
UNIVERSIDADE FEDERAL DE SANTA CATARINA

DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA COMPUTAÇÃO

Marina Luiza Lardizabal Vieira

Representation of Smart Contracts as State Diagrams

Florianópolis

2022



Marina Luiza Lardizabal Vieira

Representation of Smart Contracts as State Diagrams

Dissertação submetida ao Programa de Pós-Graduação
em Ciências da Computação da Universidade Fed-
eral de Santa Catarina para a obtenção do título demestre
em Ciências da Computação.
Supervisor:: Profa. Patricia Vilain, Dra.

Florianópolis

2022



Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Vieira, Marina Luiza Lardizábal Vieira
   Representation of Smart Contracts as State Diagrams /
Marina Luiza Lardizábal Vieira Vieira ; orientadora,
Patricia Vilain , 2022.
   138 p.

   Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2022.

   Inclui referências. 

   1. Ciência da Computação. 2. Software Engeneering . 3.
Smart Contracts. 4. State Diagram. I. , Patricia Vilain.
II. Universidade Federal de Santa Catarina. Programa de Pós
Graduação em Ciência da Computação. III. Título.



Marina Luiza Lardizabal Vieira

Representation of Smart Contracts as State Diagrams

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Profa. Fabiane Benitti, Dra.

Universidade Federal de Santa Catarina

Prof. Jean Hauck, Dr.

Universidade Federal de Santa Catarina

Prof. Raul Sidnei Wazlawick, Dr.

Universidade Federal de Santa Catarina

Certi∂camos que esta é a versão original e ∂nal do trabalho de conclusão que foi

julgado adequado para obtenção do título de mestre em Ciências da Computação.

Coordenação do Programa de

Pós-Graduação

Profa. Patricia Vilain, Dra.

Supervisor:

Florianópolis, 2022.



This work is dedicated to my beloved parents,

grandparents and my dear brother.



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, who guided me through every step

of the way with the research and the writing of this work. I would also like to thank my

professional colleagues, who also helped and encouraged me to move forward with

the research. Finally, I thank my family and my ∂ancé, who have always believed in

me and who, in their own way, helped me throughout this work.



RESUMO

Smart contracts ganharam popularidade recentemente com o surgimento das block-
chains, embora o conceito por trás do termo smart contract tenha sido estudado
desde os anos 90. A automação de contratos ∂rmados na vida real é um assunto
interdisciplinar e chama a atenção não só no escopo da tecnologia, mas também
em areas como negócios e direito. Em contraste com um contrato legal escrito em
linguagem natural, entender com um smart contract funciona pode ser uma tarefa
difícil, especialmente para pessoas que não são programadoras. Em contrapartida,
contratos escritos em liguagem natural podem conter ambiguidades e muita informa-
ção desnecessária, além de um vocabulário complexo e complicado. Com o objetivo
de permitir entendimento claro, precisão e segurança das informações no processo
de criação de um contrato inteligente, diversas ferramentas foram desenvolvidas,
tanto para evitar vulnerabilidades quanto para permitir que qualquer pessoa contri-
bua para a escrita de um contrato. Em paralelo, dentro da Engenharia de Software,
muitas ferramentas de design visual são utilizadas para garantir a precisão esperada
de um sistema. Diante desse cenário e buscando facilitar ainda mais o entendimento
geral dos smart contracts, este trabalho visa ao mapeamento automático entre uma
linguagem formal para especi∂cação de smart contracts em um diagrama de esta-
dos. Dessa forma, podemos democratizar ainda mais a compreensão dos contratos
legais e possibilitar o uso de smart contracts. Para isso, primeiramente foi realizada
uma revisão sistemática, com o objetivo de encontrar trabalhos que também re-
presentassem smart contracts utilizando diagramas de estados ou outros recursos
visuais similares, mas que também representassem o ciclo de vida do smart contract.
Nessa revisão sistemática, também buscamos selecionar trabalhos que mencionas-
sem a representação dos aspectos legais de um contrato, ou seja, a representação
de obrigações e poderes, direitos e deveres dentro do smart contract. Com a revisão
sistemática concluída, foi projetado um mapeamento dos passos necessários para
transformar uma linguagem de domínio especí∂ca para smart contracts em um dia-
grama de estado. Num primeiro momento, o mapeamento também foi especi∂cado
para uma linguagem especí∂ca chamada Symboleo. Com o projeto em mente, um
algoritmo foi implementado, possibilitando o upload de um arquivo contendo um
contrato de∂nido com a linguagem Symboleo e produzindo um diagrama de estado
para esse contrato. Os dois experimentos realizados mostraram que um diagrama de
estado gerado com o algoritmo implementado neste trabalho ajudou os participantes
a responder perguntas sobre um contrato escrito em linguagem natural.

Palavras chave: diagramas de estado. smart contracts. blockchain.



RESUMO EXPANDIDO

Introdução
Smart contract é um termo relativamente recente na Computação, mas que ganhou
muita atenção depois da popularização da tecnologia de Blockchain. Smart contracts

nada mais são do que um código executável que executa regras para facilitar e fazer
cumprir os termos do acordo entre partes não con∂áveis para trabalharem juntas.
Blockchains armazenam esses smart contracts e, assim como as transações, eles
também são imutáveis, ou seja, depois de publicados dentro de uma blockchain, seus
códigos não podem mais ser alterados. O uso de smart contracts, apesar das di∂-
culdades técnicas de implementação, pode trazer inúmeros benefícios, começando
com a substituição do uso de papel adjunto com a possível prevenção de adultera-
ção e falsi∂cação. Mas a grande vantagem vem com uma promessa de garantia da
realização dos termos de um contrato sem a necessidade de envolvimento de uma
terceira parte con∂ável responsável pela execução do contrato. Além dos desa∂os
de trazer o cumprimento de contratos para o mundo digital, existem os de possíveis
falhas e vulnerabilidades de segurança no desenvolvimento de um smart contract.
Mesmo assim, autores defendem a utilização de smart contracts com o uso de mé-
todos criptográ∂cos, além da utilização de boas práticas de Engenharia de Software,
como a utilização de um processo de desenvolvimento claro e práticas de design e
notações úteis para a representação de smart contracts. Alguns autores a∂rmam que
smart contract é também um conceito interdisciplinar que interessa (mas não limi-
tado) a áreas como negócios/∂nanças e contratos legais. A natureza interdisciplinar
é um dos principais motivadores para a de∂nição de linguagens formais para smart

contracts. Linguagens formais também foram propostas para construir um modelo
seguro para smart contracts para detectar vulnerabilidades de segurança em nível
de design. Mas até que ponto uma linguagem formal pode ser totalmente entendida
por um leigo? É possível usar outros tipos de modelagem e técnicas de design junto
com especi∂cações formais para facilitar o entendimento de um smart contract por
um leigo? Pensando em facilitar o entendimento de todos envolvidos, nós vamos
gerar um diagrama de estado para representar um smart contract especi∂cado em
uma linguagem formal. É importante reparar que uma especi∂cação formal facilita
a veri∂cação de comportamento correto de um smart contract e também possibi-
lita a geração automática de código de smart contracts, enquanto um diagrama de
estado pode ser usado para facilitar o entendimento desse smart contract por um
leigo. Como o diagrama de estados é gerado a partir da especi∂cação formal, ele será
usado para con∂rmar que as informações do smart contract, descrito em linguagem
natural, também estão sendo incluídas na especi∂cação formal que representa esse
smart contract. Após essa con∂rmação, o código correspondente ao smart contract

pode ser gerado automaticamente a partir da especi∂cação formal.

Objetivos
O objetivo geral desse trabalho de mestrado é criar um algoritmo que transforme um
contrato escrito com a linguagem de especi∂cação formal Symboleo em um diagrama
de estados para facilitar o entendimento e compreensão global do comportamento
de um contrato. É feito um mapeamento dos aspectos que de∂nem os estados e suas
transições para os estados do contrato.



Metodologia
Primeiramente foi realizado um mapeamento sistemático para responder algumas
perguntas de pesquisa importantes relacionadas ao uso de diagramas de estado
para representar smart contracts. Em cima desse mapeamento, foram propostos os
possíveis estados de um contrato de um smart contract. Um algoritmo foi de∂nido
e implementado para mapear um smart contract representado com a linguagem
Symboleo para o formato de um diagrama de estado. Para mostrar que o diagrama de
estado pode facilitar o entendimento desse smart contract, foram feitos experimentos
através de questionários veri∂cando se as respostas foram mais assertivas e rápidas
com o uso do diagrama de estado.

Resultados e Discussões
Foram realizados dois experimentos para mostrar o melhor entendimento de um
smart contract com diagrama de estado. No primeiro experimento, foram escolhidos
seis participantes da área de Ciências da Computação e também da área de Direito.
Foram feitas quatro perguntas onde os participantes deveriam consultar apenas
um contrato escrito em linguagem natural e depois mais quatro perguntas onde os
participantes utilizaram a ajuda do diagrama de estado. Nesse primeiro experimento,
os mesmos participantes participaram das duas etapas de perguntas. Apesar disso,
as respostas foram mais assertivas e concisas com o diagrama de estado, bem como
o tempo foi notavelmente reduzido. Já no segundo experimento foram entrevistadas
dez pessoas, também da área de Ciências da Computação e Direito. Dessa vez, cinco
pessoas responderam cinco perguntas sem o uso do diagrama de estado, apenas
com o contrato escrito em linguagem natural, e outras cinco pessoas responderam as
perguntas com a ajuda do diagrama de estado. Assim como o primeiro experimento,
podemos notar respostas mais assertivas e concisas com o uso do diagrama de
estado, e também tempos de resposta mais reduzidos.

Considerações Finais
O interesse em smart contracts vem aumentando muito e chamando a atenção não
só de pessoas da área de Tecnologia, mas também de pessoas da área do Direito e
de Negócios. Isso fez com que a necessidade de estudos buscando a facilidade do
entendimento em relação ao desenvolvimento de smart contracts tenha crescido,
bem como estudos que buscam garantir a validação das regras desse contrato. Esse
trabalho buscou garantir o entendimento de smart contracts escritos em linguagens
formais, através da geração de diagramas de estado, principalmente por leigos. Os
experimentos realizados, que mostraram que o uso de diagramas de estado diminuiu
o tempo de resposta e permitiu respostas mais assertivas, mostram que o diagrama
de estado pode facilitar esse entendimento. Apesar disso, outros tipos de experimen-
tos, bem como provas formais e melhoria do diagrama de estado, são alguns dos
trabalhos futuros propostos nessa dissertação.

Palavras chave: diagramas de estado. smart contracts. blockchain.



ABSTRACT

Smart contracts have recently gained popularity with the emergence of blockchains,
although the concept behind them has been studied since the 1990s. The automation
of contracts signed in real life is an interdisciplinary subject and draws attention not
only in the scope of technology but also in areas such as business and law. In contrast
to a legal contract written in natural language, understanding how a smart contract
works may be a dif∂cult task, especially for non-programmers. On the other hand,
contracts written in natural language may contain ambiguities and much unnecessary
information, in addition to complicated vocabulary. With the aim of providing clear
understanding, accuracy and security of information in the process of creating a
smart contract, several tools have been developed, both to avoid vulnerabilities
and to allow anyone to contribute to the writing of a contract. In parallel, within
Software Engineering, many visual design tools are used to ensure the accuracy
expected from a system. In view of this scenario and seeking to further facilitate the
general understanding of smart contracts, this master’s thesis aims at carrying out
automatic mapping between a formal smart contract speci∂cation language and a
state diagram. In doing so, we can further democratize the understanding of legal
contracts and enable the use of smart contracts. The two experiments carried out
showed that a state diagram generated with the algorithm developed in this study
helped participants answer questions about a contract written in natural language.

Keywords: state diagrams. smart contracts. blockchain.



LIST OF FIGURES

Figure 1 – Contract written with Symboleo . . . . . . . . . . . . . . . . . . . . . 17

Figure 2 – Blockchain example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3 – Example of a smart contract inside a blockchain . . . . . . . . . . . 24

Figure 4 – State diagram example . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 5 – State diagram of an aircraft component life cycle . . . . . . . . . . . 26

Figure 6 – Selected articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 7 – Finite state machine for a blind auction . . . . . . . . . . . . . . . . 35

Figure 8 – Rights and obligations between participating parties in a state diagram 35

Figure 9 – Clauses in a meat purchase and sale agreement . . . . . . . . . . . 43

Figure 10 – Meat purchase and sale agreement speci∂ed in the Symboleo lan-

guage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 11 – State diagram generated manually . . . . . . . . . . . . . . . . . . . 45

Figure 12 – Generic state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 13 – Json Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 14 – Json Model Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 15 – Json Model Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 16 – The proposed Symboleo language ontology . . . . . . . . . . . . . . 52

Figure 17 – Section of the Domain block speci∂ed in Symboleo . . . . . . . . . . 53

Figure 18 – Contract parametrization in Symboleo . . . . . . . . . . . . . . . . . 53

Figure 19 – Legal situations de∂ned in Symboleo . . . . . . . . . . . . . . . . . . 54

Figure 20 – Class diagram API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 21 – Sequence diagram API . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 22 – Class Diagram API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 23 – Sequence Diagram API . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 24 – Final JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 25 – Final JSON transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 26 – Final JSON actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 27 – Frontend Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 28 – Select ∂le in Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 29 – File selected in Frontend . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 30 – State diagram generated in Frontend . . . . . . . . . . . . . . . . . . 66

Figure 31 – Text for state diagram creation with the Mermaid library . . . . . . . 66

Figure 32 – Meat sale manually generated state diagram . . . . . . . . . . . . . 67

Figure 33 – Meat sale automatically generated state diagram . . . . . . . . . . . 68

Figure 34 – Tech service manually generated state diagram . . . . . . . . . . . 68

Figure 35 – Tech service automatically generated state diagram . . . . . . . . . 69

Figure 36 – State diagram of the contract . . . . . . . . . . . . . . . . . . . . . . 72



Figure 37 – Participants’ time spent reading the contract and the diagram . . . 79

Figure 38 – State diagram of the legal contract . . . . . . . . . . . . . . . . . . . 81

Figure 39 – Participants’ time spent reading the contract and the state diagram

for each question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 40 – Participants’ total time spent reading the contract and the state

diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 41 – Final json generated by algorithm part 1 . . . . . . . . . . . . . . . . 118

Figure 42 – Final json generated by algorithm part 2 . . . . . . . . . . . . . . . . 119

Figure 43 – Final json generated by algorithm part 3 . . . . . . . . . . . . . . . . 120

Figure 44 – Final json generated by algorithm part 4 . . . . . . . . . . . . . . . . 121



LIST OF TABLES

Table 1 – Articles selected by title . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 2 – Types of diagrams used in the papers . . . . . . . . . . . . . . . . . . 36

Table 3 – Subdivision of selected articles dealing with smart contract modeling

or with legal contract aspects . . . . . . . . . . . . . . . . . . . . . . 37

Table 4 – Comparisons between related work . . . . . . . . . . . . . . . . . . . 39

Table 5 – Participants’ pro∂le (Experiment 1) . . . . . . . . . . . . . . . . . . . 71

Table 6 – Participants’ pro∂le (Experiment 2) . . . . . . . . . . . . . . . . . . . 71

Table 7 – Participants’ answers to the ∂rst group of questions . . . . . . . . . . 73

Table 8 – Participants’ answers to the second group of questions . . . . . . . . 76

Table 9 – Participants’ feedback on the use of the state diagram . . . . . . . . 78

Table 10 – Participants’ answers without the state diagram . . . . . . . . . . . . 82

Table 11 – Participants’ answers with the state diagram . . . . . . . . . . . . . . 84

Table 12 – Participants’ feedback on the use of the state diagram . . . . . . . . 85

Table 13 – Articles select in the literature review . . . . . . . . . . . . . . . . . . 98



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 AIM AND OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 TEXT ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 BLOCKCHAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 SMART CONTRACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 STATE MACHINE DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 DOMAIN-SPECIFIC LANGUAGES AND FORMAL METHODS . . . . . . . 26

3 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 FORMULATION OF THE RESEARCH QUESTION . . . . . . . . . . . . . 28

3.2 IDENTIFICATION OF RELEVANT LITERATURE . . . . . . . . . . . . . . . 28

3.3 SELECTION OF STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Modeling with state diagram/state machine . . . . . . . . . . . 37

3.4.2 Review of the legal aspects of the contract . . . . . . . . . . . 38

3.4.3 Comparison between the main elements . . . . . . . . . . . . . 39

3.4.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 PROPOSAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 GENERAL MAPPING OF A LEGAL SMART CONTRACT INTO A STATE

DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Generic state diagram for a smart contract . . . . . . . . . . . 45

4.1.2 Requirements of a domain language for a smart contract . . 46

4.1.3 Steps to de∂ne a state diagram for a smart contract . . . . . 47

4.2 MAPPING A SYMBOLEO SMART CONTRACT INTO A STATE DIAGRAM . 51

4.2.1 The Symboleo language . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Detail of the mapping from a Symboleo speci∂cation . . . . . 53

4.3 MAPPING IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 API Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 API implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



4.3.4 Development evaluation . . . . . . . . . . . . . . . . . . . . . . . 67

5 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 EXPERIMENT PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 EXPERIMENT 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 EXPERIMENT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.0.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX A – LITERATURE REVIEW – ARTICLES’ TITLES . . . 98

APPENDIX B – JSON GENERATED WITH THE ALGORITHM . . . 117

ANNEX A – CONTRACT FOR EXPERIMENT 1 . . . . . . . . . . . 122

ANNEX B – CONTRACT FOR EXPERIMENT 2 . . . . . . . . . . . 132



15

1 INTRODUCTION

The term smart contract is relatively recent and gained considerable attention

after the popularization of the blockchain technology. A smart contract is nothing but

executable code used to facilitate and enforce the contract terms that make sense

on the blockchain (ABDELHAMID; HASSAN, 2019). Blockchains store these smart

contracts, and, like transactions, smart contracts are also immutable, that is, once

published within a blockchain, their codes can no longer be changed (NARAYANAN;

MILLER, 2016).

However, the appearance of such term is not that new. Nick Szabo, in 1997, was

already studying the possibility of contract automation and discusses how the terms

of a contract should be written in lines of code in a self-executing contract(SZABO,

1997). Szabo’s de∂nition speci∂cally deals with contracts within the scope of legal

aspects and not as programs that execute instructions on a blockchain. However,

initially, his theory did not make much progress, mainly due to the dif∂culty in con-

trolling the physical assets of a contract, i.e., the lack of a technology capable of

supporting what he was proposing. With the possibility of implementing a smart con-

tract on a blockchain, which already has its asset under control, such as a digital

currency, Szabo’s proposal became feasible (BAI et al., 2018). In this master’s the-

sis, we address this kind of smart contracts – the ones that are written to represent

real-world legal contracts.

The use of smart contracts, despite technical implementation dif∂culties, can

bring many bene∂ts, such as the possibility of preventing adulteration and forgery

(CHANG; LUO; CHEN, Y., 2020). Nevertheless, the biggest advantage comes with a

promise of guaranteeing that the terms of a contract does not require the involvement

of a trusted third party responsible for executing the contract. Even though in practice

many legal aspects of contracts are left out when automating them, some authors

argue that a contract can be better designed using technology instead of just a

text written in natural language on paper (SKOTNICA; PERGL, 2020). This way, a

“large amount of repetitive administrative work can be eliminated, the comprehension

can be increased, and third-party involvement reduced, as the courts, for example”

(SKOTNICA; PERGL, 2020).

1.1 MOTIVATION

Despite all existing advancements, converting a legal contract into executable

code is a challenging task. The vagueness of laws, for example, which embraces the

largest number of cases in justice systems, makes it dif∂cult to achieve accuracy

when reading through such laws, chie∑y when programming an algorithm to verify

compliance thereof (SKOTNICA; PERGL, 2020). “The vagueness of law is a required



Chapter 1. Introduction 16

and important property in justice systems. However, when people or companies need

to comply with the laws and design systems that will automate the associated work,

they need a clear de∂nition of how does the law apply in their case” (SKOTNICA;

PERGL, 2020). Yet, the problem goes beyond the gap between natural language and

equivalent code (WOHRER; ZDUN, U., 2020). There are also other issues, such as: the

∂xed and autonomous nature of code execution in the blockchain environment, since

it cannot be changed once deployed; the lack of high-level coding abstractions; and

the rapid progress of the development framework (WOHRER; ZDUN, U., 2020).

In addition to the challenges of bringing contract enforcement to the digital

world, there are potential security ∑aws and vulnerabilities in the development of a

smart contract, described as follows: “Firstly, smart contracts deployed in practice

handle ∂nancial assets of signi∂cant value. Secondly, smart contract bugs cannot be

patched. By design, once a contract is deployed, its functionality cannot be altered

even by its creator. Finally, once a faulty or malicious transaction is recorded, it cannot

be removed from the blockchain” (MAVRIDOU; LASZKA, 2018).

Despite inherent dif∂culties, Landleif (LADLEIF; WESKE, 2019b) argues that

there are two reasons for believing in the creation and use of smart contracts: the

validity of real-world contracts can be secured via cryptographic methods, and the

fact that they contain operational aspects which can be automated by computers.

In addition to these factors, the use of good software engineering practices, with a

clear development process, and the use of design practices and notations useful for

the purpose can prevent various problems from occurring (MARCHESI, M.; MARCHESI,

L.; TONELLI, 2018). The use of a systematic design may be able to avoid a number

of failures and wrong development assumptions, because, as stated by Luu (LUU

et al., 2016): “Flaws arise in practice because of a semantic gap between the assump-

tions contract writers make about the underlying execution semantics and the actual

semantics of the smart contract system”.

One of the main alternatives to overcome dif∂culties is the use of formal lan-

guages. Formal languages have been proposed to “build secure models for smart

contracts to detect security vulnerabilities at the design level” (XU; FINK, 2020). The

interdisciplinary nature thereof is another motivator for the de∂nition of formal lan-

guages for smart contracts. According to He (HE, Xiao et al., 2018) “Although a smart

contract is usually viewed as an online program from the perspective of information

technology, it is actually an interdisciplinary concept that also concerns (but is not

limited to) business/∂nance and contract law”. The interdisciplinary nature of smart

contracts is one of the main motivators for the de∂nition of formal languages, which,

according to said author, can facilitate the understanding of technology laypeople in

the process of creating a smart contact (HE, Xiao et al., 2018).



Chapter 1. Introduction 17

1.2 PROBLEM

Formal languages can be used to specify smart contracts and also to generate

the code corresponding to a smart contract, as happens with Symboleo (SHARIFI, S.

et al., 2020). But to what extent can a formal language be fully understood by a

layperson? Is it possible to use other modeling and design techniques along with a

formal speci∂cation to facilitate the understanding of a smart contract by a layperson?

Figure 1 shows a contract written with Symboleo (SHARIFI, S. et al., 2020)

whose understanding, as can be seen, may not be as typical as that of a contract

written in natural language.

Figure 1 – Contract written with Symboleo

1.3 SOLUTION

A smart contract is an agreement or set of rules that govern a business trans-

action and is executed automatically as part of a transaction, being able to automate



Chapter 1. Introduction 18

sensitive details of a negotiation between two parties. For example, a smart con-

tract may de∂ne contractual conditions under which corporate bond transfer occurs

(MANAV, 2017). It is vital that all parties of a contract be aware of the purpose of the

agreement, i.e., the terms and conditions of the contract, its stages, and what actions

can change its states, for instance, actions that can make the contract move from a

status of being in effect to duly concluded.

This way, seeking to facilitate the understanding of smart contracts for all

people involved in creating them, mainly the users requesting the contract (lawyers

and their clients) and also the analysts, this study aims to represent a contract written

with a domain-speci∂c language for smart contracts as a UML state diagram. The

UML language is a standard, it has a graphical and intuitive representation, and it

has an extensibility for representing domain-speci∂c notations (BARESI; GARZOTTO;

PAOLINI, 2001). Concerning a state diagram speci∂cally, “beyond their usual purpose

of making explicit the state through which an element evolves, they become a means

of reasoning about some peculiar aspects of application and about time constraints”

(BARESI; GARZOTTO; PAOLINI, 2001).

States and actions that prompt changes from one state to another in a contract

can facilitate the understanding and development of business rules. In this case,

we would be dealing with the possible states of a smart contract, which in turn

represents a legal contract. Researcher Jeff Edmonds, for example, in his book “How

to Think About Algorithms”, recommends a paradigm that seeks to facilitate the

understanding of algorithms as a sequence of states, in addition to a (often very

large) sequence of steps (EDMONDS, 2008). Thus, effectively modeling the states of

a smart contract is pointedly necessary as it is nothing more than an algorithm.

In the present study, to allow for further understanding, we will generate a

state diagram to represent a smart contract speci∂ed with a formal domain language.

It is worth noting that a formal speci∂cation facilitates verifying whether a smart

contract is correctly functioning and allows the generation of the smart contract code,

whereas a state diagram can be used to facilitate its understanding by a layperson.

Since the state diagram is generated from the formal speci∂cation, it will be used to

con∂rm that what is written in the legal contract represented in natural language is

also being included in the formal speci∂cation representing the smart contract. After

this con∂rmation, the code corresponding to the smart contract can be automatically

generated from the formal speci∂cation.

1.4 SCOPE

The smart contracts used in this study are those to represent legal contracts.

The formal language used is Symboleo (SHARIFI, S. et al., 2020). The choice of this

speci∂c language is due to the easy access to its documentation, in addition to the



Chapter 1. Introduction 19

contact with the group of study involved in the language development.

1.5 AIM AND OBJECTIVES

In this section, the aim and objectives of the study will be presented.

1.5.1 Aim

The aim of this master’s thesis is to map a smart contract written with the

domain-speci∂c language Symboleo (SHARIFI, S. et al., 2020) and represent it into

a state diagram that can facilitate an overall understanding of the contract’s behav-

ior, therefore aspects de∂ning the states of the contract and its transitions will be

mapped.

1.5.2 Objectives

• Specify an algorithm – a step-by-step speci∂cation of what this algorithm

needs to do, specifying the input data (as regards a contract written with

the Symboleo language) and what should be the output (as regards a state

diagram);

• Implement the speci∂ed algorithm – according to the de∂ned speci∂cation,

implement an algorithm that can receive the speci∂ed inputs and compute

the expected output;

• Validate the speci∂ed algorithm through experiments, checking whether

the state diagram facilitates the understanding of the contract life cycle

through interviews with experts in law who are unknowledgeable about

computing and vice versa.

1.6 METHOD

1. Characterization of the study

a) Approach: qualitative research;

b) Technical procedures: bibliographic research, experimental research

including a case study.

2. Methodological procedures

a) Step 1: Systematic mapping with representations of smart con-

tracts and ways of representing their states in diagrams;

b) Step 2: Study of the possible states (life cycle) of smart contracts

inside a blockchain – Created, In effect, Suspended, Concluded,

etc.;



Chapter 1. Introduction 20

c) Step 3: De∂nition and implementation of an algorithm to map a

Symboleo formal model into a state diagram;

d) Step 4: Experiments carried out through questionnaires to assess

whether the responses thereof are more assertive with the use of

the state diagram generated with the algorithm of Step 3;

e) Step 5: Writing an article about the work developed;

f) Step 6: Writing the thesis and presenting it.

1.7 TEXT ORGANIZATION

The subsequent sections are organized according to the chapters described

as follows. Chapter 2 (Background) introduces topics that are important for the un-

derstanding of this study, such as blockchain, smart contracts, and state diagrams.

Chapter 3 (Literature Review) presents related work that helped review the state of

the art for this study. Chapter 4 (Proposal) describes the proposal of the present study,

followed by its implementation. Chapter 5 (Experiments) presents two experiments

that were performed to verify the hypothesis put forward. Finally, Chapter 6 (Conclu-

sion) draws conclusions based on the experiment and execution of the proposal.





Chapter 2. Background 22

But there needs to be a consensus on the state of the structure, and for that

to happen, there is a great deal of processing behind simply performing transactions.

Consensus is a process of agreement among distrusting nodes on a ∂nal state of data

(BASHIR, 2017). For consensus to exist, some nodes actively work through mining.

“During mining, nodes check previous transactions to verify whether a subject is

entitled to spend a given amount of cryptocurrency and, each time a block has to be

added to the chain, solve a complex computational-intensive mathematical problem”

(GATTESCHI et al., 2018).

There are various requirements which must be met in order to provide the

desired results in a consensus mechanism. Imran Bashir (BASHIR, 2017) described

them in his book:

• Agreement: All honest nodes decide on the same value;

• Termination: All honest nodes terminate execution of the consensus pro-

cess and eventually reach a decision;

• Validity: The value agreed upon all honest nodes must be the same as the

initial value proposed by at least one honest node;

• Fault tolerant: The consensus algorithm should be able to run in the

presence of faulty or malicious nodes (Byzantine nodes);

• Integrity: No node makes a decision more than once. The nodes make

decisions only once in a single consensus cycle.

There are various types of consensus mechanism, but the two most common

types are (BASHIR, 2017):

• Byzantine fault tolerance-based: With no compute intensive operations

such as partial hash inversion, this method relies on a simple scheme of

nodes that are publishing signed messages. Eventually, when a certain

number of messages are received, then an agreement is reached;

• Leader-based consensus mechanisms: This type of mechanism requires

nodes to compete for the leader-election lottery and the node that wins it

proposes a ∂nal value.

For each type of mechanism, there are some algorithms available. The most

well-known one, which is implemented in Bitcoin as well as in other cryptocurrencies,

is the algorithm called “Proof of Work”: This type of consensus is based on the proof

that suf∂cient computational resources have been allocated before proposing a value

for acceptance by the network (BASHIR, 2017).



Chapter 2. Background 23

2.2 SMART CONTRACTS

Smart contracts are simply executable code that executes rules to facilitate

and enforce the terms of an agreement between untrusted parties to work together

(ABDELHAMID; HASSAN, 2019). As previously mentioned, blockchains store these

smart contracts and, like transactions, they are also immutable, that is, after they are

published within a blockchain, their codes can no longer be changed (NARAYANAN;

MILLER, 2016). Smart contracts can rely on the use of external services (called “ora-

cles”) to ensure their conditions with “real-world” data (death records, for example)

and push them to the blockchain or vice versa (GATTESCHI et al., 2018).

Figure 3 illustrates a smart contract within a blockchain. Smart contracts help

information to be updated consistently. A blockchain uses smart contracts to provide

controlled access to the ledger (HYPERLEDGER, 2020), that is, prior to any access or

insertion into the blockchain, a smart contract “runs” its rules and can perform any

action that is required before proceeding with the change or reading in the blockchain.

Business transactions are conducted within the guidelines of a legal contract,

and the combination of IoT (Internet of Things) and DLT (Distributed Ledger Technol-

ogy) platforms has offered an unprecedented ability to automate the monitoring of

legal contracts, especially for supply chain provenance (SHARIFI, S. S., 2020). There-

fore, it is also possible to write smart contracts able to verify whether such guidelines

are being complied with. It is precisely these types of smart contracts that we sought

to address in this master’s thesis.

As Gatteschi (GATTESCHI et al., 2018) exempli∂ed: “With a smart contract, a

person could, for instance, encode his/her will in the blockchain in the form of a set

of rules. In case of death, the smart contract could then automatically transfer the

testator’s money or other kind of assets to the bene∂ciary.”

2.3 STATE MACHINE DIAGRAMS

As explained in (SOURCEMAKING, 2007), “Persons, objects, or concepts from

the real world, which we model as objects in the IT system, have “lives””. Although

life in the real world and its representation as a software object might have differ-

ences, both will have birth and death, for example. Inside an IT system, while the

object is alive it will be read and changed. These changes might not be subject to any

restrictions, but as soon as rules for modi∂cation become dynamic, it is then impor-

tant to document these rules somewhere. In summary, in certain cases, it should be

possible to determine whether an event is permitted in the current state of the object

and how the object will react to the event (SOURCEMAKING, 2007). One good way to

document this behavior is using state machine diagrams.

As de∂ned by OMG (Object Management Group), a state machine diagram,









Chapter 2. Background 27

contracts need to be reliable and, as they are executable code, they need to meet

the following requirements (BAI et al., 2018): 1) cannot have grammatical errors or

semantic errors; 2) have high requirements regarding correctness and other related

properties to ensure the security of their assertions.



28

3 LITERATURE REVIEW

Considering that the aim of this study is to map a formal speci∂cation language

of a legal contract into a state diagram, the ∂rst step taken was a systematic mapping

review of the literature to ∂nd related work that could represent a smart contract

in the form of a state diagram. A systematic mapping study enables an overview

of a speci∂c research area, indicating which topics have already been addressed in

the literature (PETERSEN; VAKKALANKA; KUZNIARZ, 2015). In this study, systematic

mapping was conducted according to the guide presented in (PETERSEN et al., 2008)

and updated in (PETERSEN; VAKKALANKA; KUZNIARZ, 2015).

As previously mentioned, our purpose was to search for different represen-

tations of smart contracts in the form of a state diagram, even though these rep-

resentations were not our main focus. The intention was to verify how states and

transitions were represented in related work. Additionally, we veri∂ed whether all

related work de∂ned state diagrams based on a formal speci∂cation language used

to specify smart contracts, i.e., to some extent similarly to the aim of this study.

The next subsections explain the phases of the research: formulation of the

research question, identi∂cation of relevant literature, selection of studies, extraction

of information and, ∂nally, discussion and results of the related work selected.

3.1 FORMULATION OF THE RESEARCH QUESTION

The purpose of this mapping is to understand how smart contracts can be

represented as state diagrams, focusing on which states are identi∂ed and which

transitions connecting such states are identi∂ed. Therefore, the main research ques-

tion is as follows:

• How are transitions and states of a smart contract identi∂ed?

In addition to the main question, other two important questions were formu-

lated:

• Is there any standard to name states and transitions of a smart contract

state diagram?

• What are the common information sources for creating a smart contract

state diagram? (contract in natural language, diagrams, contract repre-

sented in formal language, etc.)

3.2 IDENTIFICATION OF RELEVANT LITERATURE

With the aim of ∂nding state diagrams that could represent a smart contract,

a search string was created by joining both terms – smart contract and state dia-

gram. Additionally, to further expand the search, some synonymous terms that also



Chapter 3. Literature Review 29

represent states and transitions were used. Thus, the search string was de∂ned as

follows:

("state diagram" OR "state machine" OR "statechart" OR "state transition dia-

gram") AND ("smart contract").

The search was conducted on the following academic search engines: ACM

Digital Library, IEEExplore Digital Library, Scopus, Springer, and Google Scholar. The

∂rst search was conducted in November 2020. Another search was conducted on

August 2022 with the aim of updating this mapping with more recent studies, ∂ltering

papers from 2021 until 2022.

3.3 SELECTION OF STUDIES

To select the relevant studies, the following inclusion criteria were used: The

text must (1) be written in English, (2) be available on the Internet, and (3) have at

least one representation of a smart contract in the diagram format where it highlights

its states and transitions. Exclusion criteria were applied if: (1) Not written in English,

(2) not available on the Internet, and (3) not having any representation of a smart

contract in diagram or having a representation not speci∂cally of a smart contract,

i.e., just a simple set of business rules that do not represent a contract.

After de∂ning the search string and the inclusion criteria, the search was car-

ried out on the abovementioned search engines. Figure 6 shows the steps followed in

the search and the number of studies found in each step, separated by search engine.

The ∂rst step consists in consulting those digital libraries using the aforementioned

search string, adapted to each search engine. The second step is the initial phase

of data screening, by reading the titles and selecting the publications most aligned

with this study. The third step consisted of removing duplicate titles, that is, those

found in more than one digital library, and proceeding with the second phase of data

screening, by reading the abstracts of the publications. The fourth step implements

one more screening, by reading the introduction and conclusion sections of the pub-

lications. Finally, the ∂fth step is the full reading of the selected publications. All the

titles found in the second, third, fourth and ∂fth steps are listed in Table 13 of Ap-

pendix A.The JabRef1 tool was used to manage all the articles found in each search

step.

The search results considered relevant to this study can be grouped according

to two factors: (1) those addressing the modeling of a smart contract with state

diagrams and (2) those dealing with the legal attributes of a contract.

Table 1 lists the 26 selected titles and a brief description of each one.

Table 1 – Articles selected by title

1 http://www.jabref.org/





Chapter 3. Literature Review 31

# Title

1 An Agile Software Engineering Method to Design Blockchain Applications

(MARCHESI, M.; MARCHESI, L.; TONELLI, 2018)

It de∂nes a step-by-step design of blockchain-oriented software (BOS) using agile methodology,

de∂ning objectives, identifying actors, and creating UML diagrams. It uses class diagrams, user

stories, and even state diagrams.

2 Formal Modeling and Veri∂cation of Smart Contracts (BAI et al., 2018)

For security and attack prevention, it applies formal method to smart contracts and a general

template for smart contract is given, extending this de∂nition to a state machine and using

existing tools to verify its formal description.

3 On Legal Contracts, Imperative and Declarative Smart Contracts, and Blockchain

Systems (GOVERNATORI et al., 2018)

It focuses on a comparison between declarative and imperative language for programming a

smart contract. The author states that a smart contract can represent a legal contract taking

into account legal aspects. The life cycle of a legal contract is also de∂ned, turning it into a state

machine.

4 Towards Model-Driven Engineering of Smart Contracts for Cyber-Physical Sys-

tems (GARAMVÖLGYI et al., 2018)

It creates a smart contract for Cyber Physical Systems using the model-driven development

methodology using UML statecharts, that is, before programming the smart contract, its model-

ing is detailed in states and transitions.

5 Formal Veri∂cation of Smart Contracts Using Interface Automata (MADL et al.,

2019)

It creates a formal veri∂cation method for smart contracts and uses a system of loyalty points

to exemplify the method. An automaton is modeled to represent its transitions. Veri∂cation

techniques are presented to check if the automaton is correct and compatible.

6 Building Executable Secure Design Models for Smart Contracts with Formal Meth-

ods (XU; FINK, 2020)

It proposes a modeling of a state machine where – using the design-by-contract concern –

seeks to avoid future failures and vulnerabilities in modeling the “rights and obligations” of the

contract, using the “Temporal Logic of Actions (TLA)” security model.



Chapter 3. Literature Review 32

# Title

7 Veri∂cation-Led Smart Contracts (BANACH, 2020)

It focuses on a top-down modeling approach to smart contracts. Among the re∂nement steps is

the creation of a ∂nite state machine to represent the smart contract.

8 Das Contract - A Visual Domain Speci∂c Language for Modeling Blockchain Smart

Contracts (SKOTNICA; PERGL, 2020)

It uses Business Process Modeling Notation (BPMN) to create diagrams for modeling a contract,

and also a diagram to de∂ne the process ∑ow – Contract Process Diagram – which aims to create

a visualization of the contract ∑ow, respecting its transitions.

9 VeriSolid: Correct-by-Design Smart Contracts for Ethereum (MAVRIDOU et al.,

2019)

The VeriSolid application is an improvement on the FSolidM tool, with a focus on generating the

smart contract from fail-safe modeling (correct-by-design), also derived from a state machine,

but with the creation of a veri∂cation process of the generated models.

10 Designing Secure Ethereum Smart Contracts: A Finite State Machine Based

Approach (MAVRIDOU; LASZKA, 2018)

It aims to create a tool that, from the speci∂cation of a smart contract in the format of a ∂nite

state machine, allows to automatically transcribe it into smart contract code for the Ethereum

platform, written with the Solidity language.

11 A Legal Interpretation of Choreography Models (LADLEIF; WESKE, 2019a)

Obligations and powers and all legal interaction between parts of a contract are speci∂ed as

choreography, where the author even shows relationships between the interactions and the

legal states of a contract.

12 A Blockchain-Based Decentralized System for Proper Handling of Temporary

Employment Contracts (PINNA; IBBA, 2018)

It proposes a blockchain application for temporary employee contracts. It creates smart con-

tracts of the employment relationship as a system of states that describe each phase of the

relationship. To represent these states, state diagrams and PetriNets are used.

13 Verifying Smart Contracts with Cubicle (CONCHON; KORNEVA; ZAÏDI, 2020)

It focuses on creating a two-tier structure for smart contract veri∂cation with the Cubicle model

checker. To exemplify and prove the method, a smart contract automaton for an auction system

is created.

14 Symboleo: Towards a Speci∂cation Language for Legal Contracts (SHARIFI, S. et

al., 2020) It proposes a new domain speci∂c language for writing smart contracts considering

the parts involved and the powers and obligations of them.



Chapter 3. Literature Review 33

# Title

15 Smart Contracts Using Blockly: Representing a Purchase Agreement Using a

Graphical Programming (WEINGAERTNER et al., 2018)

It uses Google’s Blocky graphical language to prove that it is possible to simplify the creation of

smart contracts, taking into account legal contracts, enabling their creation by non-computer

experts. Statecharts are speci∂ed in the body of the paper.

16 Formal Veri∂cation of Functional Requirements for Smart Contract Compositions

in Supply Chain Management Systems (ALQAHTANI et al., 2020)

It intends to verify the interaction between smart contracts in a supply chain system. In order

to verify the integration, state machines are created for each smart contract modeled for the

Blockchain.

17 A Smart Contracting Framework for Aggregators of Demand-Side Response (ELI-

ZONDO et al., 2019)

It proposes a framework to facilitate the integration of operational ∑exibility of distributed energy

resources (DER) into balancing services for electricity systems. A contribution of the framework

is the speci∂cation of ∂nite machines of logic states and contract execution.

18 A Model-Driven Approach to Smart Contract Development (BOOGAARD, 2018)

It is a master’s thesis that proposes a new approach to model-driven engineering where the

designing of state diagrams is also part of this modeling.

19 Modeling and Analyzing Smart Contracts using Predicate Transition Nets (HE,

Xudong, n.d.)

It proposes a modeling and analysis of smart contracts through PetriNets, which also speci∂es

states and transitions. The proposal is exempli∂ed with a blind auction contract.

20 Enforcing commitments with blockchain: an approach to generate smart con-

tracts for choreographed business processes (BERTOLINI, 2020)

It is a master’s thesis that aims to design a business model with multiple organizations by

modeling commitments using choreographies (BPMN) to be able to transform them into smart

contracts.

21 Blockchain Medicine Administration Records (BMAR): Re∑ections and Modelling

Blockchain with UML (MITCHELL, n.d.)

It aims to model a blockchain application for a Medicines Administration Records (MAR) system

to prove that it is valid to build a blockchain for such a system. The author creates a model using

UML diagrams, including the state machine diagram.



Chapter 3. Literature Review 34

# Title

22 SPESC-Translator: Towards Automatically Smart Legal Contract Conversion for

Blockchain-based Auction Services (CHEN, E. et al., 2021)

It aims to design conversion rules from contracts written in advanced smart contract languages

(DSL) to the programming language Solidity.

23 A Model for Veri∂cation and Validation of Law Compliance of Smart Contracts in

IoT Environment (AMATO et al., 2021)

It proposes a formal model - multiagent logic and ontological description of contracts - for

validating law compliance of smart contracts and to determine potential responsibilities of

failures.

24 Contract as automaton: representing a simple ∂nancial agreement in computa-

tional form (FLOOD; GOODENOUGH, 2021)

It aims to show that fundamental legal structure of a ∂nancial contract follows a state-transition

logic that can be formalized mathematically as a ∂nite-state machine .

25 Solidity Code Generation From UML State Machines in Model-Driven Smart Con-

tract Development (JURGELAITIS; CEPONIENE; BUTKIENE, 2022)

It aims to model a blockchain smart constract with a structured approach based on the model

driven architecture. The author creates a model using UML class diagrams and the state machine

diagram.

Articles #2, #5, #7, #9, #10, #13, #16, #17, #23 and #24 sought to repre-

sent smart contracts using a state machine de∂nition mainly to allow verifying their

models by using existing veri∂cation models to avoid possible contract vulnerabilities.

Articles #1, #4, #18, #21 and #22 use UML state diagrams or statecharts, which are

very similar and have the same purpose as state machines. Figure 7, as an example,

shows a ∂nite state machine used to represent a blind auction smart contract, where

states and transitions were pre-de∂ned to serve as the basis for creating the smart

contract (MAVRIDOU; LASZKA, 2018).

Articles #8, #11, #12, #19, #20 and #25 use BPMN process diagrams or

PetriNets, either to simplify and facilitate the visualization of the contract life cycle or

to guarantee more accurate modeling, also ensuring ∑awless smart contracts.

In articles #3, #6, #11, #14, #15, #23, #24 and #25, the authors were con-

cerned with correctly covering the behavior of a contract within the legal scope. These

articles sought to represent the obligations and powers of the parties involved in a

diagram that maps a contract in an executable code. Articles #3, #6, #14, #15,

#23, #24 and #25, besides covering a legal smart contract, include contract lifecycle

representations using ∂nite-state machines. Figure 8 displays a state diagram that

represents the rights and obligations contained in a smart contract extracted from

the article by (XU; FINK, 2020), which speci∂es a property sale agreement.

Table 2 summarizes the types of diagrams used per article, where FSM stands





Chapter 3. Literature Review 36

for Finite State Machine, PN for PetriNets, BPMN for Business Process Model Notation.

LC means Legal Contract and identi∂es whether the smart contract that was speci∂ed

in the article represents a legal contract of the real world.

Table 2 – Types of diagrams used in the papers

Types Articles Total
FSM 1,2,3,4,5,6,7,9,10,13,14,15,16,17,18,21,22,23,24 19
PN 12,19,25 3
BPMN 8,11,20 3
LC 3,6,11,14,15,23,24,25 8

3.4 RESULTS AND DISCUSSION

The execution of smart contracts is based on the transition from one state to

another after an event is triggered (BAI et al., 2018). In addition, “contracts provide

functions that allow other entities (e.g., contracts or users) to invoke actions and

change the status of smart contracts” (MAVRIDOU; LASZKA, 2018). For this reason,

it is common to ∂nd studies that create state machine diagrams to represent how a

smart contract works.

Despite this, in the search for related work, no study was found precisely re-

lated to the mapping of a formal speci∂cation language into a state diagram, although

many of them de∂ned the states of a smart contract by specifying them in a state di-

agram, a ∂nite-state machine or a statechart. Furthermore, only ∂ve of them specify

such diagrams according to the obligations and powers of the equivalent real-world

legal contract.

Three of the selected articles focused only on the “program” published on

the blockchain or related a smart contract with business models, using the Business

Process Modeling Notation (BPMN) technique (AMARAL DE SOUSA; BURNAY; SNOECK,

2020). The authors in (SKOTNICA; PERGL, 2020) combined, together with BPMN, other

models and concepts of enterprise engineering, such as Design and Engineering

Methodology for Organizations (DEMO), and created some modi∂ed diagrams (visual

language) to de∂ne a contract with regard to a possible automation of the law. In their

modeling, the authors in, (SKOTNICA; PERGL, 2020) created a meta-model diagram

of a contract, much like the class diagram (Uni∂ed Modeling Language (UML)), and

created as well a diagram to de∂ne the process ∑ow – a Contract Process Diagram –

which allows visualizing the contract ∑ow, respecting its axiom of transitions, as well

as the state diagram, however without specifying the state of the entity.

The articles relevant to this study can be grouped according to two signi∂cance

factors (Table 3): (1) those addressing the modeling of a smart contract with state



Chapter 3. Literature Review 37

diagrams; and (2) those dealing with the legal attributes of a contract. Therefore, the

related studies were divided into two subsections, as follows:

Table 3 – Subdivision of selected articles dealing with smart contract modeling or with
legal contract aspects

Types Articles Total
Smart contract modeling (1) 1,2,4,5,7,8,9,10,12,13,16,17,18,19,20,21,22 17
Legal contract aspects (2) 3,6,11,14,15,23,24,25 8

3.4.1 Modeling with state diagram/state machine

State diagrams help in modeling any type of system, graphically de∂ning the

behavior of an object. With regard speci∂cally to smart contracts, visualizing the

behavior of a smart contract in a state diagram can facilitate its understanding, even

because, as mentioned above, the creation of a smart contract can interest even

even people unknowledgeable about programming. State diagram modeling can also

help in creating automated tests, for instance, ensuring easy visualization of what

type of coverage would be needed.

This mapping of studies showed a tendency to use ∂nite-state machines and

diagrams (BPMN, PetriNets, etc.) to represent smart contracts. The creation of formal

languages as a source base was also used in some of the articles, either to facilitate

the understanding of a smart contract or to ensure correct modeling.

For the creation of diagrams, the main source is the contract originally written

in natural language. Authors normally break down the business rules from the con-

tract written in natural language. With regard to ∂nding patterns in the de∂nition of

states and transitions, it was possible to observe that there is no consensus to use

the same states and transitions. Figures 7 and 8, for example, show very different

representations for smart contracts.

An example of a tool based on state machines is FsolidM (MAVRIDOU; LASZKA,

2018), whose authors sought to create a tool that, from the speci∂cation of a smart

contract in the format of a ∂nite-state machine, would allow automatically transcrib-

ing it into smart contract code for the Ethereum platform, written in the Solidity lan-

guage. In the tool, the relationship of a smart contract with the obligations and powers

of a legal contract was not explored, however, the vulnerabilities of the Ethereum

platform were a concern. The application VeriSolid (MAVRIDOU et al., 2019), an im-

provement of FSolidM, also with a focus on generating smart contracts from fail-safe

modeling (correct-by-design), derives as well from a state machine, but with the

creation of a veri∂cation process of the generated models.



Chapter 3. Literature Review 38

Two articles found bring up the issue of using software engineering techniques

to model a blockchain-based system that contains smart contracts, for instance in

(MARCHESI, M.; MARCHESI, L.; TONELLI, 2018), where the authors de∂ned a step-by-

step design of a blockchain-oriented application using agile methodology, de∂ning

objectives, identifying actors, and creating diagrams in the UML language. Diagrams

were used, such as: class diagrams, showing the smart contract structure within the

blockchain; user stories, de∂ning roles within the blockchain; and even state dia-

grams (however specifying only the state of the interested parties within a contract).

(GARAMVÖLGYI et al., 2018) examine the application of UML statecharts for model-

ing Cyber-physical systems and automatically generating smart contracts from the

model. As mentioned in the introductory 1.2 section, software engineering can be

considerably bene∂cial in modeling.

Two articles did not focus so much on the use of software engineering, but,

anyway, created a formal description of smart contracts, aiming at security and attack

prevention. (BAI et al., 2018) de∂ned a formal method, extending this de∂nition to

a state machine, and used existing tools to verify the use of its formal description.

This was the study that best resembled the one proposed here. Despite not seeking

to automate the diagram generation, said study created a state machine, specifying

the states and each transition from one state to another.

The state machine modeling proposed by (XU; FINK, 2020), besides the con-

cern with design-by-contract where, like the concept of correct-by-design, software

is designed as per contract speci∂cations, sought mainly to avoid future ∑aws and

vulnerabilities in the modeling of the “rights and obligations” section of a contract,

using the “Temporal Logic of Actions (TLA)” security model.

3.4.2 Review of the legal aspects of the contract

Besides the fact that the search was comprehensive and encompassed any

smart contract speci∂cation in the form of a state diagram, it comprised articles in

which smart contract modeling included the legal aspects of a contract rather than

just executing a program to check some business rules. Other four articles, in addition

to mentioning legal contracts, followed a model entirely focused on them. Some of

these articles are discussed below.

Despite not creating a model and aiming only at a comparison between declar-

ative and imperative language for programming a smart contract, (GOVERNATORI

et al., 2018) were incisive in stating that a smart contract can represent a legal con-

tract, with regard to some legal aspects, such as the agreement between the parties,

consideration, competence, etc. In addition, the life cycle of a legal contract was

also de∂ned, transforming it, then, into a state machine. Freedoms, obligations and

powers and all legal interaction between parties to a contract were also speci∂ed



Chapter 3. Literature Review 39

as a choreography – interactions between different participants towards a common

commercial goal – with the authors in (LADLEIF; WESKE, 2019a) demonstrating rela-

tionships between interactions and legal states of a contract.

A contract modeling language (CML) was proposed by (WÖHRER; ZDUN, Uwe,

2020). Their objective was to simplify the implementation of a contract, approaching

as much as possible to the natural language. They also pointed out the important

common features of a legal contract that must somehow be modeled. Their result

is a simple format for declaring the agreements of a contract, and it also allows

generating a smart contract in the Solidity language. Their study, despite developing

a domain-speci∂c language, at no time addressed the life cycle of the contract nor its

representation in a state diagram.

(WEINGAERTNER et al., 2018) proposed a new language to model contracts,

also taking into account legal aspects of a contract. Similarly, (XU; FINK, 2020) also

sought to model the cycle of obligations and rights within the life cycle of a smart

contract.

Finally, it is worth setting forth the Symboleo contract speci∂cation language

(SHARIFI, S. et al., 2020), which is used as a reference in the present study. As with

some of the studies mentioned above, Symboleo is a different format that allows

specifying a smart contract in an assertive way, with a language that is easier to

understand, simpler than Solidity, for example. To arrive at the ∂nal notation of the

language, numerous models of legal contracts of different types were studied until

completeness.

3.4.3 Comparison between the main elements

Table 4 below summarizes the main aspects for comparison between the re-

lated work reviewed.

Table 4 – Comparisons between related work

Speci∂cation

of legal obli-

gations and

powers

State map-

ping

Automated

code genera-

tion

Model veri∂-

cation

(BAI et al.,

2018)

X X



Chapter 3. Literature Review 40

Speci∂cation

of legal obli-

gations and

powers

State map-

ping

Automated

code genera-

tion

Model veri∂-

cation

(MARCHESI,

M.; MARCH-

ESI, L.;

TONELLI,

2018)

(GOVERNATORI

et al., 2018)

X X

(GARAMVÖLGYI

et al., 2018)

X X

(MADL et al.,

2019)

X X

(XU; FINK,

2020)

X X X

(BANACH,

2020)

X

(SKOTNICA;

PERGL, 2020)

X

(MAVRIDOU et

al., 2019)

X X X

(MAVRIDOU;

LASZKA,

2018)

X X

(LADLEIF;

WESKE,

2019a)

X X

(PINNA; IBBA,

2018)

X

(CONCHON;

KORNEVA;

ZAÏDI, 2020)

X X

(SHARIFI, S.

et al., 2020)

X X

(WEINGAERTNER

et al., 2018)

X X



Chapter 3. Literature Review 41

Speci∂cation

of legal obli-

gations and

powers

State map-

ping

Automated

code genera-

tion

Model veri∂-

cation

(ALQAHTANI

et al., 2020)

X

(ELIZONDO et

al., 2019)

X

(BOOGAARD,

2018)

X

(HE, Xudong,

n.d.)

X

(BERTOLINI,

2020)

X

(MITCHELL,

n.d.)

X

(CHEN, E. et

al., 2021)

X X

(AMATO et al.,

2021)

X X X

(FLOOD;

GOODE-

NOUGH,

2021)

X X

(JURGELAITIS;

CEPONIENE;

BUTKIENE,

2022)

X X

The aspects for such a comparison were chosen according to the aim of this

study. As this study directly involves the Symboleo formal language, which is totally

focused on legal contracts, it is also important that other studies that sought to

specify legal obligations and powers undergo such a comparison.

State mapping is another equally important aspect, as the ∂nal product of this

study is precisely the creation of a state diagram.

Automated code generation and model veri∂cation, in turn, are aspects that



Chapter 3. Literature Review 42

appeared in a few articles, yet worth mentioning and discussing. Automation is about

using a model created to automatically generate the code of a smart contract and,

although it is not the focus here, it is interesting to see what modeling needs for this.

Finally, model veri∂cation refers to the fact that some of the articles used tools

to test the model created. In the two articles that did so, state machines were created

to represent the contract and, later, the models created were veri∂ed using methods

like TLA (Temporal Logic of Actions), which “uses mathematics in a simple, native way

to specify state machines; it facilitates the implementation of secure design patterns

and automates vulnerability detection” (XU; FINK, 2020), or using ready-made tools,

like SPIN, which is a tool used “to verify the correctness of distributed software models

in a rigorous and mostly automated fashion” (BAI et al., 2018).

3.4.4 Threats to validity

With regard to possible threats to the validity of this systematic mapping, we

have to mention that the systematic mapping was made by only one person, which

can affect the selection of the studies. Another threat to validity is the fact that the

search was divided in two different periods and it also might affect the selection of

the studies.











Chapter 4. Proposal 47

For the creation of a state diagram of a legal smart contract from a domain-

speci∂c language, it is then necessary to:

• De∂ne legal concepts (rights and duties);

• De∂ne the parties involved;

• De∂ne powers that can terminate the contract;

• De∂ne powers that can suspend and resume the contract;

• De∂ne obligations that must be ful∂lled to successfully conclude the con-

tract;

• De∂ne the life cycle of each legal concept (when it is created, when it takes

effect, when it is concluded or violated).

4.1.3 Steps to de∂ne a state diagram for a smart contract

Below are, in a generic way, the steps necessary to de∂ne the possible states

of contract instances, and the obligations and powers associated with transitions from

one state to another. All the steps presented below are independent of the domain

language used as input, except for Step 4. Section 4.2 shows how Step 4 is performed

based on a speci∂cation with the Symboleo language.

Step 1: De∂ne the following states for the ∂nal state diagram: Created, In

Effect, Suspended, Successful Conclusion, Unsuccessful Termination. Include transi-

tions between states. The obligations and powers that trigger each transition will be

de∂ned later when they are extracted from the domain language.

Step 2: Describe the states and transitions, de∂ned in Step 1, in jSON key and

value format. This is important to facilitate the manipulation and replacement of the

extracted data.

Step 3: Represent the data entered in JSON in an object format (contract,

obligations, powers, and transition), including the necessary attributes. This step,

along with the previous one, will facilitate data manipulation.

Step 4: Read the contract ∂le written in a domain language speci∂c to smart

contracts, and extract the following information about the contract: the parties to

the contract, the relevant obligations and powers, the obligations and powers to be

created with the contract, the conditions for activating the powers and obligations,

the powers that can end the contract, the obligations that must be ful∂lled to end

the contract, and the “surviving obligations” that will be activated at the end of the

contract. This information must be stored in the objects that represent a contract,

those created in Step 3. This step is totally dependent on the domain language used

as input.

Step 5: Complete the JSON that represents the state diagram which was

created in Step 2. To do so, the values of each JSON key must be replaced by the



Chapter 4. Proposal 48

information stored in the objects during Step 4. If there are no powers that can

suspend the contract, the Suspended state, along with the transitions linked to it,

must be removed from JSON.

Step 6: Finally, JSON needs to be read and transformed into the state diagram

in the traditional visual way.

Figures 13, 14 and 15 with code snippet below show the generic JSON de∂ned

in Step 2 and used as the basis for the algorithm. With the JSON de∂ned, the main goal

of the algorithm is to complement some attributes of the transitions, mainly those

naming which obligations and powers are responsible for triggering such transitions,

thus changing the contract state. This is important because each transition is directly

linked to the execution of powers or ful∂llment of obligations.

Thinking of creating a generic model and facilitating the subsequent step of

transforming a formal contract into a diagram in the visual format, all transitions have

the “events” attribute (which is a set of events), formed by an event that triggers the

transition; the “guard” attribute, which is when there is a condition for the event to

occur; and the “actions” attribute, which are actions that will be performed along with

the transition, that is, consequences for the event in question. Actions and events

may have attributes in their description which will need to be replaced by other val-

ues. These attributes are always inserted with the following syntax: $attribute_name,

where the name of this attribute is also a key within the transition and the values

inserted in this key in the execution of the algorithm will have the content that will

compose the actions/events.

Each attribute that must be ∂lled in by the algorithm is explained below:

• The “create_contract” transition has three actions: designate the parties

and include the obligations and powers that will be created along with the

creation of the contract, so it is necessary to complement the transition

with these parties, obligations and powers;

• The “activate_contract” transition needs to include the obligations and pow-

ers that will be activated along with the contract activation;

• The "activate_obligation_power" is a transition between the same state (In

Effect) and needs to be ∂lled in with all events that create a conditional

obligation or power that might be triggered during the life cycle of the

contract. The "event" attribute itself is generic because it must specify

whether the event will be an obligation that was violated, a power that

must be exercised or another condition that needs to be satis∂ed for the

activation of an obligation or power;

• The “suspend_contract” transition needs to be complemented with infor-

mation regarding powers that suspend the contract, and obligations and







Chapter 4. Proposal 51

powers that will be activated upon contract suspension;

• The “resume_contract” transition needs as well to de∂ne which powers can

resume the contract to the active state, in addition to the obligations and

powers that will be activated upon contract resumption;

• The "replace_party" transition needs to de∂ne which powers can replace

any of the parties of the contract, assigning a new party to the contract;

• The “ful∂ll_active_obligations” transition needs to be complemented with

the set of obligations that must be ful∂lled for the contract to be successfully

concluded. In this case, it is necessary to ∂nd out the possible sets (which

may be more than one) of obligations that are active and that must be

ful∂lled together.

• The "activate_surviving_obligation" transition needs to be complemented

with the surviving obligations (obligations that last even after the end of the

contract, for example, non-disclosure agreements) that depend on some

event to be active upon successful conclusion of the contract;

• The “terminate_contract” transition needs to include the powers that can

terminate the contract and which obligations/penalties must be activated

when terminating the contract.

The JSON also has the "state_actions" key, which de∂nes actions that will be

performed when entering a certain state. In the case of the JSON model in question,

actions can be performed in the states "successful_termination" and "unsuccess-

ful_termination" and these actions are related to the activation of surviving obliga-

tions, that is, as mentioned above, obligations that must exist and be ful∂lled either

upon contract termination or successful conclusion.

4.2 MAPPING A SYMBOLEO SMART CONTRACT INTO A STATE DIAGRAM

The steps mentioned in the previous section must be adapted to the domain

language used to represent a smart contract. This is because each language has

its speci∂cation of how to represent relevant data and, therefore, the information

needed to de∂ne the state diagram can be represented in different ways in each

language. As the present study uses the Symboleo language, this language will be

introduced subsequently. After that, there will be a description of how the mapping

was done from a representation with the Symboleo language.

4.2.1 The Symboleo language

The Symboleo language was designed through an in-depth study into legal

elements of contracts (SHARIFI, S. et al., 2020). And as mentioned in (SHARIFI, S. S.,









Chapter 4. Proposal 55

• Specialization: the specialization of this domain in relation to the ontology

already mentioned;

• Attributes: the attributes of this domain.

At ∂rst, by reading the domain, the purpose is to understand which contract

domains are specializations of the “Role” entity, and only then specify in the diagram

the parties involved in said contract.

Legal positions: obligations and powers are treated, in the ontology men-

tioned above, as legal situations. They represent the duties and rights of one party in

relation to another. In the Symboleo language, they are represented in the same way,

therefore there is an object called Legal Position which has the following attributes:

• Name: the name to identify the obligation or power. For example, O1 or P1,

as displayed in Figure 19.

• Debtor: represents one of the parties to the contract. In an obligation, it

determines the party that is responsible for performing the obligation, and

in a power, it determines the party that will be affected by that power.

• Creditor: also represents one of the parties to the contract. In an obligation,

it determines the party that will bene∂t from the obligation, and in a power,

it determines who has the right to exercise the power.

• Antecedent: a proposition that describes a situation that must occur for an

obligation or power to take effect.

• Consequent: it is also a proposition that describes a situation which, when

true, means that the obligation has been ful∂lled or, in the case of a power,

means that it has been exercised.

• Trigger: it is a non-mandatory attribute that also describes a situation which

must happen for an obligation or power to take effect. As such, it may be

that the legal position in question does not need to exist throughout the life

cycle of the contract.

Obligations: an obligation is a specialization of a Legal Position that has all the

attributes described above and also a signal to specify whether or not this obligation

is a “surviving obligation”, i.e., an obligation that may continue in force even after

conclusion of the contract. Then, a new instance of the Obligation object is created

for each obligation inside Symboleo’s Obligations block, identifying and de∂ning each

of its attributes.

For example, obligation O3 is the buyer’s obligation to the seller for making late

payments. Unlike O1 and O2, it has a proposition at the beginning of its statement,

which is a condition to be created. The way of describing propositions in itself shows

a relationship of order and effect. It is necessary that whatever is ahead of the arrow

be carried out in order for the obligation to be created.



Chapter 4. Proposal 56

Powers: power is also a Legal Position and has all the attributes mentioned

above and none more.

Figure 19 shows the three powers of the contract. These powers have all the

attributes mentioned in the legal positions. For example, the seller’s power (right) P1,

vis-à-vis the buyer, to suspend their obligation to deliver the goods. But this seller’s

power will only take effect if the buyer has not ful∂lled their obligation to pay on the

scheduled date, that is, when a violation of O2 takes place.

Contract: the contract entity was created to facilitate diagram making, and it

groups the attributes necessary for the creation of said diagrams:

• Name: the name given to the contract in the block in which it was stated,

as shown in Figure 18.

• Parties: a list with the names of the parties involved in the contract.

• Obligations: the list of contract obligations, which are the legal situations

extracted as obligations.

• Powers: the list of contract powers, which are the legal situations extracted

as powers.

Transition: this entity was created only to help create the state diagram and

determine the transitions between states. It has the following attributes common to

a transition event within a state diagram:

• Event: the event that needs to happen for the transition between states to

occur.

• Guard: a condition that can exist for the event to occur.

• Actions: a list of actions that are triggered as soon as the event occurs.

4.3 MAPPING IMPLEMENTATION

Regarding the mapping implementation, two parts are necessary: the ∂rst is

the creation of an API (Application Programming Interface), which is written in Node

JS, with a single resource that receives as input a ∂le of text written in Symboleo. This

feature will invoke an algorithm whose processing involves reading the parts of the

text through regular expressions. This reading needs to capture both the attributes

of the entities and the situations that must become transitions in the diagram. The

generated output must be an object written with the language JSON (JavaScript Object

Notation) or YAML (YAML Ain’t Markup Language), so that, further on, its result can

be easily read in any other language by any program and can be turned into a state

diagram in a visual format. In the second part, to complement the development

thereof, an interface (Frontend) is also created, one that reads the return JSON and

visually transforms it into a state diagram. This interface will be a web application

with the React JavaScript library.



Chapter 4. Proposal 57

4.3.1 API Project

Figure 20 and Figure 21 show, respectively, a ∂rst version of the class diagram

and the sequence diagram of the aforementioned API implementation, including the

main classes. The class that receives the request with the contract ∂le upload is called

ContractController. This controller invokes two main classes that work as services,

that is, it holds the business rules of the transformation. The ContractTransformSer-

vice class is responsible for reading the ∂le and populating the contract attributes and

subclasses. With the contract object properly created, the ContractDiagramService

class is able to transform the objects by reading their attributes and behavior, into a

state diagram or, in the case of the API in question, into a JSON object that represents

this diagram.

Figure 20 – Class diagram API

Figure 21 displays in more detail the ∑ow that the algorithm must follow and

shows the list of the most relevant methods and their respective returns.

4.3.2 API implementation

When a ∂le is received with the contract written in Symboleo, it is necessary

to “read” and break down each of the powers and obligations (called legal positions),

which, by de∂nition, always specify (1) the parties involved (the power/obligation of

a party towards another), (2) a condition for this legal position to come into effect















Chapter 4. Proposal 64

Algorithm 2 Replace ful∂lled obligations

function replaceFul∂lledObligations(replacementObligationsMap,
obligationsWithTrigger , setOfFulfilledObligations)

2: obligations ← all obligations of contract
newSets ← new multidimensional array

4: notFoundedObligations ← new list of obligation
for obligationinobligations do

6: if replacementObligationsMap contains obligation.name as key then
founded ← false

8: obligationToReplace← replacementObligationsMap.get(obligation.name)
for fullfilledObligationsinsetFulfilledObligations do

10: obligationIndex ← index of obligationToReplace in fullfilledObligations

if obligationIndex > 0 then
12: founded ← true

newSet ← copy of fullfilledObligations

14: newSet [obligationIndex ]← obligation.name

newSets add newSet

16:

end if
18: end for

if founded is false then
20: notFoundedObligations add obligation

end if
22: setOfFulfilledObligations add all newSets

end if
24: end for

if notFoundedObligations has elements then
26: replaceFul∂lledObligations(replacementObligationsMap,

notFoundedObligations, setFulfilledObligations) //recursive call in case obligation
is not in list yet

end if
28: end function

tenance for other formal languages. The complete implementation of the algorithm

is available in the gitHub repository 1.

4.3.3 Frontend

To facilitate the use of the algorithm and submit any contract written in Sym-

boleo (with .txt extension), a simpli∂ed web application was created with the sole

objective (for now) of submitting a ∂le and automatically obtaining the visual state

diagram.

Figures 27, 28 and 29 show the interface created to select a ∂le from a contract

written in Symboleo. As another domain-speci∂c language still cannot be used, it is

possible to observe that the Symboleo option is already selected.

1 https://github.com/marinaluiza/contract-api













70

5 EXPERIMENTS

At the outset, it is important to mention that, with a view to measuring whether

state diagrams would facilitate the understanding of contracts, our initial intention

was to have a ∂rst group exposed to a contract in natural language and the same con-

tract represented in Symboleo, while a second group would be exposed to a contract

in natural language, the same contract in Symboleo and its state diagram. However,

a preliminary test with questions about the life cycle of a smart contract in Symboleo

was applied to a single participant completely unknowledgeable about computing. It

was noticed, however, that, besides the dif∂culty to provide the participant with a

brief explanation of the language for the experiment, this participant was unable to

understand Symboleo and the answers given were nothing but imprecise guesses. In

this way, we realized that the use of Symboleo would not help and that the partici-

pants would end up looking for their answers only in the contract written in natural

language. Therefore, our ultimate decision was to use the natural-language contract

in comparison with the state diagram.

Consequently, in view of the above, to con∂rm whether state diagrams help

to better understand legal contracts, two experiments were performed. The two ex-

periments comprised a contract written in natural language and a state diagram

corresponding to that same contract, and the participants were asked to answer

questions about the clauses and the life cycle of said contract. In the ∂rst experiment,

all the participants initially answered a ∂rst group of questions regarding only the

contract written in natural language, and then regarding the contract with its corre-

sponding state diagram in hand. In the second experiment, for the participants not

to have a ∂rst contact with the contract when answering the second group of ques-

tions, two groups of participants were formed: one group answered the questions

with access only to the contract in natural language; and the other group answered

the questions with access to the contract and its corresponding state diagram. All

responses were timed and only then were compared.

5.1 EXPERIMENT PROTOCOL

In both experiments, participants were invited according to their professional

experience in the law and technology areas. Thus, in both areas there are participants

who are still students and participants with more than 20 years of experience. Age

and sex were not taken into account. Tables 5 and 6 show the pro∂le details for each

participant.

The hypothesis we want to prove with this experiment is the following: When

we are asking questions about a speci∂c legal contract, does the use of a state

diagram representing the smart contract facilitate the understanding of this contract,



Chapter 5. Experiments 71

Table 5 – Participants’ pro∂le (Experiment 1)

Name Area Profession Experience
B Computer Sci-

ence
Database Administra-
tor and PhD Student

≈ 10 years

D Computer Sci-
ence

Professor and soft-
ware engineer

≈ 10 years

F Computer Sci-
ence

Software engineer
and PhD Student

≈ 5 years

I Law Lawyer ≈ 30 years
L Computer Sci-

ence
Software engineer ≈ 10 years

R Law Law student No professional expe-
rience

Table 6 – Participants’ pro∂le (Experiment 2)

Name Area Profession Experience
B Computer Sci-

ence
Database Administra-
tor and PhD Student

≈ 10 years

E Computer Sci-
ence

System analyst ≈ 10 years

D Computer Sci-
ence

Professor and soft-
ware engineer

≈ 10 years

R Law Bachelor in Law and
Social security ana-
lyst

≈ 15 years

K Law Law student No professional expe-
rience

A Computer Sci-
ence

Project Manager ≈ 12 years

F Computer Sci-
ence

Software engineer
and PhD Student

≈ 5 years

I Law Lawyer ≈ 30 years
L Computer Sci-

ence
Software engineer ≈ 10 years

R Law Law student No professional expe-
rience



Chapter 5. Experiments 72

resulting in a more objective and faster response?

5.2 EXPERIMENT 1

5.2.1 Overview

In the ∂rst experiment, six people were invited to participate, in which they

were exposed to a contract for the purchase of paper sheets for a university. The

participants were asked to answer eight questions about the functioning and ∑ow

of said contract. For the ∂rst four questions, they had only the contract written in

natural language, and for the other four questions, they could use the corresponding

diagram to help them. At each stage, they were asked to time how long it took them

to answer each group of questions so that the time taken at each stage could be later

compared.

The contract in question is available in Annex A, a simple purchase contract

between two parties, a university and a paper and packaging company1. The main

clauses of the contract are the order request, payment due date, conditions for deliv-

ery of the ordered items, and payment methods. It also includes indemnity clauses

and termination terms and conditions.

The diagram describes the states and transitions of the contract. Figure 36

shows the state diagram of the contract: the event necessary for the contract to

come into effect, and the events to end it successfully or unsuccessfully.

Figure 36 – State diagram of the contract

1 https://repositorio.ufsc.br/bitstream/handle/123456789/193085/Contrato%20144.2019.pdf?sequence=118&isAllowed=y



Chapter 5. Experiments 73

As for the pro∂le of the participants, four of them are computing professionals

and know what a state diagram is, although some of them have little contact with

this subject in their day-to-day lives. As for the other two participants, one is a lawyer

and the other is a law student, and both had never had any contact with this type of

diagram.

5.2.2 Execution

At the ∂rst stage, the participants were asked to answer the following ques-

tions:

1. Which obligations must be ful∂lled in order for the payment obligation to

be ful∂lled?

2. What needs to be done, on the part of the seller, in case of delayed delivery?

3. What needs to happen before the buyer concludes the contract?

4. Can you identify which sets of obligations must be ful∂lled (only the happy

path) and in which order for the contract to end successfully?

And at the second stage:

1. What needs to happen for the contract to come into effect?

2. What needs to happen so that the seller needs to ful∂ll the obligation to

pay indemnity?

3. What needs to happen for a successful mutual conclusion of the contract?

4. Can you identify what needs to happen for the contract to be terminated?

The participants were told that the answers could be generic and short. Nev-

ertheless, each participant answered in their own way, some with more descriptive

answers, others with more concise ones. The answers of the second stage were clearly

more objective and more homogeneous among the participants, and were all right,

in general.

Tables 7 and 8 contain the answers of the ∂rst and second groups to the above

questions.

Table 7 – Participants’ answers to the ∂rst group of questions



Chapter 5. Experiments 74

Name Answer

B Q1: Obligations stipulated in the ∂fth clause of the contract. Q2: Notify the

Principal within a maximum period of 48 hours prior to the delivery date.

Inform the reasons with due evidence. Q3: Notify the Contractor 30 days in

advance in the case of item 11.2.1; As for item 11.2.4, it is not clear. Q4: All

requests must be made via email to the email address available on SICAF.

Every request must be delivered within a period of up to 10 business days

from the receipt of the request by the supplier. UFSC must make payments

in accordance with the Public Bidding Notice. The Principal must comply with

the obligations speci∂ed in Clause 4 and the Contractor in Clause 5. At the

end of 12 months, the contract is concluded.
D Q1: 7.5 Payment will be made by DCF within a maximum period of 30

days, counting from the receipt of materials/services and, as well as the

delivery of the duly certi∂ed invoice/bill of sale. Q2: 5.6 Notify the Principal

within a maximum period of 48 hours prior to the delivery date. Q3: 11.2.1

Determined by unilateral and written act of the Principal, in the cases listed

in items I to XII. Also, 11.2.4 Determined by unilateral and written act of the

Principal. Q4: From items 4.1 to 5.13, but the contract is not a ∑ow.

F Q1: Supply the agreed quantity of products; Fix any damage; Maintain the

same conditions as those required for initial business approval; Maintain the

Principal’s requirements; Make available all means of attesting the quality of

the materials; Report delivery problems 48 hours in advance; Be responsible

for taxes, charges...; Be responsible for correct storage to protect the mate-

rial; Do not outsource the service or part of it; Be responsible for transport;

Ensure that goods do not contain toxic substances; Be responsible for the

correct disposal and removal of waste at the place of delivery.

Q2: Notify the Principal within a maximum period of 24 hours prior to the

delivery date, the reasons that prevented delivery on the scheduled date,

with due evidence. Q3: Notify the Contractor 30 days in advance. Q4: Sign

contract; Delivery of services on time; Payments within 30 days after deliv-

ery of material/service and invoices for 12 months; After the last delivery,

the last payment is made within 30 days, thus ending the contract.



Chapter 5. Experiments 75

Name Answer

I Q1: Delivery of purchased material and issuance of an invoice under the

terms of the contract. Q2: Upon guaranteed prior defense, apply the sanc-

tions of the Public Bidding Notice and termination. Q3: Advance noti∂cation

(30 days), in the case of item 11.2.1 and balance of events already com-

pleted, list of payments made and still due, and indemnity and ∂nes (items

11.3.1 to 11.3.3) Q4: Yes. Request received by the supplier, delivery of ma-

terials, receipt of invoice, payment.

L Q1: The CONTRACTOR must schedule the delivery with the person respon-

sible for receiving it; The products/materials must be delivered by the CON-

TRACTOR to the University during business hours from Monday to Friday;

Meet the deadline of 10 working days for the delivery and inform, at least

48 hours in advance, the reasons that hindered meeting the deadline; the

products must be delivered under the conditions and quantities described

in the contract; Perishable products must have a shelf life of more than 6

months or more than half of the total period recommended by the manu-

facturer on the date of delivery; The PRINCIPAL must indicate "Approved" in

writing on the invoice presented. Q2: Notify 48 hours in advance the reason

for the delay; Submit a request for an extension of time by a formal letter.

Q3: The CONTRACTOR does not deliver the products/materials within the

stipulated period or outside the conditions and quantities described in the

contract; The PRINCIPAL does not indicate "Approved" on the invoice pre-

sented. Q4: The PRINCIPAL provided the information and clari∂cations re-

quested by the CONTRACTOR; The CONTRACTOR scheduled the delivery

with the person responsible for receiving it; The PRINCIPAL was available

for receipt on the scheduled delivery date; The CONTRACTOR delivered the

products/materials under the conditions and quantities provided for in the

contract; The PRINCIPAL indicated "Approved" on the invoice presented by

the CONTRACTOR; The PRINCIPAL made the payment.



Chapter 5. Experiments 76

Name Answer

R Q1: Supply the materials while maintaining the quality of materials. Q2:

Notify the Principal within a maximum period of 48 hours about the reason

that made compliance impossible. Q3: In case of unilateral termination,

issue a noti∂cation 30 days in advance. Q4: It is according to what is set out

in Clauses 4 and 5 of the current contract, where each party must ful∂ll their

obligations, including delivery without delay and payment in accordance

with the established terms.

Table 8 – Participants’ answers to the second group of questions



Chapter 5. Experiments 77

Name Answer

B Q1: The seller owns the assets and the contract date = today’s date. Q2:

The seller delivers damaged products. Q3: After the contract is in effect,

UFSC and Dicapel mutually agree to terminate the contract. Q4: When one

of the parties exercises the unilateral right of termination or the Principal

does not make the payment or the Contractor does not make the delivery.

D Q1: Seller owned goods AND effective date = current dateQ2: I was in doubt

between "NO delay noti∂cation before 48 h until Due Date" or "NO payment

of indemnity". Q3: UFSC and Dicapel terminate the contract mutually Q4:

Exercise power of termination OR NOT FULFILLMENT of payment OR NOT

FULFILLMENT of delivered.

F Q1: When the seller has the products and the contract term is approaching.

Q2: When any products are damaged. Q3: The Principal and the contractor

agree to terminate the contract. Q4: When UFSC terminates the contract

and does not pay the remaining amount; When one of the parties does not

agree to terminate the contract; When UFSC does not make the payment

(not even after the agreed date); When the contractor does not notify that

it will not deliver 48 hours before the agreed time; At any time in the event

of a termination.

I Q1: Follow the stipulated date. Q2: Contractual provision and breach of the

contract. Q3: Contractual provision and exercise of power by the parties.

Q4: Yes, delivery failures and payment delays.

L Q1: Creation of the contract; The CONTRACTOR has the products/materials;

The current date is July 24, 2019. Q2: Creation of the contract; The contract

enters into force; There is damage to any product/material. Q3: Creation

of the contract; The contract enters into force; The CONTRACTOR and the

PRINCIPAL agree amicably to terminate the contract. Q4: Creation of the

contract; the contract enters into force; The CONTRACTOR does not make

the delivery or the PRINCIPAL unilaterally exercises the power of termination

or the PRINCIPAL does not make the payment.
R Q1: First, the delivery of the product and later the payment. This way, the

contract is closed. Q2: In case of delay or damage to the product to be de-

livered. Q3: When both companies mutually agree to conclude the contract.

Q4: If payment or delivery is not made correctly.



Chapter 5. Experiments 78

Name Answer

For a ∂nal analysis, the participants were also asked if they really thought the

diagram helped in any way with this speci∂c question: “Did the experience of reading

a contract through a state diagram make it easier for you to understand it and did it

help you answer the questions?”. The answers are listed in Table 9.

Table 9 – Participants’ feedback on the use of the state diagram

Name
ini-
tial

Answer

B “It was much easier to use it indeed. Maybe it’d be interesting to
complement it with more information. But if the goal is to analyze
only the ∑ow of events, it’s certainly much better.”

D “The diagram systematizes the operation of the contract. In general,
with just one reading of the contract I was unable to memorize and
mentally systematize the content of the contract, especially details,
so the diagram was very good to systematize it, thus making it easier
to understand it. In general, the diagram is more objective, indicates
a ∑ow and is still indexed with a title. Certainly, the diagram helped
me answer the questions. In my case it was a complement, because
I read the contract before. I am not familiar with reading contracts,
so, for a detailed understanding, it’s not clear yet, but the diagram
helped me understand it.”

F “Yes, it made it a lot easier for me.”
I “Yes, by simplifying and highlighting what’s most relevant.”
L “Yes, because it allows you to have a global view about the stages and

events of the contract. When I answered the questions without using
the diagrams, I had to read and reread some parts of the contract sev-
eral times. Besides, without the diagrams, I would alternate between
the contract chapters to build the order of events schematically in my
mind. In practice, I had the impression that this mental process that
I did in order to answer the questions in the ∂rst part was as if I had
created in my mind the diagrams presented in the second part. When
I started answering the questions of the second part, the one with
the diagrams, it was much simpler, since I barely needed to go to the
contract to identify the order of events, as the order was explicit in
the diagrams themselves. Another difference between answering the
questions with and without the diagrams is that in the second case I
wrote much more than what was really necessary (considering that
the answers in the second part are in fact correct).”

R “Yes, it facilitated with the steps formulated, and described step by
step, which reminds us of what was read in the contract.”



Chapter 5. Experiments 79

5.2.3 Results

The participants’ answers in Table 9 attest that the diagram did facilitate the

reading and understanding of the contract. As pointed out by some of them, the

diagram systematized the operation of the contract and highlighted its most relevant

points.

The graph in Figure 37 compares the time spent by each participant (the capital

letters are the participants’ name initials). The x-axis speci∂es the participants, and

the y-axis contains the time spent in minutes. There are two bars for each participant:

the time spent to answer the ∂rst four questions reading only the contract (rectangle)

and the time spent to answer the last four questions reading both the contract and

the state diagram (pyramid).

Figure 37 – Participants’ time spent reading the contract and the diagram

Although this experiment comprised a very small number of participants and

produced a subjective result, it is clear that the time spent to answer the questions

wasmuch shorter with the help of the state diagram. Figure 37 also shows the average

time spent at each stage and highlights the expressive difference between the two

situations.

Regarding correct or incorrect answers, on the ∂rst group of questions (∂rst

four questions), the majority of the answers were correct. Two of the six participantes

did not answer the ∂rst question as expected. Only one participant answered the



Chapter 5. Experiments 80

second question incorrectly. Also, only one participant answered the third question

incorrectly, but all participants included unecessary clauses of the contract. At last,

the fourth question, all participants answered correctly, but with generic answers,

like "All clauses inside clause fourth and ∂fth".

As for the second group of questions (last four questions), the majority of the

answers were also correct. One of the six participantes answered the ∂rst question

incorrectly. For the second question, two participants answered incorrectly. For the

third question, only one participant did not answer as expected, with a generic answer.

And for the fourth question, all participants answered correctly.

On both stages of this experiment the majority of the answers were correct.

But it is clear that for the second stage, the participants made less mistakes and the

answers were more accurate.

5.2.4 Threats to validity

The main threat to the validity of the experiment is its small number of par-

ticipants. Although the experiment sought to provide a majorly qualitative result, six

participants are still a small number to assert that the diagram actually helped in the

understanding of the contract.

Another important threat is that the same participants are in the two experi-

ment phases. The fact that the participants had previously read the contract at the

∂rst stage may have accelerated their response time at the second stage, as pointed

out by participant D in Table 9.

5.3 EXPERIMENT 2

5.3.1 Overview

The second experiment was more elaborate. Ten people were invited to partic-

ipate and were exposed to a legal contract signed by two companies regarding the

provision of a software development service. The participants were asked to answer

∂ve questions about the functioning and ∑ow of the contract. They were divided in

two groups of ∂ve participants each, the ∂rst group with only the contract written in

natural language to help responding the questions, and the second group two with

the contract written in natural language and the corresponding state diagram. The

participants were also asked to time how long they took to answer each question.

The contract in question is available in Annex B. The main clauses of the con-

tract are the software order with a speci∂c scope, payment due date, and conditions

for delivery of the ordered service. It also includes indemnity clauses and termination

terms and conditions.





Chapter 5. Experiments 82

The participants were told that the answers could be generic and short. Nev-

ertheless, each participant answered in their own way, some with more descriptive

answers, others with more concise ones. In general, the answers of second group

(with the state diagram) were clearly more objective and more homogeneous among

the participants, and the majority of them were correct. Tables 10 and 11 show the

full answer of each participant. The ∂rst column speci∂es the participant, the second

column the professional area, where "CS" stands for Computer Science and "L" stands

for Law.

Table 10 – Participants’ answers without the state diagram

Name Area Answer

B CS Q1: Everything speci∂ed in Clauses 1,2,3,4 and 5. Q2: Pay-

ment will be delayed, and interest free. Q3: 4.2 and 4.3.

Q4: Only by written agreement of both parties. Q5: 5.2

E CS Q1: The object of the contract must be delivered within

the established period (up to 45 days from the signing of

the contract). Q2: Fine of 2% (two percent), in addition to

monetary restatement by the INPC price correction index

established in this contract, "pro rata day", 4/8 plus inter-

est of 1% (one percent) per month, calculated on the debt

amount already corrected. Q3: The PRINCIPAL is responsi-

ble, but the CONTRACTOR can be convened at a cost of BRL

180.00 per hour, or by contracting a 20-hour package at a

cost of BRL 120.00 per hour. Q4: If the CONTRACTOR ∂nds

that it is impossible to provide services remotely, a visit

to the PRINCIPAL’s main of∂ce or branches will be sched-

uled, upon reimbursement of travel, accommodation and

food expenses by the PRINCIPAL with prior approval by the

PRINCIPAL. Q5: If the CONTRACTOR ∂nds that it is impossi-

ble to provide services remotely, a visit to the PRINCIPAL’s

headquarters or branches will be scheduled, upon reim-

bursement of travel, accommodation and food expenses

by the PRINCIPAL with prior approval by the PRINCIPAL.



Chapter 5. Experiments 83

Name Area Answer

D CS Q1: When items 2.3 to 3.5 are not disrespected. Q2: I did

not explicitly identify the resolution and what is made by

the PRINCIPAL if item VII of clause 2.3 is not complied with

by the CONTRACTOR. Q3: CLAUSE 4 - TERM AND TERMI-

NATION; I was in doubt about which period these are valid:

CLAUSE 5 - NON-COMPETE; CLAUSE 6 - CONFIDENTIALITY.

Q4: This was not clear to me. Implicitly, if the parties vio-

late any clause. Above all, item 12.5 mentions: This con-

tract may not be assigned, in whole or in part, except for

the express and written agreement of both parties.Q5: 5.2.

If the contract is terminated before the end of the term of

this partnership, the CONTRACTOR undertakes to respect

this Clause for a period of 1 (one) year from the effective

date of termination.

R L Q1: Delivery of the object under the terms and conditions

stipulated in the contract, as well as the ful∂llment of the

obligations assumed by both parties. Q2: Based on § 12a,

item 12.1, there may be tolerance by the Principal, not

giving rise to novation, contacting the Contractor via email,

requesting the documentation required for payment. Q3:

§2a, item 2.3, III and VI - §5a, item. 5.1 — §6a, item 6.1

and 6.2 Sole §. Q4: If by mutual agreement between the

parties in writing, undertake to respect the non-compete

clause for a period of 1 (one) year from the effective date

of termination. Q5: §5a, item 5.2.



Chapter 5. Experiments 84

Name Area Answer

K L Q1:: The product must be delivered by the Contractor

within the speci∂ed period, according to Clause 1.5, the

Contractor must provide all necessary data and informa-

tion, as stipulated in Clause 2.5. In addition, payment for

the provision of service must be made within the term and

in the amount determined in Clause 3.1 and 3.2. Q2: I did

not ∂nd any clauses in the contract regarding its termi-

nation, however the Principal may judicially request the

termination of the contract. Q3: 4.2 and 4.3. Q4: When

the Principal does not provide all the information neces-

sary for the preparation, the Contractor does not deliver

the product and the Principal does not make the payment

as determined in the contract. Q5: Clause 5.2.

Table 11 – Participants’ answers with the state diagram

Name Area Answer

A CS Q1: Delivery in 30 days, down payment of 50% and 50% on

deliver, and issuance of invoices each month. Q2: Can sus-

pend payment. Q3: Hire by demand, hire 20h per month

for maintance. Q4: Amicable termination in written agree-

ment. Q5: No competition after 1 year.

F CS Q1: Delivery after 30 days of Principal’s request, down

payment 50% plus 50% after 30 days, and issuance of

invoices or delivery after 30 days of Principal’s request,

payment of ∂ne and issuance of invoices. Q2: Payment

of ∂ne. Q3: SO4.2 or SO4.3. Q4: Amicable termination in

written agreement by both parties. Q5: SO5.2.

I L Q1: All necessary information will be provided by the Prin-

cipal to the Contractor. Q2: Request shipment and delivery

of what is provided for in item 3.5. Q3: Clauses 4a and 5a.

Q4: Did not ∂nd it. Q5: 5.2.

L CS Q1: Clauses 1.5 and 2.3VII and 2.5III. Q2: Clause 3.5. Q3:

Clauses 4.2 and 4.3. Q4: Clause 12.5. Q5: Clause 5.2

R L Q1: Delivery of application after 30 days of contract. Q2:

Principal may suspend if not submit notes. Q3: Clause 4.2.

Q4: With termination. Q5: Clause 5 - non-compete after 1

year of termination.



Chapter 5. Experiments 85

Name Area Answer

For a ∂nal analysis, the participants of the second group (with the state dia-

gram) were also asked if they really thought the state diagram helped in any way:

“Do you think that the state diagram actually helped you understand the contract and

∂nd the answers?”. Their answers are listed in Table 12.

Table 12 – Participants’ feedback on the use of the state diagram

ParticipantAnswer
A “yes, after understanding how it works, it was simple

to ∂nd the answers.”
L “Sure, the answers were basically given by reading

the diagram.”
F “Yes, it helped a lot.”
I “Yes.”
R “Yes.”

5.3.3 Results

The graph in Figure 39 compares the time spent by each participant in each

question (bars). The x-axis speci∂es each participant (including their area of expertise

– CS for Computer Science and L for Law; and whether or not they used the state

diagram), and the y-axis speci∂es the time spent in minutes.

The ∂rst ∂ve participants in the graph shown in Figure 39 (in blue) are those

who had the diagram to help them, and it is clear that they spent less time answering

the ∂ve questions. Despite that, the majority of participants, even the ones with

the state diagram, spent more time to answer the ∂rst question, and it is probably

because they took some time for an overall glance at the contract.

The graph in Figure 40 has a simpli∂ed comparison of the total time spent by

the participants with and without the state diagram. It shows clearly that the time

spent by the participants using the state diagram is actually shorter. The average

time spent by the participants that had the state diagram was 09’23” while the

average time spent by those that had only the contract written in natural language

was 26’11”. In view of that, we can conclude that the state diagram representing the

legal contract proved very helpful.

In general, the computer science experts took less time to answer the ques-

tions, with or without the diagram, and it may indicate that the diagram should be

more self-explainatory and provide simpler information for laypeople. Even though

the diagram considerably helped, as evinced by the time-spent comparison, the as-

sertive responses and the participants’ feedback, it was also observed that some

participants remained dependant on the written contract.





Chapter 5. Experiments 87

Regarding the analysis of the correctness of the answers, it is possible to

observe that there were a consider number of mistakes, mainly for the group that did

not have the diagram for help.

As for the ∂rst group of participants (∂ve participants with state diagram),

there were more correct answers, mainly for the computer science experts. For the

∂rst question, one of them answered incorrectly and another one gave an incomplete

answer (one clause was missing). For the second question, there were two incorrect

answers. For the third question, both law experts gave incomplete and generic an-

swers. For the fourth question, only one participant did not know the answer (did not

∂nd it). And for the ∂fth question, all participants answered correctly.

Then, for the second group of participants (∂ve participants with no state

diagram), for the ∂rst question, two of the participants aswered correctly (both of

law area). For the second question, only one participant answered correctly, other

two participants said that they did not know the answer. For the third question, three

participants answered correctly and one of them said he did not know the answer.

For the fourth question, two participants answered correctly, one of them explained

that it was not clear on the contract text, but included the right answer. As for the

last question, only one of the participants answered incorrectly.

In this second experiment, it is easy to see that the ∂rst group of answers were

more accurate. But it was also possible to observe that the majority of the mistakes

were from the law experts, only on the third question a computer science expert

made a mistake. And this is possibly related to lack of familiarity with state diagrams.

In addition, these results show that the state diagram may not be so simple and easy

to understand for non-technical users.

5.3.4 Threats to validity

The main threat to the validity of the experiment is its small number of par-

ticipants. Even though the experiment produced a majorly qualitative result, ten

participants are still a small number to con∂rm that state diagrams actually help in

the understanding of legal contracts.

For a future experiment, our intention is that all participants, at both stages, be

exposed to different contracts: they would answer questions from one legal contract

using only the contract written in natural language and also answer questions from

another legal contract along with its respective state diagram. This way, we would

be able to compare the performance of a participant either using or not the state

diagram.

The legal contract used in this experiment was transformed into formal lan-

guage manually, without any tools that could guarantee correctness, so this is a

shortcoming as regards the creation of the diagram. Important information may have



Chapter 5. Experiments 88

been misstated or even left out.

Another threat to validity was the lack of experts in smart contracts as part

of the participants. Experts in smart contracts could have a different opinion about

the use of state diagrams to better understand smart contracts speci∂ed using a

domain-speci∂c language as Symboleo.

Another future experiment would be the impementation of a smart contract by

developers using the generated state diagram. In this way, it will also be possible to

analyze whether state diagrams could also facilitate the creation of smart contracts.



89

6 CONCLUSIONS

In the present master’s thesis, we investigated the use of state diagrams to

represent legal smart contracts. Over the period of investigation, the present study

produced three important contributions: (1) a systematic mapping to ∂nd out how

state diagrams are being used to represent smart contracts; (2) the proposal and

implementation of an algorithm to automate the creation of state diagrams that rep-

resent smart contracts speci∂ed with the domain-speci∂c language Symboleo; and (3)

two experiments demonstrating that state diagrams can facilitate the understanding

of legal contracts written in natural language.

The ∂rst contribution, i.e., the systematic mapping, allowed us to observe

that several studies have represented smart contracts as state diagrams and they

usually do that for reasons like model veri∂cation, correctness and improvement of

the smart contract design. But we observed that there is no pattern or consensus

in the literature about how to map a legal smart contract into states and transitions

of a state diagram. The systematic mapping also allowed us to observe that smart

contracts are a subject that has truly become popular and has drawn the attention of

people from some technical areas other than computing (such as business and law).

Such popularity and interdisciplinarity are some of the motivations for the quest for

easiness in the writing of smart contracts.

Among the related work retrieved in the systematic mapping, many of them

contributed to the present study, as they: (1) contained the mapping of states of a

smart contract, in almost all of them (18), as in (BAI et al., 2018), (GOVERNATORI et

al., 2018), (XU; FINK, 2020), (BANACH, 2020), (SKOTNICA; PERGL, 2020), (MAVRIDOU

et al., 2019), (MAVRIDOU; LASZKA, 2018), (LADLEIF; WESKE, 2019a), (PINNA; IBBA,

2018), (SHARIFI, S. et al., 2020), (WEINGAERTNER et al., 2018), (ALQAHTANI et al.,

2020), (ELIZONDO et al., 2019), (BOOGAARD, 2018), (HE, Xudong, n.d.), (BERTOLINI,

2020), (GARAMVÖLGYI et al., 2018) and (MITCHELL, n.d.); and (2) presented consider-

ations of legal aspects, as in (GOVERNATORI et al., 2018), (XU; FINK, 2020), (LADLEIF;

WESKE, 2019a), (SHARIFI, S. S., 2020) and (WEINGAERTNER et al., 2018). Two other

aspects that were taken into account as distinguishing features of the present study

regard automated code generation, considering that, even though our aim of this

study did not encompass automated code generation, it is a good reference for a bet-

ter understanding of the inputs and the standards recognized for generating smart

contracts, for example, as can be seen in (MADL et al., 2019), (MAVRIDOU et al.,

2019), (MAVRIDOU; LASZKA, 2018) and (CONCHON; KORNEVA; ZAÏDI, 2020).

Another contribution of this study is an algorithm, along with its implementa-

tion, for the automated creation of state diagrams that represent smart contracts

speci∂ed in a domain-speci∂c language for smart contracts called Symboleo. As other



Chapter 6. Conclusions 90

formal models, Symboleo is also used to provide a systematic method to create and

deploy smart contracts, in an attempt to achieve easiness in writing smart contracts

or/and their correctness. However, Symboleo, as any other formal model, is not easy

to be understood by users. On the other hand, state diagrams can assist in the mod-

eling of smart contracts, thus enabling the understanding of legal contracts.

One last contribution was the two experiments conducted to evaluate the un-

derstanding of legal contracts written in natural language alongside a state diagram.

The experiment yielded subjective results, however they lead to a conclusion that

state diagrams can facilitate the understanding of legal contracts.

6.0.1 Future Work

As further work, we intend to include the mapping of other smart-contract

domain languages that have in their speci∂cations the de∂nition of obligations and

powers, allowing these languages, besides Symboleo, to be received as input to the

implemented algorithm. To ensure the correctness of the generated state diagrams,

we want to create a formal prove for the transformation algorithm. We also want to

use diagrams in the future as a way of verifying the life cycle of speci∂ed contracts,

ensuring the correctness of state transitions. Additionally, we seek to improve these

experiments, also using a speci∂ed contract with a domain-speci∂c language, rather

than just the contract in natural language, also increasing the number of participants

and the number of questions. We also seek to realize another experiment with smart

contract developers, asking them to implement a smart contrac using the generated

state diagram as a support.



91

REFERENCES

ABDELHAMID, Manar; HASSAN, Ghada. Blockchain and Smart Contracts. In: ACM.

PROCEEDINGS of the 2019 8th International Conference on Software and Information

Engineering. [S.l.: s.n.], 2019. P. 91–95.

ALQAHTANI, Sarra; HE, Xinchi; GAMBLE, Rose; MAURICIO, Papa. Formal Veri∂cation of

Functional Requirements for Smart Contract Compositions in Supply Chain

Management Systems. In: PROCEEDINGS of the 53rd Hawaii International

Conference on System Sciences. [S.l.]: Hawaii International Conference on System

Sciences, 2020.

AMARAL DE SOUSA, Victor; BURNAY, Corentin; SNOECK, Monique. B-MERODE: A

Model-Driven Engineering and Artifact-Centric Approach to Generate Smart

Contracts. In.

AMATO, Flora; COZZOLINO, Giovanni; MOSCATO, Francesco; MOSCATO, Vincenzo;

XHAFA, Fatos. A Model for Veri∂cation and Validation of Law Compliance of Smart

Contracts in IoT Environment. IEEE Transactions on Industrial Informatics, v. 17,

n. 11, p. 7752–7759, Nov. 2021. ISSN 1941-0050.

AMBLER, Scott W. [S.l.]: Ambysoft Inc., 2003. Available from:

http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm.

BAI, Xiaomin; CHENG, Zijing; DUAN, Zhangbo; HU, Kai. Formal Modeling and

Veri∂cation of Smart Contracts. In: PROCEEDINGS of the 2018 7th International

Conference on Software and Computer Applications. Kuantan, Malaysia: Association

for Computing Machinery, 2018. (ICSCA 2018), p. 322–326.

BANACH, R. Veri∂cation-Led Smart Contracts. Lecture Notes in Computer

Science (including subseries Lecture Notes in Arti∂cial Intelligence and

Lecture Notes in Bioinformatics), 11599 LNCS, p. 106–121, 2020. cited By 0.

BARESI, L.; GARZOTTO, F.; PAOLINI, P. Extending UML for modeling Web applications.

In: PROCEEDINGS of the 34th Annual Hawaii International Conference on System

Sciences. [S.l.: s.n.], 2001. 10 pp.-.

BASHIR, Imran. Mastering blockchain. [S.l.]: Packt Publishing Ltd, 2017.



REFERENCES 92

BERTOLINI, MARCELLO. Enforcing commitments with blockchain: an approach to

generate smart contracts for choreographed business processes, 2020.

BODEVEIX, Jean-Paul; FILALI, Mamoun; LAWALL, Julia; MULLER, Gilles. Formal

Methods Meet Domain Speci∂c Languages. In: ROMIJN, Judi; SMITH, Graeme;

POL, Jaco van de (Eds.). Integrated Formal Methods. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2005. P. 187–206.

BOOGAARD, Kees. A model-driven approach to smart contract development.

2018. MA thesis.

CHANG, Shuchih Ernest; LUO, Hueimin Louis; CHEN, YiChian. Blockchain-enabled

trade ∂nance innovation: A potential paradigm shift on using letter of credit.

Sustainability, Multidisciplinary Digital Publishing Institute, v. 12, n. 1, p. 188, 2020.

CHEN, E; QIN, Bohan; ZHU, Yan; SONG, Weijing; WANG, Shengdian;

CHU, William Cheng-Chung; YAU, Stephen S. SPESC-Translator: Towards

Automatically Smart Legal Contract Conversion for Blockchain-based Auction

Services. IEEE Transactions on Services Computing, p. 1–1, 2021. ISSN

1939-1374.

CONCHON, Sylvain; KORNEVA, Alexandrina; ZAÏDI, Fatiha. Verifying Smart Contracts

with Cubicle. In: LECTURE Notes in Computer Science. [S.l.]: Springer International

Publishing, 2020. P. 312–324.

DIXIT, Abhishek; DEVAL, Vipin; DWIVEDI, Vimal; NORTA, Alex; DRAHEIM, Dirk.

Towards user-centered and legally relevant smart-contract development: A

systematic literature review. Journal of Industrial Information Integration,

v. 26, p. 100314, 2022. ISSN 2452-414X.

ECMA. The JSON data interchange syntax. [S.l.: s.n.], 2017. Available from:

https://www.ecma-international.org/publications-and-

standards/standards/ecma-404/.

EDMONDS, Jeff. How to think about algorithms. [S.l.]: Cambridge University

Press, 2008.



REFERENCES 93

ELIZONDO, Sergio; WATTAM, Stephen; ROBU, Valentin; JONES, Rachel;

OAKES, Graham. A Smart Contracting Framework for Aggregators of

Demand-Side Response. [S.l.]: AIM, 2019.

FLOOD, M.D.; GOODENOUGH, O.R. Contract as automaton: representing a simple

∂nancial agreement in computational form. Arti∂cial Intelligence and Law, 2021.

cited By 1.

GARAMVÖLGYI, P.; KOCSIS, I.; GEHL, B.; KLENIK, A. Towards Model-Driven Engineering

of Smart Contracts for Cyber-Physical Systems. In: 2018 48th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks Workshops (DSN-W).

[S.l.: s.n.], June 2018. P. 134–139.

GATTESCHI, Valentina; LAMBERTI, Fabrizio; DEMARTINI, Claudio; PRANTEDA, Chiara;

SANTAMARÍA, Víctor. Blockchain and Smart Contracts for Insurance: Is the

Technology Mature Enough? Future Internet, MDPI AG, v. 10, n. 2, p. 20, Feb. 2018.

ISSN 1999-5903.

GOVERNATORI, Guido; IDELBERGER, Florian; MILOSEVIC, Zoran; RIVERET, Regis;

SARTOR, Giovanni; XU, Xiwei. On legal contracts, imperative and declarative smart

contracts, and blockchain systems. Arti∂cial Intelligence and Law, Springer,

v. 26, n. 4, p. 377–409, 2018.

HE, Xiao; QIN, Bohan; ZHU, Yan; CHEN, Xing; LIU, Yi. Spesc: A speci∂cation language

for smart contracts. In: IEEE. 2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC). [S.l.: s.n.], 2018. v. 1, p. 132–137.

HE, Xudong. Modeling and Analyzing Smart Contracts using Predicate Transition

Nets.

HYPERLEDGER. Smart Contracts and Chaincode. [S.l.: s.n.], 2020. Available from:

https://hyperledger-

fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html.

IDELBERGER, Florian; GOVERNATORI, Guido; RIVERET, Régis; SARTOR, Giovanni.

Evaluation of logic-based smart contracts for blockchain systems. In: SPRINGER.

INTERNATIONAL symposium on rules and rule markup languages for the semantic

web. [S.l.: s.n.], 2016. P. 167–183.



REFERENCES 94

JURGELAITIS, M.; CEPONIENE, L.; BUTKIENE, R. Solidity Code Generation From UML

State Machines in Model-Driven Smart Contract Development. IEEE Access, v. 10,

p. 33465–33481, 2022. cited By 1.

LADLEIF, Jan; WESKE, Mathias. A Legal Interpretation of Choreography Models. In:

DI FRANCESCOMARINO, Chiara; DIJKMAN, Remco; ZDUN, Uwe (Eds.). Business

Process Management Workshops. Cham: Springer International Publishing, 2019.

P. 651–663.

LADLEIF, Jan; WESKE, Mathias. A Unifying Model of Legal Smart Contracts. In:

LAENDER, Alberto H. F.; PERNICI, Barbara; LIM, Ee-Peng; OLIVEIRA, José Palazzo M. de

(Eds.). Conceptual Modeling. Cham: Springer International Publishing, 2019.

P. 323–337.

LAURENCE, Tiana. Blockchain for dummies. [S.l.]: John Wiley & Sons, 2019.

LUU, Loi; CHU, Duc-Hiep; OLICKEL, Hrishi; SAXENA, Prateek; HOBOR, Aquinas.

Making smart contracts smarter. In: PROCEEDINGS of the 2016 ACM SIGSAC

conference on computer and communications security. [S.l.: s.n.], 2016. P. 254–269.

MADL, G.; BATHEN, L.; FLORES, G.; JADAV, D. Formal Veri∂cation of Smart Contracts

Using Interface Automata. In: 2019 IEEE International Conference on Blockchain

(Blockchain). [S.l.: s.n.], 2019. P. 556–563.

MANAV, Gupta. Blockchain for dummies. [S.l.]: Hoboken: John Wiley & Sons, Inc,

2017.

MARCHESI, Michele; MARCHESI, Lodovica; TONELLI, Roberto. An Agile Software

Engineering Method to Design Blockchain Applications. In: PROCEEDINGS of the 14th

Central and Eastern European Software Engineering Conference Russia. Moscow,

Russian Federation: Association for Computing Machinery, 2018. (CEE-SECR ’18).

MAVRIDOU, Anastasia; LASZKA, Aron. Designing Secure Ethereum Smart Contracts:

A Finite State Machine Based Approach. In: MEIKLEJOHN, Sarah; SAKO, Kazue (Eds.).

Financial Cryptography and Data Security. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2018. P. 523–540.

MAVRIDOU, Anastasia; LASZKA, Aron; STACHTIARI, Emmanouela; DUBEY, Abhishek.

VeriSolid: Correct-by-design smart contracts for Ethereum. In: SPRINGER.



REFERENCES 95

INTERNATIONAL Conference on Financial Cryptography and Data Security. [S.l.: s.n.],

2019. P. 446–465.

MERNIK, Marjan; HEERING, Jan; SLOANE, Anthony M. When and How to Develop

Domain-Speci∂c Languages. ACM Comput. Surv., Association for Computing

Machinery, New York, NY, USA, v. 37, n. 4, p. 316–344, Dec. 2005. ISSN 0360-0300.

MITCHELL, Ian. Blockchain Medicine Administration Records (BMAR): Re∑ections and

Modelling Blockchain with UML.

NARAYANAN, Arvind; MILLER, Andrew. Research for Practice: Cryptocurrencies,

Blockchains, and Smart Contracts. In: IEEE Symposium on Security and Privacy.

[S.l.: s.n.], 2016.

OMG. OMG Uni∂ed Modeling Language (OMG UML). [S.l.: s.n.], 2017. Available

from: https://www.omg.org/spec/UML/2.5.1/PDF.

PETERSEN, Kai; FELDT, Robert; MUJTABA, Shahid; MATTSSON, Michael. Systematic

mapping studies in software engineering. In: 12TH International Conference on

Evaluation and Assessment in Software Engineering (EASE) 12. [S.l.: s.n.], 2008.

P. 1–10.

PETERSEN, Kai; VAKKALANKA, Sairam; KUZNIARZ, Ludwik. Guidelines for conducting

systematic mapping studies in software engineering: An update. Information and

software technology, Elsevier, v. 64, p. 1–18, 2015.

PINNA, Andrea; IBBA, Simona. A Blockchain-Based Decentralized System for Proper

Handling of Temporary Employment Contracts. In: ADVANCES in Intelligent Systems

and Computing. [S.l.]: Springer International Publishing, Nov. 2018. P. 1231–1243.

SHARIFI, Sepehr; PARVIZIMOSAED, Alireza; AMYOT, Daniel; LOGRIPPO, Luigi;

MYLOPOULOS, John. A Speci∂cation Language for Smart Contracts. In: PROCEEDINGS

of the 28th IEEE Requirements Engineering Conference (RE’20). Zurich: [s.n.], 2020.

SHARIFI, Seyed Sepehr. Smart Contracts: From Formal Speci∂cation to

Blockchain Code. 2020. PhD thesis – Université d’Ottawa/University of Ottawa.

SKOTNICA, Marek; PERGL, Robert. Das Contract - A Visual Domain Speci∂c Language

for Modeling Blockchain Smart Contracts. In: AVEIRO, David; GUIZZARDI, Giancarlo;



REFERENCES 96

BORBINHA, José (Eds.). Advances in Enterprise Engineering XIII. Cham: Springer

International Publishing, 2020. P. 149–166.

SOURCEMAKING. Design patterns and refactoring. [S.l.: s.n.], 2007. Available

from: https://sourcemaking.com/uml/modeling-it-systems/the-behavioral-

view/the-life-of-an-object.

SZABO, Nick. Formalizing and Securing Relationships on Public Networks. First

Monday, v. 2, n. 9, Sept. 1997.

VILAIN, Patricia. Using Acceptance Tests as part of the Requirements

Speci∂cation of Smart Contracts. [S.l.], Dec. 2021. P. 19.

WEINGAERTNER, Tim; RAO, Rahul; ETTLIN, Jasmin; SUTER, Patrick; DUBLANC, Philipp.

Smart Contracts Using Blockly: Representing a Purchase Agreement Using a

Graphical Programming Language. In: 2018 Crypto Valley Conference on Blockchain

Technology (CVCBT). [S.l.]: IEEE, June 2018.

WEISS, Michael. XML Metadata Interchange. In: Encyclopedia of Database

Systems. Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA: Springer US, 2009.

P. 3597–3597. ISBN 978-0-387-39940-9.

WOHRER, M.; ZDUN, U. From Domain-Speci∂c Language to Code: Smart Contracts

and the Application of Design Patterns. IEEE Software, v. 37, n. 5, p. 37–42, Sept.

2020. ISSN 1937-4194.

WÖHRER, Maximilian; ZDUN, Uwe. Domain Speci∂c Language for Smart Contract

Development. In: IEEE International Conference on Blockchain and Cryptocurrency.

[S.l.: s.n.], 2020.

XU, Weifeng; FINK, Glenn A. Building Executable Secure Design Models for Smart

Contracts with Formal Methods. In: BRACCIALI, Andrea; CLARK, Jeremy;

PINTORE, Federico; RØNNE, Peter B.; SALA, Massimiliano (Eds.). Financial

Cryptography and Data Security. Cham: Springer International Publishing, 2020.

P. 154–169.



97

GLOSSARY



98

APPENDIX A – LITERATURE REVIEW – ARTICLES’ TITLES

Table 13 – Articles select in the literature review



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 99

Selected in step

Library Title 1 2 3 Selected

1 ACM Automatic Smart Contract Generation Us-

ing Controlled Natural Language and Tem-

plate (Tateishi et al.)

X X

2 ACM An Agile Software Engineering Method to

Design Blockchain Applications (Marchesi

et al.)

X X X X

3 ACM DeLottery: A Novel Decentralized Lottery

System Based on Blockchain Technology

(Jia et al.)

X X

4 ACM Formal Modeling and Veri∂cation of Smart

Contracts (Bai et al.)

X X X X

5 ACM On Legal Contracts, Imperative and Declar-

ative Smart Contracts, and Blockchain Sys-

tems (Governatori et al.)

X X X X

6 ACM Ef∂cient Publicly Veri∂able 2PC over a

Blockchain with Applications to Financially-

Secure Computations (Zhu et al.)

X X

7 ACM Robonomics: The Study of Robot-Human

Peer-to-Peer Financial Transactions and

Agreements (Cardenas and Kim)

X X

8 ACM Blockchain-Oriented Software Engineering:

Challenges and New Directions (Porru et

al.)

X

9 ACM The Quest for Fully Smart Autonomous

Business Networks in IoT Platforms (Ali et

al.)

X X

10 ACM Preliminary Steps towards Modeling

Blockchain Oriented Software (Rocha and

Ducasse)

X

11 ACM BitML: A Calculus for Bitcoin Smart Con-

tracts (Bartoletti and Zunino)

X X

12 ACM Understanding the Software Development

Practices of Blockchain Projects: A Survey

(Chakraborty et al.)

X X

13 ACM A Method for Testing and Validating Exe-

cutable Statechart Models (Mens et al.)

X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 100

Selected in step

Library Title 1 2 3 Selected

14 ACM Principles of Usable Programming Lan-

guage Design (Coblenz)

X X

15 ACM On the Implementation of Business Pro-

cess Logic in DLT Nodes (Osterland et al.)

X

16 ACM Veri∂able State Machines: Proofs That Un-

trusted Services Operate Correctly (Setty

et al.)

X

17 ACM Trade-Offs between Distributed Ledger

Technology Characteristics (Kannengieber

et al.)

X

18 ACM Measurements, Analyses, and Insights on

the Entire Ethereum Blockchain Network

(Lee et al.)

X

19 ACM IContractML 2.0: A Domain-Speci∂c Lan-

guage for Modeling and Deploying Smart

Contracts onto Multiple Blockchain Plat-

forms (Hamdaqa et al.)

X X

20 ACM Makina: A New QuickCheck State Machine

Library (Barrio et al.)

X

21 ACM PLIERS: A Process That Integrates User-

Centered Methods into Programming Lan-

guage Design (Coblenz et al.)

X

22 IEEE Smart contracts vulnerabilities: a call for

blockchain software engineering? (Deste-

fanis et al.)

X X

23 IEEE Formal Speci∂cation Technique in Smart

Contract Veri∂cation (Lee et al.)

X X

24 IEEE Auto-Generation of Smart Contracts from

Domain-Speci∂c Ontologies and Semantic

Rules (Choudhury et al.)

X X

25 IEEE Invited Paper: Beagle: A New Framework

for Smart Contracts Taking Account of Law

(Tsai et al.)

X X X

26 IEEE Blockchain-Oriented Software Engineering:

Challenges and New Directions (Porru et

al.)

X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 101

Selected in step

Library Title 1 2 3 Selected

27 IEEE Towards Model-Driven Engineering of

Smart Contracts for Cyber-Physical Sys-

tems (Garamvölgyi et al.)

X X X X

28 IEEE Formal Veri∂cation of Smart Contracts Us-

ing Interface Automata (Madl et al.)

X X X X

29 IEEE Formal Requirement Enforcement on

Smart Contracts Based on Linear Dynamic

Logic (Sato et al.)

X X

30 IEEE Towards Human-readable Smart Contracts

(Franz et al.)

X X

31 IEEE Design Patterns for Smart Contracts in the

Ethereum Ecosystem (Wöhrer and Zdun)

X X

32 IEEE Preliminary Steps Towards Modeling

Blockchain Oriented Software (Rocha and

Ducasse)

X X

33 IEEE Automatic smart contract generation using

controlled natural language and template

(Tateishi et al.)

X

34 IEEE Developing Safe Smart Contracts (Rezaei

et al.)

X

35 IEEE Model-Based Software Design and Testing

in Blockchain Smart Contracts: A System-

atic Literature Review (Sánchez-Gómez et

al.)

X X

36 IEEE Veri∂ed Development and Deployment of

Multiple Interacting Smart Contracts with

VeriSolid (Nelaturu et al.)

X

37 IEEE Democratization of Smart Contracts: A Pro-

totype for Automated Contract Generation

(Franz et al.)

X

38 IEEE An ontological analysis of artifact-centric

business processes managed by smart

contracts (Van Wingerde and Weigand)

X

39 IEEE From Domain-Speci∂c Language to Code:

Smart Contracts and the Application of De-

sign Patterns (Wohrer and Zdun)

X X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 102

Selected in step

Library Title 1 2 3 Selected

40 IEEE Blockchain-based Supply Chain for the

Automation of Transaction Process: Case

Study based Validation (Habib et al.)

X

41 IEEE Towards Model checking approach for

Smart contract validation in the EIP-1559

Ethereum (Fekih et al.)

X

41 IEEE The Notarial Of∂ce in E-government: A

Blockchain-Based Solution (Gao et al.)

X

42 IEEE Solidity Code Generation From UML State

Machines in Model-Driven Smart Contract

Development (Jurgelaitis et al.)

X

43 IEEE From BPMN to smart contracts on

blockchains: Transforming BPMN to

DE-HSM multi-modal model (Liu et al.)

X

44 IEEE A Model for Veri∂cation and Validation of

Law Compliance of Smart Contracts in IoT

Environment (Amato et al.)

X X X X

45 IEEE A Survey on Blockchain Acquainted Soft-

ware Requirements Engineering: Model,

Opportunities, Challenges, and Future Di-

rections (Farooq et al.)

X

46 IEEE Automatic Generation of Ethereum-Based

Smart Contracts for Agri-Food Traceability

System (Marchesi et al.)

X

47 IEEE Goal and Policy Based Code Genera-

tion and Deployment of Smart Contracts

(Tsiounisa and Konstantinos)

X X

48 IEEE Hierarchical Permissioned Blockchain and

Traceability Of Requirement Changes

(Rocky et al.)

X

49 IEEE A Smart Contract for Coffee Transport and

Storage With Data Validation (Valencia-

Payan et al.)

X

50 IEEE Model-driven approach for the design of

Multi-Chain Smart Contracts (Barisic et al.)

X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 103

Selected in step

Library Title 1 2 3 Selected

51 IEEE MDE4BBIS: A Framework to Incorporate

Model-Driven Engineering in the Develop-

ment of Blockchain-Based Information Sys-

tems (de Souza and Burnay)

X X

52 IEEE SPESC-Translator: Towards Automatically

Smart Legal Contract Conversion for

Blockchain-based Auction Services (Chen

et al.)

X X X X

53

Google

Scholar

Symboleo: Towards a Speci∂cation Lan-

guage for Legal Contracts (Sharif et al.)

X X X X

54

Google

Scholar

Formal Requirement Enforcement on

Smart Contracts Based on Linear Dynamic

Logic (Sato et al.)

X

55

Google

Scholar

Smart Contracts Using Blockly: Represent-

ing a Purchase Agreement Using a Graphi-

cal Programming Language (Weingaertner

et al.)

X X X X

56

Google

Scholar

Model-Driven Engineering for Multi-party

Interactions on a Blockchain - An Example

(Dittmann et al.)

X X

57

Google

Scholar

A Survey of Smart Contract Formal Speci∂-

cation and Veri∂cation (Tolmach et al.)

X X

58

Google

Scholar

Design of the Blockchain Smart Contract:

A Use Case for Real Estate (Karamitsos et

al.)

X X

59

Google

Scholar

Smart Contract Design Meets State Ma-

chine Synthesis: Case Studies (Suvorov

and Ulyantsev)

X

60

Google

Scholar

Formal Veri∂cation of Functional Require-

ments for Smart Contract Compositions

in Supply Chain Management Systems

(Alqahtani el al.)

X X X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 104

Selected in step

Library Title 1 2 3 Selected

61

Google

Scholar

A blockchain-based Decentralized System

for proper handling of temporary Employ-

ment contracts (Pinna and Ibba)

X

62

Google

Scholar

From Domain-Speci∂c Language to Code:

Smart Contracts and the Application of De-

sign Patterns (Wohrer and Zdun)

X

63

Google

Scholar

Literature Review: Smart Contract Seman-

tics (Mathur)

X X

64

Google

Scholar

Towards the Speci∂cation and Veri∂cation

of Legal Contracts (Parvizimosaed)

X X

65

Google

Scholar

The Extended UTXO Model (Chakravarty) X X X

66

Google

Scholar

An ontological analysis of artifact-centric

business processes managed by smart

contracts (Van Wingerde and Weigand)

X

67

Google

Scholar

A Smart Contracting Framework for Aggre-

gators of Demand-Side Response (Elizondo

et al.)

X X X X

68

Google

Scholar

Modeling Business Processes and Con-

tractual Agreements with Extended Finite

State Machines (Flumini et al.)

X X

69

Google

Scholar

Modeling and Analyzing Smart Contracts

using Predicate Transition Nets (He)

X X X X

70

Google

Scholar

Generating and adjudicating digital legal

agreements using Ethereum smart con-

tracts (Liu et al.)

X X

71

Google

Scholar

Enforcing commitments with blockchain:

an approach to generate smart contracts

for choreographed business processes

(Bertolini)

X X X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 105

Selected in step

Library Title 1 2 3 Selected

72

Google

Scholar

BDRM: A Blockchain-based Digital Rights

Management Platform with Fine-grained

Usage Control (Fei)

X X

73

Google

Scholar

Blockchain Medicine Administration

Records (BMAR): Re∑ections and Mod-

elling Blockchain with UML. (Mitchell)

X X X X

74

Google

Scholar

An Architecture for Multi-chain Business

Process Choreographies (Ladleif et al.)

X X

75

Google

Scholar

Formally Verifying a Payment Channel Sys-

tem (Fu et al.)

X X

76

Google

Scholar

Modeling Context-aware Legal Computing

with Bigraphs (Yu et al.)

X X

77

Google

Scholar

A Model-Driven Approach to Smart Con-

tract Development (Boogard)

X X X X

78

Google

Scholar

An Ethereum-based Real Estate Applica-

tion with Tampering-resilient Document

Storage (Kopylash)

X

79

Google

Scholar

Blockchain Technology as a Regulatory

Technology: From Code is Law to Law is

Code (Filippi and Hassan)

X X X

80

Google

Scholar

B-MERODE: A Model-Driven Engineering

and Artifact-Centric Approach to Gener-

ate Blockchain-Based Information Systems

(Amaral de Sousa el al.)

X

81

Google

Scholar

CLoTH: a Simulator for HTLC Payment Net-

works (Conoscenti et al.)

X

82

Google

Scholar

Contract Design for Cloud Logistics (CL)

Based on Blockchain Technology (BT) (Xu

el al.)

X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 106

Selected in step

Library Title 1 2 3 Selected

83

Google

Scholar

Digital Certi∂cates Using Blockchain: An

Overview (Bhanushali et al.)

X

84

Google

Scholar

Housing Associations and Blockchain–A

Positive Match? (Vonk et al.)

X

85

Google

Scholar

Mitigating software engineering costs in

distributed ledger technologies (Heinecke

et al.)

X

86

Google

Scholar

Model of Dynamic Smart Contract for Per-

missioned Blockchains. (Imeri et al.)

X

87

Google

Scholar

Smart Contract modeling and veri∂cation

techniques: A survey (Imeri et al.)

X

88

Google

Scholar

Smart Contracts that are Smart and can

function as Legal Contracts (Von Wend-

land)

X

89

Google

Scholar

Software Engineering for DApp Smart Con-

tracts Managing Workers Contracts. (Lallai

et al.)

X

90

Google

Scholar

Using Blockchain Technology to Manage

Membership and Legal Contracts in a Dis-

tributed Data Market (Schlarb)

X

91

Google

Scholar

Reactive Synthesis of Smart Contract Con-

trol Flows (Finkbeiner et al.)

X

92

Google

Scholar

Protocol-based Smart Contract Generation

(Falcao et al.)

X

93

Google

Scholar

Ethereum’s Smart Contracts Construction

and Development using Model Driven En-

gineering Technologies: a Review (Hsain et

al.)

X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 107

Selected in step

Library Title 1 2 3 Selected

94

Google

Scholar

Legally Enforceable Smart-Contract Lan-

guages (Dwivedi et al.)

X X

95

Google

Scholar

Solidity Code Generation From UML State

Machines in Model-Driven Smart Contract

Development (Jurgelaitis el al.)

X

96

Google

Scholar

I Told You Tomorrow: Practical Time-Locked

Secrets using Smart Contracts (Bacis el al.)

X

97

Google

Scholar

From BPMN to smart contracts on

blockchains: Transforming BPMN to

DE-HSM multi-modal model (Liu el al.)

X

98

Google

Scholar

An Automated Modeling Method and Vi-

sualization Implementation of Smart Con-

tracts (Meng el al.)

X

99

Google

Scholar

Augmenting cryptocurrency in smart sup-

ply chain (Viriyasitavat el al.)

X

100

Google

Scholar

iContractML 2.0: A domain-speci∂c lan-

guage for modeling and deploying smart

contracts onto multiple blockchain plat-

forms (Hamdaqa el al.)

X

101

Google

Scholar

Recon∂gurable Smart Contracts for Renew-

able Energy Exchange with Re-Use of Veri-

∂cation Rules (Gorski el al.)

X X

102

Google

Scholar

A Tool for Moving Blockchain Computations

Off-Chain (Liu el al.)

X

103

Google

Scholar

Ricardian Contracts for Industry 4.0 via the

Arrowhead Contract Proxy (Palm el al.)

X

104

Google

Scholar

A Model for Veri∂cation and Validation of

Law Compliance of Smart Contracts in IoT

Environment (Amato el al.)

X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 108

Selected in step

Library Title 1 2 3 Selected

105

Google

Scholar

Contract as automaton: representing a

simple ∂nancial agreement in computa-

tional form (Flood et al.)

X

106

Google

Scholar

Eunomia: Anonymous and Secure Vehicu-

lar Digital Forensics based on Blockchain

(Li el al.)

X

107

Google

Scholar

Programming Legal Contracts (Crafa el al.) X X

108

Google

Scholar

Toward a Global Social Contract for Trade

- a Rawlsian approach to Blockchain Sys-

tems Design and Responsible Trade Facili-

tation in the New Bretton Woods era (Lim

el al.)

X

109

Google

Scholar

Model-Driven Development of Distributed

Ledger Applications (Fraternali el al.)

X

110

Google

Scholar

Modelling the Development and Deploy-

ment of Decentralized Applications in

Ethereum Blockchain: A BPMN-Based Ap-

proach (Nousias2022)

X

111

Google

Scholar

Blockchain software patterns for the de-

sign of decentralized applications: A sys-

tematic literature review (Six el al.)

X

112

Google

Scholar

A Hoare Logic with Regular Behavioral

Speci∂cations (Ernst el al.)

X

113

Google

Scholar

Overview of Test Coverage Criteria for

Test Case Generation from Finite State

Machines Modelled as Directed Graphs

(Rechtberger el al.)

X

114

Google

Scholar

Blockchain Application Development Using

Model-Driven Engineering and Low-Code

Platforms: A Survey (Curty el al.)

X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 109

Selected in step

Library Title 1 2 3 Selected

115

Google

Scholar

A Blockchain Based Methodology for Power

Grid Control Systems (Abdallah el al.)

X

116

Google

Scholar

The Effect of Thickness-Based Dynamic

Matching Mechanism on a Hyperledger

Fabric-Based TimeBank System (Lin el al.)

X

117

Google

Scholar

Formalizing the Blockchain-Based Block-

Voke Protocol for Fast Certi∂cate Revoca-

tion Using Colored Petri Nets (Sujatanagar-

juna2021)

X

118

Google

Scholar

Cloud manufacturing service composition

in IoT applications: a formal veri∂cation-

based approach (Souri el al.)

X

119

Google

Scholar

Formalism-Driven Development: Concepts,

Taxonomy, and Practice (Ding el al.)

X

120

Google

Scholar

An Agent-Oriented, Blockchain-Based De-

sign of the Interbank Money Market Trad-

ing System (Alaeddini el al.)

X

121

Google

Scholar

Makina: a new QuickCheck state machine

library (Barrio el al.)

X

122

Google

Scholar

Goal and Policy Based Code Generation

and Deployment of Smart Contracts (Tsiou-

nis el al.)

X

123

Google

Scholar

Chat2Code: Towards conversational con-

crete syntax for model speci∂cation and

code generation, the case of smart con-

tracts (Qasse el al.)

X

124

Google

Scholar

Automatic Generation of Ethereum-Based

Smart Contracts for Agri-Food Traceability

System (Marchesi el al.)

X

125

Google

Scholar

Secure MDE for Ethereum-based Decen-

tralized Applications (DAppa) (Samreen el

al.)

X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 110

Selected in step

Library Title 1 2 3 Selected

126

Google

Scholar

SPESC-Translator: Towards Automatically

Smart Legal Contract Conversion for

Blockchain-based Auction Services (Chen

el al.)

X

127

Google

Scholar

PLIERS (Coblenz el al.) X

128

Google

Scholar

Social Requirements Models for Services

(Mylopoulos el al.)

X

129

Google

Scholar

Formalism- Driven Development of Decen-

tralized Systems (Ding el al.)

X

130

Google

Scholar

Blockchain support for execution, monitor-

ing and discovery of inter-organizational

business processes (Sandoval et al.)

X

131

Scopus

An overview on smart contracts: Chal-

lenges, advances and platforms (Zheng et

al.)

X X

132

Scopus

Building Executable Secure Design Models

for Smart Contracts with Formal Methods

(Xu and Fink)

X X X X

133

Scopus

Formal veri∂cation of work∑ow policies for

smart contracts in azure blockchain (Wang

et al.)

X X X

134

Scopus

Veri∂cation-Led Smart Contracts (Banach) X X X X

135

Scopus

Das Contract - A Visual Domain Speci∂c

Language for Modeling Blockchain Smart

Contracts (Skotnica and Pergl)

X X X X

136

Scopus

Gigahorse: Thorough, Declarative Decom-

pilation of Smart Contracts (Grech et al.)

X X

137

Scopus

Building an executable axiomatisation of

the REA2 ontology (Laurier and Horiuchi)

X X

138

Scopus

A unifying model of legal smart contracts

(Ladleif and Weske)

X X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 111

Selected in step

Library Title 1 2 3 Selected

139

Scopus

VeriSolid: Correct-by-Design Smart Con-

tracts for Ethereum (Mavridou et al.)

X X X X

140

Scopus

Smart contracts as techno-legal regulation

(Hunn)

X X X

141

Scopus

Solidworx: A resilient and trustworthy

transactive platform for smart and con-

nected communities (Eisele et al.)

X X

142

Scopus

Formal modeling and veri∂cation of

blockchain system (Duan et al.)

X X

143

Scopus

Tool Demonstration: FSolidM for designing

secure ethereum smart contracts (Mavri-

dou and Laszka)

X X

144

Scopus

Designing Secure Ethereum Smart Con-

tracts: A Finite State Machine Based Ap-

proach (Mavridou and Laszka)

X X X X

145

Scopus

Smart contracts and opportunities for for-

mal methods (Miller et al.)

X X

146

Scopus

Inter-organizational Business Processes

Managed by Blockchain (Nakamura et al.)

X X

147

Scopus

Towards human-readable smart contracts

(Franz et al.)

X

148

Scopus

Automatic smart contract generation using

controlled natural language and template

(Tateishi et al.)

X

149

Scopus

BitML: A calculus for bitcoin smart con-

tracts (Bartoletti and Zunino)

X

150

Scopus

Towards Model-Driven Engineering of

Smart Contracts for Cyber-Physical Sys-

tems (Garamvölgyi et al.)

X

151

Scopus

Design Patterns for Smart Contracts in the

Ethereum Ecosystem (Wohrer and Zdun)

X

152

Scopus

Formal modeling and veri∂cation of smart

contracts (Bai et al.)

X

153

Scopus

Applications of model-driven engineering

in cyber-physical systems: A systematic

mapping study (Mohamed et al.)

X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 112

Selected in step

Library Title 1 2 3 Selected

154

Scopus

Democratization of Smart Contracts: A Pro-

totype for Automated Contract Generation

(Franz et al.)

X X X

155

Scopus

Domain Speci∂c Language for Smart Con-

tract Development (Wohrer and Zdun)

X X X

156

Scopus

Smart Contracts for Government Pro-

cesses: Case Study and Prototype Imple-

mentation (Short Paper) (Krogsbøll et al.)

X X

157

Scopus

Towards an automated DEMO action model

implementation using blockchain smart

contracts (Aparício et al.)

X X

158

Scopus

An Automated Modeling Method and Vi-

sualization Implementation of Smart Con-

tracts (Meng et al.)

X X

159

Scopus

Automatic Generation of Ethereum-Based

Smart Contracts for Agri-Food Traceability

System (Marchesi et al.)

X

160

Scopus

Automating Smart Contract Generation on

Blockchains Using Multi-modal Modeling

(Liu et al.)

X

161

Scopus

Contract as automaton: representing a

simple ∂nancial agreement in computa-

tional form (Flood et al.)

X X X X

162

Scopus

Design and development of smart con-

tracts for E-government through value and

business process modeling (Gomez et al.)

X X X

163

Scopus

Ethereum’s smart contracts construction

and development using model driven en-

gineering technologies: A review (AitHsain

et al.)

X X

164

Scopus

From BPMN to smart contracts on

blockchains: Transforming BPMN to

DE-HSM multi-modal model (Liu et al.)

X X

165

Scopus

From the Graphical Representation to the

Smart Contract Language: A Use Case in

the Construction Industry (Ye et al.)

X X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 113

Selected in step

Library Title 1 2 3 Selected

166

Scopus

iContractML 2.0: A domain-speci∂c lan-

guage for modeling and deploying smart

contracts onto multiple blockchain plat-

forms (Hamdaqa et al.)

X

167

Scopus

Model-driven approach for the design of

Multi-Chain Smart Contracts (Barisic et al.)

X X

168

Scopus

Overview of Test Coverage Criteria for

Test Case Generation from Finite State

Machines Modelled as Directed Graphs

(Rechtberger et al.)

X

169

Scopus

Solidity Code Generation From UML State

Machines in Model-Driven Smart Contract

Development (Jurgelaitis et al.)

X X X X

170

Springer

On Re∂ning Design Patterns for Smart Con-

tracts (Zecchini et al.)

X X

171

Springer

Verifying Smart Contracts with Cubicle

(Conchon et al.)

X X X X

172

Springer

Blockchain-based intelligent contract for

factoring business in supply chains (Zheng

et al.)

X X

173

Springer

Analysis of Ethereum Smart Contracts and

Opcodes (Bistarelli et al.)

X X

174

Springer

Systems and Methods for Implementing

Deterministic Finite Automata (DFA) via a

Blockchain (Wright)

X X

175

Springer

Ghazal: Toward Truly Authoritative Web

Certi∂cates Using Ethereum (Moosavi and

Clark)

X X

176

Springer

A Legal Interpretation of Choreography

Models (Ladleif and Weske)

X X X X

177

Springer

Modeling and execution of blockchain-

aware business processes (Falazi et al.)

X X

178

Springer

A Blockchain-Based Decentralized System

for Proper Handling of Temporary Employ-

ment Contracts (Pinna and Ibba)

X X X X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 114

Selected in step

Library Title 1 2 3 Selected

179

Springer

On legal contracts, imperative and declar-

ative smart contracts, and blockchain sys-

tems (Governatori et al.)

X X X

180

Springer

A Semantic Framework for the Security

Analysis of Ethereum Smart Contracts (Gr-

ishchenko et al.)

X X

181

Springer

Empowering Business-Level Blockchain

Users with a Rules Framework for Smart

Contracts (Astigarraga et al.)

X X

182

Springer

SoK: Unraveling Bitcoin Smart Contracts

(Atzei et al.)

X X

183

Springer

Automated Execution of Financial Con-

tracts on Blockchains (Egelund-Müller et

al.)

X X

184

Springer

Towards a Shared Ledger Business Collabo-

ration Language Based on Data-Aware Pro-

cesses (Hull et al.)

X X

185

Springer

Building Executable Secure Design Models

for Smart Contracts with Formal Methods

(Xu and Fink.)

X

186

Springer

Veri∂cation-Led Smart Contracts (Banach) X

187

Springer

Smart Contracts and Opportunities for For-

mal Methods (Miller et al.)

X

188

Springer

Tool Demonstration: FSolidM for Designing

Secure Ethereum Smart Contracts (Mavri-

dou and Laszka)

X

189

Springer

A method for testing and validating exe-

cutable statechart models (Mens et al.)

X

190

Springer

A Unifying Model of Legal Smart Contracts

(Ladleif and Weske)

X X X

191

Springer

Designing Secure Ethereum Smart Con-

tracts: A Finite State Machine Based Ap-

proach (Mavridou and Laszka)

X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 115

Selected in step

Library Title 1 2 3 Selected

192

Springer

Inter-organizational Business Processes

Managed by Blockchain (Nakamura et al.)

X

193

Springer

Modeling and reasoning about uncertainty

in goal models: a decision-theoretic ap-

proach (Liaskos et al.)

X

194

Springer

Comprehensive review of modeling, struc-

ture, and integration techniques of smart

buildings in the cyber-physical-social sys-

tem (Gong et al.)

X

195

Springer

Engineering Multi-agent Systems with Stat-

echarts (Spanoudakis et al.)

X X

196

Springer

A Blockchain-Based System for Agri-Food

Supply Chain Traceability Management

(Marchese et al.)

X

197

Springer

Business Process Engineering for Data

Storing and Processing in a Collabora-

tive Distributed Environment Based on

Provenance Metadata, Smart Contracts

(Demichev et al.)and Blockchain Technol-

ogy

X

198

Springer

Blockchain Medicine Administration

Records (BMAR): Re∑ections and Mod-

elling Blockchain with UML (Mitchell et al.)

X X

199

Springer

Model-Driven Development of Distributed

Ledger Applications (Fraternali et al.)

X

200

Springer

Blockchain Application Development Using

Model-Driven Engineering and Low-Code

Platforms: A Survey (Curty et al.)

X

201

Springer

Modelling the Development and Deploy-

ment of Decentralized Applications in

Ethereum Blockchain: A BPMN-Based Ap-

proach (Nousias et al.)

X



APPENDIX A. LITERATURE REVIEW – ARTICLES’ TITLES 116

Selected in step

Library Title 1 2 3 Selected

202

Springer

An Agent-Oriented, Blockchain-Based De-

sign of the Interbank Money Market Trad-

ing System (Alaeddini et al.)

X

203

Springer

Automated Consistency Analysis for Legal

Contracts (Khoja et al.)

X



117

APPENDIX B – JSON GENERATED WITH THE ALGORITHM











122

ANNEX A – CONTRACT FOR EXPERIMENT 1





















132

ANNEX B – CONTRACT FOR EXPERIMENT 2


















	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Problem
	Solution
	Scope
	Aim and Objectives
	Aim
	Objectives

	Method
	Text Organization

	Background
	Blockchain
	Smart Contracts
	State Machine Diagrams
	Domain-Specific Languages and Formal Methods

	Literature Review
	Formulation of the research question
	Identification of relevant literature
	Selection of studies
	Results and Discussion
	Modeling with state diagram/state machine
	Review of the legal aspects of the contract
	Comparison between the main elements
	Threats to validity


	Proposal
	GENERAL MAPPING OF A LEGAL SMART CONTRACT INTO A STATE DIAGRAM
	Generic state diagram for a smart contract
	Requirements of a domain language for a smart contract
	Steps to define a state diagram for a smart contract

	Mapping a Symboleo Smart Contract into a State Diagram
	The Symboleo language
	Detail of the mapping from a Symboleo specification

	MAPPING IMPLEMENTATION
	API Project
	API implementation
	Frontend
	Development evaluation


	Experiments
	Experiment protocol
	Experiment 1
	Overview
	Execution
	Results
	Threats to validity

	Experiment 2
	Overview
	Execution
	Results
	Threats to validity


	Conclusions
	Future Work

	REFERENCES
	Glossary
	LITERATURE REVIEW – ARTICLES’ TITLES
	JSON GENERATED WITH THE ALGORITHM
	Contract for experiment 1
	Contract for experiment 2

		2022-09-30T11:45:14-0300


		2022-09-30T14:01:20-0300




