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ABSTRACT

The arrival of the 5G technology brought a new perspective to the IIoT field. Relying on
even faster data rates than its forerunner, the new standard enables a wider range of
sensors to be connected to the internet. In this scenario, the Fraunhofer IPT developed
a concept for a multi-sensor platform, a smart sensor board which allows real-time
transmission of industrial machinery data through the 5G network. This work presents
the development of a software for one of its sensor nodes, using the vibration sensor
as a reference. In order to supply certain a pre-processing stage right after the data
sampling, an FFT and a Wavelet transformation were implemented. The response time
and the accuracy of both features were obtained using different methods. At the end, the
values were analyzed and some promising results were achieved. The FFT delivered
answers between 750 to 950 microseconds, depending on the chosen property, and its
accuracy was overall good for the application, considering a qualitative analysis. Final
considerations and possible future works ere also presented and discussed.

Keywords: MSP. FFT. Wavelet. Smart sensor.



RESUMO

A chegada da tecnologia 5G trouxe uma nova perspectiva para o campo da IIoT.
Apresentando uma taixa de transmissão de dados ainda maior que o seu antecessor, a
nova geração ptorna possível que uma maior gama de sensores possa ser conectada
a internet. Tendo em vista essse cenário, o Frunhofer IPT desenvolveu um conceito
para uma plataforma multi-sensores, uma placa de sensores inteligentes que permite
uma transmissão em tempo real de dados da produção mecânica através da rede 5G.
Esse trabalho apresenta o desenvolvimento de um software para um dos dos nós de
sesores inteligentes, usando o sensor de vibração como referência. Com o objetivo
de fornecer uma etapa de pré-procesamento logo após a obtenção do dado, uma
FFT e uma transformada de Wavelet foram implementadas. O tempo de resposta e a
acurácia das duas foram obtidas usando diferentes métodos. No fim, os valores foram
analisados e alguns resultados foram obtidos. A FFT entregou respostas entre 750 e
950 microegundos, dependendo da propriedade escolhida, e a sua acurácia foi em
geral boa para a aplicação, considerando uma análise qualitativa. Considerações finais
e possíveis trabalhos futuros também foram apresentados e discutidos.

Palavras-chave: MSP. FFT. Wavelet. Sensor inteligente.
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1 INTRODUCTION

The Fraunhofer Institute for Production Technology (IPT) is a member of the
Fraunhofer Society in Aachen, Germany. It develops system solutions for the networked,
adaptive production of sustainable and resource-saving products. Inside its Metrology
Department, the Digital Infrastructure group, through a partnership with the laboratory
of the company Ericsson in Aachen, researches the possible applications of the
fifth generation of the broadband cellular networks (5G) in the industrial production
(FRAUNHOFER IPT, 2019).

As shown by Shafique et al. (2020), the arriving of 5G brought a series of new
possible applications for the wireless technologies. Relying on a latency of less than 1
millisecond and with a throughput up to the 5 Gigabytes per second, the 5G represents
a turning point in data communication for wireless sensors. Surpassing the speed of
its predecessor by 10 to 15 times, the 5G brings an improvement to a well-known
problem in this field: the non-feasibility of transmitting high-frequency data without wires
(AL-FALAHY; ALANI, 2017).

For example, in the machinery field the 10-15 milliseconds delay attached to
the 4G technology could be enough for slow-rate variables, such as temperature or
pressure, but when it comes to high-frequencies, as speed or vibration, the use of
wireless communication was not able to meet the time constraints required for this kind
of process. However, the use of cables inside the machine were also unfeasible, due to
the nature of the problem and the rough environment, making it impossible to analyze
these variables while a piece is being manufactured.

In this scenario, the Fraunhofer IPT - during the international consortium
5G-SMART - started the design of a Multi-Sensor Platform (MSP). Its basic concept,
which can be seen on Figure 1, is a central process unit that receives data from
different types of sensor, and, after some pre-processing, sends the collected data via a
5G-modem (SCHMITT et al., 2020).

Figure 1 – Basic concept behind the Multi-Sensor Platform

Source: Schmitt et al. (2020)

Considering a scenario like the shop floor of the Fraunhofer IPT, which is
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depicted in Figure 2, the MSP is supposed to sample and send data of machinery
process in real-time. Relying also on the pre-processing in hardware, the system should
be able to send less data than usual, as well as decentralize its calculations.

Figure 2 – Example of applications of the multi-sensor platform

Source: Schmitt et al. (2020)

According to Schmitt et al. (2020), the MSP will work as an use-case that is
cheaper and more complete that ones available in the market. After its first goal of a
smarter monitoring system, the next step for the MSP will be to detect failures on the
working piece before it happens, utilizing artificial intelligence on the edge.

Since this work focus in the embedded software developed for one of the nods
of the MSP – focusigng in the vibration one – a quick market research was conducted
trying to find a product which would presented a similar functionality. The product
found was the sensor ADcmXL3021 from Analog Devices (2019), which has its block
presented in the Figure 3 below.

Figure 3 – Block diagram of the sensor ADcmXL3021 from Analog Devices

Source: Analog Devices (2019)

As shown in Analog Devices (2019), this is a tri-axial accelerometer which is
capable to send raw or frequency information of its three axis via Serial Peripheral
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Interface . The functionalities presented on it were used as a reference in the
development of some parts of this work.

1.1 GENERAL GOALS

Develop an embedded software that allows to perform digital signal processing
inside a microcontroller.

1.2 SPECIFIC GOALS

The specific goals are presented below:

• Choose a microcontroller which is able to handle the proposed tasks.
• Find or develop tools which are capable to do a signal processing in the chosen

microcontroller.
• Find or create tests which validate the results obtained.

The requirements needed to achieve the specific goals are better described in
the methodology.

1.3 STRUCTURE

This work is divided in 6 main sections as follow: Introduction, Theoretical
Background, Methodology, Development, Results and Conclusions. A brief explanation
for better orientation during the text is presented below;

The first chapter, Introduction [1], presents the theme and introduces the
problem to be solved. It brings the reasons of this work and also contextualizes it in a
point of time in the history of the technology development, as well as the background
that made it possible.

Following with Theoretical Background [2], some technical concepts behind the
key points of the whole project are concisely introduced in order to guarantee a better
comprehension of it.

On its third part, the Methodology [3], all the requirements of the system, as
well as the main tools utilized to test and develop it are presented. In this chapter, the
methods available that can be used to solve the problem are presented, along with the
ones which were actually chosen and the explanation for it.

In the course of Development [4], it is discussed how all the mechanisms
mentioned in the previous chapter were connected to become the solution of the
purposed problem.

Then, in Results [5], all the outputs obtained from the program are evaluated
and put together in different ways for comparison.
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Finally in Conclusions [6], considerations over the final project are made, what
could and could not be done, its main limitations, and what are the improvements and
next steps for future works.
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2 THEORETICAL BACKGROUND

All the technologies used, as well as the concept behind it, are explained in this
chapter to provide a better comprehension of the following work and its proposal.

2.1 THE SYSTEM

The MSP is thought to be a base system where is possible to connect multiple
diverse sensors in its sensor nodes, in an easy way (SCHMITT et al., 2020). A scheme
is presented in the Figure 4 below for a better comprehension.

Figure 4 – Basic concept behind the Multi-Sensor Platform

Baseboard

SPI

SPI

SPI

UDP 5G
Modem

UDP

LwM2M
Cloud

Smart-sensor node

Smart-sensor node

Smart-sensor node

Hardware Communication Software

Source: Autor
In the figure above it is possible to have a better look inside the system. The

sensors, which are placed on the work piece inside the machine, are connected to
the smart-sensor nodes – which are the focus of this works. This nodes samples and
pre-process the data of the sensor, and then it send the results via SPI to the baseboard.
The baseboard gathers, packs and sends the data of all the nodes through to the 5G
modem, which transmits the data to the cloud. It is possible to connect to the cloud
using a Machine to Machine protocol, in which its lightweight version (LwM2M) sends
commands to the baseboard, to choose among the features available.

2.1.0.1 System tools

As mentioned before, one of the applications which the system will be used
is the tool breakage detection. For this purpose, two tools are used. The first one is
the Fourier Transform, which divides a signal in its components according to theirs
corresponding frequencies, in order to tell which of this components contributes more
to the amplitude of the signal. The second one is the Wavelet Transform, which solves
a limitation of the fist method. Since it is localized in time – different from the Fourier
Transform – it does not only separate the signal in its frequency components, but is
is also able to tell when exactly each amplitude happened. In this way, the Fourier
Transform can tell which frequency contributed more for the breakage, while the Wavelet
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Transform is able to show when it happened (LI; DONG; YUAN, 1999).

2.2 FOURIER ANALYSIS

As it can be seen in Oppenheim e Willsky (1996), Fourier has shown that any
periodic signal in continuous time can be described as a linear combination of sines
and cosines, or as a sum of complex exponential, since both of them are connected via
Euler’s formula 1. The former one is introduced in the Equation 1 below:

(1)an(t) =
∞∑

k=−∞

ake
jkω0t

Where ω0 is the fundamental frequency of the signal, and j is the complex
variable. The coefficients ak are called harmonics and can be calculated by the Equation
2:

(2)ak =
1

T

∫
T

x(t)e−jkω0tdt

Analyzing the Equations 1 and 2, it is possible to realize that a signal can be
described in therms of an amplitude and a frequency that is multiple of its fundamental
frequency.

2.2.1 Fourier Transform

A non-periodic signal x(t) can be described as a periodic signal x̃(t) in which
the period tends to infinity. Since the fundamental frequency is defined as ω0 = 2π

T
,

where T is the period of the signal, when (T → ∞) – as it can be seen in Oppenheim e
Willsky (1996) – the Fourier Transform is defined by the resulting Equation 3 below.

(3)X(jω) =

+T/2∫
−T/2

x(t)e−jωtdt

The X(jω) is a frequency domain complex evaluated function. It is the integral of
the aperiodic signal x(t), from its start (−T

2
) to its end (T

2
), multiplied by the complex

exponential e−jωt, where ω is defined as 2π
T

and j is the complex unit.
The Fourier Transform transposes a time defined function to the frequency

domain. It translates signals, which might have a frequency that is hard to analyze
due to its many components, to a simpler function that relates amplitudes with the
frequencies that they occur. Since most of signals in nature are non-periodic, the Fourier
Transform becomes a particular useful tool in most of digital signal processing problems.

1 On it’s polar form: eix = sinx+ icosx
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2.2.1.1 Magnitude and Phase

As stated in Oppenheim e Willsky (1996), since the result of the Fourier
Transform is a complex number, as it shown in Equation 3, in order to achieve a
an easier analysis by plotting, the magnitude an phase can be obtained. The magnitude
is given by the Equation 4 below:

(4)|X(jω)|=
√
X(jω)2

This equation describes which frequencies contribute more to the amplitude of the
signal and it is totally real evaluated. On the other hand, the Equation 5 below, defines
the phase of a signal.

(5)∡X(jω) = −tan−1(
b

a
)

Considering that X(jω) is a complex number – and that b involves the frequency
ω – the equation above describe the phase of the signal analyzed and it is also real
evaluated.

2.2.2 Discrete Fourier Transform

Taking a non-periodic discrete signal x̃(t), Oppenheim e Schafer (2010) show
that the Fourier Transform in this case, represented in Equation 6, is analogue to the
Equation 3 for discrete signals.

(6)X[k] =
N−1∑
n=0

x[n]e−
j2πkn

N , k = 0, 1, 2, 3, ..., N − 1.

The above equation is called Discrete Fourier Transform(DFT), and it transposes
a sequence of equally spaced samples in time to a sequence that has the same
characteristic in the frequency domain. This representation is important in digital signal
processing, since digital systems only work with sampled signals – because analog
signs are infinite, but memory is not – while the Fourier Transform is defined in a
continuous time scenario(OPPENHEIM; SCHAFER, 2010).

2.2.3 Fast Fourier Transform

The DFT can be calculated also for complex signals, since both k and n may be
complex in Equation 6. Considering the input signal x[n] complex, it would be needed N
complex multiplications and (N − 1) complex addictions in order to calculate the entire
DFT. This would lead to a complexity of N2 mathematical operations, where N is the
number of samples in the input signal.

The implementation of the operations of a DFT – as it is presented in the
Equation 6 – would then lead to a algorithmic complexity of O(n) = n2, which can be
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costly, mainly for larger data sets. This number can be considerably reduced if some
advantages, such as symmetry and periodicity, of this series are taken.

In order to achieve a better computational efficiency, a variety of algorithms
to calculate the DFT were created through the time. This set of algorithms, which
can reach a complexity of O(n) = n ∗ logn(n) are called the Fast Fourier Transform
(FFT)(OPPENHEIM; WILLSKY, 1996).

2.3 WAVELET TRANSFORM

According to Daubechies (1992), the Wavelet Transform is a tool that cuts up
functions into different frequency components, and then analyzes each component with
a resolution matched to its scale. It can be defined by the Equation 7 below:

(7)Twav
f (a, b) =

1√
|a|

∫
f(t)ψ

(
t− b

a

)
dt

Where a is the dilation or scale parameter, which stretches or shrinks the
wavelet; and b is the translation parameter, which shifts the wavelet through the time.
(DAUBECHIES, 1992)

The ψ( t−b
a
) generates an entire family of functions, the wavelets, by ranging the

coefficients a and b over the real numbers domain. The function ψ(t), sometimes called
mother wavelet, is a completely differentiable function and it must satisfy the condition:

(8)
∫
ψ(t)dt = 0

where ψ(t) might be a complex function, and then the complex conjugate ψ∗( t−b
a
)

must be used in the Equation 7 instead.

2.3.1 Discrete Wavelet

The Discrete Wavelet Transformation assumes the coefficients a = am0 and
b = nb0a

m
0 , where m,n range over Z , and a0 > 1 , b0 > 0. The appropriate choices for a0

and b0 depends on the wavelet ψ(DAUBECHIES, 1992).
The equation that describes a wavelet becomes:

(9)ψm,n(x) = a
−m/2
0 ψ

(
x− nb0a

m
0

am0

)
= a

−m/2
0 ψ(a−m

0 x− nb0)

The equation 7 will then become:

(10)Tm,n =

∫
f(t)ψm,n(t)dt
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As shown by Daubechies (1992), with this discrete description of the Wavelet Transform,
it is possible to derive equations that are the synthesis and analysis of sub-band filtering
scheme with exact reconstruction. It is important not only because of the certainty that
the original signal can be reconstructed, but also for the possibility to derive an algorithm
which is simple to compute.
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3 METHODOLOGY

In order to achieve the proposed goals, the fist step was to describe the
system and all its requirements. Later, in order to satisfy the conditions listed, a market
comparison was conducted to find the microcontroller that best suits the solution. All
these steps about the materials used and which methods has been followed are better
described in this chapter.

3.1 REQUIREMENTS

Since the smart-sensor platform is designed to be applied in the acquisition
and analysis of tool machinery data, certain requirements must be fulfilled by the
microcontroller which will be on its node.

• Functional
– The microcontroller must have an Floating Point Unit(FPU) unit.
– The node must be able to communicate with the base-board via SPI

communication
– The software must be able to do all its calculations and processing, as well as

send its results, during the time between one Analog-Digital Converter(ADC)
sample and another.

– The software must be able to compute the magnitudes and the phases of the
Fast Fourier Transform.

– The software must provide a Peak Detection feature, of at least three peaks.
• Non-functional

– The data must be sampled with at least 16 bits of precision
– The data must be sampled in a range between 20 and 40 kHz
– The software must have a Wavelet Transformation.

In summary, the system needs to be able to do all the pre-processing over
floating data, while respecting the sampling rate constraint, and send it via SPI to a
central unit which will forward it to the internet.

3.2 THE HARDWARE CONSTRAINT

The vibration sensor used int the MSP is the VS-JV10 from Kemet (2019),
shown in Figure 5 below. Considering the harsh conditions of the application, the
VS-JV10 suits the machinery environment due to its waterproof and oil resistant isolation
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Figure 5 – Sensor VS-JV10 from Kemet

Source: Kemet (2019)

The VS-JV10 can detect vibrations in a range of 10Hz to 15kHz throughout a
large sensing bandwidth, which makes it ideal for predictive maintenance and process
control operations in Industrial Internet of Things (IoT). (KEMET, 2019).

3.3 MICROCONTROLLER

The microcontrollers available in the laboratory were compared to develop the
system based on the aforementioned requirements. Their main features and developing
boards are presented below.

3.3.1 Arduino Portenta H7

The Arduino Portenta H7 is based on a STM32H747XI, a dual-core low-power
processor with an on-chip Graphical Processing Unit (GPU) integrated on it. An image
of the board can be seen in the Figure 6.

Figure 6 – Development board Arduino Portenta H7

Source: Arduino (2020)

The available program interfaces are: Arduino (on top of the Mbed OS),
MicroPython / JavaScript via an interpreter, TensorFlow Lite and native Mbed
Applications. (ARDUINO, 2020)

3.3.2 Arduino MKR Vidor 4000

Combining Intel Cyclone 10CL016 with an SAMD21 low-power microcontroller,
the Vidor brings the flexibility and process power of an FPGA, enabling the possibility to
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design entire digital circuits, even for enhancing the number of serial communications.
The developing board is presented in the Figure 7 below.

Figure 7 – Development board Arduino MKR Vidor 4000

Source: Arduino (2018)

It may be programmed using the Arduino IDE for the processor and the Quartus
software for the digital circuit implementation. (ARDUINO, 2018).

3.3.3 Teensy 4.1

With a small prototyping board, the Teensy 4.1 is based on a i.MX RT1060, a
powerful microcontroller which is capable to support video and audio applications and
provides various memory and communication interfaces. The board is presented in
Figure 8 below.

Figure 8 – Development board Tensy 4.1

Source: PJRC (2020)

Its processor relays on some special features, such as Dual Issue Superscaler
Architecture, Tightly Coupled Memory, DSP instructions and Branch Prediction. The
programming interfaces available are Arduino and CircuitPython. (PJRC, 2020)
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3.3.4 NUCLEO-L4R5ZI

Based on an ultra-low-power and high performance RISC core, the
NUCLEO-L4R5ZI is the most standard model on this list comparing to the traditional
microcontrollers. It is shown in the Figure 9 below.

Figure 9 – Development board NUCLEO-L4R5ZI

Source: STMicroelectronics (2019)

Despite of the only languages available to program being C and C++, it has at
its disposal a series of useful libraries and frameworks, such as HAL, CMSIS, LWIP,
FatFS and FreeRTOS.

3.3.5 Comparison and choice

A summary of the main features which were taken in considerations can be
seen in the Table 1 below:

Table 1 – Table evaluating the possible microcontrollers

Microcontroller
Feature Portenta Vidor Teensy Nucleo
Architecture (Cortex) M7+M4 M0+ M7 M4
Clock (MHz) 480+240 48(Up to 200) 600 120
RAM (MB) 8 8 8 0.64
FLASH (MB) 16 2 1 2
SPI 6 1(Up to 7) 3 3
ADC 3 n/a 2 1
ADC resolution (bits) 16 n/a 10 12

Source: Author.
Although some of these microcontrollers have high speed chips or even two

cores, the Arduino interface or other high level languages could become a issue with
the sampling or the memory used by it. The lacking of a base material and a community
of developers also influences the choice. Taking all the aforementioned conditions into
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consideration, the NUCLEO-L4R5 was chosen to be the microcontroller where the
system would be built on, whic despite of its memory being much lower than the others,
it still suits for the application.

3.4 CMSIS LIBRARY

The Common Microcontroller Software Interface Standard(CMSIS) is
an open-source abstraction layer for microcontrollers. It provides a series of
middlewares, peripheral interfaces and real-time operating systems API to Arm Cortex
Processors(ARM, 2019)

3.4.1 CMSIS-DSP

. The CMSIS-DSP is the branch of the CMSIS library for digital signal processing.
It supplies functions of many mathematical functions for microcontrollers - such as linear
algebra, numerical analysis and complex numbers operations - present for integer, fixed
and floating point units.

3.4.1.1 Real Fast Fourier Transform

As shown previously on the Chapter 2, the FFT is an algorithm to calculate
the Fourier Transform over a sequence of complex numbers. Therefore, since the ADC
output is a series of unsigned integers, the input data in most digital signal processing
applications using embedded systems is real. Hence, to compute an FFT, it would be
necessary either a method to convert the sample data to the complex domain or to
calculate a the Fourier Transform in a data set that is real.

According to Arm (2019), the Real Fast Fourier Transform(RFFT) is an algorithm
that takes advantage of the symmetry properties of the FFT. The real sequence is initially
handled as if it were complex and then later a processing stage reshapes the data to
obtain half of its frequency spectrum in complex format. The resulting data is a real
array that represents a complex number, where the real and the imaginary part are
interleaved, starting with the fundamental frequency on the third position of the array.
The first position represents the DC offset, and the second is always 0(ARM, 2019).

3.5 GSL LIBRARY

The collection of free software GNU is Not Unix (GNU) has an entire branch for
of C routines for numeric computing. The GNU Scientific Library (GSL) is available as
an Application Programming Interface (API) format and its source code is distributed
under the GNU General Public License, which guarantees the four freedoms to run,
study, share, and modify the software. (GNU, 2021)
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3.5.0.1 Wavelet Transform

The library provides an entire group of functions to calculate 1D and 2D digital
waveletes. It abstracts the digital wavelet transformation into simple multiplications
of coefficients, which are stored as constants. This makes very easy to port another
families of wavelets, besides the ones already available.

3.6 BITSCOPE

During the testing, it is necessary an instrumentation which is capable of supply
input data, as well as analyze the corresponding output. For generating the input signal
and to execute all the hardware validations, a BitScope BS05 as shown in Figure 10
was used.

Figure 10 – Digital oscilloscope BitScope BS05U

Source: BitScope (2022)

According to BitScope (2022), the BitScope is a fully featured mixed signal
test and measurement system, which can be used as a digital oscilloscope, logic
analyzer and function generato at the same time. The device is connected via USB to
the computer, as it can be seen in Figure 10, which controls the mode being used and
shows the data being sampled. The device relies on a bandwidth of 20 MHz and its
logic capture can reaches up to 40 MSps .

3.7 TESTING

In order to check the feasibility of the proposed solution, it is necessary to test
the correctness of features calculation, as well as if the results can be delivered within
the stipulated time. The structure of this procedures and how they have been executed
are described below.
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3.7.1 Time testing

Two types of tests were planned to evaluate the execution time for the feature
calculation – via software and via hardware – which are better explained below. All the
tests were done using 1024 samples, which were converted to 32 floating-point unit
values. For the timing tests, a 10 kHz noisy sine wave array provided by the CMSIS-DSP
library was used (ARM, 2019).

3.7.1.1 Time testing through hardware

As shown by Stewart (2006), a logic analyzer – in this case a digital oscilloscope
– is one of the best tools for an accurately execution time with microsecond resolution.
One of the approaches listed by him is to send strategic signals to an output port, which
are read by the logic analyzer as events. Based on this procedure it was possible to
derive the method presented in Figure 11, which was applied to measure features that
had no parameter variations – namely magnitude and phase of the FFT.

Figure 11 – Oscilloscope image of a GPIO toggle every ADC conversion.

Source: Author
The method depicted above consists in setting a GPIO to high (A4 in the figure),

executing the procedure to be evaluated – in this case, the FFT – and then setting the
GPIO to low again. The pin is analyzed during the whole action by an oscilloscope, in
order to measure its toggle time, which will the equal the time elapsed during the whole
function execution.

3.7.1.2 Time testing through software

The testing through software is based on a timer method described by Stewart
(2006). It consists in reading a timer counter value at the beginning and at the end of
the code. The elapsed time is then given by the difference of the two samples. The code
shown in Listing 3.7.1.2 below uses a 10MHz timer with a 16 bit values, which can count
up to 65.535 microseconds.

1 //All Daubechies implemented coefficients
2 const uint16_t coeff[N_COEFFS] = { 4, 6, 8, 10, 12, 14, 16, 18, 20};
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3 // daubechies wavelet
4 const gsl_wavelet_type *wavelet = gsl_wavelet_daubechies;
5
6 volatile uint32_t delta_t = 0;// variable for time elapsed calculation
7
8 //for loop though Daubechies coefficients
9 for( uint8_t i = 0; i < N_COEFFS; i++)

10 {
11 // copies the data from another file to input array
12 arm_copy_f32(testInput_f32_10khz , input , N_SAMPLES);
13
14 delta_t = __HAL_TIM_GETCOUNTER (&htim1); //reads the time counter
15
16 // initialize the wavelet with the right coefficients
17 gsl_wavelet_init (&w,wavelet , coeff[i]);
18
19 // executes the wavelet transformation
20 gsl_wavelet_transform_forward (&w, input , 1, N_SAMPLES , &work);
21
22 // calculate the time elapsed
23 delta_t = __HAL_TIM_GETCOUNTER (&htim1) - delta_t;
24 }

In the snippet above, all the Daubechies wavelets family implemented is tested
at once. The value of the time elapsed can be easily obtained via debugging, what
makes it easy to plot.

3.7.2 Precision testing

After the time constraints were tested, the author developed a method
aiming to prove the accuracy of the features implemented. In order to make it
closer to a real application, it was decided to use the ADC instead of a fixed input.
The signal generated to test the precision of all the features is demonstrated in Figure 12.

Figure 12 – Oscilloscope image of the 1 kHz sine wave generated as input.

Source: Author
The planned test consists in using the Universal Synchronous/Asynchronous

Receiver-Transmitter (USART) to send data, first the floating-point converted signal and
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the later the result of the evaluated feature, to the computer. Both of the outputs were
stored in different CSV files, which could be loaded by a python program. The input
results were them read by a script and analyzed either through the FFT module of the
library NumPy from Harris et al. (2020) or using the library PyWavelets from Lee et
al. (2019), and also saved in a file. Hence, the both methods to calculate the required
feature could have their results easily analyzed point by point.

In order to standardize the tests, the ADC was configured as one shot and the
frequency used was around 16,7 kHz. The input was a 1 kHz sine wave generated by
the digital oscilloscope/function generator. The USART baudrate was 115200 and the
STM debugger was used to control its output (STMICROELECTRONICS, 2019).
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4 DEVELOPMENT

After having listed all the techniques and tools needed to design the prototype
of the code, this chapter approaches how everything comes together to design the
software. Here are presented the ADC configurations and all the algorithms used in the
project of the software.

4.1 ADC

In order to obtain an optimal resolution of the reconstructed signal, the sampling
rate was chosen to have around 10 times the upper frequency boundary of the sensor
introduced in Chapter 3. As shown in Figure 13, the closest frequency above this limit
for a sampling of 1024 points was around 178kHz.

Figure 13 – Oscilloscope image of a GPIO toggle every ADC conversion.

Source: Author
The signal generated on the Figure 13 above was made toggling a GPIO inside

the interruption of a complete conversion using the Direct Memory Access of the ADC.
Hence, the signal only emits an edge after 1024 were read, which means that the actual
sampling rate is calculated by multiplying the frequency showed on the Figure 13 by the
number of points acquired, resulting in around 178kHz.

4.2 FFT

As mentioned in Chapter 3, for the FFT the CMSIS library was used. Taking
in consideration what was mentioned before, there were no much alterations needed
in this part. The snippet of code in the Listing 4.3 below gives an example of how to
properly use the library.
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1 arm_rfft_fast_instance_f32 fft_inst;
2
3 float32_t input[N_SAMPLES], output[N_SAMPLES], magnitudes[N_SAMPLES /2];
4
5 arm_rfft_fast_f32 (&fft_inst , input , output , 0);
6 output [0] = 0;
7 output [1] = 0;
8 arm_cmplx_mag_f32(output , magnitudes , N_SAMPLES);

First, an instance of the structure of the transform and the algorithm being used
must be declared - in this case a fast RFFT of a 32 bits floating-point unit. Then, 3 arrays
are declared: the one that stores the input, the one which will store the output and the
one to be used to store the magnitude. After that, the FTT algorithm is applied using the
struct instance, the input and the output. Since it is an in-place algorithm - which means
that it also changes its input - as the output is done, the input is also changed and can
not be used anymore. In the end, the so called ”output” is used to calculate a complex
magnitude, which expects an interleaved (real[0], imag[1], real[2],...) fashion array as
an input, that returns its results in its second parameter(magnitudes). It is important to
notice that, due to the nature of this last procedure, the second array must have half
of the size of the first one, which must have the same size that is passed as the third
parameter.

4.3 THE PHASE ALGORITHM

The phase algorithm is based on a code, which can be seen in 6.2, that first
appeared on Apple (2005), a mail exchange among Apple developers, where some
approaches for making an atan2 function in C which was faster than the one already
present in the language can be seen. The adaptation from one of these codes is
exposed on the Listing 4.2 below

1 #define MY_PI 3.141592f
2 #define MY_PI_2 1.570796f
3 #define MY_PI_3_4 2.356194f
4 #define MY_PI_4 0.785398f
5
6 static inline float32_t
7 fast_atan2(float32_t y, float32_t x)
8 {
9 float32_t r, angle;

10 float32_t abs_y;
11 arm_abs_f32 (&y, &abs_y ,1);
12 abs_y += 1e-10f;
13
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14 if ( x < 0.0f )
15 {
16 r = (x + abs_y) / (abs_y - x);
17 angle = MY_PI_3_4;
18 }
19 else
20 {
21 r = (x - abs_y) / (x + abs_y);
22 angle = MY_PI_4;
23 }
24 angle += (0.1963f * r * r - 0.9817f) * r;
25 if ( y < 0.0f ) return ( -angle );
26 else return ( angle );
27 }

The algorithm is an improvement based on Iowegian International Corporation
(1994), and the maximum error is mentioned to be around 0.0102 radians. In order to
be feasible for a microntroller and the application itself, all the floating point variables
and constants were changed to be accordingly to the Arm Math library.

4.4 PEAK DETECTION

Although it has its minor modifications to best fulfill the requirements while being
more generic, the basis for this algorithm was the classical and simple maximum value
finding inside an array. The implementation is shown in Listing 4.4 below.

1 void peak_detection( float32_t *magnitudes , float32_t *peaks , uint16_t *
index , uint16_t low , uint16_t high , uint16_t n_peaks , uint16_t size )

2 {
3 if( !magnitudes || !peaks ) return;
4 if(high > size || low > high ) return;
5
6 uint16_t n_max = 0;
7
8 for(int i = low; i < high; i++)
9 {

10 peaks[i-low] = magnitudes[i];
11 index[i-low] = i;
12 if(n_max ++ < n_peaks)
13 {
14 for(int j = low; j < high; j++)
15 {
16 if(magnitudes[j] > peaks[i-low])
17 {
18 peaks[i-low] = magnitudes[j];
19 index[i-low] = j;
20 }
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21 }
22 magnitudes[index[i-low]] = -4;
23 }
24 else break;
25 }
26 }

Despite the resemblance with the maximum value finding algorithm, the code above
relays on some features specially thought for the application. Among its parameters, it
is possible to check inside a certain frequency band – between low and high – instead
of the whole set of samples. There is also an option, when the array index is not invalid,
to get the indexes of the peaks, which allows to reconstruct which frequency had those
magnitudes. In summary, the code runs through an array magnitudes of size size, from
low to high, and looks for n_peaks inside of it, which will be returned inside peaks.
It will also return the indexes of those peaks inside index if it is valid. It is important
to notice that, after a peak is found, the value in the original array is changed to −4,
changing its original data. The reason for this is to make it possible for the algorithm to
find other peaks than the first one. The choice of the value was done considering that
the algorithm, although is not common, might be used to find peaks in the phase too,
most likely in another applications. Since the atan2 returns a value between −π and π,
the chose value to represent an error was the closest integer value which was bigger
than the maximum result possible.

4.5 WAVELET ALGORITHM

Since the GSL was originally written to be a numerical library for C programs,
some considerations had to be made when adapting it to a microcontroller. For example,
due do the changing of nature of the application, the encapsulation was broken on behalf
of the memory, so all the allocations could be sparred. The precision of all constants
were changed from double to single floating-point unit, while the unused ones were
removed. As the microcontroller is sampling an one-dimensional side and only doing
the forward transformation, the 2D Wavelets as well as the inverse transformations were
also deleted.

4.6 THE MAIN CODE

The algorithm, which is partially present in the Appendix 6.2, starts initializing all
the peripherals and all the structures needed to the Fourier and Wavelet transform. The
ADC uses the Direct Access Memory technology, which means that the data collected
goes directly to memory, without going through the CPU (TANEMBAUM; BOS, 2014).
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The STM32 Nucleo-L4R5 provides two interruptions to deal with the ADC buffer
in the DMA mode, for when its half or completely full. The interrupts call a callback that
were used to convert the sample from bytes to voltage level, as it can be seem in the
Listing 4.6 below.

1 void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
2 {
3 for(int i = 0; i < 512; i++)
4 {
5 fft_input[i] = 3.3f * (( float32_t)adc_buffer[i])/0x0FFF;
6 }
7 }
8 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
9 {

10 for(int i = 512; i < 1024; i++)
11 {
12 fft_input[i] = 3.3f * (( float32_t)adc_buffer[i])/0x0FFF;
13 }
14 cpt_flag = 1;
15 }

After the ADC completes its cycle, is sets a flag to warn the main loop that
the array is full and the processing operations can be applied. The ADC restarts
again (circular mode) and the main sets the complete flag to 0 after it is done with
the processing. The processing part done by main after the complete acquisition and
converting of the data can be better visualized in the flowchart shown in the Figure 14
below.

Figure 14 – Flowchart of the processing part of the algorithm
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Source: Author
The code starts checking which transform was chosen, the Wavelet or the
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Fourier. If the former has been chosen, then it is checked if the magnitude or the peak
feature should be extracted from the data, and then if a peak detection must be done.
On the other the hand, if the latter has been chosen, it checks which wavelet it must be
used, then it initializes it properly, then executes a wavelet transform and an absolute
value trough the whole data array. It is important to notice, that despite of it is not in the
Figure 14, the correct family of the wavelet must be chosen t for the software to function
accordingly. It is not show in the flowchart above, because it is not checked by the main
code, but by the wavelet, not executing the wavelet when it has a wrong value.
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5 RESULTS

The results obtained by experimentation are exposed here in this chapter. At
the end of this section, the requirements presented in the Chapter 1 are scrutinized to
evaluate in which extension they have been fulfilled.

5.1 SETUP

For a fairness purpose all the timing presented here were done using a constant
array with the data of a noisy sine wave of 10kHz as input. The clock frequency was
120MHz and the ADC had its sample rate around 178kHz as mentioned in Chapter 4
before. An image of the equipment set up to generate this results is shown in the Figure
below.

Figure 15 – Setup used to obtain the results.
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Source: Author
As can be seen in the Figure, both USB cables, from the oscilloscope and from

the microcontroller, are plugged to the computer in order to send and receive data.
According to the captions, the yellow wire is the output of the function generator (input
data of the microcontroller), the orange one is the oscilloscope probe, the grayish purple
is the logic analyzer for the timing test, while the blue an black one is the ground wire of
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the system.

5.2 TIME CONSTRAINTS

In order to be considered feasible, all the features available on the system must
fit inside the time window between two ADC samples. So, as shown in Chapter 4, every
computation must be inside the 5,74 milliseconds window shown in Figure 13.

5.2.1 Fast Fourier Transform

Since the Fourier Transform alone does not give much information about the
system, the RFFT timing analysis was done either with the magnitude or the phase
calculation. The time results for an RFFT and the complex magnitude algorithm are
shown in the Figure 16 below.

Figure 16 – Oscilloscope image of a GPIO toggle with the FFT and peak calculation in
between.

Source: Author
It is possible to see above that the FFT with the magnitude calculation takes

about 750 microseconds to be done, which fits inside the time window between the
samples. The timing results for the phase algorithm can be seen in the Figure 17 below.

Figure 17 – Oscilloscope image of a GPIO toggle with the FFT and phase calculation in
between.

Source: Author
As it shown by Figure 17, the peak algorithm takes 950 microseconds to

compute, which is also inside the ADC samples time window. Although both of them
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meet the requirement wide gap, there is still a significant difference of more than 25%
between them. It could be due to two things: the difference between the nature of the
operations performed by the two features; and also because the phase algorithm is an
Atan2 algorithm adapted and applied two by two in the input array, while the magnitude
algorithm belongs to the ARM library.

5.2.2 Wavelets

Due to the considerable number of wavelets present in this work and the different
nature among them, some results are presented as images of an oscilloscope - in the
cases where the wavelets do not have a variety of vanishing moments - while others
are shown in a plot.

5.2.2.1 Daubechies

In the Figure 18 below, it is possible to see the correlation between the number
of coefficient used to calculate the Daubechies Wavelet and the time to compute them.

Figure 18 – Relation between the value of N and the time spent in microseconds to
compute the wavelet.
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As it can be seem in the plot above, the time spent in the wavelet transform

varies linearly with the number of coefficients used. Using 16 coefficients, the
microcontroller takes 5,5 ms, and 5,8 ms in case of 18 coefficients are being used.
Despite of the calculation with 16 values are still inside the time window, it is too close
to its deadline. So, in the case where another function would be needed for any other
reason, maybe this tight space could not be enough for it.

5.2.2.2 B-Spline

Since the B-Spline wavelets varies with i and j, besides the number of
coefficients too, its values are better shown in a table as in the Table 2 below.
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Table 2 – Table relating the B-Spline families, the number of coefficients and the time in
microseconds to compute each one of them

i,j 1,3 1,5 2,2 2,4 2,6 2,8 3,1 3,3 3,5 3,7 3,9
nc 6 10 6 10 14 18 4 8 12 16 20
µS 3812 4494 3812 4494 5177 5859 3471 4153 4835 5518 6204

Source: Author

It is possible to see above that, every pair of i, j uses a specific number of coefficients,
and that the time variation is pretty similar to the Daubechies Wavelets results.

5.2.2.3 Haar

Since the Haar wavelet family only has one wavelet, the visualization through
the oscilloscope was the most appropriate one. The timing results for the Haar Wavelet
are presented in the Figure 19.

Figure 19 – Oscilloscope image of a GPIO toggle with the Haar wavelet calculation in
between.

Source: Author
As it can be seen above, it takes 3,6 ms to compute a Haar Wavelet transform,

which meets the time constraints previously imposed.

5.2.3 Precision

For the system to work, not only the time constraints must be satisfied, but
also the results of the operation need to reach a minimum precision that satisfies the
requirements of the application. The results of the accuracy tests mentioned in Chapter
3 are presented below.

5.2.4 FFT

As mentioned before, the FFT alone does not show much information about the
signal. In order to check the precision of the microcontroller features, only the magnitude
and the phase were compared, and not the FFT itself.
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5.2.4.1 Magnitude

Since it is a normal sine wave, the expected output for the magnitude is a lonely
peak in a specific frequency. The results obtained are shown in the Figure 20 below.

Figure 20 – Comparison between the FFT implemented in the microntroller and the one
in python for the same input. Left: Microcontroller. Right: Python.
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As mentioned above, the result is a peak between the samples 61 and 62.

Considering that the sample rate was around 16,6 kHz, it corresponds to a frequency
band between 993,5 and 1009,77 Hz both in Python and in the microcontroller. The
obtained results are consistent with the 1 kHz input.

5.2.4.2 Phase

Since the input signal is only a normal sine, there must be only one point
as a phase – in the corresponding frequency of the sine wave. However, for means
of comparison, all the other points were kept in order to check the precision of the
algorithm. The result is shown in the Figure 21 below.

Figure 21 – Comparison between the phase calculation algorithm implemented in the
microntroller and in python. Left: Microcontroller. Right: Python.
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Checking the point corresponding the sine wave frequency – the chosen one
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was 61, since it has a magnitude 4 times greater than the 62 from the previous analysis
– it was around 2,42 rad using both methods, which corresponds to almost 135 degrees.
This results in a sine wave slightly shifted, which means that something is adding a
small phase to the system.

5.2.5 Wavelet

The results regarding the precision of the wavelet families are presented below.
For the Daubechies and B-Spline families, only one type of each is shown.

5.2.5.1 Haar

The Haar wavelet famly only contains one wavelet regarding its coefficients,
which are only two. The precision results of it are shown in Figure 22 below.

Figure 22 – Comparison between the Haar wavelet implemented in the microntroller and
the one in python for the same input. Left: Microcontroller. Right: Python.
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The resulting waves are very similar, but the peak between the samples 150

and 200 can be critical, since the wavelet algorithm – mainly the Haar – is capable to
evaluate rapid changes in the frequency.

5.2.5.2 Daubechies

The Daubechies with 4 coefficients was chosen to perform the accuracy test,
as it is the second fastest, since a Daubechies with 2 coefficients would be equal in
output to a Haar Wavelet. Its precision results are depicted in Figure 23 below.
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Figure 23 – Comparison between the FFT implemented in the microntroller and the one
in python for the same input. Left: Microcontroller. Right: Python.
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As in the Haar wavelet, is also possible to notice a small distortion is some parts

of the transformed wave. Despite of it is looking overall similar, the wavelet transform –
as mentioned before – is meant to detect rapid changes in frequency and this difference,
although it may seem small, can result in significant wrong answers.

5.2.5.3 B-Spline

The B-Spline 3.1 was chosen due to its time calculation time being similar to
the Daubechies 4. The results for this wavelet – which is referred as biorthogonal in
python – are shown in the Figure 24 below.

Figure 24 – Comparison between the B-Spline Wavelet implemented in the microntroller
and the one in python for the same input. Left: Microcontroller. Right: Python.
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Again, the wavelet seems to present some distortions, which seem even bigger

in this one. While other wavelets presented differences in only specific parts, the B-Spline
errors appeared in almost the whole output.
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5.3 REQUIREMENTS

In order to achieve a more precise approach of the goals reached, every
requirement previously presented is listed down and analyzed.

5.3.1 Functional Requirements

The functional requirements are, in simple words, the things that the system
must do, otherwise it will not work. The fundamental requirements for the software were:

"The microcontroller must have a Floating Point Unit"

This requirement was fully met. Since it is become more common nowadays, all the
boards listed in the Chapter 4 contain a chip with an FPU.

"The node must be able to communicate with the base-board via SPI communication"

Although the SPI communication was not implemented here, the chosen microcotroller
do have SPI ports enough to communicate with the baseboard, as well as at least one
external ADC.

"The software must be able to do all its calculations and processing, as well as send its
results, during the time between one ADC sample and another."

As shown in the Chapter 5, the software was able to solve almost all the implemented
features inside the time window of an ADC sample. The few exceptions were some
wavelets with a considerably number of coefficients, but in those cases there were
wavelets in the same family that respected the time constraint.

"The software must be able to compute the magnitudes and the phases of the Fast
Fourier Transform"

It can be seen in the Chapter 4 that the algorithm implements both parts of the
requirement, and in the Chapter 5 it is shown that both approaches meet the time
constraints previously mentioned.

"The software must provide a Peak Detection feature, of at least three peaks"

This requirement, as the way it is purposed, is completely fulfilled. However, if
more peaks would be required, it may fail, depending of the amount of peaks desired.

5.3.2 Non-functional requirements

The non-functional requirements describe how the system does the thing that it
must do. If they are not met, the system may still work, but probably in a wrong way or
with a reduced performance. The non-functional requirements are checked below.
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"The data must be sampled with at least 16 bits of precision."

This requirement was not fulfilled. The ADC of the chosen microcontroller has only 12
bits of resolution and no external ADCs were used.

"The data must be sampled in a range between 20 and 40 kHz."

Although it is a bit broad, this requirement is still fulfilled. The first idea was thought for
all kinds of sensors, and using a minimum frequency which obeys the Nyquist criteria.
However, the software developed here was tested with a sampling rate around 150 kHz,
to keep a resolution of 10 times the frequency that the chosen vibration sensor uses.

"The software must have a Wavelet Transform."

When it comes to time constraint, it is possible to affirm that the microcontroller
was able of doing a Wavelet Transform, only failing with a high number of coefficients.
Regarding the precision, the results were not satisfactory for the application an a deeper
research should be conducted in order to why the values presented this difference and
what can be done to change it. Since only one tool was used to compare the results, a
third one – like Matlab – should be used to improve reliability of the tests.
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6 CONCLUSION

This chapter is divided in two sections which together constructs the conclusion
of this work. The former summarizes the results obtained and all that have been done
until now. The latter brings a glance of what can be done next, to complete or improve
what has been done in this project.

6.1 FINAL CONSIDERATIONS

Considering everything that has been analyzed and shown, it is possible to
check that the software fulfill a considerable part of its purpose. Comparing to the
previously mentioned product – the sensor in Chapter 4 which calculates FFT – the
software alone does the same basic functionalities that it does and some other pre-
processing part, in a simpler way. In the actual stage, the software is already enough to
the applications of Fraunhofer’s IPT MSP sensor node. However, after adjustments in
the Wavelet algorithm and with some other features added, the software would bring
a tool that is not seen in this kind of product, making the prototype more powerful and
unique.

6.2 FUTURE WORKS

Despite the chosen microcontroller be considered low power, an analysis of
consumption was not made. A deeper study about the microcontrollers themselves need
to be done, where the power consumption should also be taken in consideration. In
addition to that, one real analysis of speed about the Arduino IDE or the viability of using
the other mentioned microcontrollers without it could be beneficial too. Furthermore,
a wider variety of models and manufactures should be considered as well, mainly to
check about smaller chips, since the chosen one is still too big for the application.

When it comes to features, the most classical ones in the digital process field
were included. Additionally, the wavelet transform brings to hardware a tool that is
relatively new in the literature, and not so easy to find in this kind of systems. A more
specific analysis of the problem could be made to consider other types of features that
could me even more efficient in the solution.

Specifically about the peak detection algorithm, in order to make it more generic,
there is the possibility of sorting the magnitude or the phase array, and then send only
the number of elements requested. An analysis of the trade-off must be done to check
the availability of this solution, mainly if the time required pays it off and until how many
peaks it would be feasible. The problem of this solution would be how to send the real
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positions of the array – because they would be changed with the sorting algorithm –
since it is also important. In the version used in this work – the one available at time –
CMSIS did not have any kind of sorting algorithms, while the newest versions do have it,
which would be nice to give a try. The algorithm implemented here was the simplest as
possible, but it does the job. There are more efficient ways to execute a peak detection
using statistical models, and this would be the natural evolution of this work in this
specific branch.

Besides the aforementioned research in order to fix the wavelet mistakes, there
are many things to be done after that. The families used were the ones already present
on GSL and they are all discrete. Although having a wider range of wavelets available
would give the software a more general purpose, it would be better a deeper analysis
of the problem to match which kind of wavelet would suits better for the application.
Depending of the result of this analysis, a further research for a C algorithm capable of
calculate a continuous wavelet – if it is needed – and if a microcontroller would be able
to reproduce it inside the given time constraints is also something that might be worth to
search for.

About the phase calculation algorithm, although it solves the problem inside the
given requirements, CMSIS also released their own algorithm of ArcTan2. Since it was
developed by an engineers team from ARM, it would be a good strategy to migrate to
it, not only because it is probably faster, but it should be also better integrated to the
library.

The communication part was not added, since it was not ready yet. The SPI
communication between the microcontrollers should be the next step of it, together with
a self-made protocol that is able to tell which features are wanted and the additional
informations of it. After that, the central microcontroller should be able to send those
commands, receive the data and send then via UDP protocol. The main commands
would be sent and received using the Lightweight Machine to Machine protocol, which
connects the microcontroller to the cloud.

As the future idea of Fraunhofer IPT is to migrate the application to the Artificial
Intelligence on the Edge field, a research can be done to analyze the viability of it. Since
the worries about data protection is growing everyday, the solution could really fit in
the Federated Learning field for example, with a classification algorithm running locally,
while it sends the results to a local-deployed Artificial Intelligence.
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APPENDIX A - MAIN CODE

1 #include "main.h"
2
3 #include <stdio.h>
4 #include <string.h>
5
6 #include "arm_const_structs.h"
7 #include "arm_math.h"
8 #include "features.h"
9 #include "gsl_wavelet.h"

10
11 #define N_SAMPLES 1024
12 #define N_PEAKS 3
13
14 typedef enum feature {FFT , WAVELET} feature_t;
15 typedef enum feat_spec{MAGNITUDE , PHASE} feat_spec_t;
16 typedef enum wavelet_type{DAUBECHIES ,HAAR ,BSPLINE}wavelet_type_t;
17
18 ADC_HandleTypeDef hadc1;
19 DMA_HandleTypeDef hdma_adc1;
20
21 volatile uint8_t cpt_flag = 0;
22
23 arm_rfft_fast_instance_f32 fft_inst;
24
25 uint16_t adc_buffer[N_SAMPLES ];
26 float32_t fft_input [N_SAMPLES ];
27 float32_t fft_output[N_SAMPLES ];
28
29 float32_t fft_feat[N_SAMPLES ];
30 uint16_t indexes[N_SAMPLES ];
31 float32_t fft_peaks[N_SAMPLES ];
32
33 gsl_wavelet w;
34 gsl_wavelet_workspace work;
35 float32_t scratch[N_SAMPLES ];
36
37 feature_t feat = WAVELET;
38 feat_spec_t spec = PHASE;
39 uint8_t pk_dtct = 0;
40
41 wavelet_type_t wav = DAUBECHIES;
42 uint8_t wavelet_centered = 0;
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43 uint8_t n_coeff = 4;
44
45 int main(void)
46 {
47 HAL_Init ();
48
49 SystemClock_Config ();
50
51 arm_rfft_fast_instance_f32 fft_inst;
52
53 arm_rfft_fast_init_f32 (&fft_inst , N_SAMPLES);
54
55 gsl_wavelet_workspace_init (&work , scratch , N_SAMPLES);
56
57 HAL_ADC_Start_DMA (&hadc1 , (uint32_t *) adc_buffer , N_SAMPLES);
58
59 while (1)
60 {
61 if(cpt_flag)
62 {
63 if(feat == FFT)
64 {
65 arm_rfft_fast_f32 (&fft_inst ,fft_input ,fft_output ,0);
66
67 fft_output [0] = 0;
68 fft_output [1] = 0;
69
70 if(spec == MAGNITUDE)
71 {
72 arm_cmplx_mag_f32(fft_output ,fft_feat , N_SAMPLES);
73 }
74 else if(spec == PHASE)
75 {
76 phase(fft_output ,fft_feat , N_SAMPLES);
77 }
78 if(pk_dtct)
79 {
80 peak_detection(fft_output ,fft_feat ,indexes ,0,

N_SAMPLES/2,N_PEAKS ,N_SAMPLES /2);
81 }
82 }
83 else if(feat == WAVELET)
84 {
85 switch(wav)
86 {
87 case DAUBECHIES:
88 if(! wavelet_centered) gsl_wavelet_init (&w,
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gsl_wavelet_daubechies , n_coeff);
89 else gsl_wavelet_init (&w,

gsl_wavelet_daubechies_centered , n_coeff);
90 break;
91 case HAAR:
92 if(! wavelet_centered) gsl_wavelet_init (&w,

gsl_wavelet_haar , n_coeff);
93 else gsl_wavelet_init (&w,

gsl_wavelet_haar_centered , n_coeff);
94 break;
95 case BSPLINE:
96 if(! wavelet_centered) gsl_wavelet_init (&w,

gsl_wavelet_bspline , n_coeff);
97 else gsl_wavelet_init (&w,

gsl_wavelet_bspline_centered , n_coeff);
98 break;
99 default:

100 break;
101 }
102 gsl_wavelet_transform_forward (&w, fft_input , 1,

N_SAMPLES , &work);
103 arm_abs_f32(fft_input , fft_feat , N_SAMPLES);
104 }
105 cpt_flag = 0;
106 }
107 }
108 }
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ATTACHMENT A - APPLE’S MAIL ATAN2 ALGORITHM

1 #define PI_FLOAT 3.14159265f
2 #define PIBY2_FLOAT 1.5707963f
3 // |error| < 0.005
4 float fast_atan2f( float y, float x )
5 {
6 if ( x == 0.0f )
7 {
8 if ( y > 0.0f ) return PIBY2_FLOAT;
9 if ( y == 0.0f ) return 0.0f;

10 return -PIBY2_FLOAT;
11 }
12 float atan;
13 float z = y/x;
14 if ( fabsf( z ) < 1.0f )
15 {
16 atan = z/(1.0f + 0.28f*z*z);
17 if ( x < 0.0f )
18 {
19 if ( y < 0.0f ) return atan - PI_FLOAT;
20 return atan + PI_FLOAT;
21 }
22 }
23 else
24 {
25 atan = PIBY2_FLOAT - z/(z*z + 0.28f);
26 if ( y < 0.0f ) return atan - PI_FLOAT;
27 }
28 return atan;
29 }
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