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ABSTRACT

Public-key cryptography is a ubiquitous building-block of modern telecommunication
technology. Among the most historically important, the knapsack-based encryption
schemes, from the early years of public-key cryptography, performed particularly well in
computational resources (time and memory), and mathematical and algorithmic simplic-
ity. Although effective cryptanalyses readily curtailed their widespread adoption to sev-
eral different attempts, the possibility of actual usage of knapsack-based asymmetric en-
cryption schemes remains unsettled. This Master’s dissertation aims to present a novel
construction that offers consistent security improvements on knapsack-based cryptog-
raphy. We propose two improvements upon the original knapsack cryptosystem that
address the most important types of attacks: the Diophantine approximations-based
attacks and the lattice problems oracle attacks. The proposed defences demonstrably
preclude the types of attacks mentioned above, thus contributing to revive knapsack
schemes or settle the matter negatively. Finally, we present the Nep.Sec, a contest that
is offering a prize for breaking our proposed cryptosystem.

Keywords: Knapsack Problem. Subset Sum Problem. Public-Key Cryptosystem. Merkle-
Hellman Cryptosystem. Lattice Oracle. Diophantine Approximation. Shamir Cryptanaly-
sis



RESUMO

Criptografia de chave pública é um elemento onipresente da telecomunicação moderna.
Dentre os esquemas de encriptação historicamente importantes, os baseados no ‘pro-
blema da mochila’, já nos primeiros anos da criptografia de chave pública, performaram
particularmente bem em termos de recursos computacionais (tempo e memória), e
simplicidade matemática e de algoritmo. Embora criptanálises efetivas tenham pronta-
mente impedido a adoção massiva de diferentes tentativas, o problema da possibilidade
de uso real de encriptação assimétrica baseada no problema da mochila continua não
resolvido. Esta dissertação de Mestrado objetiva apresentar uma nova construção
que oferece avanços consistentes em criptografia baseada no problema da mochila.
Propomos duas melhorias no criptossistema de mochila original, respondendo aos
ataques mais importantes: os baseados nas aproximações Diofantinas e os baseados
nos oráculos de problemas de retículos. As defesas propostas demonstradamente
evitam tais ataques, o que contribui para ou reviver os esquemas de problema da mo-
chila, ou confirmar a impossibilidade dessa questão. Por fim, apresentamos o Nep.Sec,
um concurso oferecendo um prêmio em dinheiro para quem quebrar o criptossistema
proposto.

Palavras-chave: Problema da Mochila. Problema da Soma do Subconjunto. Criptos-
sistema de Chave Pública. Criptossistema de Merkle-Hellman. Oráculo de Retículos.
Aproximações Diofantinas. Criptanálise de Shamir



RESUMO ESTENDIDO

INTRODUÇÃO

A introdução começa estabelecendo conceitos progressivamente complexos para cul-
minar nas definições criptografia simétrica, esquema de encriptação de chave pública
e esquema de assinatura digital. Passamos a listar as definições finais:

Criptografia Simétrica

Uma criptografia simétrica é definida como a 10-upla ordenada

κ = (S, d , T , m, P, K , F , A, A′, C),

onde:

• S é um conjunto de valores de "sementes" (em inglês, "seed") a serem aleatoria-
mente elicitados, tipicamente grandes inteiros;

• d : S → K é uma função injetiva para "derivar" (em inglês "derive") elementos de
K ;

• T é o conjunto de símbolos ou lista ordenada de símbolos de fato empregados na
comunicação textual em claro;

• m : T → P é uma função injetiva (portanto inambígua) o mais natural e trivial
possível para "mapear" (em inglês, "map") fragmentos de textos ("texts") de T

para P;

• P é o conjunto de objetos matemáticos referido pelo jargão como texto em claro
ou texto plano ("plaintext") e que será transformado pelo processo da encriptação;

• K é um conjunto de parâmetros chamados "chaves" ("keys");

• F é uma família de funções ("functions") paramétricas injetivas (mapeamentos
inambíguos) fk : P → C, com k ∈ K tipicamente com as propriedades de confu-
são e difusão;

• A é uma família de algorítmos de tempo polinomial ak que tomam k ∈ K como
parâmetros e p ∈ P como entrada, resultando fk (p), ∀(k , p) ∈ K × P;

• A? é uma família de algoritmos de tempo polinomial a?k que toma elementos
k ∈ K como parâmetros e c ∈ f (P) como entradas, resultando em p ∈ P tal que
fk (p) = c, ∀(k , c) ∈ K × f (P);

Encriptação Assimétrica

Um esquema de encriptação de chave assimétrica pode ser definido como uma 12-upla

κ
? = (S, d , T , m, P, K ?, d?, K , F , A, A?, C),

onde:

1. S, d , T , m, P, K , F , A, C têm as mesmas definições dadas na criptografia simétrica;



2. d? : K ? → K é uma bijeção que pode ser implementada com algoritmo de com-
plexidade polinomial, porém cuja inversa, d?–1 : K → K ?, não;

3. A? é uma família de algoritmos paramétricos a?k , com complexidade polinomial,
que toma elementos k? ∈ K ? como parâmetros, e c ∈ f (P) como entradas, e
produz p ∈ P tal que fk (p) = c, ∀(k , c) ∈ K × f (P);

4. Algoritmos paramétricos para computar a pré-imagem p de qualquer entrada
fk (p) ∈ fk (P), que não toma como parâmetro fixo um objeto polinomialmente
redutíve a k são não-polinomiais. Em outras palavras, saber k (ou algo facilmente
redutível a k ) é necessário para computar pré-imagens de fk facilmente.

Esquema de Assinaturas Digitais

Um esquema de assinaturas digitais pode ser definido como uma 13-upla

χ? = (S, d , T , m, P, K ?, d?, K ,Σ,B, A, A?, C),

onde:

1. S, d , T , m, P, K ?, d?, K , C têm as mesmas definições dadas no esquema de en-
criptação assimétrica;

2. Σ é uma família de funções paramétricas σk? : P → C que tomam k? ∈ K ? como
parâmetros. Estas representam as funções de "assinatura" ("signing functions");

3. B é uma família de funções paramétricas βk : P × C → {0, 1} que tomam elemen-
tos k ∈ K como parâmetros, onde βd?(k?)(p, c) = 1 ⇐⇒ c = σk?(p). Em outras
palavras, βk (p, c) especifica se cada c é ou não a assinatura resultante da aplica-
ção de σ tomando como argumento a chave privada k? = d?–1(k ) correspondente
à pública k , quando aplicada a p. Eles são, portanto, uma função de "verificação"
("verification") de assinaturas;

4. A é uma família de algoritmos paramétricos ak , de complexidade polinomial, que
tomam elementos k ∈ K como parâmetros e (p, c) ∈ P × C como entradas,
produzindo βk (p, c), ∀(k , p, c) ∈ K × P × C;

5. A? é uma família de algoritmos paramétricos a?k , de complexidade polinomial,
que tomam elementos k? ∈ K ? como parâmetros e c ∈ f (P) como entradas,
produzindo p ∈ P tais que fk (p) = c, ∀(k , c) ∈ K × f (P);

6. Algoritmos para computar sigmak?(p), que não tomam um parâmetro polinomial-
mente redutível a k? são não polinomiais. Em outras palavras, saber k? (ou algo
facilmente redutível a k?) é necessário para computar σk? factivelmente.

Motivação, Justificação, Objetivos e Metodologia

Nos demais tópicos da introdução, argumentamos que:

1. O problema da viabilidade de esquemas de encriptação de chave pública ainda
está aberto;

2. Muitos criptólogos continuam fazendo tentativas de viabilizar de fato criptossiste-
mas de tal natureza, entre outras razões, porque as primeiras tentativas prome-
tiam enormes vantagens técnias;



3. Criptossistemas de chave pública baseados no problema da mochila são de fácil
entendimento, o que:

a) torna o criptossistema menos obscuro, portanto mais válido do ponto de vista
do princípio de Kerckhoff;

b) enseja um excelente tópico de introdução à criptologia, álgebra, complexidade
computacional, programação, entre outros, a estudantes;

4. Itens acima justificam o trabalho.

REVISÃO

No capítulo 2, explicamos o criptossistema original de Merkle-Hellman

Parâmetros para o criptossistema Merkle-Hellman original.

dimensionamento (tamanho de bloco) N ∈ N

chave privada (v,α, θ,π) ∈ Z
N × Z× Z× SN

chave pública u ∈ Z
N , com ui = vπi ∗ θ (mod α)

plaintext b ∈ {0, 1}N

ciphertext y ∈ Z, com y = u · b

Decriptação dada por w = y ∗ θ–1%α (aqui, % sendo a operação de resto da divi-
são inteira), seguida da aplicação do "algoritmo guloso" (abaixo) e concluída pela
permutação bi = b′

π–1(i).

Algorithm 1 Algoritmo guloso resolvente do problema da soma da subsequência su-
percrescente Greedy (GS4P sigla em inglês)

1: procedure GS4PS(v, w)
2: w′ ← w . inicialização of w′

3: for i← N, · · · , 1 do . laço sobre os N bits
4: if w′ ≥ vi then . determinação do i-ésimo bit.
5: b′

i
← 1

6: else
7: b′

i
← 0

8: w′ ← w′ – vi ∗ b
′
i

. dedução de vi do resto

9: valid_arg← (w′ == 0) . verificação da validade de w

10: return (b′, valid_arg)

No capítulo 2, também expomos 2 criptanálises ao criptossistema original de Merkle-
Hellman. A saber:

Criptanálise de A. Shamir

Envolve aproximações Diofantinas e programação inteira. Está fora do escopo deste
resumo.





ves, empregando-se, em particular, o corpos finitos isomórficos a Z/p. A eficácea desta
defesa consiste na impossibilidade de se definir normas em corpos finitos, sendo que
normas são necessárias para a definição dos algoritmos resolventes dos problemas
de retículos em que se baseiam as criptanálises.

RESULTADOS OBTIDOS

Os criptossistema proposto consegue:

1. eliminar ordem e, portanto, a criptánalise Shamir — Abordagem do Anel Alterna-
tivo;

2. eliminar norma e, portanto, cripténalises baseadas em oráculos de problemas
de retículo — Abordagem de Álgebra Linear sobre Corpos Finitos;

3. introduzir ‘ruído’ ao vetor u como defesa adicional;

4. uniformizar (as entradas do) texto cifrado, com benefícios explicados ao longo
do texto;

5. possibilidade de eliminar evidências estatísticas do valor de α dada no crip-
tossistema original. Como um bônus, temos também:

6. análise de complexidade de desempenho real simples, uma vez que tais re-
sultados são aproximadamente dados por aqueles do criptossistema original mul-
tiplicado por n;

Dimensionamento mínimo proposto para o criptossistema é dado por

2 ≤ n ≤ N/2 = 128 = l /3 (2)

Potenciais benefícios do prosseguimento deste trabalho, caso criptossistemas basea-
dos no problema da mochila sejam, de fato, viáveis, envolvem o desenvolvimento de
um criptossistema com / que:

1. alta assimetria de complexidade: O(N) para encriptação e decriptação, contra,
no componente do S4P apenas,O(2N/2) para o melhor ataque clássico determinís-
tico conhecido, O(20.291N ) para o melhor ataque clássico conhecido, e O(20.226N )
para o melhor ataque quântico conhecido. Isso leva a

2. alta efetividade do criptossistema se e enquanto criptanálises não são descober-
tas;

3. excelente desempenho em tempo de execução e memória;

4. exercita o conceito de criptossistema homomórfico que os criptossistemas
baseados no problema da mochila usam como componente; tudo isso, sem deixar
de ter

5. elegante simplicidade, requerendo conhecimento básico de matemática para
ser compreendido, implementado e usado;

Próximos passos envolvem ou requerem a investigação de:



1. Aprofundamento da análise de complexidade;

2. Implementação do SRVB em linguagens de alto e baixo nível;

3. Programação do Concurso Nep.Sec como contrato inteligente em uma block-
chain, portanto tornando o Nep.Sec um concurso com requerimento nulo de con-
fiança ‘ganhou-levou’;

4. Aferição se SRVB é Pós-quântico;

5. Adição de um esquema de assinatura digital baseado no problema vetor mais
próximo CVP (sigla em inglês), como o GGH ou o NTRUE;

6. Generalização da Abordagem de Anéis Alternativos para quatérnios ou mudá-
los para inteiros de Eiseinstein;

7. Generalização da Abordagem de Corpos Finitos de primos para polinômios
com grau maior que 0;

8. Demonstração da segurança.
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1 INTRODUCTION

Asymmetric or public-key encryption schemes are highly elaborate constructions

both mathematically and conceptually. For the sake of clarity, we shall now start by

introducing symmetric encryption schemes first.

1.1 SYMMETRIC ENCRYPTION

An symmetric encryption scheme κ can be defined as the triple of finite, non-

empty sets κ = (K , P, C), where ∀k ∈ K , k : P → C is injective, or, in plain English,

K is a set of injective functions having P as domain and C as codomain. The idea

here is that a user would randomly choose a parameter k ∈ K , appropriately called

key for an algorithm that unambiguously maps elements p ∈ P, called "plaintexts",

onto k(p) = c ∈ C, called "ciphertexts". The rationale for the jargon is exactly what it

seems to be: The ‘key’ is used both to make [the meaning of] a text become ‘locked’

(inaccessible or ‘ciphered’) and to make [the meaning of] a, then, ‘locked’ text become

‘unlocked’ (accessible or ‘plain’) again.

Since k is injective, knowledge of k allows user to calculate the pre-image

k–1(c) = p of any c ∈ k (P). A good family of functions K must also bear the properties

of confusion and diffusion, that respectively mean the obfuscation of relation between

c and k and c and p — In depth explanation goes beyond the scope of this work. If

those are indeed met, knowledge of k are not only sufficient, but also necessary for the

attainment of p from c. As a consequence, if the process of selecting k

1. was indeed true random;

2. took place secretly; and

3. It is implausible to conceive that any realistic adversary, however well equipped,

could possibly determine k by exhaustive trial-and-error of all values in K , typically

because |K |, number of elements of K , is too large. We will henceforward refer to

this property of a set as the it or its elements being brute-force resistant;

then user achieves confidentiality of p as a result of secrecy of k , even if c is made

publicly known.

The presented definition could be further nuanced and made more easily under-

standable by the accretion to this tuple of:

1. T the set of all possible clear texts;

2. m : T → P a injection between T and P.

With that, we mean that the elements t ∈ T consists of the actual (arrays of) symbols

used in a completely clear communication — like letters, glyphs, arrays of bits, etc. —
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while P is a set of mathematical objects used by the cryptosystem. m is meant to be

the most natural / easily computable possible mapping between the two. Typically, m is

publicly known and plays no role in impeding the attainment of t from c. Most notations

simply gloss over this definition by just assuming it is trivially implied. For the sake of

simplicity of notation, we adopt the same convention.

Similar nuance can also be applied to K , again with benefit of greater clarity.

We can define set S of the so called seeds, typically integer true randomly generated

numbers, that are then injectively (and deterministically) mapped by a deriving function

d onto K . This nuance is important because failing to impart injectivity to d , or at least,

to make d as injective as possible — i.e.: have as few cases of multiple elements

s1, s2 ∈ S being mapped to the same d(s1) = d(s2) = k , and with the lowest multiplicity

as possible — means that the resulting keys are actually less random, and therefore

more easily guessable by trial-and-error, or, in other words, less secret, than possible.

Another aspect about instantiation of keys that worth mentioning is that it is

critical that the algorithm for computing d(·) (as well as that for drawing s, but this part

tends to be trivially true) has to be as close to uniform in time, memory and energy

resources as possible in order to avoid side-channel attacks. The same applies for any

other cryptographic algorithm or any security critical algorithm, for the same reasons.

Although worth mentioning and indeed critical from the point of view of implementation

and real use, it is important to clarify that side-channel attacks and defenses for them

fall in the intersection of information security and computer engineering, and therefore

in a scope posterior to that of initial mathematical cryptologic conceptualization.

An attentive, more familiarized reader could, at this point, object that our pro-

posed definition fails to encompass and present the concepts of initialization vector,

or message authenticating code. While that is true, both concepts are not strictly nec-

essary for the definition of a symmetric encryption scheme. Furthermore, messages

imbued with one or both of these attributes can be encompassed as belonging to sub-

sets of P bearing specific properties. Therefore, the concepts of initialization vector and

message authentication code are left outside of the scope of this work.

Finally, a more critical objection is that nothing, so far, has been said about

computation of k or k–1, and the notions of parameters for a function or algorithm,

parameterized function and parameterized algorithm have been used interchangeably.

This glossing over can be safely done in the context of symmetric encryption, for which

knowledge of the key k employed for producing ciphertext c = k(p) correspondent

to plaintext p is the necessary, sufficient condition for retrieving the latter. As it will

be clear soon, however, the nuances between these concepts lie at the very core of

asymmetric cryptography. The only remaining caveat to be made is that, likewise with

the implementation of the algorithms for computing d(·), those for k(·) and k–1(·) are

supposed to address concerns about side-channel attacks.
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To summarize, an in detail definition of symmetric encryption scheme would be

a tuple

κ = (S, d , T , m, P, K , F , A, A′, C),

where:

• S is a set of "seed" values to be true randomly drawn, typically large integer

numbers;

• d : S → K is an injective function for "deriving" elements of K ;

• T is the set of symbols or arrays of symbols employed in an actually clear textual

communication;

• m : T → P is a trivial, as natural as possible injective (therefore unambiguous)

mapping between the (fragments of) texts of T and elements of P;

• P is the set of mathematical objects, referred to as "plaintexts" to be actually

transformed by encryption;

• K is a set of parameters called keys;

• F is a family of parametric injective functions (i.e.: unambiguous mappings)

fk : P → C, with k ∈ K typically bearing the properties of confusion and dif-

fusion;

• A is a family of polynomial time parametric algorithms ak , taking elements k ∈ K

as parameters, and p ∈ P as inputs and yielding fk (p), ∀(k , p) ∈ K × P;

• A? is a family of polynomial time parametric algorithms a?k , taking elements k ∈ K

as parameters, and c ∈ f (P) as inputs and yielding p ∈ P such that fk (p) =

c, ∀(k , c) ∈ K × f (P);

1.2 ASYMMETRIC ENCRYPTION

A condensed definition of asymmetric encryption scheme, in the same lines of

that given to symmetric encryption, given above, would be a tuple

κ
? = (S, d , T , m, P, K ?, d?, K , F , A, A?, C),

where:

1. S, d , T , m, P, K , F , A, C have the same definitions as in symmetric cryptography;

2. d? : K ? → K is a bijection that can be implemented with an algorithm of polyno-

mial complexity (i.e.: can be easily computed), but whose inverse, d?–1 : K → K ?,

can’t;
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3. A? is a family of parametric algorithms a?k , of polynomial complexity, taking ele-

ments k? ∈ K ? as parameters, and c ∈ f (P) as inputs and yielding p ∈ P such

that fk (p) = c, ∀(k , c) ∈ K × f (P);

4. Parametric algorithms for computing the pre-image p of any input fk (p) ∈ fk (P),

not taking as input a parameter polynomially reducible to k are non-polynomial. In

other words, knowing k (or anything easily reducible to k ) is necessary to compute

pre-images of fk easily.

1.3 DIGITAL SIGNATURE SCHEMES

Even though our work is not about signature schemes, for the sake of completion,

we will provide a likewise condensed definition of digital signature scheme, given by a

tuple

χ? = (S, d , T , m, P, K ?, d?, K ,Σ,B, A, A?, C),

where:

1. S, d , T , m, P, K ?, d?, K , C have the same definitions as in asymmetric encryption

schemes;

2. Σ is a family of parametric functions σk? : P → C taking elements k? ∈ K ? as

parameters. These are meant to be the signing function;

3. B is a family of parametric functions βk : P ×C → {0, 1} taking elements k ∈ K as

parameters, where βd?(k?)(p, c) = 1 ⇐⇒ c = σk?(p). In other words, βk (p, c) tells

whether c is the signature yielded by the signing function σ taking as argument

the private key k? = d?–1(k) correspondent to the public k , when applied to p.

They are, therefore, meant to verify signatures;

4. A is a family of parametric algorithms ak , of polynomial complexity, taking ele-

ments k ∈ K as parameters, and (p, c) ∈ P × C as inputs and yielding βk (p, c),

∀(k , p, c) ∈ K × P × C;

5. A? is a family of parametric algorithms a?k , of polynomial complexity, taking ele-

ments k? ∈ K ? as parameters, and c ∈ f (P) as inputs and yielding p ∈ P such

that fk (p) = c, ∀(k , c) ∈ K × f (P);

6. Parametric algorithms for computing sigmak?(p), not taking as input a parameter

polynomially reducible to k? are non-polynomial. In other words, knowing k? (or

anything easily reducible to k?) is necessary to feasibly compute σk
? .
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1.4 MOTIVATION

Although more than 40 years have passed since the (public) introduction of

public-key cryptosystems by Whitfield Diffie and Martin Hellman (DIFFIE; HELLMAN,

1976) (in their case, a key agreement scheme), they continue to be an arcane field of

knowledge for most people, and yet their importance in contemporary world can hardly

be overstated. From a simple internet browsing to all forms of online or digital payment,

to digital documents, to cryptocurrencies and online voting systems, they are all made

possible by the nearly ubiquitous — and, nonetheless, grossly underused — powers of

public-key cryptosystems.

Due to their inherent complexity, public-key cryptosystems usually represent the

critical (non-human) component in the systems they are part of, regarding develop-

ment, implementation and run-time costs and effectiveness. Public-key cryptography is,

therefore, a field of both relevance to society as well as a challenging and intellectually

demanding field of knowledge. It provides immediate practical applications for some of

the most abstract fields in mathematics and theory of computation, stretches through

software and electronic engineering, and causes direct, significant impact in delicate

and ever evolving balances between individuals and collectivities.

1.5 JUSTIFICATION

In 1978, two years after the foundational work by Diffie and Hellman (DIFFIE;

HELLMAN, 1976), the latter and Ralph Merkle devised a public-key cryptosystem based

on a particular case of the Knapsack Problem, the Subset Sum Problem, SSP for short

(MERKLE; HELLMAN, 1978). The cryptosystem became widely known as the Merkle-

Hellman, or simply MH Cryptosystem.

Actual implementations of the Merkle-Hellman cryptosystem proved it to have an

excellent time and memory performance (ODLYZKO, 1990). Many cryptologists were

doubtful about its reliability from the beginning (ODLYZKO, 1990), and four years after

its creation, the MH cryptosystem was broken with an attack by A. Shamir(SHAMIR,

1982). There were several more attempts to revive MH, many of which also failed for

either not qualitatively changing the possible lines of attack or proving to be vulnerable

to other types of attacks. Nevertheless, whether or not the usage of a knapsack-based

asymmetric cryptosystem has any future is unsettled. Due to its inherent qualities, new

attempts continue to appear to revive the concept (WANG; HU, 2010) (THANGAVEL;

VARALAKSHMI, 2017).

Progress in either direction will therefore be of keen relevance to the field of

cryptology: If knapsack-based cryptosystems prove to be viable, a highly competitive

algorithm will become available to ciphersuites in web browsers all over the internet. If,

conversely, the viability of knapsack-based cryptosystems is at last disproved, valuable
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scientific resources will be made available for other areas of computer science.

Another benefit, however indirect, can be claimed to derive from the development

and vulgarization of attempts for public-key cryptosystem based on mathematically

simple public-key cryptosystems, as are the knapsack-based ones: mass adoption of

complex information technologies that have public-key cryptosystems at their core will

be helped by the public being made more familiar to public-key cryptography in the first

place.

That in turn could allow entire infrastructures that, without a cyber-security ed-

ucated public will remain impossible. Consider, for example, that if a vast majority of

internet users understood the concept of digital signature, the need for passwords for ac-

counts of multiple web services could be advantageously replaced by the management

of much fewer private keys.

1.6 OBJECTIVES

Our main goal is to help assess the long sought-after viability of knapsack-based

public-key cryptosystems. We present two original improvements upon the original knap-

sack cryptosystem that address the most important types of attacks: the Diophantine

approximations-based attacks and the lattice problems-oracle attacks.

To that point, it is unclear which direction, viability or nonviability of knapsack-

based cryptosystems each proposed improvements points to. As explained above,

either outcome would be beneficial for the field and, therefore, our work does seem to

contribute, however anecdotally, to the elucidation of this question.

As a secondary objective, we also aim at producing a high school–accessible

content on public-key cryptography that could, therefore, contribute to the popularization

of this field.

1.7 METHODOLOGY

Experience shows that it is exceedingly difficult to prove the inexistence of low

complexity cryptanalyses to one given public-key cyrptosystem. A typical public-key

cryptosystem’s life cycle, therefore, is shaped by constant educated guessing by the

community of experts at large on the likelihood of cryptanalyses first: existing; and

second: given that they exist, being discovered, soon enough to curtail the actual

employment of the cryptosystem. As we shall see, this helps establish an alignment

of incentives that favours availability and preservation of technological and scientific

knowledge.

As knowledge applicable to the cryptanalysis of each given cryptosystem is

accumulated over time, deciphering methods with increasingly low complexity arise

and the perceived likelihoods of a polynomial cryptanalysis existing and being found



Chapter 1. INTRODUCTION 24

soon rises. Another way to describe the life cycle of a public-key cryptosytem is that

it can only be deemed secure if and when there is enough knowledge to conclude

effective cryptanalyses for it are (if possible) very difficult to be found, but not enough

to suspect such cryptanalysis is remotely likely to be found soon. Finally, in order for a

cryptosystem to be deemed viable, it must also be competitive regarding the complexity

of the best deciphering methods when compared to other cryptosystems, as well as

the consumption of computational resources.

Each cryptologist being both A: prompted to advance and, particularly, by Kerck-

hoff’s principle, publish knowledge on whatever given cryptanalysis; and B: unable to

prevent any other cryptologist from doing the same (aiming, for instance, at extending

the window of secure usage of the given cryptosystem); causes a Nash equilibrium in

which the individuals (attempt to) do exactly that. This guarantees that the community

as a whole will never cease attempting to close the window of secure employment

of any cryptosystem. Conversely, the latter fact magnifies the importance of constant

development of new cryptographic techniques. Therefore the field of cryptology, due to

the nature of its objects and incentives to agents involved in creating, analysing, and

using them is particularly favorable to disclosure and preservation, testing and updating

of acquired knowledge.

1.8 PUBLICATIONS

BOAS, Yuri da Silva Villas et al. F2MH Cryptosystem: Preliminary analysis

of an original attempt to revive Knapsack-based public-key encryption schemes.

In: 2020 28th Euromicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP). IEEE, 2020. p. 211-215. - Qualis A2

BOAS, Yuri da Silva Villas et al. SRVB cryptosystem: another attempt to

revive Knapsack-based public-key encryption schemes In:27th International Con-

ference on Telecommunications (ICT) on 5-7 October, 2020. - Qualis B1

1.9 STRUCTURE OF THE DOCUMENT

We organize the dissertation as follows:

Chapter 2: revises the original Merkle-Hellman cryptosystem (3.1) and its original

cryptanalysis (3.2).

Chapter 3: presents the two original proposals for defending MH cryptosystem

against cryptanalyses based on diophantine approximations and lattice-problem oracle.

Chapter 4: presents a quantitative analysis of security improvements of said

proposals compared to the original MH.

Chapter 5: conclusion and proposed next steps.
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2 MERKLE-HELLMAN KNAPSACK CRYPTOSYSTEM AND CRYPTANALYSES

MH cryptosystem is a very mathematically elegant and simple public-key cryp-

tosystem, indeed requiring only high school level algebra to be understood. In a few

sentences, it exploits the difficulty of the SubSet Sum Problem (S3P). S3P can be

phrased as follows: Find out which subset —here, the plaintext—, from a certain set

of parcels —the public key—, has its elements totaling a given value —the cipher-

text. As we shall see in session 4, without the addition of further properties, the best

known solutions for this problem have exponential time complexity even for quantum

computation.

Even though the classic definition of the problem refers to subsets of parcels,

actual implementations of cryptosystems involving it can more easily and clearly be

specified with scalar multiplication of a vector of parcels with one of zeroes and ones.

Those two definitions will, henceforward be used interchangeably.

The following is one instance of S3P: Determine what subset X ⊆ S has parcels

summing up y, for: S = {896, 48, 964, 89, 648, 96, 489, 64}, and y = 2461.

A very strong property is required for another set of parcels, that is part of private

key’s. This property grants both the existence of a linear time algorithm for solving S3P

and unicity of the solution (ie.: that the ciphertext is unambiguous), and it can be referred

to as "superincreasingness" or the parcels from a sequence being "superincreasing".

We will henceforward refer to Ssuperincreasing S3P’s as S4PThe other components of

the private key are:

1. a brute-force resistant parameters θ,α for a function F that maps the private

parcels into the public ones destroying superincreasingness while preserving

sums (i.e.: ∀v1, v2, F (v1 + v2) = F (v1) + F (v2)); and

2. a brute-force resistant permutation π ∈ SN of the order of the public parcels in

the public vector relation to their pre-images in the private one. That contributes

to further obfuscate the instance of said function.

In other words, the sender, say, Bob draws parcels from the hard set — a set

devoid of superincreasingness — and proceeds to send their sum to the key’s owner,

say Alice. Alice uses her private key to map the received sum onto the sum that would

be obtained, had Bob used the parcels of the easy set instead — the set having

superincreasing parcels. Alice, then, exploits that property to ascertain which easy

parcels those were, and consequently which one subset of corresponding hard parcels

were chosen by Bob. Ergo, Bob is able to communicate with Alice by encoding his

plaintext onto subsets of hard parcels, whilst an eavesdropper, say, Eve, has no feasible

means to decipher Bob’s ciphertexts.

We shall, now, look into MH and the two main cryptanalyses:
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2.1 THE MERKLE-HELLMAN KNAPSACK CRYPTOSYSTEM

For the basic Merkle-Hellman cryptosystem, the following parameters must be

chosen:

Table 1 – Parameters for the original Merkle-Hellman Cryptosystem.

sizing (block size) N ∈ N

private key (v,α, θ,π) ∈ Z
N × Z× Z× SN

public key u ∈ Z
N

plaintext b ∈ {0, 1}N

ciphertext y ∈ Z

Table 1 contains the parameters for original MH cryptosystem. Here, SN denotes the

symmetric group over {1, · · · , N}. In other words, π is a randomly selected permuta-

tion of N elements (one of the N! possible). v is the private, superincreasing vector.

Superincreasingness of v means:

∀i , 0 <
i–1
∑

j=1

vj < vi . (3)

Namely, the value of each component is positive and strictly greater than the sum of all

previous ones. Parameter α must satisfy

N
∑

i=1

vi < α, (4)

and

gcd(α, θ) = 1. (5)

u is the public vector, given by:

ui = Fθ(vπ(i)) (6)

with

Fθ(v ) = v ∗ θ (mod α) (7)

In summary, we want a homomorphic encryption — an encryption that preserves

an operation — function Fθ : Z/α→ Z/α, that is a permutation of Z/α aiming at obfus-

cating the superincreasingness of the sequence of (the natural integers corresponding

to each of) the vi ’s. The reason for (4) is ensuring that all possible encrypted messages

do ‘fit’ in the codomain Z/α of encrypting function (ie.: encryption is injective), whereas

(5) is we will need a θ–1 that ensures there exists a F–1
θ = Fθ–1, which will be used in

the decryption.
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Optimal key distribution should aim at

∀i , vi ≈ 2N+i and α ≈ 22∗N+1. (8)

The rationale is we have to accommodate not having an unnecessarily ‘sparse’ super-

increasing sequence with not having a too short v1, which would, otherwise, be easy

to guess by blind trial and error (ODLYZKO, 1990). We also must have θ uniformly

distributed among {x ∈ Z/α|gcd(x ,α) = 1}.

Encryption of plaintext b is given by:

y = u · b ∈ Z =
N
∑

i=1

ui ∗ bi . (9)

In other words, user performs a scalar multiplication between public key and plain text.

Decryption of ciphertext y is given by the following 3 steps:

1. First, we compute w = F–1
θ (y ) given by

w = F
–1
θ (y )

(7)
= y ∗ θ–1 (9)

= (
N
∑

j=1

uj ∗ bj ) ∗ θ
–1 =

N
∑

j=1

(uj ∗ bj ∗ θ
–1)

(6)
=

N
∑

j=1

(vπ(j) ∗ θ ∗ θ
–1 ∗ bj ) =

N
∑

j=1

(vπ(j) ∗ bj )
j=π–1(i)

=
N
∑

π–1(i)=1

(vπ◦π–1(i) ∗ bπ–1(i)) =

N
∑

π–1(i)=1

(vi ∗ bπ–1(i)) (mod α)

(10)

In other words, by computing w = F–1
θ (y ) we find exactly the subset sum that the

sender would have obtained had they operated in the private vector v, with secret

permutation π of correspondent entries also being taken into consideration.

2. Next, we must determine that correspondent entries selection and store it in a

variable, say, b′. In other words, we solve S4P. That is done by applying a greedy

algorithm (described below at Algorithm 2):
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Algorithm 2 Greedy Sub Superincreasing Sequence Sum Problem (S4P) Solver

1: procedure GS4PS(v, w)
2: w′ ← w . initialization of w′

3: for i← N, · · · , 1 do . descending loop on the N bits
4: if w′ ≥ vi then . Determine the i-th bit.
5: b′

i
← 1

6: else
7: b′

i
← 0

8: w′ ← w′ – vi ∗ b
′
i

. deduct vi from the remainder

9: valid_arg← (w′ == 0) . Verify validity of w
10: return (b′, valid_arg)

Algorithm 2, above, describes a linear time solution for S4P and takes as input

the recently obtained w and the private superincreasing vector v. The obtained

output to a valid input (an actual plaintext produced with public key) has:

b′i = bπ–1(i) (11)

3. Finally, we proceed as in the last two lines of (10) to find

bi = b′π(i), (12)

or, in other words, undo the effect of permutation to ciphertext, again with linear time.

Now, the explanation of why Algorithm 2 works: (GS4PS), is a, so called greedy

algorithm, which is a loose jargon to refer to algorithms that, in some sense have the

heuristic of ‘doing the most possible at each step or iteration’. Here, we iterate exactly

once on each parcel vi of the private vector v, from the highest (vN ) to the lowest (v1),

and at each such step, we ascertain whether or not that given parcel had been used in

the sum that yielded the ciphertext — hence the classification.

We start by noting that we have a remainder variable w ′, that we initially set to

be w (line 2), which, from (10), equals what the sender would have obtain had they

operated with the parcels of the private key that correspond exactly with those they

actually used. The criterion adopted at every step is straightforward: if and only if the

parcel vi currently being considered can be used to sum up w ′ (line 4), then assume

that was the case, that is, i.e.: assign bi = 1 and discount vi from w , and do the opposite

— bi = 0 and do not discount vi from w — otherwise (or, in other to achieve uniformity

of number of operations independently of input, deduct vi ∗ bi , anyway as indicated by

line 8).

By performing the deduction of w ′ referred to in the previous paragraph, receiver:

1. extends the validity of premise of the criterion used in steps with i ∈ {N, · · · , 2};
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2. provides for him or herself a criterion for determining the validity of the received

ciphertext. Namely, after iteration of i = 1 is done, the referred premise implies

that all contributing parcels of w were discounted exactly once, and therefore w ′

must be zero. This verification is done by assigning to variable valid_arg the

truth value of w ′ = 0 at line 9.

At last, we shall now demonstrate the correctness of the premise that allows for

criterion of line 4. From b′j ∈ {0, 1} and the superincreasingness, if vi ≤ w ′, we have:

∀ 1 ≤ i ≤ N,
i–1
∑

j=1

b′j ∗ vj ≤

i–1
∑

j=1

vj

(3)
< vi ≤ w ′ (13)

and, therefore,
∑i–1

j=1 b′j ∗ vj < w ′. In other words, we know that any subset of {v1, · · · , vi }

lacking vi will sum up strictly less than w ′, thus if there is a solution, it must include vi

(i.e.: b′i = 1). Conversely, if vi > w ′, since all parcels are non-negative (and, in particular,

positive), any subset including vi sum up strictly (even) more than w ′, and therefore if

there is solution, it must exclude vi (i.e.: b′i = 0).

In other words, (13) allows us to, at each step, disregard parcels smaller than

the one currently under consideration as too small to matter. Parcels are considered

in descending order, and therefore that applies for all parcels yet to be considered.

Previously considered parcels no longer matter either because their possible effect has

already been factored in by the deduction of w ′ (in line 8), and, in fact, that deduction

makes sure that, at any given point of the iteration of the loop for a valid input w ∈

v · {0.1}N , w ′ is strictly less than any previously considered parcel, which confirm that

those parcels no longer can contribute to sum up w ′. Every factor is, therefore, irrelevant

to the determination of every other. After considering each of them individually exactly

once, we can conclude that there is no correct solution having any bi different from

what was determined on its corresponding step. Finally, by verifying whether or not

w ′ = w – v · b = 0 at that point, we can also know if this only possible solution for b is

indeed a solution at all.

Ergo, any b ∈ {0, 1}N yields an unambiguous w , and the algorithm is sure to

correctly decrypt it. Conversely, if an invalid w (one such w /∈ v · {0, 1}N ) is provided,

the algorithm will detect its invalidity.

Another way to prove the injectivity of T is as follows: Consider the comparison

of the summations

w1 =
∑

i∈s1

vi , w2 =
∑

i∈s2

vi

of the entries of v indexed by the elements of two subsets s1, s2 ⊆ {1, · · · , N}. Let

all common parcels (those of indexes belonging to s1
⋂

s2) be cancelled yielding an
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equivalent comparison between the summations

w ′1 =
∑

i∈s′

1

vi , w ′2 =
∑

i∈s′

2

vi

of the elements of the correspondent subsets s′1 = s1 – s2 and s′2 = s2 – s1 of remaining

entries. If w ′1 = w ′2 = 0, trivially s1 ⊆ s2 ⊆ s1 =⇒ s1 = s2 and there is nothing to

argue. In the opposite case, let us call M ∈ {1, 2} the set index of that s′x containing

imax = max(s′1 ∪ s′2), and m the other. From the superincreasingness, we know that

w ′m =
∑

j∈sm

vj ≤
∑

j<imax

vj

(3)
< vimax

≤
∑

j∈sM

vj = w ′M

and so, wm < wM . Therefore, s1 6= s2 =⇒ w1 6= w2.

2.2 CRYPTANALYSIS OF THE BASIC MERKLE-HELLMAN CRYPTOSYSTEM BY A.

SHAMIR

In 1984, Adi Shamir presented a polynomial-time algorithm (SHAMIR, 1982)

capable of breaking the underlying Merkle-Hellman cryptosystem. The attack exploits

a vulnerability that comes from the choice of parameters for the scheme.

Again, let v1, · · · , vN be the secret MH key, i.e., a superincreasing sequence,

and u1, · · · , uN the public key, such that

uj ≡ vπ(j)θ (mod α), (14)

for j = 1, · · · , N, where π is some random permutation and (θ,α) are secret parameters

such that gcd(θ,α) = 1. A reasonable argument shows that a good choice of parameters

would be

v1 ≈ 2N (15)

and

vN ≈ 22N . (16)

In fact, by keeping vi ’s approximately within the range from 2N to 22N , we seek

to achieve both security and efficiency requirements related to the expansion factor for

the scheme. In terms of efficiency, we are avoiding excessively large values for the vi ’s

and, consequently, for wmax , since the encryption of an n-bit plaintext yields roughly

log2α bits of ciphertext. The ciphertext has a maximum number of bits given by log2nα

since each term of the public sequence is an integer modulo α, and ciphertext is the

sum of at most n of these terms. Hence, the expansion factor is given by

d =
N

log2Nα
. (17)
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This number is a measure of how much ciphertext is larger than the corresponding plain-

text. Therefore, excessively large values for the vi ’s yield a large α, which compromises

the efficiency of the system by increasing the expansion factor and, as a consequence,

decreasing the information rate (the average number of plaintext bits transmitted per ci-

phertext bit). Constraining d precludes both low-density attacks (LAGARIAS; ODLYZKO,

1985) and, obviously diminishes the burden on memory and computation. On the other

hand, we do not want any vi ’s to be too small either, again, for security reasons. Indeed,

if we consider the extreme case where v1 = 1, then uj = θ for some j , which compro-

mises the system as the value of θ could be revealed after a simple search over N

elements.

Under the assumption that both (15) and (16) hold, we may argue that a few first

values of the sequence v1, · · · , vN are roughly 2N . Let us suppose that

v1, · · · , v5 . 2N . (18)

By (14), we may write

vπ(j) ≡ ujγ (mod α), (19)

where γ ≡ θ–1 (mod α). Hence, for all j = 1, · · · , N, there exists an integer kj

such that

ujγ – kjα = vπ(j). (20)

Dividing both sides by ujα, we obtain

γ

α
–

kj

uj
=

vπ(j)

ujα
. (21)

Let π(ji ) = i , so that ji = π–1(i). Hence, we may write (21) as

γ

α
–

kji

uji

=
vπ(ji )

ujiα
. (22)

Under the constraints imposed by (16) and (18), we have that vπ(ji ) = vi ≤ 2N

and α > 22N (since, in particular, α > vN ). Therefore,

∣

∣

∣

∣

∣

γ

α
–

kji

uji

∣

∣

∣

∣

∣

≤ 2–3N (23)

for i = 1, · · · , 5. This inequality shows us that γ/α– kji /uji is a small number. More

than this, that the fraction
kji
uji

is a good approximation for γα . But we need to find the

value of kji . If we subtract γ/α – kji /uji , for i = 2, · · · , 5, from γ/α – kj1/uj1, the inequality

still holds, so that
∣

∣

∣

∣

∣

kji

uji

–
kj1

uj1

∣

∣

∣

∣

∣

≤ 2–3N (24)
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for i = 2, · · · , 5. The above inequality yields

|kji uj1 – kj1uji |

|uj1uji |
≤ 2–3N . (25)

Provided that uji ≤ 2N , we finally obtain

|kji uj1 – kj1uji | ≤ 2N (26)

for all i = 2, · · · , 5. After we find the kji ’s by using integer programming techniques, which

can be achieved in polynomial time according to (LENSTRA, 1983), we expect to find

an approximation for γ/α which allows us to build a pair (γ′,α′), with γ′/α′ sufficiently

close to γ/α, such that the sequence w1, · · · , wN given by

wj ≡ ujγ
′ (mod α) (27)

for j = 1, · · · , N is superincreasing. If we manage to find such a sequence, we

can decipher any message encrypted with the public key u1, · · · , uN .

Let us call (γ,α) a decryption pair. Shamir basis his attack on the fact that

any instance of the Merkle-Hellman cryptosystem has infinitely many decryption pairs.

Indeed, any (γ′,α′), with γ′/α′ sufficiently close to γ/α, will work.

Nevertheless, we must address some issues. The first one is related to finding

the indices j1, · · · , j5, such that uj1, · · · , uj5 correspond to the five smallest terms of the

secret knapsack. Since the permutation π is secret, the only way to find the correct

indices is by exhaustive search. In other words, the adversary must search among all

O(N5) possible choices for these indices.

Furthermore, we must add some remarks regarding the number of knapsack

elements considered on inequality (18). Recall that we built an integer programming

instance, which is given by (26), by guessing the 5 public knapsack items corresponding

to the 5 smallest superincreasing elements, assuming that these elements satisfy (18).

There is a reason for this number, but the technicalities behind it are beyond

the scope of this work. One can show that the expected number of solutions of the

integer program given by (26) is bounded by a constant, which depends precisely on

the number of knapsack elements considered, provided that it is greater than or equal

to 5.

This result is related to the simultaneous Diophantine approximation problem,

and further details can be found in (LAGARIAS; HASTAD, 1986). As (LAGARIAS, 1984)

demonstrates it, we must choose the number of knapsack elements between the largest

of two values, namely 5 or d ′+2, where d ′ is an estimate of the expansion factor defined

in (17). Since we are working under the assumption that both (15) and (16) hold, we

may consider that the expansion factor is roughly 2 and, consequently, the number of

knapsack elements considered for the attack must be 5. In practice, as pointed out by

(ODLYZKO, 1990), more than 5 knapsack items may be chosen.
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Shamir’s attack marked the official break of the original Merkle-Hellman cryp-

tosystem, and the mercy stroke was given by (BRICKELL, 1985), which presented an

attack on iterated knapsacks.

2.3 CRYPTANALYSIS OF LAGARIAS AND ODLYZKO

It is worth mentioning that other cryptanalytic techniques, such as the low-density

attack proposed by (LAGARIAS; ODLYZKO, 1985), had been successfully used against

knapsack-based cryptosystems, which threw severe doubts on the security of such

cryptographic constructions.

Equation (28) shows how to reduce the deciphering of MH into an instance of

shortest vector problem. There, L is a basis of linearly independent integer vectors,

while x is a coefficient vector representing the (scalar entries of the) plaintext b to be

found, concatenated with entry 1. By design, the correct entries bi of plaintext b, when

applied in x, make the product Lx have the last entry, the only one with absolute value

possibly greater then 1, equal 0. δ is a factor yielded by the density d of the parcels

and is necessary to ensure the algorithmic solution of SVP for (L,x) would match the

cryptanalysis of b. Details go beyond the scope of this work.

L =



















1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

δu1 δu2 · · · δun –δy



















, x =



















b1

b2
...

bn

1



















(28)

In the following section, we present a Finite Field Merkle-Hellman algorithm

resistant to this cryptanalysis found in later literature.
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a red dot and move sequentially to the right, we would perform both a cyclic sequence

of 13 different distances to the last red dot roamed (i.e., yn = n (mod |α2|)) and a

cyclic sequence of 13 different positions within the red lattice (i.e.: zn = n (mod α)). φ

consists simply of mapping the n-th element of the first onto the n-th element of the

latter.

Notice that each “jump” from a given row ending on a given color to the other

starting with that same color changes the row position r for a given modulus of the lattice

to r ← (r + b) mod a + b if one counts the rows from top to botton, and, equivalently,

to r ← (r + a) mod a + b if one counts from bottom up. Hence, the necessary and

sufficient condition for each row (and, consequently, each dot) to be roamed exactly

once on each cycle is that the size of the jumps is coprime with the number of rows, or,

in other words, gcd(a, a + b) = gcd(b, a + b) = 1, which is equivalent to

gcd(a, b) = 1 (29)

The attentive reader could have been troubled by (5) and (29) for suspecting that

they might make the keys too scarce or, in other words, the cryptosystem expensive to

instantiate, as RSA is. Fortunately, it is not the case: The limit probability of two large

random numbers being coprime is as high as 6/π2 —the inverse of Basel’s Constant.

Higher than 60%.

Another important practical aspect of this isomorphism is that it roughly pre-

serves memory and computation for arithmetic operations. Notice that it maps a natural

integer up to |α|2 to a pair of integers, each with sizes up to about the square root of

that, and therefore, have half as many digits. As it will be clear below, in combining the

two proposed approaches, all arithmetic operations with public keys are (entry-wise)

modular.

3.2 LINEAR ALGEBRA OVER FINITE FIELD

Yuri da Silva Villas Boas proposed a way to hinder cryptanalyses based on ora-

cles for lattice problems, while also reversibly introducing noise to the public message,

in a specific way that allows it to be filtered by means of an additional (secret) piece

of information (set as an additional part of the private-key). The parameters for this

approach are given in Table 2, below:

Table 2 – Parameters for the SRVB

sizing ((n, N, p),ψ) ∈ N
3 × Z[i ]

pri key ((θ,α), s, R, U,π) ∈ F2 × F1×n × Fn×n × Fn×N × SN

pub key P = RU ∈ F/pn×N

plaintext b ∈ {0, 1}N×1

ciphertext z ∈ F/pn×1
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Here, N is the block size (as before), p is prime, F = F/p, that is, a finite field over p.

This is precisely the core of the approach, because the concept of norm, that is funda-

mental for the referred algorithms for SVP in the low density attack, is not applicable to

finite fields.

Another thing important to mention is that this approach is perfectly compatible

with that of Alternative Ring. In order to implement that, user would have to instantiate

a Gaussian integer ψ = c + di having c2 + d2 = p.

As before, (4) and (5) hold to (θ,α), which, together with π, are instantiated and

used in the same ways.

Next, we have

et
1U = ut , (30)

where e1 is the first canonical vector and u is the same as in MH. That is, U1,π–1(i)θ
–1 =

vi mod α is the i th element of a superincreasing sequence mod α.

For a non-degenerate case (more about that later) we impose:

1 < n < N, (31)

and

rank (R) = rank (U) = n (32)

Where rank (M) of a matrix M is the number of linearly independent columns. All entries

of random candidates for R and U but those of U ’s first row are randomly picked from a

uniform distribution over F/p.

Accidentally having rank(P) < n would allow an adversary to easily reduce the

cryptosystem into one with smaller sizing, given by (rank(P), N, p). This would mean

that the instantiating process should check the drawn matrices to ensure (32) holds.

Once again, however, the odds are in favor of the defending side and, in fact, much

more so. It is easy to see that one so produced candidate R′ to R has a probability

prob
(

rank
(

R′
)

= n
)

=
n
∏

i=1

(1 – p–i ) (33)

of being invertible. Since the smallest possible v is that in which vi = 2i–1, p ≥ α and (4)

mean that a typical block size N = 128, 192, 256 (large enough to make the ciphertext

brute-force resistant) would incur in a neglectable probability of a given candidate for

R being invalid. Namely, even the largest n = 127 for this smallest possible value for

p ≈ 2128 would incur in prob (rank (R) < n) < 10–39. The probability of a candidate for

U with uniformly randomly picked ‘noisy entries’

prob (rank (U) = n) =
n–1
∏

i=1

(1 – pi–N ) (34)



Chapter 3. SRVB Cryptosystem 37

having full rank is even nearer to certainty.

s is the solution (guaranteed to exist by (32)) for:

Rtst = e1, (35)

Encryption: of plaintext b is yielded by:

z = Pb (36)

Decryption of ciphertext z is done by the following 4 steps:

1. compute y = sz

y = sz = sPb = sRUb = et
1Ub = utb = u · b (37)

The attentive reader will, by now, realize that the naming of scalar y , coinciding to

original MH’s ciphertext was not a consequence of poor judgement since it, in fact,

precisely matches the definition used in the original MH. Consequently, the following 3

steps are exactly those of original MH decription.

So, in one sentence, this approach consists of a linear algebraic generalization

of MH for n dimensions, specifically based on finite fields, and that allows the ciphertext

to be further obfuscated by noise.

n ≥ N would mean that:

1. the system bears n – rank (P) dead-weight dimensions that contribute nothing

to security since the system can be easily reduced into one with sizing given by

(rank (P), N, p); and possibly

2. b can be trivially recovered using solving a linear system if indeed, as (34)

proves it is most likely, rank (P) = N;

Finally, n = 1 essentially degenerates into the original MH.

3.3 ACHIEVED RESULTS

The proposed schemes achieves:

1. obliviating order and, therefore, Shamir’s cryptanalysis — Alternative Ring ap-

proach;

2. obliviating norm and, therefore, lattice-based cryptanalises — Linear Algebraic

Generalization approach;

3. introducing ‘noise’ to u as additional defense;

4. levelling the size of the (entries of the) ciphertext, with the benefits described

previously;
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5. possibility of eliminating statistical evidence to α given by the public key

(u1, · · · , uN randomly distributed in {0, · · · ,α – 1}); As a bonus fact, we also have:

6. simple time and memory complexity and performance analyses, since the

results are mostly the same as those of the equivalent cryptosystem with natural

integers times n;

With both Diophantine approximations and Lattice Oracle-based cryptanalyses

being precluded, our proposed solution represents a valid contribution to searching for

an effective knapsack-based public-key encryption scheme.

An alternative for keeping p private (possibly also accumulating the same role

as α) without compromising the uniformity of the size of the sums in the ciphertext most

likely would involve a substantial constraint on the variety of the possible sums for each

set of parcels. Therefore, it would decrease the information density of d .
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4 SECURITY ANALYSIS

We will now present a list discriminating the most effective cryptanalyses, to the

best of our knowledge, starting from various components or combinations of compo-

nents of the private key or a combination of both approaches. Knowledge of public key

and ciphertext is assumed.

4.1 NAIVE APPROACH

The naive approach for an instance of this problem with N parcels is, of course,

to brute-force attempt up to all 2N possibilities, with time complexity O(2N ) and space

complexity of O(N);

4.2 MEET-IN-THE-MIDDLE, BY HOROWITZ AND SAHNI

Next, (HOROWITZ; SAHNI, 1974) devised a meet-in-the-middle approach in

which the N parcels are arbitrarily subdivided in two halves H and L (if N is odd,

then one of the partitions closest to equality of cardinalities). For each of them, all the

(approximately) 2
N
2 subsums are pre-calculated and sorted. The algorithm proceeds to

try out combinations of one sum from each half, starting from the highest in H them

and the lowest in L. If the currently selected parcels sum up more than the desired

value y , the algorithm advances one step down in H, and, conversely, if the current sum

surpasses y , the algorithm advances one step up in L. Time and space complexity of

O(2
N
2 );

4.3 IMPROVED MEET-IN-THE-MIDDLE, BY SCHROEPPEL AND SHAMIR

(SCHROEPPEL, 1981) improved on (HOROWITZ; SAHNI, 1974) by further di-

viding each of two halves L and H described just above in halves again (or, like before,

the closest possible to it), say, L1 and L2; and H1 and H2 respectively. The idea is that

only the O(2
N
4 ) subset sums of the ‘fourths’ L1, L2, R1 and R2, rather than the O(2

N
2 )

ones of the ‘halves’ L and R are pre-calculated, kept in memory and ordered. The

algorithm them proceeds to emulate the previous one by calculating subset sums of L

and R on demand from L1 and L2; and R1 and R2 respectively, in each the O(2
N
2 ) steps

of an adaptation of the meet-in-the-middle elimination process.

4.4 CLASSICAL AND PROBABILISTIC ALGORITHM BY ANJA BECKER, JEAN-

SÉBASTIEN CORON, AND ANTOINE JOUX

(BECKER et al., 2011) designed a classical probabilistic algorithm with even

lower expected complexity. Its main idea is to represent the vectors that multiply the



Chapter 4. Security Analysis 40

public key by the sum of two others belonging to a family of pairs purposefully not

provided with unicity (that is, more than one pair represent the exact plain text). Each

of these two parcels is recursively represented the same way until a recursion depth

of 4. It is precisely the multiplicity of said representations that causes the probability of

each attempted verification of possible solution to increase. It can be proved that in all

but statistically negligible pathological cases, the algorithm works with time complexity

bounded by O(20.291N ). Details go beyond the scope of this work.

4.5 QUANTUM ALGORITHMS

“In 2013, (BERNSTEIN et al., 2013) constructed quantum subset sum algo-

rithms, inspired by the classical algorithms above. Namely, Bernstein et al. showed

that quantum algorithms for the naive and Meet-in-the-Middle approach achieve run

time 2
n
2 and 2

n
3 , respectively. Moreover, a first quantum version of Schroeppel-Shamir

with Grover search (GROVER, 1996) runs in time 2
3n
8 using only space 2

n
8 . A second

quantum version of Schroeppel-Shamir using quantum walks (AHARONOV et al., 1996)

and (AMBAINIS, 2007) achieves time 20.3n. Eventually, Bernstein, Jeffery, Lange, and

Meurer used the quantum walk framework of Magniez et al. (MAGNIEZ et al., 2011)

to achieve a quantum version of the Howgrave-Graham, Joux algorithm with time and

space complexity 20.241N .”

Verbatim from (HELM; MAY, 2018). Finally, the same (HELM; MAY, 2018) pro-

posed a quantum algorithm with a time complexity of 20.226N . Details go beyond the

scope of this work.

4.6 θ OR α

Knowledge of θ or α alone is unknown to enable and help for cryptanalysis to

SRVB.

4.6.1 n columns of U

Finding out n columns of U enables an algorithm for deriving R, which can

subsequently be used to reduce full SRVB into only the first approach (see below). The

method is very straightforward: the i-th column of U, U i , yields the i-th column of P, P i ,

when multiplied in the left by R. This allows for the equation

R
(

U i1 · · · U in
)

=
(

P i1 · · · P in
)

, (38)

where ij ∈ 1, · · · , n is the j-th column index of the resulting square matrices made up

of n columns of U and P. That trivially provides R by means of n instances of n by n

linear systems. In case the indexes ij ’s are not known, the attacker would still have to
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brute force check amongst all N!
(N–n)! possible mappings M : {1, · · · , n} −→ {1, · · · , N}.

Total complexity would therefore be O( N!
(N–n)!n

4l).

4.6.2 R or s

R allows for trivially finding R–1, and then U = R–1P, and s = (R–1e1)t . At this

point, an attacker can obtain, like before,

y = sz = sRUb = u · b (39)

From this point on, the attacker has the same problem as they would have to cryptanal-

yse SRVB with the alternative ring approach only.

This preliminary analysis shows it is crucial to ensure brute-force resistance of

s, R and (sets of n) U ’s columns, which, measured in bits of entropy, equals nl , n2l and

(n)nl respectively, where l ≈ log2(p) is the length of entries. On the other hand, the

possibility of the adversary performing an (incomplete) Gaussian elimination in P yields

an effective ciphertext brute-force resistance of only (N – n)l . This means that we must

have

n ≤ N/2 (40)

since increasing n beyond that would both increase resource consumption and weaken

security.

Although a preliminary analysis suggests that the linear algebraic generalization

approach layer could actually substitute that of MH, we will, at this moment, keep the

rationale behind (8) and, for good measure, require at least v1 ≈ 2128. This yields the

suggested sizing:

2 ≤ n ≤ N/2 = 128 = l /3 (41)

As explained before, complexity and performance analysis of SRVB will mostly

equal n times those of MH with the same sizing, except for decryption, which has the

multiplication by s (O(nl) time and memory-wise) more.

Further research is still needed to assess provable security for the proposed

cryptosystem, like many other knapsack-based or otherwise public-key cryptosystems.
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5 FINAL REMARKS

Despite definitive refutation of the original MH and many of its variants and the

persistence of distrust by the public on knapsack-based asymmetric cryptosystems,

new attempts to revive it continue to appear. Reasons for it include:

1. very high complexity asymmetry: O(N) for encryption and decryption versus,

on the S4P component alone, O(2N/2) for best known classical, deterministic

attack, O(20.291N ) for best classical attack, and O(20.226N ) for the best quantum

attack; That yields

2. high effectiveness of the cryptosystem if and while cryptanalyses are not dis-

covered;

3. excellent performance time and memory-wise;

4. exercising the concept of homomorphic cryptosystem it uses as a compo-

nent; while also keeping

5. elegant simplicity: requiring elementary level mathematics to be understood,

implemented, and used;

Our contribution to knapsack-based cryptosystems successfully prevents both

Diophantine approximations and lattice-oracle-based attacks at the same time. Even

though security of the proposed cryptosystem is left unproved, our research already

does contribute to addressing the still open question of whether or not knapsack-based

asymmetric encryption schemes have any future. Successful cryptanalysis to SRVB

is being offered a US$2560, 00 (one thousand Knuth Dollars) prize in the Nep.Sec

Contest. If and when the contest is won, SRVB happens to be proved to be ineffective

(as so many others have), it will, at least, be an elementary school–accessible material

of diffusion for cryptology.

Further works may involve or investigate possibility of:

1. Detailing complexity analysis;

2. Implementing SRVB in high and low level languages;

3. Programming Nep.Sec Contest as a smart contract in a blockchain, therefore

turning it in a 0-trust, no-questions-asked contest;

4. Assessing Post-quantumness;

5. Adding a signature scheme based on Closest Vector Problem, like GGH or

NTRUE;
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6. Generalizing the Alternative Ring Approach for quartenions, or changing it to

Eiseinstein integers;

7. Generalizaing the Finite Fields Approach from primes to polynomials with de-

gree greater than 0;

8. Demonstrating security.
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