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RESUMO

O escalonamento de tarefas é uma abordagem eficaz para aumentar a extração de valor de uma
missão espacial, podendo proporcionar uma melhor gestão de recursos e garantias de qualidade
de serviço. Apesar de estar sujeito a muitas restrições, o escalonamento de tarefas em um satélite
é, em última análise, restringido pela quantidade de energia disponível a qualquer momento.
Nesta tese, é desenvolvido um framework para escalonamento de tarefas em nanossatélites focado
no gerenciamento ótimo da energia disponível, enquanto garantindo qualidade de serviço. Uma
formulação matemática de programação inteira (IP), projetada para maximizar o número de
tarefas a serem executadas por um satélite, restrita à quantidade de potência disponível, momento
a momento, ao longo de uma órbita é apresentada. O modelo de otimização é formulado para
contemplar a prioridade da tarefa, número mínimo e máximo de ativação, tempo mínimo e
máximo de execução, período mínimo e máximo e janela de execução. A decomposição de
Dantzig-Wolfe é usada para explorar a estrutura especial da formulação (MILP), decompondo-a
por tarefas, o que resulta em uma nova formulação baseada em colunas para o problema. Para
resolver a formulação resultante, é proposto um algoritmo branch-and-price (B&P) adequado
para o escalonamento de um grande número de tarefas em um horizonte de tempo expandido.
O vetor variante de energia de entrada foi calculado com base na eficiência das células solares
e em um modelo analítico usado para estimar o campo de irradiância segundo parâmetros de
órbita e atitude. Para demonstrar a aplicabilidade da metodologia, vários experimentos foram
conduzidos considerando quatro tamanhos de satélites com diferentes órbitas e parâmetros de
tarefa. Os resultados mostram que a estratégia de escalonamento offline proposta gera um plano
de escalonamento eficiente e ótimo, permitindo o melhor uso possível dos recursos energéticos
disponíveis e garantindo a qualidade de serviço. Além disso, a metodologia de solução B&P
se mostrou 88% mais eficiente computacionalmente para chegar a escalonamentos ótimos
contraposto ao MILP.

Palavras-chave: Escalonamento de tarefas. Otimização. Modelo de bateria. CubeSat. Qualidade
de serviço.



RESUMO EXPANDIDO

Introdução

Estabelecido pela Universidade Politécnica Estadual da Califórnia em 1999 e com adoção
significativa desde então, o padrão CubeSat, ou nanossatélite, é caracterizado como um cubo
de borda de 10 centímetros, ou 1U, com peso máximo de 1,33 kg e empilhamento máximo de
dezesseis unidades, ou 16U. Com mais de 1.500 nanossatélites lançados atualmente, o sucesso
do formato é atribuído à produção em massa de peças e ao uso de componentes comerciais de
prateleira que permitem um rápido tempo de desenvolvimento – em última análise, às custas
de uma vida útil mais curta. Adotado inicialmente para fins educacionais, recentemente, o
formato vem sendo utilizado em um número crescente de aplicações comerciais e de alto valor
agregado devido aos avanços da miniaturização de hardware e quase duas décadas de pesquisa e
desenvolvimento. Apesar de anos de pesquisa e desenvolvimento, mais pesquisas são essenciais,
especialmente sobre problemas decorrentes de uma limitação significativa deste padrão de
espaçonave: a pequena área de superfície para painéis fotovoltaicos e os consequentes baixos
níveis de captura de energia. Vários trabalhos abordaram essa questão com foco no hardware,
resultando em melhorias de eficiência em painéis solares, armazenamento de energia e projeto
de circuitos do Sistema Elétrico de Potência (EPS), e consequentemente gerando uma melhor
extração do valor da missão. Uma abordagem complementar consiste na aplicação de técnicas de
Pesquisa Operacional, que podem melhorar o gerenciamento de energia e, portanto, maximizar o
valor da missão, por meio do planejamento inteligente da mesma e do escalonamento de tarefas.
A maioria dos trabalhos da área considera missões de Observação da Terra (EO) com múltiplos
satélites, com formulações resolvidas online, a bordo da espaçonave, resultando em tomadas
de decisão não ótimas. Poucos trabalhos de pesquisa focam nas características específicas do
escalonamento de tarefas dos nanossatélites, suas limitações e aplicações. O agendamento online,
por exemplo, não é adequado para nanossatélites devido ao seu baixo poder de computação
integrado e porque a otimização é desejada, pois os recursos são mais escassos. Os protocolos de
agendamento de satélites são diretamente responsáveis pela quantidade de trabalho realizado em
órbita; além disso, o algoritmo de escalonamento pode verificar se as tarefas podem ser executadas
com a frequência desejada, ou se as cargas úteis devem ser reduzidas. Nesta tese, é desenvolvido
um framework para escalonamento de tarefas em nanossatélites focado no gerenciamento ótimo
da energia disponível, enquanto garantindo qualidade de serviço.

Objetivos

O objetivo da presente tese é abordar as duas principais lacunas de pesquisa identificadas
e apresentadas no capítulo 2, que são: (i) analisar e modelar o problema de escalonamento
de nanossatélites visando (ii) maximizar a utilização dos recursos energéticos e otimizar a
extração de valor da missão. Especificamente: (1) compreender as aplicações, necessidades e
requisitos específicos das missões de nanossatélites e como estão sendo abordados na literatura
científica; (2) criar uma nova formulação matemática de programação linear inteira mista (MILP)
genérica o suficiente para agendar prontamente qualquer missão ou tarefa em qualquer ou vários
subsistemas de um satélite abordando totalmente o problema de agendamento de nanossatélites
e suas especificidades; (3) elaborar uma metodologia de agendamento multi-órbita junto com
um modelo de bateria, garantindo que a vida útil da bateria seja preservada e estendida;
(4) desenvolver um algoritmo branch-and-price por meio da aplicação da decomposição de



Dantzig-Wolf e procedimento de geração de colunas (CG), explorando a estrutura específica da
formulação MILP; (5) comparar e avaliar os resultados computacionais do branch-and-price
com a metodologia base MILP.

Metodologia

Uma formulaçãomatemática de programação inteira (MILP), projetada paramaximizar o número
de tarefas a serem executadas por um satélite, restrita à quantidade de potência disponível,
momento a momento, ao longo de uma órbita é a metodologia base utilizada. O modelo de
otimização é formulado para contemplar a prioridade da tarefa, número mínimo e máximo
de ativação, tempo mínimo e máximo de execução, período mínimo e máximo e janela de
execução. Um modelo de bateria é apresentado, com estratégias para extensão de sua vida útil:
um programa disjuntivo é projetado para considerar as eficiências de carga e descarga da bateria,
juntamente com restrições fuzzy para limitar as taxas de corrente de carga e descarga (taxas C e
E) e profundidade de descarga (DOD). Cada acesso à bateria é penalizado na função objetivo,
estimulando assim que o consumo de energia corresponda à energia de entrada. O vetor variante
de energia de entrada foi calculado com base na eficiência das células solares e em um modelo
analítico usado para estimar o campo de irradiância segundo parâmetros de órbita e atitude.
Como a formulação MILP criada pode se tornar muito difícil de resolver por solucionadores
de otimização de propósito geral quando instâncias de tamanho real são consideradas, uma
abordagem mais eficaz é projetada explorando a estrutura especial da matriz de coeficientes da
formulação. Para tanto, implementa-se aqui a decomposição de Dantzig-Wolfe, que possibilita
o uso da técnica de geração de colunas para melhorar o desempenho. Essa decomposição
divide a formulação original em um problema mestre e um ou mais subproblemas. O problema
mestre considera apenas um subconjunto das restrições na formulação original, e é definido
por variáveis relacionadas a pontos inteiros e raios do poliedro relacionados às restrições que
não foram incluídas. A vantagem é que esses pontos e raios podem ser gerados iterativamente,
recorrendo ao(s) subproblema(s), em um framework conhecido como técnica de geração de
colunas (CG). Se a solução obtida no final do algoritmo CG for inteira, então ela também é ótima,
caso contrário, o algoritmo é incorporado em uma estrutura branch-and-bound para encontrar a
solução ótima inteira, um procedimento conhecido como branch-and-price (B&P).

Resultados

Os resultados do escalonamento da formulação de programação inteira (IP) inicial demonstram
que esta abordagem gera um plano de missão com eficiência energética ideal, ao mesmo tempo
em que satisfaz todos os requisitos das tarefas, permitindo a melhor captura e utilização de
recursos energéticos e, além disso, garantindo QoS. Quando incluindo um modelo de bateria,
criando ummodeloMILP, pôde-se inferir que algumas vezes a formulação com a bateria é a única
capaz de viabilizar o modelo, principalmente por que permite executar tarefas em momentos
de eclipse solar na órbita. Além disso, a formulação gerencia melhor a energia disponível em
órbita, maximizando a utilidade do satélite, em relação à metodologia inicial. Os resultados
de experimentos computacionais envolvendo a geração de colunas com instâncias geradas
aleatoriamente, porém realistas, mostraram uma melhoria de 70% no tempo total de solução
em comparação com a abordagem padrão, que consiste em resolver um problema MILP com
um solver comercial. Foram programados diversos exemplos ilustrativos baseados em missões
realistas, cujos resultados corroboram a consistência da abordagem branch-and-price proposta.
Além disso, uma redução significativa nas lacunas de otimalidade foi observada em todas as



instâncias ao usar a abordagem proposta, permitindo ao tomador de decisão obter rapidamente
soluções quase ótimas para a melhor extração de valor da missão.

Discussão

A formulação de programação inteira (IP) inicial abordou o objetivo específico (2), estabelecendo
uma metodologia de escalonamento genérica o suficiente para operar com diferentes resoluções
de tarefas. A tarefa considerada pode ser uma execução feita por um dos sistemas embarcados
(ou seja, uma tarefa do sistema operacional) ou mesmo a operação de uma carga útil. Portanto, a
função desempenhada pela tarefa (ou seja, download de dados, beacon) ou pelo próprio satélite
(ou seja, observação da Terra, rede de comunicações) é indiferente ao modelo de otimização
criado, permitindo agendar prontamente qualquer tarefa. As posteriores modificações no modelo,
resultando em um MILP, atenderam o objetivo (3), modelando uma bateria e formulando o
acesso à energia como uma restrição fuzzy, permitindo que o escalonador exceda de maneira
ótima (decidida pelo solver de otimização) o limite de energia previamente imposto pela entrada
de energia dos painéis solares momento a momento. O benefício de considerar a bateria foi
demonstrado no aumento do valor da soma de prioridade das tarefas quando comparado com
o modelo sem bateria. Além disso, a bateria permite agendar tarefas críticas em períodos de
tempo de eclipse (sem entrada de energia dos painéis solares). O escalonamento multi-órbita
também foi uma adição importante, pois embora o regime cíclico apareça em alguns casos,
a formulação multi-órbita serve para trabalhar com mudanças no nível de energia da bateria,
que podem fazer com que os regimes periódicos de carga útil mudem ao longo do tempo para
atingir o viabilidade do problema de otimização. Além de estar intimamente relacionado com a
execução das tarefas, o nível da bateria é dependente da energia de entrada disponível no satélite.
Em órbitas fechadas, a variação na entrada não é perceptível. No entanto, ao analisar a vida
útil do satélite, pode haver uma variação significativa nos níveis de entrada de energia devido
a distúrbios em órbita. A estratégia de decomposição e ramificação de Dantzig-Wolfe, por sua
vez, permitiu um escalonamento para granularidade de tempo mais fina e maior quantidade de
tarefas, completando o objetivo (4). Finalmente, as comparações visando atender ao objetivo
(5) demonstraram que a metodologia branch-and-price é, em média, 88% mais rápida em
obter resultados ótimos contraposto aos tempos computacionais do MILP resolvido com solver
comercial.

Considerações Finais

A ideia de estimar um cronograma de tarefas pode servir de base para um projeto de nanossatélites.
Com base em seus resultados, o engenheiro, por exemplo, pode optar por incluir ou remover uma
carga útil, proibir a execução de tarefas simultaneamente, estimar a ocorrência de modos seguros
de operação, considerar o intervalo de tempo entre o lançamento e a operação nominal plena,
cenários de uso, e assim por diante. O trabalho apresentado nesta tese abordou este problema de
escalonamento, atendendo sete necessidades específicas, conforme indicado nos objetivos. Em
conclusão, acredita-se que uma estrutura robusta e realista para o agendamento offline ótimo de
missões de nanossatélites tenha sido alcançada, o que capacita o tomador de decisão a agendar
prontamente qualquer missão em um ou vários subsistemas de um nanossatélite.

Palavras-chave: Escalonamento de tarefas. Otimização. Modelo de bateria. CubeSat. Qualidade
de serviço.



ABSTRACT

Task scheduling is an effective approach to increase the value of a satellite mission, which leads
to improved resource management and quality of service. Despite subject to many constraints,
satellite task scheduling is ultimately restricted by the amount of power available at any given
moment. In this thesis, a nanosatellite task scheduling framework for optimal power management
and quality-of-service assurance is developed. A mixed-integer linear programming (MILP)
formulation is proposed, designed to maximize the number of tasks to be executed by a satellite,
constrained to the amount of power available at any moment along the course of an orbit is
presented. The optimization model is formulated to contemplate task priority, minimum and
maximum number of task activation, minimum and maximum execution time, minimum and
maximum period of a given task and execution window. The Dantzig-Wolfe decomposition is
used to explore the special structure of the (MILP) formulation, decomposing it by tasks, which
results in a novel profile-based formulation for the problem. To solve the resulting formulation,
a branch-and-price (B&P) algorithm is developed, that is suitable for the scheduling of a large
number of tasks over an expanded time horizon. The variant power input vector was calculated
based on the solar cells efficiency and on an analytical model used to estimate the irradiance field
according to parameters of orbit and attitude. To demonstrate the applicability of the methodology
several experiments were conducted considering four satellite sizes with different orbits and task
parameters. The results show that the proposed offline scheduling algorithm generates an optimal
energy effective scheduling plan, allowing the best possible use of available energy resources
while ensuring the quality of service (QoS). Furthermore, the B&P methodology proved to be
88% more computationally efficient to reach optimal schedules as opposed to the MILP.

Keywords: Task scheduling. Optimization. Battery model. CubeSat. Quality of service.
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qsj Power consumed by executing a task j on subsystem s.
rt Amount of power input at time t (from solar panels).
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tmin
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1 INTRODUCTION

Nanosatellites, or CubeSats, are defined as cubic satellites of 10 cm x 10 cm x 10
cm, or "1U", with a maximum weight of 1.33 kg per U, and a maximum size of 16 Us
(CHIN et al., 2008). This type of spacecraft is evolving from a purely low-cost educational and
technology demonstration tool to a platform for a variety of high-quality scientific experiments
and commercial applications (SHKOLNIK, 2018). This trend can be attributed to improvements
in hardware miniaturization, along with more than 15 years of research and innovation. This
prospect offers challenges and opportunities for the research community, companies, academics
and national space agencies, particularly on making the technology more reliable and efficient.

Given such compact standard, capacity for energy harvesting is small compared to more
traditional satellite formats, and consequently, energy management is even more crucial for
mission success, and Quality of Service (QoS) guarantees. This management is usually achieved
through scheduling, which consists of deciding the tasks that can be executed at any given
moment considering service requirements and existing resources. Mission planning can also
improve the extraction of value through better resources management, the completion of more
tasks, assurances of adequate timing response, and fulfillment of overall task requirements.

Satellite scheduling protocols are directly responsible for the amount of work performed
in orbit; nevertheless, despite being subject to many constraints and requirements, the ultimate
limiting factor is the amount of energy available for consumption. In order to extract the most
value of a mission, the scheduling algorithm goal should be to match energy consumption
and energy input. That, however, could conflict with the task priorities and quality of service
execution. Nevertheless, it is expected to exist a task plan for each satellite’s attitude and orbit
that ensures this energy-neutral condition, while maintaining the tasks execution requirements
and QoS. The energy-neutral operation happens when energy consumption is less than or equal
to energy input at all times.

The scheduling algorithm can run either offline, whereby the task execution plan deter-
mined a priori on the ground, or online, in real-time on-board the spacecraft. In this sense, an
offline scheduling approach can help the engineer to estimate whether the satellite will be able to
handle, for example, the desired amount of payloads. Thus, even subject to input power estimation
errors, it can be verified whether tasks would be performed with the desired frequency or whether
it would be necessary, for example, to reduce the number of payloads. When run offline, task
scheduling can assist engineers estimate whether the satellite will handle, for example, the desired
payloads. Thus, even subject to input power estimation errors, the scheduling algorithm can
verify whether the tasks can be performed with the desired frequency, or whether the payloads
have to be reduced.

Despite intense research in the field of satellite scheduling and increasing employment of
nanosatellites in high-value missions, such as scientific experiments and commercial applications
(POGHOSYAN; GOLKAR, 2017), almost no research has been directed to power management
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and mission planning of CubeSats. This thesis presents an initial integer programming Integer
Programming (IP) formulation aiming to generate a mission plan with optimal energy efficiency,
while satisfying task requirements, allowing better capture and utilization of energy resources
and, in addition, guaranteeing QoS. Subsequently, the base model is expanded to a Mixed Integer
Linear Programming (MILP), including a battery model, to allow performing tasks at times of
solar eclipse in orbit, and a method for scheduling multiple orbits. Then a decomposition and
solution strategy based on column generation is formalized for the MILP, in an attempt to solve
the problem for a larger time horizon or greater jobs number in a computational reasonable time.

Let us present this thesis objectives an then briefly discuss the complexities associated
with planning a nanosatellite mission, which mostly arises from the shortcomings inherent to its
format.

1.1 THESIS OBJECTIVES

The objective of the present thesis is to model the nanosatellite scheduling problem
aiming at maximizing energy resources utilization and optimizing mission extraction of value.
Specifically:

1. Understand the applications, necessities and requirements of nanosatellite missions and
how they are being addressed in the scientific literature;

2. Formulate a novel MILP formulation generic enough for readily scheduling any mission
or tasks in any or multiple subsystems of a satellite fully addressing the nanosatellite
scheduling problem and its specificities;

3. Develop a multi-orbit scheduling methodology along with a battery model, ensuring that
battery lifetime is preserved and extended;

4. Design a branch-and-price algorithm by means of applying the Dantzig-Wolf decompo-
sition and column generation Column Generation (CG) procedure, exploring the specific
structure of the MILP formulation;

5. Compare and evaluate the branch-and-price computational results with the base MILP
methodology.

Therefore, this thesis aims to contribute to the state-of-the-art by presenting a novel,
realistic and comprehensive nanosatellite scheduling framework, enabling any mission’s best
possible extraction of value.

1.2 THE NANOSATELLITE SCHEDULING PROBLEM

The service platform of a nanosatellite – illustrated in Figure 1 – usually has three main
modules: (i) a Telemetry, Tracking and Command (TT&C) unit for communications; (ii) an



Chapter 1. Introduction 21

On-Board Data Handler (OBDH) for data processing; and (iii) the Electrical Power System
(EPS) for energy conversion. The payloads, which effectively provide functionality and value
to the spacecraft, are interfaced with the service platform and can be viewed as tasks of high
importance and power impact to be scheduled. Therefore, energy management and internal
space are critical constraints for how many payloads can be included and the overall mission
extraction of value. For instance, a 2U size can typically accommodate six printed circuit boards,
which could translate into three service modules and three payload modules, despite the energy
harvesting capabilities being small, given the low surface area for PVs.

Figure 1 – A 2U nanosatellite and its modules.

EPS
OBDH

TT&C

Solar Panel

Structure

Battery

Antenna

Payload 1

Payload 2

Payload 3

Source: The author.

The tasks considered in this work refer to the activation and deactivation time of payloads,
which are high resource impact components of nanosatellites and require careful management,
given their critical importance for mission success. Therefore, in this problem, tasks are hardware
modules integrated into the spacecraft, and their quantity depends on the nanosatellite size (i.e.,
1U, 2U, etc.), which does not change during the mission. These high energy impact tasks have to
be pre-scheduled on Earth (i.e., the ground station), offline, and later sent to the nanosatellite,
which will leverage this information to define the order of tasks to be performed. It is considered
that certain tasks can be part of subsystems, which could be aggregated to their specific needs.
Therefore, the subsystems can refer to parts of the satellite or, in case of a single subsystem, the
satellite itself.

During a mission conception, tasks typically have some specific behavior according to
the payloads that they represent. First, it is considered that the tasks are non-preemptive, so,
once started, they must execute for at least a minimum execution time, limited by a maximum
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execution time. This gives the first requisite of the scheduling problem:

(i) Once a task has started, it must be completed successfully, contemplating its minimum
and maximum execution time.

Consider, for example, a situation where a task is relative to data transmission. This task
must be periodically transmitted every time the satellite passes over the ground station. This
demand raises the second requisite:

(ii) Tasks are periodic within a given threshold, so a minimum and maximum time between
startups of a given task are defined.

Also, it is necessary to ensure that tasks have a minimum number of activations to fulfill
mission requirements. This number can also be limited to an upper bound if a task should execute
no more than a given number of times:

(iii) The minimum and maximum number of startups within an orbit are defined for each task.

Through such requisites/properties, one can model, for instance, an environmental data
acquisition routine, the capture of one or more images at a specific point in the orbit, or any
other high-level activity performed by dedicated hardware such as payloads, sensors, cameras,
and other modules with relevant impact on the energy consumption of the satellite. In addition,
the tasks can have their ideal start and finish times optimally scheduled to guarantee the best
possible mission value.

Other determinant aspects for energy capture are the orbital parameters, more significantly
the time spent in the Earth’s shadow, or eclipse time. A typical nanosatellite has no thrusters
to adjust its trajectory and compensate for atmospheric drag and gravitational perturbations,
resulting in an orbit deviation that leads to variations of the total eclipse time. For the FloripaSat-I
mission developed by students at the Federal University of Santa Catarina (UFSC) and launched
in 2019 (MARCELINO et al., 2020), the eclipse’s fraction of the orbit (fe) varies along the years
from 0 to more than 35% of the orbit because the angle between the orbit plane and the Sun is
not constant.

Although the solar radiation field at such a vast distance from the Sun can be considered
parallel and approximated as a constant source of 1367 W/m2 (GILMORE; DONABEDIAN,
2002), the spacecraft’s kinematics can be quite convoluted. The faces of the nanosatellite towards
the Sun at any given time, as well the angles of incoming radiation, have to be calculated precisely
for an accurate energy harvesting prediction. In Figure 2, some typical nanosatellite attitudes are
illustrated. For instance, the spacecraft can have the following rotations and axis pointing:

• Nadir: the satellite revolution is coupled to the orbit’s period; therefore, one face (or axis) is
permanently facing the Earth’s surface. Attitude desirable for Earth Observation missions.
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• Sun-fixed: the satellite keeps one of its axes permanently centered at the Sun, and therefore,
one face (or axis) is permanently facing the Sun. Attitude useful for maximizing energy
capture or to protect a critical component from radiation.

• Ram1: The axis of rotation is tangent to the trajectory, aligned with the satellite’s velocity
vector.

• Arbitrary spin: rotation is arbitrary in all axes, typical of a satellite without attitude control
or damping forces.

• Magnet (not shown in Figure 2): the rotation alignment coincides with the Earth’s magnetic
field. A common attitude obtained by inserting a few magnets in the satellite’s structure to
promote this alignment.

Figure 2 – Examples of a nanosatellite’s attitude.

Source: The author.

Clearly, each of these attitudes uniquely impacts the energy harvested and power man-
agement, hence the difficulty in planning a mission in an optimal way.

A realistic scheduling formulation needs not only to consider the energy being harvested
at any instant but also the battery power and its dynamics, which raises the fourth requisite of
the scheduling problem:

(iv) The battery state-of-charge must be considered, taking into consideration the energy
harvesting capability of the nanosatellite.

For offline energy-constrained formulations, themission planning can provide the develop-
ers valuable information on whether the mission’s objectives align with the satellite’s capabilities
by optimally orchestrating the execution of the most energy-intensive tasks considering mission
objectives, QoS requirements, battery charge, and energy harvesting.
1 Name given due to the considered direction in which the satellite is ramming into a fluid, which in this case is
the ionosphere.
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1.3 DOCUMENT STRUCTURE

This thesis presents a compendium of papers or its sections published by the author during
the research. To better present the author’s contributions, this thesis is organized as follows:

• Chapter 2 presents a comprehensive review of related works and the state of the art. The
text of this chapter was partially published as an article in Rigo, Seman, Camponogara,
Morsch Filho, and Bezerra (2021);

• Chapter 3, published in Rigo, Seman, Camponogara, Morsch Filho, and Bezerra (2021),
presents the methodology for the optimal scheduling formulation along with its results;

• Chapter 4 improves the formulation to allow multi-orbit scheduling and models the
satellite’s battery. This chapter was published in Rigo, Seman, Camponogara, Filho, et al.
(2021b).

• Chapter 5 presents a Dantzig-Wolfe decomposition and branch-and-price strategy to solve
bigger instances of the problem, specifically, to consider more tasks and finer time step.
This chapter was published in Rigo, Seman, Camponogara, Morsch Filho, Bezerra, and
Munari (2022);

• Lastly, Chapter 6 brings the final remarks and future work.

1.4 PUBLICATIONS

As mentioned in the previous Section, the work presented in this thesis has resulted in
several publications, as listed bellow.

1. RIGO, Cezar Antônio; SEMAN, Laio Oriel; CAMPONOGARA, Eduardo; MORSCH
FILHO, Edemar; BEZERRA, Eduardo Augusto. Task scheduling for optimal power
management and quality-of-service assurance in CubeSats. Acta Astronautica, v. 179,
p. 550–560, 2021. ISSN 0094-5765. DOI: 10.1016/j.actaastro.2020.11.016.

2. RIGO, Cezar A.; SEMAN, L. O.; CAMPONOGARA, E.; MORSCH FILHO, E., et al.
Mission plan optimization strategy to improve nanosatellite energy utilization and tasks
QoS capabilities. In: IV IAA Latin American Cubesat Workshop (IAA-LACW’2020).
Paris: International Academy of Astronautics. [S.l.: s.n.], 2020.

3. RIGO, Cezar Antônio; SEMAN, Laio Oriel; CAMPONOGARA, Eduardo; FILHO, Ede-
mar Morsch, et al. A nanosatellite task scheduling framework to improve mission value
using fuzzy constraints. Expert Systems with Applications, v. 175, p. 114784, 2021b.
ISSN 0957-4174. DOI: 10.1016/j.eswa.2021.114784.
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4. RIGO, Cezar Antônio; SEMAN, Laio Oriel; CAMPONOGARA, Eduardo; MORSCH
FILHO, Edemar; BEZERRA, Eduardo Augusto; MUNARI, Pedro. A branch-and-price
algorithm for nanosatellite task scheduling to improve mission quality-of-service. Euro-
pean Journal of Operational Research, v. 303, n. 1, p. 168–183, 2022. ISSN 0377-2217.
DOI: https://doi.org/10.1016/j.ejor.2022.02.040.

5. FILHO, Edemar Morsch et al. Irradiation Flux Modelling for Thermal–Electrical Simula-
tion of CubeSats: Orbit, Attitude and Radiation Integration. Energies, v. 13, n. 24, 2020.
ISSN 1996-1073. DOI: 10.3390/en13246691.

6. SEMAN, Laio Oriel; RIBEIRO, Brenda F., et al. An Energy-Aware Task Scheduling
for Quality-of-Service Assurance in Constellations of Nanosatellites. Sensors, v. 22,
n. 10, 2022. ISSN 1424-8220. DOI: 10.3390/s22103715. Available from: https:
//www.mdpi.com/1424-8220/22/10/3715.

7. CAMPONOGARA, Eduardo et al. A continuous-time formulation for optimal task schedul-
ing and quality-of-service assurance in nanosatellites. Computers & Operations Re-
search, v. 147, p. 105945, 2022. ISSN 0305-0548. DOI: https://doi.org/10.1016/
j.cor.2022.105945.
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2 STATE OF THE ART

This chapter presents the methodology and results of a systematic literature review,
performed aiming to identify technological gaps and gather scientific, theoretical, and practical
knowledge necessary to situate and substantiate the research proposed in this thesis. Notice
that the text of this chapter was partially published as an article in Rigo, Seman, Camponogara,
Morsch Filho, and Bezerra (2021).

2.1 METHODOLOGY

The methodology followed here is that of "mapping study" (COOPER, 2016; DIAS;
BARBOSA; VIANNA, 2018), developed to minimize researcher bias in the process of finding,
filtering and analyzing the published works. This process consists in tree phases:

1. Definition of research questions

2. Design of the search process

3. Definition of criteria for filtering the results

The following three topics will describe in detail all these steps, to make the process of
searching and analyzing the literature as transparent as possible.

2.1.1 Research questions

For this work, four General Questions (GQ), three Specific Questions (SQ) and two
PublicationQuestions (PQ)were delineated. The intent with the general questions is to understand
what technologies are being employed for modeling and solving the scheduling problem, and
what systems are being modeled. The intent with the specific questions is to identify how these
techniques are being applied. Lastly, the reason for the publication questions is to find where
these studies are being published, and what is their impact. The research questions are presented
in Table 1.

2.1.2 Research process

The first step in the research process is to define the search string to be used in the
databases search engines. Synonyms, or equivalent expressions, for the main terms “satellite”
and “scheduling” were considered, resulting in the following search string: ((satellite OR cubesat
OR nanosatellite OR optimal satellite OR satellite energy OR satellite energy-driven) AND
(scheduling OR scheduling optimization OR task scheduling OR mission plan)) – see Table 2.

With the search string set, the second step was to specify the publication repositories
were to conduct the searches. Taking into account the major repositories in engineering and
computer science, seven were chosen: IEEE Xplore Digital Library, ACM Digital Library, arXiv,
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Table 1 – Research questions.

Reference Question

General Questions
GQ1 What strategies are being used to formulate the task scheduling problem in satellites?
GQ2 What types of missions are being modeled?
GQ3 What types of satellites are being modeled?
GQ4 What algorithms are being used to solve the formulations?
Specific Questions
SQ1 How are the strategies being applied in the task scheduling problem in satellites?
SQ2 How is optimization being used to address the scheduling problem?
SQ3 How is energy being modeled in these formulations?
Publication Questions
PQ1 Where have the works been published?
PQ2 What is the average number of citations?

Source: The author.

Table 2 – Search terms.

Main term Synonym

Satellite satellite OR cubesat OR nanosatellite OR optimal satellite OR satellite energy OR
satellite energy-driven

Scheduling scheduling OR scheduling optimization OR task scheduling OR mission plan
Source: The author.

Science Direct, Wiley, Springer Library, and Google Scholar. In order to get more relevant results,
the IEEE Xplore search was performed using the command search in other search options and
limiting the search to document title only. On ACM Digital Library, arXiv and Wiley the search
text was inserted directly in the search engines. In the Springer Library, on advanced search
options, the search query was inserted in the field where the title contains. In Science Direct, the
advanced search option was used and the search string was entered in the area Title, abstract or
author-specified keywords. Lastly, for Google Scholar, the search was done using the keyword
allintitle, which limits the search to titles only.

2.1.3 Publications filtering

For the search results filtering process, both inclusion and exclusion criteria were defined
according to Table 3. Applying these criteria allows the exclusion of irrelevant studies while helps
to find the most impactful and high-quality researches. Hence, the first step in the filtering process
was done per IC2, IC3, EC1, EC2, and EC3 while still in the databases, using the website’s
tools. The resulting titles were analyzed for the next filtering step, abstract and keywords reading.
Following that, the remaining papers were catalogued in a tool called Notion 1 to allow for
further organization, labeling, and processing. Figure 3 shows the filtering process steps and the
resulting number of papers.
1 Notion can be accessed in https://www.notion.so/product/

https://www.notion.so/product/
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Table 3 – Filtering criteria.

Reference Criteria

Inclusion
IC1 The research brings innovative contributions for formulating and solving the task

scheduling problem in satellites.
IC2 The research is published in a journal or a conference.
IC3 The research is a full paper.
Exclusion
EC1 The work was published before 2010.
EC2 The work was published before 2018 and has no citation.
EC3 The work is not written in English.
EC4 The study is not related to the research questions.

Source: The author.

Figure 3 – Filtering process.
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After combining all the papers and removing duplicates, a process of partial reading
was done for all the remaining. This partial reading followed the guidelines presented by
Griswold (2009) and Keshav (2007), on how to read an Engineering paper. The process consisted
in carefully reading the abstract, section titles and the conclusion while paying attention to
mathematical formulations, figures and tables; all the rest was ignored. This process allowed a
basic understanding of the paper contributions, the problem it is formulating, strategies for the
solution and its success. With this basic understanding and this thesis research objectives, an



Chapter 2. State of the art 29

A-to-D relevance classification system was applied according to Hayton (2015), following the
criteria below:

• A: The study is crucial for the research, an essential reading.

• B: The study is important and adds to the knowledge of the field, but might not impact this
research.

• C: The study may be important and it might be useful.

• D: The study is poorly related.

The papers assigned the letter A and B were fully read, which resulted in finding other
relevant studies that were added even if not found by the search process. Therefore, the following
papers were added: Fu, Modiano, and Tsitsiklis (2003), Moser et al. (2006), Bianchessi et al.
(2007), Edalat and Motani (2016), Hermanns, Krčál, and Nies (2017), Juan Fraire et al. (2018),
Nies et al. (2018), Bisgaard et al. (2019), Kørvell and Degn (2019) and Juan A Fraire et al. (2020).
The papers assigned the letter C were partially read, aiming to answer the research questions, and
the ones with a D were discarded. Finally, the last filtering criterion was to analyze the papers
per IC1 and EC4.

As presented in Figure 3, Google Scholar brought the highest number of unrelated
studies, when compared with the initial search. Several results from Google Scholar were not
from journals or conferences or did not have the full paper written English. Differently, the
majority of relevant papers came from IEEE Xplore, which produced the best initial results,
and many of them reappeared in Google Scholar search. Wiley had no related papers in their
database and ACM Library only 2. By the end of the filtering process, 34 papers remained.

2.2 RESULTS

The selected papers were organized on Notion according to: title, year, class, number
of citations, type of mission, type of satellite, scheduling mode (online or offline), scheduling
algorithm, constraints and objectives. The papers will be presented in the following sections in
order to answer each research question.

2.2.1 GQ1 – What strategies are being used to formulate the task scheduling problem in
satellites?

According to Deng et al. (2017), the existing formulations for the satellite scheduling
problem fall mainly in three categories: Mathematical Programming Model (MPM), Graph
Theory Model (GTM) and Constraint Satisfaction Problem Model (CSPM). Here, however,
the MPM category is subdivided to show specifically which researches used MILP for their
formulations. The category Others was also created to accommodate works that had unique
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approaches, such as Moser et al. (2006) that scheduled based in an Early Deadline First (EDF)
policy. Therefore, the papers were classified as presented in Table 4 where the Share column
shows the percentage of papers that used each modeling strategy.

Table 4 – Strategies being used to formulate the satellite scheduling problem.

Strategy Studies Share

Mathematical Program-
ming Model

Fu, Modiano, and Tsitsiklis (2003), Juan Fraire et al. (2018), Zhou et al.
(2019), Pang et al. (2015), Zhai et al. (2015), Chu, Chen, and Tan (2017),
Wang, Demeulemeester, Hu, Qiu, et al. (2018), Cui and Zhang (2019),
Wu, Zhang, et al. (2019), Haijiao et al. (2019), He et al. (2019), Lam,
Rivest, and Berger (2019) and Juan A Fraire et al. (2020).

39%

Constraint Satisfaction
Problem Model

Bianchessi et al. (2007), Wang, Zhu, et al. (2013), Zhu et al. (2014), Wu,
Wang, et al. (2014) and Zhao et al. (2019), Deng et al. (2017). 18%

Mixed Integer Linear Pro-
gramming

Edalat and Motani (2016), Song et al. (2018), Chen et al. (2019), Meng
et al. (2019) and Critchley-Marrows, Isacsson, and Gårdebäck (2019). 14%

Graph Theory Model Wu, Ma, et al. (2012), Wang, Sheng, et al. (2018) and Jia et al. (2017). 9%

Others
Moser et al. (2006), Castro and Straub (2015), Hermanns, Krčál, and
Nies (2017), Nies et al. (2018), Slongo et al. (2018), Bisgaard et al.
(2019) and Kørvell and Degn (2019).

20%

Source: The author.

Some studies utilized combined strategies in their formulation, such as Wu, Ma, et al.
(2012) and Wang, Sheng, et al. (2018) that employed both MPM and GTM – although, in the
statistics, only one category was accounted for. Others, like Kørvell and Degn (2019), Bisgaard
et al. (2019) and Nies et al. (2018) used Priced Timed Automata (PTA) as an alternative technique
to classical MPM formulations.

2.2.2 GQ2 – What types of missions are being modeled?

The results showed that themajority ofmissions are those of Earth Observation (EO), with
seventeen papers, seven published in 2019 only. Following that, nine papers modeled missions
of data relay satellites, and four papers missions of scientific experiments – such as CubeSats
with payloads. One research scheduled a mission for Radio Detection And Ranging (RADAR),
and other single research a mission for wireless communications. Two papers included in the
addition phase of the filtering process scheduled sensor networks, and not satellite missions. The
final classification is shown in Table 5.

2.2.3 GQ3 – What types of satellites are being modeled?

The types of satellites considered here were: single satellite, multiple satellite, and
CubeSat. Since CubeSat is a particular type of spacecraft, with its own set of limitations and
applications, it was decided to differentiate it from the generic satellite formulations. The works
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Table 5 – Type of satellite missions formulated.

Mission Researches Share

Earth observation

Bianchessi et al. (2007), Wu, Ma, et al. (2012), Wang, Zhu, et al. (2013),
Zhu et al. (2014), Wu, Wang, et al. (2014), Zhai et al. (2015), Chu,
Chen, and Tan (2017), Hermanns, Krčál, and Nies (2017), Wang, Sheng,
et al. (2018), Song et al. (2018), Wang, Demeulemeester, Hu, Qiu, et al.
(2018), Cui and Zhang (2019), Wu, Zhang, et al. (2019), Haijiao et al.
(2019), He et al. (2019), Chen et al. (2019) and Lam, Rivest, and Berger
(2019).

50%

Data relay satellite
Deng et al. (2017), Jia et al. (2017), Nies et al. (2018), Juan Fraire et al.
(2018), Kørvell and Degn (2019), Bisgaard et al. (2019), Zhao et al.
(2019), Zhou et al. (2019) and Juan A Fraire et al. (2020).

26%

Scientific experiments Castro and Straub (2015), Slongo et al. (2018), Meng et al. (2019) and
Critchley-Marrows, Isacsson, and Gårdebäck (2019). 12%

Sensor network Moser et al. (2006) and Edalat and Motani (2016). 5%

Wireless communication Fu, Modiano, and Tsitsiklis (2003). 3%

RADAR Pang et al. (2015). 3%
Source: The author.

classification is presented in Table 6 and the 7% missing in the Share column accounts for the
two papers on sensor networks – see Table 5.

Table 6 – Type of satellite modeled.

Satellite Researches Share

Multiple

Bianchessi et al. (2007), Wu, Ma, et al. (2012), Zhu et al. (2014), Wu,
Wang, et al. (2014), Zhai et al. (2015), Deng et al. (2017), Jia et al.
(2017), Wang, Demeulemeester, Hu, Qiu, et al. (2018), Cui and Zhang
(2019), He et al. (2019), Chen et al. (2019), Meng et al. (2019) and Lam,
Rivest, and Berger (2019).

38%

Single
Fu, Modiano, and Tsitsiklis (2003), Wang, Zhu, et al. (2013), Chu, Chen,
and Tan (2017), Song et al. (2018), Wu, Zhang, et al. (2019), Zhao et al.
(2019), Haijiao et al. (2019) and Zhou et al. (2019).

23%

Single CubeSat
Bisgaard et al. (2019), Nies et al. (2018), Hermanns, Krčál, and Nies
(2017), Pang et al. (2015), Castro and Straub (2015), Slongo et al. (2018)
and Critchley-Marrows, Isacsson, and Gårdebäck (2019).

20%

Multiple CubeSats Juan Fraire et al. (2018), Juan A Fraire et al. (2020) and Kørvell and
Degn (2019) 9%

Source: The author.
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2.2.4 GQ4 – What algorithms are being used to solve the formulations?

The algorithms being used for solving the formulations in task scheduling vary greatly,
from commercial solvers to unique specific approaches. Wang, Demeulemeester, Hu, Qiu, et al.
(2018) identifies four major groups:

• Exact algorithms: includes approaches that can guarantee optimal solutions, such as
branch-and-bound, Russian Doll search, dynamic programming and commercial solvers;

• Meta-heuristics: includes approaches that use stochastic search, such as tabu search, ant
colony, evolution algorithms, local search and simulated annealing;

• Heuristics: includes problem specific approaches based on problem-specific rules, such as
EDF or greedy and constructive algorithms.

• Priced Timed Automata: a methodology that extends well-established timed automata
technology to optimal scheduling and planning problems (BEHRMANN; LARSEN;
RASMUSSEN, 2005).

Here, one more categorie will be considered, Deep Learning. Therefore, the classification
of researches is presented in Table 7. The majority of works utilizes more than one approach in
the resolution, so many papers will appear in more than one category.

Table 7 – Algorithms being used to solve the scheduling formulations.

Algorithm Researches

Heuristic Fu, Modiano, and Tsitsiklis (2003), Moser et al. (2006), Wang, Zhu, et al. (2013), Zhu
et al. (2014), Wu, Wang, et al. (2014), Zhai et al. (2015), Edalat and Motani (2016), Jia
et al. (2017), Wang, Sheng, et al. (2018), Song et al. (2018), Wang, Demeulemeester,
Hu, Qiu, et al. (2018), Wu, Zhang, et al. (2019), He et al. (2019), Meng et al. (2019)
and Lam, Rivest, and Berger (2019).

Exact Juan Fraire et al. (2018), Juan A Fraire et al. (2020), Hermanns, Krčál, and Nies
(2017), Fu, Modiano, and Tsitsiklis (2003), Bianchessi et al. (2007), Pang et al. (2015),
Chu, Chen, and Tan (2017), Wang, Demeulemeester, Hu, Qiu, et al. (2018), Critchley-
Marrows, Isacsson, and Gårdebäck (2019), Chen et al. (2019), Zhou et al. (2019) and
Haijiao et al. (2019).

Meta-heuristics Bianchessi et al. (2007), Wu, Ma, et al. (2012), Zhai et al. (2015), Deng et al. (2017),
Cui and Zhang (2019), Wu, Zhang, et al. (2019), Zhao et al. (2019) and He et al. (2019).

Deep Learning Haijiao et al. (2019), Meng et al. (2019) and Lam, Rivest, and Berger (2019).

Priced Timed Automata Bisgaard et al. (2019), Nies et al. (2018) and Kørvell and Degn (2019).
Source: The author.
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2.2.5 SQ1 – How are the strategies being applied in the task scheduling problem in satel-
lites?

The majority of works apply the strategies to solve the problem online and in a non-
optimal form. The online solutions are real-time or near real-time for scheduling onboard the
spacecraft. The offline solutions are usually solved on the ground and are sent to the satellite via
telecommand. Table 8 shows which papers reported online and offline scheduling modes.

Table 8 – Scheduling modes.

Mode Researches Share

Online

Moser et al. (2006), Wang, Zhu, et al. (2013), Zhu et al. (2014), Wu,
Wang, et al. (2014), Zhai et al. (2015), Edalat and Motani (2016), Deng
et al. (2017), Chu, Chen, and Tan (2017), Jia et al. (2017), Slongo et al.
(2018), Wang, Sheng, et al. (2018), Song et al. (2018), Cui and Zhang
(2019), Wu, Zhang, et al. (2019), Meng et al. (2019), Zhou et al. (2019),
Haijiao et al. (2019) and Lam, Rivest, and Berger (2019).

53%

Offline

Nies et al. (2018), Kørvell and Degn (2019), Juan Fraire et al. (2018),
Juan A Fraire et al. (2020), Hermanns, Krčál, and Nies (2017), Bisgaard
et al. (2019), Fu, Modiano, and Tsitsiklis (2003), Bianchessi et al. (2007),
Pang et al. (2015), Wang, Demeulemeester, Hu, Qiu, et al. (2018), Chen
et al. (2019) and Critchley-Marrows, Isacsson, and Gårdebäck (2019).

35%

Source: The author.

Wu, Ma, et al. (2012) and Zhou et al. (2019) were not clear in their paper about the
application of their algorithm; therefore, they had no classification. He et al. (2019) provided
both solutions, one offline and one online. The only studies to provide an optimal schedule were
those of Moser et al. (2006) and Chen et al. (2019).

2.2.6 SQ2 – How is optimization being used to address the scheduling problem?

Optimization usually requires an objective function and a set of constraints to be defined.
In scheduling applications the objective functions are formulated to maximize mission profit
(WANG; DEMEULEMEESTER; HU; QIU, et al., 2018; WU; ZHANG, et al., 2019), maximize
sum of task priorities (MENG et al., 2019; DENG et al., 2017), maximize data throughput (ZHOU
et al., 2019; FRAIRE, J. et al., 2018; FRAIRE, J. A. et al., 2020; KØRVELL; DEGN, 2019),
maximize image resolution in EO missions (ZHU et al., 2014), minimize resource utilization
(WANG; ZHU, et al., 2013; ZHAO et al., 2019), and other very specific goals such as to minimize
the overlap between satellites (HE et al., 2019).

The type of constraints varies greatly. EO missions, for example, usually include con-
straints for memory capacity, attitude control, position, orbit and timing (HAIJIAO et al., 2019;
CHEN et al., 2019; CUI; ZHANG, 2019). Data relay satellite scheduling formulations usually
include constraints of memory, bandwidth, position, energy, and attitude (ZHAO et al., 2019;
ZHOU et al., 2019; DENG et al., 2017).
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Finally, the results showed that all of the paperswhich presented offline solutions employed
mathematical optimization formulations.

2.2.7 SQ3 – How is energy being modeled in these formulations?

As shown in Table 9, the majority of works formulated energy as a constraint on their
MPM. Some works considered it in their objective functions, such as Zhao et al. (2019), Deng
et al. (2017), Pang et al. (2015) and Wang, Zhu, et al. (2013) that modeled it for minimization
of power consumption and Edalat and Motani (2016) which aimed to balance energy levels
across the sensor nodes. Slongo et al. (2018) and Moser et al. (2006), who did not employ MPM,
considered it as a resource to be fully harvested and a limiting factor, respectively. Finally, 35%
of the researches did not account for energy resources at all.

Table 9 – Energy in the satellite scheduling formulations.

Formulated as Researches Share

Constraint

Fu,Modiano, andTsitsiklis (2003),Wu,Ma, et al. (2012),Wu,Wang, et al.
(2014),Wang, Demeulemeester, Hu, Qiu, et al. (2018), Song et al. (2018),
Cui and Zhang (2019), Wu, Zhang, et al. (2019), Zhou et al. (2019),
He et al. (2019), Lam, Rivest, and Berger (2019), Critchley-Marrows,
Isacsson, and Gårdebäck (2019) and Kørvell and Degn (2019).

35%

Not accounted

Bianchessi et al. (2007), Zhu et al. (2014), Castro and Straub (2015),
Zhai et al. (2015), Jia et al. (2017), Chu, Chen, and Tan (2017), Wang,
Sheng, et al. (2018), Haijiao et al. (2019), Chen et al. (2019) and Meng
et al. (2019).

29%

Objective
Juan A Fraire et al. (2020), Juan Fraire et al. (2018), Pang et al. (2015),
Wang, Zhu, et al. (2013), Edalat and Motani (2016), Deng et al. (2017)
and Zhao et al. (2019).

20%

Other Moser et al. (2006), Slongo et al. (2018), Bisgaard et al. (2019), Nies
et al. (2018) and Hermanns, Krčál, and Nies (2017). 15%

Source: The author.

2.2.8 PQ1 – Where have the works been published?

The majority of papers have been published in high impact journals, such as Acta
Astronautica, IEEE Systems Journal, IEEE Access and IEEE Transactions on Parallel and
Distributed Systems. Only five papers have been published in conferences: Moser et al. (2006),
Zhao et al. (2019), Castro and Straub (2015), Meng et al. (2019) and Lam, Rivest, and Berger
(2019).

2.2.9 PQ2 – What is the average number of citations?

The average number of citations for the 34 resulting papers was 22.67. The most cited
one is Bianchessi et al. (2007) with 189 citations.
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2.3 DISCUSSION

In this section, the most relevant researches will be briefly discussed, the majority of
which were previously classified as A.

Earth observation missions are modeled in several works. Bianchessi et al. (2007), for
instance, tackled the problem of scheduling earth observation requests in a scenario comprised of
several satellites and multiple orbits. Implementing an algorithm based on tabu search heuristics,
their objective was to maximize profit determining which requests to attend while conforming
to operational constraints of orbit, position and time. A column generation technique was used
to set upper bounds and assess the quality of the solutions, which were not optimal. The similar
work of Wang, Demeulemeester, Hu, Qiu, et al. (2018), formulated a stochastic model of
clouds and a novel mixed-integer nonlinear programming problem to schedule earth observation
requests in a scenario with multiple satellites. They developed two column-based heuristics
and a knapsack-based heuristic to find feasible solutions for large-scale instances. Zhu et al.
(2014) also explored the multiple satellite scheduling problem for earth observation, introducing
fault-tolerance mechanisms in a double-objective real-time scheduling algorithm. The authors
introduced the fault-tolerance capabilities by implementing techniques of primary-backup with
task overlapping, task merging, and task insertion in multiple satellites, enhancing reliability and
observation resolutions.

Other commonly addressed problem is emergency response. Wu, Zhang, et al. (2019)
compare scheduling algorithms and propose a novel task priority model for this problem. They
formulate a dual-objective optimization problem for scheduling and solve it using heuristic,
genetic and NSGA-II2 algorithms for comparison. Their results showed that NSGA-II algorithm
is the most effective in finding the best objective values while the heuristic algorithm has less
computational cost. The analogous work of Wang, Zhu, et al. (2013) established constraints
for backward shift of tasks to allow more flexibility in the insertion of new tasks and for task
merging to execute multiple tasks simultaneously. Combined to that, the authors formulated a
mathematical programming model with multiple objectives and employing heuristics, were able
to solve the problem as to outperform alternatives in their results. Cui and Zhang (2019) also
explored dynamic real-time scheduling for emergency response in earth observation satellites.
To solve the scheduling problem, they created a hybrid genetic tabu search algorithm. They also
presented an algorithm for dynamic insertion, reallocation and deletion of tasks to the initial
scheduling plan based on parameters such as task urgency, type of observation, conflicts, and
execution viability.

Communications satellites are also a topic of intense research. Fu, Modiano, and Tsitsiklis
(2003), for instance, researched energy consumption for communication satellites presenting
a dynamic programming formulation for maximizing users’ requests response constrained to
the amount of available energy. Nevertheless, in their formulation, if the battery is full and
2 NSGA-II is a stochastic evolutionary solving algorithm for multi-objective optimization formulations. More
details in: https://ieeexplore.ieee.org/document/996017

https://ieeexplore.ieee.org/document/996017
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the users request does not consume all energy input from solar cells, the energy is lost. In
contrast, Deng et al. (2017) proposes two methodologies, one for static and other for dynamic
task scheduling in data relay satellite systems. A multi-objective optimization formulation was
created by the authors to maximize the sum of task priorities and minimize power consumption.
They formulated constraints for the satellite’s antenna mechanisms (switching time, data rate,
number of users), scheduling delay, and memory usage, finding an initial scheduling solution
applying a genetic algorithm. In the dynamic task model, tasks can be preempted, divided, time
dislocated, and switched, although the objectives here are to minimize task divisions and overall
changes while maximizing their sum weight.

Nanosatellite missions are also studied. Both Bisgaard et al. (2019) and Nies et al. (2018)
report on the use of Priced Timed Automata (PTA) for battery-aware scheduling a GOMX–3
mission. The PTA technique is a new and promising technique for task scheduling, nevertheless
is not as rigorous as other approaches such MP, which allows for flexibility, that was very
well exploited by the authors, but can result in important jobs not executing. Although they
successfully demonstrated the application of the technique, their solution is tailored for the
GOMX–3 mission and their energy model considers constant solar energy on non-eclipse time,
a non-ideal approximation. Furthermore, despite reaching optimality, their objective function is
cost-optimal and not reward-optimal and does not maximize mission value. Similarly, Critchley-
Marrows, Isacsson, and Gårdebäck (2019) describes the process of formulating a mixed-integer
linear programming model to schedule eight payloads in a 2U Swedish CubeSat mission,
constrained to power availability and specific requirements for each payload. Their objective
was to obtain a feasible schedule and did not account for payloads priority or maximization of
mission value. Although they succeeded in scheduling the payloads for several orbits, their basic
formulation was too mission-specific, lacking generality for easy reusability. Slongo et al. (2018)
also focused on CubeSats, presenting a scheduling algorithm based in the perturb and observe
strategy to maintain the solar panels in their maximum power point by dynamically activating
tasks of fitting power consumption, in order to match power input. Although their goal was
similar to the one proposed here and they have empirically demonstrated that task execution can
maximize energy harvesting, their algorithm neither accounts for quality of service nor does it
provide an optimal task plan. Moreover, lists of tasks were required to be manually organized,
therefore not fully automating the scheduling process.

Pang et al. (2015) is another relevant work that discussed the application of nanosatellites
in swarm for synthetic aperture radar (SAR) imaging. The authors present a mathematical
formulation for job scheduling based on constraints of stochastic failures probability and com-
munication bandwidth with the objective of minimizing power consumption and improving
reliability. A convexification method was used to reduce the computational demand and a cutting-
plane algorithm was employed to solve the problem. Their algorithm showed improvements in
metrics of mission failure when compared to general scheduling algorithms.

Previous research has also addressed battery models for energy management in satellites.
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In Hermanns, Krčál, and Nies (2017), the authors develop and explore a comprehensive kinetic
battery model to compute the risk of premature battery depletion given uncertainty in the load
process and a constant charging behavior. Using a Markov decision process, they developed
a task scheduling algorithm and applied to a real 2U CubeSat mission (GOMX-1). Despite
demonstrating a successful schedule for the mission, their focus is on battery lifetime analysis,
probability of depletion and state of charge in long time-spans. Consequently, their scheduling
approach is not focused on QoS guarantees, lacks generality for easy re-usability and does not
find optimal solutions. Furthermore, their energy model considers constant solar energy on
non-eclipse time.

2.4 CONCLUSIONS

From the prior survey, some conclusions can be drawn. The research question’s answers
showed that Mathematical Programming (MPM) is the most used strategy to formulate the
satellite scheduling problem, given that 57% of the studies used it. These formulations are
primarily being solved with heuristics or meta-heuristics algorithms for online scheduling in a
non-optimal manner.

The majority of formulations are of earth observation missions with multiple satellites,
where real-time scheduling is of interest for user requests response and emergency response.
Moreover, from the selected papers published in the period 2017-2019, 65% of them are
for EO scheduling, characterizing it as a recent research trend. Another possible trend is the
implementation of Deep Learning techniques, given that three 2019 publications used it in an
attempt to automate online decision making about which tasks to execute next.

On the other hand, little research has been carried on the problem of scheduling single
nanosatellite missions, even though this type of spacecraft has great potential and is playing an
increasing role in the space sector. They are a type of satellite with its own set of limitations and
applications, and seven studies on scheduling modeling have been found in this survey, all of
them with limited approaches and results.

Furthermore, little research has been dedicated in modeling and managing energy re-
sources. Even though it is a crucial factor in satellite systems, 29% of the researches did not
account for energy in any form on their formulations. The majority of papers considered it as
a simple constraint, or a resource to be minimally exploited – portrayed by objective functions
to minimize energy consumption. The researches that best analyzed the energy problem, con-
sidering battery and a harvesting unit, were those of Edalat and Motani (2016) and Moser et al.
(2006); nevertheless, they are focused on sensor networks in the ground weather and not satellites
in orbit.

However, no study contemplates single nanosatellite under variant power input with the
rigor and advantages of exact optimization algorithms. Thus, the work presented in this thesis
addresses these two combined features, namely the analysis and modeling of the nanosatellite
scheduling problem aiming at maximizing energy resource usage, and the optimization of the
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mission extraction of value.
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3 BASE MODEL FORMULATION

This chapter presents the methodology for task scheduling, optimal power management
and QoS assurance. The text here was published as an article in Rigo, Seman, Camponogara,
Morsch Filho, and Bezerra (2021).

First the satellite power input model used is detailed, in Section 3.1, based on the
methodology described by Filho et al. (2020). Notice that the power input methodology was
not developed, nor was it implemented by the author, and is only presented in this thesis so
the reader can fully understand the work. The calculated orbit power is then used as an input
vector for the scheduler. Then, the novel optimal scheduling formulation, which is cast in the
form of a mathematical programming problem, is presented in Section 3.2. This chapter also
presents the simulation scenarios explored and the results and analysis, in Section 3.3; lastly, a
brief discussion is presented in Section 3.4.

3.1 POWER INPUT MODEL

To calculate the irradiance over the CubeSat, and consequently the power input, an
analytical model was used. Encompassing different parameters of orbit and attitude, the model
uses a rotation matrix to simulate the dynamics of the satellite along the orbit (FILHO et al.,
2020). This model can be extended for bigger and different geometries by a simple adaptation
of normal vectors that represent the body. It does not have limitations in terms of spin speed
neither spin axis, it is, however, suitable for a perfectly circular orbit without the typical lag in
the ascending node. Here a time discretization is applied, such that the power harvested will be
considered constant in a given time period, usually of one minute length. This is a reasonable
approximation given the kinematics of the spacecraft is relatively constant in such small time
window, and consequently the power harvested.

Radiation from the Sun is the most significant energy source for satellites in Low Earth
Orbit (LEO). The constant value adopted in this study is Isun = 1360W/m2 for the solar flux
radiation and it is assumed that the solar rays are parallel. However, the position and orientation
of the satellites may be transient and both orbital parameters and attitude will define the amount
of surface-reaching irradiance, duration of the eclipse, which sides are shadowed by nearby
neighborhood and consequently the total power input. The power generation by photo-voltaic
panels (Pk) on each one of the six sides k of a standard CubeSat is modeled by:

Pk = 𝜂ApvkIsunFk→SunΨ (1)

where 𝜂 is the efficiency of the photo-voltaic cells in the emission spectrum of the Sun, Apvk is
the area of the photovoltaic cells, Fk→Sun is the view factor of the surface k in relation to the Sun
and finally the parameter Ψ is a step function created to become null when the satellite is under
the shadow of the Earth. Further details about the development of these equations can be found
in EdemarIrradiance.
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Assuming Commercial Off The Shelf (COTS) model for the CubeSat’s solar panel, the
efficiency and area of photovoltaic cells are 30% and 60.36 cm2 for 1U (GOMSPACE, 2020),
respectively. For 2U, in four sides the area duplicates, while the efficiency remains the same for
every side, as in the 1U.

3.2 OPTIMAL SCHEDULING ALGORITHM

Before presenting the mathematical formulation of the proposed optimal scheduling
algorithm, the definitions of variables and sets are presented in Table 10, and the parameters
in Table 11. Given a set of tasks J and a set of time units T , the scheduling algorithm must
allocate each task (or job) j ∈ J to a subset of time units t ∈ T . Note that time is discretized here,
usually in a minute by minute granularity, which is a reasonable simplification given that tasks
are hardware modules and do not require finer control over start and finish execution time.1 This
allocation must be done for each of the satellite subsystems s ∈ S whilst meeting all requirements
for every task.

Table 10 – Sets, indices and decision variables.

Notation Definition
Sets
S = {1, . . . ,S} set of satellite subsystems.
J = {1, . . . ,J} set of tasks to be scheduled.
T = {1, . . . ,T} set of time periods.
Variables
xsjt ∈ {0,1} takes the value of 1 if, and only if, task j ∈ J on subsystem s ∈ S is in

execution at time t ∈ T .
𝜙sjt ∈ {0,1} takes the value of 1 if, and only if, the execution of task j ∈ J on subsystem

s ∈ S initiates at time t ∈ T .
Source: The author.

Usually, satellite tasks are periodic, requiring to be executed each pmin
sj units of time

(minimum period). Likewise, in addition to consuming time, tasks have a power footprint,
requiring qsj amount of energy to be executed. Therefore, the sum of power consumption by all
jobs at any moment t cannot be greater than rt. Another important characteristic, for quality of
service guarantee, is to perform the scheduling based on each job priority usj. Consequently, the
integer programming model for satellite task scheduling was formulated as follows.

Considering all jobs and time units for each subsystem, the task scheduling problem
is formulated to maximize function (2), which is the sum of task priority times the activation
variable (usjxsjt). This ensures that tasks with higher priority will induce a larger objective value
1 A continuous time methodology has been explored by the author in the work presented by Camponogara et al.
(2022), and the results showed such approach can solve representative problem instances in a considerably
shorter time, while being able to deal with real-valued constraint functions.
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Table 11 – Parameters.

Notation Definition
S number of subsystems.
J number of tasks.
T number of time periods.
rt amount of power input at time t (from solar panels).
qsj power consumed by executing a task j on subsystem s.
usj priority of task j on subsystem s.
tmin
sj /t

max
sj minimum/maximum CPU time of task j on subsystem s.

ymin
sj /y

max
sj minimum/maximum number of startups of task j on subsystem s.

pmin
sj /p

max
sj minimum/maximum period of task j on subsystem s.

wmin
sj /w

max
sj start/finish moment for the execution window of task j on subsystem s.

Source: The author.

and, therefore, preference in time allocation.

F : max
xsjt

S∑︁
s=1

J∑︁
j=1

T∑︁
t=1

usjxsjt (2)

Constraints (3) state that the power used by an active job (qsjxsjt) must be less than or
equal to the maximum available energy resource at each moment (rt). Therefore, this is the
energy constraint, which ensures that the task total power consumption stays below the available
amount for every moment along the course of an orbit.

S∑︁
s=1

J∑︁
j=1

qsjxsjt ≤ rt, ∀t ∈ T , (3)

Constraints (4a) to (4d) ensure that the auxiliary variable 𝜙 detects the startup of a job
by taking the value of 1 only at the unit of time that a job is initiated. Constraints (4b) and (4c)
ensure 𝜙 takes the value of 1 whenever a task is initiated – the moment x goes from zero to one.
Constraints (4b) and (4d) ensure that 𝜙 returns to the value of zero after assuming the value one
– even if x continues to assume the value 1. Finally, constraints (4a) ensure the correct value of 𝜙
for t = 1.

𝜙sj1 ≥ xsj1, ∀j ∈ J ,∀s ∈ S, (4a)

𝜙sjt ≥ xsjt – xsj(t–1) , ∀j ∈ J ,∀t > 1,∀s ∈ S, (4b)

𝜙sjt ≤ xsjt, ∀j ∈ J , ∀t ∈ T ,∀s ∈ S, (4c)

𝜙sjt ≤ 2 – xsjt – xsj(t–1) , ∀j ∈ J ,∀t > 1,∀s ∈ S, (4d)

With the assurance that 𝜙 will assume the value one every time its associated job is
executed, the constraints (5a) and (5b) were introduced to ensure that the sum of all 𝜙t along an
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orbit stays within the minimum and the maximum number of startups required for the associated
job.

T∑︁
t=1

𝜙sjt ≥ ymin
sj , ∀j ∈ J ,∀s ∈ S, (5a)

T∑︁
t=1

𝜙sjt ≤ ymax
sj , ∀j ∈ J ,∀s ∈ S, (5b)

The constraints (6a), (6b) and (6c) ensure that the time allocated for the execution of
each job j (when flagged by 𝜙sjt) is within the minimum and the maximum Central Processing
Unit (CPU) execution time required by it. Since x takes the value of one for each unit of time
the associated job is in execution, constraint (6a) was formulated so that in a time window of
size tmin the sum of the x values is greater than or equal to tmin. The multiplication by 𝜙sjt on the
right-hand side is necessary to enforce the minimum execution time only if job j starts at the
time t, as flagged by 𝜙sjt = 1. Likewise, constraints (6b) follow the same logic, although for tmax.

t+tmin
sj –1∑︁
l=t

xsjl ≥ tmin
sj 𝜙sjt, ∀t ∈ {1, . . . ,T – tmin

sj +1}, ∀j ∈ J ,∀s ∈ S, (6a)

t+tmax
sj∑︁

l=t

xsjl ≤ tmax
sj , ∀t ∈ {1, . . . ,T – tmax

sj }, ∀j ∈ J ,∀s ∈ S, (6b)

T∑︁
l=t

xsjl ≥ (T – t+1)𝜙sjt, ∀t ∈ {T – tmin
sj +2, . . . ,T}, ∀j ∈ J ,∀s ∈ S, (6c)

Given that the previous constraints are valid only for values of t from one to T – tmin and
one to T – tmax, constraints (6c) were created to ensure that if a task starts execution after these
periods, it remains in execution until the end of the orbit.

Constraints (7a) were formulated to ensure that a task is not invoked more than once in
any time window of size pmin. Similarly, constraints (7b) ensure the task is executed at least once
in a given period of size pmax.

t+pmin
sj –1∑︁
l=t

𝜙sjl ≤ 1, ∀t ∈ {1, . . . ,T – pmin
sj +1}, ∀j ∈ J ,∀s ∈ S, (7a)

t+pmax
sj –1∑︁
l=t

𝜙sjl ≥ 1, ∀t ∈ {1, . . . ,T – pmax
sj +1}, ∀j ∈ J ,∀s ∈ S, (7b)

Constraints (8a) were created to ensure that x takes the value of zero for every unit of time
before the moment wmin, ensuring the job will not execute in this period. Likewise, constraints
(8b) prevent x from taking the value of one from the moment wmax until the end of the orbit.

xsjt = 0, ∀t ∈ {1, . . . ,wmin
sj }, ∀j ∈ J ,∀s ∈ S, (8a)
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xsjt = 0, ∀t ∈ {wmax
sj , . . . ,T}, ∀j ∈ J ,∀s ∈ S, (8b)

Finally, (9a) and (9b) establish 𝜙 and x as binary variables.

xsjt ∈ {0,1}, ∀j ∈ J , ∀t ∈ T ,∀s ∈ S, (9a)

𝜙sjt ∈ {0,1}, ∀j ∈ J , ∀t ∈ T ,∀s ∈ S, (9b)

3.2.1 Solving the optimization problem

The problem presented in this section is an IP problem, and as such can be cast in the
following canonical form:

max cTx (10a)

s.t. Ax ≤ b (10b)

x ≥ 0, (10c)

x ∈ Zn, (10d)

where x is a vector defined by stacking integer variables (the decision variables to the optimized);
the parameter vector b and the matrix A are easily obtained from the coefficients of the previously
presented formulations. Notice that the problem is classical in the optimization literature, and the
process to convert any linear problem into their corresponding standard form is straightforward,
resulting in no loss of generality.

Integer problems given by (10) can be solved for the global optimum by the use of
algorithms such as the branch-and-bound method (VANDERBEI, 2001). The algorithm is
available in commercial and non-commercial solvers, like Gurobi (GUROBI OPTIMIZATION,
2016) and CBC (FORREST et al., 2018).

3.3 RESULTS AND ANALYSIS

The applicability of the methodology presented heretofore is demonstrated here by
scheduling three nanosatellite missions, each consisting of a different size: a 1U, a 2U, and a 3U.
The 1U CubeSat considered in this study is comprised by six Printed Circuit Board (PCB), three
essentials for core functionalities – an On-Board Data Handler (OBDH), a Telemetry, Tracking
and Command (TT&C) module and the Electrical Power System (EPS) – and three payloads.
Having twice and three times more room, but with the same number of core modules, 2U and
3U nanosatellites may accommodate significant more payloads as they can capture more energy,
given the surface area increase of the solar panels. Hence, the scheduling demonstration presented
here is accomplished by determining at which moments these payloads can be activated, in a
minute by minute basis, for a full orbit, in order to maximize the modules’ operation time given
the available power and operational parameters.
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3.3.1 Power input estimation

The resulting power input, computed minute by minute, represents the available power
at the solar panel outputs. Consequently, to obtain the energy available to payload usage, these
values were multiplied by the EPS efficiency (0.85), and the power consumption of the core
modules was subtracted (0.3 W). The consumption and efficiency figures are those of the
FloripaSat-I mission, a 1U CubeSat developed by students at the Federal University of Santa
Catarina (UFSC) and launched in 2019 (MARCELINO et al., 2020). The same data regarding
efficiency and power consumption in the core modules was used in the 2U and 3U examples.
Figures 4, 5 and 6 show the resulting available power for each scenario.

The peak of power input among the scenarios were compared, and for both Nadir and
Magnet attitude in eclipse, the ratio of peak power input for a 2U Cubesat is 1.73 x 1U, and for a
3U Cubesat is 2.50 x 1U. On the other hand, considering the same attitudes but out of eclipse,
the ratio of peak power input for a 2U Cubesat is 2.00 x 1U, and for a 3U Cubesat is 3.00 x 1U.
The explanation for this relies on the fact that the standard 2U and 3U always have two sides
(top and bottom) that do not grow according to the laterals of the satellite. When these sides are
exposed to the Sun under some angle, their contribution to the total power input are limited by
their sizes.

3.3.2 Optimization results

The formulation presented in Subsection 3.2 was implemented in the Julia programming
language using the JuMP library (DUNNING; HUCHETTE; LUBIN, 2017) and solved using
the Gurobi solver (GUROBI OPTIMIZATION, 2016) in a Personal Computer (PC) with Intel(R)
Core(TM) i7-8550U 1.8 GHz, 16GB of Random Access Memory (RAM) and Windows 10 64
bits. The algorithm input data and results are presented and discussed in the following sections.

3.3.2.1 1U Nanosatellite

The data used to schedule the 1U payloads are presented in Table 12. The majority
of 1U nanosatellite missions are characterized by payloads for educational purposes and/or
scientific experiments, where it is of interest to maximize operation time and data acquisition.
To that end, for this scenario, the maximum CPU time and maximum period were set to the
maximum possible value so that constraints (6b) and (7b) do not limit the payloads operation
time. Likewise, the parameters for execution window were set not to restrict execution. Figure 4
shows the resulted scheduling and its respective power footprint in comparison to the available
power. Notice that tasks are labeled from A to C, the x-axis spans from time 0 to time T , and the
y-axis indicates if the task is on or off for each unit of time. Computation time for Orbit 1 (with
eclipse) was 150 milliseconds and for Orbit 2 (without eclipse) 230 milliseconds.

Although it is not a complex example, the resulting optimal scheduling plan for the “1U
Orbit 1” scenario shows that task parameters are rigorously followed. Payload A has the highest
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Table 12 – 1U payloads scheduling data.

Payload j uj qj[w] ymin
j ymax

j tmin
j tmax

j pmin
j pmax

j wmin
j wmax

j

A 1 2 1 1 4 10 100 2 100 0 100
B 2 1 1.3 3 3 3 100 2 100 0 100
C 3 1 0.9 2 5 4 100 3 100 0 100

Source: The author.

Figure 4 – 1U simulation results
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priority and, therefore, it is only turned off during the eclipse period. In contrast, Payloads B
and C, with lower priority, are turned off every time the power is not sufficient to maintain their
operation. In consequence, they are reactivated whenever possible, although still limited by their
maximum activation parameter ymax

j (3 and 5, respectively). In the resulting optimal scheduling
plan for the “Orbit 2” scenario, the available power is never sufficient to maintain both payloads
B and C on simultaneously. It can be seen that C is deactivated so that B can be reactivated and
fulfill its minimum activation number. The reason for that relies on the fact that the combination
orbit and attitude in Orbit 2 exposes four sides of the CubeSat to the Sun, while in the “Orbit 1”
scenario all of the six sides are exposed.

Despite the optimal resources utilization given by the resulting scheduling plan, it can
be seen that the task power consumption does not perfectly match the available power. In the
case of a typical CubeSat, the remaining unused energy can still be harvested and stored in the
satellite’s battery for usage during eclipse. In the “Orbit 1” scheduling, for instance, 27.09% of
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the available power was not immediately utilized by the payloads, which could allow for a steady
consumption of 1.27W during eclipse – if fully captured by the battery.

3.3.2.2 2U Nanosatellite

For the illustrative scenario of a 2U nanosatellite, it is assumed that a second cube
unit can allocate 8 payloads in total. Therefore, the scheduling data utilized in this mission is
presented in Table 13. Here, the parameters of maximum CPU time and maximum period are
more restrictive, and execution windows were defined for payloads D and F. These parameters
for execution window can be very useful for scheduling modules that require operation in very
specific points along the orbit – for imaging or communication, for instance. Figure 5 shows the
obtained schedule for each payload (organized from high to low priority) and respective power
footprint. The computation time for the “Orbit 1” scenario was 390 milliseconds and for the
“Orbit 2” scenario it was 62.2 seconds.

Table 13 – 2U nanosatellite payloads scheduling data.

Payload j uj qj[w] ymin
j ymax

j tmin
j tmax

j pmin
j pmax

j wmin
j wmax

j

A 1 5 1 3 15 3 40 2 100 0 100
B 2 2 1.23 1 11 7 60 4 80 0 100
C 3 1 0.8 2 5 3 80 2 100 0 100
D 4 4 1.3 1 7 6 65 6 90 0 40
E 5 1 1.5 1 10 4 70 2 90 0 100
F 6 3 1.1 1 8 4 100 4 87 40 80
G 7 1 1.1 2 7 6 100 2 60 0 100
H 8 1 0.9 2 9 3 100 2 100 0 100

Source: The author.

From Figure 5 it can be seen that the 2U scheduling plan is considerably more sophisti-
cated, with payloads of higher priority having their operation time maximized. Payload A, for
instance, is only briefly switched off while payloads E and G are only momentarily turned on.
It can also be observed that payloads D and F follow rigorously their execution windows. In
addition, the resulting power usage follows more closely the available one, given the higher
number of payloads and their wide-ranging energy impact. Here, in the “Orbit 1” scheduling,
only 9.72% of the available power was not immediately utilized by the payloads, which could
allow for a steady consumption of 0.80W during the eclipse period.

3.3.2.3 3U Nanosatellite

Lastly, for the 3U nanosatellite, the previous example scheduling data was modified to
consider payload A as an imaging module. This payload is estimated to occupy a 1U volume
and to have a significant energy cost, as presented in Table 14. Parameters for execution window
were also set for Payload A, given that imaging usually requires it – in this instance, payload



Chapter 3. Base model formulation 47

Figure 5 – 2U simulation results
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A could be expected to take 2 (ymin
A ), if possible 3 (y

max
A ), images when passing over a specific

region of Earth. Figure 6 shows the resulted schedule for each payload (organized from high to
low priority) and the respective power impact. Computation time for the “Orbit 1” scenario was
890 milliseconds and for the “Orbit 2” scenario it was 2.51 seconds.

Table 14 – 3U nanosatellite payloads scheduling data.

Payload j uj qj[w] ymin
j ymax

j tmin
j tmax

j pmin
j pmax

j wmin
j wmax

j

A 1 5 3.2 2 3 10 12 5 78 0 40
B 2 2 1.23 1 4 2 50 4 50 0 100
C 3 1 0.8 2 3 3 80 2 100 0 100
D 4 4 1.3 1 7 6 65 6 90 0 40
E 5 1 1.5 1 10 1 70 2 60 0 100
F 6 3 1.1 1 8 2 100 4 87 40 80
G 7 1 1.1 2 3 4 100 2 60 0 100
H 8 1 0.9 3 9 3 100 2 40 0 100

Source: The author.

3.3.3 Computational impact

As previously mentioned, the guarantee of an optimal result, provided by MPM allied
with the use of commercial solvers, has a notable computational impact. The preceding examples
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Figure 6 – 3U simulation results

0 25 50 75 100

Optimal Scheduling -  Orbit 1

Time [min]

O
n/

O
ff

A
D
F
B
C
E
G
H

0 25 50 75 1000

2

4

6

8

1010

Power -  Orbit 1

Time [min]

P
ow

er
 [W

]

Avaliable power
Payload's total usage

0 25 50 75 100

Optimal Scheduling -  Orbit 2

Time [min]

O
n/

O
ff

A
D
F
B
C
E
G
H

0 25 50 75 1000

2

4

6

8

1010

Power -  Orbit 2

Time [min]

P
ow

er
 [W

]

Avaliable power
Payload's total usage

Source: The author.

have shown that the algorithm input data has an impact in solving time, be that in the form of
task number, power vector, T size, or parameter restrictiveness. Of these factors, a larger T is of
special interest because the scheduling problem could be solved for smaller time units (second
by second, for example), allowing allocation of all tasks in the satellite, not just the payload
activation moments.

In order to visualize this impact, considering the “Orbit 2” scenario of the 3UCubeSat, the
simulation was repeated six more times but with T larger each time. To maintain the complexity
of the scheduling problem and isolate the impact of this variable, the task parameters were
adjusted proportionally to the increase in T and the energy vector was simply repeated. The
results are presented in Figure 7, where an exponential increase in computational time can be seen
as T gets larger. It becomes impractical to solve for larger instances, where the computational
time for one orbit can take longer than the orbit period itself.
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Figure 7 – Impact of T size on problem-solving time.
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3.4 DISCUSSION

In this chapter, it was presented a novel methodology for maximizing mission value and
efficiency of nanosatellites by improving energy management with task scheduling optimization,
constrained by solar irradiation levels reaching the photo-voltaic panels during an orbit. To that
end, an existing analytical model was used for nanosatellite power input calculation according
with two extreme scenarios of orbit inclination, two common attitudes for CubeSats, and three
standard sizes.

Furthermore, a integer programming formulation was presented to maximize the number
of tasks to be executed by a satellite, constrained by the power available minute by minute
along the course of an orbit and task parameters such as priority, power footprint, minimum and
maximum activation events, minimum and maximum execution times, minimum and maximum
periods, and execution windows.

The scheduling results demonstrate that this combined approach generates an optimal
energy effective mission plan while satisfying all task requirements, allowing the best possible
harvesting and utilization of energy resources and, moreover, ensuring QoS.

However, the formulation lacks a battery model and does not easily optimize for more
than one orbit period – high computational impact. The energy-neutral approach – where tasks
with power consumption bigger than the power input are not allowed to execute – precludes tasks
from executing in eclipse time. In addition, in a scenario where the tasks power consumption
is smaller than the power input and the battery is not accounted for, harvested energy is wasted
due to the model’s inability to consider the unconsumed power for later use. The next chapter
addresses these issues.
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4 EXTENDED MULTI-ORBIT AND BATTERY FORMULATION

This chapter expands the core methodology of chapter 3 in two ways: to encompass a
battery model and allow scheduling optimization for several orbits. The text of this chapter was
published as an article in Rigo, Seman, Camponogara, Filho, et al. (2021b).

To model the battery, constraints for the State of Charge (SoC) were implemented
following the Coulomb Counting method, in which the current flowing into and out of a battery
is accounted for. When using this method, compensations for charging and discharging efficiency
must be implemented to maintain accuracy (POP et al., 2005). Thus, a generalized disjunctive
program was designed to select the efficiency constants. Fuzzy constraints were created to allow
a degree of violation in energy resources utilization, representing the amount of energy that
can be taken from the battery in a given moment. This, along with penalties for battery access
ensures that the battery lifetime is preserved and even extended (LI et al., 2015; NING; HARAN;
POPOV, 2003).

To present these contributions, this chapter is organized as follows. Section 4.1 consists
of a review of fuzzy constraints and their applications. Sections 4.2 and 4.3 consists on the
improvements to the optimization methodology previously presented. Section 4.4 presents the
new power input calculation methodology. Notice that the power input methodology was not
developed, nor was it implemented by the author, and is only presented in this thesis so the reader
can fully understand the work. Section 4.5 reports on the results from the case studies. Section
4.6 draws some of the final remarks.

Firstly, the additional nomenclature used in this chapter is shown in Table 15.

4.1 FUZZY CONSTRAINTS

Since its inception in 1947 (BODINGTON; BAKER, 1990), Linear Programming (LP)
has been widely applied in Operational Research primarily to maximize profits and reduce costs.
However, one limitation of LP is the difficulty of modeling uncertainty, a characteristic inherent
to real problems, particularly those that consider human behavior, environmental processes,
transportation, economics, and fuzzy data in general (VILLACORTA et al., 2017).

The fundamental concepts of Fuzzy Linear Programming (FLP) were conceived in 1970
(BELLMAN; ZADEH, 1970) as a means to deal with the imprecision both in the coefficients
and the constraints. Recently, FLP was applied to energy management (SADEGHI; HOSSEINI,
2013), transportation (SEMAN; RODRIGUESMACHADO, et al., 2020), supply chain planning
under uncertainty (PISHVAEE; RAZMI, 2012; PEIDRO et al., 2009), logistics provider selection
(WAN; WANG, et al., 2015), and software selection (WAN; QIN; DONG, 2017), to cite a few.

Fuzzy constraints are applied when a certain amount of violation in the restriction is
permitted, as defined in (11),

akx ≤ f bk, ∀k ∈ {1, . . . ,m} (11)
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Table 15 – Added sets, constants and variables.

Notation Definition
Sets
E set of jobs that finished a previous orbit executing.
W set of jobs with no execution window limitations.
Constants
Vb battery nominal voltage, in Volts.
SoCt battery state of charge at time t, in %.
ec charge efficiency.
ed discharge efficiency.
Q battery nominal capacity, in Ampere-hour.
𝜌 minimum acceptable battery level, in %.
Variables
bt decision variable that takes the value of 1 each time the charging rate should be

used, and 0 each time the discharging rate should be used.
𝛼t decision variable that takes values between 0 and 1 representing the amount of

energy drawn from the battery.
kt difference between power input and power consumption at time t, in Watts.
it battery current, in Ampere.
at assumes the values of |it|.

Source: The author.

and modeled in the membership function (12),

𝜇k : R→ [0,1], 𝜇k (x) =


1, if x ≤ bk

fk (x), if bk ≤ x ≤ bk +hk

0, if x ≥ bk +hk

(12)

where x is the decision variable, ak is a matrix and bk is a vector, both obtained from the m

constraints. In other words, fbk can assume values ranging from bk to bk + hk, these being the
bounds of the fuzzy distribution.

From the membership function (12), a degree of violation of at most bk +hk is permitted
for x in the k-th constraint, and the problem to be solved becomes the one given in (13).

max z = cx (13a)

s.t. akx ≤ f bk, ∀k ∈ {1, . . . ,m} (13b)

x ≥ 0, x ∈ R (13c)

To resolve the fuzzy constraint (13b), four of the most popular approaches from literature
(SAFI; MALEKI; ZAEIMAZAD, 2007) are introduced below. However, for all cases fk (x) must
be linear.

4.1.1 Zimmermann’s method

Zimmermann (1978) introduces a new objective (𝜆) and adds the former (cx) to the
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constraints, making it a fuzzy goal, as formalized in (14).

max 𝜆 (14a)

s.t. cx ≥ b0 – h0 (1 –𝜆) (14b)

Akx ≤ bk +hk (1 –𝜆), ∀k ∈ {1, . . . ,m} (14c)

x ≥ 0, 𝜆 ∈ [0,1] (14d)

Here, b0 is an aspiration level chosen by the decision-maker; consequently, Zimmermann’s
method does not guarantee optimality and can be unbounded (SAFI; MALEKI; ZAEIMAZAD,
2007). Nonetheless, his approach can be utilized to minimize the degree of violation of the
constraints.

4.1.2 Werners’s method

Werners (1987) proposes a method to find the extreme solutions of the problem, so that
the decision-maker does not need to specify a goal or a tolerance. It consists of a particular case
of the Zimmermann’s method, where:

b0 = sup{max
x∈X

cx} (15a)

h0 = sup{max
x∈X

cx} – inf{max
x∈X

cx} (15b)

where X = {x ∈ R : akx ≤f bk,x ≥ 0}.

4.1.3 Tanaka’s method

Tanaka, Okuda, and Asai (1973) normalizes the objective function (cx) by the optimum
value (Z) when solving the problem with crisp constraints, as presented in (16).

max 𝜆 (16a)

s.t.
cx
Z

≥ 𝜆 (16b)

Akx ≤ bk +hk (1 –𝜆), ∀k ∈ {1, . . . ,m} (16c)

x ≥ 0, 𝜆 ∈ [0,1] (16d)

Here, Z serves as an aspirational level. Notice that Tanaka’s method can be reduced to
Zimmerman’s method by setting b0 = h0 = Z in (14) (VILLACORTA et al., 2017).

4.1.4 Verdegay’s method

Verdegay (1982) generalizes the Zimmermann’s and Tanaka’s method, proving that their
solutions for an FLP are particular values of the Verdegay’s fuzzy solution. His method consists
of a parametric approach to solve an FLP problem with fuzzy constraints, which is formalized
here in (17).

max z = cx (17a)
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Akx ≤ bk +hk (1 –𝜆), ∀k ∈ {1, . . . ,m} (17b)

x ≥ 0, 𝜆 ∈ [0,1] (17c)

By solving the LP problem (17), an optimal solution can be found for each 𝜆-cut, resulting
in a fuzzy solution for the original fuzzy problem (13).

4.2 PROPOSED BATTERY MODEL

This chapter proposes to introduce a battery model into the scheduling framework. First,
consider that the state-of-charge of a generic battery is given by:

SoC(t) = 1
Q

∫
i(t)dt (18)

For this model, the state-of-charge of the battery can be represented as a Generalized
Disjunctive Program (GDP) (GROSSMANN; LEE, 2003), as shown in (19).[

bt

SoCt+1 = SoCt + it ·ec
60 Q

]∨ [
¬ bt

SoCt+1 = SoCt + it ·ed
60 Q

]
, ∀t ∈ T , (19a)

bt ∈
{
True,False

}
,∀t ∈ T , (19b)

If bt is true, then the constraint with the charging efficiency is selected (ec), otherwise the
constraint with the discharging efficiency is activated (ed). The battery current it is estimated by
(20a), using the power calculated by (20b). Notice that the power kt is either positive or negative,
depending on whether the satellite is consuming or supplying power to the battery.

it =
kt

Vb
, ∀t ∈ T , (20a)

kt = rt –
S∑︁

s=1

J∑︁
j=1

qsjxsjt, ∀t ∈ T , (20b)

Then, the GDP presented in (19) is transformed into a MILP formulation, following the
commonly used Big-M methodology (CASTRO, 2015) expressed in constraints (21).

SoCt+1 ≥ SoCt +
it · ec

60 Q
– M · (1 – bt), ∀t ∈ T , (21a)

SoCt+1 ≤ SoCt +
it · ec

60 Q
+M · (1 – bt), ∀t ∈ T , (21b)

SoCt+1 ≥ SoCt +
it · ed

60 Q
– M ·bt, ∀t ∈ T , (21c)

SoCt+1 ≤ SoCt +
it · ed

60 Q
+M ·bt, ∀t ∈ T , (21d)

it ≤ M ·bt, ∀t ∈ T , (21e)

it ≥ –M · (1 – bt), ∀t ∈ T , (21f)
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bt ∈ {0,1}, ∀t ∈ T , (21g)

Considering these enhancements to the battery model, its assumed that the available
power follows a fuzzy behavior, as shown in:

S∑︁
s=1

J∑︁
j=1

qsjxsjt ≤ f rt (22)

which can be modeled as:

𝜇k : R→ [0,1], 𝜇k (x) =


1, if x ≤ rt

fk (x), if rt ≤ x ≤ rt +𝛾Vb

0, if x ≥ rt +𝛾Vb

(23)

where 𝛾 is the maximum current allowed for the battery charge or discharge (C and E rates).
Limiting these rates has been shown to preserve the battery lifetime (NING; HARAN; POPOV,
2003).

In order to include the fuzzy model into the optimization formulation, Verdegay’s method
is followed, as detailed in (24a) and (24b), allowing the task schedule to exceed the maximum
energy limit previously imposed by the solar panels. Now, power can be also supplied from the
battery. In other words, the input power can range from rt (total power input by solar panels at
time t) to rt + 𝛾Vb. A decision variable 𝛼t ∈ [0,1] is used to decide the energy drawn from the
battery; when 𝛼t = 1 no power is supplied by the battery, and when 𝛼t = 0, a total of 𝛾Vb units of
power are used.

S∑︁
s=1

J∑︁
j=1

qsjxsjt ≤ rt +𝛾 Vb (1 –𝛼t), ∀t ∈ T , (24a)

0 ≤ 𝛼t ≤ 1, ∀t ∈ T , (24b)

In an attempt to maximize the cost function related to task scheduling, the optimization model
— solved by an off-the-shelf solver (i.e., Gurobi) — will have degrees of freedom to find the
optimal value of 𝛼 while respecting the remaining restrictions of the problem.

Additionally, constraints are imposed in order to guarantee that the SoC remains within
acceptable limits:

SoCT ≤ SoC1(1+ΔSoC) (25a)

SoCT ≥ SoC1(1 –ΔSoC) (25b)

SoCt ≤ 1, ∀t ∈ T , (25c)

SoCt ≥ 𝜌, ∀t ∈ T , (25d)

Constraints (25c) ensure that energy is not wasted by saturating the battery, while
constraints (25a) and (25b) ensure that all input energy is utilized within the orbit, by stating that
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the state-of-charge at the last orbit moment (SoCT) must be no less and no more than 1% of the
state-of-charge at the first orbit moment (SoC1). The relevance of this constraint will be further
explained in the results section. In constraints (25d), 𝜌 is the minimum acceptable battery level
that limits the depth-of-discharge, which can also extend battery lifetime (LI et al., 2015).

Finally, a new objective function (26) is designed in order to penalize battery usage.

F : max
xsjt

S∑︁
s=1

J∑︁
j=1

T∑︁
t=1

usjxsjt – 𝛽

T∑︁
t=1

at (26)

where 𝛽 is the penalty weight, and constraints (27a) through (27c) ensure that the variable at ∈ R
will assume the value |it|.

at ≥ it, ∀t ∈ T , (27a)

at ≥ –it, ∀t ∈ T , (27b)

at ∈ R, ∀t ∈ T , (27c)

4.3 ORBIT COUPLING

The formulation of Chapter 3 allows tasks with no execution window limitations to
start at the end of an orbit. This means that, at the beginning of the next orbit, the job must
finish its minimum execution and period time, a condition that is not addressed. In this section,
modifications are developed to the original formulation to allow the continuity and consistency
of the task schedule for more than one orbit period. This is achieved without the need of new
variables, which could increase the solution time, but rather by introducing three coupling
constraints and further conditioning and/or modifying the scope of others.

LetW be a set of jobs with no execution window limitations. Two vectors bring historical
data about the past orbit: 𝜏sj indicates if the job j finished the last orbit in the running mode, in
which case 𝜏sj assumes value 1, otherwise 𝜏sj assumes value 0; and 𝜀sj indicates how many units
of time elapsed before time T since the last job activation, 𝜙sj = 1. Furthermore, let E be a set
comprised of jobs that finished the last orbit executing. Constraint (28) was formulated to be
imposed when a job terminated the previous orbit executing, which states that the sum of x at the
beginning of the next orbit must assume a value between the minimum and maximum executing
time of that job, minus what was already executed in the previous orbit (namely –𝜀sj).

tmin
sj – 𝜀sj ≤

tmax
sj –𝜀sj+1∑︁

t=1

xsjt ≤ tmax
sj – 𝜀sj, ∀j ∈ E, ∀s ∈ S, (28)

Constraint (29) was created to guarantee the initial minimum period for all j ∈W, stating
that all 𝜙 at the beginning of the next orbit must assume a value zero until the minimum period
of the job, minus what was already executed (namely –𝜀sj).

𝜙sjt = 0, ∀t = 𝜏sj +1, . . . ,pmin
sj – 𝜀sj,∀j ∈W,∀s ∈ S, (29)
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Constraint (30) was formulated to ensure that, after the initial period is fulfilled, the job
starts executing again.

pmax
sj –𝜀sj∑︁
𝜏sj+1

𝜙sjt ≥ 1,∀j ∈W,∀s ∈ S, (30)

The scope of (6a) is modified so that it is no longer valid from t = 1, but from t = 𝜏sj +1,
as in (31). This is needed because xsj1 is forced to 1, and 𝜙sj1 = 1, triggering (6a) to enforce a full
run time tsj, when the job should only execute for tsj – 𝜀sj.

t+tmin
sj –1∑︁
l=t

xsjl ≥ tmin
sj 𝜙sjt,∀t ∈

{
𝜏sj +1, . . . ,T – tmin

sj +1
}
,∀j ∈W,∀s ∈ S, (31)

Similarly, the scope of (7a) and (7b) are modified to (32a) and (32b), respectively, so that they
are valid from t = pmin

sj – 𝜀sj avoiding conflict with (29) and (30).

t+pmin
sj –1∑︁
l=t

𝜙sjl ≤ 1,∀j ∈W,∀s ∈ S,∀t ∈
{
pmin

sj – 𝜀sj +1, . . . ,T – pmin
sj +1

}
(32a)

t+pmax
sj –1∑︁
l=t

𝜙sjl ≥ 1,∀j ∈W,∀s ∈ S,∀t ∈
{
pmax

sj – 𝜀sj +1, . . . ,T – pmax
sj +1

}
(32b)

In constraints (32a) and (32b) the value of psj – 𝜀sj can be greater than T – psj +1, for a
large psj or a small T , which would let 𝜙 free for the rest of the orbit. Constraints (33a) and (33b)
were created to address this condition, ensuring the minimum and maximum period at the end
of the orbit.

T∑︁
l=t

𝜙sjl ≤ 1, ∀t ∈
{
T – pmin

sj +1, . . . ,T
}
,∀j ∈W,∀s ∈ S, (33a)

T∑︁
T–pmax

sj +1

𝜙sjt ≥ 1, ∀j ∈W,∀s ∈ S, (33b)

Finally, Algorithm 1 is invoked for all orbits greater than 1 to condition the application
of the new constrains, along with the modifications to the constraints of the baseline formulation.
Constraints (4), (5), (6b), (6c), (8), and (9) are applied without modifications.

Note the logic xsj1 ≥ sgn(tmin
sj –𝜀sj) 𝜏sj. If 𝜏sj = 0, then job j is free to execute at the beginning

of the new orbit or not (xsj1 ≥ 0); the same occurs if 𝜏sj = 1 and the job has already finished
executing its minimum required time in the previous orbit, which leads to –xsj1 ≥ –1 =⇒ xsj1 ≤ 1.
However, if 𝜏sj = 1 and the job has not finished executing its minimum required time in the
previous orbit, then xsj1 ≥ 1, forcing the job to continue running, being subject to (28).
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Algorithm 1: Orbit Coupling
1 for s ∈ S, j ∈ J do
2 if j ∈W then
3 Impose xsj1 ≥ sgn(tmin

sj – 𝜀sj) 𝜏sj

4 if 𝜏sj = 1 then
5 Impose (28)
6 Impose (29), (30), (31), (32), and (33)
7 else
8 Impose (6a) and (7)

4.3.1 Solving the optimization problem

The optimal schedule of a nanosatellite tasks is achieved by solving the problem formally
defined below:

F : max
xsjt

S∑︁
s=1

J∑︁
j=1

T∑︁
t=1

usjxsjt – 𝛽

T∑︁
t=1

at

s.t. (4)–(9), (20),(21),(24),(25), (27)–(33)

Notice that the resulting problem is a MILP problem, which has the general form of (34).

min cTx+hTy (34a)

s.t. Akx+Gky ≤ bk, ∀k ∈ {1, . . . ,m} (34b)

x ∈ Zn,y ∈ Rp (34c)

where the coefficients of the vectors c and h are easily obtained from (26), A and G are matrices
and b is a vector which are all obtained from the m constraints aforementioned.

MILP constitutes a general class of NP-Hard problems, in the sense that any NP-Complete
problem (e.g., the classic satisfiability problem) can be reduced to MILP in polynomial time.
Any polynomial time algorithm for MILP would imply that P=NP (GAREY; JOHNSON,
1990); in other words, all decision problems would be solved in polynomial time. MILP
problems can possibly be solved to optimality by exact algorithms, such as the branch-and-
bound (VANDERBEI, 2001) and cutting-plane methods (MARCHAND et al., 2002), and
approximately using heuristics. Many commercial and non-commercial solvers, like Gurobi
(GUROBI OPTIMIZATION, 2016) and CBC (FORREST et al., 2018), respectively, can be
employed to obtain optimal solutions or solutions with a certificate of quality.

4.4 POWER INPUT

For simulation purposes, the varying power input, calculated with Equation 1 (FILHO
et al., 2020), was based on two-line element data of the CubeSat FloripaSat-I, operating in
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an orbit with J2 perturbation and an attitude that keeps one face of the nanosatellite towards
the Earth for the entire orbit, similar to a remote sensing mission. Notice that the power input
methodology was not developed, nor was it implemented by the author, and is only presented in
this thesis so the reader can fully understand the work.

4.4.1 Orbit model

To make it useful for the design and analysis of typical CubeSat missions, the algorithm
for orbit determination is structured to have Two Line Element (TLE) data as input, namely:
Inclination [◦]; Ω: right ascension of the ascending node [◦]; e: eccentricity [-]; 𝜔: argument of
perigee [◦]; M: mean anomaly [◦]; n: mean motion [rev/day].

Figure 8 shows a schematic view of the orbit and some of these parameters.

Figure 8 – Orbit diagram.
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The values in the TLE give rise to other variables that enable the calculation of the
CubeSat’s position in the perifocal frame of reference, projection the orbit plane, and then
provides the satellite’s position in the geocentric equatorial frame of reference. For further
details, see Curtis (2014). Because of the J2 perturbation, caused by the oblateness of the Earth,
the anglesΩ and 𝜔 change with time, at very small rates. As a consequence, the time spent under
the Earth’s shadow may vary.

4.4.1.1 Attitude Model

The attitude model aims to mimic the rotation of the satellite around its own axis. For a
typical CubeSat geometry, without regard of its size (1U, 2U, 3U, ...), without deployable solar
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panels, there are six normal vectors ®nw that describe the orientation of each side w, as evidenced
in Figure 8 by the green arrows.

To add the spin on the satellite, rotation matrices are built as a function of the angular
speed and axis of rotation to project the normal vectors onto new orientations.

4.4.2 Studied scenarios

A typical CubeSat is comprised of three main modules – an On-Board Data Handler
(OBDH), a Telemetry, Tracking and Command (TT&C) module and the Electrical Power System
(EPS) – and the payloads, which effectively give them functionality or value. The nanosatellite
size will be the limiting factor for how many payloads can be accommodated in a given mission;
a 1U CubeSat usually accommodates six printed circuit boards (MARCELINO et al., 2020).
Bigger size also means more energy input, since there is more surface area for energy harvesting.

The power input represents the energy available at the solar panel outputs, so the data
is multiplied by an EPS efficiency of 0.85. This efficiency is that of the FloripaSat-I mission,
a 1U CubeSat developed by students at the Federal University of Santa Catarina (UFSC) and
launched in 2019 (MARCELINO et al., 2020). The TLE of FloripaSat-I is used as input for the
orbit model, as listed in Table 16.

Table 16 – TLE input for the case studies.

CubeSat i Ω e 𝜔 M n

FloripaSat-I 97.95 225.78 0.0016 111.38 248.91 14.82
Source: The author.

The satellite keeps one face towards the center of the Earth along the entire orbit,
simulating a remote sensing mission. As a result from the orbit model with perturbation J2, the
orbit plane slightly changes with time and creates different scenarios with access to the solar
radiation. The ratio of time spent under the shadow of the Earth and the period of the orbit is
shown in Figure 9, for each orbit of FloripaSat-I along a year. The orbits with maximum eclipse
have around 36% of absence of irradiance, or in other words, around 35 minutes without external
power input. On the other hand, there are weeks where the satellite will not face any shadow of
the Earth, so it could operate at maximum capacity.

In this work, the analysis will be performed for consecutive orbits in the regions indicated
by Max. and 1/2 Max. in Figure 9. The condition with minimum eclipse does not introduce
transient constraints in the power input of the satellite, so the optimization is not appreciable in
that region.
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Figure 9 – Fraction of eclipse for FloripaSat-I orbit along a year.
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4.5 RESULTS AND ANALYSIS

The methodologies presented in Subsections 4.2 and 4.3 were implemented in the Julia
programming language using the JuMP library (DUNNING; HUCHETTE; LUBIN, 2017) and
solved using the Gurobi solver (GUROBI OPTIMIZATION, 2016) in a PC with an Intel(R)
Core(TM) i7-8550U 1.8 GHz processor, 16 GB of RAM, and Windows 10 64 bits.

In order to show the effectiveness of the methodology, three scenarios are explored here.

• Scenario A considers a 3U mission in an orbit with a half-maximum eclipse and three
cases: one where no battery is modeled – without fuzzy constraints, for comparison
purposes – and two cases with energy management using batteries.

• Scenario B refers to the same 3U mission, except for scheduling the satellite tasks for an
orbit of maximum eclipse.

• Scenario C addresses the requisites of a 6U mission.

4.5.1 Requisites: 3U mission

The scheduling framework previously established is applied here to determine at which
moments the payloads of a 3U nanosatellite can be activated, in a minute-by-minute basis, for
several orbits to maximize the mission value while preserving battery life and fulfilling mission
requirements. Table 17 gives the scheduling data used as input, representing a 3U CubeSat
mission, and Table 18 presents the parameters values for the experiments, unless otherwise
stated.
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Table 17 – Nanosatellite jobs data.

A B C D E F G H I

j 1 2 3 4 5 6 7 8 9
usj 5 2 1 4 1 3 1 2 6
qsj 3.2 1.23 1.8 1.3 2.5 1.4 2.1 0.7 0.4
ymin

j 2 2 1 1 1 1 1 1 1
ymax

j 3 4 6 7 5 6 7 8 1
tmin
j 5 16 17 14 18 13 16 17 T

tmax
j 6 25 20 32 35 18 30 22 T

pmin
j 8 28 25 35 38 25 32 25 T

pmax
j 32 52 49 59 62 49 56 49 T

wmin
j 30 0 0 0 0 40 0 0 0

wmax
j 80 T T T 60 80 T T T

Source: The author.

Note that jobs from 1 to 8 (or A to H) represent the mission payloads, and job 9 (or I)
represents all core modules of the satellite. Here the jobs are assumed to be active at all time and
consume 400 mW (MARCELINO et al., 2020). Furthermore, for illustration purposes, payload
A corresponds to an image sensing module, which must take a minimum number of images
when passing over a specific region of the Earth, here specified by the execution window and
minimum activation parameters.

Table 18 – Scheduling parameters.

S J T Q Vb ec ed SoC0 𝜌 𝛾 𝛽

1 9 97 5 Ah 3.6 V 0.95 0.8 75% 0.5 5 A 10
Source: The author.

In Table 18, T is the period of the chosen orbit (in minutes), whereasQ is a typical battery
capacity for a 3U mission. The values of Vb, ec, and ed were obtained from the data-sheet of
the battery used in the FloripaSat-I mission (SAMSUNG SDI CO., 2014). To guarantee that the
battery would never discharge more than 50%, a common requirement in critical applications, 𝜌
was set to 0.5. Finally, 𝛾 was set to 5A, or 1 C, since greater discharge rates can compromise the
battery lifetime (NING; HARAN; POPOV, 2003).

4.5.1.1 Scenario A – 1/2 Max. Orbit

Scenario A considers the 3U mission requisites with an orbit of half-maximum eclipse.
For this scenario three cases are considered:

• A1: no battery considered (without fuzzy constraints) (RIGO; SEMAN; CAMPONOG-
ARA; MORSCH FILHO; BEZERRA, 2021);
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• A2: fuzzy constraints with battery access limited by constraints (25a) and (25b), , with
ΔSoC = 1%;

• A3: fuzzy constraints without battery access limits.

For the first case (A1) with data from Table 17, where no battery is modeled, the
optimization is infeasible given that the core modules cannot execute during eclipse time.
Therefore, tmin

9 was set to 20 minutes and ymin
9 to 2 minutes, in order to obtain a feasible schedule.

The resulting schedule for four consecutive orbits is shown in Figure 10a, where the job activation
and deactivation times are plotted in order of priority. For all cases, notice that the x-axis grid
indicates when one orbit ends and the next begins (every 97 minutes).

Figure 10 – Scheduling results for a 3U satellite in a half-maximum eclipse orbit.
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(a) Optimal scheduling for scenario A case 1 – A1 (no
battery).
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(b) Optimal scheduling for scenario A case 2 – A2.
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(c) Optimal scheduling for scenario A case 3 – A3.

Source: The author.

It can be seen that job I execution was maximized to run continuously, given its high
priority, however the satellite would be completely off during the eclipse time, given the lack
of energy. Notice that payload A executes only within its execution window, whereas payload
B continues to run along the orbit, complying with its execution requirements and showing the
effectiveness of the orbit coupling methodology. The same cross orbit behavior occurs with
payloads D and G.
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The power analysis for this schedule is shown in Figure 11a. Note that the solar panel
power is calculated with the methodology presented in Section 4.4. Despite the optimal solution
of the scheduling problem, the total power consumption cannot perfectly match the input power,
therefore wasting energy.

Figure 11 – Energy analysis for a 3U satellite in a half-maximum eclipse orbit.
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(a) Energy analysis for scenario A case 1 – A1.
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(b) Energy analysis for scenario A case 2 – A2.
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(c) Energy analysis for scenario A case 3 – A3.

Source: The author.

For case 2 (A2), the full scheduling methodology aforementioned is applied, and the
resulting schedule for four consecutive orbits is presented in Figure 10b. Now, job I runs
continuously without interruption, ensuring that the satellite core modules will be active at all
times. It can be observed that all task requirements are fulfilled, even across orbits. Payloads E
and F, for instance, enter a fully periodic operation regime. Figure 11b shows the power analysis
for this case. Note that the battery power indicates both the energy being consumed or provided
to the battery. Here the power consumption follows the power input closely, a behavior expected
given the battery access penalty and constraints (25a) and (25b). Nevertheless, the battery is used
mainly to power the core modules during the eclipse time, or to run the tasks more effectively,
such as to follow execution window parameters.

Although cyclic regime emerges in this example, themulti-orbit formulation also serves to
deal with tasks that started at the end of one orbit and must end at the beginning of another. Even
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in a periodical regime, these boundary conditions from the previous orbits must be accounted for
in the optimization of the scheduling problem. Notice that there may be a change in the battery’s
energy level, forcing the periodic payload regime to change over time to render the optimization
problem feasible. In addition to being closely related to the execution of tasks, the battery level
is dependent on the input energy available in the satellite. In closed orbits, the variation in the
input is not perceptible. However, when analyzing the satellite’s useful life, as shown by Filho
et al. (2020), there may be a significant variation in the energy input levels due to disturbances
in orbit.

In case 3 (A3), the scheduling formulation is free to access the battery energy, by dropping
the constraints (25a) and (25b). The optimal schedule is presented in Figure 10c, however the
impact of these changes is significant in the energy footprint, as presented in Figure 10c. The
battery usage often peaks at more than 10W and, as a consequence, the battery SoC undergoes
more variation when compared to case A2, rapidly falling towards the 𝜌 limit.

Finally, Figure 12 shows the variation in the portion of the cost function relative to the
execution of tasks – cost function (2) – in relation to the 𝛽 penalty. The plot reveals that the
execution of tasks decreases with the increase in the penalty for battery usage, until finally
stabilizing for high values of 𝛽.

Figure 12 – 𝛽 variation impact on task priority sum – cost function (2).
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4.5.1.2 Scenario B – Max. Orbit

Scenario B refers the 3U mission requisites with a maximum eclipse orbit. This scenario
consists of three cases:

• B1: no battery considered (without fuzzy constraints) (RIGO; SEMAN; CAMPONOG-
ARA; MORSCH FILHO; BEZERRA, 2021);
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• B2: fuzzy constraints with battery access limited by constraints (25a) and (25b), with
ΔSoC = 1%;

• B3: fuzzy constraints with no battery access limits.

This scenario explores an orbit variation, with a significant increase in eclipse time
if compared to the scenario A. For this orbit, the same cases of the previous scenario are
analyzed; however, despite the modifications in the data setup to enable case 1 of scenario A, the
optimization problem was not feasible for this orbit where energy is scarce. In other words, case
B1 is infeasible without accounting for a battery.

For case 2 (B2), considering the battery, the obtained schedule is illustrated in Figure
13a.

Figure 13 – Scheduling results for a 3U satellite in a maximum eclipse orbit.
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(a) Optimal scheduling for scenario B case 2 – B2
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(b) Optimal scheduling for scenario B case 3 – B3
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(c) Energy analysis for scenario B case 2 – B2
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(d) Energy analysis for scenario B case 3 – B3.

Source: The author.

It can be noticed that the payload activation times are reduced when compared with A2,
where there was more energy available. In addition, all payloads enter a fully periodic operation
regime. The power analysis for this case is presented in Figure 13c. Similarly to A2, the energy
consumption follows closely the energy input and the battery access is more significant only at
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eclipse time. Furthermore, the state-of-charge is declining faster than in A2, an expected behavior
given the longer eclipse time.

For case 3 (B3), the formulation is less restrictive with regards to battery access. A power
footprint similar to that of case A3 is observed in Figure 13d, however the battery access is more
intense with the SoC reaching the 𝜌 limit at the end of the third orbit.

4.5.1.3 Results analysis

Figure 14 presents the power balance for the cases previously explored. Here power
balance is defined as the total sum of power along the four orbits, so by "power used’" its meant
all power consumed by the tasks along the 388 minutes (4 orbits), and by "battery balance",
the net gain or net loss of power from the battery in the same period. Similarly, power wasted
refers to the difference between power input and power utilized by tasks. Cases A1 and A2 can
be directly compared since the parameters are all the same, except that A1 does not consider a
battery. It is noticeable that the power consumption of the tasks is greater in A2 than in A1 and,
in consequence, more work would be generated in orbit by scheduling tasks with the formulation
proposed in this chapter. Despite consuming battery power, it is less than the energy wasted in
A1’s scheduling, showing the added mission value that the fuzzy battery formulation can deliver.

Figure 14 – Power balance in scenarios A and B.
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Furthermore, the removal of constraints (25a) and (25b) in cases A3 and B3 results in
more battery energy consumption and increased battery access, which decrease battery lifetime
as shown in the histogram depicted in Figure 15. It can be noticed that there is a greater variation
in SoC for the unrestricted cases, A3 and B3. Considering the average discharge rate of B3 (0.77
Ah), for instance, a battery such that used in FloripaSat-I mission would have its charge retention
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capacity reduced to 60% in 67 days (SAMSUNG SDI CO., 2014), as opposed to 283 days for
B2.

Figure 15 – SoC histogram.
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Finally, an analysis of the 𝛽 value impact – the penalty weight for battery access in the
objective function – is presented in Figure 16, where SoC is plotted for 20 consecutive orbits of
decreasing eclipse time and four 𝛽 values. Note that an increase in 𝛽 means less battery usage
and the average SoC will increase over time for 𝛽 > 10. Notice that the solving time increases,
and the objective value decreases, as the 𝛽 value rises.

Figure 16 – SoC analysis for 20 consecutive orbits and different 𝛽 values. OBJ is the average objective
value per orbit and ST is the average solving time per orbit.
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4.5.2 Requisites: 6U mission

Here, the scheduling framework is applied to determine at which moments the payloads of
a 6U nanosatellite can be activated, in a minute-by-minute basis, for four orbits. The scheduling
data used as input was randomly generated except for the first 3 payloads, which were made
periodic to demonstrate the effectiveness of the cross orbit coupling. The task data appear in
Table 19, and the scheduling parameters are shown in Table 20, where T is the period of the
chosen orbit (in minutes), whereasQ is a typical battery capacity for a 6Umission. The remaining
parameters were left unchanged from the previous example, except for the initial SoC set to 85%
and 𝛽 that was set to zero.

Table 19 – Nanosatellite task data.

A B C D E F G H I J K L M N O P Q R

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
usj 7 5 5 7 9 6 9 5 8 4 3 5 3 2 4 2 9 4
qsj 0.19 0.45 0.11 0.1970.19 0.11 0.28 0.28 0.02 1.11 1.11 0.85 0.72 0.85 1.11 0.85 0.85 1.11
ymin

j 1 1 1 3 5 4 5 4 4 5 2 1 1 1 1 1 1 1
ymax

j 8 8 9 62 69 21 47 63 49 18 19 6 3 3 4 2 4 2
tmin
j 4 8 15 1 1 1 3 1 2 3 7 9 10 12 9 11 11 11

tmax
j 4 8 15 6 6 19 19 9 11 18 38 47 20 28 25 51 45 72

pmin
j 16 16 30 3 7 6 3 6 2 9 11 11 10 13 13 11 12 13

pmax
j 16 16 30 29 22 35 28 40 29 34 65 58 68 88 44 56 53 65

wmin
j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

wmax
j T T T T T T T T T T T T T T T T T T

Source: The author.

Table 20 – Scheduling parameters.

S J T Q Vb ec ed SoC0 𝜌 𝛾 𝛽

1 18 97 10 Ah 3.6 V 0.95 0.8 85% 0.5 5 A 0
Source: The author.

4.5.2.1 Scenario C – Max. Orbit

In this scenario, eighteen high energy impact tasks of a 6U mission (labeled A to R)
are scheduled to show our methodology’s versatility. The resulting schedule is presented in two
parts: part one in Figure 17a which shows the schedule for tasks A to I; and part two in Figure
17b which depicts the schedule for tasks J to R. Notice that tasks A, B, and C have a strict period
that remains consistent through all four orbits, demonstrating the cross orbit effectiveness of our
methodology. The energy analysis, in Figure 17c, presents a result similar to cases A2 and B2,
although here, the energy input is considerably larger given the size of the nanosatellite.
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Figure 17 – Scheduling results for a 6U nanosatellite in a maximum eclipse orbit.
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(b) Optimal scheduling for scenario C – jobs J to R.
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(c) Energy analysis for scenario C.

Source: The author.

4.6 DISCUSSION

In conclusion, the work presented in this chapter has improved the state-of-the-art
in nanosatellite scheduling by: incorporating a realistic battery model along with strategies
for battery lifetime extension; providing a novel methodology for multi-orbit scheduling; and
improving upon an existing methodology for multi-orbit power input calculation.

These methodologies were fully demonstrated and characterized by investigating three
different scheduling scenarios. From the results, one can infer that sometimes the formulation
including the battery is the only one capable of making the model feasible, mainly because of the
moments of eclipse encountered in the orbit. Furthermore, the formulation better manages the
available energy in orbit, maximizing the usefulness of the satellite, relative to the methodology
presented in Chapter 3.

Nevertheless, solving the MILP formulation of the scheduling problem for a larger time
set T in a reasonable time would allow obtaining a task plan second by second instead of minute
by minute and, therefore, a solution including all module tasks of the satellite, not only the
payload activation tasks. A higher number of tasks with more granular power footprints could
result in an even better power consumption match with the available power, leading to further
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mission efficacy. The next chapter addresses this research path.
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5 BRANCH-AND-PRICE FORMULATION

Notwithstanding the contributions to the state-of-the-art presented in the previous chapter,
the formulation becomes impractical to solve large instances, when the computational time for
scheduling one orbit can take longer than the orbit period itself. A nanosatellite scheduling
problem can be made larger by including more tasks or increasing orbit duration, the former
being particularly desirable for planning missions of larger stacking where proportionally more
work has to be managed. Furthermore, more tasks with finer power footprints can lead to better
power management and further mission efficacy.

Pursuing this research path, a decomposition and solution strategy is formalized so
that it can cope with larger sets of tasks and an extended time horizon, within a reasonable
computation time. More specifically, the mixed-integer linear programming (MILP) formulation
is decomposed by tasks according with the Dantzig-Wolfe decomposition – a technique that has
already been applied to earth observation satellites, as can be seen in Hu et al. (2019) and Wang,
Demeulemeester, Hu, and Wu (2020), – resulting in a profile-based formulation that has never
been explored in the literature. In this novel formulation, the main decision variables are related
to feasible task profiles, such that each profile indicates the active times of its corresponding
task. To solve this formulation, a branch-and-price (B&P) algorithm is created, such that enables
the effective planning of more complex missions, in an optimal or nearly-optimal manner and
within practicable computation times.

Nevertheless, the formulation presented in Chapter 4 is modified to remove the battery
charge and discharge efficiency, introducing only one efficiency constant, and the battery usage
penalty is removed from the objective formulation, for simplicity purposes, along with the
subsystem index, such that the model considered here is as follows:

max
∑︁
j∈J

∑︁
t∈T

ujxjt, (35a)

s.t.
∑︁
j∈J

qjxjt ≤ rt +𝛾 Vb (1 –𝛼t), ∀t ∈ T , (35b)

bt = rt –
∑︁
j∈J

qjxjt, ∀t ∈ T , (35c)

it =
bt

Vb
, ∀t ∈ T , (35d)

SoCt+1 = SoCt +
it e

60 Q
, ∀t ∈ T , (35e)

SoCt ≤ 1, ∀t ∈ T , (35f)

SoCt ≥ 𝜌, ∀t ∈ T , (35g)

SoCT ≤ SoC1(1+ΔSoC), (35h)

SoCT ≥ SoC1(1 –ΔSoC), (35i)
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𝜙j1 ≥ xj1, ∀j ∈ J , (35j)

𝜙jt ≥ xjt – xj(t–1) , ∀j ∈ J ,∀t ∈ T \ {1}, (35k)

𝜙jt ≤ xjt, ∀j ∈ J ,∀t ∈ T , (35l)

𝜙jt ≤ 2 – xjt – xj(t–1) , ∀j ∈ J ,∀t ∈ T \ {1}, (35m)∑︁
t∈T

𝜙jt ≥ ymin
j , ∀j ∈ J , (35n)∑︁

t∈T
𝜙jt ≤ ymax

j , ∀j ∈ J , (35o)

t+tmin
j –1∑︁
l=t

xjl ≥ tmin
j 𝜙jt, ∀t ∈

{
1, . . . ,T – tmin

j +1
}

,∀j ∈ J , (35p)

t+tmax
j∑︁

l=t

xjl ≤ tmax
j , ∀t ∈

{
1, . . . ,T – tmax

j

}
,∀j ∈ J , (35q)

T∑︁
l=t

xjl ≥ (T – t+1)𝜙jt, ∀t ∈
{
T – tmin

j +2, . . . ,T
}

,∀j ∈ J , (35r)

t+pmin
j –1∑︁
l=t

𝜙jl ≤ 1, ∀t ∈
{
1+wmin

j , . . . ,wmax
j – pmin

j

}
,∀j ∈ J , (35s)

t+pmax
j –1∑︁
l=t

𝜙jl ≥ 1, ∀t ∈
{
1+wmin

j , . . . ,wmax
j – pmax

j

}
,∀j ∈ J , (35t)

xjt = 0, t = 1, . . . ,wmin
j ,∀j ∈ J , (35u)

xjt = 0, t = wmax
j , . . . ,T ,∀j ∈ J , (35v)

xjt ∈ {0,1}, ∀j ∈ J ,∀t ∈ T , (35w)

𝜙jt ∈ {0,1}, ∀j ∈ J ,∀t ∈ T , (35x)

0 ≤ 𝛼t ≤ 1, ∀t ∈ T , (35y)

bt, it ∈ R, ∀t ∈ T . (35z)

The text of this chapter was published as an article in Rigo, Seman, Camponogara,
Morsch Filho, Bezerra, and Munari (2022).

5.1 DANTZIG-WOLFE DECOMPOSITION AND COLUMN GENERATION ALGORITHM

The MILP formulation presented in the previous chapter can become intractable by
general-purpose optimization solvers when big instances are considered – finer time granularity
or missions above 3U size, with several payloads. A more effective approach can be designed
by exploring the special structure of the coefficient matrix of this formulation. To this end,
the Dantzig-Wolfe decomposition (DANTZIG; WOLFE, 1960) is implemented here, which
enables the use of the column generation technique to improve tractability. This decomposition
divides the original formulation into a master problem and one or more subproblems. The master



Chapter 5. Branch-and-Price formulation 73

problem considers only a subset of the constraints in the original formulation, and is defined by
variables related to integer points and rays of the polyhedra related to the constraints that were
not included. The advantage is that these points and rays can be generated iteratively, by resorting
to the subproblem(s), in a framework known as the column generation technique (LÜBBECKE;
DESROSIERS, 2005; VANDERBECK; WOLSEY, 2010; GONDZIO; GONZÁLEZ-BREVIS;
MUNARI, 2013). The following subsections formalize the decomposition of the MILP formula-
tion and describe the column generation scheme. The additional nomenclature used hereafter is
introduced in Table 21.

Table 21 – Added sets, indexes, variables and constants.

Notation Definition
Sets
Kj set of feasible profiles of task j ∈ J .
K∗

j a subset of feasible profiles of task j ∈ J .
Variables
𝜉k

j ∈
{0,1}

takes the value of 1 if, and only if, a profile k ∈ Kj is selected.

Parameters
𝜃k

jt ∈
{0,1}

is equal to 1 if, and only if, task j is in execution at time t ∈ T according with profile
k ∈ Kj.

ck
j > 0 total priority associated to the kth profile of task j.

qk
j (t) > 0 power usage associated to the kth profile of task j at time t.

Source: The author.

5.1.1 Master problem

Consider the MILP model (35a)–(35z) and let Kj be the set of all feasible schedules
for task j, i.e., schedules that satisfy constraints (35j)– (35x). Each schedule is represented by
a profile vector 𝜃k

j ∈ {0,1}T such that task j is active at time t in the kth profile if, and only if,
𝜃k

jt = 1. Let 𝜉k
j be the binary variable that assumes the value of 1 if, and only if, the kth profile

is selected for task j. Furthermore, let ck
j = uj

∑T
t=1 𝜃

k
jt be the total priority associated to the kth

profile of task j, and qk
j (t) = qj𝜃

k
jt be the power usage associated with this task at time t.

For each task j ∈ J , we have the following relationship between variables xjt and 𝜉k
j :

xjt =
∑︁
k∈Kj

𝜃k
jt𝜉

k
j , ∀t ∈ T , with

∑︁
k∈Kj

𝜉k
j = 1. (36)

Using this equivalence and applying the Dantzig-Wolfe decomposition to the MILP
formulation (35a)–(35z), we obtain the following Master Problem (MP):

MP : max
∑︁
j∈J

∑︁
k∈Kj

ck
j 𝜉

k
j , (37a)
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s.t.
∑︁
k∈Kj

𝜉k
j = 1, ∀j ∈ J , (37b)∑︁

j∈J

∑︁
k∈Kj

qk
j (t)𝜉k

j +𝛾 Vb 𝛼t ≤ rt +𝛾 Vb, ∀t ∈ T , (37c)∑︁
j∈J

∑︁
k∈Kj

qk
j (t)𝜉k

j +bt = rt, ∀t ∈ T , (37d)

(35d)-(35i), (35y), (35z),

𝜉k
j ∈ {0,1}, ∀j ∈ J , ∀k ∈ Kj. (37e)

The Master Problem (MP) consists of finding a profile for each task such that constraints
(37b) to (37e) are satisfied, while maximizing the mission value (37a). Notice that constraints
(37b) state that one, and only one, profile must be selected for each task j. Constraints (37c) limit
the energy consumption to the available capacity at each time t of the orbit. Constraints (37d)
and (35d)-(35i) refer to the battery energy management. Finally, constraints (35y), (35z) and
(37e) define the domain of the decision variables.

5.1.2 Column generation

The number of feasible profiles in the MP is combinatorial, rendering it impractical
to enumerate all profiles 𝜃k

j . Hence, the CG technique is used to solve its LP relaxation. This
technique allows us to consider subsets K∗

j ⊆ Kj and iteratively expand them until an optimal
solution of the LP relaxation is ensured. Hence, in each iteration of the method, the following
RMP is solved:

RMP : max
∑︁
j∈J

∑︁
k∈K∗

j

ck
j 𝜉

k
j , (38a)

s.t.
∑︁

k∈K∗
j

𝜉k
j = 1, ∀j ∈ J , (38b)∑︁

j∈J

∑︁
k∈K∗

j

qk
j (t) 𝜉k

j +𝛾 Vb 𝛼t ≤ rt +𝛾 Vb, ∀t ∈ T , (38c)∑︁
j∈J

∑︁
k∈K∗

j

qk
j (t) 𝜉k

j +bt = rt, ∀t ∈ T , (38d)

(35d)-(35i), (35y), (35z),

𝜉k
j ≥ 0, ∀j ∈ J , ∀k ∈ K∗

j . (38e)

Let 𝜇j, 𝜋t and 𝜈t be the dual variables associated with the constraints (38b)-(38d),
respectively. Given a corresponding optimal dual solution 𝜇̄j, 𝜋̄t and 𝜈̄t of the RMP, it is verified
if new variables with positive reduced cost can be generated for the RMP resorting to the
following pricing subproblems PSj, for each task j ∈ J :

PSj : c̃j = max
k∈Kj\K∗

j

ck
j – 𝜇̄j –

T∑︁
t=1

(𝜋̄t + 𝜈̄t)qk
j (t), (39)
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where c̃j is the largest reduced cost that can be achieved by a profile of task j. Solving the pricing
problem PSj in the form (39) is not practical, since it amounts to enumerating all columns
that correspond to feasible task schedules. Instead, we can solve an optimization problem that
generates a profile inKj\K∗

j , based on the constraints that define a feasible schedule, as follows:

PSj : c̃j = max
xj,𝜙j

uj

T∑︁
t=1

xjt – 𝜇̄j – qj

T∑︁
t=1

(𝜋̄t + 𝜈̄t) xjt, (40a)

s.t. (35j)-(35x) [Restricted to task j], (40b)

which is a 0-1 integer program on the variables xj = (xjt : ∀t) and 𝜙j = (𝜙jt : ∀t).
An optimal solution of the RMP is optimal for the LP relaxation of the MP if

max
{
c̃j : j ∈ J

}
≤ 0, (41)

meaning that there are no columns corresponding to profiles in Kj\K∗
j that have a positive

reduced cost and, hence, we can halt the column generation algorithm.

5.2 BRANCH-AND-PRICE

If the optimal solution obtained at the end of the CG algorithm is integer, then it is optimal
for the MP as well. Otherwise, we need to embed the CG algorithm in a branch-and-bound
framework to find the integer optimal solution, a procedure that is known as branch-and-price
(B&P) (BARNHART et al., 1998;MUNARI; GONDZIO, 2013). To propose a B&P algorithm for
solving the MP (37), in what follows an effective branching scheme is presented and the changes
that are required in the RMP and subpproblems of the CG algorithm are shown. Additionally, a
MIP heuristic that helps the method finding integer feasible solutions using the generated profiles
is presented.

5.2.1 Branching scheme

The branching scheme is based on the original variables xjt of the MILP formulation,
using the equivalence (36), and the branching constraints are imposed explicitly in the RMP,
in terms of variables 𝜉k

j . At each node l, after finishing the column generation procedure and
certifying that the node cannot be pruned, it is selected the pair of indices (j, t) such that xjt is
the most fractional – in case of ties its randomly selected – using the following expression:

argmin
∀(j,t)

��0.5 –
∑︁

k∈K∗
j

𝜃k
jt𝜉

k
j

��. (42)

Then, if xjt is fractional for the selected pair (j, t), two branches are created imposing xjt = 0 in
one child node and xjt = 1 in the other as follows, respectively:∑︁

k∈K∗
j

𝜃k
jt𝜉

k
j = 0 and

∑︁
k∈K∗

j

𝜃k
jt𝜉

k
j = 1.
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Its denoted as L (l)
0 =

{
(j, t) : xjt = 0 at node l

}
and L (l)

1 =
{
(j, t) : xjt = 1 at node l

}
the

sets of indices related to the branching constraints imposed at node l, all the way from the root
node. To illustrate the definition of these sets, an example of a branching tree is shown in Figure
18, in which for node 4 we have the sets L (4)

0 =
{
(5,3)

}
and L (4)

1 =
{
(2,6)

}
, as the branching

constraints x53 = 0 and x26 = 1 are both enforced in this node.

Figure 18 – Illustration of branching tree.
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Source: The author.

5.2.2 Changes to RMP and subproblems

Let RMP(l) be the restricted master problem of a given node l, which is defined as follows:

RMP(l) : max
∑︁
j∈J

∑︁
k∈K∗

j

ck
j 𝜉

k
j , (43a)

s.t. (38b)-(38d), (35d)-(35i), (35y), (35z)∑︁
k∈K∗

j

𝜃k
jt𝜉

k
j = 0, ∀ (j, t) ∈ L (l)

0 , (43b)∑︁
k∈K∗

j

𝜃k
jt𝜉

k
j = 1, ∀ (j, t) ∈ L (l)

1 , (43c)

𝜉k
j ≥ 0, ∀j ∈ J ,∀k ∈ K∗

j . (43d)

Notice that constraints (43b) and (43c) enforce the branching constraints at each RMP(l) .
Let 𝜁 t

j,0 and 𝜁
t
j,1 be dual variables associated to these branching constraints, respectively. The

objective function of each pricing subproblem needs to change to take into account these dual
variables. For each task j, the subproblem becomes:

PSj : c̃j = max uj

T∑︁
t=1

xjt – 𝜇j – qj

T∑︁
t=1

(𝜋t + 𝜈t) xjt –
∑︁

(j,t)∈L (l)
0

xjt𝜁
t
j,0 –

∑︁
(j,t)∈L (l)

1

xjt𝜁
t
j,1, (44a)

s.t. : (35j)-(35x) [Restricted to task j]. (44b)
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5.2.3 MIP heuristic

Finally, a simple MIP heuristic is applied to increase the chances of obtaining good
feasible solutions that can be used to improve the lower bound of the B&P method (SADYKOV
et al., 2019; ALVAREZ; MUNARI, 2017). This heuristic is called at the end of each node, right
before branching, and consists of solving a compact MIP model based on the RMP, using a
general-purpose MIP solver. The idea is that the MIP solver may determine an integer feasible
solution based on the combination of the profiles (columns) generated so far, which may be
better than the incumbent solution.

The first step of the heuristic is to redefine as binary the domain of all variables 𝜉k
j

in the last RMP solved in the node, resulting in the problem named as HRMP(l) for node l.
Notice that this is the same problem as the RMP(l) we have at the end of the column generation
procedure, except that it has the additional constraints 𝜉k

j ∈ {0,1},∀j ∈ J ,∀k ∈ K∗
j . TheHRMP(l)

is solved as a compact model by a general-purpose MIP solver (and without generating any
further columns during this process). Any feasible solution of this problem is clearly feasible
for the MP. Therefore, if a feasible solution with objective value larger than the current Lower
Bound (LB) is obtained, it replaces the incumbent and its value becomes the new LB.

5.2.4 Branch-and-price procedure

Each node of the search tree involves a call to the CG algorithm, specific lower/upper
bound updates, node cut-off criteria and the branching strategy. For RMP(1) , the first RMP, its
provided an initial set of feasible columns so that the proper duals are generated to set the pricing
subproblems for the first time. In this implementation, is created a column for each task where
all values are 1’s and modified the first RMP by including in the objective function a highly
negative term multiplying the cost of each of these artificial columns.

Algorithm 2 presents the pseudo-code of the routine performed at each node in the search
tree. The function Node receives as parameter the node number (l), the lower bound (LB) and
the upper bound (UB). Let 𝜎 = ( 𝜇̄j, 𝜋̄t, 𝜈̄t, 𝜁 k

j,0, 𝜁 k
j,1 : ∀j ∈ J ,∀t ∈ T ) be the relevant components

of the optimal dual solution of (43). Then, the first step is to run the CG algorithm, shown in
lines 2 to 10. Furthermore, the pricing problem was solved in parallel, simultaneously for each
task using the general-purpose branch-and-cut of the Gurobi solver (GUROBI OPTIMIZATION,
2016) and returning multiple columns. After running the column generation loop, the node is
checked for pruning based on the LB (lines 11 and 12), and then the upper bound is updated, if
necessary (lines 13 and 14).

The next step is to run the MIP heuristic based on the HRMP(l) (line 15) and then update
the lower bound depending on the solution returned by this heuristic (lines 17 to 19). If the
objective value ZH (l) of the returned solution is equal to the upper bound, then it closes the
integrality gap. Therefore, an optimal integer solution has been found and the method terminates
successfully (lines 20 and 21). Finally, after updating the gap value (line 22), the procedure
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Algorithm 2: Solving a node in the branch-and-price algorithm
1 Function Node(l,LB,UB(l)):
2 do
3 Solve RMP(l) to obtain its optimal value ZRMP(l) and the respective dual

variables 𝜎 ;
4 if RMP(l) is infeasible then
5 return 0; // Prune node
6 for each j ∈ J do
7 Set PSj using 𝜎 and solve it ;
8 if c̃j > 0 then
9 Add the optimal schedule of PSj to K (l)

j ;

10 while c̃j > 0 for at least one j ∈ J ;
11 if ⌊ZRMP(l) ⌋ ≤ LB then
12 return 0; // Prune node
13 if ZRMP(l) < UB(l) then
14 UB(l) = ⌊ZRMP(l) ⌋; // Update upper bound
15 Solve HRMP(l); // MIP heuristic
16 if HRMP(l) returns a feasible solution then
17 Let ZH (l) be the value of the returned solution;
18 if ZH (l) > LB then
19 LB = ZH (l) ; // Update lower bound (new incumbent solution)
20 if ZH (l) = UB(l) then
21 return 1; // Integer optimal solution found!

22 Let (j, t) be the pair of indices obtained using (42);
23 Compute xjt using the equivalence in (36);
24 if xjt is fractional then
25 Define a new node using the branching constraints L (l)

0 ∪ {(j, t)} and insert it
into the list of nodes;

26 Define a new node using the branching constraints L (l)
1 ∪ {(j, t)} and insert it

into the list of nodes;
27 else
28 if ZRMP(l) > LB then
29 LB = ZRMP(l) ; // Update lower bound (new incumbent

solution)

applies the branching scheme described in Section 5.2.1 (lines 23 and 24). If the solution in
terms of the original variables is fractional, two child nodes are created and added to the list of
nodes (lines 25 to 27), to be processed later in the search tree.

For each branching candidate variable found in the variable selection strategy – Equation
(42) – the node function will be called passing the current variable to be constrained, along
with the previous variables all the way back to the top of the search tree. Clearly, the strategy
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here is depth-first search – a common strategy for scheduling problems (FRISKE; BURIOL;
CAMPONOGARA, 2018; MAENHOUT; VANHOUCKE, 2010) – since the left branch will
always be explored first, and the right will only be called if the left returns without a solution. If
both return without a solution, then the next candidate for branching in the node will be explored,
and so on.

5.3 COMPUTATIONAL EXPERIMENTS

In this section, is reported the results of computational experiments carried out to verify
the performance of the proposed B&P method1. Firstly, is presented the attitude and orbital
parameters used for the power input calculation evaluation the B&P algorithm. Then the B&P
procedure is compared to traditional solution approaches, and lastly, illustrative but realistic
schedules are presented.

Its considered here that tasks refer to the activation and deactivation time of payloads,
which are high resource impact components of nanosatellites and require careful management
given their critical importance for mission success. Therefore, in this problem, tasks are hardware
modules integrated into the spacecraft, and their quantity depends on the nanosatellite size (i.e.,
1U, 2U, etc.), and does not change during the mission. These high energy impact tasks have to
be pre-scheduled on Earth (i.e., the ground station), offline, and later sent to the nanosatellite,
which will then take leverage of this information to define the order of tasks to be performed.

The methodologies presented in Section 5.2 were implemented in the Julia programming
language using the JuMP library (DUNNING; HUCHETTE; LUBIN, 2017) and solved using
the Gurobi solver in a server with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz processor
(20 cores, 40 threads), 64 GB of RAM, and Ubuntu 20.04.2 LTS 64 bits.

5.3.1 Power input calculation

The input data used by the methodology of Filho et al. (2020) for power harvesting
calculation was based on the FloripaSat-I mission, with an altitude of 628 km and an orbit
duration of 97 minutes (MARCELINO et al., 2020). Notice that when T > 97 the schedule is
solved for more than one orbit period at once, since the time granularity explored here will be
minutes. The orbital parameters are presented in Table 22, where: i is the orbit inclination [◦]; Ω
is the right ascension of the ascending node [◦]; e is eccentricity [-]; 𝜔 is the argument of perigee
[◦]; M is mean anomaly [◦]; and n is mean motion [rev/day].

Two attitudes considering an orbit of half-maximum eclipse and stacking of 3U, and
one with maximum eclipse and a stacking 6U, will be explored to elucidate the spacecraft’s
kinematics and size impact on power calculation. The obtained power vector is multiplied by an
EPS efficiency of 0.85, finally resulting in the power available for the tasks – the input vector for
the scheduling methodology.
1 The instances are available at https://github.com/c-a-rigo/nanosatellite-scheduling-instances.
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Table 22 – Orbital parameters.

Nanosatellite i Ω e 𝜔 M n

FloripaSat-I 97.95 225.78 0.0016 111.38 248.91 14.82
Source: The author.

5.3.2 Initial evaluation

For initial analysis of the B&P algorithm behavior, a case with randomly generated
scheduling data, T = 194 and J = 9, was solved. Notice that, because T = 194, the result will be
a plan for two consecutive orbit periods – although the decision maker could as easily schedule
one orbit in a time resolution of 30 seconds. Two versions of the B&P algorithm are run: in the
first, it generates at most one column per each call to a subproblem PSj, whereas in the second,
it can generate up to 30 columns per call (corresponding to feasible solutions that are found
and stored by the solver Gurobi while solving PSj). Figure 20a shows the evolution of bounds
resulting from the column generation procedure, with the pricing subproblem returning at most
one column per call to each PSj.

The optimal value obtained by the CG algorithm at the root node is ZRMP(0) = 3745.736
and by rounding down this value we obtain the upper bound 3745, which coincides with the
optimal value of the instance (Zoptimal). The solution is still fractional though, and the lower
bound obtained by the MIP heuristic is relatively low – with an initial GAP = 3.124%. This
lower bound rises closer to Zoptimal after a few iterations, as the search tree deepens. Eventually,
the lower and upper bound converge, and the optimal solution is found. Figure 19b shows in
which node the algorithm was at each iteration. It can be noticed that, for the particular instance
illustrated in Figure 19b, node pruning was only applied at the beginning and at the end of the
search tree; in this sense, it was not possible to observe a direct correlation between iteration and
node number (tree depth).

Figure 20b shows the bounds evolution at each iteration when solving the same instance
but with the generation of several columns per call to each sub-problem PSj, corresponding
to the k best columns found for each task. The result is similar to the previous case, with the
upper bound reaching the optimal value in the first node, although now the lower bound rises
much faster. One can notice that finding the optimal solution takes about the same computation
time with single or multiple column returns. Nevertheless, the GAP starts so low (0.053%) that
an almost optimal solution is available in the first node, which could be a sufficiently good
solution for the decision-maker, obtained with far less computational effort in comparison to the
single-column case.
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Figure 19 – Branch-and-price bounds and node processing evolution in the search tree with
single and with multiple columns.
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(b) Search tree for the single-column case.
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(d) Search tree for the multiple-column case.

Source: The author.

This behavior was observed in all instances considered by the computational analysis.
In fact, the tests showed that in instances where an optimal solution was found deep in the tree
for the single-column case, the multiple-column version proved optimality in the first node with
relatively little computation time. This is the case for all instances of Table 24 where the solution
was found in the first node.

5.3.2.1 Column generation

To investigate the causes of the bound behavior previously reported, we explore the first
30 columns returned from the pricing of each job in a smaller example, with T = 97 and J = 9.
Figure 20 presents these columns for two jobs, 1 and 7, respectively.
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Figure 20 – First 30 columns returned from the first pricing procedure.
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(a) Job 1 columns. Task parameters: ymin=2; ymax=4; tmin=10; tmax=15; pmin=30; pmax=78; wmin=30; wmax=81.
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(b) Job 7 columns. Task parameters: ymin=1; ymax=3; tmin=2; tmax=7; pmin=21; pmax=24; wmin=0; wmax = T .

Source: The author.
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These plots show that each column is unique, and the variation between them is slight.
This indicates that the pricing generates unique but similar columns, characterizing a restricted
problem. In fact, if we analyze the standard deviation of the 30 columns for each job, presented
in Table 23, it can be seen that this is indeed the case, where only job 7 has a standard deviation
above 1.

Table 23 – Standard deviation between columns for each job.

Job 1 2 3 4 5 6 7 8 9

𝜎 0.49 0.80 0.87 0.50 0.76 0.98 1.06 0.66 0.57
Source: The author.

Therefore, given that in the first node the pricing procedures will generate quite a
significant amount of columns, we can assign the ability of the RMP(1) to reach optimal bounds–
and in many cases, the optimality itself – to this sufficient enough diversity and of unique
columns.

5.3.3 Comparison with the traditional approach

Table 24 presents the results for the multiple-column B&P algorithm in comparison with
solving the MILP formulation (35a)–(35z) using the general-purpose solver of Gurobi, for 42
randomly generated instances wherein the cardinality of T varies from 97 to 291 and for cases
with 9, 13, 18, 20, 22 and 24 tasks. For each instance, the table shows the instance number (#),
the number of time periods (T), and the number of tasks (J). Then, for each solution approach,
the table reports the objective value of the best feasible solution obtained (Obj value), which is
the optimal value if the total computation time is less than 7200 seconds; the best upper bound
obtained by the approach (Best UB); the computation time to solve the instance (CPU); the
relative optimality gap, computed as GAP = (Best UB–Obj value)/(Best UB+1e–20); and the
final status of the approach (End Cause), where Optimal means that the instance was solved to
proven optimality, while Time means that the method finished after reaching the time limit. For
the B&P method, there is one additional column, showing the number of nodes processed in the
search tree (Nodes). The best results are marked with a star, indicating the solution strategy that
achieved the best time or GAP within the time limit of 7200 seconds.

The results in Table 24 show that the B&P algorithm performs better in solving the
nanosatellite scheduling problem when compared to the commercial alternative. In 29 out of
42 instances, the proposed algorithm achieved optimality with the best computation time, on
average, 88.58% faster than Gurobi. In instance 16, for example, the B&P strategy solved the
problem to optimality in 21 seconds, at the root node. In contrast, Gurobi used all available time
and could not prove optimality. The complexity increase with problem size is also noticeable for
both solution approaches, as it becomes more costly to solve instances of T = 194 or larger and
with 9/13 tasks, and far more costly for T = 154 or higher and with 18 tasks.
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Table 24 – Performance of the multiple-column B&P algorithm vs.MILP formulation using the
general-purpose solver Gurobi for 21 instances (time limit = 7200 seconds).

B&P Gurobi

# T J
Obj

value
Best
UB

CPU
(s) Gap Nodes End

cause
Obj

value
Best
UB

CPU
(s) Gap End

cause

1 97 9 1141 1141 ★8 0.0000% 1 Optimal 1141 1141 13 0.00% Optimal
2 120 9 2284 2284 ★16 0.0000% 2 Optimal 2284 2284 128 0.00% Optimal
3 125 9 2553 2553 15 0.0000% 2 Optimal 2553 2553 ★2 0.00% Optimal
4 154 9 2765 2765 ★59 0.0000% 13 Optimal 2765 2765 119 0.00% Optimal
5 170 9 4766 4766 ★25 0.0000% 7 Optimal 4766 4766 54 0.00% Optimal
6 194 9 3745 3745 475 0.0000% 105 Optimal 3745 3745 ★428 0.00% Optimal
7 291 9 5506 5506 ★4629 0.0000% 72 Optimal 5506 5506 6069 0.00% Optimal
8 97 13 6617 6617 ★17 0.0000% 1 Optimal 6617 6617 65 0.00% Optimal
9 120 13 9328 9328 ★18 0.0000% 1 Optimal 9328 9328 231 0.00% Optimal
10 125 13 8799 8799 ★21 0.0000% 1 Optimal 8799 8799 83 0.00% Optimal
11 154 13 11929 11929 ★39 0.0000% 1 Optimal 11929 11929 598 0.00% Optimal
12 170 13 12719 12719 ★108 0.0000% 1 Optimal 12719 12719 505 0.00% Optimal
13 194 13 14806 14806 ★83 0.0000% 1 Optimal 14806 14806 217 0.00% Optimal
14 291 13 21246 21246 ★2174 0.0000% 131 Optimal 21246 21840 7200 2.71% Time
15 97 18 11844 11844 ★10 0.0000% 1 Optimal 11844 11844 1775 0.00% Optimal
16 120 18 16376 16376 ★21 0.0000% 1 Optimal 16376 16642 7200 1.62% Time
17 125 18 17812 17812 ★40 0.0000% 1 Optimal 17812 17812 280 0.00% Optimal
18 154 18 20691 20692 7200 ★0.0048% 56 Time 20691 20726 7200 0.16% Time
19 170 18 14888 14892 7200 ★0.0268% 4 Time 14889 14903 7200 0.09% Time
20 194 18 12513 12521 7200 ★0.0600% 144 Time 12518 12527 7200 0.07% Time
21 291 18 34957 34962 7200 ★0.0286% 80 Time 34961 35519 7200 1.59% Time
22 97 20 12024 12024 ★58 0.0000% 1 Optimal 12024 13158 7200 9.43% Time
23 120 20 18239 18239 ★86 0.0000% 1 Optimal 18239 18629 7200 2.13% Time
24 125 20 17100 17100 ★99 0.0000% 1 Optimal 17100 17876 7200 4.53% Time
25 154 20 22375 22375 ★807 0.0000% 1 Optimal 22375 23850 7200 6.59% Time
26 170 20 21868 21868 ★663 0.0000% 1 Optimal 21868 23245 7200 6.29% Time
27 194 20 23398 23398 ★770 0.0000% 1 Optimal 23398 25146 7200 7.47% Time
28 291 20 36922 36926 7200 ★0.0108% 126 Time 36917 37866 7200 2.57% Time
29 97 22 11788 11788 ★79 0.0000% 1 Optimal 11788 12134 7200 2.93% Time
30 120 22 19620 19621 7200 ★0.0050% 133 Time 19621 20368 7200 3.80% Time
31 125 22 20853 20853 ★116 0.0000% 1 Optimal 20853 22172 7200 6.32% Time
32 154 22 26729 26729 ★828 0.0000% 1 Optimal 26729 27752 7200 3.82% Time
33 170 22 25476 25476 ★1026 0.0000% 28 Optimal 25476 26508 7200 4.05% Time
34 194 22 31251 31252 7200 ★0.0031% 154 Time 31251 31954 7200 2.24% Time
35 291 22 39788 39790 7200 ★0.0050% 90 Time 39788 41906 7200 5.32% Time
36 97 24 18987 18990 7200 ★0.0157% 117 Time 18990 19785 7200 4.19% Time
37 120 24 21231 21231 ★1014 0.0000% 1 Optimal 21231 21950 7200 0.00% Time
38 125 24 22376 22376 ★561 0.0000% 48 Optimal 22376 23495 7200 5.00% Time
39 154 24 29058 29058 ★326 0.0000% 1 Optimal 29058 31208 7200 7.39% Time
40 170 24 31353 31353 ★610 0.0000% 15 Optimal 31353 32733 7200 4.40% Time
41 194 24 31961 31962 7200 ★0.0031% 178 Time 31961 32422 7200 1.44% Time
42 291 24 31907 31909 7200 ★0.0062% 70 Time 31907 31943 7200 0.11% Time

Source: The author.

In eleven instances, optimality was not proved by either solving method, although the
B&P obtained the smallest gaps. It is interesting to show the bounds evolution of both solvers
within the time limit. For all instances where B&P branched (Node > 1), the same behavior
as described in the previous subsection was observed. This behavior is illustrated for instance
#4 in Figure 21, which shows the evolution of the optimality gap according to Gurobi and the
B&P algorithm. At the first node, the B&P upper bound reaches the optimal value and the lower
bound gets very close to Zoptimal (GAP = 0.38%), steadily increasing as the search tree deepens.
In comparison, Gurobi starts with a large gap (5.41%) which takes much longer to decrease, not
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being able to prove optimality when the CPU time limit is reached.

Figure 21 – Instance #14 gap evolution for Gurobi and B&P.
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Source: The author.

5.3.4 Illustrative examples

Firstly, two scenarios and two cases for each scenario are explored for the 3U size
nanosatellite in order to evaluate the consistency of the results obtained by the B&P method.
Then, to show how the algorithm performs in a more complex example, is presented the mission
planning for a 6U mission.

5.3.4.1 3U Mission

The scheduling parameters used as input for all scenarios and cases of the 3U mission
were randomly generated as presented in Table 25, amounting to nine tasks that are labeled from
1 to 9. The remaining parameters are presented in Table 26.

• Scenario A: An orbit with half-maximum eclipse and attitude Nadir.

• Scenario B: An orbit with half-maximum eclipse and attitude RAM.

• Case 1: The battery is allowed to be fully drained, down to the 𝜌 limit, with a maximum
current rate of 1.2 A (𝛾 = 1.2).

• Case 2: The battery SoC has a variation limit within the optimization period, and constraints
(35h) and (35i) are enforced with a maximum current rate of 5 A (𝛾 = 5).

• Case 3: The battery SoC is limited with constraints (35h) and (35i), and scenarios A and
B are solved several times with different 𝛾 values, to asses its impact on mission value
extraction.
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Table 25 – Nanosatellite tasks data (3U mission).

j 1 2 3 4 5 6 7 8 9

usj 7 4 8 6 9 2 1 5 3
qsj 0.96 1.07 0.8 1.43 0.95 0.98 0.77 1.08 1.6
ymin

j 5 3 5 3 2 4 3 5 4
ymax

j 6 10 12 5 13 5 5 8 6
tmin
j 9 15 11 18 20 3 8 1 6

tmax
j 40 32 39 18 31 24 19 32 9

pmin
j 43 26 22 31 33 16 43 38 22

pmax
j 79 182 38 124 62 173 80 83 168

wmin
j 0 0 0 0 0 0 0 0 12

wmax
j 195 195 190 195 195 195 195 195 195

Source: The author.

Table 26 – Orbit and battery parameters (3U mission).

J T Q Vb e SoC0

9 194 5.6 Ah 3.6 V 0.9 75%
Source: The author.

Figure 22 – Branch-and-price scheduling results for all 3U scenarios.
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(a) Optimal scheduling for A1
Zoptimal = 6823, Solve time = 2154 seconds.
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(b) Optimal scheduling for A2
Zoptimal = 5946, Solve time = 2727 seconds.
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(c) Optimal scheduling for B1
Zoptimal = 6651, Solve time = 371 seconds.
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(d) Optimal scheduling for B2
Zoptimal = 5542, Solve time = 2562 seconds.

Source: The author.
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Observe that nine tasks of high energy footprint are considered to be scheduled in this
hypothetical 3U nanosatellite, and a battery with 5.6 Ah. Furthermore, the battery state of charge
is not allowed to fall below 50% (𝜌 = 0.5) and the maximum discharge current rate is controlled.
This is a realistic case since critical applications usually have a margin of safety and do not
allow the battery to be fully discharged. Also, limiting the battery access current will improve
its lifetime.

Figure 22 presents the optimal schedule obtained for each scenario. Notice that tasks
are labeled from 1 to 9, the x-axis spans from time 0 to time T , and the y-axis indicates if the
task is on or off for each unit of time. We have tasks 5, 3, and 1 with the highest priorities: 9, 8,
and 7, respectively. The execution time of these tasks was maximized, being turned off only to
comply with constraints on the maximum execution and period ranges. Notice that task 3 has
an execution window parameter, wmax

3 = 190, hence it finishes execution before T = 194, in all
3U scenarios. Let us analyze task 1, for example, whose activation count must be within 5 and 6
times. It is easy to verify that these requirements were fulfilled, since task 1 initiated execution
five times in each one of the scenarios.

Furthermore, one can notice that tasks with lower priorities, such as tasks 2 and 6, are
executed less frequently in cases A2 and B2, where energy is more scarce – the battery is not
allowed to discharge more than 5% – than in cases A1 and B1. In fact, the final objective values
of A2 and B2 are considerably smaller than for A1 and B1, respectively 12.89% and 16.67%.
These are precisely the results expected from the scheduling formulation. It can also be observed
that scenario B, with a RAM attitude, results in smaller objective values when compared within
cases. This sort of analysis can be crucial for the engineer in the satellite designing phase, where
the attitude is yet to be determined.

Figure 23 presents the results regarding energy management for all 3U cases. In blue, the
calculated power input coming directly from the solar panels is shown, considering that these
results refer to two full orbits and, therefore, two eclipse periods with zero power input. Moreover,
it becomes clear how distinguishably different the input energy wave-forms are between cases
A and B, with distinct attitudes. The battery power shown in these results can be either coming
from or going to the battery, depending whether the task’s power consumption rises above or falls
below the energy input in a given minute. One can immediately observe a correlation between
this power flow and the SoC since, when power consumption surpasses power input, the SoC
falls and vice versa. It is particularly interesting to notice how the SoC steadily decreases during
eclipse time.

As expected, in cases A1 and B1, the battery was fully drained down to the 𝜌 limit of 50%,
although never going below it. However, for cases A2 and B2, where constraints (35h) and (35i)
are enforced, the battery acts more as a balancing factor between periods of energy input and
eclipse time. This characterizes a much more farsighted and desirable behavior regarding battery
access. In fact, the decision-maker could easily constrain, even more, the allowed variation, say
to 1%, and always maintain the battery level above 80 or 90% to sustain an even higher margin
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of safety. Figure 24 presents a histogram of the SoC to further analyze its dynanic.

Figure 23 – Branch-and-price power results for all 3U scenarios.
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(a) Energy analysis for A1.
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(b) Energy analysis for A2.
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(c) Energy analysis for B1.
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(d) Energy analysis for B2.

Source: The author.

Finally, for case 3, Figure 25 shows the impact of six distinct 𝛾 limits on the objective
value. The result reveals that an aggressive limitation on the battery access (𝛾 between 0.3 and
2.0) will result in a trade-off with mission value extraction, by means of which the decision-maker
can balance battery lifetime and short-term gains.

5.3.4.2 6U Mission

In this example, 18 tasks with high energy impact (labeled 1 to 18) are considered such
as to represent a 6U mission with three consecutive orbits (T = 291). Table 27 and Table 28
present the scheduling parameters which were generated at random.
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Figure 24 – SoC histogram for 3U scenario .
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Figure 25 – 𝛾 variation impact on the objective value – see expression (35a).
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Table 27 – Nanosatellite task data (6U mission).

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

usj 12 10 6 15 16 18 13 17 5 7 3 2 1 11 4 8 9 14
qsj 3.05 1.8 1.6 0.65 1.94 3.42 2.22 2.16 2.04 2.55 3.06 1.51 1.71 1.61 2.89 0.59 1.3 1.24
ymin

j 5 5 5 2 3 5 2 5 2 4 6 1 5 5 3 7 1 2
ymax

j 14 20 16 11 8 18 2 19 17 16 15 7 16 11 9 10 4 2
tmin
j 4 11 10 21 3 16 30 24 19 22 19 3 15 15 3 18 7 16

tmax
j 44 15 48 43 60 40 35 32 57 56 23 70 25 65 63 22 26 29

pmin
j 17 35 24 55 66 39 67 35 64 65 39 64 70 16 26 34 12 39

pmax
j 280 132 150 56 188 260 105 239 265 123 51 127 258 211 105 254 120 260

wmin
j 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

wmax
j 292 292 292 292 292 292 292 233 292 292 292 292 292 292 292 292 292 292

Source: The author.

Anear-optimal schedule with optimality gap equal to 0.42%was obtained for this example
after 7200 seconds of computation time, which is presented in two parts: part one in Figure 26a
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Table 28 – Scheduling parameters (6U mission).

J T Q Vb e SoC0 𝜌 𝛾

18 291 10 Ah 3.6 V 0.9 85% 0.5 2 A
Source: The author.

shows the schedule for tasks 1 to 9; and part two in Figure 26b depicts the schedule for tasks 10
to 18. Tasks 5 and 8, for instance, have windows of execution that are strictly followed by the
scheduler. Task 18, despite having one of the highest priorities, is executed only two times as it
should, given that its maximum number of startups is set at 2. Therefore, we can again verify
the consistency of the scheduling results. The energy analysis, in Figure 26c, presents a result
similar to the previous cases, except that now we have a longer eclipse time and a greater power
input – reaching more than 12W.

Figure 26 – Branch-and-price results for a 6U mission, obtained when it reaches the time limit
of 7200 seconds with gap = 0.42%.
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5.4 DISCUSSION

Scheduling a nanosatellite mission is especially challenging, given the limited availability
of resources, the increasing implementation of the standard, and the consequent demand for
better extraction of mission value and guarantees for quality-of-service. In this chapter, the
state-of-the-art was advanced by devising an effective solution strategy to cope with large and
complex instances of the problem. A Dantzig-Wolfe decomposition was performed to develop
a novel profile-based formulation, and resorted to a column generation procedure to generate
feasible schedules on demand, for each task. Furthermore, to guarantee the integrality of the
solutions using the schedules obtained by column generation, designing a problem-specific
branching scheme and performed changes to the restricted master problem and subproblems,
resulting in a branch-and-price algorithm.

The results of computational experiments with randomly generated, but realistic instances
showed an improvement of 70% on overall solution time compared to the standard approach,
which consists in solving a MILP problem with a commercial solver. In addition, several
illustrative examples based on realistic missions were scheduled, with the results corroborating
the consistency of the proposed branch-and-price approach. Moreover, a significant reduction in
optimality gaps was observed in all instances when using the proposed approach, allowing the
decision-maker to quickly obtain near-optimal solutions for best mission extraction of value.
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6 CONCLUSION

The idea of estimating an offline task schedule can serve as a basis for a nanossatelite
project. Based on its results, the engineer, for example, can choose to include or remove a
payload, prohibit the execution of tasks simultaneously, estimate the occurrence of safe modes
of operation, consider the time frame between the launch and full nominal operation, worst-case
scenarios, and so on. The work presented here has addressed this scheduling problem, tackling
its specific necessities and requisites.

The nanossatelite scheduling problem characterization presented allowed to clearly un-
derstand the complexities, limitations and requisites related to planning a successful nanosatellite
mission. Complementary, the comprehensive literature review presented answered several ques-
tions regarding how the problem has or has not being addressed by the scientific community.
Therefore, it is believed that the specific objective (1) has been fulfilled.

The basemodel IP formulation has fully addressed objective (2), establishing a scheduling
formulation generic enough to handle different task resolutions. The task considered could be
an execution made by one of the embedded systems (i.e., an operating system task) or even the
operation of an entire payload. Therefore, the function performed by the task (i.e., data download,
beacon) or by the satellite itself (i.e., earth observation, communications network) is indifferent
to the optimization model created, allowing to readily schedule any tasks.

The extended MILP formulation has fully addressed objective (3), by modeling a battery
and formulating its energy access as a fuzzy constraint, allowing the scheduling formulation
to exceed in an optimal way (decided by the optimization solver) the energy limit previously
imposed by the solar panels power input at any given moment. The benefit of considering the
battery was shown in the increased value of the tasks priority sum when compared with the
model without a battery. Furthermore, the battery allows for scheduling critical tasks in periods
of eclipse time (without energy input from solar pannels).

The multy-orbit scheduling was also a importatn adittion, because although the cyclical
regime appears in some cases, the multi-orbit formulation serves to deal with changes in the
battery’s energy level, that could cause periodic payload regimes to change over time to achieve
the feasibility of the optimization problem. In addition to being closely related to the execution
of tasks, the battery level is dependent on the input energy available in the satellite. In closed
orbits, the variation in the input is not perceptible. However, when analyzing the satellite’s useful
life, there may be a significant variation in the energy input levels due to disturbances in orbit.

The Danzig-Wolfe decomposition and branching strategy allowed scaling to finer time
granularity and greater amount of tasks, completing the objective (4). Finally, comparisons
aimed at meeting objective (5) showed that the branch-and-price methodology is, on average,
88% faster in obtaining optimal results compared to the computational times of the MILP solved
with a commercial solver. In conclusion, a robust and realistic framework for optimal offline
scheduling of nanosatellite missions is believed to have been achieved, which empowers the
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decision-maker to readily schedule any mission in one or multiple subsystems of a nanosatellite.

6.1 FURTHER RESEARCH DIRECTIONS

In circuits where the solar panels are directly coupled, the satellite’s power demand should
change following the solar irradiation levels reaching the photo-voltaic panels (SARAVANAN;
BABU, 2016; SLONGO et al., 2018), resulting in a maximum energy collection, also known
as Maximum Power Point (MPP). This load behavior maintains the MPP of the solar panels
and characterizes a state of maximum energy harvesting. Therefore, it is believed that a great
contributionwould be to create a computationally lightweight scheduling formulation enabling the
Maximum Power Point Tracking (MPPT) in real time on-board the spacecraft. This formulation
would be complementary to the methodology presented in this thesis, leveraging the offline
schedule obtained here and encompassing more fine grained tasks – operating system tasks, for
instance.

Another research path would be to explore hybrid methods with Machine Learning
(ML) which could further improve the B&P solving time. Recent research has successfully
explored ML models to predict: the final optimal value of decision variables (FURIAN et al.,
2021), which variables select for branching (LODI; ZARPELLON, 2017), which columns
to include in the re-optimization of the RMP and even to find heuristic-cuts (MORABIT;
DESAULNIERS; LODI, 2021; PESCHIERA et al., 2021). Another promising idea is to train
a ML model on task parameters and the relevant components of the optimal dual solution
( 𝜇̄j, 𝜋̄t, 𝜈̄t, 𝜁 k

j,0, 𝜁 k
j,1 : ∀j ∈ J ,∀t ∈ T ), or features of them, to predict c̃j and provide bounds for the

pricing procedure, potentially decreasing solve time in this step.
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