UNIVERSIDADE FEDERAL DE SANTA CATARINA
DEPARTAMENTO DE INFORMATICA E ESTATISTICA
PROGRAMA DE POS-GRADUACAO EM CIENCIAS DA COMPUTACAO

Marina Luiza Lardizabal Vieira

Representation of Smart Contracts as State Diagrams

Floriandpolis
2022

Marina Luiza Lardizabal Vieira

Representation of Smart Contracts as State Diagrams

Dissertacao submetida ao Programa de Pés-Graduacdo
em Ciéncias da Computacdo da Universidade Fed-

eral de Santa Catarina para a obtencdo do titulo de mestre
em Ciéncias da Computacao.

Supervisor:: Profa. Patricia Vilain, Dra.

Floriandpolis
2022

Ficha de identificagcdo da obra elaborada pelo autor,
através do Programa de Geracao Automética da Biblioteca Universitaria da UFSC.

Vieira, Marina Luiza Lardizédbal Vieira

Representation of Smart Contracts as State Diagrams /
Marina Luiza Lardizdbal Vieira Vieira ; orientadora,
Patricia Vilain , 2022.

138 p.

Dissertacdo (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnoldgico, Programa de Pés-Graduacdo em
Ciéncia da Computacgdo, Floriandpolis, 2022.

Inclui referéncias.

1. Ciéncia da Computacgdo. 2. Software Engeneering . 3.
Smart Contracts. 4. State Diagram. I. , Patricia Vilain.
II. Universidade Federal de Santa Catarina. Programa de Pds
Graduacdo em Ciéncia da Computagdo. III. Titulo.

Marina Luiza Lardizabal Vieira

Representation of Smart Contracts as State Diagrams

O presente trabalho em nivel de mestrado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Profa. Fabiane Benitti, Dra.
Universidade Federal de Santa Catarina

Prof. Jean Hauck, Dr.
Universidade Federal de Santa Catarina

Prof. Raul Sidnei Wazlawick, Dr.

Universidade Federal de Santa Catarina

Certificamos que esta é a versao original e final do trabalho de conclusao que foi
julgado adequado para obtencao do titulo de mestre em Ciéncias da Computacao.

Documento assinado digitalmente

PATRICIA DELLA MEA PLENTZ

Data: 30/09/2022 14:01:20-0300

CPF: ***.243.700-**

Verifique as assinaturas em https://v.ufsc.br

Coordenacao do Programa de
Pés-Graduacao

Documento assinado digitalmente

Patricia Vilain

Data: 30/09/2022 11:45:14-0300

CPF: ***.286.529-""

Verifique as assinaturas em https://v.ufsc.br

Profa. Patricia Vilain, Dra.
Supervisor:

Florianépolis, 2022.

This work is dedicated to my beloved parents,
grandparents and my dear brother.

ACKNOWLEDGEMENTS

First of all, | would like to thank my advisor, who guided me through every step
of the way with the research and the writing of this work. | would also like to thank my
professional colleagues, who also helped and encouraged me to move forward with
the research. Finally, | thank my family and my fiancé, who have always believed in
me and who, in their own way, helped me throughout this work.

RESUMO

Smart contracts ganharam popularidade recentemente com o surgimento das block-
chains, embora o conceito por tras do termo smart contract tenha sido estudado
desde os anos 90. A automacao de contratos firmados na vida real € um assunto
interdisciplinar e chama a atencao nao sé no escopo da tecnologia, mas também
em areas como negdcios e direito. Em contraste com um contrato legal escrito em
linguagem natural, entender com um smart contract funciona pode ser uma tarefa
dificil, especialmente para pessoas que nao sao programadoras. Em contrapartida,
contratos escritos em liguagem natural podem conter ambiguidades e muita informa-
cao desnecessaria, além de um vocabuldrio complexo e complicado. Com o objetivo
de permitir entendimento claro, precisao e seguranca das informacdes no processo
de criacao de um contrato inteligente, diversas ferramentas foram desenvolvidas,
tanto para evitar vulnerabilidades quanto para permitir que qualquer pessoa contri-
bua para a escrita de um contrato. Em paralelo, dentro da Engenharia de Software,
muitas ferramentas de design visual sao utilizadas para garantir a precisao esperada
de um sistema. Diante desse cendrio e buscando facilitar ainda mais o entendimento
geral dos smart contracts, este trabalho visa ao mapeamento automdtico entre uma
linguagem formal para especificacao de smart contracts em um diagrama de esta-
dos. Dessa forma, podemos democratizar ainda mais a compreensao dos contratos
legais e possibilitar o uso de smart contracts. Para isso, primeiramente foi realizada
uma revisao sistematica, com o objetivo de encontrar trabalhos que também re-
presentassem smart contracts utilizando diagramas de estados ou outros recursos
visuais similares, mas que também representassem o ciclo de vida do smart contract.
Nessa revisao sistematica, também buscamos selecionar trabalhos que mencionas-
sem a representagcao dos aspectos legais de um contrato, ou seja, a representacao
de obrigacoes e poderes, direitos e deveres dentro do smart contract. Com a revisao
sistematica concluida, foi projetado um mapeamento dos passos necessarios para
transformar uma linguagem de dominio especifica para smart contracts em um dia-
grama de estado. Num primeiro momento, o mapeamento também foi especificado
para uma linguagem especifica chamada Symboleo. Com o projeto em mente, um
algoritmo foi implementado, possibilitando o upload de um arquivo contendo um
contrato definido com a linguagem Symboleo e produzindo um diagrama de estado
para esse contrato. Os dois experimentos realizados mostraram que um diagrama de
estado gerado com o algoritmo implementado neste trabalho ajudou os participantes
a responder perguntas sobre um contrato escrito em linguagem natural.

Palavras chave: diagramas de estado. smart contracts. blockchain.

RESUMO EXPANDIDO

Introducao

Smart contract € um termo relativamente recente na Computacao, mas que ganhou
muita atencao depois da popularizacao da tecnologia de Blockchain. Smart contracts
nada mais sdao do que um cédigo executavel que executa regras para facilitar e fazer
cumprir os termos do acordo entre partes ndo confidveis para trabalharem juntas.
Blockchains armazenam esses smart contracts e, assim como as transacoes, eles
também sao imutaveis, ou seja, depois de publicados dentro de uma blockchain, seus
cddigos nao podem mais ser alterados. O uso de smart contracts, apesar das difi-
culdades técnicas de implementacao, pode trazer inimeros beneficios, comecando
com a substituicao do uso de papel adjunto com a possivel prevencao de adultera-
cao e falsificacao. Mas a grande vantagem vem com uma promessa de garantia da
realizacao dos termos de um contrato sem a necessidade de envolvimento de uma
terceira parte confiavel responsdavel pela execucdao do contrato. Além dos desafios
de trazer o cumprimento de contratos para o mundo digital, existem os de possiveis
falhas e vulnerabilidades de seguranca no desenvolvimento de um smart contract.
Mesmo assim, autores defendem a utilizacdo de smart contracts com o uso de mé-
todos criptograficos, além da utilizacao de boas praticas de Engenharia de Software,
como a utilizacao de um processo de desenvolvimento claro e praticas de design e
notacdes Uteis para a representacao de smart contracts. Alguns autores afirmam que
smart contract é também um conceito interdisciplinar que interessa (mas nao limi-
tado) a areas como negdcios/finangas e contratos legais. A natureza interdisciplinar
€ um dos principais motivadores para a definicao de linguagens formais para smart
contracts. Linguagens formais também foram propostas para construir um modelo
seguro para smart contracts para detectar vulnerabilidades de seguranca em nivel
de design. Mas até que ponto uma linguagem formal pode ser totalmente entendida
por um leigo? E possivel usar outros tipos de modelagem e técnicas de design junto
com especificagdes formais para facilitar o entendimento de um smart contract por
um leigo? Pensando em facilitar o entendimento de todos envolvidos, nés vamos
gerar um diagrama de estado para representar um smart contract especificado em
uma linguagem formal. E importante reparar que uma especificacdo formal facilita
a verificagdo de comportamento correto de um smart contract e também possibi-
lita @ geracdo automatica de cédigo de smart contracts, enquanto um diagrama de
estado pode ser usado para facilitar o entendimento desse smart contract por um
leigo. Como o diagrama de estados é gerado a partir da especificacao formal, ele sera
usado para confirmar que as informacdes do smart contract, descrito em linguagem
natural, também estao sendo incluidas na especificacao formal que representa esse
smart contract. Apds essa confirmacao, o cédigo correspondente ao smart contract
pode ser gerado automaticamente a partir da especificacao formal.

Objetivos

O objetivo geral desse trabalho de mestrado é criar um algoritmo que transforme um
contrato escrito com a linguagem de especificacao formal Symboleo em um diagrama
de estados para facilitar o entendimento e compreensao global do comportamento
de um contrato. E feito um mapeamento dos aspectos que definem os estados e suas
transicdes para os estados do contrato.

Metodologia

Primeiramente foi realizado um mapeamento sistematico para responder algumas
perguntas de pesquisa importantes relacionadas ao uso de diagramas de estado
para representar smart contracts. Em cima desse mapeamento, foram propostos os
possiveis estados de um contrato de um smart contract. Um algoritmo foi definido
e implementado para mapear um smart contract representado com a linguagem
Symboleo para o formato de um diagrama de estado. Para mostrar que o diagrama de
estado pode facilitar o entendimento desse smart contract, foram feitos experimentos
através de questionarios verificando se as respostas foram mais assertivas e rapidas
com o uso do diagrama de estado.

Resultados e Discussoes

Foram realizados dois experimentos para mostrar o melhor entendimento de um
smart contract com diagrama de estado. No primeiro experimento, foram escolhidos
seis participantes da area de Ciéncias da Computacao e também da area de Direito.
Foram feitas quatro perguntas onde os participantes deveriam consultar apenas
um contrato escrito em linguagem natural e depois mais quatro perguntas onde os
participantes utilizaram a ajuda do diagrama de estado. Nesse primeiro experimento,
0s mesmos participantes participaram das duas etapas de perguntas. Apesar disso,
as respostas foram mais assertivas e concisas com o diagrama de estado, bem como
o tempo foi notavelmente reduzido. Ja no segundo experimento foram entrevistadas
dez pessoas, também da area de Ciéncias da Computacao e Direito. Dessa vez, cinco
pessoas responderam cinco perguntas sem o uso do diagrama de estado, apenas
com o contrato escrito em linguagem natural, e outras cinco pessoas responderam as
perguntas com a ajuda do diagrama de estado. Assim como o primeiro experimento,
podemos notar respostas mais assertivas e concisas com o uso do diagrama de
estado, e também tempos de resposta mais reduzidos.

Consideracoes Finais

O interesse em smart contracts vem aumentando muito e chamando a atengcao nao
s6é de pessoas da area de Tecnologia, mas também de pessoas da area do Direito e
de Negécios. Isso fez com que a necessidade de estudos buscando a facilidade do
entendimento em relacao ao desenvolvimento de smart contracts tenha crescido,
bem como estudos que buscam garantir a validacao das regras desse contrato. Esse
trabalho buscou garantir o entendimento de smart contracts escritos em linguagens
formais, através da geracao de diagramas de estado, principalmente por leigos. Os
experimentos realizados, que mostraram que o uso de diagramas de estado diminuiu
o tempo de resposta e permitiu respostas mais assertivas, mostram que o diagrama
de estado pode facilitar esse entendimento. Apesar disso, outros tipos de experimen-
tos, bem como provas formais e melhoria do diagrama de estado, sao alguns dos
trabalhos futuros propostos nessa dissertacgao.

Palavras chave: diagramas de estado. smart contracts. blockchain.

ABSTRACT

Smart contracts have recently gained popularity with the emergence of blockchains,
although the concept behind them has been studied since the 1990s. The automation
of contracts signed in real life is an interdisciplinary subject and draws attention not
only in the scope of technology but also in areas such as business and law. In contrast
to a legal contract written in natural language, understanding how a smart contract
works may be a difficult task, especially for non-programmers. On the other hand,
contracts written in natural language may contain ambiguities and much unnecessary
information, in addition to complicated vocabulary. With the aim of providing clear
understanding, accuracy and security of information in the process of creating a
smart contract, several tools have been developed, both to avoid vulnerabilities
and to allow anyone to contribute to the writing of a contract. In parallel, within
Software Engineering, many visual design tools are used to ensure the accuracy
expected from a system. In view of this scenario and seeking to further facilitate the
general understanding of smart contracts, this master’s thesis aims at carrying out
automatic mapping between a formal smart contract specification language and a
state diagram. In doing so, we can further democratize the understanding of legal
contracts and enable the use of smart contracts. The two experiments carried out
showed that a state diagram generated with the algorithm developed in this study
helped participants answer questions about a contract written in natural language.

Keywords: state diagrams. smart contracts. blockchain.

LIST OF FIGURES

Figure 1 - Contract written with Symboleo 17
Figure 2 — Blockchainexample 21
Figure 3 — Example of a smart contract inside a blockchain 24
Figure 4 — State diagramexample 00000 25
Figure 5 — State diagram of an aircraft componentlifecycle 26
Figure 6 — Selected articles Lo 30
Figure 7 - Finite state machine for a blind auction 35
Figure 8 — Rights and obligations between participating parties in a state diagram 35
Figure 9 - Clauses in a meat purchase and sale agreement 43
Figure 10 - Meat purchase and sale agreement specified in the Symboleo lan-
UAGE . . . e e e e e e e e e e 44
Figure 11 - State diagram generated manually 45
Figure 12 - Generic statediagram oo 46
Figure 13 - Json Model e 49
Figure 14 - Json Model Transition 50
Figure 15 - Json Model Actions o o 50
Figure 16 - The proposed Symboleo language ontology 52
Figure 17 - Section of the Domain block specified in Symboleo 53
Figure 18 - Contract parametrization in Symboleo 53
Figure 19 - Legal situations defined in Symboleo 54
Figure 20 - Class diagram APl i i i 57
Figure 21 — Sequence diagram APl oo 58
Figure 22 — Class Diagram APl 59
Figure 23 - Sequence Diagram APl Lo 60
Figure 24 — Final JSON e 61
Figure 25 - Final JSON transition 62
Figure 26 — Final JSON actions 63
Figure 27 - Frontend Home o 65
Figure 28 - Selectfilein Frontend 65
Figure 29 - File selected inFrontend 65
Figure 30 - State diagram generatedinFrontend 66
Figure 31 - Text for state diagram creation with the Mermaid library 66
Figure 32 - Meat sale manually generated state diagram 67
Figure 33 - Meat sale automatically generated state diagram. 68
Figure 34 — Tech service manually generated state diagram 68
Figure 35 - Tech service automatically generated state diagram 69

Figure 36 - State diagram ofthecontract 72

Figure 37 - Participants’ time spent reading the contract and the diagram . .. 79

Figure 38 - State diagram of the legal contract 81
Figure 39 - Participants’ time spent reading the contract and the state diagram
foreach question 86
Figure 40 - Participants’ total time spent reading the contract and the state
diagram e e 86
Figure 41 - Final json generated by algorithmpart1 118
Figure 42 - Final json generated by algorithmpart2 119
Figure 43 - Final json generated by algorithmpart3 120

Figure 44 - Final json generated by algorithmpart4 121

LIST OF TABLES

Table 1 - Articles selected by title 29
Table 2 - Types of diagrams used inthepapers 36
Table 3 - Subdivision of selected articles dealing with smart contract modeling

or with legal contractaspects 37
Table 4 - Comparisons betweenrelatedwork 39
Table 5 - Participants’ profile (Experiment1) 71
Table 6 - Participants’ profile (Experiment2) 71
Table 7 - Participants’ answers to the first group of questions 73
Table 8 - Participants’ answers to the second group of questions 76
Table 9 - Participants’ feedback on the use of the state diagram 78
Table 10 - Participants’ answers without the state diagram 82
Table 11 - Participants’ answers with the state diagram 84
Table 12 - Participants’ feedback on the use of the state diagram 85

Table 13 - Articles select in the literaturereview 98

1.1
1.2
1.3
1.4
1.5

1.5.2
1.6
1.7

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4

4.1

4.1.1
4.1.2
4.1.3
4.2

4.2.1
4.2.2
4.3

4.3.1
4.3.2
4.3.3

CONTENTS

INTRODUCTION & it i it et s s n s s n s s nn s 15
MOTIVATION e e e e e e e 15
PROBLEM e e 17
SOLUTION e e 17
SCOPE e 18
AIM AND OBJECTIVES e e e s e e 19
Aim . . e 19
Objectives 19
METHOD e e e s e e 19
TEXT ORGANIZATION e e e e 20
BACKGROUND ¢ it it s st s s s s s nn s 21
BLOCKCHAIN e e e s s e e 21
SMART CONTRACTS e e e e e e 23
STATE MACHINE DIAGRAMS e 23
DOMAIN-SPECIFIC LANGUAGES AND FORMAL METHODS 26
LITERATURE REVIEW ¢ i i s v st s n s n s n s s 28
FORMULATION OF THE RESEARCH QUESTION 28
IDENTIFICATION OF RELEVANT LITERATURE 28
SELECTIONOF STUDIES o e e e e 29
RESULTS AND DISCUSSION o oo 36
Modeling with state diagram/state machine 37
Review of the legal aspects of the contract 38
Comparison between the mainelements 39
Threats tovalidity 42
PROPOSAL i it v st st s n s n s n s n s n s n s n s s 43
GENERAL MAPPING OF A LEGAL SMART CONTRACT INTO A STATE

DIAGRAM e e e 44
Generic state diagram for a smartcontract 45
Requirements of a domain language for a smart contract . . 46
Steps to define a state diagram for a smart contract 47
MAPPING A SYMBOLEO SMART CONTRACT INTO A STATE DIAGRAM . 51
The Symboleo language 51
Detail of the mapping from a Symboleo specification 53
MAPPING IMPLEMENTATION o oo oo 56
APl Project e 57
APl implementation 57
Frontend 64

4.3.4

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.3

5.3.1
5.3.2
5.3.3
5.3.4

6.0.1

Development evaluation 67

EXPERIMENTS i i i it vt n st s n s n s n s n s n s s 70
EXPERIMENT PROTOCOL e e e s 70
EXPERIMENT 1 e e e s e 72
overview L 72
Execution 73
Results 79
Threats tovalidity 80
EXPERIMENT 2 e e e 80
overview L 80
Execution 81
Results 85
Threats tovalidity 87
CONCLUSIONS it ittt ot s s s s s s s s n n s n aan s 89
Future Work 90
REFERENCES i i i s v s v s v s n s n s n s n s n s s 91

APPENDIX A - LITERATURE REVIEW - ARTICLES’ TITLES ... 98
APPENDIX B - JSON GENERATED WITH THE ALGORITHM . .. 117
ANNEX A - CONTRACT FOREXPERIMENT1 122
ANNEX B - CONTRACT FOREXPERIMENT 2 132

15

1 INTRODUCTION

The term smart contract is relatively recent and gained considerable attention
after the popularization of the blockchain technology. A smart contract is nothing but
executable code used to facilitate and enforce the contract terms that make sense
on the blockchain (ABDELHAMID; HASSAN, 2019). Blockchains store these smart
contracts, and, like transactions, smart contracts are also immutable, that is, once
published within a blockchain, their codes can no longer be changed (NARAYANAN;
MILLER, 2016).

However, the appearance of such term is not that new. Nick Szabo, in 1997, was
already studying the possibility of contract automation and discusses how the terms
of a contract should be written in lines of code in a self-executing contract(SZABO,
1997). Szabo’s definition specifically deals with contracts within the scope of legal
aspects and not as programs that execute instructions on a blockchain. However,
initially, his theory did not make much progress, mainly due to the difficulty in con-
trolling the physical assets of a contract, i.e., the lack of a technology capable of
supporting what he was proposing. With the possibility of implementing a smart con-
tract on a blockchain, which already has its asset under control, such as a digital
currency, Szabo’s proposal became feasible (BAI et al., 2018). In this master’s the-
sis, we address this kind of smart contracts - the ones that are written to represent
real-world legal contracts.

The use of smart contracts, despite technical implementation difficulties, can
bring many benefits, such as the possibility of preventing adulteration and forgery
(CHANG; LUO; CHEN, Y., 2020). Nevertheless, the biggest advantage comes with a
promise of guaranteeing that the terms of a contract does not require the involvement
of a trusted third party responsible for executing the contract. Even though in practice
many legal aspects of contracts are left out when automating them, some authors
argue that a contract can be better designed using technology instead of just a
text written in natural language on paper (SKOTNICA; PERGL, 2020). This way, a
“large amount of repetitive administrative work can be eliminated, the comprehension
can be increased, and third-party involvement reduced, as the courts, for example”
(SKOTNICA; PERGL, 2020).

1.1 MOTIVATION

Despite all existing advancements, converting a legal contract into executable
code is a challenging task. The vagueness of laws, for example, which embraces the
largest number of cases in justice systems, makes it difficult to achieve accuracy
when reading through such laws, chiefly when programming an algorithm to verify
compliance thereof (SKOTNICA; PERGL, 2020). “The vagueness of law is a required

Chapter 1. Introduction 16

and important property in justice systems. However, when people or companies need
to comply with the laws and design systems that will automate the associated work,
they need a clear definition of how does the law apply in their case” (SKOTNICA,;
PERGL, 2020). Yet, the problem goes beyond the gap between natural language and
equivalent code (WOHRER; ZDUN, U., 2020). There are also other issues, such as: the
fixed and autonomous nature of code execution in the blockchain environment, since
it cannot be changed once deployed; the lack of high-level coding abstractions; and
the rapid progress of the development framework (WOHRER; ZDUN, U., 2020).

In addition to the challenges of bringing contract enforcement to the digital
world, there are potential security flaws and vulnerabilities in the development of a
smart contract, described as follows: “Firstly, smart contracts deployed in practice
handle financial assets of significant value. Secondly, smart contract bugs cannot be
patched. By design, once a contract is deployed, its functionality cannot be altered
even by its creator. Finally, once a faulty or malicious transaction is recorded, it cannot
be removed from the blockchain” (MAVRIDOU; LASZKA, 2018).

Despite inherent difficulties, Landleif (LADLEIF; WESKE, 2019b) argues that
there are two reasons for believing in the creation and use of smart contracts: the
validity of real-world contracts can be secured via cryptographic methods, and the
fact that they contain operational aspects which can be automated by computers.
In addition to these factors, the use of good software engineering practices, with a
clear development process, and the use of design practices and notations useful for
the purpose can prevent various problems from occurring (MARCHESI, M.; MARCHESI,
L.; TONELLI, 2018). The use of a systematic design may be able to avoid a number
of failures and wrong development assumptions, because, as stated by Luu (LUU
etal., 2016): “Flaws arise in practice because of a semantic gap between the assump-
tions contract writers make about the underlying execution semantics and the actual
semantics of the smart contract system”.

One of the main alternatives to overcome difficulties is the use of formal lan-
guages. Formal languages have been proposed to “build secure models for smart
contracts to detect security vulnerabilities at the design level” (XU; FINK, 2020). The
interdisciplinary nature thereof is another motivator for the definition of formal lan-
guages for smart contracts. According to He (HE, Xiao et al., 2018) “Although a smart
contract is usually viewed as an online program from the perspective of information
technology, it is actually an interdisciplinary concept that also concerns (but is not
limited to) business/finance and contract law”. The interdisciplinary nature of smart
contracts is one of the main motivators for the definition of formal languages, which,
according to said author, can facilitate the understanding of technology laypeople in
the process of creating a smart contact (HE, Xiao et al., 2018).

Chapter 1. Introduction 17

1.2 PROBLEM

Formal languages can be used to specify smart contracts and also to generate
the code corresponding to a smart contract, as happens with Symboleo (SHARIFI, S.
et al., 2020). But to what extent can a formal language be fully understood by a
layperson? Is it possible to use other modeling and design techniques along with a
formal specification to facilitate the understanding of a smart contract by a layperson?

Figure 1 shows a contract written with Symboleo (SHARIFI, S. et al., 2020)
whose understanding, as can be seen, may not be as typical as that of a contract
written in natural language.

Figure 1 — Contract written with Symboleo

Table 6 Symboleo specification of the transactive energy (TE) contract.

Domain transactiveEnergy AgreementD

ISO isA Role;

DERP isA Role;

DispatchInstruction isA Asset with maxVoltage: Integer, minVoltage: Integer;

Bid isA Asset with id: idCode, by: DERP, dispatchHour: Integer, energy: Integer, price: Integer,
instruction: DispatchInstruction;

Bid Accepted isA Event with hid: Bid;

EnergySupplied isA Event with energy: Integer, dispatchllour: Integer, by: DERD, voltage: Integer, ampere: Integer;

Invoice isA Asset with id: idCode, date: Date, price: Integer;

Invoicelssued isA Event with issuedInvoice: Invoice;

Noticelssued isA Event with date: Date;

Paid isA Event with invoice: Invoice, from: Role, to: Role;

endDomain

Contract transactiveEnergy AgreementC (caiso: ISO, derp: DERP)

Declarations
bid: Bid;
bidAccepted: Bid Accepted;
energySupplied: EnergySupplied;
terminationNoticelssued: Noticelssued;
isoPaid: Paid;
supPaid: Paid;
creditInvoicelssued: Invoicelssued:

Preconditions

Postconditions

Obligations
Opaybyiso : happens(creditInvoicelssued, t) —+ O(caiso, derp, true, happensWithin(isoPaid, t | 4 days));
OuupplyEnergy : happens(bidAccepted, t) + O(derp, caiso, true, happens(energySupplied, bidAc-

cepted.bid.dispatchHour));
Oissnelnvoice : happens(exerted(Pimposerenalty.instance), t) —» O(derp, caiso, true, happens(supPaid, t | 41));
SurvivingObls
Powers
PierminateAgreement: D(caiso, derp, violates(Oissuelnvoice.instance) and happensBefore(terminationNoticelssued,
now.time-30), terminates(self)):
PterminateAgreement BySupplier: P'(derp, caiso, happensBefore(terminationNoticelssued, now.time-90), terminates(self));
PimposePenalty: vViolates(O.,pniyEnergy-instance) —» P(caiso, derp, true, creates(Oi.ueinvoice)
Constraints
not({isEqual(buyer, seller));

endContract

1.3 SOLUTION

A smart contract is an agreement or set of rules that govern a business trans-
action and is executed automatically as part of a transaction, being able to automate

Chapter 1. Introduction 18

sensitive details of a negotiation between two parties. For example, a smart con-
tract may define contractual conditions under which corporate bond transfer occurs
(MANAV, 2017). It is vital that all parties of a contract be aware of the purpose of the
agreement, i.e., the terms and conditions of the contract, its stages, and what actions
can change its states, for instance, actions that can make the contract move from a
status of being in effect to duly concluded.

This way, seeking to facilitate the understanding of smart contracts for all
people involved in creating them, mainly the users requesting the contract (lawyers
and their clients) and also the analysts, this study aims to represent a contract written
with a domain-specific language for smart contracts as a UML state diagram. The
UML language is a standard, it has a graphical and intuitive representation, and it
has an extensibility for representing domain-specific notations (BARESI; GARZOTTO;
PAOLINI, 2001). Concerning a state diagram specifically, “beyond their usual purpose
of making explicit the state through which an element evolves, they become a means
of reasoning about some peculiar aspects of application and about time constraints”
(BARESI; GARZOTTO; PAOLINI, 2001).

States and actions that prompt changes from one state to another in a contract
can facilitate the understanding and development of business rules. In this case,
we would be dealing with the possible states of a smart contract, which in turn
represents a legal contract. Researcher Jeff Edmonds, for example, in his book “How
to Think About Algorithms”, recommends a paradigm that seeks to facilitate the
understanding of algorithms as a sequence of states, in addition to a (often very
large) sequence of steps (EDMONDS, 2008). Thus, effectively modeling the states of
a smart contract is pointedly necessary as it is nothing more than an algorithm.

In the present study, to allow for further understanding, we will generate a
state diagram to represent a smart contract specified with a formal domain language.
It is worth noting that a formal specification facilitates verifying whether a smart
contract is correctly functioning and allows the generation of the smart contract code,
whereas a state diagram can be used to facilitate its understanding by a layperson.
Since the state diagram is generated from the formal specification, it will be used to
confirm that what is written in the legal contract represented in natural language is
also being included in the formal specification representing the smart contract. After
this confirmation, the code corresponding to the smart contract can be automatically
generated from the formal specification.

1.4 SCOPE

The smart contracts used in this study are those to represent legal contracts.
The formal language used is Symboleo (SHARIFI, S. et al., 2020). The choice of this
specific language is due to the easy access to its documentation, in addition to the

Chapter 1. Introduction 19

contact with the group of study involved in the language development.

1.5 AIM AND OBJECTIVES

In this section, the aim and objectives of the study will be presented.

1.5.1 Aim

The aim of this master’s thesis is to map a smart contract written with the
domain-specific language Symboleo (SHARIFI, S. et al., 2020) and represent it into
a state diagram that can facilitate an overall understanding of the contract’s behav-
ior, therefore aspects defining the states of the contract and its transitions will be
mapped.

1.5.2 Objectives

» Specify an algorithm - a step-by-step specification of what this algorithm
needs to do, specifying the input data (as regards a contract written with
the Symboleo language) and what should be the output (as regards a state
diagram);

* Implement the specified algorithm - according to the defined specification,
implement an algorithm that can receive the specified inputs and compute
the expected output;

* Validate the specified algorithm through experiments, checking whether
the state diagram facilitates the understanding of the contract life cycle
through interviews with experts in law who are unknowledgeable about
computing and vice versa.

1.6 METHOD

1. Characterization of the study

a) Approach: qualitative research;
b) Technical procedures: bibliographic research, experimental research
including a case study.
2. Methodological procedures
a) Step 1: Systematic mapping with representations of smart con-
tracts and ways of representing their states in diagrams;

b) Step 2: Study of the possible states (life cycle) of smart contracts
inside a blockchain - Created, In effect, Suspended, Concluded,
etc.;

Chapter 1. Introduction 20

c) Step 3: Definition and implementation of an algorithm to map a
Symboleo formal model into a state diagram;

d) Step 4: Experiments carried out through questionnaires to assess
whether the responses thereof are more assertive with the use of
the state diagram generated with the algorithm of Step 3;

e) Step 5: Writing an article about the work developed,;

f) Step 6: Writing the thesis and presenting it.

1.7 TEXT ORGANIZATION

The subsequent sections are organized according to the chapters described
as follows. Chapter 2 (Background) introduces topics that are important for the un-
derstanding of this study, such as blockchain, smart contracts, and state diagrams.
Chapter 3 (Literature Review) presents related work that helped review the state of
the art for this study. Chapter 4 (Proposal) describes the proposal of the present study,
followed by its implementation. Chapter 5 (Experiments) presents two experiments
that were performed to verify the hypothesis put forward. Finally, Chapter 6 (Conclu-
sion) draws conclusions based on the experiment and execution of the proposal.

2 BACKGROUND

The following sections will discuss some topics that are crucial to the under-
standing of the context of this master’s thesis, comprising the definition of blockchains

smart contracts, and state diagrams.

2.1 BLOCKCHAIN

21

’

A blockchain system, as conceptualized by (IDELBERGER et al., 2016), “con-
sists of a network of computing nodes, sharing a common data structure (the block-

chain) with consensus about the state of this structure”. The term emerged in 2008
along with the creation of Bitcoin, which was created with the objective of allowing

the transfer of payments from one party to another without the need for interme-

diaries to ensure security, using, for this, cryptographic and authentication opera-

tions(GATTESCHI et al., 2018). In the case of cryptocurrencies, such as Bitcoin, a
blockchain works as an accounting book where all accounts (wallets) and transfers
are recorded (IDELBERGER et al., 2016). It is worth noting that, in addition to being
public, once recorded, the information cannot be modified or deleted, that is, it is

immutable (GATTESCHI et al., 2018).

Figure 2 shows an example of how a blockchain works. In fact, the word itself is
self-explanatory, meaning a data structure formed by blocks that are linked to each

other, thus forming a chain. Each block contains a unique identifier in hash format,
timestamped batches of recent valid transactions, and the hash of the previous block.

The previous block hash links the blocks together and prevents any block from being
altered or a block being inserted between two existing blocks (LAURENCE, 2019).

Figure 2 — Blockchain example

/" Block 1574

%

Block Hash:
Q00005 Tac2fdaT 1)

Prasious Block Hash:
O0000038EE20a3h)

Transaclion:
Hash: feb350sd27Te007d

Hash: BaDdfBcfc 1 Scab?

L

[Tmnucﬁm.

L

/" Block 1575

Block Hash:
CO0008T ea2 fiedd

‘

00005 Tec2idat1

Trarsaction

[Previous Block Hash J
Hash: TallecSicald433]

J

vy

\

Source: (LAURENCE, 2019)

/" Block 1576

Block Hash: ;
Q0000440 Zedad2
Préndous Block Hash:
O0000BTaaZMabd

o J

Chapter 2. Background 22

But there needs to be a consensus on the state of the structure, and for that
to happen, there is a great deal of processing behind simply performing transactions.
Consensus is a process of agreement among distrusting nodes on a final state of data
(BASHIR, 2017). For consensus to exist, some nodes actively work through mining.
“During mining, nodes check previous transactions to verify whether a subject is
entitled to spend a given amount of cryptocurrency and, each time a block has to be
added to the chain, solve a complex computational-intensive mathematical problem”
(GATTESCHI et al., 2018).

There are various requirements which must be met in order to provide the
desired results in a consensus mechanism. Imran Bashir (BASHIR, 2017) described
them in his book:

* Agreement: All honest nodes decide on the same value;

* Termination: All honest nodes terminate execution of the consensus pro-
cess and eventually reach a decision;

* Validity: The value agreed upon all honest nodes must be the same as the
initial value proposed by at least one honest node;

* Fault tolerant: The consensus algorithm should be able to run in the
presence of faulty or malicious nodes (Byzantine nodes);

* Integrity: No node makes a decision more than once. The nodes make
decisions only once in a single consensus cycle.

There are various types of consensus mechanism, but the two most common
types are (BASHIR, 2017):

* Byzantine fault tolerance-based: With no compute intensive operations
such as partial hash inversion, this method relies on a simple scheme of
nodes that are publishing signed messages. Eventually, when a certain
number of messages are received, then an agreement is reached,;

* Leader-based consensus mechanisms: This type of mechanism requires
nodes to compete for the leader-election lottery and the node that wins it
proposes a final value.

For each type of mechanism, there are some algorithms available. The most
well-known one, which is implemented in Bitcoin as well as in other cryptocurrencies,
is the algorithm called “Proof of Work”: This type of consensus is based on the proof
that sufficient computational resources have been allocated before proposing a value
for acceptance by the network (BASHIR, 2017).

Chapter 2. Background 23

2.2 SMART CONTRACTS

Smart contracts are simply executable code that executes rules to facilitate
and enforce the terms of an agreement between untrusted parties to work together
(ABDELHAMID; HASSAN, 2019). As previously mentioned, blockchains store these
smart contracts and, like transactions, they are also immutable, that is, after they are
published within a blockchain, their codes can no longer be changed (NARAYANAN;
MILLER, 2016). Smart contracts can rely on the use of external services (called “ora-
cles”) to ensure their conditions with “real-world” data (death records, for example)
and push them to the blockchain or vice versa (GATTESCHI et al., 2018).

Figure 3 illustrates a smart contract within a blockchain. Smart contracts help
information to be updated consistently. A blockchain uses smart contracts to provide
controlled access to the ledger (HYPERLEDGER, 2020), that is, prior to any access or
insertion into the blockchain, a smart contract “runs” its rules and can perform any
action that is required before proceeding with the change or reading in the blockchain.

Business transactions are conducted within the guidelines of a legal contract,
and the combination of IoT (Internet of Things) and DLT (Distributed Ledger Technol-
ogy) platforms has offered an unprecedented ability to automate the monitoring of
legal contracts, especially for supply chain provenance (SHARIFI, S. S., 2020). There-
fore, it is also possible to write smart contracts able to verify whether such guidelines
are being complied with. It is precisely these types of smart contracts that we sought
to address in this master’s thesis.

As Gatteschi (GATTESCHI et al., 2018) exemplified: “With a smart contract, a
person could, for instance, encode his/her will in the blockchain in the form of a set
of rules. In case of death, the smart contract could then automatically transfer the
testator’'s money or other kind of assets to the beneficiary.”

2.3 STATE MACHINE DIAGRAMS

As explained in (SOURCEMAKING, 2007), “Persons, objects, or concepts from
the real world, which we model as objects in the IT system, have “lives””. Although
life in the real world and its representation as a software object might have differ-
ences, both will have birth and death, for example. Inside an IT system, while the
object is alive it will be read and changed. These changes might not be subject to any
restrictions, but as soon as rules for modification become dynamic, it is then impor-
tant to document these rules somewhere. In summary, in certain cases, it should be
possible to determine whether an event is permitted in the current state of the object
and how the object will react to the event (SOURCEMAKING, 2007). One good way to
document this behavior is using state machine diagrams.

As defined by OMG (Object Management Group), a state machine diagram,

Chapter 2.

Background

24

Figure 3 — Example of a smart contract inside a blockchain

written to
the ledger

I ||||)))

updating
transaction

W Smart contract

Source: (HYPERLEDGER, 2020)

Chapter 2. Background 25

or simply a state diagram, is “used for modeling discrete event-driven behaviors
using a finite state-machine formalism” (OMG, 2017). State machine diagrams can
be divided into behavior state machine and protocol state machine. The first type
is used to define the behavior of the system, or parts of it, while the second type is
used to specify valid interaction sequences, which are called a protocol, hence the
name (OMG, 2017).

A state diagram is composed mainly of states and transitions, which are repre-
sented by nodes and arcs, respectively. The Figure 4 illustrates a simple state diagram
with the main elements. The states are represented as nodes and each node has a
name describing its state. The state nodes may contain more information like the
actions that happen on entering or leaving each state. The arcs represents the transi-
tions from one state to another and contain the events that trigger such transitions.
A transition may contain a condition to happen (guard) and actions that are triggered
when the event associated to the transition happen.

Figure 4 — State diagram example

+ On enter / action on enter w .
- Y : N Event [guard] / action =
. On leave / action on leave » State name :.:l
-/
State name J

The diagram can also contain other components, like regions, and each com-
ponent has a lot of specific rules, concepts and subtypes. However, to understand a
state diagram in the context of the present study, it suffices to know the following
definitions of state and transition:

* State: “A state models a situation in the execution of a state machine be-
havior during which some invariant condition holds” (OMG, 2017)

* Transition: “A transition is a single directed arc originating from a single
source state and terminating on a single target state” (OMG, 2017). A tran-
sition may own a set of triggers, each of which specifies an event whose
occurrence, when dispatched, may trigger traversal of the transition (OMG,
2017).

Figure 5 shows a state diagram of an aircraft component life cycle after man-
ufacture. The illustration also points to all main elements of a state diagram, such
as the states and the aforementioned transitions, as well as other elements that can
further detail the life cycle of an object.

Chapter 2. Background 26

Figure 5 — State diagram of an aircraft component life cycle

intemal Guard Mutation
Initial State Transition rmnymnm?iuon State Fwent Action Final State

\

«M» Plane Ordered/
CREATE UJ
\ «M» Pland Delivered/ >
-M-omplmn@:
[No more F
«M» Plane not
(Scheduied for Avaiiable/
Covs Compete g mevk\f
«M» Scheduling Plane
for Maintandnce/ Ready for Use |

Lm-m Plana/ J
«M» Complete Flight/

Source: (SOURCEMAKING, 2007)

2.4 DOMAIN-SPECIFIC LANGUAGES AND FORMAL METHODS

During the last decade, software correctness has been an important and well-
studied issue. Many approaches have been proposed and many tools have been
implemented to support this quest for correctness. One approach is the use of Domain
Specific Languages (DSLs) (BODEVEIX et al., 2005).

A DSL contains domain-specific abstractions as well as domain-specific restric-
tions that enable verification of domain-specific properties (BODEVEIX et al., 2005).
DSLs trade generality for expressiveness in a limited domain. They provide nota-
tions and constructs tailored toward a particular application domain, thus offering
substantial gains in expressiveness and ease of use compared with general-purpose
programming languages (GLPs), with gains in productivity and reduced maintenance
costs (MERNIK; HEERING; SLOANE, 2005).

Another approach is the use of formal methods. Such methods associate math-
ematically rigorous proofs with each step in software design and development (BODE-
VEIX et al., 2005) or, according to (BAI et al., 2018), they are mathematics-based
techniques that describe system attributes for the specification, development, and
validation of software. With the use of formal methods in software design, it is ex-
pected that appropriate mathematical analyses be performed towards the reliability
and robustness of a design (BAl et al., 2018).

The use of these approaches is common in smart contracts because such

Chapter 2. Background 27

contracts need to be reliable and, as they are executable code, they need to meet
the following requirements (BAI et al., 2018): 1) cannot have grammatical errors or
semantic errors; 2) have high requirements regarding correctness and other related
properties to ensure the security of their assertions.

28

3 LITERATURE REVIEW

Considering that the aim of this study is to map a formal specification language
of a legal contract into a state diagram, the first step taken was a systematic mapping
review of the literature to find related work that could represent a smart contract
in the form of a state diagram. A systematic mapping study enables an overview
of a specific research area, indicating which topics have already been addressed in
the literature (PETERSEN; VAKKALANKA; KUZNIARZ, 2015). In this study, systematic
mapping was conducted according to the guide presented in (PETERSEN et al., 2008)
and updated in (PETERSEN; VAKKALANKA; KUZNIARZ, 2015).

As previously mentioned, our purpose was to search for different represen-
tations of smart contracts in the form of a state diagram, even though these rep-
resentations were not our main focus. The intention was to verify how states and
transitions were represented in related work. Additionally, we verified whether all
related work defined state diagrams based on a formal specification language used
to specify smart contracts, i.e., to some extent similarly to the aim of this study.

The next subsections explain the phases of the research: formulation of the
research question, identification of relevant literature, selection of studies, extraction
of information and, finally, discussion and results of the related work selected.

3.1 FORMULATION OF THE RESEARCH QUESTION

The purpose of this mapping is to understand how smart contracts can be
represented as state diagrams, focusing on which states are identified and which
transitions connecting such states are identified. Therefore, the main research ques-
tion is as follows:

* How are transitions and states of a smart contract identified?

In addition to the main question, other two important questions were formu-
lated:
* Is there any standard to name states and transitions of a smart contract

state diagram?

* What are the common information sources for creating a smart contract
state diagram? (contract in natural language, diagrams, contract repre-
sented in formal language, etc.)

3.2 |IDENTIFICATION OF RELEVANT LITERATURE

With the aim of finding state diagrams that could represent a smart contract,
a search string was created by joining both terms — smart contract and state dia-
gram. Additionally, to further expand the search, some synonymous terms that also

Chapter 3. Literature Review 29

represent states and transitions were used. Thus, the search string was defined as
follows:

("state diagram" OR "state machine" OR "statechart" OR "state transition dia-
gram") AND ("smart contract").

The search was conducted on the following academic search engines: ACM
Digital Library, IEEExplore Digital Library, Scopus, Springer, and Google Scholar. The
first search was conducted in November 2020. Another search was conducted on
August 2022 with the aim of updating this mapping with more recent studies, filtering
papers from 2021 until 2022.

3.3 SELECTION OF STUDIES

To select the relevant studies, the following inclusion criteria were used: The
text must (1) be written in English, (2) be available on the Internet, and (3) have at
least one representation of a smart contract in the diagram format where it highlights
its states and transitions. Exclusion criteria were applied if: (1) Not written in English,
(2) not available on the Internet, and (3) not having any representation of a smart
contract in diagram or having a representation not specifically of a smart contract,
i.e., just a simple set of business rules that do not represent a contract.

After defining the search string and the inclusion criteria, the search was car-
ried out on the abovementioned search engines. Figure 6 shows the steps followed in
the search and the number of studies found in each step, separated by search engine.
The first step consists in consulting those digital libraries using the aforementioned
search string, adapted to each search engine. The second step is the initial phase
of data screening, by reading the titles and selecting the publications most aligned
with this study. The third step consisted of removing duplicate titles, that is, those
found in more than one digital library, and proceeding with the second phase of data
screening, by reading the abstracts of the publications. The fourth step implements
one more screening, by reading the introduction and conclusion sections of the pub-
lications. Finally, the fifth step is the full reading of the selected publications. All the
titles found in the second, third, fourth and fifth steps are listed in Table 13 of Ap-
pendix A.The JabRef1 tool was used to manage all the articles found in each search
step.

The search results considered relevant to this study can be grouped according
to two factors: (1) those addressing the modeling of a smart contract with state
diagrams and (2) those dealing with the legal attributes of a contract.

Table 1 lists the 26 selected titles and a brief description of each one.

Table 1 - Articles selected by title

L http://www.jabref.org/

Chapter 3. Literature Review 30

Figure 6 — Selected articles

Select papers b Remove duplicates Select papers by
Searchin databases | ==—="% read‘ilnptitle ! T | 3ndselect papers by reading introduction reading full text
622 ¢ 204 reading abstracts 90 and conclusion 35 9

Select papers by

Papers Papers Papers Papers Papers
ACM: 262 ACM: 21 ACM: 13 ACM: 3 ACM: 3
IEEE: 440 IEEE: 32 IEEE: 15 IEEE: 6 IEEE: 4
Scopus: 378 Scopus: 39 Scopus: 25 Scopus: 13 Scopus: 7
Springer: 298 Springer: 34 Springer: 17 Springer: 3 Springer: 3

Google: aprox. 2244 Google: 78 Google: 20 Google: 10 Google: 8

Chapter 3. Literature Review 31

| Title

1 | An Agile Software Engineering Method to Design Blockchain Applications
(MARCHESI, M.; MARCHESI, L.; TONELLI, 2018)

It defines a step-by-step design of blockchain-oriented software (BOS) using agile methodology,
defining objectives, identifying actors, and creating UML diagrams. It uses class diagrams, user

stories, and even state diagrams.

2 | Formal Modeling and Verification of Smart Contracts (BAl et al., 2018)
For security and attack prevention, it applies formal method to smart contracts and a general
template for smart contract is given, extending this definition to a state machine and using

existing tools to verify its formal description.

3 | On Legal Contracts, Imperative and Declarative Smart Contracts, and Blockchain
Systems (GOVERNATORI et al., 2018)

It focuses on a comparison between declarative and imperative language for programming a
smart contract. The author states that a smart contract can represent a legal contract taking
into account legal aspects. The life cycle of a legal contract is also defined, turning it into a state

machine.

4 | Towards Model-Driven Engineering of Smart Contracts for Cyber-Physical Sys-
tems (GARAMVOLGY] et al., 2018)

It creates a smart contract for Cyber Physical Systems using the model-driven development
methodology using UML statecharts, that is, before programming the smart contract, its model-

ing is detailed in states and transitions.

5 | Formal Verification of Smart Contracts Using Interface Automata (MADL et al.,
2019)

It creates a formal verification method for smart contracts and uses a system of loyalty points
to exemplify the method. An automaton is modeled to represent its transitions. Verification

techniques are presented to check if the automaton is correct and compatible.

6 | Building Executable Secure Design Models for Smart Contracts with Formal Meth-
ods (XU; FINK, 2020)
It proposes a modeling of a state machine where - using the design-by-contract concern -

seeks to avoid future failures and vulnerabilities in modeling the “rights and obligations” of the

contract, using the “Temporal Logic of Actions (TLA)"” security model.

Chapter 3. Literature Review 32

| Title

7 | Verification-Led Smart Contracts (BANACH, 2020)
It focuses on a top-down modeling approach to smart contracts. Among the refinement steps is
the creation of a finite state machine to represent the smart contract.

8 | Das Contract - A Visual Domain Specific Language for Modeling Blockchain Smart
Contracts (SKOTNICA; PERGL, 2020)
It uses Business Process Modeling Notation (BPMN) to create diagrams for modeling a contract,
and also a diagram to define the process flow — Contract Process Diagram — which aims to create
a visualization of the contract flow, respecting its transitions.

9 | VeriSolid: Correct-by-Design Smart Contracts for Ethereum (MAVRIDOU et al.,
2019)
The VeriSolid application is an improvement on the FSolidM tool, with a focus on generating the
smart contract from fail-safe modeling (correct-by-design), also derived from a state machine,
but with the creation of a verification process of the generated models.

10| Designing Secure Ethereum Smart Contracts: A Finite State Machine Based
Approach (MAVRIDOU; LASZKA, 2018)
It aims to create a tool that, from the specification of a smart contract in the format of a finite
state machine, allows to automatically transcribe it into smart contract code for the Ethereum
platform, written with the Solidity language.

11| A Legal Interpretation of Choreography Models (LADLEIF; WESKE, 2019a)
Obligations and powers and all legal interaction between parts of a contract are specified as
choreography, where the author even shows relationships between the interactions and the
legal states of a contract.

12| A Blockchain-Based Decentralized System for Proper Handling of Temporary
Employment Contracts (PINNA; IBBA, 2018)
It proposes a blockchain application for temporary employee contracts. It creates smart con-
tracts of the employment relationship as a system of states that describe each phase of the
relationship. To represent these states, state diagrams and PetriNets are used.

13| Verifying Smart Contracts with Cubicle (CONCHON; KORNEVA; ZAIDI, 2020)
It focuses on creating a two-tier structure for smart contract verification with the Cubicle model
checker. To exemplify and prove the method, a smart contract automaton for an auction system
is created.

14| Symboleo: Towards a Specification Language for Legal Contracts (SHARIFI, S. et

al., 2020) It proposes a new domain specific language for writing smart contracts considering

the parts involved and the powers and obligations of them.

Chapter 3. Literature Review 33

#

Title

15

Smart Contracts Using Blockly: Representing a Purchase Agreement Using a
Graphical Programming (WEINGAERTNER et al., 2018)

It uses Google's Blocky graphical language to prove that it is possible to simplify the creation of
smart contracts, taking into account legal contracts, enabling their creation by non-computer

experts. Statecharts are specified in the body of the paper.

16

Formal Verification of Functional Requirements for Smart Contract Compositions
in Supply Chain Management Systems (ALQAHTANI et al., 2020)

It intends to verify the interaction between smart contracts in a supply chain system. In order
to verify the integration, state machines are created for each smart contract modeled for the

Blockchain.

17

A Smart Contracting Framework for Aggregators of Demand-Side Response (ELI-
ZONDO et al., 2019)

It proposes a framework to facilitate the integration of operational flexibility of distributed energy
resources (DER) into balancing services for electricity systems. A contribution of the framework

is the specification of finite machines of logic states and contract execution.

18

A Model-Driven Approach to Smart Contract Development (BOOGAARD, 2018)
It is a master’s thesis that proposes a new approach to model-driven engineering where the

designing of state diagrams is also part of this modeling.

19

Modeling and Analyzing Smart Contracts using Predicate Transition Nets (HE,
Xudong, n.d.)
It proposes a modeling and analysis of smart contracts through PetriNets, which also specifies

states and transitions. The proposal is exemplified with a blind auction contract.

20

Enforcing commitments with blockchain: an approach to generate smart con-
tracts for choreographed business processes (BERTOLINI, 2020)

It is @ master’s thesis that aims to design a business model with multiple organizations by
modeling commitments using choreographies (BPMN) to be able to transform them into smart

contracts.

21

Blockchain Medicine Administration Records (BMAR): Reflections and Modelling
Blockchain with UML (MITCHELL, n.d.)

It aims to model a blockchain application for a Medicines Administration Records (MAR) system
to prove that it is valid to build a blockchain for such a system. The author creates a model using

UML diagrams, including the state machine diagram.

Chapter 3. Literature Review 34

| Title

22| SPESC-Translator: Towards Automatically Smart Legal Contract Conversion for
Blockchain-based Auction Services (CHEN, E. et al., 2021)
It aims to design conversion rules from contracts written in advanced smart contract languages

(DSL) to the programming language Solidity.

23| A Model for Verification and Validation of Law Compliance of Smart Contracts in
loT Environment (AMATO et al., 2021)

It proposes a formal model - multiagent logic and ontological description of contracts - for
validating law compliance of smart contracts and to determine potential responsibilities of

failures.

24| Contract as automaton: representing a simple financial agreement in computa-
tional form (FLOOD; GOODENOUGH, 2021)
It aims to show that fundamental legal structure of a financial contract follows a state-transition

logic that can be formalized mathematically as a finite-state machine .

25| Solidity Code Generation From UML State Machines in Model-Driven Smart Con-
tract Development (JURGELAITIS; CEPONIENE; BUTKIENE, 2022)

It aims to model a blockchain smart constract with a structured approach based on the model
driven architecture. The author creates a model using UML class diagrams and the state machine

diagram.

Articles #2, #5, #7, #9, #10, #13, #16, #17, #23 and #24 sought to repre-
sent smart contracts using a state machine definition mainly to allow verifying their
models by using existing verification models to avoid possible contract vulnerabilities.
Articles #1, #4, #18, #21 and #22 use UML state diagrams or statecharts, which are
very similar and have the same purpose as state machines. Figure 7, as an example,
shows a finite state machine used to represent a blind auction smart contract, where
states and transitions were pre-defined to serve as the basis for creating the smart
contract (MAVRIDOU; LASZKA, 2018).

Articles #8, #11, #12, #19, #20 and #25 use BPMN process diagrams or
PetriNets, either to simplify and facilitate the visualization of the contract life cycle or
to guarantee more accurate modeling, also ensuring flawless smart contracts.

In articles #3, #6, #11, #14, #15, #23, #24 and #25, the authors were con-
cerned with correctly covering the behavior of a contract within the legal scope. These
articles sought to represent the obligations and powers of the parties involved in a
diagram that maps a contract in an executable code. Articles #3, #6, #14, #15,
#23, #24 and #25, besides covering a legal smart contract, include contract lifecycle
representations using finite-state machines. Figure 8 displays a state diagram that
represents the rights and obligations contained in a smart contract extracted from
the article by (XU; FINK, 2020), which specifies a property sale agreement.

Table 2 summarizes the types of diagrams used per article, where FSM stands

Chapter 3. Literature Review 35

Figure 7 - Finite state machine for a blind auction

close reveal

bid ABB [now > creationTime + 5 days] [values.length == secret.length]
finish
cancelABB CancelRB [now >= creationTime + 10 days]
unbid

Source: (MAVRIDOU; LASZKA, 2018)

Figure 8 — Rights and obligations between participating parties in a state diagram

Seller/Buyer

Property Manager

? ——record_msg
\ obligations

1.
‘/,.’;;:a’re_sign

[buyer.bankBal>$10K]join F

abort

& W

Joined

Source: (XU; FINK, 2020)

Chapter 3. Literature Review 36

for Finite State Machine, PN for PetriNets, BPMN for Business Process Model Notation.
LC means Legal Contract and identifies whether the smart contract that was specified
in the article represents a legal contract of the real world.

Table 2 - Types of diagrams used in the papers

Types | Articles Total
FSM 1,2,3,4,5,6,7,9,10,13,14,15,16,17,18,21,22,23,24 | 19
PN 12,19,25 3
BPMN | 8,11,20 3

LC 3,6,11,14,15,23,24,25 8

3.4 RESULTS AND DISCUSSION

The execution of smart contracts is based on the transition from one state to
another after an event is triggered (BAIl et al., 2018). In addition, “contracts provide
functions that allow other entities (e.g., contracts or users) to invoke actions and
change the status of smart contracts” (MAVRIDOU; LASZKA, 2018). For this reason,
it is common to find studies that create state machine diagrams to represent how a
smart contract works.

Despite this, in the search for related work, no study was found precisely re-
lated to the mapping of a formal specification language into a state diagram, although
many of them defined the states of a smart contract by specifying them in a state di-
agram, a finite-state machine or a statechart. Furthermore, only five of them specify
such diagrams according to the obligations and powers of the equivalent real-world
legal contract.

Three of the selected articles focused only on the “program” published on
the blockchain or related a smart contract with business models, using the Business
Process Modeling Notation (BPMN) technique (AMARAL DE SOUSA; BURNAY; SNOECK,
2020). The authors in (SKOTNICA; PERGL, 2020) combined, together with BPMN, other
models and concepts of enterprise engineering, such as Design and Engineering
Methodology for Organizations (DEMO), and created some modified diagrams (visual
language) to define a contract with regard to a possible automation of the law. In their
modeling, the authors in, (SKOTNICA; PERGL, 2020) created a meta-model diagram
of a contract, much like the class diagram (Unified Modeling Language (UML)), and
created as well a diagram to define the process flow — a Contract Process Diagram —
which allows visualizing the contract flow, respecting its axiom of transitions, as well
as the state diagram, however without specifying the state of the entity.

The articles relevant to this study can be grouped according to two significance
factors (Table 3): (1) those addressing the modeling of a smart contract with state

Chapter 3. Literature Review 37

diagrams; and (2) those dealing with the legal attributes of a contract. Therefore, the
related studies were divided into two subsections, as follows:

Table 3 - Subdivision of selected articles dealing with smart contract modeling or with
legal contract aspects

Types Articles Total

Smart contract modeling (1) | 1,2,4,5,7,8,9,10,12,13,16,17,18,19,20,21,22 | 17
Legal contract aspects (2) 3,6,11,14,15,23,24,25 8

3.4.1 Modeling with state diagram/state machine

State diagrams help in modeling any type of system, graphically defining the
behavior of an object. With regard specifically to smart contracts, visualizing the
behavior of a smart contract in a state diagram can facilitate its understanding, even
because, as mentioned above, the creation of a smart contract can interest even
even people unknowledgeable about programming. State diagram modeling can also
help in creating automated tests, for instance, ensuring easy visualization of what
type of coverage would be needed.

This mapping of studies showed a tendency to use finite-state machines and
diagrams (BPMN, PetriNets, etc.) to represent smart contracts. The creation of formal
languages as a source base was also used in some of the articles, either to facilitate
the understanding of a smart contract or to ensure correct modeling.

For the creation of diagrams, the main source is the contract originally written
in natural language. Authors normally break down the business rules from the con-
tract written in natural language. With regard to finding patterns in the definition of
states and transitions, it was possible to observe that there is no consensus to use
the same states and transitions. Figures 7 and 8, for example, show very different
representations for smart contracts.

An example of a tool based on state machines is FsolidM (MAVRIDOU; LASZKA,
2018), whose authors sought to create a tool that, from the specification of a smart
contract in the format of a finite-state machine, would allow automatically transcrib-
ing it into smart contract code for the Ethereum platform, written in the Solidity lan-
guage. In the tool, the relationship of a smart contract with the obligations and powers
of a legal contract was not explored, however, the vulnerabilities of the Ethereum
platform were a concern. The application VeriSolid (MAVRIDOU et al., 2019), an im-
provement of FSolidM, also with a focus on generating smart contracts from fail-safe
modeling (correct-by-design), derives as well from a state machine, but with the
creation of a verification process of the generated models.

Chapter 3. Literature Review 38

Two articles found bring up the issue of using software engineering techniques
to model a blockchain-based system that contains smart contracts, for instance in
(MARCHESI, M.; MARCHESI, L.; TONELLI, 2018), where the authors defined a step-by-
step design of a blockchain-oriented application using agile methodology, defining
objectives, identifying actors, and creating diagrams in the UML language. Diagrams
were used, such as: class diagrams, showing the smart contract structure within the
blockchain; user stories, defining roles within the blockchain; and even state dia-
grams (however specifying only the state of the interested parties within a contract).
(GARAMVOLGYI et al., 2018) examine the application of UML statecharts for model-
ing Cyber-physical systems and automatically generating smart contracts from the
model. As mentioned in the introductory 1.2 section, software engineering can be
considerably beneficial in modeling.

Two articles did not focus so much on the use of software engineering, but,
anyway, created a formal description of smart contracts, aiming at security and attack
prevention. (BAI et al., 2018) defined a formal method, extending this definition to
a state machine, and used existing tools to verify the use of its formal description.
This was the study that best resembled the one proposed here. Despite not seeking
to automate the diagram generation, said study created a state machine, specifying
the states and each transition from one state to another.

The state machine modeling proposed by (XU; FINK, 2020), besides the con-
cern with design-by-contract where, like the concept of correct-by-design, software
is designed as per contract specifications, sought mainly to avoid future flaws and
vulnerabilities in the modeling of the “rights and obligations” section of a contract,
using the “Temporal Logic of Actions (TLA)” security model.

3.4.2 Review of the legal aspects of the contract

Besides the fact that the search was comprehensive and encompassed any
smart contract specification in the form of a state diagram, it comprised articles in
which smart contract modeling included the legal aspects of a contract rather than
just executing a program to check some business rules. Other four articles, in addition
to mentioning legal contracts, followed a model entirely focused on them. Some of
these articles are discussed below.

Despite not creating a model and aiming only at a comparison between declar-
ative and imperative language for programming a smart contract, (GOVERNATORI
et al., 2018) were incisive in stating that a smart contract can represent a legal con-
tract, with regard to some legal aspects, such as the agreement between the parties,
consideration, competence, etc. In addition, the life cycle of a legal contract was
also defined, transforming it, then, into a state machine. Freedoms, obligations and
powers and all legal interaction between parties to a contract were also specified

Chapter 3. Literature Review 39

as a choreography - interactions between different participants towards a common
commercial goal — with the authors in (LADLEIF; WESKE, 2019a) demonstrating rela-
tionships between interactions and legal states of a contract.

A contract modeling language (CML) was proposed by (WOHRER; ZDUN, Uwe,
2020). Their objective was to simplify the implementation of a contract, approaching
as much as possible to the natural language. They also pointed out the important
common features of a legal contract that must somehow be modeled. Their result
is a simple format for declaring the agreements of a contract, and it also allows
generating a smart contract in the Solidity language. Their study, despite developing
a domain-specific language, at no time addressed the life cycle of the contract nor its
representation in a state diagram.

(WEINGAERTNER et al., 2018) proposed a new language to model contracts,
also taking into account legal aspects of a contract. Similarly, (XU; FINK, 2020) also
sought to model the cycle of obligations and rights within the life cycle of a smart
contract.

Finally, it is worth setting forth the Symboleo contract specification language
(SHARIFI, S. et al., 2020), which is used as a reference in the present study. As with
some of the studies mentioned above, Symboleo is a different format that allows
specifying a smart contract in an assertive way, with a language that is easier to
understand, simpler than Solidity, for example. To arrive at the final notation of the
language, numerous models of legal contracts of different types were studied until
completeness.

3.4.3 Comparison between the main elements

Table 4 below summarizes the main aspects for comparison between the re-
lated work reviewed.

Table 4 - Comparisons between related work

Specification State map- Automated Model Vverifi-
of legal obli- ping code genera- cation
gations and tion
powers

(BAlI et al., X X

2018)

Chapter 3. Literature Review

40

Specification State map- Automated
of legal obli- ping code genera- cation

gations and tion
powers

verifi-

(MARCHESI,
M.; MARCH-
ESI, L.;
TONELLI,
2018)

(GOVERNATORI X X
et al., 2018)

(GARAMVOLGYI X X
et al., 2018)

(MADL et al., X
2019)

(XU; FINK, X X
2020)

(BANACH, X
2020)

(SKOTNICA; X
PERGL, 2020)

(MAVRIDOU et X X
al., 2019)

(MAVRIDOU; X X
LASZKA,
2018)

(LADLEIF; X X
WESKE,
2019a)

(PINNA; IBBA, X
2018)

(CONCHON; X
KORNEVA;
ZAIDI, 2020)

(SHARIFI, S. X X
et al., 2020)

(WEINGAERTNERX X

ol =l 110\

Chapter 3. Literature Review 41

Specification State map- Automated Model verifi-
of legal obli- ping code genera- cation
gations and tion
powers

(ALQAHTANI X

et al., 2020)

(ELIZONDO et X

al., 2019)

(BOOGAARD, X

2018)

(HE, Xudong, X

n.d.)

(BERTOLINI, X

2020)

(MITCHELL, X

n.d.)

(CHEN, E. et X X

al., 2021)

(AMATO et al., X X X

2021)

(FLOOD; X X

GOODE-

NOUGH,

2021)

(JURGELAITIS; X X

CEPONIENE;

BUTKIENE,

2022)

The aspects for such a comparison were chosen according to the aim of this
study. As this study directly involves the Symboleo formal language, which is totally
focused on legal contracts, it is also important that other studies that sought to
specify legal obligations and powers undergo such a comparison.

State mapping is another equally important aspect, as the final product of this
study is precisely the creation of a state diagram.

Automated code generation and model verification, in turn, are aspects that

Chapter 3. Literature Review 42

appeared in a few articles, yet worth mentioning and discussing. Automation is about
using a model created to automatically generate the code of a smart contract and,
although it is not the focus here, it is interesting to see what modeling needs for this.

Finally, model verification refers to the fact that some of the articles used tools
to test the model created. In the two articles that did so, state machines were created
to represent the contract and, later, the models created were verified using methods
like TLA (Temporal Logic of Actions), which “uses mathematics in a simple, native way
to specify state machines; it facilitates the implementation of secure design patterns
and automates vulnerability detection” (XU; FINK, 2020), or using ready-made tools,
like SPIN, which is a tool used “to verify the correctness of distributed software models
in a rigorous and mostly automated fashion” (BAl et al., 2018).

3.4.4 Threats to validity

With regard to possible threats to the validity of this systematic mapping, we
have to mention that the systematic mapping was made by only one person, which
can affect the selection of the studies. Another threat to validity is the fact that the
search was divided in two different periods and it also might affect the selection of
the studies.

43

4 PROPOSAL

The present study seeks to specify and implement an algorithm that receives
as input a contract written in the domain-specific language for smart contracts called
Symboleo and produces as output a state diagram corresponding to the input contract.
To do so, it is necessary to find patterns in this language and map them into contract
states and into transitions that connect these states.

Figure 9 shows an example of clauses of a simple contract for meat commer-
cialization, and Figure 10 shows its formal definition using the Symboleo language.

Figure 9 — Clauses in a meat purchase and sale agreement

Meat Purchase and Sale Agreement
Between Seller and Buyer
This agreement is entered into as of the date -'I_r.):(Dafe:,}. between <partyl = a= Seller with the
address {Tr.tArM_‘.:-. and \'.'plzrfy.‘!,'.'- as Bu_‘,‘vr with the address < delAdd .
Terms and Conditions

1. Payment & Delivery

1.1 Seller shall sell an amount of < gnt> meat with <glt> quality (“goods") to the Buyer.

1.2 Title in the Goods shall not pass on to the Buyer until payment of the amount owed has
been made in full.

1.3 The Seller shall deliver the Order in one delivery within < delDueDate Days> days to the
Buyer at its warehouse,

1.4 The Buyer shall pay <ami> {(“amount") in <cuwrr> (“currency”) to the Seller before
<payDueDate >,

1.5 In the event of late payment of the amount owed due, the Buyer shall pay interests equal
to <intRate >% of the amount owed, and the Seller may suspend performance of all of its
obligations under the agreement until payment of amounts due has been received in full.

. Assignment
2.1 The rights and obligations are not assignable by Buyer.
3. Termination
3.1 Any delay in delivery of the goods will not entitle the Buyer to terminate the Contract
unless such delay exceeds 10 Days.
4. Confidentiality
4.1 Both Seller and Buyer must keep the contents of this contract confidential during the
execution of the contract and six months after the termination of the contract.

[

Source: (SHARIFI, S. et al., 2020)

Figure 11 shows an example of a state diagram for the contract above, visually
presenting the lifecycle of the contract. The diagram was made manually and shows
how the contract behaves and the relationship between obligations and powers.

It is worth reiterating that this study intends to automatically generate state
diagrams, like the one in Figure 11, from any contract written in Symboleo. Therefore,
this chapter presents a proposal for mapping a contract in Symboleo into a state
diagram. Initially, it will present a high-level description of an algorithm that can
transform the representation of a legal contract, described in any domain-specific
language for smart contracts, into a state diagram. Subsequently, the details of said
algorithm for Symboleo will be presented.

To represent a state diagram, the language JSON (Javascript Objetct Notation)
was chosen. JSON is a lightweight data-interchange format. It is easy for humans
to read and write JSON models and it is easy for machines to parse and generate

Chapter 4. Proposal 44

Figure 10 — Meat purchase and sale agreement specified in the Symboleo language

Domain meatSaleD

Seller isA Role with returnAddress: String;

Buyer isA Role with warchouse: String;

Currency isA Enumeration(*CAD’, *USD’, ‘EUR’);

MeatQuality isA Enumeration(*PRIME’, *AAA° AN, “A7);

PerishableGood isA Asset with quantity: Number, quality: MeatQuality;

Meat isA PerishableGood:

Delivered isA Event with item: Meat, delivery Address: String, delDueD: Date;

Paid isA Event with amount: Number, currency: Currency, from: Role, to: Role,
payDueD: Date;

PaidLate isA Event with amount: Number, currency: Currency, from: Role, to:
Role;

Disclosed isA Event with contractID : String;

endDomain

Contract meatSaleC(buyer: Buyver, seller: Seller. gnt: Number, qlt: MeatQual-
ity, amt: Number, curr: Currency, payDueDate: Date, delAdd: String, effDate: Date,
delDueDateDays: Number, intRate: Number)

Declarations
goods : Meat with quantity := gnt, quality := glt;
delivered : Delivered with item = goods, deliveryAddress := delAdd, delDueD
:= effDate + delDueDatedays;
paid : Paid with amount := amt, currency := curr, from := buyer, to := seller,
payDueD := payDueDate;
paidLate : PaidLate with amount := (1 + intRate/100)xamt, currency := curr,
from := buyer, to := seller;
disclosed : Disclosed with contract := self;
Preconditions
isOwner{goods, seller);
Postconditions
isOwner{goods, buyer) AND NOT(isOwner(goods, seller));
Obligations
Oy : O(seller, buyer, true. happensBefore(delivered, delivered.delDueD));
Oz : O(buyer, seller, true, happensBefore(paid, paid.payDueD));
03 : violates(Oz.instance) — O(buyer, seller, true, happens(paidLate, .)):
SurvivingObls
S01: O(seller, buyer, true, not happens{disclosed(self), t)
AND (t within activates(self) + 6 months));
S02: O(buyer, seller, true, not happens(disclosed(self), t)
AND (t within activates(self) + 6 months));
Powers
Py: violates(O;.instance) — P(seller, buyer, true, suspends(0,.instance));
Pa: happensWithin(paidLate, suspension(O;.instance)) —+ P(buyer, seller, true,
resumes(0) .instance)):
Pa: not{happensBefore(delivered, delivered.delDueDate + 10 days)) — P{buyer,
seller, true, terminates(self));
Constraints
NOT(isEqual(buyer, seller)):
forAll o | self.obligation.instance (CannotBeAssigned(o));
forAll p | self power.instance (CannotBeAssigned(p));

endContract

Source: (SHARIFI, S. et al., 2020)

them as well. It is also a language-independent syntax (ECMA, 2017). But any data
interchange-format could be chosen, like the XMI (XML Metadata Interchange) which
is an XML-based integration framework for the exchange of models, and, more gen-
erally, any kind of XML data (WEISS, 2009). Although UML is the official interchange
language, JSON was selected for its ease and flexibility.

4.1 GENERAL MAPPING OF A LEGAL SMART CONTRACT INTO A STATE DIAGRAM

When it comes to creating a state diagram, it is necessary to define the states
of an entity and the behavior of that entity, describing how its instances will work
(AMBLER, 2003). Before presenting the steps to define a state diagram for a smart

Chapter 4. Proposal 45

Figure 11 - State diagram generated manually

Active

obligation violation 02 / activate power P1
obligation violation 02/ activate obligation 03 happens within paid late and O1 suspension / activate power P2

create contract / not happens delivery before delDueDate+10days / activate power P3

Assign parties and
Create obligations 01, 02

—_—>
'—@ / In Effect Suspended
\ —

Activate contract [effectDate = actual date] /
Activate 01, 02

Fulfill active obligations
O1AND 02

OR Terminate by
01AND 03 P3
+On enter / Activate surviving obligation SO1 and S02 Unsuccessful Termination
Successful Termination
® 0

contract, the generic state diagram used as a basis in this study will be presented. The
diagram also contains the requirements for a domain language to be used as input
for the identification of necessary information. In addition, the algorithm that will be
created also needs to understand the lexical terms, the syntax and the semantics of
the domain language in order to transform the contract into a state diagram.

4.1.1 Generic state diagram for a smart contract

Figure 12 shows a generic state diagram for a smart contract. As can be seen,
the states of its life cycle are already defined. In short, a smart contract, as well
as a real-life contract, once it has been created, will enter into force from a given
date, with the possibility of being suspended for a certain period, and will finally be
successfully concluded, i.e., with due fulfillment of all clauses, or else it will be termi-
nated unsuccessfully, when one or more clauses are “breached” for some reason, for
example.

It is the terms agreed in a contract (the obligations and powers) that will allow
changing its states. It can be noted that, in state diagram transitions, a given obli-
gations or/and powers specification must be satisfied for a transition to be triggered.
In other words, in the transition to activate an obligation or a power, the condition
required for this clause to be activated will also have to be specified.

Chapter 4. Proposal 46

Figure 12 — Generic state diagram

Active
Smart Contract Activate obligation*® Activate power*
[condition] / obligations [condition] / powers
to be activated to be activated
Suspend [powl OR pow2 OR ...] /
i l suspand all active obligations and powers
-, Activate /

. and obligations and powers to be activated
Y { h !

| obligations jand o
. > Created = In Effect Suspended
| activated | - | J

L)
Create / ‘ Resume

assign parties g - [(powl AND powX AND ... ob1l AND obY) OR
Pulili mcthes {pow1 AND powW AND ... ob1 AND obZ) OR ...)/
Vi °°:g;‘;°;; obligations and powers to be resumed
(ob1l AND obh2 AND ... obM]) O A
---J A Tarminate
- k - [{powl AND powX AND ... ~obl AND ~obY]) OR
¢ [entry] Activate all (powl AND powW AND ... ~obl AND ~ob@) OR

surviving ctligations] f EXECULE prnalties and

the "ra.; s‘|.' l"a; a”l:”w at terminate all obligations and powers i)
) Unsuccessful repglace (old_pa, new_pa)
"—l—" Termination
- B 5

Source: (VILAIN, 2021)

As concerns this generic state diagram, generated manually, its main objective
is clearly to extract the obligations and powers of this contract, in addition to defining
what is needed so that these obligations and powers can come into force and be
suspended, therefore allowing the contract state to be changed.

It is important to notice that the states of the state diagram generated are
always the same, for all smart contracts. It means that the complexity of a contract,
written in a domain-specific language for smart contracts, does not influence on the
number of states. Only the number of obligations and powers to be included in the
state diagram generated can be different for different contracts.

4.1.2 Requirements of a domain language for a smart contract

According to (DIXIT et al., 2022), in order to formalize a legal contract, a domain
language needs to identify normative concepts such as prohibitions, obligations, and
the need for permissions.

(SHARIFI, S. S., 2020) also adds that contract languages must support vari-
ous types of legal concepts, which are often based on different ontologies. Many
languages use different names for the same concepts, for example, commitment,
promise, obligation, and duty. Many domain-specific languages already follow exist-
ing “legal” frameworks, such as deontic logic (based on obligations, prohibitions, and
permissions), UFO-L (based on Alexy’s framework), or the Hohfeld’s taxonomy of legal
positions of parties.

Chapter 4. Proposal 47

For the creation of a state diagram of a legal smart contract from a domain-
specific language, it is then necessary to:

* Define legal concepts (rights and duties);

* Define the parties involved,;

» Define powers that can terminate the contract;

* Define powers that can suspend and resume the contract;

* Define obligations that must be fulfilled to successfully conclude the con-
tract;

* Define the life cycle of each legal concept (when it is created, when it takes
effect, when it is concluded or violated).

4.1.3 Steps to define a state diagram for a smart contract

Below are, in a generic way, the steps necessary to define the possible states
of contract instances, and the obligations and powers associated with transitions from
one state to another. All the steps presented below are independent of the domain
language used as input, except for Step 4. Section 4.2 shows how Step 4 is performed
based on a specification with the Symboleo language.

Step 1: Define the following states for the final state diagram: Created, In
Effect, Suspended, Successful Conclusion, Unsuccessful Termination. Include transi-
tions between states. The obligations and powers that trigger each transition will be
defined later when they are extracted from the domain language.

Step 2: Describe the states and transitions, defined in Step 1, in jSON key and
value format. This is important to facilitate the manipulation and replacement of the
extracted data.

Step 3: Represent the data entered in JSON in an object format (contract,
obligations, powers, and transition), including the necessary attributes. This step,
along with the previous one, will facilitate data manipulation.

Step 4: Read the contract file written in a domain language specific to smart
contracts, and extract the following information about the contract: the parties to
the contract, the relevant obligations and powers, the obligations and powers to be
created with the contract, the conditions for activating the powers and obligations,
the powers that can end the contract, the obligations that must be fulfilled to end
the contract, and the “surviving obligations” that will be activated at the end of the
contract. This information must be stored in the objects that represent a contract,
those created in Step 3. This step is totally dependent on the domain language used
as input.

Step 5: Complete the JSON that represents the state diagram which was
created in Step 2. To do so, the values of each JSON key must be replaced by the

Chapter 4. Proposal 48

information stored in the objects during Step 4. If there are no powers that can
suspend the contract, the Suspended state, along with the transitions linked to it,
must be removed from JSON.

Step 6: Finally, JSON needs to be read and transformed into the state diagram
in the traditional visual way.

Figures 13, 14 and 15 with code snippet below show the generic JSON defined
in Step 2 and used as the basis for the algorithm. With the JSON defined, the main goal
of the algorithm is to complement some attributes of the transitions, mainly those
naming which obligations and powers are responsible for triggering such transitions,
thus changing the contract state. This is important because each transition is directly
linked to the execution of powers or fulfillment of obligations.

Thinking of creating a generic model and facilitating the subsequent step of
transforming a formal contract into a diagram in the visual format, all transitions have
the “events” attribute (which is a set of events), formed by an event that triggers the
transition; the “guard” attribute, which is when there is a condition for the event to
occur; and the “actions” attribute, which are actions that will be performed along with
the transition, that is, consequences for the event in question. Actions and events
may have attributes in their description which will need to be replaced by other val-
ues. These attributes are always inserted with the following syntax: $attribute_name,
where the name of this attribute is also a key within the transition and the values
inserted in this key in the execution of the algorithm will have the content that will
compose the actions/events.

Each attribute that must be filled in by the algorithm is explained below:

* The “create_contract” transition has three actions: designate the parties
and include the obligations and powers that will be created along with the
creation of the contract, so it is necessary to complement the transition
with these parties, obligations and powers;

* The “activate_contract” transition needs to include the obligations and pow-
ers that will be activated along with the contract activation;

* The "activate_obligation_power" is a transition between the same state (In
Effect) and needs to be filled in with all events that create a conditional
obligation or power that might be triggered during the life cycle of the
contract. The "event" attribute itself is generic because it must specify
whether the event will be an obligation that was violated, a power that
must be exercised or another condition that needs to be satisfied for the
activation of an obligation or power;

* The “suspend_contract” transition needs to be complemented with infor-
mation regarding powers that suspend the contract, and obligations and

Chapter 4. Proposal

49

Figure 13 - Json Model

000
{

name "${name}",

{

created

states
"Created”,
in_effect "In Effect”,
suspended "Suspended”,
successful_termination
unsuccessful _termination

}s

transitions”: {

create_contract
source

{
"initial",
"created”,

[{

"Create”,

guard": n
actions”: [

target
events
event

"Successful Termination”,
"Unsuccessful Termination”

"Assign parties ${parties}”,
"Create obligations ${obligations}”,
"Create powers ${powers}"

1,

parties

[1,

obligations

[]

[1,

powers

})
activate_contract”:{

"created”,

"in_effect”,

[{

source

target

events
event
guard
actions”: [

"effectiveDate

"Activate”,

actualDate”,

"Activate obligations ${obligations}”,
"Activate powers ${powers}"

H,

obligations
powers []

[1,

}s

Chapter 4. Proposal

50

Figure 14 - Json Model Transition

fulfill_active_obligations”: {
source”: "in_effect",
target”: "successful_termination”,
events”: [{
event”: "Fulfill active obligations ${set_of_obligations}",

guard": ™",

actions”: []

_of_obligations”: [[""]]

Figure 15 - Json Model Actions

state_actions”: {
ul_termination
"+ On Enter"”,
action”: "Activate surviving obligations ${surviving_obligations}",
surviving obligations"”: [""]
}s
ful_termination
when": "+ On Enter",
action”: "Activate surviving obligations ${surviving obligations}",

surviving_obligations”: [""]

Chapter 4. Proposal 51

powers that will be activated upon contract suspension;

* The “resume_contract” transition needs as well to define which powers can
resume the contract to the active state, in addition to the obligations and
powers that will be activated upon contract resumption;

* The "replace_party" transition needs to define which powers can replace
any of the parties of the contract, assigning a new party to the contract;

* The “fulfill_active_obligations” transition needs to be complemented with
the set of obligations that must be fulfilled for the contract to be successfully
concluded. In this case, it is necessary to find out the possible sets (which
may be more than one) of obligations that are active and that must be
fulfilled together.

* The "activate_surviving_obligation" transition needs to be complemented
with the surviving obligations (obligations that last even after the end of the
contract, for example, non-disclosure agreements) that depend on some
event to be active upon successful conclusion of the contract;

* The “terminate_contract” transition needs to include the powers that can
terminate the contract and which obligations/penalties must be activated
when terminating the contract.

The JSON also has the "state_actions" key, which defines actions that will be
performed when entering a certain state. In the case of the JSON model in question,
actions can be performed in the states "successful termination"” and "unsuccess-
ful_termination" and these actions are related to the activation of surviving obliga-
tions, that is, as mentioned above, obligations that must exist and be fulfilled either
upon contract termination or successful conclusion.

4.2 MAPPING A SYMBOLEO SMART CONTRACT INTO A STATE DIAGRAM

The steps mentioned in the previous section must be adapted to the domain
language used to represent a smart contract. This is because each language has
its specification of how to represent relevant data and, therefore, the information
needed to define the state diagram can be represented in different ways in each
language. As the present study uses the Symboleo language, this language will be
introduced subsequently. After that, there will be a description of how the mapping
was done from a representation with the Symboleo language.

4.2.1 The Symboleo language

The Symboleo language was desighed through an in-depth study into legal
elements of contracts (SHARIFI, S. et al., 2020). And as mentioned in (SHARIFI, S. S.,

Chapter 4. Proposal 52

2020): "A contract is a promise or a set of promises that are legally enforceable and,
if violated, allow the injured party access to legal remedies. Contract law recognizes
and governs the rights and duties arising from agreements".

Based on that study, a legal ontology for Symboleo was defined, as shown
in Figure 16. With this ontology, it was possible to specify and adapt Step 4 to the
Symboleo language. As we can observe below, the Symboleo language is able to
implement the legal aspects, such as obligations and powers, in a way that these
obligations and powers can be interpretated by computers.

Figure 16 — The proposed Symboleo language ontology

subcontracting subcontract

time . .
Event » Point(Time)
supercontract] start4 end$
Asset pre-state| I 1| post-state
terminated Party |ownership - Situation Interval(Time)
/suspended . - | ~quantity
0.1 -quality
. 040 5.
L° 1| 0.' 0. I 2."| antecedent
Role | creaditor . Legal 0. || Legal
o Position |0- I [Situation
tcrmmat.lon debtor K consequent
/suspension :
change state trigger

Obligation

Power

terminator 0.
/suspender

-surviving: Boolean

Source: (SHARIFI, S. et al., 2020)

The first block of the language is called Domain and specifies entities that will
be inserted into the contract and their attributes. These entities are specializations
of the ontology concepts mentioned above. Then, a domain object is created with a
list of entities. For each entity, a name and a specialization are defined, as well as a
list of attributes that represent that entity along with the domain of each attribute.
For example, in Figure 17, the first entity in the domain is “Seller”, its specialization
is “Role”, and it contains the “returnAddress” attribute.

After the Domain block, the contract is created, along with all the parameters
that will need to be passed in order to create said contract. At first, it is necessary
to identify the parties to the contract, that is, parameters of the “Role” type, or a
specialization of “Role”. In the example shown in Figure 18, the parties appear in a
“Buyer” and “Seller” format, specified in Domain.

Subsequently, it is necessary to specify the obligations, powers and “surviving
obligations”. These three terms, also called “legal situations” by the authors of Sym-
boleo, will probably have the most relevant information for our state diagram, as it is

Chapter 4. Proposal 53

Figure 17 — Section of the Domain block specified in Symboleo

Domain meatSaleld

Seller isA Role with returnAddress: String;

Buyer isA Role with warchouse: String;

Currency isA Enumeration(*CAD, "USD", "EUR");

MeatQuality isA Enumeration(*PRIME’, *AAAT CAAT CA7);

PerizhableGood IsA Asset with quantity: Number, quality: MeatQuality;

Meat isA PerishableGood;

Delivered isA Event with item: Meat, deliverv Address: String, delDuel): Date;

Paid isA Event with amount: Number, currency: Currency, from: Role, to: Role,
payDuely: Date;

PaidLate isA Event with amount: Number, currency: Currency, from: Hole, to:
Role;

Digcloged isA Event with contractID - String;

endDomain

Source: (SHARIFI, S. et al., 2020)

Figure 18 - Contract parametrization in Symboleo

Contract meatSaleC{buyer: Buver, seller: Seller, gnt: Number, glt: MeatQual-
ity, amt: Number, curr: Currency, payDueDate: Date, delAdd: String, effDate: Date,
delDueDateDays: Number, intRate: Number)

Source: (SHARIFI, S. et al., 2020)

these objects that influence the life cycle of a contract.

Figure 19 shows the blocks in which obligations, surviving obligations and
powers are described.

As can be seen, in the section where obligations are defined (Obligations),
every obligation in Symboleo is written in the O;d:O(debtor, creditor, antecedent,
consequent) format. Debtor and creditor are roles within a contract and means that
the obligation is the responsibility of the debtor to the creditor. Antecedent and
consequent are legal situations (a situation associated with the contract), in other
words, antecedent and consequent propositions describe situations that need to be
satisfied in order for obligations to be fulfilled (SHARIFI, S. et al., 2020).

4.2.2 Detail of the mapping from a Symboleo specification

The following details how a Symboleo specification can be mapped into a state
diagram. As mentioned earlier, only Step 4 of the mapping needs to be adapted for
each smart contract domain language. So, only this step will be detailed below.

Chapter 4. Proposal 54

Figure 19 - Legal situations defined in Symboleo

Obligations
Oy : Ofseller, buyer, true, happensBelore(delivered, delivered. delDueld});
Oz : O(buyer, seller, true, happensBelore(paid, paid.payDueD));
0y : violates{Ogz.instance) — O(buyer, seller, true, happens{paidLate, J);
SurvivingObls
S501: Ofseller, buyer, true, not happens{disclosed(self), t)
AND (t within activates(sell) + 6 months));
S5032: Ofbuyer, seller, true, not happens{disclosed(self), t)
AND I::l. within activah;-.s[self} + 6 munl.hs:I};
Powers
Py: violates(Og. instance) — P(zeller, buyer, true, suspends((, .instance));
P2: happensWithin(paidLate, suspension{(0;.instanece)) — P{buyer, seller, true,
resumes(() .instance));
Py: not{happensBelore(delivered, delivered. delDuelDate + 10 days)) — Pbuyer,
seller, true, terminates(self));

Source: (SHARIFI, S. et al., 2020)

Step 4 describes the following: Read the contract file written in a domain
language specific for smart contracts and extract the following information about the
contract: the contract parties, the obligations and powers thereof, the obligations and
powers to be created with the contract, the conditions for activation of the powers
and obligations, the powers that can end the contract, the obligations that must be
fulfilled to end the contract, and the “surviving obligations” that will be activated at
the end of the contract. This information must be stored in the objects that represent
a contract, which were created in Step 3.

The challenge in this endeavor is to map the states and know what needs to be
prompted to cause an exchange of states, that is to say, it is necessary to understand
the relationship between entities and translate the legal situations. For example, in
Figure 19, obligation O3 will be created when what is written to the left of the arrow
happens, but what actually happens for obligation O, to be violated? After trying to
understand the logic and ontology of the language, it is already known that such a
legal situation means the transition of obligation O, from the “In Effect” state to the
“Violation” state and it is also known, according to the axioms defined by the authors
of the language, that such a violation occurs when its consequent has a term and
such a term has expired.

The following shows how each required information is identified from a Sym-
boleo specification.

Domain: as already mentioned, it is necessary to understand the domains that
will be included in the contract, so there is the Domain entity that has the attributes:

* Name: the domain name;

Chapter 4. Proposal 55

* Specialization: the specialization of this domain in relation to the ontology
already mentioned,;

» Attributes: the attributes of this domain.

At first, by reading the domain, the purpose is to understand which contract
domains are specializations of the “Role” entity, and only then specify in the diagram
the parties involved in said contract.

Legal positions: obligations and powers are treated, in the ontology men-
tioned above, as legal situations. They represent the duties and rights of one party in
relation to another. In the Symboleo language, they are represented in the same way,
therefore there is an object called Legal Position which has the following attributes:

* Name: the name to identify the obligation or power. For example, O1 or P1,
as displayed in Figure 19.

* Debtor: represents one of the parties to the contract. In an obligation, it
determines the party that is responsible for performing the obligation, and
in a power, it determines the party that will be affected by that power.

* Creditor: also represents one of the parties to the contract. In an obligation,
it determines the party that will benefit from the obligation, and in a power,
it determines who has the right to exercise the power.

* Antecedent: a proposition that describes a situation that must occur for an
obligation or power to take effect.

* Consequent: it is also a proposition that describes a situation which, when
true, means that the obligation has been fulfilled or, in the case of a power,
means that it has been exercised.

» Trigger: it is a non-mandatory attribute that also describes a situation which
must happen for an obligation or power to take effect. As such, it may be
that the legal position in question does not need to exist throughout the life
cycle of the contract.

Obligations: an obligation is a specialization of a Legal Position that has all the
attributes described above and also a signal to specify whether or not this obligation
is a “surviving obligation”, i.e., an obligation that may continue in force even after
conclusion of the contract. Then, a new instance of the Obligation object is created
for each obligation inside Symboleo’s Obligations block, identifying and defining each
of its attributes.

For example, obligation O3 is the buyer’s obligation to the seller for making late
payments. Unlike O1 and Oy, it has a proposition at the beginning of its statement,
which is a condition to be created. The way of describing propositions in itself shows
a relationship of order and effect. It is necessary that whatever is ahead of the arrow
be carried out in order for the obligation to be created.

Chapter 4. Proposal 56

Powers: power is also a Legal Position and has all the attributes mentioned
above and none more.

Figure 19 shows the three powers of the contract. These powers have all the
attributes mentioned in the legal positions. For example, the seller’s power (right) Py,
vis-a-vis the buyer, to suspend their obligation to deliver the goods. But this seller’s
power will only take effect if the buyer has not fulfilled their obligation to pay on the
scheduled date, that is, when a violation of O, takes place.

Contract: the contract entity was created to facilitate diagram making, and it
groups the attributes necessary for the creation of said diagrams:

* Name: the name given to the contract in the block in which it was stated,
as shown in Figure 18.

* Parties: a list with the names of the parties involved in the contract.

* Obligations: the list of contract obligations, which are the legal situations
extracted as obligations.

* Powers: the list of contract powers, which are the legal situations extracted
as powers.

Transition: this entity was created only to help create the state diagram and
determine the transitions between states. It has the following attributes common to
a transition event within a state diagram:

* Event: the event that needs to happen for the transition between states to
ocCcur.

e Guard: a condition that can exist for the event to occur.

» Actions: a list of actions that are triggered as soon as the event occurs.

4.3 MAPPING IMPLEMENTATION

Regarding the mapping implementation, two parts are necessary: the first is
the creation of an API (Application Programming Interface), which is written in Node
JS, with a single resource that receives as input a file of text written in Symboleo. This
feature will invoke an algorithm whose processing involves reading the parts of the
text through regular expressions. This reading needs to capture both the attributes
of the entities and the situations that must become transitions in the diagram. The
generated output must be an object written with the language JSON (JavaScript Object
Notation) or YAML (YAML Ain’t Markup Language), so that, further on, its result can
be easily read in any other language by any program and can be turned into a state
diagram in a visual format. In the second part, to complement the development
thereof, an interface (Frontend) is also created, one that reads the return JSON and
visually transforms it into a state diagram. This interface will be a web application
with the React JavaScript library.

Chapter 4. Proposal 57

4.3.1 API Project

Figure 20 and Figure 21 show, respectively, a first version of the class diagram
and the sequence diagram of the aforementioned APl implementation, including the
main classes. The class that receives the request with the contract file upload is called
ContractController. This controller invokes two main classes that work as services,
that is, it holds the business rules of the transformation. The ContractTransformSer-
vice class is responsible for reading the file and populating the contract attributes and
subclasses. With the contract object properly created, the ContractDiagramService
class is able to transform the objects by reading their attributes and behavior, into a
state diagram or, in the case of the API in question, into a JSON object that represents
this diagram.

Figure 20 - Class diagram API

Contract
. y Obligation LegalPosition
+ effDate:LocalDateTime %
+ roles:List<Role> -surviving:Boolean + debtor:Role
+ obligations:List<Obligation> + creditor:Role
+ powers:List<Power> 1 + antecedent:LegalSituation
+ preconditions:Boolean + consequent:LegalSituation
+ postConditions:Boolean
+ asset:Asset
1.4
Pawer +getters and setters
+getters and setters < 1
I
I
FIEZN |
| I
] I
] |
| I
| I
1 I ContractDiagramService
I
: I
I
1 : ___ _:E 1
ContractTransformationService + createDiagram(Contract contract):JSON
ContractController
+ readFile(Request request):Contract +contractTransformationService:
-readDomain(String line): void 1 ContractTransformationService
-readContracParams(String line): void +contractDiagramService:
-readDeclarations(String line): void ContractDiagramService
-readPreconditions(String line): void 1 1
-readPostconditions(String line): void
-readObligations(String line): void + transform(Request request):JSON
-read SurvivingObl(String line): void

-readPowers(String line): void
-readConstaints(String line): void

Figure 21 displays in more detail the flow that the algorithm must follow and
shows the list of the most relevant methods and their respective returns.

4.3.2 API implementation

When a file is received with the contract written in Symboleo, it is necessary
to “read” and break down each of the powers and obligations (called legal positions),
which, by definition, always specify (1) the parties involved (the power/obligation of
a party towards another), (2) a condition for this legal position to come into effect

Chapter 4. Proposal 58

Figure 21 — Sequence diagram API

ContractController ContractTransformationService ContractDiagramService

transform(Request request) readFile(Request request,

read(Request request)

<<String(] lines>>

transformLine(String line)

createDiagram{Contract contract)

<<Response with JSON Object>> <<JSON Object>>

(antecedent), and (3) a condition that specifies what needs to happen for it to be
fulfilled/exercised.

As regards its implementation, the APl model is proceeded, using the language
Node JS (JavaScript) with Typescript (typing in JavaScript), as previously mentioned.
Some software design patterns were implemented, as follows: for the creation of
classes, factories were implemented; and for the behavior of the entities, commands
were used.

For now, the API of the proposed mapping consists of only one feature: trans-
forming a domain language specific for a smart contract into a state diagram. Nev-
ertheless, to achieve this goal, there are two major steps to follow, with some in-
dependent business rules: (1) reading the smart contract file written with a domain
language and capturing the main entities (obligations and powers); and (2) transform-
ing the behavior of these entities into a state diagram.

Figures 22 and 23 show the diagrams of the implemented API. In the methods
or attributes where the “Object” type appears, it is an attribute of the JavaScript
object type, that is, an object formed by a certain amount of key and value, and these
keys and values will only be known when a few lines from the input file are read.

With the class diagram and sequence diagram ready, together with the man-

Chapter 4. Proposal

59

Figure 22 - Class Diagram API

Contract

Obligation

+ name: string . 1 1.*

+ parts: [string]

+ surviving: boolean

LegalPosition

+ debtor: string

+ obligations: [Obligation]

Power

+ creditor: string

+ antecedent: string

+ contractTransformation: ContractTransformationinterface

+ execute(string file): Contract

+ powers: [Power] 1 1.7
+ survivingObligations: [Obligation]
oo
1.k
s -
ContractTransformation

—D + consequent: string

CreateDiagram 1 1.2 Transition

1| + createDiagram: CreateDiagramInterface

+ event: string

+ execute(Contract contract): JSON diagram

+ guard: string

+ actions: string[]

+name: string

H
'
i
! Domain
H
|

1..* | + specialization: string

+ attributes: Object]]

<=zInterface==
ContractTransformationinterface

+ regexDomain: RegExp

+ regexPowers: REgExp

+ regexObligations: REgExp

+ regexSurvivingObls: RegExp
+ regexConfract: REgExp

+ getParts(Object domain, Object contract): string[]

+ createObligations(Object obligation, boolean surviving): Obligation[]
+ createPowers(Object power): LegalPosition[]

+ readContractParameters(string parameters): Object{]

+ createDomain(Object domain): Domain]

oo >

TransformSymboleoContract 1

=<<Interface=>=
CreateDiagraminterface

+ contract: Contract;+ setFulfiledObligations: string[][];
+ oblTriggeredByOblViolation: string[ll;

+ obITriggeredByPower: string[][];

+ oblITriggeredByCondition: string[][):

+ setContract(Contract contract): void

+ legalPositionsToBeCreated(LegalPosition[] Ip): string]]

+ legalPositionsToBeActivatedWithContract(LegalPosition[] Ip): string[]
+ legalPositionsToBeActivated(LegalPosition[] Ip): Object

+ powersThatSuspendContract(): string[]

+ powersThatResumeContract(): string[]

+ powersThatTerminateContract(): string[];

+ survivingWhenUnsuccessfulTermination(): string[]

+ survivingWhenSuccessfulTermination(): string(]

+ powersThatRevokeParty(): siring[]

+ powersThatAssignParty(): string]

+ unfulfilledObligations(string[][] obligationsToUnfulfill): string[][]

+ fulfillObligations(): string[][]

+ legalPositionsActivatedByContractSuspension(LegalPosition[] Ip): string[]
+ survivingWithConditions(): Transition[]

+ formatEvent(string event): string

UploadFlle

e >

1

==Interface==
BaseFactory

+ readFile(string file, function callback)

+ create(): BaseCommandinterface [

| 1

Ny

CreateSymboleoDiagram

P — l TransformSymboleoFactory > TransformSymboleoCommand

Bl]

V4

=<Interface>>
BaseCommand

+ execute(Object params, Object response): void

Chapter 4. Proposal 60

Figure 23 — Sequence Diagram API

‘ UploadFile ‘

execute(string data) :
e :
tract H

JSON diagram -

ually generated state diagram (Figure 11), it is now possible to map the pre-defined
transitions and fill in some keys from the JSON file that represents the state diagram
with their corresponding values. The final JSON generated from the specification of
the contract mentioned above can be seen in Figures 24, 25 and 26 below.

As can be seen in Figure 24, in lines 20, 21 and 22, there are transitions and
each one of them has attributes that must be replaced. What the algorithm does
is include in the keys of this transition the values that should replace that specific
token, i.e., where there is token ${parties} (line 20), there will be a replacement by
the values inside the key with the same name “parties” (line 26).

In Figure 25, in the “activate_obligation_power” transition, the events are al-
ready completely filled in, because the event itself and the consequent action of the
event are discovered only at runtime, as previously indicated, and it makes no sense
to specify values where it will only be necessary to replace certain attributes. It could
be the violation of a specific obligation, or simply any other event, as in line 34, for
example. Some words are between the "strong" tag (bold style) and it is made just to
highlight the words that represent the events on the frontend.

The biggest challenge of the algorithm is to interconnect obligations and pow-
ers with their corresponding dependencies (other obligations and powers). For exam-
ple, for a contract to be enforced, it is necessary to know which set of obligations
must be fulfilled, and there may be more than one possibility. An obligation “02” can
only be created if another obligation “01” has not been fulfilled, hence it is already
known that there will be two sets of possibilities in the execution of this contract:
(i) a set of obligations to be fulfilled including obligation “01” and (ii) another set
of obligations where obligation “02” replaces obligation “01” when the latter is not
fulfilled. In this case, both obligations cannot co-exist in this scenario of obligations
to be fulfilled during the contract lifecycle: (fuffill(01) || NOTfulfill(O1) and fulfill(O2)).

The above explanation demonstrates what is done to fill the fulfill_active _obligations
transition in presented in the code snippet with the final JSON response above. The
algorithm identified that obligations named O1 and O2 are the ones that are created

Chapter 4. Proposal 61

Figure 24 - Final JSON

000
{

name”: "meatSaleC",
states”: {
created”: "Created”,
in_effect”: "In Effect”,
suspended”: "Suspended",
successful_termination”: "Successful Termination™,
unsuccessful_termination”: "Unsuccessful Termination™
})
transitions”: {
create_contract”: {
source”: "initial",
target”: "created",
events”: [

{

event”: "Create”,

guard": o

actions”: [

"Assign parties ${parties}”,
"Create obligations ${obligations}”,
"Create powers ${powers}”

}
])
parties
"buyer”,
"seller"
]J
obligations
Hoil™
"02"
]J

powers”: []

1

activate_contract

Chapter 4. Proposal 62

Figure 25 - Final JSON transition

ion_|
n_effect”,
: "in_effect”,

ctivate obligation latePayment"

"Obligation violation payment",

|

"Activate power suspendDelivery"

"Activate power terminateContract"

: "Obligation violation delivery",

>
actions H [
"Activate power resumeContract"

with the contract and need to be fulfilled. The algorithm also identified that obligation
02 is replaced by obligation O3 if O2 is violated somehow. This can be confirmed by
referring to the definition of obligations within the contract written in Symboleo.
Understanding each type of obligation is the main role of the algorithm in or-
der to define the possible sets of obligations that must be fulfilled for the successful
completion of a contract. First, it is necessary to identify whether or not an obligation
has a trigger to be created; if not, it is already in the set of active obligations that are
created along with the contract. Then, when the obligation has this trigger, it is nec-
essary to identify the meaning of this trigger: Is it the violation of another obligation?
Is it the exercise of a power? Symboleo allows identifying such events because the
language specifies some tokens to represent events related to obligations, powers

Chapter 4. Proposal 63

Figure 26 - Final JSON actions

1 _termination”: {
1": "+ On Enter”,
: "Activate surviving obligations ${surviving obligations}",

surviving obligations”: [
"s01",
"g02"

and the contract itself, e.g., oVIOLATION(O1), which means the violation of the obli-
gation named O1. The pseudocode of the fulfilledObligations algorithm is described
in the code snippet of algorithm 1 below:

Algorithm 1 Fulfill active obligations

1: function fulfilledObligations

2: setOfFulFilledObligations «+— new multidimensional array

3 arrayOfActiveObligations « findObligations ToBeCreated()

4: obligationsWithTrigger + findObligationsWithTrigger ()

5: replacementObligationsMap « getReplacementMap(obligationsWithTrigger)
6:

7

8

9

obligations TriggeredByCondition < new array
for obligationinobligationsWithTrigger do
if replacementObligationsMap not contains obligation.name as key then
: obligations TriggeredByCondition add obligation
10: end if
11: end for
12: setOfFulFilledObligations add arrayOfActiveObligations
13: setOfFulFilledObligations add obligations TriggeredByCondition
14: replaceFulfilledObligations(replacementObligationsMap,
obligationsWithTrigger, setOfFulfilledObligations)

15: end function

In brief, the algorithm needs to complement the necessary information men-
tioned above, so there is a skeleton with the functions that need to be implemented,
both with regard to the breakdown of the contract and the assembly of the diagram in
JSON format. For now, these functions are implemented for the Symboleo language;
however, our aim is to create an algorithm able to facilitate the extension and main-

Chapter 4. Proposal 64

Algorithm 2 Replace fulfilled obligations

function replaceFulfilledObligations(replacementObligationsMap,
obligationsWithTrigger, setOfFulfilledObligations)
2: obligations < all obligations of contract
newSets < new multidimensional array
4: notFoundedObligations < new list of obligation
for obligationinobligations do

6: if replacementObligationsMap contains obligation.name as key then
founded <+ false
8: obligationToReplace + replacementObligationsMap.get(obligation.name)
for fullfilledObligationsinsetFulfilledObligations do
10: obligationindex «+ index of obligationToReplace in fullfilledObligations
if obligationindex > 0 then
12: founded <+ true
newSet + copy of fullfilledObligations
14: newSet[obligationindex] < obligation.name
newSets add newSet
16:
end if
18: end for
if founded is false then
20: notFoundedObligations add obligation
end if
22: setOfFulfilledObligations add all newSets
end if

24: end for
if notFoundedObligations has elements then
26: replaceFulfilledObligations(replacementObligationsMap,
notFoundedObligations, setFulfilledObligations) //recursive call in case obligation
is not in list yet
end if
28: end function

tenance for other formal languages. The complete implementation of the algorithm
is available in the gitHub repository L

4.3.3 Frontend

To facilitate the use of the algorithm and submit any contract written in Sym-
boleo (with .txt extension), a simplified web application was created with the sole
objective (for now) of submitting a file and automatically obtaining the visual state
diagram.

Figures 27, 28 and 29 show the interface created to select a file from a contract
written in Symboleo. As another domain-specific language still cannot be used, it is
possible to observe that the Symboleo option is already selected.

L https://github.com/marinaluiza/contract-api

Chapter 4. Proposal 65

Figure 27 — Frontend Home

Symboleo

CHOOSE FILE JPLOAD

Figure 28 - Select file in Frontend

T 4 > Este Computador > Downloads v C O Pesquisar Downloads
Organizar v Nova pasta =~ m 0@
5 Documento # Nome Data de modificagio Tipo Tamar Symboleo
~ Hoje (3

I8 imagens # je (3) CHOOSE FILE

‘ [testeMeatSale 18/11/2021 20:35 Documento de Te..

I
© Mdsicas

> @ OneDrive - Perso

> [Este Computado

Nome: | Todos os arquives

Abrir Cancelar

Figure 29 - File selected in Frontend

Symboleo

CHOOSE FILE testeMeatSale txt UPLOAD

Chapter 4. Proposal 66

Figure 30, then, shows the automatically generated state diagram after the file
is properly loaded. To generate the state diagram, an auxiliary library called Mermaid?
was used, which allows generating visual diagrams through text and code. Figure 31
illustrates, in a very simplified way, the text format expected by Mermaid to generate
a state diagram. The documentation shows other resources available in the library.
The frontend project has a helper method that transforms the diagram in JSON format
into the format expected by the Mermaid library.

The complete implementation of the frontend is available in the gitHub reposi-
tory 3

Figure 30 - State diagram generated in Frontend

Symboleo

CHOOSE FILE testeMeatSale.txt UPLOAD

Create / Assign parties buyer,seller
Create obligations delivery,payment

Created

Activate [effectiveDate = actualDate]

Active
Obligation violation payment / Activate obligation latePayment
_Obligation violation payment / Activate power suspendDelivery
Obligation violation delivery / Activate power terminateContract
Obligation viotation delivery 7 Activate power resumeContract
Happens paidLate Within Suspension of delivery / Activate power resumeDelivery

[InEffect (e——
>

— — ~ T

/
Terminate [terminateContract]

-
Suspend [suspendDelivery] / Suspefid all active obligations and powers - — . N .
Resume [resumeDelivery,resumeContract] - Fulfill active obligations delivery,payment OR delivery,latePayment (-ChClielISmmEsteColtne) L o e
|

Activate powers resumeDelivery

_— +On Enter / Activate surviving obligations 501,502 |— +On Enter /

Suspended
Successful Termination y Unsuccessful Termination

Figure 31 - Text for state diagram creation with the Mermaid library

stateDiagram-v2
[*] --> Still
Still --> [*]

Still --> Moving
Moving --> Still
Moving --> Crash
Crash --> [*]

2 https://mermaid-js.github.io/mermaid/#/
3 https://github.com/marinaluiza/contract-frontend’

Chapter 4. Proposal 67

4.3.4 Development evaluation

To evaluate the correct generation of the contract, we can do a comparision
between the diagrams generated manually and the diagrams generated automati-
cally using the API. Figure 32 and 33 shows the meat sale diagrams mentioned before,
the diagram genenerated manually is on 32 and the state diagram generated auto-
matically is on 33. Besides the differences in style and organization, it is possible to
observe that the states and transitions are pretty similar, i.e., the transitions are all
the same and they link the same sources and targets.

Figure 34 and 35 shows another comparison of a different contract. Again,
besides the placement of components is not well organized as when the diagram
is manually generated, the states and transitions are correct and reflect the right
diagram lifecycle.

Figure 32 — Meat sale manually generated state diagram

Active

obligation violation O2 / activate power P1
obligation violation 02/ activate obligation 03 happens within paid late and O1 suspension / activate power P2

create contract / not happens delivery before delDueDate+10days / activate power P3

Assign parties and
Create obligations 01, 02

Activate contract [effectDate = actual date] /
Activate 01, 02

Fulfill active obligations

01 AND 02
OR Terminate by
01AND 03 P3

|

+ On enter / Activate surviving obligation SO1 and $O2 Unsuccessful Termination

Successful Termination J

7

A/ -

L) ®
=

Chapter 4. Proposal 68

Figure 33 - Meat sale automatically generated state diagram

Create / Assign parties buyer,seller
Create obligations 01,02

/, CreTted J

Activate [effectiveDate = actualDate] / Activate obligations 01,02

Active
v Obligation violation 02 / Activate obligation O3
(In Effect | ligation-viotation 02 / Activate power P1

1appens paidLate Within Suspension of obligation O1 / Activate power P2
NOT happens delivered Before 10 DAYS AFTER delDueDate / Activate power P3

Terminate [P3]
Unfulfilled oblig<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>