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RESUMO

Definimos álgebras de operadores não auto-adjuntas associadas a categorias étale
e a semigrupos de restrição, e mostramos também que existe uma versão reduzida
para estas álgebras no caso de categorias cancelativas à esquerda e semigrupos de
restrição amplos à esquerda. Além disso, definimos a álgebra produto semicruzado de
uma ação étale de um semigrupo de restrição em uma C∗-algebra, e esta se torna o
componente principal para conectar a álgebra de operadores de um semigrupo de re-
strição com a álgebra de sua categoria étale correspondente. Mostramos também que
nos casos particulares de grupoides étale e semigrupos inversos nossas álgebras de
operadores coincidem com as C∗-algebras destes objetos. Além disso, apresentamos
uma teoria de classificação geométrica de extensões não Abelianas de groupoides e
que generaliza a teoria de classificação de Westman no caso abeliano, bem como a
teoria de classificação de extensões de grupo devida a Schreier, Elenberg e Mac-lane.
Como aplicação de nossas técnicas, demonstramos que uma extensão de grupoides
N → E → G dá origem a um produto cruzado por grupoide de G pelo anel de grupoide
de N , e este recupera o anel de grupoide de E a menos de isomorfismo.

Palavras-chave: Categorias étale. semigrupos de restrição. ações de semigrupos
de restrição. álgebras de operadores não auto-adjuntas. extensões não Abelianas
de grupoides. sistema de fatores, cohomologia de grupoides. produtos cruzados por
grupoides. C∗-álgebra de grupoide



RESUMO EXPANDIDO

INTRODUÇÃO

Em 1926, Brandt [14] introduziu a noção de grupoide como a generalização de grupo.
Já a noção de categorias topológicas, e consequentemente de grupoides topológicos,
teve sua gênese no trabalho de Ehresmann [21]. Desde então, a teoria de grupoides
desenvolveu-se de modo que aplicações são encontradas em diversas áreas como
geometria diferencial, teoria de folheações, topologia diferencial, geometria algébrica,
álgebras de operadores, teoria ergódica, [15].

O estudo de C∗-álgebras associadas a grupoides topológicos teve início em 1980 na
tese de doutorado de Jean Renault [55]. Neste mesmo trabalho, Renault estudou os
grupoides chamados r -discretos, que mais tarde seriam chamados grupoides étale.
Em [50], Paterson mostrou que todo grupoide étale G é isomorfo a um grupoide de
germes S⋊θX de uma ação θ de um semigrupo inverso S em um espaço topológico X .
Além disso, sob hipóteses no grupoide G e no semigrupo inverso S, mostrou que C∗(G)
é isomorfa a C∗-álgebra produto cruzado S ⋊α C0(X ) obtida a partir da ação induzida
de θ, α : S → C0(X ). Em 2008, com o objetivo de estudar C∗-álgebras associadas
a objetos combinatórios, Exel [24] aperfeiçoou os resultados de Paterson removendo
hipóteses tanto no semigrupo quanto na ação.

O problema de classificar todas as extensões de um grupo G por um grupo N foi
sistematicamente tratado em muitos trabalhos [9, 22, 23, 59]. O conceito fundamental
subjacente a uma extensão de grupos de N → E → G é o de sistema de fatores, que
é um par (L, σ) consistindo de uma ação L : G → Aut(N) de G em N torcida por um
2-cociclo σ : G × G → N. Exemplos de extensões de grupos podem ser encontrados
em quase todas as disciplinas da matemática moderna. Por exemplo, extensões não
Abelianas de grupos de Lie aparecem naturalmente no contexto de fibrados principais
sobre variedades compactas. No contexto de extensões de grupoides, extensões de
grupoides por fibrados de grupos Abelianos foram classificadas por Westman, veja por
exemplo [55, 69]. Já o caso de extensões por fibrados não Abelianos foi tratado em
partes por [12].

OBJETIVOS

Existe uma generalização natural para um grupoide étale que é o conceito de categoria
étale. Já para semigrupos inversos, temos a generalização natural que é o conceito
de semigrupo de restrição. Gudryavtseva e Lawson estabeleceram uma equivalência
categórica entre a categoria das categorias étale e a categoria dos semigrupos de



restrição, [36]. Nosso principal objetivo no estudo de categorias étale e semigrupos de
restrição é associar algebras de operadores a estes objetos de tal forma que resultados
previamente conhecidos no contexto de grupoides étale e semigrupos inversos sejam
estendidos para estas novas classes.

No estudo de extensões de grupóide, temos o objetivo de classificar extensões de um
grupóide G por um fibrado não Abeliano N . Além disso, se L é uma família exterior,
buscamos estabelecer um critério para a existência de sistemas de fatores do tipo (L, ·).
Também queremos investigar se nossos métodos de classificação se transferem para
a classe de anéis chamados produto cruzados por grupoide, e verificar se a C∗-álgebra
de uma extensão tem uma estrutura de produto cruzado por grupoide.

METODOLOGIA

Pesquisa bibliográfica em livros e periódicos. Apresentação de seminários e reuniões
de discussão com pesquisadores especialistas no tema para apresentação e avaliação
dos resultados obtidos.

RESULTADOS E DISCUSSÃO

No que tange ao estudo de categorias étale e semigrupos de restrição, dada uma ca-
tegoria étale C e um semigrupo de restrição S, definimos as álgebras de operadores
de C e de S, denotadas respectivamente por A(C) e A(S). Além disso, definimos
uma série de novos conceitos e objetos como por exemplo ações de semigrupos
de restrição em espaços topológicos e em C∗-álgebras, a categoria de germes de
uma ação topológica de um semigrupo de restrição e a álgebra produto semicruzado
associada a uma ação C∗-algébrica de semigrupo restrição. Além disso, mostramos
que estes novos conceitos estendem resultados previamente conhecidos do contexto
de grupoides étale e semigrupos de restrição como por exemplo:

Theorem 3.4. Seja D uma categoria étale. Então D é isomorfa a categoria de germes
C
(
θ, Bis(D),D(0)), em que θ : Bis(D) → I

(
D(0)) é a ação do semigrupo de restrição

das bisseções de D no espaço das unidades D(0).

Theorem 3.18. Seja (S,E ,λ,ρ) um semigrupo de restrição, e X um espaço localmente
compacto Hausdorff e segundo-enumerável. Além disso, seja θ : S → I(X ) uma ação
étale, e considere α a ação induzida de θ. Então A(C(θ,S,X )) é isomorfa ao produto
semicruzado C0(X ) ⋊α S.

Theorem 3.24. Seja G um grupoide étale, e suponha que G(0) é segundo-enumerável.
Então a álgebra de operadores de G, A(G), é isomorfa a C∗(G).



Com relação ao estudo de extensões não Abelianas de grupoides, mostramos que
dados um grupoide G e um fibrado não Abeliano de grupos N sobre G(0), uma família
exterior L dá origem a um 3-cociclo χ(L) ∈ H3(G,Z (N ))L. Este, por sua vez, dá origem
a um critério de existência de um sistema de fatores da forma (L,σ),

Corollary 4.29. Seja L uma familia exterior. Então existe um 2-cociclo σ de modo que
(L,σ) é um sistema de fatores se e somente se χ(L) é trivial em H3(G,Z (N ))L .

Utilizamos também uma metodologia similar a empregada na construção do resultado
acima para classificar anéis do tipo produto cruzado por grupóide (Section 4.4).

Além disso, dada uma extensão N → E → G, a Proposição 4.39 nos dá uma decom-
posição da C∗-álgebra de E em termos do fibrado de ∗-álgebras C[N ] e do sistema de
fatores (L,σ) associado à extensão E .

CONSIDERAÇÕES FINAIS

Os resultados obtidos nesta tese respondem a uma questão publicada no artigo [36]
que versa sobre a existência de álgebras não auto-adjuntas associadas a categorias
étale e semigrupos de restrição. Podemos afirmar que nosso trabalho responde a
questão feita pelos autores de [36] mas concomitantemente abre margem para uma
infinidade de investigações futuras tanto do ponto de vista algébrico, quanto categórico.
Na parte em que estudamos extensões não Abelianas de grupoides, provamos resul-
tados de classificação que vão de encontro à teoria desenvolvida por Schreier e os
estendemos para anéis do tipo produto cruzado.
Finalizando, elencamos abaixo possíveis linhas de investigação que seguem os resul-
tados deste trabalho

a) Provar o Corolário 3.19 para as álgebras reduzidas.

b) Mostrar que os isomorfismos construídos nos Teoremas 2.33 e 3.18 são completa-
mente isométricos e não apenas isométricos.

c) Encontrar critérios de simplicidade para as álgebras de operadores cheia e reduzida
de uma categoria étale.

d) Dada uma categoria étale C, considere B o C∗-envelope da álgebra de operadores
A(C). Nos perguntamos se existe um grupoide étale G de forma que B = C∗(G).

e) Generalizar álgebras de Steinberg de um grupóide com coeficientes num feixe de
anéis (ver [27]) através de sistemas de fatores da Definição 4.5.

Palavras-chave: Categorias étale. semigrupos de restrição. ações de semigrupos
de restrição. álgebras de operadores não auto-adjuntas. extensões não Abelianas



de grupoides. sistema de fatores, cohomologia de grupoides. produtos cruzados por
grupoides. C∗-álgebra de grupoide



ABSTRACT

We define non-self-adjoint operator algebras associated with étale categories and
restriction semigroups, and we also show that these algebras have a reduced version
in the cases where the category is left cancellative and the restriction semigroup is
left-ample. Moreover, we define the semicrossed product algebra of an étale action
of a restriction semigroup on a C∗-algebra, which turns out to be the key point when
connecting the operator algebra of a restriction semigroup to the operator algebra
of its associated étale category. We also prove that in the particular cases of étale
groupoids and inverse semigroups, our operator algebras coincide with the C∗-algebras
of the referred objects. Furthermore, we present a geometrically oriented classification
theory for non-Abelian extensions of groupoids generalizing the classification theory
for Abelian extensions of groupoids by Westman as well as the familiar classification
theory for non-Abelian extensions of groups by Schreier and Eilenberg-Mac Lane. As
an application of our techniques we demonstrate that each extension of groupoids
N → E → G gives rise to a groupoid crossed product of G by the groupoid ring of N
which recovers the groupoid ring of E up to isomorphism.

Keywords: Étale categories. restriction semigroups. restriction semigroups actions.
non-self-adjoint operator algebras. non-Abelian extension of groupoids. factor system.
groupoid cohomology. groupoid crossed product. groupoid C∗ algebra.
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INTRODUCTION

This thesis consists of two separate works. The first part was carried out in
collaboration with my advisor Gilles Castro and is presented in chapters 1,2, and 3. In
summary, it is an attempt to generalize the C∗- algebras of étale groupoids and inverse
semigroups to the broader classes of étale categories and restriction semigroups. The
second part was conducted in collaboration with Johan Öinert and Stefan Wagner
during my stay at the Blekinge Institute of Technology and is presented in chapter 4.
There, we investigate non-Abelian groupoid extensions, and their associated groupoid
rings.

PART 1

The study of non-self-adjoint operator algebras began with the pioneering paper
of Kadison and Singer [33] on triangular operators algebras, in 1960, and with Sarason’s
paper [58] on unstarred algebras. The works of Arveson and Hamana on the C∗-envelop
program also were fundamental to the subject [4, 5, 7, 29, 30]. In 1990, Blecher, Ruan,
and Sinclair [13] characterized abstractly an operator algebra up to completely isometric
isomorphisms which gave to the community new insights and paths to follow. The
connection between non-self-adjoint operator algebras and dynamical systems has
its roots in Arveson’s papers [6, 8], and since then many interesting examples and
generalizations have appeared (see [19, 20, 34, 51] and the references therein).

The concept of restriction semigroup seems to have appeared for the first time
in Schweizer and Sklar’s series of papers about partial functions [60, 61, 62, 63]. Its
motivation is traced back to the independent works of Wagner and Preston in inverse
semigroups (see also [31] and the references therein). Restriction semigroups have
many presentations and emerge in several different contexts, for more on this subject
see Victoria Gould’s survey [28] and also [36] for generalizations.

There is a well-known connection between étale groupoids, inverse semigroups,
and C∗-algebras. Indeed, since Jean Renault’s dissertation [55] was published, in 1980,
the interplay between these objects has become very fruitful and has been explored by
many authors (see for instance [2, 25, 67] and the references therein). Paterson [50]
introduced the groupoid of germs of an inverse semigroup action, which is one of the
keys when studying how the C∗-algebra of an inverse semigroup can be realized as an
étale groupoid C∗-algebra. In fact, one starts with an inverse semigroup S, then con-
siders the canonical action θ of S on its spectrum Ê(S) and obtains the correspondent
groupoid of germs G. Using Sieben’s C∗-crossed product algebra [65] of the action θ

as an intermediary step, Paterson proved that C∗(G) and C∗(S) are isomorphic. Exel
[24] improved his work by removing hypotheses in the inverse semigroup. There, Exel
also provides a careful study of non-Hausdorff étale groupoids, and also introduces the
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tight C∗-algebra of an inverse semigroup.
Recently, Ganna Kudryavtseva and Mark Lawson published the paper [36] in

which they use techniques of pointless topology to establish a duality between complete
restriction monoids and étale topological categories (Theorem 7.22), which extends the
duality presented in [40] between pseudogroups and étale groupoids. In their paper
one can find the following comment:

“... there is the important question of how our work fits into the theory of
operator algebras; the role of inverse semigroups and étale groupoids is
of course well established but it is natural to ask if a theory of combina-
torial non-self-adjoint operator algebras associated to étale categories
could be developed that extended the theory developed in [24].”

The main goal of this part is to give a positive answer to the above question and
extend the works of Exel [24] and Paterson [50] to the context of restriction semigroups,
étale topological categories, and non-self-adjoint operator algebras.

Here is an outline of our work. In chapter 1, we have defined the full and the
reduced operator algebras of an étale category C, and we have denoted them A(C), and
Ar (C). In the case G is an étale groupoid we have shown that under suitable conditions
A(G) and Ar (G) are the very well-known full and reduced groupoid C∗-algebras of G,
which is somehow surprising. In chapter 2, we have also provided the notion of full and
reduced operator algebras for restriction semigroups. And again we were able to show
that this construction extends the C∗-algebra of an inverse semigroup. Furthermore,
we have defined actions of restriction semigroups on both topological spaces and C∗-
algebras and we have shown that these actions lead to a notion of semicrossed product
algebra. Chapter 3 is in turn devoted to the study of the category of germs of an action
of a restriction semigroups and its operator algebras. The main result of the chapter
states that the category of germs of such an action is isomorphic to a semicrossed
product, again extending the involutive case.

PART 2

The problem of classifying all extensions of a given group G by a group N is a
core problem in group theory and may be found in many expositions. The first system-
atic treatments seem to originate in Schreier’s PhD thesis from 1923 (see also [59]) and
in the work of Baer [9] from the 1930s. Cohomological methods used to study group
extensions first appeared in the seminal papers by Eilenberg and MacLane [22, 23].
Another curious reference is due to computer scientist Alan Turing [68]. The central
concept underlying a group extension is that of a so-called factor system, which deter-
mines and is determined by the group extension. Examples and applications of group
extensions can be found in almost all disciplines of modern mathematics. For instance,
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non-Abelian extensions of Lie groups occur quite naturally in the context of smooth prin-
cipal bundles over compact manifolds, and as an application thereof in mathematical
gauge theory (see, e. g., [45, 71] and the ref. therein). Furthermore, a counterexample
to Kaplansky’s famous unit conjecture for group rings has recently been given by Gar-
dam [26] by means of Passman’s fours group, which is a group extension of Z2 × Z2
by Z3.

In 1926, Brandt [14] introduced the notion of a groupoid as a generalization of a
group. Since then, the theory of groupoids has flourished into an area of active research
and applications of groupoids appear in areas such as

fibre bundle theory, differential geometry, foliation theory, differential topology,
ergodic theory, functional analysis, homotopy theory, and algebraic geometry, [15].

The classification problem for Abelian groupoid extensions seems to originate in
the work of Westman [69], in which he developed a cohomology theory for groupoids
that extends the usual (Abelian) cohomology theory for groups. About a decade later
Renault reproduced Westman’s theory in his pioneering study of C∗-algebras [55], thus
spotlighting it for operator algebraists and functional analysts. Another two decades
later, Blanco, Bullejos, and Faro [12] studied non-Abelian groupoid extensions from a 2-
categorical point of view; their central result is the classification of non-Abelian groupoid
extensions by means of a categorical cohomology theory for groupoids. Of particular
interest is also the article [17], in which the authors study and classify fibrations of
Lie groupoids. In recent years, there has been a renewed interest in groupoid exten-
sions due to the fact that such extensions lead to many new and interesting algebraic
structures (see, e. g., [3, 32, 37, 38, 55, 56] and the ref. therein).

To illustrate the latter circumstance, let us consider a, possibly non-Abelian,
extension of groupoids N → E → G. It is natural to ask whether the groupoid ring of
E (resp. the groupoid C∗-algebra of E) can be described in terms of data associated
with the building blocks N and G. For groups this question has been studied by many
authors (see, e. g., [47] and the ref. therein) and leads to the class of group crossed
products, which is very well-understood and has numerous connections to geometry,
operator algebras, and mathematical physics (see, e. g., [1, 49, 64] and the ref. therein).
Furthermore, Renault [55, Prop. 1.22] proved that the groupoid C∗-algebra of a twist,
i. e., a groupoid extension by the trivial torus bundle, can be realized as a twisted
groupoid C∗-algebra. A treatment of the most general case of a proper non-Abelian
groupoid extension has, however, to the best of our knowledge not been worked out
yet.

Our investigations naturally leads to the class of groupoid crossed products,
which is, in contrast to the class of group crossed products, relatively new (cf. [16, 48])
and thus provides fertile ground for further studies. More precisely, we establish that
each, possibly non-Abelian, groupoid extension N → E → G gives rise to a groupoid
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crossed product of G by the groupoid ring of N which recovers the groupoid ring of E
up to isomorphism. This also provides a natural class of examples of groupoid crossed
products. In addition, it is our hope that this work will contribute to the development and
understanding of groupoid C∗-algebras and Steinberg algebras.
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PART 1
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1 ÉTALE CATEGORIES AND THEIR OPERATOR ALGEBRAS

In this chapter, we introduce (topological) étale categories and their operator
algebras. The methods we are going to use are based on the works of [24] and [50] for
étale groupoids, inverse semigroups, and their C∗-algebras, and we refer the reader to
these references for a complete and systematic approach on the subject.

1.1 PRELIMINARIES

We begin by presenting some facts and definitions that will follow us along the
way.

Definition 1.1. Let X be a set. We define

ℓ2(X ) =

f : X → C |
∑
x∈X

|f (x)|2 < +∞


to be the Hilbert space associated with X . The inner product on ℓ2(X ) is given by
⟨f ,g⟩ =

∑
x∈X f (x)g(x). Furthermore, denoting by δx the characteristic function of the

singleton {x} it is easily seen that {δx }x∈X is a orthonormal basis for ℓ2(X ), and hence
we can also write

ℓ2(X ) =

∑
x∈X

axδx |
∑
x∈X

|ax |2 < +∞

 .

Definition 1.2. Let H be a Hilbert space. A finite family of operators {Ti }ni=1 ⊆ B(H) is
called completely orthogonal if T ∗

i Tj = 0 and TiT ∗
j = 0, whenever i ̸= j .

Suppose {Ti }ni=1 is a completely orthogonal family of operators on the Hilbert
space H. Note that for i ̸= j , we have〈

Tjx ,Tiy
〉

=
〈

T ∗
i Tjx ,y

〉
= 0

for every x ,y ∈ H. Hence, ran(Ti ) ⊥ ran(Tj ), and similarly ran(T ∗
i ) ⊥ ran(T ∗

j ). Moreover,

since ran(T ∗
i ) = ker(Ti )⊥, we also have ker(Ti )⊥ ⊥ ker(Tj )⊥, whenever i ̸= j . Then H

decomposes into the orthogonal direct sum H =
n⊕

i=0
Hi , where Hi = ker(Ti )⊥, for i ≥ 1,

and H0 =
n⋂

i=1
ker(Ti ). Let x be in H, and write x =

∑n
i=0 hi , where hi ∈ Hi , for every

0 ≤ i ≤ n. Then we have∥∥∥∥∥
n∑

i=1

Ti (x)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

Ti (hi )

∥∥∥∥∥
2

=
n∑

i=1

∥Ti (hi )∥2

≤ max
i=1,...,n

{
∥Ti∥

}2
n∑

i=1

∥hi∥2 ≤ max
i=1,...,n

{
∥Ti∥

}2∥x∥2
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and hence
∥∥∑n

i=1 Ti
∥∥ ≤ max

i=1...n

{
∥Ti∥

}
. Next, for j ∈ {1,...,n} and h ∈ Hj , we have

∥∥Tj (h)
∥∥ =

∥∥∥∥∥
n∑

i=1

Ti (h)

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

Ti

∥∥∥∥∥∥∥h
∥∥.

Thus, ∥Tj∥ ≤
∥∥∑n

i=1 Ti
∥∥, for every j ∈ {1,...,n}, and as a consequence we obtain∥∥∥∥∥

n∑
i=1

Ti

∥∥∥∥∥ = max
i=1...n

{
∥Ti∥

}
. (1.1)

Now, we recall the concept of generalized inverse of an operator.

Definition 1.3. Let H be a Hilbert space and T ∈ B(H). An operator S ∈ B(H) will be
called a generalized inverse of T if TST = T and STS = S.

Note that if T is a partial isometry then T ∗ is a generalized inverse of T . But,
what can we say about the converse of this fact?

Theorem 1.4 (Theorem 3.1 of [43]). Let T ∈ B(H) be a contraction, that is ∥T∥ ≤ 1.
Then T is a partial isometry if, and only if, T has a contractive generalized inverse.

Corollary 1.5 (Corollary 3.3 of [43]). Let T ∈ B(H) be a contraction, and suppose that
there exists a contractive generalized inverse S of T . Then S = T ∗.

sketch. Let S be a contractive generalized inverse of T . At the end of the proof of
Theorem 1.4, the author concludes that S = T ∗TS. Then multiplying by T on both sides
we obtain that T = TST = TT ∗TST = TT ∗T , and therefore T is partial isometry. Now,
we focus on the equation

S = T ∗TS.

Multiplying by T on the right side, we have ST = T ∗T . Hence, since S∗ is a contractive
generalized inverse of the contraction T ∗, we obtain S∗T ∗ = TT ∗, and adjointing on
both sides we obtain TS = TT ∗. Then we conclude S = T ∗TS = T ∗TT ∗ = T ∗.

Let A be an algebra over C, and let ∥ · ∥A : A → R+ be a seminorm. Recall that
the standard procedure to obtain a normed algebra from the pair (A,∥ · ∥A) is to take
the quotient of A by the ideal N = {a ∈ A | ∥a∥A = 0}, and then induce on A⧸N the norm
∥[a]∥ = ∥a′∥A, where a′ is any representative of [a].

Definition 1.6. The normed algebra obtained by completing (A⧸N, ∥ · ∥) is called the
Hausdorff completion of (A,∥ · ∥A), or simply A.

Last but not least, throughout the whole text we will use the concept of Boolean
value to simplify the presentation of some equations or even definitions.
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Definition 1.7. Let P be a statement. The Boolean value of P is the function denoted
by

[ P ] =

1, if P is true

0, otherwise.

We are now ready to begin with the main topic of this work. Let C =
(
C(0), C(1)) be

a small category, where C(0) is the set of objects of C and C(1) is the set of all morphisms
between objects of C(0). There are some special functions and sets to consider when
dealing with a category: The maps source d : C(1) → C(0), and range r : C(1) → C(0),
assigning to a morphism its domain and codomain, respectively. Moreover, we have
the unit map u : C(0) → C(1) assigning to an object u its identity idu. Note that the set
C(2) = {(x ,y) ∈ C(1) × C(1) : d(x) = r(y)} is the set of all composable morphisms, and
hence we denote the composition function by m : C(2) → C(1) which assigns to every
pair of composable morphisms (x ,y) its composition xy . The maps d, r, u and m are
usually called structure maps of C.

Definition 1.8. For u and v in C(0), we define Cu = {x ∈ C(1) | d(x) = u}, and Cu = {x ∈
C(1) | r(x) = u}. Moreover, we define Cv

u to denote the usual HomC(u,v ) set, which is
precisely {x ∈ C(1) | d(x) = u and r(x) = v }. Finally, for all z ∈ C(1), we define Mz to be
the set {(x ,y ) ∈ C(2) : xy = z}.

The maps d, r, u and m are usually called structure maps.

Definition 1.9. Let C be a small category. We call C a topological category if C(0) and
C(1) are topological spaces and the structure maps are continuous.

Before we define étale categories, recall that if X and Y are topological spaces,
and f : X → Y is a map then we say that f is a topological embedding if the map
f : X → f (X ) is a homeomorphism, where f (X ) is equipped with the relative topology.

Definition 1.10. Let C be a topological category. We call C an étale category if the
following conditions hold:

1. C(0) is a locally compact Hausdorff space.

2. The maps d and r are local homeomorphisms.

3. u is a topological embedding.

This definition of étale category is stronger than the one presented in [36] since
they do not require C(0) to be a locally compact Hausdorff space.

Definition 1.11. A category C is called left (resp. right) cancellative if xy = xw (resp.
yx = wx) implies y = w , for every triple of morphisms x ,y , and w in C. A category is
called cancellative if it is both left and right cancellative.
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Example 1.12 (Transformation category). Let X be a compact Hausdorff topological
space and f : X → X be a local homeomorphism. Define C(0) = X and C(1) = {(y ,n,x) :
f n(x) = y , n ∈ N}. Here, C(0) is equipped with the topology of X and C(1) is equipped with
the subspace topology of X ×N×X , where N is viewed as a discrete space. Moreover,
we define the source and range maps to be d(y ,n,x) = x and r(y ,n,x) = y . The identity
of x is set to be u(x) = (x ,0,x), and finally the composition of two triples is given by
(z,m,y )(y ,n,x) = (z,m + n,x). It is routine to verify that C =

(
C(0), C(1)) is a category with

these structure maps. Furthermore, C is left (and right) cancellative because

(z,m,y )(y ,n,x) = (z,m,y )(y ,k ,t) ⇒ (z,m + n,x) = (z,m + k ,t) ⇒ k = n and t = x .

Let γ = (y ,n,x) ∈ C and A ⊆ X be an open set such that x ∈ A and f n
A is a

homeomorphism. The open set U := (f n(A) × {n} × A)
⋂
C(2) = {(f n(a),n,a) : a ∈ a} is

an open neighborhood of γ and we have that both dU : U → A and rU : U → f n(A)
are homeomorphisms, whose inverses are a 7→ (f n(a),n,a) and a 7→ (a,n,(f n)–1(a)),
respectively. Moreover, if V is an open subset of X then u(V ) = {(v ,0,v ) : v ∈ V } =
(V × {0} × V )

⋂
C(2) which is open. Finally, the continuity of u and m can be observed

noticing that both are compositions of continuous functions (projections, inclusions, the
sum in N).

From now on, let C =
(
C(0), C(1)) be an étale category. Let us begin by showing

that the range of u is an open subset of C(1). To this end, we present the following
lemma whose proof is an adaptation from [24, Proposition 3.2].

Lemma 1.13. Let X be a topological space and Y ⊆ X a topological subspace of X .
Suppose there exists a local homeomorphism f : X → Y such that f (y) = y for every
y ∈ Y . Then Y is open in X , and hence the map f : X → X is a local homeomorphism.

Proof. Take y ∈ Y , and let V be an open set of X such that y ∈ V and fV : V → f (V )
is a homeomorphism. Define B to be the subset V ∩ f (V ). Note that y ∈ B, and that
B is open in f (V ). Hence, the subset f –1

V (B) is open in V . But note that B is equal to
f –1
V (B) since B ⊆ V , and f (B) = B, and fV is bijective. Therefore, B is open in V and,
consequently, B is open in X . In conclusion, we have y ∈ B ⊆ Y . This gives that Y is
open in X .

Proposition 1.14. Let C be an étale category. Then u
(
C(0)) = {idu : u ∈ C(0)} is an

open subset of C(1), and hence u is an open map.

Proof. Note that u ◦ r : C(1) → {idu | u ∈ C(0)} satisfies the hypothesis of Lemma 1.13,
and hence {idu | u ∈ C(0)} is open in C(1). Moreover if U ⊆ C(0) is an open set then
u(U) is an open subset of u(C(0)) which is, in turn, open in C(1). Then u(U) is open in
C(1).
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For simplicity of the presentation, we will avoid working with two distinct sets
C(0) and C(1). In what follows we will identify an object u ∈ C(0) with its associated
identity morphism idu, and hence we will see C(0) as a subset of C(1). The fact that
u is an embedding ensures that there is no loss in this identification since u

(
C(0)) is

homeomorphic to C(0). Furthermore, we will just write C instead C(1).

Definition 1.15. An open subset U ⊆ C is called a bisection if the restrictions dU and
rU are injective. We will denote by Bis(C) the set of all bisections of C.

Remark 1.16. Because local homeomorphisms are open maps, Bis(C) coincides with
the family of open sets V such that dV : V → d(V ) and rV : V → r(V ) are homeomor-
phisms.

In [24], the author proves several topological facts about étale groupoids. It
occurs that many of these facts are valid (with similar proofs) for the more general
context of étale categories.

Proposition 1.17. 1. Bis(C) forms a basis for the topology of C.

2. Every bisection is a locally compact Hausdorff subspace.

3. Every open subset of C is a locally compact subspace.

4. Every open Hausdorff subset of C is a locally compact Hausdorff subspace.

5. For all u,v ∈ C(0), Cu, Cv and Cv
u are closed subsets.

6. For all u,v ∈ C(0), Cu, Cv and Cv
u are discrete subspaces.

7. C(2) is a closed subset of C × C.

8. If C is Hausdorff then C(0) is closed in C.

Proof. 1. Fix x ∈ C and W ⊆ C an open subset such that x ∈ W . Let U and V
be open subsets such that x ∈ U ∩ V , dU and rV are homeomorphisms. Then
Z := U ∩ V ∩ W is a bisection and x ∈ Z ⊆ W .

2. Recall that open subsets of locally compact Hausdorff spaces are also locally
compact Hausdorff spaces with the subspace topology. If U is a bisection, then it
is homeomorphic to the open subset d(U) of C(0) and, consequently, it is a locally
compact Hausdorff subspace.

3. Let V be an open subset of C and x ∈ V . By 1 and 2, there is a bisection U and a
compact K such that x ∈ K̊ ⊆ K ⊆ U ⊆ V . Then x has a compact neighborhood
in V and therefore V is locally compact.

4. Immediate.

5. Cu = d–1({u}); Cv = r–1({v }); Cv
u = Cu ∩ Cv .
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6. Fix u,v ∈ C(0). Take x ∈ Cu and U a bisection containing x . Then U ∩ Cu is equal
to {x} and it is open in Cu. Similarly, Cv and Cv

u are discrete.

7. The diagonal set Δ(C(0)) = {(u,u) | u ∈ C(0)} is closed because C(0) is Hausdorff.
Moreover, f : C ×C → C(0) ×C(0) given by f (x ,y ) = (d(x), r(y )) is continuous. Thus,
C(2) = f –1

(
Δ

(
C(0)

))
is a closed subset of C × C.

8. Define f : C → C × C to be the map given by f (x) = (x , r(x)). Note that f is
continuous, and moreover C(0) = f –1 (Δ(C)).

The first item above tells us that the family {(U ×V )∩C(2) : U,V ∈ Bis(C)} forms
a basis for the topology of C(2). Moreover, for U, V ∈ Bis(C) note that (U × V ) ∩ C(2) =
(U1 × V1) ∩ C(2), where U1 = d–1

U (r(V ) ∩ d(U)) and V1 = r–1
V (r(V ) ∩ d(U)). Hence,

d(U1) = r(V1) = r(V ) ∩ d(U), and consequently another basis for the topology of C(2) is
the family {U ×V ∩C(2) : U,V ∈ Bis(C) , d(U) = r(V )}. Furthermore, for any pair U,V of
subsets of C, we define UV to be the set {xy : (x ,y ) ∈ (U × V ) ∩ C(2)}. Hence, because
m is associative, it becomes clear that the product of subsets is also associative.

Proposition 1.18. The composition function m : C(2) → C is open.

Proof. We start by showing that if U,V is a pair of bisections such that d(U) = r(V ) and
UV ⊆ W , for another bisection W , then UV is open. For x ∈ U, there exists y ∈ V such
that d(x) = r(y ). Therefore r(x) = r(xy ) ∈ r(UV ) and consequently r(U) = r(UV ). Then,
rW (UV ) is equal to r(U), which is open. Hence, UV is open as rW is a homeomorphism.

Next, we show that the above fact implies m is open. Let O be an open subset
of C(2), (x ,y ) be in O, W be a bisection such that xy ∈ W . Since m is continuous, there
exists a pair U,V of bisections such that d(U) = r(V ), (x ,y) ∈ U × V ∩ C(2) ⊆ O and
UV ⊆ W . By the previous case, UV is open and xy ∈ UV ⊆ m(O). Hence, m(O) is
open.

Remark 1.19. For bisections U and V , Proposition 1.18 says UV is open. Moreover,
it is easy to verify that dUV and rUV are injective maps, and therefore Bis(C) forms a
semigroup. In fact, it is a monoid where the identity is C(0).

Lemma 1.20. If {U1, . . . ,Un} is a finite family of bisections and z ∈ U1 · · ·Un then, there
exists is a unique n-tuple (x1,x2, . . . ,xn) ∈ U1 × ... × Un such that x1 . . . xn = z.

Proof. The proof is by induction on n. The case n = 1 is trivial. Suppose the state-
ment holds for n = k – 1, and let U1,U2,...,Uk be a family of bisections. For k-tuples
(x1,...,xk ), (y1,...,yk ) ∈ U1 × ... × Uk such that x1...xk = y1...yk , applying r to both sides
we get x1 = y1, since U1 is a bisection. Therefore, r(x2...xk ) = d(x1) = d(y1) = r(y2...yk )
which implies that x2...xk = y2...yk . Hence by the induction hypothesis xi = yi , for all
1 ≤ i ≤ k .
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1.2 OPERATOR ALGEBRAS ASSOCIATED WITH ÉTALE CATEGORIES

Given an open subset V ⊆ C and f : C → C, we will write f ∈ Cc(V ) if fV ∈ Cc(V )
and fC\V is identically zero. As in [24], let U to be the family of open Hausdorff subsets
of C, and define the vector space

A0(C) = span{f : f ∈ Cc(U), U ∈ U}.

We write A0(C) instead of Cc(C) because the elements of the former are not
necessarily continuous. But they are not so far from each other, if C were Hausdorff
then they coincide.

Proposition 1.21. If F ⊆ Bis(C) covers C, then A0(C) = span{f : f ∈ Cc(U), U ∈ F}. In
particular, one has

A0(C) = span{f : f ∈ Cc(U), U ∈ Bis(C)}.

Proof. Let V be an open Hausdorff subset and f ∈ Cc(V ). There is a finite family
{Ui }ni=1 of bisections in F such that supp(f ) ⊆ ∪n

i=1Ui . Using partitions of unity ( see
[57, Theorem 2.13]), there are functions ηi ∈ Cc(Ui ∩ V ) such that

∑n
i=1 ηi (x) = 1, for

every x ∈ supp(f ). Then, we have f =
∑n

i=1 fηi and fηi ∈ Cc(Ui ∩ V ) ⊆ Cc(Ui ), for all
i ∈ {1,...,n}.

On A0(C) we define the convolution product

f ∗ g(z) =
∑

(x ,y )∈Mz

f (x)g(y ). (1.2)

We use the following lemma to show that the above product is well-defined.

Lemma 1.22. Assume U,V and W are bisections and f ∈ Cc(U), g ∈ Cc(V ) and
h ∈ Cc(W ) then:

1. | supp(f ) ∩ Cu | ≤ 1 and | supp(f ) ∩ Cu | ≤ 1 for every u ∈ C(0),

2. f ∗ g ∈ Cc(UV ).

3. If U = C(0), then f ∗ g ∈ Cc(V ) and (f ∗ g)(z) = f (r(z))g(z), for every z ∈ V .

4. If V = C(0), then f ∗ g ∈ Cc(U) and (f ∗ g)(z) = f (z)g(d(z)), for every z ∈ U.

5. If U = V = C(0), then f ∗ g ∈ Cc(C(0)) and (f ∗ g)(z) = f (z)g(z), for every z ∈ C(0).

6. (f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof. 1. Immediate.

2. By Lemma 1.20, given z ∈ UV , there is a unique pair (x ,y ) belonging to Mz ∩ (U ×
V ). Consequently, f ∗ g(z) is equal to f (x)g(y ). Now, writing x and y as functions
of z, we obtain

f ∗ g(z) = f ◦ r–1
U ◦ r(z).g ◦ d–1

V ◦d(z).



Chapter 1. Étale categories and their operator algebras 24

Thus, the restriction of f ∗ g to UV is continuous. If f ∗ g(z) ̸= 0, there must be
a pair (x ,y) ∈ Mz such that f (x)g(y) ̸= 0. Then x ∈ U, y ∈ V and, consequently,
z ∈ UV . Moreover, {w ∈ C | f ∗ g(w) ̸= 0} ⊆ supp(f ) supp(g) ⊆ UV . Since UV is
Hausdorff, supp(f ) supp(g) is compact and closed. Hence, supp(f ∗ g) is compact.

3. Given z ∈ V , (r(z),z) is the unique element in (U × V ) ∩ Mz , then f ∗ g(z) =
f (r(z))g(z).

4. Similar to 3.

5. Immediate from 3 and 4.

6. Note that (f ∗g)∗h and f ∗ (g ∗h) are both supported in UVW , by item 2. Moreover,
for z ∈ UVW there are unique pairs (x ,x3) ∈ (UV × W ) ∩ Mz , and (y1,y) ∈
(U ×VW )∩Mz . Hence (f ∗g)∗h(z) = f ∗g(x)h(x3) and f ∗ (g ∗h)(z) = f (y1)g ∗h(y ).

Now, since there are unique pairs (x1,x2) and (y2,y3) belonging to (U × V ) ∩ Mx

and (V × W ) ∩ My , respectively, we obtain (f ∗ g) ∗ h(z) = f (x1)g(x2)h(x3) and
f ∗ (g ∗h)(z) = f (y1)g(y2)h(y3). Thus, by Lemma 1.20, we have xi = yi for 1 ≤ i ≤ 3,
completing the proof.

Clearly, the product defined in Equation (1.2) is bilinear, and then to obtain that it
is well-defined we just need to ensure that the sum appearing in Equation (1.2) is finite
and that it is associative. Combining Proposition 1.21 with item 1 of Lemma 1.22 gives
us the finiteness, and the associativity comes from combining the same proposition
with item 6 of Lemma 1.22. Hence, A0(C) is an associative algebra.

Remark 1.23. We can generalize items 3 and 4 of Lemma 1.22. In fact, for f ∈ A0(C)
and g ∈ Cc(C(0)), we have f ∗g(z) = f (z)g(d(z)) and g∗f (z) = g(r(z))f (z), for every z ∈ C.
To see this just write f as a sum

∑n
i=1 fi , where each fi is supported on a bisection Ui ,

and apply the aforementioned items of Lemma 1.22.

Definition 1.24. A representation of A0(C) on a Hilbert space H is an algebra homo-
morphism π : A0(C) → B(H) such that:

1. ||π(f )|| ≤ ||f ||∞, for every f ∈ Cc(U), and for every U ∈ Bis(C).

2. π(f̄ ) = π(f )∗, for every f ∈ Cc(C(0)).
The class of all representations of A0(C) will be denoted by Rep(A0(C)).

Remark 1.25. A representation π : A0(C) → B(H) gives rise to a C∗-algebra homo-
morphism π0 : C0(C(0)) → B(H), where π0 is obtained by extending the restriction
π| Cc(C(0)).

Our goal is to build a normed algebra from C in which every representation of
A0(C) is contractive. Hence, we define

||f ||0 = sup
{

||π(f )|| | π ∈ Rep(A0(C))
}

. (1.3)
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Note that
{

||π(f )|| | π ∈ Rep(A0(C))
}

is a set, regardless of Rep(A0(C)) being a set or
a class, and therefore the above supremum is well-defined. In general || · ||0 is just a
semi-norm, and it is a norm if and only if there exists a faithful representation of A0(C).

Definition 1.26. Let C be an étale category. The operator algebra of C is the Hausdorff
completion A(C) of the normed algebra (A0(C) ,∥ · ∥0).

It is still not clear why A(C) is an operator algebra, that is, a closed subalgebra
of the C∗-algebra of bounded linear operators on a Hilbert space H. At the end of the
next subection we provide an argument justifying this nomenclature. Moreover, note
that every representation of π : A0(C) → B(H) extends to a contractive homomorphism
to π : A(C) → B(H).

1.2.1 The reduced operator algebra of an étale category

We now proceed to show that if C is a left cancellative étale category then
there exists a faithful representation of A0(C), which ensures that A(C) is simply the
completion of (A0(C) ,∥ · ∥0).

Let ℓ2(C) be the Hilbert space associated with C (see Definition 1.1), and consider
the map π : A0(C) → B(ℓ2(C)), in which πf is given by

πf

∑
z∈C

azδz

 =
∑
z∈C

az
∑

x∈Cr(z)

f (x)δxz . (1.4)

Our strategy is to prove that for the bisections U and V ∈ Bis(C), and the maps f ∈ Cc(U)
and g ∈ Cc(V ) we have that ∥πf ∥ ≤ ∥f∥∞ and πf∗g = πfπg . Thus, the linearity of π will
ensure that it is a well-defined representation of A0(C) .

Note that πf (δz) is nonzero if and only if Cr(z) ∩ f –1 ({0}) is non-empty. In such
case πf (δz) = f (xz)δxzz , where xz is the unique element in Cr(z) ∩ f –1 ({0}), by item

(1) of Lemma 1.22. Now, if Γ is the auxiliary set
{

u ∈ C(0) | Cu ∩ f –1 ({0}) ̸= ∅
}

and
v =

∑
z∈C azδz we have

πf (v ) =
∑

r (z)∈Γ
az f (xz )δxzz .

Suppose that z and z ′ are such that r(z) ∈ Γ, r(z ′) ∈ Γ, and xzz = xz ′
z ′. In this case,

xz ∈ U, xz ′ ∈ U, and r(xz ) = r
(

xz ′
)

. Thus, xz = xz ′
, and because C is left cancellative

z = z ′. Which gives

∥πf (v )∥2 =
∑

r (z)∈Γ
|az |2|f (xz )|2 ≤ ||f ||2∞||v ||2.

To see that πf∗g = πfπg , we prove πf∗g(δz ) = πfπg(δz ) for every z ∈ C. Suppose
that πf (πg(δz)) is nonzero. Then πfπg(δz) = f (x)g(y)δxyz , for x ∈ f –1({0}) ⊆ U, and
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y ∈ g–1({0}) ⊆ V . Note that, xy is the unique element in Cr(z) ∩ UV , and hence

πf∗g(δz ) = f ∗ g(xy )δxyz = πf (πg(δz )).

On the other hand, suppose πf∗g(δz) is nonzero. In this case πf∗g(δz) = f ∗ g(w)δwz ,
for the unique element w in Cr(z) ∩ (f ∗ g)–1({0}). Moreover, there exists a unique pair
(x ,y ) ∈ U × V such that f ∗ g(w) = f (x)g(y ), by Lemma 1.20. Finally, f (x) and g(y ) are
nonzero, and hence

πf (πg(δz )) = f (x)g(y )δxyz = f ∗ g(w)δwz = πf∗g(δz ).

We have proven that πf∗g(δz) is nonzero if, and only if, πf (πg(δz)) is nonzero and in
such case they coincide. Therefore, πf∗g(δz ) = πfπg(δz ) for every z ∈ C.

The straightforward calculation below shows that πf = π∗
f . Indeed, for f ∈

Cc(C(0)), and z, and z ′ be in C we have

⟨πf (δz ),δz ′⟩ = f (r(z)) ⟨δz ,δz ′⟩ = [z = z ′]f (r(z))

= [z = z ′]f (r(z ′)) = f (r(z ′)) ⟨δz ,δz ′⟩

=
〈
δz ,f (r(z ′))δz ′

〉
=
〈
δz ,πf (δz ′)

〉
.

We finish this discussion by proving that π is faithful. Note that if f ∈ A0(C) is
nonzero, there is z ∈ C such that f (z) is nonzero, and then

πf (δd(z)) =
∑

x∈Cr(d(z))

f (x)δx d(z) =
∑

x∈Cd(z)

f (x)δx = f (z)δz +
∑

x∈Cd(z)
x ̸=z

f (x)δx ̸= 0.

Definition 1.27. The above defined map π is called the regular representation of C.
The reduced operator algebra of C is the closure of π(A0(C)) in B(ℓ2(C)), and it is
denoted by Ar (C).

Of course, we could also define the reduced operator algebra intrinsically as the
completion of A0(C) in the norm induced by the regular representation. Moreover, the
regular representation is usually presented as a direct sum. If one desires to recover
the definition in terms of a direct sum of representations, it suffices to note that for
any u ∈ C(0) the Hilbert (sub)space ℓ2(Cu) is an invariant subspace of π, and ℓ2(C) =⊕
u∈C(0)

ℓ2(Cu). Therefore, denoting by πu the restriction of π to ℓ2(Cu) we obtain

π =
⊕

u∈C(0)

πu. (1.5)

Note that the cancellation assumption is crucial for the existence of the left
regular representation. In fact, let C = N be the category of natural numbers, where 1 is
the unique object of C and the composition is given by multiplication. The topology in C



Chapter 1. Étale categories and their operator algebras 27

is the discrete one and hence A0(C) is simply the set of all functions whose support is
finite. Let f = χ0 be the characteristic function of {0}. Note that πf (δ1 + δ2) = 2δ0, which
implies that ∥πf ∥ ≥

√
2. But, since f has support contained on a bisection we should

have ∥πf ∥ ≤ ∥f∥∞ = 1.

Proposition 1.28. Let C be a left cancellative étale category, and π be the regular
representation. Then for any bisection U, and f ∈ Cc(U) it holds ||π(f )|| = ||f ||∞. In
particular C0(U) is a linear subspace of both Ar (C) and A(C). Furthermore, if U = C(0)

then C0(C(0)) is a subalgebra of Ar (C) and A(C).

Proof. Let U be a bisection, let f ∈ Cc(U), and let x ∈ U be such that |f (x)| = ||f ||∞.
Note that πf (δd(x)) = f (x)δx , and consequently ||f ||∞ = |f (x)| ≤ ||π(f )|| ≤ ||f ||∞. This
proves that f attains its supremum norm on Ar (C) and A(C) (cf. item 1 of Definition 1.24),
and hence Cc(U) is an isometric linear subspace of both full and reduced algebras of
C. The claim then follows on from taking closure.

If U = C(0), item 5 of Lemma 1.22 shows that the convolution product of functions
supported on U reduces to the pointwise product. Therefore Cc(C(0)) is a subalgebra
of Ar (C) and A(C), as well as its closure C0(C(0)).

Let C be a left cancellative étale category. We now argue why A(C) live up to the
term operator algebra. Our strategy is to prove that the supremum in (1.3) can be taken
over a certain set Rep′(A0(C)) of representations, and hence taking the direct sum of
all representations in Rep′(A0(C)) we will obtain the universal representation of A0(C).

Let A be a unital C∗-algebra, and ρ : A → B(H) be a representation of A. From
[44, Theorem 5.1.3], we obtain that there exists a set X such that ρ =

⊕
x∈X ρx , where

ρx : A → B(Hx ) is a cyclic representation of A. Recall that ∥ρ(a)∥ = supx∈X ∥ρx (a)∥
and that Hx = ρx (A)ξx for some cyclic vector ξx . In particular, the spaces Hx have their
dimensions bounded by |A|ℵ0.

Now, suppose that H is a Hilbert space and that B is nonzero a subalgebra of
B(H), which says, in particular, that B is uncountable. Let us find an upper bound for
the cardinality of the C∗-subalgebra generated by B in B(H), denoted by C∗(B). Let
Pfin = { p1 · · · pn | pi ∈ B∪B∗, n ∈ N∗} denote the set of all finite products of elements in
B ∪ B∗, and let B′ = spanQ+iQPfin be the linear span of Pfin with coefficients in Q + iQ.
Note that |Pfin| ≤ | ∪n∈N (B ∪ B∗)n| = ℵ0|B| = |B|. Moreover, note that B′ = ∪n∈N∗Sn,
where

Sn =

{ n∑
i=1

aisi | ai ∈ Q + iQ, si ∈ Pfin

}
.

We claim that |Sn| is bounded by |B|. In fact, since every element
∑n

i=1 aisi corresponds
to a n-tuple ξ = (a1s1,...,ansn) ∈

(
(Q + iQ) × Pfin

)n we have that

|Sn| ≤
∣∣((Q + iQ) × Pfin

)n∣∣ ≤ ℵ0|B| = |B|.
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Thus |B′| ≤ ℵ0|B| = |B|. Therefore |C∗(B)| ≤ |B′|ℵ0 ≤ |B|ℵ0, since C∗(B) = B′.
Finally, let π : A0(C) → B(H) be a representation of A0(C), and let B be the unital

subalgebra generated by the range of π. Define A = C∗(B), and consider the inclusion
map j : A → B(H). Decompose j as a direct sum of cyclic representations j = ⊕x∈X jx ,
jx : A → B(Hx ), and note that π = ⊕x∈Xπx , where πx = jx ◦ π. Thus

∥π(f )∥ = sup
x∈X

∥πx (f )∥, f ∈ A0(C) . (1.6)

By the above discussion, the dimensions of the Hilbert spaces Hx are bounded by the
cardinal number ω :=

(
|A0(C) |ℵ0

)ℵ0. For each cardinal number λ ≤ ω, take Hλ to be a
Hilbert space of dimension λ, and define Λ = {Hλ | λ ≤ ω}. Then consider the following
set

Rep′(A0(C)) = {π : A0(C) → B(H) | π ∈ Rep(A0(C)), H ∈ Λ}.

By (1.6), we have ||f ||0 = sup
{

||π(f )|| | π ∈ Rep′(A0(C))
}

and hence defining

Π : A0(C) → B

⊕
λ≤ω

Hλ


by

Π(f ) :=
⊕

π∈Rep′(A0(C))

π(f )

we obtain a isometric representation of A0(C), and hence A(C) ∼= Π(A0(C)) which is
in turn an operator algebra. The representation Π is commonly called the universal
representation of A0(C).

1.2.2 Graph algebras

Let E = (E0,E1,d ,r ) be a directed graph. Define for n ≥ 2 the set of paths of
length n to be the set En = {a1...an : {ai }ni=1 ⊆ E1, d(ai ) = t(ai+1),∀ 1 ≤ i ≤ n – 1}.
The category associated with the graph E is the pair CE =

(
C(0), C(1)) where C(0) = E0,

C(1) =
⋃

n∈N En and the structure maps are as follows: we set u to be the inclusion map,
moreover we define the source and range maps to be

d(x) =

{
x , if x ∈ E0

d(an), if x = a1...an, n ≥ 1
r(x) =

{
x , if x ∈ E0

r (a1), if x = a1...an, n ≥ 1.

Finally, the composition is given by

m(x ,y ) =


x , if y ∈ E0

y , if x ∈ E0

xy , otherwise.
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where xy means the usual concatenation of the paths. Hence, equipping C(0) and C(1)

with the discrete topology, it is easy to see that CE is a cancellative étale category.
For a path x ∈ CE , define Lx ∈ B(ℓ2(CE )) to be

Lx (δy ) =

{
δxy , if (x ,y ) ∈ C(2)

0, otherwise.

In [34], one can find the following definition.

Definition 1.29. The tensor algebra of E is the closed algebra generated by the family
{Lx | x ∈ CE } ⊆ B(ℓ2(CE )), and it is denoted by T +(E).

Clearly, T +(E) can also be viewed as the closed algebra generated by the small
family

{
Lx | x ∈ E0 ∪ E1}, since Lx = La1...Lan if x = a1...an. We now show that the

tensor algebra of E is isomorphic to the reduced operator algebra of CE .

Proposition 1.30. T +(E) = Ar (CE ).

Proof. Let π : A0(C) → B(ℓ2(C)) be the regular representation of A0(C), let x be an
element of C, and let f be the characteristic function of {x}. Note that

πf (δz ) =
∑

y∈Cr(z)

f (y )δyz =
[
(x ,z) ∈ C(2)

]
δxz = Lx (δz ).

Moreover, note that if U is a bisection and g ∈ Cc(U) then g =
∑n

j=1 aiχ{xj } and hence
πg =

∑n
j=1 aiLxi . The result then follows.

Example 1.31. Let E the graph of a unique vertex e0 and a unique loop e1. Note that
the unique path of length n is the path en = e1e1...e1︸ ︷︷ ︸

n times

. Moreover, denote by δn the

characteristic function of the singleton {en}.
Let CE =

(
C(0), C(1)) be the category of E . Note that C(0) = {e0}, and C(1) =

{e0,e1,e2,...}. Moreover, note that Bis(CE ) = {{en} | n ∈ N}, and in particular it is isomor-
phic to N, as a monoid, since {en}{em} = {en+m}.

Now, note that if f ∈ A0(CE ) has support contained in a bisection then f = aδn,
a ∈ C and hence

A0(CE ) =

{ n∑
i=1

aiδi | ai ∈ C

}
.

It easily follows then that A0(CE ) is the polynomial algebra C[x ], where x = δ1 and the
constant polynomial 1 stands for the identity δ0. Our goal is to describe the representa-
tions of C[x ].

Proposition 1.32. The representations of C[x ] are in correspondence with pairs (P,T )
where P ∈ B(H) is a projection, T ∈ B(H) is a contraction and PT = T = TP.
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Proof. Suppose π : C[x ] → B(H) is a representation in the sense of Definition 1.24.
Then π(x) is a contraction, and π(1) is a projection since it is idempotent and self-adjoint.
Moreover π(δn) = π(δ1)n, for every n ≥ 1.

Conversely if one has in hands a contraction T and a projection P such that
PT = T = TP then mapping 1 → P and x → T gives rise to a representation of
C[x ].

Let H be a Hilbert space and (P,T ) a pair like in the statement of Proposition
1.32. Moreover, let π be the representation generated by (P,T ) and let π1 be the
representation generated by (idH ,T ). For a polynomial p =

∑n
i=1 aix i note that

∥π(p)∥ = ||a0P +
n∑

i=1

aiT
i || = ||a0P +

n∑
i=1

ai (PT )i ||

= ||P(a0 idH +
n∑

i=1

aiT
i )|| ≤ ||a0 idH +

n∑
i=1

aiT
i ||

= ∥π1(p)∥.

(1.7)

Therefore, we can suppose without loss of generality that every representation of A0(C)
on H is like π, that is, p 7→ p(T ), for a fixed contraction T ∈ B(H).

Identifying en with n, we have that C is equal to the natural numbers N and
hence ℓ2(CE ) is the canonical Hilbert space ℓ2(N). Let π : C[x ] → B(ℓ2(N)) be the
regular representation. We proved that π(x) = π(δ1) = L1. Note that L1(δn) = δn+1, then
π(x) is the (forward) shift operator S ∈ B(ℓ2(N)). Consequently, Ar (CE ) is the closed
subalgebra of B(ℓ2(N)) generated by the identity and S, which is called the disc algebra
and is a subalgebra of the Toeplitz C∗-algebra, the C∗-algebra generated by S.

We now show that A(CE ) and Ar (CE ) coincide. Let D be the closed unitary ball
of C. For a polynomial p ∈ C[x ], define ∥p∥ = supz∈D |p(z)|. Von Neumann [46] proved
that for every contraction T on a Hilbert space and every polynomial p ∈ C[x ] it holds
that ||p(T )|| ≤ ∥p∥.

Conversely, for an operator T on a Hilbert space, let σ(T ) denote the spectrum
of T and r (T ) denote the spectral radius of T . Recall that r (T ) ≤ ∥T∥. Moreover, by the
spectral mapping theorem, for a polynomial p ∈ C[x ] we have

σ(p(S)) = p(σ(S)) = p(D).

And hence ∥p∥ ≤ ∥p(S)∥, for every p ∈ C[x ], where S is the shift operator aforemen-
tioned. Then, combining the facts listed above we get

∥p∥0 = sup{ ∥p(T )∥ | T ∈ B(H), ||T∥ ≤ 1} ≤ ∥p∥ ≤ ||p(S)||.

Thus
A(CE ) = Ar (CE ) = T +(E).
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Example 1.33. Now let E be the graph of one vertex and m loops e1,..., em. It is easy
to see that A0(CE ) = C{x1,...xm} is the algebra of noncommutative polynomials in m
variables and that a representation of A0(CE ) on H corresponds to a (m + 1)–tuple
(P,T1,...,Tm) where P is a projection, each Ti is a contraction, and PTi = Ti = TiP
for every i ∈ {1,...,m}. From a calculation similar to (1.7), we assume without loss of
generality that P = idH .

In what follows we describe the regular representation of A0(CE ). First note that
CE =

⋃
n∈N En and hence

ℓ2
(
CE
)

=
⊕
n∈N

ℓ2
(
En).

Since E0 = {e0}, we have that ℓ2
(
E0) = C, with basis δ0. Since E1 = {e1,...,em}, we

have that H := ℓ2(E1) = Cm, and we denote by δi the basic element δei . We now look to
ℓ2
(
En) for n ≥ 2. Note that a basic element of ℓ2

(
En) is of the form δei1 ...ein

, and hence
identifying δei1 ...ein

with the tensor δi1 ⊗ ... ⊗ δin , we have ℓ2
(
En) = H⊗n. Therefore

ℓ2
(
CE
)

= C⊕
⊕
n≥1

H⊗n.

This Hilbert space is known as the full Fock space of H. Moreover, through this iden-
tification the concatenation operators Lej become left creation operators Lj , where
Lj (δ0) = δj and Lj (δi1 ⊗ ... ⊗ δin) = δj ⊗ δi1 ⊗ ... ⊗ δin , for every n ≥ 1. Therefore Ar (CE )
is the closed unital subalgebra of B

(
C ⊕

⊕
n≥1 H⊗n) generated by the left creation

operators L1,...,Ln. This algebra is called the noncommutative disc algebra An and it
was studied by Popescu in [52, 53].

Note that in this case we do not have Ar (CE ) = A(CE ). For instance, consider the
polynomial p(x1,...,xn) = x1 + ... + xn. In Ar (CE ) the norm of p is

∥p∥r = ∥p(L1,...,Ln)∥ =
√

n

since {L1,...,Ln} is a family of n isometries with pairwise orthogonal ranges. On the other
hand the norm of p in the full algebra A(CE ) is n since we can take the representation
sending each monomial xi to idH .

1.3 RELATIONAL COVERING MORPHISMS

We present below a class of morphisms between étale categories called rela-
tional covering morphisms (see [36, Section 7.2]). In this definition we have to put our
convention aside and treat the set of objects and morphisms as two distinct sets.

Definition 1.34. Let C =
(
C(0), C(1)) and D =

(
D(0),D(1)) be étale categories. A rela-

tional covering morphism from C to D is a pair (φ0,φ1) where φ0 : C(0) → D(0) is a
proper continuous function and φ1 : C(1) → P

(
D(1)) is a function such that the following

conditions hold:
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(M1) u(φ0(v )) ∈ φ1(u(v )), for every v ∈ C(0).

(M2) If b ∈ φ1(a) then d(b) = φ0(d(a)) and r(b) = φ0(r(a)), for every a ∈ C(1).

(M3) If c ∈ φ1(a) and d ∈ φ1(b) then cd ∈ φ1(ab), for every (a,b) ∈ C(2).

(M4) If d(a) = d(b) (resp. r(a) = r(b)) and φ1(a) ∩ φ1(b) is non-empty then a = b, for
every a and b in C(1).

(M5) If d(x) = φ0(v ) (resp. r(x) = φ0(v )) then there exists a ∈ Cv (resp. a ∈ Cv ) such
that x ∈ φ1(a), for every v ∈ C(0) and x ∈ D(1).

(M6) If A ∈ Bis(D) then Â := {z ∈ C(1) : φ1(z) ∩ A ̸= ∅} ∈ Bis(C).

Throughout the following let C and D be étale categories and let φ = (φ0,φ1) :
C → D be a relational covering morphism.

Proposition 1.35. Let A ∈ Bis(D) be a bisection, and let f be a map in Cc(A). Then the
map f̂ : C → C, given by f̂ (z) =

∑
x∈φ1(z) f (x), is in Cc(Â ).

Proof. Suppose f̂ (z) is nonzero. Then there exists x ∈ φ1(z) such that f (x) ̸= 0, which
gives that x ∈ A, and consequently x ∈ φ1(z) ∩ A. Thus z ∈ Â , and moreover f̂C\Â ≡ 0.

Now, let us check that f̂Â , the restriction of f̂ to Â , is a continuous function with
compact support. Note that if z ∈ Â then φ1(z) ∩ A has a unique element since A
is a bisection and since (M2) holds. Denote by xz the unique element of φ1(z) ∩ A
and note that f̂ (z) = f (xz). Thus, for an open subset B of C, we have z ∈ f̂ –1

Â
(B) if

and only if xz ∈ f –1
A (B), and moreover xz ∈ f –1

A (B) if and only if z ∈ f̂ –1
A (B), by (M6).

Therefore, combining these two equivalences, we obtain f̂ –1
Â

(B) = f̂ –1
A (B) which is open,

by property (M6). This gives the continuity of f̂ .
Next, we check that f̂

Â
has compact support. Note that

rÂ
(
{z : f̂ (z) ̸= 0 }

)
⊆ φ–1

0

(
rA
(

supp(f )
))

.

Indeed, it easily follows from the fact that if f̂ (z) = f (xz) and r(xz) = φ0(r(z)), by (M2).
Finally, note that, φ–1

0
(
rA
(

supp(f )
))

is compact, since φ0 is proper and rÂ is a ho-
meomorphism. Thus, we obtain

rÂ
(

supp(̂f )
)

= rÂ ({z : f̂ (z) ̸= 0 }) ⊆ φ–1
0 (rA supp(f )).

Which gives that rÂ
(

supp(̂f )
)

is compact because it is closed in a compact set, and
hence the subset supp(̂f is compact.

Let Tφ : A0(D) → A0(C) be the map f 7→ f̂ , where f̂ (z) =
∑

x∈φ1(z) f (x). By
Propositions 1.21 and 1.35, it is easy to see that Tφ is well-defined linear map. Indeed,
we have even more.



Chapter 1. Étale categories and their operator algebras 33

Proposition 1.36. Tφ is an algebra homomorphism.

Proof. Let f and g be in A0(D) and note that

̂f ∗ g(z) =
∑

x∈φ1(z)

f ∗ g(x) =
∑

x∈φ1(z)

∑
(c,d)∈Mx

f (c)g(d). (1.8)

On the other hand

f̂ ∗ ĝ(z) =
∑

(a,b)∈Mz

f̂ (a)ĝ(b) =
∑

(a,b)∈Mz

∑
ξ∈φ1(a)
η∈φ1(b)

f (ξ)g(η). (1.9)

By (M3), we obtain that every term of the sum (1.9) is also a term of the sum (1.8).
Conversely, if a composition cd belongs to φ1(z) then d(d) = d(cd) = φ0(d(z)), by
(M2). In this case, there is b ∈ Cd(z) such that d ∈ φ1(b), by (M5). Moreover, d(c) =
r(d) = φ0(r(b)) and hence there exists a ∈ Cr(b) such that c ∈ φ1(a), again by (M5).
Therefore, cd ∈ φ1(ab), by (M3). Moreover d(ab) = d(b) = d(z), and hence ab = z, by
(M4). This gives that whenever a composition cd belongs to φ1(z), there exists a unique
(a,b) ∈ Mz such that c ∈ φ1(a) and d ∈ φ1(b). We conclude then that every term of the
sum (1.8) also appears uniquely in the sum (1.9), and the result follows.

The next goal is to show that Tφ extends to a morphism from A(D) to A(C). To

this end, note that û(D(0)) = u(C(0)). Indeed, the inclusion (⊇) follows easily from (M1).
To prove the reverse inclusion, suppose u(v ) ∈ φ1(z), for v ∈ D(0) and z ∈ C(1). By (M2),
we have that v = φ0(d(z)), and hence we have that u(v ) = u

(
φ0(d(z))

)
∈ φ1

(
u(d(z))

)
,

by (M1). Therefore u(v ) ∈ φ1
(
u(d(z))

)
∩ φ1(z) and hence z = u

(
d(z)

)
, by (M4). With

this result we can now prove the following proposition.

Proposition 1.37. Let π : A0(C) → B(H) be a representation of A0(C). Then π ◦ Tφ

is a representation of A0(D), and hence Tφ extends to a contractive homomorphism
Tφ : A(D) → A(C).

Proof. We need to check conditions 1 and 2 of Definition 1.24. For condition 1, let A be
a bisection and let f ∈ Cc(A) be a map. From Proposition 1.35 and its proof, we have
that f̂ = Tφ(f ) has support contained on the bisection Â , and moreover ∥f̂∥∞ ≤ ∥f∥∞,
since f̂ (z) = f (xz ). Hence ∥π ◦ Tφ(f )∥ ≤ ∥f∥∞.

To prove condition 2, note that if f ∈ Cc
(
u
(
D(0))) then Tφ(f ) ∈ Cc(C(0)) and

hence
π ◦ Tφ(f ) = π

(
Tφ(f )

)
=
(
π ◦ Tφ(f )

)∗ .

Let E be an étale category and ψ = (ψ0,ψ1) : D → E be a relational covering
morphism. Then, we define ψ ◦ φ = ((ψ ◦ φ)0,(ψ ◦ φ)1) to be the following relational
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covering morphism (ψ ◦ φ)0 : C(0) → E (0), (ψ ◦ φ)0(v ) = ψ0(φ0(v )), and

(ψ ◦ φ)1 : C1 → P(E (1)), (ψ ◦ φ)1(z) =
⋃

x∈φ1(z)

ψ1(x), z ∈ C(1).

It is straightforward to prove that (M1)-(M5) hold. Here, we just show that (M6) holds.
Let A ∈ Bis(E) be a bisection. Denote by Â the subset {z ∈ C(1) : (ψ ◦ φ)1(z) ∩ A ̸= ∅},
and by Â ψ the bisection {z ∈ D(1) : ψ1(z)∩A ̸= ∅}. Moreover, for a bisection B ∈ Bis(D)
let B̂φ denote the bisection {z ∈ C(1) : φ1(z) ∩ B ̸= ∅}. We claim that

Â = (̂Â ψ)φ.

proof of the claim. If z be in Â then there exists x ∈ φ1(z) such that ψ1(x) ∩ A is

non-empty. Hence, x ∈ Â ψ, and consequently z ∈ (̂Â ψ)φ. The converse is similar.

Finally, note that for every f ∈ A0(E), and z ∈ C we have

Tψ◦φ(f )(z) =
∑

x∈(ψ◦φ)1(z)

f (x) =
∑

y∈φ1(z)

∑
x∈ψ1(y )

f (x) = (Tφ ◦ Tψ)(f )(z).

This gives Tψ◦φ = Tφ ◦Tψ, and proves that we have a functor from the category of étale
categories to the category of Banach algebras.
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2 RESTRICTION SEMIGROUPS AND THEIR OPERATOR ALGEBRAS

In this chapter, we review the basic theory of restriction semigroups, developed in
[36, chapter 2]. After that, we define A(S) and Ar (S) as the full and the reduced operator
algebra of a restriction semigroup S, respectively. Then we devote the remainder of the
chapter to prove that A(S) has a semicrossed product structure.

Below, we introduce the notion of restriction semigroup. A good picture for a
restriction semigroup (S,E ,λ,ρ) could be the one in which an element s ∈ S is a
function, and the maps λ and ρ assign the correspondent domain and codomain to s.
The subset E , in turn, is a semilattice, which is a commutative semigroup consisting
only of idempotents. In this case recall that e ≤ f ⇔ ef = e defines an order relation on
E .

Definition 2.1. Let S be a semigroup, and E(S) be the set of idempotents of S. More-
over, let E ⊆ E(S) be a non-empty commutative subsemigroup of S, and let λ : S → E
and ρ : S → E be functions satisfying:

(P1) λ(f ) = f , for every f ∈ E .

(P2) ρ(f ) = f , for every f ∈ E .

(P3) s = sλ(s), for every s ∈ S.

(P4) s = ρ(s)s, for every s ∈ S.

(P5) λ(st) = λ(λ(s)t), for every s,t ∈ S.

(P6) ρ(st) = ρ(sρ(t)), for every s,t ∈ S.

(P7) fs = sλ(fs), for every f ∈ E and s ∈ S.

(P8) sf = ρ(sf )s, for every f ∈ E and
s ∈ S.

The quadruple (S,E ,λ,ρ) is called a restriction semigroup. Further, the ele-
ments of the semilattice E are called projections, and the maps λ and ρ are called
structure maps.

Remark 2.2. Under the conditions of Definition 2.1, a quadruple (S,E ,λ,ρ) satisfying
(P1)-(P6) is called an Ehresmann semigroup. In the literature, one can find examples
in which the map ρ is not defined, and in this case, a triple (S,E ,λ) satisfying (P1), (P3),
(P5), and (P7) is called a left restriction semigroup.

Example 2.3. Let S be a monoid and e its unit. Defining E = {e}, note that there is
just one possibility for λ and ρ. Thus, it can be easily seen that (S,E ,λ,ρ) is a restriction
semigroup.

Example 2.4 (cf. Proposition 3.12 of [36]). If C is an étale category then (Bis(C), E , λ, ρ)
is a restriction semigroup, where E = {U ∈ Bis(C) |U ⊆ C(0)}, λ(U) = {d(x) |x ∈ U} and
ρ(U) = {r(x) |x ∈ U}.

Example 2.5 (cf. [39], [50]). If S is an inverse semigroup then (S,E(S),λ,ρ) is a restric-
tion semigroup, where λ(s) = s∗s and ρ(s) = ss∗ are the usual source and range maps
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on S. This will be the canonical way of viewing an inverse semigroup as a restriction
semigroup.

The following proposition shows that the structure maps are intrinsic to the pair
(S,E).

Proposition 2.6. Let (S,E ,λ,ρ) be a restriction semigroup, and let s ∈ S. Then λ(s) =
min{f ∈ E | sf = s} and ρ(s) = min{f ∈ E | fs = s}, where E is equipped with its
semilattice order.

Proof. Note that the λ(s) ∈ {f ∈ E | sf = s}, by property (P3). Moreover, if f ∈ E is such
that sf = s we have that λ(s)f ∈ E , and hence λ(s)f = λ(λ(s)f ) = λ(sf ) = λ(s). Therefore
λ(s) ≤ f , proving that λ(s) = min{f ∈ E | sf = s}. The result for ρ is similar.

A restriction semigroup (S,E ,λ,ρ) has an underlying category structure, where
C(0)

S := E is the set of objects, C(1)
S := S is the set of all morphisms and the structure

maps λ and ρ are the source and the range, respectively. In this case for elements s
and t of S such that λ(s) = ρ(t), we define the composition s · t to be the product st on
S. The category CS =

(
C(0)

S , C(1)
S

)
is called the category of the restriction semigroup

(S,E ,λ,ρ).
Like inverse semigroups, restriction semigroups have a natural partial order

induced by the set of projections. In fact, the relation

s ≤ t ⇐⇒ ∃ f ∈ E such that s = tf ,

is a partial order on S, which agrees with the semilattice order on E . Furthermore, the
following equivalences hold.

1. s ≤ t .

2. ∃ f ∈ E such that s = ft .

3. s = ρ(s)t .

4. s = tλ(s).

The properties presented below are proved in chapter 2 of [36] and follow easily
from the previous definitions. After that, we state some propositions whose proofs are
very easy to understand if one thinks of the product as partial composition and λ and ρ

as domain and codomain.

(R1) sf ≤ s, ∀s ∈ S, f ∈ E .

(R2) fs ≤ s, ∀s ∈ S, f ∈ E .

(R3) λ and ρ are order-preserving.

(R4) If s ≤ t and λ(s) = λ(t) then s = t .

(R5) If s ≤ t and ρ(s) = ρ(t) then
s = t .

(R6) λ(st) ≤ λ(t), ∀s,t ∈ S.

(R7) ρ(st) ≤ ρ(s), ∀s,t ∈ S.

Proposition 2.7. Let (S,E ,λ,ρ) be a restriction semigroup, and let s,t be elements of S.
Then ρ(t) ≤ λ(s) if and only if λ(st) = λ(t).
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Proof. If ρ(t) ≤ λ(s) then λ(s)t = λ(s)ρ(t)t = ρ(t)t = t . Applying λ to both sides, we get
λ(st) = λ(t). On the other hand, suppose λ(st) = λ(t). By (R2), λ(s)t ≤ t and in addition
λ(λ(s)t) = λ(st) = λ(t). Then by (R4) t = λ(s)t . Thus, Proposition 2.6 ensures ρ(t) ≤
λ(s).

Proposition 2.8. Let (S,E ,λ,ρ) be a restriction semigroup, and let s, t , and y in S. Then
ρ(y ) ≤ λ(st) if and only if ρ(y ) ≤ λ(t) and ρ(ty ) ≤ λ(s).

Proof. Suppose ρ(y ) ≤ λ(st). By (R6), ρ(y ) ≤ λ(t), and moreover

λ(s)ρ(ty )
(P6)
= λ(s)ρ(tρ(y ))

(P2)
= ρ(λ(s)ρ(tρ(y )))

(P6)
= ρ(λ(s)tρ(y ))

(P7)
= ρ(tλ(λ(s)t)ρ(y ))

(P5)
= ρ(tλ(st)ρ(y ))

hip.
= ρ(tρ(y ))

(P6)
= ρ(ty ).

On the other hand, suppose that ρ(y ) ≤ λ(t) and that ρ(ty ) ≤ λ(s). Then we have

λ(st)ρ(y )
(P1)
= λ(λ(st)ρ(y ))

(P5)
= λ(stρ(y ))

(P5)
= λ(λ(s)tρ(y ))

(P8)
= λ(λ(s)ρ(tρ(y ))t)

(P8)
= λ(λ(s)ρ(ty )t)

hip.
= λ(ρ(ty )t)

(P6)
= λ(ρ(tρ(y ))t)

(P8)
= λ(tρ(y ))

(P5)
= λ(λ(t)ρ(y ))

(P1)
= λ(t)ρ(y )

hip.
= ρ(y ).

We now show an example of a left restriction semigroup which is not a restriction
semigroup.

Example 2.9 (Partial surjections on a set). Let X be a non-empty set. Define

J (X ) = {f : A → B | A,B ⊆ X and f is surjective}.

A straightforward calculation shows that J (X ) is a semigroup equipped with the follow-
ing product: for f : A → B and g : C → D in J (X ) we define

fg : g–1(A ∩ D) −→ f (A ∩ D)
x 7−→ f (g(x)).

(2.1)

Note that for f : A → B in J (X ) and C ⊆ X , we have

f idC : A ∩ C −→ f (A ∩ C)
x 7−→ f (x).

(2.2)

And, on the other hand

idC f : f –1(B ∩ C) −→ B ∩ C
x 7−→ f (x).

(2.3)
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In particular, for subsets B and C of X we have idC idB = idB∩C . Therefore, the set
E = {idA | A ⊆ X } is a subsemigroup of J (X ) whose elements are idempotents, that is,
E is semilattice. Moreover, for f : A → B ∈ J (X ), C ⊆ A and D ⊆ B we have

f idC : C −→ f (C)
x 7−→ f (x),

(2.4)

and also
idD f : f –1(D) −→ D

x 7−→ f (x).
(2.5)

Finally, for f : A → B ∈ J (X ), define λ(f ) = idA and ρ(f ) = idB. Let us see that
(J (X ), E , λ) is a left restriction semigroup and moreover let us see where the quadruple
(J (X ), E , λ, ρ) fails to be a restriction semigroup
(P1) λ(idA) = idA , for every A ⊆ X : Trivial.

(P2) ρ(idA) = idA , for every A ⊆ X : Trivial.

(P3) f = fλ(f ), for every f ∈ J (X ): It follows easily from equation (2.4).

(P4) f = ρ(f )f , for every f ∈ J (X ): It follows easily from equation (2.5).

(P5) λ(fg) = λ(λ(f )g), for every f ,g ∈ J (X ):

Let f : A → B and g : C → D in J (X ). By (2.1), we have that λ(fg) = idg–1(A∩D).
On the other hand λ(f )g = idA g has domain g–1(A ∩ D), by (2.3). Thus, λ(λ(f )g) =
idg–1(A∩D) = λ(fg).

(P6) ρ(fg) = ρ(fρ(g)), for every f ,g ∈ J (X ):

Let f : A → B and g : C → D in J (X ). By (2.1) we have that ρ(fg) = idf (A∩D) . On
the other hand fρ(g) = f idD has codomain f (A ∩ D), by (2.2). Thus, ρ(fρ(g)) =
idf (A∩D) = ρ(fg).

(P7) idC f = fλ(idC f ), for every C ⊆ X and f ∈ J (X ):

By (2.3), we have
idC f : f –1(B ∩ C) −→ B ∩ C

x 7−→ f (x).

On the other hand, since λ(idC f ) = idf –1(B∩C) and f –1(B ∩ C) ⊆ A, by (2.4) we
have

fλ(idC f ) : f –1(B ∩ C) −→ B ∩ C
x 7−→ f (x).

(P8) f idC = ρ(f idC)f , for every C ⊆ X and f ∈ J (X ) :

So far, we have proved that (J (X ), E , λ) is a left restriction semigroup. To obtain
that the quadruple (J (X ), E , λ, ρ) is a restriction semigroup we should be able to
verify that property (P8) holds. But, unfortunately, it is not always true. Assume X
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has at least two distinct elements a,b ∈ X and let f : {a,b} → {a} be the constant
map a. By (2.4), f id{a} = id{a}. However, by (2.5), ρ(f id{a})f = id{a} f = f . Thus
J (X ) is not a restriction semigroup. Moreover, we have shown f id{a} ̸= id{a} f and,
in particular, the product of idempotents of J (X ) does not commute.

Now, let us define morphisms between restriction semigroups.

Definition 2.10. Let S and T be left restriction semigroups. A left restriction semi-
group homomorphism from S to T is a semigroup homomorphism φ : S → T such
that φ(λ(s)) = λ(φ(s)), for every s ∈ S.

Definition 2.11. Let S and T be restriction semigroups. A restriction semigroup
homomorphism from S to T is a semigroup homomorphism φ : S → T such that
φ(λ(s)) = λ(φ(s)) and φ(ρ(s)) = ρ(φ(s)), for every s ∈ S.

Example 2.12 (cf. Example 2.41 of [36]). Let G be a group with the identity e and
suppose |G| ≥ 2. Let S be the group G with the adjoined zero 0. It is a restriction
semigroup with respect to E = {e, 0} with λ and ρ mapping 0 7→ 0 and each nonzero
element to e. Then φ : S → S, which maps x 7→ e, x ∈ G, and 0 7→ 0, is a restriction
semigroup homomorphism.

We say that a restriction semigroup S is left-ample (resp. right-ample) if st = su
(resp. ts = us) implies that λ(s)t = λ(s)u (resp. tρ(s) = uρ(s)) for every triple (s,t ,u) ∈ S3.
Moreover, S is called ample if it is both left and right ample. The following theorem is
an analogous version of the Wagner-Preston theorem for left restriction semigroups.
We will use the machinery developed in the proof in a subsequent section.

Theorem 2.13 (Theorem 14 of [60]). Let (S,E ,λ) be a left restriction semigroup. For
every s ∈ S, define Bs = { λ(s)t | t ∈ S}, Cs = { st |t ∈ Bs} and define the map
φs : Bs → Cs, given by φs(t) = st . Then the map

φ : S −→ J (S)
s 7−→ φs

is an injective left restriction semigroup homomorphism, and if in addition S is left-ample
then each map φs is a bijection.

Proof. Clearly φs is surjective. Moreover note that Bs is equal to {t ∈ S | t = λ(s)t}
and Cs is equal to {st | t ∈ S}. In particular, if S is left-ample and φs(t) = φs(t ′) then
t = λ(s)t = λ(s)t ′ = t ′, and therefore φs is an injective map for every s ∈ S. Furthermore,
it is easy to see that φe = idBe

, for any e ∈ E . Note that for s and u in S

φsφu : φ–1
u (Bs ∩ Cu) −→ φs(Bs ∩ Cu)

t 7−→ sut .
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To show that φsφu = φsu, it suffices to ensure that φ–1
u (Bs∩Cu) = Bsu and φs(Bs∩Cu) =

Csu, since both functions have the same output.
1. φ–1

u (Bs ∩ Cu) = Bsu : For t ∈ φ–1
u (Bs ∩ Cu), we have that t = λ(u)t and ut = λ(s)ut .

Hence,

λ(su)t
(P7)
= tλ(λ(su)t)

(P5)
= tλ(sut)

(P5)
= tλ(λ(s)ut)

= tλ(ut)
(P5)
= tλ(λ(u)t)

(P7)
= λ(u)t = t .

Hence, t belongs to Bsu. On the other hand, if x ∈ Bsu then

λ(u)x = λ(u)λ(su)x = λ(su)λ(u)x = λ(λ(su)λ(u))x

= λ(suλ(u))x = λ(su)x = x .

Therefore, x ∈ Bu. Moreover, λ(s)ux = uλ(λ(s)u)x = uλ(su)x = ux , and hence
φu(x) ∈ Bs.

2. φs(Bs ∩ Cu) = Csu : Since Csu = {sut | t ∈ S}, it is clear that φs(Bs ∩ Cu) ⊆ Csu.
On the other hand sut = s(λ(s)ut) = φs(λ(s)ut), for every t ∈ S. Finally, note that
λ(s)ut ∈ Bs, and that λ(s)ut = uλ(su)t ∈ Cu. Thus, sut ∈ φs(Bs ∩ Cu) for every
t ∈ S.

In conclusion, φ is a semigroup homomorphism and moreover a restriction semigroup
homomorphism since

λ(φs) = idBs
= idBλ(s)

= φλ(s).

Now, suppose φs = φu. In this case, since Bs = Bu we have that λ(s) ∈ Bu and λ(u) ∈
Bs. Thus, λ(s) = λ(s)λ(u) = λ(u) and, moreover, s = φs(λ(s)) = φs(λu) = φu(λu) = u,
which proves the injectivity of φ.

Let (S,E ,λ,ρ) be a restriction semigroup. Our goal is to express the domain Bs

and the codomain Cs of the maps φs Theorem 2.13 in terms of the structure maps of
S. For instance, note that

Bs = {t ∈ S | ρ(t) ≤ λ(s)}.

In fact, if t = λ(s)t then ρ(t) = λ(s)ρ(t) ≤ λ(s) and, on the other hand, if ρ(t) ≤ λ(s)
then λ(s)t = λ(s)ρ(t)t = ρ(t)t = t . Furthermore, this characterization of Bs gives Cs =
{st | ρ(t) ≤ λ(s)}. And, in this case note that Cs is contained in {t ∈ S | ρ(t) ≤ ρ(s)}. In
fact, if ρ(t) ≤ λ(s) then ρ(st) = ρ(sρ(t)) ≤ ρ(sλ(s)) = ρ(s). The reader familiar with the
Wagner-Preston theorem may wonder under what conditions Cs coincides with the set
{t ∈ S | ρ(t) ≤ ρ(s)}.

Proposition 2.14. Let S be a restriction semigroup. If the sets Cs = {st ∈ S | ρ(t) ≤ λ(s)}
and {y ∈ S | ρ(y) ≤ ρ(s)} coincide for every s ∈ S, then S is a regular semigroup.
Conversely, if S is regular and, in addition, if for every s ∈ S there is an inverse s∗

for s such that ss∗ ∈ E then Cs = {st ∈ S | ρ(t) ≤ λ(s)} coincides with the set
{y ∈ S | ρ(y ) ≤ ρ(s)}, for every s ∈ S.



Chapter 2. Restriction semigroups and their operator algebras 41

Proof. Let s ∈ S be such that Cs = {y ∈ S | ρ(y) ≤ ρ(s)}. Choosing y = ρ(s), we have
that

ρ(s) = y = ss∗, for s∗ ∈ S such that ρ(s∗) ≤ λ(s). (2.6)

Hence, applying ρ to (2.6), we obtain that ρ(s) = ρ(ss∗) = ρ(sρ(s∗)). Then, by (R1)
sρ(s∗) ≤ s, and by (R5) s = sρ(s∗). Thus, by Proposition 2.6, λ(s) = ρ(s∗). Applying λ

to (2.6), we get ρ(s) = λ(λ(s)s∗) = λ(ρ(s∗)s∗) = λ(s∗). Therefore, ss∗s = ρ(s)s = s and
s∗ss∗ = s∗ρ(s) = s∗λ(s∗) = s∗.

Conversely, let s ∈ S and an inverse s∗ for s such that ss∗ ∈ E . Note that if t ∈ S
is such that ρ(t) ≤ ρ(s) then ρ(t) ≤ ss∗ and then t = ρ(t)t = ss∗ρ(t)t = ss∗t .

2.1 OPERATOR ALGEBRAS ASSOCIATED WITH RESTRICTION SEMIGROUPS

Definition 2.15. Let (S,E ,λ,ρ) be a restriction semigroup. A representation of S on a
Hilbert space H is a semigroup homomorphism σ : S → B(H), s 7→ σs, such that

1. ∥σs∥ ≤ 1 for every s ∈ S.

2. σ∗e = σ2
e = σe for every e ∈ E .

The class of all representations of (S,E ,λ,ρ) will be denoted by Rep(S).

For a restriction semigroup (S,E ,λ,ρ), let C[S] denote the complex semigroup
algebra of S. If σ : S → B(H) is a representation of S on H then it extends to a
representation σ̃ : C[S] → B(H), σ̃

(∑
s∈S asδs

)
=
∑

s∈S asσs, which is contractive
if C[S] is equipped with the ℓ1 norm,

∥∥∑
s∈S asδs

∥∥ =
∑

s∈S |as|. Thus, we have the
following seminorm on C[S]

∥x∥0 = sup
{
σ̃(x) | σ ∈ Rep(S)

}
.

Definition 2.16. Let (S,E ,λ,ρ) be a restriction semigroup. The operator algebra of S is
the Hausdorff completion A(S) of (C[S], ∥ · ∥0)

2.1.1 The reduced operator algebra of a restriction semigroup

Let (S,E ,λ,ρ) be a left-ample restriction semigroup. From Theorem 2.13 and its
subsequent discussion, for each s ∈ S there exists a bijective map φs from Bs = {t ∈
S | ρ(t) ≤ λ(s)} to Cs = {st | t ∈ Bs}, namely φs(t) = st . Let ℓ2(S) be the Hilbert space
associated with S (see Definition 1.1), and note that each map φs induces an operator

φ
′
s : ℓ2(S) → ℓ2(S) by φ

′
s(δt ) = [ρ(t) ≤ λ(s)] δst , (2.7)

which is a partial isometry such that ker(φ′
s)⊥ = span{ δt | t ∈ Bs} and ran(φ′

s)s =
span{ δt | t ∈ Cs}. Thus, the map φ′ : S → B(ℓ2(S)), s 7→ φ′

s, is a representation of S
called the regular representation of S. In fact, to see that φ′ ∈ Rep(S) it suffices to
note that Proposition 2.8 ensures

φ
′
st (δy ) = φ

′
sφ

′
t (δy ), ∀y ∈ S.
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Theorem 2.17. The extension φ̃′ : C[S] → B(ℓ2(S)) is faithful.

Proof. Replacing s∗s by λ(s), ss∗ by ρ(s), and E(S) by E , the proof of Theorem 2.17 is
the verbatim copy of Wordingham’s theorem proof (see [50, Theorem 2.1.1]).

Definition 2.18. Let (S,E ,λ,ρ) be a left-ample restriction semigroup. The reduced
operator algebra of S is the closure Ar (S) of ˜φ′(C[S]) in B(ℓ2(S)) .

2.1.2 The inverse semigroup case

Let S be an inverse semigroup and let σ be a representation of S in the sense
of Definition 2.15. For every s ∈ s, note that σs∗ is a generalized inverse of σs (see
Definition 1.3). Hence, by Corollary 1.5, we obtain that σs∗ = σ∗s, which implies that σ is
a ∗-representation of S. This implies

A(S) = C∗(S).

Moreover, by Proposition 2.14, the regular representation φ′ presented on (2.7) is
precisely the left regular representation from the Wagner-Preston theorem [50, Propo-
sition 2.1.3]. And hence

Ar (S) = C∗
red (S).

2.2 RESTRICTION SEMIGROUP ÉTALE ACTIONS

Now, we give the precise definition of what is an étale action of a restriction
semigroup. We emphasize that there are different notions of restriction semigroups as
well as restriction semigroup actions, and that is the reason why we have decided to
call our actions étale. However, in the text either étale action or simply action will mean
the same.

Let (S,E ,λ,ρ) be a restriction semigroup, let X be a set and let I(X ) be the inverse
semigroup of partial bijections of X . Suppose θ : S → I(X ) is a restriction semigroup
homomorphism, and note that for every s ∈ S, there exist Ds ⊆ X , Rs ⊆ X such that
θs : Ds → Rs is a bijection. For every idempotent e ∈ E(S), recall that De = Re, and
moreover θe = idDe

. Thus, for every s ∈ S

idDλ(s)
= θλ(s) = λ(θs) = θ

–1
s θs = idDs

,

and
idDρ(s)

= θρ(s) = ρ(θs) = θsθ
–1
s = idRs

.

Therefore, Ds = Dλ(s) and Rs = Dρ(s).

Definition 2.19. Let (S,E ,λ,ρ) be a restriction semigroup and let X be a locally compact
Hausdorff space. An étale action of S on X is a restriction semigroup homomorphism
θ : S → I(X ) satisfying:
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1. For every e ∈ E , De is open and X =
⋃

e∈E De.

2. For every s ∈ S, θs : Dλ(s) → Dρ(s) is a homeomorphism.

Definition 2.20. Let (S,E ,λ,ρ) be a restriction semigroup and let A be a C∗-algebra.
An étale action of S on A is a restriction semigroup homomorphism α : S → I(A),
αs : Jλ(s) → Jρ(s), satisfying:

1. For every e ∈ E , Je is a closed ideal and A = span
⋃

e∈E Je.

2. For every s ∈ S, αs : Jλ(s) → Jρ(s) is a ∗-isomorphism.

Example 2.21. If C is an étale category, we have seen in Example 2.4 that Bis(C) is a
restriction semigroup. Furthermore, as in the groupoid case, a bisection U defines a
homeomorphism from d(U) to r(U), namely θU = rU ◦d–1

U . Easy calculations show that
θ : Bis(C) → I(C(0)), U 7→ θU , defines an étale action of Bis(C) on C(0).

Remark 2.22. Every étale action of a restriction semigroup S on a locally comapct
Hausdorff space X induces an étale action of S on C0(X ). Indeed, define Je := C0(De),
and αs : Jλ(s) → Jρ(s) by αs(f ) = f ◦ θ–1

s . It is straightforward to check that the map
α : S → I(C0(X )), α(s) = αs, is an étale action. In particular, the canonical action of S
on Ê , presented below, induces an action on C0(Ê), where αs : C(Dλ(s)) → C(Dρ(s)) is
given by αs(f ) = f ◦ ζs.

2.2.1 The canonical action of a restriction semigroup

Let E be a semilattice. Recall that the spectrum of E is the semicharacter space
Ê = {φ : E → {0,1} | φ(ef ) = φ(e)φ(f ) and φ ≠ 0} endowed with the subspace topology
of {0,1}E , which agrees with the pointwise convergence topology. By Tychonoff’s Theo-
rem, {0,1}E is a compact Hausdorff space and hence Ê ∪ {0} is a compact Hausdorff
subspace, because it is closed. Thus, Ê itself is a locally compact Hausdorff space.

For every e ∈ E , let De denote the subset {φ ∈ Ê | φ(e) = 1}. Note that
each subset De is clopen (open and closed) in the relative topology on Ê because
De = P–1

e ({1})∩Ê , where Pe : {0,1}E → {0,1} is the projection on coordinate e. Moreover
via convergence of nets one easily sees that De is closed on {0,1}E , and hence De is
compact. Therefore, the family {De | e ∈ E} forms a cover of compact open sets for Ê .

Denoting by 1e the characteristic function of De, we have that 1ef = 1e1f , since
De ∩ Df = Def . In particular, span{1e | e ∈ E} is a subalgebra of C0(Ê). Moreover, note
that

1e(φ) = φ(e),∀ φ ∈ Ê . (2.8)

From (2.8), we see that the family of functions {1e | e ∈ E} separates the points of
Ê , and that for every semicharacter φ ∈ Ê there exists e such that 1e(φ) ̸= 0. Then
by the Stone-Weierstrass theorem, span{1e | e ∈ E} is a dense subalgebra of C0(Ê).
Thus, for f ∈ E and F ∈ C(Df ) ⊆ C0(Ê), we have that F is the limit of a sequence
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{Fn} ⊆ span{1e | e ∈ E}. In particular, since the support of F is contained in Df , we
have that

F = lim
n→∞

1f Fn.

But note that if G ∈ span{1e | e ∈ E}, then we can write G =
∑

e∈E ae1e and in this
case 1f G =

∑
e∈E ae1ef . We have therefore proven that for every f ∈ E the subalgebra

span{1e | e ∈ E and e ≤ f } is dense in C(Df ).

Theorem 2.23 (Proposition 10.6 from [24]). Let σ : E → B(H) be a semigroup homo-
morphism whose range consists of (orthogonal) projections. Then there is a unique
C∗-algebra homomorphism πσ : C0(Ê) → B(H) sending πσ(1e) = σe.

Proof. Let A denote the C∗-subalgebra of B(H) generated by the family of commuting
projections {σe | e ∈ E}. Since σeσf = σef and σ∗e = σe, the subspace span {σe | e ∈ E}
is already a self-adjoint subalgebra of B(H). Therefore A is the commutative subalgebra
span {σe | e ∈ E}.

Recall that the spectrum of A is the locally compact Hausdorff space Â of all
nonzero continuous C∗-algebra homomorphisms (also called characters) ψ : A → C.
Furthermore, define ι1 : Â ∪ {0} → Ê ∪ {0} by ι1(ψ)(e) = ψ(σe). Via convergence of
nets, one can easily see that ι1 is a continuous map. Moreover, if ι1(ψ) = ι1(ψ′) we
have that ψ and ψ′ coincide on the generator set {σe | e ∈ E}, which implies that
ψ = ψ′ and hence ι1 is injective. Note that, ι1 is a continuous map between compact
Hausdorff spaces and in particular it is proper. Since 0 is mapped to 0, ι1 restricts to
a proper injective map ι : Â → Ê . In this case we have a C∗-algebra homomorphism
π : C0(Ê) → C0(Â ), given by π(f ) = f ◦ ι.

For a ∈ A, recall that â ∈ C0(Â ) denotes the function that evaluates a character
τ on a, that is, â(τ) = τ(a). Moreover, recall that if T : C0(Â ) → A ⊆ B(H) denotes the
inverse of the Gelfand transform we have T (â) = a. Finally, for e ∈ E and ψ ∈ Â we
obtain

π(1e)(ψ) = 1e(ι(ψ))
(2.8)

= ι(ψ)(e) = ψ(σe) = σ̂e(ψ).

Thus, defining πσ := T ◦ π we have the desired C∗-algebra homomorphism from
C0(Ê) to B(H) satisfying πσ(1e) = σe. The uniqueness of πσ follows from the fact
that span{1e | e ∈ E} is a dense subalgebra of C0(Ê), and therefore two continuous
linear maps coinciding on {1e | e ∈ E} are the same.

Let (S,E ,λ,ρ) be a restriction semigroup. It is well known that an inverse semi-
group T acts on Ê(T ). We proceed now to show that a similar construction holds for S.
Recall that Ê is covered by the family of compact open sets De = {φ ∈ Ê | φ(e) = 1},
and define θs : Dλ(s) → Dρ(s) by θs(φ)(f ) = φ(λ(fs)). Note that for φ ∈ Dλ(s) the following
holds

θs(φ)(ρ(s)) = φ(λ(ρ(s)s)) = φ(λ(s)) = 1.
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Hence, θs(φ) ∈ Dρ(s), and moreover it is a homomorphism since

θs(φ)(ef ) = φ(λ(efs)) = φ(λ(esλ(fs)))

= φ(λ(es)λ(fs))) = φ(λ(es))φ(λ(fs)))

= θs(φ)(e)θs(φ)(f ).

Now, if {φj }j∈J is a net in Dλ(s) converging to φ then φj (λ(fs)) converges to φ(λ(fs)), for
every f ∈ E . Then θs(φj ) converges to θs(φ) and θs is continuous. The inverse of θs is
the map ζs : Dρ(s) → Dλ(s) given by ζs(φ)(f ) = φ(ρ(sf )). Similar calculations show that
it is a well-defined continuous map. We now pass to show that ζs and θs are inverses.
Note that for φ ∈ Dλ(s) we have

(ζs ◦ θs)(φ)(e) = θs(φ)(ρ(se)) = φ(λ(ρ(se)s))

= φ(λ(se)) = φ(λ(λ(s)e))

= φ(λ(s)e) = φ(λ(s))φ(e)

= φ(e).

Similarly, θs ◦ ζs = idDρ(s)
, and therefore θs is a homeomorphism.

The following calculations show that θ : S → I(Ê) is an étale action.
1. Dλ(st) = θ–1

t (Dρ(t) ∩ Dλ(s)) : Let φ ∈ Dρ(t) ∩ Dλ(s), then θ–1
t (φ) = ζt (φ) and,

since tλ(st) = tλ(λ(s)t) = λ(s)t , we have

ζt (φ)(λ(st)) = φ(ρ(tλ(st))) = φ(ρ(λ(s)t))

= φ(ρ(λ(s)ρ(t))) = φ(λ(s)ρ(t))

= φ(λ(s))φ(ρ(t)) = 1.

Thus, we have the inclusion (⊇). For (⊆), note that if φ ∈ Dλ(st) then

θt (φ)(λ(s)) = φ(λ(λ(s)t)) = φ(λ(st)) = 1.

2. θsθt = θst :
θsθt (φ)(e) = θt (φ)(λ(es)) = φ(λ(λ(es)t))

= φ(λ(est)) = θst (φ)(e).

Hence, θst is equal to θsθt since they are two bijections with the same domain
and rule.

3. θλ(s) = idDλ(s)
: For φ ∈ Dλ(s), we have

θλ(s)(φ)(e) = φ(λ(eλ(s))) = φ(eλ(s))

= φ(e)φ(λ(s)) = φ(e).

4. θρ(s) = idDρ(s)
: For φ ∈ Dρ(s), we have

θρ(s)(φ)(e) = φ(λ(eρ(s))) = φ(eρ(s))

= φ(e)φ(ρ(s)) = φ(e).
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2.2.1.1 The invariance of the tight spectrum

In this subsection, we use the notation present in [24, Section 11]. Suppose that
(S,E ,λ,ρ) is a restriction semigroup with 0, and moreover assume that 0 is in E .

Recall that Ê0 = {φ ∈ Ê | φ(0) = 0} is a locally compact Hausdorff space and
its elements are called characters. Moreover, for x ,y ∈ E we say that x intersects y if,
and only if, xy ̸= 0 and, in this case, we write x ⋒ y . Otherwise, we say that x and y
are orthogonal, and we write x ⊥ y . Let us see that Ê0 is invariant under the canonical
action, that is, if φ ∈ Ê0 ∩ Dλ(s) then θs(φ) ∈ Ê0. Note that

θs(φ)(0) = φ(λ(0s)) = φ(λ(0)) = φ(0) = 0.

Definition 2.24. For x ∈ E the upper set of x is the set x↑ = {f ∈ E |x ≤ f } and the
down set of x is the set x↓ = {f ∈ E |f ≤ x}.

Definition 2.25. Let F be a subset of E . A subset Z ⊆ F is a cover for F if for every
nonzero x ∈ F , there exists z ∈ Z such that z ⋒ x . For y ∈ E , we say that Z is a cover
for y if Z is a cover for y↓.

In view of [24, Prop 11.8], we define a tight character as follows.

Definition 2.26. Let φ be in Ê0. We call φ a tight character if for every x ∈ E and for
every finite cover Z for x one has that∨

z∈Z

φ(z) ≥ φ(x).

The tight spectrum of E is the set of all tight characters, and it is denoted by Êtight .

Lemma 2.27. Let x ∈ E , Z be a cover for x , and s ∈ S. Then Zs = {λ(zs) | z ∈ Z } is a
cover for λ(xs).

Proof. Since λ is order-preserving, Zs ⊆ λ(xs)↓. Now, let y ∈ λ(xs)↓ be a nonzero
element. Note that

xρ(sy ) = ρ(xsy ) = ρ(sλ(xs)y ) = ρ(sy ).

Hence, ρ(sy ) ≤ x and

y = λ(xs)y = λ(xsy ) = λ(xρ(sy )s) = λ(ρ(sy )s).

Thus, since y is nonzero and y = λ(ρ(sy)s), ρ(sy) is nonzero. Therefore, there
exists z ∈ Z such that zρ(sy ) ̸= 0. Next, note that

zρ(sy ) = ρ(zsy ) = ρ(sλ(zs)y ).

In particular, λ(zs)y ̸= 0, and Zs covers λ(xs).
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Proposition 2.28. Le φ ∈ Ê0∩Dλ(s) be a tight character. Then θs(φ) is a tight character.

Proof. Let x ∈ E , and Z be a finite cover for x . By the previous Lemma, Zs = {λ(zs) | z ∈
Z } is a finite cover for λ(xs). Therefore∨

z∈Z

θs(φ)(z) =
∨

z∈Z

φ(λ(zs)) ≥ φ(λ(xs)) = θs(φ)(x).

2.3 THE SEMICROSSED PRODUCT ALGEBRA

Let (S,E ,λ,ρ) be a restriction semigroup, let A be a C∗-algebra, and let α : S →
I(A), αs : Jλ(s) → Jρ(s), be an action of S on A. Consider the vector space Lα of all
finite formal sums

∑
s∈S asδs, where as ∈ Jρ(s). Furthermore, define the product of two

monomials aδs and bδt to be

(aδs)(bδt ) := αs(α–1
s (a)b)δst ,

and hence extend this product to Lα. Following [65, Proposition 4.1], and replacing αs∗

by α–1
s , we can easily convince ourselves that Lα is an associative algebra.

Definition 2.29. A covariant pair for (α,S,A), or simply α, on a Hilbert space H is a
pair (π,σ) where σ is a representation of S, π is a representation of A and

1. π(αs(a))σs = σsπ(a), for every a ∈ Jλ(s), s ∈ S.

2. span π(Je)H = σe(H), for every e ∈ E .
The equality presented in item 1 is usually called covariance relation.

Every covariant pair (π,σ) on H for the action α integrates to an algebra ho-
momorphism π × σ : Lα → B(H) given by π × σ(aδs) = π(a)σs. Moreover, π × σ is
contractive if we endow Lα with the ℓ1 norm. We will only show that π × σ separates
the product:

π× σ(aδsbδt ) = π(αs(α–1
s (a)b))σst = π(αs(α–1

s (a)b))σsσt

= σsπ(α–1
s (a)b)σt = σsπ(α–1

s (a))π(b)σt

= π(αs(α–1
s (a)))σsπ(b)σt = π(a)σsπ(b)σt

= π× σ(aδs)π× σ(bδt ).

Definition 2.30. The semicrossed product algebra of A by S with respect to α,
denoted A⋊αS, is the Hausdorff completion of Lα equipped with the seminorm induced
by the class of all covariant pairs, which is

||
∑
s∈S

asδs||0 = sup
(π,σ) cov. pair

||π× σ(
∑
s∈S

asδs)||.
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Would it be possible to find a “faithful" covariant pair in such a way the quotient
is not necessary? In general, the answer is No: Note that if a ∈ Je, for every covariant
pair (π,σ) one has π(a)σe = π(a). Indeed π(a)σe = π(αe(a))σe = σeπ(a) = π(a). Where
the last equality comes form the fact that σe is the projection on the subspace π(Je)H.
Then, if s ≤ t and a ∈ Jρ(s) ⊆ Jρ(t) one has

π× σ(aδs) = π(a)σs = π(a)σρ(s)t = π(a)σρ(s)σt = π(a)σt = π× σ(aδt ). (2.9)

Remark 2.31. Let s be an element of S. Suppose that {an} ⊆ Jρ(s) converges to a. Then,
for every covariant pair (π,σ), one has ||π×σ(anδs –aδs)|| = ||π(an –a)σs|| ≤ ||an –a||. In
particular, anδs converges to aδs on A⋊αS. Thus, if we suppose that {J ′e}e∈E is a family
of subsets such that J ′e is dense on Je then the subset L′α = {f ∈ Cc(S,A) | f (s) ∈ J ′

ρ(s)}
is dense on A ⋊α S. In particular, if for every e ∈ E the subset J ′e is an ideal of Je then
L′α is a dense subalgebra of A ⋊α S.

In particular, when α arises from a topological action, as in Remark 2.22, we
obtain that

C0(X ) ⋊α S =

∑
s∈S

asδs | as ∈ Cc(Dρ(s))

. (2.10)

Remark 2.32. Let B a unital C∗-algebra and τ : B → B(H) a C∗-algebra homomorphism.
Note that τ(1)H is closed because τ(1) is a projection. Now, for every b ∈ B and h ∈ H,
one has τ(b)h = τ(1)τ(b)h ∈ τ(1)H. Hence span τ(B)H = τ(1)H.

Theorem 2.33. Let (S,E ,λ,ρ) be a restriction semigroup, let θ : S → I(Ê) be the
canonical action, and let α : S → I(C0(Ê)) be the induced action of θ. Then

A(S) ∼= C0(Ê) ⋊α S.

Proof. Define ψ : C[S] → Lα by ψ(
∑

s∈S asδs) =
∑

s∈S as1ρ(s)δs, where 1e := 1De
is

the characteristic function of De. Since ψ is obviously linear, we are reduced to prove
that it preserves the product. For s,t ∈ S one has

ψ(δs)ψ(δt ) = 1ρ(s)δs1ρ(t)δt

= αs(α–1
s (1ρ(s))1ρ(t))δst

= αs((1ρ(s) ◦ θs)1ρ(t))δst

= αs(1λ(s)1ρ(t))δst

= 1Dλ(s)∩Dρ(t)
◦ ζsδst

= 1θs(Dλ(s)∩Dρ(t))δst

= 1ρ(st)δst

= ψ(δst ).
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Therefore

ψ

∑
s∈S

asδs
∑
t∈S

btδt

 = ψ

∑
s,t∈S

asbtδst


=
∑

s,t∈S

asbtψ(δst )

=
∑

s,t∈S

asbtψ(δs)ψ(δt )

=
∑

s,t∈S

ψ(asδs)ψ(btδt )

= ψ

∑
s∈S

asδs

ψ

∑
t∈S

btδt

 .

Next, we show that there is a bijection between representations of S and covari-
ant pairs for α. For a representation σ : S → B(H) of S, we have by definition that σ
restricts to E as a semigroup homomorphism whose range consists of (orthogonal) pro-
jections, and hence let πσ : C0(Ê) → B(H) denote the homomorphism from Theorem
2.23. We claim that (πσ,σ) defines a covariant pair for α. In fact, for s ∈ S let us check
that the covariance relation holds. Since span{1e | e ∈ E and e ≤ λ(s)} is dense on
C(Dλ(s)), we only need to check the equality for the family {1e | e ∈ E and e ≤ λ(s)}.
Take e ≤ λ(s) and note that

αs(1e)(φ) = 1e ◦ ζs(φ) = 1e(ζs(φ))
(2.8)

= ζs(φ)(e) = φ(ρ(se)) = 1ρ(s.e)(φ).

Therefore

πσ(αs(1e))σs = πσ(1ρ(se))σs = σρ(se)σs = σρ(se)s = σse = σsσe = σsπ(1e).

Now, note that σe(H) = πσ(1e)H and πσ(1e)H = spanπσ(C(De))H, where the latter
equality comes from Remark 2.32. Then (πσ,σ) indeed defines a covariant pair.

Let us see that the map σ → (πσ,σ) defines an bijective correspondence from
the set of representation of S to the set of covariant pairs for α. Clearly, it is injective.
Moreover, if (π,σ) is a covariant pair then π(1e) is a projection and again by Remark
2.32 π(1e)H = span π(C(De))H, which is equal to σe(H), by definition of covariant pair.
Then π(1e) and σe are projections with the same range. Hence, they are equal, and
π = πσ.

Finally, take x =
∑

s∈S asδs ∈ C[S] and σ a representation of S, and note that

||πσ × σ(ψ(x))|| =
∥∥πσ × σ

(∑
s∈S

as1ρ(s)δs
)∥∥

= ||
∑
s∈S

asπσ(1ρ(s))σs|| = ||
∑
s∈S

asσρ(s)σs||

= ||
∑
s∈S

asσs|| = ||σ̃(
∑
s∈S

asδs)|| = ||σ̃(x)||.

(2.11)
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Hence, taking supremum over σ we obtain that ψ is isometric and extends to an isomet-
ric homomorphism ψ1 : A(S) → C0(Ê) ⋊α S.

We finish by showing that the range of ψ1 contains a dense subset. If s ∈ S and

e ≤ ρ(s), we have ρ(es) = ρ(eρ(s)) = eρ(s) = e. Thus, ψ1(δes) = 1ρ(es)δes = 1eδes
(2.9)

=
1eδs. Then, since span{1e | e ∈ E and e ≤ ρ(s)} is dense on C(Dρ(s)), by Remark 2.31
we have that ψ1 is an isomorphism
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3 THE CATEGORY OF GERMS OF A RESTRICTION SEMIGROUP ACTION

Let (S,E ,λ,ρ) be a restriction semigroup, let X a locally compact Hausdorff space
and let θ : S → I(X ) an action. Our goal is to construct an étale category associated
with the action θ, similar to the groupoid of germs of an inverse semigroup action. To
this end, let Ξ0 denote the subset {(s,x) | x ∈ Dλ(s)} of S×X , and consider the following
equivalence relation on Ξ0: (s,x) ∼ (t ,y) if, and only if, x = y and there exists f ∈ E
such that sf = tf an x ∈ Df . For simplicity, we just show that ∼ is transitive. Suppose
(s,x) ∼ (t ,x) and (t ,x) ∼ (w ,x). Then, there exist e ∈ E and f ∈ E such that x ∈ De ∩Df ,
se = te, and tf = wf . Thus, sef = tef = tfe = wfe = wef and therefore (s,x) ∼ (w ,x),
since Def = De ∩ Df . Hence ∼ is, in fact, an equivalence relation. The equivalence
class of a pair (s,x) will be called the germ of s at the point x . Moreover, note that if
(s,x) ∼ (t ,x) and f ∈ E is a projection implementing the equivalence then

θs(x) = θs(θf (x)) = θsf (x) = θtf (x) = θt (θf (x)) = θt (x). (3.1)

Proposition 3.1. Let (s,x) and (t ,y) be elements of Ξ0, with x = θt (y). In addition,
suppose (s′,x) ∼ (s,x) and (t ′,y ) ∼ (t ,y ). Then (s′t ′,y ) ∼ (st ,y ).

Proof. Take e,f ∈ E such that s′f = sf , t ′e = te, x ∈ Df and y ∈ De. By property (P8)
of restriction semigroups, one has ρ(te)t = te, and ρ(te)t ′ = ρ(t ′e)t ′ = t ′e = te. Thus, if
h = fρ(te) then ht = fte, ht ′ = ft ′e, and since te = t ′e, ht = ht ′. Hence,

stλ(ht) = sht = (sf )(te) = (s′f )(t ′e)

= s′ht ′ = s′t ′λ(ht ′) = s′t ′λ(ht).

Moreover, note that λ(ht) = λ(fte) = λ(λ(ft)e) = λ(ft)e. Hence, Dλ(ht) = Dλ(ft) ∩ De, which
gives that y ∈ Dλ(ht) if and only if y ∈ Dλ(ft), since y already belongs to De. But, recalling
that θt (y) = x , and x ∈ Df we have that x = θf (x) = θf (θt (y)) = θft (y), which means
y ∈ Dλ(ft), and therefore y ∈ Dλ(ht).

Remark 3.2. Let x ∈ X , e ∈ E , and f ∈ E be such that x ∈ De ∩ Df . Note that
e(ef ) = f (ef ), and x ∈ Def , and therefore (e,x) ∼ (f ,x). Moreover, suppose (s,x) ∼ (e,x)
for s ∈ S and e ∈ E . In this case, there exists f ∈ E such that sf = ef and x ∈ Df , which
gives sef = ef and x ∈ Def . Thus, we easily conclude that two pairs (s,x) and (e, x) are
equivalent if and only if there exists a projection h such that sh = h and x ∈ Dh.

Having disposed of this preliminary steps, we can now define the categorical
structure associated to the action θ. Define C(0) = X and C(1) = Ξ0⧸∼. Moreover,
define the source map to be d : C(1) → C(0), d([s,x ]) = x , and the range map to
be r : C(1) → C(0), r([s,x ]) = θs(x). In this case, the set of composable pairs is C(2) =
{([s,x ],[t ,y ]) ∈ C(1) × C(1) : x = θt (y)}, and we define the composition map to be
m : C(2) → C(1) given by m([s,x ],[t ,y ]) = [st ,y ]. Note that the m is well-defined by



Chapter 3. The category of germs of a restriction semigroup action 52

Proposition 3.1. Finally, we define the unit map to be u : C(0) → C(1), u(x) = [e,x ] for any
e ∈ E such x ∈ De, which is a well-defined map by Remark 3.2. It is a simple matter
to check that C(θ,S,X ) =

(
C(0), C(1)

)
with the above defined structure maps is, in fact,

a category. Furthermore, for simplicity of notation whenever the action is clear in the
context we will refer to C(θ,S,X ) just as C.

We now proceed to equip C(1) with a topology. To this end, for every s ∈ S and
every open set U ⊆ Dλ(s), define

Θ(s,U) := {[s,x ] | x ∈ U} .

In the case, U = Dλ(s), we denote Θ

(
s,Dλ(s)

)
by Θs. We claim that the subset family{

Θ(s,U) | s ∈ S, U ⊆ Dλ(s) open set
}

forms a basis for a topology on C(1) [70, Theo-

rem 5.3]. In fact, this family is a cover for C(1). Morover, if [s,u] = [t ,v ] ∈ Θ(s,U)∩Θ(t ,V ),
there exists e ∈ E such that se = te and u = v ∈ U ∩ V ∩ De. Hence, defining
W = U ∩ V ∩ De, we have that [s,u] ∈ Θ(s,W ) ⊆ Θ(s,U) ∩Θ(t ,V ).

Proposition 3.3. Equip C(1) with the topology generated by the basis{
Θ(s,U) | s ∈ S, U ⊆ Dλ(s) open set

}
.

Then C(θ,S,X ) is étale.

Proof. Let Θ(s,U) be a basic open set of C(1). By Remark 3.2, one has

u–1(Θ(s,U)) =
⋃

h∈E
s.t sh=h

Dh ∩ U.

On the other hand, if U ⊆ X is an open subset

u(U) = u(
⋃

e∈E

U ∩ De) =
⋃

e∈E

Θ(e,U ∩ De).

Thus, u is a one-to-one continuous open map, since the right sides of the above equa-
tion are open subsets. In particular, u is an embedding. Furthermore, note that

r–1 (U) =
⋃

s∈S

Θ

(
s, θ–1

s

(
U ∩ Dρ(s)

))
and d–1 (U) =

⋃
s∈S

Θ

(
s, U ∩ Dλ(s)

)
.

The above equations show that both the range and source are continuous maps. More-
over, for every s ∈ S it is easy to see that dΘs : Θs → Dλ(s) and rΘs : Θs → Dρ(s) are
bijective maps, and hence d(Θ(s,U)) = U and r(Θ(s,U)) = θs(U), which gives dΘs and
rΘs are open maps, since {Θ(s,U) | U ⊆ Dλ(s), U open} is a basis for the topology of
Θs. Therefore, d and r are local homeomorphisms, since {Θs}s∈S is a cover of C(1).

We finish by showing the continuity of m. Let ([s,θt (x)],[t ,x ]) a composable pair
and let Θ(r ,V ) a basic open set containing m([s,θt (x)],[t ,x ]) = [st ,x ]. There exists e ∈ E
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such that x ∈ De ∩ V ∩ Dλ(st) and ste = re. Hence, defining W := De ∩ V ∩ Dλ(st),

we easily obtain that m
(

( Θs ×Θ (t , W ) ) ∩ C(2)
)
⊆ Θ (r ,V ) , with e implementing the

equivalences.

We would like to draw attention to the fact that we will proceed as before (see
the comment after proof of Proposition 1.14) and identify an object x with [e,x ], where
e is any projection such that x ∈ De. Hence, we can without lost of generality say that
X is an open subset of C(θ,S,X ). Note that with this identification we have Θe = De, for
every e ∈ E . Moreover the following diagram commutes

Θs

Dλ(s) Dρ(s)

d r

θs

(3.2)

Suppose D is an étale category, and let θ : Bis(D) → I
(
D(0)) be the action

of Example 2.21. Following the above construction, we have the category of germs
C
(
θ, Bis(D),D(0)) whose elements are equivalence classes of pairs (U,x), where U ∈

Bis(D) and x ∈ d(U).

Theorem 3.4 (cf. Proposition 5.4 of [24]). Let D be an étale category. Then D is iso-
morphic to the category of germs C

(
θ, Bis(D),D(0)), where θ : Bis(D) → I

(
D(0)) is the

action of the restriction semigroup of bisections of D on the space D(0).

Proof. For simplicity, let C denote C
(
θ, Bis(D),D(0)). We have to check that there exists

a homeomorphism φ : C → D satisfying:
1. φ

(
C(0)) = D(0)

2. φ([U,x ][V ,y ]) = φ([U,x ])φ([V ,y ]), for every ([U,x ],[V ,y ]) ∈ C(2).
To this end, define φ : C → D, φ([U,x ]) = d–1

U (x). Note that if [U,x ] = [V ,x ], then
there exists F ⊆ D(0) such that UF = VF and x ∈ DF = d(F ) = F . In this case,
d–1

U (x) ∈ UF = VF and d–1
V (x) ∈ VF = UF . Therefore, d–1

U (x) = d–1
V (x) since the source

of these elements is x , and UF is a bisection. Therefore, φ is well-defined.
To see that φ is surjective, note that for every z ∈ D, we have that z = φ([Z ,d(z)]),

where Z ∈ Bis(D) is a bisection such that z ∈ Z . To see the injectivity of φ, note that if
φ([U,x ]) = φ([V ,y ]) then d–1

U (x) = d–1
V (y ) ∈ U ∩ V , and hence, defining F = d(U ∩ V ) ⊆

D(0), we have that x = d(d–1
U (x)) = d(d–1

V (y )) = y ∈ F . Moreover,

UF = U d(U ∩ V ) = U ∩ V = V d(U ∩ V ) = VF .

Thus, F implements the equivalence (U,x) ∼ (V ,y ), and therefore [U,x ] = [V ,y ]. Finally,
since φ is bijective, it is easy to see that if U ∈ Bis(D) then φ–1(U) = ΘU =: Θ(U,d(U))
and, on the other hand, φ(Θ(V ,Z )) = d–1

V (Z ), which gives that φ is continous and open,
and hence a homeomorphism.
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Once φ is a homeomorphism, it remains to show items 1 and 2 above. Consider
the composable pair ([U,θV (x)],[V ,x ]). On the one hand, we have

φ([U,θV (x)][V ,x ]) = φ([UV ,x ]) = d–1
UV (x).

On the other hand,

d(φ([U,θV (x)])) = d(d–1
U (θV (x))) = θV (x)

= rV (d–1
V (x)) = r(φ([V ,x ])).

Which gives (φ([U,θV (x)]),φ([V ,x ])) ∈ D(2) is a composable pair. Note that the prod-
uct φ([U,θV (x)])φ([V ,x ]) belongs to UV , and moreover d

(
φ ([U,θV (x)])φ ([V ,x ])

)
=

d
(
φ([V ,x ])

)
= x . Hence, φ

(
[UV ,x ]

)
and φ

(
[U,θV (x)]

)
φ
(
[V ,x ]

)
belong to UV and have

x as source, which gives the equality.
To finish, we show that φ preserves objects. An object of C(0) is a class [F ,u],

where F is a projection of bis(D), that is, F is an open subset of D(0), and u ∈ d(F ) = F .
Then φ

(
[F ,u]

)
= d–1

F (u) = u ∈ D(0).

3.1 THE CATEGORY OF GERMS OF THE CANONICAL ACTION

Let (S,E ,λ,ρ) be a restriction semigroup, and let θ be the canonical action of S
on Ê (see Subsection 2.2.1). Moreover, let C denote the category of germs C(θ,S,Ê).
Our purpose here is to study some properties of C and see which properties of S
are reflected on C. For instance, we prove that S is left-ample if and only if C is left-
cancellative.

Recall that for every e ∈ E , the upper set of e is the set e↑ = {f ∈ E | e ≤ f }.
Let ςe be the semicharacter 1e↑ ∈ Ê , which is simply the characteristic function of
e↑. The family of semicharacters Ẽ = {ςe | e ∈ E} has a special importance when
dealing with the Banach algebra ℓ1(E) (e.g [50, Lemma 2.1.1 ]). Here, we will study
these semicharacters in the context of the germs.

Proposition 3.5. If E is finite then Ê = Ẽ . In general, Ẽ is dense on Ê . In particular,
{ςe |e ∈ E , e ≤ h} is dense on Dh, for every h ∈ E .

Proof. Suppose that E is finite. For any φ ∈ Ê , the set φ–1({1}) is finite and, in particular,
it has a minimum e, where

e =
∏

f∈φ–1({1})

f .

We claim that φ = ςe. It suffices to show that φ(f ) = 1 if and only if ςe(f ) = 1, for every
f ∈ E . In fact suppose that φ(f ) = 1. Then e ≤ f , by definition of E , and hence ςe(f ) = 1.
Conversely, ςe(f ) = 1 then e ≤ f , and therefore φ(f ) = φ(f ).1 = φ(f )φ(e) = φ(ef ) =
φ(e) = 1.
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For the general case, take φ ∈ Ê and define the set Λ = {F ⊆ φ–1({1}) | |F | < +∞}.
Note that Λ is a directed set, ordered by inclusion. Hence, For any α ∈ Λ, define

eα =
∏
a∈α

a. (3.3)

Let us prove that ςeα
converges to φ. For f ∈ E , we have either φ(f ) = 0 or φ(f ) = 1.

Assuming φ(f ) = 0, we have that for all α ∈ Λ, ςeα
(f ) = 0. Otherwise, we would have

eα ≤ f for some α ∈ Λ and, in this case, 1 = φ(eα) ≤ φ(f ). Hence, ςeα
(f ) converges

to φ(f ). On the other hand, suppose φ(f ) = 1. In this case, α0 := {f } belongs to Λ, and,
ςeα

(f ) = 1, for all α ≥ α0. Thus, ςeα
(f ) converges to φ(f ) again. In particular, if φ ∈ Dh,

note that the subnet {ςeα
}α≥{h} still converges to φ, and hence {ςe |e ∈ E , e ≤ h} is

dense on Dh.

Note that if ςe = ςf then e ≤ f and f ≤ e, and thus e = f . Moreover, since ςe

belongs to De, we can consider the family of elements S̃ =
{

[s,ςλ(s)] | s ∈ S
}

⊆ C.
Define the map

Ψ : S → S̃, Ψ (s) = [s,ςλ(s)] (3.4)

We claim that Ψ is a bijective map. To see that Ψ is injective, suppose that [s,ςλ(s)] =
[t ,ςλ(t)]. In this case λ(s) is equal to λ(t), and there exists a projection e ∈ E such
that ςλ(s) ∈ De, and se = te. In particular, this means that λ(t) = λ(s) ≤ e, and hence
s = se = te = t . We have then proved that Ψ is injective. The surjectivity is trivial.

For t ∈ S and e ∈ E , we have λ(t) ≤ λ(et) ⇔ λ(t) = λ(et)
Prop.2.7⇔ ρ(t) ≤ e, and

hence

θt

(
ςλ(t)

)
(e) = ςλ(t) (λ(et)) =

{
1, if λ(t) ≤ λ(et)
0, otherwise

=

{
1, if ρ(t) ≤ e
0, otherwise

= ςρ(t)(e).

Therefore, θt

(
ςλ(t)

)
= ςρ(t) and

θt

(
ςλ(t)

)
∈ Dλ(s) ⇔ ρ(t) ≤ λ(s). (3.5)

Lemma 3.6. If ςe ∈ Dλ(s), then [s,ςe] is equal to [se,ςλ(se)]. In particular, if E is finite
then S̃ = C(θ,S,Ê), and, in general, S̃ is dense on C(θ,S,Ê). Moreover, {[t ,ςλ(t)] | t ≤ s}
is dense in Θs.

Proof. Suppose that for s ∈ S and e ∈ E one has ςe ∈ Dλ(s), then e ≤ λ(s) and
e = λ(s)e = λ(se). Hence, [s,ςe] = [s,ςλ(se)] = [se,ςλ(se)], where clearly e implements
the latter equivalence. By Proposition 3.5, if E is finite we have that any germ [s,φ] is
of the form [s,ςe] which is equal to [se,ςλ(se)] ∈ S̃.



Chapter 3. The category of germs of a restriction semigroup action 56

In general, let [s,φ] be a germ, and {ςeα
}α∈Λ be a net converging to φ, such

that ςeα
∈ Dλ(s),∀ α ∈ Λ. Thus, since dΘs is a homeomorphism, we obtain that [s,ςeα

]
converges to [s,φ]. But [s,ςeα

] = [seα,ςλ(seα)] ∈ S̃, which tells us that S̃ in dense on

C(θ,S, Ê). In particular,
{

[t ,ςλ(t)] | t ≤ s
}

is dense in Θs.

Proposition 3.7. S̃ is closed by left composition. Moreover S̃ is the subcategory of
C(θ,S,Ê) obtained by restricting the objects to {ςe |e ∈ E}, that is, S̃ = r–1(Ẽ) ∩ d–1(Ẽ).
Furthermore, the category S̃ is isomorphic to the restriction semigroup category CS via
Ψ .

Proof. We will show that whenever an element [s,x ] composes with [t ,ςλ(t)] the com-
position belongs to S̃. So, assume the pair ([s,x ], [t ,ςλ(t)]) is composable and note that
x = θt (ςλ(t)). By Equation (3.5), ρ(t) ≤ λ(s) which, by Prop 2.7, is equivalent to say
λ(t) = λ(st). Hence

[s,x ][t ,ςλ(t)] = [st ,ςλ(t)] = [st ,ςλ(st)]. (3.6)

In particular, S̃ is closed by multiplication. Furthermore, since r([t ,ςλ(t)]) = θt (ςλ(t)) =
ςρ(t), we have that S̃ ⊆ r–1(Ẽ) ∩ d–1(Ẽ). The converse is given by the Lemma 3.6. In

fact, if [s,ςe] belongs to r–1(Ẽ) ∩ d–1(Ẽ), then [s,ςe] = [se,ςλ(se)] ∈ S̃. Next, note that a
pair ([s,ςλ(s)],[t ,ςλ(t)]) is composable if, and only, if θt (ςλ(t)) = ςρ(t) = ςλ(s) if, and only, if

ρ(t) = λ(s). In particular Ψ is a bijective functor from CS to S̃.

Proposition 3.8. Let S be a restriction semigroup, X a locally compact Hausdorff space
and θ : S → I(X ) an action. Moreover, suppose that S is left-ample. Then for every
triple (s,t ,v ) ∈ S3 and x ∈ X such that [st ,x ] = [sv ,x ] we have [t ,x ] = [v ,x ]. In particular,
C(θ,S,X ) is left cancellative.

Proof. Suppose [st ,x ] = [sv ,x ]. In this case, there exists e ∈ E such that ste = sve,
and x ∈ De. Therefore, λ(s)te = λ(s)ve, and equivalently, tλ(st)e = vλ(sv )e. Next,
multiplying on both sides by λ(st)λ(sv ), we get tλ(st)λ(sv )e = tλ(st)λ(sv )e. Thus, since
Dλ(st)λ(sv )e = Dλ(st) ∩ Dλ(sv ) ∩ De, we have [t ,x ] = [v ,x ].

Now, suppose that [s,y ][t ,x ] = [s,y ][w ,z]. In this case, we have [st ,x ] = [sw ,z],
and therefore x is equal to z. Then, by the previous calculation, [t ,x ] = [w ,z].

The converse of the above Proposition is not valid. In fact, let S be a restriction
semigroup with 0, in which 0 is a projection, and let θ : S → I(X ) be the trivial action
of S on a locally compact Hausdorff space X , that is, θs = idX , ∀ s ∈ S. The category
of germs of θ consists only of objects since (s,x) ∼ (t ,x) for all s,t ∈ S. In fact, it holds
because s0 = 0 = t0 and D0 = X . Therefore, C(θ,S,X ) = C(θ,S,X )(0) ∼= X and, in
particular, it is (left) cancellative. However, it does not imply that S is left-ample. To see
this, it suffices to present an example of a non left-ample restriction semigroup with 0
in which 0 is a projection.
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Let X be a set with more than 2 elements. The set of all functions from X to X ,
F(X ), is a monoid under composition. This monoid does not have a zero, i.e, it does
not exist a function ς : X → X such that fς = ς = ςf ,∀f ∈ F (X ). Indeed, if y0,y1 ∈ X and
y0 ̸= y1, considering the constant maps f0(x) = y0, f1(x) = y1 one have that f0ς ̸= f1ς,
for any function ς ∈ F(X ).

In order to get a restriction semigroup with 0, we add a formal 0 to F(X ) and
we define E = {0, idX }, λ(s) = 0 ⇔ s = 0, and ρ(s) = 0 ⇔ s = 0. This monoid has no
zero divisors then it is straightforward to verify the requirements of Definition 2.1. Thus,
(F (X ) ∪ {0}, {0, idX }, λ, ρ) is a restriction semigroup with 0 in which 0 is a projection. Of
course F(X ) ∪ {0} is not left-ample since f0f = f0g, for any pair f ,g ∈ F(X ).

We have seen that it is possible to find a left cancellative category of germs
without assuming the semigroup to be left-ample. Indeed, being cancellative has to do
not only with the semigroup but also with the action. But, the next proposition shows us
that being left-ample can be characterized in categorical terms

Proposition 3.9. S is left-ample if, and only if, C(θ, S, Ê) is left cancellative.

Proof. Proposition 3.8 gives us one side of the proof. So, assume C(θ, S, Ê) is left
cancellative and suppose st = sw , for s,t ,w ∈ S. Define e = λ(st) = λ(sw) and note that

θt (ςe)(λ(s)) = ςe(λ(λ(s)t)) = ςe(λ(st)) = ςe(e) = 1.

Hence, θt (ςe) ∈ Dλ(s), and similarly θw (ςe) ∈ Dλ(s). Note that

r([s,θt (ςe)]) = θs(θt (ςe)) = θst (ςe) = θsw (ςe)

= θs(θw (ςe)) r([s,θw (ςe)]).

Then [s,θt (ςe)] is equal to [s,θw (ςe)] because they have the same range and belong
to the bisection Θs. Furthermore [s,θt (ςe)][t ,ςe] = [st ,ςe] = [sw ,ςe] = [s,θw (ςe)][w ,ςe].
Thus, by left cancellativity, we have

[t ,ςe] = [w ,ςe].

Then, there is a projection f ∈ E such that e ≤ f and tf = wf . Multiplying both sides by
e we get te = we, and therefore

λ(s)t = tλ(λ(s)t) = tλ(st) = te = we

= wλ(sw) = wλ(λ(s)w) = λ(s)w .

In conclusion, S is left-ample.

3.2 THE SEMICROSSED PRODUCT STRUCTURE OF THE OPERATOR ALGEBRA
OF AN ÉTALE CATEGORY

Throughout this section, let (S,E ,λ,ρ) be a restriction semigroup, and let θ : S →
I(X ) be an étale action of S on a second countable locally compact Hausdorff space X .
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Moreover, let C be the category of germs C(θ,S,X ). We have defined so far two operator
algebras associated with the action θ, which are A(C), the operator algebra of C, and
the semicrossed product algebra C0(X )⋊αS, where α is the induced action from θ (see
Remark 2.22). The purpose of this section is to show that A(C) and C0(X ) ⋊α S are
isometrically isomorphic. The reader will note that the second countability assumption
is crucial to obtaining this isomorphism. Indeed, we will strongly use that every open
set of a locally compact Hausdorff space is itself a second countable locally compact
Hausdorff topological with the relative topology, and hence it is σ-compact.

Proposition 3.10 (Borel measurable Functional Calculus). Let Y be a locally compact
Hausdorff space and π : C0(Y ) → B(H) a C∗-homomorphism. Then π extends to a C∗-
homomorphism π̃ : B(Y ) → B(H), where B(Y ) is the set of bounded Borel measurable
functions. Moreover, if gn converges pointwise to g and sup ∥gn∥∞ < +∞ then π̃(gn)
converges to π̃(g) in the weak operator topology.

Sketch of the proof. For every ξ, η ∈ H, we have the continuous linear functional τξ,η :
C0(Y ) → B(H) given by f 7→ ⟨π(f )ξ,η⟩. Then, by Riesz representation theorem, there is
a complex Borel regular measure νξ,η such that

τξ,η(f ) =
∫

f d νξ,η,∀ f ∈ C0(Y ).

Next, for every g ∈ B(X ), we have the bounded sesquilinear form σg : H ×H → C given
by

σg(ξ,η) =
∫

g d νξ,η.

Again, by (another) Riesz representation theorem, there exists π̃(g) ∈ B(H) such that

σg(ξ,η) = ⟨π̃(g)ξ,η⟩ .

[10, Prop 3.14] shows π̃ : B(X ) → B(H) is a C∗-homomorphism. Moreover, if f ∈ C0(Y )
we have that

⟨π̃(f )ξ,η⟩ = σf (ξ,η) =
∫

f d νξ,η = τξ,η(f ) = ⟨π(f )ξ,η⟩ ,∀ ξ,η ∈ H.

Then π̃(f ) = π(f ), which shows that π̃ extends π. To finish, if gn converges pointwise to
g and sup ∥gn∥∞ < +∞, by Lebesgue’s dominated converge theorem

lim
n→∞

⟨π̃(gn)ξ,η⟩ = lim
n→∞

∫
gn d νξ,η =

∫
g d νξ,η = ⟨π̃(g)ξ,η⟩ .

Hence, π̃(gn) converges to π̃(g) in the weak operator topology.

Corollary 3.11. Suppose we are in the same conditions of Proposition 3.10. Then, for
a σ-compact open set U ⊆ Y it holds that π̃(1U )H = span π(C0(U))H.
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Proof. For every f ∈ C0(U) and h ∈ H, we have

π(f )h = π̃(f )h = π̃(1U )π̃(f )h ⊆ π̃(1U )H.

The function 1U is a projection in the C∗-algebra B(Y ), since 1U = 1U = 1U1U . Hence,
the operator π̃(1U ) is an orthogonal projection, which implies its range is closed. There-
fore,

span π(C0(U))H ⊆ π̃(1U )H.

Conversely, let {Kn}n∈N be an increasing sequence of compact sets such that U =
∪n∈NKn. By Urysohn’s Lemma, there exists gn ∈ Cc(U) such that gn|Kn

≡ 1 and
∥gn∥∞ = 1. Note that gn converges pointwise to 1U and hence π̃(1U )h is the weak
limit of π(gn)h, for every h ∈ H. The Hahn-Banach theorem then implies π̃(1U )h ∈
spanπ(gn)h ⊆ span π(C0(U))H, and hence π̃(1U )H ⊆ spanπ(C0(U))H.

Recall that each map θs : Dλ(s) → Dρ(s) is a homeomorphism. We proved that
a basis for the topology of C is given by the sets Θ(s,U), and when U = Dλ(s) the open
Θ(s,U) is simply denoted by Θs. The family of open sets {Θs | s ∈ S} foms a cover for
C, and hence, by Proposition 1.21,

A0(C) = span{f : f ∈ Cc(Θs), s ∈ S}.

We have also proved that the maps dΘs : Θs → Dλ(s) and rΘs : Θs → Dρ(s) are
homeomorphisms. Therefore, the following aplications are isometric ∗-isomorphisms.

Cc(Dρ(s)) → Cc(Θs), f 7→ f ◦ rΘs and Cc(Dλ(s)) → Cc(Θs), f 7→ f ◦ dΘs .

For maps f ∈ Cc
(
Dρ(s)

)
, and g ∈ Cc

(
Dλ(s)

)
we will denote

fδs := f ◦ rΘs and δsg := g ◦ dΘs (3.7)

It then follows that

A0(C) = span
{

fδs : f ∈ Cc
(
Dρ(s)

)
, s ∈ S

}
. (3.8)

And
A0(C) = span

{
δsf : f ∈ Cc

(
Dλ(s)

)
, s ∈ S

}
.

Recall that the ∗-isomorphism αs : C0
(
Dλ(s)

)
→ C0

(
Dρ(s)

)
is given by αs(f ) = f ◦ θ–1

s .
In this case, if f ∈ Cc

(
Dλ(s)

)
we have that

αs(f )δs = f ◦ θ–1
s ◦ rΘs

(3.2)
= f ◦ dΘs = δsf . (3.9)
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Moreover, for f ∈ Cc
(
Dρ(s)

)
, and g ∈ Cc

(
Dρ(t)

)
, we have

fδs ∗ gδt
(
[st ,x ]

)
= fδs

(
[s,θt (x)]

)
gδt
(
[t ,x ]

)
= f
(
θst (x)

)
g
(
θt (x)

)
=
(

f ◦ θs ◦ θ–1
s

)(
g ◦ θ–1

s

)
(θst (x))

=
(
(f ◦ θs)g

)
◦ θ–1

s (θst (x))

= αs
(
α

–1
s (f )g

)
(θst (x))

= αs
(
α

–1
s (f )g

)
(r([st ,x ]))

= αs
(
α

–1
s (f )g

)
δst ([st ,x ]).

(3.10)

Which gives
fδs ∗ gδt = αs(α–1

s (f )g)δst . (3.11)

To the end of showing that there is a correspondence between covariant pairs for
(α,S, C0(X )) and representations of A0(C), below we prove some preliminary results.

Definition 3.12. Let Z be a set, and let P and L be subsets of the power set P(Z ). P
will be called a π-system if it is closed under finite intersections, and L will be called a
λ-system if satisfies:

1. Z ∈ L.

2. If A ∈ L then Z \ A ∈ L, for every A ∈ L.

3. If {An}n∈N ⊆ L then ∪n∈NAn ∈ L, for every sequence {An}n∈N of pairwise disjoint
open sets.

Theorem 3.13 ( Dynkin’s π – λ theorem (cf. Thm 3.2 of [11]) ). Let Z be a set, and let
P ⊆ P(Z ) a π-system and L ⊆ P(Z ) a λ-system such that P ⊆ L. Then σ(P) ⊆ L, where
σ(P) denotes the σ-algebra generated by P.

Since the map θs : Dλ(s) → Dρ(s) is a homeomorphism, the following map is a
C∗-isomorphism

αs : B
(
Dλ(s)

)
−→ B

(
Dρ(s)

)
, f 7−→ f ◦ θ–1

s .

Note that it extends the previously defined map αs : C0
(
Dλ(s)

)
→ C0

(
Dρ(s)

)
, and for

this reason we keep the same notation. Moreover, let (π,σ) be a covariant pair for α,
and let π̃ be the Borel extension of π. Recall that every subset De is σ-compact, thus
by Corollary 3.11 and item 2 of Definition 2.29, we have that for every e ∈ E

π̃(1e) = σe, 1e := 1De
. (3.12)

Thus, for every e ∈ E , and f ∈ B(X ) we have that

σeπ̃(f ) = π̃(1ef ) = π̃(f1e) = π̃(f )σe. (3.13)
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Can the covariance relation be extended to the measurable context? Below, we give a
positive answer to this question.

Proposition 3.14. Let (π,σ) be a covariant pair for (α,S, C0(X ) on a Hilbert space H
and π̃ the Borel extension of π. Then, for every f ∈ B

(
Dλ(s)

)
the following equation

holds
π̃(αs(f ))σs = σsπ̃(f ).

Proof. Let U be an open set of Dλ(s). Note that U is σ-compact, and recall that there
exists a sequence {gn} ⊆ Cc(U) ⊆ Cc(Dλ(s)) such that gn converges pointwise to 1U
and sup ∥gn∥∞ = 1 (see the proof of Corollary 3.11). Then, for every ξ,η ∈ H

⟨π̃(αs(1U ))σsξ,η⟩ = lim
n→∞

⟨π̃(αs(gn))σsξ,η⟩

= lim
n→∞

⟨σsπ̃(gn)ξ,η⟩

= ⟨σsπ̃(1U )ξ,η⟩ .

Thus, the covariance relation holds for characteristic functions of open sets. In what
follows, we will check that the subset Λ, defined down below, is a λ-system.

Λ =
{

A ⊆ Dλ(s) | A is a Borel subset such that π̃(αs(1A))σs = σsπ̃(1A)
}

,

Note that Dλ(s) ∈ Λ, by the above calculation. Moreover, if A ∈ Λ, note that

π̃(αs(1A))σs + π̃(αs(1Dλ(s)\A))σs = π̃(αs(1λ(s)))σs

= σsπ̃(1λ(s))

= σsπ̃(1A) + σsπ̃(1Dλ(s)\A)

= π̃(αs(1A))σs + σsπ̃(1Dλ(s)\A).

Hence, Dλ(s) \ A ∈ Λ. Finally, suppose {An}n∈N ⊆ Λ is a sequence of pairwise disjoint
open sets. Define A = ∪n∈NAn and note that 1A is the pointwise limit of fn, where
fn =

∑
i≤n 1Ai

. Then, for every ξ, η ∈ H we have that

⟨π̃(αs(1A))σsξ,η⟩ = lim
n→∞

⟨π̃(αs(fn))σsξ,η⟩

= lim
n→∞

⟨σsπ̃(fn)ξ,η⟩

= ⟨σsπ̃(1A)ξ,η⟩ ,

.

Hence A ∈ L, and Λ is a λ-system.
Note that the topology of Dλ(s) is a π-system contained in Λ and thus Λ is the

Borel σ-algebra of Dλ(s), by Theorem 3.13. In particular, the covariance relation holds for
simple functions, and consequently for positive functions, since every positive function
is a limit of simple functions (see [11, Theorem 13.5] ) and π̃ is weakly continuous.
Finally, by linearity, we have that the covariance relation holds for the whole algebra
B
(
Dλ(s)

)
.
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The following Lemma generalizes [24, Lemma 8.4]. Furthermore, we provided a
different proof that avoids the assumption that S is countable. Recall the fact presented
in (3.8).

Lemma 3.15. Suppose
∑

s∈S fsδs = 0 in A0(C). Then
∑

s∈S π(fs)σs = 0 for every
covariant pair (π,σ) for the induced action (α,S, C0(X )).

Proof. Fix (π,σ) a covariant pair for the action α on a Hilbert space H. Recall that
σ : S → B(H), and π : C0(X ) → B(H) are representations of S and C0(X ) satisfying the
conditions stated in Definition 2.29. By Proposition 3.10, we have the Borel extension
π̃ of π, and for every ξ, η ∈ H we have the measures νξ,η on X , satisfying

νξ,η(B) = ⟨π̃(1B)ξ,η⟩ .

Let ξ and η be in H. For each s ∈ S, let νs be the Borel measure νξ,σ∗
sη

restricted to the
Borel subspace Dλ(s) of X . Moreover, let μs be the pushforward measure of νs by the
homeomorphism d–1

Θs
: Dλ(s) → Θs, that is, μs is the Borel measure on Θs given by

μs(B) = νs(dΘs (B)) =
〈
σsπ̃(1dΘs (B))ξ,η

〉
, (3.14)

for every Borel subset B ⊆ Θs. Furthermore, note that 1dΘs (B) = 1B ◦ d–1
Θs

and hence∫
f d μs =

〈
σsπ̃(f ◦ d–1

Θs
)ξ,η

〉
,. (3.15)

for every Borel function f ∈ B(Θs). In fact, equation (3.14) implies that (3.15) holds
for simple functions and the extension to Borel functions comes from the fact that π̃ is
weakly continuous.

Now, we check that μs and μt coincide on Θs∩Θt . Let K ⊆ Θs∩Θt be a compact
subset. Note that for every x ∈ d(K ), [s,x ] = [t ,x ]. Hence, for every x ∈ X there exists
ex ∈ E such that x ∈ Dex and sex = tex . Moreover, since d(K ) is compact, there are
e1,...,en such that d(K ) ⊆ ∪n

i=1Dei and sei = tei . In this case, we write d(K ) as a disjoint
union

d(K ) = ∪n
i=1Ai ,

where A1 = d(K ) ∩ De1 and Ai = d(K ) ∩ Dei \ (∪i–1
j=1 d(K ) ∩ Dej ), for 2 ≤ i ≤ n. Note

that {Ai }ni=1 is a family of pairwise disjoint and measurable subsets such that Ai ⊆ Dei .
Hence, for every i ∈ {1,...,n}

σsπ̃(1Ai
) = σsπ̃(1ei 1Ai

) = σsπ̃(1ei )π̃(1Ai
)

(3.12)
= σsσei π̃(1Ai

) = σsei π̃(1Ai
)

= σtei π̃(1Ai
) = σt π̃(1ei )π̃(1Ai

)

= σt π̃(1Ai
).
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Thus,

μs(K )
(3.14)

=
n∑

i=1

〈
σsπ̃(1Ai

)ξ,η
〉

=
n∑

i=1

〈
σt π̃(1Ai

)ξ,η
〉

= μt (K ).

Since Θs ∩Θt isσ-compact, we obtain that every closed subset is a countable union of
compact subsets and, therefore, μs and μt coincide in the family of closed subsets of
Θs ∩Θt , which is a π-system. It is easy to see that the family of subsets where μs and
μt coincide is a λ-system. Hence, by Theorem 3.13, μs and μt coincide on every Borel
subset of Θs ∩Θt .

As a consequence of the fact that μs and μt coincide on Θs ∩Θt , we obtain that
if F ∈ B(Θs ∩Θt ) then

∫
F d μs =

∫
F d μt . Therefore, by (3.15), we have〈

σsπ̃(F ◦ d–1
Θs

)ξ,η
〉

=
〈
σt π̃(F ◦ d–1

Θt
)ξ,η

〉
.

Then, by Proposition 3.14, we have〈
π̃(F ◦ r–1

Θs
)σsξ,η

〉
=
〈
π̃(F ◦ r–1

Θt
)σtξ,η

〉
.

And hence, since ξ, η have been arbitrarily chosen, we obtain that for every Borel
function F ∈ B(Θs ∩Θt ).

π̃(F ◦ r–1
Θs

)σs = π̃(F ◦ r–1
Θt

)σt . (3.16)

Now, let J = {s ∈ S | fs ̸= 0} and M = ∪s∈JΘs. The Borel σ-algebra of M coincides
with the family {∪s∈JBs | Bs is a Borel set of Θs,∀ s ∈ J}. Indeed, it easily comes from
the fact: If V is an open subset of the topological space Z , then the Borel σ-algebra of V
is the family {B ⊆ V | B is a Borel suset of Z }. Furthermore, for a Borel subset ∪s∈JBs

of M, we can suppose that it is a disjoint union. Indeed, write J = {s1,...,sn} and define
As1 = Bs1 and Asi = Bsi \ (∪i–1

j=1Bsj ), for every i ∈ {2,...,n}. Then ∪s∈JBs = ∪s∈JAs, and
{As}s∈J is a family of pairwise disjoint subsets such that As ⊆ Bs ⊆ Θs. To complete
the argument, we just need to check that As is a Borel subset of Θs, but note that it is
the intersection of measurable subsets of M and, therefore measurable in M. As Borel
subsets of Θs are precisely the Borel subsets of M contained in Θs, we obtain that As

is a Borel subset of Θs.
Define on M the measure

μ
( ⊔

s∈J

Bs
)

=
∑
s∈J

μs(Bs).

Let us see that μ does not depend of choice. Assume B = ⊔s∈JAs = ⊔t∈JBt . Every As

and Bt are respectively equal to ⊔t∈JAs ∩ Bt and ⊔s∈JAs ∩ Bt . Hence∑
s∈J

μs(As) =
∑
s∈J

∑
t∈J

μs(As ∩ Bt ) =
∑
s∈J

∑
t∈J

μt (As ∩ Bt ) =
∑
t∈J

∑
s∈J

μt (As ∩ Bt ) =
∑
t∈J

μt (Bt ).
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Thus, there exists a Borel measure on M that agrees with μs on Θs, for every s ∈ J. In
particular, for every Borel function f ∈ Cc(Θs).∫

f d μ =
∫

f d μs.

Next, recall that
∑

s∈J fsδs = 0. Then, integrating with respect to μ on both sides and
using the equation above, we have∑

s∈J

∫
fsδs d μs = 0.

And therefore

0 =
∑
s∈J

∫
fsδs d μs

(3.15)
=

∑
s∈J

〈
σsπ((fsδs) ◦ d–1

Θs
)ξ,η

〉
=
∑
s∈J

〈
σsπ((fs ◦ rΘs ) ◦ d–1

Θs
)ξ,η

〉
=
∑
s∈J

⟨σsπ(fs ◦ θs)ξ,η⟩

=
∑
s∈J

〈
σsπ(α–1

s (fs))ξ,η
〉

=
∑
s∈J

⟨π(fs)σsξ,η⟩

=

〈∑
s∈J

π(fs)σsξ,η

〉
.

which gives
∑

s∈J π(fs)σs = 0, since ξ,η ∈ H have been arbitrarily chosen.

Next, we recall the concept of disjointification (see [18, Remark 2.4]). Loosely
speaking, the disjointification of a family of subsets consists in collecting those small
pieces generated in the Venn diagram. Let F = {Ai }ni=1 be a family of sets and I = {1,...,n}
be the index set. For a non-empty set J ⊆ I define

PJ =
⋂
i∈J

Ai \
⋃

i∈I\J

Ai .

The disjointification of F is the family D = {PJ | ∅ ≠ J ⊆ I}. Let us briefly recall some
properties that the disjointification of the family F has. Note that for i ∈ I and a non-
empty subset J ⊆ I, either i ∈ J or i ∈ I \J, and respectively either PJ ⊆ Ai or PJ ∩Ai = ∅.
This, in particular, shows that the family {PJ | ∅ ̸= J ⊆ I} is pairwise disjoint. Moreover,
note that for every i ∈ I

Ai =
⊔

{J⊆I |PJ⊆Ai }

PJ .

In fact, if i0 ∈ I and x ∈ Ai0, we have that x ∈ PJ , where J = {i ∈ I | x ∈ Ai }. And hence
(⊆) holds. The other inclusion is easy.

Furthermore, if the family {Ai }ni=1 consists of open sets on a given topological
space, it is easy to see that D forms a Borel partition for

⋃
i∈I

Ai .
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Having disposed of the above machinery, we can now show that there is a
correspondence between covariant pairs for (α,S, C0(X )) and representations of A0(C).
Recall that a covariant pair (π,σ) for α on H gives rise to a homomorphism π×σ : Lα →
B(H). Note that both Lα and A0(C) have elements of the form

∑
s∈s fsδs, where in the

former δs is a symbol while in the latter the meaning is explained in the discussion
after Corollary 3.11. Throughout the following, on Lα we replace δ by δ̃ and hence the
elements of Lα are finite sums of the form

∑
s∈s fsδ̃s.

Proposition 3.16. Let (π,σ) be a covariant pair for the system (α,S, C0(X )). Then, (π,σ)
gives rise to a representation π× σ of A0(C), where

π× σ

(∑
s∈s

fsδs

)
=
∑
s∈s

π(fs)σs.

Proof. Define π× σ
(∑

s∈s fsδs
)

=
∑

s∈s π(fs)σs. By Lemma 3.15, π× σ is well-defined.
Moreover, note that π× σ is linear, and that for f ∈ Cc(Dρ(s)) and g ∈ Cc(Dρ(t)) we have

π× σ(fδs ∗ gδt )
(3.11)

= π× σ

(
αs(α–1

s (f )g)δst

)
= π(αs

(
α

–1
s (f )g

)
σst

= π× σ

(
αs(α–1

s (f )g)δ̃st

)
= π× σ

(
f δ̃sgδ̃t

)
= π× σ(f δ̃s)π× σ(gδ̃t )

= π(f )σsπ(g)σt

= π× σ(fδs)π× σ(gδt ).

Thus, π× σ is an algebra homomorphism. Furthermore, note that C(0) =
⋃

e∈E Θe and
hence every f ∈ Cc

(
C(0)) is of the form

∑
e∈E feδe (see [57, Theorem 2.13]). In this

case,

π× σ

(
f
)

= π× σ

∑
e∈E

feδe

 =
∑
e∈E

π

(
fe
)
σe

(3.12)
=

∑
e∈E

σeπ
(

fe
)

=
∑
e∈E

σ
∗
eπ(fe)∗

=

∑
e∈E

π(fe)σe

∗

=
(
π× σ(f )

)∗ .

It remains to show that if F ∈ Cc(U), U ∈ Bis(C), then ∥π× σ(F )∥ ≤ ∥F∥∞. Write
F =

∑n
i=1 fsiδsi and let {Pj }mj=1 be the disjointification of {Θi }ni=1, where Θi := Θsi . We

emphasize that {Pj }mj=1 is a Borel partition of
⋃n

i=1 Θi , and that for any pair (i ,j), it holds
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that either Pj ∩Θi = ∅ or Pj ⊆ Θi . Moreover

Θi =
⊔

{j :Pj⊆Θi }

Pj

and, in consequence,
Dρ(si ) =

⊔
{j :Pj⊆Θi }

rΘi (Pj ). (3.17)

For every j ∈ {1,...,m}, define Lj = {i |Pj ⊆ Θi }, and i(j) := max Lj . Moreover, for every
j ∈ {1,...,m}, define Fj to be the restriction of F to Pj , and the operator

Tj = π̃(Fj ◦ r–1
Θi(j)

)σsi(j). (3.18)

By (3.16), for every i ∈ Lj , and for every G ∈ B(Pj ) we have that

π̃

(
G ◦ r–1

Θi

)
σsi = π̃

(
G ◦ r–1

Θi(j)

)
σsi(j). (3.19)

Therefore,

π× σ(F ) =
n∑

i=1

π(fsi )σsi

(3.17)
=

n∑
i=1

∑
{j :Pj⊆Θi }

π̃

(
1rΘi (Pj )fsi

)
σsi

=
n∑

i=1

∑
{j :Pj⊆Θi }

π̃

(
1Pj

◦ r–1
Θi

fsi

)
σsi

=
n∑

i=1

∑
{j :Pj⊆Θi }

π̃

((
1Pj

fsi ◦ rΘi

)
◦ r–1

Θi

)
σsi

=
m∑

j=1

∑
{i :Pj⊆Θi }

π̃

((
1Pj

fsiδsi

)
◦ r–1

Θi

)
σsi

(3.19)
=

m∑
j=1

∑
{i :Pj⊆Θi }

π̃

((
1Pj

fsiδsi

)
◦ r–1

Θi(j)

)
σsi(j)

=
m∑

j=1

π̃

1Pj

∑
{i :Pj⊆Θi }

fsiδsi

 ◦ r–1
Θi(j)

σsi(j)

=
m∑

j=1

π̃
(
Fj ◦ r–1

Θi(j)

)
σsi(j) =

m∑
j=1

Tj .

Next, we show the operator family {Tj }mj=1 is completely orthogonal (see Definition

1.2). Let k ,l ∈ {1,...,m} such that k ̸= l . Suppose that
(
Fk ◦ r–1

Θi(k )

)(
Fl ◦ r–1

Θi(l)

)
(x) ̸= 0, for

some x ∈ X . In this case, we obtain

Fk
(
[si(k ),θ

–1
si(k )

(x)]
)
Fl
(
[si(l),θ

–1
si(l)

(x)]
)
̸= 0.
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Then, since r
(
[si(k ), θ

–1
si(k )

(x)]
)

= x , r
(
[si(l),θ

–1
si(l)

(x)]
)

= x , and the support of F is con-
tained in a bisection, we have that

[si(k ),θ
–1
si(k )

(x)] = [si(l),θ
–1
si(l)

(x)].

Thus, Pk ∩ Pl ̸= ∅, which gives a contradiction. Therefore,
(
Fk ◦ r–1

Θi(k )

)(
Fl ◦ r–1

Θi(l)
) ≡ 0,

and similarly
(
Fk ◦ d–1

Θi(k )

)(
Fl ◦ d–1

Θi(l)

)
≡ 0. A simple computation then gives

T ∗
k Tl = σ

∗
si(k )

π̃(Fk ◦ r–1
Θi(k )

)π̃(Fl ◦ r–1
Θi(l)

)σsi(l)

= σ
∗
si(k )

π̃(Fk ◦ r–1
Θi(k )

Fl ◦ r–1
Θi(l)

)σsi(l) = 0.

And

TkT ∗
l = π̃(Fk ◦ r–1

Θi(k )
)σsi(k )(π̃(Fl ◦ r–1

Θi(l)
)σsi(l))

∗

3.14= σsi(k )π̃(α–1
si(k )

(Fk ◦ r–1
Θi(k )

))(σsi(l)π̃(α–1
si(l)

(Fl ◦ r–1
Θi(l)

)))∗

= σsi(k )π̃(Fk ◦ d–1
Θi(k )

)π̃(Fl ◦ d–1
Θi(l)

)σ∗si(l)

= σsi(k )π̃(Fk ◦ d–1
Θi(k )

Fl ◦ d–1
Θi(l)

)σ∗si(l)
= 0.

And, hence

∥π× σ(F )∥ =

∥∥∥∥∥∥
m∑

j=1

Tj

∥∥∥∥∥∥ (1.1)
= max

j=1,...,m

{
∥Tj∥

}
= max

j=1,...,m

{
∥π̃
(

Fj ◦ r–1
Θi(j)

)
σsi(j)∥

}
≤ max

j=1,...,m
{∥Fj∥∞} = ∥F∥∞

Conversely, we have the following disintegration method

Proposition 3.17. Let Π : A0(C) → B(H) be a representation of A0(C). Then, there
exists a covariant pair (π,σ) for α such that Π = π× σ.

Proof. We start constructing σ. Let Πs : B(Θs) → B(H) denote the Borel extension of
the continuous linear map (see Proposition 3.10). Finally, define for every s ∈ S

σs = Πs(1Θs ).

We are going to use the notation of the proof of Proposition 3.10 to check that the map
σ : S → B(H), s 7→ σs, is a representation of S. Take ξ,η ∈ H, and note that

| ⟨σsξ,η⟩ | = |
〈
Πs(1Θs )ξ,η

〉
| = |νξ,η(Θs)| ≤ ∥νξ,η∥ = ∥τξ,η∥ ≤ ∥ξ∥∥η∥.

Then, ∥σs∥ ≤ 1. Now, since Θs is σ-compact, there is an increasing sequence {gs
n} ⊆

Cc(Θs) that converges pointwise to 1Θs , for every s ∈ S. Let s and t be in S and
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g ∈ Cc(Θs). Note that {g ∗ gt
n} ⊆ Cc(Θst ) is uniformly bounded and converges to

g ◦ r–1
Θs

◦ rΘst ⊆ Cc(Θst ). Therefore, for ξ,η ∈ H we have that

⟨Π(g)σtξ,η⟩ = lim
n→∞

〈
Π(g)Π(gt

n)ξ,η
〉

= lim
n→∞

〈
Π(g ∗ gt

n)ξ,η
〉

=
〈
Π(g ◦ r–1

Θs
◦ rΘst )ξ,η

〉
.

Which gives
Π(g)σt = Π(g ◦ r–1

Θs
◦ rΘst ). (3.20)

Similarly, if h ∈ Cc(Θt ) we have that

σsΠ(h) = Π(h ◦ d–1
Θt

◦dΘst ). (3.21)

Hence
⟨σsσtξ,η⟩ = lim

n→∞
〈
Π(gs

n)σtξ,η
〉

= lim
n→∞

〈
Π(gs

n ◦ r–1
Θs

◦ rΘst )ξ,η
〉

=
〈
Π(1Θst )ξ,η

〉
= ⟨σstξ,η⟩ .

Which gives σst = σsσt .
On the other hand, recall that C(0) = X and hence define π : C0(X ) → B(H) to

be the extension of the contractive ∗-homomorphism Π| Cc(C(0)). Explicitly, since every
f ∈ Cc(C(0)) is of the form

∑
e∈E feδe, we have

π(f ) =
∑
e∈E

Π(feδe).

We now show the covariance relation. Let s be in S, f be in Cc
(
Dλ(s)

)
. For ξ,η ∈ H, we

have that

⟨σsπ(f )ξ,η⟩ =
〈
σsΠ

(
fδλ(s)

)
ξ,η
〉 (3.21)

=
〈
Π(fδλs

◦ d–1
Θλ(s)

◦dΘsλ(s)
)ξ,η

〉
=
〈
Π(f ◦ dΘλs

◦d–1
Θλ(s)

◦dΘs )ξ,η
〉

=
〈
Π(f ◦ dΘs )ξ,η

〉
= ⟨Π(δsf )ξ,η⟩ (3.9)

= ⟨Π(αs(f )δs)ξ,η⟩ =
〈
Π(αs(f ) ◦ rΘs )ξ,η

〉
=
〈
Π(αs(f ) ◦ rΘρ(s)

◦ r–1
Θρ(s)

◦ rΘρ(s)s
)ξ,η

〉 (3.20)
= ⟨π(αs(f ))σsξ,η⟩ .

The fact that span π(C0(De))H = σe(H) follows from Corollary 3.11. To finish, we check
that Π = π× σ. Let fδs be in A0(C). Note that

π× σ(fδs) = π(f )σs = Π(fδρ(s))σs

= Π(f ◦ rΘρ(s)
◦ r–1

Θρ(s)
◦ rΘρ(s)s

)

= Π(f ◦ rΘs ) = Π(fδs).

(3.22)

We are now ready to prove the main result of this chapter
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Theorem 3.18. Let (S,E ,λ,ρ) be a restriction semigroup, X a second countable locally
compact Hausdorff space, and θ : S → I(X ) an étale action. Moreover, let α be the
induced étale action from θ. Then A(C(θ,S,X )) and C0(X ) ⋊α S are isomorphic.

Proof. By Remark 2.31, L′α =
{∑

s∈S fsδ̃s | fs ∈ Cc
(
Dρ(s)

)}
is a dense subalgebra of

C0(X ) ⋊α S. Hence, define the following map

ψ : L′α −→ A0(C), ψ

(∑
fsδ̃s

)
7−→

(∑
fsδs

)
.

From (3.8) and (3.10), we otain that ψ is a surjective algebra homomorphism. Moreover,
for any covariant pair (π,σ) for α we have that∥∥∥∥∥∥π× σ

ψ

∑
s∈S

fsδs

∥∥∥∥∥∥ =
∥∥∥∑

s∈S

π(fs)σs

∥∥∥ =

∥∥∥∥∥∥π× σ

∑
s∈S

fsδ̃s

∥∥∥∥∥∥ . (3.23)

Thus, By Propositions 3.16 and 3.17, we obtain that ψ is isometric (on the quotient)
and then it extends to an isomorphism.

Corollary 3.19. Let (S,E ,λ,ρ) be a restriction semigroup, and suppose that Ê is sec-
ond countable. Then the map δs 7→ 1Θs defines an isomorphism between A(S) and
A(C(θ,S, Ê)).

Proof. Combine the proof of Theorem 2.33 with the proof of Theorem 3.18.

Corollary 3.20. Let C be an étale category, and suppose C(0) is second countable.
Then A(C) is isomorphic to a semicrossed product.

Proof. By Theorem 3.4, C is isomorphic to C
(
θ, Bis(C), C(0)), and hence the algebras

are isomorphic.

3.2.1 The reduced case

Let (S,E ,λ,ρ) be a left-ample restriction semigroup, and suppose that Ê is second
countable. Moreover, let θ be the canonical action of S on Ê , and let C be the category
of germs C(θ,S,Ê). Equations (2.11) and (3.23) tell us that not only A(S) and A(C) are
isomorphic but also for any representation σ of S, we have

C[S]∥·∥σ ∼= A0(C)∥·∥πσ×σ. (3.24)

Recall the Definition 1.27 of the regular representation of C Π : A0(C) → B(ℓ2(C) given
by

Πf (δz ) =
∑

x∈Cr(γ)

f (x)δxz , f ∈ A0(C) .

By Proposition 3.7, the subset S̃ ⊆ C is closed by left composition, and therefore the
Hilbert subspace ℓ2(S̃) of ℓ2(C) is an invariant subspace of the regular representation
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Π. Let (π,σ) be a covariant pair (π,σ) such that Π = π× σ. Since the subsets Θs are
compact and open, we do not need to take the Borel extesion of Π to define σ (cf.
Proposition 3.17), and hence σs = Π(1Θs). Note that for every [t ,φ] ∈ C and s ∈ S we
have

σs(δ[t ,φ]) =
[
θt (φ) ∈ Dλ(s)

]
1Θs

(
[s,θt (φ)]

)
δ[st ,φ] =

[
θt (φ) ∈ Dλ(s)

]
δ[st ,φ]. (3.25)

In particular, by Proposition 2.7 and Equation (3.5), if [t ,ςλ(t)] ∈ S̃ then it holds that

σs
(
δ[t ,ςλ(t)]

)
=
[
ρ(t) ≤ λ(s)

]
δ[st ,ςλ(st)].

Thus, by (2.7), we note that that σ|ℓ2(S̃) : S → B(ℓ2(S̃)) is unitarily equivalent to the

regular representation of S, φ′ : S → B(ℓ2(s)). In fact, the unitary operator implementing

the equivalence is the one induced by s Ψ7→ [s,ςλ(s)], defined on (3.4). Moreover, since
φ′

e = πφ′(1e) = (cf. Theorem 2.23), σe = Π(1e), and span{1e | e ∈ E} is a dense
subalgebra of C0(Ê) we have that π|ℓ2(S̃) and πφ′ are unitarily equivalent via the same

unitary operator. Thus, πφ′ × φ′ is unitarily equivalent to Π|ℓ2(S̃).

By Lemma 3.6, If E is finite then S̃ = C and hence πφ′ × φ′ and Π|ℓ2(S̃) induce
the same norm on A0(C).

If S is an inverse semigroup then we also have Ar (S) = Ar (C), since Ar (S) =
C∗(S) and Ar (C) = C∗(C) (cf. subsection 3.2.2). The result then follows from [35, Theo-
rem 3.5].

The case where E is countable remains open. We conclude this subsection by
showing that σ is a representation by partial isometries. By Equation (3.25), we just
need to show

Proposition 3.21. Let [t ,φ] and [t ′,φ′] be in C. Suppose that θt (φ) ∈ Dλ(s), and θ′t (φ
′) ∈

Dλ(s), and [st ,φ] = [st ′,φ′]. Then [t ,φ] = [t ′,φ′].

Proof. Since [st ,φ] = [st ′,φ′], we obtain that φ = φ′, and moreover that there exists
e ∈ E such that φ ∈ De, and ste = st ′e. Recall that S is left-ample and hence

tλ(st)e = t ′λ(st ′)e.

Then defining h = λ(st)λ(st ′)e, we have that th = t ′h, and that φ ∈ Dh, since θt (φ) ∈
Dλ(s), and θ′t (φ) ∈ Dλ(s). Therefore, [t ,φ] = [t ′,φ′].

3.2.2 The groupoid case

We now show how our work fits in the theory of groupoid C∗-algebras. Through-
out this subsection let G be an étale groupoid. Recall that A0(G) has an involution, given
by f ∗(x) = f (x–1), and that C∗(G) is the completion of A0(G) equipped with the norm
induced by the class of all ∗-representations. Suppose U is a compact open bisection
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of G. Then the C∗-algebra C(U) is unital, and hence is generated by unitary elements.
Recall that a unitary element of C(U) is just a function f whose range is contained in T,
that is, |f (x)| = 1 for every x ∈ U.

Lemma 3.22. Let U be a compact open bisection, and let f ∈ C(U) be a unitary map.
Then, f is a partial isometry on A0(G). Moreover, if π : A0(G) → B(H) is a representation
in the sense of Definition 1.24, we have π(f ∗) = π(f )∗.

Proof. Note that f ∗ belongs to C
(
U–1) and hence f ∗ ∗ f ∈ Cc

(
G(0)). By item 4 of

Lemma 1.22, if x ∈ U we have that

f ∗ f ∗ ∗ f (x) = f (x)(f ∗f )(d(x)) = f (x)f ∗(x–1)f (x) = f (x)|f (x)|2 = f (x).

Then, since f ∗ f ∗ ∗ f ∈ C(U), we have that f ∗ f ∗ ∗ f = f , and similarly f ∗ ∗ f ∗ f ∗ = f ∗. To
finish, note that the contraction π(f ∗) is a generalized inverse for π(f ), and therefore by
Corollary 1.5 we obtain that π(f ∗) = π(f )∗.

We can now prove our first main result.

Theorem 3.23. Let G be an étale groupoid, and suppose that G has a cover of compact
open bisections F . Then the operator algebra of G, A(G), coincides with the C∗-algebra
of G, C∗(G).

Proof. By Proposition 1.21 and the above discussion, we have

A0(G) = span{f : f ∈ Cc(U), ran(f ) ⊆ T, U ∈ F}.

Then, it follows by Lemma 3.22 that every representation π : A0(G) → B(H) is a
∗-homomorphism. This completes the proof.

The next theorem proves that a similar fact holds without assuming that G is
covered by compact bisection, but now we need an assumption regarding G(0).

Theorem 3.24. Let G be an étale groupoid, and suppose that G(0) is second countable.
Then A(G) = C∗(G).

Proof. We can without loss of generality suppose that G is the groupoid of germs of an
action θ of an inverse semigroup S on a second countable locally compact Hausdorff
space X , G = G(θ,S,X ). Let Π : G → B(H) be a representation of A0(G). We now
procceed to show that Π is a ∗-homomorphism. From Proposition 3.17, we have that
Π = π× σ, for a covariant pair (π,σ) for (α, S, C0(X )), where α is the induced by θ.
Moreover, recall that σ is a ∗- representation of S (see Subsection 2.1.2). By (3.8), to
show that Π(f ∗) = Π(f )∗ for every f in A0(G), it suffices to prove that Π

(
(fδs)∗

)
= Π(fδs)∗
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for every f ∈ Cc
(
Dρ(s)

)
, and for every s ∈ S. Furthermore, recall that the inverse of a

germ [s,x ] is [s∗,θs(x)], and hence

(fδs)∗
(
[s∗,x ]

)
= fδs

(
[s,θs∗(x)]

)
= f (x) = (δs∗f )

(
[s∗,x ]

)
(3.9)

= αs∗
(

f
)
δs∗
(
[s∗,x ]

)
,

for every s ∈ S, and f ∈ Cc
(
Dρ(s)

)
. Which gives (fδs)∗ = αs∗(f )δs∗, since these

functions have their support contained in Θs∗. Therefore, for ξ,η ∈ H we have that

⟨Π(fδs)ξ,η⟩ = ⟨π(f )σsξ,η⟩ =
〈
ξ,σs∗π

(
f
)
η

〉
=
〈
ξ,π

(
αs∗
(

f
))

σs∗η

〉
=
〈
ξ,Π
(
(fδs)∗

)〉
.

Which gives Π(fδs)∗ = Π
(
(fδs)∗

)
and hence completes the proof.

We finish this section with a result for the reduced version of these algebras.

Theorem 3.25. Let G be an étale groupoid. Then Ar (G) = C∗
red (G).

Proof. The regular representation defined for étale categories on (1.4) is precisely the
same for étale groupoids

(
see for instance [66, Section 9.3]

)
and hence the result

follows.
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PART 2
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4 NON-ABELIAN EXTENSIONS OF GROUPOIDS AND THEIR GROUPOID RINGS

Here is an outline of this chapter. In Section 4.1, we provide the necessary
foundations on groupoids, Abelian groupoid cohomology, groupoid rings, and groupoid
crossed products. In Section 4.2, we develop a geometrically oriented classification
theory for non-Abelian extensions of groupoids by means of groupoid cohomology à
la Westman (see, e. g., Corollary 4.22, Corollary 4.24, and Corollary 4.29). We wish
to point out that our results, up to Theorem 4.23, are similar to the results obtained by
Blanco, Bullejos, and Faro in [12], but presented in a more geometric and computational
framework. Moreover, from Corollary 4.24 and on, our investigation goes further. In Sec-
tion 4.3, we study groupoid crossed products associated with groupoid extenions (see
Theorem 4.32) and show that the groupoid ring of a groupoid extension is isomorphic
to a groupoid crossed product associated with the building blocks of the extension (see
Corollary 4.33). We also extend our results to the realm of C∗-algebras (see Proposi-
tion 4.39). In Section 4.4, we make use of the methods developed in Section 4.2 to
provide a classification theory for groupoid crossed products (see, e. g., Proposition 4.42
and Theorem 4.44).

4.1 PRELIMINARIES

In this preliminary section we recall the most fundamental definitions and notation
used throughout this article.

4.1.1 Groupoids

There are several ways to view groupoids. In this article we consider groupoids
as objects with a geometric flavour. We refer the reader to [41, 55, 66] for equivalent
definitions as well as for examples.

By a groupoid we mean a non-empty set G with a distinguished subset G(0),
called the unit space of G, together with structure maps r ,s : G → G(0), called respec-
tively the range and the source maps, a partial multiplication (x ,y) 7→ xy in G defined
on the set G(2) := {(x ,y ) ∈ G × G : s(x) = r (y )} of composable elements of G, and a map
G ∋ z 7→ z–1 ∈ G, called inversion, satisfying the following properties for all x ,y ,z ∈ G
and u ∈ G(0):

(G1) r (u) = u = s(u);

(G2) r (z)z = z = zs(z);

(G3) r (z–1) = s(z) and s(z–1) = r (z);

(G4) z–1z = s(z) and zz–1 = r (z);

(G5) r (xy ) = r (x) and s(xy ) = s(y ) whenever s(x) = r (y );

(G6) (xy )z = x(yz) whenever s(x) = r (y ) and s(y ) = r (z).
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To emphasize the unit space G(0), we shall sometimes say that G is a groupoid over G(0).
Given a groupoid G, we write G(n) for the set of all n-tuples of composable

elements of G, that is, G(n) := {(x1, . . . ,xn) ∈ Gn : s(xi ) = r (xi+1), i = 1, . . . ,n – 1}. We
also bring to mind that a homomorphism of groupoids G and H is a map φ : G → H
such that φ(xy) = φ(x)φ(y) for all (x ,y) ∈ G(2) and φ(z–1) = φ(z)–1 for all z ∈ G. Note
that each homomorphism φ : G → H satisfies φ(G(0)) ⊆ H(0), thus inducing a map
φ0 : G(0) → H(0). An isomorphism of groupoids is simply a bijective homomorphism.

4.1.2 Groupoid cohomology

We shall also be concerned with groupoid cohomology. For convenience of the
reader we briefly recall the basics of this theory. For further reading we refer to [55,
Sec. 1].

Let C be a category and let X be a non-empty set. A C-bundle over X is a pair
(N ,p), where N is a non-empty set and p : N → X is a map with the property that each
fiber Nu := p–1(u), u ∈ X , is an object of C. If C is the category of groups (resp. rings),
then N is called a group (resp. ring) bundle. In particular, we refer to N as Abelian if
each fiber Nu is an Abelian group (resp. commutative ring). We use the symbol IsoC(N ),
or simply Iso(N ), to denote the isomorphism groupoid of the C-bundle (N ,p).

Each group bundle carries a natural groupoid structure. Indeed, let X be a set
and let (N ,p) be a group bundle over X . For each u ∈ X denote by 1u the unit of the
fiber Nu and put N (0) := {1u : u ∈ X }. Define the source and the range of n ∈ N to
be equal to 1p(n). Consider the partial multiplication and the inversion defined by the
respective operations on the fibers Nu, u ∈ X . This turns N into a groupoid over N (0).
Identifying N (0) with X , in which case p becomes the source and the range map, yields
the claim.

Let G be a groupoid. A G-module bundle is a pair ((A,p),L), where (A,p) is an
Abelian group (or ring) bundle over G(0) and L is a G-module structure on A, that is, L
consists of a family Lx : As(x) → Ar (x), x ∈ G, of group (or ring) isomorphisms such that
Lu = idAu

for all u ∈ G(0) and LxLy = Lxy whenever (x ,y ) ∈ G(2).
Let ((A,p),L) be a G-module bundle. For n ∈ N0 an n-cochain is a map h : G(n) →

A satisfying the following conditions:
1. p (h(x1, . . . ,xn)) = r (x1) for every (x1, . . . ,xn) ∈ G(n).

2. If n ≥ 1 and xi ∈ G(0) for some i ∈ {1, . . . ,n}, then h(x1, . . . ,xn) ∈ G(0).
We denote by Cn(G,A) the set of n-cochains and define d0

L : C0(G,A) → C1(G,A) by

d0
L (h)(x) := Lx (h(s(x))) – h(r (x)).

For n > 0 we consider the map dn
L : Cn(G,A) → Cn+1(G,A) given by

dn
L (h)(x1, . . . ,xn+1) := Lx1(h(x2, . . . ,xn+1)) +

n∑
i=1

(–1)nh(x1, . . . ,xixi+1, . . . ,xn+1)
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+ (–1)n+1h(x1, . . . ,xn).

This gives a chain complex
(
Cn(G,A),dn

L
)
n∈N0

. For n ∈ N0 we write Z n(G,A)L for the
n-cocycles, Bn(G,A)L for the n-coboundaries, and Hn(G,A)L := Z n(G,A)L/Bn(G,A)L for
the n-th cohomology group.

4.1.3 Groupoid rings

Let G be a groupoid and let R be a unital ring. We recall that the groupoid ring
R[G] is the set of all finitely supported functions f : G → R endowed with the addition
given by taking the pointwise sum and the product given by

(fg)(z) :=
∑
xy=z

f (x)g(y ).

For a finite subset F ⊆ G, we let δF ∈ R[G] stand for the corresponding charac-
teristic function. In particular, for F = {x} we simply write δx .

4.1.4 Groupoid crossed products

In what follows, we recall the foundations on groupoid crossed products (cf. [16,
48]).

Definition 4.1. Let G be a groupoid and let S be a ring. We say that S is G-graded if
there are additive subsets Sx of S, for x ∈ G, such that S = ⊕x∈GSx and SxSy ⊆ Sxy if
(x ,y ) ∈ G(2) and SxSy = {0} otherwise.

Definition 4.2. A G-graded ring S is object unital if for all u ∈ G(0) the ring Su is unital,
and for all x ∈ G and all r ∈ Sx the equalities 1Sr (x)

r = r1Ss(x)
= r hold.

Definition 4.3 (cf. [16, Def. 10 and Def. 12]). Let G be a groupoid and let S be a
G-graded ring which is object unital.

1. We put S0 :=
⊕

u∈G(0) Su and consider S0 as a G-graded ring as follows: If x ∈ G,
then (S0)x = Sx , if x ∈ G(0), and (S0)x = {0}, otherwise.

2. We say that a homogeneous element r ∈ Sx is object invertible if there exists
s ∈ Sx–1 such that sr = 1Ss(x)

and rs = 1Sr (x)
. We denote by S×

gr the set of all object
invertible elements of S.

3. We say that S is a G-crossed product if for all x ∈ G the relation S×
gr
⋂

Sx ̸= ∅
holds. By [16, Prop. 7(iv) ], all object crossed products are strongly graded.

Definition 4.4. Let G be a groupoid, let R be a unital ring bundle over G(0), and let R
be the ring

⊕
u∈G(0) Ru.

1. We call a G-crossed product S a G-crossed product over R if S0 = R.
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2. Two G-crossed products S and S′ over R are called equivalent if there exists a
graded isomorphism φ : S → S′ such that φ|R = idR .

3. We let Ext(G,R) stand for the set of all equivalence classes of G-crossed products
over R. Given a G-crossed product S over R, we write [S] for its class in Ext(G,R).

Definition 4.5 (cf. [16, Def. 13]). Let G be a groupoid, let R be a unital ring bun-
dle over G(0), and consider the induced group bundle R× over G(0) given by R× :=⋃
u∈G(0)

R×
u .

1. We define C1(G, Iso(R)) as the set of all families of maps {Mx : Rs(x) → Rr (x)}x∈G
of ring isomorphisms such that Mu = idRu

for all u ∈ G(0).

2. We write C2(G,R×) for the set of all maps τ : G(2) → R× such that τ(x ,y ) ∈ R×
r (x)

for all (x ,y ) ∈ G(2) and τ(x ,s(x)) = τ(r (x),x) = r (x) for all x ∈ G.

3. We call a pair (M,τ) ∈ C1(G, Iso(R)) × C2(G,R×) a factor system for (G,R) if the
following conditions are satisfied:

(C1) MxMy (n) = τ(x ,y )Mxy (n)τ(x ,y )–1 for all (x ,y ) ∈ G(2) and n ∈ Rs(y ),

(C2) τ(x ,y )τ(xy ,z) = Mx (τ(y ,z))τ(x ,yz) for all (x ,y ,z) ∈ G(3).

4. We let Z 2(G,R) stand for the set of all factor systems for (G,R).

Proposition 4.6 (cf. [16, Def. 14 and Prop. 16]). Let G be a groupoid and let R be a
unital ring bundle over G(0). For a factor system (M,τ) for (G,R) let R ×(M,τ) G be the
set of all functions f : G → R with finite support satisfying p ◦ f = r . Then R ×(M,τ) G
becomes a ring when equipped with the pointwise sum and the product(

fg
)
(z) :=

∑
xy=z

f (x)Mx (g(y ))τ(x ,y ).

Moreover, R×(M,τ)G is a G-graded ring which is a G-crossed product over R. Conversely,
any G-crossed product over R can be presented in this way.

Remark 4.7. Let G be a groupoid, let R be a unital ring bundle over G(0), and let (M,τ)
be a factor system for (G,R). For all x ,y ,z ∈ G such that xy = z the following identities
hold:

τ(x ,x–1) = Mx
(
τ(x–1,x)

)
, (4.1)

τ(z,y–1) = τ(x ,y )–1Mx
(
τ

(
y ,y–1

))
, (4.2)

τ(z,y–1)τ(x ,x–1) = Mz
(
τ(y–1,x–1)

)
τ(z,z–1), (4.3)

τ(z,y–1)Mx (n) = Mz
(

My–1(n)
)
τ(z,y–1), n ∈ Rs(x). (4.4)
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4.2 NON-ABELIAN EXTENSIONS OF GROUPOIDS AND THEIR CLASSIFICATION

In this section we develop a geometrically oriented classification theory for non-
Abelian extensions of groupoids in the spirit of Schreier, Baer, and Eilenberg-Mac Lane.

Throughout the following let G be a groupoid and let (N ,p) be a group bundle
over G(0), which we shall consider as a groupoid over G(0) with respect to its natural
groupoid structure described in Section 4.1.2.

Definition 4.8. A groupoid extension of G by N is a surjective homomorphism
j : E → G, where E is a groupoid over G(0), j0 is the identity map on G(0) and N = ker(j),
i. e., the set of elements e ∈ E such that j(e) ∈ G(0). Usually, we shall write

N → E j→ G

to denote a groupoid extension of G by N .

1. We call two groupoid extensions N → E j→ G and N → E ′ j ′→ G of G by N
equivalent if there exists a groupoid homomorphism φ : E → E ′ such that the
following diagram commutes:

N //

idN
��

E j //

φ
��

G
idG
��

N // E ′ j ′ // G

It is easily seen that any such φ is, in fact, an isomorphism of groupoids. We shall
sometimes say that such a map φ is an equivalence of groupoid extensions.

2. We denote by Ext(G,N ) the set of all equivalence classes of groupoid extensions
of G by N . Given an extension E of G by N , we write [E ] for its class in Ext(G,N ).

Remark 4.9. Note that all groupoids involved in a groupoid extension necessarily have
the same unit space.

Example 4.10. Let G be a groupoid. In [41, Chap. 1] the author introduces the notion
of a normal subgroupoid of G and of the corresponding quotient groupoid G/N of G by
N with projection map pr : G → G/N . In particular, each normal subgroupoid N of G
yields a groupoid extension of the form N → G pr→ G/N .

Example 4.11. Let G be a groupoid over G(0). A twist of G is a groupoid extension of G
by the trivial group bundle G(0) × T. Twists and their applications to operator algebras
and related fields have recently regained major interest (see, e. g., [37, 54, 55]).

Example 4.12. A geometrically oriented example of a groupoid extension is given as
follows: Let q : P → X be a locally trivial principal bundle with structure group G and
consider the natural action of G on P × G given by (p,g).h := (p.h,h–1g) for p ∈ P and



Chapter 4. Non-Abelian extensions of groupoids and their groupoid rings 79

g,h ∈ G. The corresponding quotient CG(P) := (P × G)/G is a group bundle over X , the
so-called conjugation bundle, which is of particular interest in gauge theory, because
its space of sections is isomorphic to the the gauge group of the principal bundle.
Now, let N → E π→ G be a short exact sequence of, possibly non-Abelian, Lie groups.
Furthermore, suppose that there exists a locally trivial principal bundle q′ : P ′ → X with
structure group E such that P ′/N ∼= P. Then we obtain a short exact sequence of the
corresponding conjugation bundles

CN (P ′) → CE (P ′)
j→ CG(P) with j([(p′,e)]) := [([p′],π(e))],

and therefore an extension of groupoids. By passing over to the corresponding spaces
of sections we get a short exact sequence of gauge groups. A particular simple example
of the above situation is given in case of a trivial principal bundle qX : X × G → X ,
qX (x ,g) = x . We may then look at q′

X : X × E → X , q′
X (x ,e) = x , which in turn leads to

the following extension of group bundles over X :

X × N → X × E
j→ X × G with j(x ,e) := (x ,π(e)).

We proceed to give a description of non-Abelian groupoid extensions in terms
of factor systems in analogy with the classical theory of non-Abelian group extensions
(see, e. g., [42, Chap. 4]).

Definition 4.13. 1. We define C1(G, Iso(N )) to be the set of all families of group
isomorphisms {Lx : Ns(x) → Nr (x)}x∈G such that Lu = idNu

for all u ∈ G(0).

2. We write C2(G,N ) for the set of all maps σ : G(2) → N such that σ(x ,y) ∈ Nr (x)
for all (x ,y ) ∈ G(2) and σ(x ,s(x)) = σ(r (x),x) = r (x) for all x ∈ G.

3. We call a pair (L,σ) ∈ C1(G, Iso(N )) × C2(G,N ) a factor system for (G,N ) if the
following conditions are satisfied:

(F1) LxLy (n) = σ(x ,y )Lxy (n)σ(x ,y )–1 for all (x ,y ) ∈ G(2) and n ∈ Ns(y ),

(F2) σ(x ,y )σ(xy ,z) = Lx (σ(y ,z))σ(x ,yz) for all (x ,y ,z) ∈ G(3).

We shall refer to Condition (F1) as the twisted action condition and to Condi-
tion (F2) as the twisted cocycle condition.

4. We let Z 2(G,N ) stand for the set of all factor systems for (G,N ).

Remark 4.14. For fixed L ∈ C1(G, Iso(N )) we denote by Z 2(G,N )L the set of all ele-
ments σ ∈ C2(G,N ) satisfying Condition (F1) and Condition (F2) in Definition 4.13. Note
that we may then write Z 2(G,N ) as the disjoint union

Z 2(G,N ) =
⋃
L

Z 2(G,N )L,
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which explains the shift in notation from 2-cocycles σ as functions to pairs (L,σ). If N is
a bundle of Abelian groups one can fix L and deal with each set Z 2(G,N )L separately,
but that is not possible for bundles of non-Abelian groups.

The purpose of the following example is to show that every groupoid extension of
G by N admits a factor system for (G,N ). There and subsequently, we use the notation

N ×(p,r ) G := {(n,x) ∈ N × G : p(n) = r (x)}.

Example 4.15. Let N → E j→ G be a groupoid extension of G by N . Furthermore, let
k : G → E be a normalized section for j , i. e., j ◦ k = idG and k|G(0) = idG(0). Then

φ : N ×(p,r ) G → E , (n,x) 7→ nk (x) (4.5)

is a bijection.

Proof of the claim. For each x ∈ E we have x = xk(j(x))–1k(j(x)) and xk(j(x))–1 ∈ N ,
the latter due to the section property. This shows that φ is surjective. To establish its
injectivity, we assume that nk(x) = mk(y) for some n,m ∈ N and x ,y ∈ G. Applying j
then gives x = y , and further n = m by cancellation.

Now, each x ∈ G defines a group isomorphism

Lx : Ns(x) → Nr (x), n 7→ k (x)nk (x)–1.

Furthermore, the bijectivity of the map φ implies that j–1(x) = Nr (x)k(x) for all x ∈ G.
Since j(k(x)k(y)) = xy for every (x ,y) ∈ G(2), we conclude that there exists a unique
element σ(x ,y ) ∈ Nr (x) such that

k (x)k (y ) = σ(x ,y )k (xy ). (4.6)

This gives a map σ : G(2) → N with σ(x ,y) ∈ Nr (x) for all (x ,y) ∈ G(2). These maps are
related as follows: for all (x ,y ) ∈ G(2) and n ∈ Ns(y ) we have

LxLy (n) = k (x)k (y )n(k (x)k (y ))–1

= σ(x ,y )k (xy )nk (xy )–1
σ(x ,y )–1

= σ(x ,y )Lxy (n)σ(x ,y )–1.

Also, associativity entails that (k (x)k (y )) k (z) = k (x) (k (y )k (z)) for all (x ,y ,z) ∈ G(3). The
left-hand side is equal to σ(x ,y )σ(xy ,z)k (xyz), while the right-hand side yields

k (x) (k (y )k (z)) = k (x)σ(y ,z)k (yz) = Lx (σ(y ,z))σ(x ,yz)k (xyz).

Consequently, σ(x ,y)σ(xy ,z) = Lx (σ(y ,z))σ(x ,yz) for all (x ,y ,z) ∈ G(3) by cancella-
tion. Finally, the fact that the section k is normalized makes it obvious that (L,σ) ∈
C1(G, Iso(N )) × C2(G,N ). Hence (L,σ) is a factor system for (G,N ).
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Proposition 4.16. Let (L,σ) be a factor system for (G,N ). Then N ×(p,r ) G becomes a
groupoid over {(u,u) | u ∈ G(0)} ∼= G(0) equipped with the following structure maps:

1. The source and the range are given by s(n,x) = s(x) and r (n,x) = r (x), respectively.
In particular, two elements (n,x) and (m,y) in N ×(p,r ) G are composable if and
only if x and y are.

2. For s(n,x) = r (m,y ) the product is given by (n,x)(m,y ) := (nLx (m)σ(x ,y ),xy ).

3. The inversion is given by (n,x)–1 :=
(
σ

(
x–1,x

)–1
Lx–1

(
n–1
)

,x–1
)

.

We write N ×(L,σ) G for the set N ×(p,r ) G endowed with the above groupoid structure.

Proof. Items (G1)-(G3) and (G5) in Section 4.1.1 are easily checked. Here, we just
focus on (G4) and (G6). Applying the twisted cocycle condition to the triple (x , x–1,x)
gives σ(x ,x–1) = Lx (σ(x–1,x)), and hence for (n,x) ∈ N ×(p,r ) G, we have

(n,x)(n,x)–1 =
(

nLx
(
σ(x–1,x)–1

)
Lx
(

Lx–1(n–1)
)
σ(x ,x–1),r (x)

)
=
(

nLx
(
σ(x–1,x)–1

)
σ(x ,x–1)n–1,r (x)

)
= (nn–1,r (x)) = (r (x),r (x)).

Similarly, we get (n,x)–1(n,x) = (s(x),s(x)). Next, let (n,x),(m,y), (l ,z) ∈ N ×(p,r ) G be
such that (x ,y ,z) ∈ G(3). Then a straightforward computation yields(

(n,x)(m,y )
)
(l ,z) = (nLx (m)σ(x ,y )Lxy (l)σ(x ,y )–1

σ(x ,y )σ(xy ,z),xyz)

= (nLx (m)Lx (Ly (l))Lx (σ(y ,z))σ(x ,yz),xyz)

= (nLx
(
mLy (l)σ(y ,z)

)
σ(x ,yz),xyz) = (n,x)

(
(m,y )(l ,z)

)
.

Summarizing, we get the following result:

Corollary 4.17. N ×(L,σ)G is a groupoid extension of G by N for any factor system (L,σ)
for (G,N ).

Proposition 4.18. Let N → E j→ G be a groupoid extension of G by N . Furthermore,
let k : G → E be a normalized section for j , i. e. j ◦ k = idG and k|G(0) = idG(0), and let
(L,σ) be the associated factor system. Then N ×(L,σ) G and E are equivalent groupoid
extensions via the map φ : N ×(L,σ) G → E given by (n,x) 7→ nk (x).

Proof. By Example 4.15, it suffices to verify the algebraic conditions. Indeed, we first
note that φ(n,s(n)) = nk(s(n)) = n for all n ∈ N and j(φ(n,x)) = j(n)j(k(x)) = x for all
(n,x) ∈ N ×(L,σ) G. Now, let (n,x),(m,y ) ∈ N ×(L,σ) G. Then

φ((n,x)(m,y )) = φ(nLx (m)σ(x ,y ),xy ) = nLx (m)σ(x ,y )k (xy )

= (nk (x))(mk (y )) = φ(n,x))φ(m,y ).

Moreover, since φ(u) = u for all u ∈ G(0), we find φ((n,x)–1) = φ(n,x)–1.
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Definition 4.19. We denote by C1(G,N ) the group of all maps h : G → N satisfying
h(x) ∈ Nr (x) for all x ∈ G and h(u) = u for all u ∈ G(0) with respect to the pointwise
product. Note that this definition extends the definition of 1-cochains in Section 4.1.2 to
the non-Abelian case.

Proposition 4.20. For h ∈ C1(G,N ) and a factor system (L,σ) ∈ Z 2(G,N ) we define

(h.L)x (n) := h(x)Lx (n)h(x)–1, x ∈ G, n ∈ Ns(x), (4.7)

(h.σ)(x ,y ) := h(x)Lx (h(y ))σ(x ,y )h(xy )–1, (x ,y ) ∈ G(2). (4.8)

Then h.(L,σ) := (h.L,h.σ) is a factor system for (G,N ) and the map

α : C1(G,N ) × Z 2(G,N ) → Z 2(G,N )

given by αh(L,σ) := α(h,(L,σ)) := h.(L,σ) defines an action of C1(G,N ) on Z 2(G,N ).

Proof. We only show that h.(L,σ) satisfies the twisted action condition (F1) and the
twisted cocycle condition (F2). Let (x ,y ) ∈ G(2) and n ∈ Ns(y ). Then

(h.σ)(x ,y )(h.L)xy (n)(h.σ)(x ,y )–1

= h(x)Lx (h(y ))σ(x ,y )Lxy (n)σ(x ,y )–1Lx (h(y ))–1h(x)–1

= h(x)Lx (h(y ))LxLy (n)Lx (h(y ))–1h(x)–1

= h(x)Lx
(
h(y )Ly (n)h(y )–1)h(x)–1 = (h.L)x

(
(h.L)y (n)

)
,

which establishes the twisted action condition (F1). Now, let (x ,y ,z) ∈ G(3). Then

(h.σ)(x ,y )(h.σ)(xy ,z)

= h(x)Lx (h(y ))LxLy (h(z)Lx (σ(y ,z))σ(x ,yz)h(xyz)–1

= h(x)Lx
(
h(y )Ly (h(z))σ(y ,z)h(yz)–1)Lx (h(yz))σ(x ,yz)h(xyz)–1

= (h.L)x
(
(h.σ)(y ,z)

)
(h.σ)(x ,yz),

and the twisted cocycle condition (F2) is proved. Next, we show that αh′αh = αh′h for all
h,h′ ∈ C1(G,N ). For this let h,h′ ∈ C1(G,N ), let (L,σ) ∈ Z 2(G,N ), and let (x ,y) ∈ G(2).
We see at once that h′.(h.L) = (h′h).L, and hence it remains to verify that h′.(h.σ) =
(h′h).σ. Indeed,

h′.(h.σ)(x ,y ) = h′(x)(h.L)x (h′(y ))(h.σ)(x ,y )h′(xy )–1

= h′(x)h(x)Lx (h′(y ))Lx (h(y ))σ(x ,y )h(xy )–1h′(xy )–1

= h′h(x)Lx
(
(h′h)(y )

)
σ(x ,y )(h′h)(xy )–1 = (h′h).σ(x ,y )

By Proposition 4.20, we have an equivalence relation on the set Z 2(G,N ) of all
factor systems given by

(L,σ) ∼ (L′,σ′) ⇐⇒
(
∃h ∈ C1(G,N )

)
(L′,σ′) = h.(L,σ).

That is, two factor systems are equivalent if they are in the same orbit under the action α.
We denote the corresponding orbit space of α by Z 2(G,N )/C1(G,N ).
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Theorem 4.21. For two factor systems (L,σ), (L′,σ′) ∈ Z 2(G,N ) the following conditions
are equivalent:

1. N ×(L,σ) G and N ×(L′,σ′) G are equivalent groupoid extensions of G by N .

2. (L,σ) ∼ (L′,σ′), i. e., there exists h ∈ C1(G,N ) such that (L′,σ′) = h.(L,σ).
If these conditions are satisfied, then the map

ψ : N ×(L,σ) G → N ×(L′,σ′) G, (n,x) 7→ (nh(x),x)

is an equivalence of groupoid extensions and, further, all equivalences of extensions
N ×(L,σ) G → N ×(L′,σ′) G are of this form.

Proof. Let N ×(L′,σ′) G and N ×(L,σ) G be equivalent groupoid extensions of G by N
and let φ : N ×(L′,σ′) G → N ×(L,σ) G be a homomorphism implementing the equiv-
alence. Then there exists a map φ0 : N ×(L′,σ′) G → N such that φ has the form
φ(n,x) = (φ0(n,x),x). It is easily seen that φ0(n,x) ∈ Nr (x) for all (n,x) ∈ N ×(L′,σ′) G and
φ0(n,s(n)) = 1p(n) for all n ∈ N. Moreover, for each (n,x) ∈ N ×(L′,σ′) G we find

φ(n,x) = φ(n,r (x))φ(r (x),x) = (n,r (x))(φ0(r (x),x),x) = (nφ0(r (x),x),x).

Consequently, the map h : G → N given by h(x) := φ0(r (x),x) belongs to C1(G,N )
and satisfies φ(n,x) = (nh(x),x). To proceed, let (n,x),(m,y) ∈ N ×(L′,σ′) G. Then
φ
(
(n,x)(m,y )

)
= φ(n,x)φ(m,y ), and hence

(nL′x (m)σ′(x ,y )h(xy ),xy ) = (nh(x)Lx (mh(y ))σ(x ,y ),xy ). (4.9)

Considering m ∈ G(0) and y ∈ G(0), we thus get (L′,σ′) = h.(L,σ). If, conversely, (L′,σ′) =
h.(L,σ) for some h ∈ C1(G,N ) , then we define

φ : N ×(L′,σ′) G → N ×(L,σ) G, (n,x) 7→ (nh(x),x)

and the considerations above show that φ implements an equivalence of groupoids.

Corollary 4.22. The map Z 2(G,N ) → Ext(G,N ) sending (L,σ) to [N ×(L,σ) G] induces a
bijection H2(G,N ) := Z 2(G,N )/C1(G,N ) → Ext(G,N ).

In what follows, we call an element L ∈ C1(G, Iso(N )) outer if there exists σ ∈
C2(G,N ) such that (L,σ) satisfies the twisted action condition (F1). We emphasize that

L ∼ L′ ⇐⇒
(
∃h ∈ C1(G,N )

)
L′ = h.L

defines an equivalence relation on the set of all outer elements. Given an outer element
L ∈ C1(G, Iso(N )), we denote by [L] the equivalence class of L and call it a G-kernel in
accordance with the notion of kernels in the classical theory of non-Abelian extensions
of groups (see, e. g., [42, Chap. 4]).
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The preceding proposition shows in particular that if N ×(L,σ) G and N ×(L′,σ′) G
are equivalent extensions then [L] = [L′]. We write Ext(G,N )[L] for the set of equivalence
classes of groupoid extensions of G by N corresponding to the G-kernel [L]. Moreover,
we put

Z (N ) :=
⋃

u∈G(0)

Z (Nu)

and consider the induced G-module bundle (Z (N ),L) as well as its cohomology theory
(cf. Section 4.1.2).

Theorem 4.23. Suppose that L ∈ C1(G, Iso(N )) is outer with Ext(G,N )[L] ̸= ∅. Then the
following assertions hold:

1. Each class in Ext(G,N )[L] can be represented by one of the form N ×(L,σ) G.

2. Let (L,σ′) and (L,σ) be factor systems for (G,N ). Then σ–1 ·σ′ ∈ Z 2(G,Z (N ))L, and
moreover (L,σ′) ∼ (L,σ) if and only if σ–1 · σ′ ∈ B2(G,Z (N ))L.

Proof. 1. From Proposition 4.18 we know that each groupoid extension of G by
N is equivalent to one of the form N ×(L′,σ′) G. If [L′] = [L] and h ∈ C1(G,N )
satisfies L′ = h.L, then h–1.(L′,σ′) = (L,h–1.σ′) so that σ′′ := h–1.σ′ satisfies
[N ×(L′,σ′) G] = [N ×(L,σ′′) G], which proves the first claim.

2. We first note that σ(x ,y)–1σ′(x ,y) is central for every (x ,y) ∈ G(2), because
σ(x ,y)nσ(x ,y)–1 = σ′(x ,y)nσ′(x ,y)–1 for all (x ,y) ∈ G(2) and n ∈ Nr (x) by the
twisted action condition. Now, we check that σ–1 · σ′ is a 2-cocycle. For this let
(x ,y ,z) ∈ G(3). Then(

σ
–1 · σ′

)
(x ,y )

(
σ

–1 · σ′
)
(xy ,z)

= σ
–1(xy ,z)σ–1(x ,y )σ′(x ,y )σ′(xy ,z)

= σ
–1(x ,yz)Lx

(
σ(y ,z)–1)Lx

(
σ
′(y ,z)

)
σ
′(x ,yz)

= Lx
(
σ(y ,z)–1

σ
′(y ,z)

)
σ

–1(x ,yz)σ′(x ,yz)

= Lx
((
σ

–1 · σ′
)
(y ,z)

)(
σ

–1 · σ′
)
(x ,yz),

where we have used the twisted cocycle condition (F2) to get the third equation.

For the second part we first assume that (L,σ′) ∼ (L,σ). Then there exists h ∈
C1(G,N ) such that (L,σ′) = h.(L,σ). In particular Lx (n) = h(x)Lx (n)h(x)–1 holds
for all x ∈ G and n ∈ Ns(x), and hence h ∈ C1(G,Z (N )). Since h is central and
σ′ = h.σ we further obtain

σ(x ,y )–1
σ
′(x ,y ) = h(x)Lx (h(y ))h(xy )–1 = d1

L (h) ∈ B2(G,Z (N ))L.

If, conversely, σ–1σ′ = d1
L (h) for h ∈ C1(G,Z (N )), then (L,σ′) = h.(L,σ).
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Corollary 4.24. For a G-kernel [L] with Ext(G,N )[L] ≠ ∅ the following map is a well-
defined simply transitive action:

H2(G,Z (N ))L × Ext(G,N )[L] → Ext(G,N )[L],
(

[ρ],[N ×(L,σ) G]
)
7→ [N ×(L,σ·ρ) G]

Remark 4.25. Suppose A is an Abelian group bundle. A factor system (L,σ) for (G,A)
consists of a G-module structure L on A, and an element σ ∈ Z 2(G,A)L, and we write
A×σ G for the corresponding groupoid extension of A×(L,σ) G. Furthermore, we have
L ∼ L′ if and only if L = L′. Hence a G-kernel [L] is the same as a G-module structure L on
A and Ext(G,A)L := Ext(G,A)[L] is the set of groupoid extensions of G by A for which the
associated G-module structure on A is L. According to Corollary 4.24, the equivalence
classes of groupoid extensions correspond to cohomology classes of cocycles, so that
the map

H2(G,A)L → Ext(G,A)L, [σ] 7→ [A×σ G]

is a well-defined bijection. In fact, by [55, Prop 1.14] it is not only a bijection but also a
group isomorphism.

We conclude this section with a criterion for the nonemptyness of the set Ext(G,N )[L].
To the best of our knowledge, such a criterion has not been worked out yet.

Lemma 4.26. Suppose that (L,σ) ∈ C1(G, Iso(N ))×C2(G,N ) satisfies the twisted action
condition (F1). Then the map χ(L,σ) : G(3) → Z (N ) given by

χ(L,σ)(x ,y ,z) := Lx (σ(y ,z))σ(x ,yz)σ(xy ,z)–1
σ(x ,y )–1, (x ,y ,z) ∈ G(3)

defines a 3-cocycle, i. e., χ(L,σ) ∈ Z 3(G,Z (N ))L.

Proof. For ease of notation we simply put χ := χ(L,σ). Let (x ,y ,z) ∈ G(3), let m ∈ Nr (x),
and define n = L–1

xyz (m). Then

σ(x ,y )σ(xy ,z)mσ(xy ,z)–1
σ(x ,y )–1 = σ(x ,y )LxyLz (n)σ(x ,y )–1 = LxLyLz (n)

and further

LxLyLz (n) = Lx
(
σ(y ,z)Lyz (n)σ(y ,z)–1)

= Lx
(
σ(y ,z)

)(
LxLyz (n)

)
Lx
(
σ(y ,z)

)–1

= Lx
(
σ(y ,z)

)
σ(x ,yz)mσ(x ,yz)–1Lx

(
σ(y ,z)

)–1.

Therefore Lx
(
σ(y ,z)

)
σ(x ,yz) and σ(x ,y)σ(xy ,z) define the same inner automorphism

of Nr (x) and hence χ(x ,y ,z) = Lx
(
σ(y ,z)

)
σ(x ,yz)σ(xy ,z)–1σ(x ,y )–1 is a central element.

This shows that the map χ is well-defined. We proceed to show that χ lies in the kernel
of the map d3

L : C3(G,Z (N ))L → C4(G,Z (N ))L given by

d3
L (χ)(x ,y ,z,w) := Lx (χ(y ,z,w))χ(xy ,z,w)–1

χ(x ,yz,w)χ(x ,y ,zw)–1
χ(x ,y ,z).
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Below we explicitly write down all the factors that we have to multiply. We also empha-
size that they can be multiplied in any order, because χ is central.

• χ(xy ,z,w)–1 = σ(xy ,z)σ(xyz,w)σ(xy ,zw)–1Lxy (σ(z,w)–1).

• χ(x ,y ,zw)–1 = σ(x ,y )σ(xy ,zw)σ(x ,yzw)–1Lx (σ(y ,zw)–1).

• χ(x ,yz,w) = Lx (σ(yz,w))σ(x ,yzw)σ(xyz,w)–1σ(x ,yz)–1.

• χ(x ,y ,z) = Lx (σ(y ,z))σ(x ,yz)σ(xy ,z)–1σ(x ,y )–1.

• Lx (χ(y ,z,w)) = Lx
(

Ly
(
σ(z,w)

)
σ(y ,zw)σ(yz,w)–1σ(y ,z)–1

)
.

Moreover, for simplicity of the presentation we introduce the following auxiliary ele-
ments:

• n1 := L–1
zw

(
σ(z,w)–1L–1

xy
(
σ(x ,y )

))
,

• n2 := L–1
yzw

(
σ(y ,zw)–1σ(yz,w)

)
,

• n3 := Ly
(

Lz
(

Lw (n1n2)L–1
yz (σ(y ,z))

))
,

• n4 := Ly
(
σ(z,w)

)
σ(y ,zw)σ(yz,w)–1.

Using repeatedly the twisted action condition (F1), we obtain

χ(xy ,z,w)–1
χ(x ,y ,zw)–1 = σ(xy ,z)σ(xyz,w)Lxyzw (n1)σ(x ,yzw)–1Lx (σ(y ,zw))–1,

and further

χ(xy ,z,w)–1
χ(x ,y ,zw)–1

χ(x ,yz,w) = σ(xy ,z)Lxyz (Lw (n1n2))σ(x ,yz)–1.

It follows that

χ(xy ,z,w)–1
χ(x ,y ,zw)–1

χ(x ,yz,w)χ(x ,y ,z) = σ(x ,y )–1Lx (n3). (4.10)

To proceed, we look more closely at n3. Indeed, since LyLzw (n2) = σ(yz,w)σ(y ,zw)–1,
we conclude that

n3 = LyLz
(
Lw (n1n2)

)
LyLz

(
L–1

yz (σ(y ,z))
)

= LyLz
(
Lw (n1n2)

)
σ(y ,z)

= Ly
(
σ(z,w)Lzw (n1)Lzw (n2)σ(z,w)–1

)
σ(y ,z)

= Ly
(

L–1
xy (σ(x ,y ))Lzw (n2)σ(z,w)–1

)
σ(y ,z)

= Ly
(
L–1

xy (σ(x ,y ))
)
σ(yz,w)σ(y ,zw)–1Ly

(
σ(z,w)–1)

σ(y ,z).

Combining the previous expression with Equation ((4.10)), we get

χ(xy ,z,w)–1
χ(x ,y ,zw)–1

χ(x ,yz,w)χ(x ,y ,z) = σ(x ,y )–1Lx (n3)

= Lx
(
σ(yz,w)σ(y ,zw)–1Ly

(
σ(z,w)–1)

σ(y ,z)
)

= Lx
(
n–1

4 σ(y ,z)
)
,
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and finally that

d3
L (χ)(x ,y ,z,w) = Lx

(
n–1

4 σ(y ,z)
)
Lx (χ(y ,z,w)) = Lx

(
n–1

4 σ(y ,z)χ(y ,z,w)
)

= Lx
(
n–1

4 χ(y ,z,w)σ(y ,z)
)

= Lx
(
n–1

4 n4σ(y ,z)–1
σ(y ,z)

)
= 1Nr (x)

.

Theorem 4.27. Suppose that (L,σ), (L′,σ′) ∈ C1(G, Iso(N ))×C2(G,N ) satisfy the twisted
action condition (F1) and that L′ ∼ L. Then χ := χ(L,σ) and χ′ := χ(L,′σ′) are cohomolo-
gous 3-cocycles in Z 3(G,Z (N ))L.

Proof. To begin with, we note that L′ ∼ L implies that L′ = L on the center Z (N ), and
hence the cohomology groups H3(G,Z (N ))L and H3(G,Z (N ))L′ are, in fact, identical. To
show that χ and χ′ are cohomologous, we first assume that L′ = L and recall that in this
case σ–1 · σ′ takes values in the center by item 2 of Theorem 4.23. Since we also have
σ–1 · σ′ = σ′ · σ–1, it follows that

χ
′(x ,y ,z)χ(x ,y ,z)–1

= Lx
(
σ
′(y ,z)

)
σ
′(x ,yz)σ′(xy ,z)–1

σ
′(x ,y )–1

σ(x ,y )σ(xy ,z)σ(x ,yz)–1Lx
(
σ(y ,z)–1)

= Lx
(
σ
′(y ,z)

)(
σ
′ · σ–1)(x ,yz)Lx

(
σ(y ,z)–1)(

σ
′–1 · σ

)
(xy ,z)

(
σ
′–1 · σ

)
(x ,y )

= Lx
((
σ
′ · σ–1)(y ,z)

)(
σ
′ · σ–1)(x ,yz)

(
σ
′–1 · σ

)
(xy ,z)

(
σ
′–1 · σ

)
(x ,y )

= d2
L
(
σ

–1 · σ′
)
(x ,y ,z).

Now, if L′ = h.L for some h ∈ C1(G,N ) and θ := h.σ is as in Equation (4.8), then
Proposition 4.20 implies that (L′,θ) satisfies the twisted action condition, and further

L′x (θ(y ,z))θ(x ,yz)h(xyz)

= L′x (θ(y ,z))h(x)Lx (h(yz))σ(x ,yz)

= L′x
(
θ(y ,z)h(yz)

)
h(x)σ(x ,yz)

= L′x
(
h(y )Ly (h(z))σ(y ,z)

)
h(x)σ(x ,yz)

= L′x
(
L′y (h(z))h(y )

)
L′x (σ(y ,z))h(x)σ(x ,yz)

= L′x
(
L′y (h(z))h(y )

)
h(x)Lx (σ(y ,z))σ(x ,yz)

= L′x
(
L′y (h(z))h(y )

)
h(x)χ(x ,y ,z)σ(x ,y )σ(xy ,z)

= χ(x ,y ,z)L′x
(
L′y (h(z))

)
L′x (h(y ))h(x)σ(x ,y )σ(xy ,z)

= χ(x ,y ,z)L′x
(
L′y (h(z))

)
h(x)Lx (h(y ))σ(x ,y )σ(xy ,z)

= χ(x ,y ,z)L′x
(
L′y (h(z))

)
θ(x ,y )h(xy )σ(xy ,z)

= χ(x ,y ,z)θ(x ,y )L′xy (h(z))h(xy )σ(xy ,z)

= χ(x ,y ,z)θ(x ,y )h(xy )Lxy (h(z))h(xy )σ(xy ,z)

= χ(x ,y ,z)θ(x ,y )θ(xy ,z)h(xyz).

Hence χ = χ(L′,θ), and combining this with the first step completes the proof.
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Corollary 4.28. Suppose that L ∈ C1(G, Iso(N )) is outer and choose σ ∈ C2(G,N )
such that (L,σ) satisfies the twisted action condition (F1). Then the cohomology class
[χ(L,σ)] ∈ H3(G,Z (N ))L does not depend on the choice of σ and is constant on the
equivalence class [L].

On account of Corollary 4.28, each outer element L ∈ C1(G, Iso(N )) gives rise
to a characteristic class χ(L) ∈ H3(G,Z (N ))L.

Corollary 4.29. For a G-kernel [L] we have Ext(G,N )[L] ≠ ∅ if and only if the character-
istic class χ(L) ∈ H3(G,Z (N ))L is trivial.

Proof. If there exists a groupoid extension E of G by N corresponding to [L], then we
may w. l. o. g. assume that it is of the form N ×(L,σ) G for some factor system (L,σ) for
(G,N ). This in particular implies that χ(L,σ) = 1 and hence the characteristic class χ(L) ∈
H3(G,Z (N ))L is trivial. If, conversely, L ∈ C1(G, Iso(N )) is outer and χ(L) ∈ H3(G,Z (N ))L
is trivial, then there exists σ ∈ C2(G,N ) and ρ ∈ C2(G,Z (N )) such that χ(L,σ) = χ(L,ρ–1),
so that (L,σ · ρ) is a factor system. It follows that N ×(L,σ·ρ) G is a groupoid extension of
G by N corresponding to [L]. This completes the proof.

4.3 GROUPOID RINGS OF GROUPOID EXTENSIONS

Here and subsequently, let N → E j→ G be a groupoid extension. In this section
we associate certain groupoid crossed products (cf. Section 4.1.4) with the groupoid
extension, study their relationship, and establish, as an application, that the groupoid
ring of E is isomorphic to a G-crossed product over the groupoid ring of N .

For a start we note that for (u,v ) ∈ G(0) there exists x ∈ E such that u = sE (x) and
v = rE (x) if and only if there exists y ∈ G such that u = sG(y) and v = rG(y). Hence the
equivalence relations u ∼E v ⇐⇒ there exists x ∈ E such that sE (x) = u and rE (x) = v ,
and u ∼G v ⇐⇒ there exists x ∈ G such that sG(x) = u and rG(x) = v generate the
same partition {Sλ}λ∈Λ of G(0). To proceed, let {Rλ}λ∈Λ be a family of unital rings. Below
we present two constructions of factor systems in the sense of Definition 4.5:

1. For each u ∈ G(0) we put Ru := Rλ[Nu], where λ is the unique element in
Λ such that u ∈ Sλ, and and consider the ring bundle R :=

⋃
u∈G(0) Ru over

G(0). Furthermore, let k : G → E be a normalized section for j and let (L,σ)
be the associated factor system (cf. Example 4.15). Then a straightforward
computation shows that the family of maps

Mx : Rs(x) → Rr (x), Mx (f ) := f ◦ L–1
x , x ∈ G,

and

τ : G(2) → R×, τ(x ,y ) := δσ(x ,y )

yields a factor system (M,τ) for (G,R).
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2. For each u ∈ G(0) we put R′
u := Rλ, where λ is the unique element in Λ such

that u ∈ Sλ. Then R′ :=
⋃

u∈G(0) R′
u is a ring bundle over G(0) and the family

of maps

M ′
x = id : R′

s(x) → R′
r (x), x ∈ E ,

and

τ
′ : E (2) → R×, τ

′(x ,y ) = 1R′
s(x)

yields a factor system for (E ,R′).
For expedience we put all of this on record:

Proposition 4.30. Let N → E j→ G be a groupoid extension and let {Rλ}λ∈Λ be a family
of unital rings, where Λ indexes the partition of G(0) w. r. t. the equivalence relation ∼G .
Then the following assertions hold:

1. If k : G → E is a normalized section for j and (L,σ) is the associated factor system,
then (M,τ) defined in item 1 above is a factor system for (G,R).

2. (M ′,τ′) defined in item 2 above is a factor system for (E ,R′).

Remark 4.31. 1. We shall refer to (M,τ) as the factor system associated with {Rλ}λ∈Λ
and (L,σ). If Rλ = R for all λ ∈ Λ, then we denote R by R[N ].

2. We shall refer to (M ′,τ′) as the trivial factor system system associated with E and
{Rλ}λ∈Λ. Note that if Rλ = R for all λ ∈ Λ, then the associated groupoid crossed
product is simply the groupoid ring R[E ].

Having disposed of these preparatory steps, we are now ready to prove the
following:

Theorem 4.32. Let N → E j→ G be a groupoid extension and let {Rλ}λ∈Λ be a family
of unital rings, where Λ indexes the partition of G(0) w. r. t. the equivalence relation ∼G .
Furthermore, let k : G → E be a normalized section for j , let (L,σ) be the associated
factor system, and let (M,τ) be the factor system associated with {Rλ}λ∈Λ and (L,σ).
Finally, let (M ′,τ′) be the trivial factor system associated with E and {Rλ}λ∈Λ. Then the
respective groupoid crossed products R×(M,τ) G and R′ ×(M ′,τ′) E (cf. Proposition 4.6)
are isomorphic.

Proof. Let us consider the maps

Φ : R′ ×(M ′,τ′) E → R×(M,τ) G, Φ(f )(x)(n) = f (nk (x))

and

Ψ : R×(M,τ) G → R′ ×(M ′,τ′) E , Ψ(f )(e) = f (x)(n),

where in the latter case (n,x) ∈ N × G is the unique element such that e = nk(x)
(cf. Example 4.15). We first establish that Φ and Ψ are mutually inverses. For this, let
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f ∈ R ⋊(M,τ) G, x ∈ G, and n ∈ Nr (x). Then Φ(Ψ(f ))(x)(n) = Ψ(f )(nk(x)) = f (x)(n).
Moreover, for f ∈ R′ ×(M ′,τ′) E and e = nk(x) ∈ E we have Ψ(Φ(f ))(e) = Φ(f )(x)(n) =
f (nk (x)) = f (e), which proves the assertion. Since Φ is clearly linear, it remains to show
that Φ is multiplicative. To this end, let z ∈ G and let n′ ∈ Nr (z). Then

{(s,t) ∈ E (2) : st = n′k (z)} =
{(

nk (x), L–1
x (m)k (y )

)
: xy = z, nm = n′σ(x ,y )–1}.

Proof of the equality. Let (s,t) ∈ E (2) be such that st = n′k(z) and write s = nk(x) and
t = m′k(y). Put m := Lx (m′) and note that n′k(z) = nk(x)m′k(y) = nmσ(x ,y)k(xy).
By uniqueness, we may conclude that xy = z and nm = n′σ(x ,y)–1, and therefore
(s,t) =

(
nk (x), L–1

x (m)k (y )
)

. The inverse inclusion follows from multiplication.

Now, a standard calculation shows that

Φ(f )Φ(g)(z)(n′) =
∑
xy=z

(
Φ(f )(x)Mx (Φ(g)(y ))τ(x ,y )

)
(n′)

=
∑
xy=z

∑
nm=n′σ(x ,y )–1

Φ(f )(x)(n)Mx (Φ(g)(y ))(m)

=
∑
xy=z

∑
nm=n′σ(x ,y )–1

f (nk (x))g
(

L–1
x (m)k (y )

)
=

∑
st=n′k (z)

f (s)g(t) =
∑

st=n′k (z)

f (s)M ′
s(g(t))τ′(s,t) = Φ(fg)(z)(n′),

which in turn completes the proof.

Corollary 4.33. Under the hypotheses of Theorem 4.32 with Rλ = R for all λ ∈ Λ we
have that R[N ] ×(M,τ) G is isomorphic to the groupoid ring R[E ] (cf. Remark 4.31).

In the remaining part of this section we extend Corollary 4.33 to the realm of
C∗-algebras. For this we first need to suitably adapt Definition 4.5:

Definition 4.34. Let G be a groupoid and let R be a bundle of normed unital ∗-algebras
over G(0). A ∗-factor system for (G,R) is a factor system (M,τ) in the sense of Defini-
tion 4.5 with the additional property that M is a family of isometric ∗-isomorphisms and
that τ(x ,y )–1 = τ(x ,y )∗ for all (x ,y ) ∈ G(2).

Example 4.35. Let G be a groupoid, let N be a group bundle over G(0), and let (L,σ)
be a factor system for (G,N ). Then the construction in item 1 above with Rλ = C for all
λ ∈ Λ yields, in fact, a ∗-factor system for (G,C[N ]).

Proposition 4.36. Let G be a groupoid, let R be a bundle of normed unital ∗-algebras
over G(0), and let (M,τ) be a ∗-factor system for (G,R). Then the ring R ×(M,τ) G be-
comes a normed ∗-algebra when endowed with the norm ∥f∥1 :=

∑
x∈G ∥f (x)∥ and the

involution f ∗(x) := τ(x ,x–1)–1Mx
(

f (x–1)
)∗

, x ∈ G.
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Proof. Clearly, ∥ · ∥1 is a norm and the involution is linear conjugate and isometric. For
f , g ∈ R ×(M,τ) G we now check that ∥fg∥1 ≤ ∥f∥1∥g∥1, (f ∗)∗ = f , and (fg)∗ = g∗f ∗.
Indeed, we have

∥fg∥1 ≤
∑
z∈G

∑
(x ,y )∈G(2)

xy=z

∥f (x)∥∥g(y )∥ =
∑

(x ,y )∈G(2)

∥f (x)∥∥g(y )∥

≤

(∑
x∈G

∥f (x)∥

)(∑
y∈G

∥g(y )∥

)
= ∥f∥1∥g∥1.

Moreover, for each x ∈ G we find

(f ∗)∗(x) = τ(x ,x–1)–1Mx
(
τ(x–1,x)–1Mx–1(f (x))∗

)∗
= τ(x ,x–1)–1Mx

((
Mx–1(f (x))τ(x–1,x)

)∗ )∗
= τ(x ,x–1)–1MxMx–1 (f (x)) Mx

(
τ(x–1,x)

)
((4.1))

= τ(x ,x–1)–1MxMx–1 (f (x)) τ(x ,x–1) = Mr (x)(f (x)) = f (x).

Finally, for z ∈ G a straightforward computation gives

g∗f ∗(z) =
∑
xy=z

τ(x ,x–1)–1Mx
(

g(x–1)
)∗

Mx
(
τ(y ,y–1)–1My

(
f (y–1)

)∗)
τ(x ,y )

=
∑
xy=z

τ(x ,x–1)–1Mx
(

g(x–1)
)∗

Mx
(

My
(

f (y–1)
)
τ(y ,y–1)

)∗
τ(x ,y )

=
∑
xy=z

τ(x ,x–1)–1
(
τ(x ,y )–1Mx

(
My
(

f (y–1)
)
τ(y ,y–1)

)
Mx
(

g(x–1)
))∗

=
∑
xy=z

τ(x ,x–1)–1
(

Mz
(

f (y–1)
)
τ(x ,y )–1Mx

(
τ(y ,y–1)

)
Mx
(

g(x–1)
))∗

((4.2))
=

∑
xy=z

τ(x ,x–1)–1
(

Mz
(

f (y–1)
)
τ(z,y–1)Mx

(
g(x–1)

))∗
((4.4))

=
∑
xy=z

τ(x ,x–1)–1
(

Mz
(

f (y–1)My–1

(
g(x–1)

))
τ(z,y–1)

)∗
=
∑
xy=z

τ(x ,x–1)–1
τ(z,y–1)–1Mz

(
f (y–1)My–1

(
g(x–1)

))∗
((4.3))

=
∑
xy=z

τ(z,z–1)–1Mz
(

f (y–1)My–1

(
g(x–1)

)
τ(y–1,x–1)

)∗
= τ(z,z–1)–1Mz

( ∑
xy=z

f (y–1)My–1

(
g(x–1)

)
τ(y–1,x–1)

)∗
= τ(z,z–1)–1Mz

(
fg(z–1)

)
= (fg)∗(z).

Definition 4.37. Let G be a groupoid, let R be a bundle of normed unital ∗-algebras
over G(0), and let (M,τ) be a ∗-factor system for (G,R). The C∗-algebra for (G,R,M,τ) is
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the universal enveloping C∗-algebra of the normed ∗-algebra (R×(M,τ) G,∥ · ∥1,∗) and
will be denoted by C∗(G,R,M,τ).

Example 4.38. Let N → E j→ G be a groupoid extension and let (M ′,τ′) be the triv-
ial factor system associated with E and the family Rλ = C, λ ∈ Λ (cf. item 2). Then
C∗(E ,R′, M ′,τ′) is the well-known groupoid C∗-algebra of E , C∗(E).

Proposition 4.39. Under the hypotheses of Theorem 4.32 with Rλ = C for all λ ∈ Λ

we have that the map Φ : C[E ] → C[N ] ×(M,τ) G given by Φ(f )(x)(n) = f (nk(x)) is an
isometric ∗-homomorphism, and therefore the C∗-algebras C∗(E) and C∗(G,C[N ],M,τ)
are isomorphic.

Proof. We already know from Theorem 4.32 that Φ is a ring homomorphism. Since it
is obviously C-linear, we are reduced to proving that Φ is isometric and Φ(f ∗) = Φ(f )∗.
Indeed, a short computation shows that

∥Φ(f )∥1 =
∑
x∈G

∥Φ(f )(x)∥ =
∑
x∈G

∑
n∈Nr (x)

|Φ(f )(x)(n)|

=
∑
x∈G

∑
n∈Nr (x)

|f (nk (x)| =
∑
z∈E

|f (z)| = ∥f∥.

Moreover, for x ∈ G and n ∈ Nr (x) we have

Φ(f )∗(x)(n) =
(
τ(x ,x–1)–1Mx

(
Φ(f )(x–1)

)∗)
(n)

= Mx
(
Φ(f )(x–1)

)∗ (
σ(x ,x–1)n

)
=
(
Φ(f )(x–1)

)∗ (
L–1

x

(
σ(x ,x–1)n

))
= Φ(f )(x–1)

(
L–1

x
(
n–1σ(x ,x–1)–1

))
= f
(

L–1
x
(
n–1σ(x ,x–1)–1

)
k (x–1)

)
= f
(
k (x)–1n–1σ(x ,x–1)–1k (x)k (x–1)

)
= f
(
k (x)–1n–1

)
= Φ(f ∗)(x)(n).

4.4 GROUPOID CROSSED PRODUCTS AND THEIR CLASSIFICATION

In this section we provide a classification theory for groupoid crossed products
by using the techniques developed in Section 4.2. The proofs of our statements may be
handled in the exact same way as the proofs of the respective statements in Section 4.2
and are therefore omitted for the sake of a concise presentation.

Throughout the following let G be a groupoid. Furthermore, let R be a unital
ring bundle over G(0) and let R× be the induced group bundle over G(0) (cf. Sec-
tion 4.1.4). We start with the following definition:
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Definition 4.40 (cf. Definition 4.19). We let C1(G,R×) stand for the group of all maps
h : G → R× satisfying h(x) ∈ R×

r (x) for all x ∈ G and h(u) = 1Rr (u)
for all u ∈ G(0) with

respect to the pointwise product.

Proposition 4.41 (cf. Proposition 4.20). For h ∈ C1(G,R×) and a factor system (M,τ) ∈
Z 2(G,R) we define

(h.M)x (n) := h(x)Mx (n)h(x)–1, x ∈ G, n ∈ Rs(x), (4.11)

(h.τ)(x ,y ) := h(x)Mx (h(y ))τ(x ,y )h(xy )–1, (x ,y ) ∈ G(2). (4.12)

Then h.(M,τ) := (h.M,h.τ) is a factor system for (G,R) and the map

β : C1(G,R) × Z 2(G,R) → Z 2(G,R)

defines an action of C1(G,R) on Z 2(G,R).

We call two factor systems (M,τ) and (M ′,τ′) for (G,R) equivalent, written with
symbols (M,τ) ∼ (M ′,τ′), if they are in the same orbit under the action β. We denote the
corresponding orbit space of β by Z 2(G,R)/C1(G,R).

Proposition 4.42 (cf. Proposition 4.21). For two factor systems (M,τ), (M ′,τ′) ∈ Z 2(G,R)
the following conditions are equivalent:

1. R×(M,τ) G and R×(M ′,τ′) G are equivalent.

2. (M,τ) ∼ (M ′,τ′), i. e., there exists h ∈ C1(G,R×) such that (M ′,τ′) = h.(M,τ).
If these conditions are satisfied, then the map

ψ : R×(M,τ) G → R×(M ′,τ′) G, (n,x) 7→ (nh(x),x)

is an equivalence of G-crossed products over R and, further, all equivalences of G-
crossed products over R, R×(M,τ) G → R×(M ′,τ′) G, are of this form.

Corollary 4.43 (cf. Corollary 4.22). The map Z 2(G,R) → Ext(G,R) sending (M,τ) to
[R×(M,τ) G] induces a bijection H2(G,R) := Z 2(G,R)/C1(G,R×) → Ext(G,R).

In accordance with Section 3 we say that an element M ∈ C1(G, Iso(R)) is outer
if there exists τ ∈ C2(G,R×) such that (M,τ) satisfies the twisted action condition (C1)
and note that

M ∼ M ′ ⇐⇒
(
∃h ∈ C1(G,R×)

)
M ′ = h.M

defines an equivalence relation on the set of all outer elements. Given an outer element
M ∈ C1(G, Iso(N )), we write [M] for the equivalence class of M and call it a G-kernel.
Proposition 4.42 entails that R ×(M,τ) G ∼ R ×(M ′,τ′) G implies [M] = [M ′], i. e., equiv-
alent G-crossed products over R correspond to the same G-kernel [M]. We denote by
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Ext(G,R)[M] the set of equivalence classes of G-crossed products over R corresponding
to the G-kernel [M]. Moreover, we put

Z (R)× :=
⋃

u∈G(0)

Z (Ru)×.

and consider the induced G-module bundle (Z (R)×,M) as well as its cohomology theory
(cf. Section 4.1.2).

Theorem 4.44 (cf. Theorem 4.23). Let M ∈ C1(G, Iso(R)) with Ext(G,R)[M] ̸= ∅. Then
the following assertions hold:

1. Each class in Ext(G,R)[M] can be represented by one of the form R×(M,τ) G.

2. Let (M,τ′) and (L,τ) be factor systems for (G,R). Then τ–1 · τ′ ∈ Z 2(G,Z (R)×)M ,
and moreover (M,τ′) ∼ (M,τ) if and only if τ–1 · τ′ ∈ B2(G,Z (R)×)M .

Corollary 4.45 (cf. Corollary 4.24). For a G-kernel [M] with Ext(G,R)[M] ≠ ∅ the following
map is a well-defined simply transitive action:

H2(G,Z (R)×)M × Ext(G,R)[M] → Ext(G,R)[M],
(

[ρ],[R×(M,τ) G]
)
7→ [R×(M,τ·ρ) G].

Theorem 4.46 (cf. Lemma 4.26 and Theorem 4.27). Suppose that (M,τ), (M ′,τ′) ∈
C1(G, Iso(R))×C2(G,R×) satisfy the twisted action condition (C1) and that M ′ ∼ M. Then
ξ(M,τ) and ξ(M ′,τ′) are cohomologous 3-cocycles in Z 3(G,Z (R)×)M , where

ξ(M,τ)(x ,y ,z) := Mx (τ(y ,z))τ(x ,yz)τ(xy ,z)–1, (x ,y ,z) ∈ G(3).

Corollary 4.47 (cf. Corollary 4.28). Suppose that M ∈ C1(G, Iso(R)) is outer and
choose τ ∈ C2(G,R×) such that (M,τ) satisfies the twisted action condition (C1). Then
the cohomology class [ξ(M,τ)] ∈ H3(G,Z (R)×)M does not depend on the choice of τ and
is constant on the equivalence class [M].

On account of Corollary 4.28, each outer element L ∈ C1(G, Iso(N )) gives rise
to a characteristic class ξ(M) ∈ H3(G,Z (R)×)M .

Corollary 4.48 (cf. Corollary 4.29). For a G-kernel [M] we have Ext(G,R)[M] ̸= ∅ if and
only if the characteristic class ξ(M) ∈ H3(G,Z (R)×)M is trivial.
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