaRCO ontology will be used as a basis for developing and applying the
so-called LMAS Ontology. The MaRCO ontology will represent the concepts of the physical
world as it carries concepts of factory organization and dynamic device configurations
required by the LMAS formulation. The MaRCO ontology will be extended to grasp
holonic concepts of the previous ontologies that were not covered on the MaRCO ontology
as it was not the authors’ original intent.

Chapter 4. Literature review 70

Figure 27 – MaRCO ontology composition, adopted from (JÄRVENPÄÄ et al., 2019)

Figure 28 – Section of the MaRCO ontology, adopted from (JÄRVENPÄÄ et al., 2019)

Chapter 4. Literature review 71

4.12 Ontologies review
Regarding the manufacturing ontologies observed, what could be noticed were:

• conceptualization related to high-level holons definition such as the product,
resource, order, and staff holons;

• concepts, relations, and attributes related to specialized holons such as the
scheduler, disturbance, state, and holonic manufacturing systems holons:

• attributes suggestions to general classes of holons such as resource, scheduler,
disturbance, and operation holons;

• significant amount of capabilities definition;

• concepts, relations, and attributes related to the dynamic behavior of devices
formed upon by other devices;

• concepts, relations, and attributes related to factory organization (e.g., station,
line, site);

• lack of availability to the research community of an ontology file (e.g., OWL)
for HMS;

• not consideration of an ontology that separates the cyber and physical world,
while considering HMS concepts.

Based on the researched works on ontologies, during the data model development,
this dissertation will contribute to:

• develop an ontology implementation with HMS concepts to grasp the LMAS
requirements;

• through a merge between an HMS ontology and a resource-oriented ontology,
create an ontology which explicitly separates the cyber and physical worlds;

• explicit instantiate a reduced data model from the developed ontology.

The LMAS requirements (table 2) inspire the necessary knowledge that should be
presented in a suitable ontology. The used ontology should contain concepts related to:
individual order holons, temporary stations, mobile resources, transport, and organization
levels (e.g., shop floor, station, line). A qualitative classification of how the studied
ontologies attend the LMAS requirements is presented in the table 4.

Chapter 4. Literature review 72

Table 4 – Ontology literature review.

Ontologies Focus Language In
di

vi
du

al
or

de
r

ro
ut

es

Te
m

po
ra

ry
st

at
io

ns

M
ob

ile
re

so
ur

ce
s

Tr
an

sp
or

t

O
rg

an
iz

at
io

ns
le

ve
ls

ADACOR Ontology Interoperability with
foundational ontologies -

Marmolejo et al. Reuse of ontologies for HMS -

MaRCO Resource and
reconfigurability OWL

MASON Concepts of industrial
manufacturing OWL

MSDL Manufacturing Services OWL

BaSyS Capability representation OWL

73

5 System architecture design

In this chapter, the ANEMONA analysis phase results are presented. The analysis
phase produces requirements, simplifications & assumptions, system goals, and architecture
models. The architecture models are composed of the organization, interaction, and agent
models. The agent model is complemented with the agent state model, which is not a
requirement in the ANEMONA methodology but valuable to represent the agent behavior
from an external and internal point of view. The reasoning for choosing the ANEMONA
methodology, details about its development cycle, and the detailed definition of its output
architecture models are presented in section 3.4.

5.1 Architecture analysis
The architecture analysis phase consists of identifying the system requirements,

assumptions and simplifications, and goals.

5.1.1 Requirements

The architecture requirement specification is based on the LMAS requirements
presented in section 3.7.3 and respects the use case scenarios presented in section section
3.7.2. Requirements and use cases provide an essential idea about the necessary interactions,
functions, and variety of holons. Some of the main requirements of table 3.7.3 are detailed
below:

• R6 and R7: these requirements are related to the station setup process. It is
considered that the stations should execute a setup step before being able to
cooperate with order holons executing operations;

• R11: when a station finalizes all the operations on its schedule, it should dissolve
the assembly equipment used for its setup process. The assembly equipment
can be later used for subsequent configurations;

• R15: the station holons contain a recipe that describes the operation types that
the station can execute. This differentiation among the station holons challenge
the scheduler holon, which needs to optimize and find a suitable plan respecting
all customer order input and the station capabilities;

• R22: the operation should provide the configuration files to the broker holon
during initialization. The configuration files describe how the shop floor, station,
and assemblies are described in terms of physical characteristics and capabilities;

• R34: the scheduler holon needs to interpret the data given by the control layer.
From the perspective of the scheduler holon, the control layer takes the form of

Chapter 5. System architecture design 74

the broker holon. The broker holon should understand and correctly interpret
the data given in by the operator;

• R36, R39, and R40: these requirements are associated with the station holon’s
ability to react locally to a failure imposed by one of the assembly equipment
composing the station setup. The station should be able to replace the defective
assembly equipment;

• R43: the broker holon, as the main actor of the control layer, should be respon-
sible for all the essential and supportive holons initialization;

• R49: The order holon should create a sub-assembly holon at the beginning of
every job execution (set of operations). The sub-assembly holon represents the
assembly during its manufacturing process.

Table 5 – Detailed architecture requirements.

ID Related Requirement

R1 RQ-01
The broker holon should provide a service for the operator add assembly

equipment to the system

R2 RQ-01 Assembly equipment holons should provide build station service

R3 RQ-02
Station holons should register the real starting and ending time of

operations

R4 RQ-02
The station holons should subscribe to the shop floor holon when

initializing

R5 RQ-02
The assembly equipment holons should subscribe to the shop floor holon

when initializing

R6 RQ-03
Station holons should provide a autonomous mechanism to execute the

station setup once the optimal schedule is received

R7 RQ-03
Station holons should complete their setup process before being able to

execute operations

R8 RQ-03
Station holons should start their setup process when the simulation time

is started

R9 RQ-03
Station holons are considered setup once the assembly equipment are in

place and the setup time counted

Chapter 5. System architecture design 75

R10 RQ-03
Station holons should consider a setup time to simulate the assembly

equipment’s adjustments process

R11 RQ-03
Station holons should provide a service to dissolve the assembly

equipment from its station configuration

R12 RQ-03
Station holons, when in IDLE state, should be able to execute assembly

operations

R13 RQ-03
Station holons should automatically disolve, when all the operations in

its schedule were executed

R14 RQ-03
Station holons should register the real starting and ending time of the

station setup process

R15 RQ-03
Station holons can only executes operation type defined in their station

type

R16 RQ-04
Station holons schedule should at minimum contain: operations planned
starting and ending times; assembly equipment used for station setup

R17 RQ-04 Station holons should provide a status update server to the order holons

R18 RQ-05
The part type holon should include physical and dynamic features of

parts

R19 RQ-05
The assembly type holon should include physical, dynamic features,

necessary parts and precedence graphs

R20 RQ-06
The capability holon should provide to their clients the performance

information delivered by each station type including operation type and
processing time

R21 RQ-06
The capability holon should work cooperatively with the station type

holon to inform its clients about the station capabilities

R22 RQ-06
The operator should provide at the system initialization the path of

configuration files including: shop floor description, station types, part
types, assembly types, assembly equipment type and assembly equipment

R23 RQ-07
Assembly equipment holons should provide provide transportation

services

Chapter 5. System architecture design 76

R24 RQ-08
Assembly equipment should provide feedback about the current motion

progress while the setup process is executed

R25 RQ-08
Assembly equipment should provide feedback about the current motion

progress while in motion

R26 RQ-09
Station holons configuration should be provided as part of a global

manufacturing plan

R27 RQ-09

The user interface holon should provide means to the operator specify a
customer input order and optimization execution flags: generate

completion graph, execute animation, calculate BIG_M, calculate
C_MAKE and priority.

R28 RQ-09
The user interface holon should parse the incoming information and

register to the database holon

R29 RQ-09
The broker holon should parse the shop floor, operation, station and
assembly data, optimization flags and request the optimal schedule to

the scheduler holon

R30 RQ-09
The scheduler holon should save the optimization decision variables data

to a file the the local optimization history folder

R31 RQ-09
The scheduler holon should register the raw and the internal parsed data

to a local optimization history folder

R32 RQ-09
The scheduler holon should generate the animation and completion

diagrams when required and save them to the local optimization history
folder

R33 RQ-09
The scheduler holon should provide feedback about the optimization

progess.

R34 RQ-09
The scheduler holon should parse the optimization data and send back

the optimal schedule to the broker holon

R35 RQ-10 Station holons should provide pause, unpause, resetup and replan services

R36 RQ-10
Station holons should provide a mechanism to replace a defective

assembly equipment

Chapter 5. System architecture design 77

R37 RQ-10 Station holons should provide a service to update schedule

R38 RQ-10
Station holons should assume a FAILURE state when a assembly

equipment fails

R39 RQ-10
Station holons should provide the replace mechanism just for assembly

equipment already the setup area

R40 RQ-10
The station holon should, while in a replacement operation, call a

assembly equipment from the same type as the defective

R41 RQ-11
The broker holon should offer services for the operator to start, pause,

reset and set the simulation time

R42 RQ-11
The shop floor holon should provide the current state of the subscribed

station and assembly equipment holons

R43 RQ-11

The broker holon should intialize the database, station type, part type,
assembly type, assembly equipment, type, capability, shop floor, switch
mechanism, user interface, holonic manufacturing system, part, assembly,

assembly equipment, station and order holons

R44 RQ-11
The broker holon should distribute the optimal schedule to the assembly

equipment, part, station and order holons

R45 RQ-11
The broker holon should send the unused assembly equipment to a

resource area

R46 RQ-11 The broker holon should provide mechanisms to load optimization results

R47 RQ-11
The broker holon should provide services to reset holons: delete all

operation holons (station, order, part, and assembly holons), delete the
operation holons parameters

R48 RQ-11
Holonic manufacturing system holon should provide a system snapshot

service, containing the current state and data properties of all the
subscribed holons

R49 RQ-12
Order holons should create a sub-assembly holon when the first

operation is executed

R50 RQ-12 Part holons should subscribe to their related assembly and order holons

Chapter 5. System architecture design 78

R51 RQ-12 Assembly holons should subscribe the their related order holons

R52 RQ-12 The user interface holon should send the parsed data to the broker holon

R53 RQ-12 The order holons should execute instances of a general operation class

R54 RQ-12 The station holons should execute instances of a general operation class

R55 RQ-13
The holon data class data attributes should follow the ROS message

definition based in Holontology

R56 RQ-13
The data attributes definition should be based in a higher level ontology

containing concepts pertinent to the cyber and physical worlds

R57 RQ-14 Station holons should assume only one station type

R58 RQ-14
The station, assembly equipment, part, assembly holons instances should

contain the generic definition of a respective type

R59 RQ-14
The station type definition should define a blue print for real instances

depending on assembly equipment types availability

R60 RQ-14
Operations should be instances of a operation class including the

operation type

R61 RQ-14
Capability, part type, assembly type, assembly equipment type, station

type holons should hold the system knowledge

R62 RQ-14
The assembly equipment type holon should include the assembly

equipment type

5.1.2 Simplifications and assumptions

The table 6 presents the simplifications and assumptions categorized in LMAS
Planning or Planning & Control. Some of most relevant simplifications and assumptions
are:

• SA01: the assembly priority graph is known to the broker holon, so the broker
holon uses a topological sort algorithm to create one feasible linear sequence
per product and passes that information to the scheduler holon;

• SA03: if the station holon requires an equipment replacement, only equipment
of the same type can be used for replacement. Besides being of the same type,
the equipment should also belong to the group of spare equipment;

Chapter 5. System architecture design 79

• SA04: for simulation purposes, the part holons are considered already available
to the station. This simplification easy the fleet management simulation that
does not need to carry the operations for parts transportation;

• SA09 and SA10: even though the station has a 2D internal grid for allocation
of resources, during the simulation, the problem that concerns the allocation of
these resources in this internal grid is not provided by the architecture models;

• SA11: one station can execute only one operation at a time. The parallel
execution is just possible when two or more stations are considered. Even
though, for one assembly, there is no possibility to have operations executed in
parallel since the scheduler holon follows a linear precedence order to derive
the optimal schedule;

• SA13: the human factor is excluded from the models due to the assumption of
fully automated and autonomous LMAS;

• SA14: all the functionalities should be provided to the models through a ROS
interface;

• SA16: all the operations concerning an assembly are just dependent on the
operation for this same assembly. There is no dependency between assemblies.

• SA19: this means that only failures in individual assembly equipment are handled
instead of general failures or failures derived from a higher-level analysis (e.g.,
an average of the difference between scheduled and executed operations)

• SA23: the station starts the station setup process (call for the assembly equip-
ment to setup) as soon as the time simulation starts;

Table 6 – Simplifications and assumptions

ID Category Name Description

SA01
Planning
Control

Assembly
priority graph

The priority graph for an assembly is known.
The priority is graph is input for a

topological sort algorithm that derives a
linear sequence.

SA02 Control Transporters

Only assembly equipment of type
“Transporter” are allowed to transport

material between stations. Transporters are
finite and do not build stations.

Chapter 5. System architecture design 80

SA03 Control Spare types

In case of system disruption, when it is
necessary to replace a assembly equipment in
a station, only types of Type + _SPARE are

suitable for the replacement.

SA04 Control
Part holon

location

Part holons are considered to be located in
the working stations. There is no transport

resolution for parts transportation.

SA05 Control
Sub assembly

holon

Each assembly holon is associated with only
one sub assembly holon, and the assembly
holon should ask transportation services to

move between stations.

SA06
Planning
& Control

Transport times
The distance between locations is given

using the Manhattan distances. The distance
map is provided globally.

SA07
Planning
& Control

Transport
capacity

Only one sub-assembly is allowed to be
transported in a Transporter.

SA08
Planning
& Control

Shop floor
abstraction

The shop floor is discretized using an equal
area squared approach (results in a 2D grid).

SA09
Planning
& Control

Station
occupancy

A station occupies a shop floor location. The
station intra-organization (station

configuration) is divided into a 2D grid
design pattern. The internal 2D design

pattern is not considered in the interactions.

SA10 Control
Location-to-

location
transport

The time taken to transport a sub-assembly
is considered only from the high-level shop

floor abstraction, the station internal
configuration is not considered.

SA11
Planning
& Control

Non-parallel
station

execution

A station can only execute one operation at
the same time.

Chapter 5. System architecture design 81

SA12
Planning
& Control

Necessary
conditions for

operation

To execute an operation, it is necessary that
the station is setup, parts are in place, sub

assembly is in place.

SA13
Planning
& Control

Human factor
The human factor is excluded from the

architecture considerations.

SA14 Control
Agent

connectivity
All agents are considered to have an

interface based on the ROS framework.

SA15 Control
Safety and

security
Safety or security are not considered in this

work.

SA16
Planning
& Control

No assembly
mutual

dependency

There is no operation dependency between
different assemblies.

SA17 Control

Mobile assembly
equipment
continuous
operations

Battery consumption is not considered. The
mobile assembly equipment is considered to
be available 100 % when not in FAILURE

state.

SA18
Planning
& Control

System units
spatial: m; time: s; mass: kg. All derived

units should respect the above fundamental
units.

SA19 Control Disruptions
Only individual assembly equipment have

handling of disruptions.

SA20 Control
Disruption
handling

Only local assembly equipment replacement
and total system reconfiguration are
considered as strategies for system

disruption compensation.

SA21 Control
Disruption

action

Disruptions cannot be simulated while an
operation is executed. In case a disruption is
simulated while an operation is executed, the

system waits for the operation to finish.

SA22 Control
Simulation time

frequency
The simulation time advances at a frequency

of 1 Hz.

Chapter 5. System architecture design 82

SA23 Control
Station setup
initial time

The station holons start their station setup
process as soon as the simulation is started.

SA24 Control
Simulation time

control
The system simulation starts when the

simulation time starts to progress.

SA25 Control
Pick and place

operations

For simulation purposes the pick and place
operations at the beginning or ending of a

transportation are not considered

5.1.3 System goals

The system goals are presented in the table 7. The system goals are derived
considering the use cases and requirements. Some of the relevant goals are highlighted:

• O02 and O03: the broker holon here should provide a mechanism to interpret
the system state (e.g., current assembly equipment locations), merge with the
customer order input, and send the data to the scheduler holon that will derive
an optimal global schedule

• O06 and O07: the systems should detect failures on assembly equipment and han-
dle these disruptions with an appropriate strategy. The strategies are discussed
in detail later in this chapter;

• O10: to test the HCA functionalities, a simulation should be available to the
operator. In the simulation, the transport times and the operation times are
simulated utilizing basic time functions in the chosen programming language
(discussed later in the chapter 6).

Chapter 5. System architecture design 83

Table 7 – Architecture system goals

ID System Goal

O01 Execute the assembly process of large products in lot size 1 following the LMAS
paradigm.

O02
Interpret customer orders and execute the optimization algorithm, merging the
customer order requirements with the system status quo to derive a suitable

assembly process schedule.

O03
Plan, throughout automatic optimization, the system assembly processes to

define which operations for which orders are to be executed at a specific
sequence, station, times, and location.

O04

Interpret the provided optimal schedule and launch the necessary autonomous
manufacturing holons to drive the assembly process. The optimal schedule’s
operations and required station setups should be assigned to the launched

holons in that process.

O05 Control the execution of assembly operations at the station level.

O06 Detect assembly process disruptions: assembly equipment failures, station
failure and, lack of assembly parts.

O07
Handle the manufacturing system disruptions deciding whether a local

compensation or a total system reconfiguration is required. A suitable heuristic
should be used.

O08 Launch and control the system dynamic station setup process utilizing the
assembly equipment available on the shop floor.

O09 Control and monitor the parts, sub-assemblies, and assembly transportation on
the shop floor.

O10 Simulate the system’s physical equipment behavior in order to test the holonic
manufacturing system.

O11 Monitor the system assembly process execution

5.2 System overview
Considering the LMASs’ dynamic re-configuration requirements (Section 3.7.3),

figure 29 exhibits a layered, hybrid hierarchical-heterarchical approach (heterarchical
systems adapt promptly to system disruptions due to their entities’ autonomy, while
hierarchical systems can be readily optimized because the system state is wholly known
to a set of decision-making entities). The actor utilizes a user interface to communicate
new orders to the broker holon. Orders are merged with current system knowledge,
including description files and lower-level holon states. The result is sent to the planning

Chapter 5. System architecture design 84

holon. It comprises an LMAS-specific operations optimization model (c.f. (BUCKHORST;
SCHMITT, 2020)). The broker holon interprets the resulting global schedules to derive
individual schedules for execution layer holons: assembly, assembly equipment, station,
shopfloor, order, and part holons. The operational holons cooperate when executing
their local schedules following their interaction models: The overall system behavior
results from cause and effect. The models represented at the right part of figure 29
establish the conceptual base for the interactions and roles exerted by the system holons.
The organization model describes the holons’ the dynamic structural organization; the
environment model describes the external actions that trigger actions within the system
architecture; the agent model describes for each holon its functions, state data, and goals;
the tasks and goals model represents what functions are necessary to be executed to
fulfill the system goals (c.f. table 7); and the interaction model shows the all the possible
interactions between the system holons and their execution order

Figure 29 – LMAS HCA: Overview

5.2.1 Organization model

In figure 30 the ANEMONA organization model of the architecture, containing
all high-level holons, is depicted. The holon names and functionalities are inspired by
(BRUSSEL et al., 1998; LEITÃO; RESTIVO, 2006; BORANGIU et al., 2015; BARBOSA
et al., 2015). The main holons are summarized as follows:

• Scheduler holon: this holon interprets the current system state and generates
optimal stations and assembly equipment schedules;

• Broker holon: this holon creates and deletes holons, receives customer orders,
and monitors the assembly execution;

Chapter 5. System architecture design 85

Figure 30 – HCA Organization Model (in ANEMONA Notation)

• Order holon (OH): this holon controls and monitors the execution of stations’
operations;

• Assembly equipment holon (AEH): this holon represents equipment support-
ing assembly production operations (e.g., AGVs, tools, robots, fixtures, tool
magazines);

• Station holon (SH): this holon represents a group of assembly equipment able
to execute assembly operations. Each station holon has capabilities representing
the offered performance to execute a set of operations;

• Part holon (PH): it represents a required piece necessary to perform an assembly
operation;

• Sub-assembly holon(SAH): this holon represents a set of parts built together
that are not a complete assembly yet;

• Assembly holon (AH): this holon contains the assembly "recipe" describing:
operations necessary to be executed, how to connect the different parts spatially,
and the list of parts that consists of the final assembly;

Chapter 5. System architecture design 86

• Shop floor holon: it represents the shop floor properties and non-autonomous
entities;

• Capability holon: this holon holds the station configurations’ capability per-
formances. A capability performance represents how the station configuration
addresses a particular operation’s execution (e.g., processing time);

• Type holons: these holons hold the type information of different entities on the
shop floor, they are four: assembly type; resource type; part type; and station
type;

• User interface holon this holon acts as an interface between the operations and
the broker holon. Using this holon, the operator can input customer orders and
provide configuration files to the architecture;

• Database holon: the database hoon offers generic write and reads services aiming
to hold the system knowledge during the assembly execution;

• Holonic manufacturing system holon: this holon keeps track of all initialized
holons and provides a snapshot service containing their current state. The
scheduler holon uses the snapshot service before any optimization request;

• Switch mechanism holon (SMH): this holon provides mechanisms to alter the
holon’s behavior depending on incoming disruptions (E.g., rush orders, station
breakdown, assembly equipment failure).

5.2.2 Agent model

Only the agent models of order (figure 31), station (figure 32), assembly equipment
(figure 33), sub-assembly (figure 34), and part (figure 35) holons are presented for simplicity
and noteworthy reasons. For each holon, an ANEMONA agent diagram is shown. The
diagrams follow the ANEMONA notation representing the agents’ functions, goals, and
beliefs. Additionally, the agent state model describing the different states an agent may
assume depending on the system dynamics is presented.

5.2.3 Agent model diagrams

The agent model diagrams are presented in the current section. The agent model
diagrams capture each agent’s functions, goals, and knowledge. The agent models are pre-
sented for order, station, assembly equipment, sub-assembly, and part holons ANEMONA
agent model.

Chapter 5. System architecture design 87

Figure 31 – Order holon agent diagram.

Figure 32 – Station holon agent diagram.

Chapter 5. System architecture design 88

Figure 33 – Assembly equipment holon agent diagram.

Figure 34 – Sub-assembly holon agent diagram.

Chapter 5. System architecture design 89

Figure 35 – Part holon agent diagram.

5.2.4 Agent state models

The figure 36 presents a compilation of the operational holons state models. The
figure 36a presents the order holon state model. The order holon states are:

• INIT: entry Point for the order. A logical order object is generated;

• PLANNED: a Plan for the order has been generated;

• PLANNABLE: the order has no schedule;

• IN_PROCESS: order is being executed;

• PAUSED: order is on hold;

• DONE: order is finished;

• FAILURE: state to represent a generic failure;

• IN_REPLAN: order received a replan request. The order waits for an update
schedule to set the state to PLANNED.

The order holon state model transition functions are:

• rosRole(): this is the entryPoint function;

Chapter 5. System architecture design 90

(a) Order holon state model. (b) Part holon state model.

(c) Assembly equipment holon state model. (d) Sub-assembly holon state model.

(e) Station holon state model.

Figure 36 – Operational holons state models.

• init(): internal holon configuration. Set up of provided services and data input
parsing. After initializing, the order holon assumes the PLANNABLE state,
meaning that a schedule can be sent to the order holon;

• plan(): when receiving a new schedule, the order holon assumes the PLANNED
state; PLANNED and simulation RUNNING: the order holon should be in
PLANNED and the simulation in RUNNING to start the execution of the
operations;

• pause(): the operator sends a command to pause an operation execution;

• unpause(): operator send a command to unpause the execution;

• fail(): a fail detected in one of the stations involved in the execution changes
the order holon state to FAILURE state;

• repair(): a repaired confirmation coming from a station brings the order holon
back to IN PROCESS state;

Chapter 5. System architecture design 91

• update_schedule(): the order holon received a new schedule from the operator.
The order holon now is ready to start again;

• replan(): the order holon received a replan command from the operator. A
replan operation is usually sent when disruptions are detected, so the operator
can send new schedules aiming to compensate (not part of this dissertation).

The figure 36e presents the station holon state model. The station holon states are:

• INIT: entry Point for the Station. Logical Station object is generated;

• IN_SETUP: station requires resources. They need to be setup;

• IDLE: no operation in station happening, but there is the capacity;

• IN_PROCESS: operation is being executed;

• PAUSED: operation is on hold;

• RESOLVED: station resolves assembly equipment and is no longer operable;

• FAILURE: state to represent a generic failure;

• IN_REPLAN: station received a replan request. In that state the station waits
for an update schedule to set the state to IDLE.

The station holon state model transition functions are:

• rosRole(): this is the entryPoint function;

• !SETUP and Simulation RUNNING: If the station is not setup and the simu-
lation is in RUNNING state, then the station holon assumes the IN_SETUP
state;

• operate(): once in IDLE, the station holon is able to execute operations;

• setup(): the station holon requires the assembly equipment to come to the
station location and execute the station setup;

• pause(): the operator sends a command to pause an operation execution;

• unpause(): operator sends a command to unpause the execution; operations_to_execute
== 0: there is 0 operations to be executed; operations_to_execute != 0: there
are still operations to be executed;

• fail(): a failure in one of the station’s assembly equipment is detected;

• repair(): the station replaced the defective assembly equipment;

• resetup(): the station setup is interrupted by the operator due to a failure in
one of the assembly equipment;

• update_schedule(): the station holon received a station containing the operations
and assembly equipment involved in the setup process;

Chapter 5. System architecture design 92

• resetup(): a new schedule containing the operations and the assembly equipment
for setup is sent to the station holon.

The figure 36c presents the assembly equipment holon state model. The assembly
equipment states are:

• INIT: entry Point for the resource;

• IN_MOTION: resource is in motion;

• IDLE: resource is ready to execute operation or move;

• SETUP: resource is successfully allocated in a station configuration;

• IN_PROCESS: operation is being executed using the resource;

• FAILURE: state to represent a generic failure.

The assembly equipment holon state model transition functions are:

• rosRole(): this is the entryPoint function;

• init(): internal holon configuration. Setup of provided services and data input
parsing;

• move(): the assembly equipment holon received a move request;

• transport(): the assembly equipment holon received a transport request;

• build(): the assembly equipment received a build station request;

• setup(): the assembly equipment is setup in the station location;

• dissolve(): the assembly equipment holon received a dissolve request from the
station holon;

• abort(): the assembly equipment received an abort request from the operator.

The figure 36d presents the sub-assembly holon state model. The sub-assembly
holon states are:

• INIT: entry Point for the part;

• IDLE: sub assembly is waiting for simulation to start;

• IN_MOVEMENT: sub assembly is moving;

• PAUSED: sub assembly is pause;

• ASSEMBLED: the assembly of the sub assembly is finished.

The sub-assembly holon state model transition functions are:

• rosRole(): this is the entryPoint function;

• init(): internal holon configuration. Setup of provided services and data input
parsing;

Chapter 5. System architecture design 93

• pause(): the operator sends a command to pause the sub-assembly holon;

• unpause(): operator send a command to unpause the sub-assembly holon;

• move(): the sub-assembly holon received a move request;

• assemble(): the sub-assembly is informed that the assembly operation is finished.

The figure 36b presents the part holon state model. The part holon states are:

• INIT: entry Point for the part;

• IDLE: part is waiting for simulation to start;

• PLANNED: part is in place waiting for an operation;

• IN_PROCESS: part is under process;

• ASSEMBLED: the assembly of the part is finished.

The part holon state model transition functions are:

• rosRole(): this is the entryPoint function;

• init(): internal holon configuration. Setup of provided services and data input
parsing;

• In place: the part holon is considered in place (in the station) since the beginning
of the simulation. the part holon is already considered in place;

• under_process(): the part holon is informed that operation is being executed
using the part;

• assemble(): the part holon is informed that the part is assembled to a sub-
assembly holon.

5.2.5 Interaction model

In the next subsections, the main interaction models are presented. Among them
are included: the send customer order, request optimization, configure holons, and order
execution relating to the normal execution (UC1) (c.f. figure 12) and the disruption
handling related to disturbances situations (UC2) (c.f. figure 13). The diagrams related to
UC1 are presented in the correct order, showing the actions that follow a customer order
input.

The lower part of the interaction diagrams always show the sequence of events and
highlights the precedence among the interactions, while the upper represents the holons
involved, interaction units, and main functions involved in the communication.

5.2.5.1 Send customer order

The figure 37 presents the send customer order interaction diagram. It shows the
communication behavior when an operator sends a customer order input to the system

Chapter 5. System architecture design 94

specifying the assembly type quantities. The customer order input format is described in
the implementation section.

Figure 37 – Send customer order interaction diagram.

5.2.5.2 Request optimization

In figure 38 presents the request optimization interaction diagram. It exhibits the
interaction executed by the system in order to enable the broker holon to request a system
state snapshot, parse the input data, and request an optimal schedule to the scheduler
holon.

Chapter 5. System architecture design 95

Figure 38 – Request optimization interaction diagram.

5.2.5.3 Configure holons

in the figure 39 the configure holons interaction diagram is presented. It shows the
procedures executed by the broker holon in order to distribute the optimal schedule for
the five operational holons: assembly, assembly equipment, order, station and part holons.

Chapter 5. System architecture design 96

Figure 39 – Configure holons interaction diagram.

5.2.5.4 Order execution

In figure 40 the order execution interaction diagram is presented. It shows an
intricate interaction behavior among the order, station, sub-assembly and part holons.
This interaction represents the operation execution process until the order holon executes
all the pending operations provided in the optimal plan. The basic idea is that the order
holon waits for the station, sub-assembly, and part holons to be in place and ready for
execution. After these three conditions are fulfilled, the order holon sends an execute
operation command to the station. If the sub-assembly holon is not in place, the order
holon requests the sub-assembly to move to a specific location while the part holons are
considered already in place (see simplifications and assumptions, table 6).

Chapter 5. System architecture design 97

Figure 40 – Order execution interaction diagram.

5.2.5.5 Disruption handling

Figure 41 represents the disruption handling interaction diagram. It shows the
interactions executed by the switch mechanism, order and assembly equipment holons in
order to provide a corrective behavior to solve assembly equipment disruptions. The only
disruption covered is the assembly equipment failure, while this assembly equipment is
SETUP state in the station (see simplifications and assumptions table, 6). Two solutions
are provided, so two different linear lines are observed in the lower part this diagram. The
local fix solution involves replacing defective assembly equipment for another of the same
assembly equipment type. In that case, the station holon is responsible for identifying the
assembly equipment among the available equipment. The complete reconfiguration involves
the previous identification of executed operations and the later complete reconfiguration
of the system, meaning that the whole system undergoes a reset and new order holons are
triggered considering the remaining operations to be executed.

Chapter 5. System architecture design 98

Figure 41 – Disruption handling interaction diagram.

Chapter 5. System architecture design 99

5.2.6 Architecture models considerations

The compound of the presented models forms the models for the HCA aimed for
the LMAS. Its evaluation is executed in qualitative and quantitative formats in chapter 7.
In the following section some considerations for its design process are given in the format
of question answer:

1. Why is it "good" or "bad" architecture for LMAS?

The presented architecture models are suitable for LMAS because: at a low-level
perspective, they address the individual order routes (figure 40), the required dynamic
station setups, and disturbance handling (figure 41); at a high-level perspective, the
models are based on the HMS concept; thus, they represented an HCA implementation
that addresses the hierarchical and heterarchical behavior ending up into a holarchy of
holons. The LMAS, for stability reasons, requires a hierarchical approach and can’t rely
on a fully automated and heterarchical approach that might end up in a chaotic behavior.

However, the proposed architecture models don’t present a intricate mechanism
to deal with disruptions and decision-making. Instead, the models offer a ground basis
for an LMAS implementation and can be seen as a template to which various disruption
handling strategies could be attached.

2. How does it differ from other implementations?

The architecture presented in figure 29 relates to reviewed literature (see more in
chapter 4) in the following points:

• it presents a clear distinction between the roles of holons into three layers.
Related work usually represents the roles within the definition of the holon
itself and does not explicitly specify a common line of action for holons, at least
in terms of goals;

• the holon naming and roles are based on those high-level holonic classes defined
in the PROSA architecture (Product, Resource, Order and Staff);

• the interaction and agent models consider the presence of a switch mechanism
holon responsible for centralizing the decision making when the system is
handling a disruption. The idea of the switch mechanism holon is presented in
the literature, and it is useful for system modularization and to concentrate
the strategies for disruption handling in one entity. The switch mechanism
holon implementation is rooted in the specialization allowed by the Staff holon
proposed by the PROSA architecture;

• it is an ontology-driven HCA (Holontology at the right part of the figure 29). In
other words, the concepts, interactions, and predicates utilized in the agents and
their interactions were based on an ontology, namely Holontology. Holontology

Chapter 5. System architecture design 100

is also part of this work, and its process of development is described later in
chapter 6. The idea of a holonic ontology embracing HMS concepts is presented
in the literature, but no HCA was explicitly derived from one;

• on its interaction model, the architecture explicitly presents the interactions
necessary to form stations in the factory shop floor dynamically. In the literature,
the holonic aggregation is shown but not oriented to address individual resources
and form stations regardless of time and location. In other words, the working
stations can be formed at any time and place, using the required assembly
equipment to setup.

3. Why is it flexible?

The presented models are flexible mainly because of the disruption handling pre-
sented in figure 41. According to the behavior described in this diagram, the station and
the switch mechanism holons can handle a system disruption in two different manners:
LOCAL_FIX and REORGANIZATION. This model adds up to the systems, once hierar-
chical approach, a heterarchical characteristic, bending the models towards the flexible
approach. Both hierarchical and hierarchical methods, when merged, give birth to the
holarchy structure, giving the system the ability to react to disruptions organizing the
system in a hierarchical or heterarchical manner.

101

6 System architecture implementation

6.1 System data model
During the design of the ANEMONA deployment models, the guidelines suggest

the use of ontologies as the main structure for the messages exchanged by the holons.
Following this approach, an ontology study was carried out to understand whether a new
ontology had to be derived or the re-use of ontology models could be executed. Therefore
this chapter covers the implementation aspects of the Holontology (an ontology used as
a basis for the interactions and holons) and the data model that is derived from it to
support the HCA implementation; the factors considered for the decision to use ROS
as the framework to implement the HCA prototype; The HCA ROS Templates, which
characterize the main holons’ functions, data and behavior; and the packages implemented
using the ROS framework.

6.1.1 Ontology

To determine whether it is necessary to develop a whole ontology for the holonic
architecture or even to start from an ontology preconception, typical manufacturing
ontologies were studied MASON (LEMAIGNAN et al., 2006), MSDL (AMERI; DUTTA,
2006), MaRCO (JÄRVENPÄÄ et al., 2019) and BaSys (WESER; BOCK, 2020). The
software Protègè was used to query the ontologies and verify whether the principles
of LMAS can be fulfilled, the ontologies used in that study were modeled with OWL
descriptive language, which is interpreted by the Protègè software. The queries work
as questions that expect "yes" or "no" as answers. In the methodology applied in this
work, in the case of a "yes" answer, the answer should be accompanied by an example.
The questions used to evaluate the presented ontologies were inspired in the ontology
requirements presented in table 4:

(a) Is there the capacity to execute a transport? (Transport)

(b) Is there the capacity to move assembly equipment/resources to a specific place?
(Mobile resources)

(c) Is it possible to group a set of entities capable of executing assembly tasks?
With a temporal character? (Temporary stations)

(d) Is there the possibility to assign schedules to resources? (Individual order routes)

(e) Is it possible to represent physical places of the shop floor? (Organization levels)

The questions presented are human-readable, though it was necessary to adapt
them to each ontology terminology, which required a comprehensive study about the

Chapter 6. System architecture implementation 102

PROSA(BRUSSEL et al., 1998) Ling Gou et al.(GOU et al., 1998)
MASON(LEMAIGNAN et al., 2006) ADACOR(2007)(BORGO; LEITÃO, 2004)
Marmolejo at al.(SIMóN-MARMOLEJO et al., 2018) MaRCO(JÄRVENPÄÄ et al.,

2019)
Figure 42 – LMAS Data Model Merging Process

ontologies semantic, to generate adapted inputs to the Protègè query mechanism. Table 8
shows the evaluation results. The results indicate that none of the analyzed ontologies
fully implemented the necessary LMAS principles; thus the definition of a new ontology is
executed.

Table 8 – Ontology evaluation results.

Query MASON MSDL BaSyS MaRCO

(a) Handling Stock
Material C2Transport Transporting Trans-

portingCollaborative

(b) - - C2 MoveToPos Moving
MovingCollaborative

(c) - - -
DeviceCombination
RealDeviceCombina-

tion Station

(d) Human
Operation - - -

(e) Shop Floor - - Area/Site/Cell

The new ontology, called Holontology, is proposed to draw physical and cyber
concepts of the manufacturing domain. The separation between physical and cyber parts
of this ontological approach is motivated by the definition of the basic unit, the holon.
Following the methodology from (LEGAT et al., 2014), the first three steps of the method-
ology consist of selecting informational aspects (first row of figure 42), identifying the
informational aspects’ requirements (last row of figure 42), and selecting ontology modules
(legend of figure 42). The remaining phases concern ontological alignment and ontology
development, the alignment and the merging process is represented in the diagram in
figure 42.

Chapter 6. System architecture implementation 103

The alignment process aims to identify the similarities among the concepts described
in the selected ontologies to merge them. The ontology development consists of selecting
the concepts necessary to fulfill the LMAS requirements and implementing the FLExible
Resource Manufacturing Ontology (FLERMO), and the HOLonic assembLy manufacturing
ONTOlogy (HOLLONTO). The FLERMO consists of concepts related to the physical
world, and is inspired on MASON (LEMAIGNAN et al., 2006) and MaRCO (JÄRVENPÄÄ
et al., 2019) while the HOLLONTO comprises the holonic cyber concepts (GOU et al., 1998;
BRUSSEL et al., 1998; LEITÃO; RESTIVO, 2006; SIMóN-MARMOLEJO et al., 2018).
The figure 43 summarizes the procedure applied for the LMAS data model implementation.

6.1.2 Data model

The Holontology is created through the merge and fine selection of concepts
defined in HOLLONTO and FLERMO. From the Holontology essential concepts and data
properties are extracted to construct the data model used in the LMAS HCA architecture
described in the chapter 5. A high-level comprehension of the data model is shown in
figure 44.

Figure 43 – Holontology: Ontologies Reuse Method

Chapter 6. System architecture implementation 104

Figure 44 – LMAS HCA Data Model (Colors refer to Conceptual Similarities)
PROSA(BRUSSEL et al., 1998) Ling Gou et al.(GOU et al., 1998)

ADACOR(2007)(BORGO; LEITÃO, 2004)
Marmolejo at al.(SIMóN-MARMOLEJO et al., 2018) Authors

6.2 Robotic programming framework

Table 9 – Framework suitability analysis for Line-Less Mobile Assembly Systems. (++
fully applied; + partially applied; 0 not applied)

Framework (a) (b) (c) (d) (e) (f) (g)

JADE + 0 + ++ ++ ++ ++

ROS ++ ++ ++ + 0 ++ ++

SPADE ++ 0 + ++ ++ + 0

BaSys 4.0 + 0 + 0 0 0 0

JaCaMo 0 0 + ++ 0 ++ 0

A programming framework shall be selected for the HCA implementation. Gener-
ally, multiple frameworks are available (IÑIGO-BLASCO et al., 2012; PAL et al., 2020)
offering the necessary capabilities compliant with the LMAS requirements. A collection
of frameworks was elected for further analysis. For the analysis it was considered the
following aspects:

Chapter 6. System architecture implementation 105

(a) robotics algorithms availability: the LMAS lower-level layer should be prepared
to deal with robotic systems. In that case, the availability of robotic software
modules and their reusability is a plus on the analysis;

(b) robotic simulation tools: it is mandatory to simulate the environment to check
the assertiveness of the holonic control architecture and the LMAS optimiza-
tion module. It is a plus if the framework presents a long-term compatibil-
ity/integration with a simulation tool.

(c) programming language suitability: most robotics applications use, as a program-
ming language, C++ due to performance requirements. (IÑIGO-BLASCO et
al., 2012). If the framework includes C++ language support, it is a plus;

(d) mechanism to act with social abilities/agent behavior: as stated by (IÑIGO-
BLASCO et al., 2012; GIRET et al., 2017) an agent framework exhibiting agent
social abilities is one of the technology enablers to develop MAS/HMS systems.
If the framework provides a protocol based on messages, topics, services, or
even a higher level of abstraction for speech acts, it is a plus;

(e) FIPA compliant: the Foundation for Intelligent Physical Agents (FIPA) offers
a set of standards envisioning the improvement of interoperability between
agent-based solutions. If the protocol is structured following the FIPA message
structure and message exchange protocol, it is a plus;

(f) research community usage: this aspect represents a qualitative author’s evalua-
tion of community framework usage. The community usage and activity are
mandatory for technical support and discussions;

(g) industry usage/acceptance: this aspect comprises the industry usage. It is a
plus if the framework has an acceptance and organized groups that study and
encourage using it for real industry applications. The industrial acceptance
analysis for ROS, JADE and JaCaMo are based on (ROS-INDUSTRIAL, 2020),
(BELLIFEMINE et al., 2008) and (BOISSIER et al., 2020) respectively;

As depicted in table 9 the ROS framework presents suitability according to the
selected criteria (a-g), and it will be used as a framework to implement the holonic
architecture along with the data model and other LMAS modules. Important to mention
is that the BaSys framework (BASYS, 2021) presents an exciting alternative for Industry
4.0 interoperability.

6.3 System platforms and ROS templates
On the first step of the ANEMONA "build architecture" phase, the architect must

specify the number of agent platforms to distribute the application. The distribution
criteria are based on the following guidelines:

Chapter 6. System architecture implementation 106

• different departments/branches may require a unique platform for each, resulting
in a multi-platform system;

• if the number of abstract agents is not excessively high and the holons in-
teractions do not exceed a specific cooperation context, the system may be
implemented on a single platform;

• security, data-encapsulation, and functionality requirements may be reasons for
choosing a distributed system instead of a single platform, especially when the
number of agents is high.

The table 10 shows the resulting distribution. The database holon has its platform
because of data security and modularity reasons. The scheduler holon has its platform due
to functionality and performance requirements. If the optimization algorithm is running on
the same platform, the performance of the overall HCA has been heavily affected accordingly
to practical experiences. The effects are the result of the significant computational power
required to execute the optimization. It impacts ROS communication performance and
potentially leads to unexpected delays and loss of communication (timeout).

The control execution platform contains the station, switch mechanism, sub-
assembly, and order holons. These holons are digital-only holons, which act as conductors
of the assembly execution on the shop floor. They monitor and control the operational
holons and do not perform heavy tasks (e.g., image processing; optimization algorithms).

The assembly equipment holons are designed to have an individual platform. Indi-
vidualization is inspired and characterized by the fundamental nature of resources utilized
in manufacturing. Each holon can execute a specific task (e.g., pick, place, navigation,
image processing, drilling), which requires different mechanical assets and software.

The system knowledge platform contains the holons responsible for tracking the
operations and holding the assembly and part physical and dynamic knowledge.

The rest of the holons are grouped on a platform named shop floor due to its low
computational requirements. This division groups self-similar or similar-context holons
due to the fact of low computational power consumption and their goals.

The second step of the ANEMONA "build architecture" phase consists of deriving
the JADE (Java Agent DEvelopment Framework) templates for each holon declared in
the design phase (see chapter 5). The original JADE template contains: agent identifies,
behavior, service, communication, and ontology specification. This template serves as an
agent recipe that a software engineer should follow to program the system. As declared in
section 6.2 ROS is used instead of JADE. However, the same characteristics of the JADE
template were considered when creating the ROS template. An example is depicted in
figure 45. It shows the characteristics of the order holon. The ROS template declares:

Chapter 6. System architecture implementation 107

Table 10 – HCA platforms.

Platform name Holons

Scheduler Scheduler holon

Database Database holon

Shop floor
Broker, Station type, part type, station type, capability, assembly

equipment type, shop floor, user interface and holonic manufacturing
system holons

Execution
control Station, switch mechanism holon, sub assembly, and order holons

Assembly
equipment i Assembly equipment holon

System
knowledge Assembly and part holons

1. Agent ID: contains a unique holon name;

2. Platform: contains the platform definition for the described holon;

3. Services: contains the services offered by the order holon to the system, their
types and their potential clients;

4. Service Proxy: this item contains the services used by the holon, their types,
and the holons that serve them;

5. Data attributes: this item contains data attributes that make part of the
system class definition, including the data type derived from the Holontology
(see section 6.1);

6. Published topics: this section contains the published data topics;

7. Subscribed topics: this section contains the subscribed data topics;

8. Behaviors: this section has a direct connection to the former JADE template.
The designer should specify the holon behaviors by showing the services used
to implement them;

9. Physical part: this section contains a boolean value declaring whether or not
the holon has a physical asset.

The ANEMONA’s interaction, agent, and environment models were analyzed to
fill the ROS templates for various holons. During the implementation stages, a precise
definition of attributes and services’ data types was incremented to the ROS templates
following the iterative and cyclic characteristics of ANEMONA methodology.

Chapter 6. System architecture implementation 108

1. Agent ID Order holon 2. Platform Execution control

 3. Services

3.1 Name 3.2 Type 3.3 Clients

/register_assembly_holon lmas_interaction_model::order_holon_register_assembly_holon_service Assembly holon

/register_part_holon lmas_interaction_model::order_holon_register_part_holon_service Part holon

/get_status lmas_interaction_model::order_holon_status_service

/pause lmas_interaction_model::order_holon_pause_execution_service Operator

/replan lmas_interaction_model::order_holon_replan_service Operator

/restart lmas_interaction_model::order_holon_restart_execution_service Operator

/add_operation lmas_interaction_model::order_holon_add_operation_service Operator

/delete_operation lmas_interaction_model::order_holon_delete_operation_service Operator

/update_schedule lmas_interaction_model::order_holon_update_schedule Operator

/disruption_interface lmas_interaction_model::order_holon_disruption_interface_service Switch mechanism holon

 4. Service Proxy

4.1 Name 4.2 Type 4.3 Server

/register_holon lmas_interaction_model::database_holon_register_holon_service Database holon

/register_order_holon_status lmas_interaction_model::hms_holon_register_order_holon_status_service HMS holon

/replan (Station) lmas_interaction_model::station_holon_replan_service Station Holon

 5. Data Attributes

5.1 Name 5.2 Type 5.3 Note

order_holon lmas_data_model_msgs::OrderHolon

holon_register ros::ServiceClient

finished_current_operation bool

 6. Published Topics

6.1 Name 6.2 Type 6.3 Client

 7. Subscribed Topics

7.1 Name 7.2 Type 7.3 Server

/scheduler_output lmas_data_model_msgs::GlobalManufacturingOrderConstPtr Broker holon

/simulated_time lmas_interaction_model::broker_holon_simulated_timeConstPtr Broker holon

8. Behaviors
8.1 Name 8.2 Type 8.3 Implemented services/topics

Register parts and assemblies simple

Provide order status simple /get_status

Control order execution cyclic

Update order schedule simple /update_schedule

Handle disruptions complex /disruption_interface

Register with HMS holon one-shot /register_order_holon_status

 9. Physical Part? No

ROS Agent
Template

Assembly holon
HMS holon

/register_assembly_holon
/register_part_holon

/pause
/replan
/restart

/add_operation
/delete_operation

Figure 45 – Order holon template description.

6.4 ROS packages
The ROS development process was based on packages following a functionality-

context separation logic to define where the holon’s functions should be allocated (e.g.,
data attributes and interaction). The implementation of the LMAS HCA prototype holons
is separated into three ROS sub-packages: role, interaction, and asset packages. The role
package contains the message definitions for each holonic class. The LMAS data model is
the basis for each message in role classes.

The interaction package contains the functions and auxiliary message definitions
to holons’ interactions. The functions are defined according to the Holontology’s object

Chapter 6. System architecture implementation 109

property. Every holon has an entry-point function designed as rosRole, acting as the
entry-point for the holon initialization.

The asset package contains the ROS launch files that initialize the LMAS HCA
holarchy. In figure 46, the holon layers are depicted, highlighting the functionality given
by each package in the ROS workspace.

Figure 46 – ROS packages for HCA.

6.5 Input files generator
In this section, the structure of the input files is described. The input files represent

the necessary information the HCA should hold to interpret the environment, configure
the simulation, configure the optimization layer with the correct assembly information and
represent the systems limitations and manufacturing capabilities (e.g., processing times).

The structure used on these files follows the JavaScript Object Notation (JSON)
notation. Seven files have been proposed. The file names use the terminology described in
the data model. The files proposed are:

• part_type.json: the file describes the part type information (e.g., physical and
dynamic properties);

• assembly_type.json: file describes the assembly type information. Assembly
type information consists of the assembly order, priority graph, the assembly
id, the physical and dynamic properties, and the operations;

• assembly_equipment_type.json: the assembly equipment file describes how
many different types of resources are available (e.g., AGV_BRAND_1, TOOL_X,
FIXTURE_Y);

• station_type.json: the station type file describes the set of possible station
configurations the system can manage the assembly equipment to assume. Each
station configuration contains the capabilities and the intra-station organization
description;

Chapter 6. System architecture implementation 110

• assembly_equipment.json: the resource files represent the assembly equipment
available and the associated resource type. This file can be understood as an
instantiation of the assembly equipment types. It represents the number of
current resources on the shop floor;

• customer_order.json: the customer order file describes how many different
assemblies are requested by a set of customers. The file also informs the earliest
start time and latest finish time for each order;

• shop_floor.json: the shop floor file represents the shop floor physical organization.
In this case, the shop floor is represented by a grid abstraction, where the shop
floor has a chessboard structure with an appearance defined as a matrix of n x
m squares.

In order to test the HCA under different configurations and capacities (number
of assembly equipment, operation processing capacity per station, assembly equipment
per station), an algorithm was developed to generate the input files. The algorithm has
as main inputs: Number of station types: this input indicates the number of station
types that the system can instantiate; Operation types: this input is a list of operation
types and respective base processing time; λtheo: this parameter represents the maximum
number of operation types offered by each station type; λop: this parameter indicates
how many stations can be instantiated at the same time during execution; Assembly
equipment type per station type. This input includes the average and variance applied
for the number of assembly equipment types per station type; Assembly equipment
per station type. This input includes the average and variance applied for the number
of assembly equipment per station. A brief representation of the algorithm can be seen in
figure 47. According to the flow-diagram:

1. The system reads the input data, including the main inputs (at the left side of
the figure) and the additional inputs (right side of the figure).

2. Based on the number of the station the algorithm generates the station types
names, e.g.: STATION_TYPE_1, STATION_TYPE_2;

3. Considering the λtheo the algorithm distributes the operation types per station,
attributing unique combinations per station. Additionally, the operation type
processing time is changed accordingly to the base time and variance provided
as inputs;

4. Using the input "assembly equipment type per station type", the algorithm
decides randomly how many assembly equipment types each station requires
respecting the average and variance provided. As a rule, independent of how
many assembly equipment per station type, the algorithm sets one assembly
equipment type in common for all the station types. This extra assembly

Chapter 6. System architecture implementation 111

equipment type (e.g., rt1) is used later to control how many station types can
be instantiated simultaneously.

5. Using the input "assembly equipment per station", the algorithm decides ran-
domly how many assembly equipment each station requires respecting the
average and variance provided.

6. The algorithm sets the number of the extra assembly equipment (common to all
stations) to λop this guarantees that the input files will not provide the sufficient
conditions to build more stations than λop.

7. After deciding for the distribution of operations, assembly equipment types per
station type, and the total number of assembly equipment, the last step of the
algorithm is to create the station_type.json, assembly_equipment_type.json,
and assembly_equipment.json files.

Chapter 6. System architecture implementation 112

Figure 47 – Input file generation diagram.

113

7 Evaluation

This chapter covers the analysis of the HCA models separated into two parts. The
first part shows a detailed analysis of the architecture models considering the coverage of
KPIs related to HCA implementation, such as reconfigurability, robustness, maintainabil-
ity, controllability, complexity, verification, and reusability. The second part executes a
quantitative analysis in the HCA prototype, which aims to verify the HCA behavior under
the normal (UC1) and disrupted executions (UC2). The drift between the planned and
executed during the normal execution is studied under different shop floor and product
input configurations. The disrupted scenario is analyzed by the simulation of assembly
equipment failure and the response given by two different strategies: LOCAL_FIX and
REORGANIZATION.

7.1 Architecture model analysis
In (KRUGER; BASSON, 2018) the authors specify a set of qualitative criteria

focussed on the evaluation of holonic control approaches in manufacturing systems: re-
configurability, robustness, maintainability, controllability, complexity, verification, and
reusability. This set of requirements is finally associated with a collection of qualitative key
performance indicators (KPI): modularity, integrability, diagnosability, convertibility, falt
tolerance, distributability, and developer training re1quirents. Table 11 shows a correlation
between the KPI mentioned and the LMAS specific requirements:

7.1.1 Modularity

Modularity is a critical aspect and a key enabler for changeable manufacturing sys-
tems affecting physical and software components. Modularity in computer science involves
the encapsulation and compartmentalization of functionality. According to (BALDWIN;
CLARK, 2006), modularity depends on three specifications:

• architecture: identification of software modules;

• interfaces: definition on how the modules interact;

• tests: verification of the behavior of individual and interacting modules.

For the HCA, the software modules are identified in the agents model (c.f. section
5.2.2), where each agent has a unique set of functions, goals, and knowledge that it should
provide and rely on, in order to fulfill the system’s goals. The agent interaction models
(c.f. section 5.2.5) define the external interactions, whose all the agents are responsible

Chapter 7. Evaluation 114

Table 11 – HCA qualitative analysis.

ID Requirements M
od

ul
ar

it
y

In
te

gr
ab

ili
ty

D
ia

gn
os

ab
ili

ty

C
on

ve
rt

ib
ili

ty

Fa
ul

t
to

le
ra

nc
e

D
is

tr
ib

ut
ab

ili
ty

Tr
ai

ni
ng

re
qu

ir
em

en
ts

R
es

ou
rc

e

RQ-01 Multipurpose station and resources × - - - × - -

RQ-02 Fabric model / Shop floor management × - × - × × ×

RQ-03 Mobile resources / temporary station
locations × - - - - - ×

RQ-04 Spatio-temporal order relations between
stations and resources × - - - - × ×

P
ro

du
ct RQ-05 Products, parts and assemblies

structures (physical relationships) × - - × - - -

RQ-06 Products, parts and assemblies
manufacturing data and information × - - × - - -

P
ro

ce
ss RQ-07 Individual order routes × - - - - × ×

RQ-08 Interface to transportation services × - - - - × -

D
es

ig
n

pa
tt

er
ns

RQ-09 Global manufacturing plan × - - - - - ×

RQ-10 Strategies for delay and failure
compensation × - × - × × ×

RQ-11 Central control / Central monitoring - - × - × × ×

RQ-12 Decentralized order execution × - × - × × ×

RQ-13 Ontology-based × × - × - - ×

RQ-14 Type/Instance × - - × - - -

for carrying out. The definition contained in the agent model (knowledge, functions, and
goals) represents the necessary information that one needs to know in order to create
meaningful unit tests regardless of the chosen software implementation language.

Chapter 7. Evaluation 115

7.1.2 Integrability

Integrability is related to a system’s ability to quickly and effectively integrate
mechanical, informational, and control components with an executing system. This is
especially crucial for manufacturing systems that depend on legacy technologies (e.g.
not compatible with Industry 4.0 standards). The integrability heavily relies on the
programming language chosen and how it facilitates the implementation of new software
and technologies. Integrability is then evaluated by the following aspects (KRUGER;
BASSON, 2018):

• interfaces to integrate with "foreign" code (e.g., contributions from external
partners);

• provision of libraries or functions to implement communication protocols.

According to table 9, the chosen robotic framework is ROS. Officially and counting
with the day-to-day community support, ROS supports C++ and Python. However, ROS
has "under development" libraries that allow for various other programming languages
that are highly used, such as Java and JavaScript. The integrability is even higher when
considering the number of libraries and packages available for ROS (e.g., navigation,
motion planning, machine vision, drivers for sensor and actuators, 3D models for robotics
and equipment). ROS itself is built under the modularity ad integrability concepts. ROS
allows developers to re-use code, regardless of the programming language used to write
them.

7.1.3 Diagnosability

Diagnosability refers to the system’s ease and speed to detect the source of problems
and associate a quality. According to (KRUGER; BASSON, 2018) diagnosability is
associated with the following factors:

• functionality for construction tests to identify the cause and location of errors;

• the built-in functionality or mechanisms for monitoring communication and
execution.

The proposed agent models (c.f. section 5.2.2) provide a "get_status" function for
all holon types. The "get_status" function allows external systems to query the current
holarchy and get the status of an individual holon or a group of holons. The state model
(c.f. section 5.2.4) is part of the holon’s status, and monitoring systems can interpret it
in order to identify a FAILURE state among the running holons. The holon achieves the
FAILURE state due to individual behaviors, but ultimately by a fault (e.g., simulated
fault in assembly equipment). Besides the direct assessment of the state model (passive
detection strategy), the status contains the executed operations history (e.g., station and
order holons operations history), allowing for a specialist system to interpret the current

Chapter 7. Evaluation 116

data defining whether the system respects a certain drift tolerance (schedule/executed
performance) or if it should find another optimal solution (active detection strategy).

The order, station, and assembly equipment holons contain interactions and internal
mechanisms that send the holons to a FAILURE, IN_RESETUP, and IN_REPLAN when
a failure is detected in an assembly equipment holon. The holons are equipped with
functions to identify these errors, cancel their current operations and assume the respected
state.

7.1.4 Convertibility

The convertibility feature is associated with how able the architecture is to use
the same functionality to meet new production requirements (e.g., rush order, station
shutdown) (KRUGER; BASSON, 2018). In other words, convertibility introduces the
idea of changing the manufacturing system while running. The actual architecture models
provide a collection of mechanisms that allow the operator and external systems to modify
the system’s behavior while the system is running. These functions are:

• replan: this functionality is associated with teh station and order holons. The
replan aborts the current operation and puts the holon in a state where it is
necessary to supply another schedule to make the holon continue its operations;

• resetup: the resetup is associated with the station holon. This service is used
to stop the setup process in the station. The station setup process consists of
forming the station configuration by setting a collection of assembly equipment.
This service is used when an external entity detects a piece of defective equipment
during the station setup process;

• pause: the pause operation is associated with the station, order, and sub-
assembly holons. The pause puts the holon in a paused state, where operations
are not allowed (e.g., assembly operations, move);

• restart: the restart is associated with the station, order, and sub-assembly
holons. It puts the holons back to operation;

• update_schedule: this functionality is associated with the order, station, assem-
bly equipment, and part holons. The update schedule can be used to change the
initial plan provided by the global optimizer when an external system detects
disruptions and decides to change the current schedule;

• load_optimization: this service can be used to load former optimal schedulers.
This functionality might be used when the initial state is close to the system
state when the results were carried out in terms of resources and customer
order. Load optimization facilitates and saves a significant amount of time (e.g.,
optimization run time).

Chapter 7. Evaluation 117

• update_system_knowledge: this functionality allows an external system or
operator to provide new assembly types, part types, assembly equipment type,
assembly equipment, shop floor description, and station type to the system.
Once received a update_knowledge request, the system updates the type holons,
using each type holon’s update_knowledge services.

7.1.5 Fault tolerance

Faults will inevitably occur during the execution of the manufacturing system. The
causes are diverse: programming errors, machine or controller breakdowns, communication
failures, and rush orders. The fault-tolerance refers to remaining operable even when the
system faces a fault or a collection of simultaneous or successive faults. The fault tolerance
capacity can be characterized by the following aspects(KRUGER; BASSON, 2018):

• fault isolation: it is critical to isolate the errors not to propagate them to the
rest of the system;

• fault detection: it is necessary to detect the error and inform the responsible
agents quickly;

• fault handling: it is necessary to handle the detected failures accordingly to
their nature. This action tries to bring the system back to stability.

The architecture models do not provide a list of specific inputs that could conduct
the systems to a state of failure. In other words, this work does not identify types of
different failures in its scope. Instead, this work provides a mechanism to deal with failure,
the switch mechanism holon (SMH). The SMH monitors failures happening in the station
holons. The station holons provide an interface to communicate with assembly equipment
holons and listen to possible failures. The failure perception should start at the bottom
level (assembly equipment holon). After detection, the failure is transmitted to a higher
level holon (station holon). The station holon transmits the information of failure to the
SMH that decides whether to order the stations to correct the failure following the current
global plan (e.g., replacement of a defective assembly equipment holon) or a complete
reconfiguration (save the current operations history, reset the system and require a new
global plan considering the defective equipment and the already executed operations).
This behavior allows the system to isolate the errors (other stations are not affected by
unrelated assembly equipment), identify the error (SMH identifies which station is defective
and takes a decision), and handle the actions based on a decision algorithm (this decision
algorithm is not part of this dissertation, but the HMS holon is supposed to contain such
algorithm).

Chapter 7. Evaluation 118

7.1.6 Distributability

The HMS concepts are related to distributed/decentralized control. The distribution
of control enables robustness and portability (KRUGER; BASSON, 2018). When a system
execution is distributed among various controllers, it simplifies the application of correction
mechanisms, allows for computational resources saving, and improves computational
performance. (KRUGER; BASSON, 2018) classify as essential aspects for distributability:

• architecture models should facilitate distribution;

• the communication between distributed control units should be facilitated.

The current architecture distributes the system into six platforms (c.f. table 10):
scheduler, database, shop floor, execution control, assembly equipment i, and system
knowledge. This platform distribution favors the balance of computational resources. The
communication among the distributed control units is facilitated because all the holons
should be wrapped into the ROS framework. The ROS framework already gives all the
communication protocols for message exchanging and service providing. The legacy or
novel system integration should face the same process, ROS wrapping.

7.1.7 Developer training requirements

Developers should understand the HMS concepts to change the system behavior
effectively. The availability of professionals aware of the concepts is scarce, and the
instruction in HMS and HCA concepts is time-consuming (KRUGER; BASSON, 2018).
According to (KRUGER; BASSON, 2018) the developers should be able to:

• implement holon behavior;

• implement concurrency in HCA;

• implement mechanisms for external communication;

• verifies the functionality of the control implementation.

HCA systems are complex and intricate engineering artifacts. The autonomous
behavior requires careful analysis and debugging to avoid deadlock conditions and demands
a significant amount of time for development. Therefore, the distributed system also requires
engineers to understand and deal with complex software techniques for both development
and testing.

The developers count on the ANEMONA models (agent, interaction, and orga-
nization) to understand the system behavior. The ANEMONA models are composed of
individual agent models and their required interactions. The developer understands the
agent behaviors through the agent model while the necessary message exchange definition
is exposed to the reader with the interaction models. Besides the understating of the HCA
models, it is necessary to be trained in the ROS framework. ROS developers count on a

Chapter 7. Evaluation 119

broad community of developers and plenty of available tutorials covering basic to advanced
concepts. The learning curve for ROS is unavoidably long, but once understood, ROS can
serve as an answer for practitioners in the industry, especially when interoperability is a
critical requirement.

7.2 Execution analysis
The section evaluates the HCA prototype quantitatively under two situations: UC1

- normal execution; and UC2 - disruption during normal execution. First, the data used as
input for customer orders is explained in terms of processing time for a family of pumps.
Consecutively, a detailed breakdown of input order complexity and shop floor capabilities
is explained (e.g., the maximum number of operations per station, maximum number of
simultaneous stations). Ultimately, the UC1 execution is presented, focusing on the delay
between the planned and executed schedule scenarios. The tests for UC2 are carried out
focusing on the system adaptability performance, considering a simple strategy to recover
the system from assembly equipment failures.

7.2.1 Industrial pumps

The customer order inputs consist of multiple pairs of type of pump and its quantity.
It is considered pumps of three product families (A, B, and C). The number of operations
per pump type is shown in figure 12:

Table 12 – Number of operation in pump families..

Pump type name Number of operations

PUMP TYPE A1 16

PUMP TYPE A2 16

PUMP TYPE A3 16

PUMP TYPE B1 20

PUMP TYPE B2 20

PUMP TYPE B3 20

PUMP TYPE C1 15

PUMP TYPE C2 15

PUMP TYPE C3 15

Initially, the operations’ processing time was known just for PUMP TYPE A1,
PUMP TYPE B1, and PUMP TYPE C1. In order to create variability of complexity to

Chapter 7. Evaluation 120

challenge the HCA prototype under different conditions, the subsequent pumps of type
2 and 3 for the respective families were generated, multiplying the base time from type
1 by 1.25 and 1.5 respectively (e.g., A1 = 10 s, A2 = 12.5 s, A3= 15 s). Details on the
processing times are shown in the appendices A, B, and C.

Originally, the precedence graph of operations was given in the format of a directed
graph. The possible sequence of operations is greater than one if one considers all possible
variants on how to follow the sequence of the operations. In order to simplify the input,
the HCA prototype executes a topological sort algorithm to derive one possible linear
sequence of operations. In this way, the operations are executed linearly from the product
perspective. This implies that there is no possibility of parallel execution for the same
product, but of course, this property does not hold when considering different products.
Consequently, when considering the appendices A, B, and C, one should consider the
following precedence, figure 48, for the pump families (when creating the types 2 and 3,
the precedence is kept).

7.2.2 Input data

In order to generate meaningful and challenging input data (product and shop floor
capabilities complexity) for the UC1 and UC2 evaluation cases, two levels of complexity
were chosen. The low complexity input data is presented in table 13. The axis Y shows
the product complexity, which varies according to the amount products and the blend of
product families in the ordered products. The axis X presents the shop floor complexity,
which varies according to the number of station types, the maximum number of operations
per station, and the maximum number of simultaneous stations.

The high complexity case is presented in table 14. The axes configuration is similar
to the low complexity case. The difference is the number of products required on the
X-axis. Both tables 13 and 14 presents elements in the form of tuples. The tuples are
organized to show the shop floor complexity in the following order:

• number of station types: number of station blueprints offering different capabil-
ities and requirements for their configuration;

• number of maximum operations per station type: the maximum number of
operation types offered per station;

• the maximum number of simultaneous station in the shop floor.

An example is < 8, 2, 3 >, which means a system that can offer up to eight station
types, a maximum of two operations per station type, and a maximum of three stations
operating on the shop floor simultaneously. The input data sets were produced utilizing
the algorithm described in section 6.5.

Chapter 7. Evaluation 121

Figure 48 – Product families A, B, and C operation precedence order graph.

Family A Family B Family C

14

5

1

2

3

4

6

7

8

9

10

11

12

13

15

16

17

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

19

20

3

1

2

4

5

6

7

8

9

10

11

12

13

14

15

Chapter 7. Evaluation 122

Table 13 – UC1 - Normal use case input: low complexity.

Manufacturing flexibility

low medium high

[2 x PUMP_TYPE_A_1]
(32 operations)

P
ro

du
ct

va
ri

et
y

lo
w <16,6,4>

id l1
<16,12,6>

id l2
<8,12,8>

id l3
[1 x PUMP_TYPE_C_1,
1 x PUMP_TYPE_C_2,
1 x PUMP_TYPE_C_3]

(45 operations) m
ed

iu
m

<8,11,4>
id l4

<16,41,6>
id l5

<32,41,8>
id l6

[1 x PUMP_TYPE_A_3,
1 x PUMP_TYPE_B_2,
1 x PUMP_TYPE_C_1]

(51 operations)

hi
gh <8,12,4>

id l7
<16,47,6>

id l8
<32,47,8>

id l9

Table 14 – UC1 - Normal use case input: high complexity.

Manufacturing flexibility

low medium high

[4 x PUMP_TYPE_A_1]
(64 operations)

P
ro

du
ct

va
ri

et
y

lo
w <16,6,4>

id h1
<16,12,6>

id h2
<8,12,8>

id h3
[1 x PUMP_TYPE_C_1,
2 x PUMP_TYPE_C_2,
2 x PUMP_TYPE_C_3]

(75 operations) m
ed

iu
m

<8,11,4>
id h4

<16,41,6>
id h5

<32,41,8>
id h6

[2 x PUMP_TYPE_A_3,
3 x PUMP_TYPE_B_2,
1 x PUMP_TYPE_C_1]

(107 operations)

hi
gh <8,12,4>

id h7 - -

Chapter 7. Evaluation 123

Table 15 – HCA prototype low complexity results.

id *Gap [%]
/Runtime [h]

LMAS
completion time

[s]

HCA
execution time

[s]
Drift [s] Drift rate

[%]

l1 80.1/166.0 27311.6 27362.6 51.0 0.2

l2 39.4/166.0 24046.1 24083.1 37.0 0.2

l3 2.7/166.0 24898.1 24986.2 88.1 0.4

l4 0.0/5.6 24770.6 24816.6 46.0 0.2

l5 3.8/166.0 20207.8 20260.9 53.1 0.3

l6 33.5/166.0 19789.0 19880.9 91.9 0.5

l7 0.0/3.5 38301.8 38333.7 31.9 0.1

l8 20.4/166.0 34396.5 34475.8 79.3 0.2

l9 77.5/166.0 33252.2 33332.4 80.2 0.2

62.0 Average
Note: *The gap represents the difference between the current upper and lower bounds
(Branch-and-Bound algorithm), with 0 % representing optimality. For cases different than 0
%, The LMAS Scheloc algorithm gap was registered after 166 h of Runtime.

7.2.3 UC1 - Normal execution
7.2.3.1 Execution drift

The execution drift analysis is motivated by the following qualitative question:
"How well the HCA prototype follows the LMAS optimization results?". The drift analysis
evaluates the differences in execution time of the planned and executed situations for
specific input data. The drift analysis consists of the execution of the input data sets
presented in section 7.2.2 and the drift analysis followed by reasoning about the possible
causes for it.

Table 15 and figure 16 highlight the execution results for the two test batches
(low and high complexity). The tables present the drift (LMAS HCA completion time
v.s. planned completion time) and the execution time in seconds for both situations. An
average delay of 62.0 s is detected in the low complexity execution, and a delay of 108.1 s
is detected during the execution of the high complexity test batch. The cases h8 and h9
are not presented because the LMAS optimization algorithm could not generate a suitable
schedule within a reasonable time (the optimization was set for a max of 166 h).

Chapter 7. Evaluation 124

Table 16 – HCA prototype high complexity results.

id *Gap [%]
/Runtime [h]

LMAS
completion time

[s]

HCA
execution time

[s]
Drift [s] Drift rate

[%]

h1 97.3/166.0 42123.0 42267.8 144.8 0.3

h2 84.2/166.0 26216.4 26290.9 74.5 0.3

h3 15.3/166.0 26358.2 26493.7 135.5 0.5

h4 30.9/166.0 37929.3 38002.3 73.0 0.2

h5 34.7/166.0 21882.0 22001.9 119.9 0.5

h6 62.7/166.0 21545.9 21667.0 121.1 0.6

h7 90.7/166.0 64935.6 65023.5 87.9 0.1

h8 - - - - -

h9 - - - - -

108.1 Average
Note: *The gap represents the difference between the current upper and lower bounds
(Branch-and-Bound algorithm), with 0 % representing optimality. For cases different than 0
%, The LMAS Scheloc algorithm gap was registered after 166 h of Runtime.

The increase in the drift is expected because of the increase in product complexity.
The more the products are under production, it is expected to receive more transport
requests and more operation processing requests. Generally, the delay increases as the
number of transports increases. Though planned by the global optimizer, each transport
and operation requires additional time due to the ROS action server mechanisms. Figure 49
highlights how the drift increases depending on the number of transport requests. However,
the drift detected is negligibly relevant compared to the test completion time. The detected
drift represents less than 0.6 % (drift rate in tables 15 and 16) of the theoretical completion
time in all cases.

As the drift represents a small portion of the theoretical time, it becomes irrelevant
compared to the operation execution time order of magnitude. For this reason, the
theoretical throughput derived from the LMAS optimization algorithm is not changed in
a significant way. The drift analysis is essential because it shows how the designed models,
in the form of an implemented prototype, performed regarding the reliability according to
the theoretical optimal schedule. Classical analysis such as throughput or resource usage

Chapter 7. Evaluation 125

analyzes the optimization algorithm but not the HCA.

Figure 49 – HCA prototype execution drift analysis.

7.2.4 UC2 - Disruption
7.2.5 Test preparation

The following section evaluates the deployed disruption model described in sub-
section 5.2.5.5: the local fix: replacement of a defective assembly equipment holon; and
reorganization: complete reoptimization of the system in the point of failure.

The prototype was implemented to deal with a very simple disruption: a failure is
triggered in the lowest level (assembly equipment holon) containing the strategy to be
followed by the switch mechanism holon, local fix (heterarchical), or complete reorganization
(hierarchical). After receiving the failure simulation request, the assembly equipment holon
follows the procedure described in section 5.2.5.5. In order to test the disruption model,
two data sets were selected (id l3 of table 13 and id h4 of table 14). The procedure adopted
to test is the following:

1. Select an operation in which a failure will be simulated to test the disruption
model;

2. Execute the architecture prototype;

3. Wait for point in the simulated time, when the selected operation finishes, to
simulate the failure containing an indication to follow a local fix or a complete
reorganization;

4. Simulate the failure in an assembly equipment holon associated with the station
holon in which the targeted operation is being executed;

5. Wait until the execution is complete;

Chapter 7. Evaluation 126

6. Analyze the results;

The objective is to test the two approaches and evaluate which one produces a
final solution with the smallest completion time value. A visual representation eases the
comprehension of the temporal aspect of the input data set in figure 50a and 50b. Adopting
the described procedure for the two input test data sets, and for the two disruption handling
strategies, a test recipe is produced, and it is represented in the table 17. The two strategies
are triggered at the end of a selected operation for each test.

(a) Id l3 UC2 test representation. (b) Id h3 UC2 test representation.

Table 17 – UC2 test recipe.

id Operation Strategy AEH SH
Expected

failure
time [s]

1 l3 AH-0-OP-A-1-9 LOCAL_FIX rt1_2_13 SH_5 13375.5

2 l3 AH-0-OP-A-1-9 REORGANIZATION rt1_2_13 SH_5 13375.5

3 h3 AH-3-OP-A-1-11 LOCAL_FIX rt2_9_20 SH_3 16960.9

4 h3 AH-3-OP-A-1-11 REORGANIZATION rt2_9_20 SH_3 16960.9

-> test trial sequence number | AEH -> Assembly equipment holon | SH -> Station holon

7.2.6 Test results

The test execution was performed in the same configuration as the normal case in
section 7.2.3 (e.g. simulated environment). An example of execution is exhibited for the
rounds #1 (local fix) and #2 (reorganization) in figures 51 and 52 respectively. Figures
53 and 54 show a scaled-down version of the completion graphs for the id l3 and h3
respectively. These figures enable the reader to identify the time consumed during the
local fix and the optimization. Here, just the period not associated with the handling is

Chapter 7. Evaluation 127

scaled down. The final results, also including the cases #3 and #4, are compiled in the
table 18.

Figure 51 – Id l3 local fix completion graph.

Figure 52 – Id l3 reorganization completion graph.

7.2.7 Test analysis

The outcome from the execution provided results for further analysis.

• Disruption handling executed on a different point in time: depending on the
execution state and the number of affected order holons, the system might not
stop right after the completion of the selected operation for disruption. This
behavior is observable because the architecture prototype was implemented

Chapter 7. Evaluation 128

Figure 53 – Id l3: Local fix vs. Reorganization strategies scaled down completion graph.
LOCAL_FIX and REORGANIZATION are scaled to 1. The remaining time
is scaled down 50 x.

Figure 54 – Id h3: Local fix vs. Reorganization strategies scaled down completion graph.
LOCAL_FIX is scaled to 1. The remaining time is scaled down 50 x.

Chapter 7. Evaluation 129

Table 18 – UC2 execution results.

Step l3 h3

Normal execution completion time [s] 24986.2 26493.7

Local fix completion time [s] 26279.3 26505.6

Reorganization completion time [s] 26037.8 39405.9

Local fix duration [s] 44.6 25.4

Reorganization duration [s] 178.5 11889.2

Failure time local fix [s] 14690.1 17039.4

Failure time reorganization [s] 14716.7 18076.8

Optimization gap [%] 0.0 39.7

considering that each affected order holon should be stopped in sequence. In
order to stop each order holon, the order holon should not be executing any
operation. If an operation is being executed, the order holon waits until its
completion. As the order holons are stopped sequentially, order holons that
were not informed continue their execution, and that can cause delays in the
disruption handling;

• LOCAL_FIX run-time shorter than the REORGANIZATION run-time: The
LMAS optimization algorithm has a complexity that scales up quickly, depending
on the number of operations. That means, in cases where the number of
operations is high, the optimization algorithm might require a long run time to
generate a feasible solution. That general hypothesis promotes the idea that the
local fix is always a quick solution when it comes to completion time. However,
for some instances, when the number of operations to be executed after the
failure is not significant, the optimization algorithm produces results comparable
with the local fix time, which in specific situations can generate a reduced value
of completion time compared with the local fix solution. That case is observed
for id l3 in the figure 53.

130

8 Conclusion

This dissertation executed the action research methodology to answer the research
question "How does an LMAS production and control system architecture need to be
designed?". The introductory section presented the justification for an HCA approach for
LMAS based on the increased flexibility and customization carried by the Industry 4.0
context and the related requirements mandatory for an LMAS HCA application. Ground
concepts such as HMS, agents, Industry 4.0, and Cyber Production System were presented
in chapter 3.

Chapter 4 revised relevant contributions in the field of HMS/HCA, and research
works in the area of manufacturing ontologies that have a significant impact on the LMAS
paradigm. The revision over the related HCA scientific reference contributions identified
the need to define a novel HCA architecture respecting the requirements of LMAS. The
definition of an HCA for LMAS was primarily motivated by the lack of interaction model
definitions for individual work routes and explicit dynamic station configuration features.
Additionally, during the revision of reference manufacturing ontologies, the need to define
an ontology covering the main concepts used in the HMS and LMAS supporting the
agent and interaction models of ANEMONA models was identified. The definition of a
new ontology, namely Holonotlogy, in a .owl format was motivated by the lack of public-
available contributions in the digital format of ontologies that hold concepts related to
holonic systems. The specific objective of "HMS methodology definition" was completed in
this chapter.

In the first part of chapter 5, the list of specific LMAS requirements, simplifications,
and goals was summarized. The LMAS requirements were inspired by the UC1 and
UC2 presented in chapter 3. The analysis of both user case diagrams originated a list
of 63 requirements that need to be respected by the architecture models. The list of
25 simplifications summarizes the relaxation applied in the models and consequently is
reflected in the prototype. It was elected 11 goals for the LMAS systems based on previous
contributions in the LMAs universe and specific aspects of this dissertation such as "Launch
and control the system dynamic station setup process utilizing the assembly equipment
available on the shop floor".

The second part of chapter 5 presented the core contribution of this dissertation:
the architecture models (organization, agent, agent state, interaction, and environment
models) that conceptualize the HCA approach for LMAS. The models were designed
following the ANEMONA methodology, a multi-agent methodology specially designed for
holonic manufacturing systems. Unlike the revised related work, the interaction and agent

Chapter 8. Conclusion 131

models covering the station holon were especially considered an individual holon and an
abstract agent following the ANEMONA methodology (agent formed by the collaboration
of other agents). The interaction models considered the interaction units necessary to
unify temporarily a set of agents and operations to dissolve them when required in other
places or processes. The Order execution interaction diagram covered the individual
order routes, where order, assembly equipment, sub-assembly, station, part, and database
holons collaborate to guide the parts and control the operation execution through the
shop floor. As a complement for the agent models, the state models for the main holons
(assembly equipment, station, part, station, and sub-assembly holons) are presented. The
state models contain the states and transition functions necessary to translate the agent
behavior specified by the models to the holons implementation serving simultaneously as
a basis for entities interested in the actual state of external entities. The specific objective
of "design of HMS architecture models" was completed in this chapter.

The Disruption handling interaction diagram presented the model that captures
the behavior executed when dealing with failures. The declared behaviors (LOCAL_FIX
and REORGANIZATION) are a simple correction mechanism, but their implementation
emphasizes the need to deal with disruptions dynamically and serves as a basis to test
cases for UC2. LOCAL_FIX deals with a simple replacement of the defective assembly
equipment while the REORGANIZATION deals with the system total reconfiguration
using the optimization layer to optimize the considering operations to be executed from
the point where the failure was detected.

Chapter 6 key finding was the implementation aspects used in the HCA prototype,
where the author uses the ROS framework to implement the models. Chapter 6 presented
the result of an essential step of the ANEMONA methodology, the agent template, which
the author adapted to create the ROS Template containing ROS-based terminology such:
services, topics, and action servers. Additionally, in chapter 6, the development framework
to create an ontology called Holontology was presented. Holontology is composed of 2
sub ontologies, also created in the context of this work, that contain concepts of cyber
and physical worlds, respectively. The main elements of Holontology were inspired by the
MASON and MaRCO reference manufacturing ontologies. A data model was created based
on Holonology and applied to the HCA prototype. This data model can be considered as an
extension to the ANEMONA models. In order to test the prototype with challenging input
data, an algorithm for an input data test generator was presented. It utilizes sewage pump
assembly information from industry and input about additional randomness on operation
execution times, the number of maximum different operations per station (capabilities), as
well as the average count of resources per station and its variance. Towards the software
implementation, chapter 6 presents the reasoning for using ROS as the standard framework
for the prototype and the ROS meta-packages used in the implementation. The following
specific objectives were completed in this chapter: "design and implementation of a data

Chapter 8. Conclusion 132

model based on a higher-level ontology"; "implementation of the HMS architecture utilizing
a robotic software framework platform as a prototype"; "integration of the architecture
prototype with former modules of LMAS".

Chapter 7 showed a detailed analysis of the proposed architectural models. The
analysis was two-folded. Therefore, the first part focuses on evaluating the qualitative
aspects: integrability, diagnosability, convertibility, fault tolerance, distributability, and
developer training requirements. The second part is focused on the time difference between
the global schedule and the executed scenario in the normal execution (UC1) and during
disruption handling (UC2). A procedure was presented to test the normal use case (without
disruptions) under low and high complexity cases, highlighting the scheduled and executed
scenario differences. The difference proved irrelevant or insignificant, on average less than
0.6 % of the completion time, due to the nature of the operation execution times (long
execution). The delays are related to the communication mechanism applied for the
prototype use: ROS action and normal servers. For the UC2, one low and high complexity
cases were selected in order to verify the behavior proposed by the models for two
different strategies (LOCAL_FIX and REORGANIZATION), followed by an analysis that
indicates when one or the other scenario might be beneficial to choose in order to handle
the disruption and finish the execution in the least time as possible. In a general evaluation,
the LOCAL_FIX should be used when there are not a considerable number of operations
to be executed after the moment of failure. In that case, the REORGANIZATION would
require a significant runtime to optimize the new schedule. The following specific objectives
were completed in this chapter: "evaluation of the prototype’s software logic and proposed
holonic features in a simulated environment"; "quantitative and qualitative analysis of the
simulated trials in order to support the answer to be given to the research question". In
summary, the author elects the following topics as main guidelines to answer the research
question:

• Architecture models: the architecture should follow a multi-agent methodology
in order to create the conceptual models. Multi-agent models bring best practices
and guidelines to design optimal distributed software systems. The advantages
of the multi-agent systems are related to the distributed processing of operations,
enabling the system to act quickly on income failure even to collaborate to follow
an optimal global plan given by one specialized entity. The conceptual models
should be aligned with the requirements for an LMAS, converting the hierarchical
and heterarchical demands. The author particularly recommends ANEMONA
methodology due to the bias to the holonic manufacturing systems; a concept
developed aiming to benefit from the best of hierarchical and heterarchical
worlds. The models are mandatory and act as an architecture recipe structuring
how the holons in the system should behave depending on upcoming internal

Chapter 8. Conclusion 133

and external events. The individual order routes and station reconfigurability
should be presented in the models to respect the LMAS essential dynamic
requirements;

• Ontology: the ANEMONA’s Agent Template (modified in this work to adapt
to the ROS reality) requires the definition of an ontology for the agent data
model. Inspired by this requirement and by the latest development in the
semantic web and its advantages (e.g., interoperability), the author strongly
recommends starting the development of an HCA from an ontology. Following
that recommendation, the researcher will soon be challenged with the definition
of interaction and agent data concepts that later on can be added to the
interaction and agent models, regardless of the chosen methodology. Ontology
is a technology that has gained a revival of emphasis in the last years in
the manufacturing field. The revival might be related to the interoperability
requirements imposed by the complex systems that compose a typical CPPS;

• Robot Operating System (ROS): The ANEMONA methodology presents the
JAVA framework library JADE as the standard to enable the agent behavior.
However, the author, inspired by his background and supported by the latest
developments in robotics, suggests applying a different framework (ROS) when
the intention, later on, is to apply the architecture to highly automated and
robotized systems. ROS presents numerous advantages when it comes to the
re-use of specialized algorithm code packages (e.g., mapping, navigation, SLAM,
dynamic motion planning) and "do not invent the wheel if you already have the
wheels to use";

• Disruption handling: To enable the system to undergo disruption scenarios
robustly (e.g., defective components, rush orders, and misalignment between
executed and scheduled scenarios), the author highly recommends considering
in the interaction models strategies to deal with such scenarios. The strategies
might use the entity’s autonomy or follow a more rigid procedure. That depends
on a reasoning mechanism and the system’s stability (a chaotic state might
result from a highly competitive agent system). The strategies applied were
the LOCAL_FIX and the REORGANIZATION. When the objective is to
reduce the completion time, the preference for choosing between them varies
according to the execution state. If the system is interrupted "close enough" to
the current job input termination, the required optimization run time is not
significant, promoting the REORGANIZATION strategy. When there are a
significant amount of operations to allocate, the preferred strategy becomes the
LOCAL_FIX.;

• Simulated prototype: the author recommends investing time for a prototype

Chapter 8. Conclusion 134

realization that could later be used as an evaluation mechanism alongside the
real system. The prototype allows for detecting implementation errors and
model limitations. It is an essential tool for an agile methodology practice when
the client needs to evaluate small but meaningful work packages during the
development cycle.

Although beneficial in various ways (e.g., integration, publisher/subscriber abstrac-
tion, reusability of code), the use of ROS for multi-agent systems brings an additional load
of work when it is necessary to model and implement high-level agent behavior; ROS is
not an agent specific platform. ROS could be used with multi-agent specific platforms as
an alternative solution in future contributions, bringing the agent abstraction and interop-
erability together. The use of the ontological approach presents numerous advantages, as
cited before. Although intended for a higher level of operations, such as inferring data in a
specific domain, this work’s result ontology serves mainly to present a structured manner
to derive a data set from it

The ANEMONA methodology brings a set of guidelines and the necessary documen-
tation to understand how to apply multi-agent systems in HCA models. As a consequence
of its extensive documentation, the execution of the method to apply ANEMONA is
lengthy due to the high number of steps, slow learning curve, and iterations necessary
for model refinement. Also, the availability of examples with variations of the provided
notation is scarce (excluding those in the textbook). Making use of such methodology
makes one rely mainly on the authors’ main textbook. The unavailability of an ANEMONA
design tool also requires the development of drawings and figures by its users, which might
lead to misunderstandings in different solution comparisions.

This dissertation does not focus on an intricate mechanism to decide which approach
to follow during a disruption scenario. That could be understood as a reasoning entity
that autonomously decides what strategy to follow (e.g., targeting a specific objective:
least completion time, save energy, save resources) instead of requiring user input. The
automatic translation from an ontology artifact (e.g., .owl file) to the data model applied
in the prototype is not covered. The architecture prototype was not tested in a distributed
system. The drift between executed and scheduled scenarios might be higher in such a
case.

As future contributions, the results presented in this work suggest the need for
more powerful disruption handling of operations occurring in industrial practice (e.g.,
allocation of operations based on alternatives in their operation sequences); the comparison
of the architecture execution with a DES simulated environment approach, which is a
tool that might be useful when it comes to the simulation of execution uncertainties and
unpredicted behaviors; the decision-making among available disruption handling strategies
is a problem to be investigated; in other words, how to decide to follow a specific strategy

Chapter 8. Conclusion 135

instead of others based on preset manufacturing objectives (e.g., throughout, completion
time, transport time); and the behavior of the architecture prototype when connected to
actual equipment, which would impose an increase in delays and robustness to deal with
uncertainties of the actual assembly process.

136

Bibliography

AHELEROFF, S.; ZHONG, R. Y.; XU, X. A Digital Twin Reference for Mass Personal-
ization in Industry 4.0. Procedia CIRP, v. 93, p. 228–233, 2020. ISSN 22128271.

AMERI, F.; DUTTA, D. An upper ontology for manufacturing service description. In:
ASME (Ed.). Proceedings of the 2006 ASME International Design Engineering
Technical Conferences & Computers and Information In Engineering Confer-
ence, September 10-13, 2006. New York: ASME, 2006. ISBN 079183784X.

BALDWIN, C. Y.; CLARK, K. B. Modularity in the Design of Complex Engineering
Systems. In: . [S.l.: s.n.], 2006.

BARBOSA, J.; LEITÃO, P.; ADAM, E.; TRENTESAUX, D. Dynamic self-organization
in holonic multi-agent manufacturing systems: The ADACOR evolution. Computers in
Industry, v. 66, p. 99–111, 2015. ISSN 01663615.

BASYS. Eclipse BaSyx. feb 2021. Available at: <https://projects.eclipse.org/projects/
technology.basyx>.

BELLIFEMINE, F.; CAIRE, G.; POGGI, A.; RIMASSA, G. JADE: A software framework
for developing multi-agent applications. Lessons learned. Information and Software
Technology, v. 50, n. 1, p. 10–21, 2008. ISSN 0950-5849. Special issue with two special
sections. Section 1: Most-cited software engineering articles in 2001. Section 2: Requirement
engineering: Foundation for software quality. Available at: <https://www.sciencedirect.
com/science/article/pii/S0950584907001218>.

BOISSIER, O.; BORDINI, R. H.; HÜBNER, J.; RICCI, A. Multi-Agent Ori-
ented Programming: Programming Multi-Agent Systems Using JaCaMo.
MIT Press, 2020. ISBN 9780262044578. Available at: <https://mitpress.mit.edu/books/
multi-agent-oriented-programming>.

BORANGIU, T.; RĂILEANU, S.; BERGER, T.; TRENTESAUX, D. Switching mode con-
trol strategy in manufacturing execution systems. International Journal of Production
Research, v. 53, n. 7, p. 1950–1963, 2015. ISSN 0020-7543.

BORGO, S.; LEITÃO, P. The Role of Foundational Ontologies in Manufacturing Domain
Applications. On the Move to Meaningful Internet Systems 2004: CoopIS, DOA,
and ODBASE, v. 3290, p. 670–688, 2004.

BOTTI, V.; GIRET, A. ANEMONA: A Multi-Agent Methodology for Holonic
Manufacturing Systems. 1st. ed. London: Springer-Verlag London, 2008. ISBN
1848003099.

BRUSSEL, H.; WYNS, J.; VALCKENAERS, P.; BONGAERTS, L.; PEETERS, P. Refer-
ence architecture for holonic manufacturing systems: PROSA. Computers in Industry,
v. 37, p. 255–274, 11 1998.

BUCKHORST, A. F.; GRAHN, L.; SCHMITT, R. H. Decentralized Holonic Control System
Model for Line-less Mobile Assembly Systems (LMAS). Journal Name: Robotics and
Computer-Integrated Manufacturing, 2021, in Press.

https://projects.eclipse.org/projects/technology.basyx
https://projects.eclipse.org/projects/technology.basyx
https://www.sciencedirect.com/science/article/pii/S0950584907001218
https://www.sciencedirect.com/science/article/pii/S0950584907001218
https://mitpress.mit.edu/books/multi-agent-oriented-programming
https://mitpress.mit.edu/books/multi-agent-oriented-programming

Bibliography 137

BUCKHORST, A. F.; HÜETTEMANN, G.; GRAHN, L.; SCHMITT, R. H. Assignment,
Sequencing and Location Planning in Line-less Mobile Assembly Systems. In: SCHÜPP-
STUHL, T.; TRACHT, K.; ROSSMANN, J. (Ed.). Tagungsband des 4. Kongresses
Montage Handhabung Industrieroboter. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2019. p. 227–238. ISBN 978-3-662-59317-2.

BUCKHORST, A. F.; MONTAVON, B.; WOLFSCHLÄGER, D.; BUCHSBAUM, M.;
SHAHIDI, A.; PETRUCK, H.; KUNZE, I.; PENNEKAMP, J.; BRECHER, C.; HÜSING,
M.; CORVES, B.; NITSCH, V.; WEHRLE, K.; SCHMITT, R. H. Holarchy for Line-
less Mobile Assembly Systems Operation in the Context of the Internet of Production.
In: ELSEVIER (Ed.). Proceedings of the 14th CIRP Conference on Intelligent
Computation in Manufacturing Engineering (ICME ’20), July 14-17, 2020.
Gulf of Naples, Italy: Elsevier, 2020. Available at: <https://jpennekamp.de/wp-content/
papercite-data/pdf/bmw+20.pdf>.

BUCKHORST, A. F.; SCHMITT, R. H. Multi-Staged, Multi-Objective Optimization
for Operation Management in Line-less Mobile Assembly Systems (LMAS). Procedia
CIRP, v. 93, p. 1121–1126, 2020. ISSN 2212-8271. 53rd CIRP Conference on Manufac-
turing Systems 2020. Available at: <https://www.sciencedirect.com/science/article/pii/
S2212827120306119>.

BUSSMANN, S.; JENNINGS, N. R.; WOOLDRIDGE, M. Multiagent Systems for
Manufacturing Control: A Design Methodology. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004. (Springer Series on Agent Technology). ISBN 9783662088722.

CHIRN, J.-L.; MCFARLANE, D. C. A holonic component-based approach to reconfig-
urable manufacturing control architecture. In: IEEE (Ed.). Proceedings of the 11th
International Workshop on Database and Expert Systems Applications, 4-8
Sept. 2000. London, UK: IEEE, 2000. p. 219–223.

CHRISTENSEN, J. Holonic Manufacturing Systems Initial Architecture and Standards
Directions. In: Proceedings of the First European Conference on Holonic Manufac-
turing Systems, 1 December, 1994. Hannover, Germany: First European Conference
on Holonic Manufacturing Systems, 1994.

DERIGENT, W.; CARDIN, O.; TRENTESAUX, D. Industry 4 contributions of holonic
manufacturing control architectures and future challenges. Journal of Intelligent Man-
ufacturing, 2020. ISSN 0956-5515.

FRANKLIN, S.; GRAESSER, A. Is It an agent, or just a program?: A taxonomy for
autonomous agents. In: CARBONELL, J. G.; SIEKMANN, J.; GOOS, G.; HARTMANIS,
J.; van Leeuwen, J.; MÜLLER, J. P.; WOOLDRIDGE, M. J.; JENNINGS, N. R. (Ed.).
Intelligent Agents III Agent Theories, Architectures, and Languages. Berlin,
Heidelberg: Springer Nature, 1997, (Lecture Notes in Computer Science, v. 1193). p. 21–35.
ISBN 978-3-540-62507-0.

GARCIA, E.; GIRET, A.; BOTTI, V. Regulated open multi-agent systems. New
York: Springer, 2014. ISBN 9783319115719.

GAUSEMEIER, J.; MOEHRINGER, S. VDI 2206- A New Guideline for the Design
of Mechatronic Systems. IFAC Proceedings Volumes, v. 35, n. 2, p. 785–790, 2002.
ISSN 1474-6670. 2nd IFAC Conference on Mechatronic Systems, Berkeley, CA, USA, 9-11
December.

https://jpennekamp.de/wp-content/papercite-data/pdf/bmw+20.pdf
https://jpennekamp.de/wp-content/papercite-data/pdf/bmw+20.pdf
https://www.sciencedirect.com/science/article/pii/S2212827120306119
https://www.sciencedirect.com/science/article/pii/S2212827120306119

Bibliography 138

GIRET, A.; BOTTI, V. Holons and agents. Journal of Intelligent Manufacturing,
v. 15, n. 5, p. 645–659, 2004. ISSN 0956-5515.

GIRET, A.; TRENTESAUX, D.; SALIDO, M. A.; GARCIA, E.; ADAM, E. A holonic
multi-agent methodology to design sustainable intelligent manufacturing control systems.
Journal of Cleaner Production, v. 167, p. 1370–1386, 2017. ISSN 09596526.

GOU, L.; LUH, P. B.; KYOYA, Y. Holonic manufacturing scheduling: architecture,
cooperation mechanism, and implementation. Computers in Industry, v. 37, n. 3, p.
213–231, 1998. ISSN 0166-3615.

GRÄSSLER, I.; PÖHLER, A. Implementation of an Adapted Holonic Production Archi-
tecture. Procedia CIRP, v. 63, p. 138–143, 2017. ISSN 22128271.

GUARINO, N. Ontologies and knowledge bases: towards a terminological clarification.
Towards Very Large Knowledge Bases, p. 25–32, 1995.

HERMANN, M.; PENTEK, T.; OTTO, B. Design principles for industrie 4.0 scenarios.
In: IEEE (Ed.). 2016 49th Hawaii International Conference on System Sciences
(HICSS). Koloa, HI, USA: IEEE, 2016. p. 3928–3937.

HÜETTEMANN, G.; BUCKHORST, A.; SCHMITT, R. Modelling and Assessing Line-less
Mobile Assembly Systems. Procedia CIRP, v. 81, p. 724–729, 01 2019.

IÑIGO-BLASCO, P.; RIO, F. Diaz-del; ROMERO-TERNERO, M. C.; CAGIGAS-MUÑIZ,
D.; VICENTE-DIAZ, S. Robotics software frameworks for multi-agent robotic systems
development. Robotics and Autonomous Systems, v. 60, n. 6, p. 803–821, 2012. ISSN
09218890.

JÄRVENPÄÄ, E.; SILTALA, N.; HYLLI, O.; LANZ, M. The development of an ontol-
ogy for describing the capabilities of manufacturing resources. Journal of Intelligent
Manufacturing, v. 30, n. 2, p. 959–978, 2019. ISSN 0956-5515.

JIMENEZ, J.-F.; BEKRAR, A.; ZAMBRANO-REY, G.; TRENTESAUX, D.; LEITÃO, P.
Pollux: a dynamic hybrid control architecture for flexible job shop systems. International
Journal of Production Research, v. 55, n. 15, p. 4229–4247, 2017. ISSN 0020-7543.

KOESTLER, A. The Ghost in the Machine. New York: Arkana Books, 1968.

KRUGER, K.; BASSON, A. Evaluation criteria for holonic control implementations in
manufacturing systems. v. 32, p. 1–11, 11 2018.

LAMNABHI-LAGARRIGUE, F.; ANNASWAMY, A.; ENGELL, S.; ISAKSSON, A.;
KHARGONEKAR, P.; MURRAY, R. M.; NIJMEIJER, H.; SAMAD, T.; TILBURY, D.;
Van den Hof, P. Systems & Control for the future of humanity, research agenda: Current
and future roles, impact and grand challenges. Annual Reviews in Control, v. 43,
p. 1–64, 2017. ISSN 1367-5788. Available at: <https://www.sciencedirect.com/science/
article/pii/S1367578817300573>.

LEE, E. A.; SESHIA, S. A. Introduction to embedded systems: A cyber-physical
systems approach. Second edition. Cambridge, Massachuetts: The MIT Press, 2017.
ISBN 9780262533812.

https://www.sciencedirect.com/science/article/pii/S1367578817300573
https://www.sciencedirect.com/science/article/pii/S1367578817300573

Bibliography 139

LEE, J.; BAGHERI, B.; KAO, H.-A. A Cyber-Physical Systems architecture for Industry
4.0-based manufacturing systems. Manufacturing Letters, v. 3, p. 18–23, 2015. ISSN
22138463.

LEGAT, C.; SEITZ, C.; LAMPARTER, S.; FELDMANN, S. Semantics to the Shop
Floor: Towards Ontology Modularization and Reuse in the Automation Domain. IFAC
Proceedings Volumes, v. 47, n. 3, p. 3444–3449, 2014. ISSN 1474-6670. 19th IFAC
World Congress.

LEITÃO, P.; RESTIVO, F. ADACOR: A holonic architecture for agile and adaptive
manufacturing control. Computers in Industry, v. 57, n. 2, p. 121–130, 2006. ISSN
01663615.

LEMAIGNAN, S.; SIADAT, A.; DANTAN, J.-Y.; SEMENENKO, A. MASON: A Proposal
For An Ontology Of Manufacturing Domain. In: IEEE (Ed.). Proceedings of the IEEE
Workshop on Distributed Intelligent Systems: Collective Intelligence and Its
Applications, 2006. 15-16 June, 2006. Prague, Czech Republic: IEEE, 2006. p. 195–200.
ISBN 0-7695-2589-X.

MONOSTORI, L.; KÁDÁR, B.; BAUERNHANSL, T.; KONDOH, S.; KUMARA, S.;
REINHART, G.; SAUER, O.; SCHUH, G.; SIHN, W.; UEDA, K. Cyber-physical systems
in manufacturing. CIRP Annals, v. 65, n. 2, p. 621–641, 2016. ISSN 00078506. Available
at: <https://www.sciencedirect.com/science/article/pii/S0007850616301974>.

NIST. Foundations for innovation: Strategic R&D opportunities for 21st century
cyber-physical systems: Connecting computer and information systems with
the physical world. Report of the Steering Committee for Foundations in
Innovation for cyber-physical systems. US: NIST, 2013.

NWANA, H. S. Software agents: an overview. The Knowledge Engineering Review,
v. 11, n. 3, p. 205–244, 1996. ISSN 0269-8889.

OBITKO, M.; VRBA, P.; MAŘÍK, V. Applications of Semantics in Agent-Based Manu-
facturing Systems. Informatica (Informatica-Lithuan), v. 34, p. 315–330, 2010.

OLIVEIRA, J. A. B. de. Towards SMART Manufacturing. Lisbon, 2019.

PACH, C.; BERGER, T.; BONTE, T.; TRENTESAUX, D. ORCA-FMS: a dynamic
architecture for the optimized and reactive control of flexible manufacturing scheduling.
Computers in Industry, v. 65, n. 4, p. 706–720, 2014. ISSN 01663615.

PAL, C.-V.; LEON, F.; PAPRZYCKI, M.; GANZHA, M. A Review of Platforms for the
Development of Agent Systems. Computer Science (ArXiv), 2020.

PARK, K.-J.; ZHENG, R.; LIU, X. Cyber-physical systems: Milestones and research
challenges. Computer Communications, v. 36, n. 1, p. 1–7, 2012. ISSN 0140-3664.
Available at: <https://www.sciencedirect.com/science/article/pii/S0140366412003180>.

PUJO, P.; BROISSIN, N.; OUNNAR, F. PROSIS: An isoarchic structure for HMS control.
Engineering Applications of Artificial Intelligence, v. 22, n. 7, p. 1034–1045, 2009.
ISSN 09521976.

https://www.sciencedirect.com/science/article/pii/S0007850616301974
https://www.sciencedirect.com/science/article/pii/S0140366412003180

Bibliography 140

QUINTANILLA, F. G.; CARDIN, O.; L’ANTON, A.; CASTAGNA, P. Virtual
Commissioning-Based Development and Implementation of a Service-Oriented Holonic
Control for Retrofit Manufacturing Systems. In: BORANGIU, T.; TRENTESAUX, D.;
THOMAS, A.; MCFARLANE, D. (Ed.). Service Orientation in Holonic and Multi-
Agent Manufacturing. Cham: Springer, 2016, (Studies in Computational Intelligence,
v. 640). p. 233–242. ISBN 978-3-319-30337-6.

ROS-INDUSTRIAL. Description. 2020. Available at: <https://rosindustrial.org/about/
description>.

SCHUH, G.; ANDERL, R.; GAUSEMEIER, J.; HOMPEL, M. ten; WAHLSTER, W.
Industrie 4.0 Maturity Index. 2017.

SCHWAB, K. The Fourth Industrial Revolution. New York: Currency Books, 2016.

SILVA, E. L.; MENEZES, E. M. Metodologia da Pesquisa e Elaboração de Disser-
tação. Florianópolis, Brasil: UFSC, 2005.

SIMÓN-MARMOLEJO, I.; RAMOS-VELASCO, L. Unified ontology for a holonic manu-
facturing system. Revista Iberoamericana de Automática e Informática Industrial,
v. 15, p. 217–230, 2018.

SIMóN-MARMOLEJO, I.; LóPEZ-ORTEGA, O.; RAMOS-VELASCO, L.; ORTIZ-
DOMíNGUEZ, M. Unified ontology for a holonic manufacturing system. RIAI - Revista
Iberoamericana de Automatica e Informatica Industrial, v. 15, p. 217–230, 01
2018.

TAY, S.; CHUAN, L. T.; AZIATI, A.; AHMAD, A. N. A. An Overview of Industry 4.0:
Definition, Components, and Government Initiatives. Journal of Advanced Research
in Dynamical and Control Systems, v. 10, p. 14, 12 2018.

VALCKENAERS, P. Arti reference architecture – prosa revisited. v. 803, p. 1–19, 2018.

VDI. Cyber-Physical Systems: Chancen und Nutzen aus Sicht der Automation.
Düsseldorf: VDI, 2013.

W3C. https://www.w3.org/standards/semanticweb/. 2015. Available at: <https://www.
w3.org/standards/semanticweb/>.

WANG, L.; HAGHIGHI, A. Combined strength of holons, agents and function blocks in
cyber-physical systems. Journal of Manufacturing Systems, v. 40, p. 25–34, 2016.
ISSN 02786125.

WESER, M.; BOCK, J. D-2.1 Modulares Erweiterungskonzept der BaSys 4.0 Fähigkeitenon-
tologie. 2020.

WOOLDRIDGE, M. J.; JENNINGS, N. R. Intelligent Agents: ECAI-94 Workshop on
Agent Theories, Architectures, and Languages, Amsterdam, the Netherlands,
August 8-9, 1994. Proceedings. 2. printing. ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995. (Lecture Notes in Computer Science, v. 890). ISBN 3540588558. Available
at: <http://www.springerlink.com/content/p7t30695h526>.

YANG, F.; GU, S. Industry 4.0, a revolution that requires technology and national
strategies. Complex & Intelligent Systems, 2021. ISSN 2199-4536.

https://rosindustrial.org/about/description
https://rosindustrial.org/about/description
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
http://www.springerlink.com/content/p7t30695h526

Bibliography 141

YASMEEN, G. Action research: An approach for the teachers in higher education. The
Turkish Online Journal of Educational Technology, v. 7, n. 4, p. 46–53, 2008.

ZEZULKA, F.; MARCON, P.; VESELY, I.; SAJDL, O. Industry 4.0 – An Introduction in
the phenomenon. IFAC-PapersOnLine, v. 49, n. 25, p. 8–12, 2016. ISSN 24058963.

142

A Appendix: Pump type A processing time

Table 19 – Pump Type A operation processing times.

Type
A1

Processing
base time [s]

Type
A2

Processing
base time [s]

Type
A3

Processing
base time [s]

A_1_1 720 A_2_1 900 A_3_1 1080

A_1_2 600 A_2_2 750 A_3_2 900

A_1_3 1320 A_2_3 1650 A_3_3 1980

A_1_4 3600 A_2_4 4500 A_3_4 5400

A_1_5 1800 A_2_5 2250 A_3_5 2700

A_1_6 1080 A_2_6 1350 A_3_6 1620

A_1_7 2160 A_2_7 2700 A_3_7 3240

A_1_8 1320 A_2_8 1650 A_3_8 1980

A_1_9 1140 A_2_9 1425 A_3_9 1710

A_1_10 1500 A_2_10 1875 A_3_10 2250

A_1_11 1320 A_2_11 1650 A_3_11 1980

A_1_12 2100 A_2_12 2625 A_3_12 3150

A_1_13 3600 A_2_13 4500 A_3_13 5400

A_1_14 1320 A_2_14 1650 A_3_14 1980

A_1_15 3600 A_2_15 4500 A_3_15 5400

A_1_16 0 A_2_16 0 A_3_16 0

Total [h] 7.6 Total [h] 9.4 Total [h] 11.3

143

B Appendix: Pump type B processing time

Table 20 – Pump Type B operation processing times.

Type
B1

Processing
base time [s]

Type
B2

Processing
base time [s]

Type
B3

Processing
base time [s]

B_1_1 270 B_2_1 337.5 B_3_1 405

B_1_2 150 B_2_2 187.5 B_3_2 225

B_1_3 150 B_2_3 187.5 B_3_3 225

B_1_4 90 B_2_4 112.5 B_3_4 135

B_1_5 90 B_2_5 112.5 B_3_5 135

B_1_6 210 B_2_6 262.5 B_3_6 315

B_1_7 150 B_2_7 187.5 B_3_7 225

B_1_8 30 B_2_8 37.5 B_3_8 45

B_1_9 120 B_2_9 150 B_3_9 180

B_1_10 120 B_2_10 150 B_3_10 180

B_1_11 120 B_2_11 150 B_3_11 180

B_1_12 360 B_2_12 450 B_3_12 540

B_1_13 60 B_2_13 75 B_3_13 90

B_1_14 270 B_2_14 337.5 B_3_14 405

B_1_15 60 B_2_15 75 B_3_15 90

B_1_16 180 B_2_16 225 B_3_16 270

B_1_17 180 B_2_17 225 B_3_17 270

B_1_18 150 B_2_18 187.5 B_3_18 225

B_1_19 300 B_2_19 375 B_3_19 450

B_1_20 0 B_2_20 0 B_3_20 0

Total [h] 0.9 Total [h] 1.1 Total [h] 1.3

144

C Appendix: Pump type C processing time

Table 21 – Pump Type C operation processing times.

Type
C1

Processing
base time [s]

Type
C2

Processing
base time [s]

Type
C3

Processing
base time [s]

C_1_1 600 C_2_1 750 C_3_1 900

C_1_2 1200 C_2_2 1500 C_3_2 1800

C_1_3 1200 C_2_3 1500 C_3_3 1800

C_1_4 1200 C_2_4 1500 C_3_4 1800

C_1_5 1200 C_2_5 1500 C_3_5 1800

C_1_6 1200 C_2_6 1500 C_3_6 1800

C_1_7 1200 C_2_7 1500 C_3_7 1800

C_1_8 600 C_2_8 750 C_3_8 900

C_1_9 1200 C_2_9 1500 C_3_9 1800

C_1_10 1800 C_2_10 2250 C_3_10 2700

C_1_11 1200 C_2_11 1500 C_3_11 1800

C_1_12 1200 C_2_12 1500 C_3_12 1800

C_1_13 600 C_2_13 750 C_3_13 900

C_1_14 1800 C_2_14 2250 C_3_14 2700

C_1_15 0 C_2_15 0 C_3_15 0

Total [h] 4.5 Total [h] 5.6 Total [h] 6.8

	Acknowledgements
	Epigraph
	Resumo
	Resumo expandido
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	General problem
	Specific problem
	Research question
	Justification
	Objective
	General objective
	Specific objectives

	Scientific contribution
	Organization

	Research and work methodology
	Research methodology
	Work methodology

	Theoretical background
	Industry 4.0
	Cyber-Physical Systems
	Holonic manufacturing systems
	Holonic manufacturing systems history
	Holonic manufacturing system architectures

	ANEMONA methodology
	ANEMONA notation

	Multi-Agent Systems
	Robot operating system
	Asynchronous messages
	Synchronous messages
	Parameter server

	Line-Less Mobile Assembly System
	LMAS Architecture
	LMAS Use Cases
	LMAS Requirements

	Ontology

	Literature review
	PROSA: Product, Resource, Order and Staff architecture
	ADACOR: ADAptative holonic COntrol aRchitecture
	ADACOR²: The evolution of ADACOR
	Pollux
	Virtual Commissioning-Based Development and Implementation of a Service-Oriented Holonic Control for Retrofit Manufacturing Systems
	ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling
	ARTI (Activity Resource Type Instance)
	Holonic architectures review
	The ADACOR ontology
	Unified ontology for a holonic manufacturing system
	MaRCO Ontology
	Ontologies review

	System architecture design
	Architecture analysis
	Requirements
	Simplifications and assumptions
	System goals

	System overview
	Organization model
	Agent model
	Agent model diagrams
	Agent state models
	Interaction model
	Send customer order
	Request optimization
	Configure holons
	Order execution
	Disruption handling

	Architecture models considerations

	System architecture implementation
	System data model
	Ontology
	Data model

	Robotic programming framework
	System platforms and ROS templates
	ROS packages
	Input files generator

	Evaluation
	Architecture model analysis
	Modularity
	Integrability
	Diagnosability
	Convertibility
	Fault tolerance
	Distributability
	Developer training requirements

	Execution analysis
	Industrial pumps
	Input data
	UC1 - Normal execution
	Execution drift

	UC2 - Disruption
	Test preparation
	Test results
	Test analysis

	Conclusion
	Bibliography
	Appendix: Pump type A processing time
	Appendix: Pump type B processing time
	Appendix: Pump type C processing time

		2022-05-18T09:13:43-0300

		2022-05-18T11:05:42-0300

