FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGY CENTER
AUTOMATION AND SYSTEMS DEPARTMENT
UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

Fabiano Junior Maia Manschein

Modeling of a Decision Support System for the ramp-up phase of Line-less
Assembly Systems

Florianopolis
2022

Fabiano Junior Maia Manschein

Modeling of a Decision Support System for the ramp-up phase of Line-less
Assembly Systems

Final report of the subject DAS5511 (Course Final
Project) as a Concluding Dissertation of the Under-
graduate Course in Control and Automation Engi-
neering of the Federal University of Santa Catarina.
Supervisor: Prof. Rodolfo César Costa Flesch, Dr.
Co-supervisor: Jonas Rachner, Eng.

Florianopolis
2022

Ficha de identificagdo da obra elaborada pelo autor,
através do Programa de Geragao Automatica da Biblioteca Universitaria da UFSC.

Manschein, Fabiano Junior Maia

Modeling of a Decision Support System for the ramp-up
phase of Line-less Assembly Systems / Fabiano Junior Maia
Manschein ; orientador, Rodolfo César Costa Flesch,
coorientador, Jonas Rachner, 2022.

72 p.

Trabalho de Conclusédo de Curso (graduacdo) -
Universidade Federal de Santa Catarina, Centro Tecnoldbgico,
Graduacédo em Engenharia de Controle e Automacéo,
Floriandbpolis, 2022.

Inclui referéncias.

1. Engenharia de Controle e Automagdo. 2. Decision
Support Systems. 3. Ramp-up. 4. Line-less Assembly
Systems. I. Flesch, Rodolfo César Costa. II. Rachner,
Jonas. III. Universidade Federal de Santa Catarina.
Graduacdo em Engenharia de Controle e Automagdo. IV. Titulo.

Fabiano Junior Maia Manschein

Modeling of a Decision Support System for the ramp-up phase of Line-less
Assembly Systems

This dissertation was evaluated in the context of the subject DAS5511 (Course Final
Project) and approved in its final form by the Undergraduate Course in Control and
Automation Engineering

Florian6polis, August 29, 2022.

Prof. Hector Bessa Silveira, Dr. Eng
Course Coordinator

Examining Board:

Prof. Rodolfo César Costa Flesch, Dr. Eng
Advisor
DAS/UFSC

Jonas Rachner, M. Sc.
Supervisor
Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen
University

Yuri Triska, M. Eng.
Evaluator
PPGEP/UFSC

Prof. Eduardo Camponogara, Dr. Eng
Board President
DAS/UFSC

To my parents: Alessandra and Fabiano.

ACKNOWLEDGEMENTS

| would like to first express my unending gratitude to Prof. Rodolfo César Costa
Flesch, who has been one of my biggest and most influential supporters throughout the
years. Thank you for the many great opportunities and, specially, thank you for believing
in me. | will never forget your readiness to assist me in whatever issues | brought up.

My sincere thanks to Jonas Rachner, who | see as not just my boss, but also as a
friend and mentor. Your technical expertise was invaluable not only in the development
of this work, but also throughout our 2 years of working together. Thank you for being
there on both the good and the tough moments.

To all my friends and colleagues from WZL, specially Amon Goéppert, Soeren
Muenker, Lea Kaven, and Armin Buckhorst: it was a pleasure to work with all of you. |
will be forever grateful for all that I learned from you.

| owe an immense amount of gratitude to my dear flatmates Ardit Latifi and Nahui
Hoéllmann, who were with me through thick and thin. The endless supply of Ibuprofen,
the Sunday late night wake-up calls, and all our balcony hangouts will not be forgotten.
Thank you for being such great friends, and always being there for me.

To my decade-long friends Artur K. Neto, Gustavo Estacio, Marcelo Kauai, and
Rafael A. de Meireles. Thank you for the great years together, and for many more to
come. Special thanks to you, Kauai, for always being there for a quick call or gaming
session so that | could take my mind off everything that was happening.

To Amanda Machado and Robson Felisberto, you both have been with me since
| started university, and continue supporting me to this day. Our rushed study sessions
and over-the-weekend group projects are part of my fondest memories. Thanks for
showing me that working hard can be this much fun.

My deepest thanks to UFSC and the Department of Automation and Systems for
providing me with both the chance and the skills necessary for the two-year-long journey
in Germany that led to this work. | would like to specially thank Profs. Hector B. Silveira,
Marcelo De Lellis C. de Oliveira, Ricardo J. Rabelo, and Eduardo Camponogara for all
the patience and support provided. You have accommodated many of my requests, and
helped me work through the difficult times. Thank you.

| cannot even begin to describe the lifelong support that my family has provided
me. To my parents Alessandra Maria Maia and Fabiano Manschein, | specially thank
you for always motivating me to seek bigger dreams, and never doubting the many
decisions | have made to get to where | am today.

Last but not least, thank you Dr. Andreas Lang and all the nurses in W8 Onkol-
ogische Praxis Aachen, Luisenhospital Aachen, and Uniklinik RWTH Aachen. You
treated me as one of your own, with great care and attention, and gave me a second
chance at life. | sincerely thank you.

ABSTRACT

A major challenge for producing companies is the intensifying competition due to an
increasing number of entering companies, with product individualization being a leading
factor for success. As mass customization and other trends towards higher production
volatility become more widespread, increased flexibility of industrial assembly is of high
importance for a company’s competitiveness, and support systems are a must-have to
keep ramp-up times low in these highly-flexible scenarios. This work aims to support
decision-makers in quickly solving problems that may arise during runtime of a Line-
less Assembly System (LAS), and in shortening production ramp-up with a brownfield
approach. This is achieved by modeling a system that uses assembly system state data
from a digital twin to propose new potential assembly system configurations through an
optimization model, which are then evaluated based on discrete-event simulation under
uncertainties. Simulation results are then used to adjust and rerun the optimization
model, forming the optimization loop. In this work, the mentioned system is modeled,
including its requirements, data models, and the communication, optimization, and
management modules. To verify the system design, the communication module and
necessary parsers were implemented, as well as an optimization model for matching
product requirements with the assembly system resource capabilities. Results show
that the modeled system sufficiently satisfies the system requirements, providing a
framework for future studies on production ramp-up of LAS.

Keywords: Decision Support Systems. Ramp-up. Line-less Assembly Systems.

RESUMO

Um grande desafio para as empresas de producado é a intensificacdo da concorrén-
cia devido a um numero crescente de empresas que entram no mercado, sendo a
individualiza¢ao do produto um fator principal para o sucesso. Com a personalizagao
em massa e outras tendéncias para uma maior volatilidade da producao se tornando
mais generalizada, a flexibilizacdo da montagem industrial € importante para a com-
petitividade de uma empresa, e os sistemas de suporte sdo um fator imprescindivel
para manter baixos os tempos de ramp-up nestes cenarios altamente flexiveis. Este
trabalho visa apoiar os tomadores de decisao na rapida resolugdo de problemas que
possam surgir durante a execugao de um Sistema de Montagem sem linha (LAS), e na
reducao do ramp-up de producao com uma abordagem brownfield. Isto € conseguido
através da modelagem de um sistema que utiliza dados de estado do sistema de mon-
tagem oriundos do seu gémeo digital para propor novas potenciais configuracées do
sistema de montagem através de um modelo de otimizag&o, sendo, entdo, avaliadas
em uma simulagéo a eventos discretos sob incertezas. Os resultados da simulagéo
sdo, entao, utilizados para ajustar e reexecutar o0 modelo de otimizagao, formando o
laco de otimizacao. Neste trabalho, esse sistema € modelado, incluindo seus requisitos,
modelos de dados, e os médulos de comunicacgao, otimizacado e gerenciamento. Para
verificar a modelagem do sistema, o médulo de comunicagéo e 0s parsers necessarios
foram implementados, além de um modelo de otimizacao para parear os requisitos de
produtos com as capacidades de recursos do sistema de montagem. Os resultados
mostram que o sistema modelado satisfaz suficientemente os requisitos do sistema,
fornecendo uma estrutura para futuros estudos sobre o ramp-up de producdo de um
LAS.

Keywords: Sistemas de Apoio a Decisdo. Ramp-up. Line-less Assembly Systems.

LIST OF FIGURES

Figure 1 — Dynamic order routes in Line-less Assembly Systems. 15
Figure 2 — Process organization of production ramp-up. 17
Figure 3 — PRISMA Flow Diagram. 22
Figure 4 — V-modeldiagram. 25
Figure 5 — Test-driven developmentcycle. 26
Figure 6 — Use case diagram for the “As-is” system planning process. 27
Figure 7 — Overview of the proposed solution. 32
Figure 8 — Use case diagram of the proposed solution. 35
Figure 9 — Class diagram of the proposed solution. 36
Figure 10 — Information flow diagram of the proposed solution. 37

Figure 11 — Overview of the information flow where the data models are applied. 38
Figure 12 — Meta-model of the Assembly System Description Model (AS-DM). . 39

Figure 13 — Assembly system state modeled from AS-DM. 41
Figure 14 — ReAssign Data (ReA-D) model. 42
Figure 15 — Activity diagram for the “Connect to the MQTT Broker” use case. . . 43
Figure 16 — Activity diagram for the “Get current state of the system” use case. . 44
Figure 17 — Activity diagram for the “Feedback the best results” use case. 44
Figure 18 — High-level view of the Simulation Module and its components. 45
Figure 19 — Sequence diagram for the interaction between the Simulator class

and the Simulation Module. L. 46
Figure 20 — Activity diagram for the “Check for missing capabilities” use case. . . 47
Figure 21 — Activity diagram for the “Generate optimized system configurations”

USE CASE. .« « v v v v i e e e e e e e e e e e e 47
Figure 22 — Vicious cycle of production, planning, and control. 52
Figure 23 — Class diagram for the Prisma Automator. 65

Figure 24 — Usual workflow for Scenario APIl. 68

AGV
API
AS-DM
DOI
DSS
DT
HTTP
JSON
LAS
MQTT
MTBF
MTTR
ReA-D
ReAssign
REST
SA-I
TDD
UML

LIST OF ABBREVIATIONS AND ACRONYMS

Automated Guided Vehicle
Application Programming Interface
Assembly System Description Model
Digital Object Identifier

Decision Support System

Digital Twin

Hypertext Transfer Protocol
JavaScript Object Notation

Line-less Assembly System
Message Queuing Telemetry Transport
Mean Time Between Failures

Mean Time To Repair

ReAssign Data

Resource Assigner

Representational State Transfer
Scenario Analysys Input

Test-driven Development

Unified Modeling Language

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.5
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2
4.7.3

CONTENTS

INTRODUCTION i it it et e e e 11
SYSTEM PLANNING “AS-I1S” 12
OBJECTIVES e 13
STAKEHOLDERS 13
DOCUMENT STRUCTURE 14
THEORETICALBACKGROUND 15
LINE-LESS ASSEMBLY SYSTEMS 15
RAMP-UP PHASE o 16
DECISION SUPPORT SYSTEMS 16
DIGITALTWINS et 18
LITERATUREREVIEW 20
RESEARCH METHODOLOGY 20
STATEOF THE ART e 22
RESEARCHDEFICIT o .. 23
DESIGN AND IMPLEMENTATION 25
METHODOLOGY e e e 25
REQUIREMENTS SPECIFICATION 26
Userstories 28
Requirements. 28
PROPOSED SOLUTIONOVERVIEW 30
USECASES e 33
CLASSDIAGRAM e 36
INFORMATION FLOW o .. 37
Datamodels 37
Communication, 43
OPTIMIZATION LOOP e 45
Optimize 46
Simulate 49
Adjust 53
RESULTS & i it it e e e e s e e e aee 55
CONCLUSIONS ANDOUTLOOK i e .. 57
References i i i it ittt et e 59
APPENDIX A - PRISMA AUTOMATOR 64

APPENDIX B - SCENARIOAPI, 67

11

1 INTRODUCTION

Constantly changing markets place increased demands on the adaptability of
output in terms of quantity and type of products from manufacturing companies (WIEN-
DAHL; GERST; KEUNECKE, 2004). Economic (e.g., increased number of variants),
organizational (e.g., integration of new processes), and technological factors (e.g., in-
creased development speeds) are of central importance for the competitiveness of
existing production and assembly systems. In particular, increased flexibility of indus-
trial assembly is of high importance for a company’s competitiveness (KLETTI, 2015),
as it is responsible for building product and part variants, and new methodologies and
support systems are a must-have to keep ramp-up and integration times under control in
these highly-flexible scenarios (KUHN et al., 2002). In order to meet the new demands
of adaptability in companies, rigid boundary conditions in production and assembly are
increasingly being relaxed (WIENDAHL; GERST; KEUNECKE, 2004).

The approach of Line-less Assembly Systems (LASs) implements the required
adaptability by enabling individual product routes. This paradigm shift in assembly
system design allows for a mapping of variant specific processes without efficiency
losses and reconfiguration without interrupting production (HUTTEMANN et al., 2017).

The continuous integration of new products with different requirements (hence-
forth called variants) require resources (e.g., robots for manufacturing) with a variety of
capabilities (e.g., screwing, welding), and ramp-ups happen frequently due to the sys-
tem requiring reconfiguration in a brownfield approach. This reconfiguration is currently
done manually, which is inefficient and not aligned with Industry 4.0 ideals (IVANOV
et al., 2021). A shift towards a data-driven approach is suggested, with a data-model
providing enough information to a Decision Support System (DSS) capable of matching
the new requirements to the existing assembly system capabilities.

Hereby named Resource Assigner (ReAssign), this supporting software module
suggests potential new assembly system configurations capable of satisfying product
requirements by relying on the flexible adaptability of LAS. In order to implement said
adaptability, it must be possible to record current state information while considering
external events (e.g., new incoming product orders, breakdowns). The main input vari-
able of ReAssign is the current state of the assembly system provided by its Digital
Twin (DT) counterpart. This state includes information about orders, products, stations,
resources, and Automated Guided Vehicles (AGVs).

An optimization loop is responsible for finding suitable assembly system configu-
rations. This loop consists of three phases: optimize (solve an optimization model to find
potential solutions), simulate (evaluation of potential solutions based on discrete-event
simulation), and adjust (adjust the optimization model according to simulation results).
The best solutions are fed back to the DT.

Chapter 1. Introduction 12

Within the scope of this work, the DSS named ReAssign, along with data models
and supporting modules for integration with other systems, was modeled. For this
purpose, necessary key figures, attributes, and parameters were determined, which
represent the configuration of the assembly system at any time of the operational
business. The model was verified through the implementation and testing of 3 software
modules.

1.1 SYSTEM PLANNING “AS-IS”

The planning of a LAS shop floor configuration in terms of resource placement
is currently done manually by an employee, who will be referred to as “System Plan-
ner”. Whenever there is a new order for product manufacturing, or there is a machine
breakdown, the System Planner must execute the following tasks:

 analyze the current state of the system in terms of resource status, capabilities,
and bottlenecks;

« verify that the current assembly system configuration is capable of manufacturing
the desired products by “matching” product requirements with resource capa-
bilities (e.g., a product might have a process step that requires the capability
“welding”);

* generate a new system configuration if any capabilities are missing, or if there are
not enough resources to manufacture the products in time;

* simulate the solution under uncertainties (e.g., random breakdowns, delays, etc.)
in the Simulation Module;

« analyze the results from the simulation and decide if they are satisfactory.

These tasks get increasingly more time-consuming as the number of product
variants increases. The first problem is in matching all the requirements to the available
capabilities in a brownfield approach, keeping both costs and implementation efforts
low. For this case, implementation effort is defined as the effort to either relocate an
existing resource or implement a new one into the assembly system.

The second problem encompasses generating a new system configuration based
on the chosen resources. Questions such as “how many stations are needed?”, “where
does resource X go?”, and “are these changes enough to maintain product through-
put?” quickly arise, and it is not unheard of to use the trial-and-error approach until a
satisfactory solution is found.

Finally, there are problems related to the Simulation Module. The generated
system configurations must be manually mapped to a file in a specific format to be
accepted as input. After the simulation is done, the results must be manually analyzed

Chapter 1. Introduction 13

to determine if the configuration is good enough, or if the whole process must be done
again. All of this is done in the user’s (i.e., System Planner’s) local computer, as such
simulation speed is determined by the local computer processing power.

1.2 OBJECTIVES

The aim of this work is to model a DSS and all the required data models and
software modules for integration with already existing systems. The model is considered
sufficiently verified through the implementation of 3 software modules. Furthermore, the
following research question is the target of this work:

“How can a model-based decision support system for the station capability con-
figuration of line-less assembly systems during production ramp-up be designed?”

Specifically, the following subtasks are to be completed:
» familiarization with the state of the art of planning and control of LASSs;

 development of a DT data model for mapping and communicating the system
state of a LAS;

» modeling of the proposed DSS;

« modeling of necessary data models and software modules for integration with
existing systems;

« verification of the model through implementation of 3 software modules;

documentation of the work.

These subtasks were formulated based on the objectives of this work, the re-
search question, and on discussions with the project stakeholders The following section
briefly introduces said stakeholders.

1.3 STAKEHOLDERS

This work was produced in cooperation with the Laboratory for Machine Tools
and Production Engineering (WZL) at RWTH Aachen University, Germany, specifically
in the Model-based Systems department of the Chair of Production Metrology and
Quality Management (https://www.wzl.rwth-aachen.de).

The Laboratory for Machine Tools and Production Engineering (WZL) at RWTH
Aachen University, with over 1000 employees, researches and develops innovative pro-
duction technology in the fields of factory planning, assembly planning and technologies,
production metrology, quality and production management, among others. The Chair

https://www.wzl.rwth-aachen.de

Chapter 1. Introduction 14

of Production Metrology and Quality Management, under the direction of Prof. Dr.-Ing.
Robert Schmitt, researches questions of flexible assembly organization in numerous
projects on metrology-supported assembly processes and in the customer-oriented
evaluation of sustainable products. The institute is also a partner in the Internet of
Production cluster of excellence (WZL, 2022a).

Guided by the paradigm “Automation of Automation”, the Model-based Assembly
Automation group researches the paradigms of future assembly systems. Research
topics of the group are, for example, novel control systems for line-free assembly, as
well as automation and communication technologies (e.g., reinforcement learning, 5G)
for the use of mobile robots and manipulators in assembly (WZL, 2022b).

1.4 DOCUMENT STRUCTURE

This work is structured in such a way that the reader is first introduced to impor-
tant theoretical concepts used throughout the chapters, then presented with discussions
about related literature, followed up by the design and implementation of the system.
The document ends with a presentation of the results, an overall conclusion of the work,
and a discussion of an outlook for future works. Specifically, the chapters content is as
follows:

* in chapter 2, theoretical concepts used throughout this work are presented. LASSs,
ramp-up phase, DSSs, and DTs are discussed;

* in chapter 3, after the research methodology used in this work is presented, the
state of the art in DSSs for production ramp-up and research question related
topics is reviewed. The chapter ends with a brief discussion of the research deficit;

* in chapter 4, the design and implementation of the system is discussed. Require-
ments, an overview of the proposed solution, information flow, data models, and
the optimization loop are documented here;

* in chapter 5, results of this work in terms of the system modeling and implemen-
tation are discussed,;

* in chapter 6, a summary of this work is done, results are discussed, and an outlook
for future works is given.

15

2 THEORETICAL BACKGROUND

In this chapter, theoretical concepts used throughout this work are presented.
The concept of LASs and ramp-up phase are discussed, the different types of DSSs
are presented, and the chosen definition of DTs used by this work is discussed.

2.1 LINE-LESS ASSEMBLY SYSTEMS

LASs are defined as a form of organization in which each individual product can
be assigned its own flexible order route by dispensing with time and space restrictions.
By eliminating the flow principle!, it represents a paradigm shift to lean production, as
well as allowing dynamic order routes. These routes are created individually for each
order and can be continuously tracked, taking into account the availability of assembly
resources (see Figure 1). A control system is used for this purpose, which contributes
to maximizing efficiency by means of optimization algorithms (GOPPERT et al., 2018).

Figure 1 — Dynamic order routes in Line-less Assembly Systems.

rdJob1- = — — o
: t : Route:
| - 1 A-F-G-D
\prOdUCtA o Station Station Station —_
______ B C D
\ Route:
E-F-C-H
Product B Station Station Station Station
E F G H
Route:
A-B-G-D
-~ (Alternative route for
job 1, due to busy
Product A Station F)
- Varying_ I R S RU——
1 production Station

F-l1-J-G H |
(Route expansion, | 7 tem—m—m———eo
caused by scaling)

J

A
1 Route: I Station
1
1
1

Source — Hittemann et al. (2017).

On the physical level, avoiding a main transport direction requires corresponding
transport technology. Mobile transport systems and assembly resources are conceiv-
able for this purpose. Since non-stationary assembly resources are sometimes asso-
ciated with considerable additional effort, LAS is limited to the use of AGVs. However,

1

The flow principle has the product as the focus of the entire process, as well as a continuous material
flow without unnecessary detours or storage.

Chapter 2. Theoretical Background 16

there are also approaches with mobile assembly units (HUTTEMANN; BUCKHORST;
SCHMITT, 2019).

LASs are part of the effort to establish increasingly versatile assembly systems.
The adaptability of LAS is expressed, among other things, in a flexibility of the orders
with regard to resources and routes. Of course, the order routes are limited by design
restrictions of the assembly sequence. The more possible assembly sequences are
available for a product, the better this is for the utilization of assembly resources, since
this results in a plurality of alternatives for order route planning (GOPPERT et al., 2018).

Flexibility also provides better scalability and mobility in the context of transforma-
tion enablement. In case of scaling, no adaptation of the existing resources is necessary.
New resources for capacity expansion can be built at any location and connected to the
existing assembly system by the mobile transport units. New processes can thus be
added, or existing resources can be relieved (GOPPERT et al., 2018).

2.2 RAMP-UP PHASE

Ramp-up is the phase between completed product development and peak pro-
duction, where the production system is modified continuously until it reaches peak pro-
duction (see Figure 2). This transitional phase is characterized by restrictions, changes,
modifications, and delays (BASSE; SAUER; SCHMITT, 2014), ranking among the most
costly phases of the product life cycle (GLOCK; GROSSE, 2015). It is a highly complex
parameter-tuning process with many interrelated factors leading to a well-defined goal.

During this phase, uncertainty is very high, making the process both difficult
to manage and unstable?, expressed in the unpredictability of the system (HANSEN;
GRUNOW, 2015). This causes planning proactive steps to avoid some problems to be
ineffective for many ramp-up problems (SCHUH; GARTZEN; WAGNER, 2015). As such,
ramp-up time is highly dependent on the system complexity and the ability of system
integrators and planners to make good decisions and react to unexpected situations
(DOLTSINIS et al., 2020).

Numerous models and strategies have been developed to support decision-
makers during the ramp-up phase, with some characteristics being common across
those cases (DOLTSINIS et al., 2020). Of particular interest to this work are existing
decision support models in ramp-up, which will be mentioned again in chapter 3.

2.3 DECISION SUPPORT SYSTEMS

Power (2002) defines DSSs as “interactive computer-based systems that help
people use computer communications, data, documents, knowledge, and models to
solve problems and make decisions” (POWER, 2002, p. 13). Such decisions are neces-

2 Here, “unstable” means that the process is unpredictable.

Chapter 2. Theoretical Background 17
Figure 2 — Process organization of production ramp-up.

100% Implementation into series production Peak production
U

.§' Production ramp-up: Fabrication:

§ » Unstable state = Stable state

=4 * project = routine

2

(%]

= Start of

-8 Approval of Production

- pilot production (SOP)

o Approval of
. specifications ./\ Product Development Process _
! 1 I . o

4”Development phase "‘E“' Ramp-up phaseE production phase e

c Product l Modificatonmanagement 3

° development / :

= : i

= i : eroseries) N

» development jLp roduction i

K] — ! ' fabrication

ol b\ Ll Commissioning & adjustment ¥

H production up :) :

b system & adjust/ | production system :

o 1 |

2

o Ramp-up management

I

)

Caption: production ramp-up [l

Source — Dombrowski, Wullbrandt, and Krenkel (2018).

sary within the planning and execution phases of a manufacturing process. Capabilities,
layout, and configuration of the system must be decided during planning, while uncer-
tainties are handled within the execution phase.

According to Power (2002), five different types of DSSs can be distinguished:
data-based, model-based, document-based, communication-based, and knowledge-

based.

1. Data-based DSSs can be used to derive new knowledge or prepare data clearly.
Key figures are taken up and processed in such a way that the decision-maker
can see the alternative courses of action.

2. Model-based systems use various types of models to help make decisions. For
example, they use simulations to estimate the system behavior when executing
possible decisions. By formulating optimization problems, a decision to be made
can be broken down to the solution of a mathematical problem. Forecasts can be
used to make statements about the future.

3. Communication-based DSSs facilitate communication between decision-makers
and support joint work on a task.

Chapter 2. Theoretical Background 18

4. Document-based DSSs support the search, distribution and versioning of unstruc-
tured data.

5. Knowledge-based systems are used to provide the user with recommendations
for action. They rely on knowledge models such as deterministic rule systems or
probabilistic networks.

The trend is shifting towards model-based by integrating simulation models into
DSSs, thus allowing it to forecast the system behavior when executing possible deci-
sions. When handling problems during the manufacturing phase, these models require
a detailed and current system status, and such representation can be provided to the
DSS through the use of DTs (GRAHN et al., 2022). This approach is further discussed
along this work.

2.4 DIGITAL TWINS

The concept of a DT varies from one research field to another, as in the last
decade researchers from different universities and institutes have been proposing their
own definitions. Most of them consider the DT to be a virtual representation capable
of interacting with its physical object counterpart throughout its lifecycle. Evaluation,
optimization, and prediction are some of the functionalities it provides in relation to the
physical object. More recent definitions also add data and services to the DT, enabling
the fusion of data from both the physical and virtual aspects for more comprehensive
and accurate information capture (TAO; ZHANG; NEE, 2019).

A common understanding of DTs is that of digital counterparts of physical objects.
Terms such as Digital Model, Digital Shadow and Digital Twin are often employed as
seemingly the same, although they differ in data integration levels between the physical
and the digital. According to Kritzinger et al. (2018):

» digital Models do not use any form of automated data exchange between the
physical and the digital objects, thus changes in the state of either do not affect
the other;

« with Digital Shadows, an automated one-way flow of data exists. Changes in the
state of the physical object influence the state of the digital object, but not vice
versa;

« finally, when the data flow is bidirectionally integrated between the physical and
digital objects, it can be referred to as a Digital Twin. Changes to the state of the
digital object influence the physical object and vice versa, thus enabling the digital
object as a controlling instance of the physical object.

Chapter 2. Theoretical Background 19

In this work, the concept of a DT follows that as described by Kritzinger et al.
(2018). Further mentions of the term will therefore relate to that of a digital representa-
tion with bidirectional data flow and the ability to influence the physical object.

20

3 LITERATURE REVIEW

3.1 RESEARCH METHODOLOGY

The methodology used is based on the PRISMA2020 Statement, as described
in (PAGE et al., 2021). In the “identification” phase, a research question was defined,
search terms and key-words were identified, and combinations of those were used for
searching documents in a database. Automated exclusion rules were applied here. In
the “screening” phase, documents were checked for relevance by reading both their
tittes and abstracts. The resulting pool must then be assessed for eligibility by having
its contents read entirely, whereas irrelevancy to the research focus was considered a
reason for exclusion.

Identification

The following research question was defined:

“How can a model-based decision support system for the station capability con-
figuration of line-less assembly systems during production ramp-up be designed?”

From this research question, keywords were identified and grouped together
according to their meaning:

» Optimization:

— operations research;

— linear programming;

— mixed integer linear programming.
* Flexibility:

— matrix;

modular;

adaptive;

flexible;

reconfigurable.
» Production:

— manufacturing;
— assembly;

— production.

Chapter 3. Literature Review 21

+ Planning:

planning;

configuration;

capability;

ramp-up.
 Others:
— digital twin.

A program was developed to automate the process of generating search strings,
searching through the Scopus database, and downloading and filtering the data into an
Excel sheet. It is briefly discussed in Appendix A.

The following are 3 of the 360 generated search strings:

« “operations research” AND “matrix” AND “manufacturing” AND “planning” AND
“digital twin”;
* “linear programming” AND “flexible” AND “assembly” AND “configuration”

* “mixed integer linear programming” AND “reconfigurable” AND “production” AND
“ramp-up”

The search through Scopus resulted in a pool of 1520 documents. From this
pool, 825 were duplicates, 24 were conference reviews, and 123 had no Digital Object
Identifier (DOI), adding up to 972 excluded documents.

Screening
The following reasons were considered for exclusion of documents:
1. not sufficiently related to this work;
2. not retrievable (i.e., not available publicly);
3. duplicates that were not automatically detected and excluded.

Documents focused on line-assembly, non-reconfiguration problems (i.e., schedul-
ing, material handling, etc.), or from unrelated fields (e.g., regional forest planning) were
considered as part of the “not sulfficiently related” category.

Finally, only 12 documents remained in the pool. Out of those, 5 were not re-
trievable (required a subscription) and 3 were not eligible due to not being sufficiently
related to this work. Only 4 papers remained. A summary of the whole process can be
found in Figure 3 (HADDAWAY et al., 2022).

Chapter 3. Literature Review 22

Other 13 documents were also manually included through snowball search or as
suggestions from field experts. The following section discusses those that were of most
interest to this work.

Figure 3 — PRISMA Flow Diagram.

Identification of new studies via databases and registers

c Records removed before screening:
-% Records identified from: Duplicate records (n=825)
2 Databases (n=1,520) ——= Records marked as ineligible by automation
= Registers (n=0) tools (n=147)
E Records removed for other reasons (n=0)
Records screened Records excluded
(n=548) (n=5386)
t‘;:m l
‘E Reports saught for retrieval Reporis not refrieved
c .
o (n=12) (n=5)
3
m l
Reports assessed for eligibility Reports excluded:
(n=T7) Mot sufficiently related (n= 3)
= Mew siudies included in review
& (n=13)
= Reports of new included studies
L=}
= (n=20)

Source — Author.

3.2 STATE OF THE ART

Glock and Grosse (2015) provide a comprehensive overview of decision sup-
port models for production ramp-up that apply mathematical optimization or simulation
approaches. Results show that few works developed models for worker assignment,
workflow management, imperfect production, interruptions, and price reduction dur-

Chapter 3. Literature Review 23

ing ramp-ups, with uncertainty infrequently being considered in literature. It is noted
that employing feature-rich simulation approaches and suitable forecasting models that
consider various ramp-up process characteristics can be promising.

Schmitt et al. (2018) apply a mixed-method design based on a quantitative
pre-study and qualitative interviews in ramp-up-relevant fields to present research
hypotheses and practical implications on developing a novel ramp-up management
approach. Results show that although a high uncertainty amongst experts concerning
future developments exists, real-time data infrastructure is considered central to support
the learning and decision-making process, with Industry 4.0 seen as a major enabler.
Nonetheless, transferring decision-making competencies to digital systems is still seen
controversially amongst researchers.

lvanov et al. (2021) provide a focused analysis to examine the state-of-the-art
research in Industry 4.0 topics by conducting a large-scale, cross-disciplinary, and
global survey amongst researchers in industrial engineering, operations management,
operations research, control, and data science. Results reveal a strong focus on de-
scriptive analysis and a lack of predictive and real-time, prescriptive models, calling for
multidisciplinary collaborations with engineering, data science, and control disciplines.
Furthermore, firms with established technologies for manufacturing visibility and digi-
tal control were able to react to disruptions caused by the COVID-19 pandemic more
flexibly and responsively, showing that digitalization and resilience is a promising future
research avenue.

Goppert et al. (2021) design an end-to-end digital twin pipeline to lower the
threshold of creating and deploying digital twins. Of particular interest to this work is the
developed description model for digital twins. It consists of submodels that implement
a header with their defining information. Furthermore, submodels can either be a pa-
rameter, variable, function or component, enabling the depiction of complex systemic
relationships and the differentiation into time-dependent characteristics. An example
ontology of the manufacturing domain is also presented.

3.3 RESEARCH DEFICIT

Although Industry 4.0 topics are garnering increasingly more attention as re-
search advances, there seems to still be a gap in the application of real-time and
predictive models to solve manufacturing problems (IVANOV et al., 2021). When con-
sidering the more specific problem of production ramp-up, although many decision
support models have been developed to support the decision-making during this phase,
there is still the unexplored potential of combining a simulation approach (in particular
one that considers uncertainties) with the high data availability of Industry 4.0 advances,
such as the DT (GLOCK; GROSSE, 2015; SCHMITT et al., 2018). Furthermore, most
works focus on either Flexible Manufacturing Systems or Reconfigurable Manufactur-

Chapter 3. Literature Review 24

ing Systems (SABIONI; DAABOUL; LE DUIGOU, 2022; WIKAREK; SITEK; NIELSEN,
2019; BRUCCOLERI; PASEK; KOREN, 2006), both a level beneath LAS in terms of
flexibility.

Therefore, this work seeks to help fill the gap by modeling a system that applies
concepts of DSS, DTs, simulations, and optimization to the ramp-up management
problem of LAS in the context of mass customization and product co-production. This
model is a proposed solution and framework for future works in this research area, and
seeks to be the basis of their implementation for evaluation of ramp-up-parameters-
based decision-making in LAS.

25

4 DESIGN AND IMPLEMENTATION

In this chapter, the system (nicknamed ReAssign) design and implementation
is explained in detail. Development methodology, requirements specification, and the
proposed solution are discussed.

41 METHODOLOGY

The development of ReAssign followed the V-model development process. It
is often viewed as a variant of the waterfall model, which has its life cycle phases
progressing in a linear development process, but it differs in the test phase, where
development is carried out parallel to the previous phases, thus forming a V shape
(as seen in Figure 4). This parallel between phases motivated the employment of Test-
driven Development (TDD).

Figure 4 — V-model diagram.

Concept Preliminary Critical . Release or
Phase Design Phase Design Phase Integratlﬁn and Production
| I Test Phase I Phase
- | Validation

Requirements M
1 [
\ I
| verification |
Analysis and
Analysts and M

| | |
| |
| e s |
Verification
Design
|
| |
| |
|

| Coding, prototyping
| | and engineering model |

Source — Adam (2021).

TDD is a software development practice in which test code is written prior to pro-
duction code, thus directing the development of software units. It can reduce the amount

Chapter 4. Design and Implementation 26

of introduced defects and lead to more maintainable code, with the downside of initial
development potentially lasting longer (MAKINEN; MUNCH, 2014). Figure 5 presents
the TDD cycle, where a failing test is written, then made to pass by implementing the
missing functionality, which is then refactored to better fit the system.

Figure 5 — Test-driven development cycle.

Write a
failing test

TDD

Refactor test pass

Make the

Source — Marsner Technologies (2022).

For modeling the system, the Unified Modeling Language (UML) notation was
selected. It “provides a spectrum of notations for representing different aspects of a
system and has been accepted as a standard notation in the industry” (BRUEGGE,
2010, p. 29). The following sections present the system modeling after discussing its
requirements.

4.2 REQUIREMENTS SPECIFICATION

Before detailing the system requirements elicitation and specification, it is impor-
tant to briefly review the “as-is” process described in section 1.1. The use case diagram
in Figure 6 provides an overview of the “as-is” process. These use cases represent the
different tasks of the System Planner, and the actors are both the System Planner and
the Simulation Module.

The top two use cases, “Integrate new order” and “React to breakdown”, encom-
pass the whole process, as they’re essentially the reason as to why the other mentioned
tasks are executed. They both start the process, and are considered completed only
after every other task is executed and a satisfying solution is found. As such, other use
cases are simply the steps taken by the system planner to complete the process.

It is worth mentioning that the Simulation Module actor is named “Scenario
Analysis” in this specific diagram. This is done to differentiate the simulation module

Chapter 4. Design and Implementation 27

in the “as-is” diagram from the “to-be” diagram, discussed in section 4.4. In the “as-is”
process, the simulation software must be manually executed in the local computer, and
does not have the feature of communicating with other systems or software modules.

Figure 6 — Use case diagram for the “As-is” system planning process.

Integrate new order React to breakdown

View current system
configuration

Match available
capabilities with
requirements

O ¢
T

«=|jser==
System Planner

Detect missing
capabilities

Plan changes io the
system

Simulate under
uncertainties

==Jimulation Modulg==
Scenario Analysis

Decide if the new
configuration is good
enough

Source — Author.

Based on the problems presented in section 1.1 and multiple interviews with
stakeholders, user stories were created as a means to better understand what the
system requirements should encompass. Afterwards, functional and non-functional
requirements were derived from both the user-stories and the use-case diagram in
Figure 6. The created user stories and derived requirements are presented in the

Chapter 4. Design and Implementation 28

following subsections.

4.2.1 User stories

Written from the perspective of the end user or customer, a user story is an
informal, general explanation of a software feature. It uses non-technical language to
provide context for the development team as to why and what they are developing, and
what value it creates (REHKOPF, 2022). The following user stories encompass the
project: as a System Planner, | want. ..

1. to be able to seamlessly integrate! new orders into the assembly system so that
products can be co-produced;

2. a planning system that automatically reacts to breakdowns and replans the as-
sembly system configuration by assigning resources to stations so that response
time, down-time, and costs are minimized;

3. the planning system to generate optimized assembly system configurations that
take into account effort, processing time, and product requirements;

4. the replanning to be done in a brown-field approach, e.g., change as little as
possible of the existing configuration;

5. the assembly system, resources, orders, and products to be digitally represented
as digital twins;

6. the generated assembly system configurations to be compatible with the existing
simulation module so that they can be simulated under uncertainties.

These user stories were used in the formulation of the system requirements,
presented in the following subsection.

4.2.2 Requirements

Interactions between the system and its environment, independent of its imple-
mentation, are described by functional requirements. The environment includes the
user and any other external system with which the system interacts (BRUEGGE, 2010,
p. 125). The following functional requirements were identified: the system must. . .

» (RQ-01) be able to process and integrate new product orders;

» (RQ-02) be able to react to breakdowns by replanning the assembly system
configuration;

1 For this work, “seamlessly integrate” means that the new order (e.g., product variant) is integrated

into the assembly system without affecting throughput of already existing variants in production.

Chapter 4. Design and Implementation 29

» (RQ-03) be able to communicate with the digital twin of the assembly system, and
get its current state so that existing resource capabilities and product requirements
are identified;

* (RQ-04) be able to detect and identify which capabilities are missing for product
manufacturing;

» (RQ-05) be able to generate optimized assembly system configurations that sat-
isfy all product requirements in a way that minimally changes the existing configu-
ration;

» (RQ-06) be able to communicate with the existing simulation module so that
generated assembly system configurations can be simulated and evaluated under
uncertainties;

» (RQ-07) be able to understand the output of the simulation module so that it can
adjust the optimization model when necessary;

» (RQ-08) allow the user to choose which assembly system configuration will be
used;

* (RQ-09) be able to automatically choose which assembly system configuration
will be used;

» (RQ-10) be able to feed back the chosen assembly system configuration to the
digital twin of the assembly system.

Functional requirements specific to the optimization model include: the optimiza-
tion model must. . .

» (RQ-11) satisfy all product requirements by matching them with available resource
capabilities;

» (RQ-12) consider if the given orders can be produced in time or not (i.e., a station
can’t produce an infinite amount of products in any given time period);

» (RQ-13) consider that a station can only work on one product at a time;

» (RQ-14) output at least 5 assembly system configurations that satisfy the require-
ments;

« (RQ-15) consider that stations can have up to a maximum number of resources;

» (RQ-16) consider that the assembly system can have up to a maximum number
of stations.

Chapter 4. Design and Implementation 30

Aspects of the system that are not directly related to its functional behavior are
described by non-functional requirements. They include a broad variety of requirements
that apply to many aspects of the system, from usability to performance (BRUEGGE,
2010, p. 126). The following non-functional requirements were identified:

» (RQ-17) the optimization model must be solvable in less than a minute;

» (RQ-18) the data model of the digital twins must be based on the stakeholder’s
proprietary data model;

» (RQ-19) the outputted assembly system configuration must be a digital twin of the
desired assembly system state.

Based on the presented system requirements, a solution is proposed. An overview
of the proposed solution is presented in the following section.

4.3 PROPOSED SOLUTION OVERVIEW

An overview of the proposed solution is depicted in Figure 7. There, four actors
can be identified: the assembly system, the DT, ReAssign, and the Simulation Module.
The assembly system is mentioned for context, as the DT and all data originated from
it will be simulated.

The assembly system provides process data to its DT counterpart, which is
capable of influencing the assembly system state by means of “actions”. Process data
is defined as information about orders, resources, and the assembly system itself.
Orders are assumed to also contain information about products. This definition is an
adaptation of the ontology developed by Géppert et al. (2021).

Actions are based on decisions taken by the DT in order to influence the state
of the assembly system. The goal of these actions is to transition the assembly system
state to that of one of the “best suggestions” provided by ReAssign. The interactions
between the assembly system and the DT are outside the scope of this work and
were mentioned for the sake of providing context, besides being a suggestion for future
works.

“Best suggestions” is a group of assembly system configuration suggestions.
“Best” is defined by a function of throughput, utilization, and total cost, similar to a
leaderboard. These suggestions are the result of a successful optimization loop.

For the optimization loop to be triggered, the assembly system has to be affected
by a “problem”: either a new order is incoming and must be integrated into the system, or
a machine (also called a resource) suffered a breakdown. This information is transmitted
by the DT in the form of assembly system state updates.

The optimization loop will then execute an optimization model to find potential
system configurations that solve the occurring problem(s). These potential solutions

Chapter 4. Design and Implementation 31

are then sent to the Simulation Module to be simulated under uncertainties. Afterwards,
ReAssign will receive a report of the simulations with a variety of statistics, which will
be used to determine which (if any) of the solutions is feasible (e.g., if the expected
throughput is achieved). In the case of “yes”, there are feasible solutions, they’re saved
in memory and, if there are more than five feasible solutions saved, the loop is over and
they are sent to the DT. Otherwise, adjustments to the optimization model are applied
based on the simulations statistics and the loop repeats itself.

Which solution will effectively be used as the target assembly system state is to
be defined in the DT level, with possible options being: manual selection by the System
Planner; automatic selection based on the definition of “Best”, as described previously;
or another method or rule-based system for selection. In this work, only suggestions
of how this selection could be implemented are made. Manual, automated, and even
hybrid methods are all possible choices, but the controversy of transferring decision-
making to digital systems should be taken into account (SCHMITT et al., 2018).

For the purpose of verifying the system model, the following modules were
implemented: optimization, parsing, and communication. The chosen programming
language for the implementation was Python 3. The reasons for this choice were:
variety of useful and lightweight modules (e.g., paho-mqtt); high code maintainability;
and the fact that it is used in many of the stakeholder’s other research projects.

The following sections will go into detail about the system design and implemen-
tation of the proposed solution.

Chapter 4. Design and Implementation

Figure 7 — Overview of the proposed solution.

Assembly System

=8 = - Y
B Eﬂ e e m

K.,j'-u; e ','.g * =
@ S\‘if's Q ﬁ

Process data Action

Digital Twin

Integrate new order
0 Problems:

cgp Best
Machine breakdown suggestions

g

Feasible with
satisfying results?

Find potential
system configurations

Adjust optimization model

[

Optimization Loop

N/

F

. -
Simulation Module b PL
e

Evaluation based on discrete-event simulation

&

Source — Author.

Chapter 4. Design and Implementation 33

4.4 USE CASES

The use case diagram of the proposed solution is illustrated in Figure 8. It pro-
vides an overview of the system functionalities, as well as a glimpse into how they
interact with each other. In this section, the different use cases are discussed.

In Figure 8, three groups of use cases can be identified by their relationships:
the top two use cases; the remaining use cases inside the “«Subsystem»” with the ad-
dition of “Simulate under uncertainties”; and the singular “Choose a solution” use case.
There are also three actors: the System Planner; the assembly system DT; and the
Simulation Module. In the “to-be” process, the Simulation Module encompasses both
the “Scenario Analysis” simulation software and “Scenario API”. This Application Pro-
gramming Interface (API) implements the necessary communication, and is discussed
in section 4.6.2.

The first group relates to the communication between ReAssign and the DT
for the transmission of assembly system state data. “Get current state of the system”
means ReAssign is capable of receiving the current state of the assembly system, and
this use case is extended by “Connect to the MQTT Broker” to indicate that Message
Queuing Telemetry Transport (MQTT) is used to accomplish this goal. This constrains
the implementation of this use case group to the MQTT Protocol, a decision that will be
discussed in section 4.6.2. Requirement RQ-03 is resolved by this group.

The second group is related to the optimization loop, except for “Feed back the
best results”. This use case resolves requirement RQ-10 and represents a successful
optimization loop, thus ReAssign communicates back to the DT a group of system
configuration suggestions. Use cases “Integrate new order” and “React to breakdown”
represent how ReAssign responds to problems in the assembly system, i.e., they are
triggers for the optimization loop. Requirements RQ-01 and RQ-02 are the focus of
these use cases. “Check for missing capabilities” satisfies requirements RQ-04 and
RQ-11. The current state of the assembly system must be inspected such that ReAs-
sign may know if it is capable of producing all required products. This is achieved by
matching product requirements with resource capabilities (e.g., a product might require
a resource with a welding tool). The following use cases represent the functionalities of
the optimization loop:

» “Generate optimized system configurations” represents the optimization model,
which outputs potential system configurations. This use case satisfies requirement
RQ-05;

» “Request simulation of generated results” represents the communication between
ReAssign and the Simulation Module, and satisfies requirement RQ-06;

+ “Simulate under uncertainties” is a use case that belongs to the Simulation Module.

Chapter 4. Design and Implementation 34

Simulation under uncertainties means that unpredictable problems may occur
inside the simulation, e.g., breakdowns. This use case is related to RQ-06;

 “Process simulation results” corresponds to RQ-07 and the functionality of de-
termining which (or if) the simulated configurations are feasible with satisfying
results;

« “Adjust optimization model constraints” represents ReAssign’s ability to adjust the
optimization model based on the simulation results. This use case is related to
RQ-07.

The consecutive include and extend relationships were modeled to depict the
behavior in the optimization loop. Further discussions are documented in section 4.7.

The third group, consisting of only the “Choose a solution” use case, satisfies
RQ-08 and RQ-09. It is modeled with the assumption that the DT is configured in such
a way that the System Planner can either manually choose a preferred configuration,
or set the DT to automatically decide based on a rule or function (e.g., always picks the
less costly). Transferring the responsibility of choice from ReAssign to the DT allows
better integration potential, since any other systems that communicate with it (or have
access to the MQTT topic) would also have access to the solutions.

Table 1 summarizes which use cases satisfy which requirements. These use
cases are part of the basis for the design of the class diagram presented in the following
section.

Table 1 — Summary of use cases and the requirements they satisfy.

Use case Requirements
Get current state of the system RQ-03
Connect to the MQTT Broker RQ-03
Integrate new order RQ-01
React to breakdown RQ-02

Check for missing capabilities RQ-04, RQ-11
Generate optimized system configurations RQ-05
Request simulation of generated results RQ-06
Simulate under uncertainties RQ-06
Process simulation results RQ-07
Adjust optimization model constraints RQ-07

Choose a solution RQ-08, RQ-09

Chapter 4. Design and Implementation

35

Figure 8 — Use case diagram of the proposed solution.

=<includes==

==|Jzer==
System Planner

Integrate new order

f
=<includes=

:
==gxiend==

Adjust optimization
model constraints

==5Subsysiem==

Resource Assigner (ReAssign)

Connect to the MQTT

Broker

{-:e}dgﬂd;—-}

Get current state of the
system

React to breakdowns

l

f
.
=Zincludes=
H

+ i

2

Check for missing
capahilities

<<includes=

Generate optimized
system configurations

==includer=

Request simulation of

= ==<inchudes=-f---
generated resulis

==zgxtend==
'

Process simulation
results

B
[

L}
==gxtend==

g Y

Feed back the best
results

Choose a solution

Source — Author.

<<=Digital Twin==
Azzembly System

Simulate under
uncertainties

==Jimulation Module==
Scenario Analysis
+

Scenario API

Chapter 4. Design and Implementation 36

4.5 CLASS DIAGRAM

The class diagram in Figure 9 was designed by considering three main functions
for the system: communication, optimization, and high-level logic management.
The classes associated with communication are the following:

» MqttClient: responsible for all functionality related to MQTT;
« Simulator: responsible for the integration with the Simulation Module;

 Parser: responsible for parsing data to a compatible format between the different
data models.

The Optimizer class is responsible for all the optimization functionality, while the
Manager class handles high-level logic management. The design and implementation
details are discussed in the following sections.

Figure 9 — Class diagram of the proposed solution.

- Manager
MgttClient
==datatype== (e - mq’_rt: _r'.-'uqttCIierjt _
ost. str - optimizer; Optimizer
Msg + port: int i s
~ Topic Sl €5 -~ -<=use=>-1 + ygername: sir * . tani()
+ payload: any * password: sir + trigger_optimization{current_state)
- + message_queus: Msgll + publish_solutions(solutions)

- on_connect()
- 0n_message() &
- on_publish()
- process_msogimsg: Msa)

N

Parser

+ aimfree_to_reassigni{data)
+ aimfree_to_scenario_analysis(daia)
+ reassign_to_aimfree(data)
+ scenario_analysis_to_aimfree{data)

s
Optimizer
Simulator

+ model_parameters: dict

+ simulate(scenarios) -

- process_results(resulis) [~ + pptimization_loop{current_state)
- matchf()
- adjust()
- solvel)

Source — Author.

Chapter 4. Design and Implementation 37

4.6 INFORMATION FLOW

An overview of information flow is illustrated in Figure 10. This diagram provides
a simplified view of the data exchange between actors and modules of the system.
Although not explicitly illustrated, there are 3 data models present in the flows, which
are highlighted in the following subsection.

Figure 10 — Information flow diagram of the proposed solution.

<=flows==
solutions
] i ReAssign .l
. i <=flows=
! current state
---------------- > T L e T H ot M s H M b e
==flow=> MattClient |
current state A e M e e e b o i i i o i |
<zflow== = - [v ==flowe=
==Digital Twin==> MQTT Broker sqlutions ! » s;Fth:o:; : ! il oo
Assembly System | H i
R z=flows== v z=flow==
current state. ! | parsed data
solutions ! [{
v : ; =
Parser Manager
o ; i
<=flow== ; v ==flowi== ==flow== | ' ==flow==
potential solutions, | | parsed data solutions | | current state
 <<flow>> | v <<flow=> ; v
simulation results) simulation results
Simulator QOptimizer
e Bt N - Oy Ay
==flows= ==flovi=>
Simulation Module potential solutions potential solutions

Source — Author.

4.6.1 Data models

In this subsection, 3 different data models are presented: the Assembly System
Description Model (AS-DM), Scenario Analysys Input (SA-l), and ReAssign Data (ReA-
D). Figure 11 depicts an overview of the information flow where these models are
applied.

Assembly System Description Model

The AS-DM is applied in the data exchange between the DT and ReAssign. As
described by Goppert et al. (2021), its metamodel consists of a header and a body,
shown in Figure 12. The header contains defining information about the object, whereas
the body contains submodels, which can be of style parameter, variable, function, or
component. Components consist of further components, parameters, variables, and
functions, thus complex systemic relationship can be depicted.

Chapter 4. Design and Implementation 38

Figure 11 — Overview of the information flow where the data models are applied.

Digital Twin

A

Q"— iy,

AS-DM

SA-T

Simulation Module

Source — Author.

Thus, the AS-DM is used to describe the assembly system state in the JavaScript
Object Notation (JSON) format, with its components being entities of the assembly
system: orders, stations, and AGVs. Figure 13 illustrates the modeling of the assembly
system state.

An order is assumed to have a single product. Thus, the “quantity” parameter
refers to the amount of products to be produced. Parameters ESD and LFD mean
“Earliest Start Date” and “Last Finish Date”, respectively, and are meant to provide
information on the amount of time available to manufacture the product. The variable
“current lateness” indicates how late its production is. These parameters and variable
are available in order to satisfy RQ-12 of the optimization model: it has to know if the
order can be completed in time. The state variable indicates if the order is “incom-
ing”, “in progress” or “completed”. Orders with status “incoming” are considered “order
integration” problems and trigger the optimization loop.

Orders also have a “Product” component. Products possess the “requirements”

Chapter 4. Design and Implementation 39

parameter, a list of necessary capabilities for their production. Although Géppert et
al. (2021) modeled parts and process steps, which were the components containing
requirements, it was decided to simplify the modeling and move this parameter up
to the product, as ReAssign does not require to know process steps, only to match
requirements with capabilities.

Stations contain the “location” parameter and the “Resource” component. A
station location is its xyz coordinates in the assembly system, which can be used to
check which cells of the assembly system contain which resources.

Resources contain the “status” variable and the “Capability” component. A re-
source status can be either “idle”, “in progress”, or “breakdown”. The “breakdown” status
on a resource is considered a “breakdown” problem and will trigger the optimization
loop.

Capabilities contain an empty body, as such only their headers contain infor-
mation. Matching with requirements is done by comparing the capability ID with the
contents of the product requirements list. If it is contained in the list, a match is made,
i.e. the requirement is satisfied. Capabilities were modeled as a component to allow
more flexibility in future modifications to the model as the AS-DM is developed, since a
capability may be restricted by certain parameters not considered in this work (e.g., a
pick-and-place weight limit).

AGVs contain the “status” variable, which is virtually the same as a resource
status. They were modeled as their own entity because AGVs have parameters and
variables that are configurable in the Simulation Module. Since having the DT contain
the parameter configurations for the Simulation Module might be of interest to future
works, this component was modeled like so to allow additions to be made more easily.

Figure 12 — Meta-model of the Assembly System Description Model (AS-DM).

Header
« Style
ID
Name
Description
AL
Bod
& Parameter © Variable £ Function <> Component
« Value « Value « Arguments <> Component
Dimension * Uncertainty * Returns %E Function
Range « Timestamp (© Variable
Datatype « Unit & Parameter
Unit - Dimension, Range,
Datatype

Source — Goppert et al. (2021).

Chapter 4. Design and Implementation 40

Scenario Analysis Input

SA-l is an input format in the JSON format required by the Simulation Module. It
contains a variety of simulation parameters to describe layout, product variety, complex-
ity, flexibility of the assembly system and their variation levels (GOPPERT; RACHNER;
SCHMITT, 2020). Those are separated under 3 different categories:

« Structure: defines the basic structure of the scenario, e.g., simulation parameters,
algorithms and global layout;

» Product: defines all product information, e.g., requirements, variants, distributions;

» Ressource Assembly: defines all resources information, e.g., capabilities of work
stations, and process times.

As the Simulation Module was already developed, SA-l was used as-is, without
any further development or adaptation required.

ReAssign Data

To simplify operations inside ReAssign and facilitate both development and use
of functionalities, ReA-D was modeled. lts main goal is to store data from the assembly
system state into objects with attributes that could be easily accessible by ReAssign
classes. As such, the modeling is similar to AS-DM. Figure 14 illustrates the ReA-D
model.

Some design choices are worth mentioning:

* requirements and capabilities are passed to the parent class upwards to the
AssemblyState. This facilitates access to the data;

« capabilities from a Resource are only passed to the parent Station if the Resource
has its status attribute different from “breakdown”. As such, Station and Assem-
blyState capabilities attributes indicate which capabilities the current system has
available for use;

« similar to AS-DM, Capability is modeled as a class without attributes (other than
those inherited from AimfreeMetadata). For matching with requirements, the id
contained in the header is used;

» AimfreeMetadata is inherited by all classes for later use by the Parser class when
parsing from ReA-D to AS-DM, so that defining information is persisted.

Chapter 4. Design and Implementation 41

Figure 13 — Assembly system state modeled from AS-DM.

h i

Body
Poduc

state

current lateness

Capability

Station Resource Capability

Capability

—— consisis of

------------ » represents

Source — Adapted from Goppert et al. (2021).

Chapter 4. Design and Implementation

42

Figure 14 — ReAssign Data (ReA-D) model.

AimfreeiMetadata Header
1
+ header: Header + id: str
+ body: dict _|—0 + name: str

All classes except Header
inherit from AimfreeMetadata

+ description: str

+ style: str

Assemblystate

+ stations: list[Station]
+ orders: list[Order]
+ agvs: listlAgv]

+ requirements: Counterfstr]

+ capabilities: Counter[Capability]

1

L

Crder

+ product: Product
+ guantity: int

+ requirements: list{str]

:

Product

+ requirements: list{str]

i

Agv

+ status: str

Source — Author.

Lo

Station

+ resources: list{Resource]
+ capabilities: set

+ [ocation: list[float, float, float]

1
{L:

Resource

+ status: str

+ capabilities: set[Capability]

1
1.

Capability

Chapter 4. Design and Implementation 43

4.6.2 Communication

There are two communication flows that must be addressed: DT and ReAssign,
and Simulation Module and ReAssign. This subsection discusses both flows and the
required parsing between data models.

With the Digital Twin

Exchange of data between the DT and ReAssign uses the MQTT protocol. It is
a lightweight publish/subscribe messaging transport that is ideal for connecting remote
devices with a small code footprint and minimal network bandwidth (MQTT.ORG, 2022).

MQTT functionality is implemented by the MqttClient class. Once instantiated,
the object sets all connection parameters and callback functions, and then starts its
idle loop in a different thread, waiting for messages after a successful connection to the
broker. Figure 15 illustrates this by means of an activity diagram.

The MqttClient object stays idle until a message is received, i.e., an assembly
system state update. Once received, the message is parsed from the AS-DM to the
ReA-D model and appended to the message queue, to which the Manager class has
access. A summary of this process is depicted in Figure 16. To publish back to the DT,
parsing from ReAssign to AS-DM is required, as depicted in Figure 17.

Figure 15 — Activity diagram for the “Connect to the MQTT Broker” use case.

act Connect to the MQTT Broker)

zpostcondition= Connected to the MQTT Broker

™y i !

Load MQTT Connect to the
parameters MQTT Broker

W

o
-

Wait for new Subscribe fo the
e :

messages configured topics

- b i

Source — Author.

Chapter 4. Design and Implementation 44

Figure 16 — Activity diagram for the “Get current state of the system” use case.

act Get current state of the system /

==precondition=>= Connected to the MQTT BEroker
==postcondition== Mew current state received

Mew current state Farse from
received Aimfree to ReAssign

b

©< [Save current state

Source — Author.

Figure 17 — Activity diagram for the “Feedback the best results” use case.

act Feed back the best resuits)

F

Publish resulis to
MQTT

Parse from
ReAssign to Aimiree

Source — Author.

With the Simulation Module

The Simulation Module is a two-part module. The first part is called “Scenario
Analysis” and contains the already-developed discrete-event simulation. The second
part is a Representational State Transfer (REST) API, nicknamed “Scenario API”, which
was developed to allow communication with Scenario Analysis by the use of Hypertext
Transfer Protocol (HTTP) requests. Figure 18 provides a high-level view of the Simula-
tion Module and its components.

Scenario API allows calls to Scenario Analysis methods and access to the result-
ing simulation data through its endpoints. The request to create a simulation contains
the “scenario_analysis_input”, which must be in the SA-I format. Scenario APl is further

Chapter 4. Design and Implementation 45

detailed in Appendix B.

Figure 19 shows the interaction between ReAssign Simulator class and the
Simulation Module, which represents the use case “Request simulation of generated
results”. The following sequence of events occur:

1. arequest is made to create a simulation instance with the input set as one of the
assembly system configurations generated in the optimize phase. This input must
be parsed from ReA-D to SA-I;

2. the Simulation Module responds with a 200 OK status code and data about the
created simulation;

3. a second request is made to run Scenario Analysis on the created simulation;

4. once the simulation is finished, the Simulation Module responds with a 200 OK
status code and a results object.

Figure 18 — High-level view of the Simulation Module and its components.

Simulation Module

Scenario API

Scenario Analysis

Source — Author.

The communication with the Simulation Module is a part of the optimization loop,
specifically the simulate phase. The following section presents the loop and its phases.

4.7 OPTIMIZATION LOOP

The optimization loop is triggered when problems in the assembly system are
detected (e.g., machine breakdowns). Product requirements are matched with resource

Chapter 4. Design and Implementation 46

Figure 19 — Sequence diagram for the interaction between the Simulator class and the
Simulation Module.

s Request simulation of generated results)
Simikaton Simulation
Module
i i
! POST /simulations !

— title, description, scenario_analysis_input 'L
created simulafion
.‘__.___-___.___.___.___.___.___.___.___-___.___.___._

GET
isimulations/idyexecute

o
simuiation_results
.‘__._______.___.___.___._______.___._______.___.___._
LI =T,
i i

Source — Author.

capabilities, the optimization model is solved, and thereafter a simulation of the solutions
is requested and executed, returning a report of the results that are analyzed to either
approve certain solutions, or adjust the optimization model parameters and re-run it. The
process from matching to simulation result analysis is referred to as the optimization
loop, even though the matching operation happens only once. Figure 20 illustrates
the “Check for missing capabilities” (i.e., matching) use case in the form of an activity
diagram.

There are three stages to the loop: optimize, simulate, and adjust. Those stages
are discussed in the following subsections.

4.7.1 Optimize

In the optimize phase, the optimization model is solved based on a set of con-
straints and parameters that might change from one loop to another due to the adjust
phase. In the first execution of the optimization loop, there are no adjustments to be
made. As such, the default model is influenced only by predefined parameters.

The goal of this phase is to return a set of at least 5 potential solutions to the
problem, i.e., 5 different system configurations to be simulated in the simulate phase.
The model should satisfy the requirements specified in section 4.2. Figure 21 illustrates

Chapter 4. Design and Implementation 47

Figure 20 — Activity diagram for the “Check for missing capabilities” use case.

act Check for missing capabilitiea

Get all current From resources being
(Get all requirements capabilities —{used in the Assembly
System, except those
on breakdown.
Feiurn missing
capabilities

the activity diagram for the use case “Generate optimized system configurations”.
Gurobipy was chosen as the solver, since it integrates with the Python program-
ming language and is capable of solving linear programming problems efficiently.

Match requirements
with capabiliies

Source — Author.

Figure 21 — Activity diagram for the “Generate optimized system configurations” use
case.

act Generate optimized system configurations)

==postcondition== Solufions found

Generate decision
variables, objective
function, and
constraints

[adjusiments required]

Adjust the model

[mo adjustmenis required]

(

L Return solutions Solve

®

Source — Author.

Chapter 4. Design and Implementation 48

Model formulation

An initial version of the model was formulated and implemented. It is consid-
ered “initial” as it solves only RQ-11 (the matching requirement) of the optimization-
specific functional requirements, as well as RQ-17 (solvable in less than a minute) of
the non-functional requirements. The model formulation is presented in the following
subsections.

Sets

Let R be a set of requirements and C be a set of capabilities of the Assembly
System.

Let M be a set of currently assigned resources and Mz be a set of resources
available for assignment.

Let M, be a subset of Mc, in which the resources have a capability that matches
the requirement r € R.

Let S be a set of stations.

Parameters

Each station can have up to z resources assigned to it;

new stations have a fixed cost of g;
» each resource m € My has a set of capabilities Cyy and a cost ¢m.

« for each requirement r € R we are given its quantity gr (i.e., multiple products
might have the same requirements);

each station s € S has a set of resources assigned to it.

Variables

For each station s € S and for each resource m € Mz there will be an associated
assignment variable xs m € {0, 1} describing if resource m is assigned to station s
(Xs,m = 1).

For the station location constraint, there will be a set of station costs which
increases in value as the station location becomes farther from the origin point.

Chapter 4. Design and Implementation 49

Objective function

The objective is to minimize the total cost of assignments. Every assignment will
have a cost defined by the sum of the resource and station costs. Equation (1) presents
the objective function.

min Z Z Xs’m(CS + Cm) (1)

seS meM,

Constraints

Matching constraint: the sum of assignments that have resources with a specific
capability must be bigger or equal than the quantity of products with the matching
requirement. This constraint is defined by Equation (2)

> Xsm, > qr.Vs € S,Ymy € My,Vr € R 2)

Complete model

The complete optimization model is presented in Equation (3).

min > scs > mem, Xs,m(Cs + Cm)
st > Xsm, > qr,Vse S,vmr € Mr,Vre R (3)

Xs,m € {O, 1}

4.7.2 Simulate

The simulate phase evaluates the potential solutions generated in the optimize
phase by simulating the different scenarios under uncertainties (e.g., with machine
breakdowns, delays, etc.). Géppert, Rachner, and Schmitt (2020) discuss this already-
developed discrete-event simulation.

The Simulation Module is regarded as a black box, in which ReAssign will re-
quest a simulation by sending potential solutions as input. As a response, a result
file containing a variety of statistics will be returned to ReAssign. The most important
statistics for analyzing both feasibility and prospects of the potential solutions are:

« makespan: the time between the arrival of the first order and the completion of
the last processing of the last order for a given order backlog. The order backlog
corresponds to the given number of orders, which also limits the period of obser-
vation of the simulation. Since the simulation is terminated after completion of the
last order, the makespan corresponds to the total simulation time;

Chapter 4. Design and Implementation 50

* lead time: comprises the time between order release and the end of processing
of an order. This is measured individually for each order and is determined by the
time from the generation of the order to its arrival at the sink?, which marks the
end of processing. At the end of the simulation, the lead time of all orders in the
simulation run is averaged. Thus, the arithmetically averaged lead time is used for
evaluation. In addition, the lead time is divided into process time, waiting time, and
transport time, all of which are also averaged in the same way. They’re defined
as:

— process time: the summed time in which an order is in processing stations;
— waiting time: the time in queues;

— transport time: the time in which the order is in transport modules.

« utilization (stations): the capacity utilization of a processing station is the quotient
of the times during which the station is in the status “in progress”™ and the total
simulation time. The utilization can be determined individually for each station to
find out which stations are possibly overloaded or not needed. In addition, the
averaged utilization is calculated for all stations;

« utilization (AGVs): the quotient of the time during which the AGVs are in motion
and the total simulation time. An AGV can have the states “empty run”, “transport”
and “waiting”. Empty run denotes the situation in which an AGV travels empty to
a station to pick up an entity; transport means an AGV transports an entity from
the current station to the next; and waiting indicates that the AGV is queued and
available, being the only state in which the AGV is considered not in motion and,

thus, “not utilized”. To evaluate the AGVs, the averaged utilization is considered;

« availability: the proportion of the total simulation time during which a station is
not in a breakdown. This refers to the time during which a station is available or
in process and, thus, not down. In addition to the availability of all individual sta-
tions, the averaged availability for all stations is also calculated. In the simulation
model, only technical failures or maintenance measures are taken into account;
organizational downtimes are not. Therefore, the availability can be understood as
technical availability* and depend on the specified values for Mean Time Between
Failures (MTBF)® and Mean Time To Repair (MTTR)®;

The sink is an entity in the simulation that destroys incoming entities. It forms the last object in the
process and marks an order as finished.

3 “in progress” means that an order is being processed in this station. Alternatively, a station can have
the states “available”, “down”, “blocked”, and “in maintenance”.

In technical availability, only the technical failures are taken into account. They are caused by defi-
ciencies in the design or construction of a machine, e.g., material defects, wear and breakage, failure
of technical components such as sensors and motors, etc.

MTBF is the average time that elapses between two failures.

MTTR is the average time needed for repairs.

Chapter 4. Design and Implementation 51

» queue length: several key figures are retrieved to analyse the queues:

— average queue length: indicates how many orders were in a queue on aver-
age over the entire period under consideration. This value is given individually
for the queues of each station;

— averaged average queue length: averages the average queue length of all
stations;

— maximum queue length: this key figure is given for each station individually
and averaged. It indicates the maximum value of the queue length achieved
in the period under consideration.

* blocked time: the summed time in which an order is in a station after the process
has finished because none of the possible next stations are available. Thus, the
order is blocking the station;

« status: indicates if the simulation was successful. The status can be “success”,
“deadlock”, or “failed”, of which “deadlock” indicates that there is an unsolvable
problem in the scheduling, and “failed” means the simulation failed for unknown
reasons;

« throughput: the amount of orders that have finished during a given time (the
simulated time).

The aforementioned statistics are to be analyzed in order to decide if the potential
solutions are feasible. A potential solution is feasible when it is capable of satisfying
throughput and utilization requirements under uncertainties. Although in this work these
two key figures are considered the targets for determining feasibility, maximizing just
one or the other is not enough. Rather, their impact on the various key figures must
be simultaneously considered, as conflicts between objectives may lead to a variety
of problems, resulting in uncertainties that often lead to the so-called “vicious cycle of
production, planning, and control” depicted in Figure 22 (NYHUIS; WIENDAHL, 2008).

Nonetheless, a possible objective for the selection of feasible solutions is that
all orders are completed before their deadlines. An example logic for feasibility can
be that the solution is feasible only if the throughput is high enough to complete all
orders before their deadline. Throughput can be increased by incrementing the number
of available resources and, thus, stations, but this would cause utilization to lower. As
such, a second rule could be defined as: “only check throughput if utilization is above
X%”, where “X” is the desired minimum utilization. Then again, 100% utilization could
indicate a bottleneck. These key figures must be balanced in order to not only avoid
the previously mentioned problems, but also to allow the assembly system to efficiently
handle the simulated uncertainties.

Chapter 4. Design and Implementation 52

Figure 22 — Vicious cycle of production, planning, and control.
throughput

times and

their variance
increase

2

low schedule
reliability

planned
throughput
times are
increased

longer
queues

A\

orders are
released
earlier

load
on work
stations
increases

Source — Nyhuis and Wiendahl (2008).

A potential uncertainty is a machine breakdown, which would cause single-route
assembly systems to be blocked while the breakdown is being resolved, thus reducing
throughput. A configuration with multiple possible routes for product assembly would
handle this issue better, as the assembly system would not be blocked while the issue
is resolved. This would result in either a maintained or reduced throughput instead of
a complete block. In the context of production ramp-up, this is essential to shorten the
ramp-up phase or, in ideal scenarios, to avoid it altogether.

For the problem of product integration, the focus is on modifying the assembly
system in a brownfield approach, i.e., changing as little as possible and still achieving
production goals. A new order with a new product might have requirements that are
already satisfied by the existing assembly system, but a simulation is required to verify
if this integration would disturb the system throughput, as shared resources would have
higher utilization and possibly wait times. When a simulated product integration results
in a maintained throughput, even under uncertainties, it means that the product can
be confidently integrated into the system and production ramp-up would be virtually
non-existent.

As such, feasible solutions are tagged as such and will eventually be sent to
the DT. To support more flexibility in decision-making on the DT side, the simulation

Chapter 4. Design and Implementation 53

statistics of each feasible solution are to also be sent to the DT. The optimization loop
ends when ReAssign finds enough? feasible solutions.

If not enough feasible solutions are found, the results are sent to the Optimizer
class so it can adjust the optimization model. Thus, the adjust phase of the optimization
loop begins.

4.7.3 Adjust

The lack of enough feasible solutions evaluated in the simulate phase triggers
the adjust phase. To search for new possible solutions, adjustments to the optimization
model are required. Which adjustments are made depends on the values of key figures
contained in the results file from the simulate phase, and they might include constraint
relaxation, parameter adjustments, etc.

As discussed in subsection 4.7.1, the implemented optimization model only
considers the matching requirement RQ-11. Other restrictions (e.g., time restriction in
RQ-12; max number of resources per station in RQ-15; or max number of stations in
RQ-16) are not implemented, but are of importance to contextualize the adjust phase
and guide future works. It is also worth mentioning that the stations hereby mentioned
refer to a physical space in the assembly system that could contain resources and
in which products are worked on. Thus, adding and removing stations in the physical
assembly system is only costly because of the resources associated to it, as well as
the space they occupy. This is not the case in the simulation, as the simulated stations
have the capabilities and all associated costs. Nonetheless, the analysis presented in
this subsection refers to the physical assembly system.

In the case of low throughput, a solution can be the addition of more resources
and stations. Although this is a straighforward way of increasing the system throughput,
it is highly costly and not aligned with the brownfield approach. Alternatively, itd be
better to analyse utilization and wait times to check for bottlenecks. If the bottleneck
is located in a station because multiple product routes must go through it, then an
alternative could be to move some of its resources to other stations, distributing the
capabilities throughout the system and creating more possible product routes. Transfer-
ing a resource from a station to another is less costly than buying and installing a new
resource, thus this solution is favored over the previously mentioned one.

For low utilization with a satisfying throughput, there is an indication that the
assembly system might have too many stations or resources. This is not necessarily a
negative indication: if this situation occurs from evaluating the current assembly system,
it means that no changes are necessary for it to successfully produce all orders, thus
the best solution is to simply follow the brownfield approach and not change the state.
Although this is a good indicator for the current state, it is a negative for suggested

7 According to RQ-14 defined in section 4.2, five feasible solutions is considered enough.

Chapter 4. Design and Implementation 54

solutions. A low utilization may indicate that the optimization model is adding more
resources and/or stations than necessary, needlessly increasing costs. Zero blocked
and waiting times, as well as no queues, are indicators that can help identify the stations
and product routes that are unnecessary to maintain throughput.

With the previously mentioned analysis in mind, the Optimizer class can adjust
the model accordingly. Optimization parameters such as the max number of stations,
or max number of resources, can be relaxed. New contraints can be added to force
the addition of new resources, or to keep a specific station from being altered. It is
also possible to consider delaying orders by increasing the time constraint to allow a
more relaxed order deadline. Such decisions have to consider not only how the different
key figures interact with one another, but also how much relaxation is allowed by the
System Planner. Thus, although solutions are automatically generated, evaluated, and
then sent to the DT, it is important to be precautious regarding the decision of which
solution to apply and which actions to take in order to change the assembly system
state. This motivates a manual or semi-automatic approach to the decision-making on
the DT level, as the System Planner makes the final decision of what is acceptable.

55

5 RESULTS

In this chapter, results of this work are discussed. Specifically, the system mod-
eling, open points, and the verification through implementation of software modules.

For verification of the model, the following software modules were implemented:
communication modules (Simulator and MqttClient), Parser, and a optimization model in
the Optimizer class. Furthermore, Scenario APl was developed to allow communication
with the Simulation Module. These modules were evaluated by unit and integrations
tests.

For testing the modules, the following assembly system was assumed:

* resources 1 and 2 with capabilities 1 and 2, respectively;

« stations 1 and 2 with resources 1 and 2, respectively;

products 1 and 2 with requirements 1 and 2, respectively;

orders 1 and 2 with products 1 and 2, respectively;

» one AGV.

This assembly system was specified in the AS-DM, ReA-D, and SA-I formats
and added as test fixtures. For the Parser unit tests, these fixtures were used in testing
the parsing functions from AS-DM to ReA-D and vice-versa. The tests passed if the
result of the parsing method was equal to the expected format defined by the fixture.

For the Optimizer class, the test for the match() method asserts that the return
value (a Counter object of missing capabilities) contains whichever capability is miss-
ing. It also checks if the count is correct. A second test for the match() method was
developed specifically for parsed inputs (i.e. assembly state parsed from AS-DM to
ReA-D), which does the same checks. The test for the solve() method asserts that the
returned solution is equal to what is expected. This test in particular is problematic,
since the optimization model is supposed to return multiple different solutions, but for
this implementation works because the model always returns the same optimal solution
for this specific test scenario. An improved test will be necessary for more complex
implementations of the optimization model.

Testing for the Simulator class is done with and without parsed input. In the
former, the assembly state is parsed from ReA-D to SA-I before being used as input to
the simulate() method. In the latter, the fixture with the scenario analysis input is used
as input to the simulate() method. For this test to pass, the Scenario API server must
be running, and the response (simulation results) is checked for the “SimulationStatus”
parameter. If its value is “Success”, then the simulation was successful and the test
passed.

Chapter 5. Results 56

Although no tests were developed for testing the MqttClient class and its meth-
ods, it was manually tested with a public MQTT broker and the MQTT Explorer software
(NORDQUIST, 2022). It was verified that the MqttClient class is able to connect to
the broker, receive messages, and process them according to the rules defined in its
methods.

The focus for the verification of the model was in the data models and the
communication modules, as they are necessary for the system to operate, i.e. the
communication with the DT for getting real-time data, and the communication with
the Simulation Module for evaluating generated results. The other software modules
can vary greatly in terms of complexity, i.e., the complexity of the algorithms for the
optimization phase, or for the processing and decision-making in the adjust phases.

In terms of the objectives for this work, both modeling and verification were
achieved. The verification of the communication modules aided in the verification of
sufficiency for the defined data models, as they were used in different modules of the
system. The system model is thus considered sufficient for the specified requirements.

57

6 CONCLUSIONS AND OUTLOOK

For the system planning problem of LAS, a proposed solution was modeled. It
applies concepts of DSS, DT, simulation, and optimization to aid the System Planner
in deciding how the assembly system should be changed in order to achieve sufficient
throughput in @ mass customization co-production scenario. This is achieved by means
of real-time assembly system state data from the DT, which is fed into an optimization
loop that generates possible solutions, evaluates them in a discrete-event simulation,
and analyses the results to either adjust the optimization model to continue the loop, or
feed back feasible solutions to the DT. The model satisfies all of the system functional
requirements, and was verified by the implementation of 3 software modules.

The designed software structure is promising for future research in LAS ramp-up
management, as it not only employs modern engineering concepts (e.g., DTs, predictive
simulation), but also has a modular architecture that permits continual improvements.
The Optimizer class, for example, can be replaced by virtually any algorithm that has the
assembly state in the ReA-D format as inputs and outputs. Nonetheless, new parsing
functions can also be added to the Parser class and used to parse the state into new
data models.

Furthermore, a more generic approach to the architecture would see both the op-
timization and the simulation modules as replaceable. The focus of such an architecture
would be to have the DT providing real-time data of the system state, while new states
that satisfy whichever objectives were set are searched for by the optimization loop
through an algorithm that generates potential solutions (optimize phase), a simulation
software capable of predicting the potential solution influence on the system and how it
would behave (simulate phase), and another algorithm, model or set of rules to make
proper adjustments in the search for solutions.

Implementation was focused on the data models, parsers, and the communi-
cation modules in order to provide a baseline for future works. With this, integration
with external systems has already been developed, and the focus can be shifted into
improving internal modules, such as the Optimizer. Those can vary greatly in terms of
complexity and are good starting points for future works.

The implemented modules were verified through unit and integration tests. It is
worth mentioning that certain unit tests are difficult to write due to the random nature of,
for example, the Simulation Module. The discrete-event simulation applies randomiza-
tion to the simulated scenarios, as such the resulting statistics vary from one execution
to the other. An alternative is to assume repetitive tests and set the random seeds to a
constant value just for testing the Simulation Module, making it so the resulting statistics
are always the same.

It is suggested that future works focus on research and development of models

Chapter 6. Conclusions and Outlook 58

and algorithms for the optimize and adjust phases, as they are responsible for suggest-
ing possible solutions. Improvements in these modules will lead to better suggestions
and, thus, a more efficient optimization loop in terms of finding feasible solutions. An-
other possible focus area is the implementation of the DT in terms of its lifecycle, data
exchange and interactions with the assembly system, as well as decision-making in
terms of deciding which solution should be chosen and which actions should be taken
to transition the assembly system to the desired state.

As mentioned in section 3.3, this work and the developed model seek to be the
framework for future research in production ramp-up of LAS. With the implementation
of previously mentioned suggestions, the research gap in the use of real-time data for
solving production ramp-up problems can be reduced. As advances in the area are
made and confidence in digital systems decision-making is increased, a consensus
amongst researches can be formed, further solidifying the fourth industrial revolution,
Industry 4.0.

59

REFERENCES

ADAM, John. Was ist der V-modell Ansatz in der Softwareentwicklung und
-prufung? 2021. Available from:
https://kruschecompany.com/de/v-modell-softwareentwicklung/. Visited on: 23
July 2022.

BASSE, Isabel; SAUER, Alexander; SCHMITT, Robert H. Scalable Ramp-up of Hybrid
Manufacturing Systems. Procedia CIRP, v. 20, p. 1-6, Dec. 2014. DOI:
10.1016/j.procir.2014.05.024.

BRUCCOLERI, Manfredi; PASEK, Zbigniew J.; KOREN, Yoram. Operation
management in reconfigurable manufacturing systems: Reconfiguration for error
handling. International Journal of Production Economics, v. 100, n. 1, p. 87-100,
2006. ISSN 0925-5273. DOI: https://doi.org/10.1016/j.1ijpe.2004.10.009.
Available from:
https://www.sciencedirect.com/science/article/pii/S0925527304004190.

BRUEGGE, Bernd. Object-oriented software engineering : using UML, patterns,
and Java. Boston: Prentice Hall, 2010. ISBN 0136061257.

DOLTSINIS, Stefanos; FERREIRA, Pedro; MABKHOT, Mohammed M.; LOHSE, Niels.
A Decision Support System for rapid ramp-up of industry 4.0 enabled production
systems. Computers in Industry, v. 116, p. 103190, 2020. ISSN 0166-3615. DOI:
https://doi.org/10.1016/j.compind.2020.103190. Available from:
https://www.sciencedirect.com/science/article/pii/S0166361519306876.

DOMBROWSKI, Uwe; WULLBRANDT, Jonas; KRENKEL, Philipp. "Industrie 4.0 in
production ramp-up management". Procedia Manufacturing, v. 17, p. 1015-1022,
2018. 28th International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM2018), June 11-14, 2018, Columbus, OH, USAGIobal Integration
of Intelligent Manufacturing and Smart Industry for Good of Humanity. ISSN
2351-9789. DOI: https://doi.org/10.1016/j.promfg.2018.10.085. Available from:
https://www.sciencedirect.com/science/article/pii/S$2351978918312022.

GLOCK, Christoph; GROSSE, Eric. Decision support models for production ramp-up:
A systematic literature review. International Journal of Production Research, v. 53,
p. 1-15, July 2015. DOI: 10.1080/00207543.2015.1064185.

https://kruschecompany.com/de/v-modell-softwareentwicklung/
https://doi.org/10.1016/j.procir.2014.05.024
https://doi.org/https://doi.org/10.1016/j.ijpe.2004.10.009
https://www.sciencedirect.com/science/article/pii/S0925527304004190
https://doi.org/https://doi.org/10.1016/j.compind.2020.103190
https://www.sciencedirect.com/science/article/pii/S0166361519306876
https://doi.org/https://doi.org/10.1016/j.promfg.2018.10.085
https://www.sciencedirect.com/science/article/pii/S2351978918312022
https://doi.org/10.1080/00207543.2015.1064185

References 60

GOPPERT, Amon; GRAHN, Lea; RACHNER, Jonas; GRUNERT, Dennis;

HORT, Simon; SCHMITT, Robert H. Pipeline for ontology-based modeling and
automated deployment of digital twins for planning and control of manufacturing
systems. Journal of Intelligent Manufacturing, Springer Science and Business
Media LLC, Nov. 2021. DOI: 10.1007/s10845-021-01860-6.

GOPPERT, Amon; HUTTEMANN, Guido; JUNG, Sven; GRUNERT, Dennis;
SCHMITT, Robert. Frei verkettete montagesysteme. Zeitschrift fir wirtschaftlichen
Fabrikbetrieb, De Gruyter, v. 113, n. 3, p. 151-155, 2018.

GOPPERT, Amon; RACHNER, Jonas; SCHMITT, Robert H. Automated scenario
analysis of reinforcement learning controlled line-less assembly systems. Procedia
CIRP, v. 93, p. 1091-1096, 2020. 53rd CIRP Conference on Manufacturing Systems
2020. ISSN 2212-8271. DOI: https://doi.org/10.1016/j.procir.2020.04.116.
Available from:
https://www.sciencedirect.com/science/article/pii/S$2212827120307514.

GRAHN, Lea; RACHNER, Jonas; GOPPERT, Amon; SAEED, Sazvan;

SCHMITT, Robert H. Framework for Potential Analysis by Approximating Line-Less
Assembly Systems with AutoML. In: ANDERSEN, Ann-Louise; ANDERSEN, Rasmus;
BRUNOE, Thomas Ditlev; LARSEN, Maria Stoettrup Schioenning; NIELSEN, Kjeld;
NAPOLEONE, Alessia; KIELDGAARD, Stefan (Eds.). Towards Sustainable
Customization: Bridging Smart Products and Manufacturing Systems. Cham:
Springer International Publishing, 2022. P. 423—430.

HADDAWAY, Neal; PAGE, Matthew; PRITCHARD, Chris; MCGUINNESS, Luke.
PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant
flow diagrams, with interactivity for optimised digital transparency and Open Synthesis.
Campbell Systematic Reviews, v. 18, June 2022. DOI: 10.1002/c12. 1230.

HANSEN, Klaus R.N.; GRUNOW, Martin. Modelling ramp-up curves to reflect learning:
improving capacity planning in secondary pharmaceutical production. International
Journal of Production Research, Taylor & Francis, v. 53, n. 18, p. 5399-5417, 2015.
DOI: 10.1080/00207543.2014.998788. eprint:
https://doi.org/10.1080/00207543.2014.998788. Available from:
https://doi.org/10.1080/00207543.2014.998788.

HUTTEMANN, Guido; BUCKHORST, Armin F.; SCHMITT, Robert H. Modelling and
Assessing Line-less Mobile Assembly Systems. Procedia CIRP, v. 81, p. 724-729,

https://doi.org/10.1007/s10845-021-01860-6
https://doi.org/https://doi.org/10.1016/j.procir.2020.04.116
https://www.sciencedirect.com/science/article/pii/S2212827120307514
https://doi.org/10.1002/cl2.1230
https://doi.org/10.1080/00207543.2014.998788
https://doi.org/10.1080/00207543.2014.998788
https://doi.org/10.1080/00207543.2014.998788

References 61

2019. 52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana, Slovenia,
June 12-14, 2019. ISSN 2212-8271. DOI:
https://doi.org/10.1016/j.procir.2019.03. 184. Available from:
https://www.sciencedirect.com/science/article/pii/S2212827119304895.

HUTTEMANN, Guido; GOPPERT, Amon; LETTMANN, Pascal; SCHMITT, R.
Dynamically interconnected assembly systems—concept definition, requirements and
applicability analysis. WGP-Jahreskongress, v. 7, n. 1, p. 1-25, 2017.

IVANQV, Dmitry; TANG, Christopher S.; DOLGUI, Alexandre; BATTINI, Daria;

DAS, Ajay. Researchers’ perspectives on Industry 4.0: multi-disciplinary analysis and
opportunities for operations management. International Journal of Production
Research, Taylor & Francis, v. 59, n. 7, p. 2055-2078, 2021. DOI:
10.1080/00207543.2020.1798035. eprint:
https://doi.org/10.1080/00207543.2020.1798035. Available from:
https://doi.org/10.1080/00207543.2020.1798035.

KLETTI, Jurgen. MES - Manufacturing Execution System: Moderne
Informationstechnologie unterstitzt die Wertschopfung. [S.I.: s.n.], Jan. 2015.
ISBN 978-3-662-46901-9. DOI: 10.1007/978-3-662-46902-6.

KRITZINGER, Werner; KARNER, Matthias; TRAAR, Georg; HENJES, Jan;

SIHN, Wilfried. Digital Twin in manufacturing: A categorical literature review and
classification. IFAC-PapersOnLine, v. 51, n. 11, p. 1016-1022, 2018. 16th IFAC
Symposium on Information Control Problems in Manufacturing INCOM 2018. ISSN
2405-8963. DOI: https://doi.org/10.1016/j.ifacol.2018.08.474. Available from:
https://www.sciencedirect.com/science/article/pii/S2405896318316021.

KUHN, Axel; WIENDAHL, Hans-Peter; EVERSHEIM, Walter; SCHUH, Glnter. Fast
ramp up: schneller Produktionsanlauf von Serienprodukten. Verlag Praxiswissen,
Dortmund, v. 6, 2002.

MAKINEN, Simo; MUNCH, Jiirgen. Effects of Test-Driven Development: A
Comparative Analysis of Empirical Studies. In: DOI: 10.1007/978-3-319-03602-1_10.

MARSNER TECHNOLOGIES. Why Test-Driven Development (TDD). Available from:
https://marsner.com/blog/why-test-driven-development-tdd/. Visited on: 23
July 2022.

https://doi.org/https://doi.org/10.1016/j.procir.2019.03.184
https://www.sciencedirect.com/science/article/pii/S2212827119304895
https://doi.org/10.1080/00207543.2020.1798035
https://doi.org/10.1080/00207543.2020.1798035
https://doi.org/10.1080/00207543.2020.1798035
https://doi.org/10.1007/978-3-662-46902-6
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://www.sciencedirect.com/science/article/pii/S2405896318316021
https://doi.org/10.1007/978-3-319-03602-1_10
https://marsner.com/blog/why-test-driven-development-tdd/

References 62

MQTT.ORG. MQTT: The Standard for loT Messaging. 2022. Available from:
https://mqtt.org. Visited on: 25 July 2022.

NORDQUIST, Thomas. MQTT Explorer. Available from: http://mqtt-explorer.com.
Visited on: 8 Aug. 2022.

NYHUIS, Peter; WIENDAHL, Hans-Peter. Fundamentals of production logistics:
theory, tools and applications. [S.|.]: Springer Science & Business Media, 2008.

PAGE, Matthew J et al. The PRISMA 2020 statement: an updated guideline for
reporting systematic reviews. BMJ, BMJ Publishing Group Ltd, v. 372, 2021. DOI:
10.1136/bmj.n71. eprint: https://www.bmj.com/content/372/bmj.n71.full.pdf.
Available from: https://www.bmj.com/content/372/bmj.n71.

POWER, Daniel J. Decision support systems: concepts and resources for
managers. [S.l.]: Greenwood Publishing Group, 2002.

REHKOPF, MAX. User stories with examples and a template. Available from:
https://www.atlassian.com/agile/project-management/user-stories. Visited on:

23 July 2022.

SABIONI, Rachel; DAABOUL, Joanna; LE DUIGOU, Julien. Joint optimization of
product configuration and process planning in Reconfigurable Manufacturing Systems.
International Journal of Industrial Engineering and Management, v. 13, p. 58-75,
Mar. 2022. DOI: 10.24867/IJIEM-2022-1-301.

SCHMITT, Robert H.; HEINE, Ina; JIANG, Ruth; GIEDZIELLA, Felix; BASSE, Felix;
VOET, Hanno; LU, Stephen. On the future of ramp-up management. CIRP Journal of
Manufacturing Science and Technology, v. 23, p. 217-225, 2018. ISSN 1755-5817.
DOI: https://doi.org/10.1016/j.cirpj.2018.03.001. Available from:
https://www.sciencedirect.com/science/article/pii/S1755581718300105.

SCHUH, Glnther; GARTZEN, Thomas; WAGNER, Johannes. Complexity-oriented
ramp-up of assembly systems. CIRP Journal of Manufacturing Science and
Technology, v. 10, p. 1-15, 2015. ISSN 1755-5817. DOI:
https://doi.org/10.1016/j.cirpj.2015.05.007. Available from:
https://www.sciencedirect.com/science/article/pii/S1755581715000334.

https://mqtt.org
http://mqtt-explorer.com
https://doi.org/10.1136/bmj.n71
https://www.bmj.com/content/372/bmj.n71.full.pdf
https://www.bmj.com/content/372/bmj.n71
https://www.atlassian.com/agile/project-management/user-stories
https://doi.org/10.24867/IJIEM-2022-1-301
https://doi.org/https://doi.org/10.1016/j.cirpj.2018.03.001
https://www.sciencedirect.com/science/article/pii/S1755581718300105
https://doi.org/https://doi.org/10.1016/j.cirpj.2015.05.007
https://www.sciencedirect.com/science/article/pii/S1755581715000334

References 63

TAO, Fei; ZHANG, Meng; NEE, Andrew Yeh Chris. Digital twin driven smart
manufacturing. [S.|.]: Academic Press, 2019.

WIENDAHL, Hans-Peter; GERST, Detlef; KEUNECKE, Lars. Variantenbeherrschung
in der Montage. [S.l.]: Springer Berlin Heidelberg, Jan. 2004. ISBN 3540140425.
Available from: https://www.ebook.de/de/product/2438765/

variantenbeherrschung_in_der_montage.html.

WIKAREK, Jarostaw; SITEK, Pawet; NIELSEN, Peter. Model of decision support for
the configuration of manufacturing system. IFAC-PapersOnLine, v. 52, n. 13,

p. 826—831, 2019. 9th IFAC Conference on Manufacturing Modelling, Management
and Control MIM 2019. ISSN 2405-8963. DOI:
https://doi.org/10.1016/j.ifacol.2019.11.232. Available from:
https://www.sciencedirect.com/science/article/pii/S2405896319311838.

WZL. Chair of Production Metrology and Quality Management. 2022a. Available
from: https://www.wzl.rwth-
aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqy/Uebersicht-

MQ/1idx/1/. Visited on: 4 Aug. 2022.

WZL. Model-based Systems. 2022b. Available from: https://www.wzl.rwth-
aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqz/Model-based-
Systems/1idx/1/. Visited on: 4 Aug. 2022.

https://www.ebook.de/de/product/2438765/variantenbeherrschung_in_der_montage.html
https://www.ebook.de/de/product/2438765/variantenbeherrschung_in_der_montage.html
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.232
https://www.sciencedirect.com/science/article/pii/S2405896319311838
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqy/Uebersicht-MQ/lidx/1/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqy/Uebersicht-MQ/lidx/1/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqy/Uebersicht-MQ/lidx/1/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqz/Model-based-Systems/lidx/1/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqz/Model-based-Systems/lidx/1/
https://www.wzl.rwth-aachen.de/cms/wzl/Forschung/Fertigungsmesstechnik/~suqz/Model-based-Systems/lidx/1/

64

APPENDIX A - PRISMA AUTOMATOR

This program was developed as a means of automating the initial steps of the
PRISMA2020 Statement (PAGE et al., 2021), hence the nickname “Prisma Automator”.
Those steps are normally done manually, and the process becomes more repetitive as
the number of keyword combinations increases. As such, the goal is to ease the user’s
burden by allowing him to skip formulating search strings, searching and downloading
document metadata, and filtering the results. Essentially, the user only has to input
desired keywords, wait for the program to execute its tasks, and screen the resulting
document pool.

Prisma Automator contains two classes: “Splitter” and “Collector”. The Splitter
class is responsible for generating all possible search strings (splits) from the defined
keyword groups. The Collector class is responsible for interacting with the Scopus
API and retrieving results, as well as cleaning them up before saving them to a local
directory.

Both classes were implemented with methods to wrap all of their functionality and
streamline the process of acquiring search strings and Scopus results: Splitter has the
“split()” method; and Collector has the “run()” method. Nonetheless, it is also possible to
use the other methods and change the default functionality to suit any particular needs.
Figure 23 illustrates the Prisma Automator class diagram.

SPLITTER

The Splitter class uses a recursive depth-first search to find all possible keyword
combinations. Before that, it is necessary to generate an adjacency graph to represent
the tree. The found combinations are then parsed to generate splits that are searchable
in Scopus.

» add_kwgroup() and add_kwgroups(): add keyword groups to the Splitter. These
keyword groups are then used in generating combinations and splits;

» generate_kwgraph(): generates an adjacency graph from the added keywords for
use in depth-first search;

» generate_combinations(): uses recursive depth-first search to generate all possi-
ble keyword combinations;

» parse_combinations(): parses keyword combinations into searchable strings;

« split(): streamlines the split generation process by calling all other methods, as
well as saving generated data to the local directory.

APPENDIX A. Prisma Automator 65

Figure 23 — Class diagram for the Prisma Automator.

Splitter

+ kw_groups: strf0..*]

Litility

+ add_kwgroup(kw_group: list)

+ save_to_file(

+ add_kwgroupsi{kw_groups: list) file_path: sfr,

) lines_to_write: strf0..*],

+ generate_kwgraph(): dict)

+ generate_combinations(= zave_to_file_advanced|
temp_combinations: list, file_path: sfr,
combinations: list, header: sir,
graph: dict. lines_to_write: tuple[str][0_*],
node; str separator: sir
) list)

+ parse_combinations(combinations: list): list i

+

split{log: bool, save_to: str): list

Collector

+

searchi

splits: list,

subscriber: bool,

threshold: int,

log: bool

- tuple[pd. DataFrame, list, list]

+

screen(

df: pd DataFrame,
log: bool

- pd.Dataframe

+ funi
splits: list,
save_fo: sfr,
subscriber: bool,
threshold: int,
log: bool
)

Source — Author.

COLLECTOR

The Collector class contains 3 methods: search(), screen(), and run().

» search(): takes the generated splits as input and searches Scopus. Results are
saved in 3 different objects: a pandas dataframe containing all data from search
results (DO, title, etc.), and two lists containing the number of search results and
their associated split;

 screen(): takes the generated dataframe as input and screens it for duplicates,
unnecessary columns (e.g. funding data), conference reviews, and rows without
a DOI;

APPENDIX A. Prisma Automator 66

* run(): streamlines the whole process by calling ‘search()’ and ‘screen()‘, as well
as saving the generated data to the local directory.

The repository for the Prisma Automator project can be accessed in the following
url: https://github.com/Fabulani/prisma-automator.

https://github.com/Fabulani/prisma-automator

67

APPENDIX B - SCENARIO API

INTRODUCTION

The Scenario APl is responsible for handling communication between Scenario
Analysis and ReAssign, as well as any other systems that might need access to its
methods and data. It is capable of receiving requests for creating, reading, and exe-
cuting simulations, as well as saving the resulting data to a database and returning
it when requested. A web documentation page is available at https://documenter.
getpostman.com/view/7261554/TzRLmAf4.

The endpoints used by ReAssign were described in section 4.6.2, and in this
chapter the remaining ones are discussed.

OVERVIEW

The main requests of Scenario API are presented in a way similar to the workflow
of Scenario Analysis, and can be seen in Figure 24. The following steps are followed:

1. create a simulation;
2. execute the created simulation;

3. access the data generated by Scenario Analysis.

Other important requests are also presented, but request types such as PUT
and PATCH have not been included, as they are not important for the Scenario Analysis
workflow.

Tests were written for all documented requests. All the requests have a test that
checks if the status code is correct, while some have tests for checking the response
content and data types.

The chosen method of Authentication was BasicAuthentication. This requires
a “Authorization: Basic” header with a valid username and password combination to
be sent in order to access the APl endpoints. This method was chosen to shorten
development time, but will eventually be replaced with a more secure method.

Pagination was used for list views. The pagination properties are:

 count: total number of results received;
 next: url of the next page;
* previous: url of the previous page.

The urls are null when the number of results is less than the minimum required
for a page.

https://documenter.getpostman.com/view/7261554/TzRLmAf4
https://documenter.getpostman.com/view/7261554/TzRLmAf4

APPENDIX B. Scenario API

Figure 24 — Usual workflow for Scenario API.

User

Scenario API

POST /simulations

title, description, scenario_analysis_input

created simulation (detailed view)

é __

GET /simulations/{id}/execute

]----1

simulation_results

é __

GET {data_endpoint}/{id}}

Scenario Analysis

execute_simulation(simulation)

simulation_results

.{_ __

b----|

The user receives a 200 OK status code when the following conditions are met:

1. the request is authenticated;

modeller-input
modeller-output
simulator-output
postprocessor-input
postprocessor-output

AN

data_endpoint can be any of the following:

Source — Author.

2. the accessed endpoint is allowed for the authenticated user;

3. the authenticated user is the owner of the data being accessed (e.g. a simulation).

201 Created is returned when a simulation is successfully created through a

POST request. Other possible codes are:

* 401 Unauthorized is returned if condition (1.) is not met;

» 403 Forbidden is returned if condition (2.) is not met;

* 404 Not Found is returned if condition (3.) is not met;

* 500 Internal Server Error might be returned if the simulation is executed with a

bad input, or if an unknown error happens in Scenario Analysis.

ENDPOINTS

This section presents the available endpoints in Scenario API. For ease of un-

derstanding, the different endpoints were grouped into the following:

APPENDIX B. Scenario API 69

1. miscellaneous;
2. simulations;
3. integration with Scenario Analysis;

4. simulation data after execution.

Miscellaneous

Some endpoints are only for informational purposes and are presented in this
subsection.

The default basic root view of the APl is located in the “/” (root) endpoint. By
sending a GET request, the user receives a response containing the available endpoints
in the API. It is also the homepage of the API browser view.

The /users endpoint returns a list of the registered users. The response contains
the following properties:

* pagination properties;
* results: an array of users.
Each user contains the following properties:
« username: the user’s username;
« email: the user’s email address;
* url: the url to the user detailed view;
 groups: an array of groups that the user belongs to;
« simulations: an array of simulations that the user owns.

The /groups endpoint returns a list of the created user groups. The response
contains the following properties:

* pagination properties;
* results: an array of groups.
Each group contains the following properties:
* name: the group name;
« url: the url to the group detailed view.

Both the /users and the /groups endpoints require the user to have admin access
to the API. It is also possible to obtain a detailed view of specific users or groups by
providing their id in the endpoint, e.g. /users/{id}.

APPENDIX B. Scenario API 70

Simulations

The /simulations endpoint handles everything related to simulations: create, read,
and execute.
A simulation contains the following properties:

* id: the id of the simulation;

« owner: the username of the user that owns the simulation;

« title: a user defined title for the simulation;

« description: a user defined description for the simulation;

« date_created: the date that the simulation was created (GMT+0);
« url: the url of the simulation;

* execute: the url to execute the simulation;

» modeller_input: the url of the simulation modeller input;

« modeller_output: the url of the simulation modeller output;
 simulator_output: the url of the simulation simulator output;
 postprocessor_input: the url of the simulation postprocessor input;
* postprocessor_output: the url of the simulation postprocessor output.

By sending a POST request to the /simulations endpoint, the user is capable of
creating a new simulation instance. The scenario_analysis_input property sent with the
POST request is saved in the simulation modeller input, while other input and output
data properties have null values until the simulation is successfully executed. The input
property must be in the format accepted by Scenario Analysis. The response is an
object containing the created simulation.

The /simulations/{id} endpoint handles access to specific simulation instances.
This detailed view contains all the simulation properties, which can be accessed with a
GET request.

A GET request to the /simulations endpoint returns an object with pagination
properties and a results array of simulations owned by the user. This list view is more
simplified than the detailed view, as such it’ll only show the following properties:

e id;
s owner;

. title;

APPENDIX B. Scenario API 71

» date_created;
e url.

If the user is an admin, then all simulations in the database are returned.

Integration with Scenario Analysis

The /simulations/{id}/execute endpoint executes Scenario Analysis for the spec-
ified simulation. The input is collected from the simulation modeller input, and after a
successful execution, the generated files data is saved inside the other input and output
properties. The response includes an object with the following properties:

* errors: an array of serialization errors that occurred when executing the simulation;

* postprocessor_output: the simulation resulting postprocessor output object, i.e.
the simulation results.

This request might take some minutes to finish, depending on the contents of
the modeller input. As the complexity of the simulation increases (higher number of
products, resources, scenarios, etc.), so does the time required for Scenario Analysis
to return a result, and for the API to respond with it.

Simulation data after execution

The endpoints henceforth presented are used to retrieve the data generated by
Scenario Analysis.

The /modeller-input/{id} endpoint contains the data for the simulation modeller
input. When creating a new simulation, the scenario_analysis_input property is saved
here. The response contains the following properties:

simulation: the id of the related simulation;

url: the url of the modeller input;

scenario_analysis_input: the input for Scenario Analysis.

The /modeller-output/{id} endpoint contains the data for the simulation modeller
output. The response contains the following properties:

« simulation: the id of the related simulation;
« url: the url of the modeller output;

» generated_scenarios: an object in which the keys are the names of the gener-
ated files, and the content inside these keys is the JSON data for the scenarios
generated by Scenario Analysis.

APPENDIX B. Scenario API 72

The /simulator-output/{id} endpoint contains the data for the simulation simulator
output. The response contains the following properties:

« simulation: the id of the related simulation;
« url: the url of the simulator output;

« cfg_data: an object in which the keys are the names of the generated files, and
the content inside these keys is the string data of the .cfg files.

The /postprocessor-input/{id} endpoint contains the data for the simulation post-
processor input. The response contains the following properties:

« simulation: the id of the related simulation;
« url: the url of the postprocessor input;

 rep_data: an object in which the keys are the names of the generated files, and
the content inside these keys is the string data of the .rep files;

* error_reports: an object in which the keys are the names of the generated files,
and the content inside these keys is the string data of the .txt files. If an error
occurs in the Scenario Analysis simulation, the .cfg files might be empty, and the
xt files will have a traceback of the error. Otherwise, the .ixt files will be empty.

The /postprocessor-output/{id} endpoint contains the data for the simulation post-
processor output. The response contains the following properties:

« simulation: the id of the related simulation;
« url: the url of the postprocessor output;

 scenario_analysis_result: a JSON object with the results of the Scenario Analysis
simulation.

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	System planning ``as-is''
	Objectives
	Stakeholders
	Document structure

	Theoretical Background
	Line-less Assembly Systems
	Ramp-up phase
	Decision Support Systems
	Digital Twins

	Literature Review
	Research methodology
	State of the art
	Research deficit

	Design and Implementation
	Methodology
	Requirements specification
	User stories
	Requirements

	Proposed solution overview
	Use cases
	Class diagram
	Information flow
	Data models
	Communication

	Optimization Loop
	Optimize
	Simulate
	Adjust

	Results
	Conclusions and Outlook
	References
	Prisma Automator
	Scenario API

