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RESUMO

Processadores lightweight manycore surgiram para conciliar os requisitos de desempenho,
eficiência energética e escalabilidade um único chip. Sistemas Operacionais (SOs) para
essa classe de processadores apresentam um design distribuído, onde instâncias isoladas
do SO cooperam para mitigar problemas de programação e portabilidade provenientes de
suas complexidades arquitetônicas. Atualmente, serviços do SO geralmente recorrem a
abstrações de fluxo de execução tradicionais (processos ou threads) para implementar fun-
cionalidades pequenas, periódicas ou assíncronas. Embora essas abstrações simplifiquem
consideravelmente o projeto do sistema, elas têm um impacto inegociável nas limitadas
memórias presentes no chip. Devido às restrições de memória, argumentamos que as
abstrações no nível do SO podem ser reformuladas para reduzir o consumo de memória
do SO, sem introduzir uma sobrecarga considerável. Neste contexto, propomos um mo-
tor de execução complementar ao nível do SO que suporta tarefas leves e cooperativas
que compartilham uma única pilha de execução e possuem recursos de sincronização por
meio de grafos de fluxo de controle e dependência. Essa solução é ortogonal ao suporte
de execução subjacente e fornece uma quantidade significativa de fluxos de execução no
nível do SO com consumo de memória reduzido. Implementamos nosso motor em um SO
distribuído e executamos experimentos em um lightweight manycore real. Nossos resul-
tados mostram que o motor proposto possui as seguintes vantagens quando comparada à
abstração clássica de thread: (i) fornece 63, 2 vezes mais fluxos de execução por MB de
memória; (ii) apresenta menor sobrecarga para gerenciar fluxos de execução e chamadas
de sistema; (iii) melhora a utilização do núcleo dedicado ao SO; e (iv) apresenta resultados
competitivos em aplicações do mundo real.

Palavras-chave: Lightweight Manycores. Sistemas Operacionais Distribuídos. Micro-
kernel Assimétrico. Restrições de Memória.





RESUMO ESTENDIDO

Introdução
Processadores lightweight manycore destacam-se pelo seu alto grau de paralelismo e baixo
consumo energético. Devido a características que os diferem dos demais manycores, essa
classe de processadores consegue conciliar requisitos de desempenho, eficiência energé-
tica e escalabilidade em um único chip. Particularmente, lightweight manycores (i) inte-
gram milhares de núcleos de baixa potência com capacidade Multiple Instruction Multiple
Data (MIMD); (ii) apresentam uma arquitetura de memória distribuída com pequenas
memórias locais compartilhadas por grupos de núcleos (vulgo clusters); (iii) possuem
Redes-em-Chip (NoCs) confiáveis e rápidas para troca de mensagens; e (iv) podem ofe-
recer capacidades de processamento heterogêneas. Dentre os aspectos arquiteturais de
um lightweight manycore, o sistema de memória distribuída desempenha um papel crí-
tico. Especificamente, memórias pequenas, restritivas e fisicamente separadas compõem
múltiplos espaços de endereçamento, forçando desenvolvedores a reprojetar suas aplica-
ções para atingir um desempenho satisfatório. Apesar de tais aspectos possibilitarem a
escalabilidade e eficiência energética aprimorada desses processadores, eles criam um am-
biente suscetível a erros. Consequentemente, Sistemas Operacionais (SOs) Distribuídos
para lightweight manycore foram recentemente propostos para lidar efetivamente com as
complexidades arquitetônicas desses processadores, oferecendo um ambiente de execução
mais robusto e produtivo. Dentre os SOs propostos, o multikernel destaca-se por miti-
gar problemas de programabilidade e portabilidade através de um ambiente distribuído
composto por instâncias isoladas do SO que interagem com outras entidades do sistema
por meio de uma abordagem cliente-servidor. Como a memória no chip é limitada, o
objetivo mais importante em um projeto de SO é manter seu kernel pequeno enquanto
preserva suas funcionalidades mais importantes. Sob essa perspectiva, o design de um
microkernel assimétrico como instância do multikernel destaca-se por ser uma solução
flexível e escalável ao mesmo tempo que apresenta baixo consumo de memória. Neste
design, o SO é executado isoladamente em um núcleo do cluster , deixando os demais para
uso geral. Desta forma, o SO apresenta menor interferência nas aplicações do usuário.
No entanto, o microkernel não é suficiente para aliviar todos os problemas provenientes
das restrições de memória existentes nos lightweight manycores. Por exemplo, serviços
do SO geralmente recorrem a abstrações de fluxo de execução clássicas (como processos,
corrotinas e threads) para implementar funcionalidades pequenas, periódicas ou assíncro-
nas no nível do SO. Embora essas abstrações simplifiquem consideravelmente o projeto
do sistema, elas têm um impacto inegociável nas limitadas memórias do chip. A redução
de memória disponível afeta o desenvolvimento de software desde o nível do kernel até as
aplicações do usuário. Nesse contexto, nós argumentamos que as abstrações de fluxo de
execução no nível do SO podem ser remodeladas para reduzir o consumo de memória do
kernel sem introduzir uma sobrecarga considerável ao sistema.

Objetivos
Para aliviar as restrições de memória presentes nos lightweight manycores, nós propomos
um motor de execução complementar no nível do SO que suporta tarefas leves e coopera-
tivas que compartilham uma pilha de execução e possuem recursos de sincronização por
meio de grafos de fluxo de controle e dependência. Essa solução permite a execução de
vários fluxos de execução no nível do SO com consumo de memória reduzido, uma alter-



nativa às custosas abstrações tradicionais. Neste contexto, o motor de execução baseado
em tarefas proposto tem como principais objetivos: (i) reduzir o consumo de memória
do SO sem introduzir sobrecarga considerável (leveza); (ii) ser independente do suporte
de execução nativo subjacente, aproveitando o ambiente pré-existente (ortogonalidade); e
(iii) coexistir com soluções tradicionais para suportar o reprojeto incremental das funcio-
nalidades do SO (flexibilidade). De forma geral, o projeto de implementação do motor de
execução apresenta contribuições significativas ao estado da arte em suporte de SOs para
processadores lightweight manycore. Especificamente, nós suportamos uma maior quan-
tidade de funcionalidades confiáveis no nível do SO com consumo de memória reduzido
para lightweight manycores com memória interna limitada.

Metodologia
O motor de execução baseado em tarefas proposto é genérico suficiente para ser imple-
mentado em qualquer SO distribuído projetado para lightweight manycores. Como prova
de conceito, nós implementamos a proposta desta dissertação no Nanvix, um multikernel
distribuído de código aberto compatível com o padrão POSIX. Para explorar os benefí-
cios almejados pelo motor proposto, nós reprojetamos módulos, funcionalidades, serviços
e um ambiente MPI (LWMPI) existentes no Nanvix. Para avaliar de forma compreensível
nossa solução, nós projetamos um conjunto de benchmarks para mensurar impactos na
memória, tempo de execução e consumo energético no Kalray MPPA-256, um lightweight
manycore comercial. O conjunto de benchmarks comparam nossa solução com a abstra-
ção de thread nativa sob três variantes do Nanvix. As variantes aumentam gradualmente
a remodelagem do sistema, avaliando a versão original (Baseline), a introdução de co-
municações usando tarefas (Partial) e a adição da remodelagem dos serviços baseado
em tarefas (Full). Ao todo, nós coletamos métricas de 10 execuções de aplicação execu-
tando no ambiente MPI (aplicações realísticas) e 30 execuções de benchmarks sintéticos,
garantindo resultados estaticamente relevantes. Todos os resultados representam valores
médios e baseados em um intervalo de confiança de 95% (significância de 5%).

Resultados e Discussão
Em todos os experimentos, nós focamos na comparação dos resultados obtidos com nos-
sas implementações baseadas em tarefas contra as soluções baseadas em threads nativas
do Nanvix. Utilizando um experimento teórico que avalia o consumo de memória pelas
soluções, demonstrou-se que o motor proposto fornece 63, 2 vezes mais fluxos de execução
por MB de memória. Adicionalmente, um conjunto de experimentos sintéticos empregou
aplicações artificiais para mensurar o tempo de resposta do SO, assim como potenci-
ais sobrecargas introduzidas ao microkernel. Especificamente, os experimentos sintéticos
mostram que o motor proposto (i) apresenta melhor escalabilidade e menor custo para
iniciar funcionalidades do SO; (ii) o tempo de resposta de chamadas de sistemas remo-
tas são 3, 1× mais rápidas; e (iii) o compartilhamento do núcleo dedicado ao SO entre
a thread de kernel (thread mestre) e o Dispatcher (thread executora de tarefas) não adi-
cionou sobrecarga significativa no tempo de resposta do SO. Para avaliar os impactos
no nível do multikernel, dois conjuntos de benchmarks foram propostos para avaliar a
performance dos serviços do SO e de aplicações do mundo real. A avaliação dos serviços
do SO demonstraram que o motor proposto (i) melhor gerenciou comunicações peque-
nas, explorando o menor tempo de resposta das chamadas de sistema; (ii) promoveu
maior isolamento do kernel, uma premissa violada pelo módulo de comunicação original;
e (iii) os daemons de serviços existentes não apresentaram interferência significativa ao



sistema quando implementados com tarefas. Por fim, escolhemos três aplicações MPI
de um pacote de benchmarks para lightweight manycores (CAP Bench) com o intuito de
examinar condições mais realísticas. As aplicações executam sobre o LWMPI suportado
pelo Nanvix, tornando trivial sua adaptação para as diferentes variantes consideradas. No
geral, os resultados mostraram que apesar do motor serializar a execução de operações
que eram originalmente paralelas, o mesmo apresenta resultados competitivos em todas
as aplicações.

Considerações Finais
Processadores lightweight manycore alcançam alto desempenho e eficiência energética gra-
ças a seus aspectos arquitetônicos, como extremo paralelismo com uma arquitetura de me-
mória distribuída e restritiva. SOs para essas arquiteturas adotam o modelo distribuído
de um multikernel para prover escalabilidade enquanto expõem um ambiente mais robusto
e produtivo ao usuário. Complementarmente, o design de um microkernel assimétrico é
comumente adotado para lidar com as peculiaridades dos lightweight manycores devido
ao seu consumo de memória reduzido e escalabilidade. No entanto, tais abordagens não
contemplam todas as restrições provenientes da memória limitada desses processadores.
Para aliviar as restrições de memória existentes, nós propomos um motor de execução
baseado em tarefas como uma alternativa às custosas abstrações de fluxo de execução
tradicionais, como processos ou threads. O principal aspecto do motor é a eliminação
da necessidade de processos/threads dedicados para implementar funcionalidades leves no
nível do SO. Desta forma, fluxos de execução como daemons de serviços do SO podem ser
implementados com consumo de memória reduzido. Além disso, o motor é ortogonal ao
suporte de execução do SO subjacente, exigindo poucas modificações ao kernel. A imple-
mentação do nosso motor em um SO distribuído que executa em um lightweight manycore
real proporcionou uma avaliação compreensível dos impactos do motor em diferentes ní-
veis do sistema. De forma geral, os resultados demonstraram que o motor proposto é uma
alternativa viável e competitiva às clássicas e custosas abstrações de fluxo de execução.
Esta dissertação concentrou-se em consolidar os fundamentos do motor de execução pro-
posto e sua implementação em um contexto do mundo real. Contudo, trabalhos futuros
devem investigar aspectos mais detalhados, tais como, (i) aumentar a responsividade do
SO removendo a espera-ocupada existente no módulo de comunicação, (ii) implementar
políticas de escalonamento mais sofisticados, (iii) substituir threads servidoras por Dis-
patchers, aumentando o número possível de serviços simultâneos, e (iv) desenvolver novos
serviços baseados em tarefas.

Palavras-chave: Lightweight Manycores. Sistemas Operacionais Distribuídos. Micro-
kernel Assimétrico. Restrições de Memória.





ABSTRACT

Lightweight manycore processors arose to reconcile performance, energy efficiency, and
scalability requirements on a single chip. Operating Systems (OSes) for these proces-
sors feature a distributed design, where isolated OS instances cooperate to mitigate pro-
grammability and portability issues coming from their architectural intricacies. Currently,
OS services often resort to traditional execution flow abstractions (processes or threads) to
implement small, periodic, or asynchronous functionalities. Although these abstractions
considerably simplify the system design, they have a non-negotiable impact on the limited
on-chip memories. Due to the memory restrictions, we argue that OS-level abstractions
can be reshaped to reduce the OS memory footprint without introducing considerable
overhead. In this context, we propose a complementary OS-level execution engine that
supports cooperative lightweight tasks that share a unique execution stack and features
task synchronization via control flow and dependency graphs. This solution is orthogo-
nal to the underlying execution support and provides numerous OS-level execution flows
with reduced memory consumption. We implemented our engine in a distributed OS and
executed experiments on a lightweight manycore. Our results show that it has the fol-
lowing advantages when compared to the classical thread abstraction: (i) it provides 63.2
times more execution flows per MB of memory; (ii) it features less overhead to manage
execution flows and system calls; (iii) it improves core utilization; and (iv) it exhibits
competitive results on real-world applications.

Keywords: Lightweight Manycores. Distributed Operating Systems. Asymmetric Mi-
crokernel. Memory Constraints.
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1 INTRODUCTION

Lightweight manycores stand out for their high degree of parallelism with low
energy consumption (FRANCESQUINI et al., 2015). To achieve high scalability and en-
ergy efficiency, lightweight manycores feature architectural characteristics that differ from
other manycores: (i) they integrate thousands of low-power cores with Multiple Instruc-
tion Multiple Data (MIMD) capability (ROSSI et al., 2017); (ii) they feature a distributed
memory architecture and small on-chip memories shared by tightly-coupled groups of cores
(aka clusters) (BOHNENSTIEHL et al., 2017); (iii) they expose reliable and fast Net-
works-on-Chip (NoCs) for message-passing (BOHNENSTIEHL et al., 2017); and (iv) they
may offer heterogeneous processing capabilities (DAVIDSON et al., 2018). Some industry-
successful examples of lightweight manycores are the Kalray MPPA-256 (DINECHIN et
al., 2013) and the Sunway SW26010 (ZHENG et al., 2015).

Distributed Operating Systems (OSes) have been recently proposed to effectively
deal with architectural intricacies of these processors, offering a richer execution envi-
ronment for developers (BOYD-WICKIZER et al., 2008; RHODEN et al., 2011; WIS-
NIEWSKI et al., 2014). Among these proposed OSes, we highlight the multikernel de-
sign (WENTZLAFF; AGARWAL, 2009; BAUMANN et al., 2009), where isolated OS
instances interact with other system entities through a client-server approach to mitigate
programmability and portability issues. Since the on-chip memory is restricted, the most
important design goal is to keep the OS kernel small while preserving its most important
features.

From this point of view, the asymmetric microkernel design (PENNA et al.,
2019) stands out as a flexible and scalable solution while presenting a small OS memory
footprint. In this design, the OS kernel exclusively runs on one core of the cluster, leaving
the remaining ones to general-purpose use, thus reducing the interference of the kernel in
user-level software. However, this design is not enough to relieve all architectural issues
coming from existing memory constraints.

Specifically, OS services often resort to classical execution flow abstractions, such
as processes (LOMET, 1977), coroutines (PAULI; SOFFA, 1980) and threads (BIRRELL,
1989), to implement small, periodic, or asynchronous OS-level functionalities. Although
these abstractions considerably simplify the system design, they have a non-negotiable
impact on the limited on-chip memories, leaving a small amount of free memory to user
applications and, consequently, affecting the software development from the kernel to the
application levels. In this context, we argue that OS-level abstractions can be reshaped
to reduce the OS memory footprint without introducing considerable overhead.
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1.1 TARGET PROBLEM AND PROPOSED APPROACH

To alleviate the memory constraints of lightweight manycores, we propose a com-
plementary OS-level execution engine that supports cooperative lightweight tasks that
share a unique execution stack and features task synchronization via control flow and
dependency graphs. Our proposal is inspired by solutions established in extremely re-
strictive environments, but which efficiently deal with memory limitations. However, our
main goal is to increase the density of OS-level execution flows with reduced memory con-
sumption, introducing an alternative solution to the expensive traditional abstractions.

1.2 GOALS AND CONTRIBUTIONS

We design the proposed task-based execution engine based on the following prop-
erties: (i) density: it should allow to increase significantly the number of concurrent flows
in the OS; (ii) lightness: it should ensure that the OS memory footprint remains small
without introducing considerable overhead (iii) orthogonality: it should be independent
of the underlying native execution support, taking advantage of the pre-existing envi-
ronment; and (iv) flexibility: the solution should co-exist with traditional solutions to
support incremental redesign of OS functionalities.

In summary, the design, implementation and improvements of the proposed en-
gine bring the following contributions to the state-of-the-art in OS support for lightweight
manycores:

1. A complementary task-based execution engine for distributed OSes tailored to light-
weight manycores with limited on-chip memory for implementing trustworthy OS-
level functionalities with reduced memory consumption;

2. Implementation of the proposed engine in Nanvix, an open-source Portable Oper-
ating System Interface (POSIX)-compliant distributed OS that targets lightweight
manycores;

3. Redesign and implementation of trustworthy modules, functionalities and daemons
of existing Nanvix services using tasks; and

4. Demonstration of the impacts achieved by the engine through conceptual, synthetic
benchmarks and real-world applications.

We compared our solution with the Nanvix native thread abstraction using a set
of comprehensive benchmarks and evaluated the impacts on memory, execution time and
energy consumption on a silicon lightweight manycore (Kalray MPPA-256). Our results
showed that our solution achieves the following improvements: (i) it provides 63.2 times
more execution flows per Megabytes (MBs) of memory; (ii) it features less overhead to
manage execution flows and system calls; (iii) it improves core utilization; and (iv) it
exhibits competitive results when running Message Passing Interface (MPI) applications.
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This dissertation reuses text from a paper published by the same author (SOUTO;
CASTRO; PENNA, 2021). However, this dissertation includes a more complete and
detailed experimental validation section and analysis.

1.3 ORGANIZATION OF THE DISSERTATION

The remainder of this paper is organized as follows. In Chapter 2, we cover
the background on lightweight manycore processors and on the asymmetric microkernel
design. Subsequently, we discuss related work in Chapter 3. We detail our task-based
execution engine and its implementation in Chapter 4. Then, we present our evaluation
methodology in Chapter 5, which is then applied in Chapter 6 to evaluate the experimental
results. Finally, we draw our conclusions in Chapter 7.
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2 BACKGROUND AND MOTIVATION

In this section, we give a brief introduction to lightweight manycores and show
how their architectural characteristics affect software development. Then, we present the
foundations of state-of-the-art Distributed OSes and highlight how they fail to address
memory challenges of lightweight manycores.

2.1 LIGHTWEIGHT MANYCORES AND THEIR INTRINSIC CHALLENGES

Lightweight manycore processors stand out for their high performance and energy
efficiency. To this end, they rely on architectural characteristics such as hundreds of low-
power cores and a distributed memory system. Some examples of lightweight manycores
are Kalray MPPA-256 (DINECHIN et al., 2013) and Sunway SW26010 (FU et al., 2016).

Figure 1 presents a conceptual lightweight manycore, which pictures the key
characteristics of this class of processors. It integrates 51 MIMD low-power cores disposed
into 13 tightly-coupled groups, named clusters (STERLING, 2011). Cores within a cluster
share and have uniform access to local hardware resources, e.g., local Static Random
Access Memory (SRAM) and NoC interfaces. However, clusters may have heterogeneous
resources. For instance, Compute Clusters usually feature more complex cores with higher
processing power to cope with high computing demands whereas I/O Clusters usually have
more communication capabilities and connectivity to a Dynamic Random Access Memory
(DRAM).

The distributed memory system of lightweight manycores is a crucial feature that
allows these processors to scale. It is composed of a set of restricted SRAMs, each one
physically located in a cluster. Overall, the distributed memory system: (i) features
multiple address spaces; (ii) presents local memories ranging from hundreds of Kilobytes
(kBs) to a few MB; (iii) does not support hardware-level cache coherence; and (iv) features
a software-managed Translation Lookaside Buffer (TLB) for virtual address translation.
Due to the distributed memory system, applications must use a hardware-level message-
passing interface to make inter-cluster communications through the NoC.

The aforementioned characteristics enhance the scalability and energy efficiency
of lightweight manycores. However, they also introduce several challenges in software de-
velopment (FRANCESQUINI et al., 2015). Specifically concerning their memory system,
we highlight the following issues:

• The small amount of on-chip memory obliges software developers to explicitly tile
the working dataset into chunks, load/store these chunks from/to remote memory,
and manipulate them locally. Additionally, the software must take care of data
caching and replication to improve performance.

• The absence of cache coherence support in hardware forces software developers to
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Figure 1 – A conceptual lightweight manycore.

Source: Adapted from Penna et al. (2019).

handle data coherency explicitly in software and frequently calls out for application
redesign.

• The distributed memory architecture requires software to handle data partitioning
and remote data accesses across multiple physical address spaces.

2.2 DISTRIBUTED OPERATING SYSTEMS FOR LIGHTWEIGHT MANYCORES

Lightweight manycores face several programmability and portability challenges,
which are inherited from their architectural features. Recent research efforts to mitigate
these challenges leverage Distributed OSes (KLUGE; GERDES; UNGERER, 2014; AS-
MUSSEN et al., 2016; PENNA et al., 2019) to provide a more robust and richer execution
environment. In this design, the OS is factored in a set of services, each of which is de-
ployed on a core of the parallel architecture. Cores that do not run OS services are made
available to user-level applications, which request their assistance through a client-server
interface.

Multiple architectures and implementations for a distributed OS are possible,
each one targeting a specific set of design goals and constraints. However, a three-tier
approach is commonly adopted by distributed OSes for lightweight manycores such as
MOSSCA (KLUGE; GERDES; UNGERER, 2014), M3 (ASMUSSEN et al., 2016) and
Nanvix (PENNA et al., 2019). In the bottom layer, a generic and flexible Hardware
Abstraction Layer (HAL) is provided to enable portability across different processor ar-
chitectures. A microkernel lies in the middle layer and provides minimum system ab-
stractions, handles local resource multiplexing and ensures security policies. Finally, in
the top layer, runtime OS libraries expose a standard interface to user-level applications
such as POSIX.

OS kernel instances may run in all processor cores or a subset of them (symmetric
vs. asymmetric design) (PENNA et al., 2020). In this dissertation, we are interested in
asymmetric multikernel OSes due to their outstanding performance isolation between
kernel and user spaces (NIGHTINGALE et al., 2009). Figure 2 presents a snapshot of
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Figure 2 – Hypothetical distributed OS on a lightweight manycore.

Source: Adapted from Penna et al. (2020).

an asymmetric distributed OS running in a lightweight manycore. Cores within the same
cluster of the processor share an OS kernel instance. The OS kernel (master thread) runs
on a dedicated core (master core) of the cluster. The remaining cores are available for
OS services and user applications. In this design, kernel and user do not time-share core
hardware structures, delivering performance isolation. Moreover, there is no contention
in the structures of the OS kernel.

The disadvantage of the asymmetric design is that one core must be reserved to
execute the OS kernel. This requirement decreases the number of cores available for user
threads. Therefore, if the OS kernel is not heavily used, the overall performance of the
system is reduced. This problem becomes even worse when cores are also reserved to
execute OS services. A more detailed evaluation can be found in Penna et al. (2020).

2.3 PROBLEM DEFINITION

The memory subsystem of lightweight manycores imposes challenges on the de-
sign and implementation of OSes for these architectures. The asymmetric microkernel
alleviates the problems of cache coherence and pollution, since user and kernel working
datasets are well separated and thus cache utilization is improved (PENNA et al., 2019).
However, this is not enough to relieve all architectural issues that concern the limited
amount of on-chip memory available.

We argue that OS-level abstractions can be reshaped to reduce the OS mem-
ory footprint and, consequently, make more room for user-level software (CAI; ZHANG;
HUANG, 2020; Zhang et al., 2020; LIU et al., 2014). For instance, OS services often
resort to classical execution flow abstractions, such as processes (LOMET, 1977) and
threads (BIRRELL, 1989), to implement small, periodic, or asynchronous functionalities,
even though they spend most of their lifetime blocked/sleeping. Although this simplifies
the system design, it has a non-negotiable impact on memory consumption. The main
reason is the significant waste of memory by the commonly used stack layout for multi-
tasking systems, named cactus stack (SARDESAI; MCLAUGHLIN; DASGUPTA, 1998;
PIZKA, 1999). In this layout, the kernel needs to book memory pages to accommodate
separate stacks for each existing thread in the system, limiting the maximum density of
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Table 1 – Hard limit on the number of threads per cluster.

Memory size # of Cores # of threads # of threads
Processor (per cluster) (per cluster) (per core) (per cluster)
PULP (ROSSI et al., 2017) 32 kB 4 2 8
CoreVA (Ax et al., 2018) 256 kB 16 4 64
Sunway SW26010 (ZHENG et al., 2015) 2048 kB 64 8 512
Kalray MPPA-256 (DINECHIN et al., 2013) 2048 kB 16 32 512

Source: Developed by the Author.

flows. In a simple case, in which each thread takes exactly one page to keep its stack, the
amount of memory reserved would be proportional to the number of threads.

Table 1 summarizes what would be the hard limit on the number of threads per
Compute Cluster in different state-of-the-art lightweight manycores when considering a
single page of 4 kB per stack frame. Note, however, that these limits were computed based
on the strong conservative assumption that the whole memory in a cluster is available for
keeping stacks of threads, which is rather unrealistic. In practice, we should account for
kernel and user stack frames, other system data structures and user allocated memory.
In this context, the development of OS-level software is restricted to a short portion of
the limited amount of execution flows so as not to reduce the parallelism of applications.

2.4 MOTIVATION

Over the years, the evolution of edging technology has brought a wide range of
architectures that share resource-constraint outlines. Out of the data center and the desk-
top environment, these architectures arrive to provide efficient solutions over extremely
resource-constrained conditions, such as real-time embedded systems. Thereby, we can
analyze the clusters of a lightweight manycore from the same perspective of resource lim-
itations, relating them to well-known proposed solutions. However, our intention is not
to compete with these systems but to bring the discussion about resource scarcity to
general-purpose environments.

Real-Time Operating System (RTOS) is an OS type commonly used to deal with
the constraints of the embedded systems and presents a comprehensive number of studies
on resource-optimization topics. Particularly, a RTOS runs applications with critical time
constraints to process data or events. Furthermore, RTOSes should incur low processing
overhead and memory usage for this type of architecture (PARK et al., 2011). The time
constraints imposed on the environment require that critical tasks have deterministic
response time and memory consumption to be possible to analyze and guarantee the strict
response deadlines. Furthermore, decoupling applications into multiple tasks improves the
development process, thereby increasing system density.

Several approaches have been proposed to deal with the processing, memory, and
energy consumption constraints present in real-time embedded systems. Particularly,
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Figure 3 – Common stack layouts.

(a) Cactus layout. (b) SRP layout.

Source: Developed by the Author.

established solutions that mitigate the memory-constraints impacts on OS and user levels
motivated us to explore their benefits under a general-purpose OS running on lightweight
manycores.

One of the simplest ways to keep the RTOS footprint small is to share the same
stack frame to execute different tasks. In this way, the size of this region can be equal to
the largest execution stack among the tasks. However, critical tasks must execute as soon
as possible, turning impossible to serialize executions. In this context, Stack Resource
Policy (SRP) (GAI; LIPARI; NATALE, 2002) allows the preemption of tasks, stacking
their contexts in the same memory frame. In this way, the RTOS dispenses the cactus
layout, efficiently using a single memory region to support the same number of tasks.

Figure 3 illustrates two stack layouts in an environment with three tasks. While
the cactus layout (Figure 3(a)) requires three separate stack frames to keep the tasks’
contexts, the SRP layout (Figure 3(b)) requires only one. The technique used to co-
allocate different tasks/threads on a single stack at the same time is called Worst-Case
Stack Consumption (WCSC) (DIETRICH; LOHMANN, 2018). Additionally to the SRP,
Non-Preemption Groups (DAVIS; MERRIAM; TRACEY, 2000) considers different event
priorities and introduces preemption levels to limit the number of contexts that can be
stacked. This solution further reduces the stack frame, demanding only the sum of the
largest contexts of each possible level.

In addition to stack sharing, the memory optimization of other system parts
presents promising results. For example, the analysis and profiling of machine learning
applications together with the execution environment can reduce the overall memory
footprint (KATSARAGAKIS et al., 2020). This reduction is achieved by (i) replacing
static memory management with dynamic, exploiting heap reuse; (ii) removal of unused
static data; and (iii) reducing the code hierarchy, removing unused functions. However,
such optimizations take into account a dedicated environment adapted to a finite set of
applications.
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In general, the way developers design and establish memory management policies
influence the cost and behavior of the computational environment (BATENI et al., 2020).
Furthermore, memory impositions are becoming even more evident as computer systems
are increasingly parallel and distributed. This fact is known as the memory wall (WULF;
MCKEE, 1995). The memory wall is one of the main motivations that led to the arrival
of lightweight manycores. Consequently, it is mandatory to study and explore ideas to
efficiently deal with these resource-constrained architectures in face of complex general-
purpose OS functionalities.
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3 RELATED WORK

Execution support has been an extensively studied topic over the past few years.
From low-level execution support to high-level execution runtimes, these studies have
contributed to increasing the performance and programmability of computer systems. In
this chapter, we discuss significant established solutions at the OS level. Furthermore, we
compare these solutions against our proposal and show how our engine can complement
them.

Within the scope of general-purpose distributed OSes, Scheduler Activations (AN-
DERSON et al., 1992) provide means of forwarding kernel-level preemption or scheduling
actions to the user-level scheduler in an efficient way through upcalls. Although this
support has performance and control benefits, it still requires a stack frame per thread
to keep the states of concurrent execution flows. In this context, our approach is easily
switchable to work in conjunction with Scheduler Activations due to its orthogonality. In
particular, we would benefit from the scheduling decisions being handled directly by our
engine executor instead of using two levels of scheduling as in other environments.

Despite being in a very different scope, the memory limitation in real-time embed-
ded systems also impacts how RTOSes define and design their execution flow abstractions.
For instance, OSEK OS (PARK et al., 2011) is a standard RTOS for Electric Control Unit
(ECU) software for vehicles originally designed for extremely resource-constrained envi-
ronments. To deal with the limited memory on the embedded systems, OSEK OS speci-
fies hybrid execution support to distinguish between Basic Task (BT) and Extended Task
(ET). On the one hand, BTs are non-blocking tasks that share a single stack frame. On
the other hand, ETs allocate a dedicated stack to allow blocking behaviors. Also, OSEK
OS reduced the complexity and memory requirement of the scheduling queue considering
aspects of different task classes.

Semi-Extended Tasks (SETs) (DIETRICH; LOHMANN, 2018) expand the ex-
pressiveness of the ETs in the OSEK OS model. SETs allow decreasing the execution
flow granularity from task to function context. Thereby, SETs start with their private
stack (such as ET) but switch to BT behavior whenever it is possible. Likewise, this
optimization allows the execution of blocking function/system calls by switching context
to non-conflicting functions. Similarly, HEROS OS (LIU et al., 2014) explores a hybrid
scheduling model via a subfunction-granularity thread switch mechanism, distinguish-
ing real-time from event-oriented tasks to reduce memory consumption. However, this
mechanism uses low memory Java threads, imposing some of the overhead of the Java
environment.

The solution proposed in this dissertation and the aforementioned stack-sharing
solutions share a similar goal, the reduction of memory consumed by execution supports.
However, RTOSes are much more restricted than general-purpose OSes, allowing a de-
tailed analysis of memory usage and execution of real-time tasks. In this sense, despite
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the benefits of task preemption, it would be impractical to define task relationships in the
context of a general-purpose OS. Nevertheless, our proposed engine complements these
execution supports by introducing an explicit form of synchronization between tasks,
opening up possibilities for optimization in scheduling decisions. Moreover, our engine
can introduce hybrid scheduling for OSes that only implements a cactus stack layout.

Although previous solutions reduce the OS memory footprint, they require sig-
nificant modifications. In contrast, some solutions rely on distinct hardware features to
minimize kernel adaptation. For instance, Multitask Stack Sharing (MTSS) (MIDDHA;
SIMPSON; BARUA, 2008) proposed a new paging system to share a common memory re-
gion to allocate all private tasks. This paging system does not reduce the number of stacks,
but identifies stack overflow and allocates unused space in other stack frames. Similarly,
StackMMU (MAURONER; BAUNACH, 2017) handles the stack growth, shrinkage, and
access operations through the Memory Management Unit (MMU) functionality. Both
solutions demand extra memory and a specific hardware component to work, but only
the memory module holds the majority of the required modifications. In this regard, our
proposal requires just a few modifications for its kernel integration. Moreover, our engine
demands common hardware attributes, being able to profit from sophisticated hardware
components.

On top of lower-level solutions, data-flow and continuation-based programming
models proved to be adequate to express data dependency between execution flows and
align with memory reduction goals. For instance, CEFOS (KUSAKABE et al., 2007)
is an OS that defines continuation-based fine-grained threads to implement execution
flows. This model can benefit from stack sharing because threads are non-preemptive
and the data-flow dependencies guarantee the correctness of the application. Likewise, a
Memory-Aware Directed Acyclic Graph (DAG) model (MARCHAL et al., 2018) defines
computational workflows used for parallel scheduling of tasks under memory constraints.
This DAG model reduces the maximum memory peak through memory dependencies.
These dependencies prevent the scheduler from running out of memory during the execu-
tion.

Our solution presents the same benefits as data-flow and continuation-based solu-
tions. However, our proposal differs on two points: (i) we seek to complement the under-
lying execution support, where only a portion of OS functionalities need to be remodeled,
whereas the entire development environment revolves around the data flow design; and
(ii) we provide security guarantees over the stack by restricting the use of the engine by
trustworthy functionalities, avoiding unnecessary overhead for stack sharing protection.

Table 2 summarizes the comparison of the related work based on some important
criteria. Overall, our solution tackles memory consumption issues in architectures with
limited on-chip memory. Unlike OSEK OS, SETs and HEROS OS, we focus on reduc-
ing the number of stack frames rather than reducing the stack size. Although CEFOS
and Memory-Aware DAG model would benefit from the same reduction achieved by our
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Table 2 – Comparison between related work on dissertation-related criteria.

Related Work General-Purpose
OS

Memory-constrained
Systems Complementarity

Scheduler Activations
(ANDERSON et al., 1992) ✓ ✗ ✗

OSEK OS
(PARK et al., 2011) ✗ ✓ ✗

SETs
(DIETRICH; LOHMANN, 2018) ✗ ✓ ✗

HEROS OS
(LIU et al., 2014) ✗ ✓ ✗

MTSS
(MIDDHA; SIMPSON; BARUA, 2008) ✗ ✓ ✓

StackMMU
(MAURONER; BAUNACH, 2017) ✗ ✓ ✓

CEFOS
(KUSAKABE et al., 2007) ✗ ✓ ✗

Memory-Aware DAG
(MARCHAL et al., 2018) ✗ ✓ ✗

Proposed Engine ✓ ✓ ✓

Source: Developed by the Author.

solution, it would fall into security issues by not being restricted to trustworthy applica-
tions. Moreover, our solution addresses general-purpose OSes for lightweight manycores,
which are much more complex than other solutions that are designed for specific domains
(OSEK OS, SETs, HEROS OS, CEFOS, and Memory-Aware DAG) or demand specific
hardware features (MTSS and StackMMU). Finally, to the best of our knowledge, our so-
lution is the only one capable of co-existing with the default execution supports available
for distributed OSes, thus avoiding the need for a complete redesign of OS-level code.
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4 TASK-BASED EXECUTION ENGINE

Lightweight manycores present a simplified on-chip memory system compared to
Symmetric Multiprocessing (SMP) and Non-Uniform Memory Access (NUMA) architec-
tures. Despite the relatively small amount of memory per thread, the constrained memory
system allows for better energy efficiency and scalability. However, lightweight manycores
impose several programmability and portability issues to software design. As discussed
in Section 2.2, existing distributed OSes based on asymmetric design stand out for their
adherence to the distributed and restrictive nature of lightweight manycores but still fail
to address their memory restrictions.

We believe that classical kernel data structures and abstractions can be reshaped
to reduce OS memory footprint. In this dissertation, we look at the opportunity to reduce
the memory consumption of trustworthy OS functionalities that execute small, periodic,
or asynchronous operations, such as OS service protocols, daemons, kernel-level com-
munications, and I/O interfaces. We revisit the concept of execution flow to propose a
lightweight task-based execution engine that complements the underlying execution sup-
port for state-of-the-art distributed OSes tailored to lightweight manycores with limited
on-chip memory. Overall, our solution aims at the following goals:

• Increase the density of concurrent OS-level execution flows within a lightweight
manycore cluster;

• Ensure that the OS memory footprint remains significantly small;
• Improve small, periodic, or asynchronous trustworthy OS functionalities;
• Avoid significant overhead; and
• Make better use of the core that run the asymmetric microkernel.

In this chapter, we cover the main aspects of our solution. First, we present
the concept of lightweight execution flow. Then, we present our engine and show how
it addresses the memory-related issues and complements the underlying execution sup-
port. Finally, we detail its implementation in an open-source distributed OS that runs
on a silicon lightweight manycore and we illustrate how we implemented important OS
functionalities on top of it.

4.1 COOPERATIVE LIGHTWEIGHT TASKS

The execution flow is the base element in any OS. Over the years, different gran-
ularities of flows have been proposed such as processes (LOMET, 1977), threads (BIR-
RELL, 1989), and coroutines (PAULI; SOFFA, 1980). Typically, an execution flow con-
tains basic information about the execution of a program, e.g., instruction pointer, data
stored on registers, working variables, and execution stacks. The stack, in particular,
holds the call history of procedures and allows several flows to share the same core. How-
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ever, the amount of memory needed to keep execution stacks is non-negotiable for systems
with limited on-chip memory.

In order to provide more execution flows with reduced memory consumption,
we propose an approach that reshapes the execution flow concept to reuse a unique
stack. To do so, we decompose execution flows into control flow and dependency graphs
of cooperative lightweight tasks. For the sake of simplicity, we will use the term “task” to
refer to “cooperative lightweight task” unless explicitly stated otherwise.

A task is the basic unit of execution and represents a processing step of a flow. It
encapsulates a subroutine or block of operations with deterministic response time (which
can take input arguments and produce output values) and can be periodically resched-
uled. Combining these concepts, we build the complete state of an execution flow by
synchronizing a set of tasks.

Task synchronization via control flow and dependency graphs plays a fundamental
role within the proposed engine. First, it implicitly preserves the execution history of the
functionality, allowing the use of a single stack to interleave executions of non-dependent
tasks. Second, functionalities that need to wait for events can block specific tasks to
stop competing for shared resources. Finally, relationships between tasks explicitly define
preemption points.

4.1.1 Control-Flow and Dependency Graphs

To structure the complete state of an execution flow, we use a multi-labeled
directed graph. It is defined by a quintuple that specifies sets for vertices (V ), arcs (A),
and labels (T, L, and C ). Specifically, the following equations define the digraph.

D = (V, A, T, L, C) (4.1)

V (D) = {v is a task | v has deterministic response time} (4.2)

A(D) = {(u, v, t, l, c) | u, v ∈ V ∧ t ∈ T ∧ l ∈ L ∧ c ⊆ C} (4.3)

T (D) = {t ∈ {flow, dependency} | t defines the relationship type} (4.4)

L(D) = {l ∈ {persistent, temporary} | l defines the lifetime of the arc} (4.5)

C(D) = {c ⊆ {regular conclusions, rescheduling, error handling}
| c are possible conditions to select the arc}

(4.6)

The arc-related labels increase the expressiveness in the execution flow definition
using tasks. Specifically, the type attribute (Equation 4.4) combines control flow and data
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dependency concepts. Flow arcs describe all possible paths of a flow, making it possible
to create control flows such as conditional constructs (ifs) and loops. Dependency arcs
add the concept of task dependency to the flow arcs, meaning that all dependencies of a
task must be met to unblock it.

The lifetime attribute (Equation 4.5) provides two types of interactions between
tasks. Persistent arcs define permanent relationships between tasks whereas temporary
arcs specify brief relationships between tasks that are valid only once.

The conditions attribute (Equation 4.6) establishes control flow and management
options based on the conclusion of a task. They describe the subset of paths (arcs) to
be released, allowing control flow to exist (path choice). In addition, conditions indicate
how the current task should behave once it is concluded. For instance, it is possible to
determine if the current task shall be automatically rescheduled and/or if it shall release
its successor tasks.

4.1.2 Execution Engine

The execution engine operates through a generic task executor called Dispatcher.
It schedules tasks, one at a time, and executes them on the same reserved memory (i.e.,
the same stack). Thus, we avoid using a dedicated process or thread for each task, which
reduces the OS memory footprint and makes their creation/destruction extremely fast.

We highlight that our execution engine complements the native OS abstractions
and is built on top of them. Because of that, it can provide more or less advanced
features depending on the underlying execution support provided by the OS. For instance,
the Dispatcher can benefit from finer scheduling control decisions if the OS allows such
flexibility (ANDERSON et al., 1992; BAUMANN et al., 2009).

Figure 4 depicts the states of tasks from the execution engine perspective and the
respective management interface. Tasks are configured/destroyed (create/unlink) individ-
ually and connected/disconnected (connect/disconnect) to/from a graph externally to the
Dispatcher functionality. Tasks without predecessors should be explicitly dispatched to
ensure that only configured tasks are treated (dispatch). The Dispatcher processes tasks
through a producer-consumer approach (consume). Different scheduling strategies can be
used to improve task throughput depending on the underlying OS execution support.

When a task completes, it forwards the exit conditions and successor parameters
to the Dispatcher. Based on the conditions, the Dispatcher does one of the following
actions: (i) complete the task correctly (complete); (ii) abort the task and propagate the
error (error); (iii) reschedule the task immediately (again) or after a predefined period
(timed again and wake up); or (iv) block the task (stopped) waiting for an external signal
(resume).

In all task conclusions, the Dispatcher can change the state of successor tasks if
they fulfill an exit condition and no longer have dependencies. However, the subsequent
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Figure 4 – States of tasks form the execution engine perspective.

Source: Developed by the Author.

state of each successor task depends on its internal criterion, which is defined when the
task was created.

4.2 IMPLEMENTATION DETAILS

The proposed task-based execution engine is generic enough to be implemented
in any distributed OS that targets lightweight manycores. In this dissertation, we chose
to implement it in Nanvix,1 since it is an open-source distributed OS that runs on a
silicon lightweight manycore. Similar to other distributed OSes for lightweight manycores,
Nanvix is structured in three logic layers. Our implementation lies in the middle layer
(within the asymmetric microkernel), which provides a fixed number of threads within a
cluster.

4.2.1 Overview of the Task-based Engine

The execution engine consists of four elements: the task structure, management
queues, arc-related labels and the Dispatcher. Table 3 shows the attributes of a task. The
task is notably compact and occupies only 128 bytes. We introduced variables to manage
and keep information about: (i) scheduling decisions; (ii) synchronization; and (iii) graph
control variables.

The task management is composed of three linked queues. Each queue represents
a possible waiting state (i.e., ready, periodic stopped or stopped). The ready queue is a
1 Available at: https://github.com/nanvix/
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Table 3 – Attributes of a lightweight task.

Group Attributes Size
Internal Control Flags, priority, identifier and state 19 B
Execution Parameters Function pointer, arguments and return values 28 B
Schedule Decision Period and next state’s criterion 8 B
Waiting Control Kernel semaphore and triggers 25 B
Graph Control Predecessors/successors control and arc attributes 48 B

Total 128 B

Source: Developed by the Author.

priority queue that contains all executable tasks. A delta queue manages periodic tasks
and sorts them based on period decomposition. Finally, the stopped queue holds tasks
that are waiting for external events to progress.

We implemented the arc-related labels defined in Equations 4.4, 4.5 and 4.6 as
follows. The type and lifetime sets follow the same values specified in Equations 4.4 and
4.5. However, we only support one arc type at a time between directed pairs for simplicity
( A → B and B → A are distinct pairs). The conditions set has the following possible
values: (i) three types of regular paths to support generic control flow structures; (ii) three
rescheduling types (again, stop, and periodically stop); and (iii) two error handling options
(throw/catch). The error handling option describes the relationship between two tasks
but both are selected on an error condition.

Since a master thread exclusively serves system calls isolated on a dedicated
core, OS-level functionalities and user applications compete for the rest of the available
cores. In this context, we chose to explore the idle time among system calls allocating
the Dispatcher in the same OS-dedicated core. This decision seeks to minimize kernel
interference and avoid reserving another core for the OS. As we will show in the results,
this design choice allows us to optimize the use of the master core. To do so, we had to
implement thread preemption in Nanvix from scratch.

4.2.2 Nanvix Microkernel Redesign

The Nanvix microkernel consists of modules to provide the basic OS abstractions.
These functionalities are exported through system calls and complemented by runtime
libraries. Figure 5 shows an overview of the Nanvix microkernel. Our engine, built from
scratch, lies on top of the execution support provided by the thread system. Besides the
execution support, our engine also supports exception and communication modules using
tasks.

The exception module is responsible for providing a user interface to dispatch
exceptions to other system entities. For instance, the page fault handler can delegate the
work to an OS daemon that implements a shared and distributed memory system. The
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Figure 5 – Conceptual overview of the Nanvix Microkernel.

Source: Developed by the Author.

Figure 6 – Generic communication flow with tasks.

Source: Developed by the Author.

original exception module blocks the handler on a semaphore and releases the daemon to
handle the page fault. Our solution replaces the daemon thread with tasks that only exist
during the exception handling. On completion, we release the user exception handler.

The Inter-Kernel Communication (IKC) module (PENNA et al., 2021), which
is responsible for implementing the abstractions for Inter-Process Communication (IPC)
in Nanvix, is more complex because it uses virtual channels to multiplex the limited
NoC channels. Requesters must wait for arriving messages on receives or permissions
to transmit on sends. When the operation completes, the kernel wakes up the blocked
requester. Receivers consume only messages addressed to their virtual channel. If the
physical channel is already reserved, the requester waits in a busy-wait fashion. If a
message is larger than the supported size, the runtime breaks it into chunks and repeats
the communication procedure. More details about the IKC module can be found in Penna
et al. (2021).

Figure 6 illustrates how we modeled a generic communication flow in Nanvix
with tasks. The communication flow consists of two persistent tasks (Task 1 and 3 )
and a temporary task (Task 2 ). We isolate the allocation/configuration of the physical
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channel (Task 1 ) and consumption/release of used resources (Task 3 ) from the waiting
operation (Task 2 ). Two flow arcs connect Task 1 and 3 , allowing channel multiplexing
and large transfers to be carried out.

Task 2 is a global task exclusively related to a physical channel. On the physical
channel reservation, Task 1 connects 2 to 3 on demand. This temporary arc represents
the dependency between Task 3 and the conclusion of the physical communication. On
the communication conclusion, a handler dispatches Task 2 , which, in turn, releases
Task 3 . The physical channel reservation and the temporary connection guarantee that
only one execution flow is notified of the conclusion.

To support the communication execution with tasks, we only modified the com-
munication module to abstract how the handler notifies the waiting entity (thread or
task). Although we still do a busy-wait to reserve the channel, we prioritize releasing
resources by setting Task 2 and 3 as high priority tasks.

4.2.3 Nanvix Asymmetric Multikernel Redesign

Nanvix implements an asymmetrical multikernel environment composed of ser-
vices and abstractions compatible with the POSIX standard. This design decision seeks
to balance programmability, portability, and performance goals to lightweight manycores
and support existing applications. Currently, Nanvix consists of three services that use
dedicated execution flows beyond the abstractions provided by the modules:

NameServer enables a transparent placement of processes and OS services on the light-
weight manycore. It maintains a table of aliases that maps a unique logical identifier
of a process to the cluster where this process resides and can resolve an alias into
the location of the process.

RMem provides a shared memory abstraction over multiple address spaces. It supports
transparent data access at the OS level through system calls that enable one-sided
communication on top of this abstraction (PENNA et al., 2019).

SHMem maintains the shared page mappings in the system and coordinates the access
to shared pages. Built on top of the RMem, it keeps track of ownership and access
permissions in shared memory regions. Whenever a change occurs in a shared page,
the service broadcasts a page invalidation signal to all processes that share the
corresponding page. This service is part of the SysV interface.

Figure 7 compares the original Nanvix multikernel with its new task-based im-
plementation. In both solutions, the server threads are isolated on I/O Clusters and fulfill
requests from other system entities. Compute Clusters, in contrast, are more memory-
restrictive and need to share resources between the kernel and the user application. In
its original version (Figure 7(a)), a dedicated core is reserved to each OS daemon. Our
task-based solution (Figure 7(b)) uses a single core of the Compute Cluster, making more



50

Figure 7 – Conceptual overview of the Nanvix Multikernel environment.

(a) Original Multikernel. (b) Multikernel with tasks.

Source: Developed by the Author.

Figure 8 – Definition of the NameServer and SHMem Daemons with tasks.

(a) NameServer Daemon. (b) SHMem Daemon.

Source: Developed by the Author.

cores available to the user applications. The memory consumption is also reduced, since
each user and kernel stacks of each OS daemon occupies 4 kB in Nanvix.

We now detail how we implemented three Nanvix daemons (NameServer, RMem
and SHMem) with tasks. For the sake of simplicity, we abstract the communication flows
(blue box) as a unique box that follows the description given in Section 4.2.2.

4.2.3.1 NameServer Daemon

Algorithm 1 details the behavior of NameServer. This daemon receives (line 3)
two types of lookup requests (local and remote) in an infinite loop. Local lookups handle
name cache misses as follows: it redirects the request to the NameServer (lines 6 - 10);
then, it updates the name cache with the lookup response; and, finally, it releases the user
thread (line 5). Remote lookups are similar to local ones but they target another name
daemon to extract extra information about a process (lines 6 - 10).

Figure 8(a) shows the graph representation of NameServer. Task 1 and Task 3
comprise the communication logic presented in Figure 6. Task 2 encompasses all de-
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Algorithm 1 – Abstract behavior of the NameServer Daemon.

Require: I ← Configured input channel
1: procedure NameDaemon
2: while True do ▷ Steps
3: M ← ReceiveMessage(I) ▷ 1
4: if Moperation = (Success or Fail) then ▷ 2
5: UpdateNameCache(M) ▷ 2
6: if Moperation = Address then
7: R← BuildMessage(Mtype) ▷ 2
8: O ← OpenChannel(Mtarget) ▷ 2
9: SendMessage(O, R) ▷ 3

10: CloseChannel(O) ▷ 4
11: if Moperation = Shutdown then ▷ 2
12: Break ▷ 2

Source: Developed by the Author.

Algorithm 2 – Abstract behavior of the SHMem Daemon.

1: procedure ShmDaemon
2: while True do ▷ Steps
3: R← ReceiveRequest(I) ▷ 5
4: if Roperation = Shutdown then ▷ 6
5: Break ▷ 6
6: ShmInvalidatePage(Riaddr) ▷ 6

Source: Developed by the Author.

terministic operations between two communications except closing the required opened
channel, which is done by Task 4 to complete the scope of the request.

4.2.3.2 SHMem Daemon

Algorithm 2 and Figure 8(b) presents the behavior and the graph representation
of SHMem, respectively. This daemon waits for page invalidation requests (line 3) and
invalidates the corresponding pages (line 6). It is composed of a communication flow
(Task 5 ) and a deterministic task to invoke the invalidation protocol (Task 6 ). Similar
to the previous flow, no dependency arcs than those contained in the communication flow
are required.

4.2.3.3 RMem Daemon

Algorithm 3 outlines the procedures of the RMem. This daemon uses the excep-
tion module to handle page faults, intermediating the communication with the RMem
server, and updates the memory structures. It searches the relative page on the local
cache (line 3). If the page is not found and the cache is full, it flushes one page to the
remote server (lines 4 - 11). With a free slot in the cache, it fetches the required page
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Figure 9 – Definition of the RMem Daemon with tasks.

Source: Developed by the Author.

Algorithm 3 – Abstract behavior of the RMem Daemon (page fault handler).

1: procedure RmemHandler ▷ Steps
2: Ex← GetPageFaultException ▷ 7
3: if SearchPageCache(Exaddr) == NotFound then ▷ 7
4: if PageCacheIsFull then ▷ 7
5: pi ← ReleaseOnePage ▷ Flush one page : 7
6: Ru← BuildFlushRequest(pi) ▷ 7
7: SendRequest(Ru) ▷ 8
8: Ru← ReceiveConfirmation ▷ 9
9: if Ruresult = InvalidPage then ▷ 10

10: DoPanic ▷ 11
11: SendPage(pi) ▷ 12
12: Re← BuildFetchRequest(Exaddr) ▷ Fetch remote page : 7
13: SendRequest(Re) ▷ 13
14: Re← ReceiveConfirmation ▷ 14
15: if Reresult = InvalidPage then ▷ 15
16: DoPanic ▷ 11
17: ReceivePage(Exaddr) ▷ 16
18: UpdateMemorySystem(Exaddr) ▷ 17

Source: Developed by the Author.

(lines 12 - 17). If the address is invalid, the daemon interrupts the application execution
(line 10 and line 16). On the flow conclusion, the user handler is released (line 18.

Figure 9 illustrates the graph representation of RMem. Due to its complexity,
this flow requires a considerable number of tasks (23 tasks in total). To deal with the
invalid address detection and the execution interruption, we defined a task that is only
scheduled when a request fails (Task 11 ). All arcs in flush and fetch operations (dashed
boxes) can propagate errors in addition to the regular paths. When the error propagation
reaches Task 11 , the Dispatcher schedules Task 11 due to a catch condition.
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Figure 10 – Overview of the MPI process management in LWMPI (original vs. tasks).

(a) Original LWMPI. (b) LWMPI with tasks.

Source: Developed by the Author.

4.2.4 Impacts on Nanvix User Libraries

Although the engine primarily brings advantages to the design of OS-level func-
tionalities, it has a positive impact on the support of user-level libraries. In general, the
main benefits for user-level software are the following: (i) more cores available to the user
application, improving user density and parallelism; (ii) lower competition and interfer-
ence over user resources; and (iii) more memory available, since OS services implemented
with tasks consume less memory. Some examples of user-level libraries in Nanvix are
SysV, POSIX, and LWMPI.

In this dissertation, we focus on LWMPI (ULLER et al., 2021), which is an open-
source MPI library featured by Nanvix that transparently profits from the advantages of
the task-based environment. LWMPI follows the MPI specification v3.1 and implements a
subset of the MPI functionalities. LWMPI relies on two important OS functionalities that
were redesigned to work with tasks: NameServer and IKC. The former is used in LWMPI
to individually address all MPI processes whereas the latter is used to implement the MPI
communication protocols and to carry out fine- and coarse-grained communications.

Figure 10 presents a graphical representation of a scenario with 30 MPI processes
running on a subset of Compute Clusters of the Kalray MPPA-256. Thanks to the
microkernel and multikernel redesigns, it is possible to run MPI processes on all cores
of the Compute Cluster except the master core. Therefore, the task-based version of
the LWMPI delivers increased processing power within the cluster and better explores
shared-memory communications.
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5 EVALUATION METHODOLOGY

To carry out a comprehensive assessment of the proposed engine, we designed
a set of benchmarks to assess the impacts on the memory, execution time, and energy
consumption on a baremetal lightweight manycore. The following questions guided our
evaluation methodology:

(Q1) How much memory is preserved by our solution?
(Q2) What is the cost of dealing with tasks instead of threads?
(Q3) How much interference (overhead) does our solution introduce?
(Q4) What is the performance achieved by our solution when subjected to MPI applica-

tions?

In this chapter, we first give a brief description of the lightweight manycore
employed in all experiments. Then, we discuss the experimental design that endeavors to
answer the aforementioned research questions.

5.1 LIGHTWEIGHT MANYCORE PROCESSOR

Nanvix supports a distinct variety of lightweight manycore architectures with
limited on-chip memory. In this dissertation, we chose the Kalray MPPA-256, a silicon
lightweight manycore that features all peculiarities discussed in Section 2.1.

Figure 11 presents an architectural overview of the Kalray MPPA-256 processor.
Kalray MPPA-256 integrates 288 general-purpose cores, grouped into 16 Compute Clus-
ters and 4 I/O Clusters. Each Compute Cluster features 16 Processing Elements (PEs),
1 Resource Manager (RM), 2 MB of local SRAM, two NoC interfaces, a software-managed
TLB, and does not have hardware support for cache coherence. Each I/O Cluster features
4 RMs, 4 MB of SRAM, 8 NoC interfaces, and hardware support for cache coherence.
Two I/O Clusters have access to 4 GB of DRAM, and the other two have access to an
Ethernet interface.

Two distinct 2-D Torus NoCs handle inter-cluster communication: a Control
NoC (C-NoC) allows the exchanging of small control messages and a Data NoC (D-NoC)
supports transfers of arbitrary amounts of data.

5.2 EXPERIMENTAL DESIGN

The experiments seek to evaluate the performance of the proposed engine and its
impacts on MPI applications. We considered both OS- (kernel and runtime libraries) and
user-level (user libraries and applications) software, thus allowing a detailed analysis of
the whole system. Figure 12 presents an overview of the software stack of Nanvix.
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Figure 11 – Architectural overview of the Kalray MPPA-256 processor.

Source: Adapted from Penna, Francis & Souto (2019).

Figure 12 – Nanvix software stack.

Source: Adapted from Uller et al. (2021).

We gathered time measurements using hardware performance counters to enable
monitoring with minimum interference. We collected energy measurements from sensors
available on the Kalray MPPA-256 board, which provide the power consumption of the
entire processor (including the on-chip memories and NoC). All measures started after
the boot period of Nanvix.

We carried out 10 runs of each MPI application and 30 runs of each synthetic and
OS service benchmark in order to guarantee statistical relevant results. All results repre-
sent average values and are based on a confidence interval threshold of 95% (significance
of 5%). All experiments and the software stack are publicly available.1

5.2.1 Nanvix Variants

We considered 3 variants of Nanvix in the experiments:

Baseline (Baseline). This is the standard version of Nanvix without any changes or
additional features introduced in this dissertation.

Partial task (Partial). This version replaces the original Inter-Kernel Communication
module (IKC) with a task-based one. This means that all communications are
carried out with tasks.

1 Available at: https://github.com/nanvix/benchmarks, commits c57d45b and dd02d38.
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Table 4 – Parameters used by the experiments.

Type Name Parameters
Theoretical OS footprint 2 MB SRAM

Synthetic
Thread vs Task N flows, N ∈ [1, 21]
Kernel Latencies N tasks vs M threads, N ∈ [0, 1], M ∈ [1, 15]
Core Usage One heartbeat protocol execution by one process

OS Services Pginval N invalidations, N = 100
Pgfetch N transfers, N = 100

User Library
FN Numbers ∈ [1000001, 1000001 + N), N = 1536 ∗ nclusters
GF N images of 256× 256 pixels, 7× 7 mask, N = 1200 ∗ nclusters
KM N 2D points, 128 centroids, N = 13440 ∗ nclusters

Source: Developed by the Author.

Full task (Full). This version has full support of tasks throughout the system, including
communications, OS daemons and OS modules.

5.2.2 Benchmarks and Applications

In all experiments, we focused on comparing the results obtained with our task-
based implementations against Nanvix’s native thread-based solutions. We classified the
experiments in 4 classes, which are presented next: (i) theoretical: evaluates the memory
consumption in different layers of the OS; (ii) synthetic: employs synthetic applications
to measure the OS response time; (iii) OS services: evaluates the performance of OS
protocols; and (iv) user library: evaluates the performance of user applications.

A brief description of each experiment as well as its correlation with the research
questions are given below. Table 4 summarizes the configuration of each experiment.

OS Footprint (Q1). This theoretical analysis compares the maximum number of con-
current execution flows and the memory footprint of the thread- and task-based
versions of Nanvix.

Thread vs. Task (Q2). It compares the execution time needed to create/destroy threads
vs. dispatch/wait for tasks. Threads/tasks execute the same dummy function to
measure the basic overheads. This experiment is limited to 21 flows because it is
the maximum number of user threads that Nanvix currently supports in a Compute
Cluster.

Kernel Latencies (Q2, Q3). It measures the response time of remote system calls re-
quested by traditional threads vs. by the Dispatcher. This experiment observes the
interference introduced by our engine in kernel response and how it affects kernel
scalability.

Core Usage (Q2, Q3). It details the execution time spent by all entities involved in the
heartbeat protocol of the NameServer service. This protocol periodically informs the
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process manager that a process is alive.
Pginval (Q3). It measures the latency for invalidating remote page cache entries. It

launches multiple processes that share and iteratively request the invalidation of a
memory region. This program relies on N processes requesting 1 : N − 1 broadcast
communication protocol using the SHMem service.

Pgfetch (Q3). It assesses the time for transferring a page from the memory server to
a process. It launches multiple processes that fetch several pages from the remote
server by iteratively allocating some memory, reading from it, and releasing it. This
program relies on a 1 : 1 ping-pong communication protocol using the RMem service.

User Library (Q4). It evaluates the performance of user applications when running
on the original and task-based versions of Nanvix. To evaluate MPI applications,
we chose three applications extracted from CAP Bench (SOUZA et al., 2017), a
benchmark suite designed to evaluate the performance of lightweight manycores.
These applications run on top of LWMPI (ULLER et al., 2021). Although the
proposed engine allows assigning more MPI processes per Compute Cluster, we ran
all CAP Bench applications with 12 MPI processes so as to make a fair comparison
between the original and task-based versions of Nanvix. A brief description of each
application is given below:

• Friendly Numbers (FN) is an application that finds all subsets of numbers
in a range [n, m] that share the same abundance. The abundance of n is
the ratio between the sum of divisors of n by n itself. FN implements the
MapReduce parallel pattern with regular loads. The problem is predominantly
CPU-bound.

• Gaussian Filter (GF) is a filter that reduces the noise of an image by apply-
ing a matrix convolution operation with a special two-dimensional Gaussian
mask to the image pixels. GF follows the stencil parallel pattern and features
a CPU-intensive workload with medium communication intensity.

• K-Means (KM) is a clustering technique employed in data analysis. Given
a set of n points in real d-dimensional space, KM randomly split them into k

partitions. Then, it applies the Map parallel pattern to distribute points and
replicate data centroids between the Compute Clusters. This application has
the highest communication intensity, since data centroids are updated at every
iteration.
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6 EXPERIMENTAL RESULTS

In this chapter, we present and discuss our experimental results. First, we show a
simple qualitative analysis of the memory consumption of our solution. Then, we examine
its raw performance and scalability with synthetic benchmarks. Finally, we evaluate its
performance when running OS services and MPI applications.

6.1 MEMORY CONSUMPTION

Table 5 presents an extrapolation of the number of concurrent execution flows
that can coexist in different reserved memory sizes. For simplicity, the assessment does
not consider the memory required for the OS and user data. Furthermore, we assume
that the entire memory of a Compute Cluster (2 MB in Kalray MPPA-256) is available
to keep task data and stacks. We consider 128 bytes and 4 kB for the task structure and
memory page, respectively. An execution stack is made up of two memory pages (one for
user mode and the other for kernel mode).

Overall, we observed a linear increase in the maximum number of execution flows
as the memory reserved is increased. However, the maximum number of threads increases
with a factor of 0.125× whereas this factor is about 7.9× for the task approach. This
extrapolation unveils that our solution can significantly reduce the OS memory footprint.
The reuse of the execution stack and the small control structures of tasks provide 63.2×
more execution flows per MB of memory than traditional threads.

Figure 13 shows an approximation of the memory consumption of Baseline and
Full variants. Results show that the memory footprint of the task-based microkernel
(Full) is about 12% bigger than its original version (Baseline). This difference represents
the entire implementation of the task engine as well as kernel components. However, Full
allows the inclusion of new OS daemons without any significant impact on the memory
consumption, since it replaces OS daemons (threads) by a single Dispatcher thread that
executes lightweight tasks.

Table 5 – Extrapolation of the maximum number of flows per Compute Cluster.

Execution Flow Memory Required No. of Flows per Reserved Memory (kB)
≈8 16 64 256 1024 2048

Thread 8 kB per thread 1 2 8 32 128 256
Task 128 B per task + 8 kB 1 64 448 1984 8128 16320

Source: Developed by the Author.
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Figure 13 – Approximation of the memory footprint of the Baseline and Full Nanvix variants.
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Figure 14 – Latency and energy consumption involved in spawning/waiting threads/tasks.

(a) Latency. (b) Energy with 21 flows.
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6.2 PERFORMANCE, SCALABILITY AND OVERHEAD

Figure 14 shows the latency and energy consumption of spawning (fork/dispatch)
and waiting (join/wait) execution flows (threads vs. tasks). Overall, we observed that
the latency of the join is slightly higher than the wait operation, being the former up
to 1.87× higher than the latter (Figure 14(a)). However, we noticed that the overhead
involved in forking a new thread increases significantly compared with creating tasks. This
overhead is at least 2× and 15.3× higher with 1 and 21 threads, respectively. These results
unveil that our task-based solution presents better scalability and lower costs to spawn
OS functionalities. Figure 14(b) shows the energy consumption of the experiment with
21 threads/tasks. The task-based solution consumes 6.6× less energy than traditional
threads, reflecting the lower latencies of the dispatching/waiting of tasks.

Figure 15 presents the response time of remote system call requests. In Fig-
ure 15(a), we analyze the base response time when a single thread or a single task requests
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Figure 15 – Response times of remote system calls.
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Figure 16 – Detailed execution of the heartbeat protocol of the NameServer Service.
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a remote system call. As it can be noticed, the response time is 3.1× shorter for the task.
The reason behind this result is that the Dispatcher shares the same core of the master
thread. Figure 15(b) shows the response times when system calls are requested by 1 task
along with a variable number of threads. In this plot, there are three different curves
depicted, each of which featuring a distinct behavior: (i) the response time where only
threads make system calls (Threads-only); (ii) the response time of the Dispatcher when
competing with user threads (Dispatcher+Threads); and (iii) the average response time of
a thread when competing with other threads and the Dispatcher (Threads+Dispatcher).
In general, the Dispatcher+Threads presented good scalability with an overhead smaller
than the Threads-only. Conversely, the Threads+Dispatcher was 1.22× slower compared
to the Threads-only scenario. Overall, these results unveil that the Dispatcher did not
add significant overhead to the response time of the kernel.

Figure 16 shows the breakdown of execution times of the heartbeat protocol of the
NameServer service on Baseline and Full variants. The results exhibit three relevant
findings: (i) the Dispatcher takes advantage of the idle time of the master core (the
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Figure 17 – Overall response times when running the Pginval protocol.

(a) Latency. (b) Energy.

Source: Developed by the Author.

one that executes the master thread) to execute tasks; (ii) the busy-wait aspect of the
communication protocol increases the core utilization of Dispatcher, although it does
not significantly interfere with the execution of the kernel (master thread); and (iii) the
extra work and the isolation of the communication on the master core were the foremost
factors for increasing the latency and energy consumed by the service (e.g., requesting
more context switching between the Dispatcher and the master thread).

6.3 PERFORMANCE ANALYSIS OF OS SERVICES

Figure 17 pictures the latency and energy consumption for invalidating page
cache entries using the SHMem service (Pginval benchmark). In this benchmark, N

processes compete to request page invalidations to the SysV server that broadcasts small
and fixed-size messages to N−1 SHMem daemons. We evaluated the Baseline, Partial,
and Full variants with different numbers of processes (from 1 to 16 processes). Results
obtained with Pginval show that Partial and Full variants achieved 13.5% and 15%
better performance and energy efficiency than Baseline, respectively. Results with tasks
were faster because: (i) the Dispatcher better manages fine-grained communications,
exploring the lower syscall latencies during communications on the master core; (ii) the
invalidation protocol relies mainly on the SysV server and the SHMem daemon does not
affect the requester side. Although Partial and Full had similar performance, the Full
variant has a smaller memory footprint.

Figure 17 also shows the latency and energy consumption for fetching remote
pages using the RMem service (Pgfetch benchmark). In this benchmark, each process
manipulates unrelated 32 memory pages (4 kB each). To fetch a remote page from the
RMem server, the protocol employs both small and large messages, which correspond to
control data and page data transfers, respectively. Our results unveil a different behavior
in Pgfetch, where Baseline approximately achieved 22% and 21% better performance
and energy efficiency than the task-based variants, respectively. In the original version of
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Figure 18 – Weak scaling: execution times (top) and efficiencies (bottom) for FN, GF and KM.

Source: Developed by the Author.

Nanvix (Baseline), data copy and deallocation of communication buffers are delegated
to user threads. This solution improves the system performance, since user threads run
in parallel with the kernel, but it breaks the premise of kernel isolation of the asymmetric
microkernel model. Since we isolate communications on the master core in Partial and
Full variants, all these operations are executed by the Dispatcher, resulting in such over-
head. Lastly, OS daemons with tasks did not present any interference on the executions
comparing the Partial and Full results.

6.4 PERFORMANCE ANALYSIS OF MPI APPLICATIONS

We now evaluate the performance of user-level parallel applications implemented
with MPI. As mentioned before, these applications use the LWMPI library, which in turn,
leverages Nanvix IPC to carry out communications between MPI processes. Since Nanvix
IPC is implemented with tasks in Partial and Full variants, we expect performance
impacts on communication-bound applications. Figure 18 pictures the weak scaling results
for FN, GF, and KM applications based on two metrics: execution time and weak scaling
efficiency.

As expected, all Nanvix variants showed similar performance results for FN,
since this application is CPU-bound and has low communication demand. This result
also indicates that running the Dispatcher along with the master thread on the master
core does not affect significantly the overall performance of the application. On average,
the task-based execution engine introduced 2% of overhead on the FN execution time
compared with the Baseline. The weak scaling efficiency of the FN did not present any
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Figure 19 – Weak scaling: energy consumption of FN, GF, and KM.
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Figure 20 – Weak scaling: power consumption of KM with 12, 48, and 192 MPI processes.

Source: Developed by the Author.

significant difference between the Nanvix variants.
The GF application exhibited significant differences between the Nanvix variants.

This behavior comes from the time spent in coarse-grained inter-cluster communications.
On average, the performance of GF with Partial and Full was 34% and 12% worse than
the one achieved with Baseline, respectively. This performance degradation is due to the
same reason explained in Section 6.3: the Dispatcher spends more time executing data
copies and deallocations, preventing the application to continue its execution until these
operations are completed. We noticed, however, that Full executed 19% faster than the
Partial, on average. After a careful analysis of this experiment, we concluded that this
is due to the better name resolution management on Full. The NameServer daemon with
tasks removes the intermediary kernel thread and combines small communications with
the daemon logic.

Finally, we observed a different behavior with KM. In this case, Full presented
the best results of all Nanvix variants, except for the experiment with 192 MPI processes.
Despite the high communication intensity aspect, KM relies on less coarse-grained com-
munications than the GF. When executed on Full, KM was 1.04× and 1.10× faster than
on Baseline and Partial, respectively. All Nanvix variants showed similar weak scaling
efficiency with a slightly better efficiency achieved by Baseline when compared to the
other task-based variants.
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We now focus on the power and energy consumption of the applications when
running with Baseline, Partial and Full variants. Figure 19 pictures the overall energy
consumption of FN, GF, and KM. As it can be noticed, the energy consumption of each
scenario follows the same trends observed in the execution times, meaning that the execu-
tion time is the most important factor for the energy consumption. Figure 20 exemplifies
this observation, which shows the power consumption during the execution of KM. We
noticed a slightly higher power consumption with Full due to a better exploitation of
the master core (its idle time is used to carry out communications and daemons’ logics).
However, the increase in power consumption is not enough to have an important impact
on the energy consumption. We observed the same behavior for the other applications.
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7 CONCLUSION

Lightweight manycore processors achieve both high performance and energy ef-
ficiency thanks to a set of architectural features such as extreme parallelism with a dis-
tributed and restrictive memory architecture. OSes for lightweight manycores embrace a
distributed structure to achieve scalability while exposing richer abstractions to user-level
software. The asymmetric microkernel design is commonly adopted to deal with peculiar-
ities of lightweight manycores due to its reduced memory footprint and high scalability.
However, this design does not address all restrictions arrived from the limited on-chip
memory.

To alleviate the memory constraints of lightweight manycores, we proposed a
task-based execution engine as an alternative to traditional execution flow abstractions
(e.g., processes and threads). The engine supports cooperative lightweight tasks that
share a unique execution stack and features task synchronization via control flow and
dependency graphs, eliminating the need of dedicated processes/threads to implement
OS-level functionalities. It allows the execution of numerous OS-level execution flows
with reduced memory consumption and is orthogonal to the underlying OS execution
support.

We implemented our engine in a distributed OS and showed how important mod-
ules of the OS (microkernel and multikernel) could be redesigned to work with tasks. We
carried out several experiments on Kalray MPPA-256, a lightweight manycore processor
that features 288 cores in a single chip. Our results showed that the proposed solution
has the following advantages when compared to the use of threads to implement OS-level
functionalities: (i) it provides 63.2× more execution flows per MB of memory; (ii) it fea-
tures less overhead to manage execution flows and system calls; (iii) it improves the master
core utilization; and (iv) it exhibits competitive results with real-world applications.

7.1 FUTURE WORK

Due to limited time, we restricted the scope of the dissertation to consolidate the
fundamentals of the proposed execution engine and its implementation in a real-world
context. This restriction led us not to investigate some research aspects. In this context,
future work can take into account the following facts:

Remove busy-wait from communication The communication module can be changed
to avoid the busy-wait approach in the communication channel reservation using a
flow chaining strategy, increasing engine responsiveness. This strategy could be
implemented through the already supported on-demand dependency functionality.

Scheduling policies This dissertation limited the scheduling mechanism to a naive ap-
proach. Scheduling policies that consider control flow and dependency graph prop-
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erties could identify critical flows to provide runtime optimizations.
Replacement of server threads We focused to study Compute Clusters in this dis-

sertation because they are more restrictive and impose severe constraints on the
number of system threads concurrently running. However, I/O Clusters present the
same restrictions where the number of servers is limited to the number of threads
available. Thus, it would be possible to replace server threads by a set of Dispatch-
ers and this solution could deliver benefits in memory consumption, increasing the
maximum number of services available in the system.

New services Currently, Nanvix requires only three OS daemons. As the system evolves,
the benefits of the proposed engine can be studied in other OS service contexts.

7.2 PUBLICATIONS

The work presented in this dissertation was partially reported in the proceedings
of the IEEE International Symposium on Computer Architecture and High Performance
Computing (SOUTO; CASTRO; PENNA, 2021). The author also contributed to the
publication of an article in the International Journal of Parallel and Distributed Comput-
ing (PENNA et al., 2021), an article to the Concurrency and Computation: Practice and
Experience (ULLER et al., 2021) and of a paper in the proceedings of the Simpósio em
Sistemas Computacionais de Alto Desempenho (ULLER et al., 2020). More information
about these papers can be found below:

• SOUTO, J.; CASTRO, M.; PENNA, P. A task-based execution engine for dis-
tributed operating systems tailored to lightweight manycores with limited on-chip
memory. In: 2021 IEEE 33rd International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD). Los Alami-
tos, CA, USA: IEEE Computer Society, 2021. p. 74–83. Disponível em: https:
//doi.ieeecomputersociety.org/10.1109/SBAC-PAD53543.2021.00019.

• PENNA, P. H. et al. Inter-Kernel Communication Facility of a Distributed Operat-
ing System for NoC-Based Lightweight Manycores. Journal of Parallel and Dis-
tributed Computing (JPDC), 2021. Disponível em: https://doi.org/10.1016/j.
jpdc.2021.04.002.

• ULLER, J. F. et al. LWMPI: An MPI Library for NoC-Based Lightweight Many-
core Processors with On-Chip Memory Constraints. Concurrency and Compu-
tation: Practice and Experience, 2021. Disponível em: https://doi.org/10.1002/
cpe.6693.

• ULLER, J. F. et al. Enhancing programmability in noc-based lightweight manycore
processors with a portable mpi library. In: Simpósio em Sistemas Computa-
cionais de Alto Desempenho. Online: SBC, 2020. (WSCAD ‘20), p. 1–12. ISSN
2358-6613.
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