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“The mathematician’s patterns, like the

painter’s or the poet’s must be beautiful;

the ideas like the colours or the words, must fit

fogether in a harmonious way. Beauty is the first test:

there is no permanent place in the world for ugly mathematics.”
(G. H. HARDY, A Mathematician’s Apology, 1967)






RESUMO

Neste trabalho desenvolvemos uma condigcdo necessaria e suficiente a definicao de
equivaléncia de categorias mddulo quando estas sdo modulo exatas indecomponiveis
sobre uma categoria tensorial finita C. A existéncia de determinado isomorfismo natural
e de equivaléncias de funtores de C-mdédulos derivados de propriedades que envolvem
Hom interno com outros resultados auxiliares s&o utilizados na demonstragdo. Um
estudo detalhado das ferramentas usadas é dado.

Palavras-chave: Categoria Mddulo. Adjuncao. Funtores Representaveis. Lema de
Yoneda. Hom Interno. Equivaléncia.






RESUMO EXPANDIDO

Introducao

A definicao de uma categoria monoidal foi introduzida pela primeira vez no livro Nat-
ural Associativity and Commutativity de Saunders MacLane em 1963 (veja [12]), e
pode ser pensada como uma “categorificagao” (para uma melhor idéia do que significa
categorificagdo com exemplos, recomendamos o excelente trabalho An Invitation to
Categorification de Aaron Lauda e Joshua Sussan de 2022, veja [9]) da no¢ao de um
mondide, este que € um conjunto X equipado com uma operacao binaria associativa
(x,y) — x.y, um elemento de identidade 1 satisfazendo 1.1 = 1, e bijecbes 1.x — x
e x.1 — x de X a X. Com esta mesma ideia, a no¢ao de categoria tensorial pode
ser pensada como uma categorificacdo da nogao de anel, e a ideia de uma categoria
mddulo sobre uma categoria tensorial pode ser pensada como uma categorificacdo do
conceito de médulo sobre um anel com unidade.

O conceito mais proximo da ideia de igualdade entre categorias € o conceito de equiv-
aléncia. Por exemplo, duas categorias médulo M e N sobre C sdo ditas equivalentes
se existirem dois funtores de C-modulos F : M — N e G : N — M, e um par de
isomorfismos naturais de C-modulos Go F — Idy e ldys — F o G. Como podemos ver,
pode ser uma tarefa bastante dificil verificar se duas categorias médulo sobre C sdo
equivalentes. Nosso principal objetivo neste trabalho é reduzir esses requisitos sob
certas condigdes e utilizando o conceito de adjungéo.

O conceito de adjunc¢ao foi introduzido pela primeira vez por Daniel M. Kan em 1958
(ver [7]), e consiste em um par de funtores opostos que satisfazem uma relagédo. Um
funtor G : N — M é adjunto a esquerda de um funtor F : M — N se existirem trans-
formagbes naturais e : Go F — Idy, e ¢ : lIdys — F o G satisfazendo duas condigdes.
Neste caso, temos uma adjungdo de N a M.

No livro Category Theory in Context de Emily Riehl em 2016 (veja [20]), ela demon-
strou que sempre que dois funtores formam uma equivaléncia de categorias, eles sao
adjuntos a esquerda e a direita um do outro. Observe que a definigdo de uma adjuncao
€, de certa forma, mais fraca do que a definicado de equivaléncia de categoria.

Objetivos

Neste trabalho desenvolvemos uma condi¢cdo necesséria e suficiente a definicao de
equivaléncia de categorias médulo quando estas sdo modulo exatas indecomponiveis
sobre uma categoria tensorial finita C. Nosso objetivo aqui é fornecer um método
alternativo (e com menos requerimentos) para verificar se duas categorias moédulo
exatas indecomponiveis M e N sobre uma categoria tensorial finita C sdo equivalentes
usando a existéncia de um certo isomorfismo. Isto €, M e A sdo equivalentes como
categorias modulo sobre C se, e somente se, existir um funtor de C-médulos F : M —
N admitindo um adjunto G : N — M e um objeto diferente de zero M € M (ou
N € N) tal que ey : G(F(M)) — M (ou ¢y : N — F(G(N))) seja um isomorfismo. Para
conseguirmos chegar em tal resultado, usamos fortemente o conceito de Hom interno,
assim como certos isomorfismos naturais envolvendo estes funtores. Como aplicagao,
apresentamos um exemplo que usa o teorema principal deste trabalho considerando
as categorias e condicdes presentes no Theorem 3.8 em [19].



Metodologia

Pesquisa bibliografica, artigos publicados em jornais conceituados, discussoes fre-
quentes sobre os objetivos e resultados ja obtidos com a orientadora, bem como o0s
problemas a serem resolvidos e dificuldades encontradas. Foi feito um estudo detal-
hado das ferramentas utilizadas neste trabalho, em especial o conceito de Hom interno.

Resultados e Discussao

Achamos interessante fornecer as demonstragdes de varios resultados aqui. As princi-
pais razbes sao que obtivemos uma demonstracéo ligeiramente diferente ou apenas
o fato da demonstracao ser bastante dificil de ser encontrada. Houveram também
demonstragcbes que ndo encontramos na literatura (mas pode estar presente em al-
gum lugar) e outros alguns resultados menores que usamos aqui e que acreditamos
que nao tenham sido enunciados antes.

Consideracoes Finais

Os resultados desejados foram obtidos. A medida que generalizamos alguns conceitos,
claramente perdemos alguns resultados, mas conseguimos mesmo assim alcancar to-
dos nossos objetivos sem ter de usar a hipétese de semissimplicidade nas categorias
envolvidas. Nas nossas hipéteses do teorema principal, basta que as categorias mo-
dulos sejam exatas indecomponiveis sobre uma categoria tensorial finita C, ou seja,
nao precisamos impor que as categorias modulo sejam semissimples, ou que C seja
semissimples (ou de fusdo) que sao conceitos mais restritos que o conceito de exatas
para as categorias modulo e tensorial finita para C. De fato, toda categoria mddulo que
€ semissimples é exata, mas o contrario nem sempre é verdade. Com nosso teorema
principal, facilitamos o processo de se verificar quando duas categorias modulo exatas
indecomponiveis sobre uma categoria tensorial finita sdo ou ndo equivalentes. Este tra-
balho pode ser visto também como a criacdo dessa ferramenta, abrindo muitas portas
para aplicacbes como, por exemplo, auxiliando na classificacao de categorias médulo
exatas e, também, na classificacdo de categorias modulo semissimples.

Palavras-chave: Categoria Mdodulo. Adjuncdo. Funtores Representaveis. Lema de
Yoneda. Hom Interno. Equivaléncia.



ABSTRACT

In this work we provide a necessary and sufficient condition for the definition of module
category equivalence when these are exact indecomposable module categories over a
finite tensor category C. The existence of a certain natural isomorphism and C-module
functor equivalences derived from properties coming from internal Homs with other
auxiliary results are used in its proof. A detailed study of the tools used to achieve this
is given.

Keywords: Module Category. Adjunction. Representable Functor. Yoneda Lemma. In-
ternal Hom. Equivalence.
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INTRODUCTION

The definition of a monoidal category was first introduced in the book Natural
Associativity and Commutativity by Saunders MacLane in 1963 (see [12]), and it can be
thought as a “categorification”! of the notion of a monoid which is a set X equipped with
an associative binary operation (x, y) — x.y, an identity element 1 satisfying 1.1 =1,
and bijections 1.x — x and x.1 — x from X to X. With this same idea, the notion of
a tensor category may be thought as a categorification of the notion of a ring, and the
idea of a module category over a tensor category can be thought as a categorification
of the concept of a module over a ring with unity.

“Category theory takes a bird’s eye view of mathematics.
From high in the sky, details become invisible, but we can spot
patterns that were impossible to detect from ground level.”
(Tom Leinster in the page 1 of [10], 2014)

The closest one can reach in terms of the idea of equality between categories is
through the concept of equivalence. For instance, two C-module categories M and
are equivalent if there are two C-module functors F : M — N and G: N — M, and a
pair of natural isomorphisms of C-module functors Go F — Idy, and Idyy — F o G. As
we can see, it may be quite a hard task to check whether two C-module categories are
equivalent. Our main objective is to reduce these requirements under certain conditions.

The concept of an adjunction was firstly introduced by Daniel M. Kan in 1958
(see [7]), and it consists of a pair of opposing functors satisfying a relation. A functor
G : N — M is left adjoint to a functor F : M — N if there are natural transformations
e:Go F — Idyand c: Idyy — F o G satisfying two conditions. In this case, we have
an adjunction from N to M.

In the book Category Theory in Context by Emily Riehl in 2016 (see [20]) she
proved that whenever two functors form an equivalence of categories, they are left and
right adjoint to each other. Notice that the definition of an adjunction is, in a certain way,
weaker than the definition of a category equivalence.

Our objective here is to provide a different method for checking whether two
exact indecomposable module categories M and N over a finite tensor category C
are equivalent by using the existence of a certain isomorphism. Namely, M and NV
are equivalent as C-module categories if, and only if, there exists a C-module functor
F : M — N admitting a left adjoint G : N' — M and a nonzero object M € M (or
N € N) such that ey, : G(F(M)) — M (or ¢y : N — F(G(N))) is an isomorphism.

We then divided this work in six chapters as follows. In the first chapter we
introduce basic definitions and properties regarding abelian categories, natural trans-

1

For a better idea of what categorification means with examples, we recommend the excellent work
An Invitation to Categorification by Aaron Lauda and Joshua Sussan in 2022, see [9].
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formations, exact sequences, equivalences, adjunctions and exact functors. We tried
to place these definitions close to each other to make it easier to find while reading the
following chapters.

In Chapter 2 we present the concepts of monoidal, rigid, multitensor, tensor
and fusion categories, also letting these definitions close together to make it easier
to find them later. Some adjunctions involving the tensor functor and module product
are also provided, as well as functors and natural transformations in the context of
module categories. We show that the left and right adjoint of a C-module functor admits
a C-module functor structure under certain hypothesis. At last, the notion of an exact
module category over multitensor categories that will be used in Chapter 4 is given.

In the third chapter the notions of representable functors, the Yoneda Lemma (for
the contravariant case) and universal elements, as well as a condition for a functor to be
representable are introduced. We see that there is a certain one-to-one correspondence
between representable functors and universal elements which is strongly used in the
chapters to follow.

The chapter four contains the study of the internal Hom (bi)functor Hom( _, )
which is largely used in the next chapter and in results to follow. We begin by defining the
internal Hom object which is an object that represents a certain contravariant functor,
and with this object we then define the internal Hom functor. This functor admits a
C-module functor structure and, if the category M is exact, it is an exact functor.

The chapter 5 begins with the notions of algebra and module over an algebra
in the category context (for a monoidal category C), and the category of the right A-
modules over an algebra A (denoted by C4) which has a structure of left C-module
category. Later we give an algebra structure to the internal Hom object Hom(M, M)
(for all M € M) and then construct a C-module functor F from M to Comn,py Which
inherits many properties of the functor Hom(M, ). At last, we present a result stating
that F is an equivalence of C-module categories under certain conditions.

In the last chapter we present the main result of this work. It uses a natural
isomorphism present in Lemma 2 of [5] together with the equivalence F defined in the
previous chapter to give an alternative (and arguably easier) way to verify whether two
exact indecomposable C-module categories are equivalent. Finally, an application of
this theorem using the Theorem 3.8 in [19] is given.

We found it interesting to provide the proofs of a good few results here, and the
main reasons are that we got a slightly different proof or just the proof was fairly difficult
to find. There were proofs that we couldn’t find in the literature (but it may be present
in somewhere) and other minor results we used here which we believe were not stated
before. For instance, in order of appearance,

a) every pair of functors that make an equivalence of categories are left and right
adjoint to each other. This is Proposition 4.4.5 in [20] and Proposition 1.3.9 here;
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b) given an adjunction between additive categories, the isomorphisms that define
this adjunction are group isomorphisms. This is item (ii) of Proposition 1.3.10;

c) an additive functor between abelian categories takes a splitting short exact se-
quences into a splitting short exact sequence. This is Proposition 1.4.4;

d) a right (left) adjoint to any functor between abelian categories is left (right) exact.
This is Proposition 1.4.5;

e) an equivalence between two definitions of equivalence of C-module categories in
Proposition 2.2.12;

f) the adjoint of a C-module functor admits a C-module functor structure. This is
Theorem 2.3.2;

g) there is a one-to-one correspondence between representation of functors and
universal elements, Proposition 3.4;

h) Hom( _, ): M9 x M — C is a bifunctor is Proposition 4.1.2;
i) the bifunctor Hom( _, ) : M9 x M — C is left biexact is Proposition 4.2.3;

j) some properties of the internal Hom object and functor for a locally finite and
exact indecomposable module category over a finite tensor category C in Lemma
4.4.2, and that the morphism in a universal element is an epimorphism in Lemma
4.4.3;

k) Propositions 5.1.9 and 5.1.10 regarding Morita equivalent algebras in a category
C, and objects in a category C4, respectively;

l) an universal element of the representable functor Hom,( _ ®M, X&@N) with
Lemma 5.3.1;

m) a C-module functor F : M — Cromm,n in Proposition 5.3.2;

n) an equivalence between M and Comm,m)- This is Theorem 7.10.1 in [4] and
Theorem 5.4.1 here;

0) a certain natural isomorphism present in [5] as Lemma 2. This is Lemma 6.2 here.

The result in a) is present in not so many references?, and o) we included the proof
since we use an explicit description of certain isomorphisms in our main theorem. A
slight different proof is given for the result (with minor changes in the hypothesis) in
n). The result in c) is (implicitly) used within the proof of Proposition 7.6.9 in [4], so we
made a Proposition for it. The results in d), f), g), h), i) and m) are known results but we

Indeed, we’ve only found it in [20].
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could not find the proof for them or they are hard to find. The results in b), e), j), k) and
l) were created in order to reach our goal and we believe they are not present in the
literature.

Throughout this work, k is a field and for a category C the notation X € C will
mean that X is an object of C. Every category considered here are locally small, that
is, for any objects X and Y € C, the collection of morphisms from X to Y, denoted by
Hom(X,Y), is a set. A morphism f € Homy(X, Y) can be denoted eitherby f: X — Y

or X —'~ Y. The notation idy is used to denote the identity morphism of an object
X € C and Id; to denote the identity functor from C to C.
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1 BASIC NOTIONS

In this chapter we will briefly recall some basic definitions and results involving
category theory. These can be found in [2], [4], [6], [15], [17] and [18] for example. Let
C and D be two categories.

1.1 KERNELS, COKERNELS AND ABELIAN CATEGORIES

Here we remember some notions regarding basic category theory and then
present to the reader the definitions of abelian, k-linear, locally finite and finite cate-
gories (among others) that will be used in the entire work. We found it easier to put
these definitions together in one place to help finding them whenever necessary.

Definition 1.1.1. Let X, Y and Z be objects inC. A morphism f : X — Y inC is said to
be

(i) a monomorphism if for any pair of morphisms g,h : Z — X in C such that
fog="fohimpliesg=h;

(il) an epimorphism if for any pair of morphisms g, h: Y — Z inC such thatgof = hof
implies g = h;

(iii) an isomorphism if there exists a morphism g : Y — X in C satisfying f o g = idy
and g o f = idy. In this case, the object X is said to be isomorphic to Y and it'’s
denoted by X = Y.

Definition 1.1.2. Let Y be an object inC. Then

(i) a subobject of Y is a pair (X,1) where X is an objectinC and. : X — Y is a
monomorphism in C, and it's denoted by X C Y. A quotient object of Y is a pair
(Z,t) where Z € C andm: Y — Z is an epimorphism inC;

(i) two subobjects (X1, 1) and (X, o) of Y are said to be equal as subobjects of Y if
there is an isomorphism u : Xy — Xp in C satisfying o o u = vy, where j : X; — Y
(j = 1,2) are said to be equivalent monomorphisms;

(iii) two quotient objects (Z1,m4) and (Z», 7o) of Y are said to be equal as quotient
objects of Y if there is an isomorphism v : Zy — Zo in C satisfying v o my = 7o,
where ;1 Y — Z; (j =1,2) are said to be equivalent epimorphisms.

Sometimes we just say that X is a subobject of Y and Z is a quotient object of
Y, omitting the morphisms of their respective pairs. Moreover, we say that Xy and X5
are equal as subobjects of Y, and Z; and Z, are equal as quotient objects of Y also
omitting the morphisms of their respective pairs.
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For a subobject X C Y, the quotient object Z = Y/X is defined to be the cokernel
of the monomorphism X — Y. This notation is used when we introduce the notion of
filtration and the Jordan-Hdélder composition series of an object.

It's possible to define a mathematical object zero in the context of category theory
which will be unique up to isomorphism.

Definition 1.1.3. An object Z < C is called a zero object if for any X € C, there are
unique morphisms ¢y : X — Z andVx : Z — X, i.e., Homq(X,Z) = {¢x} and
Home(Z, X) = fx).

Lemma 1.1.4. IfC admits a zero object then it is unique up to isomorphism, and it's
denoted by O or simply by 0.

Moreover, there is also the notion of zero morphism in a category that admits a
zero object. Suppose that our category C has a zero object and let X and Y be objects
of C. The zero morphism from X to Y, which is denoted by 0§§ (or simply by 0 when the
source and target are implicit in the context) is defined by 0)35 =1y o by, and it does
not depend on the zero object of the category.

Definition 1.1.5. A nonzero object X € C is called simple if 0 and X are its only
subobjects.

Definition 1.1.6. Let C be a category with a zero object and f € Homg(X, Y).

The kernel of f (if it exists) is a pair (Ker(f), k) where Ker(f) is an object of C
and k : Ker(f) — X is a morphism in C such that f o k = 0, and if K is an object of C
and k' : K — X is a morphism in C satisfying f o k' = 0 then there exists an unique
morphism u : K — Ker(f) in C such that k o u = k', that is, the diagram

commutes.

Dually, the cokernel of f (if it exists) is a pair (coKer(f), q) where coKer(f) is an
object of C and q : Y — coKer(f) is a morphism in C such thatqo f =0, and if Q is an
object of C and @' : Y — Q is a morphism in C satisfying ¢’ o f = 0 then there exists an
unique morphism v : coKer(f) — Q inC such that v o g = ¢, that is, the diagram

0

x“ 1oy 9. coKer(f)

Q
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commutes.

As we can see, the kernel and cokernel of a morphism, when they exist, are
pairs containing an object and a morphism in the category. Sometimes we write just
the morphism to denote the pair since in the case of kernel, its source (domain) is the
object of the pair, and analogously, in the case of cokernel its target (codomain) is the
object of the pair.

It's well known that every kernel is a monomorphism and every cokernel is an
epimorphism.

We can see by this next proposition that the kernel (cokernel) of a morphism,
when it exists, is unique up to monomorphism (epimorphism) equivalence.

Proposition 1.1.7. Let f : X — Y be a morphism in C with kernel (Ker(f), k) and
cokernel (coKer(f), q). A subobject (K', k') of X is a kernel of f if, and only if, (Ker(f), k) =
(K, k") as subobjects of X. A quotient object (@, q') of Y is a cokernel of f if, and only
if, (coKer(f),q) = (@', q') as quotient objects of Y.

Proof. The “if” implications are done in [18] as Proposicao 1.1.9. For the converse we’ll
show that (K’, k') is a kernel of f. Since (K’, k') = (Ker(f), k) as subobjects of X, it
follows that there exists an isomorphism u : K/ — Ker(f) in C such that ko u ® K. In
fact, k' is a morphism satisfying fo k' = fo ko u = 0.

Now, let (K, k") where K" is an object in C and k" : K — X satisfying fok” = 0.
We're going to verify that there is an unique morphism v : K” — K’ in C such that
k' o v = k”. Again, considering that k is a kernel of f, there is an unique morphism
" K" — Ker(f) in C satisfying k o u" &) k"

The morphism v : K" — K’ definedas v := u™
kou" () e Lastly, we're going to check its uniqueness. For this, let v/ : K — K’ be
a morphism in C satisfying k' o v/ = k”. Then k" o v = k’ o v/ which implies v = v/ (since
k" is a monomorphism) as wanted. Hence, (K’, k') is a kernel of f.

In a similar way it's possible to prove the converse for the other case involving
cokernels. =

For this reason, from now on we just say that a pair is the kernel (the cokernel)
of a morphism, when it exists, even knowing it’s just unique up to monomorphism

(epimorphism) equivalence.

7 (*)

Tou" satisfies k'ov = k'ou™1ou =

Remark 1.1.8 ([15], Ejercicio 2.7.9). If Z is an object in C and id7 = 0 then Z = 0. This
follows from the fact that both Homq(Z, X) and Hom(X, Z) are unitary for all X € C.
Indeed, if f € Homg(Z, X) thenf =foid, =fo0=0, i.e., Homq(Z, X) = {0}. Similarly
one can prove that Homq(X, Z) = {0}. Thus Z is the zero object of C.

This next lemma is used in the proof of quite a few results in this work. It’s not so
difficult to find authors using some of them without making any mention.
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Lemma 1.1.9. Let f be a morphism in Homq(X, Y) with kernel k : Ker(f) — X and
cokernel q : Y — coKer(f). If

(i) g € Homg(Y,Z) is a monomorphism then k : Ker(f) — X is also the kernel of
gof;

(i) z € Home(W, X) is an isomorphism then z1 o k : Ker(f) — W is the kernel of
C
foz;

(iiiy h e Homq(Z', X) is an epimorphism then q : Y — coKer(f) is also the cokernel of
foh;

(iv) w e Homg(Y, W'y is an isomorphism then qow™" : W/ — coKer(f) is the cokernel
ofwof;

(v) Z/ € Homq(Z", Ker(f)) is an isomorphism then k o Z' : Z" — X is the kernel of f;
c

(vi) w' € Homg(coKer(f), W) is an isomorphism thenw'oq : Y — W" is the cokernel
of f.

Proof. From the definition of kernel of f we know that if kK’ : K’ — X is a morphism in C
satisfying f o k’ = 0 then there is an unique u € Homq(K’, Ker(f)) satisfying k o u = k’.

(i) Firstly, we can notice that (go f)ok = go(fok) = go 0 = 0. Now let
k" € Homq(K", X) be a morphism such that (gof)ok” = 0. Since g is a monomorphism
it follows that f o k" = 0 and this implies that there is an unique v’ € Homg (K", Ker(f))
satisfying k o U’ = k”. Hence k : Ker(f) — X is the kernel of go f.

(i) We can easily notice that (fo z) o (z 1 o k) = fo k = 0. Now, let k" €
Homc (K", W) be a morphism satisfying (f o z) o k” = 0. It remains to show that there
is an unique U’ € Homg(K", Ker(f)) such that (z~! o k) o U’ = k”. This can be done by
considering k' = z o k" in the definition of kernel of f. In fact, it follows that there exists
an unique U’ € Homq(K"”, Ker(f)) such that k o U’ = z o k", as wanted.

The items (iii) and (iv) can be shown in a similar manner. The item (v) follows im-
mediately from the fact that the pairs (Ker(f), k) and (Z”, k o Z') are equal as subobjects
of X. Therefore, (Z”, k o Z') is the kernel of f (by Proposition 1.1.7). The item (vi) can
be checked analogously. [ ]

One thing we can notice from this lemma is that the kernel and cokernel objects
and morphisms of their respective pairs are still the same in the items (i) and (iii).
However, in the items (ii) and (iv) the objects of their respective pairs remains the same,
while the morphisms of the pairs change slightly.

Lemma 1.1.10 ([18], Lema 1.1.10). Let f € Hom.(X, Y) be a morphism, k : Ker(f) — X
its kernel and q : Y — coKer(f) its cokernel. The following are equivalent:

(i) (Ker(f), k) = (X, idy) as subobjects of X;
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(il) k is an isomorphism;

(iii)y f=0;

(iv) (coKer(f),q) = (Y, idy) as quotient objects of Y,
(v) q is an isomorphism.

We’re now going to introduce some important definitions for the work ahead.
These definitions were gathered together to make it easier to find them.

Definition 1.1.11 ([4], Definition 1.5.3). The object X is said to have finite length if there
exists a filtration
0=Xo X1 C--- X1 S Xn=X

such that X;,_1/X; is simple for all i. Such a filtration is called a Jordan-Hélder series of
X. We say that this Jordan-Héblder series contain a simple object Y with multiplicity m if
the number of values of i for which Xj.1/X; = Y is m, and it is denoted by [X : Y] = m.

The simple objects Xj,1/X; of the definition above are called composition factors
of X.

Theorem 1.1.12 ([4], Theorem 1.5.4 - Jordan-Hdélder Theorem). Suppose that X has
finite length. Then any filtration of X can be extended to a Jordan-Hélder series, and
any two Jordan-Hélder series of X contain any simple object with the same multiplicity,
So in particular have the same length.

Definition 1.1.13 ([4], Definition 1.5.5). The length of an object X in C is the length of
its Jordan-Hélder series (if it exists).

Definition 1.1.14 ([15], Definicion 2.7.48). An object P < C is said to be projective if for
any epimorphismn : X — Y in C and for all morphism f : P — Y in C, there exists a
morphism g : P — X in C satisfying o g =f.

Definition 1.1.15 ([4], Definition 1.6.6). Let X € C. A projective cover of X is a projective
object P(X) € C with an epimorphism p : P(X) — X such thatifg : P — X is
an epimorphism from a projective object P to X, then there exists an epimorphism
h: P — P(X) satisfyingpo h=g.

Definition 1.1.16. We say that a category C is

a) pre-additive, if it has a zero object, the collection Homg(X, Y) has a structure of
abelian group for any X, Y € C and the morphism composition in C is bilinear, i.e.,
go(f+fy=gof+gof and(g+g')of=gof+g of, whenever these compositions
are possible;
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b) additive, if it is pre-additive and every pair of objects X1, Xo € C has a direct
sum, that is, a collection (Z,mq, 7o, 11,t2) such thatmy : Z — X{, mo : Z — Xo,
1 Xy = Zand i @ Xo — Z are morphisms in C satisfying 7y o vy = idy,,
Tp o 1p = Idy, and vy o 1y + 13 0 TIp = id7.
Considering that the direct sum of two objects is unique up to isomorphism, we
may write Z = Xy ® Xo. It's easy to see that mqy and mo are epimorphisms, while
L4 and o are monomorphisms, and m; o j = 0 wheneveri # j;

c) abelian, if it is additive, every morphism has kernel and cokernel, every monomor-
phism is a kernel and every epimorphism is a cokernel.

d) semisimple, if it is abelian and every object X in C is semisimple, that is, X is a
direct sum of simple objects;

e) k-linear, if it is additive and the abelian group Homy(X, Y) admits a k-linear vector
space structure for any X,Y € C such that the composition of morphisms is k-
bilinear, i.e., it's bilinear and k(f o g) = kf o g = f o kg for all k € k and whenever
this composition is possible;

f) locally finite, if it is abelian, k-linear, any object of C has finite length, and Homg(X, Y)
is a vector space with dimy,(Homg(X, Y)) < oo forevery X, Y € C;

g) finite, if it is locally finite, C has enough projectives, i.e., every simple object of C
has a projective cover, and the number of isomorphism classes of simple objects
is finite.

One can easily notice that in any category an isomorphism is both a monomor-
phism and an epimorphism. An important result regarding abelian categories is that the
converse of this statement is valid when the category is abelian.

Proposition 1.1.17 ([15], Corolario 2.8.8). A morphism in an abelian category C is a
monomorphism and an epimorphism if, and only if, it is an isomorphism.

Remark 1.1.18. Every morphism in an abelian category admits a decomposition. In
fact, let f : X — Y be a morphism in C, (coKer(f), q) be its cokernel and consider
(Ker(q), k') be the kernel of q. Since k' is the kernel of q and g o f = 0, it follows that
there exists an unique morphism u : X — Ker(q) in C such that f = k' o u.

Similarly, one can check that if (Ker(f), k) is the kernel of f and (coKer(k), q') is
the cokernel of k then there exists an unique morphism v : coKer(k) — Y inC satisfying
f=vod.

Furthermore, u is an epimorphism and v is a monomorphism (see [1], Corolario
2.3.10).
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Definition 1.1.19. Let F : C — D be a functor and X, Y € C.

(i) IfC and D are additive categories then the functor F is called additive if
F : Homq(X,Y) — Homp(F(X), F(Y))

is a homomorphism of abelian groups, that is, F(f + g) = F(f) + F(g) for every pair
of morphisms f and g in Homq(X, Y);

(ily IfC and D are k-linear categories then F is said to be k-linear if
F : Homq(X, Y) — Homp(F(X), F(Y))

is a k-linear transformation of vector spaces, that is, for all f,g € Homq(X, Y) and
k € k we have F(f + kg) = F(f) + kF(g).

As an observation, in order to define additive functors we do not necessarily
need the categories involved being additive. In fact, it's enough for them just being
pre-additives.

Remark 1.1.20. Let C and D be additive categories. Any additive functor F : C — D
satisfies F(0¢) = Op. In fact, F : C — D being additive implies that it preserves products
(via [21], Proposicao 3.19). Therefore, F(0c) = Op (see [21], Lema 3.17).

1.2 EXACT SEQUENCES IN ABELIAN CATEGORIES AND COMPOSITION SERIES

In this section we’ll be studying some well-known results about exact sequences
in an abelian category C. We start by introducing some definitions and results that are
important for our objective.

Definition 1.2.1. Letf : X — Y be a morphism in C with cokernel (coker(f), q), and
(Ker(q), k') be the kernel of q. The image of f, which is denoted by Im(f), is the kernel
of q, that is, the subobject (Ker(q), k') of Y.

As we could see in this definition, the image of a morphism is the kernel of its
cokernel.

Definition 1.2.2. Let f €¢ Homy(X,Y) and g € Hom¢(Y,Z) be morphisms in C. The
sequence

X—ft .y 9 7

is exact in Y if Im(f) = Ker(g) as subobjects of Y.
A sequence

fi

0 e Xp— P X
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is said to be exact if it is exact in X; for all i € {1,2,---,n}.
An exact sequence

o— ~x—f .y 9 - = .9

is called a short exact sequence.

We say that a short exact sequence 0 xtoy 9.7 0 splits if
there is a morphism: Z — Y inC such thatg o = idz.

This following remark is part of the Proposicién 2.7.49 in [15].

Remark 1.2.3. /It follows directly from the definition of split sequence that, if

0 x .y 9.p 0 is a short exact sequence in C with the object P being
projective then this sequence splits. In fact, by considering the morphism idp : P — P
in the definition of projective object, it follows that there is a morphismh: P — Y inC

satisfying g o h = idp, that is, the short exact sequence 0 x .y 9.p 0
splits.

Now we remember some other useful results regarding exact sequences.

Proposition 1.2.4 ([15], Ejercicio 2.8.13). LetC be an abelian category and

0 x—t .y 9 .7 0
a short exact sequence in C. The following are equivalent:
(i) this short exact sequence splits;

(i) there is a morphism m : Y — X in C such that mo f = idy (or, equivalently, a
morphism: Z — Y such thatgo = idz);

(iii) there are morphismsm:Y — X andi:Z — Y inC satisfying idy =fom+10g.

Proposition 1.2.5 ([18], Lema 1.1.16). Letf € Hom(X, Y), and (Ker(f), k) be its kernel.
Then the affirmations are equivalent:

(i) fis a monomorphism;
(ii) (0,0) is the kernel of f;

(iii) O X1 Y is an exact sequence.

And for epimorphisms we have the following result.

Proposition 1.2.6 ([18], Lema 1.1.17). Let f € Homy(X, Y), and (coKer(f), q) be its
cokernel. The affirmations are equivalent:
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(i) fis an epimorphism;
(ii) (0,0) is the cokernel of f;

(i) X f Y 0 is an exact sequence.

This following lemma asserts that, in an abelian category, any monomorphism is
the kernel of its cokernel and any epimorphism is the cokernel of its kernel.

Lemma 1.2.7 ([15], Lema 2.8.4). Letf : X — Y be a monomorphism in C with cokernel
(coKer(f),q), and g : X — Y be an epimorphism in C with kernel (Ker(g), k). Then

(i) (X, f) is the kernel of q (i.e., the image of f);
(ii) (Y, g) is the cokernel of k.

Proof. We prove the item (ii), and the item (i) can be checked similarly. The morphism
g is an epimorphism and our category C is abelian, thus there exists a morphism
h:Z — XinCsuchthat (Y,g: X — Y) is the cokernel of h. Particularly, this implies
that g o h = 0 and since (Ker(g), k) is the kernel of g, there exists an unique morphism
u:Z — Ker(g) in C satisfying

kou=h. (1)

In order to show that g is the cokernel of k, letj : X — W be a morphism in C
such that j o k = 0. Given that g is the cokernel of hand jo h Q) jokou=0,wecan
conclude that there exists an unique morphism v : Y — W in C satisfying vo g =, as
wanted. Therefore, g is the cokernel of k. [ |

As we can see by item (i), the image of a monomorphism is the monomorphism
itself.

Remark 1.2.8. Letf: X — Y be a morphism in C with kernel (Ker(f), k) and cokernel
(coKer(f), Q). The sequences

0 Ker(f) —K - x—f .y

and

X—1 vy 9 . coKer(f) 0

are exact.

Indeed, it follows that the first sequence is exact by defining the cokernel of k
as (coKer(k), @) and then by item (i) of the lemma above, (Ker(f), k) is going to be the
kernel of ¢, i.e., Ker(f) = Ker(q') as subobjects of X. Moreover, by definition we have
Im(k) = Ker(q') which implies Im(k) = Ker(f) as subobjects of X.

For the second sequence there is not much to do since Im(f) = Ker(q) as
subobjects of Y by definition.



32 Chapter 1. BASIC NOTIONS

This next proposition can be very useful when checking whether a short se-
qguence is exact.

Proposition 1.2.9 ([18], Proposi¢ao 1.1.20). Let X, Y,Z € C. Consider the sequence

o— . x—f .y 9 > 0.

The next sentences are equivalent:
(i) the above sequence is a short exact sequence;
(i) (X, f) is the kernel of g and (Z, g) is the cokernel of f.

Corollary 1.2.10. Let S € C be a simple objects and X a nonzero object inC. Then any
nonzero morphism

(i) f: S — X inC is a monomorphism;
(i) g: X — SinC is an epimorphism.

Proof. For the item (i), let (Ker(f), k) be the kernel of f. Because (Ker(f), k) is a subob-
ject of the simple object S then Ker(f) = 0 or Ker(f) = S as subobjects of S. However, if
Ker(f) = S as subobjects of S, then by the Lemma 1.1.10 we can conclude that f = 0
which is a contradiction.

If Ker(f) = 0 as subobjects of S then f is a monomorphism via the Proposition
1.2.5. The item (ii) can be proven in a similar way. ]

1.3 NATURAL TRANSFORMATIONS, EQUIVALENCES AND ADJUNCTIONS

The study of any mathematical object necessarily requires consideration of the
“maps” of such objects. Functors are the closest as morphisms (or maps) between
categories which preserves the appropriate structure, and natural transformations are
the closest as morphisms between functors. A functor may describe an equivalence of
categories, in which case the objects in one can be translated into and reconstructed
from the objects of another. For example, the notions of monomorphism, epimorphism
and isomorphism are invariant under certain classes of functors including, in particular,
functors that form an equivalence.

“The multiple examples, here and elsewhere, of adjoint functors tend to show
that adjoints occur almost everywhere in many branches of Mathematics.”, (Mac Lane
in[11]).

Definition 1.3.1. Let F, G : C — D be two functors. A natural transformation « : F — G
is a family of morphisms
o= {oy  F(X) = G(X)} xec
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in D such that
F(X) —2— G(X)

Xy

commutes, i.e., G(f) o xx = xy o F(f), forall X, Y € C and f € Hom(X,Y).

We can also say that « is a natural transformation in C (or even in X € C) since
the family « is indexed in the objects of the category C (the domain of the functors F
and Gis C). It’'s always good to observe that even though the family « is indexed in C,
each ay is a morphism in D (the codomain of the functors F and G).

If xx : F(X) — G(X) is an isomorphism for all X € C, then « is said to be a
natural isomorphism. In this case we say that the functor F is equivalent to G (or F and
G are equivalent functors), and this fact is denoted by F < G or simply by F ~ G.

Definition 1.3.2. The categories C and D are equivalent if there are functors F : C — D
and G:D — Csuchthat Fo G~ Ildp and Go F ~ Idp.

When this happens we say that the functor F (the same can be said about the
functor G) is an equivalence of categories, and this equivalence is denoted by C ~ D.
This following definition can be found in the reference [2].

Definition 1.3.3. A functor F : C — D is said to be
(i) faithful if F : Homq(X,Y) — Homp(F(X), F(Y)) is injective, forall X,Y € C;
(ii) full if F : Homg(X,Y) — Homp(F(X), F(Y)) is surjective, forall X, Y € C;
(i) dense if for all Z € D there exists X € C such that F(X) = Z.

If a functor satisfies these three items then it is an equivalence (and vice versa)
as we can see in this next result.

Theorem 1.3.4 ([21], Teorema 2.20). Two categories C and D are equivalent if, and
only if, there exists a faithful, full and dense functor F : C — D.

Any time that there are two categories, let us say C and D, it’'s possible to define
the product of them, which is called the product category between C and D (see [2],
Definition 1.6.5). This product category is denoted by C x D, and its objects are the
pairs (X, Y)suchthat X e Cand Y € D, and if (W, Z) is another object in C x D, then

Home o p((X,Y), (W, Z2)) = Homq(X, W) x Homp(Y, Z).

Let f = (f', ") € Homqp((U, V), (W, 2)) and g = (¢',g") € Homp((X,Y), (U, V)).
The morphism composition f o g is defined as
o : Home, p((U, V), (W, 2)) x Home.p((X, Y), (U, V)) — Home . p((X, Y), (W, Z))

(', 1).(9'.g") = (1) 0 (g, g") = (o g, "o g")
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and, in particular, id x,yy = (idx, idy).
For this definition, see page 23 of [2].

Definition 1.3.5. A bifunctor is a functor defined on the product of two categories.

A functor F : C x D — £ is also called a bifunctor from C x D to £. One famous
example of bifunctor is Homg( _, ) :C% x C — Set.

For the next definition, let’s remember that given a category C, we denote by CP
the category whose objects are the same as in C, and Homgoo(X, Y) = Homg(Y, X). If
f € Homean(X, Y) and g € Homeop(Y, Z) then its composition is given by go% f = fo g.
The category CP is called the opposite category of C. It is easy to see that a functor F :
CO — D is a covariant (contravariant) functor if, and only if, F : C — D is contravariant
(covariant).

We can see that an adjunction consists of an opposing pair of functors that enjoy
a special relationship to one another.

Definition 1.3.6. An adjunction from C to D is a triple (F, G, ) such that F : C — D and
G :D — C are functors and ¢ = {$ x vy : Homp(F(X), Y) — Homg (X, G( YD}, v)ecxD
is a natural isomorphism in C°P x D. The functor F is said to be a left adjoint to G, and
G is a right adjoint to F.

We’ll see with Proposition 1.4.7 that a left (or right) adjoint to a functor, when it
exists, is unique up to a functor equivalence.
About the natural isomorphism ¢,

b HOITID( _ ) o (F X Id'D) — HOmc( . ) o (/dcop X G)

J— )

in which both functors are defined from the product category C°P x D to Set, and for
every morphism

(f’, f”) € Homeopp((X, Y), (W, Z)) = Homq(W, X) x Homp(Y, Z)
we have

Homp(F(f), f')(«) = f" o o F(f'), and
Home(f', G(f"))(B) = G(f") o B o f'

for all x € Homp(F(X),Y) and § € Homg(X, G(Y)). The naturality of ¢ can be ex-
pressed as the commutativity of the diagram

bx,y

Homp(F(X), Y) Homg(X, G(Y))
HOmD(F(f/),fH)l jHomc(f’,G(f”))
Homp(F(W), 2) Homq(W, G(Z)).

w,z
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Remark 1.3.7. We can notice that whenever we have a natural isomorphism in a
product category, (for example C°P x D as in the definition above) we can fix one entry
and this natural isomorphism is still going to be natural on the other entry. For this
reason, one can say that the natural isomorphism o« above is natural in C°P (and also
C) and D. We are going to use this fact in many situations without further mention. We
can observe this fact by the commutativity of the diagram

Homp(F(X), Y) — X Home(X, G(Y))

Home(F(idX),g)j jHomc(idx,G(g))
Homp(F(X), 2) Homq(X, G(2))

bx,z

for every morphismg :Y — Z inC.
This next well-known result gives an equivalent definition of adjunction.

Proposition 1.3.8 ([21], Teorema 2.28). Let F : C — D and G : D — C be two functors.
The following affirmations are equivalent:

(i) (F, G, ®) is an adjunction;

(i) there are natural transformations e : F o G — Ildp and ¢ : Id; — G o F such that
forany Y € D and X € C, the equalities

idG(Y) = G(ey) o Ca(Y) and id/:(X) = €F(x) © F(cx)
hold.

The natural transformations e and c are called counit and unit of the adjunction’,
respectively. Furthermore, the counit and unit are defined as ey = d)al(y),y(idG(y)) and
cx = dx Fx)(idr(x)), for all X € C and Y € D. Additionally, in its proof it can be seen
that, for any f € Homp(F(X), Y) and g € Homg(X, G(Y)), the equalities

dx,v(f) = G(f) o cx (2)

and
dx y(9) = ey o F(g) (3)
hold. These two equations will be used later.

This next proposition affirms that whenever two functors make an equivalence,
they are adjoints. It can be found in [20] as Proposition 4.4.5.

Proposition 1.3.9 ([20], Proposition 4.4.5). Let F : C — D be an equivalence of
categories, and G : D — C be a functor such that F o G ~ Idp and Go F ~ Idg. Then
F is left and right adjoint to G.

1 Sometimes we denote the counit and unit by « and 3, respectively.
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Proof. We start by showing that F is left adjoint to G. By the definition of category
equivalence, there are natural isomorphisms €' : Fo G — Ildp and ¢ : Id; — Go F. This
¢ will be the unit of the adjunction. By setting

vy = G(€y) o cg(y) : GY) = (Go Fo G)(Y) = G((F o G)(Y)) — G(Y),
it's possible to define the counit e of the adjunction as
ey =€y o F(ﬂ)) :F(G(Y)) — F(G(Y)) = Y
forall Y € D, and show that e : F o G — Idp is a natural transformation which satisfies
idG(y) = G(ey) o CG(Y) and id,:(X) = e,:(X) o F(Cx). This will |mpIy that F is left adjoint
to G by Proposition 1.3.8.

It is easy to see that yy is an isomorphism for each Y € D with inverse given by
cg( Y)oG(e’? ). The natural property of y : G — G comes directly from the commutativity
of the following diagram, for every f € Homp(Y, Y'):

Yy

G(Y)—2" _(GoFoG)Y) G(Y)
G(f)j l(GoFoG)(f) G(f)
!/ / /
Yy

The commutativity of the first square follows immediately from the naturality of ¢, and
the second from the naturality of & and the fact that G is a functor.

We can also affirm that ey = €}, o F(y;)) is an isomorphism for every Y € D
by noticing that F(yy) o e’? is its inverse. Analogously as we did before, the fact that
v~ is natural (because v is a natural isomorphism) and €’ being natural implies that
e: F oG — Idp is also natural, and the diagram of this naturality is given by

ey
FGY) — ) FGy) — 2 Sy
(FoG)(f) l(FoG)(f) jf
F(G(Y' F(G(Y' Y/,
(@) gy FLGY) —
Cyr

Now, to check the equality id = G(ey)ocC notice that
G(Y) Y) © CG(Y)

Gley) o cg(y) = G(E}y o F(vy')) o cgy) = Gléy) o GIF(YY)) o cay)

Y Gley) o cay) oy =1y oy = iday)
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where (x) holds via the naturality of ¢ with the morphism ﬂ), that is, through the
commutativity of the diagram

Ca(y)

(Go FoG)(Y)
V| |(@P07)
(Go Fo G)(Y).

Ca(y)

Finally,

(er(x) © Flcx)) o (er(x) o F(cx)) = er(x) o (F(cx) o er(x)) ° F(cx)

@ eF(X) © eF((GoF)(X)) © (F o G)(F(cx)) o F(cx)

= eF(X) © eF((GoF)(x)) © F((G o F)(cx) o cx)

(b)
= eF(X) °© €(FoG)(F(X)) © F(C(GoF)(X) © Cx)

9 erx) © (F o G)erx) o F(Ciaomyx)) @ Flex)

= €F(x) © F(G(e,:(x)) o CG(F(X))) o F(cx)

d .
2 er(x) © Flidg(r(xy) o F(cx)

= er(x) © F(cx)

in which the equalities (a) and (c) hold from the fact that e is natural. In fact, this can be
seen with the commutativity of the diagrams

er(x)

(F o G)(F(X)) F(X)
<FoG)(F<cx>>j lF(cX)
(Fo G)(F((Go F)X)) g p= F(Go F)(X))
and
€(FoG)(F(X))

(F o G)((F o G)(F(X))) (F o G)(F(X))
(FoG)(eFm)l lem
(F o G)(F(X)) F(X),

€r(x)

respectively. The equality (b) is due to the naturality of c, i.e., the commutativity of

X & (Go F)(X)
CXL l(GoF)(cx)
(Go F)X) —gomr (Go F)(Go F)(X)),

and the equality (d) comes directly from G(ey) o CG(y) = [dg(y)-
From the fact that eF(x) o F(cx) is an isomorphism for all X € C, we obtain
er(x) © F(cx) = idr(x). Hence F is left adjoint to G.
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In order to show that G is left adjoint to F (or, equivalently, F is right adjoint to G)
we don’t need to do much. Indeed, we can define the unit and counit of this adjunction
asc=¢e':ldp > FoGande:=c':GoF — Idp, respectively. By definition we
have that e and ¢ are natural isomorphisms, and the equalities idg(x) = F(éx) o Cr(x)
and idg(y) = eg(y) © G(Cy) follows directly from the definition of ¢ and e which have
just been verified. In fact, it's only necessary to notice that

F(€x) o Cr(x) = F(cxX') o 6F(x) = (eFx) © F(cx))™" = (idr(x)) ™" = idr(x), and

eg(y)° G(cy) = CEQ(Y) o G(ey') = (Gley) o cgv) ™" = (idg(y))™" = idgy)
as wanted. n
This next proposition states that whenever there is an adjunction between addi-
tive categories, the functors involved are going to be additive, and each isomorphism

involved in the collection is going to be a group isomorphism. The first item can be
found in [21] as Teorema 3.20, and the second we couldn’t find in the literature.

Proposition 1.3.10. Let C and D be additive categories, F : C — D and G : D — C be
two functors, and (F, G, ¢) an adjunction. Then

(i) the functors F and G are additive;

(i) forall X € C and Y € D, each ¢ y : Homp(F(X),Y) — Homg(X, G(Y)) is a
group isomorphism.

Proof. For the item (ii), it'll be shown that each q>;(1 y IS @ group homomorphism. Let f
and g be morphisms in Homg(X, G(Y)) and consider the following commutative diagram

-1
G(Y),Y

Homc(G(Y), G(Y)) Homp(F(G(Y)), Y)
Homc(f+g,G(/dy))l lHomD(F(f+g),idy)
Home(X, G(Y)) Homp(F(X), Y).

X'y
Its commutativity implies ¢3! (f + g) = &3 (f) + 1 (g) as we can see below

bx y(f +9) = bX y(Glidy) o idg(y) © (f + 9))
= bx'y(Home(f + g, Glidy))(idg(y)))
= (d)y o Home(f + g, Glidy)))(idgv))
= (Homp(F(f + g), idy) o dg(yy y)idg(v))
= Homp(F(f + g), idy)(dgyy, y (idgy)))
= idy o oGy, y(idgy)) © F(f +9)

D by, ylida) o (F(1) + F(@))
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(2) (1)251( y),y(/.dG(Y)) o F(f) + d)g(y),y(idG(Y)) o F(9)
D o () + O (@)

The equality (a) is valid for the reason that F is additive (via the item (i) of this proposi-
tion), the equality (b) holds due to the fact that D is an additive category and therefore
the morphism composition is bilinear. Lastly, (c) comes from the commutativity of the
diagram above when using the morphisms f and g separately instead of f + g.
Therefore, each morphism ¢}1y in the collection ¢~ is a group isomorphism.
Hence, ¢ x vy is a group isomorphism ’for alXecCandY €D. [ |
As we can see, the functors F and G considered above are covariant, but one
can easily check that the same outcome holds when these functors are contravariant.
Suppose we have a function F : C x D — £ such that, forall X e Cand Z € D,

both
F;( D —= &
Y = FY(Y) = F(X,Y)
g:Y — Z— FX(g) = F(X,g) = F(id, g)
and

F§ C— €&
W — F3(W) = F(W, 2)
f:X — W s F3(f) = F(f, Z) = F(f, idz)

are functors. One natural question that may arise is whether F has or not a structure
of bifunctor. In other words, can we say that F is a bifunctor if F restricted to the first
and second variables (or entries) are functors? The answer is no, but we can speculate
about a condition.

Lemma 1.3.11. Let F : C x D — & be an application with F}( :D — & and F§ C— €&
being functors as above. If the equalities

F(f,g) = F((f,idz) o (idx, 9)) = F(f, idz) o F(idx. g) (4)
and

F(f,g) = F((idw, 9) o (f, idy)) = F(idw, 9) o F(f, idy) (5)
hold for any f € Homq(X, W) and g € Homp(Y, Z) then F is a bifunctor, and vice versa.

Proof. We know that F(X, Y) € € since F(X, Y) = F}(Y) and F} is a functor for all
X € C. Moreover, F(Id(X’y)) = F(Idx,ldy) = F;((Idy) = Id,_—)1((y) = idF(X,Y)' Lastly, let
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h=H,n"):(X,Y)—= (U,V)andj = (/,j") : (U, V) = (W, Z) be morphisms in C x D.
Therefore,

F(j) o F(h) = F(/, /") o F(H, H")
= F((/, idz) o (idy, /")) o F((H, idy) o (idx, "))
D R, idz) o Fidy, ") o F(H, idy) o Flid, )
S B, idz) o F(H,[") o Fidy, H")

D E(, idy) o F(H, idy) o Flidy, /") o F(idy, H")
= F2(j') o FE(H) o FY(j") o FY(H")

= F5(j' o W) o F(j" o H")

_ F( o 1, idy) o F(idy, " o ')

(i) F(j/ o h/, /! o h//)

_ F(joh)

as wanted. Then F : C x D — £ is a functor.
On the other hand, the converse clearly is valid seeing that, if F is a bifunctor,
then both equalities (4) and (5) hold. [ ]
This previous lemma is handy when showing that the internal Hom functor (that
is going to be studied later) is a bifunctor.

Remark 1.3.12. Suppose we have two bifunctors F and G from a product category
C x D to £ and we want to show that a family o = {ocx y : F(X,Y) = G(X, Y)}x,vyecxp
is a natural transformation between the bifunctors F and G in C x D. One way to check
this is by fixing each entry and checking that « is natural on the other. Indeed, assume

that & = {&, = ay v/ and o' = {&], = « are natural transformation in C
X X, Y1 XeC Y X,YiYeD
and D, respective/yz.

Let (f,g) € Homgp((X,Y), (X', Y") = Home(X, X') x Homp(Y, Y'). The dia-
gram on the Definition 1.3.1

FX,Y)—2Y  _G(X,Y)
F(tg)j lG(f,g)
F(X',Y') G(X', Y

O‘X’,Y’

2 In the first we're fixing an object Y’ € D, while in the second X < C is the one being fixed.
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commutes since we can write it as

1"
XX, y=Xy

F(X,Y) G(X,Y)

F(idx,g) G(idx,9)

" /
(XX’y/=0(Y/=(XX

F(f.9)| F(X,Y" G(X,Y") |Glf9)

F(f,idy:) G(f,idy/)

F(X',Y') G(X',Y')

(Xxl’yl=063(/

and then notice that

G(f,g) o ax y = G((f, idy) o (idx, g)) o &y

(i) G(f, idy) o G(idx, g) o o‘/\l/

@ G(t, idy:) o ol o Fidy, g)

= G(f, idy:) o oy o F(idx, g)

2 oy o FiF, idy:) o Fidy, )

4 . .
G . o F((F, idyr) o (idy, 9))

= axry o F(f,9)
where the equalities labeled with (a) and (b) are valid due the naturalities of o' and o/,
respectively. Hence, « is a natural transformation in C x D.

1.4 EXACT FUNCTORS AND NATURAL ISOMORPHISMS

Here we introduce the notion of exact functors and the construction of some
useful natural isomorphisms. In this section, all the categories involved are abelian
unless stated otherwise.

Definition 1.4.1. LetC and D be abelian categories, and

o— -x—1 .y 9 7 .9

be an arbitrary short exact sequence C. An additive covariant functor F : C — D is
called left exact if the sequence

is exact in D.
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The functor F is called right exact if the sequence

F(f) F(g)

F(X) F(Y) F(Z)———0

is exact in D.
Similarly, an additive contravariant functor G : C — D is called left exact if the

sequence

G(9) G(f)

0 G(2) G(Y) F(X)
is exactinD.
Moreover, G is called right exact if the sequence
G2) -9 grv)—CD . G 0

is exact in D.
Finally, a functor is said to be exact if it is both left and right exact.

It's a fact that the bifunctor Hom:( _, ) : C%°? x C — Ab is left exact, which
means it is left exact in each entry. This bifunctor being left exact in the first entry implies
that the functor Homg( _, L) : C%P — Ab s left exact for all L € C, that is, for any short

exact sequence 0 —Z Iy 1. X—~0inC, the sequence

Home(g,L) Home(f,L)

0

Homg(Z, L) Homeg(Y, L)

Homg(X, L)
is short exact in Ab, where

Homeg(g, L)(h) = ho g, for every h € Hom-(Z, L) and
Homg(f, L)(H") = H o f, for every W € Homy(Y, L).

., _)is

Similarly, one can easily see what it means to say that the bifunctor Homg(
left exact in the second entry.
This next corollary is often used by many authors and it has quite a simple proof.

Corollary 1.4.2 ([15], Ejercicio 2.7.46). LetC andD be abelian categories, f a morphism
inC, F :C — D a covariant functor and G : C — D a contravariant functor. If the functor

(i) F is left exact and f is a monomorphism then F(f) is a monomorphism in D. If F
is right exact and f is an epimorphism then F(f) is an epimorphism in D;

(i) G is left exact and f is an epimorphism then G(f) is a monomorphism inD. If G is
right exact and f is a monomorphism then G(f) is an epimorphism in D.

Proof. For the item (i), suppose F : C — D is left exact and f : X — Y is a monomor-
phism in C. Let (coKer(f), q) be the cokernel of f and consider the short sequence

0 X1 y 9 coKer(f) 0
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which is exact by Remark 1.2.8 and Proposition 1.2.5. Because F is left exact, it follows

that

F(f) F(9)

0 F(X) F(Y) F(coKer(f))

is exact which implies that F(f) is monomorphism.
In a similar way one can prove the other assertion and the item (ii). [ ]
This next result gives a characterization of left and right exact functors that are
going to be often used, and it can be also found as the definition of left and right exact
functors, e.g., Definicién 2.7.35 in [15].

Proposition 1.4.3 ([15], Definicién 2.7.35). Let C and D be two abelian categories,
F : C — D be an additive functor and f : X — Y be a morphism in C with kernel
k : Ker(f) — X and cokernel q : Y — coKer(f). If the functor F is left exact, then
F(k) : F(Ker(f)) — F(X) is the kernel of F(f). Additionally, if F is right exact then
F(q) : F(Y) — F(coKer(f)) is the cokernel of F(f).

Proof. Suppose the functor F is left exact and consider the sequence

0

Ker(f) —K - x 1 vy

which is exact directly from Remark 1.2.8. Now, let (Ker(q), k') be the kernel of q.
Using Remark 1.1.18 we can obtain a decomposition for £, i.e., there exists an unique
morphism (which is an epimorphism) u € Homg(X, Ker(q)) satisfying f = k’ o u.

The sequence 0 Ker(f) ko x_ U Ker(q) 0 is short
exact since k a monomorphism, u is an epimorphism and the image of k is (via Lemma
1.2.7)

(Ker(f), k) = (Ker(Kk' o u), k) = (Ker(u), k)

as subobjects of X, where the last equality comes from item (i) of Lemma 1.1.9.
For the reason that the functor F is left exact we have that the sequence

F(k) F(u)

0 F(Ker(f)) F(X) F(Ker(q))

is exact, that is, F(k) is a monomorphism and the image of F(k) is the kernel of F(u).

From the fact that F(k) is a monomorphism, (F(Ker(f)), F(k)) is the image of
F(k) (by Lemma 1.2.7). And using that this sequence is exact in F(X) we can conclude
that the kernel of F(u) is the image of F(k), that is, (F(Ker(f)), F(k)) is the kernel of
F(u).

Therefore, by the item (i) of Lemma 1.1.9 we can affirm that (F(Ker(f)), F(k)) is
the kernel of F(k")o F(u) = F(k’ou) = F(f) (since F(k') is a monomorphism by Corollary
1.4.2) as wanted.

Analogously, it’s possible to prove that if F is right exact then F(q) is the cokernel
of F(f). [
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This proposition we’ve just seen can also be found as the definition of left and
right exact functors, that is, an additive functor between abelian categories F : C — D
is left (or right) exact if, for any morphism f : X — Y in C with kernel k : Ker(f) — X
(cokernel g : Y — coKer(f)), the kernel (cokernel) of F(f) is F(k) : F(Ker(f)) — F(X)
(F(q) : F(Y) — F(coKer(f))).

Proposition 1.4.4. LetC and D be abelian categories, F : C — D an additive functor
and 0 xtoy 9.7 0 a short exact sequence in C that splits. Then the
F(f) F(Y) F(g)

short sequence 0 F(X) F(Z)——=0 inD is exact and splits.

Proof. Firstly, we begin by showing that the short sequence

0 Fx) T Fy) £

F(2) 0

is exact in D, i.e., F(f) is a monomorphism, F(g) is an epimorphism and the image of
F(f) is the kernel of F(g). The short exact sequence 0 xt.y 9.7 0
splits, so there are morphisms n: Y — X and t: Z — Y in C such that mo f = idy,
got=idyand fom+1og = idy (see Proposition 1.2.4). Using that F is an additive
functor, the equalities

Fim o F(r) 2 idr )

F(g) o F(L) = idF(Z)! and

F(f) o F(m) + F() o F(g) 2 idey,

hold.

To show that F(f) is a monomorphism, let a and b morphisms in Homp (W, F(X))
satisfying F(f) o a = F(f) o b. This implies that F(mt) o F(f) o @ = F(m) o F(f) o b, that is,
a = b by using the equality (a). Therefore, F(f) is a monomorphism in D. Analogously,
one can prove that F(g) is an epimorphism in D.

To check that the image of the monomorphism F(f) (which is (F(X), F(f)) via
Lemma 1.2.7) is the kernel of F(g), observe that F(g) o F(f) = F(g o f) = 0 and consider
a morphism k' : K' — F(Y) in D such that F(g) o k' = 0. We'll show that there is an
unique u € Homp(K’, F(X)) satisfying F(f) o u = k'.

By defining u := F(m) o k' it follows that

F(f)ou=F(f)o F(m) o K

Y E(f) o F(r) o k' + F(1) o F(g) o K’

= (F(f)o F(m) + F(1) o F(g)) o K

—

2) Id[:(y) o k/ = k/
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as wanted. For the uniqueness, let v : K’ — F(X) be a morphism in D satisfying
F(fyou' = K. Thus, F(f)o u = F(f) o U’ and because F(f) is a monomorphism, it follows

D ey E9 Fz) 0 is

that u = . Hence the short sequence 0 F(X)
exact in D.
It follows directly from the item (iii) of Proposition 1.2.4 and the equality (b) that
F(f F .
the short exact sequence 0 —— F(X) F) F(Y) (9) F(2) 0 splits. [ |
The items (i) and (ii) of the next proposition can be found as Exercise 1.6.4 in [4].

Proposition 1.4.5. We have the following:
(i) the right adjoint to any functor between abelian categories is left exact;
(i) the left adjoint to any functor between abelian categories is right exact;
(iii) every functor equivalence between abelian categories is exact.

Proof. Let F : C — D and G : D — C be functors between abelian categories and
(F, G, ¢) an adjunction.
(i) Considering an arbitrary short exact sequence

0 y 1y 9 _yn 0
in D, we need to show that the sequence
0 Gy)—20 . Givy—29. Gy

is exact in C, that is, G(f) is a monomorphism and the image of G(f) is the kernel of

G(9).
To check that G(f) is a monomorphism, let a,b € Homg(Z, G(Y)) such that
G(f) o a = G(f) o b and consider the commutative diagram

-1
d)Z,Y

Homg(id>, G(Y)) Homp(F(id7), Y)
Homc(/dz,G(f))J lHomD (idz),f)
Home(id7, G(Y")) Homp(F(id7), Y').

zy!

Thus,

(fodZ'y)(@) = (fo dF y(a) o F(idz))
= Homp(F(idz), )(d)z y(a))
= (Homp(F(idz), f) o bZ'y)(a)
= (¢Z'y, o Home(idz, G(1)))
= ¢7y/(Home(idz, G(f))(a)
= ¢7'y/(G(f) 0 ac idz)
= $7'y/(G(f) 0 a),

a)

(
)
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ie., fod3'(a) = ¢7y/(G(f) o ). Using that ¢ 7 v/ is an isomorphism, it follows that
G(f) o a= bz y(fo &3 y(a) and, similarly, G(f) o b= bz y:(F o b3y ().
Given that G(f) o a = G(f) o b we obtain

bz,y(fodZ (@) = bz yi(fodF y(b) = fodFy(a)="FodZy(b)
= $Z'y(a) = ¢y (b)
— a=b>b

where the second implication is due to the morphism f being a monomorphism. Hence
G(f) is a monomorphism in C.

Lastly, we show that the image of G(f) is the kernel of G(g). Given that G(f) is a
monomorphism, (G(Y), G(f)) is the kernel of its cokernel (see Lemma 1.2.7), i.e., the
image of G(f). Notice that G(g) o G(f) = G(g o f) = 0 since g o f = 0 (via Proposition
1.2.9), and consider k' : K — G(Y’) a morphism in C satisfying G(g) o k' = 0. We
need to check that there exists an unique morphism u € Homq(K’, G(Y)) such that
G(flou=K.

Affirmation 1: g o ¢3 v, (k) = 0.
In fact, by the commutativity of

-1
d)K/’y/

Home(idk:, G(Y")) Homp(F(idk:), Y')
Homc(idK/,G(g))L lHomD(F (idkr),9)
Home(idk:, G(Y")) Homp(F(idk:), Y"),

d)l_</,Y//

it follows that

(g0 bk y)(K') = Homp(F(idk), 9) (& yi(K))
= (Homp(F (idk), 9) © b y)(K')
= (). yn o Home(idy:, G(g)))(K')
= &) yn(Home(idjr, G(g))(K'))
= dyr yn(Glg) o K')
= ¢k yn(0)=0
where the last equality comes from the fact that each morphism cb,‘(l’y,, in the collection
o lisa group morphism (via the item (ii) of Proposition 1.3.10).

Using the hypothesis that (Y, f) is the kernel of g, there exists an unique v €
Homp(F(K'), Y) such that

fov=ak yi(k) < b y(fov)=k. (6)

Affirmation 2: u = ¢ y(v) is the only morphism in C which satisfies G(f) o u = k'’



1.4. Exact functors and natural isomorphisms 47

By considering the commutativity of

Homp(F(K'), Y) s Hom(K', G(Y))

HomD(F(idK/),f)j lHomc(idK/,G(f))
Homp(F(K'), Y') Home(K', G(Y"))

K'Y’

we obtain

G(f) o u = G(f) o bk y(v)
= Homg(idk:, G(H)) (b y (V)
= (Home(idk:, G(f)) o b y)
= (b, yr o Homp(F(idk), f)
= by, y(Homp(F(id:), f)(v
Q.

)
) v)

)

(
)(v)
)

= ¢y, y (fov)

For the uniqueness, consider u’ € Homg(K’, G(Y)) such that G(f) o U/ = k. This
implies that G(f) o U’ = G(f) o u and since G(f) is a monomorphism, u = ¢/. Thus, G(f)
is the kernel of G(g) and, therefore, the functor G : D — C is left exact.

(ii) It's analogous to item (i).

(iii) Every functor equivalence is left and right adjoint to its inverse (as seen in
Proposition 1.3.9), so it’s left and right exact by items (i) and (ii). |

It follows directly from the items (i) and (ii) that if a functor admits a left and a
right adjoint then it is exact.

From this point to the end of this section the categories involved need not to be
abelian. Let C be a category.

Let us consider the bifunctor Home( _, ) :C% x C — Set. Forall X € C, we
can define a covariant functor Ly = Homq(X, _) : C — Set and a contravariant functor
Ry = Home( _ ,X) :C — Set as Rx(Y) = Homy(Y, X) on the objects and, for every
morphism f : Y — Zin C, Rx(f) = Hom(f, X) is defined as Hom¢(f, X)(g) = g o f, for
any g € Homg(Z, X). These functors will be used in some results of this work, mainly
because these next two propositions.

Proposition 1.4.6. Let X, Y € C. Then Ry £ Ry (and Ly ~ Ly) if andonly if, X = Y.

Proof. Let us begin by showing that X = Y when Ry £ Ry. This will be done by verify-
ing that the morphism ¢ x(idy) : X — Y admits an inverse given by (pj) (idy):Y — X.

Given that ¢ is a natural isomorphism, the diagrams
—1

Home (X, X) —2X~ Home(X, Y) and Home (Y, Y) —2Y Home(Y, X)
| Home (5/(id). X) | Home (/i) ) | Home (x(idk). ) | Home i xtiah). )
Home(Y, X) Homg(Y,Y) Hom:(X,Y) Homg (X, X)

—1

Py oy
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commute. So by taking idy € Homg(X, X) in the first diagram it follows that

¢ x(idx) o @ (idy) = Home (v (idy), Y)(@xidx))
= (Home( (idy), Y) o @ x)(idx)
= (@y o Home (e (idy), X))(id)
= @y (Homg (Y (idy), X)(idx))
= @y(oy (idy)) = idy.
Doing the same in the second diagram with the morphism idy € Homg(Y, Y), it follows
the equality cp;) (idy) o @x(idy) = idy and thus ¢ x(idy) is an isomorphism. Hence
XZY.
On the other hand, let f : X — Y be an isomorphism in C and define
97 Rx(Z) = Homg(Z, X) — Ry(Z) = Homg(Z, Y)
g:Z—-X—@z(g)=fog
which is an isomorphism in Set for all Z € C with inverse h: Z — Y — f~! o h. Finally,

for the natural structure of ¢ = {97 : Rx(£) — Ry(Z)}z<c, consider an arbitrary
j € Homq(W, Z) and the following diagram

Home(Z, X) —22—~ Homy(Z, Y)
Homc(j,X)l lHomc (7,Y)
Home (W, X) —2% . Homq(W, Y).

which commutes. Indeed, let g be an arbitrary morphism in Homg(Z, X) and notice that

(Home(j, Y) o 9 7)(9) = Home(j, Y)((¢ 2)(9))
= Home(j, Y)(f o g)
=fogoj
=owl(go))
= e w(Home(j, X)(9))
= (¢ o Home(j, X))(9)

This implies that Hom¢(j, Y) o ¢ 7 = o w o Home(j, X) which is equivalent to say that ¢
is a natural isomorphism between the contravariant functors Ry and Ry.
Analogous as we just did for the contravariant functor Ry, it's possible do to with
covariant functor Ly, i.e., Ly ~ Ly if, and only if, X = Y (see [21], Proposi¢éo 2.24). m
This next result is about the uniqueness of left and right adjoints of a functor up
to a functor equivalence, and it can be found in the reference [21] as Proposicao 2.32.

Proposition 1.4.7 ([21], Proposicéo 2.32). The left (or right) adjoint of a functor, when
it exists, is unique up to a functor equivalence.
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If a functor F admits a left adjoint, we may denote such functor as Fl-a. Anal-
ogously, if F has a right adjoint we may denote this functor as F"-&. As we have just
seen, these functors are unique up to a functor equivalence.
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2 MONOIDAL AND MODULE CATEGORIES

Here we present the concepts of monoidal, rigid, multitensor, tensor and fu-
sion categories, and then we introduce the notions module categories over monoidal
categories.

2.1 MONOIDAL CATEGORIES

As we've just seen, the notion of abelian categories are a categorification of
abelian groups. In this section we’re going to study the categorification of the notion of
a monoid (which is a set with associative multiplication and an identity) by replacing the
equalities in its definition by isomorphisms satisfying some properties.

In this section we give some definitions and results about monoidal categories
which will be useful later.

Definition 2.1.1. A monoidal category is a sextuple (C,®, a,l,r, 1) such that C is a
category, ® : C x C — C Is a bifunctor called tensor functor, 1 is an object in C called
unit, and

a:®o(®xld) - ®o (ldp x ®),

"1 _ —lde and r:_ ®1—=lde

are natural isomorphisms, such that for any objects X, Y,Z, W inC, the diagrams

(XeY)eZ)o W

X (Y®2Z)s X®Y)®(Zo W)
ax,mz,wl laX,Y,ZQ@W
id,
Xa(Y®2Z) e W) fax@ay.zw Xa(Y®((ZoW)
and
a
XeoNheVY X1y X® (1Y)
X®Y

commute. The commutativity of these two diagrams can be written as

ax yzew°oaxgyzw = (ldx ®ay zw)oax ygzwe (@x,yz® idy)

and
Iy ® idy = (IdX & /y) ocax1,y-

The first diagram is called the pentagon axiom and the second is called the
triangle axiom. The natural isomorphism a is called associativity isomorphism of the
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monoidal category (C, ®, a,/, r,1). We often omit the sextuple and denote a monoidal
category (C,®, a,l,r,1) simply by C. From now on C is a monoidal category unless
stated otherwise.

Let f € Homg(X, Y) and g € Hom (W, Z). We have that

®(f,9)=f®ge Home(X @ W,Y ® Z)
and since (idy, idy) = id v is the identity morphism of the object (X, Y) in C x C, then
idy ® idy = ®(idy, idy) = ®(id(x,y)) = idg(x,y) = [dxey-

Example 2.1.2. Let k be a field. The category Vect, (vect) of arbitrary dimensional
(finite dimensional) vector spaces over k are monoidal with the bifunctor ® being the
tensor product over the field k, i.e., ® = ®j.. The unit object is the field k and the natural
isomorphisms a, / and r are canonical.

In these following definitions, the same symbol & is used to denote the tensor
functor of any monoidal categories C and D. The same can be said about the object 1
which is going to be used to denote both 1, and 1.

Definition 2.1.3. A monoidal functor between two monoidal categories C and D is a
triple (F, &, $), such that F : C — D is a functor, & : @ o (F x F) — F o ® is a natural
isomorphism in C x C and ¢ : 1p — F(1¢) is an isomorphism in D such that the
equalities

() &Ex,yeozeolidrx)® &y 7)o arx),F(v),Fz) = Flax,y,z) o &Exay,z o (Ex,y ® F(z));
(i) Irx) = F(lx) 0 &1, x o (& @ idE(x));
(ili) reox) = F(rx) o &x,1 0 (Idr(x) @ §),
hold, forevery X,Y,Z € C.
The natural isomorphism & is the collection
E={&x,y 1 F(X)® F(Y) = F(X® Y)}x, v)ecxc

of isomorphisms in D, and the equalities (i), (ii) and (iii) can be expressed through the
commutativity of the diagrams

Y)) @ F(2)
W W

FX®Y)® F(Z F(X)® (F(Y)® F(2))
Exey ZL L/d/-'(x) ®&y,z
F(X®Y)®2) X)® F(Y ® 2)

%\/ﬂ

FIX® (Y ®2),
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1® F(X) tevo_ FX) and  FX) @1 F(X)
¢®I'dF(X)j TF(IX) idF(X)®¢l ]F(I’x)
F1)® FXTEFA ® X) FX) @ FAYXF(X ® 1),

respectively.
We often omit the triple (F, &, ¢) and denote a monoidal functor simply by F.

Proposition 2.1.4 ([14], Proposi¢édo 2.10). The composition (when possible) of monoidal
functors is a monoidal functor.

Definition 2.1.5. Let(F, &, ¢) and (F', &/, ¢') be monoidal functors between two monoidal
categories C and D. A monoidal natural transformation

0:(F. &)= (F,&, ¢
is a natural transformation © : F — F' such that, for any X, Y € C, the equalities
(i) 040 =" and
(i) Oxgy o &x,y =&y yo(0x ®0y)

hold.

If © is @ monoidal natural transformation and 0 x is an isomorphism for all X € C,
then 0 is called monoidal natural isomorphism.

A natural equivalence between two monoidal categories C and D is a monoidal
functor (F, &, ) : C — D such that there exists another monoidal functor (F/, &/, ¢’) :
D — C and monoidal natural isomorphisms 04 : Fo F’ — Idp and 05 : F' o F — Id,.

We’ll now see the notion of dual object in a monoidal category. A dual object is
an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal
categories. It is only a partial generalization, based upon the categorical properties of
duality for finite-dimensional vector spaces.

Definition 2.1.6. Let X an object in a monoidal category C. A right dual of X is a
triple (X*, evy, coevy) such that X* is an object in C, and evy : X* ® X — 1 and
coevy : 1— X ® X* are morphisms in C in which the following compositions

I 1 ax x* [
XX 1% Xcoevx®/dx (X ® X*) ® X X, X*,X idx®evy Xo1 rx X,

X @ (X* @ X)

and

gt Oy e x X" idlx I
XX X g {BECOX e o (X @ X)X (X @ XY @ X EXEI g xe B e

are idy and idy-, respectively.
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Dually, a left dual of X is a triple (*X, ev,, coevy) such that *X is an object in

C,and evy : X ® "X — 1 and coevy : 1 — *X ® X are morphisms in C in which the
compositions

v idx® ! al L ®id
X X 0 199 x o (X @ X) —X XK (X @ X) @ XXX e x X x
and

I coevl, ®id« ax, _ * id« eV I«
*X_X>1®*X X X(*X®X)®*XM>*X®(X®*X) X X*X®1—X>*X

are idy and id«y,, respectively.
Some useful adjunctions can be seen in this proposition below.

Proposition 2.1.7 ([4], Proposition 2.10.8). LetC be a monoidal category and X € C. If
X has a right dual X* then

(i) the functor _ @ X :C — C is leftadjointto _ ® X* :C — C;

(i) the functor X* @ _ :C — C isleftadjointto X ® _ :C —C.

Moreover, if X has a left dual *X then
(iii) the functor _ ® *X :C — C is leftadjointto ~ @ X :C —C;
(iv) the functor X ® _ :C — C isleftadjointto *X® _ :C —C.

Now we introduce some definitions that will often be used in this work. All items
presented here can be found in the book [4].

Definition 2.1.8. A category C is said to be
a) rigid, if it is monoidal and every object has left and right duals;

b) multitensor, if it is locally finite, rigid, and the tensor bifunctor @ is k-bilinear on
morphisms, i.e., X® _ and _ ® X arek-linear functors' for every X € C;

c) tensor, if it is multitensor and Homg(1, 1) = k2

J

d) fusion, if it is finite, tensor and semisimple.

' FromCtoC.

The object 1 is a simple object in a tensor category. Indeed, in any tensor category the tensor functor
® is biexact (see Remark 2.1.9) and hence the unit object 1 € C is simple (via Theorem 4.3.8 in [4]
while noticing that every tensor category is a ring category).
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Remark 2.1.9 ([4], Proposition 4.2.1). We can observe that in any rigid category C the
tensor functor @ : C @ C — C is biexact. In fact, for all X € C the functors X @ _
and _ ® X have left and right adjoints (by Proposition 2.1.7). Using the item (iii) of
Proposition 1.4.5, it follows that these functors are exact, i.e., the tensor functor @ is
biexact.

Lemma 2.1.10. /f C is a tensor category and 0 # X € C then coevy (coevj() is a
monomorphism and evy (ev& ) is an epimorphism in C.

Proof. To begin, we want to show that coevy and evy are nonzero morphisms in C. So,
suppose that coevy is a zero morphism in C. Since X # 0 we get idy # 0 (see Remark
1.1.8), i.e,,

0 # idy = ry o (idy ® evx) o ax x- x © (coevy ® idy) o Iy

The functor _ ® X is additive® and therefore a homomorphism of abelian groups (see
Definition 1.1.19). Hence, coevy @ idy = ( _ ® X)(coevy) = 0 implying idy = 0, which
is a contradiction. Analogously, one can check that evy # 0.

Since coevy and evy are nonzero morphisms in C and the object 1 € C is
simple, it follows from Corollary 1.2.10 that coevy is a monomorphism and evy is an
epimorphism. In a similar way, one can prove that coevj( is @ monomorphism and evj(
is an epimorphism. |

2.2 MODULE CATEGORIES OVER MONOIDAL CATEGORIES

We've seen that the notion of a monoidal category categorifies the notion of a
monoid. From this point of view it is natural to define a module category over a monoidal
category as a categorification of the notion of the module over a monoid.

“This theory is interesting by itself, but is also crucial for understanding the
structure of tensor categories, similarly to how the study of modules is important in
understanding the structure of rings.” ([4], page 131).

Firstly, we begin by defining what is a module category over a monoidal category
and later we define functors and natural transformations in this module context.

LetC =(C,®,a,l, r,1) be a monoidal category.

Definition 2.2.1. A left C-module category is a collection (M, ®, m, ) such that
(i) M is a category;

(i) ® : C x M — M is an action (or module product) bifunctor;

3 Itis exact (see Remark 2.1.9) and thus additive.
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(i) m: ® o (® x ldy) — ® o (lde x ®) (called module associativity constraint)
and | : 1® _ — Idy (called unit constraint) are natural isomorphisms with
m= {mX’y’M (X ® YoM — Xg(y@M)}X,YEC,MGM and| = {ly : T&M — M} p1em
satisfying

My y 7zaM © Mxey,z,M = ([dx@My 7 1) o Mx vz M © (8x,y,z&idy),
and

(Idx@/M) CMx 1M = fx®idM.

These equalities can also be express by the commutativity of the diagrams

(X2Y)22)®
w/ W\
X2 (Y®2) (X @ V)&(Z&M)
my, Y@Z,ML my. Y,Z®Ml
_ idy®.
X2((Y ® Z)aM) Ox® My .z, XB(YS(ZDBM))
and
_ m _
(X ®1)aM X1 XR(1®M)
fw %M
X&M,

called the pentagon and triangle diagram, respectively. We could also define a right
C-module category by making some small changes on the definition above. For sim-
plicity we omit the collection and denote a C-module category (M, ®, m,[) simply by
M. Analogously as we'’ve said for monoidal categories, for module categories we have
idy®@idp = idyzy, forall X € C and M € M.

Example 2.2.2. Any monoidal category C is a left and right module category over itself
with ® =® and m = a.

This next result will be used in many instances from now on when commuting
diagrams, and it's possible to get the idea of this proof on the book [8] with Lemma
X1.2.2 for the case in which the category is tensor. With some tweaks we adapted this
for module categories in the following proposition.

Proposition 2.2.3. If M is a C-module category, X € C and M € M. The diagram

(10 X)aM — XM 12(XEM)
/)m X_MA%@VI
&

also commutes, that is, Iy 0 My x p = Ix®idy.
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Proof. To begin, let Y € C and consider the diagram

idy®my x m

YR((1 @ X)@M) YR(1(XM))
idvm\ A’dY/@’/x(z@M
YR(XRM).

This diagram commutes because

P P (@ ,., — T
(idy®Ixzm) o (idy@mq x pm) = (idySlxgy) © My 1 xzm © Myst,x,m© (8y 4 xDidy)o

_1
My 1oX,M
(b)

—. T — _1
(ry®idyzm) © Myg1,x,m © (8y 1 x®idy) © My 15x m

— ., —. _ —. 1
= (ry®(idx®idp)) © My g1 x,m © (ay1,1,x®/d/w) oMy 15X.M

(c) P— _ —. _
= My x.pm o ((ry ® idy)®idy) o (ay1,1,x®’dM) ° mY1,1®X,M

= my x um o ((ry ® idx) o ay'4 x)@idy) o Myly.x y
(d) . _ _
= my x.m° ((idy ® Ix)®idy) o mY1,1®X,M

9 (idy@(Ix@idy))

where the equalities (a) and (b) hold by the pentagon and triangle diagram of the C-
module category M, respectively. The equalities labeled with (c) are valid due to the
naturality of m and (d) is via the triangle axiom of the monoidal category C.

Next, by the naturality of the unit constraint /, the diagram

I/ = _
12((1 @ X)aM) 2221 (1 @ X)aM
id1®(IX®MOm1,X,M)l lIX@)MOmLX,M

1R(X@M) . XM

XM

commutes, that is,

Ixzm © M,x,m © laexyem = Ixam © (IG1&(Ixgpm © M, x,m))- (7)
Notice that we are using the morphism /Iy 0mq x p € Homy(12X)oM, X2M) in this

X
diagram. We could do the same with the morphism Iy®idy, € Hom,((1® X)@M, X@M)
and thus obtain
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At last, notice that

@) - -
Ixam © M XM = Ixam o (B (xzn © M x M) © 1 xyzm

in which the equality (x) is valid due to the commutativity of the triangle diagram on the
beginning of this proof for Y = 1. Hence, Iy, o mq x pm = Ix®id)y for all objects X € C
and M e M. u

Remark 2.2.4. We'll see later that if the category C ir rigid, the module product bifunctor
® :C x M — M is exact in the second variable. Moreover, if C is finite multitensor and
M is locally finite then ® is also right exact in the first variable. For some upcoming
results we'll need ® being k-linear and left exact in the first variable®.

Proposition 2.2.5 ([4], Proposition 7.1.6). Let C be a rigid category, M a C-module
category and X € C. Then the functor

(i) X*® _ : M — Misleftadjointto X®@ _ : M — M;
(i) X® _ : M — M is left adjoint to *X® _ : M — M.

In particular, the functor X® __ is exact.

Its proof is very similar as the one found in Proposition 2.1.7 (see Proposition
2.10.8 in [4]). For example, let (X*® _ ,X® _,0) be the adjunction of item (i) with
0 = {6 pr : Homp(X*@M, M') — Hom (M, XM )} ppesns f € Homp(X* @M, M')
and g € Homy (M, X&M’). The morphism 6, 5s(f) in M is defined as

Op mr(f) = (idx®F) o my x= pp o (Coevx®idpy) o /,T) (9)
with inverse

O 1(9) = Iy © (evx@idyy) o My x yp 0 (idx-B9). (10)

Indeed, for all g € Hom (M, X&@M') we have

(O, © O 4 )(9) = O, (O] 11 (9)
= (idx @07 1/(9)) © My x- m © (CoevxTicy) o Iy
= (idx@ (I o (evxBidpp) o My x pp o (idx=Eg))) © My x+ po
(coevx@idy) o Iy}

4 Thatis, the functor _ ®M : C — M being k-linear and exact, for every M € M
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= (idx®Ipp) o (idy@(evxBidy)) o (idx @iy x p) o (idxB(idy-g)) o My x+ po
(coevxDidy) o Iy}

D (idy ) o (i (v Bidu)) o ok Mgt x ) © My x- xam © ((idx @ idx-)Fg)o

(coevxDidy) o Iy}

=

(idx DIy o (idxB(evx@idyy)) o My xsex,mr © (x, x= XxBidy) © My xe x g0
((idy © idy-)®g) o (coevyRidy) o I/

ey

(idxBIy) © My 1.0 © ((idy @ evy)Bidpy) o (ax x- xDidhr) o Mk x+ x
((idy © idy-)®g) o (coevyRidy) o I/

IS

(rx@idyy) o ((idx @ evx)Bidyy) o (ax, x- xBidyr) © Myl x+ x g © (itxex-Bg)o

(coevx®idy) o Iy,

= (rx®idpy) o ((idy @ evx)Bidyy) o (ax x+ xBidy) o My x+ x g © (COBVXBidyzpp)o
(i1 ©g) © Inf

D (rx@idu) o ((idy © evx)Bidu) o (ax,x- xDidu) o ((coevy @ idy)Fidy)o

my' e © (i @9) o ]

d . ; . . ) .
D (rx@idy) o (idy © evx)Didy) o (ax x- xBidy) o ((coevy @ idy)Bidyy)o

—1 1
m1’X,M/ O l)—@M/ Og

@ (re@idhy) o ((idy © evy)Bidhy) o (ax x- xBidyy) o ((coevy @ idy)Bidyy)o

(Ix®idyy) o g

= ((I’X o (IdX X evx) ¢} aX’X*,X o (COGVX X Idx) o /X)@dM,) og

= (idy®idyy) o g

=idyzpmod=9
in which the equalities labeled with (a) hold via the naturality of m. We are using the
pentagon and triangle diagrams of the C-module category M in the equalities (b) and
(c), respectively. Finally, (d) is due to the naturality of / and (e) by using the Proposition
2.2.3. Therefore, 81 © O4) 1y = ipiom, (M. xzM)> @d the equality ] 4 © Oy =
idom . (x~@Mm, M) Can be verified analogously.

Similarly as we’ve done in Remark 2.1.9, by using Proposition 1.4.5 it’s possible
to conclude that the functor X® _ is exact.

We now define the notions of functor between C-module categories and natural
transformation between C-module functors. All definitions and results we will work with
are presented for the case of left C-modules, but the case of right C-modules is entirely
analogous. For simplicity we will just write C-module category instead of left C-module
category.
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Definition 2.2.6. Let M = (M,®,m,l) and N = (N, ®, m, ) be two C-module cate-
gories. A C-module functor between M and N is a pair (F, c) such that F : M — N is
afunctorandc: Fo® — ® o (lde x F) is a natural isomorphism in C x M with
¢ ={cx,m 1 F(X®@M) — X@F (M)} x myecxm Satisfying
(idx®cy m) o Cx yam o F(Mx vy .m) = Mx vy Fm) © Cxeo Y, M:
and
Iemy © €1.m = FIm).

These equalities can also be expressed via the commutativity of the diagrams

F(X ® Y)@M)

Acx@g% W)

(X @ Y)oF(M) F(X®(YaM))

Mx v, F(m) l LCX, YeM
idx@cy v

XR(YRF(M)) ’ X@F(YaM)

and
FABM) Gim 18F(M)

F(M),

forall X, Y e Cand M € M.
Sometimes we omit the pair of a C-module functor (F, ¢) and say simply that F
is a C-module functor.

Example 2.2.7. The identity functor /dy, : M — M is a C-module functor and its
C-module functor structure is given by the natural isomorphism identity /D : Idy, — ldp,
defined by ID = {IDx 1 = idxgp : ldp(X@M) — X@IDpA«(M)} x e s m-

The natural isomorphism /D that gives /d,, a C-module functor structure is often
omitted.

Example 2.2.8. The functor ( _ ®M : C — M, ¢) is a C-module functor with ¢ = {cx y =
mx ym: (X® Y)@M — X®(Y®M)}X,YEC'

Definition 2.2.9. Let (F,c),(G,d) : M — N be two C-module functors. A natural
transformation of C-module functors is a natural transformation © : F — G such that the
diagram

e _
F(XaM) —>Y . G(XaM)
CX,Ml ldX,M
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commutes, i.e., the equality dx pp o 0 xzp = (idx®0y) o cx y holds for all X € C and
Me M.

If 0 is an isomorphism in N for every M € M then 6 = {Op}pcpq i called
natural isomorphism of C-modules. In this case, the functor (F, c) is said to be equivalent
to (G, d) as C-module functors, and it is denoted by (F, c) 2 (G, d) orsimply by (F, c) ~
(G, d).

This following well known result states that the composition of two C-module
functors (when the composition is possible) is also a C-module functor.

Proposition 2.2.10 ([14], Proposi¢do 3.6). Let (F,c) : My — M» and (G, d) : Mo — M3
two C-module functors. Then (Go F,b) : My — Mg is a C-module functor with
bx,m = dx,F(m) © G(ex,m), forall X € C and M € M.

Definition 2.2.11 ([4], Definition 7.2.1). Let M and N' be module categories over a
monoidal category C. The categories M and N are said to be equivalent as C-module
categories if there exists a functor F : M — N that is an equivalence of categories and
it admits a structure of C-module functor.

In [15] the author defines that two C-module categories M and A are equivalent
(as C-modules) if there are C-module functors (F,c) : M — N and (G,d) : N - M
such that (F, ¢)o (G, d) ~ (ldy, ID) and (G, d) o (F, ¢) ~ (ldy,, ID). These two definitions
used in [4] and [15] are equivalent and we could not find this proof in the literature, so
the following proposition was created.

Proposition 2.2.12. Two C-module categories M and N are equivalent (as C-module
categories) if, and only if, there are two C-module functors (F,c) : M — N and (G, d) :
N — M such that (F, c) o (G, d) ~ (ldyr, ID) and (G, d) o (F, ¢) ~ (Idx4, ID).

Proof. The converse clearly holds since (F,c) : M — N being a C-module functor
equivalence implies that F is an equivalence of categories.

On the other hand, let F : M — N be an equivalence of categories such that
F has a structure of C-module functor (F,c) : M — N. Since F is an equivalence,
there exists a functor G : N/ — M and natural isomorphisms «’ : Fo G — Idys and
B :ldyy — Go F. Via Proposition 1.3.9, the functor F is left adjoint to G, 3 is the unit of
this adjunction and the counit « : F o G — Id)s is given by

- —1
& = {ou = oy o F(Bg) © F(G(ety ™)) - F(GIN) = Ninew-
Furthermore, 3 is a natural isomorphism by definition and « is a natural isomorphism
by Proposition 1.3.9. Moreover, they satisfy idgn) = Glan) o Bgny and idgpy) =

xgmy © F(Bwm)-
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The C-module functor structure of G can be defined as the composition

-

Glidx®o;)) G(C}! any) XBGN)

G(X®N) G(X®F(G(N))) G(F(X®G(N))) X®G(N)

forall X € C and N € N, that is, (G, d) has a structure of C-module functor with

d = {dx,n = Bxs g © G(Cx aov) © GlidxEey ) x, mecx
In fact, let see that d is a natural isomorphism in C x N, i.e., for every

(f,9) € Homey pm((X, N), (X, N')) = Home(X, X') x Hom (N, N')

the diagram
GXEN) — 2 XBG(N)
G(@Q)l foG(9)
GX'BN) X'SGN')
X! ,N!

commutes. We have

(fSG(g)) o dx n = (FEG(9)) © By © GlC gny) © GlidxZey)
D B3tz e © GFITEG(G) o Gley gqy) © GlidxFoiy))
= Bxsaw) © GF(FEG(9)) o ¢ g © idx Doy )
2 Brizam © GIEx au) © (TEF(G(@)) o (idx o))
= Bxsamv) © GCx gy © (FE(F(G(9)) o o))
9 B © GlExt g © (FE (R o 9)
= '3;(1/@6(Nf) ° G(C}l,e(/v/) o ((idx: o (B (oi) © 9)))
= Bxsaw) © GCx gy © idx Bay) o (fEg))
= Bxsaw) © GCx gy © Glidx o) o G(fE)
= dx: N o G(f®g)

in which the equality (a) is due to the naturality of B, (b) is by the naturality of ¢! and

(c) via the naturality of o~ 1.
The inverse® of d is

d™! = {dy'y = Glidx®an) o G(cx,an)) © Bxzan) : X®G(N) = GIX@N)}kx neexa- (1)

5 This inverse of d will only be used on a result later on this work which states that the right adjoint of a
C-module functor, when exists, is a C-module functor.
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Furthermore, the pentagon and triangle diagrams of the functor G commute. Indeed,

(idx@dy n) o dx ygn © Gimx vy N)

= (idx®(BYy 56w © G(Sy gvy) © GlidyBay))) o Bysavan) © GlCx avan)°
G(idx@ocyls ) © G(my v )

= (idx BBy 5 v © (AXBG(CY gy) © ([dxEGlidy Doy )) © Bxsaysn

G(CX1G( ME GlidxBocy5p) 0 Glmy. y n)

D i@ By ) © (X TGICY gn)) © Brsvariainy) © GFUdx@Glidy Do )

G(C)_(TG( YaN)) © Glidx@ocy5p) 0 Glmy. y n)
= (idx @By 5g) © AXEG(CY gv)) © Bxsayarany © CUF(idx@GlidyBai))o
ox Grysn) © dxBeyzy) © My y,n)
(b) (idxZBY 5 gn) © ([AXBG(SY g © Bxsaivariam) © CCx aivaram)°
(Idx®F(G(Idy®O(N ))) o (Idx®O(W® ) omx.y, N)
= (idX®B;1@G(N)) ° (idX®G(Cy G(N )) 1

(idxB(F(Glidy@oiy ) 0 acyp) © my y,N)

1
varGN) © GCx.ayaF(GV)°

2 0B i) © 1ok B ay) © Bxavar(amy © SOX avaramy®
(idx (5 oy © ([Ay By ) o mx v n)

=(’dx@f571@ w) © BXBGey ain) © Bxsavarany) ° Cx.aivsrGm)°
(idx@;}@mwn) o (idy @ (idy@oiy)) o my v n)

2 (iex By 56w © (X ECEy ) ° By F(G(N)»OG(C}TGO@F(G(N)))O
(idx Doy s £y © MX,Y,F(GIN) © (’dX® Y®°‘N )

(a

=

1 1 A 1
([dx©Byzan) © Bxaaryaamny) © GIFIAx@G(Cy gny)) © GlCx givaravy)°©

('dx®a31@F(G(N))) o My y F(G(N)) © (idxey@oy))

L = —1 = —1 —1
= ([dx@Byzan)) © Pxzar(yaany) © GIFUIAX©G(Cy, g © Cx,GvaFGn)°

(idx®0671ﬁ,:(G(N))) °©Mx vy F(G(N)) ° (idXé?Y@O‘I_V1 )
(b) » i =]
= (idx @By © BX=zarvaamy) © GO arvaay) © UaxPF(GEy )
(idy®x \@F(G(N)))OmX,Y,F(G( N)) © (idx g y®o 7\/1))

=1 —1 idve »
= (Idx®@Byz ) © Bxsar(vaany) © G(Cx GF(YEGH) o (idx®(F(G(Cy, g

“\LF(G(N)))) o My, y,F(G(N) © (idxes YE))

(O P 1 ™ idx D (o F!
= (Ax®Byzan)) © Pxaarvaamy) © ACx.aryaamy) ° WX Xryaan)°

C?TG(N))) o My vy F(G(N)) © (idxeyBoy))
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A —1 1 idy Dot
= (Ax®Byzan)) © Bxaarvaamy) © Gx,arvaamy) © OX@%Eyaan)°
(idxBCy gv) © Mx,v,Fian) © (idxeyBey))

@ ,., —._1 — —1 To Lo,
= ([dx®Byzan)) © Bxaarvaamy © A Cx.airyaany) © IOxEXE vaay)°

CX,Y&G(N) © F(mx,y.gn)) © C)_(1® Y,G(N) ° (idxg Ygo‘ﬁ )

LY . . o5
= (dx®@Byza) © Bxaarvaamy) © CCx.arvaamy) © 1XEFByaan))e

CX,Y&G(N) © F(mx,y.gn)) © C)_(1® Y,G(N) ° (idx g Y®°‘K/1 )

9 ) =n— - idv®
= (o @Bysa) © Bxsa(r(vaeny) ° CFIxEByzan) © Fimx,y.am)e

C)_(1® Y,G(N) ° (idx e Y®°‘/_\/1 )
= (ingﬁﬂ@G(N)) °© B;‘I@G(F( YBG(N))) © G(F(idx®p \@G(N))) © G(F(mX,Y,G(N)))O

a . — —

(a) _ , — _
= Mx.y,G(N) © B (X2 Y)SG(N) © G(CX®Y,G(N)) °© G(’dX®Y®‘X/\/1)

= Myx,y,G(N) © AXx Y,N

in which the equalities labeled with (a) are valid due to the naturality of p~1, those
labeled with (b) are due to the naturality of ¢~! and the ones with (c) hold for the reason
that o~ is a natural isomorphism. Moreover, the naturality of m implies the equality (d),
while the commutativity of the pentagon diagram of the C-module functor (F, ¢) implies
(e). Finally, (f) and (g) comes from the equality idF(@G(N)) = XF(YSG(N)) © F(p ,@G(N))
seen before and the naturality of ¢, respectively.

Moreover, we have that

/G(N) © d1,N /G © B1®G (N) o G(C1_,1G(N)) ] G(Id‘]@(xl_\/ )

(Z) O B?@G ) o G(F(IE;(N)) e} IF(G(N))) e} G(Id1®OCI_V1)

B1®G ° G(F(Iginy) © Gllr(G(ny) © GlidhDoiy])
o 61@6 (N) o G(F(,(—;(N))) o G(/F(G(N)) o (Id1®0(,xl1 ))

( )/G o ByL e © GF UGN © Gloip! o Iy)

(=) IG( N) © /G o [?)G o G((XR/ oln)

= B © Glon © )

= B © Gloy)) © G(l)

d) .
D idgny o Gllw)

= G(In),
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i.e., the commutativity of the triangle diagram of the functor G. The equality (a) is valid
due to the triangle diagram of the C-module functor (F, ¢). The equalities (b) and (c)
are due to the naturality of / and 3, respectively. Lastly, (d) comes from the equality
idg(ny = Gla) o Bg(ny- Therefore, (G, d) : N — M is a C-module functor.

By the Proposition 2.2.10, the C-module functor composition between (F, ¢) and
(G, d)is defined as (F, ¢)o(G, d) = (FoG, b) with by = CX,G(N)OF(dX,N)- Similarly, the
composition (G, d) o (F, c) = (Go F, b') with bS(,M = dx F(m) © G(Cx,m)- Let us now see
that « is a natural isomorphism of C-module functors between (F, c)o (G, d) = (F o G, b)
and Idys. This can be described as the commutativity of the diagram

F(GXBN)) N xgN
bX,NL llDX,N:idX@W
XTF(G(N)) XTN

idx®on

forall X € C and N € N given by

(idx®@ap) o bx n = (idx@ap) o cx v © F(dx,n)

= (idx@ap) o cx. g © F(B )1@6( N)© G(c;(fG(N)) o G(idy@ o))
= (idy@ap) o Cx, G(N) © F(5;1@G( Ny © F(G(cy' an) © F(Glidy® o))

b) ., — P
(=) (ldX@OLN) o (X)@F(G(N)) o F(C;(ldx@@(’é,\;I ))
(b

~

where (a) comes from the equality idrxzgn)) = *F(xzan) © F(Bxzan))> and the
equalities labeled with (b) are valid due to the naturality of «. Therefore, « is a natural
isomorphism of C-module functors.

The last checking we must do is the one to verify that 3 is a natural isomorphism
of C-module functors between Id,, and (G, d)o(F, ¢) = (GoF, V'), i.e., the commutativity
of

XM DX G(F(X@M))
IDX,M=idX®Ml le(M
XEM —— = XS G(F(M))

forall X € C and M € M. In fact,

bly 110 Bxam = dx,Fmy © Glex,m) © Bxzm
= 631@G(F(M)) ° G(C)_(‘!G(F(M))) o G(idx®“F1(M)) o G(ex.m) © Bxam

= Bxzatrm) ° CIeX a(rm) © (XD ) © Cxm) © Bxam
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= B_1 M)) © G(CX G(F(M)) °© (idx@F(Bm)) o cx M) © Bxzm
2 %G wy © GUF(0xTBa)) o Bxom
9 idx @B

with the equality (a) being valid from the identity idgy) = ap ) © F(Bm), and the
naturalities of ¢ and 3 implying in the equalities labeled with (b) and (c), respectively.
Thus B is a natural isomorphism of C-module functors.

Therefore, these two definitions of C-module category equivalence are equivalent,
as wanted. ]

2.3 ADJOINT OF A C-MODULE FUNCTOR

Let M and N be abelian and module categories over a rigid category C and
(F,c) : M — N be a C-module functor.

Our goal with this section is to show that if (F, ¢) admits a left F-& : N — M
or right F™-@ : N' — M adjoint, then these adjoint functors admit a C-module functor
structure. This result and an idea of its proof is written in the beginning of Section 7.12
on the book [4] (for the case in which the categories involved have more properties),
and we couldn’t find its proof in any reference. We'll focus on the case that F admits a
right adjoint F"-@- for the similarity of the other case.

For a better understanding, we divided this in some steps.

Step 1: Forall X € C and N € N, consider the contravariant functors given to the reader
in the end of Section 1.4

Rrra(xan) = Homp( _, F"&(X®N)) : M — Set, and
R)@Fr.a.(/\/) = HomM( . ,X@Fra(N)) : M — Set.

We are going to show that there is a natural isomorphism

Q= {(pM’N . RFr.a.()@N)(M) — Rr,:ra ( )}MEM

where
oy : Homy (M, F™3(X@N)) — Hom (M, XSF"2(N))

is an isomorphism in Set. This step will be further developed in Lemma 2.3.1.

Step 2: Next, by using the Proposition 1.4.6 we’ll obtain that

O xam drra(xany) - FT 2 (X@N) — XSF"2(N)

is an isomorphism in M. This is going to be our candidate for the natural isomorphism®

_ _ . X,N :
d:Fl'éox 5 ®o (/dc X Fr'a') with d = {dX,N = (p,:;.a.()@/\/)(IdF’-a-()@N))}(X,N)GCX/\/
6 With both functors from C x N to M
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and which gives the functor F"-@ a C-module functor structure (F"-%,d) : N' — M.
We'll explicit each morphism dy p in the family d right after Lemma 2.3.1, and use it in
the proof of the Theorem 2.3.2.

Step 3: We'll construct a natural transformation
d/ = {dS(,N . X@Fra(N) — Fr.a.(XgN)}(X,N)ECX./\/‘!

proof that this is the inverse of d and also that @’ satisfy the pentagon and triangle
diagrams which gives the functor F-2- a C-module functor structure. This step can be
found as Theorem 2.3.2.

For the following results, suppose that (F,c) : M — N is a C-module functor
admitting a right adjoint F™-& : N/ — M.

Lemma 2.3.1. The collection ¢ defined in Step 1 is a natural isomorphism in M.

Proof. Since F has a right adjoint F"- : N' — M, there is a natural isomorphism

b = {dum,n - Homp (F(M), N) — Hom (M, F"2 (N))} a1, nye mop

in M and N. As we’ve seen in Remark 1.3.7, we are going to fix the second entry with
the object X®N € N. So we have

d;;} xan - Homp(M, F-a(X®N)) — Homy (F(M), X@N). (12)
Next, we define the family of morphisms in Set
& = {dy : Homp (F(X*&M), N) — Hom(X*@M, F"&(N))}

as ¢y = by n- The naturality of ¢ in M can be obtained from the naturality of ¢,
and it’'s an isomorphism by construction.
We’ll use the morphism

by = dxmm N - Homp (F(X*@M), N) — Hom (X &M, F"-2(N)). (13)

Now, using that the functor X*® _ : N — N is left adjointto X® _ : N — N (see
Proposition 2.2.5), there exists a natural isomorphism 6’ = {6}y, \, : Homp (X*®&N, N') —
Homy/(N, X@N’)}N,N/GN. Similar as we’ve just done, let us define the family

0/ = {07y : Homp (F(M), X&N) — Homy (X*@F (M), N)}pre

of morphisms in Set as /) = 6}(1M)’N. This is a natural isomorphism in M € M via the
adjunction 0.
We're going to consider the isomorphism

0~y = 8y v - Hompr(F(M), X@N) — Hompr(X*BF (M), N) (14)
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in the collection /-1,
Using the C-module structure of F, that is, the natural isomorphism

¢ ={cx,m : FIX@M) = XOF (M)} (x myecxm
we can define
e = {ey = Hompy(cx+ m, N) : Hompar(X*®F (M), N) — Homp (F(X*@M), N)}pmenm, (15)

which is a natural isomorphism” with inverse =1 = {e3} = Hompr(c3! 1y NI vrenr-

Lastly, consider the adjunction (X*® _ : M — M, X® _ : /\/l — M, 0) from
the Proposition 2.2.5. We'll fix the second entry with F™-2(N) € M and consider the
isomorphism

OM’Fr.a.(N) : HOmM(X*®M, Fr'a'(N)) — Hom/\/l(M’ X®Fra(M)) (16)

in the collection 0.

We define the composition of the isomorphisms in Set (16), (13), (15), (14) and
(12)

b s _
Rera(xzn) (M) = Homp (M, FT-3(X@N)) MXON Homy (F(M), X&N)
g1 M
Hom (X*@F (M), N) Ll Homyr(F(X*&M), N)
by

eMny.a.(N)

Hom v (X*&M, F-a-(N))

HomM(M, X@Fra(N)) = Fl’)@/:r.a.(N)(M)

to be cp),\;’N, that is,

X,N . - Yy —1
ey = eM,Fr.a.(N) odpoepyobd 1M o d)M,)@N'
Furthermore, it's easy to see that the collection ¢ = {(p)/\;’N}MEM is natural in M
because it is a composition of natural isomorphisms in M. |
. " X,N : . gr.a. a (N

Via Proposition 1.4.6, ch,_a_()@N)(/d,:r_a.()@N)) : Fr-8(X@N) — X®@F"™&(N) is an
isomorphism in M. This is our candidate d = {dy y = cp/):(;_’;_’()@N)(id,:r.a.()@N))}Xec,NeN
for the natural isomorphism that gives our functor F™- a C-module functor structure.

Before analyzing what morphism is going to be the inverse of dy p, let us define

. (*)  _ . . .
the counit o = {oxy = Cb,:1r.a.(N)’N(’de-a-(N))}NeN and unit B = {By = &1, F(my ([AF (M) e

7 This follows from the natural isomorphism c.
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of the adjunction (F, F"-@, ¢) as in the Proposition 1.3.8. They satisfy the relations

id/:r.a_(N) = Fr'a'(O(N) o BFr.a.(N), and (17)
idrmy = xF(my © F(Bm) (18)

forall M € M and N € N. Moreover, it's possible to explicitly write each morphism in
the family d as

X,N ,
dX,N = @Fr.a.()@N)(ldF’-a-(X@N))
= (0Fra(x@n), Fra(N) © PFra(x@n) © €Fra(xan) © 07 Fra(xan)°
d)Fra )@N)r )(IdFra()@N))
= (eF’a (X®N),Fra(N) © djx*@Fr.a.()@N)’N ° EFra(XgN) © e,EEFf-a-()@N)),NO
bp \(id )
Fra(x@N),XaNUdFra(XBN)
= OFra(xa@n), Fra(N) (O x-zFra(xan), N(HOMA (Cx- Fra(xan): N)(el/-:(1Fr.a.( XEN)N

(52 xmm xanidra pxam))

(%)
= eFr.a.()@N)’[:r.a.(N)(d)X*@Fr.a.()@N),N(Hom,/\/(c)(*,Ff-a-()@N)s N)

(O (Fraxzny) N ®xEn)
O 6 oy, Fra () (@ x5 72 (xm N HOMA(Cx- Fra g, N) (I © (evx@idy)o
my x o (idx-Boyz )
= 0rra(xaN), Fra(N) (O x-zFraxan NN © (evxBidy) o mixl y n o (idx-Boyzy)o
Cx+ Fra(XaN)))
D 0 a . ra g (F2 (I o (vxEidy) o Mg y o (idx-Toyzp)o
Cx+ Fra(xaN)) © Bx zFra(Xxan))
D (i@ (F"2 (I o (evxTidy) o Mgy o (idx-Foyzn) © Cxe Fraxan)®
Bx-zFra(x@N))) © Mx x+ Fra(xzN) © (COBVX®idpra xzn)) © I;l_a( XEN)
= (idxB(F"(Iy) o F"2(evx®idy) o F"(mix\ y n) o F"2 (idy.Bocxzp)o
F"8(cx+ Fra(xan)) © Bx-zFra(xan))) © Mx x- Fraxan) © (COBVX®idrra xzn))o
et a(xaN)
= (idxDF"2(Iy)) o (idy D F" (evySidy)) o (idxBF 2 (m. x p)o
(idx@F"& (idx-Baxgp)) © ([AXx@F & (Cx+ praxany) © (IIxDB x5 Fra(xzN))°

_. ]
My x+ Fra(xaN) © (COBVXQidEra(xzn)) © Irraxzny
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and this can visually be seen as the composition

[
Fra.(x@N)

Fr-a(X@N) 13F"2(XBN)

coevx®@ider.a xgy

mX!X*’Fr.a. (X@N)

IdX@B X*@Fr.a.()(@

iax BF" & (Cyx rr.a.xgpy)

XGFT2(F(XBF2(XEN)) XEFra (X BF(Fr2(XaN))

idX@Fr'a' (Idx* @chf

idx@F"# (m;(L,X’N)

XQF"a(X*®(X®N)) XQF"2((X* @ X)@N)

idx®F"%(evx®id,

idx@F" (In)

X@F"™a(12N) X@F"a(N).

Theorem 2.3.2. Let(F,c) : M — N aC-module functor. If the functor F admits a left
Fl-a : N — M or right F*@ : N' — M adjoint, then this functor has a structure of
C-module functor.

Proof. Suppose that the functor F admits a right F-& : N' — M adjoint and consider
the natural isomorphism d = {dx n}(x,n)ecx s t0 be the one defined above. Firstly, the
natural transformation8

d’ = {dy p : XSF#(N) = F"3(XBN)} x nyecxn

in which dS(,N is the inverse of dy y for all (X,N) € C x N is exactly d~! defined in

Proposition 2.2.12 as equation (11), i.e.,

d'={dy = F"&(idx®op) o F"#(cx Fra(n)) © Bxgrra) : XOF & (N) = F & (X@N)}x,nyec -
Notice that we can only guarantee that d’ is a natural transformation, and not

necessarily a natural isomorphism since in our hypothesis « and 3 are just natural

transformations instead of natural isomorphisms (as in Proposition 2.2.12).

8 Between the functors @ o (lde x F™2) and F"% o ®.
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Each dy y is the inverse of dY, ,, forall X € C and N € \ as we can see by

di v © dxn = F™(idy Do) o F2 (o frany) © Bxapraqn) © (iOxBF 2 (Iy)o
(idx @ F"2 (evxBidy)) o (idxBF"#(my. x n)) o (idxEF"3 (idx-Beygp))o
(idX®Fr'a'(CX*’Fr-a-()@N))) o (Ildx®B x+zFra(xzN)) © Mx, X+ Fra(XaN)°
(coevx®idEra xzny) © /,_:l.a. (XEN)
= FM@((idx®ap) o cx Fra(n)) © Bxgpra(n) © (Idx@F" % (Iy))o

(idxBF"2 (evx®idy)) o (idx@F 2 (miy\. y n)) o (idx@F"2 (idx-Bocyzn))o
(idx@F"8 (Cx+ pra(xany)) © ([AxBB x-zFra(xan)) © Mx X+ Fra(XaN)°
(coevx®idEra xzn)) © Ira (XEN)

@ Fra ((igy@ay) o cx,Fra(n)) © F"& (Fidx@F % (IN)) © B xzFra(mn°
(idx@F" 2 (evx®idy)) o (idxBF"(my. x n)) o (idx@F"2 (idx-Bocyzp))o
(idx@F"8 (cx« pra(xany)) © ([AXEB x-zFra(xzmN)) © Mx X+ Fra(XEN)°
(coevx®idEra xzny) © /,_:l.a. (XEN)
= F"&((idx®ap) o cx fran) © Flidx@F % (In)) o BxzFragzn©

(idxBF"2 (evx®idy)) o (idx@F 2 (mix\. y n)) o (idx@F"2 (idy-Bocyzn))o
(idx@F"8 (cx+ pra(xany)) © ([AxBB x-zFra(xan)) © Mx X+ Fra(XaN)°
(coevxBideraxzn)) © Ira (XBN)
O Fra(idy@ap) o (idy@F(FT2(Iy))) o Cx,Fra(1@N)) © PxzFraa@n©
(idx@F" 2 (evx®idy)) o (idxBF"(my. x n)) o (idx@F"2 (idy-Bocyzp))o
(idx@F"(Cx- Fra(xany)) © (AXBB x-zFra(x@N)) © MX X+ Fra(XEN)°
(coevx®idEra xzny) © /,_:l.a. (XEN)
= F2 ((idx@ (o o F(F"#(In)) © Cx Framny) © BxsFra(sn©
(idy @ F"2 (evx@idy)) o (idxDF"2 (M. x y)) o (idyBF"3 (idx-Becxzp))o
(idx@F"8 (Cx+ pra(xany)) © ([AxBB x-zFra(xan)) © Mx X+ Fra(XaN)°
(coevx®idEraxzn)) © Ira (XEN)
© F"2((idx@(In 0 aqp)) © Cx Fraizn)) © BxaFra(an®
(idy @ F"-2 (evx@idy)) o (idxDF 2 (myl x ) o (idxSF"3 (idy-Botyz )0
(idx@F"8 (Ccx« pra(xany)) © ((AXEB x-zFra(xan)) © Mx X+ Fra(XEN)°

_. 1
(COGVX®IdFr.a.()@N)) ° /,_:r.a.()@N)
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(@) FT2((idx®(Iy 0 aqzr)) © Cx Fra(1@n)) © F-3(F(idy@F"2(evx®idy)))o
BxaFra(x-ax)zn) © (Idx@F 3 (myl y \)) o (idy@F 2 (idx- Doz )0
(idx®F" (Cx+ Fra(xan)) © ([AX®B x-zFra(x@n)) © Mx X+ Fra(XaN)©
(coevx®@idra(xzn)) © /,_:1.&( X@N)

= F"({ic (I © cxa)) © Cx Frariom) © FIOXEFT 2 (evx@idy))e
BxaFra((x-exyan) © (AXEF (M. x y)) o (idy@F"# (idy-Secyzp))o
(idx@F"(Cx- Fra(xany)) © (dXBB x-zFra(x@N)) © MX X+ Fra(XEN)°
(coevx®idEra xzny) © I,_:l.a.( XEN)

Q) Fra((idy @iy 0 agzp)) o (o GF(F™-3 (evy@idy))) o CX,Fra((X*2X)EN))°

BxaFra(x-ax)zn) © (Idx@F 3 (myl y \)) o (idy@F 2 (idx- Doz )0

(idx@F"% (Cx+ Fra(xan)) © ([AXEB x-zFra(xan)) © Mx,x+ Fra(XEN)°

(coevx®idra(xzn)) © I,_:l.a.( XBN)

= FI3((idx®(In o oqgp © F(F"% (evx®idy)))) o Cx Fra(x+oXx)@n))°
BxzFra(x-oxjEN) © (Idx@F3(my\ x \) o (idy@F 2 (idy-Bocxzp))o
(idx@F "8 (cx« pra(xany)) © ([AXEB x-zFra(xamn)) © Mx X+ Fra(XEN)°
(coevx®idEra xzny) © I,_:l.a.( XEN)

© F"2 ((idy®(Iy o (evx®idp) o X(x*2X)@N)) © CX, Fra (X2 X)@N))°

Bx@Era((x-x)EN) © (AXBFT(myl x \)) o (idy®F 2 (idx- Botxgn))o

(idx®Fr'a'(CX*,Ff-a-()@N))) o (idx @B x+zFra(xzN)) © MX X+ Fra(XEN)°

(coevx®idrraxzn)) © I,_:l.a.( X@N)

'@ Fra.(jdy@(ly o (evy@idy) o X x@X)@N)) © X, Fra((X+©X)aN))°
Fr-a(F(idx@F2(my\. x n) © Bxzrrax-zxan)) © (dx®F2 (idy-Baxzy))o
(idx@F" % (Cx- Fraxzn))) © ([AXDB x-zFra(x@N)) © Mx X- Fra(XEN)°
(coevx@idgra xzn)) © l/;l.a.( XBN)

= F"&((idx®(Iy o (evx®idn) © & xs x)@A)) © CX, Fra((X* o X)EN)°
Fidy@F"2(myl x p) © Bxarrax-zxany) © (dx@F" 3 (idy-Dayzy)o
(idxDF" 2 (Cx+ Fra(xzny)) © (IAXEB x-zFra(x@N)) © MX, X+ Fra(XEN)°

_. 1
(coevX®/d,:,_a.(X®N)) S /;-r.a.()@N)
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b = Si idy® X
(=) Fr.a.((,dx®(/N o (eVX®/dN) o O((X*®X)@N)) o (IdX®F(Fr'a'(mX1*,X,N)))O

Ox Fra(x-a(XaN)) © BXaFra(x-mxan) © (AxEF" (idy-Soxzn))o
(idx@F % (Cx+ pra(xany)) © ([dX®B x-zFra(xan)) © Mx, X+ Fra(XaN)°
(coevx®idrraxzn)) © /;'-rl.a.( XBN)

= FT2((idx@(Iy  (evx®id) o (- xymn © FIF (M. x n)))eo
Ox,Fra(x-a(xaN) © Bxarra e sxan)) © (dxSF (idx-Boyg))o
(idx@F"(Cxe Fra(xan))) © (AXDB x-zFra(x@N)) © MX X+, Fra(XEN)°
(coevx®idrra xzn)) © /El.a.( XEN)

9 Fra((idy@(ly o (evyBidy) o M. x N © %x-3(xan)) © OX,Fra(x-B(XaN))°

BxaFra(x-a(xan)) © (AxTF"2 (idx-Doxz)) o (idx@F" (Cx- Fra(xam)o

(idX BB x-zFra(x@n)) © Mx x- Frax@n) © (CoeVxDidera xzn)) © /,f-l.a.( XGN)

@ Fra(iay@ (I o (evyTidy) o Mye x N © Sx-3XEA) © CX.Fra(X-H(XEN)))°

FI&(F(idy®@F"2 (idx-@axzn))) © BxsFra(X-gF(Fra(XaN))°

(idx@F 2 (Cx+ pra(xany)) © (XD B x-zFra(xan)) © Mx X+ Fra(XTN)°

(coevx®idrra xzn)) © /El.a.( XEN)

= F"-2((idx (I o (evxBidy) o My x n © Cx-mx5A)) © CX,Fra(X-F(XEN)°
F(idy@F" (idx-®oxzn))) © Bx@Fra(X-BF(Fra(XEN))°
(idxDF" % (Cx- Fra(xan)) © ([dXBB x-zFra(x@N)) © Mx X+ Fra(XEN)°
(coevx®idrraxzn)) © /;'-rl.a.( X@N)

2 P2 (il o (evx i) M x y © xsxng)) © (dxSF(F"(id- Bz
Cx,Fra(x-BF(Fra(XaN)) © BxaFrax-aF(Fraxany) © (AxEF" % (Cx praxam))e
(idx DB x-Fra (XEN)) © MX X+, Fra(xaN) © (COBVXDidrraxan) © [Fa (xan)

= Fra((idy @ (I o (evy@idy) o m;(L,X,N o aymxann) © FIFT3 (idx-Boyz)))o
Cx Fra(xX-BF(Fra(x@N)) © BxaFra(x-sr(Fra(xany) © (OxEF" 2 (Cx. praxan))o
(idx @B x-zFra(xmN)) © Mx X+ Fra(XaN) © (COBVXDidEra xzny) © /,f-l_a.( XN)

© pr A ((idy®(Iy o (evyx®idy) o m}l, x.N © ([dx:®axzn) © XxmF(Fra(x@a)))°

Ox Fra(X-TF(Fra(Xan) © Pxarre(x-sF(Fra(xany) © (dxEF"%(ex- Fraxam))o

. —_— >y 1
(’dX®BX*®F’-a-()@N)) © My X+ Fra(XgN) © (coevx®/d,:r.a.()@,\,)) o /;—r_a.()@/\/)
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(a) Fra((idy®(Iy © (evy@idy) o m;(1*,X,N o (idy+®oxzp) © XX F(Fra(XEA))))°
Cx Fra(x-aF(Fraxan))) © F (FUdx®F % (cx. praxan))e
BxaFra(F(x-aFraxan)) © (AXSB x-gFra(xan)) © Mx X+ Fra(xan)©
(coevxBidera(xany) © lFra(xan)
= FT2 ((idy @ (I o (evx@idy) o mix. x y © (idx-Botxsn) © cxmr(Fraxmn)
Cx, Fra(x-@F(Fraxany) © FUAXSF"(Cx. pra(xan) © BxaFra(F(x-aFra(xany)°
(@B x-5Fra(x5N)) © M X Fra(xaN) © (COBVXEidEraxzn) © [ra(xan)
2 (e o (evxia) © M x v © (- Batxean) © - (Fraxany))°
(idx SF(F"% (Cx-, pra(xan)) © Ox, Fra(Fox-aFra(xany) © BXaFra(FeaF2 (xan))°
(idx DB x5 Fra(x@N)) © Mx X+ Fra(x@N) © (COBVXBidrra xan)) © [rta xzn)
= FT2((idx®(Iy o (evx@idy) o My x y o (idx-Bayzp) o oy “BF(Fra(XEN)°
F(FT%(cx- praxam))) © Cx Fra(F(x-aFra(xany)) © BXaFra(F(x-@Fra(XaN)°
(idx @B x-zFra(xmN)) © My X+ Frax@N) © (COBVXDidEra xzn)) © ’Fl-a-()@N)
9 Fra (idy@(ly o (evy@idy) o miy. x n © (idx-Botxzn) © Cxe Fra(xan)©
XE(X-TFra(XTA)))) © OX Fra(F(X-BFra(XaN)) © BX@Fra (F(X-BFra(X@N))°
(idx @B x-zFra(x@n)) © My, x+ Fra(xaN) © (COBVX®idEra xzN)) © I,_:l.a.()@N)
2 Fra((idy @Iy o (evx@iy) o Mt x v o (idx-Boxz) © Cxe Fraxam°
F(x-gFra(xan)) © Ox Fra(F(xaFraxan)) © F 2 (FUAX @B x-gFra(xam))°
BXBX-BFra(XTN)) © Mx X+ Fra(x@N) © (COBVXBidEra xzn)) © I[__‘l.a.( X@N)
= F2((idx®(Iy o (evx®idy) o My x o (idx-Botxgn) © Cxe Fra(xan©
XF(x-@Fra(XEN)) © Cx Fra(F(x-aFra(xaN) © FUOX®BxgFra(xan))
BXE(X-TFra(XEN) © M, X+, Fra(xaN) © (C0BVXBidEraxan) © [Fta xan)
(b) Fr-a((idy®(ly o (evy®idp) o m}1*,X,N o (idx«RoxzN) © Cx+ Fra(xzN)©
ap(x-zFraxan))) © (IxOF (B x-grra(xan)) © Cx x-aFra(xan))°
BXB(X-BFra(XEN)) © Mx X+ Fra(x@N) © (COBVXBidEra xzn)) © /,?—l.a.( XGN)
= F-a((idy®(ly o (evx®idy) o m}(L,X’N o (idx«®axzN) © Cx+ Fra(xaN)©
ap(x-zFra(xan) © F(Bx-grra(xam))) © Cx x-gFra(xan))°

—_ 1
B)@(X*@F’a()@N)) o) mX’X*,F,_a_()@N) o (CoeVX®IdFr.a.()@N)) o ,;'r.a.()@/\/)

(18) L Si ~ idy-®
=" Fla((idy®(Iy o (evx®idy) o mx1*,X,N o (idx+®@axzN) © Cx+ Fra(x@N)©

idF(X*®Fr'a'()@./\/')))) © CX,X*@F’-&()@N)) o B)@(X*@F’-a-()@N))o

—. 1
mX,X*,F’-a-()@N) o (CoeVX®Id,:r.a.()@N)) © /;-r.a.(xgl\/)
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= F"((idx @ (I o (evx@id) o myt x o (idx-Boxzn) © Cxe Fra(xan))o
Cx, X~BFra(XaN)) © Bxa(x-aFra(XaN)) © Mx, X+ Fra(XaN)°
(coevx®idrraxzn)) © //t'l.a.( X@N)

@ Fra(joy@(Iy o (evx@idy) o Mg, x o (idx-Totxzn) © Cxe Fraxzm)°
cx x-sFraxan)) © F % (F(Mx x- Fraxany)) © Bxeox-jsFra(xan)°
(coevx®idrra xzn)) © l;—l.a.( X@N)

= FT2((idx (I  (evx®idy) o myt x  © (idx-Boxzn) © Cx Fra(xan)°
Cx, xwFra(xaN) © F(Mx x« Fraxan)) © Bxex-@Fra(xan)°
(coevx®idrraxzn)) © //t':.a.( X@N)

= F"2((idy@(Iy o (evx@idy) o miyk x y o (idx-Boxzn)) o (idx@ex- Fraxzn))°
Cx, x-wFra(XaN) © F(Mx x- Fraxa@n)) © Bxex-@Fra(xan)°
(coevx®@idrra xzn)) © /;‘1.a. (XEN)

@) pr A ((idy@(Iy o (evx®idp) o m}(l, x,N © ([dx-@xxzn))) © My X+ F(Fra(X@N))°

Cxo X+ Fra(XaN)) © B(xex-j@Fra(xan) © (COBVXBidErra xgn)) © /It'l-a-(X®N)

@ pr 8- ((idy (I o (evy®idy) o m}(l, x.N © (idx=@oxzn))) © My x+« F(Fra(Xx@Ny))°

Cxox+ Fra(xan)) © F & (F(coevx®idera xzny)) © BigEra(xan) © ,It‘l-a-(X®N)

= FI2((idx®(Iy o (evx®idy) o m;(1*,X,N o (idx-©axgzn))) © Mx x= F(Fra(XaN))°
Cxax- Fra(xan) © F(coevx®idrra xzn))) © BigFra(xan) © /,t':.a.(X@N)

D Fra((idy@(ly o (evx@idy) o Mz x o (idx-Totxzn))) © My x-.F(FraxEn)°
(coevx@F(idpra(xzn))) © C1,Fra(xan)) © BigFra(xan) © /,__—l.a.()@,\,)

@ pr 8 ((idy®(Iy o (evx®idp) o m}(l, x.N © (idx=Roxzn))) © My x+ F(Fra(Xx@Ny))°

(coevxBidg(rraxany) © C1 Fraxany) © F- 2 (FUE a xan) © BFraxan)

= Fl2((idy&(ly o (evx®idy) o m}L, x.N © (idx=@oxzn))) © My x« F(Fra(Xx@Ny))°
(coevxBid(rraxany) © C1,Fra(xan) © FURa (xzn) © BEraxan)

© pr A ((idx By o (evxBidy) o My x y o (idx-Botyzn))) © My xe F(Fra(XEN)°

(coevx®idr(Fra(xzny) © /,f-z Fra(xan))) © BFra(xan)

= F"2((idx®(Iy o (evx@idy) o mix. x ) o (idxS(idx-Boxzn)) © My x+ F(Fra(xzn)°
(coevx@idg(rra(xzny) © /,f—z Fra(x@N))) © BFra(xan)

= F"2((idx@(ly o (evxBidy) o mix\. x n)) o (idxB(idx-Becxz)) © My x- F(Fra(xany)°

(coevx@d,:(,_-r.a.()@,v))) o II;EFW-()@N))) o BFr.a.()@N)
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f = = ~ ' ®
(=) Fr.a.((ldx®(/N o (eVX®/dN) o mX1*,X,N)) e} mX,X*,X@N o (/dX@X* ®0()@N)O

(coevx®idg Fra(xzny) © I,f-z Fra(xany)) © BFra(xan)

= FT2((idx®(Iy o (evx@idy) o My x §)) 0 My x- xzn © (CoeVxBidyzp) o (ihBocyz)o
’FgFr-a-()@N))) ° BFra(x@n)

D Fra(idy @Iy o (evxidy) o Mg x w)) © My x- xzn © (COBVxTidyn) 0 [hpo
axzN) © Brra(xan)

= F-2((idy®(Iy o (evx@idy) o my! x n)) © My x- xzn © (CoevxBidyzn) © sy

I_—r.a.((x)@N) o ﬁFr.a.()@N)

17 L =i N ®l
(=) Fra((ldX®(/N o) (eVX®/dN) l¢) mX1*,X,N)) o mX,X*,X@N 9] (COGVX@IO’)@N) o l)—%@N)O

idFr.a.()@N)
= F3((idx®(Iy o (evx®idy))) o (idx®m}1*,x,N) °© My x+ x@N © (CoeVx®idyzy) o ')_1@N)

(h) S @i @i X
a Fr'a'((ld)(@(/N o (evy®idy))) o Mx x*oX,N © (ax,x*,x®ldN) o mX1®X*’X’NO

—. 1
(coevy@idyz) © l)@/\/)

f o _ _ A
D Fra((idy @Iy o (evxidn))) o mx x-x,n © (ax,x- xFidy) o ((coevy @ idy)idy)o

My N © s
D Fra((idy @Iy o (evx@idn))) o My x-ex.n © (ax x- xBidy) o ((coevy @ idx)Bidy)o
(I ®idy))
= F"&((idx®Iy) o (idx®(evx®idy)) o mx x=ex,n © (@x,x+ xDidy) o ((coevy © idy)Didy)o
(I ®idy))

f - . _ _ -
U FT-2((idx®1y) o mx 1,y © ((idx ® evy)®idy) o (ax, x= x®idy) o ((coevy & idx)@idy)o

(X' @idy))
2 Fr2 (ry@idy) o ((idx © evx)idy) o (ax,x- xPidy) o ((coevx ® id)Bidy) o (Ix' Fid))
= F/2((ry o (idx ® evy) o ax x- x o (coevy @ idy) o /;(1 )®idp)

Y Fra(idy@idy)

= F"2 (idyp)

= idpra(xgN)»

where the equalities labeled with (a) hold via the naturality of (3, those labeled with (b)
are valid due to the naturality of ¢, and the ones labeled with (c) come from the naturality
of . The commutativity of the pentagon and triangle diagrams of the C-module functor
(F, c) imply in the equalities (d) and (e), respectively, while the natural property of m
and / are used in the equalities (f) and (g), respectively. The equality labeled with (h)
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is valid due to the pentagon diagram of the C-module category N, while the triangle
diagram is used in the one labeled with (j). The Proposition 2.2.3 is used in the equality
(i), and an identity of Definition 2.1.6 (the right dual X* of the object X € C) for the one
labeled with (k).

Using the fact that dx y is an isomorphism for all X € C and N € V, we can
conclude that d)‘(?N o dS(,N = idygFra(n)- This implies that dj(,N is an isomorphism (it is
the inverse of dy ) for all X € C and N € NV. Furthermore, for all X, Y € Cand N € IV,
the commutativity of the pentagon and triangle diagrams

Fr-a (X ® Y)®N)

(X @ Y)EF2(N) Fra(Xa(YEN))
mX!Y,Fr.a.(N)l o d)/( YN
idx®d;/ N '
XE(YEF'4(N)) ’ XTFTa(YEN),
and
d/
Fra(1®N) 1N 1®Fra(N)
Fra(ly) A
,:r.a.(N)

can be checked similarly as how they were done in the Proposition 2.2.12 (with the
natural isomorphism d).

Hence, d’ = ™" = {d} y = dx'\}x,Nyecxv i @ natural isomorphism in € x A
satisfying the pentagon and triangle diagram for the functor F"-@, which clearly implies
that d = {dx n}x,n)ecxn also satisfies the pentagon and the triangle diagrams of the
functor F"-&. Then, (F"%,d) : N' — M is a C-module functor.

Analogously, one can check that if the C-module functor (F, c) admits a left
adjoint F/-& : A* = M, then F!-@ has a structure of C-module functor. We now explicit
the C-module structure d of the functor F/-@ since we’'ll use it later.

Let o : ldyy — Fo F-4 and B : F@ o F — Id, be the counit and unit of this
adjunction, respectively. For all X € C and N € /, the morphism dy p is defined as the
composition
F'2 (idx® [ w)

l.a.(~1
(CX,F/~3-(N )

Fl'a'()@N) ,:l.a.()@F(F/.a.(N))) ),:l.a.(F()@F/.a.(N))) N )@F/.a.(N)’
so we may define the natural isomorphism d that gives F/-@ a C-module functor struc-
ture by

“X@F/-a-(

d={dxn = XX Fla(N) © F/'a'(C)_(!F/.a.(N)) °© F/'a'(idng’N)}(X,N)eCOPxN- (19)

The checking that (F/-2, d) is indeed a C-module functor can be done similarly as the
case present in the first part of this proof. [ |
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2.4 EXACT MODULE CATEGORIES OVER MULTITENSOR CATEGORIES

We'll be interested in module categories with some more properties. From now
on our category C is at least multitensor over k, and M is a locally finite and module
category over C, unless stated otherwise.

Proposition 2.4.1 ([4], Proposition 7.3.4). Let M4 and Mo be two module categories
over C. Then the category M = My & Mo with module product
®:CxMid Moy — My d Mo
XR(M, N) — (XM, X&N),

associativity and unit being sums of those of My and M is a module category overC.

The module category M = My & Ms is called the direct sum of the module
categories M and Mo.

Definition 2.4.2. Let C be a multitensor category and M a locally finite and module
category over C. The C-module category M is said to be

a) indecomposable, if it is not equivalent to a nontrivial direct sum of nonzero module
categories;

b) exact, if C has also enough projective objects, and for any projective object P € C
and any object M € M the object PQM is projective in M.

We can see that the notion of an exact module category may be regarded as the
categorical analog of the notion of a projective module in ring theory.

Example 2.4.3 ([4], Example 7.5.5). Any multitensor category with enough projective
objects C considered as a module category over itself is exact.

Indeed, let P be a projective object in C, and X € C. Since P is projective, the
functor Homq(P, _ ) : C — vecty is exact (see Proposicion 2.7.49 in [15]). Moreover,
the functor _ ® X* : C — C is exact since the tensor functor ® : C x C — C is biexact
(see Remark 2.1.9). Hence the functor composition

Homg(P, _)o(_ ®X*)=Homg(P, _ ® X*):C — Ab

is exact because the composition of exact functors is exact. The functor _ ® X is left
adjointto _ ® X* by Proposition 2.1.7, i.e., there is a natural isomorphism

¢ ={dy z:Home(Y ® X,Z) — Hom(Y,Z ® X*)}y zec
in COP x C. By fixing Y = P and defining

¢ ={d5 = dp 7 : Home(P @ X,Z) — Home(P,Z @ X*)} z¢c,
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it follows that ¢’ is a natural isomorphism between the functors Homg(P @ X, )
and Homg(P, _ ® X¥), in other words, Homq(P @ X, _ ) and Homg(P, _ ® X*) are
equivalent functors. This implies that the functor Hom:(P ® X, __) is also exact, that is,
the object P ® X of C is projective (via Proposicion 2.7.49 in [15]), as wanted.

Example 2.4.4 ([15], Ejercicio 5.1.8). If C is a tensor category, it is an indecomposable
module category over itself.

In fact, suppose the C-module category C isn’'t indecomposable. This implies we
can write the C-module category C as a direct sum of two nonzero C-module categories,
i.e.,C=Cq1&Co.

From this, it's possible to write 1, = A@® B with A € Cy and B € Cy. From
the definition of direct sum of two objects it follows that there are monomorphisms
iy :A—= 1gcand v : B — 1, (and epimorphisms 71y : 10 - Aand i : 10 — B
satisfying some conditions). This implies that A and B are subobjects of the simple
object 1, € C (the unit object 1. is simple whenever C is a tensor category), and hence
A and B are either the zero object or the unit 1.

Notice that we cannot have A = B = 1, because we would get 1y = 1, and
71 = 1 Which contradicts the fact that 7t; o 1j = 0 whenever j # j.

So, suppose that A =1, and B = 0 which implies 1, =1, ®0 = (1£,0) € C1 & Co.
Given that C4 is a C-module category and 1, € C4, it follows that X = X ® 1, € C4 for all
X € C, that is, the category Cy is exactly C. This same kind of contradiction we'd get by
considering A= 0 and B = 1,. Hence, C is an indecomposable module category over
itself.
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3 REPRESENTABLE FUNCTORS AND THE YONEDA LEMMA

A representable functor is a functor from a locally small category into the cate-
gory of sets which satisfies a certain property. Such functors give representations of an
abstract category in terms of known structures (e.g., sets and functions) allowing one
to utilize, as much as possible, knowledge about the category of sets in other settings.

“The Yoneda Lemma is arguably the most important result in category theory,
although it takes some time to explore the depths of the consequences of this simple
statement”, (Emily Riehl in [20]).

The definitions of representable functors and the Yoneda Lemma can be found
in both their covariant and contravariant versions. Our approach is on the contravariant
case, but the definition and the proof we will see below can easily be adjusted for the
covariant case (which is the standard version one can find in numerous books).

Definition 3.1. A contravariant functor F : C — Set (covariant functor G : C — Set)
is said to be representable if there is a natural isomorphism ¢ : Homgq( _ ,X) — F
(¢’ : Homq(X, _ ) — G) inC, for some object X € C. In this case, the pair (X, ¢) (the
pair (X, ¢')) is called a representation of the functor F (of the functor G).

The functors Homg( _ , X) and Hom(X, __ ) were defined in the end of Section
1.4 and they are denoted by Ry and Ly, respectively. We can also say that the object
X € C represents the functors F (the functor G), or even that F (G) is represented by
X € C. Moreover, one can easily verify that the object representing a functor is unique
up to isomorphism by using the Proposition 1.4.6.

It appears that the representation of a functor is only possible if its target (codomain)
is the category Set, but as we can see now this is not exactly the only case. If F : C — D
is a functor and D is a category whose objects are sets (for example Vect, and
the most categories we studied in this work) there always exists the forgetful func-
tor Forget : D — Set, and the functor F : C — D is said to be representable if the
functor composition Forget o F : C — Set is. Moreover, we often omit the forgetful
functor Forget : D — Set and simply say that the functor F : C — Set is representable.

We now present a very important and useful result in category theory, namely,
the Yoneda Lemma (for the contravariant case).

Lemma 3.2 ([6], Corollary 1.8 - Yoneda Lemma). Let F : C — Set be a contravariant
functor and X € C. Then there is a bijection (in Set) between the set® of natural

' For a historical context of its origin, see the interesting story present in [13].

2 Since the category C is only locally small, the collection of natural transformations
Nat(Hom¢( __, X), F) might be large for some X € C. However, the bijection in the Yoneda Lemma
guarantees that this particular collection of natural transformations indeed forms a set.
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transformations from Homg( _ , X) to F and the set F(X) via

Y : Nat(Homg( _, X), F) — F(X)
T — W(1) = T (idy).

Proof. Let us begin by defining the inverse of ¥ as

V' F(X) — Nat(Homg( _, X), F)
X +— W(x): Home(_,X) = F

where
V(x) = {¥'(x)y : Home(Y,X) — F(Y)}yec

is defined by W/ (x)y(f) = F(f)(x), for every f € Homq(Y, X). The natural property of
Y'(x) can be translated into the commutativity of the diagram

Home(Y, X) Y _ F(y)
Home(g,X) l
Homg(Z, X)

Y(x)z

for all g € Homg(Z, Y). In fact, let f be any morphism in Hom¢(Y, X) and notice that

W
=¥'(x) z(Home(g, X)(f))
¥'(x)z o Home(g, X))(f).

Il
—_

Therefore, F(g) o ¥/(x)y = ¥/(x)7 o Homg(g, X) which implies that ¥/(x) is a natural
transformation.
For its inverse, let x be any element in the set F(X) and notice that

(¥ o W)(x) = W(¥'(x)) = ¥'(x)x(iclx) = F(idx)(x) = idF(x)(X)

i.e., Yo/ = IdF(X) To show that YoV = idNat(Homc( _X),F) consider t € Nat(HomC( _ ,X), F)
and the commutativity of

Homg (X, X) —= F(X)
Homc(f,X)l lF (f)
Hom(Y, X)
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for any f € Homg(Y, X). Using this commutativity to the morphism idy € Homg(X, X)
we have

Ty (f) = Ty (Homc(f, X)(idx))
= (ty o Home(f, X))(idx)
= (F(f) o Tx)(idx)

= F(N(tx(idx))
F(f)(¥(7)),

that is, F(1)(¥(1)) 2 ©y(f). Finally,

(¥ o W)(1)y(F) = (Y'(¥(1) y(F)

I
By
=
<
)
I
A
=
=

which implies (Y o ¥)(1))y = Ty, forall Y € C. Then (¥ o ¥)(t) = T and from the fact
that T € Nat(Home( _ , X), F) is arbitrary, ¥ o W = ityat(Hom.( _ x),F)- Hence, Yis an
isomorphism. |

It's good to remember that this is the contravariant version of the Yoneda Lemma.
The covariant version can be easily adapted from this one as well as its proof.

Before defining the internal Hom functors, let us see some definitions and results
that are going to be very useful from now on. A mathematical object that will be quite
used is the universal element of a representable functor which is introduced in this
following definition.

Definition 3.3. A universal element of a contravariant functor F : C — Set is a pair
(X, x) such that X is an object of C and x € F(X) satisfying the following condition: for
any pair (Y,y) with 'Y € C and y € F(Y) there is an unique morphism g : Y — X in
Home(Y, X) satisfying F(g)(x) = y.

This next result shows that there is a certain one-to-one correspondence be-
tween representation of functors and universal elements.

Proposition 3.4. Let F : C — Set be a contravariant functor.

(i) If F is representable and (X, ¢) is a representation of F, that is, X € C and
¢ : Home( _ ,X) — F is a natural isomorphism in C then (X, x = ¢x(idy)) is
an universal element of F and V'(x) = ¢ where V' is the bijection of the Yoneda
Lemma.

(i) If (X, x) is an universal element of F then (X, & = V'(x)) is a representation of F.

Proof. (i) Let Y € C and y € F(Y). The unique morphism t € Hom(Y, X) satisfying
F(t)(x) = y comes from the isomorphism ¢y : Homq(Y, X) — F(Y). Indeed, there is
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an unigue morphism t € Homg(Y, X) satisfying ¢ y(t) = y. By the naturality of ¢, the
diagram
dbx

Home (X, X) F(X)
Homc(t,X)L jF(t)
Home (Y, X) —2 F(Y)

commutes, i.e.,

F(t)(x) = F(t)(d x(idx))

= (F(l‘) o ¢ x)(idx)
y o Home(t, X))(idx)
¢Y(H0mc(l‘ X)(idx))
= dy( dx ot)
by () =

1l
/\

This implies that (X, x = ¢ x(idy)) is an universal element of the functor F. For the
equality ¥/'(x) = ¢ notice that ¥($) = ¢ x(idx) = x, so

W (x) = W (¥(d)) = (V' o W)(d) = (idnat(Home(_ x),F)(®) = b

as wanted.

(i) Let us show that (X,¢ = ¥(x)) is a representation of F, that is, ¥/(x) :
Homg( _ , X) — F is a natural isomorphism in C.

The morphism ¥(x) y is an isomorphism in the category Set for all Y < C. Indeed,
it is injective since for any morphisms g and h in Homq(Y, X) satisfying ¥'(x)y(g) =
Y (x)y(h) we get F(g)(x) = F(h)(x), and by using that F(h)(x) € F(Y) and (X, x) is an
universal element, there is an unique morphism t € Homg(Y, X) satisfying F(t)(x) =
F(h)(x). Because F(t)(x) = F(h)(x) = F(9)(x) it follows that t = h = g as wanted.

To check that W/(x)y is surjective, consider y € F(Y). By noticing that (X, x) is an
universal element of F, there is an unique t € Home(Y, X) satisfying F(t)(x) = y. Since
F(t)(x) = ¥'(x) y(t) it follows that W/ (x)y(t) = y, i.e., ¥/(x)y is surjective and therefore,
an isomorphism in Set.

Since ¥/(x) is a already natural transformation between the functors Homg( _, X)
and F, it follows that ¥/(x) is a natural isomorphism between the functors Homg( _, X)
and F from C to Set. ]

This following proposition is important since it guarantees the existence of the
mathematical object internal Hom which is in the core of our main result.
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Proposition 3.5 ([4], Corollary 1.8.11). LetC be a finite category overk and F : C —
vect, a k-linear left exact contravariant functor. Then the functor F is representable®,
i.e., for some X € C there is a natural isomorphism® ¢ : Homq(_ ,X) — F.

3 Notice that we are omitting a functor composition in here. To be precise, the functor Forget o F : C —
vect, — Set is the one that is representable.
4 Again, to be precise, ¢ : Home( _, X) — Forget o F.
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4 INTERNAL HOM

In this chapter we’ll introduce an important technical tool in the study of module
categories which are going to be frequently used in this work. They’re called the internal
Hom object and functor and have a strong relation with a particular representable
functor. The theory presented here can be found in [4] and [15], for example.

4.1 INTERNAL HOM OBJECT AND FUNCTOR

The internal Hom functor arises from the definition of the internal Hom object,
which is an object that represent a certain functor. Let C be a finite multitensor category
(the finiteness condition is not strictly necessary in this chapter but simplifies the expo-
sition)! and M be a locally finite and module category over C with the module product
® 1 C x M — M being k-linear and left exact in the first variable2. For every pair of
objects M, N € M the contravariant functor

F = Homa( _ ,N)o(_ ®&M) = Hom,( _ &M, N) :C — vect

is k-linear and left exact since it is the composition of k-linear and left exact functorsS.
Using the Proposition 3.5, it follows that F is representable, i.e., the functor Forget o F :
C — vect, — Set is representable. Before going the next definition it is prudent to
remember that a functor representation is a pair containing an object (in C in our case)
and a natural isomorphism. Let us begin by the definition of the internal Hom object.

Definition 4.1.1. The object in C which represents the contravariant functor F =
Homy( _ ®M,N) : C — vect, is called the internal Hom object from M to N, and
it's denoted by Hom (M, N) or simply by Hom(M, N).

Therefore, there is a natural isomorphism
¢ : Homg( _ , Hom(M, N)) — Forget o Hom,( _ ®M, N)

in C, and thus the pair (Hom(M, N), ¢) is a representation of the functor Forget o F.
About the family ¢,

¢ = {dx : Home(X, Hom(M, N)) — Hom((X&M, N)} xcc.

Considering that for all M, N € M, the object Hom(M, N) € C represents the
functor Homy,( _ ®M, N), we may think about the applications Hom(M, _ ) : M — C
and Hom( _ , M) : M°P — C. The following result asserts that these applications are in
fact functors, and also that Hom( _, ) : M9 x M — C is a bifunctor. This result is

' See Remark 7.9.1 in [4].
2 Thatis, _ ®M :C — M is a k-linear and left exact functor.
3 The functor Homy( __, N) is k-linear by the fact that M is a k-linear category (M is multitensor).
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considered to be valid by many authors, but we could not find a proof anywhere. Many
of them simply state that Hom( _, _ ) is a bifunctor right from the Yoneda Lemma, but
no description on how they act on morphisms is provided in most cases.

Proposition 4.1.2. The application F = Hom( _, ) : M° x M — C is a bifunctor.

Proof. To begin, we show that both Hom(M, _): M — Cand Hom( _,M) : M — C
are functors. By using these facts and Lemma 1.3.11 we’ll be able to conclude that
Hom( _, ): M9 x M — Cis a bifunctor.

Firstly, let M, N, P, Q € M and consider the representable functor Hom( _ @M, N) :
C — vect. Since the object Hom(M, N) represents this functor, there is a natural iso-
morphism

¢! : Home(_ , Hom(M, N)) — Homa( _ @M, N)

inC.

From the item (i) in Proposition 3.4 we can affirm that

(Hom(M, N), Z = & Lo, ny (Qtiomm.n))

is an universal element of the functor Hom,( _ ®M, N), and ¥N(z) = ¢1 where WN is
the bijection of Yoneda Lemma. Notice that z € Hom(Hom(M, N)@M, N) and

ol = ¥N(z2)y : Home(Y, Hom(M, N)) —s Hom (Y@M, N)
j— WN(2)y(m) = Homp(_ @M, N)(j)(2),
that is,
WN(2)y(j) = Hom (@M, N)(2) = z o (jidyy).

Consider the representable functors Homy,( _ ®M, P) and Hom,( _ &M, Q),
and its representations (Hom(M, P), $2) and (Hom(M, Q), $3), respectively. Analogously
as we did before, let us define the elements

Y = Oomm, ) QHom(m, p)) € Hom(Hom(M, PY&M, P), and
X = q;i,;ﬂ( m.0)[@Hom(m,@)) € Hom(Hom(M, Q/M, Q)
in Set. So we have that the pairs (Hom(M, N), z), (Hom(M, P), y) and (Hom(M, Q), x)

are universal elements of the functors Hom( _ @M, N), Hom,( _ ®M, P) and
Homy( _ @M, Q), respectively. Moreover, we have the natural isomorphisms

¢ =vP(y) : Home( _, Hom(M, P)) — Hom,( _ @M, P), and
$3 =¥ (x) : Home( _, Hom(M, Q)) — Homy( _ @M, Q).

We now see how it is possible to define Hom(M, ) on morphisms of M.
So, consider f : N — P an arbitrary morphism in M and let's determine what the
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morphism Hom(M, f) : Hom(M,N) — Hom(M, P) is. Notice that the composition
foz:Hom(M,N) @M — N — P is a morphism in M and because

YP(Y) Homm, vy : Home(Hom(M, N), Hom(M, P)) — Hom y(Hom(M, N)&M, P)
is an isomorphism in Set, there exists an unique g € Homg(Hom(M, N), Hom(M, P))
satisfying
foz =Y (y) Homm,n)(@) = Homa( _ EM, P)(@)(y) = y o (gDidp).
Therefore, we define Hom(M, f) := g. This can also be seen by the commutativity of

Hom(M, P)®

/

Let f : P — Q be a morphism in M. Similarly as we've just done, we may define
Hom(M, f') = g’ € Homz(Hom(M, P), Hom(M, Q)) such that f o y = x o (9’®id)), and
Hom(M, f' o f) .= h € Hom:(Hom(M, N), Hom(M, Q)) satisfying f' o f o z = x o (h®id)).
Notice that

Hom(M, N)®

Y20 omu, vy (h) = X o ("Sidy)
=fofoz
= ' oy o (g@idy)
= x o (g'®idyy) o (gRidy,)
= x o ((g’ o g)Did)
= ¥OX) gomm.n)(G © ),
which implies
Hom(M, f" o f) = h=g' o g = Hom(M, f') o Hom(M, f)
since ‘PQ(X)M(M’N) is an isomorphism by item (ii) of Proposition 3.4.
Finally, by considering Hom(M, idy) = j we have
YN(2) omm, Ny iom(m,ny) = HOMA((_ BM, N)(idkomum, ny)(2)
= Z o (idyom(m,N)@idy)
=Zo idM(M,N)®M
=z
=lidyoz
= Z o (jJ®idy)
= YM(@) iom(u,m )
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implying the equality idyomp,n) = J since ‘PN(z)m(M,N) is an isomorphism. It follows
that idromm, )Ny = Hom(M, _ )(idy) and therefore, Hom(M, ) : M — Cis a
(covariant) functor.

Next, we will define the contravariant functor Hom( _, M) : M — C (or equiva-
lently, the covariant functor Hom( _ , M) : M — ().

Let (Hom(N, M), o), (Hom(P, M), 62) and (Hom(Q, M), 3) be representations of
the functors Hom,( _ ®N, M), Hom( _ ®P, M) and Hom,( _ ®Q, M), respectively.

By defining x = oLﬂ( Ny \1CHom(N, M) ¥ = a,%m( p.m) ([9Hom(p,m)) @nd

Z = GiIﬂ(O,M)(idM(O:M))’ we get

o' =WN(x) : Home( _, Hom(N, M)) — Hom( _ &N, M),
o® =¥P(y) : Home(_, Hom(P, M)) — Hom,( _ ®P, M) and
03 =¥Q(z) : Home( _, Hom(Q, M)) — Hom( _ ®Q, M).

Consider an arbitrary morphism f : N — P in M. Using that yO(idm(p,M)@f) €
Hom(Hom(P, M)@N, M) and

YN omep.a) © Home(Hom(P, M), Hom(N, M)) — Hom (Hom(P, M)@N, M)

is an isomorphism in Set, it follows that there is an unique g € Homg:(Hom(P, M), Hom(N, M))
such that

¥ © (iriom(p @1 = YN (X) om(p.m(9) = Homu(_ TN, M)(g)(x) = x o (gBid).
So we define Hom(f, M) = g which satisfies*

Hom(N, M)&
(f,M)

)N
Hom(P, My@N M.
idHom(P,M)®f /
P

Hom(P, M)&

Doing the same for the morphism ' : P — Q in M, there exists an unique
g’ € Homg(Hom(Q, M), Hom(P, M)) such that
2 o (idpom(@m®F) = ¥* (V) Hom(a.m(9) = Homa( _ BP. M)(@)(y) = y o (g Bidp).
The uniqueness comes from the fact that ‘PP(y)m(Q,M) is an isomorphism in Set.

Analogously, it's possible to define Hom(f' o f, M) = h satisfying

2 o (idpiom(@m @ © 1) = YN () om(a,u) (M) = X o (WSid).

4 It's always a good idea to have this diagram observation while checking how the functors Hom(M, )
and Hom( _, M) act on morphisms of M.
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Thus we have

WN () om(a.my(h) = X o (hidy)

o (hDi
o (idpom(@,m ©f') © (idrom(,m ©F)
o (9'®idp) o (/dHom(Q,M)®f)
o (idHom(p,my®1) o (9'®idy)
o (g®idy) o (g'idy)
(

o ((g o g)Didy)
N(

X) Hom(a,m)(9 © 9)-

Given that ‘PN(X)M(Q,M) is an isomorphism, the equality h = g o ¢’ holds and, equiva-
lently,
Hom(f' o f, M) = Hom(f, M) o Hom(f', M).

By defining Hom(idy, M) = j in which
‘PN(X)m(N,M)(/) = X o ([dHom(N,m)@IdN) =

we may notice that

WN(X)M(N,M)(’UM(N,M)) = X o (IdHem(N,m)®IdN) = X = ‘PN(X)M(N,M)(I')-

Since \PN(x)m(N,M) is an isomorphism we have the following

idom(  My(N) = idHom(N,m) = | = Hom(idy, M) = Hom( _, M)(idy).

Therefore, Hom( _ , M) : M — C is a contravariant functor.

At last, we want to use Lemma 1.3.11 togetthat F = Hom( _, ) : MPxM —
C is a bifunctor. Let f : M — N and g : P — Q be morphisms in M. We have just shown
that both 7 = Hom(L, _ ) : M — C and F2 = Hom( _, L) : M — C are functors, for
all L € M. Notice we can define how the application Hom( _, ) acts on morphisms,
as long as it satisfies J-"Z (9) = F(L,9) = Hom(L, g) and ]—"E(f) = F(f,L) = Hom(f,L). One
canonical way to do this is by setting

F(f,g) = Hom(f, Q) o Hom(N, g) = F5(f) o Fp/(9)

which clearly satisfies these two conditions.
To use Lemma 1.3.11 it only remains to check the equality

F(fsg)=Hﬂ7(M=g)OM(f=P)

since
F(f,g) = Hom(f, Q) o Hom(N, g)
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holds by definition.

For this purpose, let the pairs (Hom(M, P), x), (Hom(M, Q), y), (Hom(N, P), t)
and (Hom(N, Q), z) be universal elements of the functors Hom,( _ ®M, P), Hom,( _ @M, Q),
Hom,( _ ®N, P)and Hom( _ ®N, Q), respectively. Furthermore, from the definition
of the morphisms Hom(M, g), Hom(f, Q), Hom(N, g) and Hom(f, P) in C, we obtain the
following equalities

gox =y o(Hom(M, g)®idy), (20)
Z o (idom(N,Q) ®f) =y o (Hom(f, Q)®idy), (21)
got=2zo(Hom(N, g)®idy), and (22)
t o (idom(n,p)®f) = X o (Hom(f, P)®idj). (23)

Considering that Wo(y) : Home( _ , Hom(M, Q)) — Hom,( _ ®M, Q) is a natu-
ral isomorphism,

YY) Homn,p) - Home(Hom(N, P), Hom(M, Q)) — Hom(Hom(N, PY&M, Q)

is an isomorphism in Set.
Noticing that

YY) Homn.p)(F(F, 8)) = YOW) Hom(n,p)(Hom(f, Q) o Hom(N, g))
y o ((Hom(f, Q) o Hom(N, g))@idy)
= y o (Hom(f, Q)idy) o (Hom(N, g)Sidy)
21
D) 2 0 (om0 © (Hom(N, g)Tidy)
=z o (Hom(N, g)®idy) o (Idm(/\/’p)@)f)

22 . _
(=) goto (Idm(/\/yp)@f)

23) g o x o (Hom(f, P)®&id)y)

@)y o (Hom(M, g)@idy) o (Hom(f, P)@idy)

= y o ((Hom(M, g) o Hom(f, P))®idj)
= Y(y) om(n, Py (Hom(M, g) o Hom(f, P)),

we obtain

F(f,g) = Hom(M, g) o Hom(f, P)
because Wo(y)m(,\,’p) is an isomorphism. Therefore, Hom( _, ): M x M —C
is a bifunctor. m

4.2 EXACTNESS OF THE INTERNAL HOM BIFUNCTOR

Here we discuss about the exactness of the internal Hom bifunctor Hom( _, _):
MPOP x M — C defined in the previous section.
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Proposition 4.2.1. The C-module functor _ @M : C — M is left adjoint to Hom(M, _ ) :
M —C.

Proof. It suffices to show that there is a natural isomorphism
¢ ={dx,n : Homp(X&M, N) — Home (X, Hom(M, N))} x nyecop x m

in Co% x M.

Let N,P ¢ M and Hom(M, N), Hom(M, P) € C, and consider the universal
elements (Hom(M, N), z) and (Hom(M, P), y). From Proposition 3.4 there are natural
isomorphisms

‘{/N(z) : Home( __ , Hom(M, N)) — Homy,( _ ®M, N), and
‘PP(y) : Home( __, Hom(M, P)) — Hom( _ @M, P)

in C given by YN(2) x(g) = z o (g®id),) and ¥P(y)y(h) = y o (hRid)y), respectively.
Define

b ={dxn =N (2)X : Homy (XEM, N) — Home(X, Hom(M, N))}x nyecos s -

We have to keep in mind that for each N € M there exists a morphism® z € Hom y(Hom(M, N)@M.
and hence a natural isomorphism WN(z). It follows directly from this definition that dx N

is an isomorphism for all X € C and N € M. Furthermore, ¢ is already natural in C

because ‘PN(z) is natural in C. It only remains to show that ¢ is natural in M (see

Remark 1.3.12), that is, the diagram

Hom . (X®@M, N) Homg(X, Hom(M, N))
HomM()@M,f)l lHomc(X ,Hom(M,f))
Hom \((X&M, P) Homg (X, Hom(M, P))

commutes for all f € Hom (N, P). Let u be an arbitrary morphism in Hom¢(X, Hom(M, N))
and notice that
(X p o Home(X, Hom(M, 1)))(u) = (¥F(y) x o Home(X, Hom(M, f)))(u)
= ¥P(y) x(Home(X, Hom(M, f))(u))
= ¥P(y)x(Hom(M, f) o u)
= y o ((Hom(M, f) o u)®idy)
= y o (Hom(M, f)®idy,) o (u®idy)

—~ o~

(i) foZzo (uRid,
= Hompy(X®

m)
f)(z o (uidy))
= Hom y((X®&M, f)(¥

)N (2)x (1)

Later, we’ll denote this morphism by evy v (which will be called evaluation) since it depends on a pair
M and N of objects in M.

M,
M,

5
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where the equality (x) comes from the definition of the morphism Hom(M, f). This
implies that q);g poHome(X, Hom(M, f)) = Hom (X&M, f)oq>;(1, N» 1-€., ¢ is also natural
in M. Therefore, ( _ @M, Hom(M, ), $) is an adjunction. |

Particularly, this implies that the left exact functor _ @M is also right exact (see
Proposition 1.4.5) and, therefore, exact.

Corollary 4.2.2. The functor Hom(M, ) : M — C admits a C-module functor struc-
ture.

The functor (_ ®M : C — M,c) is a C-module functor with ¢ = {cx y =
myx y mix,yec (see Example 2.2.8) and it’s left adjoint to Hom(M, _ ) : M — C. We've
seen in Theorem 2.3.2 that the right (and left) adjoint of a C-module functor admits a
natural structure of C-module functor. Let us denote by d this C-module functor structure
of Hom(M, ), i.e., (Hom(M, _),d) is a C-module functor.

For every (X, N) € C x M, the element dy p in the family d can be seen as the
composition (see Section 2.3)

/—1
Hom(M,X®N)

Hom(M, X&N) 1 ® Hom(M, X@N)

Coer®idHom(M‘X@

ax x*,Hom(M,X&N)

(X @ X*) ® Hom(M, X@N) X ® (X* ©@ Hom(M, X&N))

idx @B x+ o Hom(M, X

idy ®Hom

X @ Hom(M, (X* @ Hom(M, X&N))@M)

(M.Cxx Hom(M, XZN)) _

® Hom(M, X*&(Hom(M, X&N)aM))

I'dX®H0m(M,idx*®CX =

idx@Hom(M,my\. y \)

X ® Hom(M, X*@(X®N)) X ® Hom(M, (X* @ X)®@N)

idx®@Hom(M,evx®id

idx®Hom(M,ly)

X ® Hom(M,1®N) X ® Hom(M, N),

with inverse

dy'n = Hom(M, idxBec) o Hom(M, My pom(u,ny,m) © BxeHommny — (24)
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which also can be seen as the composition

B x@Hom(M,N)

X ® Hom(M, N) — Hom(M, (X @ Hom(M, N))@M)

Hom(M,mx romm,n),

Hom(M,idx®ocN)

Hom(M, X&(Hom(M, N)@M)) Hom(M, X&N).

Proposition 4.2.3. The bifunctor Hom : M°P x M — C is left biexact, that is, left exact
in both entries.

Proof. The functor Hom(M, ) admits a left adjoint (which is the functor _ @M), so it
follows that Hom(M, ) is additive via Proposition 1.3.10 and left exact from item (i) of
Proposition 1.4.5.

We could also check this fact by the definition of left exact functor as we are going
to do now with the contravariant functor Hom( _ , M) : M — C. We begin by showing
that this functor is additive. Let a, b € Hom,(R, S), and consider the universal elements
(Hom(R, M), y) and (Hom(S, M), x) of their respective functors. The morphisms Hom(a+
b, M) = h, Hom(a, M) := g and Hom(b, M) = g’ satisfy

YR om(s.my () = y o (hBidR) = X o (idyem(s.m®(@+ b)), (25)
YR ) om(s.m)(9) = ¥ © (gBidR) = X o (idom(s.m®a) and (26)
YY) Hom(s.m (@) = ¥ © (g'TidR) = X o (idhom(s,my@b) (27)

by definition. We then get

25 —. . =

YA o) = y o (H5idg) = X o (idom(s, 1y F(a+ b)
=Xo ((idm(S,M@a) + (idm(s,/\/l)gb))
=Xo (idm(s,M)®a) +Xo (idm(S,M)gb)

EOLED o (gBidR) + y o (o' FidR)

gRidR) + (g'®idR))
g+J)®idg)
Y)Hom(s.m)(9 +9'),

o

yo((
yo((
wh(

by using the additivity of ® (it is exact in both entries and thus additive) and the fact
that morphism composition in M is bilinear. Considering that ‘P’:"(y)m(s,,\/,) is an
isomorphism, it follows that h = g + g’ or, equivalently,

Hom(a + b, M) = Hom(a, M) + Hom(b, M).

Hence, the functor Hom( _ , M) : M — C is additive.
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Now, let 0 N—T-p T q 0 be a short exact sequence in M. We
now show that
0 Hom(Q, MyZ2ZM) pomip, My Z220M) pomn, m)

is exact, i.e., Hom(f’', M) is a monomorphism and Ker(Hom(f, M)) = Im(Hom(f’, M)) as
subobjects of Hom(P, M).

For these two following affirmations, let (Hom(N, M), w), (Hom(P, M), t) and
(Hom(Q, M), z) be universal elements of their respective functors. Moreover, by def-
inition we have Hom(f', M) = g’ satisfying

to (g/®idp) =Zo (idM(Q,M)®f/)- (28)

Affirmation 1: Hom(f', M) is a monomorphism.
Let c,d : X — Hom(Q, M) be morphisms in C such that

Hom(f', M) o ¢ = Hom(f', M) o d.
Then

goc=g od = (¢ oc)®idp = (g o d)®idp
—> (9'®idp) o (c®idp) = (9'®idp) o (d@idp)
— to(g'®idp) o (c®idp) = t o (§'Ridp) o (dRidp)

28 . — —, . — ,
(:2 Zo (Idm(@/\,ﬂ@f’) o(c®idp) =z o (Idm(@/\@@f’) o (d®idp)

— 70 (cRidg) o (idy®f') = z o (dBidg) o (idy D),

and since the functor X&® _ : M — M is right exact and f’ is an epimorphism, it
follows that idy®f’ is an epimorphism. Hence, z o (c®idq) = z o (d®idg).
Considering that

vQ(2)y : Home(X, Hom(Q, M)) — Hom(X®Q, M)
is an isomorphism in the family IPQ(Z) = {‘PQ(Z)X}XeC and
Y9(2)x(c) = z o (cBidg) = z o (dBidg) = ¥9(2) x ()

we finally get ¢ = d. Therefore, Hom(f’, M) is a monomorphism.

Affirmation 2: Ker(Hom(f, M)) = Im(Hom(f’, M)) as subobjects of Hom(P, M).

We already know that every monomorphism is the kernel of its cokernel (see
Lemma 1.2.7) and, because Hom(f’, M) is a monomorphism, it suffices to show that
(Hom(Q, M), Hom(f', M)) is the kernel of Hom(f, M).

Notice that Hom(f, M) o Hom(f', M) = Hom(f' o f, M) = Hom(0, M) = 0, where
the last equality holds since the functor Hom( _ , M) is additive (see Remark 1.1.20).
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Let k € Hom:(K, Hom(P, M)) be a morphism such that Hom(f, M) o k = 0. We’ll show
that there exists an unique morphism u : K — Hom(Q, M) in C which satisfies k =
Hom(f', M) o u.

The functor K& _ : M — M is exact, so it follows that the sequence

0 KaN 2" kap T kza 0

is short exact in M and thus (K®Q, idx®f') is the cokernel of idx®f (via Proposition
1.2.9). By definition, if ¢ € Hom(K®P, U’) is a morphism satisfying q’ o (idx®f) =0
then there is an unique v’ € Hom(K®Q, U’) such that ¢’ = U’ o (idx&f').

Let us check that to(k®idp) is a morphism in M satisfying to(k®idp)o(idx®f) = 0.
In fact,

t o (k®idp) o (idk®f) = t o (idpem(p,m@f) o (KRidy)
= w o (g®idy) o (kRid)
= wo (g o k)@idy)
= wo (0®idy) =0
where the second equality holds by the definition of the morphism Hom(f, M), and the

last by the additivity of the functor _ ®N. So, by the definition of the cokernel of idx&®f,
there exists an unique morphism v’ : K&Q — M in M satisfying

to (k@idp) = U o (idk®f). (29)

Using the isomorphism Y@(z), : Homg(K, Hom(Q, M)) — Hom(K@Q, M) we can
define u : K — Hom(Q), M) to be the unique morphism in C such that

v =V(2)k(U) = z o (UBidg). (30)
Finally, let us verify that k = g’ o u by showing the equality
YRtk (k) =P (K (g o u).
Noticing that
YP(t) k(g o u) = to (g o u)®idp)
= to (¢'®idp) o (URidp)
(28) _ .. P
=" Z o (idyom(q,m)®@f") o (URidp)
= 2 o (UBIdg) o (idk ')
O v o (idye@r)
@) o (kDidp)
=wP(t)k (),
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it is possible to conclude that k = g’ o u = Hom(f', M) o u as wanted. Thus
(Hom(Q, M), Hom(f', M)) is the kernel of Hom(f, M) and therefore, the contravariant

functor Hom( _ , M) : M — C is left exact. [ ]
4.3 THE RIGHT BIEXACTNESS OF THE BIFUNCTOR Hom( _, _ ) WHEN M IS
EXACT

In this section, let C be a tensor category over k, M an abelian and module
category over C with the module product ® : C x M — M being k-linear and left exact
in the first variable, unless stated otherwise. Our main objective here is to verify a result
stating that the bifunctor Hom( _, ) : C% x C — M is also right biexact (i.e., right
exact in both entries) when the category C is finite tensor and M is module exact over
C. In its proof we’ll use the auxiliary propositions and theorem below.

Proposition 4.3.1 ([15], Lema 5.1.10). Let0 #FM c M,0# X € C,0 #f € Homg(X,Y)
and 0 # g € Hom (M, N). Then

(i) X®M is a nonzero object of M
(i) idy®g is a nonzero morphism in M;
(iii) f®idyy is a nonzero morphism in M.
Proof. (i) Let us suppose that X®@M = 0 and consider the composition

coevx®idy mxx x .m
_—

Iy _
M M 1M

(*X @ X)oM *XQ(XRM) =0.

The morphism coevy®idy, is a monomorphism in M since coevy is a monomor-
phism (see Lemma 2.1.10) and _ ®M is left exact. This implies that the composition
h = m.x x.m o (coevx®idy) o //741 : M — 0 is a monomorphism. One way to get a
contradiction is by noticing that (Ker(h), k) = (M, id) as subobjects of M since h=0
(see Lemma 1.1.10), and also (0, 0) is the kernel of h since h is a monomorphism (see
Proposition 1.2.5). Then (M, idy,) = (0, 0) as subjects of M, that is, M = 0.

(i) Suppose that idy®@g = 0 and let k : Ker(g) — M be the kernel of g. We
are going to show that k is an epimorphism, which will imply that k is an isomorphism
for the reason that any kernel is already a monomorphism. We know that the functor
X® M — Mis exact® (and, particularly, left exact). From Proposition 1.4.3,
idy®k : X@Ker(g) — X@M is the kernel of idy®g, and using that idy®g = 0 we get by
Lemma 1.1.10 that idy®k is an isomorphism. Given that idy®k is an epimorphism (it
is an isomorphism) we can conclude by Proposition 1.2.6 that (0, 0) is the cokernel of
idy®K.

6 See Proposition 2.2.5.
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On the other hand, let (coKer(k), q) be the cokernel of k. Since the functor
X® _ : M — M is right exact and Proposition 1.4.3, the pair (X@coKer(k), idx®q)
is the cokernel of idy®k. This implies that (0,0) = (X®coKer(k), idy®q) as quotient
objects of X®@M and, particularly, X@coKer(k) = 0. By the item (i) we get coKer(k) = 0
and by Proposition 1.2.6, k is an epimorphism. Because k is already a monomorphism
(it's the kernel of g) then k is an isomorphism and via Lemma 1.1.10, g = 0 which is a
contradiction.

(iii) It’s similar to the proof of item (ii). |

Proposition 4.3.2 ([15], Lema 5.1.12). Let X be a nonzero object in C. If the sequence

0 XaM YO xan P9 yayy 0

is short exact in M then the sequence 0 M—L-N_T.y 0 is also short
exact in M.

Proof. Firstly, we begin by showing that (M, f) is the kernel of g. The kernel of idy®g
is the pair (X®@M, idy®f) via the Proposition 1.2.9. Furthermore, let (Ker(9g), k) be the
kernel of g and notice that, by using the left exactness of the functor X@ _ : M — M
(it is exact’), the kernel of idy®g is the pair (X@Ker(g), idy®k) (via Proposition 1.4.3).
On the other hand, since the first sequence is short exact, it follows that (X&M, idy®f)
is the kernel of idy®g. This implies that these two pairs are equal as subobjects of X&N
(see Proposition 1.1.7), that is, there exists an isomorphism u : XM — X®@Ker(g) in
M such that (idy@k) o u % idy .

Secondly, the morphism f satisfies g o f = 0. In fact, since (idy®g) o (idy®f) =0
we get idy®(g o f) = 0, implying g o f = 0 by (ii) of Proposition 4.3.1. Considering
that (Ker(g), k) is the kernel of g and g o f = 0, there exists an unique morphism
U : M — Ker(g) in M such that k o U’ = f. By applying the functor X& _ : M — M in
this last equality of morphisms we obtain (idy®@k) o (idy®@u') = idy®f. Moreover, by this
last equality and (x) it follows that

(idxTk) o (idxBU') = (idxTk) o u.

Because k is a monomorphism (it's the kernel of g) and the functor X@ _ : M — M
is left exact we can conclude that idy®u’ = u and, hence, idy®u’ is an isomorphism.
Finally, we prove that v’ : M — Ker(g) is an isomorphism (i.e., it is a monomor-
phism and an epimorphism since our category M is abelian) which will imply that k
and f are equivalent as subobjects of N. Let h and /' be morphisms in Hom,(Q, M)
satisfying v/ o h = v’ o /. By applying the functor X@ _in this last morphism equality we
get (idy®@U') o (idy®h) = (idy@U') o (idy®@H), and using that idy®u’ is @ monomorphism

7 Proposition 2.2.5.
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(it is exactly the isomorphism u), we obtain idy®@h = idy®H, i.e., idy@(h—H) = 0. Via
Proposition 4.3.1 it follows the equality h = #/, i.e., v’ is a monomorphism. Analogously,
one can also verify that ¢/ is an epimorphism and hence, an isomorphism satisfying
k o U’ = f. This implies that the monomorphisms f and k are equivalent, that is (M, f)
and (Ker(g), k) are equal as subobjects of N. Therefore, (M, f) is the kernel of g (see
Proposition 1.1.7).

The fact that (U, g) is the cokernel of f can be checked analogously. Hence, the

sequence 0 MtoN U 0 is exact in M (via Proposition 1.2.9). |

Theorem 4.3.3 ([4], Proposition 7.6.9). Let M and N be two abelian and module
categories over C with both module products @ : C x M - M and® :C x N — N
being k-linear and left exact in the first variable, and assume that M is locally finite and
exact. Then any additive C-module functor (F,c) : M — N is exact.

Proof. Suppose the C-module functor (F,c) : M — N is not exact. This implies that

there is a short exact sequence 0 M—toNn 0 in M such that
0 Fmy— vy 29 ) 0

is not exact in V. Using the contrapositive of Proposition 4.3.2, we can say that for any
nonzero object X € C the sequence

idx@F(f) idx®@F(g)

0 XSF(M) XGF(N) XGF(U) 0

is not exact in \V.

Without loss of generality, suppose that X € C is projective. The category M
being exact particularly implies that the object X®U € M is projective.

On the other hand, given that the sequence 0 M—LNu 0 is
short exact in M and the functor X® _ : M — M is exact, it follows that the sequence

idx®f idx®g

0 XM X®N XU 0

is short exact in M and it splits since X®U € M is projective (see Remark 1.2.3).
Using the Proposition 1.4.4, we can conclude that the sequence

0 Foxam) 2N pixan L1999 £ xzu) 0
is short exact in /' (and splits).
Notice that the first sequence of the diagram
0 Foxam) 2N g ixany T £ ixau) 0
l Cx,M j CxX,N L Cx,u
0 xaFM) 2PN s r vy 2R xmF ) 0
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is short exact in A/ and the two square diagrams commute because ¢ = {ex Mbox myecxm
is a natural isomorphism in C x M which implies that the second sequence

0 idx®F(f) idx®F(g) 0

X@F(M) X®F(N) X®F(U)

is also short exact in \V. In fact, it is enough to show that (X&@F (M), idy®F(f)) is the
kernel of idy®F(g) and (X®F(U), idxy®F(9)) is the cokernel of idy&F(f).

We already know that F(idy®f) is the kernel of F(idy®g). Using that C)_(1,M is an
isomorphism in M, it follows that F(idx®f)oc)‘(1M is also the kernel of F(idy®g) (Lemma
1.1.9, (v)). Using (i) of this Lemma 1.1.9 it’s poésible to conclude that F(idy®f)o c)‘(1M is
the kernel of cx (y o F(idx®9) since cx (y is a monomorphism in M. Finally, using,that
c)‘(fN is an isomorphism in M and item (ii) of this same lemma, cx y© F(idx®f)oc)‘(1’M is
the kernel of cx (y o F(idx®g) o c)‘(1N. Via the commutativity of the two square diagrams
above, |

cx,n o Fidy®f) o ¢y = idx@F(f)
and

cx,u o Flidy®g) o ¢!y = idx@F(g),
that is, idy®F(f) is the kernel of idy®F(g) as wanted.

Similarly, one can prove that idy®F(g) is the cokernel of idy®F(f) and conse-
quently the sequence

idx®F(f)

xaF(M) =Dy vy P9

0 0.

X®F(U)

is short exact in N, which is a contradiction. Therefore, the additive C-module functor
(F,c) : M — N is exact.
|
With these two results, it follows immediately that the bifunctor Hom( _, ) :
MOP x M — C is exact when C is a finite tensor category (remembering that the
finiteness is required to define the internal Hom object and functor) and M is a locally
finite and exact module category over C with the module product ® : C x M — M being
k-linear and left exact in the first variable.

Corollary 4.3.4. LetC be a finite tensor category and M be a locally finite and exact
module category over C with the module product ® : C x M — M being k-linear and
left exact in the first variable. The C-module bifunctor Hom( _, ): M% x M —C is
also right biexact.

Proof. It follows immediately from the last theorem by noticing that M is exact and
Hom(M, ) : M — C and Hom( _,M) : M° — (C are additive functors for every
M e M. [ ]

Namely, the bifunctor Hom( _, ) : M9 x M — C is biexact, i.e., exact in both
entries.
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4.4 OTHER PROPERTIES OF INTERNAL HOM OBJECTS AND FUNCTOR

In this section let C be a finite tensor category and M a locally finite and exact
indecomposable C-module category with the module product ® : C x M — M being
k-linear and left exact in the first variable.

Proposition 4.4.1 ([15], Corolario 5.3.14). Let N’ be an abelian and module category
over C with the module product® : C x N'— N being k-linear and left exact in the first
variable and F : M — N a nonzero additive C-module functor 8. If M is an object in M
satisfying F(M) = 0xr then M = 0 p,4.

These two following results will be used when proving an important theorem
regarding an equivalence of C-module categories in the end part of this work. We
couldn’t find any mention of these results in the literature. This first one is inspired on
the Proposition 4.3.1.

Lemma4.4.2. LetOFMec M,0#N e M and0 #f € Homy,(R, S). Then
(i) Hom(M, N) is a nonzero object of C;
(i) Hom(M, f) : Hom(M, R) — Hom(M, S) is a nonzero morphism inC;
(iiiy Hom(f, M) : Hom(S, M) — Hom(R, M) is a nonzero morphism inC.

Proof. Let (Hom(M, N), y) be an universal element of the functor Hom( _ ®M, N).

(i) We want to use the Proposition 4.4.1 in this item. It’s known that the C-module
functor Hom(M, _ ) : M — C is additive (it is exact). It is also nonzero since the object
Hom(M, _)(M) = Hom(M, M) represents the functor Hom,( _ ®M, M), implying that
there is a natural isomorphism

¢ : Home( _ , Hom(M, M)) — Hom ,( _ @M, M)
in C and, particularly, a group isomorphism (via Proposition 1.3.10)
¢4 : Home(1, Hom(M, M)) — Hom (1M, M).

Moreover, let us define 0 : Homy(1&M, M) — Hom (M, M) by 6(f) = f o /,T/}. It's easy
to see that 0 is a group isomorphism with inverse g — g o /4. Hence, the composition

0 o ¢¢ : Home(1, Hom(M, M)) — Hom (1M, M) — Hom (M, M)
is a group isomorphism and then

(b7" 087" (idy) € Home (1, Hom(M, M)) (31)

8 And thus exact by the Theorem 4.3.3.
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is not the zero morphism because idy, # 0 (see Remark 1.1.8). This implies Hom(M, M) #
Oc, i.e., the C-module functor Hom(M, _ ) is nonzero. Using that N # 0, we can con-
clude that Hom(M, _ )(N) = Hom(M, N) # 0. by Proposition 4.4.1.

(i) Suppose Hom(M, f) = 0 and let k : Ker(f) — R be the kernel of f. We now
show that k is an epimorphism which will imply that k is an isomorphism (leading
us to a contradiction) given that any kernel is already a monomorphism. The functor
Hom(M, _): M — Cis exact, so it follows that Hom(M, k) is the kernel of Hom(M, f)
(see Proposition 1.4.3). Using the equality Hom(M, f) = 0, it follows by Lemma 1.1.10
that Hom(M, k) is an isomorphism.

Now, let (coKer(k), q) be the cokernel of k : Ker(f) — R. The sequence

0—— Ker(f) X~ R—%- coKer(k) ——~0

is short exact since k is a monomorphism, g is an epimorphism and the image of k
is the kernel of q. From the fact that the functor Hom(M, ) : M — C is exact, the
sequence

Hom(M, k)

Hom(M, Ker(f)) 222M9) piomm, my2ez-9)

0

Hom(M, coKer(k)) ——0

is also short exact and therefore, (Hom(M, coKer(k)), Hom(M, q)) is the cokernel of
Hom(M, k) (see Proposition 1.2.9).

On the other hand, because Hom(M, k) is an epimorphism (it is an isomorphism)
we can conclude by Proposition 1.2.6 that (0, 0) is the cokernel of Hom(M, k), that is,
(Hom(M, coKer(k)), Hom(M, q)) = (0, 0) as quotient objects of Hom(M, R) (see Proposi-
tion 1.1.7). This implies Hom(M, coKer(k)) = 0 and since M € M is a nonzero object,
the object coKer(k) € M has to be 0 by the item (i) of this lemma.

Thus, (0, 0) is the cokernel of k (which is equal to (coKer(k), g : R — coKer(k))
as quotient objects of R) and, via Proposition 1.2.6, k is an epimorphism. Since K is
already a monomorphism (it's the kernel of f) it follows that k is an isomorphism and by
Lemma 1.1.10 we get f = 0, i.e., a contradiction. Hence, if f is a nonzero morphism in
M then Hom(M, f) # 0.

(iii) It's similar to the proof of item (ii). |

Lemma 4.4.3. If N and 0 # M are two objects in M and (Hom(M, N), y) is an universal
element of the functor Homy,( _ ®M, N) then the morphism y : Hom(M, N\ @M — N
is an epimorphism in M.

Proof. Let (Hom(M, P), z) be an universal element of its respective functor and
WP(2) = (¥P(2)x : Home(X, Hom(M, P)) — Homp(XEM, P)}xec

be the natural isomorphism given by this universal element (see Proposition 3.4).
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Let g and h be morphisms in Hom (N, P) satisfying go y = ho y. From the def-
inition of the morphisms Hom(M, g) and Hom(M, h) in Hom:(Hom(M, N), Hom(M, P)),
we have
goy =z o (Hom(M, g)@idy) = ¥¥(2) omm,n) (Hom(M, g))

and
hoy = z o (Hom(M, h&id) = ¥ (2) iomm.ny (Hom(M, h)).

Using that ‘onm(M N) is an isomorphism we obtain Hom(M, g) = Hom(M, h), that is,
Hom(M, a— b) = 0. Hence, by the item (i) of Lemma 4.4.2, a— b = 0 as wanted.
Therefore, y is an epimorphism in M. |
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5 THE CATEGORY Cy4

It is possible to define the algebra notion in a categorical context. An algebra
in a monoidal category C is an object A € C with multiplication and unit morphisms
satisfying some compatibilities through the commutativity of certain diagrams. These
commutativities express, in a certain way, the properties of an algebra over a field that
we are used to work with. This construction can be seen as the categorification of the
concept of algebra over a field.

As a consequence, one can define the notion of right (and left) A-module in C in
a similar way, which forms a category denoted by C4 (4C). This category admits a struc-
ture of left (right) C-module category. In this chapter we’ll be studying these categories
for a particular algebra given by an internal Hom object, namely Hom(M, M) € C for any
M e M.

The main references for this chapter are [4] and [16]. Let C be a monoidal
category unless stated otherwise.

5.1 ALGEBRA IN A MONOIDAL CATEGORY AND THE MODULE CATEGORY Cx4
OVER C

We begin by introducing some definitions and basic examples involving algebra
and module over an algebra in a monoidal category context.

Definition 5.1.1. (i) An algebrainC is a triple (A, m,u) where AcC,m: AR A— A
and u: 1— A are morphisms in C called multiplication and unit, respectively, and
the diagrams

(A A)® A
AR (A A) A A
id;@mj Lm
A® A m A,
1A and A1
Az A m A A A m A

commute. The triple of an algebra (A, m, u) is often omitted, and it's denoted
simply by the object A.

(i) A morphism between two algebras A = (A, m, u) and B = (B, ', ') is a morphism
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f € Homg(A, B) such that the diagrams

fof BB  and A

Ny

commute.

(iii) A right module over an algebra A (or right A-module) in C is an object M € C
together with an action morphism ppy : M® A — M in C, that is, a pair (M, pp)
such that the diagrams

MoA)oA— M2 Mo(AsA)  and Mot il M
M A M® A Mx A
N
M

commute. In a similar way we can define a left module over an algebra A.

(iv) A morphism between two right modules (M, pyy) and (N, pp) over an algebra A
(or an A-module morphism) is a morphism f € Homz(M, N) such that the diagram

feida

M® A N A
PMl le
M N

commutes.

We focused on the definition of right module over an algebra because this is the
case we have the most interest in working with here.

Example 5.1.2. The object 1 € C is an algebra with multiplicaton m=/4 =r; : 11 — 1
andunitu=idy :1 — 1.

Example 5.1.3. An algebra A = (A, m, u) has a structure of (left and right) A-module
with the action being its multiplication, that is, pg = m.

It is well known that the right A-modules in C with the A-module morphisms form
a category which is often denoted by C4 or Mod,(A).

This following exercise will be helpful when showing that the category C4 has a
structure of left C-module category.
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Proposition 5.1.4 ([4], Exercise 7.8.8). Let (M, pp) € C4 and X € C. Then the object
X ® M € C has a structure of a right A-module with action given by the composition

idx®@pm
—_—

(X @ M) A—ZMA_ X o (Mo A) X e M,

that is, p xgm = (ldx ® pp) © ax m.A-

The application that is going to be the action bifunctor ® of the C-module category
C4 can be defined in the objects as

®:C % Cp— Chp
(X, (M, o) = X&(M, ppy) = (X & M, pxm),

where pxqs 1 = (idx ® pp) © ax p 4- In the morphisms it is defined as ®(f, g) = f&@g =
f ® g, for every morphism (f, g) in C x Cax.

Let X, Y € C and (M, pyy) € C4. We now define the associativity m’ and unit //
constraint for the C-module category C,4. Before doing so, notice that

(X ® Y)&(M,ppm) = (X @ Y)®M,p(xev)om): and
XS(YR(M, pp)) = XB(Y @ M, pygum) = (X @ (Y @ M), x5 (vem)):

so we may define

as ms( Y (Mow) = @X,Y.M: It remains to show that ay y s is @ morphismin Cy, i.e., a
morphism of right A-modules. In fact, the diagram

ax,y M®ida
—_—

(XeY)oMxA X(YeoM)xA
P(X®Y)®Ml lPX®(Y®M)
X®Y)eM X@(Y®M)

ax,y.m

commutes since

PXa(YeMm) © (@x y,m @ ida) = (idx ® pyem) © 8x,yem,A° (@x,y,m @ ida)
= (idx ® ((idy ® pm) © @y, m,4)) © ax,yam,A© (@x,y,m @ ida)
(idx ® (idy @ pp)) o (idx ® ay m,a) © ax, yom,A°
(ax,y,m @ idp)

(a) . .
= (idx @ (idy ® ppm)) 0 @x. vy MoA © @xaY.M.A

(b) o
= ax.ymo (ildxgy @ ppm) © @xgy MA

=ax,y,M° P(xaY)aM
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where the equality (a) comes from the pentagon axiom of the monoidal category C, and
(b) via the naturality of a. One can easily see that m’ = {m’X’ Y (M.on) = 8X, Y.MIX,YEC,(M,pw)Ca
is a natural isomorphism right from the fact that a is a natural isomorphism.

Furthermore, 10(M, ppy) = (1 ® M, p15) and thus we can define

/(IM,pM) : (1 ® M’ p1®M) — (Ms pM)

simply as /(’M om) = Iy- One can easily check that /y; is an A-module morphism and
I'= {/(/M,pM) = I} (M,pu)<cc, 1S @ Natural isomorphism in C4 in a similar manner as we've
done above.

The following result is present in [4] as Proposition 7.8.10.

Proposition 5.1.5 ([4], Proposition 7.8.10). The category C4 together with the action
bifunctor, associativity and unit constraints defined above is a left C-module category.

For the next lemma, we’ve included an idea of the proof because we will need
later an explicit description of a certain isomorphism. Let A be an algebra in C and
define two functors

G:C—Chp
X = (X®A pxopa=(idy ®m)oax aa)

and

Forg:Cq — C
(M, ppg) — M.

We now show that G is left adjoint to the forgetful functor Forg.

Lemma 5.1.6 ([4], Lemma 7.8.12). The functor G is left adjoint to Forg, i.e., there is a
natural isomorphism

¢ ={bx,(M,on) : HOme, (X @ A, px04), (M, o)) = Home (X, M)} x (M, 01))ecoPxCa
in COp X CA-

Let X € C, (M, pp) € Ca, f € Home,(X®A, pxza): (M, ppy)) and g € Home (X, M).
In its proof, the natural isomorphism ¢ is defined by d)x,(M’pM)(f) =fo(idy ®u)o r)‘(1
with inverse q>;(1,( Moo (9) = Pr © (9 @ idla).

Proposition 5.1.7 ([4], Exercise 7.8.14). For every (M, pp) € Cga, the action morphism
pm 1S an epimorphism in C4.



5.1. Algebra in a monoidal category and the module category Ca overC 109

Proof. Considering the diagram

pMRidas
—_—

Mo A A Mo A
PM®AL lPM
M A M

Pm

we may notice that

) ) (%) )
PM O PMeA = Pmo (idy @ pa)oayaa=pPmolidy@m)oayaa = omo Py @ ida),

where the equality (x) holds via the pentagon diagram of the object (M, pyy) in C4 (see
Definition 5.1.1).

Finally, let g and h be morphisms in Hom:(M, N) satisfying g o pyy = ho py.
Since pyy o (idy ® u) = ryy (by definition) we have

goppyol(idy@u)=hoppyol(idy®@u) = gory=horny = g=h
and therefore, ppy : (M ® A, pysa) — (M, ppy) is an epimorphism in C4. n

Definition 5.1.8 ([4], Definition 7.8.17). Two algebras A and B inC are Morita equivalent
if the categories C, and Cg are equivalent as C-module categories.

These next two propositions involving algebras and modules over an algebra will
be used in some instances. We couldn’t find them in the literature, but we believe they
are given as a fact by many authors.

Proposition 5.1.9. Let A= (A,m,u) be an algebrainC, B e C andf: A— B be an
isomorphism in C. Then B is an algebra in C, f is an algebra isomorphism, and the
algebras A and B are Morita equivalent.

Proof. We begin by defining the multiplication m’ : B® B — B of B € C as the
composition
flof

m:B® B AA—m A f . p

and the unit ¢/ : 1 — B as

1Y AT B,
The pentagon diagram commutes since
m o (idg@ m)oaggg="Ffomo(f 1 @f)ol(idg®f)o(idg®m)o(idg® (' @f)o
ap,B,B

@ fomo (! @ idg) o (idg © m)oagaao (idg® 1)@ 1)
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=fomo (idg@m)o (F! @idgyp) 0 aganc (idg® e )

D fomo(idg e m)oagano(F! @ idg) @ ida) o ((idg @ ) @ £7)

O tomomaidyo((F'of)e

=fomo(m® idg) o (idpsa @ F1)o ((F' @ ) @ idp)
=fomo(ida® f N o(mmidg) o (F'® ) idg)
=fomo (' @f M o(f®idg)o (M idg)o (' ® ') ® idg)
=m o(m ® idg)
where the equalities labeled with (a) come from the naturality of a, and (b) is due to the

pentagon diagram of the algebra A. The first triangle diagram of the definition is also
commutative. In fact,

m oW ®idg)=fomo (' @) o(f®idg) o (uw idg)
=fomo (idg® 1) o (u® idp)
=fomo (U® idy)o (idy ® f)

D folpo0(idy @)

(g) fof o Ig
=g

in which the equality (c) is valid via the first triangle diagram of the algebra A, and (d) is
due to the naturality of /. The other triangle diagram can be verified in a similar way as
this one above. Hence B = (B, ', U/ is an algebra in C.

Moreover, the isomorphism f : A — B is an algebra isomorphism considering
that

mo(fef)=fomo(f'afYo(fefl=fom and fou="U.

Finally, let us verify that the algebras A and B are Morita equivalent, that is, C4
and Cg are equivalent as C-module categories.

Affirmation 1: If (M, ppy) is an object in C4 then
(M, phy = ppolidye ) MoB - Mo A M)
is an object in Cp.
Indeed, the pentagon diagram commutes given that
ply o (idy @ m)oay gg=ppolidyof)olidy (fomo (@ fT))o
am,B,B
= ppr o (idy o 1) o (idy @ f) o (idy © m) o (idy @ (F @ F))o

aw.B,B
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=ppo (/dM ® m)o (idM ® (f_1 ® f_1 )) o am. B,B
D oo (idy © m) o ay ap 0 (lidy & 1) & 1)
b . .
D oo (om @ ida) o ((idy @ ') @ £7)
= op o (o @ idp) o (idypa @ F) o ((idy @ ) @ idp)
= p o (idy & 1) o (o ® idg) o ((idy ® ) ® idg)
= ppr o (idy @ F1) o (o 0 (idy ® 1)) @ idp)
= pjyy © (P} ® idp)
in which the equality (a) comes from the naturality of a, and (b) is due to the pentagon

diagram of the right A-module (M, py)-
Lastly, notice that

iy © (idi ® U') = pag o (idy @ 1) o (idy @ (f o )
= pp o idy @ 1) o (idy @ f) o (idy ® )
= ppm o (idy @ u)
= rM
by using the triangle diagram of the object (M, pyy) € C4 in the last equality. It follows
that (M, p’M =pp o (idy ® 1)) is a right B-module.

Affirmation 2: If g € Homg,((M, pp), (N, pn)) then g € Home (M, p},), (N, pi))-
This is done by checking that o, o (g ® idp) = g o p,. We have

plyo(g@idp) = py o (idy @ ) o (g @ idp)
= pn o (g ® idg) o (idy @ )
=gopyo (idy )
=gopy
where in the third equality we are using the hypothesis of g being a morphism in Cy4.
Hence g : (M, 0},) — (N, ) is @ morphism in Cpg.

Affirmation 3: The application

G:Chp —Cp
(M, om) — G(M, ppg) = (M, o)
g:(M,om) — (N,pn) — G(g) = g : (M, pjy) — (N, py)

defines a functor equivalence.

This application is well defined via Affirmations 1 and 2. Moreover, G is clearly a
functor since G(idiy,p,,)) = id(M’p;w) = IdG(m,p,,) @Nnd, if his a morphism in
Homg,((N, pn), (P, pp)) then G(ho g) = ho g = G(h) o G(g).
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Moreover, we can see that G is an equivalence by defining an application

H: CB — CA
(Q,pq) — H(Q,pq) = (Q,pq = pqgo (idy & f))
t:(Q,pq) = (Rpp)— H(t) =1t:(Q,pq) — (R, PR)-
which is going to be the inverse of G.

Similarly as we did for G, one can easily check that H is well defined and also a
functor. This functor will be an inverse of G. In fact,

(Ho G)(M, pp) = HIG(M, ppy))
= H(M, o))
= (M, o' y)
= (M, pjy o (idy © f))
= (M, ppy 0 (idy @ 1) o (idy @ f))
= (M, pp)

and

(Go H)(Q,pq) = G(Q,pQ)

Q)

pgo (idg® )

pqg o (idg @ f) o (idg @ 1))
PQ)

for all (M, ppy) € C4 and (Q, pq) € Cp. This implies that Go H = ldz, and Ho G = ldCA1
and hence, the functor G is an equivalence of categories.

=(Q,
=(Q,
=(Q,
=(Q,

Affirmation 4: G is an equivalence of C-module categories.
The C-module structure of C4 (and Cp) is defined as in Proposition 5.1.5 via

®:C x CA — CA
(X, (M, o)) = X&(M, ppg) = (X @ M, pxonm = (idx @ ppg) © ax m.A)
(f,9) — f®g,

m =AMy v o) = BXYMIXYeeMomecs A 1= iy o) = IMbupyec, N 2
similar way one can define the C-module structure of Cpg.

Let us now see what natural isomorphism c¢ gives the functor G a structure of
C-module functor. Notice that

G(XB(M, pp)) = G(X @ M, pxeom) = (X @ M, P )

1 The natural transformation between these functors is the identity /D.
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where

O eamt = Pxeam © (idy @ 1) = (idy ® pp) 0 ax ma o (idy ® £ (32)
and, on the other hand,
XBG(M, ppy) = XB(M, pjy) = (X ® M, (idx @ p)y) o ax m,5)
with

(idy ® ply) © ax.m.g = (idx @ (ppg 0 (idy ® F1))) 0 ax m.8
= (idy @ ppy) o (idy @ (idy © f1)) o ax i1 B
= (idx ® ppg) © ax.m.a© (idy @ F7)

32)
= PxeMm:

)

The naturality of a is used in the third equality. This implies
G(X®(M,pp) = XRG(M, ppy) = (XM, p’X®M) = (XeM, (idx®pM)oaX’M,Ao(idM®f‘1))

as objects of Cg and thus it’s possible to define

€ ={Cx,(M.om) = 1(XeM,p},,) = 1OXeMIXEC (M p1)<Car

ID 2. Lastly, it remains to show that two diagrams commute, but since
Cx,(M,oy) = Idxgn these diagrams become much simpler. The pentagon becomes
simply G(mg(’ Y (M.om) = ms(, Y. G(M.py) @Nd the triangle G(I(’M’pM)) = Ié(M’pM). Thus

that is, ¢

G(mx,y,m,on) = Glax, y,Mm) = ax,y,M = MX,y,G(M,on)

and

Glmt,pue)) = GUM) = vt = ing 1) = T o)
M

as wanted. Since G is an equivalence of categories and a C-module functor, it implies
that (G, ¢) : C4 — Cpg is an equivalence of C-module categories by definition. Hence the
algebras A and B are Morita equivalent. |

Proposition 5.1.10. Let A = (A, m, u) be an algebra inC, (M, py) an object in C4 and
f € Homg(M, N) an isomorphism. Then (N, f o pyy o (f~! @ idy)) is an object in C4 and
f: M — N is an isomorphism inCgy.

2 In this case, ID is the identity natural isomorphism between the functors Go @ and @ o (Ide x G).
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Proof. Let us begin by showing that (N, fo py o (1w idp)) is an object of Cy, i.e., the
commutativity of two diagrams. The pentagon diagram is commutative because

foppo(F 1 @idy) o (idy®m)oayaa=rfopyolidy®m)o(f! ®idasa)oanana
@ foppolidy@m)oayanac ((f_1 ® Ida) ® idy)

b ] ] ,

Dt om0 (pm @ ida) o (F! @ idg) ® idp)

=foppo(f @idy) o (f®ids) o (ppy ® idg)o
(F' ® idy) ® ida)

=fopyo(f @ids)o((fopyo (F! ®ids)) ® idy)

in which the equality (a) comes from the naturality of a, and (b) is due to the pentagon
diagram of the object (M, py) € Ca.
The triangle diagram also commutes because

foppo(f ®ids)o (idy® u)=Ffoppyo(idy® u)o(F @ idy)
=foryo(f ®id)
=foflory
=rN

where the second equality is valid via the triangle diagram of the object (M, py) € Ca
and the third holds by the naturality of r.
Lastly, the morphism f : M — N is an isomorphism in C4 since it is an isomor-
phism in C and
fopmo(f @ida)o (f®ida) =foppy

Therefore, the objects (M, pys) and (N, fo pyy o (F~! @ ida)) are isomorphic as objects in
the category Cj. [ ]

Lemma 5.1.11. Let A be an algebra in a multitensor category C. Then
(i) the category C4 (4C) is abelian;
(ii) the action bifunctor @ : C x Cp — Cp is k-linear and left exact in the first variable.

Proof. The item (i) can be found in [16] as Lemma 3. For the item (ii), we have to
check that for all (M, pys) € Cyx, the functor _ ®&(M, ppy) : C — C4 is k-linear and left
exact. This is done by using the k-linearity of the functor _ ® M. Indeed, let k € k and
f € Home(X, Y) and notice that

(_ @M, pm))(Kf) = kFR(M, pp) = kf@idy = k(foidy) = k(FR(M, py)) = k( _ (M, pp))(1).

The additivity property can be shown analogously.
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The left exactness of _ ®(M, py) : C — C4 follows from the fact that _ @ Mis
a left exact functor®. Indeed, consider a short exact sequence

0 x—t .y 9 .7 0
in C. We now show that the sequence

fRidim,p ) geidim,e )

0 YR(M, ppm)

X&(M, ppy)

Za(M, op)

is exact in C4. By using the definition of the module product ® : C x C4 — C4 We can
write this sequence as

feidy g®idy

0

(XM, pxam) (YoM, pyem) (Z@M,ozem) -

Let aand b be morphisms in Hom¢,((U, py), (X ® M, pxs ) satistying
(f®idy) o a= (f® idy) o b.

We can see this morphism equality in C4 as a morphism equality in C considering that
every morphism in C4 is @ morphism in C. Notice that f @ idy, is a monomorphism in
C (fis a monomorphismin C and _ ® M is an exact functor) and therefore, a = b as
morphisms in C (and, consequently, a = b as morphisms in Cp).

The image of the morphism f ® id), is the morphism itself (see Lemma 1.2.7) so
it only suffices to show that f ® idy, is the kernel of g ® id),. For this, consider the short
exact sequence®

0 X o M2y g 957 om 0

in C. Notice that (g®idy)o(f®idy) = (gof)®idyy =0andlet h: (K, pk) = (YOM, pyom)
be a morphism in C4 satisfying (g®idys)oh = 0. We may see this equality (g®idy)oh =0
in C while considering the short exact sequence above. So there is an unique morphism
u:K— X®MinC such that (f @ idy) o u = h. Let us now verify that this morphism u is,
in fact, a morphism in C4 (from (K, pk) to (X®@M, pxom)), 1.8, pxemo (URida) = Uopk.
We have

(f®idy) o pxem o (U ids) = (f @ idy) o (idx @ pp) o ax pm.ac (U idg)

(idy @ pp) o (f @ idyeA) © ax,m,a © (U R idg)

(idy ® pp) © @y m,a o ((f @ idpy) ® ida) o (U @ idp)
Pyem © ((f @ idy) o u) @ idp)

Pyem o (h®ida)

(i)ho pK
= (f@ idy) o u o px

3 The category C is rigid, and by the Remark 2.1.9, the functor __ ® M is exact for every M € C.
4 Here we are using the exactness of the functor _ @ M : C — C.
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in which the third equality holds by the naturality of a, and (x) comes from the fact that
the morphism h: (K, px) = (Y ® M, pygp) isin Ca. Hence, pxgp o (U ® idg) = Uo py
(since f ® idy is a monomorphism), that is, u : (K, px) — (X ® M, px ) is @ morphism
in CA'
For the uniqueness, let U’ : (K, pk) — (X ® M, pxsp) be a morphism in Cx
satisfying (f ® idy) o U’ = h. Then (f ® idy) o U’ = (f ® idy,) o U’ which implies u = .
Therefore, the sequence

A gidu,
(M.ppp) Y@(M, pM) (M,ppp)

fRi
0 X&(M, pp) Z&(M, pp)

is exact in Cy, i.e., the functor _ ®(M, py) : C — Cg4 is left exact. |

5.2 THE ALGEBRA Hom(M, M) AND THE C-MODULE CATEGORY Cromm,m)

Let C be a finite multitensor category and M a locally finite and module category
over C with the module product ® : C x M — M being k-linear and left exact in the first
variable. Our objective here is to show that the object Hom(M, M) € C has a structure
of algebra in C for every object M € M, but before doing so let us remember some
definitions and morphisms that will be useful in this section.

Let My, My and M3 be objects in M. From what we’ve seen in the last chapter,
the object Hom(My, M) € C represents the functor Homy,( _ @My, Ms) : C — vect,
and therefore there exists a natural isomorphism

¢ : Home( _ , Hom(My, Mb)) — Hom( _ @My, Mb)
in C. We can define a canonical morphism in M by

eV, My, = G Hom(My M) ([THom(M; M)+ HOm(My, Mp)&My — M

called evaluation. We can see that this is exactly the morphism in the universal element®
of the functor Homy( _ @My, Mp) that we’ve just seen in Proposition 3.4.

To define a multiplication and a unit for Hom(M, M) € C notice that the functor
Homu( _ @My, M3) is representable, so there exists a natural isomorphism

¢ : Home( _ , Hom(My, M3)) — Homp( _ @My, Ma)

in C. Consider the composition

__MHom(My,Mg),Hom(My,

Mo),M _ _
(Hom(Ms, Mg) @ Hom(My, My))&M; - Hom(Ms, Ms)&(Hom(M;, Mo)&My )

idHiom(My,Mg) © Vi, M,

OV, Mg

HOITI( M2 ) M3 )@MQ

5 We mainly use this notation in the last chapter.
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of morphism in M, and then define

. —1 . _
My Mo, Ms = P om(My, Ms) & Hom(M; ,My) (EVMa, M5 © ([OHom(Ms, Mz) ©€VIM, M) © Mom(Ms, Ms), Hom(M; Mz, M; )

which is a morphism in C from the object Hom(M,, M3) @ Hom(My, M>) to Hom(M;, M3).
By taking M = My = M»> = M3, the multiplication p for the algebra Hom(M, M) is
defined as
o= wp g - Hom(M, M) © Hom(M, M) — Hom(M, M).

Notice that we're considering the representable functor Hom,( _ ®M, M) and a repre-
sentation (see Proposition 3.4)

WM(evM,M) : Home( __ , Hom(M, M)) — Homa( _ @M, M)
. We can then write

u= (WM(eVM,M))I_-;ﬂ(M,M)QgM(M,M)(eVM,M o (IdHom(m, M)V, M) © MHom(M,M),Hom(M,M),M)-

For the unit, let us consider the same composition given by equation (31) (with
¢ = ¥M(evy, ) in this case)

(WM (evmm))y' 00~ )(ic) = (WM (evim))7" (67 (ich)) = (¥ (evinm))" (Iw) € Home(1, Hom(M, M)

and define the unit u of Hom(M, M) as u = (\1/"”(ev,\/,,,\,,));1 (ly) : 1 — Hom(M, M).
This following proposition asserts that the internal Hom from an object to itself
has an algebra structure in C with these multiplication and unit morphisms just defined.

Proposition 5.2.1 ([15], Lema 5.4.7 and [4], p. 149). Let M and N be objects in M.
Then the object

(i) Hom(M, M) in C together with the multiplication w and unit u maps defined above
is an algebra inC;

(i) Hom(M, N) inC is a right Hom(M, M)-module with action defined as p Homm,n) =
wp,m,N - Hom(M, N)@ Hom(M, M) — Hom(M, N), thatis, (Hom(M, N), p yom(m,N))
is an object in the category Cromm,m)-

It follows directly from the Proposition 5.1.5 that the category Crom(nm,m admits
a left C-module category structure.

5.3 THE C-MODULE FUNCTOR F : M — Criom(m,m)

Suppose we are still within the hypothesis of the last section. Our objective here
is to define a functor from the category M to Cromm,ng) and show it has a C-module
functor structure.
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Set A = Hom(M, M). Let (Hom(M, M), x) and (Hom(M, N), y) be universal ele-
ments of their respective functors, and consider the C-module functor (Hom(M, _ ), d) :
M — C defined in Corollary 4.2.2. We can then define an application

LR

F-M— CM(M,M)
N +— F(N) = (Hom(M, N), o Hom(m,N))
f — F(f) = Hom(M, f)
With o Homm, Ny = HM M N = (wN (}/))ﬁﬂ(M,N)@@A(y o (idkom(M,N)X) © MHom(M,N),A,M)
in which
wN(y) = (wN(y)x : Home(X, Hom(M, N)) — Hom ((X&M, N)}xec
is the natural isomorphism given by the universal element (Hom(M, N), y) (see Propo-

sition 3.4). Before showing that the application F is well defined and also a C-module
functor, we’ll check that

(Hom(M, X&N), (idx®y) o Mx tom(m,n),m © (Ax,N&idw))

is an universal element of the functor Homa( _ @M, X&N) with the following lemma.
We couldn’t find any mention of this result in the literature.

Lemma 5.3.1. The pair (Hom(M, X&N), (idx®y) o Mx Homm,ny,m © (dx N®idy)) is an
universal element of the representable functor Hom ,( _ @M, X&N).

Proof. This will be done by defining a natural isomorphism6

w : Homg( _ , Hom(M, X®&N)) — Hom,( _ @M, X&N)

satisfying w omm, xan) ([@Homm, xa@ny) = (Idx®Y) © Mx Homm,n),m © (Ax,N@idy) (see
Proposition 3.4).
We begin by defining some natural isomorphisms in C whose composition are

going to be w.

For the first, consider

oz : Home(Z, Hom(M, X&N)) —s Home(Z, X @ Hom(M, N))
h+— az(h) = dX,N o h.

It's not difficult to check that « = {7} 7 is a natural isomorphism’ in C.

The second comes from the fact that the functor X*® _ : C — C is left adjoint to
X® _ :C — C (see Proposition 2.1.7). This implies that there is a natural isomorphism

6 Which is going to be the natural isomorphism for the representable functor Homa( _ @M, X&N).
7 Between the functors Home( __ , Hom(M, X@N)) and Home( __ , X @ Hom(M, N)).
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¢ = {bz whzwec® with inverse given by
GZ y : Home(Z, X @ W) — Home(X* ® Z, W)
h— Iy o (evx ® idy) o ax x o (idx- @ h),
that is, ¢~ = {d>}1, wlz wee- In our case we'll fix the second entry W € C of this natural
isomorphism with the object Hom(M, N) € C.

For the third, we'll use the natural isomorphism
wN(y) : Home( _, Hom(M, N)) — Hom( _ ®M, N)
in C. by defining
V= WN(y)X*@)Z : Home(X* @ Z, Hom(M, N)) — Hom (((X* ® Z)@M, N)

for all Z € C. The naturality® of v = {vy = YN (y)X*®Z}Z€C comes directly from the
naturality of WN(y), and by definition vz(h) = wN(@y )x+oz(h) = y o (h® idy) for every
morphism h € Homg(X* @ Z, Hom(M, N)).

Next, for all Z € C let us consider the morphism
B~ : Homy((X* ® Z)@M, N) — Hom ((X*@(Z&M), N)
h — h O m}l*’Z’M
in Set. The naturality of m is used to verify the naturality of = {3 7} 7c¢-

For the fifth and last, we use that the functor X*® _ : M — M is left adjoint to
X® M — M (see Proposition 2.2.5), so there is a natural isomorphism
0 = {0y a1 Homp (X*@M, M) — Homp(X&M, M)} ppenq- We define the family

0' = {87 = 87y - Homp(X*B(ZEM), N) — Homp(Z&M, XEN)) z¢¢

which is a natural isomorphism0 by the naturality of 8. By Proposition 2.2.5 it follows
that B’Z(h) = (idx®h)omx’x*’Z®Mo(coevx®idz@,\,,)ol‘ forall h € Hom(X*®(Z&M), N).

Therefore, w ={wz =05 0Bz0vzo0 ‘b?,m(M,N) o xz}z<c is a natural isomor-
phism in C from the functor Homg( _ , Hom(M, X&N)) to Hom,( _ @M, X&N). This
implies that (Hom(M, X®N), w) is a representation of the functor Hom,( _ @M, X&N)
and, by Proposition 3.4,

(Hom(M, X&N), t = w Homm, xzN) [AHomM, xzN))

is an universal element of this functor.

Z, } Z,WecC-
X* ® ) to Homap (@M, N) o (X* ® ).
(_ )and Homu( _ , X@N)o( _ ®M).

8 And hence, a natural isomorphism ¢~ = {¢3'
9 From the functor Hom¢( __ , Hom(M, N)) o
10 Between the functors Hom(X*® _ ,N)o



120 Chapter 5. THE CATEGORY Ca

For the equality t = (idx®y) o Mx Hom(m,N),m © (dx, n®@id)) notice that

t = ® pomm, x5 N) ([ Bromm,xN)) = O omm. xzN) © BHom(MXEN) © Y Hom(M,XEN)°
P Hom(M, XEN), Hom(M,N) © *Hom(M, XN @tiom(m, X))
= O om(, x5y B Hom(m, XzN) Y Hom(M, XN) (¥ Hom(M XEN). Hom(M.N)
(% Homm, xzN) 1DHomm, xzn)))
= O iom(nt, xzN) B Hom(w, X5 N) (Y Hom(w, X&) (® Hom(w, X5), Hom(m, ny (FX, M)
= 0 iom(m. x5 N) (B Hom(M, x@N) (Y Hom(M, xzN) UHom(m,N) © (VX ® idom(m,n)°
aX* X, Hom(M,N) © ([dx= @ dx N))))
= 0 iomm. xzN) (B Hom(m, Xz Y © Ukom(m,ny®id) © ((€Vx @ itlom(m,n)) @idi)o
(ax. X, Hom(M,N)21dm) © ((idx- © dx n)®idp)))
= O iomm.xzn Y © Uomn,n@idw) © (evx & idpomm,n))@id) © (3}1*, X, Hom(M,N)©1dm)o
(i @ dx N)Bicg) © M. Lo xzn). M)
= (idx®Y) o (idx S (Ipom(u. Ny D idw) © (idxD((evx @ idiomu. N Eid))o
(idx®(ax. X, Hom(M,N)21Am)) © (idx®((idx- © dx N)®idy)) o (idx @y Hom(M.XEN),M)°
M X+, Hom(M.XZNjEM © (COBVXDibiom(m,xzNjmM) © Hom(M XEN)EM
9 (idxDy) o (idx D rsom(unyDicl)) o (idxB((evx © idomn) Eicy))o
(idxB(ax- x. Homm.N)2idM)) © (XML xo omm. . m) © (xS (idx- S (dx nSidy)))o
Mx X+ Hom(M,XEN)aM © (COVX R omm xaNyEM) © %(M,)@N)@M
D (iax@y) o (idx D piomu,ny Fid) © (i F((@Vx @ ichiomnt, ) Bicdp))o
(X E(@x- X, pom(na,yD1M)) © (XM o piom(na, M) © XX+ (Xeo Hom(M,N)EMO
(idx sx+ & (dx NEidp)) © (COBVXDidpomm xzNyEM) © /ﬁﬂ (MXSNJEM
= (idx®Yy) o (idx®(Igomm,n)@idpm)) o (idx@((evx ® idHom(m,n))@idpy))o
(idxB(Ex- x Homm.N)2idM)) © (XML xeo om. Ny M) © X, X+ (X Hom(M,N)EMO
(Coevxgid(x@@m(/\//,m)@m) o (idy@(dx, y@id))) o Iljﬂ(/\/l, XEN)EM
2 (i Ey) o (10x T rigmu, ) i) © (1dxT((€Vx © idomuny)Bic)o
(’dX®(ax*,X,m(M,N)®idM)) ° (idx®m;(1*,X®M(M,N),M) © Mx X+ (X&Hom(M,N))&M°®
(COBVX it x s om(m, M) M) © (X Hom(u, Ny © (OX NDich)
9 (idxFy) © (idx @ Inom.ny Fid) © (idxB((6vx © idpiomint. ) Bicy))o
(idx DX 3 HommNy.M) © TAXBMYL s pomnnyzm) © (X E(idx-Bmx. pomm,ny,m)°

M X+ (X Hom(M, )M © (COBVX BTt x e Hom(h,N)) M) © X Homu, Nz © (X NE i)
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= (idx®y) o (idx®(Igom(m,n)@idy)) © (/dx@m?jm(/w, Ny M) © (Idx @ (evx@idpomm, nymm))°
(idx Sy x promn Nz © (AXB (X EMX, Hom(m, Ny, M) © M, X+ (X Hom(M, N)EMO

(cOBVXDid x & omm,N)yEM) © X Homm, Ny © (OX,NE i)

D (idxEy) o (10 Ipomu.n) Fid) o (X E 1y igmmit oy 1) © (10X VX Tt Ny

(XS X pom(u,Nyzm) © X X+ X5(Hom(M,NyEM) © (X X EMx Hom(h,N), M)°
(coevxX B xe Hom(m,NYEM) © X Hom NyE M © (OX NS i)
‘D (idx@y) o (10X hiomqua ) © (10X TEVXTiGhommr nyzua))o
(idx®m}1*, X, Hom(M,NyzM) © Mx, X+ X&(Hom(M,NyaM) © (idxex=©Mx, Hom(M,N),Mm)°
(coevXDid x . Hom(m,NyzM) © X Homm, Ny M © (OXNE i)
= (idxy) o (idx D hiom(uNyzm) © (X (@YX T idkiomus Nyzm))°
(X EM. % Hom(MNyEM) © X X+ X(Hom(M,N)zM) © (COBVX DI Hiom(n, NyzM))°
(icy S M Hom(, M), M) © [Xes Homu,Nyyzm © (O N ichy)
@ (idx®y) o (idx @ IHomm,Nyzm) © (Idx @ (VXD iAkomm,NyzM))°
(X EM. % Hom(MNyEM) © X X+ X(Hom(M,N)zM) © (COBVX DI Liom(n, NyzM))°

I Hom(M.NYEM) © X, Hom(M,N),M © (Ox N ichy)

(c),., — L, — A .
= (idx®y) o (idx®Hemm,Nyam) © (idx@(evxRidyomm,nyzm)) © Mx, X+ X, Hom(M,N)EM®

(@x,x+ X QidHomm,NyzM) © Mxex+ x. Hom(M.N)zM © (COBVXDIAx s HomM,NyzM))©

X (Hom(M.NY5M) © X, Hom(M,N), M © (dx NEidy)

(@ ,., — L, — . —.
= (idx®y) o (idx®lHomm,nyEm) © Mx 1, Homm,Nyzm © ((idx ® eVx)@idyomm, nyzm)°
(aX,X*’X®Idm(M’N)@M) o ((CoeVX X IdX)@Idm(M’N)@M) e} m?jX,M(M,N)@MO

DX Hom(M.NJEM) © X, Hom(M,N),M © (Ox N i)
(

s

(idx®Y) o (rx@idpomm,nyzm) © ((idx @ evx)@iApomm,nyzm)°

(X x- XD iriom(m, nyzm) © ((08Vx & idX)Didkiomm,NyzM) © 1 X, Hom(m,NyZM®
%(@(/VLN)@M) © Mx Hom(M,N),M © (dx N®idpy)

2 (idx®y) o (rx Do, my) © (idx © V) Bidyomur )

(@x, x+ xDidpomm. Nyzm) © ((C0eVx ® idx)Bidyiom . Nyzm) © (K BidiomM.NyEM)°
My Hom(M,N),M © (dx, N® i)

= (idx®y) o ((rx o (idx ® evx) o ax, x- x o (coevy ® idx) o " \Bidomm.Nyzm)°

My Hom(M,N),M © (dx, N®idp)
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., o _
0 (idx®y) o (idx @idpomm,nyzm) © MX,Hom(M,N),M © (Ax, N®idp)

= (idx®y) o Mx Hom(M,N),M © (dx,NDidy)

where the equalities labeled with (a) and (b) are valid due to the naturality of m and /,
respectively. The equalities with (c) hold due to the pentagon diagram of the C-module
category M, and in (d) we used Proposition 2.2.3. The equality (e) holds via the triangle
diagram of the C-module category M and, finally, (f) holds by an identity in the Definition
2.1.6 (X* is a right dual of the object X € C).

Hence, (Hom(M, X&N), t = (idx®y) o Mx Hom(m,N),M © (dx,N@id)y)) is an univer-
sal element of the representable functor homy( _ , @M, X&N). |

In the beginning of this section we’ve defined an application

F: M — Cromm,m)
N — F(N) = (Hom(M, N), 0 iom(m,N))
f — F(f) = Hom(M, f)

With ppommmny = i = (YN (}/))ﬁﬂ(M,N)@A(y o (idHom(m,N)®X) © MbomM,N),AM)-
This following proposition shows that this application is a C-module functor.

Proposition 5.3.2. The application F is a C-module functor.

Proof. Set A .= Hom(M, M) and let (Hom(M, M), x), (Hom(M, N), y) and (Hom(M, P), z)
be universal elements of their respective functors. For all N € M the object F(N) =
(Hom(M, N), PM(M,N)) isin C Hom(M,M) by the Proposition 5.2.1.

Affirmation 1: For all f € Hom (N, P), the morphism

F(f) = Hom(M, f) : Hom(M, N) — Hom(M, P) is in C4, that is, the diagram

Hom(M, Ny @ A22MDE08 1M, Py o A
P Hom(M,N) L l PHom(m,P)

Hom(M, N) —po s Hom(M, P)

commutes.
The actions pomm,n) @and pHom(m,p) are defined (via Proposition 5.2.1) as

PHom(M,N) = UM,M,N = (‘PN(y))ﬁﬂ(M,N)@A(y o (IdHom(M,N)®X) © MHom(M,N),A,M)»

and

PHom(M,P) = HM,M,P = (‘YP(Z))TJﬂ(M,p)@A(Z o (IdHom(M,P)©X) © Myom(M, P),AM):
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respectively. Then

Hom(M, f) o p iom(m,N)
= Home((Hom(M, N) © A), Hom(M, £))(0 Hom(m,N))

= Home((Hom(M, N) & A), Hom(M., H)((¥™(Y) Elm(aa Ny alY © (1iomip iy BX)o

MHom(M,N),A,M))
= (Hom¢((Hom(M, N) ® A), Hom(M, f)) o (‘PN(}/))Hom(M Ny A © ([dHom(m,N)&X)o

MHom(M,N),A,M)
(Y7 (2)) Homm. My © Homu (Hom(M, N) © AYSM, £))(y © (idkom(u,ny©X)o

mHom(M N),AM)

mHom(M N),A, M))

@

= (vP(z ))Hom(M Ny Al © ¥ o (idromm,N)@X) © MEomM,N),A M)

O P (@) o Ny (2 © (HOM(M, 1)ichhg) © (icbiomis Ny X) © Miom(ut, Ny A M)

= (Y (@) Homm.N2aZ © ([dromm,pyEX) o (Hom(M, NS idyomm,myzm)°

MHom(M,N),AM)

©
(vP(z ))Hom(M N)2A(Z © (1QHom(M,P)DX) © MHom(M,P),AM°

((Hom(M, f) @ ida)®idpy))

= (YP(2) Eym. o A(HOM A (Hom(M, 1) & icta) @ity P)(Z o (idlom(r, ) DX)0
mHom(M P),AM))

= (P (@) Emn.nyea © HOMA(Hom(M, 1) & ida)@idhy, P))(z © (iliomu, pyDX)0
MHom(M,P),AM)

'D (Home(Hom(M, ) @ ida, Hom(M, P)) o (¥P () pomun pyoa) (2 © (1dhiom(ua,pyPX)o
MHom(M,P),A,M)

= Home(Hom(M, f) @ id, Hom(M, P))((¥*(z 2)) Hom(M. Py A(Z © (GHom(m,pyEX)o
MHom(M,P),AM))

= Hom¢(Hom(M, f) @ ida, Hom(M, P))(p om(m. p))

= PHom(M,P) © (Hom(M, ) @ idp).

For the equality (a) consider the adjunction ( _ @M, Hom(M, _ ), ¢) (see Proposition
4.2.1), with the natural isomorphism

b ={oxn=WN)X : Homp(XEM, N) — Home(X, Hom(M, N))}xcc.Nem-
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By fixing the first entry with X = Hom(M, N) @ A € C, the diagram

(WN(Y)),‘_-fﬂ(M,N

Hom,((Hom(M, N) @ A)@M, N) ™% Home(Hom(M, N) © A, Hom(M, N))

Hom((Hom(M,N)@A)2M.f) Homc(Hom(M,N)©A,Hom(M,f))

Hom((Hom(M, N) @ A)\@M, P)

Home(Hom(M, N) @ A, Hom(M, P

P Home(Hom(M, N) © A, Hom(M. P)
commutes by the naturality in M, implying that (a) holds. The equality (b) is valid via
the definition of the morphism Hom(M, f), (c¢) is due to the naturality of m, and (d) via

the naturality of (\PP (z))71, i.e., the commutativity of

P \\—1
(2D Homm, P

Hom,((Hom(M, P) © A)®M, P) Hom¢(Hom(M, P) © A, Hom(M, P))

Homx((Hom(M.,f)@ida)®idy,P) Homc(Hom(M, f)®ida,Hom(M,P))

Hom,,((Hom(M, N) © A)@M, P) Hom¢(Hom(M, N) @ A, Hom(M, P)).

(Y®(2) Hommmyza

Hence, the application F is well defined.

Affirmation 2: F is a functor.
In fact, let g € Hom (P, Q) and notice that

F(g o f) = Hom(M, g o f) = Hom(M, g) o Hom(M, f) = F(g) o F(f), and

Flid) = Hom(M, idy) = idiom(n, _ )N = AHom(M,N) = 1A(tiom(M.N).pwomu) = TOF(N)

as wanted.

Affirmation 3: (F, d) is a C-module functor with the natural isomorphism d being the
same as the one present in the C-module functor (Hom(M, ), d) (see Corollary 4.2.2).

Before checking this, let us have a thought about the objects X®F(N) and
F(X®N). We have

X@F(N) = X&(Hom(M, N), o Hom(m,ny) = (X @ Hom(M, N), 0 xs Hom(m,N))

With o x o Hom(M,N) = ([dx ® PHom(M,N)) © @x,Hom(M,N),A (via Proposition 5.1.5), and

a
F(X&N) = (Hom(M, X&N), 0 iom(m.XEN) L (X ® Hom(M, N), P Hom(M.N))-

Using the Proposition 5.1.10 with the isomorphism dy x in C, it follows that the object
(X ® Hom(M, N), pIX®m(M,N)) is in C4 with action pIX®m(M,N) defined as

1 .
p/X®Hom(M,N) =dxN© P Hom(M,X=@N) © (d)—(N ® idg),
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and dy y is an isomorphismin Cx, for all X € C and N € M.
We'd like to have these two actions P X@Hom(M,N) = (idx®Pm(M,N))OaX,m(M,N),A
and pg(@@(M,N) = dx,N © P Hom(M,XBN) © (d)‘(jN ® ida) being the same, or equivalently,

P Hom(u,x@N) © (dx'y @ ida) o a}TM(M,N),A = dy'y o (idx ® promm.ny)- (33)
In order to verify this, we’ll use that
(Hom(M, X®N), t = (idx®y) © Mx, Hom(m,N),m © (dx, N@idy))

is an universal element of the functor Hom( _ @M, X&N) which we’ve shown in the
Lemma 5.3.1. Moreover, the object (Hom(M, X®N), F’M(M,)@N)) is in C4 with action

PHom(MXEN) = UMM XSN = (‘VX@N(t))Jom(M xanyaoAll © (Aromm x@n) ©X) © Myomm, XEN).AM)-

Notice that

P Hom(M x@N) © (XN © 1da) © 8 Hom(n,n), 4

= Home (&' tiomm. vy, HOM(M, XBN))(0 tiomm, xzny © (Ax'n © idla))

d)_(1,N ® ida, Hom(M, X N))(0 Homm, xzN)))
dy'y © ida, Hom(M, XZN))

= Homc(aX ‘Hom(M,N), A’ Hom(M, X&N))(Hom,

—_ ~

Hom(
Hom(

= Home (& tomu. v, Hom(M, X&N))(Home
(

(WX N(t))Hom( 2t ([Aomm, xzN) ©X) © Myomm, xzN),AM)))
= (Home(ax, fomm. Ny A m(M, X@N)) o Home(dy'y @ ida, Hom(M, X@N))o
XeN @) Hom(M, xzN) A © (@HomM, x@N) ©X) © Myomm, Xz N),AM)
= (Home (A  ida) © &X. pom(m,my, 4 HOm(M, XBN)) © (VXN 5l ig vy )
(t © (idsom(m, xzN)2X) © Mpom(M,XEN),AM)
2 (YN )Xo Homm, Ny 4 © HOMA (A !y @ i) © &X' pioma vy, AE 10, XEN))
(t o (idpomm, xzN) ®X) © MyomM, XBN),AM)
= (YN )X (HomM.Ny@4) © HOMAM(EX Homu ) AZ M, XEN)o
HomM((dX N @ ida)@idyy, X&N))(t o (/dHom(M rN)®x) © Mom(Mm, )@N)’A,M)
= (WX (Hom vy e 2 HOM (8, om vy, A id, XEN)
(HomM((d)_(1N ® ida)@idp, XQN)(t o (idHomm, xzN)©X) © MomM,XEN),AM)))
= (YN (Homm nye 4 HOMAM(EX Hom, Ny, A 10, XEN)
(t © (idiom(m, xzN) BX) © Mitom(, xan),am © (dx'y @ ida)Didy))
(WX®N(’))>(1®(Hom(M N@A) (t© ([Dhomm, xzN) ©X) © Momm, XEN),A MO
((dx'y © ida)Didh) © (X pomu, vy, A M)
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b - . —,
2 N ot e 4t © (@ © (1 © 0riom(na, i) Fichy)

= (YN tomm Nyt (Y (0 X (Homm, Ny 4) (dx - © (idx © 0 rom(m,n))
= d)_(TN o (idx ® P Hom(M,N))-
For the equality (a), the commutativity of a diagram given by the natural isomorphism

wX®N(¢) in C is used, i.e., the commutativity of

(WX@N( ) —1

Q) om(M, X&)
Hom yq((Hom(M, X&N) © AGM, X&N) —— = Home (Hom(M, X&N) ® A, Hom(M, X&N))

Hom 4 ((dly! 1\ ®idg)o aX Hom(M,N) Ay XEN) Homc((d)"(jN®idA)oa}THom(M!N)’A,M(M,X@N))

WwX®ON )

Hom (X ® (Hom(M, N) @ A))@M, X&N)

X®(Hom

on C(X® (Hom(M, N) @ A), Hom(M, X®QN))

evaluated on the morphism ¢ o (idomn, xzN) ©X) © MHemM, XEN),AM IN
Hom ,((Hom(M, X&N) @ A\@M, X&N).
The equality (b) holds because

o (iAliom(m, XxBN)EX) © Mpomu, xaN), AM © (Ax N & ida)Bidy) o (Ex Homm.ny, A2 M)

(¢

~

(idx®y) o Mx Hom(M,N),M © (dx, N®idpy) o (’d/-/om rN@X) © Myom(M,XEN),AM°
((dx'y ® ida)Bidng) o (8 pomo.n) A TAM)
= (idx®Yy) © Mx Hom(M,N),M © ([xeHom(M,N)@X) © (dx N®idgz01) © MigomM,XEN),AMC

((dy'y @ ida)Bicy) o (ay  Hom(M.N).AZ M)
)

Y

(idx®@y) o Mx Hom(M,N),M © (idx s Hom(M,N)EX) © Mx s Hom(M,N),AMC
((dx,n ® ida)Bidy) o (dy'y ® ida)Bidy) o (@x Homm.n).AD M)

(d)

IK=X

(idx®@y) o (idx@(idomm,Ny@X)) © Mx Hom(M,N),AGM © MX©Hom(M,N),A MO

_1 .
(@x Hom(M,N),A2TAM)

(e) ,., — P — A
= (idx®y) o (idx®(idyom(m,n)©X)) © (Idx @ Mpomm,N),AM) © MX, Hom(M,N)2AM

= (idx®@(y o (idgom(m,N)®X) © Myomm,N),AM)) © MX. Hom(M,N)2A,M

., — _.
= (idx®(Y o (P Hom(M,N)@1AN))) © MX Hom(M,N)2A,M

= (idx®y) o (idx®(p Hom(m,N) @A) © Mx Hom(M,N)2AM

d),. ., — . _.
@ (idx®y) o Mx Homm,N),M © ((Idx @ 0 Hom(m,N)) @idw)

= (idx®Y) © My Hom(M,N),M © (dx, N®@idp) o (d)_(TN®idM) o ((fdx ® pHom(m,N))@idy)
C)
=t

—_

o (dx N@idy) o ((idx © p riomm.n) Did)
= to ((dx'w © (idx © prom(u.N))Didy)

where we use the definition of t in in the equalities labeled with (c), and the naturality
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of m is used in those labeled with (d). The equality (e) is valid due to the pentagon
diagram of the C-module category M. Lastly, for (f) we can observe that by applying
YN () Hom(m,N)w 4 i both sides of the equality

N ) o Ny ALY © (iom(, NEX) © Miiom(m,N),A,M) = PHom(M,N)

we get

Y o (idHom(m,Ny®X) © MHom(M,N),AM
= YNy Homm Ny AN ) Homu. Al © (kiom,N)BX) © Miom(,ny,4M))
= WN(Y)M(M,N)@A(F’M(M,N))

= ¥ ° (0 Hom(m,N) @A),

that is,

Y o (idomm,Ny@X) © Myomm,Ny,AM = Y © (P Hom(M,N)@idwm)- (34)

This implies that the equation (33) holds and, therefore, p x Hom(m,N) = pg(@@(M,N)
as wanted.

At last, it remains to show the commutativity of two diagrams (see Definition
2.2.6) in order to (F, d) be a C-module functor. These diagrams commute directly from
the fact that (Hom(M, ), d) is a C-module functor as we’ll see. Namely, the diagrams
we would like to commute are

(Hom(M, (X ® Y)®N), P Hom(M,(Xc Y)EN))

% Hom(M,mX, V.N)

(X @ Y)® Hom(M, N), o(xs )2 Hom(M,N)) (Hom(M, X&(Y®N)), 0 Hom(m, Xz (YaN)))
ax,y,Hom(M,N) idx, YBN
idy®d
(X ® (Y ® Hom(M, N)), p xe(ysHom(M,N)) - (X @ Hom(M, YON), 0 o Hom(M, Y& N))
and
_ din
(Hom(M, 1&N), p yomm. 1)) (1 ®@ Hom(M, N), p1% Hom(m,N))

(Hom(M, N), 0 Hom(m,N))

forany X,Y € C and N € M. But since (Hom(M, _),d) is a C-module functor, the
diagrams

Hom(M X®Y®N

(X ® Y) ® Hom(M, N) Hom(M, X&(YEN))

ax,y,Hom(M,N) L

3

i Sd YN
I
X @ (Y ® Hom(M, N)) il X @ Hom(M, Y&N)
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and
Hom(M,1&N) o 1 ® Hom(M, N)
Hom(M, N),

commute, for all X, Y € C and N € M. Therefore, (F, d) is a C-module functor between
the C-module categories M and Cromm,m)- n

Remark 5.3.3. It's always good to remember that dx y is an isomorphism in C, for all
X € C and N € M as we have seen with the Affirmation 3 of the previous proposition.
This fact will be used in some upcoming results.

5.4 THE EQUIVALENCE F

Let C be a finite tensor category and M a locally finite and exact indecomposable
C-module category with the module product ® : C x M — M being k-linear and left
exact in the first variable. One can easily see that the C-module functor'

F:M— CM(M,M)
N +— F(N) = (Hom(M, N), 0 Hom(m,N))
f— F(f) = Hom(M, f)
is additive directly from the fact that Hom(M, ) : M — C is additive. Therefore, it is
exact by Theorem 4.3.312. This section is devoted to the proof that this functor is an
equivalence under our hypothesis, which is largely used in our main theorem present in

the next chapter. This result and its proof can be found in [4] and [15] with some details
left to the reader.

Theorem 5.4.1 ([4], Theorem 7.10.1). The C-module functor (F : M — CHom(M,M)> 9)
is an equivalence of C-module categories for every nonzero object M € M.

Proof. Let M be a nonzero object in M and set A .= Hom(M, M). Firstly, we are going to
show that the functor F is faithful and full, that is, for any Ny, No € M the application3

F : Hom(Ny, No) — Home,((Hom(M, Ny), o tomm,ny))» (HOm(M, No), 0 omm,n,))

is injective and surjective, i.e., an isomorphism14.

1 See Proposition 5.3.2.

12 While noticing that Cromm,m) is abelian with the module product over C being k-linear and left exact in
the first entry via Lemma 5.1.11.

13 As we already know from the definition of a functor, there exists an application F for all pairs of objects
Ny and N» in M. We could be more precise and denote this application by Fp, a,, but for simplicity we
(and most authors) denote just by F as we can always find the objects in the context.

14 Of abelian groups for the reason that F is already a group homomorphism (it is additive).
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Before doing this we’ll show a particular case in which this application F is
an isomorphism whenever Ny has the form X@M, for some X € C. To begin, we're
going to consider an isomorphism composition y (in Set) from Hom ,(X®M, No) to
Home, ((Hom(M, X&M), 0 Homm, xzmy)» (HOm(M, Na), o Hom(m,n,))) @nd check that F is
equal to y on the morphisms of M. This being done, we’'ll be able to affirm that the
application F is a group isomorphism (i.e., injective and surjective) whenever Ny =
X®@M, for some X € C.

For the first isomorphism let (Hom(M, N»), y») be an universal element of the
representable functor Hom,( _ ®M, N») and consider the natural isomorphism
WN2 (o) © Home( _, Hom(M, Np)) — Homy( _ ®M, N») in C (see Proposition 3.4).
We're going to use the inverse of WN2(ys) y.

The second isomorphism is the inverse of the isomorphism ¢ x (Hom(m,N), o)
from the adjunction (G, Forg, ¢) of Lemma 5.1.6. The third and last morphism is « from

Home,, (X ® Hom(M, M), p x & Hom(m,m))> (HOm(M, Na), p omm,n,))), 1O

Home, ((Hom(M, X@M), 0 fomm, xzmy)> (Hom(M, No), o om(m, )

defined by a(h) = ho dx p. It's known that each dx p is an isomorphism in C4 from
the Remark 5.3.3 and, hence, « is well defined. It's also easy to see that « is an
isomorphism (with inverse f — f o dy!, ).

We have the following composition of isomorphisms in Set

HomM (X®M1 N2)
(M2 (y2) %
Home(X, Hom(M, Ny))

d)X (Hom(M,N2),0 Hom(wm,Ny))

Home,((X ® A, pxga), (Hom(M, No), 0 Hom(m,N,)))
|
Home, (X ® Hom(M, M), 0 xs Hom(m,m))» (HOmM(M, N2), 0 tiom(m,Ns))

la
Home, ((Hom(M, X@M), 0 tomm, xzmy)> (Hom(M, No), 0 Hom(m, )

which we define as being v, i.e., y = a0 ¢;(1,(M(MsN2)apHom(M,N2)) o (WN2(yp))3]

It remains to show that <y is indeed the application F (on the morphisms of A1)1°

15 This will also imply that v is a group homomorphism.
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For this purpose, consider an arbitrary h € Hom(X®M, No) and notice that

V(h) = (@0 X, Hom(MNe).primanney) © (X2 V2D X ) (h)
= DX Hom(M.Ne) oy (¥ V2D X ()

= &P Hom(M,N,) © (¥ Ne(yo)x (h) @ ida))
= PHomM.Ny) © (P2 (v2) X! (h) © ida) o dx -

The equality y(h) = F(h) will be verified by showing that

YN (yo) omn xzmy (Y (B) = N2 (v2) omo xzmy (F (M)

Before we begin, let us consider an universal element (Hom(M, X&M), t) of the functor
Hom,( _ ®M, X@M), whose morphism t is defined as ¢ = (idx®Xx) o My Hom(m,m),m ©
(dx p®id)y) (see Lemma 5.3.1). Thus, we have

Y™ (1) omm, xzmy (V)

= WM (1) omm Xz M) (P Hom(M, ) © (Y2 (v2)) X! () @ icla) © dx )

= Y2 0 ((PHom(M,Ny) © (PM2(12))X (h) @ idla) o dx ) Ticly)

= ¥2 0 (P Hom(M,N,) i) © (WM2(y2)) X! () @ ida)Bidy) o (dx pBic)

D s o (0hom N BX) © Metomun. ey am © (PN2()) R (h) @ ida)Bicty) o (dx yEicly)

2 2 0 (idomu ey %) © (P2 ()5 (A)B(idaBidhy)) © mx g © (A yDicy)
=Y 0 (/dHom(M N2)®X) o (WM ()X (B (idgz)) © Mx A m © (dx, midy)

= yo o (WM (yo)) % (WBidy) o (idy®x) o my A m o (dx p@idpy)

= W2 (o) (M2 (y2)) X (M) o (idx@X) 0 mx a1 © (dx pBicy)

= ho (idx®x) o mx A p o (dx p@idy)

(g) hot

D s o (Hom(M, hySidy)

= yhe (¥2) Hom(m, xzm) (Hom(M, h))

= Y™ () Hom(m, xzmy (F ()
in which the equality (a) holds by the equation (34). We used the naturality of min (b)
and the definition of the morphism t in (c). For the equality (d), it's used the definition of
the morphism Hom(M, h) : Hom(M, X&M) — Hom(M, No) in C.

Since ¥ (YZ)Hom(M XEM) is an isomorphism, it follows that y(h) = F(h) for every
h € Hompy(X®&M, N»), i.e., the application

— Nog, \\—1
F=v=0aodx HomMNo),omommny) © (¥~ V2D x
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is a group isomorphism whenever Ny has the form X®@M, for some X € C. We're now
going to use this for the general case, the case where Ny € M is arbitrary.

Let (Hom(M, Ny), y1) be an universal element of the representable functor
Hom( _ ®M, Ny). The morphism y; : Hom(M, N{) @M — Ny is an epimorphism in
M by Lemma 4.4.3. Using that the category M is abelian, it follows that there exists
a morphism g € Hom (P, Hom(M, Ny)@M) such that (Ny, y4) is the cokernel'® of g.
Therefore, the sequence’”

P—9 . HomM,Ny)aM— N, 0

is exact in M.

Let (Hom(M, P), z) be an universal element of the representable functor
Hom,( _ ®M, P). Since z : Hom(M, PY@ M — P in an epimorphism in M (via Lemma
4.4.3), it follows by the item (iii) of Lemma 1.1.9 that (Ny, y1) is also the cokernel of go z,
and hence the sequence

goz

Hom(M, PY&M Hom(M, Ny)aM —2 N, 0.

is exact in M.

The additive contravariant functors Homy,( _, Np) and Homg,( _, F(Np)) o F
from M to Ab are left exact. When applying them to the exact sequence above we
obtain the diagram

Homa(y1,Ne) Hom(goz,Nz)

0

Hom (N, No) Hom v (Hom(M, Ny )&M, No) Hom q(Hom(M, PY&M, No)

F F F

OHHomCA(F(Nﬂ,F(Nz)),m)ﬁoch(F(M(M, N1)@M),F(Nz)LWNgoch(F(M(M, P)&M), F(N>))

whose lines are exact (by the left exactness of both functors). In addition, the two
rectangles commutes. In fact, let h be a morphism in Hom (N4, N») and notice that

(Home,(F(y1), F(No)) o F)(h) = Homg,(F(y1), F(N2))(F(h))
= F(h) o F(y1)
= Hom(M, h) o Hom(M, y1)
= Hom(M, h o y4)
= F(ho yq)
= F(Hom(yy, No)(h))
= (F o Homp4(y1, N2))(h)

16 In an abelian category any epimorphism is the cokernel of some morphism.
7 See Remark 1.2.8.
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which implies the commutativity of the first rectangle, i.e., F o Hom,(y1, No) = F(y1) o F.

The commutativity of the second rectangle can be verified in a similar way. Hence,
the whole diagram is commutative with the second and third columns applications being
isomorphisms'8. All of these arrows are group homomorphisms'®, so we may look to
this diagram as one in the theory of modules over a ring, for example2® and then
conclude that the first column application is also an isomorphism, that is,

F : Hom(Ny, No) — Homg, ((Hom(M, N1), o omm, Ny ))> (HOM(M, No), 0 Hom(m, )

is a group isomorphism?2!, for all Ny and N» in M. Therefore, the functor F is faithful
and full.

Next, let us check that this functor is dense, i.e., surjective in the isomorphism
classes of objects in C4. For this consider an object (L, p;) € C4. We'll show that there
exists an object N € M such that F(N) = (L, py).

Since p; : (L® A, prea) — (L, pr) is an epimorphism in C4 (via Proposition
5.1.7) and Cy4 is abelian, it follows that ((L, p;), p;) is the cokernel of some morphism
g :(Q,pq) = (L&A prga) inCh.

Using the fact that pq is an epimorphism and also an argument we've already
used in this proof, the pair (L, p;) is the cokernel of g’ o p. Thus the sequence

/

(Q® A pgup) ——2 (Lo A, prop) —t— (L o) —0

is exact in C4. By noticing that

lo}
F(QEM) = (Hom(M, QEM), ppiomua.asm) = (Q@ Hom(M, M), 0gs Hom(v.m)
- (Q® A pgun)
and
dim

F(LaM) = (Le A prpA)

we have the isomorphism given by the composition

F—1

p _ _ L
Home,((Q®A, pgea), (LRA, p sA)) = Home ,(F(QRM), F(LoM)) Hom (Qa&M, LoM),

where B(h) = dj), o hodqy, for every h € Home,((Q © A, pgsa), (L ® A, proa))-
Consider the morphism f = F~1 (B(9'opq)) € Homy(QRM, LeM) and let (coKer(f), q :
L®M — coKer(f)) be the cokernel of f.

18 Via the particular case (when N; = X&M for some X € C) we showed in the first part of this proof.

9 The horizontal lines are group homomorphisms by the additivity of the functors Hom( __, N») and
Home,( _, F(Na)).

20 Every abelian group is a module over the integers.

21 Or equivalently, an isomorphism in Ab.
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Finally we're going to show that there is an isomorphism F(coKer(f)) = (L, p;)
in M. By the (right) exactness of the functor F we know, by Proposition 1.4.3, that
F(q) : F(L&M) — F(coKer(f)) is the cokernel of

F(f)= F(F ' (B(g o p@)) = B(9 © p@) = ALy o 9’ © pg o dam.

that is, F(coKer(f)) = coKer(dZ1M og opgo dq.m) as quotient objects of F(LaM).
Furthermore,

coKer(a] og opgo do.m) = coKer(d[fM og opq)
= coKer(g' o pgq)
= (L pp)

as quotient objects of F(L&M), where the first equality is valid by the item (iii) of Lemma
1.1.9, and the second equality via the item (iv) of this same lemma.

Thus the functor F : M — Cj4 is also dense and therefore, it is an equivalence
of categories?2. Since this functor is already a C-module functor, it follows that (F, d) is
an equivalence of C-module categories (by Definition 2.2.11). [ ]

22 See Theorem 1.3.4.
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6 FINAL RESULTS

This final chapter is devoted to the proof of our main result, and we begin by
showing two important lemmas that are going to be used. The first is about a natural
isomorphism involving the inverse of the Yoneda Lemma, and the second is a certain
naturality involving internal Homs and can be found in [5] as Lemma 2, and in in [3] as
Lemma 2.6. At last, we present an example giving an application for our theorem based
on Theorem 3.8 in [19].

Let C be a finite multitensor category and M a locally finite and module category
over C with the module product ® : C x M — M being k-linear and left exact in the first
variable.

Consider X € C and an universal element! (Hom(M, N), evy, n) of the repre-
sentable functor Hom( _ ®M, N). Our first objective here is to define a family of
isomorphisms

v ={ym = WNevy )X Homa(X@M, N) — Home(X, Hom(M, N))}pre aqon

between the functors Hom(
check this is natural in M©P.

N) o (X® _ ) and Homg(X, _)o Hom( _,N), and

Lemma 6.1. Let (Hom(M, N), evy, ) be an universal element of its respective functor
and X € C. Then

v =fym = Nevy p)x : Homa(XEM, N) — Home(X, Hom(M, N))} e aqo0
is a natural isomorphism in M9P,

Proof. Let f be a morphism in Hom (oo(M, M) = Hom\((M’, M), and (Hom(M', N), evpy n)
be an universal element of its respective functor. The naturality of y can be translated
into the commutativity of the diagram

Hom(X@&M, N) —™ . Hom(X, Hom(M, N))
HomM(X®f,N)l lHomc(X,Hom(f,N))
Hom y(X@M', Ny — ™ Homa(X, Hom(M', N)).

By noticing that WN(GVM/,N)X is an isomorphism (in Set) we’ll verify the equality
wN(evpp ) x ((Home(X, Hom(f, N))oy ) (h)) = YN (eva ) x (v mroHom p (idx &, N))())
for every h € Homy(X®@M, N). We have

WN(eviy N x((Home (X, Hom(f, N)) o yp)(h) = YN (evi n) x(Home (X, Hom(f, N)) (v p(h))
= WN(evy n) x(Hom(f, N) o yp(h))

T Notice that here we're using the notation introduced in Section 5.2.
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= WN(evyy N x(Hom(f, Ny o (WN(evy ) (H)
= evyy n o (Hom(f, N) o (¥N(evpy n))x (h)@idyy)
= evyy n © (Hom(f, N)@idyy) o (YN (evi n))x (M @idyy)

© eV © (hiomu,ny D1 © (YN (v IR (M) Bicthy)
= evy v © (YN (evy N))X (W Bidy) o (idx@T)

= WN(evp n)x (N (evy )X (1) o (idx@F)

where the equality (x) holds via the definition of the morphism Hom(f, N) : Hom(M, N) —
Hom(M’, N) in C. This implies the equality

(Homc (X, Hom(f, N)) oy m)(h) = (ypr © Hom(idx &, N))(h)

holds and hence, Hom¢(X, Hom(f, N)) o yp = ypp © Homy(idx®f, N) as wanted. =

This following lemma asserts that whenever there is an adjunction between two
C-module categories, their internal Hom bifunctors are related in a certain way. Indeed,
the internal Hom bifunctor behaves as the Hom bifunctor when dealing with adjoint
functors.

Lemma 6.2 ([5], Lemma 2). Let F : M — N be a C-module functor with left adjoint
Fl-a . N' = M. Then there is a family & of isomorphisms in C

En.M : Hom  (F"2(N), M) — Homy:(N, F(M)),

forall N € N and M € M such that & = {En b myenorx v IS naturaP in NP x M.

Proof. We know that F/- admits a C-module functor structure by Theorem 2.3.2 which
we denote by (F’-a-, d). Firstly, we construct a natural isomorphism from

Rtiom,(n,F(my) = Home(__, Hom (N, F(M))) 10 Ryom ,(Franymy = Home( _ , Hom ,,(F"(N), M))

and use Proposition 1.4.6 to obtain an isomorphism Homy/(N, F(M)) — mM(F’-a-(N), M)
inC.

Let (Hom (N, F(M)), evN,,:(M)) and (MM(F’-&(N), M), eVFI.a.(N),M) be univer-
sal elements of their respective functors.

2 Between the functors Hom, ,( _)o(F"& x Idx) and Hom(

toC.

__)o(ldy x F) from /%P x M
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The functor _ ®N : C — N is left adjoint to Homx (N, _) : N — C (see
Proposition 4.2.1), so there is a natural isomorphism

0 = {0x N : Homp(X@N, N') — Home(X, Hom(N, N')}x nnecor sz

in C9P x N. Notice that eX,F(M) = (\PF(M)(eVN,/:(M)));(1
Given that F-2- is left adjoint to F, there is a natural isomorphism

& = {dp,u - Homp (F'2(N), M) — Homp (N, F(M)} iy pyerroe i

in V9P x M. We'll use that ¢’ = {dy = dxzn mlxec is @ natural isomorphism in C.
The next isomorphism is similar to the equation (15) in Lemma 2.3.1 which is

e = {ex = Homp(dx N, M) : Hom g (X@F & (N), M) — Hom (F"3(X@N), M)} xccop-

Finally, we consider the natural isomorphism given by the adjunction
(_ ®F"2(N), Hom(F"2(N), _), ¢), namely

@ ={ox.m = (YM(eVriam)x : Homu(XBF'2(N), M) — Home(X, Hom (F"2(N), M))}x myecorx a-

We then define the following composition of isomorphisms in Set

—1
Px.m

Rtiom ,,(F=(ny,m)(X) = Home (X, Hom v (FF2(N), M)) Hom (XS F!-a(N), M)

€X

Hom y,(F!-3(X®N), M)

Hompr (XN, F(M))

Ox,F(m)

Riom, (N, F(my)(X) = Home (X, Hompr(N, F(M))).

The family {0 x F(p) 0 by o ex o (p;(1 mixec is natural in C since it is the composition of
natural isomorphisms in C. Via Proposition 1.4.6 it follows that

. -1 ,
ENM = (emM(F/-a-(N),M),F(M)O¢@M(F/-a-(N),M)OamM(F/-a-(N),M)O‘P@M(F/-a-(N),M),M)(’de(F’-a-(N),M))

is an isomorphism in HomC(HomM(F/-a-(N), M), Hom/(N, F(M))) with inverse

-1 . 1 —1 — ;
ENm = (‘PmN(N,FW)),M © € Hom,/(N,F(M)) ° d)/HﬂN(N,F(M)) © GMN(N,F(M)),F(M))(ldmN(Nf(M)))'

We can explicit &y py as

ENM = (O Hom ,  (Fla(N), M), F(M) ‘bHomM(F/-a-(N),M)°5mM(F’-a-(N),M)O

®Hiom o (Fra(N), M), M) 1GHom,  (F12 (N),m))

1
= Otom,,,(F'=(N), (d’Hom (Fla(N),M )(EMM(F’-a-(N),M)((pmM(F’-a-(N),M),M
(idhom ,, (F'a(N ))))
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= 0 Hom,,(F' (N),M),F(M) (P Hom, (Fa (N), M) (EHom,(F (N), M)

(‘PM(eVF/-a-(N) M) Hom, (F=(N),M)DHom, (F1=(N),m)))))

= Otom ,,(F'=(N) (d’Hom (Fra(N),M) (€ Hom,,(F2.(N),M) (8VF1a (n), 1))

= OHom, ,(F=(N) (CP/./om (e my (HOMA (Driom , (Fra Ny, vy N M)(€VELa () M)
= O iom,, (F (N), M), F (M) P Hom, (1. (N), M) (BVFL2.(N), M © Otom,,,(Fa-(N),M),N))

= Otom, ,(F'=(N) (<|>HomM Fa(N),MyzN,M(EVELa ()M © AHom ,, (F'a(N),M),N))

=(‘1’F( )(eVN,,:( )))HomM(F’a( (d)HomM(F’a(N),M)@N,M(evF’-a'-(N),/\/lO

dHom,, ,(F"2(N),M),N))-

Notice that this particularly gives us a certain relation3 between eVn,F(m) and eVeia ) m
given by

eVN,F(M) o (&NJ\/[@lld/\/) = d)mM(F’-a-(N),M)@N,M(eVF’-a-(N),M o de(F’-a-(N),M),N)'
(35)

In fact,

evn, £m) © (Enm@idy) = ¥FMevy ) Horm  (Fa(N),M)(EN, M)

= 1y':("”)(evN,F(M))MM(/rl-a-(N),/\//)((“’F(M)(e‘/N,F(/\/’)))L?ﬂM(F’-a-(N),/\/l)
(& Hom,, (F2(N)MyEN,M(EVELa(N), M © OHom ,,(F'2(N),M),N)))

= P Hom ,, (F2(N),My=N,M(EVELa(N), M © FHom , ,(F'a(N),M),N)-

Moreover, £x1,, may be written as
N,p May

_ 1 1 1
'5/\/1,M = (© Hom, (N,F(M)),M © €Hom (N, F(M)) © ¢@N(N,F(M)) © Oiom, (N, F(M)),F(M))

(idHom (N, F(M)))

1 1
€ Hom N, EM) D Hom, (N, F () (CHom, (N, F (M), F ()

= @ Hom, (N, F(M)),m(
(idriom (N, F (M)
= @ Hom, (N,F(M NM(EHy Hom,(N,F(M ))(¢@N(N,F(M»(“’F(M)(eVN,F(M))mN(N,F(M))
(idHom (N, F (M)

= @ Hom,(N,F(M)),m(Hom v (d Hom (N, F(M)),N> M)(d)%N(N,F(M))(eVN,F(M))))

)M
= ©Hom,(N,F(M M((bHomN N, F(M)) (EVN,F(M)) © @N(N,F(M)),N)

M 1 1
= (WM(evera vy ) Hom, (N F(M M) Hom (N, FmyEN,M YN, F(M)) © Friom, (N, F (), N)-

3 This relation is only used in the proofs of our next theorem and corollary.
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We'll show that &1 = {&3},, - Hom (N, F(M)) — Hom ,(F"& (N), M)} (n pyerrorc aq i
a natural isomorphism in A/%P x M, i.e., the commutativity of

-1
‘EN,M

Hom (N, F(M)) Hom (F'-3(N), M)
HomN<f,F<g)>[ lHornM(F’-a-(f),g)
Homp(N', F(M')) Hom ((F"-2(N'), M')

N

for all f € Homysoo(N, N') and g € Hom (M, M').
The Remark 1.3.12 will be used in this verification, i.e., the commutativity of

5—1
Hom (N, F(M)) —*—— Hom ((F'-3(N), M)
Hom (N,F(g)) Hom ((F!3(N),g)
5,_\,1,\/,/ | ]
Hom,(f,F(9))|  Hom (N, F(M")) : Hom \((F"(N), M) | Hom,,(F"#(f).g)
Homp(f,F(M)) Hom p 4 (F!-2(f),M')
Homr(N', F(M')) —— Hom \((F"2-(N"), M").
N/ M/

For the first rectangle, let (Hom (N, F(M")), evy, F(vy) be an universal element of its
respective functor. Then
Hom (F"(N),g) o &5/ g
= Hom  (F"#(N), g) o (¥M(evira ), M))HomN N,F(M (d’HomN N,F(My)EN, M EYN,F(M))°
o, (N.F(M).N)
TIIN ) )
= Hom((F"#(N), 9) © © Hom, (N, F(M). M tiom (v, F 5N, M EYN,F(M)°

o, (N, F(M).N)

= (Home(Homyr(N, F(M)), Hom ((F"(N), g)) o © Hom, (N, F(M)),M)
(Prtom, (N, F (N, M VN, F(M)) © Oriom (N, F () N)

D (@ biom, (v, F(wy r © Homaq(Homy (N, FIM)SF'4 (N), g))

(Do, (v, F(MYFNMEVN,E W) © Oiom, (N, F(hy). )

= @ Hom, (N, F(M)),m (Hom vy (Homy (N, F(M)ZF'2(N), )
(Do, (N, F (N, M EVNLF (M) © Ao, (v, F(a). )

-1 1
= @ Hom,(N,F(M)),m (g © (me(N,F(M))@N,M(eVN,F(M)) ° dHom, (N, F(M)),N)
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= @MN(N,F(M»,M/(HomM(F"a'(mN(N, F(M))@N), g)
-1 1
(@ Hom, (N, FmyzN, M EVN,FM)) © Driom (N, F (M), N)
= @ Hom,(N, F(M)),M'((HomM(F (Homy (N, F(M))®N), g)o

.a.
¢HomN N,F(MyEN, M) (BVN,F(M)) © dHomN(N,F(M)),N)
(b)
= @Hom, (N,F(M)), ((q)HomN(N F(M))&N,M°

Homys(Hom (N, F(M))@N, F(9)))(evn,F(m)) © %N(N,F(M)),N)
= © Hom (N.F(M (d)HomN N.EmyaN,m (Homy (Homy (N, F(M))&N, F(g))(evi,Fm)))
C"P@N(N,F(M)),N)

= © Hom,y (N F(M), M (D Fiom (v Fwyzn,m (F(9) © @i Fm) © Driom (v, Fy )
(0)

= (PMN(N,F(M)),M’(q)ﬂﬂN(N,F(M))@N,M’(eVN,F(M') o (Homy(N, F(g))®idy))e
oo (N, F(M).N)
= © Homy, (N, F (M) M (D Hom, (N, F(MyEN, M
(HomN(HomN(N F(g))®idn, F(M")(evn F(mr))) © O’;:,107,,%/\/,/--(/\//)),N)
= @ Hom,(N,F(M)), (((bHomN(N F(M)@N, M °

Homys(Hom(N, F(9))®idy, F(MI)))(eVN,F(M’)) o dltILimN(N,F(M)),N)

b _.
2 P Hom, (N, F (M), ((Hom v (F-2 (Homy (N, F(g))@id), M')o

Do, (N, £ ()N M) VN, F) © Do (N F(v) )

= © Hom,(N,F(M)), wr(Hom (F'3 (Homy (N, F(g))®idy), M')
((bHomN N,E(M))EN, M (YN, F (M) © HLmN(N F(M)N)

= @ Hom,(N,F(M)), (d’HomN(N FiMyaN,m (EVN, F(M')) o F2(Homy (N, F(g))®idy)o
rtom, (N F(M).N)

(d) —1 —1
= ‘PMN(N,F(M)),M’(d’mN(N,F(MI))@N,M/(eVN,F(M’)) © dmN(N,F(M’)),NO

(Homy (N, F(9))®idFiany))

= (@ Hom,(N,F(M)),m © Homnq(Homr(N, F(g))®idE1a (), M'))
(d’HomN N,F(M)EN,M (BVN,F()) © d/t/107mN(N,F(M’)),N)

2 (Home(Homy (N, F(g)), HomM(Fl'a'(N) M")) © @ Hom, (N, F (M), M)
((bHomN NN (VN (M) © Diiom (v, F () )

= Home(Hom (N, F(g)), Hom v, (F"3(N), M)(® Hom, (N,F (M), M

—1 —1
(& om (N, F(MyEN, M (VN F(M) © Driom, (N, F (M), N))
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-1 1
= @ Hom, (N,F(M)),M (P riom . (N, F (M @N, m (EYN,F(M) © Arom, (N, F(M),N)°
Homy (N, F(g))
M’ —1 —1 1
= (Y7 (&Y () D) tom, (v, F () (P Hom, (v, F ()N, (8N F (M) © Otom (v, F (), )
Homy (N, F(g))
= gﬁ’M, o Homr(N, F(g))
where the equalities labeled with (a) hold by the naturality of ¢, the ones with (b) are due
to the naturality of ¢~ and (c) is via the definition of the morphism Hom (N, F(g))
Homeg(Hom (N, F(M)), Homx(N, F(M"))), i.e.,
F(g) o evN’,_-(M) = evN’,_—(M/) o (HOITIN(N, F(g))@ldN)
At last, the naturality of d~1is used in (d).
For the second retangle, let
(Hom p (F"2(N), M'), eVE1a () i)
(Hom p((F"3(N'), M'), eV1a(yy pp), @nd
(Homp(N', F2-(M")), eviyr )
be universal elements of their respective functors. We now check the equality

WM (eVeia(y M) Hom, (N F (M) (HOM 4 (Fl'a'(f)sM/)oaR;,M')=WMI(eVF’-a-(N/),M’)MN(N,F(M/))(E»R;/,MIOHomN(fy F(M")))

to get Hom v, (Fa(f), M) o £31 1, = £x1 1  Hom (F, F(M')*. In fact,

WM/(eVF’-a-(N’),M/)MN(N,F(M’))(Hﬂ"'/\/l(F/'a'(f)s M') o &5/ 1p)

= eVia iy © (Hom g (F-2(f), M') 0 &3] 1) @idEra )

= Ve © (Hom g (F'2 (), M)Bidpia ) © (EN 1y BidEran)

2 everaywr © (kiom, (71 vy BF (1) © (Ex) pp idlpra )

= eVera(n) mr © (EN p @idia ) © (Ghom, (v, Fry EF 2 ()

= M (eVrra (), 1) Hom, (N, F () (EN ) © (@riom (v, Feary B2 ()

= \PM/(eVF’-a-(N),M’)MN(N,F(M'))((PMN(N,F(M’)),M’(d)/_-;ﬂ (N, F(My)aN,m (EYN F(mr))°
dﬁ1omN(N Fovry.N)) © (irom (v, @ F ()
= O Hom, (N, F(M) M (P Hom, (N F M) M Do, (v, F M)z N (VN F(W)°
dF/omN(N Fmy),N)) © (iAHom (N, Fvy)BF 2 (f)
d’HomN N E(M)EN, M (EYN,F (M) © %N(N,F(M/)),N o (idlkiom, (N, F(M) B F ()

la.; — 1
= (bHomNNF(M’))@)NM’(eVN Fm) © F % (idom,. (N, F (M) ®) © driom (N E(MY),N

b WM (Vi iy ) Hom (N F ) HOMe (Hom (N, F(M")), Hom . (F"(N'), M')) — Hom(Hom, (N, F(M)&F"2(N'), M')
is an isomorphism (in Set).
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= Homq(F"# (idom,, (v, F M) @0 M) S iom. (v, £ vz, m (VN F(u))o
Ao, (N, F (M), N
= (HomM(F/'a'(idmN(N,F(M/)@f) ) o d>HomN N,E(MY)EN, M) (YN F(M))°
dltlomN(N F(M),N!
(d)HomN N EMyEN e © HOmar(dbom (v, vy ®F, FIM))(eviy £ (ury)o
dF/omN(N F(M)N/
= iom, (v, F ()N mr (HOMA (idkom (v, F ) T FIM)) Vv F () © Ao v, Fry v
(bHomN N F(MyyEN M (BN F(M) © (BHom, (N, F v @T)) © dﬁLmN(N F(M), N
(bHomN N FyEn e (VN F () © (Home(F, F(MN)id)) © A v, F )N
= Ohtom, (N, F ()N (HOMA (Homy(f, F(M") iy, F(M')(evivr ()0
dF/omN(N F(M)N/
= (d’mN(N,F(M’))@N’,M’ o Homy(Homy(f, F(M'))idns, F(M')))(evnr, Fury)o
Aiom, (N F(M) N
2 (Hom,y (F (Homy (1, F(M)Sidy), M) © Gzl v oy )€, F )0
Ao, (N, F(M), N
= Hom (" (Hom(f, F(M)Bidn), M) (G v F sy €0 F )
dF/omN(N F(M)N/
¢HomN N F My an (VN Fury) o F3 (Homy(f, F(M)Bidn) © dpm (v Fiy
= d)HomN N Fy s VN ) © Oom (v F ) e © (HOMAA(T, F(M) @i )
= WM (evra (v 1) Hom (N F(M’))((WM/(eVF/-a-(N’),M’))ﬂﬂN(N’,F(M’))
(S riom, (v, (VN F(1) © Do (v F ) ) © (HOMAAF, FIM)Bidpa )
= WM (V1 ), 1) tom . (N F(419) (9 Hom (N F (M) M P o (v F e (VN ()
driom, (v, F(ury) ) © (HOM(f, F(M')@idpia )
YM (evELa vy ) Hom, (N, Fn) (En ) © (HOm(F, F(M)@idEra )
eVera vy © (En M Bidgia ) o (Hom(f, F(M)Bidgia )
eVerany, mr © ((Enr mr © Hom(f, F(M’)))@id,_—,_a_(,v,))
YM (eviera iy ) Hom, (N, F vy (En 0 Hom(f, F(M')))

in which the equalities (e) and (f) come from the definition of the morphisms
Hom y((F'-2(f), M) and Hom (f, F(M')), respectively.
Therefore, Hom (F-2(f), M') o aﬁM, = 5,—\}, v © Homy(f, F(M')) implying that
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£~1 (and hence &) is a natural isomorphism in AP x M. n

The following theorem is our main result. It uses the Theorem 5.4.1, Lemma
6.2 and some minor equivalences to give another method to check whether two exact
indecomposable C-module categories are equivalent. To be under the hypothesis of
the Theorem 5.4.1, let C be a finite tensor category, and M and N be locally finite
and exact indecomposable C-module categories with their respective module product
® being k-linear and left exact in the first variable.

Theorem 6.3. Two categories M and N are equivalent as C-module categories if, and
only if, there is an object 0 # M € M (respectively, 0 # N € N') and a C-module functor
F : M — N admitting an adjunction (F la. F ¢) such that

SF . midey) - (F'2 0 F)(M) — M
(respectively, o Fl.a.(N)(idFl.a.(N)) : N — (F o Fl-&)(N)) is an isomorphism in M (in N').

Proof. Suppose that G : M — N is an equivalence of C-module categories. We
know that there exists a C-module functor H : N' — M satisfying Go H ~ Idy and
HoG ~ Idy,, and also H is left (and right) adjoint to G (see Proposition 1.3.9). Moreover,
the counit and unit of this adjunction are natural isomorphisms® implying that ey, and
cy are isomorphisms, forall M € M and N € .

For the converse, let (F,b) : M — N be a C-module functor, (F-&, F, ¢) an
adjunction with counit (see Proposition 1.3.8)

e ={em = dE ) mlidrm) - FH2(F(M)) = My pg

and unit

¢ ={on = by pragnidrany) : N = FEM M)y,
0 # M an object in M and ey = ¢7:1(M),M(idF(M)) : (F-2 o F)(M) — M an isomorphism
in M.

Via Theorem 5.4.1 there is an equivalence
Fi = M — Criom, (M)
M’ — Fy(M') = (Hom v (M, M'), 0 tom , ,(v,m))
h — Fy(h) = Hom (M, h)

of C-module categories where the algebra Hom (M, M) = (Hom (M, M), u, u) was
defined in the Section 5.2 with multiplication

H=HMMM = (\PM(eV/VI,M))T—;ﬂM(M,M)@mM(M,M)(eVM,M o (idlkjom (M, M) B VM, M)
Mom, ,(M,M),Hom,, (M,M),m), @nd unit
u = (¥M(evi )7 ().

5 This follows (by construction) from Proposition 1.3.9.
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For every M’ € M, let us define By = EF(my,mr © Hom (e, M') which can be seen
as the composition®

Hom (M, My 22 & o ((F-2 o FY(M), M)

EF My

Hom(F(M), F(M"))
of isomorphisms in C. By Proposition 5.1.9, Hom,/(F(M), F(M)) is an algebra with
multiplication 3y o po ([3;/} ® BX}) and unit 3y o u, the morphism 3, is an algebra
isomorphism and the algebras Hom (M, M) and Hom,(F (M), F(M)) are Morita equiv-
alent, i.e., there exists an equivalence

G : CHom, ((M,M) — CHom,(F(M),F(M))
(X, px) — G(X, px) = (X, 0)y) = (X, pr(/dx®6M))
g— G(9) =9

of C-module categories’.

Affirmation: The algebra structure (multiplication and unit) of Hom/(F (M), F(M)) de-
fined as in the Section 5.2 is the same as the one given in terms of the algebra
Hom (M, M), that is,
Bro o (B @ By) = LE),F(M).F(M)
and
B o u=FMieven )7 Urmwy).

In fact, by denoting the objects A := Hom (M, M) and B := Homx(F (M), F(M))
we get
B o U= Eruy.m © Homp(ep, M) o (WM (eviy i)y ()

= Ep(my.m © Home(1, Hom y(epg, M) (WM (evig m)7 " (Ing))

= Le(uy,m © (Home(1, Hom y(eps, M) o (WM (eviy )7 ") ()

D &y © (Home (1, Hom ey, M) o v 1))

b —
=) EvF(M),M o (VF/-a-(F(M)) o Homy(1@ep, M))(Iy)
= E’F(M),M (0] ’}/F/a(F(M))(HomM("@eM, M)(/M))

(

(©)
= EF(M).M © YFra(F(m))(€m © IFra(F(uy)
. (WF(M)(eVF(M),F(M)));}ﬂ w(Fra(F(M)),M) (d’mM(F’-a-(F(M)),M@F(M),M

(EVELa (F(h),M © FHom,,, (Fr(F (M), M), F(M))) © Y Fra () (m © pra Fu)

M -1
= (Home (v pra ey (€m © Irra(rmy)s B) o (¥ F )(eVF(M),F(M)))MM(F/.a.(F(M)),M))
(P Hom(F'2 (F(M), My (M), M VF"2 (F (1)), M © FHom . (F' (F(M)),M), F(M)))

6 We'll proof in the following result that the family 8 = {8} e is a natural isomorphism.
7 The C-module functor structure of G is the natural isomorphism identity /D.
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d _ —
(=) ((WF(M)(eVF(M),F(M)))1‘I © HomN(VFl.a.(F(M))(eM o /F’-a-(F(M)))®F(M)’ F(M)))
)

(b Hom ,, (F1a(F (M), M)@F(M) M(EVELa ()M © FHom , (F (F(M)), M), F(M))
= (WM (evi i, )7 (HOmur (Y Frar () (e © Tra ey BF (M), F(M))
)

<

(D Hom, ,(Fa.(F(M)), Myz F(M),M(EVE 2 (F(M)),M © DHom,, ,(F2 (F(M)),M),F(M))))
= (WM (v Fm))T! (Homar(y pra ey (€m © Trra ) @idEy FIM))o

P Hom,,(F+(F (M), M@ F (M) M) (EVFra.(F(M)),M © FHom,,,(Fa(F(M), M), F(M))

(e) -
= WM (eve Fan) T (D13F MmO

Hom p (F"2(y pra ey (€0 © lra () BidE ), M) (VELa ) mo
AHom, ,(F'=(F(M)),M),F(M)))
= (wFM )(ev,:( ))1 (P1mF(M),M
(Hom(F'-2 (y,:/_a_(,_—(M))(eM o Irra.(F (M) RIdE(M)) s M)(€VELa (F(my), mO
AHom ., (Fa(F(M)),M),F(M)))
= (WM evenn, Fm))7 (P1mr iy m(EVELa (F My, M © Tiom , (Fa-(F My M), F (M)°

Fl-a (y,__,,a,(,_-(M))(eM @ /F/.a.(/:(M)))@idF(M))))
() -
= (WM evem Fam)1! (S1zrm,m(eVELa (Fuy 1o
(YFl.a.(F(M))(eM o /F/a(F(M)))®F/a(IdF(M))) © d1,F(M)))
= (WM evey Fu)?] (b1zEmy,Mm(€VELa (F(My), MO

(v,_-/.a.(,:(M))(eM o IF’-a-(F(M)))®/dF’-a-(F(M))) o d1,F(M)))

(9) -
= (WM eveun, Fmn)7! (@1 Fmm(EM © lra ) © 1, Fm))

h _
D WFM v Fam)T (S1Emm e © F-2 Uran)

D WFM eve ) ran)T (D1 @S )

= (WM (eveun Fan)1 (e )

where the equality (a) holds via the definition of the natural isomorphism

v =tym = WMevy )7 : Homa (1M, M) — Home(1, Hom (M, M)} pe aqon

(see Lemma 6.1), and (b) uses its naturality. The naturalities of I, ¥*M)(eveuy £(a), &

and d are used in the equalities (c), (d), (e) and (f), respectively. The equality (g) holds
by noticing that

ey © //:/.a.(/:(M)) = YT:’.a.(F(M))(VF/-a-(F(M))(eM © IF’-a'(F(M))))
= WM(ev,_-/.a.(,:(M)),Mh (Y Fra(F () (€M © lEra(E(my))

= eVF’-a-(F(M)),M o (y,_-/.a.(,:(M))(eM 9 /Fl.a.(F(M)))@idF/.a.(F(M)))s
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and (h) via the triangle diagram of the C-module functor (F/-2, d) (see Definition 2.2.6).
A slight different (and more general) version of the equality

HEM),F(M),F(M) = Bpono By © Bw)

has to be verified on the next corollary (Corollary 6.4). So to not solve it twice, we now
check that a more general equality holds which is

WEM)F My, EM) = B © i © (Bip @ Bif) (36)
= EF(M),Mr © Hom (ey, M) o Hm,M, M ©
((Hom (e}, M') o 57—'1(/\/1),/\4/) @ (Hom (€, M) o 57:1(M),M))
= EF(mymr © Hom (e, M') o pupg p mpr0
(Hom v(e, M) & Hom (€}, M) o (. © EF I )

for all M’ € M. This equality can described as the commutativity of the diagram

eM M Y®Hom » 4 (eps ,M)

l%mM M, M) @ A

M) M MF(M)

"Hom v (F4(F(M)), M') & Hom((F"2 (F (M)} 7N

Hom (F(M), F(M')) @ B

KEM), F(M), F(m) K, m

Hom ((F"2(F(M)), M') Hom (M, M.

Hom)/(F(M), F(M"))

EFmym Hom, (em,M’)

To make this easier, let us consider the morphism

M —1
v=(¥Y (ev,_—/.a(,:(M)) M’))HomM(F’-a-(F(M)),M/)®mM(F’-a-(F(M)),M)(eVMsMIO
(HomM(eM ) )®IdM) (/de(F’-a-(F(M)),M’)geVF’-a-(F(M)),M)O
mmM(F"a'(F(M)),M’),mM(F"a'(F(M)),M),F"a'(F(M)))

in C from Hom \((F'-3(F(M)), M) @ Hom v((F"-2-(F(M)), M) to Hom v((F"-2-(F(M)), M')
and check the commutativity of the diagram

eM M Y®Hom »(eps M)

l%mM M, M) @ A

M) M ®£F(M)

"Hom v (F'4(F(M)), M') & Hom((F"2 (F (M)} 7N

Hom) (F(M), F(M')) @ B

HEM), F(M),F(M") v Hmmmr

Hom)/(F(M), F(M")) Hom,y(F"2(F(M)), M') Hom (M, M").

E‘F(M),M’ HomM(eM,M’)

Let us define C = Hom ((F-&(F(M)), M) and C' = Hom (F"-&(F(M)), M),
and see that the first rectangle is commutative. In fact,
&F ( )M/OMF( ), F(M),E(M7) © (EEM), M @ EF(M),M)
F(M' -1
= &F) Fovymr © (¥ ( )(eVF(M),F(Mf)))mN(F(M),F(Mf))@B(eVF(M),F(M’)O

(’dHomN (M), E(M") D VEM),E(M)) © MHom, (F(M),F(M")),B,F(M)) © (EEM), M © EEM),M)
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= Ep(my.m © (Home(EF @ EF(uy, M Homp(F(M), F(M')))o
(F M vy, F M) Eom, (Fw, F vy 8) (VE(M), F(a©
(idHom, . (F (M), F (M) @BV (M), F(M)) © MHom,(F (M), F (M), B,F(M))
= e © (VM eve ) Fan) oo
Homp ((EF(my,mr © EFmy, MEF (M), F(M))(evEmy, Fomry©
(idHom,(F (M), F (M) D VF(M),F(M)) © MHom,(F(M),F(M)),B,F(M))
= 57:1(/\4), M © (WF(MI)(eVF(M),F(M’)))_c1l®c(H0m/\/((£F(M),M’ ® EF (v, M) IdE(m), F(M'))
(V) F(m) © (Hom, (F(M),F (M) EEVE(M),F(M)) © MHom,(F(M),F(M").B,F(M)))
= E}}M),M/ o (wF (MI)(eVF(M),F(M’)))E;/@C(eVF(M),F(M’) o (idHom, (F(M),F (M) DEVE (M), F(M))°
Mgom, (F(M),F(M?),B,F(M) © (EFM), M @ EEM), MISIAEM))
= m o (VT @vE ) P T c(OVE M), Fiv®
(iAom, (F(M),F(M) ©VEM), F(M)) © (EF My, M R(EF M), MOIdE)) © Mer ¢, F(m))
= Erm © M even, ) s o(evF . Fmy©
(EFMy), M DVEM), F(M)) © (Ao (EF M), MBIdE(Mm))) © Mer ¢ Fm))
= Ermymr © (VM (evr(, F(M'>)>‘c1f®c(eVF(M> F(M)°
(EF (M), m @idE) © (ido@(evEwmy, Fvy © (EFM),MRIdE(n)) © Mer ¢, F(m))
55}1 o (VM evenn Fu /)))_C’®C(¢C’®F(M),M’(eVF’-a-(F(M)),M'OdC’,F(M))O
(’dC’®(eVF( o (EF(My,MRIdE(m)))) © M1 . F(m))
=€F(M),M/ (‘PF(M)(G‘VF(M), (M/)))_01/@)C((Hom/\/(idc@(eVF(M),F(M)O

EF(my,MPidE(m)), FIM)) 0 & crzrmy ) (€VELa vy i © Do Fmy) © Mer e, Fmy)

e . _ / B
= £rim © (VM eveuy Fn ’)))C1’®C((¢C’®(C®F(M)),M’O
Hom M(F’ A (ido @ (eVEmmy, FM) © (EFmuyMBidEm))), M))(€VEra ey mr © dorFiuy)°
mer,c,F(M))

_ 5/_-1( v © (WF(M’)(eVF(M)’ ,_-(M/)))_C1I®C(d)Cf@(C@F(M)),M/
(Hom(F"#(idc eV, Fim) © (EFuMBidEmm))s M) (eVera ) m © Ao Fm)e

mer . c,F(M))
= &7 yF (M) =1 o
= Ermy,mr © ( (eVEmy, F(m ')))cu@c(fl)c'@ caF(M)),m (EVELa(F(My), MmO
dor,Fmy © Fl-2(ide@(evewy Fmy © EEmy,mBidem)) © Mor ¢ Fw)
= 5‘1 o (wF (M)(eVF(M) F(M /)))E/®C(¢C@(C®F(M)),M/(eVF/-a-(F(M)),M/O

(’dC’®F/ % (evEm), Fm) © (EFm),MDidEwm))) © dor czrmy) © Mer,c,F(wy)
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(k) - ' -
= EF}M),M/ o (yF(M )(eVF(M),F(M')))c1/®c(¢C@(C@F(M)),M'(eVF’-a-(F(M)),M’O
(ide F" 2 (b carm,m(eVELa(Fy,m © de.Fu) © e carm) © Mor.c.F )

F(M

() ,— / _
= iy © WM eve g Fu) Be c(O ormca My m(€VELa (E ) Mo

(ide @ (€y) © DT rw mlbcarvym(eVEaEmwmy.m© de.Fm)) © Ao caruy)°

mer ¢, F(M))

F(M)(eVF(M),F(/\/lf)))_c1/®c;(‘1>C/@(C@F(M)),M’(e‘/F’-“*-(F(M))JWO

= Ermy o (¥
(ide @€ © eVeraEuy,m © de.Fu) © Ao carm)) © Mer,c,Fu)

F (M/)(eVF(M),F(M')))_c1/®C(¢C’@(C@F(M)),M’(eVF’-a-(F(M)),M’O

= Ermy o (¥
(ido @) o (idoBeverary.m) © (ido@de £ © dor.csrmm) © Me,.c.Fm)

(m) ,_ , i
= E'F1(M),M’ © (WF(M )(evF(M)1F(M')))C1’®C(¢C’®(C®F(M)),M'(eVM,M’O

(Hom,v(ep) , M")idy) o (ido @everapy m) © (Do @dc Fm) © der carmy)°
mer,c,F(M))

= € © (VM Ve Fu)C s c((Homa(me ¢ py, FIM) © b orscarmy.m)
(evi,m o (Hom (e , M) Bidy) o (ide@evirar gy m) © (ide@de Fwy) © dor csrmmy)

() a.

&7.—1(,\/,)7,\,,/ o (‘PF(M')(eVF(M),F(M/)))E®C((¢(CI®C)@F(M),MI o Hom(F' (mer c.ramy)s M)
(evin,m o (Hom (€, M Bidy) o (ide@everar gy m) © (ide@dc Fy) © der csrmmy)
= E}}M),M/ o (‘YF(M/)(eVF(M),F(M/)))_01/®C(¢(C/®C)®F(M),M/(HomM(F /'a'(mC',C,F(M))s M)
(evi,mr © (Hom y(ey), M) Bidn) o (ido@eviiar . m) © (ido®de Fmy) © der csrmmy)
= &r i © YT M v Fn))Be (e oymr M (€vimr © (Hom v (ey] , M)Bidy)o
(ido®eveLa(rmy M) © (iAo ®dc Fy) © der carmy © F2(mer ¢ rm)

(n) _ i _
= & © (M Ve, Fu)) B o o (o cymr My (€Y mro

(Homv(y , M')Sidy) o (idcEeveia e uy,m) © Mo c,Fia(Fuy) © derac,Fm))
2)  _ ’ _ — .
& EF (MM © WM eve i, Fun))E e (Fevi o (Homa(ep) , M) @idy)o
(idc®@eVELarmy),m) © Mo c,Fra(Fm) © dorec,F(M)) © CcracyzFm)
= &xmn . © (M (eVr i, r ) D 0
Hom((C' @ CYBF (M), F(evy yr o (Hom v (ef} , M) @idjy)o
(ide @eveia gy, m) © Mor ¢, FraFmy) © doec,F(M)) © SoecmrmidicrscyzFm)
@ 57—‘1(/\/1),/\4/ o (Hom(C' ® C, Hom(F(M), F(evy mr o (HomM(eﬁ , M"®idy)o
(idc@eVELa(F(my),m) © Mo ¢, Fra(FM) © dosc,F(M)) © Ccrac)zF(M)))°

(w(C ®C)®F(M)(6VF( M C,®C)@F(M)))_1/®C)(id(C/@)C)@F(M))
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= EF (. © Home(C' @ C, Homy (F(M), F(eviy py © (Hom (6 , M) @idyy)o

(ido®eveLaEy),m) © Mer ¢ FraFmy © dors e, FiM)) © CcracysFm))

(WM eve ) (oo cimrm) Srectides crsrm))

= £y © Homy (F(M), F(evyy e © (Hom (6 . M) Sidly) © (ide @evira sy m)°

Mer ¢, Fla(F(Mm)) © dC’®C,F(M)) © C(C’®C)®F(M))°

(W(C/®C)@F(M)(eVF(M)’(C/®C)@F(M)))_C1’®C(id(C’®C)@F(M))

v 1 -1
= (Y™ (eVrraE(my),m ) Hom,, (F(M)F ) (@ Hom, (F (M), F M) E F (M), mr (EVE (M), F(M1))°
rtom, (F(M),F (M), F(my) © HOMAr(F(M), F(eviy o (Hom v (e . M) @idp)o

(Idc’®evF/'a'(F(M)),M) o) mC/’C’F/,a,(F(M)) ) dC/®C,F(M)) o) C(C/®C)®F(M))O

(W(C’®C)@F(M)(eVF(M),(C/@C)@F(/\/j)))_C1I®C(id(C’®C)®F(M))

= (Homg(Homr(F(M), F(evy,pr o (Hom (€}, M)®idy) o (ido @ evirar . m)°
mC',C,F/'a'(F(M)) © dC’@C,F(M)) o C(C/®C)@F(M) C/))O

M/ —_
(W (evF/a(F(M)),M/))@N(F(M F(M') )(d)HOmN F(M),FIM")Y®F(M), M’(eVF(M)sF(M/))O

) o (W(C RC)® —1

Ao, (F(M), F(M),F(M M evem (oo crFm) s clidorsoysrm)

(p) -
= (Y™ (V1 (uy) M e, (F (). (' Gy F (M) © HOMM(HOM\(F (M), F(eviy pro
(Hom (€], M)idy) o (ido Eevera raym) © Mer,c,Fra(Fuy) © 9ersc,F(u)°

=rla
CCeC)aF(M ))®F a(F(M)) ))((bHOmN M),F(M’))@F(M),M’(eVF(M),F(M’))O

)o (W(C/@)C)@F( )(ev,:

—1 .
rtom,, (F(M), F (M), F (M) m).(cocisFm)ceclidceaczrm)

= (\PM (eVF’-a-(F(M)),M’))ﬁﬂN(F(M),(C’®C)®F(M))(HomM(—HomN(F(M)’ F(eVM,M’o
(Hom (€], M)Bidy) o (ido Eevera raym) © Mer,c,Fra(Fuy) © 9erec,F(u)°
=£l.
C(C’®C)@F(M))®F a( (M)), C,)(CDHOITIN F(M),F(M’))@F(M),M/(eVF(M),F(M’))O

C'oC)aF 4
dF/omN(F(M),F(M/)),F(M)))O(‘1’( 2CFM (eve i (cwoisFm) osclidcsczFm)
M 1

= (Y™ (eVEra(F(my), M) Hom . (F(M),(C'= CYEF (M (d’HomN (M), F (M) F (M) M (BVE(M), Fwn)e
dF/omN( FM),E(My), F(my © (Homp (F(M), F(evy pr o (Hom (&3], M')@idy)o

(ide®evera(Fmy,m) © Mo, FraFmy) © dowc,F(M)) © Ccrec)sF(M) PidriaFuy))e

W& M vy cwcrsrm)Os clidorscysrm)

@) _
=" (W™ (eVEra () 1) Hom, (i (o' 0y ) (€M © B (VE() F)o

dFlZ)JN(F(M),F(M')) Fm) © (Homy (F(M), F(evy,pr o (Hom (€}, M) ®idpy)o
(ide @ evELa(F(my), M) © Mer,c,Fra(Fmy) © 900 CF(M) © C(cracyzFM) ®idFiaF(my))°

(\P(C/®C)®F(M)(eVF(M),(C’®C)®F( )))_C1I®C(id(C’®C)®F(M))
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= (Home (W= M eve ) o oyzrm)) o clidi s cyzrmm): €
(wM (evpia (F(M)),M/))ﬁﬂN(F(M),(C’Q@C)@F(M)))(eMI ° F/'a'(eVF(M),F(M’))O
O F ). © (O (F (M), Flevyg vy (Hom, (e, M')icy)e

(Idcl®eVF/.a.(F(M))’M) o mC’,C,F’-a-(F(M)) o dC’®C,F(M)) o C(C’®C)@F(M))gidF’-a-(F(M))))

P ((C'EOFF(M)(

B -
eVE(M),(C'oC)BF(M) C'eC
(id(c/®c)@F(M))®F/'a'(F(M))s M"))(epy o Fl'a'(eVF(M),F(M’)) © %N(F(M),F(M’)),F(M)O

((‘PM/ (ev,_-/_a.(,_-(M)),M/))_C1,®C o HOITIM

(MN(F(M)! F(eVM,M' o (MM(GX) , Ml)gldM) o (idC/geVFl.a.(F(M))’M)O

Mer ¢, FraFM) © doec,FM) © Corec)sFm) RidraFuy)))
= (WM (ev,_-/a( F(M)),M’ ))C,®C(HomM((‘P(C ®C)®F(M)(‘9VF(M),(C’®C)@F(M)))_C1'®C
(’d(C’®C YRF (M) )® 2 (F(M)), M) (ep o Fl'a'(eVF(M),F(M/)) ° d%N(F(M),F(M')),F(M)O

(MN(F(M)! F(eVM,M' o (MM(GX) , Ml)gldM) o (idC/@QVFI.a.(F(M))’M)O

Me: ¢, Fla(F(My) © doec,F(M)) © CcrecyaF M) DidraFmy))

M —1 l.a. 1
= (V" (evera(F vy ) crac(em © FH2 (eVe, Fovr) © dhiom,(Fm), Fm), F(m)°
(Homy:(F(M), F(evy,p © (Hom (€], M)Sicly) © (ideBevera (s y)m)°

mC/’C,,:/.a.(,:( ) o dC’®C,F(M)) o C(C’@C)@F(M))gidF’-a-(F(M)))o

((W(C/®C)@F(

= =<

)(eVF(M),(C/®C)@F(M)))_C1l®C(id(C’@)C)@F(M))@idF/'a‘(F(M))))

M -1 l.a. 1
= (Y™ (eVEra vy m)) owclem o F a (eVEwm),F(m)) © 'Hom,(F(M),F(M")),F(M)°
((Homp(F(M), F(evy pr o (Hom (€, M')idly) o (idc @evira ) m)°

Mer,c,Fra(FMy) © 9o c,FM) © Somcyarmy) © (VPR

(Ve (creoypFm)) Ceclidcracyzrum) DideaEuy))

(1) M _
= (WM (evia(ruy ) O clem o F 2 (Ve Fur)eo

Fl-a((Hom (F(M), F(evy y o (Hom (ep), M) @id)y) o (idcr@evEraFumy),m)e

Mer.C.Fra(F(M)) © dC’@C,F(M)) o C(C’@C)@F(M)) o ((\y(C/@C)@F(M)

(eVEm),(c'ooysFM)) O clidcscysrm)Bidemm) © Aol c.Fm)

= (WM (eVrra ey ) Crwc(em o F 3 (evemy e
((Homp (F(M), F(evy p o (Hom (€3], M)@idyy) o (ide ®eveia ), m)°
M ¢ FraFM) © 9oec,FM) © CoacyzsFmm) © (WEEOPFM)

(eVEw) (crec)mFM)) Creclidicrs oysF ) Bidrmmy)) © CFC’®CF( )
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(WM (evrra ()T clem © F-*(eve, Fue
(Hom:(F(M), F(evy,m o (Hom (e, M)Sidly) o (iderEevera sy, m)°
Me: ¢, Fla(F(M) © dorec,F(M)) © Ccrac)mF(M)IAF() © ((W(C®OFM)
(eVE(m).(c=oimFm)) Cac @ cacimrmm)®idrm)) © 9gsc, Fiu)

@ WM (eVEra (o ) e c(@m © F2(F(eviy pr o (Hom v (ep] , M)Sidy)o

(idc@eVErarmy),m) © Mo c,FraEm)) © Ao, FM)) © CCrec)mF(M)°

(((\P(C/@)C)@F(M) (ev

1
EVE(M),(C'2 CYBF (M) © F(M),(CoC)aFM))cac

(idy v cymE M) BidEM) © deis o F o)

= (WM (evria ey ) orwc(em o FH3(Flevy p o (Hom ()], M)Ridy)o
(idg eV m) © Mor o, FraFmy) © dosc,Fam)) © Fr 2 (Coscymrm))e
Fle(evew,cmcrmrmm © (VI Mieve (oo crzrm)dec
(id s oy F (M) BIdE (M) © Aons . F(m)

= (WM (everamy i) D c(em o FH3(F(eviy o (Hom v (ey) . M)Bidy)o
(ide Bevera ey m) © Mor o, FraEmy) © dorse,Fm)) © FH 2 (Cormcyzrm)°
F12(id( oo cymF M) © 9oac, Fm)

= (WM/(eVF/-a-(F(M)),M/))_C1/®c(eVM,M' o (MM(QX) , M')Ridp)o

(ide @eveia gy, m) © Mor, ¢, Fra(F(My) © dC'eC,F(M) © €Fta((C'oC)EF(M)°

F(cerscysrm) © 9eisc, Fim))

WM (eVEra F oy M) T c(@VInm © (Hom (€3t . M) Bidy)o

(ide @eveiagmy),m) © Meor ¢, FaFmy) © doec,F(M) © idFtacrscymF(M)°

dgec,F(m)

= (WM/(eVF/-a-(F(M)),M/))_c1/®c(9VM,M/ o (Hom (6] , M')Bidy)o
(idc@eVErarmy),m) © Mo c,FraEmy)) = V-

The naturalities of WF(M)(eve ) £(vr) and m are used in the equalities labeled with (i)
and (j), respectively. The equalities labeled with (k) are valid by equation (35), i.e.,

eVEMm),F(mr) © (E»F(M),M’gidF(M)) = ‘me(F’-a-(F(M)),M’)@F(M),M’(eVF’-a-(F(M)),M’ © de(F’-a-(F(M)),M’%F(M))’
and

eV Fw) © (EF.MDITEM) = b Hom, (712 (M), M)z F (M), M (EVELa(F ()M © Orom,, (Fa (F(M). M), F(w)-

The equality (I) holds by using the equation (3) while noticing that ey = ¢7:1(M)’M(idF(M)) :
(Fl-& o F)(M) — M is an isomorphism (in M), i.e.,

e o F'2(dczram m(€Vria sy .m © do.Fm)) = ¢C®F M Dcarmy,m(eVELaFmym © de.Fm))-
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Using the definition of the morphism MM(eﬁ,M’) in C we get (m), and via the
pentagon diagram of the C-module functor (F"-2-, d)8 we get (n).
The functor _ ®F(M) : C — N is left adjoint to Hom/(F(M), _ ) : N — C, and
the natural isomorphism is given by the family

(N (evemwy M)X : Homp (XBF(M), N) — Home (X, Hom (F(M), N))}x Nyecorx A
(see Proposition 4.2.1). By fixing X = C' @ C € C we obtain the naturality of
(N (evEm NG sc - Homy((C'®C)EF (M), N) — Home(C'®C, Homr(F(M), N)) e

which implies the equality (0).
The equalities labeled with (p) and (q) hold by the naturality of ‘PM'(ev,:/_a(,:(M)),M/)
and the definition of the morphism

Hom(F(M), F(evp py o (Hom M(e;,} , M"\®idy) o (idc@ev,:/.a.(F(M)),M)O
Mg ¢, Fla(F(Mm)) © dC’®C,F(M)) © C(C’®C)®F(M))’

respectively.
The equality (r) is slight similar to (g), i.e.,

= WCCOSFEM eve i crwomrm)cac

((\y(C’@C)@F(M) (ev,_—

id ¢ o 0)@FM)
_1 .
M), (c'o0eFM))oeclidcsczrm))

C'QC)RF(M _ , .
= eVen,cao@rm © (V2O M eve i osoimrm)) declidoscisrm) Didem)-

At last, (s) is valid by the naturality of the unit e and (t) is via the equality

idf1a o cyEFM) = EFta(cacizFm) © F 2 (Coscizrm)
(see Proposition 1.3.8). Next, the second rectangle is commutative because
Hom vy (ey, M) & g m o (Hom (€] , M) @ Hom (€3], M))
= Hom yy(ens, M) o (Y™ (€Vp,m) Fiom, (1, 10) Hom, (1) (8VM, M0
(idHom (MM © VM, M) © MHom ,,(M,M"),Hom ,,,(M,M),M)°
(Hom (€7, M') @ Hom (€3], M))
= Hom y;(ens, M) o (Y™ (€Vp, w1 Elom, (w1, 1) A (€M M © (ibtom (M1, M) E VM M)
MHom , ,(M,M'),AM) © (Hom (€}, M') © Hom (€]}, M))
= Hom,(ey, M') o (Homg(Hom (€], M') ® Hom (] , M), Hom (M, M'))o
\ad (evi,m) Hom (MM)2A MM © (iGhom (M) ©8VM M) © MHom, (M, M'),AM)
'Y Hom,i(em. M') o (W™ (Vi 1) Gl 0
Hom,((Hom (€ , M') ® Hom (€}, M)@M, M'))(eviy ppro

(idHom , (M, M) @€V, M) © MHom (M, M), AM)
8  Definition 2.2.6.
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= Hom (e, M') o (M (v ) a0
(Hom,((Hom (€] , M) @ Hom (€}, M)BM, M')(evy o
(idkom, ,(M,M)©EVM,M) © MHom ,,(M,M'),AM))

= Hom,(ey, M') o (‘PM/(eVM,M/))E@@c(eVM,M/ © (idHom, (M, M) ©EVM, M)©
Miom,  (,m),AM © (Hom v (e}], M') © Hom v (€p) , M))Sidyy)

¢ Hom (ep, M) o (WM (v ) or o o€V M © (idiom (M, M) BV p)o
(Hom (ep] , M@ (Hom (€ , M)idy)) © M . p)

= Hom (e, M') o (M (v m)) v o€V © (Hom py(e3) , MY eviy pp)o
(ide/@(Hom (e » M)@id)) o mer ¢ )

= Hom y (ey, M') o (WM (evp 1)) 5o €V, m © (Hom (€37, M')@icly)o
(ido @ (evp © (Hom(6y) , M)@idy))) © mer ¢ i)

Y Hom q(ens, M) o (WM (6viy ) Gl cleVia.ur © (Hom (€], M) Bicy)o
(idoB(eVEra Fuy.m © (idoBEY ) © Mer o m)

= Hom (e, M') o (M (v ) v o€V © (Hom (), M) Ricg)o
(ido @evEraFuy.m) © (idoB(idc®epy ) o mer ¢ m)

D Hom(ens, M') o (WM (6vg )G cl€Vinar © (Hom (et , M) icdyy)o
(ido @evEraFy.m) © Mor,c.FraE) © (ide ® ide)Fey))

= (Homg(C' @ C, hipg(ens, M) o (Y™ (evpy i)V G 0) €V, © (Hom (6pf , M) Bichyy)o
(idg @ evera M) © Mor o FraFmy) © (ide: @ ido)Eep))

= (Home(C' & C, hipg(em, M) o Vjy)(evipr © (Hom y(ey), M) Sidy)o
(ido®eVEra e .m) © Mor,c.FraFuy © (der ® ide)@ey )

2 Y ragrany © Homu((C' © CYens, M))evi uy  (Homy (e, M) Sidy)o
(ido@evELaEum.m) © Moo, Fraruy © (der @ ide)@ey )

= (Y™ (evEra muy ) B c © Homa((C' ® C)@en, M) (evi, o
(Hom y(ep) , M)Bidy) o (ide@evira ) m) © Mor,c.Frarmy) © ((der @ ide)@ey))

= (WM (eVpra (F(uy) ) Do c(HOMM((C' @ C)Ben, M') (Vi o
(Hom (e, M')Bidy) o (id Bevira ey m) © Mor o, Fra(r ) © (idorac®en)))

_ (WM/(eVFI.a.(F(M)),M'))_01®C(6VM,M' o (Hom v (ey}, M)@id)y) o (ido:@eveiaFuy),m)°
M ¢ FraEmy) © ((doec@ey ) © (idoscBen))

= (WM (eVrra r oy ) O c(€Vmm © (Hom (er) , M)Bidy) o (ide@eviua F ) m)°

mC’,C,F"a'(F(M))) =,
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where the equality (u) holds by the naturality of 11”"”((9v,\,,,,w) and (v) is via the definition
of the morphism HomM(eM , M). From the definition of the natural isomorphism

Y = Vi = (M (evmm ) B : Homu((C'® C)EM, M) — Home(C' C, Hom (M, M)} ye aor

(see Lemma 6.1) it follows the equality (w).
Therefore, the diagram

®HomM(e M)

I-'fomM M, M)A

;
SE (M), wEEE MM

Homy(F(M), F(M')) ® B

HomM(F’ a(F(M), M) ® MM(F’-&(F(M)H)?MS(
KEwm), F (M), F (M) Ko, v,
Hom v (F"2(F(M)), M)

Hom) (F(M), F(M)) Hom (M, M')

E,F(M)’MI HoimM(eMaMl)

commutes, that is,

REM), E(M),F(M) = EEMmy, M © Homa(ens, M) o wpg p ppro
((Hom (€], M) o Egipy ap) © (Homa(63 . M) o EE ) )

and particularly, for M’ = M we get

LEM),F(M),F(M) = EF(M),m © Hom y (e, M) © 1AL M. MO
((HomM(eM, M) o E )®(HomM(eX/,1,M)o£7_-1(M),M))

=BMOHO(BM ®f3M)

as wanted. Hence, the algebra structure (multiplication and unit) of Hom/(F(M), F(M))
given in terms of the algebra Hom (M, M) is the same as the one defined in Section
5.2, that is,

Bro o (By @ Bu) = LEmy, F(M),F(M)
and

Bmou= (‘PF(M)(eVF(M),F(/\//)))T1 (Fmy)-

Next, by Theorem 5.4.1, N is equivalent to CHom,(F(M),F(M)) @S C-module cate-
gories, and the equivalence is given by
F2 : N'— Chom, (F(M),F(M))
N+ Fo(N') = (Homp (F(M), N'), o Hom, .(F (M), A7)
h — Fy(h) = Hom/(F(M), h).

Notice that F(M) # 0 because otherwise 0 # M = F’-a-(F(M)) = 0 leading to a
contradiction®.

9 In the second isomorphism we are using the additive property of the functor F"# (see Remark 1.1.20).
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Therefore, the composition F2‘1 oGoFy : M — N is an equivalence of categories
which admits a structure of C-module functor'® and, hence, M and A are equivalent
as C-module categories.

The other case (in which cy = & pra ) (idpagy)) : N = (F o FM3)(N) is an
isomorphism in A/ for some 0 # N € ) follows analogously. |

As we could see, the equivalence between the C-module categories M and N/
of the previous theorem is given by the C-module functor composition F2‘1 oGo Fyq:
M — N, and not necessarily by F. The next corollary shows that there is a natural
isomorphism of C-module functors from F2‘1 o Go Fy to F implying that F is also an
equivalence of C-module categories.

Before beginning, let us consider some morphisms we are going to use. The
C-module functor structure d of F/-& : A' — M is given by equation (19) as

d = {dx N = exgria(n) © F (Y pra ) © F® (idxECn)} x Myecons
The functor _ @M : C — M is left adjoint to Hom (M, _) : M — C (see
Proposition 4.2.1) and the natural isomorphism of this adjunction is given by the family
(WM (evim))x = Homp(XBM, M) — Home(X, Hom (M, M')}x pryecos s -

So via Proposition 1.3.8, the counit @ and unit ¢ of this adjunction are

e= {éM’ = \PM (eVM,M’)mM(M,M’)(ide(M,M’)) = evM,M/}M/eM, and
¢ ={cx = (W“M(evy xam)X idxam)ixec
respectively. The C-module functor structure d’ of F{ : M — CmM(M,M) is given by

the C-module structure of Hom (M, _ ) : M — C as we could see in Proposition 5.3.2,
and its inverse!"

d~' ={dxy = Hom (M, idx@evy u)oHom (M, MXx Hom , ,(M,M),M)°CX®Hom , ,(M.M)}(X,M)eCx M
comes from equation (24).
Notice that

1

di b = (WM (evyy xamn NxoHom (M, ((1AXDV M) © M Hom, (M, M), M)-

XM~

Indeed,

dX M= HomM(M Idx®eVM M’) Hﬂ?M(M, mX,mM(M’M/)’M) oEX@mM(M,M’)

= HomM(M, (Idx®eVM,M/) o mX,mM(M’M/)’M)O

(w(X@Hom \ (M.M))&M —

eVM,M@MM(M,M’))®M))X®Hom (MM

(18 X Hom (M, M) EM)

10" By Proposition 2.2.10.
" We'll use the inverse because it is much simpler that d'.
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= (Home(X ® Hom (M, M'), Hom (M, (idx@evay,mr) © Mx, Hom ,(M,M1),M))°

(W(X@)MM (M,M’))®M( eVM, (XeHom, (M, M’))@M))?@MM m /\/]/))

(1 x 2 Hom (M, M)y zM)
= (WM (evyy xam ) Hom (M) © Homa((X @ Hom (M, M"))EM,
)id x % Hom , (M, M)y=M)

eV M’))X®HomM M) (Hom (X @ Hom (M, M'))&M,

(idx@evy,mr) © Mx, Hom, ,(M,M),
= (WM

M)
(idx&evp,m) © Mx, Hom , (MM, M1 x5 Hom (M, M))EM)

XaM 1
= (Y (eviy xmm ) X Hom,, (v, ) (X B VA M) © M Hom, (M, M), M)

in which we use the natural isomorphism of the previous adjunction in the fourth equality.

Similarly, the functor _ ®@F(M) : C — N is left adjoint to Homy/(F(M), _) :
N — €, so the C-module functor structure d” of Fa : N = Crom, .(F(m),F(Mm)) 18 given by
the C-module structure of Hom/(F(M), _ ) : N'— C and it has inverse defined as

d"" = (i = (XN (v, xan) Xl Hom, (Fmy,n) ((AX BV, M)

Mx, Hom, (F(M),N),F(M))}(X,N)eCx A~
Finally, the functor _ ®F&(F(M)) : ¢ — M is left adjoint to Hom v (F-3(F(M)), ) :

M — C, thus the C-module functor structure d of HomM(F’-a-(F(M)), )M =C
has inverse

d_1 = {a)_(;lM, = (WX@M/(eVF"a'(F(M)),)@M’));(1®MM(F/-a-(F(M)),M/)«idX@evF"a'(F(M)),M’)O

MX., Hom ,,,(F'a(F(M)),M"),Fla(F(M))}(X.M)eCx M-

Corollary 6.4. If there is an object 0 # M € M (respectively, 0 # N € N) and a
C-module functor F : M — N admitting an adjunction (F la. F ¢®) such that

eyt (F% o F)(M) = M

(respectively, cy : N — (F o F-@)(N)) is an isomorphism then F : M — N (then
Fla N — M ) is an equivalence of categories.

Proof. Before we begin, set A= Hom (M, M), B = Hom/(F (M), F(M)),

C = Hom (F-@(F(M)), M) and C' = Hom ,,(F"-&(F(M)), M’) as we've done previously.
This proof is done by showing that there is a natural isomorphism of C-module functors
between F;' o Go Fy and F, that is, F;' o Go F; and F are equivalent as C-module
functors. We begin by constructing a natural isomorphism of C-module functors from

Go F1: M = Chom,,(M,M) = CHom, (F(M),F(M))

to
FooF: M —> N — CmN(F(M),F(M))'
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Affirmation 1: [.)) = {BM/ = E,F(M)’M/OHomM(eM, M/) . HomM(M, M/) — HomN(F(M), F(M/))}MIGM
is a natural isomorphism between the functors Hom (M, _ ) and Hom/(F(M), _ )oF.
In fact, let f : M’ — M" be a morphism in M and notice that

Hom(F(M), F(f)) o By = Hom (F(M), F(f)) o &gy mr © Hom g (eps, M')
= Ep(my,m © Hom ((F"2(F (M), f) o Hom (e, M)
= ‘("F(M),M” o HomM(eM, M”) o HomM(M, f)
= BM// o HomM(M, f)
where the naturality of & is used in the second equality and the fact that Hom( _, _ )

is a bifunctor in the third.
We may as well notice that for every M’ ¢ M,

(Go Fy)(M) = G(F{(M")) = G(Hom (M, M"), o tyom,, ,(m,m))
= (MM(M! M/)w p/[-/ﬂM(M’M/))
= (Hom (M, M), PHom, (M,M) © (IQHom , (M, M) © B))

and
(F2 o F)(M') = Fa(F(M")) = (Homr(F(M), F(M')), 0 Hom,(F(M),F(M')))-

Affirmation 2: For any M’ € M, By is @ morphism in Crom (F(M),F(my) from (Go F4 )(M')
to (Fp o F)(M').
This fact can be verified via the commutativity of the diagram

Hom v (M, M) @ B LM/

Homy(F(M), F(M)) ® B

pme,M/)O(idew,Mq@BX)>l lpfwmwwww’»

Hom (M, M') Homy(F(M), F(M')).

B

It commutes given that

Bmr © PHom ,  (M,M) © (OHom  (M,Mr) © Bu) o By @ idg)
= B © PHom, (M) © (B © B1)

= By o p MM © By © B)
(36)
=" WLE(M),F(M),F(M")

= PHom,(F(M),F(M"))-

Affirmation 3: B = {B s }mrepq IS @ Natural isomorphism of C-module functors from Go F4
to F2 oF.
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The C-module functor structure of a composition of C-module functors is given
by Proposition 2.2.10. For the composition Go F; it is

{idx Hom, (M) © Gl ) = A b x Mryeex s

and for Fo o F,itis

{dx,Fw) © Falbx,m) = dx gy © Homy(F (M), bx )} xmecx -

We know that {3 is already a natural isomorphism from the functor Go F{ to Foo F
by the Affirmations 1 and 2. It remains to prove that this is a natural transformation of
C-module functors, i.e., the commutativity of the diagram2

Hom v (M, XGM') — 5 Hom ) (F(M), F(XGM'))

d/ d//

XM X,F(M/)OMN(F(M)7bX,M/)

X ® Hom (M, M) X ® Homy(F(M), F(M")).

I'dx®[3/w/

To make this easier, let us check that this equivalent diagram

Hom (M, X&M') Rl Hom /(F(M), F(X@M'))

-1 —1
dX,M’ dx,M/

Homy (F(M), X&F (M)

X @ Hom v, (F'-&(F(M)), M')

11—1
dX,F(M’)

idx®HomM(eM,M’ idX@EF(M)yM/

X @ Hom v (M, M) X @ Hom (F(M), F(M"))

Id)(® ﬁM/

commutes by commuting its smaller diagrams.
The triangles on the top and bottom of this diagram commute simply via the

2 See Definition 2.2.9.
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definition of 3. The diagram on the left commutes since

dy'y © (idy ® Hom y(ey, M)
(XM (

eVELa (F (), xam ) x s o ((1OXBeVELa (F(uy m) © My, o1 Fra(F(My)°
(idy ® Hom v (ep, M'))

(@ / - S

= (WM (evira (), XEm) X Hom, (.1 (X DVEra (£ () )0
My o Fra(emy) © ((idx © Homa(ey, M) Bidgia g umy))

(b) / - S

= (yXeM (eVF/-a-(F(M)),)@MI)))(1®MM(M,MI)((’dX DeVELa(F(M)),Mm)°

(idx®(mM(eM, M’)@id/:/.a.(F(M)))) o mX,mM(M,M’),F’-a'(F(M)))
(WXeM'(

eVF/.a.(F(M)),)@M/));g@mM(M,M’)«idX@(evF"a'(F(M)),M’O

(Hom v (ens, M)Sidrra ) © Mx Hom, (v, m),Fa(F(m))
© : . L . _
= (‘P)@M (eVF’-a-(F(M)),)@M’))X-IQ@mM(M,M’)((IdX®(eVM,M’ o (/de(M’M/)@)eM)))o

MX Hom (M, M), Fla(F(M)))
= (WX@M/(QVF/-&(F(M)), ®M’))}1®MM(M,M’)((idxgevM,M’) o (idx®(ide(M,M/)®eM))o
Mx Hom,,(M,M'),F'a(F(M)))

b ’
(b) (WXEM'(

)

-1 L =
VELa(F(M)) XM ) X Hom,, (M,m) (TOXDEV ) © Mx Hom (M, M), M©

((idx @ idpom (M, M) ©EM))
— (W)@M/(

eVrra(F(uy, xam ) X Hom, (v, (XYM M) © M Hom (MM, MO
(idx s Hom , ,(M,M) 2 €M)

(@) w _ -
= Hom,/\/l(eM! X@M/) o (\PX®M (eVM,X®M’))X1®mM(M,M’)((’dX®eVM,M’)O

MX, Hom,,(M,M"),M)
= Hom \(ep, XoM') o 3?1/\/1/

where the equalities labeled with (a) and (b) hold by the naturality of WX®M (evi,a ) xzmr)

and m, respectively. The equality (c) is valid by the definition of the morphism Hom(ey;, M'),
and (d) is by the naturality coming from Lemma 6.1.
And for the diagram on the right side notice that

Homy (F(M), bx mr) © &EF(my, xmmr © ax'w

= Homy(F(M), by ar) (WF()@M/)(eVF(M),F()@M’)))ﬁﬂM(F’-a-(F(M)),)@M/)

(b Hom M(F/-a-(F(M)),)@M/)@F(M),)@M(eVF'-a-(F(M)),)@M' © O’mM(F’-a-(F(l\/l))J@M’),F(M)))O
oy
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'© Homp(F(M), b ) o (¥FXEM

N evey, Foam)xsc

((bHomM(F’a (F(M)),X&M )®F(M),X@M’(eVF"a'(F(M)),)@M’ o de(FIa (F(M)),XeM’) F(M))O
(a}j wm idE )

(f) i —

= (WM v xa )Xo o (bX M © P riom  (Fla(FMy) xEMEF(M), XEW

(eVEa(F(my) XM © Hom,, (Fr=(F(MyxzM),Fwy) © (x wBidE(w)
@) WXTF(M)
= (¥ (

eVEM), xaF(M) ) xe e (OX,M © P(xecyaFm), xam (BVELa(F(Mm),xam ©
Ahtom,, (2 (F(M) XM, F(M) © 2

(dx 1y @idE))
D WFFM v 1 s xo e X © b ixecysFu xam (€VELa (Fmy xam®
(d)_(TM/®id,:/.a.(,:(M)))OdX@C’ F(m)))
= (WXFM) v xamFn)xec (DX © O (xec)EF M) XEM
(XM (evia p o rM’)X@C’(deM’) ° dxwcr,F(M)))
= (WXFM) v xamrn)xec (Oxm © D (xechEF M) XEM
(W)@M/(ev,:/ a(F( )FM’)X@C’((W)@M/(

ev,_-/.a.(,_-(M)),X@M/))q
((/dx®ev,:/a(,:(M)),M/) o mX,C/,,:/.a.(,:(M)))) o dX®C’ ( )))

M) X
((fdx@evELamy,m) © Mx,cr FraEwmy) © AXacr,F(M)
() (WXSF(M')

Ve xzFM)) X e Ox M © bxeonsFM) XEM
((idx@ev,:/.a.(,:(M)),M/) o (idxgdc/,F(M)) o dX,C’®F(M) o F/

4 (mx o' Fm))))
eVEmM XSEM)) xs 0 (BX. M © S (xec)EE M XEM

M
((/dx®(ev,:/.a.(,:(M)),M/ o dC’,F(M))) o dX C'®F(M) ° Fl'a'(mX,C’,F(M))))
(WP v xarmn) X (bxm © bxacrarmm) xam

AR
((idx @ (eVEraFmy),mr © der,Fm))) © dx,craFm)) © Mx,cr, (M)
) (WXBFM)(

(g)

eVE(M),X© (M/)))}1®C/(bx,m/oF(idX®(evF/.a.(F(M)) v © der F(my))e
F(dx,crarm) © Cxa(crarm)) © Mx,cr,F (M)

(2(W)@F(M/)(eVF(M),)@F(M’)))?@@C/((idX®F (eVEra(F(my),mr © dor Fimy))°
bx rracmrm) © Fldx,crormy) © Cxacmrmy) © Mx,c,Fm))

2 (WXEFM) v FXsFM)) X (XD F (VL F ) m © Ao Fm)o
by pre(crarm) © Flexarie(carmm © F (0 pracrmrumy)°

Fla(’dX®CC/®F 1) © Cxz(csF(M)) © MX,C,F(M))
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= (WXFM) v iy xzF ) xe e ((AXEF(eVELa gy © Ao Fm))°

I.a.(

bx.FracarM) © Fexariacmrmy) © FIF (0 pracmrmy))°

F(F"(idx@ccrsr (M) © Cxs(crmr) © MX,C/F(M)

() : 9 idyE
= (WM eve i xar )Xo (10X EF (Vi My, m © Ao F)

by Fra(crM) © Flexariaicmruy) © FIF (0% pia crarmy)°
CxaF(Fla(cmF(My) °© (Ax©Cozrm)) © Mx,c/,F(m))

L XM v, ) o AXBF(SVEr uay © Ao F)e
bx,Fra(cmrmy) © FlexzFia(c@rmy)) © CF(X@F 2 (CEF(M))°
by Fracmrmy) © AXECozrmm) © Mx,c Fm)

2 XM e, )X o (19X D (Ve . © o Fiaa)e

bx Fia(CmF(M) © B (xaFia (CEFMY) © DX Fra(craruy © (AXxBCcmru)°

Mx ¢ F(M))
(W)@F(MI)(

evEw) xzFM)xe o (XD F(VELa ), © der Fu)°

bX,F’*’"-(C’@F(M)) o b}i/:/.a.((;/@/:(/\/])) © (idX®CC’@F(M)) © mX,C',F(M))
(W)@F(MI)(

Ve xaF (M) X s e (X F (eVELa £y © dor Fm))e

(idx®cozrm)) © Mx, ¢, F(m))
(W)@F(M/)(

eVF(M),)@F(M/)));g@C,((idX®F(evF/.a.(,:(M)),M/ o dC’,F(M)) o CC’@F(M))O
Mx ¢ F(M))

(2 , xoc ((idx®
= WXEFM v xzrmn) X o (AXED oz r . mr (Ve (Fvy.mr © 9o Fwy))e

mx.c',F(M))
2 XM v ) ) o o (i BV ) £ ) © (€t Bl )
mx,c',F(Mm))
= (WP v oyt o (X E vy ) © (9B (EF i)
Mmx.c',F(M))
2 (W)@F(MI)(eVF(M),)@F(M/)));(L@C/((idX®eVF(M),F(M/)) © M Hom, (F(M),F(M’)),F(M)°
((idx @ Ep(py, m)DidEp)))

(n (WXEFM)( 1

eVEM), xzF (M) X Hom,, (F(M),F (M) (XD EVE(M), F (M)
Mx Hom, (F(M),F(M)),F(M)) © (idx @ EF vy, m)

= A oy © (idx @ Epuy, ).

The equality (e) holds by the naturality of ‘PF()@M/)(ev,_—(M)’,_-()@M,)). We know that the
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functor _ ®F(M) : C — N is left adjoint to Hom/(F(M), _) : N' — C by Proposition
4.2.1, so using the natural isomorphism of this adjunction we get (f). The naturalities of
¢ and d are used in (g) and (h), respectively. The pentagon diagram of the C-module
functor F-2 is used in (i), the naturality of b in (j), the definition of d in (k) and the
naturality of c in (l). In (m) we used an identity present on Proposition 1.3.8, and in (n)
the naturality of WX®F M) (eve vy m).

This means that the diagram

Hom \((M, X&M') Pxam Hom/(F(M), F(Xa@M'))

d//

!
d X, F(M!

- JoHom,(F(M) by )

X ® Hom (M, M') X ® Homy (F(M), F(M')).

idx By

is commutative and therefore 3 : Go Fy — F» o F is a natural isomorphism of C-module
functors.

Affirmation 4: There is a natural isomorphism of C-module funtors from F2‘1 oGoFqto
F.

The C-module functor F, is an equivalence of categories, so F2‘1 has a C-module
functor structure' (F;", d) and there is a natural isomorphism of C-module functors
@ FyloFy — Idy.

Let us define

em = Py 0 Fy (Bu) : (Fy' o Go Fy)(M) (Fy" o Fpo F)(M) F(M')
and check that ¢ = {epp}pren is @ natural isomorphism of C-module functors from
F§1 o Go Fy to F. Using Proposition 2.2.10, we may define the C-module functor struc-
ture « of the composition F;' o F, as

F5' (Bwr) P Ewm)

k= {kx.n = dx F(n) © Fa ' (0 MY Mo

and the C-module functor structure o of F;1 o Go Fy is

o={oxm = 3X,G(/-q(/\/l')) > (A )l x myecx -

Finally, the diagram

(F3! o Go Fy)(XaM) — 2. F(X@M)

Ox m bX,M’

X&(F3' o Go Fy)(M))

idX@EM/

13 See Proposition 2.2.12.
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commutes since

1
bx,m © exam = bx,m o @r(xam) © Fo (Bxam)

D oxarun © (F2" o Fo)lbxm) o Fz' (Bxam)

= idyzF o © ©xzFmm) © (Fa' o Fa)(bx.u) © F3' (Bxam)

2 (idx®@ Fmry) © Kx, Fmr) © (F3" o Fa)(bx ) © B3 (Bxzm)

= (idx B £ () © dx Ry (Fuy) © Fa ' (A Fa) © (F2' o Fa)(bx )
Fo' (Bxam)

= </dx®<pF ) © dx ) © Fa Ay Fam © Falbxm) o Bxzm)

9 (idx B Fary) © dx. Fy(Fmry) © Fa | (idx @B ) o Ay w)

= (idx @@ £ () © dx Fy () © Fa ' (dx@Bur) o Fz ' (d pp)

D (idx @@ Fuy) © (idxDF5" (Bar)) o dx.aF, () © Fa ' (d )

= (idx®(@F(mry © F5 (Buwr))) EX,G(H(M’)) o Fy' (dx )

(idx@epr) o dx. gr ) © Fa ' (d )

= (idy®epp) o oX M

in which the equality (0) holds by the naturality of ¢ and in (p) is used its C-module
natural structure. The C-module natural structure of 3 is used in (q) and the naturality
of d in ().

Since the C-module functor F,j oGoFy : M — N is an equivalence of categories
and there is a natural isomorphism of C-module functors from F2‘1 o Go Fqto F, then
(F,b) : M — N is an equivalence of C-module categories.

The other case can be done analogously. ]

A small application of this theorem can be seen in the following example. Here
k is assumed to be an algebraically closed field of characteristic zero, and all module
product bifunctors to be k-bilinear and biexact.

Example 6.5. Let us consider the main theorem (Theorem 3.8) of the work [19]: Let
G be a finite group acting on a fusion category C, H be a subgroup of G and M a
semisimple'# indecomposable module category over C. For every simple object N € M,
the (CG-module) functor Ly : M — MH (which is left adjoint to the forgetful functor
Fn : MH = MPN see Proposition 3.6 in [19]) induces a bijective correspondence
between isomorphism classes of

4 Any semisimple module category is exact since any object in a semisimple category is projective (see
page 138 of [4]).
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(i) simple objects (Y, ) € MHN such that Hom (N, Y) # 0, and

(i) simple objects (M, v) € M' such that Hom (N, M) # 0.

Affirmation: If there exists a simple object (M, v) € MH satisfying condition (ii) such
that Fp(M, v) is simple in M5V, then the categories M/ and MV are equivalent as
¢G-module categories.

In fact, from the correspondence of this theorem consider a simple object
(Y,n) € MM satisfying Lny(Y,w) = (M,v) (and Hom (N, Y) # 0). This implies that
Fn(Ln(Y, ) = Fy(M, 1)1 and thus Fy(La(Y, 1)) is a simple object in M,

The functor Ly, is left adjoint to F;,, so we may consider a counit e : Ly o Fyy —
Id+ and unit ¢ : Id, w, — Fp o Ly of this adjunction which particularly satisfies (See
Proposition 1.3.8)

iaLy(¥ ) = ELy(Y.) © LN(C(y )-

Let us now verify that ¢y ,,y : (Y, 1) = (Fy o Ly)(Y, 1) is @ nonzero morphism in MFin,

The object Ly(Y, n) is not the zero object of the category MH . Indeed, 0 +#
(Y,n) € MHv and the functor Ly is a nonzero'® additive!” C-module functor which
implies 0 # Ly(Y,n) € MH by Proposition 4.4.1, and thus idp(y,u) # 0 via Remark
1.1.8.

Suppose that ¢y ) = 0. Then Ly(cy ;) = Ln(0) = 0'8 and therefore,

O # 1dLy(v,1) = €Ly(Y,w © Ln(Cry ) = 0

which is a contradiction. Hence, c(y ) is a nonzero morphism between the simple
objects (Y, ) and (Fy o Ly)(Y, n) in MV, and thus an isomorphism in MHN (by
Corollary 1.2.10).

So we can use Theorem 6.3 to conclude that the categories MHEN and mH
are equivalent as CG-module categories and also, by Corollary 6.4, that the functor
Ly : MHv — MH is an equivalence of ¢G-module categories.

Any functor maps isomorphisms in isomorphisms.

Since it maps simple objects of M" in simple objects of M*.
It is right exact via Proposition 1.4.5 and thus additive.

18 [ is additive.
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